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Preface

This volume contains the papers presented at GD 2021, the 29th International
Symposium on Graph Drawing and Network Visualization, held during September
14–17, 2021, in Tübingen, Germany. Graph drawing is concerned with the geometric
representation of graphs and constitutes the algorithmic core of network visualization.
Graph drawing and network visualization are motivated by applications where it is
crucial to visually analyze and interact with relational datasets. Information about the
conference series and past symposia is maintained at http://www.graphdrawing.org.

This 2021 conference was held under extraordinary circumstances. After the GD
2020 conference, which sadly had to be held wholly online due to the COVID-19
pandemic, we were delighted to be able to meet our colleagues face-to-face again at a
hybrid GD 2021 conference at Universität Tübingen. The credit for this remarkable
achievement in such uncertain times goes wholly to Michael A. Bekos and Michael
Kaufmann as co-chairs of the Organizing Committee, whose early optimism and
determination ensured that the conference went ahead in the form that we all so desired:
in-person, with live presentations, poster sessions, and social events. We are much
indebted to them.

In effect, the Organizing Committee arranged two conferences, since they were
committed to also offering remote attendance, thus making the event accessible to
researchers unable to travel to Germany. Remote participation was facilitated through
Gather, Zoom, and a live video stream from the conference room in Tübingen. Hybrid
conferences may indeed be the way forward in the future – and this Organizing
Committee is well aware of the extensive additional effort this model requires.

A total of 70 participants attended the conference in person, with a further 100
registered participants online.

With regards to the program itself, regular papers could be submitted to one of two
distinct tracks: Track 1 for papers on combinatorial and algorithmic aspects of graph
drawing and Track 2 for papers on experimental, applied, and network visualization
aspects. Short papers were given a separate category, which welcomed both theoretical
and applied contributions. An additional track was devoted to poster submissions. All
the tracks were handled by a single Program Committee. In response to the call for
papers, the Program Committee received a total of 74 submissions, consisting of 59
papers (38 in Track 1, 12 in Track 2, and nine in the short paper category) and 15
posters. More than 220 single-blind reviews were provided, with almost a third con-
tributed by external sub-reviewers. After extensive electronic discussions via Easy-
Chair, the Program Committee selected 28 papers and 13 posters for inclusion in the
scientific program of GD 2021. This resulted in an overall paper acceptance rate of
47% (50% in Track 1, 33% in Track 2, and 56% in the short paper category). Nine
of the 30 oral presentations (including two invited talks) were delivered remotely using
Zoom; the remaining 21 were delivered on-site. Posters were displayed on-site as well
as in Gather.

http://www.graphdrawing.org


Authors published an electronic version of their accepted papers on the arXiv e-print
repository; a conference index with links to these contributions was made available
before the conference.

There were two invited lectures at GD 2021. Kim Marriott from Monash University
(Australia) asked “Node Link Diagrams: Are they (actually) useful?”, while Meirav
Zehavi from Ben-Gurion University (Israel) discussed “Parameterized Complexity in
Graph Drawing.” Abstracts of both invited lectures are included in these proceedings.

The conference gave out best paper awards in Track 1 and Track 2, as well as a best
presentation award and a best poster award. The award for the best paper in Track 1
was given to “Edge-Minimum Saturated k-Planar Drawings” by Steven Chaplick,
Fabian Klute, Irene Parada, Jonathan Rollin, and Torsten Ueckerdt, and the award for
the best paper in Track 2 was assigned to “A User Study on Hybrid Graph Visual-
izations” by Emilio Di Giacomo, Walter Didimo, Fabrizio Montecchiani, and
Alessandra Tappini. Based on a majority vote of conference participants, the best
presentation award was given to Henry Förster for his presentation of the paper
“Recognizing and Embedding Simple Optimal 2-Planar Graphs” and the best poster
award was given to “The Universe Beyond Planarity” by Michael A. Bekos, Paul
Goehring, Michael Kaufmann, and Axel Kuckuk. Many thanks to Springer whose
sponsorship funded the prize money for these awards.

A PhD School was held on the two days prior to the conference, attended by 23
participants from five different countries. Four half-day sessions led by five invited
lecturers covered both theoretical and practical topics in graph drawing and network
visualization, each including a hands-on activity.

As is traditional, the 29th Annual Graph Drawing Contest was held during the
conference. The contest was divided into two parts, creative topics and the live chal-
lenge. The creative topics task featured two graphs, a Movie Remake graph (modeling
remakes of movies by different directors), and an Argumentation Network (a logical
reconstruction of an historical scientific debate). The live challenge focused on mini-
mizing the planar polyline edge-length ratio on a fixed grid, with planar undirected
inputs. There were two categories: manual and automatic. We thank the Contest
Committee, chaired by Philipp Kindermann, for preparing interesting and challenging
contest problems. A report about the contest is included in these proceedings.

Many people and organizations contributed to the success of GD 2021. We would
like to thank all members of the Program Committee and the external reviewers for
carefully reviewing and discussing the submitted papers and posters; this was crucial
for putting together a strong and interesting program. Thanks too to all authors who
chose GD 2021 as the publication venue for their research.

We are grateful for the support of our “Premium” sponsor yWorks, our “Diamond”
sponsor DFG, our “Gold” sponsors Tom Sawyer Software and Universität Tübingen,
and our “Bronze” sponsor Springer.

Our special thanks go to all the members of the Organizing Committee based at
Universität Tübingen: Michael A. Bekos, Henry Förster, Renate Hallmayer, Michael
Kaufmann, Axel Kuckuk, Maximilian Pfister, and Lena Schlipf – they performed a
miracle that we did not dare to hope for in early 2021.

The 30th International Symposium on Graph Drawing and Network Visualization
(GD 2022) will take place during September 13–16, 2022, in Tokyo, Japan. Reinhard
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von Hanxleden and Patrizio Angelini will co-chair the Program Committee, and
Takayuki Itoh will chair the Organizing Committee.

October 2021 Helen Purchase
Ignaz Rutter
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Parameterized Complexity in Graph Drawing

Meirav Zehavi

Ben-Gurion University of the Negev, Beer-Sheva, Israel
meiravze@bgu.ac.il

Abstract. Research at the intersection of graph drawing and parameterized
complexity—in particular, parameterized algorithms—is in its infancy. Most
early efforts have been directed at variants of the classic Crossing Minimization
problem, introduced by Turán in 1940, parameterized by the number of cross-
ings. However, in the past few years, there is an increasing interest in the
analysis of a variety of other problems in graph drawing from the perspective of
parameterized complexity.
In this talk, I will first give an overview of the field of parameterized com-

plexity. Then, I will briefly discuss some results at the intersection of parame-
terized complexity and graph drawing, with emphasis on crossing minimization.
Lastly, I will discuss in more detail a joint work with Agrawal, Guspiel,
Madathil and Saurabh, which analyzes a class of crossing minimization prob-
lems from the perspective of parameterized complexity.

Supported by Israel Science Foundation (ISF) grant no. 1176/18, and United States - Israel Binational
Science Foundation (BSF) grant no. 2018302.



Node Link Diagrams: Are They (Actually)
Useful?

Kim Marriott

Department of Human-Centred Computing, Monash University, Australia
Kim.Marriott@monash.edu

Abstract

Over the last thirty years computer scientists and mathematicians in the graph drawing
community have devoted considerable effort to developing algorithms and software for
the automated layout of node-link diagrams. The underlying assumption is that
node-link representations of graphs are useful. But is this assumption warranted?

Few user studies have compared node-link diagrams with other possible graph
representations [1]. However a number of studies have compared node-link diagrams
with an adjacency matrix, e.g. [3, 6]. These have found that adjacency matrices are
better for most tasks except those that are path related. And even for path related tasks
node-link diagrams are only useful for quite small graphs [9].

What does this mean? Should we only focus on the layout of small graphs and
strive to obtain layouts that are more like those created manually [4]? Should we look
at modifications of node-link diagrams that scale to larger graphs? For instance, by
laying the diagram out on the surface of a torus [2]. Or should we explore completely
new representations for larger graphs, e.g. [8]? But perhaps task effectiveness isn’t the
only thing we should be considering and instead we should be investigating other
possible benefits of node-link diagrams. For example, perhaps they are more intuitive
and natural than adjacency matrices?

There is some evidence that node-link diagrams are, in fact, more intuitive and
natural than adjacency matrices. This comes from a user study comparing the effec-
tiveness of different tactile representations of graphs for blind readers [7]. The study
compared adjacency list, adjacency matrix and node-link representations of social
networks. None of the blind participants had seen graphical representations of networks
before They rated the node-link diagrams as

– More understandable
– More imaginable (I imagined the social network in my head)
– More intuitive/natural representation

than the other representations. As one participant said:

Love these [node-link] graphics, they make it so easy. This is how I would show
someone what a social network is.



The obvious question to ask is why might this be true and what does it mean to be a
“more intuitive/natural representation”? I am not sure of the answer but feel that
conceptual metaphor theory [5] may provide at least part of the answer. This theory
argues that metaphor is at the heart of human cognition: that we leverage from our
knowledge of the concrete world to reason about abstract ideas. This is revealed
through language. For example the UNDERSTANDING-IS-SEEING metaphor is revealed
through phrases such as “Now I see what you are getting at.”

Conceptual metaphors can also be revealed through graphics. Thus, the
CATEGORY-IS-A-CONTAINER metaphor underlies both the phrase “The class of mammals
contains dogs and cats” and the use of Venn and Euler diagrams. Similarly, the SOCIAL

RELATIONSHIP-IS-A-PHYSICAL CONNECTION conceptual metaphor underlies how we reason
about social relationships including kinship. It is revealed through the phrase “I feel
connected to you.” I believe it also underpins our use of family trees and sociograms.
This is why a node-link diagram feels like a natural way of representing a social
network: it corresponds to a conceptual metaphor that we already have in our head.
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Edge-Minimum Saturated k-Planar
Drawings

Steven Chaplick1 , Fabian Klute2(B) , Irene Parada3 , Jonathan Rollin4 ,
and Torsten Ueckerdt5

1 Department of Data Science and Knowledge Engineering, Maastricht University,
Maastricht, The Netherlands

s.chaplick@maastrichtuniversity.nl
2 Utrecht University, Utrecht, The Netherlands

f.m.klute@uu.nl
3 TU Eindhoven, Eindhoven, The Netherlands

i.m.de.parada.munoz@tue.nl
4 Department of Mathematics and Computer Science, FernUniversität in Hagen,
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Abstract. For a class D of drawings of loopless (multi-)graphs in the
plane, a drawing D ∈ D is saturated when the addition of any edge to D
results in D′ /∈ D—this is analogous to saturated graphs in a graph class
as introduced by Turán (1941) and Erdős, Hajnal, and Moon (1964). We
focus on k-planar drawings, that is, graphs drawn in the plane where
each edge is crossed at most k times, and the classes D of all k-planar
drawings obeying a number of restrictions, such as having no crossing
incident edges, no pair of edges crossing more than once, or no edge
crossing itself.

While saturated k-planar drawings are the focus of several prior works,
tight bounds on how sparse these can be are not well understood. We
establish a generic framework to determine the minimum number of edges
among all n-vertex saturated k-planar drawings in many natural classes.
For example, when incident crossings, multicrossings and selfcrossings
are all allowed, the sparsest n-vertex saturated k-planar drawings have

2
k−(k mod 2)

(n − 1) edges for any k ≥ 4, while if all that is forbidden, the

sparsest such drawings have 2(k+1)
k(k−1)

(n − 1) edges for any k ≥ 6.

1 Introduction

Graph saturation problems concern the study of edge-extremal n-vertex graphs
under various restrictions. They originate in the works of Turán [20] and Erdős,
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Fig. 1. Saturated 4-planar drawing of the 8-cycle (left), 3-planar drawing of the 8-clique
(middle), and saturated 6-planar drawing of the 7-matching (right).

Hajnal, and Moon [9]. For a family F of graphs, a graph G without loops or
parallel edges is called F-saturated when no subgraph of G belongs to F and
for every u, v ∈ V (G), where uv /∈ E(G), some subgraph of the graph G +
uv belongs to F . Turán [20] described, for each t, the n-vertex graphs that
are {Kt}-saturated and have the maximum number of edges—this led to the
introduction of the Turán Numbers where the setting moves from graphs to
hypergraphs, see for example the surveys [14,19]. Analogously, Erdős, Hajnal,
and Moon [9] studied the n-vertex graphs G that are {Kt}-saturated and have
the minimum number of edges. This sparsest saturation view has also received
much subsequent study [10], and our work fits into this latter direction but
concerns “drawings of (multi-)graphs”, also called topological (multi-)graphs.

There has been increasing interest in saturation problems on drawings of
(multi-)graphs in addition to the abstract graphs above. A drawing is a graph
together with a cyclic order of edges around each vertex and the sequence of
crossings along each edge so that it can be realized in the plane (or on another
specified surface). The saturation conditions usually concern the crossings (which
can be thought of as avoiding certain topological subgraphs). The majority of
work has been on Turán-type results regarding the maximum number of edges
which can occur in an n-vertex drawing (without loops and homotopic parallel
edges) of a particular drawing style, e.g., n-vertex planar drawings are well known
to have at most 3n − 6 edges for any n ≥ 3. In the case of planar drawings (i.e.,
crossing-free in the plane), the sparsest saturation version (as in Erdős, Hajnal,
and Moon [9]) is also equal to the Turán version: Every saturated planar drawing
has 3n − 6 edges.

However, for drawing styles that allow crossings in a limited way, these two
measures become non-trivial to compare and can indeed be quite different. This
interesting phenomenon happens for example for k-planar drawings where at
most k crossings on each edge are allowed; and which are the focus of the present
paper. The left of Fig. 1 depicts a drawing of the 8-cycle C8 in which each edge
is crossed exactly four times and one cannot add a ninth (non-loop) edge to the
drawing while maintaining 4-planarity, i.e., this is a saturated 4-planar drawing
of C8. On the other hand, note that even the complete graph K8 in fact admits
3-planar drawings as shown in the middle of Fig. 1.
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In this sense, we call a drawing that attains the Turán-type maximum number
of edges a max-saturated1 drawing, while a sparsest saturated drawing is called
min-saturated. The target of this paper is to determine the number of edges
in min-saturated k-planar drawings of loopless (multi-)graphs, i.e., the smallest
number of edges among all saturated k-planar drawings with n vertices. The
answer will always be of the form αk · (n − 1). However, it turns out that the
precise value of αk depends on numerous subtleties of what precisely we allow
in the considered k-planar drawings. Such subtleties are formalized by drawing
styles Γ , each one with its own constant αΓ . As we always require k-planarity,
we omit k from the notation αΓ .

For example, restricting to connected graphs, we immediately have at least
n−1 edges on n vertices, i.e., αΓ ≥ 1. And in fact we also have αΓ ≤ 1 for all k ≥
4 as testified by entangled drawings of cycles like in the left of Fig. 1. Allowing
disconnected graphs but restricting to contiguous drawings, we immediately have
αΓ ≥ 1/2 since we have minimum degree at least 1 in that case. And again we
also have αΓ ≤ 1/2 for all k ≥ 6 as one can find saturated k-planar drawings of
matchings like in the right of Fig. 1. Other subtleties occur when we distinguish
whether selfcrossing edges, repeatedly crossing edges, crossing incident edges,
etc., are allowed or forbidden. We enable a concise investigation of all possible
combinations by first deriving lower bounds on αΓ for any drawing style that
satisfies only some mild assumptions. We can then consider each drawing style
Γ and swiftly determine the exact value of αΓ , thus determining the smallest
number of edges among all k-planar drawings of that style on n vertices. Our
results for multigraphs are summarized in Table 1.

1.1 Related Work

For k-planar graphs the Turán-type question, the edge count in max-saturated
drawings, is well studied. Any k-planar simple2 drawing on n vertices contains
at most 3.81

√
kn edges [1], and better (and tight) bounds are known for small

k [1,16,17]. Specifically 1-planar drawings contain at most 4n − 8 edges which
is tight [17]. For k ≤ 3, any k-planar drawing with the fewest crossings (among
all k-planar drawings of the abstract graph) is necessarily simple [16]. Therefore
the tight bounds for k ≤ 3 also hold for drawings that are not necessarily simple.
However, already for k = 4, Schaefer [18, p. 58] has constructed k-planar graphs
having no k-planar simple drawings, and these easily generalize to all k > 4.
Pach et al. [16] conjectured that for every k there is a max-saturated k-planar
graph with a simple k-planar drawing. For k = 2, 3, the max-saturated k-planar
homotopy-free multigraphs have been characterized [5].

In the sparsest saturation setting not only min-saturated k-planar drawings
are of interest but also min-saturated k-planar (abstract) graphs: sparse k-planar
graphs that are no longer k-planar after adding any edge [2,4,6,8]. The questions
we address in this work have also been explicitly asked [13, Section 3.2].
1 Sometimes these drawings are called optimal in the literature [5].
2 A drawing is simple if any two edges share at most one point. In particular there are

no parallel edges.
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Table 1. Overview of results (see also Theorem 1): The minimum number of edges
of saturated k-planar drawings on n vertices of a drawing style defined by a set of
restrictions.

k restrictions

minimum number of
edges of saturated k-planar

drawings on n vertices

tight
examplea

k ≥ 4
no restriction 2

k−(k mod 2)
· (n − 1) Figure 2

I no incident crossings

k ≥ 4
S no selfcrossings 2

k−1
· (n − 1)

S no self- and I no incident crossings
[7]

k ≥ 4 M no multicrossings
2(k−1)

(k−1)(k−2)+2
· (n − 1) [7]

k ≥ 4 S no self- and M no multicrossings
2(k+1)
k(k−1)

· (n − 1) Figure 3

k = 4
I no incident and M no multicrossings

4
5

· (n − 1)

k ≥ 5
2(k−1)

(k−1)(k−2)+2
· (n − 1)

[7]

k ≥ 6

S no self-, M no multi-,

2(k+1)
k(k−1)

· (n − 1)

Figure 1

(right),

Fig. 4

and I no incident crossings

S no self-, M no multi-, I no incident

crossings, and H homotopy-free
a To attain the stated bound via these constructions, insert an isolated vertex in each
empty cell.

Recently, the case of saturation problems for simple drawings has come into
focus. The Turán-type question is trivial here as all complete graphs have simple
drawings. However, there are constructions of saturated simple drawings (and
generalizations thereof) with only O(n) edges [12,15].

1.2 Drawings, Crossing Restrictions, and Drawing Types

Throughout the paper, we consider topological drawings in the plane, that is,
vertices are represented by distinct points in R

2 and edges are represented by
continuous curves connecting their respective endpoints. We allow parallel edges
but forbid loops. As usual, edges do not pass through vertices, any two edges
have only finitely many interior points in common, each of which is a proper
crossing, and no three edges cross in a common point. An edge may cross itself
but it uses any crossing point at most twice. Also, each of these selfcrossings are
counted twice when considering the number of times that edge is crossed.

The planarization of a drawing D is the planar drawing obtained from D by
making each crossing into a new vertex, thereby subdividing the edges involved
in the crossing. Although we forbid loops in D its planarization might have loops
due to selfcrossing edges. In a drawing, an edge involved in at least one crossing
is a crossed edge, while those involved in no crossing are the planar or uncrossed
edges. The cells of a drawing are the connected components of the plane after
the removal of every vertex and edge in D. In other words, the cells of D are
the faces of its planarization. A vertex v is incident to a cell c if v is contained
in the closure of c, i.e., one could at least start drawing an uncrossed edge from
v into cell c.
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Two distinct parallel edges e and f in a drawing D are called homotopic, if
there is a homotopy of the sphere between e and f , that is, the curves of e and
f can be continuously deformed into each other along the surface of the sphere
while all vertices of D are treated as holes.

In what follows, we investigate drawings that satisfy a specific set of restric-
tions, where we focus on those with frequent appearance in the literature:

– k-planar : Each edge is crossed at most k times.
– H homotopy-free: No two distinct parallel edges are homotopic.
– M single-crossing : Any pair of edges crosses at most once and any edge crosses

itself at most once (edges with t ∈ {0, 1, 2} common endpoints have at most
t + 1 common points).

– I locally starlike3: Incident edges do not cross (selfcrossing edges are allowed).
– S selfcrossing-free: No edge crosses itself.
– branching : The drawing is M single-crossing, I locally starlike, S selfcrossing-

free, and H homotopy-free.

A drawing style is just a class Γ of drawings, i.e., a predicate whether any
given drawing D is in Γ or not. A drawing style Γ is monotone if removing any
edge or vertex from any drawing D ∈ Γ results again in a drawing D′ ∈ Γ , i.e.,
Γ is closed under edge/vertex removal.

We consider drawing styles given by all k-planar drawings of finite, loopless
multigraphs obeying a subset X of the restrictions above. Such a drawing style
is denoted by ΓX . We focus on the restrictions M forbidding multicrossings, S
forbidding selfcrossings, I forbidding incident crossings, and H forbidding homo-
topic edges. Note that the k-planar drawing style is monotone, and so is ΓX for
each X ⊆ {S, I,M}. However, the style of all homotopy-free drawings is not
monotone, as removing a vertex may render two edges homotopic.

We are interested in k-planar drawings in ΓX to which no further edge can
be added without either violating k-planarity or any of the restrictions in X, and
particularly in how sparse these drawings can be; namely, the sparsest saturated
such drawings.

Definition 1. A drawing D is Γ -saturated for drawing style Γ if D ∈ Γ and
the addition of any new edge to D results in a drawing D′ /∈ Γ .

1.3 Our Results

In order to determine the sparsest k-planar ΓX -saturated drawings for restric-
tions in X, we introduce in Sect. 2 the concept of filled drawings in general
monotone drawing styles and give lower bounds on the number of edges in
these. Using the lower bounds for filled drawings and constructing particularly
sparse ΓX -saturated drawings, we then give in Sect. 3 the precise answer for all
X ⊆ {S, I,M} and for the branching style, i.e., X = {S, I,M,H}, leaving open

3 In other papers this is also called star simple or semi simple [3,11] and may not
allow selfcrossing edges.
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only a few cases for k ∈ {4, 5, 6}. Our results for multigraphs are summarized in
Table 1 and formalized in Theorem 1. In Sect. 4 we discuss saturated drawings
of simple graphs instead of multigraphs. Finally, in Sect. 5 we discuss further
extensions.

Proofs of statements marked with (�) can be found in the full version [7].

2 Lower Bounds and Filled Drawings

Throughout this section, let Γ be an arbitrary monotone drawing style; not
necessarily k-planar or defined by any of the restrictions in Sect. 1.2. Recall that
Γ is monotone if it is closed under the removal of vertices and/or edges.

Definition 2. A drawing D is filled if any two distinct vertices that are incident
to the same cell c of D are connected by an uncrossed edge that lies completely
in the boundary of c.

For example, the filled crossing-free homotopy-free drawings are exactly the
planar drawings of loopless multigraphs with every face bounded by three edges.
Using Euler’s formula, such drawings on n ≥ 3 vertices have exactly m = 3n− 6
edges. In this section we derive lower bounds on the number of edges in n-vertex
filled drawings in drawing style Γ . Another important example of filled drawings
are those in which every cell has at most one incident vertex. Note that every cell
in a filled drawing has at most three incident vertices. Generally, for a drawing
D we use the following notation:

nD = # vertices
mD = # edges

ci(D) = # cells with exactly i incident vertices, i ≥ 0
c′
2(D) = # cells with 2 uncrossed edges in their boundary

For a drawing D, let G be its graph and P be its planarization. A component
of D is a connected component of P . A cut-vertex of D is a cut-vertex of G
that is also a cut-vertex of P . And finally, D is essentially 2-connected if one
component has at least one edge, all other components are isolated vertices and
along the boundary of each cell each vertex appears at most once (that is, D
has no cut-vertex). This means that for each simple closed curve that intersects
D in exactly one vertex or not at all, either the interior or the exterior contains
no edges from D.

Lemma 1 (�). For every monotone drawing style Γ and every filled drawing
D ∈ Γ we have mD ≥ αΓ · (nD + c0(D) − 1) where

αΓ = min
{

mD′

nD′ + c0(D′) − 1
: D′ ∈ Γ is filled and essentially 2-connected

}
.

As suggested by Lemma 1, we shall now focus on filled drawings that are
essentially 2-connected. Our goal is to determine the parameter αΓ . First, we
give an exact formula for the number of edges in any filled essentially 2-connected
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drawing. The parameter k in the following lemma will later be the k for the
k-planar drawings in Sect. 3. However, we do not require any drawing to be
k-planar here.

Lemma 2 (�). For any k > 2, if D is a filled, essentially 2-connected drawing
with nD ≥ 3 vertices, then mD = 2

k−2 (nD + c0(D) − 2 + ε(D)), where

ε(D) = (k
2mx − cr) + k−4

4 mp + c′
2 + c3, such that

mp = #planar edges, cr = #crossings, and mx = #crossed edges.

Lemmas 1 and 2 together imply that for any filled drawing D ∈ Γ we have

mD

nD − 1
≥ mD

nD + c0(D) − 1
≥ min

D′

mD′

nD′ + c0(D′) − 1

= min
D′

2
k − 2

· nD′ + c0(D′) − 2 + ε(D′)
nD′ + c0(D′) − 1

,

where both minima are taken over all filled, essentially 2-connected drawings
D′ ∈ Γ and ε(D′) can be thought of as an error term for the drawing D′, which
we seek to minimize. Indeed, if D′ is k-planar, i.e., each edge is crossed at most
k times, then 2cr ≤ kmx. Thus for k ≥ 4 we have ε(D′) ≥ 0. In the next section
we shall see that (in many cases) the minimum is indeed attained by drawings
D′ with ε(D′) = 0.

3 Exact Bounds and Saturated Drawings

Recall that we seek to find the sparsest k-planar, ΓX -saturated drawings in
a drawing style ΓX that is given by a set X ⊆ {S, I,M,H} of additional
restrictions. These ΓX -saturated drawings are related to the filled drawings from
Sect. 2.

Lemma 3 (�). For any k ≥ 0 and any X ⊆ {S,I,M}, as well as for X =
{S,I,M,H}, every k-planar, ΓX-saturated drawing is filled.

In order to determine the exact edge-counts for min-saturated drawings,
we shall find for each drawing style some essentially 2-connected, ΓX -saturated
drawings that attain the minimum in Lemma 1. Motivated by the error term
ε(D) = (k

2mx − cr) + k−4
4 mp + c′

2 + c3 in Lemma 2, we define tight draw-
ings as those k-planar drawings in which 1) every edge is crossed exactly
k times (so k

2mx = cr) and 2) every cell contains exactly one vertex (so
mp = c0 = c′

2 = c3 = 0). Observe that tight drawings are indeed ΓX -saturated
and filled and exist only in case k ≥ 4. Note that, to aid readability, isolated
vertices are omitted from the drawings in the figures. Namely, the actual draw-
ings have one isolated vertex in each cell shown empty in the figures. This is also
mentioned in the figure captions.



10 S. Chaplick et al.

Lemma 4 (�). For every k ≥ 4 and every monotone drawing style Γ of k-planar
drawings, if D ∈ Γ is a tight drawing, then αΓ ≤ 2

k−2 · nD−2
nD−1 < 1.

Theorem 1 (See also Table 1). Let k ≥ 4, X ⊆ {S,I,M,H} be a set of restric-
tions, and Γ = ΓX be the corresponding drawing style of k-planar drawings.

For infinitely many values of n, the minimum number of edges in any n-vertex
Γ -saturated drawing is

2
k − (k mod 2)

(n − 1) for X = {I} andX = ∅ .

2
k − 1

(n − 1) for X = {S} andX = {S, I} .

2(k − 1)
(k − 1)(k − 2) + 2

(n − 1) for X = {M} .

2(k + 1)
k(k − 1)

(n − 1) for X = {S,M} .

4
5
(n − 1) for X = {I,M} and k = 4 .

2(k − 1)
(k − 1)(k − 2) + 2

(n − 1) for X = {I,M} and k ≥ 5 .

2(k + 1)
k(k − 1)

(n − 1) for X = {S, I,M} and k ≥ 6 .

2(k + 1)
k(k − 1)

(n − 1) for X = {S, I,M,H} and k ≥ 6 .

Proof. For space requirements we present four out of seven cases in detail, the
other cases can be found in the full version [7]. We start with the cases when
X ⊆ {S, I,M}. Here the drawing style ΓX is monotone and every ΓX -saturated
drawing is filled by Lemma 3. Thus, by Lemma 4, we have αΓ ≤ 2

k−2 · nD0−2

nD0−1 for
every tight drawing D0. This gives the smallest bound when nD0 is minimized.
In this case D0 is essentially 2-connected and mD0 = 2

k−2 (nD0 − 2) by Lemma
2, since nD0 ≥ 3 for tight drawings. So it suffices to consider a tight drawing D0

with the smallest possible number mD0 of edges.
Next, we shall go through the possible subsets X of {S, I,M} and determine

exactly the value αΓ for Γ = ΓX in two steps.

– First, we present a tight (hence filled) drawing D0 with the smallest possible
number mD0 of edges, which gives by Lemma 4 the upper bound

αΓ ≤ 2
k − 2

· nD0 − 2
nD0 − 1

.

– Second, we argue that for every filled (hence also every ΓX -saturated), essen-
tially 2-connected drawing D′ ∈ ΓX we have

nD′ + c0(D′) − 2 + ε(D′)
nD′ + c0(D′) − 1

≥ nD0 − 2
nD0 − 1

, (1)
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Fig. 2. Smallest tight drawings for even k ≥ 4 (left) and odd k ≥ 4 (right) in case
X = ∅ and X = {I}, i.e. nothing, resp. incident crossings, are forbidden. (Isolated
vertices in empty cells are omitted.)

which by Lemmas 1 and 2 then proves the matching lower bound:

αΓ = min
D′

mD′

nD′ + c0(D′) − 1
= min

D′

2
k − 2

· nD′ + c0(D′) − 2 + ε(D′)
nD′ + c0(D′) − 1

(1)

≥ 2
k − 2

· nD0 − 2
nD0 − 1

In order to verify (1), observe that if ε(D′) ≥ 1, then the lefthand side is at
least 1, while the righthand side is less than 1. Thus it is enough to verify (1)
when ε(D′) < 1. In particular we may assume c′

2 = c3 = 0 and 2cr ≥ kmx − 1
for D′. Similarly, as ε(D′) ≥ 0, we may assume that nD′ + c0(D′) ≤ nD0 − 1.
Altogether this implies that (1) is fulfilled unless

mD′ =
2

k − 2
(nD′ + c0(D′) − 2 + ε(D′)) <

2
k − 2

(nD0 − 1 − 2 + 1) = mD0 .

In summary, for each X we shall give a tight drawing D0 with as few edges
as possible, and argue that every filled, essentially 2-connected drawing D′

with fewer edges satisfies the inequality (1). Note that mD′ ≥ 1 as essentially
2-connected drawings have at least one edge. In fact, we may assume that D′

contains at least one crossed edge. Otherwise D′ is filled, planar and hence con-
nected. Thus mD′ ≥ nD′ − 1 and c0(D′) = 0 which verifies (1) as follows:

nD′ − c0(D′) − 2 + ε(D′)
nD′ − c0(D′) − 1

=
k − 2

2
· mD′

nD′ − 1
≥ 1 >

nD0 − 2
nD0 − 1

Case 1. X = {I} and X = ∅
Figure 2 shows drawings D0 with mD0 = 1 edge when k is even, and mD0 = 2
edges when k is odd, which are tight for Γ = ΓX for both X = {I} and
X = ∅, as incident edges do not cross. Thus mD0 = 1 + (k mod 2) and
nD0 = k+2

2 for k even, respectively nD0 = k for k odd. Together this gives
αΓ ≤ 2

k−2 · nD0−2

nD0−1 = 2
k−(k mod 2) .

On the other hand, let D′ ∈ ΓX be any filled, essentially 2-connected drawing.
As argued above, we may assume that 1 ≤ mx ≤ mD′ < mD0 . For even k,
there is nothing to show as mD′ ≥ 1 = mD0 . For odd k, we may assume
that D′ consists of exactly one edge, which has exactly (k −1)/2 selfcrossings
(since 2cr ≥ kmx −1), and some of the resulting cells may contain an isolated
vertex. In particular, ε(D′) ≥ k

2mx − cr = 1/2. Applying Euler’s formula to
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Fig. 3. Smallest tight drawings for k ≥ 4 in case X = {S,M}, i.e. selfcrossings and
multicrossings are forbidden. (Isolated vertices in empty cells are omitted.)

the planarization of D′ we get nD′ + c0(D′) = (k + 1)/2, which verifies (1) as
follows:

nD′ + c0(D′) − 2 + ε(D′)
nD′ + c0(D′) − 1

≥ (k + 1)/2 − 2 + 1/2
(k + 1)/2 − 1

=
k − 2
k − 1

=
nD0 − 2
nD0 − 1

.

Case 2. X = {S} and X = {S, I} (�)
Case 3. X = {M} (�)
Case 4. X = {S,M}

Figure 3 shows tight drawings D0 with mD0 = k + 1 edges. Thus nD0 =
k−2
2 mD0 + 2 =

(
k
2

)
+ 1, which gives

αΓ ≤ 2
k − 2

· nD0 − 2
nD0 − 1

=
2

k − 2
·
(
k
2

) − 1(
k
2

) =
2(k + 1)
k(k − 1)

.

On the other hand, let D′ be any drawing in ΓX . Again (1) holds, unless
kmx − 1 ≤ 2cr and 1 ≤ mx ≤ mD′ < mD0 = k + 1. As there are no
multicrossings and no selfcrossings, we have cr ≤ (

mx
2

)
. However, this would

imply kmx −1 ≤ 2cr ≤ mx(mx −1) ≤ k(mx −1) = kmx −k ≤ kmx −4, which
is a contradiction.

Case 5. X = {I,M} (�)
Case 6. X = {S, I,M}

The right of Fig. 1 (with isolated vertices added to both empty cells) and
Fig. 4 show tight drawings D0 with mD0 = k + 1 edges for k ≥ 6. Analogous
to Case 4 nD0 =

(
k
2

)
+ 1, which gives

αΓ ≤ 2
k − 2

· nD0 − 2
nD0 − 1

=
2

k − 2
·
(
k
2

) − 1(
k
2

) =
2(k + 1)
k(k − 1)

.

On the other hand, any drawing D′ ∈ ΓX is also a drawing in Γ{S,M} for
{S,M} ⊂ X = {S, I,M}. However, we already argued in Case 4 that there
is no drawing D′ ∈ Γ{S,M} with kmx − 1 ≤ cr and mx < mD0 = k + 1.

Case 7. X = {S, I,M,H}
We can not proceed with X = {S, I,M,H} as before, since ΓX is not mono-
tone in that case. However, we see that the tight drawings D0 in Fig. 1 (right)
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Fig. 4. Smallest tight drawings for k ≥ 7 (for k = 6, see Fig. 1 (right)) in case X =
{S, I,M}, i.e. selfcrossings, incident crossings, and multicrossings are forbidden. Top-
Left: The 8-matching for k = 7. Top-Right: The 9-matching for k = 8. Bottom-Left:
The 10-matching for k = 9. Bottom-Right: The 11-matching for k = 10. (Isolated
vertices in empty cells are omitted.)

and Fig. 4 for drawing style Γ{S,I,M} are also in ΓX as there are no parallel
edges and hence no homotopic edges. Thus

mD0

nD0 − 1
≥ min

{
mD

nD − 1
: D ∈ ΓX is ΓX -saturated

}

≥ min
{

mD

nD − 1
: D ∈ ΓX is filled

}

≥ min
{

mD

nD − 1
: D ∈ Γ{S,I,M} is filled

}

= min
{

mD

nD + c0(D) − 1
: D ∈ Γ{S,I,M}

is filled and essentially 2-connected
}

= αΓ{S,I,M} =
2

k − 2
· nD0 − 2
nD0 − 1

=
mD0

nD0 − 1
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and equality holds throughout. Hence, for every filled and every ΓX -saturated
drawing D in ΓX we have mD ≥ αΓ{S,I,M} · (nD − 1) = 2(k+1)

k(k−1) · (n − 1).

In Cases 1–6 we have determined exactly αΓ for each considered drawing
style Γ = ΓX . By Lemmas 1 and 3 every Γ -saturated drawing D satisfies mD ≥
αΓ (nD − 1). For Case 7 we have shown this inequality directly. Moreover, we
presented in each case a tight drawing D0 attaining this bound:

mD0 =
2

k − 2
(nD0 − 2) =

2
k − 2

· nD0 − 2
nD0 − 1

· (nD0 − 1) = αΓ (nD0 − 1)

It remains to construct an infinite family of Γ -saturated drawings attaining this
bound. To this end it suffices to take tight drawings with αΓ (n − 1) edges and
iteratively glue these at single vertices, which always results in a tight drawing
again.

Formally, for vertices v1, v2 in two (not necessarily distinct) tight drawings
D1 and D2, respectively, with mDi

= αΓ (nDi
− 1) for i = 1, 2, we consider the

drawing D obtained from D1,D2 by identifying v1 and v2 into a single vertex
and putting D2 completely inside a cell of D1 incident to v1. Then D is again
tight and thus Γ -saturated. Moreover we have nD = nD1 + nD2 − 1 and

mD = mD1 + mD2 = αΓ (nD1 − 1) + αΓ (nD2 − 1) = αΓ (nD − 1).

	


4 Bounds for Simple Graphs

We define a simple filled drawing D of a simple graph G as a drawing in which
any two vertices that are incident to the same cell c of D are connected. In
contrast to filled drawings (according to Definition 2) the connecting edge may
(partially or completely) lie outside of the boundary of c. With this definition
in mind, Lemmas 1 and 3 directly translate to the simple graph setting (note
that H �∈ X for any drawing style ΓX in this setting). Lemma 2 though does not
translate and consequently neither does the bound in Lemma 4. We obtain the
following bound on mD.

Lemma 5 (�). For any k-planar simple filled and essentially 2-connected draw-
ing D it holds that mD ≥ 2

k+2 (nD − 1).

Consequently we get for any simple filled drawing D ∈ Γ (and hence for every
saturated k-planar drawing of a simple graph) that

mD

nD − 1
≥ min

D′

mD′

nD′ − 1
≥ min

D′

2
k + 2

· nD′ − 1
nD′ − 1

=
2

k + 2
,

where both minima are taken over all k-planar simple filled, essentially
2-connected drawings D′ ∈ Γ .

Considering upper bounds on the minimum number of edges in any ΓX -
saturated k-planar drawing of a simple graph, we show in the following theorem
that for any drawing style X ⊆ {S, I,M} there exist sparser drawings than for
multigraphs. Moreover, for X = ∅ and X = {I} the resulting bound is tight.
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Fig. 5. Modifications of the constructions used in Theorem 1 for X = ∅ and X = {I}
on the left and X = {S} and X = {S, I} on the right.

Fig. 6. Construction for saturated simple k-plane drawings. The dashed left and right
sides of the drawings are identified.

Theorem 2 (�). Let X ⊆ {S, I,M} be a set of restrictions, and Γ = ΓX be the
corresponding drawing style of k-planar drawings of simple graphs. For infinitely
many values of n, the minimum number of edges in any n-vertex Γ -saturated
drawing is upper bounded by (Figs. 5 and 6)

2
k + 2

(n − 1) for X = {I} andX = ∅ and k ≥ 2.

2
k + ((k + 1) mod 2)

(n − 1) for X = {S} andX = {S, I} and k ≥ 4.

2
k − 1

(n − 1) forM ∈ X andX ⊆ {S, I} and k ≥ 1.

5 Concluding Remarks

With respect to multicrossings, in this work we either disallowed their existence
(M) or did not restrict their number. It is possible to make a more fine-grained
analysis and consider the maximum number of times that a pair of edges (or
an edge with itself) is allowed to cross as a parameter μ. Modifications of our
constructions, for example retracing a side of each edge in the construction in
Fig. 4 from both endpoints, yield tight bounds for arbitrarily many values of k
and μ.
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Our drawings typically contain a large amount of isolated vertices. We dis-
cussed the case that isolated vertices are not desired already in the introduction:
in this case the sparsest graphs possible are matchings and saturated k-planar
drawings of matchings indeed exist for k ≥ 6 (see Figs. 1 and 4). These drawings
are simple and hence contained in all specific drawing styles that we consider.
Disjoint unions of these drawings also yield arbitrarily large saturated drawings
of matchings for any fixed k ≥ 6. For k ≤ 5 saturated k-planar drawings of
matchings do not exist provided homotopic parallel edges are allowed. For other
drawing styles and for simple graphs saturated drawings of matchings may exist
also in case k ≤ 5. For connected graphs, our best answers are the saturated
drawings of cycles depicted in Figs. 1 and 3 and (non-simple) drawings of trees;
in the full version see [7, Fig. 8] for an illustration. It is an interesting question
to characterize those trees that admit saturated drawings for some fixed k (with
respect to the drawing styles discussed here).

For simple graphs, it is a relevant open question to determine the minimum
number of edges in a saturated k-planar simple drawing. Finally, our techniques
only work for fixed drawings. It remains open to determine the min-saturated
k-planar (abstract) graphs and the sizes of their edge sets.
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Abstract. Hybrid visualizations mix different metaphors in a single lay-
out of a network. In particular, the popular NodeTrix model, introduced
by Henry, Fekete, and McGuffin in 2007, combines node-link diagrams
and matrix-based representations to support the analysis of real-world
networks that are globally sparse but locally dense. That idea inspired
a series of works, proposing variants or alternatives to NodeTrix. We
present a user study that compares the classical node-link model and
three hybrid visualization models designed to work on the same types of
networks. The results of our study provide interesting indications about
advantages/drawbacks of the considered models on performing classical
tasks of analysis. At the same time, our experiment has some limitations
and opens up to further research on the subject.

1 Introduction

Many real-world networks, in a variety of application domains, exhibit a het-
erogeneous structure with a double nature: they are globally sparse but locally
dense, i.e., they contain clusters of highly connected nodes (also called commu-
nities in social network analysis) that are loosely connected to each other (see,
e.g., [28,30,48]). Examples include social and financial networks [14,25,47,56],
as well as biological and information networks [27,42].

The visualization of such networks through classical node-link diagrams is
often unsatisfactory, due to the visual clutter caused by the high number of edges
in the dense portions of the network (Fig. 1(a)). To overcome this limit, hybrid
visualizations have been proposed. A hybrid visualization combines different
graph visualization models in a unique drawing, with the aim of conveying the
high-level cluster structure of the network and, at the same time, facilitating in
the analysis of its communities. One of the seminal ideas in this regard is the
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Fig. 1. The same clustered network with our four visualization models (please refer to
the online version for colors).

NodeTrix model, introduced by Henry, Fekete, and McGuffin [34], which adopts
a node-link diagram to represent the (sparse) global structure of the network,
and a matrix representation for denser subgraphs identified and selected by
the user (Fig. 1(c)). After the introduction of NodeTrix, hybrid visualizations
have become an emerging topic in graph drawing and network visualization,
and inspired an array of both theoretical and application results (see, e.g., [7–
9,11,12,20,22,23,32,38,40,57]).

Contribution. Motivated by the growing interest in hybrid visualizations, this
paper focuses on network layouts with a given set of clusters, and addresses two
broad research questions: RQ1 – “Are hybrid visualizations more effective than
node-link diagrams for the visual analysis of clustered networks?”; RQ2 – “When
considering specific tasks of analysis, are there differences in terms of response
time or accuracy among different hybrid visualization models?”
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To investigate these questions, we designed a user study that compares three
hybrid visualization models and the classical node-link model. Namely, we con-
sidered two hybrid models that are designed to work on similar types of networks:
the aforementioned NodeTrix model [34] and the ChordLink model [9], which
represents clusters as chord diagrams instead of adjacency matrices (Fig. 1(b)).
Additionally, we considered the RCI-NodeTrix model [40], a variant of Node-
Trix that adopts independent orderings for the matrix rows and columns so to
reduce crossings between inter-cluster edges (Fig. 1(d)).

To the best of our knowledge, our study is the first that addresses research
question RQ1, and that considers RQ2 for hybrid visualizations that adopt dif-
ferent styles to represent clusters. Our work is also motivated by open questions
from [9,40], namely: [9] suggests to perform a user study to compare ChordLink
and other hybrid visualizations; [40] asks what is the impact of reducing crossings
between inter-cluster edges at the expenses of independent row/column orderings
in NodeTrix. The results of our study provide some hints about the usefulness
of hybrid visualizations in the execution of topology-based tasks with respect to
node-link diagrams. At the same time, our experiment has some limitations and
opens up to new research to further investigate the subject.

The paper is structured as follows. Section 2 briefly surveys the scientific
literature related to our work. Section 3 explains in detail the design of our user
study and describes the rationale behind each of our choices. Section 4 discusses
both the quantitative and qualitative results of our experiment, as well as its
limitations. Section 5 lists some future research directions. All the experimental
data are available at http://mozart.diei.unipg.it/tappini/hybridUserStudy/.

2 Related Work

The focus of our work is on hybrid graph representations that mix different visual
metaphors to visually convey both the global structure of a sparse network and
its locally dense subgraphs. In this direction, Henry et al. [34] introduce the
NodeTrix model for social network analysis in one of the most cited papers of
the InfoVis conference [1]; the model is implemented in a system where the user
can select (dense) portions of a node-link diagram to be represented as adjacency
matrices. NodeTrix visualizations have also been exploited to analyze other
real-world graphs, such as ontology graphs [11] and brain networks [57].

Angori et al. [9] introduce the ChordLink model. Similarly to NodeTrix,
this model is designed to work in a system where the user can visually identify
and select clusters on a node-link diagram; differently from NodeTrix, the
selected cluster regions are represented as chord diagrams. ChordLink aims
to represent all edges as geometric links and to preserve the drawing outside
clusters by possibly duplicating nodes within a cluster (but each node can only
appear in at most one cluster, as for NodeTrix).

Our study focuses on comparing NodeTrix and ChordLink, as they are
conceived to work on networks with similar structure and within systems with
similar characteristics. Our study also considers the RCI-NodeTrix model [40],

http://mozart.diei.unipg.it/tappini/hybridUserStudy/
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a variant of NodeTrix that allows independent orderings of the rows and
columns in a matrix, to possibly reduce crossings between inter-cluster edges.

For social network analysis, the NodeTrix model has also been proposed
with a variant that considers “overlapping clusters”, i.e., where a node can occur
in multiple clusters at the same time [32]. This kind of node duplication may
help in the execution of community-related tasks, but sometimes interferes with
other graph readability tasks.

Batagelj et al. [12] propose a system where the user can choose to represent
each cluster according to a desired drawing style. Differently from NodeTrix
and ChordLink, this system is designed to automatically compute a set of
clusters that guarantees desired properties (e.g., planarity) for the graph of clus-
ters and adopts an orthogonal drawing convention (instead of a straight-line
node-link diagram) to represent the outside of the clusters. Hybrid visualiza-
tions have also been exploited in the context of dynamic network analysis (see,
e.g., [13,31,53]). We finally mention several theoretical results on hybrid visual-
izations that concentrate on the complexity of minimizing the number of inter-
cluster edge crossings (see, e.g., [6–8,15,20,22,23,38,40]).

Our work falls into the research line devoted to the design of user experiments
in graph drawing and network visualization. We recall here the contributions that
are mainly related to our study; refer to [17] for a comprehensive survey on the
subject. There is a series of works that compare node-link diagrams with matrix-
based representations (see, e.g., [3,4,18,24,29,35,45,46]). An insight that seems
to emerge from these studies is that node-link diagrams have usually better per-
formance on topology and connectivity tasks when graphs are not too large and
dense, while matrices perform better on group tasks. Our study does not aim to
further compare node-link and matrix representations, but rather to investigate
hybrid visualizations that mix these two, or others, drawing conventions.

In the context of hybrid graph visualizations, Henry and Fekete [33] conduct
a user study on MatLink, a model that combines adjacency matrices overlaid
with node-link diagrams using curvature for the links. They find that MatLink
outperforms the two individual metaphors (node-link diagrams and adjacency
matrices) for most of the considered tasks, including path-related tasks, where
matrices are usually worse than node-link. However, differently from our study,
[33] does not focus on the visualization of clustered networks. Henry et al. [32]
present a user study aimed to understand whether node duplication for non-
disjoint clusters improves the performance of NodeTrix for some types of tasks.
Since the majority of hybrid visualizations are designed to deal with disjoint
clusters, our study focuses on this setting; moreover, we consider tasks that are
mostly different from those addressed in [32].

3 Study Design

This section describes in detail the design of our user study. Our target pop-
ulation are researchers and analysts (including practitioners, academics, and
students) that make use of network visualization to accomplish tasks of analysis
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on real-world networks. In the following we discuss the visualization models, the
tasks and the hypothesis, the stimuli, and the experimental procedure.

3.1 Visualization Models

The conditions compared in our study are four different models for the visu-
alization of undirected clustered networks, where subsets of nodes are grouped
into clusters (see Fig. 1 for an illustration). We consider networks with neither
self-loops nor multiple edges. An edge connecting two nodes in the same cluster
is an intra-cluster edge; every other edge is an inter-cluster edge. The models are:

– NodeLink (NL). This is the classical node-link model, where nodes are rep-
resented as small disks and edges are straight-line segments connecting their
end-nodes. In this model, we visually highlight each cluster through a colored
convex region that includes all the nodes in the cluster.

– ChordLink (CL). This model has been introduced in [9,10]. Nodes outside
clusters and inter-cluster edges are drawn as in the NodeLink model. Clusters
are represented as chord diagrams. A node in a cluster may have multiple copies,
each represented as a colored circular arc along the circumference of the chord
diagram; all copies of the same node have the same color. An intra-cluster edge
is drawn as a “ribbon” connecting two of the copies representing its end-nodes.

– NodeTrix (NT). This is the model introduced in [34]; each cluster C of size n
is represented by a (symmetric) n×n adjacency matrix. Nodes outside clusters,
and edges between them, are drawn as in NodeLink. An inter-cluster edge
having an end-node v in a cluster C is drawn as a curve incident to the row or to
the column associated with v, on one of the sides of the matrix representing C.

– RCI-NodeTrix (RC). This is a variant of the NodeTrix model, introduced
in [39,40]. The difference with the NodeTrix model is that in each adjacency
matrix, the row and the column associated with the same node may have dif-
ferent indices, in order to save some crossings between inter-cluster edges. As a
consequence the matrices may not be symmetric.

Rationale. Among the various types of hybrid visualizations described in the
literature, we selected NT and CL as they are designed to work similarly within
visualization systems for the analysis of real-world networks. In particular, we
exploited the system in [9], which implements both these models in a unique
interface, where the implementation of NT reflects that given in [2] by the
authors of [34]. The system in [9] allows direct support for clustered drawings
in the NL model and makes it possible to create drawings in all the supported
models by defining the same set of clusters on the same node-link diagram. For
the purposes of our experiment, we enriched the system with the RC model.

3.2 Tasks

We defined six different tasks, listed in Table 1. We classify each task according to
the taxonomy by Lee et al. [36], which we refer to as LeeTax. Moreover, following
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Table 1. Tasks used in our study.

Task LeeTax AmarTax

T1. Is there an edge that links
the two highlighted nodes?

Topology-based
(adjacency)

Retrieve value

T2. Which of the two
highlighted nodes has higher
degree?

Topology-based
(adjacency)

Retrieve value;
sort

T3. Is there a path of length at
most k that connects the two
highlighted nodes?

Topology-based
(connectivity)

Retrieve value;
compute derived value;
filter

T4. Which of the following
three node labels appear in the
highlighted portion of the
network?

Attribute-based (on
the nodes)

Retrieve value;
filter

T5. What is the denser∗ cluster
between the two highlighted?

Overview Filter;
compute derived value;
sort

T6. How many edges directly
connect the two highlighted
parts of the drawing?

Overview Filter;
compute derived value

∗The cluster density is the ratio between the number of edges and the number nodes in a cluster

the taxonomy by Amar et al. [5], which we refer to as AmarTax, we indicate the
low-level visual analytics operations needed to execute each task.

Rationale. We designed the user study with a set of tasks that requires to
explore the drawing locally and globally. Moreover, each task is easy to explain,
it can be executed in a reasonably short time, and it can be easily measured.
Concentrating on representative tasks is a common approach for this kind of
experiments (e.g., [50]), which supports generalizability to more complex tasks
that include these representatives as subroutines. Most of our tasks have already
been used in previous graph visualization user studies (e.g., [46,49,51,54]) and
they cover all task categories in the taxonomy of Lee et al. [36], with the exception
of the browsing category. We excluded the latter because it requires the users
to interact with the visualization and we decided to avoid interaction to keep
the test execution as simple as possible and avoid possible confounding factors.
According to the top-level task classification by Burch et al. [17], all our tasks are
interpretation tasks, as our goal is to evaluate the differences of the considered
visualization models in terms of readability, understandability, and effectiveness.
About task T5, we point out that there are two commonly used definitions for
the density of a graph with n nodes and m edges: d1 = m

n and d2 = 2m
n(n−1) .

We adopted definition d1 for two reasons: (a) it is simpler to explain to a user;
(b) according to previous research work [44], d1 is a better descriptor of the
complexity of real-world networks. Indeed, the visual perception of the density
of a cluster region is affected by the number of nodes in the cluster; if a drawing
contains two clusters with different sizes, the largest one may be perceived as a
denser portion of the drawing, even if it has lower density according to d2.
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3.3 Hypotheses

Similarly to previous works (e.g., [32,46]), we define our hypotheses based on
tasks, structuring them according to the task categories of LeeTax.

H1: On topology-based tasks (T1, T2, T3), we expect that NodeLink outper-
forms hybrid visualizations in terms of response time. On the other hand, we
expect hybrid visualizations to have a lower error rate than NodeLink, and
ChordLink to behave better than NodeTrix and RCI-NodeTrix.

H2: On attribute-based tasks (T4), we expect NodeTrix and RCI-NodeTrix
to outperform the other two models in terms of response time and error rate.

H3: On overview tasks (T5, T6), we expect hybrid visualizations to perform
better than NodeLink in terms of both response time and error rate. Among the
hybrid visualizations, we expect NodeTrix and RCI-NodeTrix to be better
than ChordLink, especially when one needs to estimate cluster density.

Rationale. About H1, our expectations in terms of response time are motivated
by the fact that NodeLink is quite intuitive and widely used. Moreover, hybrid
visualizations intrinsically require to switch from a visualization metaphor to
another during the visual exploration, which may represent a cognitive effort.
Concerning the error rate, we think that, by reducing the visual clutter, hybrid
visualizations may be able to avoid visual ambiguities (such as edges that are
almost collinear) and therefore may better support topology-based tasks. Also,
since topology-based tasks are known to be harder when dealing with matrices,
we expect ChordLink to have better performance than NodeTrix and RCI-
NodeTrix in terms of error rate. About H2, we believe that placing labels
on a matrix side is more effective than placing them around chord diagrams
or near nodes in a node-link diagram. In chord diagrams labels may be harder
to read due to their rotation, while in node-link diagrams they may be hidden
by edges. About H3, we expect hybrid visualizations to behave better than
NodeLink due to their capability to represent clusters more clearly. For tasks
that require to estimate cluster density, both NodeTrix and RCI-NodeTrix
have the advantage that the proportion between black (edges) and white (non-
edges) cells immediately conveys the density of a cluster; the same estimation
in ChordLink is more difficult due to node duplication, which may give the
impression that a cluster is sparser than it actually is.

3.4 Stimuli

Our experimental objects are three real-word networks of small/medium size.
The first one, weavers, is an animal social network with 64 nodes and 177 edges,
describing the interactions of a colony of weavers in the usage of nests [26,52].
The second one, e.coli, is a biological network with 97 nodes and 212 edges that
describes transcriptional interactions in the Escherichia coli bacterium [43]. The
third one, dblp, is a co-authorship network obtained from the DBLP reposi-
tory [37] by searching for the keyword “network visualization” and considering
only the largest connected component, which has 118 nodes and 322 edges.
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For each of the four visualization models described in Sect. 3.1, we produced a
diagram of the three networks above. The diagrams for the NodeLink model are
computed through the force-directed algorithm available in the D3 library [16].
Starting from these drawings, we defined some geometric clusters with the tech-
nique based on the K-means algorithm [41] described in [9]. As explained in
Sect. 3.1, the system presented in [9] is then used to compute the diagrams in
the ChordLink, NodeTrix, and RCI-NodeTrix models with the same sets
of clusters. Further details about the stimuli creation can be found in [21].

Each of the 12 stimuli obtained by applying each of the 4 conditions (models)
to the 3 experimental objects (networks) is used in all of the 6 tasks described in
Sect. 3.2, for a total of 4× 3× 6 = 72 trials. For T1, T2, and T3, we highlighted
the node labels with a yellow background; to help the user to locate the nodes,
we also put a red cross close to the clusters containing them. For T4 and T6, we
highlighted the regions of interest by enclosing them inside a colored polygonal
area. Finally, for T5 we indicated the two clusters of interest with large red
labels. The trials for the network weavers can be found in [21].

Rationale. The visualization models that we compare are suitable for networks
with up to few thousand nodes and edges, while for significantly larger networks
ad-hoc techniques are required that typically reduce the amount of displayed
information. The choice of using networks with few hundred elements avoids an
excessive burden for the participants. Namely, we wanted that each trial could be
executed in a reasonable amount of time without an excessive fatigue and that
the whole test could be completed in about 30 min. Further, since we decided
to show static images (without zoom), the whole picture of the network should
be displayed with a level of zoom that keeps the labels readable. Since hybrid
visualizations are mainly used to visualize networks that are globally sparse but
locally dense, we selected three networks that exhibit this structure. Moreover,
we designed the specific trials so that the user was required to explore both the
sparse parts of the network, represented by the node-link metaphor, and the
dense parts, represented in different ways depending on the model.

3.5 Experimental Setting and Procedure

We designed a between-subject experiment where each participant was exposed
to one of the four conditions and hence to 18 trials. The users executed the test
fully on-line. The questionnaire was prepared using the LimeSurvey tool (https://

www.limesurvey.org/) and is structured as follows. First, some information about
the user are collected, namely: gender, age, educational level, expertise in graph
visualization, screen size, and possible color vision deficiency. Then, the visu-
alization model to be assigned to the user is decided in a round robin fashion.
Based on this assignment, a video tutorial is presented, followed by a training
phase in which the user has to answer a trial for each task with an explanatory
feedback in case of wrong answer. Next, the 18 trials are presented in random
order. Finally, the user is asked for some qualitative feedback: two Likert scale
questions about the aesthetic quality of the drawings and about the easiness of

https://www.limesurvey.org/
https://www.limesurvey.org/
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the questions, plus an optional free comment. While no time limit was given to
complete the test, the participants were asked to answer each question as fast
as they could but, at the same time, trying to be accurate. For each user, we
collected the answers and the time spent on each question. We recruited the par-
ticipants with announcements to the gdnet, ieee vis, infovis mailing lists and to
the computer engineering students of the universities of Perugia and Roma Tre.
The actual experiment was preceded by a pilot study (see [21]).

Rationale. As previously explained, exposing the users to all four conditions
would imply each user solving 72 trials. We believe that keeping the same level of
attention in such a long experiment is difficult, and may cause many participants
prematurely quitting the test. Besides such undesired fatigue effect, a within-
subject design would also imply that each user sees the same experimental object
24 times, which makes it difficult to avoid the learning effect. Hence, we adopted
a between-subject design, where each participant is exposed to only one con-
dition. This choice limited the number of trials per user to 18, thus mitigating
both the fatigue and the learning effect, which is further counteracted by pre-
senting the trials in a random order. Finally, since the test also includes a video
tutorial and a training phase to make the user familiar with the given visualiza-
tion model, an additional advantage of the between-subject design is that these
phases can be focused on one model only. About the execution of the experiment,
we opted for a fully on-line test for two reasons: (i) the difficulties to perform
a controlled in-person experiment due to the COVID-19 pandemic; (ii) the pos-
sibility of recruiting a larger number of participants that better represent our
target population, through announcements on the aforementioned mailing lists.

4 Study Results

Participants. We collected questionnaires from 89 participants. We discarded
seven tests for various reasons, reported in [21]. Of the remaining 82 tests, 19 were
for ChordLink and 21 for each of the other models. Regarding the participants,
66 (80.49%) were males, 15 (18.29%) were females, and 1 (1.22%) preferred not
to answer. The majority of them (82.72%) were aged below 40. 85.37% of the
participants has at least a Bachelor’s degree, with 34.15% of them having a
doctoral degree. 62.2% of the participants declared a medium or high familiarity
with graph visualization and 68.29% used a screen of size at least 15”. Refer
to [21] for more details.

Quantitative Results. We compared the performance of the four models in
terms of error rate and response time. For T1–T5, the error rate of a user is the
ratio between the number of wrong answers and the total number of questions.
Recall that there are three questions per task and that in T4 the user has to find
three labels for each question. About T6, the error on a question is computed as
1− 1

1+|u−r| , where u is the value given by the user and r is the correct value; the
error rate for T6 is the average of the errors on the three questions of the task.
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By performing the Shapiro-Wilk test with significance level α = 0.05, we
found that data were not normally distributed. Hence, we performed the non-
parametric Kruskal-Wallis test with significance level α = 0.05, which is suit-
able for comparing multiple independent samples. We finally performed post-hoc
pairwise comparisons by using Bonferroni corrections. (See also [19,55].)

Table 2 summarizes the results of our analysis both for the error rate (top)
and for the response time (bottom). For each task, we list the models sorted
by increasing values of the average error rate or response time. These values
are shown in parentheses together with the model. Table 2 reports the statistic
(column H(3)) and the p-value of the Kruskal-Wallis test. Finally, we report the
adjusted (after Bonferroni corrections) significance for each pairwise comparison.
Values that are statistically significant are highlighted in bold. Figures 2 and 3
depict the box-plots of the error rate and response time for all the tasks.

Fig. 2. Error rate aggregated by task.
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Fig. 3. Response time aggregated by task.

Qualitative Results. At the end of the test, we presented to the users the
following questions: (F1) “How much do you like the diagrams you have seen?”
and (F2) “How easy did you find answering the test questions?”. The answers,
given in a 5-point Likert scale, are summarized in Fig. 4, where we also report
the answer distributions as box-plots; we assigned a score from 1 (lowest) to
5 (highest) to each answer. While there is no statistically significant difference
among the models, about (F1) NodeLink received the highest percentage of
strongly negative appreciations and NodeTrix received the highest percentage
of strongly positive appreciations, although with high variance. About (F2), the
easiness of answering was judged medium on average for all the models. In [21]
we discuss the free comments received by the participants.
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Fig. 4. Qualitative results (please refer to the online version for colors).

Discussion and Limitations. The following highlights summarize our results:

– Hypothesis H1 is largely supported by the results in terms of response time.
More precisely, NodeLink behaves better (with statistical significance) than:
ChordLink and RCI-NodeTrix for task T1; RCI-NodeTrix for task T2;
and for all hybrid models for T3. In particular, the slower performance of RCI-
NodeTrix with respect to NodeLink for all the topology-based tasks seems to
confirm the difficulty pointed out by some participants about dealing with non-
symmetric matrices. In terms of error rate, H1 is partially supported. Indeed,
while there is no statistically significant difference for task T2, we observe that
for task T3 both ChordLink and RCI-NodeTrix yield better accuracy than
NodeLink, and for task T1 ChordLink behaves better than NodeTrix. One
may wonder why the same behavior is not observable between ChordLink and
RCI-NodeTrix on task T1; our interpretation is that this might depend on the
smaller number of crossings that RCI-NodeTrix usually causes between edges
that are incident to the matrices with respect to NodeTrix.

– Hypothesis H2 is also partially supported by the results (see task T4). In
terms of response time, the two models based on matrices seem to lead to better
performance than the other two models, with statistical significance when com-
paring NodeTrix and ChordLink. In terms of error rate, we do not observe
any statistically significant difference; in particular, the high accuracy achieved
with all models seems to reveal that this task was generally easy to perform.

– Hypothesis H3 is not supported by our results, as we do not observe any
statistically significant difference among all the four models.
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We conclude by discussing the limits of our study. The choice of not allow-
ing interaction implied to use networks of small/medium size that fit into the
screen window; also, it required to have a set of predefined clusters that the user
cannot change. On the other hand, a non-interactive environment facilitated the
execution of an on-line test; we believe that enabling visual interaction for the
considered models would require a different study design, preferably based on a
controlled experiment. Further, interactions may introduce confounding factors
and it is difficult to design interaction features that are fair to all models. The
number of tasks was limited to six, which is in line with many previous studies.
Although some works use a larger number of tasks (see, e.g., [46]), we believe
that more tasks may cause long execution times and a high fatigue effect for the
users, which may result in less reliable data. Finally, the visualization models
that we compare may be sensitive to the specific algorithms used to produce the
drawings. This justifies further investigation with different layout algorithms.

5 Conclusions and Future Research

We presented a user study that compares different hybrid visualization models
and the popular node-link model. As a preliminary answer to RQ1, the results
suggest that hybrid visualizations may help to overcome some limits of node-link
diagrams in accurately executing topology-based tasks on globally sparse but
locally dense networks, at the expenses of the execution time. About RQ2, we
could not conclude that any of the considered hybrid models is superior; however,
for some topology-based tasks, we observed better accuracy with ChordLink
and faster execution with NodeTrix. Our study has some limitations and can-
not be generalized to settings significantly different from ours. This motivates
further experiments with larger networks, interaction features, and additional
tasks. Enlarging the set of participants is also an interesting future objective.
In this direction, we tried to collect an additional data set by using the Ama-
zon’s Mechanical Turk crowdsourcing service. To keep the population sample
homogeneous, we required users with background in computer science. However,
we report a negative response on this side: the participation was low and the
collected data was strongly unreliable (the error rates were very high and the
response times too short for a reasoned answer). For these reasons, we decided
to discard this additional data set.

Acknowledgements. We thank Giuseppe Liotta for useful discussions, Lorenzo
Angori for his help in the implementation, and all the participants to the study.
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Abstract. We present a thorough experimental evaluation of several
crossing minimization heuristics that are based on the construction and
iterative improvement of a planarization, i.e., a planar representation of a
graph with crossings replaced by dummy vertices. The evaluated heuris-
tics include variations and combinations of the well-known planarization
method, the recently implemented star reinsertion method, and a new
approach proposed herein: the mixed insertion method. Our experiments
reveal the importance of several implementation details such as the detec-
tion of non-simple crossings (i.e., crossings between adjacent edges or
multiple crossings between the same two edges). The most notable find-
ing, however, is that the insertion of stars in a fixed embedding setting
is not only significantly faster than the insertion of edges in a variable
embedding setting, but also leads to solutions of higher quality.

Keywords: Crossing number · Experimental evaluation · Algorithm
engineering

1 Introduction

Given a graph G, the crossing number problem asks for the minimum number
of edge crossings in any drawing of G, denoted by cr(G). This problem is NP-
complete [20], even when G is restricted to cubic graphs [24] or graphs that
become planar after removing a single edge [7]. While the currently known integer
linear programming approaches to the problem [6,16,17] solve sparse instances
within a reasonable time frame [12], dense instances require the use of heuristics.

One such heuristic is the well-known planarization method [1,22], which con-
structs a planarization, i.e., a planar representation of G with crossings replaced
by dummy vertices of degree 4. The heuristic first computes a spanning planar
subgraph of G and then iteratively inserts the remaining edges. Several variants
of the planarization method have been thoroughly evaluated, including different
edge insertion algorithms and postprocessing strategies; see [10] for the latest
study. In a recent paper [18], Clancy et al. present an alternative heuristic—the
star reinsertion method—, which differs in two key aspects from the planarization
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method: It (i) starts with a full planarization (instead of a planar subgraph) that
is iteratively improved by reinserting elements, and (ii) the reinserted elements
are stars (vertices with their incident edges) rather than individual edges. These
star insertions are performed using a straight-forward but never tried algorithm
from literature [13]. Clancy et al. were faced with the problem that the imple-
mentations of the aforementioned heuristics were written in different languages,
leading to incomparable running times. In their evaluation, they thus focus on
variants of the star reinsertion method; their comparison with the planarization
method only gives averages over (a quite limited number of) full instance sets
and relies on old data from previous experiments.

Herein, we present a comprehensive experimental evaluation of a wide array
of crossing minimization heuristics based on edge and star insertion encompass-
ing all known strong candidates. This includes not only variants of the planariza-
tion and star reinsertion methods but also combined approaches. In addition, we
present and evaluate a new heuristic that builds up a planarization from a pla-
nar subgraph using both star and edge insertions. All of these algorithms are
implemented as part of the same framework, enabling us to accurately compare
their running times. Furthermore, we suggest ways of simplifying the imple-
mentation of the heuristics, increasing their speed in practice, and improving
their results—e.g., by properly handling crossings between adjacent edges and
multiple crossings between the same two edges.

2 Preliminaries

In the following, we consider a connected undirected graph G (that is usually
simple, i.e., does not contain parallel edges or self-loops) with n vertices and m
edges, denoted by V (G) and E(G) respectively. Let Δ be the maximum degree
of any vertex in V (G) and N(v) := {w | (v, w) ∈ E} the neighborhood of a
vertex v. Then, v along with a subset of its incident edges F ⊆ {(v, w) ∈ E}
is collectively called a star, denoted by (v, F ). Furthermore, a (combinatorial)
embedding of a planar graph G corresponds to a cyclic ordering of the edges
around each vertex in V (G) such that the resulting drawing can be realized
without any edge crossings. This induces a set of cycles that bound the faces of
the embedding. Based on a combinatorial embedding of the primal graph G, we
can define the dual graph G∗, whose vertices correspond to the faces of G, and
vice versa. For each primal edge e ∈ E(G), there exists a dual edge e∗ ∈ E(G∗)
between the dual vertices corresponding to the e-incident primal faces. Note that
G∗ may be a multi-graph with self-loops even if G is simple.

For the purpose of this paper, it is of particular concern how to insert an
edge (v1, v2) into a planarization. First, it is necessary to find a corresponding
insertion path, i.e., a sequence of faces f1, . . . , fk such that v1 is incident to f1,
v2 incident to fk, and fi adjacent to fi+1 for i ∈ {1, . . . , k−1}. An edge between
v1 and v2 can then be inserted into a planarization by subdividing a common
edge for each face pair (fi, fi+1) and routing the new edge as a sequence of edges
from v1 along the subdivision vertices to v2. By extension, the insertion spider
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of a star (v, F ) is a set of insertion paths, one for each edge in F . These insertion
paths necessarily share a common face into which v can be inserted.

3 Algorithms

3.1 Solving Insertion Problems

Insertion problems, and their efficient solutions, form the cornerstone of all
known strong crossing minimization heuristics.

Definition 1 (EIF, SIF). Given a planar graph G, an embedding Π of G,
and an edge (or star) not yet in G, insert this edge (star) into Π such that the
number of crossings in Π is minimized. We refer to these problems as the edge
(star) insertion problem with fixed embedding EIF (SIF, resp.).

Given a primal vertex v, let v̂ be the vertex that is created by contracting the
dual vertices that correspond to v-incident faces. Then, the EIF for any given
edge (v1, v2) can be solved optimally in O(n) time by computing the shortest
path from v̂1 to v̂2 in the dual graph G∗ via breadth-first search (BFS) [1]. By
extension, the SIF for a star (v, F ) can be solved in O(|F |·n) time as follows [13]:
For each edge (v, w) ∈ F , solve the single-source shortest path problem in G∗

with ŵ as the source (via BFS). For each face f , the sum over all of the resulting
distance values at this f then represents the number of crossings that would be
created if v was to be inserted into f . Hence, the face with the minimum distance
sum is the optimal face to insert v into, and the computed shortest paths to
this face collectively form the insertion spider. To avoid crossings between these
shortest paths (due to them not being necessarily unique), we can construct the
insertion spider using a final BFS starting at the optimal face.

Definition 2 (EIV, MEIV, SIV). Given a planar graph G and an edge (a
set of k edges, or a star) not yet in G, find an embedding Π among all possible
embeddings of G such that optimally inserting the edge (set of k edges, star)
into this Π results in the minimum number of crossings. We refer to these prob-
lems as the edge (multiple edge, star) insertion problem with variable embed-
ding EIV (MEIV, SIV, resp.).

The EIV can be solved in O(n) time using an algorithm by Gutwenger et al.
[23], which finds a suitable embedding (with the help of SPR-trees) and then
executes the EIF-algorithm described above. Now consider the MEIV: Solving it
for general k is NP-hard [28], however there exists an O(kn + k2)-time approxi-
mation algorithm with an additive guarantee of Δk log k+

(
k
2

)
[14] that performs

well in practice [10]. Put briefly, the EIV-algorithm is run for each of the k edges
independently, and a single final embedding is identified by combining the indi-
vidual (potentially conflicting) solutions via voting. Then, the EIF-algorithm
can be executed once for each edge. Note that the SIV can be solved optimally
in polynomial time by using dynamic programming techniques [13]. However,
for graphs that are not series-parallel, the resulting running times are exorbitant
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and there is no known implementation of this algorithm. In fact, our results
herein suggest that in the context of crossing minimization heuristics, the solu-
tion power of the SIV-algorithm is fortunately not necessary in practice.

Each problem discussed above has a weighted version which can be solved in
the same manner if each ce-weighted edge e is replaced by ce parallel 1-weighted
edges beforehand. In practice it is worthwhile to compute the shortest paths
during the EIF/SIV-algorithm on the weighted instance directly. However, this
does not allow for the same theoretical upper bounds of the running times since
the weights may be arbitrarily large.

3.2 Crossing Minimization Heuristics

We start with reviewing several crossing minimization heuristics that iteratively
build up a planarization, starting with a planar subgraph:

The planarization method (plm) is the longest studied and best-known approach
considered, achieving strong results in previous evaluations [1,10,22]. First, we
compute a spanning planar subgraph G′ = (V,E′) ⊆ G, usually by employ-
ing a maximum planar subgraph heuristic and extending the result such that
it becomes (inclusion-wise) maximal. Then, the remaining edges F := E \ E′

are either inserted one after another—by solving the respective EIF (fix ) or
EIV (var)—or simultaneously using the MEIV-approximation algorithm (multi).
Gutwenger and Mutzel [22] describe a postprocessing strategy for plm based on
edge insertion: Each edge is deleted from the planarization and reinserted one
after another (all). To incrementally improve the planarization, all can also be
executed once after each individual edge insertion (inc) [10]. In the following, we
represent the use of these postprocessing strategies by appending the respective
shorthand to the algorithm’s abbreviation, e.g. fix-all. When neither all nor inc
is employed, we use the specifier none instead.

The chordless cycle method (ccm) realizes the idea of extending a vertex-induced
planar subgraph to a full planarization via star insertion [13]. It corresponds to
the best-performing scheme for the star insertion algorithm as examined by
Clancy et al. [18]: Search for a chordless cycle in G, e.g., via breadth-first search.
Let G′ denote the subgraph of G that is already embedded and initialize it with
this chordless cycle. Iteratively (until the whole graph is embedded) select a
vertex v �∈ V (G′) such that there exists at least one edge (v, w) that connects v
with the already embedded subgraph G′; insert v into G′ by solving the SIF for
the star (v, {(v, w) ∈ E | w ∈ V (G′)}).

The mixed insertion method (mim) is a novel approach that we propose as an
alternative to the planarization schemes above. It proceeds in a fashion that is
similar to plm but relies on star insertion instead of edge insertion in as many
cases as possible. Accordingly, let G′ denote the subgraph of G that is already
embedded and initialize it with a spanning planar subgraph (V,E′) ⊆ G. Then,
(attempt to) insert the remaining edges F := E \ E′ by reinserting at least
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one endpoint of each edge e ∈ F via star insertion. Since removing and then
reinserting a cut vertex of the planar subgraph G′ would temporarily disconnect
it, the cut vertices of the planar subgraph are computed (cf. [25]) and each edge
e ∈ F is processed as follows: If both endpoints of e are cut vertices of G′, insert
the edge via edge insertion (we choose to do so in a variable embedding setting
as such edge insertions happen rarely). If only one endpoint of the edge is a cut
vertex, reinsert the other one. If neither endpoint of the edge is a cut vertex,
the endpoint to be reinserted can be chosen freely—globally, this corresponds to
finding a vertex cover on the graph induced by F that has to include all vertices
neighboring a cut vertex in G′. Finding an optimal vertex cover is NP-hard
[26]; therefore we compare several heuristics: For each edge e, choose one of the
endpoints randomly (random), choose the one with the higher or lower degree
in G (highG, lowG), choose the one with the higher or lower degree in the graph
induced by all edges in F not incident to a cut vertex in G′ (highF , lowF ), or
choose both endpoints (both). Each of the chosen vertices is then deleted from
the planar subgraph and reinserted together with all of its edges in the original
graph by solving the corresponding SIF.

Herein, we evaluate the aforementioned heuristics not only on their own but
also in combination with the star reinsertion method (srm) by Clancy et al. [18],
a postprocessing strategy based on star insertion. It starts with an already exist-
ing planarization, which may be constructed using any of the methods outlined
above (or even more trivial ones, such as extracting a planarization from a cir-
cular layout of the vertices, which, however, is known to perform worse [18]). To
represent that the result of an algorithm is improved via srm, we append “srm”
to its abbreviation, e.g. fix-none-srm. The given planarization is thereby pro-
cessed as follows: Iteratively choose a vertex v, delete v from G, and reinsert it
again by solving the SIF for the star (v, v ×N(v)). Continue the loop until there
is no more vertex whose reinsertion improves the solution (in which case the
latter is said to be locally optimal). Clancy et al. propose different methods for
choosing v; here, we consider the scheme they report to be the best compromise
between solution quality and running time: In each iteration, try to reinsert
every vertex once and continue with the next iteration as soon as a vertex is
found whose reinsertion improves the number of crossings in the planarization.

The original algorithm only updates a planarization once an actual improve-
ment is found and resets it to its original state otherwise. We propose to never
reset it. This approach is permissible as the SIF is solved optimally and the
number of crossings hence never increases after the reinsertion of a star. Not
resetting the planarization has the potential to save time in practice as it allows
for a simpler implementation without any need to copy the dual graph.

4 A Note on Non-simple Crossings

It is well-known that any crossing-optimal drawing can be assumed to be sim-
ple: No edge self-intersects and each pair of edges intersects at most once (either
in a crossing or an endpoint). In particular, a simple drawing may not contain
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Fig. 1. A non-simple crossing on the red dashed edge as the result of incrementally
solving the same kind of insertion problem. When starting with the black planar sub-
graph, this may happen by solving the SIV using the described algorithm for the colored
vertices in the order of their label numbers. Alternatively, if all solid edges constitute
the initial planar subgraph, solving the EIV for the dashed edges in the order of their
label numbers can have the same result. The examples apply both in the fixed and the
variable embedding setting. Dummy vertices for (non-simple) crossings are represented
by small (black) diamonds. (Color figure online)

Fig. 2. Non-simple crossings between the red and green edges. After their removal (new
edge paths drawn as dashed), the red edge is involved in a new non-simple crossing of
the same type and the green edge in a new non-simple crossing of the opposite type.
Thus, the removal procedure may have to be iterated. (Color figure online)

crossings between adjacent edges (α-crossings) or multiple crossings between the
same two edges (β-crossings). We may hence call any such undesired crossings
non-simple. Surprisingly, earlier implementations of the planarization method
did not consider the emergence and removal of any non-simple crossings [10]
while the implementation of the star reinsertion method by Clancy et al. only
considers β- but not α-crossings [18]. However, we show in Fig. 1 that incremen-
tally solving the same kind of insertion problem may result in a planarization
with α- or β-crossings, even when starting with a planar subgraph. Non-simple
crossings can be removed by reassigning edges in the planarization to different
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edges in the original graph and then deleting the respective dummy vertices (see
Fig. 2). Doing so leads to better results overall, see [15, Appendix C].

5 Experiments

Setup: All algorithms are implemented in C++ as part of the Open Graph Draw-
ing Framework (OGDF, www.ogdf.net, based on the release “2020.02 Catal-
pa”) [11], and compiled with GCC 8.3.0. Each computation is performed on a
single physical processor of a Xeon Gold 6134 CPU (3.2 GHz), with a mem-
ory limit of 4 GB but no time limit. All instances and results are available for
download at http://tcs.uos.de/research/cr.

Instances: Table 1 lists the instance sets used for our evaluation (see [15, Appx. A]
for further statistical analysis). To enable a proper comparison of the tested
algorithms (and potentially in the future, their competitors), we consider mul-
tiple well-known benchmark sets as well as constructed, random, and real-world
instances with varying characteristics. These are preprocessed by computing
the non-planar core (NPC) [9] for each non-planar biconnected component. We
consider only those instances that have at least 25 vertices after the NPC reduc-
tion unless the instance is part of the Complete, Complete-Bip., or KnownCR
instance sets. Moreover, we precompute a planar subgraph and chordless cycle for
each instance such that different runs of plm, mim and ccm can be started with
the same initialization. The planar subgraph is computed by using Chalermsook
and Schmid’s diamond algorithm [8] and extending the result to a maximal pla-
nar subgraph. On average, this computation took only 0.77% of the time needed
to execute the fastest evaluated heuristic fix-none—a comparatively negligible
amount of time that is not further taken into consideration during the evaluation.

The precomputed chordless cycle almost always consists of 3–6 vertices, con-
taining 7–11 vertices for only 15 instances overall. How many edges are deleted
to create the planar subgraph, on the other hand, varies greatly depending on
the size and density of the graph. Of particular interest is the number of deleted
edges that are incident to one or two cut vertices of the planar subgraph: During
mim, the former ones have a fixed endpoint that must be reinserted via star
insertion (disallowing a choice of the reinserted endpoint) while the latter ones
must be inserted via edge insertion. Clearly, more dense instances such as the
complete (bipartite) ones and the expanders require more edges to be deleted to
form a planar subgraph. At the same time, due to their high connectivity, these
instances also have less deleted edges that are connected to cut vertices in the
planar subgraph. In particular, the complete (bipartite) instances do not have a
single such edge. However, even on the sparser instances, mim inserts almost all
edges via star insertion and one can usually choose the endpoint to be reinserted
(see the mim-variants described in Subsect. 3.2).

www.ogdf.net
http://tcs.uos.de/research/cr
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Table 1. Considered instance sets. “#” denotes the number of graphs and |V (G)| the
(range of the) numbers of nodes—both values refer to the instance sets after prepro-
cessing. Further, let δ denote the node degree, � the Cartesian product of two graphs,
Ci the cycle with i edges, Pj the path with j edges, and Gk the 21 non-isomorphic
connected graphs on 5 vertices indexed by k.

Name # |V (G)| Description

Rome 3668 25–58 Well-known benchmark set [3], sparse

North 106 25–64 Well-known benchmark set collected by S. North [2]

Webcompute 75 25–112 Instances sent to our online tool [17] for the exact
computation of crossing numbers, crossings.uos.de

Expanders 240 30–100 20 random regular graphs [27] (expander graphs with
high probability) for each parameterization
(|V (G)|, δ) ∈ {30, 50, 100} × {4, 6, 10, 20}

Circuit-Based 45 26–3045 Hypergraphs from real world electrical networks,
transformed into traditional graphs by replacing
each hyperedge h by a new hypervertex connected to
all vertices contained in h

ISCAS-85 [5] 9 180–3045

ISCAS-89 [4] 24 60–584

ITC-99 [19] 12 26–980

KnownCR 1946 9–250 Benchmark set with cr known through proofs [21]:

C � C 251 9–250 → Ci � Cj with 3 ≤ i ≤ 7, j ≥ i such that i · j ≤ 250

G � P 893 15–245 → Subset of Gi � Pj with 1 ≤ i ≤ 21, 3 ≤ j ≤ 49

G � C 624 15–250 → Subset of Gi � Cj with 1 ≤ i ≤ 21, 3 ≤ j ≤ 50

P ( , ) 178 10–250 → Generalized Petersen graphs P (2k + 1, 2) with
2 ≤ k ≤ 62 and P (m, 3) with 9 ≤ m ≤ 125

Complete 46 5–50 Complete graphs Kn for 5 ≤ n ≤ 50

Complete-Bip. 666 10–80 Complete bipartite graphs Kn1,n2 for 5 ≤ n1, n2 ≤ 40

5.1 Fast Heuristics: Mixed Insertion Method, Chordless Cycle
Method And Fixed Embedding Edge Insertion

The mim-variants, ccm, and fix-none (all without srm-postprocessing) are very
fast but yield a comparably high number of crossings. Figure 3 displays some rep-
resentative results on the expanders, contrasting them with the BEST solution
found by 50 random permutations of any heuristic tested herein (cf. Subsec-
tion 5.4). Among the mim-variants, there are only little differences in compu-
tation speed and resulting number of crossings. However, reinserting both end-
points whenever a choice between two endpoints can be made clearly provides
the best results across all instances while only taking an insignificant amount of
additional time. The variant leads to the highest amount of reinserted stars and
hence also to more chances for an improvement of the number of crossings. In
contrast, highF needs the lowest amount of star insertions and is thus the fastest
variant (but provides results of mixed quality).

http://crossings.uos.de/
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Fig. 3. Comparison of the mim-variants, ccm and fix-none on the expanders.

Compared with fix-none and ccm, mim (from now on always referring to the
both-variant) provides better results on almost all instances. The fastest of the
algorithms, on the other hand, is fix-none. The last of the three, ccm, should only
be considered when examining particularly dense instances: On sparse instance
sets such as Rome or KnownCR, it is slower and yields far worse results than fix-
none (which in turn yields worse results than mim), but the solution and speed
disparity between the algorithms becomes smaller on instances with a higher
density—see, e.g., Fig. 3. On complete (bipartite) instances, ccm even surpasses
mim both in terms of solution quality and speed.

5.2 Planarization Method

The different edge insertion algorithms and postprocessing strategies for the
planarization method allow to greatly improve the final planarizations at the cost
of additional running time. A detailed experimental comparison of these plm-
variants was already carried out in 2012 [10]. We are able to replicate the results
of that study and corroborate its claims with findings on additional instances:
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In terms of solution quality, none provides much worse results than all and
inc across all instance sets. However, postprocessing and inc in particular has
the drawback of very high running times and a large amount of required memory.
Among the edge insertion algorithms, var performs better (but is also slower)
than multi, which in turn performs better than fix. Overall, fix-all is the fastest
plm-variant that still benefits from the quality improvements of postprocessing.
The best compromise between solution quality and speed is provided by the
multi -variants while the best results are achieved by var-inc (cf. [15, Appx. B]).

5.3 Improvements via the Star Reinsertion Method

We tested srm as a postprocessing method for the eight most promising and
interesting algorithms that construct an initial planarization: The three fast algo-
rithms mim, ccm, and fix-none, as well as the more involved fix-all, multi-all,
multi-inc, var-all, and var-inc. In the case of the latter five, a form of post-
processing is already used, and the additional application of srm only leads to a
small increase in running time, comparatively speaking. In the case of the former
three, the additional postprocessing via srm significantly increases the running
times (fix-none-srm becomes even slower than fix-all-srm), but the algorithms
are still surprisingly fast: On sparse instances, the running times are comparable
to multi-inc (without srm); on dense instances, the algorithms are even faster
than fix-all. This is especially interesting as all srm-enhanced algorithms typi-
cally outperform even the best previously known heuristic variant var-inc (see
Figs. 4 and 5). In spite of its simplicity, star insertion in a fixed embedding set-
ting is able to greatly improve intermediate planarizations by inserting multiple
edges at once. It provides better results and is faster than edge insertion in a
variable embedding setting even if the latter uses incremental postprocessing.

When observing the solution quality of the srm-algorithms, the same hierar-
chy as for the algorithms without srm emerges: fix-none-srm performs worse than
the other plm-based srm-variants, with var-inc-srm providing the best results
overall. However, var-inc-srm is rarely worth the additional running time since
the three significantly faster mim-srm, ccm-srm and fix-none-srm perform simi-
larly well or even surpass it on many instances such as several circuit-based ones
and the expanders. In comparison to mim-srm for example, var-inc-srm’s solu-
tion quality difference to BEST is only 1.7% smaller but its median running time
is eight times higher (when averaged over all instances). The running times of the
faster algorithms seem to coincide with the quality of the planarization delivered
by the base algorithm: While fix-none-srm is generally faster than ccm-srm on
sparse instances, the opposite is true on denser ones. On complete (bipartite)
instances, ccm-srm becomes even faster than mim-srm. However, mim-srm is
the otherwise fastest among these algorithms, and thus we recommend to use it.
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Fig. 4. Comparison of the srm-variants on the KnownCR instances. The legend of
Fig. 5 applies. Instance sizes are rounded up to the nearest multiple of fifty. Note that
the results of ccm-srm heavily depend on the structure of the instance; they also vary
a lot across other instance sets (with middling results on average).
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Fig. 5. Comparison of the srm-variants on the Rome instances. The grayed out plots
represent the heuristic variants without srm-postprocessing. Instance sizes are rounded
up to the nearest multiple of five.

5.4 Improvements via Permutations

We will consider one last question: Whether multiple runs of the same algorithm
with different random permutations of the inserted elements can significantly
improve the results. For plm, we permute the order in which the deleted edges are
inserted, and for mim, ccm and srm, we permute the order of (re)inserted stars.
Our experiments compare the effect of 50 random permutations with respect
to the Rome, North, Webcompute and KnownCR instance sets. For the larger
instances and more time-consuming algorithms, this number of permutations is
the limit of what we are able to compute. We focus on the (relative) improvement
for each instance, i.e., the lowest number of crossings divided by the average
number of crossings across 50 permutations (cf. [15, Appendix D]).

Overall, permutations can significantly improve the results of mim, ccm, and
plm-none at the cost of little additional time. However, when more time is avail-
able, plm with postprocessing is clearly preferable. Multiple permutations of all
and inc can be of use if one tries to marginally improve already good solutions.
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Fig. 6. Comparison of relative improvements for 50 permutations over their average
on the Rome and North instances. The legend of Fig. 5 applies.

Fig. 7. Comparison of high-solution-quality heuristics (with a single or 50 permuta-
tions) on the Rome and North instances.



54 M. Chimani et al.

Among the srm-algorithms, the relative improvement via permutations is consis-
tently low with little variance; for a comparison with the respective plm-variants
see Fig. 6. The one outlier is ccm-srm, which achieves the greatest relative improve-
ments for 50 permutations. Note, however, that we initialize all permutations of
ccm-srm with a fixed small chordless cycle instead of a fixed maximal planar sub-
graph. This allows for greater variance in the solutions of ccm-srm and makes it
difficult to compare the results to other srm-algorithms.

The general trend of high-solution-quality algorithms, taking multiple per-
mutations into account, is shown in Fig. 7: A single permutation of mim-srm or
ccm-srm will yield better solutions than a plm-variant with incremental post-
processing (but no srm). Two layers of postprocessing, i.e., -all-srm or -inc-srm,
improve the results even more. Solutions resulting from 50 permutations are
in a tier of their own, with srm-heuristics achieving higher quality than those
without. Overall, 50 permutations of mim-srm or ccm-srm provide some of the
best results while taking a lot less time than other algorithms in their category.
Consider, e.g., the Rome instances in a 50-permutations setting; var-inc-srm can
reduce the average solution quality difference to BEST by only 1.2% more than
mim-srm, but its median running time is ten times as high.

6 Conclusion

Our in-depth experimental evaluation not only corroborates the results of pre-
vious papers [10,18] but also provides new insights into the performance of star
insertion in crossing minimization heuristics. We presented the novel heuristic
mim, which proceeds similarly to the planarization method but inserts most
edges by reinserting one of their endpoints as a star. Whenever neither endpoint
is a cut vertex of the initial planar subgraph, the endpoint can be chosen freely,
and our experiments indicate that reinserting both endpoints one after another
provides the best results. In general, mim performs better than the basic heuris-
tics from [10,18] that have a similarly low running time (i.e., ccm and fix-none).

A central observation is that postprocessing via star insertion (srm) can
greatly improve the planarizations resulting from fast heuristics: mim-srm, ccm-
srm, and fix-none-srm are all faster than the previously best-performing heuristic
var-inc and provide better results. By inserting multiple adjacent edges at once,
star (re-)insertion changes the planarization and its underlying graph decompo-
sition in a way that is sufficient to properly explore the search space and find
good solutions. Fixed embedding star insertion is thus preferable over the much
slower insertion of edges (or even stars) in a variable embedding setting.

We note that many heuristics—in particular those without edge-wise post-
processing—are prone to create non-simple crossings (due to lack of space see
[15, Appendix C]). Such crossings can be detected and it is worthwhile to remove
them in order to speed up the procedure and improve the results. Lastly, multiple
permutations are beneficial for heuristics that already employ postprocessing.
In particular, their application to mim-srm and ccm-srm provides very high
solution quality at moderate running times.
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Abstract. A drawing of a graph is fan-planar if the edges intersecting
a common edge a share a vertex A on the same side of a. More pre-
cisely, orienting e arbitrarily and the other edges towards A results in a
consistent orientation of the crossings. So far, fan-planar drawings have
only been considered in the context of simple drawings, where any two
edges share at most one point, including endpoints. We show that every
non-simple fan-planar drawing can be redrawn as a simple fan-planar
drawing of the same graph while not introducing additional crossings.
Combined with previous results on fan-planar drawings, this yields that
n-vertex-graphs having such a drawing can have at most 6.5n edges and
that the recognition of such graphs is NP-hard. We thereby answer an
open problem posed by Kaufmann and Ueckerdt in 2014.

Keywords: Simple topological graphs · Fan-planar graphs ·
Beyond-planar graphs · Graph drawing

1 Introduction

In a fan-planar drawing of a graph, each edge a is either not involved in any
crossing or its crossing edges c1, . . . , ck have a common endpoint A that is on a
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common side of a, i.e., orienting a arbitrarily and the edges c1, . . . , ck towards A
results in a consistent orientation of the crossings on a (either a crosses each
ci from left to right at each crossing, or it crosses each ci from right to left at
each crossing); for illustrations refer to Fig. 1. We call A the special vertex of a.
All graphs in this paper are simple, that is, we do not allow parallel edges or
self-loops. Hence, the vertex A is uniquely defined if k ≥ 2. If k = 1, then A is
an arbitrary endpoint of c1.

Fig. 1. Drawings that are (a) simple and fan-planar, (b) simple and not fan-planar, (c)
non-simple and fan-planar, and (d) non-simple and not fan-planar.

Previous literature is exclusively concerned with fan-planar drawings that
are also simple, meaning that each pair of edges intersects in at most one point,
which can be either an endpoint or a proper crossing. Simple drawings can be
characterized in terms of two forbidden crossing configurations1 (see Fig. 2):

S1 Two adjacent edges cross.
S2 Two edges cross at least twice.

Simple drawings that are fan-planar can be characterized in terms of two addi-
tional forbidden crossing configurations [17] (see Fig. 2):

SF1 Two independent edges cross a common third edge.
SF2 Two adjacent edges cross a third edge a such that their common endpoint A

is not on a common side of a.

In this paper, we study non-simple fan-planar drawings and how to turn them
into simple fan-planar drawings.

Previous and Related Work. A drawing is k-planar if each edge is crossed at most
k times and a graph is k-planar, if it admits such a drawing [20]. A k-quasiplanar
graph can be drawn such that no k edges mutually cross – such a drawing is
called k-quasiplanar [2]. Kaufmann and Ueckerdt [17] introduced the notion of
fan-planarity in 2014. They describe the class of graphs representable by simple

1 In the literature, usually more obstructions are mentioned, which we exclude for all
drawings (simple or not), see Sect. 2.
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Fig. 2. Forbidden configurations in simple fan-planar drawings.

fan-planar drawings2 as somewhere between 1-planar graphs and 3-quasiplanar
graphs. Indeed, every 1-planar graph admits a simple 1-planar drawing. Since
such a drawing cannot contain configuration SF1 or SF2, it is fan-planar. More-
over, a simple fan-planar drawing cannot contain three mutually crossing edges
and, therefore, it is 3-quasiplanar. Binucci et al. [9] have shown that for each
k ≥ 2 the class of graphs admitting simple k-planar drawings and the class
of graphs admitting simple fan-planar drawings are incomparable. In contrast,
every so-called optimal 2-planar graph admits a simple fan-planar drawing [7].
This follows from the fact that these graphs can be characterized as the graphs
obtained by drawing a pentagram in the interior of each face of a pentagula-
tion [7], which yields a fan-planar drawing. Angelini et al. [3] introduced a draw-
ing style that combines fan-planarity with a visualization technique called edge
bundling [14,15,21]. Each of their so-called 1-sided 1-fan-bundle-planar drawings
represents a graph that is also realizable as a simple fan-planar drawing, but the
converse is not true [3]. Brandenburg [10] examines fan-crossing drawings, where
all edges crossing a common edge share a common endpoint (in particular, this
implies that SF1 is forbidden), as well as adjacency-crossing drawings, where
SF1 is the only obstruction. Simple fan-planar drawings are somewhat opposite
to simple k-fan-crossing-free [11] drawings, where no k ≥ 2 adjacent edges cross
another common edge.

The maximum number of edges in a simple fan-planar drawing on n vertices is
upperbounded by 6.5n−20 [17], which follows from the known density bounds for
3-quasiplanar graphs [1]. A better upper bound of 5n − 10 edges was claimed in
a preprint [17]. However, the corresponding proof appears to be flawed. We spoke
with the authors and they confirmed that the current version of their proof is not
correct and that they do not see a simpleway to fix it3. Kaufmann andUeckerdt [17]

2 In [17], these graphs are called fan-planar. We do not use this terminology to avoid
mix-ups with the class of graphs admitting (not necessarily simple) fan-planar draw-
ings.

3 More specifically, the statement and proof of [17, Lemma 1] are incorrect. A coun-
terexample can be obtained by removing the edge g from the construction illustrated
in Fig. 8 (vertices R,B correspond to the vertices u,w in [17, Lemma 1]); for a formal
description of the construction see Lemma 3.

After our submission to GD’21, the authors of [17] have uploaded a new version [18]
of their preprint in which they state a different definition of fan-planarity with an
additional forbidden crossing configuration; also see [18, last paragraph of Sect. 1].
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described an infinite family of simple fan-planar drawings with 5n−10 edges. The
same lower bound also follows from the aforementioned connection to optimal 2-
planar graphs [7].

The recognition of graphs realizable as simple fan-planar drawings is NP-
hard [9]. The same statement also holds in the fixed rotation system setting [5],
where the cyclic order of edges incident to each vertex is prescribed as part of the
input. Consequently, efficient algorithms have only been discovered for special
graph classes [5] and for restricted drawing styles [5,8].

For a more comprehensive overview of previous work related to fan-planarity,
we refer to a very recent survey article dedicated to fan-planarity due to Bekos
and Grilli [6]. The study of fan-planarity also falls in line with the recent trend
of studying so-called beyond-planar graph classes, whose corresponding drawing
styles permit crossings in restricted ways only. Apart from k-planar [20], k-
quasiplanar [2], k-fan-crossing-free [11], fan-bundle-planar [3], fan-crossing [10],
adjacency-crossing [17], and fan-planar [17] drawings, which have already been
mentioned above, several other classes of beyond-planar graphs and their cor-
responding drawing styles have been studied, e.g.: k-gap-planar drawings [4]
(each crossing is assigned to one of the involved edges such that each edge is
assigned at most k crossings), RAC-drawings [12] (straight-line drawings with
right angle crossings), and many more. We refer to [13,16] for recent surveys on
beyond-planar graphs.

Contribution. A fan-planar drawing that is not simple may contain configura-
tion S1. Configuration S2 is allowed in a partial sense: two edges may cross any
number of times, but only if orienting them arbitrarily results in a consistent
orientation of their crossings; cf. Figs. 1(c) and (d). Recall that every simple fan-
planar drawing is 3-quasiplanar. In contrast, Fig. 3(a) depicts a non-simple fan-
planar drawing that is not 3-quasiplanar, which suggests that graphs admitting
non-simple fan-planar drawings are not necessarily 3-quasiplanar. Consequently,
the density bound of 6.5n−20 [1] for 3-quasiplanar graphs does not directly carry
over. However, the depicted graph is just a K3, which can obviously be redrawn
as a simple (fan-)planar drawing. This raises two very natural questions:

1. Is the largest number of edges in a n-vertex non-simple fan-planar drawing
larger than the number of edges in any n-vertex simple fan-planar drawing?

2. Which non-simple fan-planar drawings can be redrawn as simple fan-planar
drawings of the same graph?

Question 1 is also mentioned as an open problem by Kaufmann and Ueckerdt
[17]. Regarding question 2, we remark that the standard method for simplifying
the configurations S1 and S2 does not necessarily maintain fan-planarity, see
Figs. 3(b) and (c). As our main result, we answer both questions, thereby solving
the open problem by Kaufmann and Ueckerdt:

Theorem 1. Every non-simple fan-planar drawing can be redrawn as a simple
fan-planar drawing of the same graph without introducing additional crossings.
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Fig. 3. (a) A non-3-quasiplanar non-simple fan-planar drawing. (b) A non-simple fan-
planar drawing. Applying the standard procedure for simplifying configuration S2
yields the drawing in (c), which is not fan-planar since the unmodified (black) edge
crosses two independent edges.

The proof of Theorem 1 is constructive and gives rise to an efficient algorithm
for simplifying a given fan-planar drawing. Combined with the aforementioned
previous results regarding the density [1,17] and the recognition complexity [9]
of graphs realizable as simple fan-planar drawings, we obtain:

Corollary 1. Every (not necessarily simple) fan-planar drawing realizes a 3-
quasiplanar graph.

Corollary 2. Every (not necessarily simple) fan-planar drawing on n vertices
has at most 6.5n − 20 edges.

Corollary 3. Recognizing graphs that admit (not necessarily simple) fan-planar
drawings is NP-hard.

We start with some basic terminology and conventions in Sect. 2. The algo-
rithm for simplifying non-simple fan-planar drawings is described in Sect. 3.

2 Terminology

In all drawings in this paper, edges are represented by simple curves. We assume
no two edges touch, that is, meet tangentially. Further, we assume that no three
edges share a common crossing and that edges do not contain vertices except
their endpoints. Let Γ be a drawing of a graph G. A redrawing of Γ is a drawing
of G. Redrawing an edge e in Γ refers to the process of obtaining a redrawing Γ ′

of Γ such that (Γ − e) = (Γ ′ − e).
In the beginning of Sect. 1, we introduced the notion of special vertices for

crossed edges. To streamline the arguments, we also assign an arbitrarily chosen
special vertex to each uncrossed edge. Let e and f be edges that cross and let E
be the special vertex of e. We define the ith crossing of f with e as the ith crossing
between f and e encountered when traversing f from endpoint E. For example,
in Fig. 5(a), the first crossing of g with b is x and the second crossing is y.
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3 The Redrawing Procedure

We prove Theorem 1 by providing an algorithm that redraws the edges of a non-
simple fan-planar drawing Γ to obtain a simple fan-planar drawing. It is based
on three subroutines (Lemmata 1, 2 and 4), which can be iteratively applied to
remove crossings between adjacent edges (configuration S1) and multiple cross-
ings between pairs of edges (configuration S2). More specifically, the first pro-
cedure (Lemma 1) eliminates a particular type of adjacent crossings, namely,
those that involve an edge that is incident to its special vertex. The second
procedure (Lemma 2) removes multiple crossings between edge pairs. Both pro-
cedures reduce the overall number of crossings. Hence, they can be exhaustively
applied to obtain a redrawing Γ ′ of Γ that does not contain multiple crossings
between edge pairs and where adjacent crossings only involve edges that are not
incident to their special vertices (Corollary 4). The procedure (Lemma 4) for
removing these remaining crossings is quite involved and based on a structural
analysis (Lemma 3) of the drawing Γ ′.

The first procedure, for getting rid of some of the adjacent crossings, is very
simple; the proof is deferred to the full version of this paper [19], but illustrated
in Fig. 4.

Lemma 1. Let Γ be a non-simple fan-planar drawing. Let b = (B,R) be an
edge in Γ that is incident to its special vertex B. If b has at least one crossing,
then one of the edges in the drawing can be redrawn such that the total number
of crossings in the drawing decreases. Moreover, the redrawing is fan-planar.

We continue by describing the second procedure, which eliminates crossings
between pairs of edges (independent or adjacent) that cross more than once.

Lemma 2. Let Γ be a non-simple fan-planar drawing. Let b = (G,R) be an
edge in Γ whose special vertex B is not incident to b. If edge b has multiple
crossings with at least one other edge, then an edge that crosses b multiple times,
say g = (B,W ) (where W could also be incident to b), can be redrawn such
that at least one crossing between b and g is eliminated and the total number of
crossings in the drawing decreases. Moreover, the redrawing is fan-planar.

Proof. We start by describing a procedure to pick the edge that will be redrawn.
We traverse b from G to R, until the second crossing of an edge g = (B,W )
with b is encountered such that the first crossing of g with b appeared before
its second crossing, i.e., the second crossing y with b is closer to R than its first
crossing x with b, see Fig. 5(a). If no such edge exists, we exchange the roles of
R and G and repeat the procedure. We are guaranteed to find an edge g with
the desired properties, since there is an edge crossing b multiple times.

So without loss of generality, assume that the edge g has its second crossing y
with b closer to R than its first crossing x. We then walk from y towards G along
b until we encounter a crossing z between an edge p and b. The edge p must also
be incident to B, the special vertex of b.
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Fig. 4. Illustration of Lemma 1. If b is incident to its special vertex B, then all crossings
on b are adjacent crossings. We redraw the edge g whose crossing x with b is closest
to B along b. Redrawing the part of g between x and B along b cannot introduce any
new crossings.

We can now describe the redrawing procedure. The edge g is redrawn to
follow its previous drawing from W to y, cross b at y, follow the drawing of b
from y to z, and, finally, closely follow p from z to B; for an illustration see
Fig. 5. The following statements are proved in the full version [19].

Proposition 1. The crossing z is the first crossing of p with b.

Proposition 2. Redrawing g maintains fan-planarity. Moreover, there is an
injective mapping that assigns each crossing on the redrawn part of g to a cross-
ing on the replaced part of g that involves the same edges.

The described redrawing of g eliminates the crossing between g and b at x.
Moreover, by Proposition 1, the redrawn version of g does not contain any new
crossings between b and g. Combined with Proposition 2, it follows that the total
number of crossings decreases. Moreover, fan-planarity is maintained. �

Equipped with Lemmata 1 and 2, we can apply the following normalization
to the drawing (the proof can be found in the full version [19]):

Corollary 4. Let Γ be a non-simple fan-planar drawing. There is a fan-planar
redrawing Γ ′ of Γ such that

– no two edges cross more than once in Γ ′;
– no edge is incident to its special vertex; and
– Γ ′ does not have more crossings than Γ .
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Fig. 5. Edges b and g cross multiple times and the special vertex B of b is not incident
to b. The figures do not reflect the case when W is incident to b. Any new crossing
with the redrawn version of g involves an edge r crossing p between z and B, which
has to cross the replaced part of g since it is incident to G or R.

Adjacent crossings between edges that are not incident to their special ver-
tices may lead to configurations where the previous edge-rerouting strategies
would incur additional crossings. In the following lemma, we deal with some
unproblematic cases and characterize the remaining, more challenging, configu-
rations in terms of a sequence of conflicting edges.

Lemma 3. Let Γ be a non-simple fan-planar drawing in which no two edges
cross more than once and such that no edge is incident to its special vertex. Let
b = (G,R) and g = (R,B) be (adjacent) edges which cross each other at x.

We can redraw g such that the total number of crossings decreases and fan-
planarity is maintained; or, alternatively, we can determine a sequence of edges
r0, b1, r2, b3, r4, . . . , rk such that the edges b, g, r0, b1, r2, b3, r4, . . . , rk are pairwise
distinct and the following properties are satisfied (we call the edges ri“red” and
the edges bi“black”; for an illustration, see Fig. 6, as well as Fig. 8, which also
depicts rk):
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I1 B is the special vertex of the black edges and incident to the red edges.
I2 R is the special vertex of the red edges and incident to the black edges.
I3 For any odd i, the first crossing xi+1 of bi starting from R is with ri+1. For

any even i < k, the first crossing xi+1 of ri starting from B is with bi+1.
I4 r0 crosses b1 but no other black edge. b crosses r0 and rk but no other red

edges.
I5 For the purposes of the final two invariants, we define q−1 = b. For 0 ≤ i < k,

let αi be the closed curve defined by g, the arc of qi and the arc of qi−1, where
q ∈ {r, b}, that connect R,B and xi. For 0 ≤ i < k, let Γi be the drawing
induced by the edges b, g, r0, b1, r2, . . . , qi.
For 0 ≤ i < k, the curve αi is simple and bounds a region fi that contains
only G, an arc of b that connects G to x ∈ αi and, possibly, an arc of r0 that
connects G to αi, in its interior.

I6 For 0 < i < k, fi ⊂ fi−1 and fi−1\fi is an empty triangular face in Γi

bounded by the following three arcs:
– the arc of qi between xi and the special vertex of qi−1,
– the arc of qi−1 between xi and xi−1,
– the arc of qi−2 between xi−1 and the special vertex of qi−1

where q ∈ {r, b}.
Remark 1. Note that invariant I5 implies that in Γi, g crosses only b and possi-
bly r0. Moreover, the arcs of qi and qi−1 connecting R and B via xi are uncrossed
in Γi.

Fig. 6. An example of the sequence of edges described in Lemma 3. The face fi is the
unbounded region delimited by the dashed curve, the face fi−1\fi is depicted in blue
and the face fi−2\fi−1 is depicted in green. (Color figure online)

Proof. It follows from the preconditions that B is the special vertex of b and G
is the special vertex of g. We will construct the sequence of edges inductively.
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Base Case. For the induction base case, we show how to determine r0 and b1
such that all invariants are satisfied with respect to r0. For b1, we will only
establish the invariants I2, I4, I5 and I6.

We traverse from R along b until we encounter an edge r0 that crosses b
and denote its crossing by x0. If x0 = x and, hence, r0 = g, we can redraw the
part of g that leads from R to x along b such that the crossing at x is removed.
Moreover, since the redrawn part is crossing-free, the total number of crossings
is decreased and fan-planarity is maintained. Hence, if x0 = x, the statement of
the lemma holds.

So assume that x0 �= x. It follows that, r0 �= g since g cannot cross b multi-
ple times. Moreover, r0 �= b since edges are realized as simple curves. Since r0
intersects b, it is incident to B.

Now, we traverse r0 from B towards x0 until we encounter a crossing x1

with an edge b1. If x1 = x0 and, hence, b1 = b, we redraw g along the part of b
between R and x0 and the part of r0 between x0 and B. The redrawn version
of g is crossing-free. Hence, we have eliminated at least one crossing (namely x)
while maintaining fan-planarity and, thus, the statement of the lemma holds
if x1 = x0.

So assume that x1 �= x0. It follows that b1 is distinct from b since b has
no multiple crossings with r0. Moreover, b1 �= r0 since edges are simple curves.
Finally, we show that b1 �= g. In fact, we actually claim something stronger and
prove it in the full version [19].

Proposition 3. The part of r0 between B and x0 cannot cross g.

In particular, Proposition 3 implies b1 �= g, as claimed. Thus, we have deter-
mined two edges r0 and b1 such that b, g, r0, b1 are pairwise distinct. It remains
to show that the desired invariants hold. We have already established that r0 is
incident to B (since it intersects b) and, thus, I1 is satisfied for r0.

Since b1 and b cross r0, it follows that b1 shares an endpoint with b, which is
the special vertex of r0. Accordingly, we consider two cases. First, assume that
the special vertex of r0 is G, which is illustrated in Fig. 7. Consider the closed
curve α0 described by g, the part of r0 between x0 and B and the part of b
between R and x0. By Proposition 3 and the fact that there are no multiple
crossings, the curve α0 is indeed simple. Orient b and b1 towards G. Since the
resulting orientation of the crossings x0 and x1 has to be consistent, it follows
that the part of b1 that connects x1 with G has to intersect α0. More specifically,
since there are no multiple crossings, it needs to intersect g in some point z. We
now redraw g along the part of b that connects R with x0 and the part of r0
that connects x0 with B. The redrawn version of g only has crossings along the
part between x0 and B. In particular, it crosses b1 at x1, but the orientation
of this crossing is consistent with the orientation of z in the original drawing
of g. The same argument applies for all other intersected edges. Consequently,
we introduce no additional crossings, eliminate the crossing x, and maintain fan-
planarity. Hence, the statement of the lemma holds if the special vertex of r0
is G. It remains to consider the case where the special vertex of r0 is R and,



Simplifying Non-simple Fan-Planar Drawings 67

hence, b1 is incident to R. It follows that invariant I2 is satisfied for both r0
and b1.

Invariant I3 for r0 is satisfied by construction (and for b1 there is nothing to
show). Invariant I4 is also satisfied for r0 and b1 by construction.

The edge r0 cannot cross b or b1 a second time. If it crosses g, then it is
incident to G, the special vertex of g. In any case, this implies invariant I5
for Γ0.

We observe that b1 cannot cross b or g since this would imply that b1 is
incident to B or G (the special vertex of b and g, respectively) and hence b1
is parallel to g or b, respectively. Moreover, b1 cannot cross r0 a second time.
Hence, the part of b1 that leads from R to x1 is crossing-free in the drawing Γ1.
Together with invariant I5 for Γ0, the invariant I5 holds for Γ1 and invariant I6
holds, which concludes the base case.

Fig. 7. r0 can be incident to G. b1 is drawn as if G is the special vertex of r0.

Inductive Step: Now, assume the first j +1 edges, r0, b1, . . . , qj , have been deter-
mined and j < k. We assume all invariants hold for r0, . . . qj−1. Additionally, we
assume that I1, I4, I5 and I6 hold for qj if j is even (and hence qj = rj is red),
or I2, I4, I5 and I6 hold for qj if j is odd (and hence qj = bj is black).

We will now determine the edge qj+1. If j is even, we need to prove the
invariants I2 and I3 for qj and the invariants I2, I4, I5 and I6 for qj+1. If j is
odd, we need to prove the invariants I1 and I3 for qj and the invariants I1, I4,
I5 and I6 (and I2 and I3 if j + 1 = k) for qj+1.

Case 1: qj = rj . Note that in this case, we have nothing to prove for invariant I1.
If the edge rj has no crossings between B and xj , then we could redraw g

along this part of rj and the arc of bj−1 from xj to R. The redrawn version of
g would then be uncrossed by invariant I3 for bj−1 and the lemma is proved.

Otherwise rj has at least one crossing between B and xj . We determine edge
bj+1 as follows: traverse along rj from B towards xj until we encounter the first
edge that crosses rj , let this edge be bj+1.
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Invariant I3 for rj is satisfied by construction. To prove the remaining invari-
ants, we establish several propositions, the proofs of which can be found in the
full version [19]. First we prove invariant I2 for rj and bj+1.

Proposition 4. Edge bj+1 is incident to R.

Since rj crosses both edges bj+1 and bj−1, which are both incident to R, the
special vertex of rj is R, which proves invariant I2.

Next we prove invariant I4. We first need to prove bj+1 is distinct from all
the previous edges.

Proposition 5. bj+1 is distinct from all edges of Γj and does not cross edge r0.

Lastly, to prove invariants I5 and I6, we have to prove the following propo-
sition.

Proposition 6. The arc of bj+1 between R and xj+1 is uncrossed in the draw-
ing Γj+1.

So the arc of bj+1 between xj+1 and R is uncrossed in the drawing Γj+1. Fur-
ther, the arc of rj between xj and B was uncrossed in Γj as noted in Remark 1.
Since bj+1 is the only new edge introduced for Γj+1, the arcs of rj between xj

and xj+1 as well as between xj+1 and B are uncrossed in Γj+1. The latter in
conjunction with the above proposition yields that indeed, there is a face fj+1

admitting invariant I5. To see this, note that bj+1 cannot cross g, since it is
not incident to G (otherwise it would be parallel to b). Therefore, no additional
edges cross g while extending the subdrawing from Γj to Γj+1. Invariant I5 can
be combined with the fact that the arc of bj−1 from R to xj is uncrossed by
invariant I3 to conclude that the triangular region fj\fj+1 is indeed empty and
invariant I6 is established.

This concludes the proof of the lemma in the case when qj = rj . The second
case, qj = bj , is similar to the first one and can be found in the full version of
this paper [19]. �

Now that we concluded the proof of Lemma 3, we have all the tools to prove
Lemma 4.

Lemma 4. Let Γ be a non-simple fan-planar drawing with the properties estab-
lished by Corollary 4. If there is an edge b = (G,R) in Γ that crosses an edge
g at x and g is incident to R, then we can redraw an edge such that the total
number of crossings in Γ decreases, and the drawing remains fan-planar.

Proof. Let b = (G,R) and g = (B,R) be two adjacent edges which cross at
x. Their common endpoint is not the special vertex of either of the edges by
Corollary 4. Thus, the special vertices of b and g must be B and G, respectively.
We apply Lemma 3 on b and g. If g can be redrawn using Lemma 3, this concludes
the proof of Lemma 4. Assume that g cannot be redrawn. Then we can determine
a sequence of edges r0, b1, r2, . . . , rk with the properties described in Lemma 3.
We now describe how the edge b can be redrawn to eliminate the crossing x
while maintaining fan-planarity and decreasing the overall number of crossings.
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Let the other endpoint of edge rk be W . By invariant I4, rk has a crossing
with edge b. First assume this crossing occurs between xk and W , i.e., after rk
enters the triangular region fk−2\fk−1 at xk. Since b does not enter this region,
rk has to leave it. It cannot cross bk−1 again, nor can it cross rk−2, because
it is not incident to its special vertex R (note that W �= R since otherwise rk
would be parallel to g). Finally, it cannot cross bk−3, because this is the part of
bk−3 that is uncrossed by invariant I3. Hence, the crossing of rk and b cannot lie
between xk and W and must instead lie between B and xk along rk. In this case,
we claim that edge b can be redrawn. Redraw edge b to follow g from R until x,
and then follow its previous drawing from x until G while avoiding crossing g at
x, as illustrated in Fig. 8. We now prove that this redrawing does not introduce
any new crossings on b.

Fig. 8. Redrawing of edge b.

Proposition 7. Redrawing b does not introduce any new crossings on b.

Proof. Assume a new crossing with an edge p is introduced on b by the redrawing
operation. Since the redrawn part of b is parallel to a part of g, the edge p
crosses g as well. Consequently, edge p is incident to G, the special vertex of g.

Consider the closed curve δ formed by the arc of rk between B and xk, the
arc of rk−2 between B and xk−1, and the arc of bk−1 between xk−1 and xk. The
edge b crosses rk exactly once, does not cross rk−2 due to invariant I4, and also
does not cross bk−1 since the special vertex of bk−1 is B due to invariant I1 and
b is not incident to B. This implies that b crosses δ exactly once and thus R and
G have to lie on distinct sides of δ. This is illustrated in Fig. 8. Edge g does not
cross any of the edges on the boundary of δ since b is the only edge crossed by
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g by Remark 1 except possibly for r0, and even if rk−2 = r0 the part of rk−2 on
δ is still uncrossed by invariant I3, and therefore g is contained in the same side
of δ as its endpoint R.

The edge p crosses g and is incident to G, and thus must cross the curve δ
since g and G lie on distinct sides of δ. Edge p cannot be incident to R since
then p would be parallel to b. Since R is the special vertex of rk and rk−2 and p
is not incident to R, p cannot cross the edges rk and rk−2. Hence, p must cross
edge bk−1 to cross the curve δ. Then the other endpoint of p must be B, the
special vertex of bk−1. However, the part of p connecting G with bk−1 is on the
same side as the part of rk−2 between B and bk−1. Consequently, the part of p
connecting B to bk−1 and the part of rk−2 between B and bk−1 lie on distinct
sides of bk−1, which contradicts the fan-planarity. Overall, we have shown that p
cannot cross δ and, by extension, it cannot cross g; a contradiction. �

The only redrawn edge is b and no new crossing is introduced on b, which
ensures that fan-planarity is maintained. Additionally, we eliminate the crossing
x, which decreases the total number of crossings in the drawing. �

We already described in the beginning of Sect. 3 how Lemmata 1–4 can be
combined to obtain a proof of Theorem 1; we formally summarize the proof in
the full version [19].
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Comput. Sci. 745, 36–52 (2018). https://doi.org/10.1016/j.tcs.2018.05.029

5. Bekos, M.A., Cornelsen, S., Grilli, L., Hong, S.-H., Kaufmann, M.: On the recog-
nition of fan-planar and maximal outer-fan-planar graphs. Algorithmica 79(2),
401–427 (2016). https://doi.org/10.1007/s00453-016-0200-5

6. Bekos, M.A., Grilli, L.: Fan-planar graphs. In: Hong, S.-H., Tokuyama, T. (eds.)
Beyond Planar Graphs, pp. 131–148. Springer, Singapore (2020). https://doi.org/
10.1007/978-981-15-6533-5 8

7. Bekos, M.A., Kaufmann, M., Raftopoulou, C.N.: On optimal 2- and 3-planar
graphs. In: Aronov, B., Katz, M.J. (eds.) 33rd International Symposium on Com-
putational Geometry, SoCG 2017, July 4–7, 2017, Brisbane, Australia. LIPIcs,
vol. 77, pp. 16:1–16:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017).
https://doi.org/10.4230/LIPIcs.SoCG.2017.16

https://doi.org/10.1016/j.jcta.2006.08.002
https://doi.org/10.1016/j.jcta.2006.08.002
https://doi.org/10.1007/BF01196127
https://doi.org/10.1007/BF01196127
https://doi.org/10.1016/j.tcs.2018.03.005
https://doi.org/10.1016/j.tcs.2018.03.005
https://doi.org/10.1016/j.tcs.2018.05.029
https://doi.org/10.1007/s00453-016-0200-5
https://doi.org/10.1007/978-981-15-6533-5_8
https://doi.org/10.1007/978-981-15-6533-5_8
https://doi.org/10.4230/LIPIcs.SoCG.2017.16


Simplifying Non-simple Fan-Planar Drawings 71

8. Binucci, C., Chimani, M., Didimo, W., Gronemann, M., Klein, K., Kratochv́ıl,
J., Montecchiani, F., Tollis, I.G.: Algorithms and characterizations for 2-layer fan-
planarity: from caterpillar to stegosaurus. J. Graph Algorithms Appl. 21(1), 81–102
(2017). https://doi.org/10.7155/jgaa.00398

9. Binucci, C., Giacomo, E.D., Didimo, W., Montecchiani, F., Patrignani, M., Symvo-
nis, A., Tollis, I.G.: Fan-planarity: properties and complexity. Theor. Comput. Sci.
589, 76–86 (2015). https://doi.org/10.1016/j.tcs.2015.04.020

10. Brandenburg, F.J.: On fan-crossing graphs. Theor. Comput. Sci. 841, 39–49 (2020).
https://doi.org/10.1016/j.tcs.2020.07.002

11. Cheong, O., Har-Peled, S., Kim, H., Kim, H.-S.: On the number of edges of fan-
crossing free graphs. Algorithmica 73(4), 673–695 (2014). https://doi.org/10.1007/
s00453-014-9935-z

12. Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings.
Theor. Comput. Sci. 412(39), 5156–5166 (2011). https://doi.org/10.1016/j.tcs.
2011.05.025

13. Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond
planarity. ACM Comput. Surv. 52(1), 4:1-4:37 (2019). https://doi.org/10.1145/
3301281

14. Holten, D.: Hierarchical edge bundles: visualization of adjacency relations in hier-
archical data. IEEE Trans. Vis. Comput. Graph. 12(5), 741–748 (2006). https://
doi.org/10.1109/TVCG.2006.147

15. Holten, D., van Wijk, J.J.: Force-directed edge bundling for graph visualization.
Comput. Graph. Forum 28(3), 983–990 (2009). https://doi.org/10.1111/j.1467-
8659.2009.01450.x

16. Hong, S.-H., Tokuyama, T. (eds.): Beyond Planar Graphs. Springer, Singapore
(2020). https://doi.org/10.1007/978-981-15-6533-5

17. Kaufmann, M., Ueckerdt, T.: The density of fan-planar graphs. CoRR
abs/1403.6184v1 (2014). http://arxiv.org/abs/1403.6184v1

18. Kaufmann, M., Ueckerdt, T.: The density of fan-planar graphs. CoRR
abs/1403.6184v2 (2014). http://arxiv.org/abs/1403.6184v2

19. Klemz, B., Knorr, K., Reddy, M.M., Schröder, F.: Simplifying non-simple fan-
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Abstract. A RAC-drawing of a graph is a straight-line drawing in which
every crossing occurs at a right-angle. We show that deciding whether
a graph has a RAC-drawing is as hard as the existential theory of the
reals, even if we know that every edge is involved in at most ten crossings
and even if the drawing is specified up to isomorphism.

Keywords: RAC-drawing · Right-angle drawing · Straight-line
drawing · Existential theory of the reals · Computational complexity

1 Introduction

It is generally admitted that if we cannot avoid crossings in drawings, then it
is advantageous to draw the crossings with large angles. This simplifies reading
the drawing as edges become easier to follow individually. In a 2009 paper,
Didimo, Eades and Liotta [12] formalized this idea by introducing RAC-drawings
of graphs, in which only the largest possible angle, the right-angle, is allowed.
In other words, a drawing of a graph is a RAC-drawing if all crossings in the
drawing occur at right angles.

RAC-drawings have become an increasingly popular subject in the graph
drawing literature, see, for example, a recent survey by Didimo [11] summarizing
our knowledge. We are specifically interested in the computational complexity
of the recognition problem.

Argyriou, Bekos, and Symvonis [3] showed early on that it is NP-hard to
recognize whether a graph has a RAC-drawing. Why NP-hard, and not NP-
complete? The issue is that a realization of a RAC-drawing may require real
coordinates, and, a priori, we do not have any bounds on the precision and we
do not even know whether the graph can be realized on a grid. Bieker [6] showed
that the problem lies in ∃R, the complexity class associated with deciding the
truth of the existential theory of the reals.1 The exact complexity remained open
(as mentioned, for example, in [13, p. 4:11/12]).

Also open, not even known to be NP-hard, was the complexity of the fixed
embedding variant of RAC-drawability, in which we are given a drawing of the
graph and have to decide whether the graph has a RAC-drawing isomorphic to
the given drawing.
1 For a thorough introduction to the existential theory of the reals, see [17]. For a
quick intro, the Wikipedia page [25] will serve.
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Theorem 1. Testing whether a graph (with or without fixed embedding) has a
RAC-drawing is ∃R-complete, even if each edge has at most ten crossings.

∃R-hardness implies NP-hardness [24], so the fixed embedding variant is
NP-hard. What does ∃R-hardness add that NP-hardness does not give us?
Perhaps nothing, since it is possible (if considered unlikely) that NP = ∃R. Nev-
ertheless, our ∃R-hardness reduction shows that RAC-drawings can require arbi-
trarily complex algebraic integers in any realization. And even RAC-drawings
that can be realized on a grid, may require double-exponential precision. We
discuss these results on area and precision in Sect. 5.

1.1 More on RAC-Drawings

As far as we know the double-exponential lower bound on the area of a RAC-
drawing is new, but there have been (single) exponential lower bounds in con-
strained settings, e.g. for upward RAC-drawings [2], RAC-drawings in which a
given horizontal order of the vertices must be realized, and for 1-plane RAC-
drawings [8], drawings in the plane with at most one crossing per edge.

If we allow bends along edges, the situation changes dramatically. A RACk

drawing of a graph is a RAC-drawing in which every edge has at most k bends.
RAC-drawings are just the RAC0-drawings.

Every graph has a RAC3-drawing [12], but not necessarily a RAC2-drawing:
any graph with a RAC2-drawing has at most linearly many edges [4]. The com-
plexity of recognizing graphs with RAC1- and RAC2-drawings remains tantaliz-
ingly open [13, Problem 6].

There are polynomial upper bounds on the area of RACk drawings for k ≥
3 [15], but no bounds seem to be known for k = 1, 2. ∃R-hardness of these cases
would likely imply double-exponential lower bounds.

1.2 Overview

Our proof that the RAC-drawability problem is ∃R-complete consists of a
sequence of reductions. There is no convenient graph drawing problem to start
with, so in Sect. 2 we present an ∃R-complete algebraic problem.

The main idea then is to enrich the RAC-drawing model with a special fea-
ture: vertices with a specific type of angle constraints. The proof of Theorem 1
then breaks into two major parts. The first part shows that this additional fea-
ture leads to an ∃R-complete problem (even for crossing-free drawings), since it
is powerful enough to encode the algebraic problem, see Sect. 3. The second part
shows how to simulate the special feature within the RAC-model. This second
part can be found in the arXiv version of this paper [21, Appendix B]. In Sect. 5
we discuss issues of precision, area, and universality, before closing with a short
section of open questions.
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2 The Existential Theory of the Reals

The existential theory of the reals is the set of existentially quantified, true state-
ments over the real numbers. The corresponding complexity class is ∃R. (Defined
just like NP is defined from Boolean formula satisfiability, though there also is
a machine model [14].) A problem is ∃R-hard if every problem in ∃R reduces to
it; it is ∃R-complete, if it is ∃R-hard and lies in ∃R.

∃R captures the complexity of many natural problems in graph drawing,
particularly if real coordinates are involved. Bieker’s thesis [6] surveys many of
the relevant graph drawing results. Some recent problems shown ∃R-complete
relevant to graph drawing include: visibility graphs of triangulated irregular
networks [7], the local rectilinear crossing number [22], simultaneous geometric
embeddings of paths [23], and covering polygons by triangles [1].2

For our reduction we will be working with an ∃R-complete problem, which,
as is often the case, is tailor-made for the situation we find ourselves in. The
proof of the theorem can be found in [21, Appendix A]; it combines ideas from
Mnëv [18], Shor [24], and Richter-Gebert [19].

Theorem 2. The following problem is ∃R-complete: Given equations of the
form xi = 2, xi = xj, xi = xj + xk, and xi = xj · xk for variables x1, . . . , xn,
decide whether the equations have a solution with xi > 1 for all i ∈ [n].

As we mentioned, NP ⊆ ∃R [24], in particular, ∃R-hard problems are also
NP-hard. On the other hand, ∃R ⊆ PSPACE [9], so ∃R-complete problems
are solvable in polynomial space (and, therefore, exponential time).

3 RAC-Drawings with Angle Constraints

We introduce two types of special vertices that come with angle and rotation
constraints. Recall that the rotation at a vertex in a drawing is the clockwise
permutation of edges incident to the vertex.

– a �-junction is a vertex v which is incident to three special edges e1, e2, e3
(v may be incident to additional edges). In a straight-line drawing we require
that the rotation of the special edges at v is e1e2e3, or the reverse, and there
are right angles between e1 and e2 and e2 and e3 at v; additional edges at v
can occur, at any angle, between e1 and e3 (opposite of e2),

– a ×-junction is a vertex v which is incident to four special edges e1, e2, e3, e4
(v may be incident to additional edges). In a straight-line drawing we require
that the rotation of the special edges at v is e1e2e3e4, or the reverse, and that
there are right angles between ei and ei+1, for 1 ≤ i ≤ 3; additional edges
can occur, at any angle, inside one of the quadrants, e.g. between e3 and e4.

Figure 1 shows these junctions, and how we symbolize them in drawings.
2 These results are from 2021. The Wikipedia page mentioned earlier [25] is host to
a growing list of complete problems, many from the areas of graph drawing and
computational geometry.
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Fig. 1. �- and ×-junctions, and how we draw them in graphs using a � and a �. Each
of the junctions is shown with one additional edge.

If special edge e2 in a �-junction ends in a leaf, we can think of the junction
as a straight-line, e3e1, with a vertex on it.

Two drawings of a graph (with or without junctions) are isomorphic if there is
a homeomorphism of the plane (which may be orientation-reversing) that maps
the graphs to each other.

Theorem 3. Testing whether a graph G with �- and ×-junctions has a RAC-
drawing, is ∃R-complete. This remains true even if we are given a crossing-free
drawing of G and G either has no RAC-drawing, or it has a crossing-free RAC-
drawing which is isomorphic to the given drawing.

We will later see that ×-junctions can be simulated by �-junctions, so they
are not, strictly speaking, necessary, but they do simplify the constructions.

For the promise version note that �- and ×-junctions are vertices (and not
crossings), and that a RAC-drawing does not have to contain any crossings.
The theorem implies that testing whether a graph with �- and ×-junctions
has a crossing-free RAC-drawing is also ∃R-complete, but we need the stronger
promise version for the main proof.

We prepare the proof of Theorem 3 by constructing gadgets to simulate
arithmetic.

3.1 Gadgets

We describe the gadgets we use to enforce equations xi = 2, xi = xj + xk,
xi = xj · xk and xi = xj . Some additional gadgets will be useful.

We start by defining how a drawing of a graph encodes a real number. Given
three collinear points (these will be vertices of the graph) labeled 0, 1 and x,
we say x represents ±d(0, x)/d(0, 1), where d is the Euclidean distance of two
points. If x lies on the same side of 0 as does 1 (on the common line), we choose
the positive value, otherwise we choose the negative value. With this definition
we can build our first gadget.
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Variables. Fig. 2 shows the gadget we use for variable xi. The gadget consists
of three ×-junctions (labeled 0, 1, and x in this order) with the e3-edge of a
junction identified with the e1-edge of the next junction. We also add a path
connecting the ends a, b, c of the e2-edges. The e4-edges can then be used to
connect to another gadget.

Fig. 2. A gadget for variable xi.

In a RAC-drawing of the xi-gadget, all e4-edges must lie on the same side
of the line through 0, 1, xi. This is because ab and bc cannot cross the line,
since otherwise they would overlap with the e4-edges they are incident to. Thus,
the xi-gadget can be used to represent any number xi > 1. By relabeling the
junctions, we can also obtain gadgets for variables between 0 and 1, and variables
less than 0.

Copying and Moving Information. Our next gadget will allow us to dupli-
cate information. More precisely, we have points p1, . . . , p� along a line (in this
order). If two of those points are labeled 0 and 1, then all these points represent
numbers. Our gadget allows us to make two copies of these points (along a new
common line), that each, by itself, represents the same numbers as the original.
See Fig. 3.

Fig. 3. The copy gadget. The dashed edges have to cross orthogonally, forcing the pip
′
i

as well as the pip
′′
i edges to be parallel as shown.

The two e2-edges incident to the �-junctions a and b are parallel, since they
are both orthogonal to ab, and leave ab in the same direction, since otherwise
edge cc′′, for example, would have to cross ab at a right angle, and overlap ca.
Because of the relative order of the points on the top and bottom line, edge cc′′

crosses dd′ as well as all edges pip
′
i at right-angles, so all these edges are parallel.
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And since every edge pjp
′′
j is crossed by dd′, these edges are also all parallel. It

follows that p′
1, . . . , p

′
� and p′′

1 , . . . , p′′
� represent the same numbers as p1, . . . , p�.

By repeating the copy gadget, we can make any number of copies of a set
of points on a line. There are other applications of the copying gadget, some of
which we will see below, but here we can show how to use it to test whether
xi = xj for two variables xi and xj which we know to be larger than 1. Figure 4
shows the set-up.

Fig. 4. Testing equality xi = xj using the copy gadget.

We move information around the drawing as parallel lines, with the relative
distances of the lines encoding the numbers. However, we may have to change
direction, and the gadget shown in Fig. 5 allows us to create a copy p′

1, . . . , p
′
� of

a set of points p1, . . . , p� at an angle.
The pi and p′

i are �-junctions, and v is a ×-junction. Edges pip
′
i must lie

between the two lines on which the points lie (and on opposite sides of the e2-
edges of the �-gadgets for pi and p′

i, since otherwise edges would overlap). The
×-junctions surrounding v force vc to also lie between those two lines. Then cv
must cross each of the edges pip

′
i which implies that they are parallel, so the p′

i

have the same relative distances from each other as do the pi, and they represent
the same numbers.

By chaining several angling gadget, we can achieve angles of π/2, π, 3π/2,
and 2π. In particular chaining two gadgets, its main axes combined like ,
allows us to continue sending the information in the same direction, but at a
different (arbitrarily chosen) scale. Hence, we can also use the angling gadget to
rescale information. (The resulting horizontal offset can be compensated for by
adding two more angling gadgets on top, like .)

Doing Arithmetic I. Let us start with the number 2. The gadget shown in
Fig. 6 consists of ×-junctions combining four squares with diagonals.
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Fig. 5. Making a (scaled) copy at a right angle.

Fig. 6. The number 2 gadget.

In a RAC-drawing, the diagonal edges force the sides of each square to have
equal length. This forces the length of 01 and 12 to be the same. (Why do we
not place two squares with diagonals right next to each other? The reason is
that our ×-junctions only allow additional edges in one quadrant.)

Instead of 0, 1, 2 we can also label the points of the gadget as −1, 0, 1. This
gives us a −1 which we can use to build a negation gadget. (While the xi are
all bigger than 1, we will make use of some additional, temporary, variables that
are negative.)

We next build a special negation gadget that, for given points 0, 1, and x
creates four points, −x − 1, −x, 0, and 1 that correctly represent their labels.
See Fig. 7. On the lower left is a 2-gadget with points relabeled −1, 0, and 1. We
added two points to this gadget, labeled x′ and x′ + 1. Using the diagonals, the
distance between x′ and x′ + 1 is the same as the distance between 0 and 1 in
this gadget. We then use a copy gadget in reverse to combine this information
with the x-gadget. The resulting five points then correspond to −1, 0, 1, x, and
x + 1, or, more useful for us −x − 1, −x, −x + 1, 0 and 1. Of these we only need
four as output, namely −x − 1, −x, 0 and 1.
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Fig. 7. Negating x gadget.

Doing Arithmetic II. To compute xi = xj + xk, we use the negation gadget
to create −xj − 1 and −xj , and then perform the addition geometrically, as
shown in Fig. 8. The reason for using negation is that this way we do not have
to know whether xj or xk is the larger one, something that’s unavoidable if
we place two variables greater than 1 on the same line. (This idea is due to
Richter-Gebert [19], also see Matoušek [17].)

Fig. 8. Addition gadget computing xi = xj + xk.

As in the other gadgets, the two dashed edges are orthogonal, and force the
other lines to be parallel. If we ignore those two edges and their endpoints, the
remaining points on top represent −xj − 1, −xj , 0, 1, xk. If we relabel the first
and second points as 0 and 1, then the fifth point represents xj + xk, and we
have the addition gadget we needed.

To compute xi = xj · xk we use the same trick mentioned above to resolve
the issue that we do not know which of xj and xk is bigger, so we cannot place
them along the same line. Instead of working with negation, here we work with
the reciprocal of xj , which lies (strictly) between 0 and 1. The reciprocal gadget
is not much of a gadget, just a relabeling, see Fig. 9.
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Fig. 9. Computing the reciprocal 1/x of a variable x > 1.

This is cheating a bit, since for most other gadgets (except the angling gadget)
the distance between 0 and 1 did not change, and most gadgets assume they are
the same when processing inputs. So before using the result of the reciprocal
gadget, we rescale it, so that 0 and 1 have the standard distance.

With that, the product xi = xj · xk can then be calculated using the multi-
plication gadget shown in Fig. 10. It is simply a copy gadget upside down that
allows us to merge 1/xj and xk into a common scale.

Fig. 10. Multiplication gadget computing the product xi = xj · xk.

The points along the top line (ignoring the endpoints of dashed lines which
enforce orthogonality) represent 0, 1/xj , 1 and xk, which we can relabel as 0, 1,
xj and xj · xk, at which point we can drop the xj to obtain a gadget computing
xj · xk. As did the reciprocal gadget above, this gadget changes the scale, and
we need to rescale to reestablish the standard distance between 0 and 1.

3.2 Proof of Theorem 3

We can assume that we are given a system of equations over variables xi, i ∈ [n]
as described in Theorem 2. Our goal is to (efficiently) construct a graph G with
junctions, so that the system of equations is solvable, if and only if the graph G
has a RAC-drawing. Moreover, if the system is solvable, then G has a crossing-
free RAC-drawing (remember that junctions do not count as crossings).

We build G in several stages. We first create gadgets for the main operations.

(i) For every variable xi, i ∈ [n], we create a variable gadget.
(ii) We have equations of four types: xi = 2, xi = xj , xi = xj + xk, and

xi = xj · xk, and we create a corresponding gadget for each (xi = 2 can be
built by combining an equality gadget with a 2-gadget; the addition and
multiplication gadgets include the gadgets for negation and reciprocals).
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(iii) If variable xi occurs in � equations, we create � copy-gadgets.

Let use say this gives us m gadgets. Place all m gadgets along a vertical
line spaced far apart, and so that incoming and outgoing (information carrying)
edges are vertical.

We now need to connect the gadgets using angling gadgets. We need the
following connections: the variable xi gadget needs to be connected as an input
to one of the � copy gadgets representing it, and we need to connect these copy
gadgets so that we have � outputs corresponding to xi; finally, if xi occurs in an
equation, we need to connect one of the unused outputs from the bank of copy
gadgets representing xi to the equation.

The connections between the m original gadgets can be built from a chained
sequence of at most eight angling gadgets. This is already sufficient to get a G
that has a RAC-drawing, but we need one more step to remove all crossings, so
we describe how to place the angling gadgets more carefully; the placement only
depends on the original equations, not on a specific solution to the equations.

Suppose we are connecting gadget α to gadget β, with α, β < m. Start at
gadget α. At most two angling gadgets let us leave the gadget α horizontally to
the right up to a distance of α + β · m. Another two angling gadgets allow us
to angle so we can move vertically downwards or upwards until we have reached
the height of gadget β. Two more angling gadgets take us back horizontally to
β, and we can connect to β with another two angling gadgets.

This process introduces (orthogonal) crossings between edges of angling gad-
gets, but we can determine exactly what those crossings are (whether the gadgets
are realizable, or not). We replace all crossings within gadgets and the newly
introduced crossings between angling gadgets with ×-junctions. The resulting
graph is graph G and we have also described a plane embedding of G (which
need not satisfy the junction-constraints, of course).

If the system of equations is solvable, we can use a solution to create a
RAC-drawing of each gadget, and, following the description above, create an
isomorphic RAC-drawing of G. In particular, there are no crossings.

On the other hand, if there is a RAC-drawing of G, all the gadgets work as
described, and each occurrence of a variable represents the same value, so there
is a solution to the system of equations.

3.3 Forcing Empty Faces

To model �- and ×-junctions as normal vertices we make use of another
restricted drawing mode that simplifies the construction. Given a graph G with
k pairwise disjoint sets of vertices Vi ⊆ V (G), i ∈ [k], we are interested in draw-
ings (or RAC-drawings) of G in which the vertices of each Vi lie on the boundary
of an empty face, for i ∈ [k].

The following theorem shows that this type of drawing constraint can be
removed, even in RAC-drawings.

Theorem 4. Let G be a graph, and let (Vi)i∈[k] be k pairwise disjoint sets of
vertices of G. We can then construct, in polynomial time, a graph G′ so that G
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has a RAC-drawing in which the vertices of each Vi lie on the boundary of an
empty face, if and only if G′ has a RAC-drawing.

For the proof, remember that if a graph has a RAC-drawing, it can have at
most 4n − 10 edges [12].

Proof. Let v1, . . . , vk be k vertices not in G. Connect vi to each vertex in Vi by a
path of length 36n, where n = |V (G)|, for 1 ≤ i ≤ k. Finally, replace each of the
newly added edges by � = 146n2 paths of length 2 (that is, a K2,�). See Fig. 11
for an illustration. Call the resulting graph G′. Suppose G′ has a RAC-drawing.

Fig. 11. Forcing an empty face; in this example v = vi and Vi = {b1, b2, b3}.

Since we added at most n paths of length 36n to G, we have at most 36n2

of the K2,�-graphs in G′. We consider them one at a time. Let E0 = E(G). An
edge can cross at most one edge of a K1,� at right angles (otherwise, the edges of
K1,� would overlap). Hence, an edge can cross at most two edges of a K2,�. Since
� > 2n = 2|E0|, the first K2,� contains a path P1 of length 2 that crosses none
of the edges in E0. Let E1 = E0 ∪ E(P1). If we keep repeating this argument,
we obtain Ei = Ei−1 ∪ E(Pi), and |Ei| = n + 2i. Then the (i + 1)-st K2,� must
contain a path Pi+1 of length 2 which crosses none of the edges in Ei, since
2|Ei| = 2(n + 2i) < �, for all 1 ≤ i ≤ 36n2. We conclude that the RAC-drawing
of G′ contains a RAC-drawing of G together with the vi and paths from vi to
each vertex in Vi so that none of the paths are involved in any crossings. In
other words, for each i there is a crossing-free (subdivided) wheel with center vi

and a perimeter containing Vi. Removing all edges not belonging to G gives us
a RAC-drawing of G in which all vertices of Vi lie on the boundary of the same
face (the one that contained vi).

For the other direction, suppose G has a RAC-drawing in which all vertices
of each Vi lie on the boundary of the same face. For each i, we create a new
vertex vi and a paths of length 72n connecting vi to each vertex in Vi. By
Theorem 1 in [10], the additional edges and vertices can be added to the already
existing drawing of G without creating any new crossings. We can then duplicate
appropriate sub-paths of length 2 to obtain a RAC-drawing of G′.
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4 Proof of Theorem 1

Bieker [6, Section 6.2] shows that the problem lies in ∃R. To prove ∃R-hardness,
we are missing one more ingredient, a way to simulate junctions in RAC-
drawings.

Theorem 5. Let D be a planar drawing of a graph G with some vertices iden-
tified as �- and ×-junctions. We can efficiently construct a graph G′ without
junctions, with vertex sets (Vi)i∈[k], and a drawing D′ of G′ so that:

(i) if D is isomorphic to a RAC-drawing of G, then D′ is isomorphic to a
RAC-drawing of G′, and all edges are involved in at most ten crossings.

(ii) if G does not have a RAC-drawing, then G′ does not have a RAC-drawing
in which all the vertices of each Vi lie on a common boundary.

The proof of Theorem 5 can be found in [21, Appendix B]. Let us see how this
theorem completes the proof of Theorem 1; we first consider the fixed embedding
case. By Theorem 3 it is ∃R-hard to test whether a graph G with junctions has
a RAC-drawing, even if we know that the graph either has no RAC-drawing,
or that it has a RAC-drawing isomorphic to a given planar drawing D. Using
Theorem 5, we construct a graph G′ and a drawing D′ so that D′ is isomorphic
to a RAC-drawing if and only if G has a RAC-drawing. This implies that the
fixed embedding version of RAC-drawability is ∃R-complete.

To show that the problem is ∃R-complete without fixing the embedding, we
need to take one more step: By (ii) we can reduce to G′ having a RAC-drawing
in which all the vertices of each Vi lie on a common boundary. Using Theorem 4,
this then reduces to RAC-drawability (without a fixed embedding).

5 Precision and Area

Given an arbitrary algebraic number α, we can write it as the unique solution
of an integer polynomial equation (adding constraints to achieve uniqueness).
E.g. x =

√
2 would be the unique x-value for which there is a solution of (x2 −

2)2 + (x − y2)2 = 0. Using the reduction of polynomial equations to RAC-
drawability we have seen, we can build a graph G so that in any realization
of G there are three collinear points that represent α. We are not limited to
just one number. For any semi-algebraic set S in free variables xi, i ∈ [n] we
can build a graph G so that the triples (0′

i, 1
′
i, x

′
i) and (0′′

i , 1′′
i , x′′

i ) representing
xi = x′

i − x′′
i represent the semi-algebraic set in the sense that S consists of the

points (d(0′
i, x

′
i)/d(0′

i, 1
′
i) − d(0′′

i , x′′
i )/d(0′′

i , 1′′
i ))i∈[n].

Similarly, we can build a graph G representing equations x1 = 2, x2 = x1 ·x1,
x3 = x2 · x2, . . ., xn = xn−1 · xn−1. Then any realization of G contains three
points representing 0, 1, and 22

n

. So G is a graph of polynomial size which
requires double-exponential area. In this example, the points in the gadgets can
even be placed so as to lie on a grid.
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6 Open Questions

Can we relax the right-angle restriction? Huang, Eades, and Hong [16] studied
the impact of large angles (vs right angles) on the readability of drawings, and
concluded (among other things) that large angles improve the readability of
drawings, but the angles do not have to be right angles. They express the hope
that the computational problem becomes easier if the right-angle restriction is
relaxed. Using common tricks for the existential theory of the reals, it is possible
to show that the RAC-drawability problem remains ∃R-complete even if we relax
the angle constraint, and require the angle to lie in the interval (π/2 − ε, π/2 + ε),
where ε depends on n = |V (G)| (doubly exponentially so). Does the problem
remain ∃R-hard for a fixed value ε > 0? The current construction very much
relies on precision to simulate the existential theory of the reals. It is not clear
whether gadgets can be braced to still work if angles are only approximate.

We saw that testing RAC-drawability remains ∃R-hard, even if there is a
RAC-drawing with at most 10 crossings per edge. Can that number be lowered?
We note that the NP-hardness result remains true even for 1-planar drawings
(at most one crossing per edge) [5]. Is the problem in NP? A somewhat similar
situation occurs for the geometric local crossing number, lcr(G), that is the
smallest number of crossings along each edge in a straight-line drawing of G.
Testing whether lcr(G) ≤ 1 is NP-complete [20], but there is a fixed k so that
testing lcr(G) ≤ k is ∃R-complete [22].

Does RAC-drawability remain ∃R-hard for bounded-degree graphs? Nearly
all of our gadgets have bounded degree, the only exception are the empty-face
gadgets, which are based on K2,n’s, and require unbounded degree. Can these
be replaced with bounded degree gadgets?

The right-angle crossing number of a graph is the smallest k so that G has a
RAC-drawing with at most k crossings. Our result implies that testing whether
the right-angle crossing number is finite is ∃R-complete. What about small fixed
values? Can we test whether a graph has a RAC-drawing with one, two, three
crossings in polynomial time? What about fixed k?
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Abstract. In the area of beyond-planar graphs, i.e. graphs that can be
drawn with some local restrictions on the edge crossings, the recognition
problem is prominent next to the density question for the different graph
classes. For 1-planar graphs, the recognition problem has been settled,
namely it is NP-complete for the general case, while optimal 1-planar
graphs, i.e. those with maximum density, can be recognized in linear
time. For 2-planar graphs, the picture is less complete. As expected,
the recognition problem has been found to be NP-complete in general.
In this paper, we consider the recognition of simple optimal 2-planar
graphs. We exploit a combinatorial characterization of such graphs and
present a linear time algorithm for recognition and embedding.

Keywords: 2-planar graphs · Recognition algorithms ·
Beyond-planarity

1 Introduction

In the field of graph drawing beyond planarity, researchers study graphs that admit
drawings with crossings only in restrictive local configurations [6,14,15,19,23].
Mostly studied are 1-planar graphs, which admit drawings where each edge is
crossed at most once. Classic results on these graphs concern mostly the den-
sity [7,26], recently, other problems such as generation [27], characterization [21],
recognition [2,9–11,13], coloring [8] and page number [3,16] have been studied.
The most natural extension of 1-planar graphs, is the family of k-planar graphs,
that is graphs that admit drawings where each edge is crossed at most k times.
While there are plenty of results on 1-planarity, k-planarity turns out to be more
challenging. The first outstanding results on the density of simple k-planar graphs
came with the work of Pach and Tóth [25] for k ≤ 4. In particular, they proved
that simple 2-planar graphs have at most 5n−10 edges. Later on, improved upper
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bounds of 5.5n − 11 [24] and 6n − 12 [1] have been shown for simple 3- and 4-
planar graphs, respectively. The bounds for 2- and 3-planar graphs are tight even
for non-simple graph without homotopic parallel edges and self-loops [5].

While testing for planarity can be done in linear time, and several classes of
beyond-planar graphs have a linear number of edges, the corresponding recogni-
tion problems are NP-hard, which impedes the practical application of related
results. In particular, it was recently proven that the recognition of k-planar
graphs is NP-hard for every value of k ≥ 1 [28]. Still, optimal 1-planar graphs,
which form a prominent subclass of 1-planar graphs, can be recognized in linear
time [11], while recognition of maximal 1-planar graphs and 4-maps takes cubic
time [12,17]. Previously, efficient recognition algorithms have been developed for
more restricted subclasses of 1-planar graphs, see e.g. [2,10,13,20].

For k ≥ 2, there are significantly fewer results. A notable result is the linear
time recognition algorithm for full outer-2-planar graphs [22], while for k ≥ 3
the literature still lacks similar results.

Our Contribution. In this paper, we extend the study on the recognition of
subclasses of k-planar graphs. Namely, we prove that simple optimal 2-planar
graphs, that is simple 2-planar graphs with 5n − 10 edges, can be efficiently
recognized in O(n) time. In our strategy we first remove a set of edges that must
be involved in crossings in any optimal 2-planar drawing of the given graph. We
unwrap specific properties of the remaining graph that allow us to find a unique
drawing and insert the deleted crossing edges.

Paper Organization. In Sect. 2 we give preliminary notations and properties
of optimal 2-planar graphs. Section 3 presents CROSS-BAT, an important 2-
planar substructure, and examines its structural properties. Section 4 focuses
on the insertion of the deleted crossing edges. Our recognition algorithm in
Sect. 5 combines all previous results. We conclude in Sect. 6 with further research
directions. Due to space constraints, several proofs and details, indicated by (∗),
are omitted and can be found in the full version [18].

2 Preliminaries

The degree of a vertex v ∈ V is denoted by d(v) and its set of neighbors by
N(v). For u, v ∈ V we write N(u, v) to denote the set of common neighbors of
u and v, that is N(u, v) = N(u)∩N(v). A drawing of a graph maps the vertices
to points in the plane and the edges to simple open Jordan curves connecting
the points corresponding to their endpoints. A drawing is k-planar if each curve
representing an edge is crossed at most k times by the other edges together. A
graph G is k-planar if it admits a k-planar drawing.

The topology of a planar drawing is described by a rotation scheme. For
k-planarity, a k-planar rotation scheme specifies the counter-clockwise circular
order of edges around each vertex and, additionally, a sequence of at most k
crossings along each edge. Hence, a k-planar rotation scheme defines an equiva-
lence class of k-planar drawings.



Recognizing and Embedding Simple Optimal 2-Planar Graphs 89

For a graph G, let H a subgraph of G and let RH be a (k-planar) rotation
scheme of H. We say that RH is a partial (k-planar) rotation scheme of G. We
further say that RH can be extended to a (k-planar) rotation scheme R of G if
the restriction of R on H is RH . Conversely, we say that R extends RH . Let C
be a cycle of graph G, whose edges define a simple closed curve in a drawing Γ
of G. We refer to the region to the left of this curve in a counter-clockwise walk
along C in Γ as the interior of the region bounded by cycle C. Note that given
drawing Γ , the interior of a region may be unbounded.

A 2-planar graph that reaches the upper bound of 5n − 10 edges is called
optimal 2-planar. Note that the value of 5n−10 edges can be reached only when
n ≡ 2 mod 3. Each induced subgraph H of a 2-planar graph G is also 2-planar
and thus has at most 5|V (H)|−10 edges. This implies that if G is 2-planar then
it is also 9-degenerate, i.e. there is a vertex ordering v1, . . . , vn such that, for each
i = 1, . . . , n, vertex vi of the induced subgraph Gi = G[v1, . . . , vi] has degree at
most 9 in Gi. We call such a vertex ordering a 9-degenerate sequence of G.

In this work, we consider only simple graphs which we assume from now on
without explicitly stating it. The structure of simple optimal 2-planar graphs
is well established. Namely, an optimal 2-planar rotation scheme R of a simple
optimal 2-planar graph specifies a crossing-free 3-connected1 spanning pentan-
gulation P and a set of crossing edges [4,5]. The edges around each vertex are
cyclically ordered so that every crossing-free edge (belonging to P) is followed
by two crossing edges, which are succeeded by one crossing-free edge, and so on.
Hence the degree of every vertex is a multiple of three. Moreover, the minimum
degree of a simple optimal 2-planar graph is 9 since P is 3-connected, i.e., every
vertex is incident to at least 3 crossing-free edges. Now, each pentangular face f
of P contains exactly five crossing edges of R which form a 5-clique in G with the
boundary edges of f ; we call such a 5-clique a facial 5-clique. Note that not all
5-cliques of G are facial in R. This is a major difficulty for recognizing optimal
2-planar graphs. We denote a facial 5-clique of R with outer cycle (c0, . . . , c4) as
〈c0, . . . , c4〉 and say that the crossing edges (ci, cj) with (i − j) mod 5 ∈ {2, 3}
belong to 〈c0, . . . , c4〉. As P is 3-connected, it suffices to detect all facial 5-cliques
to find the optimal 2-planar rotation scheme of a given input graph, if one exists.

In the following, we state some preliminary observations and properties that
we will use in the remainder of the paper. In particular, Properties 2.1–2.4 imme-
diately arise from the combinatorial characterization of simple optimal 2-planar
graphs in [5] also summarized above. So, let G be an optimal 2-planar graph
with an optimal 2-planar rotation scheme R.

Property 2.1. A pair of crossing edges in R belongs to the same facial 5-clique.

Property 2.2. If in R, edge e is crossed by two edges e1 and e2, then e1 and e2
share a common endpoint. Also, e, e1 and e2 belong to the same facial 5-clique.

Property 2.3. Any two facial 5-cliques in R share at most two vertices.

1 The 3-connectivity derives from the fact that the graph is simple.
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Fig. 1. Forbidden configuration excluded by Corollary 2.2.

Property 2.4. A crossing edge of R belongs to exactly one facial 5-clique and a
crossing-free edge of R belongs to exactly two facial 5-cliques.

Combining the above properties we can further prove the following:

Corollary 2.1 (∗). For two edges (u, v) and (u,w) of an optimal 2-planar
graph G let S = N(u, v) ∪ N(u,w) ∪ {u, v, w}. If |S| < 8, then (u, v) and (u,w)
belong to the same facial 5-clique in any optimal 2-planar rotation scheme of G.

Corollary 2.2. Let G be an optimal 2-planar graph with an optimal 2-planar
rotation scheme R. Let (u, v) be a crossing edge inside a facial 5-clique C in R.
Further, let u′ �∈ C be a neighbor of u and v′ /∈ C be a neighbor of v. Then, edges
(u, u′) and (v, v′) do not cross in R; see Fig. 1.

Consider an optimal 2-planar rotation scheme R of G. If edge (u, v) is
crossing-free in R, then by Property 2.4 u and v belong to two facial 5-cliques.
Hence, |N(u, v)| ≥ 6 holds. Although this condition is not sufficient to conclude
that an edge is crossing-free, we can use it to identify some crossing edges:

Corollary 2.3. Let G be an optimal 2-planar graph and (u, v) ∈ E(G). Edge
(u, v) is crossing in any optimal 2-planar rotation scheme of G if |N(u, v)| < 6.

Our recognition algorithm relies on the identification of crossing edges based on
Corollary 2.3. We say that an edge (u, v) is clearly crossing if and only if |N(u, v)| <
6. Otherwise (u, v) is potentially planar. Note that in an optimal 2-planar rotation
scheme, a potentially planar edge is not necessarily crossing-free. However, every
crossing-free edge of any optimal 2-planar rotation scheme is potentially planar.
We define as Gp the subgraph of G formed by all potentially planar edges. Graph
Gp is 3-connected and spans G as the corresponding crossing-free pentangulation
of each optimal 2-planar rotation scheme is a subgraph of Gp.

3 The CROSS-BAT Configuration

In this section, we study the 3-connected spanning subgraph Gp formed by the
potentially planar edges of G. We want to compute a rotation scheme of Gp which
is extendable to an optimal 2-planar rotation scheme of G, if it exists. If in each
optimal 2-planar rotation scheme of G subgraph Gp is plane, then the rotation
scheme of Gp is unique and easy to compute. Though we cannot assure this prop-
erty, we prove that in any optimal 2-planar rotation scheme of G, crossings
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Fig. 2. (a) Graph GCB : black dotted and black bold edges are clearly crossing and
potentially planar, resp., gray solid edges might be both, gray dashed edges may be
absent. (b)–(c) the possible rotation schemes: in (b) (u, x′), (u, y′), (u′, x) and (u′, y)
are crossing-free; in (c) (u, x), (u, y), (u′, x′) and (u′, y′) are crossing-free.

between edges of Gp occur in restricted configurations: A CROSS-BAT instance
is an induced subgraph H of G isomorphic to the graph GCB shown in Fig. 2a,
so that (i) for edge (uH , u′

H) of H isomorphic to (u, u′) of GCB , it holds that
V (H) = N(uH) ∪ N(u′

H), and (ii) the isomorphism between H and GCB pre-
serves the classification of edges to clearly crossing or potentially planar.

In particular, CROSS-BAT has ten vertices, named as in Fig. 2a. Vertices u
and u′ have degree 9 in G and they have 8 common neighbors (the remaining ver-
tices of CROSS-BAT). The edges of CROSS-BAT form four 5-cliques that pairwise
share two vertices, and are shown as facial 5-cliques in Fig. 2a. We call edge (u, u′)
the base edge of CROSS-BAT. No other edges with both endpoints in CROSS-BAT
exist, except possibly for edges (v, v′) and (w,w′). Figure 2a shows the classifica-
tion of edges of CROSS-BAT as potentially planar and clearly crossing.

Let R be an optimal 2-planar rotation scheme of G, such that two potentially
planar edges cross each other. These two edges must belong to the same facial
5-clique and, in particular, also to an instance of CROSS-BAT.

Lemma 3.1 (∗). Let R be an optimal 2-planar rotation scheme of G and let
C = 〈c0, . . . , c4〉 be a facial 5-clique in R such that (c1, c3) and (c2, c4) are
potentially planar edges. Then, vertices c2 and c3 have degree 9 in G, and the
induced subgraph H of G with vertex set V (H) = N(c2) ∪ N(c3) is an instance
of CROSS-BAT where C is the 5-clique 〈v, x′, u′, u, x〉 of Fig. 2a.

Next, we show that CROSS-BAT has only two rotation schemes:

Lemma 3.2 (∗). Any instance of CROSS-BAT in an optimal 2-planar rotation
scheme R has one of the two rotation schemes shown in Figs. 2b and 2c.

Sketch. Vertices are named as in Fig. 2a. First, we prove that there are four
facial 5-cliques, namely (i) Cv that contains v, (ii) Cw that contains w, (iii) Cx,y
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that contains both x and y, and, (iv) Cx′,y′ that contains both x′ and y′. It is
then easy to argue that x, x′ ∈ Cv, while y, y′ ∈ Cw. Finally, we show that w
is contained in the crossing-free cycle (u1, u2, y

′, w′, y) and v is contained in the
crossing-free cycle (u2, u1, x, v′, x′) where {u1, u2} = {u, u′}. The two choices for
u1 and u2 give the two different rotation schemes of Figs. 2b and 2c. �

As it is evident in Figs. 2b and 2c, if an optimal 2-planar graph G contains
an instance of CROSS-BAT as subgraph, then it admits two different optimal
2-planar rotation schemes R and R′, that only differ in the choice of the rotation
scheme of CROSS-BAT. Hence for any instance of CROSS-BAT, we may arbitrar-
ily choose one of its two rotation schemes. Next, we formalize this observation:

Lemma 3.3. Let R be an optimal 2-planar rotation scheme of G, and let H be
an instance of CROSS-BAT in G. If H has the rotation scheme of Fig. 2b in R,
then there exists another optimal 2-planar rotation scheme R′ of G, in which H
has the rotation scheme of Fig. 2c, and vice-versa.

Both rotation schemes of a CROSS-BAT instance contain two crossings
between potentially planar edges:

Lemma 3.4 (∗). Let R be an optimal 2-planar rotation scheme of G. If G
contains an instance H of CROSS-BAT, then there exist exactly two pairs of
potentially planar edges that belong to H and cross in R.

Using Lemma 3.2 we can fix a rotation scheme for each instance H of CROSS-
BAT identified in G by reclassifying two crossing potentially planar edges of H
to clearly crossing edges. After performing this reclassification for all instances,
if G is optimal 2-planar, then the subgraph Gp induced by the potentially planar
edges is planar. Furthermore, in this case, Lemma 3.3 guarantees that the unique
planar embedding of Gp is part of an optimal 2-planar rotation scheme of G.

4 Identifying Facial 5-Cliques

Assume that we have fixed the rotation scheme for every identified instance of
CROSS-BAT. Let Gp be the spanning subgraph of G formed by all potentially pla-
nar edges after the reclassification process. As discussed in Sect. 3, Gp is planar
and 3-connected, i.e. it has a unique planar rotation scheme Rp. Furthermore,
by Lemma 3.3, if G is optimal 2-planar, it admits an optimal 2-planar rota-
tion scheme that extends Rp which we call Rp-compliant. For any Rp-compliant
optimal 2-planar rotation scheme R, Gp contains the corresponding spanning
pentangulation P as a subgraph. Hence each face of Rp has length 3, 4 or 5 and
is part of a facial 5-clique. Hence, we can arbitrarily triangulate them and assume
from now on that Gp is triangulated. Triangulating a face of Rp corresponds to
reclassifying some chords from clearly crossing to potentially planar.

Let (f1, f, f2) be a path in the dual G∗
p of Gp so that f1 = (u,w1, v1), f =

(u,w2, w1) and f2 = (u, v2, w2), as shown in Fig. 3. If the subgraph induced by
the vertices {u, v2, w2, w1, v1} is a 5-clique in G, we call T = 〈f1, f, f2〉 a triplet.
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f1 f f2

e1 e2
e

u

v1 v2

w1 w2

Fig. 3. Illustration of a triplet 〈f1, f, f2〉, along with its clearly crossing edges e1, e2
and e. Edges of Gp are solid black, clearly crossing edges of G are dotted black.

T contains vertices u, v2, w2, w1, v1, faces f1, f, f2 and the three clearly crossing
edges e1 = (v1, w2), e2 = (v2, w1) and e = (v1, v2), as shown in Fig. 3. We say
that e1, e2 and e belong to triplet T .

In any Rp-compliant optimal 2-planar rotation scheme R (if it exists), faces
and clearly crossing edges of Rp are partitioned into triplets, such that every face
and clearly crossing edge belongs to exactly one of these triplets. Furthermore,
the triplets are in 1-1 correspondence with the facial 5-cliques of R. We say that
e, e1 and e2 are assigned to the triplet T = 〈f1, f, f2〉 w.r.t. R if T induces a
facial 5-clique in R. Similarly, we say that faces f1, f and f2 of T are assigned
to T . If such an assignment is not possible, then G is not optimal 2-planar.

Let T be a set of triplets such that any two triplets in T are face-disjoint and
contain different clearly crossing edges. Consider the partial 2-planar rotation
scheme RT of G that (i) extends Rp, (ii) the clearly crossing edges of each T ∈ T
are assigned to T , and (iii) there is no other assignment of clearly crossing edges.
We say that T is bad if and only if RT cannot be extended to a Rp-compliant
optimal 2-planar rotation scheme R of G. Our goal is to find an assignment of
all clearly crossing edges of G to a set of triplets T such that T is not bad if G
is optimal 2-planar. We actually prove a stronger result, namely that the set T
is unique. We will use two observations that follow from the simplicity of G:

Observation 4.1. Let f = (u, v, w) be a triangular face of Rp and let T be a
triplet that contains vertices u, v and w. Then T contains face f .

Observation 4.2. Let f = (u, v, w) and f ′ = (u′, w, v) be two adjacent faces of
Rp and (u, u′) a clearly crossing edge. Let R be a Rp-compliant optimal 2-planar
rotation scheme and T be the triplet that (u, u′) is assigned to w.r.t. R. Then,
either (i) (u, u′) is drawn inside f and f ′ in R and T contains both f and f ′,
or (ii) (u, u′) is drawn outside f and f ′ in R and T contains neither f nor f ′.

If any of e1, e2 or e belongs only to one triplet T , then T is a facial 5-clique
in any Rp-compliant optimal 2-planar rotation scheme R and e1, e2 and e can
be assigned to T . So, we assume that each of e1, e2 and e belong to at least
one triplet different from T . Let T1 and T2 be two triplets that contain edges e1
and e2 respectively and are different from T . Note that T1 = T2 might hold. Let
T = {T}. If for each such pair of triplets T1 and T2 we can conclude that the
set T ′ = {T1, T2} is bad, then in any Rp-compliant optimal 2-planar rotation
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scheme R of G (if it exists) edges e1, e2 and e must be assigned to T . In the
following, we compare T against all possible sets T ′ and prove that at least
one of T and T ′ is bad. This allows to decide, for each triplet T , if T forms a
facial 5-clique in every Rp-compliant optimal 2-planar rotation scheme of G or
in none. Note that when we write T = {T} and T ′ = {T1, T2}, we assume that
T = 〈f1, f, f2〉 as shown in Fig. 3 and triplets T1 and T2 contain edges e1 and
e2, respectively.

We first restrict how triplets T1 and T2 relate to triplet T . Observation 4.2
applied to T1 implies that if T1 shares either f or f1 with T , then, in the presence
of edge e1, T1 shares both f and f1 with T . A symmetric argument applies for
T2. It follows that one of the following cases holds for {i, j} = {1, 2}:

C.1 Ti is face-disjoint with T , or
C.2 Ti shares only face fj with T , or,
C.3 Ti shares only faces f and fi with T .

In the next two lemmas, we show that every T ′ = {T1, T2} is bad if Case C.1
applies either for none or for both of T1 and T2.

Lemma 4.1 (∗). Let T ′ = {T1, T2}. If none of T1 and T2 is face-disjoint from
T , then T ′ is bad.

Lemma 4.2 (∗). Let T ′ = {T1, T2}. If both T1 and T2 are face-disjoint from T ,
then T ′ is bad.

Sketch. Assuming that T ′ is not bad, we arrive at the configuration shown in
Fig. 4a. Since (w1, w2) is crossing, Corollary 2.2 is violated. �

By Lemmas 4.1 and 4.2, Case C.1 applies for exactly one of the two triplets
T1 and T2 and T1 �= T2. Then, the other triplet complies with Case C.2 or with
Case C.3. For each possible combination we first prove structural properties
arising from the assumption that T ′ is not bad, and then show that these new
restrictions make T bad. In the next two lemmas, we consider the setting, where
one of T1 and T2 complies with Case C.1 while the other one complies with C.2.

Lemma 4.3 (∗). Let T ′ = {T1, T2}, such that T1 is face-disjoint from T and
T2 shares only face f1 with T . For u ∈ V (T ), if (i) d(u) > 9, or, (ii) for every
vertex x ∈ S = N(u) \ V (T ) it holds |N(x) ∩ S| ≥ 2, then T ′ is bad.

Sketch. Assuming that T ′ is not bad and d(u) = 9, we arrive at the configuration
shown in Fig. 4a. We can conclude that not all conditions of the lemma hold. �

Lemma 4.4 (∗). Let T = {T} and let v ∈ V (T ) such that d(v) = 9. If there
exists a vertex x ∈ S = N(v)\V (T ) such that |N(x) ∩ S| ≤ 1, then T is bad.

By Lemmas 4.3 and 4.4 it remains to consider the case where one of T1 and T2

complies with Case C.1 while the other complies with Case C.3. So, we assume
w.l.o.g. that T1 is face-disjoint with T , while T2 shares faces f and f2 with T .
Recall that clearly crossing edge e belongs to T . If T ′ = {T1, T2} is not bad e
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Fig. 4. Illustrations for the proofs of (a) Lemma 4.2, and, (b) Lemma 4.3.

belongs to a triplet Te �= T such that T ′ ∪{Te} is not bad. Note that Te �= T2 as
otherwise vertex v1 belongs to T2 and T2 = T . Hence, either Te �= T1 or Te = T1.

The following four lemmas investigate the subcase Te �= T1. Note that T1 and
Te are face-disjoint as otherwise T ′ = {T1, T2, Te} is bad. The first two lemmas
examine the scenario where T1 contains vertex w1 or Te contains vertex u of T .

Lemma 4.5 (∗). Let T ′ = {T1, T2, Te}, such that T1 is face-disjoint from T , T2

shares faces f and f2 with T , and Te is face-disjoint from T1. Then:

– If T1 contains vertex w1 of T and additionally (i) d(w1) > 9, or, (ii) there is
a vertex x ∈ S = N(w1) \ V (T ) such that |N(x) ∩ S| ≥ 4 , then T ′ is bad.

– If Te contains vertex u of T and additionally (i) d(u) > 9, or, (ii) there is a
vertex x ∈ S = N(u) \ V (T ) such that |N(x) ∩ S| ≥ 4 , then T ′ is bad.

Sketch. Assuming that T ′ is not bad and d(w1) = 9, in the first case, we
arrive at the configuration shown in Fig. 5a. We conclude that not all conditions
hold. �

Lemma 4.6 (∗). Let T = {T} and let v ∈ V (T ) with d(v) = 9. If for every
vertex x ∈ S = N(v)\V (T ) it holds |N(x) ∩ S| ≤ 3, then T is bad.

The next two lemmas consider the scenario, where T1 does not contain vertex
w1 and Te does not contain vertex u of triplet T .

Lemma 4.7 (∗). Let T ′ = {T1, T2, Te}, such that T1 is face-disjoint from T , T2

shares faces f and f2 with T , and Te is face-disjoint from T1. Assume that T1

does not contain vertex w1 and Te does not contain vertex u of T . If there is no
triplet Tf1 that contains f1 such that (i) Tf1 shares only vertices of f1 with T ,
and, (ii) Tf1 is face-disjoint from all of T1, T2 and Te, then T ′ is bad.
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Fig. 5. Illustration for the proofs of Lemmas (a) 4.5, (b) 4.8, and, (c) 4.9.

Lemma 4.8 (∗). Let triplets T1, T2, Te be pairwise disjoint such that T1 is face-
disjoint from T , T2 shares faces f and f2 with T , Te is face-disjoint from T1, T1

does not contain vertex w1 and Te does not contain vertex u of T . If there is a
triplet Tf1 that contains f1 such that (i) Tf1 shares only vertices of f1 with T ,
and, (ii) Tf1 is face-disjoint from all of T1, T2 and Te, then T = {T} is bad.

Sketch. Assuming that T is not bad, we arrive at the configuration shown in
Fig. 5b where the position of z is not fixed. Edges (u, z) and (w1, z) belong to
Tf1 but at least one has three crossings, e.g. edge (u, z) in Fig. 5b. �

For the second subcase, where T1 = Te, Property 2.3 assures that T1 and
T2 share only vertices v2 and w2, as otherwise T ′ = {T1 = Te, T2} would be
bad. As indicated by the next lemma, no further restrictions (imposed by the
assumption that T ′ is not bad) are needed to prove that T = {T} is bad.

Lemma 4.9 (∗). Let T = {T}. Assume that T1 is face-disjoint from T , that
T2 shares faces f and f2 with T , and Te = T1. If T2 has exactly two common
vertices with T1, then T is bad.

Sketch. Assuming that T is not bad, we obtain the configuration in Fig. 5c. Here,
two facial 5-cliques have three common vertices contradicting Property 2.3. �

In the following two lemmas, we summarize our findings from this section.

Lemma 4.10 (∗). Let G be optimal 2-planar and let T = {T}. T is not bad if
and only if every set T ′ = {T1, T2} is bad.

Sketch. As G is optimal 2-planar, at least one of T or T ′ = {T1, T2} for some
triplets T1 and T2 is not bad. If T is bad, the lemma holds. For the reverse
direction, assume there is a set T ′ = {T1, T2} that is not bad, i.e. none of
Lemmas 4.3, 4.5 and 4.7 applies for T ′ ∪ {Te}. If T is not bad from the cor-
responding Lemmas 4.4, 4.6 and 4.8, the conditions of Lemma 4.9 are satisfied
and T is bad. �
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Lemma 4.11 (∗). Let G be optimal 2-planar and let T = {T}. T is bad if and
only if the conditions of at least one of Lemmas 4.4, 4.6, 4.8 and 4.9 are met.

Sketch. For a contradiction we assume that T is bad. Since G is optimal 2-
planar, by Lemma 4.10, there exists a set T ′ = {T1, T2} that is not bad. We go
through all lemmas and check their conditions. For all the cases, we argue that
if the specific lemma can not apply on T , then T ′ is bad. �

5 The Recognition and Embedding Algorithm

Now that we have all required ingredients, we are ready to state our main theo-
rem for the recognition of optimal 2-planar graphs.

Theorem 1. Let G be a simple graph on n vertices. It can be decided in O(n)
time whether G is optimal 2-planar. If the instance is positive, an optimal 2-
planar rotation scheme of G is reported.

The remainder of this section contains the proof of Theorem 1 which is split
into two parts. In Sect. 5.1 we describe our algorithm and prove its correctness,
while an efficient implementation is discussed in Sect. 5.2.

5.1 Recognition Algorithm

Our recognition algorithm is formalized in Algorithm 1. There are four main
steps in the process. The first step is the classification of all edges of G as
potentially planar and clearly crossing (line 1). Second, is the identification of
the CROSS-BAT instances and the creation of Gp and its planar rotation scheme
Rp (lines 2–10). Third, we identify all triplets of Rp (line 11). Finally, we decide
which of the triplets are not bad (lines 12–13) determining an optimal 2-planar
rotation scheme of G if one exists. Having the set of triplets that are facial 5-
cliques in any Rp-compliant optimal 2-planar rotation scheme of G, we decide
if G is optimal 2-planar (lines 14–15) and compute an optimal 2-planar rotation
scheme of G if it exists (line 16). The details of the steps are given in [18].

5.2 Implementation

First, we check that the input graph has at most 5n − 10 edges and that it is
9-degenerate. This process takes O(n) time and is described in [18], together
with standard techniques and data structures that we use. In the following, we
discuss in more detail the time complexity of the involved steps of Algorithm 1.
The first step of the process, described in line 1 of Algorithm 1, can be performed
in O(n) time as stated in the following lemma:

Lemma 5.1 (∗). All edges of G can be classified as potentially planar or clearly
crossing in O(n) time.
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Algorithm 1: Recognition of Simple Optimal 2-planar Graphs
Input: A 9-degenerate graph G = (V,E) with |E| = 5|V | − 10
Output: An optimal 2-planar rotation scheme of G if it exists,
otherwise, false

1 Classify each edge e ∈ E as potentially planar or clearly crossing
2 Identify all instances of CROSS-BAT in G and fix their partial rotation schemes
3 Create subgraph Gp

4 if Gp is not 3-connected or is not planar then
5 return false

6 Compute the unique planar rotation scheme Rp of Gp

7 if Rp contains a face of length greater than 5
8 or if a face does not induce a complete subgraph in G then
9 return false

10 Augment Gp to maximal planar by triangulating the faces of Rp

11 Compute the set of triplets of Rp

12 for every triplet T of Rp do
13 Label T as facial 5-clique or as non-facial 5-clique
14 Let T ∗ be the set of triplets labelled as facial 5-cliques
15 if T ∗ covers all faces of Rp and all clearly crossing edges of G exactly once then
16 return rotation scheme obtained by making each T ∈ T ∗ a facial 5-clique
17 return false

We proceed with the second step given in lines 2–10 of Algorithm 1. First,
we compute the CROSS-BAT instances of G (line 2).

Lemma 5.2 (∗). All CROSS-BAT instances of G can be identified in O(n) time
if all edges are already classified as clearly crossing or potentially planar.

For each CROSS-BAT instance, we choose the rotation scheme of
Fig. 2b where (u, y) crosses (u′, y′) and (u, x) crosses (u′, x′) by reclassifying (u, y)
and (u, x) as clearly crossing. We proceed with lines 3–10 of Algorithm 1. We
check the necessary conditions for Gp and compute the planar rotation scheme
Rp and the dual G∗

p after augmenting Gp to maximal planar; see [18].
Next, we compute the set of triplets of Rp (line 11) in O(n) time; see [18].

During this process, for each face and each clearly crossing edge of G, we store
the set of triplets that contain it. The next lemma describes how to implement
the labeling of each triplet as facial 5-clique or not; see line 13.

Lemma 5.3 (∗). Let T = {T} and S1, S2 and Se be the set of triplets containing
e1, e2 and e, respectively. It can be decided in O(1) time if T is bad or not.

After labeling all triplets as facial 5-cliques or non-facial 5-cliques, we consider
the set T ∗ of triplets labelled as facial 5-cliques. Checking whether T ∗ covers
all faces and clearly crossing edges of G exactly once, in line 15 of Algorithm 1,
can be done in O(|T ∗|) = O(n) time. Finally, we augment the planar rotation
scheme Rp of Gp to an optimal 2-planar rotation scheme of G in O(n) time by
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inserting the clearly crossing edges of G and identifying the crossings; refer to
[18]. The overall time required for the last step is in O(n).

Every step described above takes time O(n), hence Algorithm 1 can be imple-
mented to run in linear time. We point out that after fixing Rp, the optimal
2-planar rotation scheme of G is uniquely defined if it exists. In particular, if
there are c instances of CROSS-BAT, there exist at most 2c optimal 2-planar
rotation schemes which can be easily enumerated.

6 Conclusions

We showed that simple optimal 2-planar graphs can be recognized and embedded
in linear time. It remains open to extend our result also for simple 2-planar
graphs with the maximum number of edges when n �≡ 2 mod 3, as well as
to non-simple optimal 2-planar graphs. Another reasonable attempt would be
recognizing 5-maps, similarly to [12]. Finally, a natural question would be if a
recognition algorithm for non-simple optimal 2-planar graphs could be adopted
for optimal 3-planar graphs that are non-simple, or if our approach could work
for simple optimal 3-planar graphs.

Acknowledgement. We thank Michael Bekos for his valuable suggestions and endless
discussions on this topic.
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Abstract. Battle, Harary, and Kodama (1962) and independently Tutte
(1963) proved that the complete graph with nine vertices is not biplanar.
Aiming towards simplicity and brevity, in this note we provide a short
proof of this claim.
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1 Introduction

An embedding (or drawing) of a graph in the Euclidean plane is a mapping of its
vertices to distinct points in the plane and its edges to smooth curves between
their corresponding vertices. A planar embedding of a graph is a drawing of the
graph such that no two edges cross. A graph that admits such a drawing is called
planar. A biplanar embedding of a graph H = (V,E) is a decomposition of H
into two planar graphs H1 = (V,E1) and H2 = (V,E2) such that E1 ∪ E2 = E
and E1 ∩ E2 = ∅, together with planar embeddings of H1 and H2. In this case,
H is called biplanar. In other words, a graph is called biplanar if it is the union
of two planar graphs; that is, if its thickness1 is 1 or 2. The complete graph with
n vertices, denoted by Kn, is a graph that has an edge between every pair of its
vertices. Let G be a subgraph of Kn that has n vertices. The complement of G,
denoted by G, is the graph obtained by removing all edges of G from Kn.

As early as 1960 it was known that K8 is biplanar and K11 is not bipla-
nar. There exist several biplanar embeddings of K8; see e.g. [2] for a self-
complementary drawing. The non-biplanarity of K11 is easily seen, since it has 55
edges while a planar graph with eleven vertices cannot have more than 27 edges,
by Euler’s formula. Finding the smallest integer n, for which Kn is non-biplanar,
was a challenging question for some time [7]. The following fundamental theo-
rem due to Battle, Harary, and Kodama ([1], 1962) and independently proved
by Tutte ([15], 1963) answers this question and implies that K9 is non-biplanar.

1 The thickness of a graph G is the minimum number of planar subgraphs whose union
equals to G.
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Theorem 1. Every planar graph with at least nine vertices has a nonplanar
complement.

Both proofs of Theorem 1 involve a thorough case analysis. Battle, Harary,
and Kodama gave an outline of a proof through six propositions. Some of these
propositions require detailed case analysis, which is not given in the original
paper. For example, the authors write: “There are several cases to discuss in
order to establish Propositions 4 and 5. In each case, we can prove that G
contains a subgraph homeomorphic to K3,3 or K5.” A detailed proof of these
propositions is appeared in the master’s thesis of Hearon [9]. Tutte’s proof is
a 13-page paper, and enumerates all simple triangulations (with no separating
triangles) with up to 9 vertices and verifies that the complement of each triangu-
lation is nonplanar (the connection to triangulations will become clear shortly).
It seems that Harary was not quite satisfied with any of these proofs as he noted
in his Graph Theory book [8] that “this result was proved by exhaustion; no
elegant or even reasonable proof is known.” We are still unaware of any short
proof of this result. (See [10] for a recent attempt towards a new proof.)

The non-biplanarity of K9 has the same flavor as the well-known theorem of
Kuratowski on non-planar graphs (stated in Theorem 3). The biplanar crossing
number of a graph is the minimum number of crossings over all drawings of the
graph in two planes [3]. It is known that K9 can be drawn in two planes with
one crossing (see e.g. [6]). This and Theorem 1 imply that the biplanar crossing
number of K9 is 1. Determining biplanar crossing numbers of Kn for small values
of n is important as they lead to better bounds for biplanar crossing numbers of
Kn for large values of n; see e.g. [3,4,13], and [6,14] for more recent progress.

2 Our Proof

In this section we present a short proof of Theorem 1. Our proof is complete, self-
contained, and only uses Kuratowski’s theorem for non-planar graphs. Towards
our proof we show (in Theorem 2) that a particularly restricted drawing of K8

cannot be biplanar (see Fig. 2(a) for an illustration).

Theorem 2. Let H be an embedded planar graph with eight vertices such that
the boundary of its outer face is a 5-cycle and there are no edges between the three
vertices that are not on the outer face. Then the complement of H is nonplanar.

Proof of Theorem 1. Consider a planar graph G with nine vertices. For the
sake of contradiction assume that its complement G is also planar. Fix a planar
embedding of G and a planar embedding of G. For convenience we use G and
G for referring to planar graphs and to their planar embeddings. If there are
two vertices in G that lie on the same face and are not connected by an edge,
then we transfer the corresponding edge from G to G and connect the two
vertices by a curve in that face. After this operation both G and G remain
planar. Repeating this process converts G to an edge-maximal planar graph.
In particular G becomes a triangulation in which the boundary of every face
(including the outer face) is a triangle (i.e. a 3-cycle).
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Fig. 1. Seven edges
needed to triangulate
the shaded polygon.

Claim 1. At least one vertex on the outer face of G has
degree larger than four. To prove this claim we use contra-
diction. Assume that all three vertices on the outer face
of G are of degree at most 4. The removal of these three
vertices from G results in a 6-vertex graph G′. The region,
that is between the boundaries of the outer face of G and
the outer face of G′ is a polygon with a hole, that is trian-
gulated by at most six edges of G (because every vertex on
the outer face of G has at most two edges in the interior
of this polygon). The boundary of the outer face of G′,
i.e. the hole, has three vertices because otherwise (if it has at least four vertices)
the polygon would require at least seven edges to be triangulated, as in Fig. 1;
this can be verified by a simple counting argument using Euler’s formula for
planar graphs, see also [12, Proof of Lemma 5.2]. Thus the outer face of G′ is
a 3-cycle. In this case the other three vertices of G′ which are in the interior of
this 3-cycle together with the three removed vertices from G form a K3,3 in G,
which contradicts its planarity. This proves Claim 1.

In view of Claim 1 we assume that at least one vertex, say r, on the outer
face of G has degree k ≥ 5. Remove r from G and G and denote the resulting
graphs by H and H, respectively. Notice that (H,H) is a biplanar embedding of
K8. Let f and f be the faces of H and H, respectively, that contain the removed
vertex r, as in Fig. 2(b). Notice that f is the outer face of H. Since (G,G) was a
biplanar embedding of K9, in which r was connected to all other 8 vertices, we
have the following observation.

Observation 1. Every vertex of the resulting graph K8 lies on f or on f .

Fig. 2. Illustration of (a) the statement of Theorem 2 (b) the proof of Theorem 1.

Since G was a simple graph (no multiedges and no loops), the face f has at
least three vertices; these vertices are not necessarily connected in H. Since G
was a triangulation, the boundary of the outer face f of H is a k-cycle. If k > 5
then let s be a vertex of f that also lies on f ; such a vertex exists because f has
at least three vertices and we have eight vertices in total. Let x and y be the
neighbors of s on f . If xy is an edge of H then draw it as a curve in f . If xy is
not an edge of H then transfer it from H to H and draw it in f , as in Fig. 2(b).
Now, the new outer face f of H has k − 1 vertices. Repeat the above process
until the outer face of H has exactly five vertices.
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At this point f has five vertices. Let u, v, w be the vertices of K8 that are
not on f . These three vertices lie on f , because of Observation 1 and our choices
of s (for the case k > 5). If any of the edges uv, uw, and vw are not in H then
transfer them from H to H and draw in f without crossing other edges. We
obtain a planar graph H that satisfies the constraints of Theorem 2 and so that
its complement H is planar. This contradicts Theorem 2. ��

To prove Theorem 2 we use the theorem of Kuratowski [5,11] that “a finite
graph is non-planar if and only if it contains a subgraph that is homeomorphic to
K5 or K3,3.” The following is an alternative statement for Kuratowski’s theorem,
which is given in [15].

Theorem 3. A graph G is nonplanar if one of the following conditions hold:
(i) G has six disjoint connected subgraphs A1, A2, A3, B1, B2, B3 such that for
each Ai and Bj there is an edge with one end in Ai and the other in Bj. (ii)
G has five disjoint connected subgraphs A1, A2, A3, A4, A5 such that for each Ai

and Aj, with i �= j, there is an edge with one end in Ai and the other in Aj.

Proof of Theorem 2. Let the 5-cycle C = (a1, a2, a3, a4, a5) be the boundary of
the outer face of H, and let u, v, and w be the three vertices that are not on the
outer face, i.e., lie on internal faces of H. By the statement of the theorem uv,
uw, and vw are edges of the complement graph H. Except for the three pairs
(u, v), (u,w), (v, w), if a pair of vertices lie on the same internal face of H and
are not connected by an edge, then we transfer the corresponding edge from H
to H and connect the two vertices by a curve in the face. After this operation
H remains planar. Repeating this process makes H edge-maximal (in the above
sense).

Let H ′ be the embedded planar subgraph of H that is induced by the five
vertices of C. The graph H ′ consists of the cycle C together with zero, one, or
two chords as in Fig. 4.

Fig. 3. Moving ajak

from H to H.

Claim 2. If an internal face f of H ′ contains u, v, or
w then one of them is connected to all boundary vertices
of f in H. The shaded region in the figure to the right
represents f . To verify the claim, first observe that (by
edge-maximality of H) one of the vertices in f , say v, is
connected to at least three boundary vertices of f , i.e., v’s
degree in H is at least three. We argue that v should be
connected to all boundary vertices of f . For a contradic-
tion assume that v is not connected to some vertex ai on
f . Let aj and ak be the neighbors of v on f that are vis-
ited first while walking on boundary of f in clockwise and
counterclockwise directions starting from ai. Since v is not connected to other
vertices in the interior of f , we could have moved the edge ajak from H to H
and draw it in f , as in Fig. 3. This means that H is not edge-maximal, which is
a contradiction.

Now we consider three cases depending on the number of chords of H ′. In
each case we show that H is nonplanar.
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– H ′ has no chords. Let v be the vertex of H that (by Claim 2) is connected to
each ai; see Fig. 4(a). By planarity of H, each of u and w can only be adjacent
to two consecutive vertices of C. Hence there exists a vertex of C (say a1)
that is adjacent to neither u nor w. In this setting, regardless of the locations
of u and w, the five connected subgraphs u, w, a1, {a2, a4} and {a3, a5} from
H satisfy condition (ii) of Theorem 3. Thus H is nonplanar.

– H ′ has one chord. After a suitable relabeling assume that this chord is (a2, a5).
Let f denote the face of H ′ whose boundary is the 4-cycle (a2, a3, a4, a5);
this face is shaded in Fig. 4(b). This face contains some vertices of {u, v, w}
because otherwise H ′ should have a chord in f (by maximality of H) which
contradicts our assumption that H ′ has one chord. Let v be the vertex in f
that (by Claim 2) is connected to all its boundary vertices. By planarity of
H, each of u and w can only be adjacent to two consecutive vertices of f .
Therefore, the six connected subgraphs u, w, a1, v, {a2, a4}, and {a3, a5} from
H (partitioned into {u,w, a1} and {v, {a2, a4}, {a3, a5}}) satisfy condition (i)
of Theorem 3. Thus H is nonplanar.

– H ′ has two chords. Let a1 be the vertex that is incident to the two chords as
in Fig. 4(c). By planarity of H, each of u, v, and w can only be adjacent to
one vertex in {a2, a4} and to one vertex in {a3, a5}. Thus, the five connected
subgraphs u, v, w, {a2, a4}, and {a3, a5} from H satisfy condition (ii) of
Theorem 3, and hence H is nonplanar. ��

Fig. 4. Solid edges belong to H, bold edges belong to H ′, dashed edges belong to H.

3 Conclusions

For any integer k ≥ 1 let ν(k) be the smallest integer for which the (edges of the)
complete graph with ν(k) vertices cannot be drawn in k planes without creating
a crossing. As the maximum number of (noncrossing) edges that can be drawn
in a plane is 3ν(k)− 6 and the number of edges of the complete graph is

(
ν(k)
2

)
,

a counting argument implies that

ν(k) ≤
⌊
6k + 1 +

√
36k2 − 36k + 1
2

⌋

+ 1.
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This bound implies that ν(1) ≤ 5 and ν(2) ≤ 11, however for k ∈ {1, 2} we
already know that ν(1) = 5 and ν(2) = 9. It would be interesting to find exact
value of ν(k) for larger values of k.
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Abstract. The algorithm of Tutte for constructing convex planar
straight-line drawings and the algorithm of Floater and Gotsman for con-
structing planar straight-line morphs are among the most popular graph
drawing algorithms. Surprisingly, little is known about the resolution
of the drawings they produce. In this paper, focusing on maximal plane
graphs, we prove tight bounds on the resolution of the planar straight-line
drawings produced by Floater’s algorithm, which is a broad generaliza-
tion of Tutte’s algorithm. Further, we use such a result to prove a lower
bound on the resolution of the drawings of maximal plane graphs pro-
duced by Floater and Gotsman’s morphing algorithm. Finally, we show
that such an algorithm might produce drawings with exponentially-small
resolution, even when morphing drawings with polynomial resolution.

1 Introduction

In 1963 Tutte [29] presented an algorithm for constructing convex planar
straight-line drawings of 3-connected plane graphs. The algorithm is very sim-
ple: Given any convex polygon representing the outer cycle of the graph, place
each internal vertex at the barycenter of its neighbors. This results in a system
of linear equations, whose variables are the coordinates of the internal vertices,
which has a unique solution; quite magically, this solution corresponds to a con-
vex planar straight-line drawing of the graph. We call any drawing obtained by
an application of Tutte’s algorithm a T-drawing. Tutte’s algorithm is one of the
most famous graph drawing algorithms; notably, it has spurred the research on
the practical graph drawing algorithms called force-directed methods [10,13,23].

A far-reaching generalization of the algorithm of Tutte was presented by
Floater [15,16] (and, in a similar form, by Linial, Lovász, and Wigderson [24]).
Namely, one can place each internal vertex at any convex combination (with
positive coefficients) of its neighbors; the resulting system of equations still has
a unique solution that corresponds to a convex planar straight-line drawing of
the graph. Formally, let G be a 3-connected plane graph and let P be a convex
polygon representing the outer cycle of G. Further, for each internal vertex v of G
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20174LF3T8 and by H2020-MSCA-RISE project 734922 – “CONNECT”.
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and for each neighbor u of v, let λvu > 0 be a real value such that
∑

u∈N (v) λvu =
1, where N (v) (sometimes written as NG(v)) denotes the set of neighbors of v.
For each internal vertex v of G, consider the two equations:

x(v) =
∑

u∈N (v)

(λvu · x(u)) (1) y(v) =
∑

u∈N (v)

(λvu · y(u)) (2)

where x(v) and y(v) denote the x and y-coordinates of a vertex v, respectively.
This results in a system of 2N equations in 2N variables, where N is the num-
ber of internal vertices of G, which has a unique solution. This corresponds
to a convex planar straight-line drawing, which can hence be represented by a
pair (Λ,P), where P is a convex polygon and Λ is a coefficient matrix. This
matrix has a row for each internal vertex of G and a column for each (internal
or external) vertex of G; an element of Λ whose row corresponds to a vertex v
and whose column corresponds to a vertex u is the coefficient λvu if (v, u) is an
edge of G and 0 otherwise. We call any drawing resulting from an application
of Floater’s algorithm an F-drawing. F-drawings are extensively used in com-
puter graphics, for surface parameterization and reconstruction, and for texture
mapping; see, e.g., [20,21,30,31]. Similar types of drawings have been studied
for constructing three-dimensional representations of polytopes [9,25]. Further,
every convex planar straight-line drawing of a 3-connected plane graph (and thus
every planar straight-line drawing of a maximal plane graph) is an F-drawing
(Λ,P), for suitable Λ and P [15–18].

Floater and Gotsman [18] devised a powerful application of F-drawings to
the construction of planar straight-line morphs. Given a graph G and two convex
planar straight-line drawings Γ0 and Γ1 of G with the same polygon P repre-
senting the outer cycle, construct two coefficient matrices Λ0 and Λ1 such that
Γ0 = (Λ0,P) and Γ1 = (Λ1,P). Now, a morph M between Γ0 and Γ1, that
is, a continuous transformation of Γ0 into Γ1, can be obtained as follows. For
each t ∈ [0, 1], construct a coefficient matrix Λt as (1−t)·Λ0+t·Λ1; thus, for each
internal vertex v of G and for each neighbor u of v, the element λt

vu of Λt whose
row and column correspond to v and u, respectively, is λt

vu = (1−t) ·λ0
vu +t ·λ1

vu.
Then the morph M is simply defined as {Γt = (Λt,P) : t ∈ [0, 1]}; since Γt is an
F-drawing, for any t ∈ [0, 1], this algorithm guarantees that every drawing in M
is a convex planar straight-line drawing. We call any morph constructed by an
application of Floater and Gotsman’s algorithm an FG-morph. The algorithm of
Floater and Gotsman is perhaps the most popular graph morphing algorithm;
its extensions, refinements, and limits have been discussed, e.g., in [1,22,27,28].

Despite the fame of the above algorithms, little is known about the resolu-
tion of T-drawings, F-drawings, and FG-morphs. The resolution is perhaps the
most studied aesthetic criterion for the readability of a graph drawing. Measur-
ing the resolution of a drawing can be done in many ways. Here, we adopt a
natural definition of resolution, namely the ratio between the smallest and the
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largest distance between two (distinct, non-incident, and non-adjacent) geomet-
ric objects representing vertices or edges. The goal of this paper is to study the
resolution of T-drawings, F-drawings, and FG-morphs of maximal plane graphs.
The only related result we are aware of is the one by Eades and Garvan [14]
(independently observed by Chambers et al. [5]), who proved that T-drawings of
n-vertex maximal plane graphs might have 1/2Ω(n) resolution. It is even unclear,
a priori, whether the worst-case resolution of T-drawings, F-drawings, and FG-
morphs can be expressed as any function of natural parameters representing the
input size and resolution.

We prove the following results1. First, we show a lower bound on the resolu-
tion of F-drawings (and thus on the resolution of T-drawings).

Theorem 1. Let Γ = (Λ,Δ) be an F-drawing of an n-vertex maximal plane
graph G, where n ≥ 4. The resolution of Γ is larger than or equal to r

2 · (λ
3

)n ∈
r · λO(n), where λ is the smallest positive coefficient in the coefficient matrix Λ
and r is the resolution of the prescribed triangle Δ.

Second, we prove that the bound in Theorem 1 is asymptotically tight.

Theorem 2. There is a class of maximal plane graphs {Gn : n = 5, 6, . . . },
where Gn has n vertices, with the following property. For any 0 < λ ≤ 1

4 and
0 < r ≤

√
3
2 , there exist a triangle Δ with resolution r and a coefficient matrix Λ

for Gn whose smallest positive coefficient is λ such that the F-drawing (Λ,Δ) of
Gn has resolution in r · λΩ(n).

We remark that algorithms are known for constructing planar straight-line
drawings of maximal plane graphs [8,26] and even convex planar straight-line
drawings of 3-connected plane graphs [2,6] with polynomial resolution.
Third, we use Theorem 1 to prove a lower bound on the resolution of FG-morphs.

Theorem 3. Let Γ0 and Γ1 be any two planar straight-line drawings of an n-
vertex maximal plane graph G such that the outer faces of Γ0 and Γ1 are delimited
by the same triangle Δ. There is an FG-morph M = {Γt : t ∈ [0, 1]} between Γ0

and Γ1 such that, for each t ∈ [0, 1], the resolution of Γt is larger than or equal
to (r/n)O(n), where r is the minimum between the resolution of Γ0 and Γ1.

Finally, we prove that FG-morphs might have exponentially small resolution,
even if they transform drawings with polynomial resolution.

Theorem 4. For every n ≥ 6 multiple of 3, there is an n-vertex maximal plane
graph G and two planar straight-line drawings Γ0 and Γ1 of G such that: (R1)
the outer faces of Γ0 and Γ1 are delimited by the same triangle Δ; (R2) the
resolution of both Γ0 and Γ1 is larger than c/n2, for a constant c; and (R3) any
FG-morph between Γ0 and Γ1 contains a drawing whose resolution is in 1/2Ω(n).
1 At a first glance, our use of the O(·) and Ω(·) notation seems to be inverted. For

example, Theorem 1 shows a bound of r · λO(n) on the resolution of F-drawings.
This is a lower bound, and not an upper bound, given that λ < 1. Indeed, the O(·)
notation indicates that the exponent has a value which is at most something, hence
the entire power has a value which is at least something (smaller than one).
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The construction of planar straight-line morphs with high resolution has
been attracting increasing attention [3,4,7]. A main open question in the area is
whether polynomial resolution can be guaranteed in a planar straight-line morph
between any two given drawings of a plane graph. Theorem 4 shows that Floater
and Gotsman’s algorithm cannot be used to settle this question in the positive.

A full version of the paper can be found in [11].

2 Preliminaries

We introduce some definitions, properties and lemmata. Throughout the paper,
we assume that every considered graph has n ≥ 4 vertices.

A biconnected plane graph G is a planar graph with a prescribed order of
the edges incident to each vertex and a prescribed outer cycle; G is maximal
if no edge can be added to it without losing planarity or simplicity. We often
talk about “faces of G”, meaning faces of any planar drawing that respects
the prescribed order of the edges incident to each vertex and the prescribed
outer cycle. We say that G is internally-triangulated if every internal face of
G is delimited by a 3-cycle. The sets of internal and external vertices of G are
denoted by IG and OG, respectively. Let C be a cycle of G. An external chord
of C is an edge of G that connects two vertices of C, that does not belong to C,
and that lies outside C in G. The subgraph of G inside C is composed of the
vertices and edges that lie inside or on the boundary of C. The following is easy
to observe.

Property 1. Let G be a maximal plane graph and let C be a cycle of G. The
subgraph of G inside C is biconnected and internally-triangulated.

In a planar straight-line drawing Γ of a graph G, by geometric object we
mean a point representing a vertex or a straight-line segment representing an
edge. We often call “vertex” or “edge” both the combinatorial and the geometric
object. Two geometric objects in Γ are separated if they share no point. By the
planarity of Γ , two geometric objects are hence separated if and only if they
are distinct vertices, or non-adjacent edges, or a vertex and a non-incident edge.
The distance dΓ (o1, o2) between two separated geometric objects o1 and o2 in Γ
is the minimum Euclidean distance between any point of o1 and any point of o2.
We denote by d

�
Γ (u, v) the vertical distance between two vertices u and v, i.e.,

the absolute value of the difference between their y-coordinates. The resolution
of Γ is the ratio between the distance of the closest separated geometric objects
and the distance of the farthest separated geometric objects in Γ . Let R be
a finite connected subset of R

2. The x-extent (the y-extent) of R is given by
the maximum x-coordinate (resp. y-coordinate) of any point of R minus the
minimum x-coordinate (resp. y-coordinate) of any point of R.

We present a tool that we often use to translate and rotate F-drawings.

Lemma 1. Let (Λ,Δ) be an F-drawing of a maximal plane graph G and let Δ′

be the triangle obtained by a proper rigid transformation σ of Δ. The F-drawing
(Λ,Δ′) coincides with the drawing obtained by applying σ to the drawing (Λ,Δ).
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We sometimes use the following elementary property.

Property 2. Let (Λ,Δ) be an F-drawing of a maximal plane graph with at least
four (five) vertices. The smallest positive coefficient in Λ is at most 1/3 (1/4).

We now state some properties on the resolution of triangles.

Property 3. The resolution of a triangle is smaller than or equal to
√
3
2 and there

exist triangles with this resolution.

Lemma 2. Let Δ be a triangle with resolution equal to r and y-extent equal
to Y . Then the x-extent X of Δ is at most Y/r.

3 Lower Bound on the Resolution of F-Drawings

In this section, we prove Theorem 1. Let Γ = (Λ,Δ) be an F-drawing of an
n-vertex maximal plane graph G with n ≥ 4; let λ be the smallest positive
coefficient in Λ, r be the resolution of Δ, and δ be the smallest distance between
any two separated geometric objects in Γ . We have that the smallest distance δ
in Γ is achieved “inside” an internal face of G, as in the following.

Lemma 3. There exist an internal vertex v and an edge e = (ue, ve) of G such
that: (i) dΓ (v, e) = δ; (ii) v, ue, and ve are the vertices of a triangle T delimiting
an internal face of G in Γ ; and (iii) the altitude of T through v lies inside T .

By Lemma 1, we can assume that y(v) = 0, that e is horizontal, and that v
is above e. We show that v’s neighbors are not “too high” or “too low” in Γ .

Lemma 4. For every neighbor u of v, we have that d
�
Γ (u, v) ≤ δ

λ .

Proof Sketch: By Lemma 3, the altitude through v of the triangle with vertices
v, ue, and ve intersects (ue, ve). Hence, y(ue) = y(ve) = −δ, which implies the
statement for u ∈ {ue, ve}, as λ < 1. For every u ∈ N (v) \ {ue, ve}, we have
y(u) ≥ 0, as otherwise the distance between u and one of (v, ue) and (v, ve), or the
distance between (v, u) and one of ue and ve would be smaller than δ. By Eq. 2,
we have

∑
u∈N (v)(λvu · y(u)) = y(v) = 0, hence

∑
u∈N (v)\{ue,ve}(λvu · y(u)) =

(λvue
+ λvve

) · δ. Since y(u) ≥ 0, for every vertex u ∈ N (v) \ {ue, ve}, we have
λvu · y(u) ≤ (λvue

+ λvve
) · δ, and hence y(u) < δ

λvu
≤ δ

λ . ��
We outline the proof of Theorem 1. By Lemma 4, the vertex v and its neigh-

bors lie in Γ in a “narrow” horizontal strip (see Fig. 1(a)). Using that as a
starting point, the strategy is now to define a sequence of subgraphs of G, each
one larger than the previous one, so that each subgraph is contained in a nar-
row horizontal strip. The larger the considered graph, the larger the height of
the horizontal strip, however this height only depends on λ, on δ, and on the
number of vertices of the considered graph. Eventually, this argument leads to a
bound on the y-extent of Γ , and from that bound the resolution r of Δ provides
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Fig. 1. (a) The edges incident to v. (b) Gv. (c) G1.

a bound on the maximum distance between two separated geometric objects of
Γ . The comparison of such distance with the minimum distance δ between two
separated geometric objects of Γ allows us to derive the bound of Theorem 1.

We now formalize the proof. For i ∈ N
+, denote by Hi the horizontal strip

of height h(i) := δ · (
3
λ

)i bisected by the horizontal line through v.
We prove the existence of a sequence G1, . . . , Gk = G of graphs such that, for

i = 1, . . . , k, the graph Gi is a biconnected internally-triangulated plane graph
that is a subgraph of G satisfying Properties (P1)–(P4) below. Let Γi be the
restriction of Γ to Gi and let Ci be the outer cycle of Gi. (P1) Gi has at least
i+3 vertices; (P2) Ci does not have any external chord; (P3) Gi is the subgraph
of G inside Ci; and (P4) Γi is contained in the interior of the horizontal strip Hi.

We define G1 as follows. Let Gv be the subgraph of G induced by the neigh-
bors of v (see Fig. 1(b)). Since G is a maximal plane graph, Gv is biconnected;
let C1 be the outer cycle of Gv. Then G1 is the subgraph of G inside C1 (see
Fig. 1(c)). Property (P3) is satisfied by construction. Property (P1) is satisfied,
since G1 contains v and its at least three (as n ≥ 4) neighbors. Property (P2)
is satisfied because C1 is the outer cycle of Gv and Gv is an induced subgraph
of G. Property (P4) is satisfied by Lemma 4, as the distance from v to the top or
bottom side of H1 is 3

2 · δ
λ and all the vertices of G1 are in the convex hull of v’s

neighbors. Finally, G1 is biconnected and internally-triangulated, by Property 1.
Assume that Gi �= G; we will deal with the case Gi = G later. We describe

how to construct Gi+1 from Gi, so to satisfy Properties (P1)–(P4). In order to do
that, we introduce �-connected vertices and prove some lemmata about them. A
vertex v of Gi is �-connected if it satisfies at least one of the following properties:
(i) v has a neighbor above or on the top side of Hi+1 and has a neighbor below
the bottom side of Hi; (ii) v has a neighbor below or on the bottom side of Hi+1

and has a neighbor above the top side of Hi. We have the following.

Lemma 5. Let u be a vertex of Gi in IG. If u has a neighbor above or on the
top side of Hi+1, then it is �-connected. Analogously, if u has a neighbor below
or on the bottom side of Hi+1, then it is �-connected.

Proof. We prove the first part of the statement. The proof of the second part
is analogous. Suppose, for a contradiction, that there exists a vertex u of Gi

in IG that has a neighbor w above or on the top side of Hi+1 and that has
no neighbor below Hi. By Eq. 2, we have that

∑
z∈NG(u)(λuz · y(z)) = y(u).



From Tutte to Floater and Gotsman 115

Fig. 2. Proof of Lemma 6. The fat lines are �(u1), �(u2), and �(u3).

Since
∑

z∈NG(u) λuz = 1, it follows that
∑

z∈NG(u)(λuz · (y(z) − y(u))) = 0,
hence

λuw · (y(w) − y(u)) =
∑

z∈NG(u)\{w}
(λuz · (y(u) − y(z))). (3)

The distance between the top side of Hi+1 and the top side of Hi is h(i+1)−h(i)
2 ,

hence λuw · (y(w) − y(u)) ≥ λ · h(i+1)−h(i)
2 . Since every neighbor of u is above

or on the bottom side of Hi and since u is in the interior of Hi, we have that
y(u)− y(z) < h(i), for every neighbor z of u. Hence,

∑
z∈NG(u)\{w}(λuz · (y(u)−

y(z))) < h(i) · ∑
z∈NG(u)\{w} λuz < h(i). Furthermore, λ · h(i+1)−h(i)

2 − h(i) >

λ · h(i+1)
2 −3 · h(i)

2 = δ
2

(
λ · (

3
λ

)i+1 − 3 · (
3
λ

)i
)

= 0. This implies that λuw ·(y(w)−
y(u)) >

∑
z∈NG(u)\{w}(λuz · (y(u) − y(z))), which contradicts Eq. 3. ��

The second lemma states that few vertices of Gi are �-connected.

Lemma 6. The following statements hold true: (S1) Gi contains at most two
vertices that are in IG and that are �-connected; and (S2) if Gi contains a vertex
in OG, then it contains at most one vertex that is in IG and that is �-connected.

Proof Sketch: We only prove (S1), as the proof of (S2) is similar. For each
�-connected vertex u of Gi, we define a polygonal line �(u) as follows. Let w (let
z) be a neighbor of u that lies above (below) the top side of Hi. Let pw and pz

be the intersection points of (u,w) and (u, z) with the top side of Hi and the
bottom side of Hi, respectively. Then �(u) consists of the segments upw and upz.

Suppose, for a contradiction, that Gi contains three �-connected vertices u1,
u2, and u3 in IG; see Fig. 2. By the planarity of Γ , the lines �(u1), �(u2), and
�(u3) do not cross each other. Assume that �(u2) is in-between �(u1) and �(u3)
in Hi. Consider any path P of Gi connecting u1 and u3. By the planarity of
Γ and since Gi lies in the interior of Hi, we have that P does not cross �(u2),
except at u2. However, this implies that the removal of u2 from Gi separates u1

from u3, a contradiction to the fact that Gi is biconnected. This proves (S1). ��
Finally, we prove the following main lemma.

Lemma 7. There exists a vertex u in OGi
∩ IG that is not �-connected.

Proof. Since Gi contains at least 4 vertices, by Property (P1), and is bicon-
nected, we have |OGi

| ≥ 3. Further, |OGi
∩ OG| ≤ 2, as if |OGi

∩ OG| = 3, then
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Fig. 3. Construction of Gi+1 from Gi.

Gi would contain the outer cycle of G, by Property (P2), and we would have
Gi = G, by Property (P3). We now distinguish three cases. If |OGi

∩ OG| = 0,
then |OGi

∩ IG| ≥ 3. By statement (S1) of Lemma 6, a vertex in OGi
∩ IG is

not �-connected. If |OGi
∩ OG| = 1, then |OGi

∩ IG| ≥ 2. By statement (S2)
of Lemma 6, a vertex in OGi

∩ IG is not �-connected. If |OGi
∩ OG| = 2, then

|OGi
∩ IG| ≥ 1 and Gi contains two vertices u and w of the outer cycle of G;

by Property (P4), these lie in the interior of Hi, hence either every vertex of Gi

lies above the bottom side of Hi or every vertex of Gi lies below the top side of
Hi. In both cases, every vertex in OGi

∩ IG is not �-connected. ��
We describe how to construct Gi+1 from Gi; see Fig. 3. By Lemma 7, there is

a vertex u in OGi
∩IG that is not �-connected. Let (u, z) be any of the two edges

incident to u in Ci and let (u, z, w) be the cycle delimiting the face of G incident
to (u, z) outside Ci; note that w does not belong to Gi. Let Gw be the biconnected
subgraph of G induced by {w} ∪ V (Ci). Let Ci+1 be the outer cycle of Gw and
let Gi+1 be the subgraph of G inside Ci+1. We prove that Gi+1 satisfies the
required properties. Property (P3) is satisfied by construction. Property (P1)
is satisfied, since Gi contains at least i + 3 vertices (by Property (P1) of Gi)
and Gi+1 also contains w. Property (P2) is satisfied because Ci+1 is the outer
cycle of Gw and Gw is an induced subgraph of G. Property (P4) is also satisfied
by Γi+1. Namely, the vertices of Gi lie in Hi ⊂ Hi+1, by Property (P4) of Gi.
Further, w lies in the interior of Hi+1, since u is not �-connected and by Lemma 5,
and all the vertices of Gi+1 lie in the convex hull of {w} ∪ V (Ci). Finally, Gi+1

is biconnected and internally-triangulated, by Property 1.
By Property (P1), for some k ≤ n − 3, we have that Gk contains n vertices,

that is, Gk = G. By Property (P4), the y-extent Y of Δ is smaller than δ · ( 3
λ

)n.
By Lemma 2, the x-extent X of Δ is smaller than δ

r · ( 3
λ

)n. The largest distance
between two separated geometric objects in Γ is then smaller than X + Y <
δ · (

3
λ

)n · (
1 + 1

r

)
< 2δ

r · (
3
λ

)n. The resolution of Γ is larger than or equal to
the ratio between δ and the upper bound on the largest distance between two
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Fig. 4. The graph Gn in the proof of Theorem 2.

separated geometric objects in Γ obtained above. This ratio is r
2 · (λ

3

)n
, which is

indeed the bound in Theorem 1. By Property 2, we have that r
2 ·(λ

3

)n ∈ r ·λO(n).

4 Upper Bound on the Resolution of F-Drawings

In this section, we prove Theorem 2. The theorem is proved by analyzing a class
of graphs introduced by Eades and Garvan [14] and depicted in Fig. 4. Consider
any values 0 < λ ≤ 1

4 and 0 < r ≤
√
3
2 . We remark that these upper bounds

on λ and r follow by Properties 2 and 3. Let Δ be the triangle with vertices
u := (0, 0.5), v := (0,−0.5), and z := (r, 0); note that the resolution of Δ is r.
Further, let v0 := z and let Λ be the coefficient matrix such that λvivi+1 = λ,
for i = 1, . . . , n − 4, λvi+1vi

= λ, for i = 0, . . . , n − 4, λviu = λviv = 0.5 − λ, for
i = 1, . . . , n − 4, and λvn−3u = λvn−3v = 0.5 − λ/2.

Easy calculations show that y(vi) = 0, for i = 1, . . . , n − 3. By Eq. 1 and
since x(u) = x(v) = 0, for i = 1, . . . , n − 4 we have x(vi) = λ · x(vi−1) + λ ·
x(vi+1). By the planarity of the drawing (Λ,Δ), we have x(vi+1) < x(vi), for
i = 0, . . . , n − 4. By x(vi) = λ · x(vi−1) + λ · x(vi+1) and x(vi+1) < x(vi), we
get x(vi) ≤ λ · x(vi−1) + λ · x(vi), hence x(vi) ≤ λ

1−λ · x(vi−1). By repeatedly

using this, we get x(vn−4) ≤ x(v0) ·
(

λ
1−λ

)n−4

= r ·
(

λ
1−λ

)n−4

, which is in

r · λΩ(n). Hence, the distance between vn−4 and (u, v) is in r · λΩ(n). Theorem 2
then follows from the fact that the largest distance between any two separated
geometric objects in the drawing is 1.

5 Lower Bound on the Resolution of FG-Morphs

In this section, we prove Theorem 3. Given Γ0 and Γ1, we first compute coefficient
matrices Λ0 and Λ1 such that Γ0 = (Λ0,Δ), such that Γ1 = (Λ1,Δ), and such
that the smallest positive coefficient in each of Λ0 and Λ1 is “not too small”.

Lemma 8. Let Γ be a planar straight-line drawing of an n-vertex maximal plane
graph G, let Δ be the triangle delimiting the outer face of Γ , and let r be the
resolution of Γ . There exists a coefficient matrix Λ such that Γ = (Λ,Δ) and
such that the smallest positive coefficient in Λ is larger than r/n.
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Fig. 5. Illustration for the proof of Lemma 8.

Proof. We employ and analyze a method proposed by Floater and Gotsman [18,
Section 5]; refer to Fig. 5. Consider any internal vertex v of G and let u0, . . . , ud−1

be the clockwise order of the neighbors of v in G. In the following, consider
indices modulo d. For k = 0, . . . , d−1, shoot a ray ρk starting at uk and passing
through v; this hits either a vertex ui or the interior of an edge (ui, ui+1). We have
v = μk,k ·uk +μi,k ·ui +μi+1,k ·ui+1, for some μk,k > 0, μi,k > 0, μi+1,k ≥ 0. For
every j /∈ {i, i+1, k}, set μj,k = 0. After all the values μj,k have been computed,
let λvuk

= 1
d

∑
j=0,...,d−1 μk,j , for k = 0, . . . d−1. Let δ (let D) be smallest (resp.

largest) distance between two separated geometric objects in Γ . In order to prove
λvuk

> r/n, it suffices to prove μk,k ≥ r; indeed, λvuk
≥ μk,k/d > μk,k/n. Let hk

be the intersection point between ρk and (ui, ui+1). Then μk,k = |ukv|
|ukhk| . Further,

since (uk, v) is an edge of G, we have that |ukv| ≥ δ. Finally, |ukhk| ≤ D, since
|ukhk| ≤ dΓ (uk, (ui, ui+1)). Hence μk,k ≥ δ/D = r and λvuk

> r/n. ��
The proof of Theorem 3 is as follows. For i = 0, 1, let ri be the resolution of

Γi. As in Lemma 8, compute a coefficient matrix Λi such that Γi = (Λi,Δ) and
such that the smallest positive coefficient in Λi is larger than ri/n ≥ r/n. Let
M = {Γt = (Λt,Δ) : t ∈ [0, 1]} be the FG-morph between Γ0 and Γ1 such that,
for any t ∈ [0, 1], Λt = (1− t) ·Λ0 + t ·Λ1. For any edge (u, v) of G where u ∈ IG,
we have λt

uv = (1− t) ·λ0
uv + t ·λ1

uv ≥ (1− t) · r/n+ t · r/n = r/n. By Theorem 1,
the resolution of Γt is in (r/n)O(n). This concludes the proof of Theorem 3.

6 Upper Bound on the Resolution of FG-Morphs

In this section, we prove Theorem 4. We employ a triangulated “nested triangles
graph” (see, e.g., [12,19]). Let k = n/3 and observe that k is an integer. Then
G consists of (refer to Fig. 6) the 3-cycles (ui, vi, zi), for i = 1, . . . , k, the paths
(u1, . . . , uk), (v1, . . . , vk), and (z1, . . . , zk), and the edges (ui, zi+1), (zi, vi+1),
and (vi, ui+1), for i = 1, . . . , k − 1. The outer cycle of G is (uk, vk, zk). The
planar straight-line drawings Γ0 and Γ1 of G for the proof of the theorem are
depicted in Fig. 6(a) and Fig. 6(b), respectively.

The construction clearly satisfies Property (R1).
We prove Property (R2). For i = 0, 1, the drawing Γi lies on an O(n)×O(n)

grid, hence the largest distance between any two separated geometric objects is
in O(n). By Lemma 3, the smallest distance between any two separated geometric
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Fig. 6. The graph G in the proof of Theorem 4 (with n = 12). (a) shows Γ0 and (b)
shows Γ1.

objects is the one between a vertex v and an edge e. By Pick’s theorem, the area
of the triangle T defined by v and e is at least 0.5. Since the length of e is
in O(n), the height of T with respect to e, which is with the distance between v
and e, is in Ω(1/n).

We prove Property (R3). To do that, we first show the following.

Claim 1. For any coefficient matrices Λ0 and Λ1 such that Γ0 = (Λ0,Δ) and
Γ1 = (Λ1,Δ), and for any i = 2, . . . , k − 1, we have λ0

uiui+1
> 0.5, λ0

vivi+1
> 0.5,

λ0
zizi+1

> 0.5, λ1
uizi+1

> 0.5, λ1
viui+1

> 0.5, and λ1
zivi+1

> 0.5.

Proof. We prove that, for any coefficient matrix Λ0 such that Γ0 = (Λ0,Δ),
we have λ0

zizi+1
> 0.5. The other proofs are analogous. By Eq. 2, we have that

y(zi) =
∑

w∈N (zi)
λ0

ziw ·y(w), where N (zi) = {ui, vi, zi−1, zi+1, ui−1, vi+1}. Since
the coefficients λ0

ziw with w ∈ N (zi) are all positive and since the values y(ui),
y(vi), y(ui−1), and y(vi+1) are all smaller than y(zi−1) = i − 1, we get y(zi) =
i < (λ0

ziui
+ λ0

zivi
+ λ0

ziui−1
+ λ0

zivi+1
+ λ0

zizi−1
) · (i − 1) + λ0

zizi+1
· (i + 1). From

this, it follows that λ0
zizi+1

> λ0
ziui

+ λ0
zivi

+ λ0
ziui−1

+ λ0
zivi+1

+ λ0
zizi−1

, which
gives us λ0

zizi+1
> 0.5, given that

∑
w∈N (zi)

λ0
ziw = 1. ��

Consider now any coefficient matrices Λ0 and Λ1 such that Γ0 = (Λ0,Δ) and
Γ1 = (Λ1,Δ), and the FG-morph M = {Γt = (Λt,Δ) : t ∈ [0, 1]}. We will prove
that the resolution of Γ0.5 is exponentially small. By Claim 1, we have λ0

uiui+1
>

0.5 and λ1
uizi+1

> 0.5. This, together with λ0.5
uiui+1

= 0.5·λ0
uiui+1

+0.5·λ1
uiui+1

and
λ0.5

uizi+1
= 0.5·λ0

uizi+1
+0.5·λ1

uizi+1
, implies that λ0.5

uiui+1
> 0.25 and λ0.5

uizi+1
> 0.25.

Analogously, λ0.5
vivi+1

> 0.25, λ0.5
viui+1

> 0.25, λ0.5
zizi+1

> 0.25, and λ0.5
zivi+1

> 0.25.
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Fig. 7. Triangles Δi, Δi+1, and Δ′
i+1 (which is gray).

Denote by A(T ) the area of a triangle T . Let Δi and Δi+1 be the triangles
(ui, vi, zi) and (ui+1, vi+1, zi+1), respectively, in Γ0.5. We show that A(Δi) is a
constant fraction of A(Δi+1), which implies the exponential upper bound. Refer
to Fig. 7. Assume, w.l.o.g., that the longest side s of Δi+1 connects ui+1 and
vi+1. Let � be its length and let h be the height of Δi+1 with respect to s. By
Lemma 1, we can assume that the x-axis passes through s and that zi+1 lies
above s. Now consider the vertex t of Δi with the highest y-coordinate. We have
that t is either zi or ui. Assume that t = zi, as the other case is analogous.

We bound y(zi) in terms of y(zi+1). By Eq. 2, in Γ0.5 we have y(zi) =∑
w∈N (zi)

λ0.5
ziw · y(w), where N (zi) = {ui, vi, zi−1, zi+1, ui−1, vi+1}. Since zi is

the highest vertex of Δi, every neighbor of zi different from zi+1 lies below zi

(possibly ui lies on the same horizontal line as zi). Hence, y(zi) < (λ0.5
ziui

+λ0.5
zivi

+
λ0.5

zizi−1
+ λ0.5

ziui−1
) · y(zi) + λ0.5

zizi+1
· y(zi+1) + λ0.5

zivi+1
· y(vi+1). Since y(vi+1) = 0,

this is y(zi) <
λ0.5
zizi+1

1−(λ0.5
ziui

+λ0.5
zivi

+λ0.5
zizi−1

+λ0.5
ziui−1

) · y(zi+1). Since λ0.5
zivi+1

> 0.25,

we have λ0.5
zizi+1

+ λ0.5
ziui

+ λ0.5
zivi

+ λ0.5
zizi−1

+ λ0.5
ziui−1

< 0.75. Hence, by setting
ρ := λ0.5

ziui
+ λ0.5

zivi
+ λ0.5

zizi−1
+ λ0.5

ziui−1
, we get that y(zi) < 0.75−ρ

1−ρ · y(zi+1), where
ρ ∈ (0, 1). As the function f(ρ) := 0.75−ρ

1−ρ decreases as ρ increases over the
interval (0, 1), we get that 0.75−ρ

1−ρ < 0.75 and hence y(zi) < 0.75 · y(zi+1) in Γ0.5.
Consider a horizontal line through zi and let u′

i+1 and v′
i+1 be its intersection

points with zi+1ui+1 and zi+1vi+1, respectively. Let Δ′
i+1 be the triangle with

vertices zi+1, u′
i+1, and v′

i+1. Since y(zi) < 0.75 · y(zi+1), the height h′ of Δ′
i+1

with respect to ui+1vi+1 is larger than 0.25 · h. By the similarity of Δi+1 and
Δ′

i+1, the length �′ of u′
i+1v

′
i+1 is larger than 0.25 · �. Hence, A(Δ′

i+1) = h′ ·
�′/2 ≥ 0.0625 ·A(Δi+1). Since the interiors of Δi and Δ′

i+1 are disjoint, A(Δi) ≤
A(Δi+1)−A(Δ′

i+1) ≤ 0.9375·A(Δi+1). As this holds for i = 2, . . . , k−1, we have
that A(Δ2)/A(Δk) is in 1/2Ω(n). This bound directly transfers to the resolution
of Γ0.5. This concludes the proof of Theorem 4.

7 Conclusions and Open Problems

We studied the resolution of popular algorithms for the construction of planar
straight-line graph drawings and morphs. With a focus on maximal plane graphs,
we discussed the resolution of the drawing algorithm by Floater [15], which is
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a broad generalization of Tutte’s algorithm [29], and of the morphing algorithm
by Floater and Gotsman [18]. Many problems are left open by our research.

1. The lower bounds on the resolution of F-drawings and FG-morphs presented
in Theorems 1 and 3 apply to maximal plane graphs. A major objective is to
extend such bounds to 3-connected plane graphs.

2. The lower bound on the resolution of F-drawings presented in Theorem 1
is tight, by Theorem 2. However, when applied to T-drawings, the bounds
in such theorems do not coincide. Namely, Theorem 1 gives an r/nO(n) ⊆
r/2O(n log n) lower bound (as the smallest positive term λ of a coefficient
matrix is in 1/Ω(n) for graphs with maximum degree in Ω(n)), while Theo-
rem 2 gives an r/2Ω(n) upper bound (as every internal vertex of the graph in
the proof of the theorem has degree in Θ(1), and hence every element of the
coefficient matrix is in Θ(1)). We find it interesting to close this gap.

3. The lower and upper bounds for the resolution of FG-morphs in Theorems 3
and 4 also leave a gap. First, the dependency on n in the lower bound is
1/2O(n log n), while the one in the upper bound is 1/2Ω(n). Second, the res-
olution r of the input drawings appears in the exponential lower bound of
Theorem 3, while it does not appear in the exponential upper bound of The-
orem 4; while it is clear that a dependency on r is needed, it is not clear to
us whether r should be part of the exponential function.
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Abstract. We present simpler algorithms for two closely related mor-
phing problems, both based on the barycentric interpolation paradigm
introduced by Floater and Gotsman, which is in turn based on Floater’s
asymmetric extension of Tutte’s classical spring-embedding theorem.

First, we give a very simple algorithm to construct piecewise-linear
morphs between planar straight-line graphs. Specifically, given isomor-
phic straight-line drawings Γ0 and Γ1 of the same 3-connected planar
graph G, with the same convex outer face, we construct a morph from Γ0

to Γ1 that consists of O(n) unidirectional morphing steps, in O(n1+ω/2)
time. Our algorithm entirely avoids the classical edge-collapsing strategy
dating back to Cairns; instead, in each morphing step, we interpolate the
pair of weights associated with a single edge.

Second, we describe a natural extension of barycentric interpolation
to geodesic graphs on the flat torus. Barycentric interpolation cannot
be applied directly in this setting, because the linear systems defining
intermediate vertex positions are not necessarily solvable. We describe
a simple scaling strategy that circumvents this issue. Computing the
appropriate scaling requires O(nω/2) time, after which we can compute
the drawing at any point in the morph in O(nω/2) time. Our algorithm
is considerably simpler than the recent algorithm of Chambers et al. and
produces more natural morphs. Our techniques also yield a simple proof
of a conjecture of Connelly et al. for geodesic torus triangulations.

1 Introduction

Computing morphs between geometric objects is a fundamental problem that
has been well studied, with many applications in graphics, animation, modeling,
and more. A particularly well-studied setting is that of morphing between planar
straight-line graphs. Formally, a morph between two isomorphic planar straight-
line graphs Γ0 and Γ1 consists of a continuous family of planar straight-line
graphs Γt starting at Γ0 and ending at Γ1.

We describe an extremely simple morphing algorithm for planar graphs,
which simultaneously obtains properties of two earlier approaches: Floater and
Gotsman’s barycentric interpolation method [24,26,43–45] results in morphs
that are natural and visually appealing but are represented implicitly; varia-
tions on Cairns’ edge-collapse method [1,7,8,31,46] result in efficient explicit
representations of morphs that are not useful for visualization. Our new algo-
rithm efficiently computes an explicit piecewise-linear representation of a morph
c© Springer Nature Switzerland AG 2021
H. C. Purchase and I. Rutter (Eds.): GD 2021, LNCS 12868, pp. 123–137, 2021.
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between drawings of the same 3-connected planar graph, that are potentially
more useful for visualization than morphs based on Cairns’ method.

We also extend Floater and Gotsman’s planar morphing algorithm to
geodesic graphs on the flat torus. Recent results of Luo et al. [37] imply that
Floater and Gotsman’s method directly generalizes to morphs between geodesic
triangulations on surfaces of negative curvature, but a direct generalization to
the torus generically fails [42]. Our extension is based on simple scaling strategy,
and it yields more natural morphs than previous algorithms based on edge col-
lapses [9]. Finally, our arguments yield a straightforward proof of a conjecture
of Connelly et al. [15] about the deformation space of geodesic triangulations.

1.1 Related Work

Planar Morphs. Cairns [7,8] was the first to prove the existence of morphs
between arbitrary isomorphic planar straight-line triangulations, using an induc-
tive argument based on the idea of collapsing an edge from a low-degree vertex to
one of its neighbors. Thomassen [46] extended Cairns’ proof to arbitrary planar
straight-line graphs. Cairns and Thomassen’s proofs are constructive, but yield
morphs consisting of an exponential number of steps.

Floater and Gotsman [24] proposed a more direct method to construct
morphs between planar graphs, based on an extension by Floater [22] of Tutte’s
classical spring embedding theorem [49]. Let Γ be a straight-line drawing of a
planar graph G, such that the boundary of every face of Γ is a strictly convex
polygon. Then every interior vertex in Γ is a strict convex combination of its
neighbors; that is, we can associate a positive weight λu�v with each half-edge
or dart u�v in G, such that the vertex positions pv in Γ satisfy the linear system

∑

u�v

λu�v(pv − pu) = (0, 0) for every interior vertex u (1)

Floater [22] proved that given arbitrary1 positive weights λu�v and an arbitrary
convex outer face, solving linear system (1) yields a straight-line drawing of G
with convex faces. Tutte’s original spring-embedding theorem [49] is the special
case of this result where every dart has weight 1, but his proof extends verbatim
to arbitrary symmetric weights, where λu�v = λv�u for every edge uv [29,41,47].

Floater and Gotsman [24] construct a morph between two convex drawings
of the same planar graph G, with the same outer face, by linearly interpolating
between weights λu�v consistent with the initial and final drawings. Appropri-
ate initial and final weights can be computed in O(n) time using, for exam-
ple, Floater’s mean-value coordinates [23,30]. The resulting morphs are natural
and visually appealing. However, the motions of the vertices are only computed
implicitly; vertex positions at any time can be computed in O(nω/2) time by solv-
ing a linear system via nested dissection [4,34], where ω < 2.37286 is the matrix

1 Floater’s presentation assumes that
∑

u�v λu�v = 1 for every interior vertex v, but
this assumption is clearly unnecessary.
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multiplication exponent [3,33]. Gotsman and Surazhsky generalized Floater and
Gotsman’s technique to arbitrary planar straight-line graphs [26,43–45].

Alamdari et al. [1] describe an efficient algorithm to construct planar morphs
with explicit piecewise-linear vertex trajectories, based on Cairns’ inductive
edge-collapsing strategy. Given any two isomorphic straight-line drawings (with
the same rotation system and nesting structure) of the same n-vertex planar
graph, the algorithm constructs a morph consisting of O(n) unidirectional mor-
phing steps, in which all vertices move along parallel lines at fixed speeds. Thus,
each vertex moves along a piecewise-linear path of complexity O(n), and the
entire morph has complexity O(n2). Recent results of Klemz [32] imply that this
algorithm can be implemented to run in O(n2 log n) time. The resulting morph
contracts all vertices into an exponentially small neighborhood and then expand
them again, so it is not useful for visualization.

Angelini et al. [5] consider the setting of convexity-preserving morphs between
convex drawings; Kleist et al. [31] consider morphing to convexify any 3-
connected planar drawing. Both describe algorithms that produce piecewise-
linear morphs consisting of O(n) steps, and that can be implemented to run
in time O(n1+ω/2). (Klemz [32] conjectures that both running times can be
improved to O(n2 log n).) Combining these algorithms results in an alternative
piecewise-linear morph between 3-connected planar drawings.

Toroidal Morphs. Until recently, very little was known about morphing graphs
on the torus or other more complex surfaces.

Tutte’s spring-embedding theorem was generalized to simple triangulations
of surfaces with non-positive curvature by Colin de Verdière [14] and indepen-
dently by Hass and Scott [27]. Delgado-Friedrichs [19], Lovász [35], and Gortler
et al. [25] also independently proved an extension of Tutte’s theorem to graphs
on the flat torus whose universal covers are simple and 3-connected. For any
toroidal graph and any assignment of positive symmetric weights to the darts,
solving a linear system similar to (1) yields vertex positions of a geodesic draw-
ing with strictly convex faces [20,25]; see Sect. 2 for details. Thus, if two iso-
topic geodesic torus graphs Γ0 and Γ1 can both be described by symmetric dart
weights, linearly interpolating those weights yields a morph from Γ0 to Γ1 [13].

The restriction to symmetric weights is both nontrivial and significant. In
a torus graph with convex faces, every vertex can be described as a convex
combination of its neighbors, but not necessarily with symmetric weights. More-
over, the linear system expressing vertex positions as convex combinations of
its neighbors is rank-deficient, and therefore is not solvable in general; see the
full version [21] for an example. Thus, Floater’s asymmetric extension of Tutte’s
theorem does not directly generalize to the flat torus.

For similar reasons, Floater and Gotsman’s planar morphing algorithm also
does not generalize. Suppose we are given two isotopic geodesic torus graphs Γ0

and Γ1, each with dart weights that express their vertices as convex combina-
tions of their neighbors. Unfortunately, in general, interpolating those weights
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yields linear systems that have no solution; we give a simple example in the full
version [21].

Steiner and Fischer [42] modify the system by fixing a single vertex, restoring
full rank. However, solving the modified system does not necessarily yield a
crossing-free drawing, because the fixed vertex may not lie in the convex hull of
its neighbors. Moreover, even though the initial and final weights are consistent
with crossing-free drawings, averages of those weights may not be. We give an
example of this bad behavior in the full version [21].

Chambers et al. [9] described the first algorithm to morph between arbitrary
essentially 3-connected geodesic torus graphs. Their algorithm uses a combina-
tion of Cairns’ edge-collapsing strategy and spring embeddings to construct a
morph consisting of O(n) unidirectional morphing steps, in O(n1+ω/2) time. Like
planar morphs built from edge collapses, these toroidal morphs contract vertices
into small neighborhoods and thus are not suitable for visualization.

Recently, Luo et al. [37] generalized Floater’s theorem to geodesic triangu-
lations of arbitrary closed Riemannian 2-manifolds with strictly negative cur-
vature, extending the spring-embedding theorems of Colin de Verdière [14] and
Hass and Scott [27] to asymmetric weights. Their result immediately implies
that if two geodesic triangulations of such a surface are homotopic, then linearly
interpolating the dart weights yields a continuous family of crossing-free geodesic
drawings, or in other words, a morph. Their result applies only to surfaces with
negative Euler characteristic; the torus has Euler characteristic 0.

1.2 New Results

We describe two applications of Floater and Gotsman’s barycentric interpolation
strategy, which yield simpler algorithms for morphing planar and toroidal graphs.

First we describe a very simple algorithm to construct piecewise-linear morphs
between planar straight-line graphs. Given two isomorphic planar straight-line
graphs Γ0 and Γ1 with strictly convex faces and the same outer face, we construct
a morph from Γ0 to Γ1 that consists of O(n) unidirectional morphing steps, in
O(n1+ω/2) time. Our morphing algorithm computes barycentric weights for the
darts in Γ0 and Γ1 in a preprocessing phase, and then for each morphing step, inter-
polates only the pair of weights associated with a single edge. Our key observation
is that changing the weights for a single edge e moves all vertices in the Floater
drawing along lines parallel to e. (The same observation was made for symmetric
edge weights by Chambers et al. [9].) Our algorithm is significantly simpler than
that of Angelini et al. [5] for computing convexity-preserving morphs. We then
extend our algorithm to drawings with non-convex faces, using a simpler approach
than Kleist et al. [31]. Figure 1 shows a morph computed by our algorithm; in each
frame, the weights of the bold edge are about to change.

Next, we describe a natural extension of Floater and Gotsman’s method to
geodesic graphs on the flat torus. Our key observation is that barycentric dart
weights can be scaled so that barycentric interpolation works. Specifically, we
call a weight assignment morphable if every column of the resulting Laplacian
linear system sums to zero; averages of morphable weights are morphable. Given
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Fig. 1. Incrementally morphing between planar graphs.

any weight assignment consistent with any convex drawing, we can guarantee
morphability by scaling the weights of all darts leaving each vertex v—or equiv-
alently, scaling each row of the linear system—by a common positive scalar αv.
This scaling obviously has no effect on the solution space of the system. Positivity
of the scaling vector α follows from a weighted directed version of the matrix-tree
theorem [6,17,48]. We can computing the appropriate scaling in O(nω/2) time,
after which we can compute any intermediate drawing in O(nω/2) time, match-
ing the performance of Floater and Gotsman exactly. The resulting morphs are
natural and visually appealing, and our proofs of correctness are considerably
simpler than those of Chambers et al. [9]. However, unlike Chambers et al., our
new morphing algorithm does not compute explicit vertex trajectories. Figure 2
shows a morph computed by our algorithm between two randomly shifted 6 × 6
toroidal grids. (The authors’ Python implementation is available on request.)

Fig. 2. Morphing between randomly shifted toroidal grids.
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It remains an open question whether our results can be combined to compute
explicit low-complexity piecewise-linear toroidal morphs without edge collapses.
We offer some preliminary observations in the full version [21].

2 Definitions and Notation

2.1 Planar Graphs

Any planar straight-line drawing Γ can be represented by a position matrix
P ∈ R

n×2, each row pv of which gives the location of some vertex v. Thus, each
edge uv is drawn as the straight-line segment pupv. We call a planar drawing
convex if it is crossing-free, every bounded face is a convex polygon, and the
outer face is the complement of a convex polygon.

Formally, we regard each edge of any graph as a pair of opposing half-edges
or darts, each directed from its tail to its head. We write rev(d) to denote the
reversal of any dart d. For simple graphs, we write u�v to denote the dart with
tail u and head v. A barycentric weight vector for Γ assigns a positive real
number λu�v to every dart u�v of a graph, so that the vertex positions pv satisfy
Floater’s linear system (1). Conversely, for a fixed graph G with a fixed convex
outer face, the Floater drawing Γλ of G with respect to a positive weight
vector λ is the unique drawing whose vertex positions pv satisfy system (1).

A morph between two planar drawings Γ0 and Γ1 is a continuous family of
crossing-free drawings Γt parametrized by time, starting at Γ0 and ending at Γ1.
A morph is linear if each vertex moves along a straight line at uniform speed,
and piecewise-linear if it is the concatenation of linear morphs. Any piecewise-
linear morph can be described by a finite sequence of straight-line drawings. A
linear morph is unidirectional if vertices move along parallel lines.

2.2 Torus Graphs

The flat torus is the quotient space T = R
2/Z2, also obtained by identifying

opposite sides of the unit square [0, 1]2. A geodesic on the flat torus is the
image of a line segment in R

2 under the projection map π : R2 → T where
π(x, y) = (x mod 1, y mod 1).

A (crossing-free) geodesic torus drawing Γ of a graph G maps its vertices
to distinct points in T and its edges to simple, interior-disjoint geodesics. We
explicitly consider graphs containing loops and parallel edges. We write d : u�v
to declare that d is a dart (possibly one of many) with tail u and head v.

Every geodesic torus drawing Γ of a graph G is the projection of an infi-
nite, doubly-periodic planar straight-line graph Γ̃ , called the universal cover
of Γ [9]. We call Γ essentially simple if its universal cover Γ̃ is simple, and
essentially 3-connected if Γ̃ is 3-connected [39,40]. Finally, we call Γ a con-

vex drawing if every face of Γ̃ is strictly convex. Every convex torus drawing
is both essentially simple and essentially 3-connected, since every infinite planar
graph with strictly convex faces is 3-connected [18].
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Coordinate Representations. Following Chambers et al. [9], we use a coordinate
representation (P, τ) for geodesic torus drawings that records

– a position vector pv ∈ R
2 for each vertex v, and

– a translation vector τd ∈ Z
2 for each dart d, such that τrev(d) = −τd.

These vectors indicate that each dart d : u�v is drawn as the projection of a line
segment from pu to pv +τd in the universal cover Γ̃ . In particular, if we normalize
all vertex positions to the half-open unit square [0, 1)2, then each translation
vector τd indicates the number of times d crosses the vertical boundary of the unit
square to the right, and the number of times d crosses the horizontal boundary
of the unit square upward.

Two crossing-free drawings of the same graph on the torus are isotopic if one
can be deformed into the other through a continuous family of (not necessarily
geodesic) crossing-free drawings; such a deformation is called an isotopy . Two
crossing-free drawings are isotopic if and only if their coordinate representations
can be normalized so that their translation vectors agree; this condition can
be tested in O(n) time [9, Theorem A.1], [12]. A geodesic isotopy or morph
is an isotopy in which all intermediate drawings are geodesic.

Barycentric Weights. In any convex torus drawing Γ , the position pv of each
vertex v can be expressed as a convex combination of its neighbors, as follows. We
can assign a weight λd > 0 to each dart d such that any coordinate representation
(P, τ) of Γ satisfies the linear system

∑

v

∑

d:u�v

λd(pv − pu + τd) = (0, 0) for every vertex u. (2)

We can express this linear system in matrix notation as LλP = Hλ, where

Lλ
ij =

⎧
⎪⎪⎨

⎪⎪⎩

∑

k

∑

d:i�k

λd if i = j

∑

d:i�j

−λd otherwise
and Hλ

i =
∑

j

∑

d:i�j

λdxd (2′)

The (unnormalized, asymmetric) Laplacian matrix Lλ has rank n − 1 [42].
We call any positive weight vector λ satisfying system (2) barycentric for Γ .
Barycentric weights for any convex torus drawing can be computed in O(n) time
using, for example, Floater’s mean-value coordinates [23,30].

On the other hand, suppose we fix the graph G and translation vectors τd

consistent with an essentially 3-connected (but not necessarily geodesic) drawing
of G. Then for any positive weight vector λ, any solution to linear system (2)
gives the vertex positions pv of a convex drawing Γλ of G [25]. In this case, we
say that the Floater drawing Γλ realizes the weight vector λ, and we call
the weight vector λ realizable for the graph G. Every realizable weight vector
is realized by a two-dimensional family of drawings that differ by translation.



130 J. Erickson and P. Lin

Every symmetric positive weight vector (where λd = λrev(d)) is realizable: for
any assignment of positive weights to the edges of G, there is a corresponding
convex torus drawing [14,19,25,27,35]. Realizable weights are not necessarily
symmetric: there are convex torus drawings with only asymmetric barycentric
weights. Conversely, positive asymmetric weights are not always realizable.

3 Morphing Planar Graphs Edge by Edge

We describe a very simple algorithm to morph planar straight-line graphs that
combines the benefits of both the Floater and Gotsman approach [24,26,43–
45] and the Cairns approach [1,7,8,31,46]. Our algorithm constructs a morph
consisting of O(n) unidirectional morphing steps, in O(n1+ω/2) time. Because our
morphs do not use edge collapses, they are also potentially good for visualization.

Fix a planar graph G and a convex outer face. Let pλ
v denote the position

of vertex v in the Floater drawing Γλ with respect to weight vector λ. The
following lemma is a planar asymmetric version of Lemma 5.1 of Chambers
et al. [9]. Intuitively, it states that changing the weights of the darts of a single
edge e moves each vertex in the Floater drawing along lines parallel to e.

Lemma 1. Let λ and μ be arbitrary positive weight vectors such that λd �= μd

or λrev(d) �= μrev(d) for some dart d, but λd′ = μd′ for all darts d′ /∈ {d, rev(d)}.
For each vertex w, the vector pμ

w − pλ
w is parallel to the drawing of d in Γλ.

Proof: Suppose d has tail u and head v, and (by rotating the drawing if neces-
sary) that d is drawn parallel to the x-axis. For each vertex i, let yλ

i and yμ
i be

the y-coordinates of points pλ
i and pμ

i , respectively, so that yλ
u = yλ

v . We need to
prove that yλ

w = yμ
w for every vertex w.

Projecting linear system (1) for λ onto the y-axis gives us

∑

i�j

λi�j(y
λ
j − yλ

i ) = 0 for each vertex i. (3)

Swapping entries of λ with corresponding entries of μ in the system (3) changes at
most two constraints, corresponding to the two endpoints u and v of d. Moreover,
in each changed constraint, the single changed coefficient is multiplied by yλ

u −
yλ

v = yλ
v −yλ

u = 0, so the yλ
i ’s also solve the corresponding system for μ. Since the

system (3) and its counterpart for μ each have a unique solution, we conclude
that yλ

w = yμ
w for every vertex w. �

Under the assumptions of Lemma 1, linearly interpolating the vertex posi-
tions from Γλ to Γμ yields a unidirectional linear morph [1, Corollary 7.2], [9,
Lemma 5.2]. It follows that we can morph between isomorphic convex drawings
through a sequence of at most 3n−9 unidirectional linear morphing steps, one for
each internal edge, following the algorithm in Fig. 3. Initial and final barycentric
weight vectors can be found in O(n) time using, for example, Floater’s mean-
value method [23,30]. Each intermediate drawing can be computed in O(nω/2)
time using nested dissection [4,34], for a total running time of O(n1+ω/2).
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Fig. 3. Algorithm for morphing between convex planar drawings.

Because all Floater drawings are convex, Lemma 5.2 of Chambers et al. [9]
implies that MorphConvex actually produces a convexity-preserving piecewise-
linear morph; all faces remain convex throughout the morph. Our algorithm is
significantly simpler than that of Angelini et al. [5].

We can extend the previous algorithm to non-convex drawings by first mor-
phing to convex drawings, as follows. We first add edges to the initial and final
drawings to decompose every face into convex polygons, compute barycentric
weights for the resulting drawing, and then reduce the weights of each added
edge (one-by-one) to zero, effectively deleting that edge. Dropping the added
edges yields a piecewise-linear morph from each input drawing to a convex draw-
ing. Again, each intermediate drawing can be computed in O(nω/2) time. Our
complete morphing algorithm is shown in Fig. 4. Our algorithm Convexify is
considerably simpler than that of Kleist et al. [31]; however, unlike Kleist et al.,
our algorithm is not necessarily convexity-increasing.

Fig. 4. Algorithm for morphing between general planar straight-line drawings.

In total, we perform one morphing step for each internal edge of G, plus
at most 2(k − 3) morphing steps for each bounded face with degree k. Euler’s
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formula implies that a 3-connected planar graph has between 1.5n and 3n − 6
edges, and thus at most 3n − 9 internal edges. Thus, we need to add at most
1.5n − 6 edges to convexify the initial and final faces, so our morph consists of
at most 4.5n − 15 linear morphing steps. In summary:

Theorem 1. Given any two isomorphic 3-connected planar straight-line draw-
ings with n vertices and the same convex outer face, we can compute a morph
between them consisting of at most 4.5n−15 unidirectional linear morphing steps,
in O(n1+ω/2) time.

4 Morphable Weight Vectors on the Flat Torus

As observed by Steiner and Fischer [42], Floater and Gotsman’s morphing algo-
rithm does not directly generalize to the toroidal setting, since not all pos-
itive weight vectors λ are realizable. In particular, given arbitrary barycen-
tric weights λ(0) and λ(1) of two isotopic convex torus drawings, intermediate
weights λ(t) := (1 − t)λ(0) + tλ(1) are not necessarily realizable; see the full
version [21].

To bypass this issue, we identify a subspace of morphable weight vectors,
such that every convex torus drawing has a morphable barycentric weight vec-
tor, every morphable weight vector is realizable, and convex combinations of
morphable weights are morphable. Specifically, a positive weight vector λ is
morphable if each column of the matrices Lλ and Hλ sums to 0. The following
lemma is immediate:

Lemma 2. Convex combinations of morphable weight vectors are morphable.

Lemma 3. Every morphable weight vector is realizable.

Proof: If λ is a morphable weight vector, then the nth row of the linear system
LλP = Hλ is implied by the other n−1 rows, so we can remove it. The resulting
abbreviated linear system still has rank n − 1, so it has a (unique) solution. �

Lemma 4. Given a barycentric weight vector λ for a convex torus drawing Γ ,
a morphable barycentric weight vector for Γ can be computed in O(nω/2) time.

Proof: The matrix Lλ has rank n − 1, so there is a one-dimensional space of
(row) vectors α = (α1, . . . , αn) such that αLλ = (0, . . . , 0). We can compute a
non-zero vector α in O(nω/2) time using nested dissection [2,4,34].

A directed version of the matrix tree theorem [6,17,48] implies that we can
choose all αi to be positive. Specifically, let G± be the weighted directed graph
whose weighted arcs correspond to the weighted darts of G. An inward directed
spanning tree is an acyclic spanning subgraph of G± where every vertex except
one (called the root) has out-degree 1. The weight of an inward directed spanning
tree is the product of the weights of its arcs. For each i, let αi be the sum of
the weights of all inward directed spanning trees rooted at vertex i; we have
αi > 0 because all dart weights are positive. The directed matrix tree theorem
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implies that αL = 0, as required; for an elementary proof, see De Leenheer [17,
Theorem 3]. (See also Cohen et al. [11, Lemma 1].)

Define a new weight vector μ by setting μd := αtail(d)λd for each dart d. For
each index i, we immediately have Lμ

i P = αiL
λ
i P = αiH

λ
i = Hμ

i , where P is the
position matrix for Γ , so μ is in fact a barycentric weight vector for Γ . Finally,
we observe that (1, . . . , 1)Lμ = αLλ = (0, . . . , 0) and (1, . . . , 1)Hμ = αHλ =
αLλP = (0, . . . , 0)P = (0, 0), which imply that μ is morphable. �

Theorem 2. Given coordinate representations of two isotopic essentially 3-
connected geodesic torus drawings Γ0 and Γ1, we can efficiently compute a morph
from Γ0 to Γ1. Specifically, after O(nω/2) preprocessing time, we can compute
any intermediate drawing during the morph in O(nω/2) time.

Proof: Suppose Γ0 and Γ1 are convex drawings. First, if necessary, we normalize
the given coordinate representations so that their translation vectors agree, in
O(n) time [9, Theorem A.1]. Then we find barycentric weight vectors λ(0) and
λ(1) for Γ0 and Γ1, respectively, in O(n) time, for example using Floater’s mean-
value coordinates [23,30]. Following Lemma 4, we derive morphable weights μ(0)
and μ(1) from λ(0) and λ(1), respectively, in O(nω/2) time. Finally, given any
real number 0 < t < 1, we set μ(t) := (1 − t)μ(0) + tμ(1) and solve the linear
system Lμ(t)P (t) = Hμ(t) for the position matrix P (t) of an intermediate drawing
Γμ(t); Lemmas 2 and 3 imply that this system is solvable. The function t �→ Γμ(t)

is a convexity-preserving morph between Γ0 and Γ1.
If the faces of Γ0 or Γ1 are not convex, we morph through an intermediate

convex drawing, similarly to Chambers et al. [9, Theorem 8.1]. Let Γ∗ be the
Floater drawing of G obtained by setting every dart weight to 1. Compute any
triangulation T0 of Γ0, and then triangulate the convex faces Γ∗ using the same
diagonals, to obtain a triangulation T∗ isotopic to T0. Assign weight 0 to the
darts of the diagonals in T∗ \ Γ∗ to obtain a barycentric weight vector μ∗ for T∗,
which is symmetric and therefore morphable. Derive morphable weights μ0 for T0

using mean-value coordinates [23,30] and Lemma 4. Then we can morph from T0

to T∗ by weight interpolation, using the weight vector μ(t) := (1 − 2t)μ0 + 2tμ∗
for any 0 ≤ t ≤ 1/2. Ignoring the diagonal edges gives us a morph from Γ0 to Γ∗.
A symmetric procedure yields a morph from Γ∗ to Γ1. �

In the full version [21], we use morphable weights to prove a conjecture of
Connelly et al. [15] about the deformation space of geodesic torus triangulations.

5 Open Questions

It is natural to ask whether our “best-of-both-worlds” planar morph can be
extended to graphs on the flat torus. In the full version [21], we prove a toroidal
analog of Lemma 1 for realizable weight vectors; unfortunately, the main road-
block is that not all weight vectors are realizable. In particular, given a realizable
weight vector (morphable or not), it is not clear when changing the weights for
a single edge results in another realizable weight vector.
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Several previous planar morphing algorithms [1,5,16,31] rely on a certain
convexifying procedure [10,28,31,32], and are (potentially) faster than our algo-
rithm via the implementation recently described by Klemz [32]. It is an open
question whether the procedure can be extended to geodesic torus graphs.

One can also ask if the result can be extended to surfaces of higher genus.
The recent results of Luo et al. [37] imply that Floater and Gotsman’s planar
morphing algorithm [24] extends to geodesic triangulations on higher-genus sur-
faces of negative curvature; however, the existence of (any reasonable analog of)
piecewise-linear morphs on such surfaces remains unknown.
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and for other helpful feedback. We also thank Yanwen Luo for making us aware of his
recent work [36–38]. Finally, we thank the anonymous reviewers for their comments
and helpful suggestions for improvement.
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Abstract. Just-in-time (JIT) compilers are used by many modern pro-
gramming systems in order to improve performance. Bugs in JIT com-
pilers provide exploitable security vulnerabilities and debugging them
is difficult as they are large, complex, and dynamic. Current debugging
and visualization tools deal with static code and are not suitable in
this domain. We describe a new approach for simplifying the large and
complex intermediate representation, generated by a JIT compiler and
visualize it with a metro map metaphor to aid developers in debugging.

1 Introduction

Many modern programming systems, such as JavaScript engines that are run-
ning our web browsers, use just-in-time (JIT) compilers to improve performance.
Examples include Google Chrome, Microsoft Edge, Apple Safari, and Mozilla
Firefox, which are used by 2.65 billion, 600 million, 446 million, and 220 mil-
lion, respectively [4]. JIT compiler bugs can lead to exploitable security vulner-
abilities [1,6–9]. Such a bug in Google Chrome could be used to hijack passwords
and to navigate to other sites and execute malicious programs, as reported by
the Microsoft Offensive Security Research team (CVE-2017-5121 [1]). Thus, the
ability to quickly analyze, localize and fix JIT compiler problems is important.
However, existing work and available tools focus on static code [15,16,23], and so
they are not suitable for developers in debugging JIT compilers, which generates
code at run-time. Additionally, the size and complexity of JIT-based systems [12]
combined with the dynamic nature of JIT compiler optimizations, make it chal-
lenging to analyze and locate bugs quickly. For example, Google V8 has more
than 2,000 source files and more than 1 million lines of code.

Traditional debuggers rely on text even though the main feature of a JIT
compiler is building a graph-like structure to translate bytecode into optimized
machine code. With this in mind, we propose a new debugging tool, which visu-
alizes the JIT compiler’s intermediate representation (IR). Our approach uses
IR identification and generation techniques described by Lim and Debray [26],
where the compiler-related half of the visualization tool’s pipeline are described
in detail. In this paper we focus on the visualization half, which includes: merging
multiple IR graphs into a single graph, simplifying the merged graph, converting
the simplified graph into a hypergraph, simplifying the hypergraph, and visualiz-
ing the hypergraph using a metro map metaphor. Visualizing the JIT compiler’s
IR allows us to answer questions such as:
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1. What optimizations took place to generate the machine code?
2. What is the relationship among the optimization phases?
3. Which optimization phase was most active?
4. What optimizations affected a specific node?
5. Which optimization phases are likely to be buggy?

Related Work. There are many methods and tools for debugging static code
compilers and optimized code, but little on using the intermediate representa-
tion and visualizing it to show the explicit information about the compilation
and optimization processes. Google V8’s Turbolizer [5,13] is one of very few IR
visualization tools. It shows the final IR graph after each optimization process
and provides interactive features to view the control-flow graphs for each opti-
mization phase. Although Turbolizer provides some information about the IR
nodes and their relationships, it does not provide enough information about the
optimization process and cannot answer several of our initial set of questions.

Dux et al. [21] visualize dynamically modified code at run-time with call
graphs and control-flow graphs by showing the graph changes with animation,
allowing end-to-end play, pause, and forward/backward step-by-step animation.
CFGExplorer [20] visualizes the control-flow graph of a program to represent the
program structure for dynamic binary analysis. It provides interactive features
allowing developers to find specific memory addresses, loops, and functions to
analyze the system. CcNav [19] analyzes and visualizes a C++ compiler’s opti-
mization process with a call graph, control-flow graph, and loop hierarchies.

Control-flow graphs and call graphs are popular in program analysis, espe-
cially for analyzing static code. However, they are different from dynamically
generated IR graphs. Tools for visualizing and interacting with control-flow
graphs and call graphs (such as those above) are not sufficient for visualizing
the IR graph as, e.g., they cannot capture the optimization phases.

Background. We briefly introduce several concepts relevant to JIT compilers.
Interpreter. A computer program that converts input source code into byte-

code and executes it without compiling it into a machine code [22].
Bytecode. Instructions generated from input source code by an interpreter;

bytecode is portable, unlike compiled programs, and used in many modern lan-
guages and systems, such as JavaScript, Python, and Java [17].

Instruction-level Trace. A file that holds all the instructions that a pro-
gramming system, such as a JIT compiler, has generated and executed at run-
time. The instructions are in a machine-level code with symbol information (e.g.,
function names) and are used for performance analysis and debugging.

Just-in-Time (JIT) Compiler. A program that turns bytecode into
instructions that are sent to a computer’s processor, to improve performance [24];
see Fig. 1(a) for an example of JIT compiler in Google’s V8 pipeline.

Optimized Code. Machine code generated from bytecode by a JIT compiler
that can be directly executed by a processor.

Intermediate Representation (IR). A type of graph also known as sea-
of-nodes [11,14,18]. Unlike other graphs used in program analysis, such as
control-flow or data-flow graphs which have specific types of nodes, nodes in the
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Fig. 1. (a) V8 Pipeline [12] (b) Example of constant folding optimization.

sea-of-nodes graph represent different types: from scalar values and arithmetic
operators to variables and control-flow nodes and function entry nodes. Similarly,
edges represent different relationships (e.g., semantic and syntax relationships).

Optimization. Adding, removing, and merging nodes and edges in the graph
during execution. In a single JIT compilation, the compiler executes several
different optimization phases (inlining, loop peeling, constant propagation) to
generate efficient machine code, which modify the IR graph and correspond to
new hyperedges (the set of all nodes generated or optimized in this phase); see
Fig. 1(b) for an example of constant propagation.

Proof-of-Concept Program. An input program that is used to trigger the
buggy behavior in the JIT compiler, i.e., a valid program (without any bugs)
which when run can reveal bugs in the JIT compiler. In our experiment, we are
targeting JavaScript engine V8, so the PoC is a JavaScript program.

2 Visualizing the Intermediate Representation

Our approach for capturing and visualizing the IR of a JIT compiler below uses
compiler-related steps 1–4 [26], and steps 5–9 are described in brief below.

1. Modify the input program, P0, to create similar programs, {P1, ...PN}, by
generating the abstract syntax tree for P0 and then randomly modifying
nodes in the tree with allowable edits (passing semantic/syntactic checks).
The newly created programs either still contain the code that triggers a bug
in the JIT compiler, or the buggy code is replaced and no bug is triggered.
In the first case, the execution output of the optimized code is different from
the interpreted code (as with P0).

2. Run each program Pi and collect the instruction-level traces.
3. Analyze traces to check if Pi triggers a bug in the JIT compiler and to identify

Pi’s IR and the optimization phases executed while optimizing Pi.
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4. Select candidate hyperedges, suspected to be buggy, from the information
gathered in step 3.

5. Merge all selected candidate hyperedges into the original IR from P0.
6. Simplify the merged IR by reducing the number of nodes and edges.
7. Convert the simplified graph into a hypergraph by extracting the hyperedges

from step 4 and analyzing each node’s optimization status.
8. Simplify the hypergraph by reducing the number of hyperedges and nodes.
9. Visualize the simplified hypergraph with MetroSets [25].

2.1 Intermediate Representation

Recall that the intermediate representation (IR) of a JIT compiler is a sea-
of-nodes graph that the compiler generates at the beginning of its execution
by parsing the bytecode and optimizing it with several optimization phases.
Formally, the IR is a simple, undirected graph G = (V,E), where V represents
the nodes optimized by the JIT compiler and E contains pairs of nodes connected
by different relationships (e.g., semantic and syntax relationships, such as math
expressions). By keeping track of the optimization information for each node we
construct the hypergraph H = (V, S) from G, where V is a set of nodes optimized
by the JIT compiler and each hyperedge in S represents an optimization phase.

Two important node features are phases and opcodes. Phases are the opti-
mization phases where a node was generated and optimized (and which later
correspond to hyperedges). Opcodes represent node operations (e.g., add, sub,
return). A node also has two different attribute groups: (1) basic, such as a node
id, address, list of neighbors, opcode, and IR ID; and (2) optimization, such
as hyperedge (phase) ID, generated hyperedge name, and optimized hyperedge
names. Note that a node is generated at one hyperedge, but can be present in
multiple different hyperedges, due to different optimization phases.

Recall that given one JavaScript code we generate N similar versions to see if
any of them trigger bugs. We generate the IRs for all of these versions (typically
about 20). In the real-world examples we work with, each such IR graph has
about 300–500 nodes and 30–40 optimization phase executions.

2.2 Merging Intermediate Representation Hyperedges

We now merge the N similar but different intermediate representations into
one single graph. There are two main reasons to do this. First, we want to
see the differences among the graphs in one single view. Second, by comparing
hyperedges from a buggy program IR to hyperedges from a non-buggy program
IR, we can find differences in some hyperedges due to different optimizations,
and thus find the bug. Consider, for example, a hyperedge α in both buggy
and non-buggy program IRs and suppose that an additional node (the result
of incorrect optimization) makes a buggy program’s α different from the non-
buggy program’s α. A merged hyperedge will show this additional node, and its
attributes will identify the buggy IR. A developer can now see that there was
an optimization difference in α and find the bug.
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Fig. 2. (a) Example of an IR graph; (b) Example of hypergraph simplification.

Let R0 be the IR from the original program and {R′
1, ..., R

′
N} the IRs from

the modified programs. Let {r′
1, ..., r

′
n} be sub-IRs, where r′

i is a subgraph of
R′

i when R′
i �= R0, i.e., r′

i ⊆ R′
i, and n is the number of IRs different from

R0 (n ≤ N). Each r′
i holds buggy candidate hyperedges: R′

i hyperedges are
different from R0’s hyperedges. We traverse all sub-IRs, comparing each to R0,
and update the merged IR; see Algorithm 1 in [27] for detail.

2.3 Intermediate Representation Simplification

Although the resulting merged graph may be useful for debugging, its complexity
makes it difficult for developers to use; see Fig. 2(a). Therefore, we simplify the
graph, convert it into a hypergraph, and simplify the hypergraph (hopefully
without losing much information in these simplifications). The main goal is to
end up with an interactive visualization that allows developers to debug.

Reducing the IR Graph. We remove dead nodes (nodes with no adjacent
edges) as they are not translated into machine code and do not affect other
nodes. We then identify nodes that can be merged without losing important
information. A pair of nodes is merged if they have the same opcode, the same
optimization information, belong to the same IR (which can be identified by the
IR id attribute), and share the same neighbors; see Algorithm 2 in [27] for detail.

Reducing the IR Hypergraph. We convert the simplified graph G = (V,E)
into a hypergraph H = (V, S), by extracting hyperedges based on the opti-
mization phases; see Algorithm 3 in [27]. Recall that a node v generated in
phase/hyperedge α and optimized in phases/hyperedges φ and γ now belongs
to all three hyperedges. We reduce hypergraph H by merging suitable pairs of
hyperedges. Different nodes can have the same hyperedge names as attributes,
but different hyperedge IDs, as IDs are assigned based on the execution order.
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Therefore, we merge hyperedges with the same name into a single hyperedge
while assigning a new unique identifier generated from the original IDs. We use
ID concatenation to obtain unique identifiers. Consider two hyperedges A and
B executed twice in the order shown in Fig. 2(b). We use the order to create
unique IDs by merging the 4 hyperedges into 2 hyperedges and assigning new
IDs, generated by concatenating two IDs delimited with a special character ‘@’;
see Algorithm 4 in [27].

This reduces the number of hyperedges but increases the number of nodes
in each hyperedge. Next, we traverse each hyperedge s ∈ S, and we use node
opcodes to see if they can be merged; see Algorithm 5 and Table 1 in [27] for
more details and results.

2.4 Visualizing the Hypergraph with MetroSets

MetroSets [25] uses the metro map metaphor to visualize medium-size hyper-
graphs. It clearly shows the relationships between hyperedges, which in our case
captures the relationships among the optimizations. MetroSets provides simple
and intuitive interactions that make it possible to quickly identify hyperedges
(metro lines) that contain suspicious nodes (metro stations), or hyperedges that
intersect with a particular suspicious hyperedge. Each node in the MetroSet map
is labeled with its unique ID (representing the node generation timeline). The
attributes shown when hovering over a node are phase, opcode, address, graph
ID, and phase ID. A phase attribute tells the user where the node was generated
and it is useful when nodes belong to multiple sets. A developer can distinguish
the phase that generated a node and phases where it was optimized.

3 Evaluation

We work with Google’s JavaScript engine and its JIT compiler, using a dynamic
analysis tool built on top of Intel’s Pin software [28] to collect instruction-level
traces, XED [3] for instruction decoding [3], esprima-python [10] to generate the
syntax-tree from JavaScript code, and escodegen [2] to regenerate JavaScript
from the syntax-tree. Our data comes from the Chromium bug report site;
see [26] for details. We can identify the bugs in all listed bug reports, includ-
ing Chromium bug report 5129. This version of the compiler has a bug in the
EarlyOptimization phase. We generate 19 additional modified JavaScript pro-
grams from the original and run all 20. The instruction traces are used to gen-
erate the IR graph shown in Fig. 2(a) and our visualization is shown in Fig. 3.
We can now attempt to answer some of the questions from Sec. 1.

“What optimizations took place to generate the machine code?” The map and
the “Key to Lines” legend show all optimization phases.

“What is the relationship among the optimization phases?” We can examine
the corresponding lines and use the interactive exploration modes (intersection,
union, complement, etc.) to see the relationships among the phases.
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Fig. 3. Metro map of the IR graph from bug report 5129.

“Which optimization phase was most active?” We can visually identify the
longest line, or hover over each line and see the number of nodes in it; see Fig. 9
in [27] for an example of the most active optimization phase.

“What optimizations affected a specific node” We can hover over the node
of interest, which grays out the lines that don’t contain the node. We can
then examine each of the corresponding lines and look at the displayed node
attributes.

“Which optimization phases are likely to be buggy?” One natural way to do
this is to find parts that differ in the IR graphs with the bug and those without.
In other words, a program is buggy because either it has additional optimizations
or missing optimizations, and this information is captured in the IRs. Any line
that has many non-original IRs represents a significant difference between buggy
and non-buggy programs. In this case study, the majority of nodes (9 out of 11)
in the EarlyOptimization line are from different IRs, indicating a difference in
optimization between buggy and non-buggy programs; see the full paper [27] for
more detail of the figures and more examples.

Our prototype is available at https://hlim1.github.io/JITCompilerIRViz/.
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Abstract. We study upward planar straight-line drawings that use only
a constant number of slopes. In particular, we are interested in whether a
given directed graph with maximum in- and outdegree at most k admits
such a drawing with k slopes. We show that this is in general NP-hard
to decide for outerplanar graphs (k = 3) and planar graphs (k ≥ 3). On
the positive side, for cactus graphs deciding and constructing a drawing
can be done in polynomial time. Furthermore, we can determine the
minimum number of slopes required for a given tree in linear time and
compute the corresponding drawing efficiently.

Keywords: Upward planar · Slope number · NP-hardness

1 Introduction

One of the main goals in graph drawing is to generate clear drawings. For visu-
alizations of directed graphs (or digraphs for short) that model hierarchical rela-
tions, this could mean that we explicitly represent edge directions by letting each
edge point upward. We may also require a planar drawing and, if possible, we
would thus get an upward planar drawing. For schematic drawings, we try to
keep the visual complexity low, for example by using only few different geometric
primitives [28] – in our case few slopes for edges. If we allow two different slopes
we get orthogonal drawings [14], with three or four slopes we get hexalinear and
octilinear drawings [37], respectively. Here, we combine these requirements and
study upward planar straight-line drawings that use only few slopes.

Upward Planarity. An upward planar drawing of a digraph G is a planar drawing
of G where every edge is drawn as a monotonic upward curve. We call G upward
planar if it admits an upward planar drawing and upward plane if it is equipped
with an upward planar embedding. Note that an upward planar embedding, given
by the edge order around each vertex, is necessarily bimodal, that is, each cyclic
sequence can be split into two contiguous subsequences of incoming edges and out-
going edges [14]. Di Battista and Tamassia [15] have shown that if a digraph is
upward planar, then it also admits an upward planar straight-line drawing.

While upward planarity testing is an NP-complete problem for general
digraphs [23], there exist several FPT algorithms [9,19,25] and polynomial-time
c© Springer Nature Switzerland AG 2021
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Fig. 1. (a) A digraph G with (b) upward planar 3-slope drawing; (c) drawing rotated
by 45◦. For readability, edge directions are now given implicitly.

algorithms for special classes, e.g., for single source digraphs [6], outerplanar
digraphs [39], series-parallel digraphs [19], and triconnected digraphs [5]. If the
embedding is given, upward planarity can be tested in polynomial time [5].

k-slope Drawings. A k-slope drawing of a (not necessarily directed) graph G is
a straight-line drawing of G where every edge is drawn with one of at most k
different slopes; see Fig. 1a and b. The slope number of G is the smallest k such
that G admits a k-slope drawing. If only (upward) planar drawings are allowed,
the number is called the (upward) planar slope number of G. The general and
planar slope number have been studied extensively in the past for a variety
of classes [8,16,17,20,21,26,27,31,33–35,38,42], Recently, also the interest in
upward planar drawings on few slopes has grown. For example, allowing one bend
per edge, Bekos et al. [3] studied so-called bitonic st-graphs and complementarily
Di Giacomo et al. [18] considered series-parallel digraphs. Brückner et al. [8]
studied level-planar drawings with a fixed slope set. Older works include results
by Czyzowicz et al. [12,13] on lattices and several results for trees [1,2,7,10].

In a companion paper to this one, Klawitter and Mchedlidze [29] show that
it can be decided in linear time whether a given upward plane digraph admits
an upward planar 2-slope drawing. For the variable embedding scenario and two
slopes, they give a linear-time algorithm for single-source digraphs, a quartic-
time algorithm for series-parallel digraphs, and an FPT algorithm for general
digraphs.

Here, we study the problem of whether a digraph admits an upward planar
k-slope drawing for any k – with a special focus on the next natural case k = 3.
Clearly, we can presume that G has maximum in- and outdegree at most k.
Note that a 2-slope drawing can be sheared in the direction of one slope without
affecting the length of edges drawn with the other slope. The fact that this does
not hold for three or more slopes introduces interesting new geometric aspects.

For the choice of k specific slopes, we propose three settings. In the general
setting, any set of k distinct slopes can be chosen. In the uniform (angles) setting,
we use slopes with angles in {i ·π/k | i ∈ {0, . . . , k −1}} clockwise (cw) from the
x-axis. In the regular grid setting, we define a set of slopes as follows. Let c be
the middle grid point of a W ×W square grid, where W = 2�log2 k�−1. Pick any
k distinct slopes that you get from connecting c to any of the other grid points.
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Fig. 2. Given a drawing using any set of three slopes, we can (i) Rotate, (ii) Shear,
and (iii) Scale it to only use the slope set {↑,↗,→}.

We remark that these slopes are contained in (an extended version of) the W -
th Farey sequence1. Uniform angles naturally lead to more balanced drawings
with more rotational symmetry, which we find more visually appealing. The
downside of this setting is that we cannot always use grid points of the regular
2D grid. E.g., for k = 6, the third slope is tan(26π) =

√
3, which is an irrational

number. Therefore, we assume henceforth for uniform angles a computation and
representation model that can handle implicit coordinates or alternatively real
numbers. On the other hand in the regular grid setting, we get unbalanced edge
angles and irrational edge lengths. Since all of these settings have their natural
justification, we consider all of them. However, note that k = 3 is a special case
because no matter which three slopes we pick, they can be affinely transformed to
the slopes of the angles {45◦, 90◦, 135◦} as illustrated in Fig. 2. Hence, we restrict
considerations to this slope set. For illustrative purposes however, we often rotate
drawings by 45◦ cw and thus use the slope set {↑,↗,→}; see Fig. 1c.

A k-slope assignment of a digraph G assigns each edge of G one of k slopes.
If G is upward plane, we call a k-slope assignment of G consistent if the assign-
ment complies with the cyclic edge order around each vertex; e.g., for k = 3, if a
vertex has three incoming edges, they need to be assigned the slopes →, ↗, and
↑ in counterclockwise (ccw) order. Clearly, if an upward plane embedding does
not admit a consistent k-slope assignment, it also does not admit an upward
planar k-slope drawing.

Contribution. We mainly contribute three results to the study of upward planar
k-slope drawings. Firstly, we classify the upward planar slope numbers of directed
ordered and unordered trees and show how to construct a drawing. Secondly, we
show that for cactus graphs we can construct an upward planar k-slope drawing
in polynomial time. Thirdly, we show that it is NP-hard to decide whether a
given upward outerplanar digraph admits an upward planar 3-slope drawing.
We extend the NP-hardness to k > 3 but restrict the graph class to upward
planar (except for k = 4 if no embedding is given).

For statements marked with “�”, a proof is available in the full version [30].

1 The W -th Farey sequence is the sequence of all completely reduced fractions where
the nominator and denominator is at most W in order of increasing size.
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Fig. 3. Upward k-slope drawings of unordered tree T3,3 with k = 3 and T6,2 with k = 6,
respectively, on the grid.

2 Trees

In this section, we consider upward planar k-slope drawings of directed trees.
While our trees are in general not rooted, results for rooted trees can be derived
or are partially already known [2,7]. For drawings of trees in the fixed and vari-
able embedding scenario, the terms ordered tree, where a planar embedding is
specified, and unordered tree, where it is not, are used. Note that naturally every
unordered tree is upward planar, while an ordered tree is upward planar if and
only if its embedding is bimodal. Not surprisingly, the upward planar slope num-
ber of an unordered directed tree T equals the maximum in- and outdegree of T ;
compare this to the planar slope number of �Δ/2� of an unordered undirected
tree with max. Degree Δ [20]. To show this, we draw T as subgraph of a larger,
regular tree Tk,h for h ≥ 1 where every non-leaf vertex has in- and outdegree k
and each leaf has distance h to a central vertex. To draw Tk,h on a grid with k
slopes, we adopt the strategy of Bachmaier et al. [1] for complete rooted trees;
see Fig. 3. Alternatively, Tk,h can be drawn with k uniform angles; see Fig. 4.

Theorem 1 (�). Let T be an unordered directed tree with maximum indegree
and outdegree k. Then T admits an upward planar k-slope drawing on the regular
grid and another upward planar k-slope drawing with uniform angles.

Note that this recursive drawing procedure requires an exponential-size draw-
ing area (or an exponential edge-length ratio). Different from ordered directed
trees (see below), it is not clear whether exponential area is necessary for some
unordered directed trees when restricting to k slopes. A Θ(n log n) area suffices
for an arbitrary number of slopes [22].

Next, let T be a bimodally ordered directed tree. With the drawing approach
from unordered trees, it is clear that to determine the upward planar slope number
of T it suffices to find a consistent k-slope assignment for T with minimal k. In this
regard, note that the maximum in- and outdegree are natural lower bounds but
that the choice of the (minimal) slope for an edge uv cannot be determined locally
at u and v. For example, the edge vw in Fig. 5a is the third incoming edge at w
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Fig. 4. Upward k-slope drawings of unordered tree T3,3 with k = 3 and T6,2 with k = 6,
respectively, with uniform angles.
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Fig. 5. (a) The minimal slope of an edge is not determined locally; (b) A directed
path requires only one slope; (c) An alternating path requires n − 1 slopes.

but requires at least slope 4, since its preceding edge uw already requires slope 3
at u. This effect only appears along alternating intervals of incoming and outgoing
edges. Hence we have the following observation – see also Fig. 5b and c.

Observation 2. The upward planar slope number of ordered directed trees with
n vertices, n ≥ 2, is bounded within 1 and n − 1 and these bounds are tight.

However, a simple greedy algorithm finds a consistent k-slope assignment for
T , where k is minimal. The algorithm first identifies all edges that can have slope 1,
e.g., if an edge uv is the sole incoming edge at v and the ccw first outgoing edge
at u. Then, it gives any subsequent edge xy the maximum of the slope of its ccw
preceding outgoing edge at x and its ccw preceding incoming edge at y plus one.
Since linear time suffices for this and any additional bookkeeping, we get:

Theorem 3. The upward planar slope number of an ordered directed tree can
be determined in linear time.

Corollary 1. Let T be an ordered directed tree with maximum in-/outdegree k.We
can decide in linear time whether T admits an upward planar k-slope drawing.

Regarding the area requirement for k-slope drawings of ordered directed trees,
we want to remark that Quapil and Jungeblut [40] have shown that there are
ordered trees with a spiral structure that require exponential area for 3 slopes.
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Fig. 6. (a) A cactus graph G; (b) Block-cut tree of G; (c) 3-slope drawing of G.

3 Cactus Graphs

In this section, we show that it can be decided in polynomial time whether a given
cactus digraph admits an upward planar k-slope drawing, both in the fixed and
the variable embedding scenario. We use a dynamic program on the block-cut tree
of the cactus that computes combinable k-slope assignments for each block.

Recall that a block-cut tree T of a graph G has a vertex for each block (bicon-
nected component) and each cut vertex of G and an edge between a block B and
a cut vertex c if c is part of B; see Fig. 6b. Let G be a cactus graph. Note that in
a block-cut tree T of G each block vertex is either a cycle or an edge – we thus
distinguish between cycle blocks and edge blocks. The block-cut tree of G can be
computed in linear time [41]. For G to admit an upward planar k-slope drawing,
each block of T must be drawable under constraints imposed by other blocks.
For example in Fig. 6a–c and k = 3, under a fixed embedding the two edges of
the block B1 incident to the cut vertex c1 need the slopes ↗ and ↑ because of
the blocks B2 and B3. Our strategy is thus as follows.

Algorithm. In the first phase we run a dynamic program (described below) on
the blocks of T to find a consistent slope assignment for each block such that the
blocks are combinatorially combinable. If successful, we enter the second phase,
where we compute drawings of the blocks that are geometrically combinable. In
the last phase we put all block drawings together.

Let G be a cactus and let T be the block-cut tree of G. We pick an arbitrary
block vertex, say B′, of T as root and direct all edges towards B�. As a result,
each block vertex B (except B′) has one outgoing edge towards a cut vertex c.
We then say c is the anchor of B. Let B be a cycle block with anchor c and let
e and e′ be the edges of B incident to c. Suppose we have a slope assignment
for B. Then the anchor type tc(B) of c for B is defined as the slopes of e and e′

and if they are incoming or outgoing edges at c; see Fig. 7. For an edge block B
with edge e, the anchor type tc(B) describes the slope of e and if e is incoming
or outgoing at c. For cycle blocks and edge blocks, there are 2k · (2k − 1) and 2k
different anchor types, respectively.

For a block vertex B with anchor c, a feasible tuple τB = 〈φB , tc(B)〉 consists
of a consistent k-slope assignment φB of B and an anchor type tc(B) of c. A
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Fig. 7. A subset of the anchor types of a cycle block for k = 3.

Fig. 8. Computing the possible slopes and rotations for each edge of a cycle.

feasible set for B is a maximal set of feasible tuples for B that have pairwise
different anchor types. We process T in a post-order traversal. For each block
we compute the feasible set based on the feasible tuples of its descendant blocks.

Combinatorial Realization. Computing the feasible set of a cycle block B with
anchor c works as follows. Let B be the cycle (c = v1, e1, v2, e2, . . . , v|B|, e|B|, v1)
– if an embedding is given, let the order be cw around the inner face. For every
possible slope of e1, we walk around B once and store all tuples of possible slopes
and how far we rotated from the start. We start with e1 and consider the O(1)
feasible tuples of descendant blocks of B anchored at v1 and v2. In the example
of Fig. 8a for k = 3, assuming a fixed embedding, the edge e1 can only have slope
↗ and we have thus rotated 90◦ (starting from the original x-axis). For this tuple
(↗, 90◦), the edge e2 in Fig. 8b has also only one possible slope, namely →, and
the rotation increases by 135◦. However, in the variable embedding scenario,
e1 can also have slopes → and ↑, see Fig. 8c and d. In general, for an edge ei,
i ∈ {2, . . . , |B|}, we consider for all tuples of ei−1 how ei can proceed; again we
consider the feasible tuples of descendant blocks of B at vi and vi+1. For each
found tuple of ei we store a pointer to the tuple(s) of ei−1 it is based on.

When we handle e|B|, we reject all tuples that do not result in a 2π rotation if
the embedding is given or with ±2π if no embedding is given. This ensures that
the cycle has a geometric realization [11]. Combining the slope of e1 and e|B| as
well as whether the rotation is +2π or −2π yields an anchor type of B at c. We
backtrack from the tuple of e|B| to find a consistent slope assignment of B.

Since the edge ei−1 can have at most O(k|B|) possible rotation values, which
imply a slope each, we can compute all possible tuples of ei in O(k|B|) time.
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c

B
B′

Fig. 9. When drawing a single block, we make sure that the anchor point c lies at a
2k-gon edge within the algorithm by Culberson and Rawlins [11]; here k = 4.

Thus, a single feasible tuple of the whole block B can be computed in O(k|B|2)
time and all O(k) feasible tuples of B in O(k2|B|2) time.

Geometric Realization. Suppose we have found a consistent k-slope assignment
for every cycle. In the variable embedding scenario, we now know whether and
how cycles nest. We thus re-root T such that the root block lies on the outer
face. Next, we describe how to obtain a drawing of a cycle block B as a polygon
that does not intersect the edges of its parent block B′ at its anchor point c.

We describe this only for the uniform angles setting and leave it as an open
question for the regular grid setting. Given any sequence σ of rational angles (i.e.,
a rational number times π) that sum up to ±2π, Culberson and Rawlins [11]
describe an algorithm that outputs a polygon with σ as turning angles. Internally,
their so-called Turtlegon algorithm works as follows. It defines a base angle α
as the greatest common divisor of π and all angles in σ; in our case this is π/k.
Larger angles are split into sequences of ±α resulting in a new angle sequence σ′.
W.l.o.g. let σ′ contain more angles +α than −α. Using some of the αs, their
algorithm draws a regular (2π/α)-gon (in our case 2k-gon). To accommodate
additional angles in between, it inserts exponentially shrinking detours at the
corners of the (2π/α)-gon. In the end, we get the original larger angles from
merging the smaller angles [11].

The difficulty for us when employing this O(k|B|) time algorithm, is to ensure
that the edges of the parent block B′ can reach the anchor point c without
intersecting the polygon of B. This might be impossible if c lies within a spiral
inside a detour. However, we can avoid this if we let an incident edge of c be a
side of the 2k-gon (this is always possible because we can pick an appropriate
set of α angles of σ′ for the 2k-gon) and if we let each detour edge shrink by a
sufficiently large factor (e.g., k|B|); see Fig. 9.

The running time of this step is in O(k|B|). Since each vertex is in at most k

blocks, we have that
∑�

i=1|Bi| ≤ kn. Hence, the total running time is in O(k2n).

Putting Blocks Together. We start with a drawing of the root block. We then
recursively draw each child (in a BFS-like order) such that its anchor point
coincides with the corresponding vertex of the parent polygon and scale down
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the drawing of the child block such that the appended polygon does not intersect
the existing drawing. Note that it always suffices to scale down each child to the
size of the minimum distance of any two vertices within in the parent polygon.
We can determine vertex pairs of minimum and maximum distance for a block B
in O(|B| log |B|) time and then place and scale each polygon in linear time.

The total running time is dominated by the dynamic program, which runs
in O(k2|B|2) time for one block B and, hence, in O(k4n2) time for all blocks.

Theorem 4. Let G be an upward planar (or plane) cactus graph with maximum
in- and outdegree k. It can be constructively tested in O(k4n2) time whether G
admits an upward planar k-slope drawing in the uniform angles setting.

For the regular grid setting, we cannot use the algorithm by Culberson and
Rawlins [11] because we have irrational multiples of π as turning angles. For
a sequence of general turning angles, the algorithm by Hartley [24] computes
a polygon realizing that sequence. However, it is not immediately clear how to
guarantee that the edges of the parent polygon at the anchor point are not
intersected. For general polygons, we believe that we can iteratively shrink the
spikes to resolve potential intersections. Since such a procedure involves some
more technicalities, we leave it as an open question for now.

4 Outerplanar and Planar Graphs

In this section, we show that for any constant k ≥ 3 deciding whether an upward
planar (for k = 3, outerplanar) digraph admits an upward planar k-slope draw-
ing is NP-hard. Except for k = 4, this hardness holds true regardless of whether
we prescribe an embedding or not. However, it remains open if the problem is
also NP-complete. Containment in NP is not immediately clear, since it is open
whether some graphs require irrational (or super-polynomial precise) coordinates
for any k-slope drawing. We first describe our NP-hardness reduction for embed-
ded outerplanar graphs for 3 slopes. Afterwards, we show how this extends to
the variable embeddings and to larger k.

We reduce from Planar Monotone 3-SAT [4], an NP-complete version
of 3-SAT, where the three literals of each clause are all either negated or
unnegated – from now on called negative and positive clauses, respectively. More-
over, the incidence graph2 has a planar drawing where the vertices are rectangles,
the edges are vertical straight-line segments, the variables are arranged on a hor-
izontal line, the positive clauses are above, and the negative clauses are below
this line; see Fig. 11a. For a given formula F and a rectangular drawing of its
incidence graph, we construct a corresponding upward outerplanar digraph GF ,
which can only be drawn upward planar with 3 slopes if F is satisfiable. Our
construction follows ideas of Nöllenburg [36] and Kraus [32] and utilizes the
following observations.
2 The incidence graph of a SAT formula has a vertex for each variable and clause and

an edge for each occurrence of a variable in a clause between the corresponding
vertices.
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Fig. 10. (a) The digraph G� admits only an upward 3-slope drawing as square (b);
(c) By combining copies of G� and triangles we can build larger rigid structures; (d)
Upward planar 3-slope drawing of the digraph G↔.

Up to scaling and mirroring diagonally, G� in Fig. 10a admits an upward
planar 3-slope drawing only as an outerplanar square as in Fig. 10b. We can
attach multiple squares (and triangles) to each other as in Fig. 10c. The drawing
of such a bigger digraph is unique up to scaling and mirroring diagonally. If the
squares form a tree, the drawing is outerplanar. We refer to these squares as unit
squares, since, once set, the side lengths for all attached squares are the same.
To allow a certain small degree of freedom, we exploit the following.

Lemma 1 (�). In any upward planar 3-slope drawing of G↔ (see Fig. 10d)

• the edges e1 and e2 are parallel and have the same arbitrary length 	 > 0,
• all edges are oriented as in Fig. 10d up to mirroring along a diagonal axis,
• and all vertical and horizontal edges (besides e1 and e2) have the same lengths,
as well as all diagonal edges.

With this construction kit of useful (sub)graphs in hand, we build a graph
whose upward planar drawings represent the satisfying truth assignments for F .
The high-level construction is depicted in Fig. 11b. We construct, for each
variable xi, a specific digraph – the variable gadget for xi. Similarly, for each
clause cj , there is a specific digraph – the clause gadget for cj . All gadgets mainly
consist of chains of G�s. For a drawing, this enforces a rigid frame structure
built from unit squares. We glue all variable gadgets together in a row and con-
nect variable and clause gadgets by edge gadgets such that the composite graph
remains upward outerplanar (see Fig. 11b) and G�s are drawn as unit squares.

A variable gadget is depicted in Fig. 12. Its base structure is the (violet)
frame composed of chains of unit squares. The core element is the (red) central
chain of unit squares (with a few side-arms), which has one degree of flexibility,
namely, moving as a whole to the left or to the right without leaving the frame
structure of the gadget. It looks and behaves a bit like a pipe cleaning brush that
is stuck inside the frame but can be moved a bit back and forth. Hence, we call
it a brush. It is connected via a G↔ to the brush of the previous variable gadget
(see Fig. 12a/d) and the first brush is connected to the frame via a G↔. This
allows only a horizontal shift of the brushes, but no vertical movement relative
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Fig. 11. Schematic example for our NP-hardness reduction.

to its anchor point at the frame structure. Note that the horizontal position in
any variable gadget is independent of those in all other gadgets. If the brush
is positioned to the very left (right), the corresponding variable is set to false
(true).

For each occurrence of a variable in a positive clause, we have a construction
as depicted in Fig. 12b. There, a long chain of (green) G�s – from now on called
bolt – is attached to the frame structure via two G↔s, which allow only a vertical,
but no horizontal shift. The bolt has on its left side an arm, which can only be
placed in one of two pockets of the frame. It can always be placed in the upper
pocket, which pushes the bolt outwards with respect to the variable gadget (into
an edge and then a clause gadget). It can only be placed in the lower pocket if
the brush is shifted to the very right (i.e. set to true) – then the bolt can “fall”
into a cove of the brush. For each occurrence of a variable in a negative clause,
we have this construction upside-down, such that the bolt can be pulled into the
variable gadget only if the brush is shifted to the very left (i.e. set to false).
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Fig. 12. A variable gadget, which is contained in two positive and one negative clauses.
The brush is positioned to the left and, thus, the variable is set to false. (Color figure
online)

Note that, to maintain outerplanarity of the whole construction, the frame
structure is not contiguous, but connected by G↔s and the arms of the bolts.
Hence, the frame structure decomposes into many components that have fixed
relative horizontal positions and their unit squares have the same side lengths.
However, the components can shift up and down relative to each other. To
keep this vertical shift small enough not to affect the correct functioning of
our reduction, we use, for each such component, the construction depicted in
Fig. 12c. The chain of brushes has no vertical flexibility and serves as a base
ground for an “anchor” of the frame. The frame can move less than one unit up
or down unless it violates planarity. If the frame would be shifted up enough to
be completely above the brush, it would get in conflict with the adjacent bolt.
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Fig. 13. Positive clause gadget in 8 configurations. (Color figure online)

An edge gadget consists of only three straight chains – two frame segments
and a bolt in the middle. Their purpose is to synchronize the distance of the
clause gadgets to the variable gadgets and to preserve the size of the unit squares.
Several edge gadgets are depicted on yellow background color in Fig. 11b.

A clause gadget for a positive clause is depicted in Fig. 13. Within a frame,
which is connected at six points to the frames of three edge gadgets, there is a
horizontal (orange) bar, which is attached via two G↔s to the frame – one G↔
allows a horizontal, the other allows a vertical shift. It resembles a crane that
can move up and extend its arm, while it holds the horizontal bar on a vertical
(orange) rope. The three bolts from the corresponding variable gadgets reach
into the clause gadget. The lengths of these bolts is chosen such that, if they
are pushed out of their variable gadget and into the clause gadget, they only
slightly fit inside the gadget. Depending on whether each of the bolts is pushed
into the clause gadget or pulled out of it, we have eight possible configurations
(with sufficiently small vertical slack). They represent the eight possible truth
assignments to a clause. In Fig. 13, we illustrate that in each configuration, we
can accommodate the horizontal bar in an upward planar 3-slope drawing of the
clause gadget – except for the case when all three bolts push into the clause
gadget, which represents the truth assignment false to all contained variables. A
negative clause gadget uses the same construction, but mirrored vertically.
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Note that, since we have only connected G�s and G↔s, the planar embed-
ding of the constructed graph is unique up to mirroring along a diagonal axis.
Therefore, our reduction holds true also for the variable embedding scenario and
we conclude:

Theorem 5 (�). Deciding whether an upward outerplanar digraph admits an
upward planar 3-slope drawing is NP-hard with and without a given embedding.

Next, we describe how to extend our NP-hardness reduction to more than 3
slopes. There, however, we use only upward planar instead of upward outerplanar
graphs. Observe that, if we fix the embedding and give up outerplanarity, we can
add dummy leaves to each vertex to occupy all but the originally used slopes.
Since any 3 slopes can be projected to {↑,↗,→} and we block all other slopes,
our arguments work for all sets of k slopes and the reduction remains correct.

Last, we show that our NP-hardness reduction remains applicable for k > 4
in the variable embedding setting. This leaves k = 4 in the variable embedding
setting as the only open case. Again, we do this be extending the graph such
that it has only planar embedding up to mirroring along a diagonal axis.

Assume for now that k is an odd number; in the full version [30], we consider
otherwise. From the given k slopes, we pick the 3 middle slopes to host the
graph of the hardness construction described before. For simplicity, we visualize
these 3 middle slopes again as {↑,↗,→} and the other slopes in quadrants
II and IV around a vertex. The key idea is to occupy the unused slopes at
each vertex by fans and beaters as depicted in Fig. 14 instead of simple leaves.
Fans are appended to the outside of each vertex if the angle that has been
formed in the old construction is ≥ 180◦. For each other remaining slope at
each vertex, we add a beater. This is a graph obtained from the wheel graph
W2k+1 of which one spoke e∗ is broken free. This enforces an order on the
spokes and, hence, we prescribe the slope of e∗. Note that the whole beater could
be mirrored leaving two possible slopes for e∗. However, this is unproblematic
since in our construction the “mirrored” slope is also occupied by a beater or
a fan. In the full version [30], we prove that this suffices to enforce a desired
embedding. Though we lost upward outerplanarity, note that the underlying
undirected graph remains outerplanar.

Theorem 6 (�). Deciding whether an upward planar digraph with maximum
in- and outdegree k admits an upward planar drawing with k slopes is NP-hard
for k ≥ 3 if a bimodal embedding is given and is NP-hard for k ∈ N

+ \ {1, 2, 4}
if no embedding is given. This holds true for all choices of k slopes.
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Fig. 14. Example for k = 5 slopes: (a) A fan and (b) a beater. (c) We add fans and
beaters to each vertex of the graph such that all unused slopes are occupied.
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Abstract. We study a classic problem introduced thirty years ago by
Eades and Wormald. Let G = (V, E, λ) be a weighted planar graph,
where λ : E → R

+ is a length function. The Fixed Edge-Length Pla-
nar Realization problem (FEPR for short) asks whether there exists
a planar straight-line realization of G, i.e., a planar straight-line drawing
of G where the Euclidean length of each edge e ∈ E is λ(e). Cabello,
Demaine, and Rote showed that the FEPR problem is NP-hard, even
when λ assigns the same value to all the edges and the graph is tri-
connected. Since the existence of large triconnected minors is crucial to
the known NP-hardness proofs, in this paper we investigate the compu-
tational complexity of the FEPR problem for weighted 2-trees, which
are K4-minor free. We show its NP-hardness, even when λ assigns to
the edges only up to four distinct lengths. Conversely, we show that the
FEPR problem is linear-time solvable when λ assigns to the edges up to
two distinct lengths, or when the input has a prescribed embedding.
Furthermore, we consider the FEPR problem for weighted maximal out-
erplanar graphs and prove it to be linear-time solvable if their dual tree is
a path, and cubic-time solvable if their dual tree is a caterpillar. Finally,
we prove that the FEPR problem for weighted 2-trees is slice-wise poly-
nomial in the length of the longest path.

1 Introduction and Preliminary Results

The problem of producing drawings of graphs with geometric constraints is a
core topic for Graph Drawing [3–5,11,14,23,24,27,34,43,45]. In this context, a
classic question is the one of testing if a planar graph can be drawn planarly and
straight-line with prescribed edge lengths. The study of such a question is related
to several topics in computational geometry [17,41,47], rigidity theory [16,30,32],
structural analysis of molecules [8,31], and sensor networks [13,38,40]. Formally,
given a weighted planar graph G = (V,E, λ), i.e., a planar graph equipped with
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Fig. 1. A planar and a non-planar straight-line realization of the same 2-tree.

a length function λ : E → R
+, the Fixed Edge-Length Planar Realiza-

tion problem (FEPR for short) asks whether there exists a planar straight-line
realization of G (PR for short), i.e., a planar straight-line drawing of G where the
Euclidean length of each edge e ∈ E is λ(e). The FEPR problem was first studied
by Eades and Wormald [26], who showed its NP-hardness for triconnected planar
graphs and for biconnected planar graphs with unit lengths. Cabello, Demaine,
and Rote strengthened this result by proving NP-hardness for triconnected pla-
nar graphs with unit lengths [12]. Abel et al. [1] proved the ∃R-completeness of
the FEPR problem with unit lengths, solving a problem posed by Schaefer [42].

Since large triconnected minors are essential in the known NP-hardness proofs
of the FEPR problem, we study its complexity for 2-trees, which are the maximal
graphs with no K4-minor. A 2-tree is a graph composed of 3-cycles glued together
along edges in a tree-like fashion; see Fig. 1, where we show a planar and a non-
planar realization of a weighted 2-tree. Every 2-tree is planar and biconnected,
and the class of 2-trees is the class of maximal series-parallel graphs. There is a
vast amount of research on 2-trees in Graph Drawing (e.g., in [18,25,28,33,39]).
The edge lengths of 2-trees have been studied in [9,10].

In this paper, we first show that the FEPR problem can be solved in linear
time for 2-trees with prescribed embedding1. We note the FEPR problem is
NP-hard for general planar graphs with a prescribed embedding [12]. Second, we
show that, in the variable embedding setting, the FEPR problem is NP-hard
when the number of distinct lengths is at least four, whereas it is linear-time
solvable when the number of distinct lengths is one or two. Note that, for general
planar graphs, the problem is NP-hard even when all the edges are required to
have the same length [26]. Third, we deal with maximal outerplanar graphs.
We show that the FEPR problem can be solved in linear time for maximal
outerpaths, i.e., the maximal outerplanar graphs whose dual tree is a path, and in
cubic time for maximal outerpillars, i.e., the maximal outerplanar graphs whose

1 As in [12], our algorithms adopt the real RAM model, which is customary in com-
putational geometry and supports standard arithmetic operations in constant time.
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Fig. 2. A 2-tree and its decomposition tree rooted at the 3-cycle with label 1.

dual tree is a caterpillar. Finally, we present a slice-wise polynomial algorithm
for 2-trees, parameterized by the length of the longest path.

Because of space limitations, several proofs are omitted. They can be found
in the full version of the paper [2].

Preliminaries. We assume familiarity with Graph Drawing (see, e.g., [21]). A
planar drawing of a graph G defines a clockwise order of the edges incident to
each vertex of G; the set of such orders for all the vertices is a rotation system for
G. Two planar drawings of G are equivalent if (i) they define the same rotation
system for G and (ii) their outer faces have the same boundaries. An equivalence
class of planar drawings is a plane embedding (or simply an embedding). When
referring to a planar drawing Γ of a graph that has a prescribed embedding E ,
we always imply that Γ respects E ; sometimes, we explicitly stress this.

An outerplanar drawing is a planar drawing in which all the vertices are
incident to the outer face. An outerplane embedding is an equivalence class of
outerplanar drawings. An outerplanar graph is a graph that admits an outerpla-
nar drawing. The dual tree T of a biconnected outerplanar graph G is defined
as follows. Consider the (unique) outerplane embedding O of G. Then T has
a node for each internal face of O and has an edge between two nodes if the
corresponding faces of O are incident to the same edge of G. An outerpath is a
biconnected outerplanar graph whose dual tree is a path. A caterpillar is a tree
that becomes a path if its leaves are removed. An outerpillar is a biconnected
outerplanar graph whose dual tree is a caterpillar.

A 2-tree is recursively defined as follows. A 3-cycle is a 2-tree. Given a 2-tree
G containing an edge (u,w), the graph obtained by adding to G a vertex v and
two edges (v, u) and (v, w) is a 2-tree. We observe that the neighbors of any
degree-2 vertex are adjacent. The tree-like structure of a 2-tree G is encoded
by means of the decomposition tree T rooted at a 3-cycle of G. Each node in
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T represents a 3-cycle of G, and two nodes are adjacent if their corresponding
3-cycles share an edge; see Fig. 2. The decomposition tree of a 2-tree is easily
computed in linear time. We adopt the Euclidean metric and assume that the
length function of G is such that every 3-cycle satisfies the triangle inequality.
This is a necessary condition for the existence of a straight-line realization of G,
i.e., a (not necessarily planar) drawing of G in which each edge is represented
by a line segment with the prescribed length. We often refer to 3-cycles of G,
nodes of T , and triangles in a straight-line realization of G interchangeably.

Prescribed Embedding. First, we deal with 2-trees with a prescribed rotation
system or embedding. We start by presenting a geometric tool.

Theorem 1. Let G be an n-vertex weighted 2-tree, E be a plane embedding (resp.
R be a rotation system) for G, and Γ be a straight-line realization of G. There
is an O(n)-time algorithm to test whether Γ is a PR respecting E (resp. R).

The proof of Theorem 1 is based on an algorithm that: i. tests if Γ respects
E (resp. R), ii. triangulates the faces of Γ and checks if they are simple poly-
gons [15], and iii. tests if the obtained drawing is a convex subdivision [20].

We now present our prescribed embedding result.

Theorem 2. Let G be an n-vertex weighted 2-tree and E be a plane embedding
(resp. R be a rotation system) for G. There is an O(n)-time algorithm to test
whether G admits a PR that respects E (resp. R) and to construct one, if any.

The proof of Theorem 2 is based on: i. computing a decomposition tree
T rooted at the 3-cycle c of G with the largest sum of the edge lengths; ii.
computing a candidate PR Γ by visiting T in pre-order while greedily adding to
Γ the drawing of each 3-cycle t, by exploiting E (resp. R) and the containment
relationship between c and t; and iii. testing whether Γ is a PR of G whose
plane embedding (resp. rotation system) is E (resp. R) by means of Theorem 1.

2 NP-Hardness for 2-Trees with 4 Edge Lengths

We sketch a reduction from the NP-complete Planar Monotone 3-SAT prob-
lem [7] (PMS for short) to the FEPR problem with four edge lengths.

Theorem 3. The FEPR problem is NP-hard for weighted 2-trees, even for
instances whose number of distinct edge lengths is 4.

A Boolean CNF formula φ is an instance of PMS if the variable-clause incidence
graph Gφ of φ is planar, and each clause of φ is either positive (it consists of
positive literals) or negative (it consists of negated literals). The PMS problem is
NP-complete even when Gφ comes with a monotone rectilinear representation [7],
i.e., a crossing-free drawing Γφ of Gφ in which i. variables and clauses are boxes,
ii. edges are vertical segments, and iii. positive (resp. negative) clauses lie above
(resp. below) the horizontal strip containing the variable boxes; see Fig. 3(a).
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(a) (b)

(c)

Fig. 3. (a) The monotone rectilinear representation Γφ of Gφ, and (b) Its modified
version Γ ∗

φ . (c) Overview of the reduction showing only the frame triangles (Color
figure online).

First, we transform Γφ into a representation Γ ∗
φ of Gφ that uses segments

with slope 0◦, 60◦, or 90◦; see Fig. 3(b). Then we obtain from Γ ∗
φ a weighted

2-tree Hφ that admits a PR if and only if φ is satisfiable; see Fig. 3(c). The edges
of Hφ are assigned the lengths w1 = 1, w2 = 0.9, w3 = 0.2, and w4 = 1.61. To
obtain Hφ we construct gadgets for the variables, the clauses, and the edges of
Gφ. Our gadgets exploit two main types of triangles: equilateral triangles with
sides of length w1 (frame triangles), and isosceles triangles with base of length
w1 and two sides of length w2 (transmission triangles). The union of the frame
triangles of the gadgets representing variables (gray), edges (yellow), and clauses
(green), together with a set of frame triangles connecting the variable gadgets
(blue), forms a maximal outerplanar graph. Since this graph is formed by frame
triangles, it has a unique PR up to rigid transformations.
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α

�1
IN �2

IN

�3
IN

β

Fig. 4. The (α, β)-clause gadget with α = 4 and β = 2. The values of α and β depend
on the relative positions in Γ ∗

φ of the involved variable gadgets (Color figure online).

Our strategy is to construct Hφ from a “rigid” part (mainly formed by the
union of the frame triangles of the gadgets), and a part that instead allows
for different embedding choices (mainly encoded by the flips of transmission
triangles). Consider for example Fig. 4, where we illustrate the PR of a clause
gadget, which is the most critical gadget in the construction. Each transmission
triangle � (in red) has two possible different embeddings. The choice of this
embedding influences the choice of the embeddings of the transmission triangles
that “conflict” with �, that is, that overlaps with � in one of their embeddings.
These chains of conflict relationships allow for “truth values” that come from the
variable gadgets to “move” along the gadgets representing edges. The relevant
triangles �1

IN, �2
IN, and �3

IN encode such values: In Fig. 4, �1
IN and �2

IN point
downward since the corresponding variable is True, and �3

IN points upward
since the corresponding variable is False. A special set of transmission triangles,
whose flip depends on the orientation of the relevant triangles, overlap in the
pink hexagonal region if all the relevant triangles point upward. Conversely, if
at least one relevant triangle points downward, the clause gadget admits a PR.

3 Linear-Time Algorithm for 2-Trees with 2 Edge
Lengths

This section is devoted to sketch the proof of the following theorem.

Theorem 4. Let G = (V,E, λ) be an n-vertex weighted 2-tree, where λ : E →
{w1, w2} with w1, w2 ∈ R

+. There is an O(n)-time algorithm to test whether G
admits a PR and to construct one, if any.

Let Γ be a PR of G. If w1 = w2, then the existence of Γ implies that G is an
outerplanar graph, which is a linear-time testable property [19,36,46], and that
Γ is outerplanar. Since G is 2-connected, it has a unique outerplane embedding E
which can be constructed in linear time [19,36,37,44,46]. Hence, the problem
reduces to the problem of testing whether G has a PR that respects E , which
can be solved in linear time by Theorem 2.
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Consider now the case in which w1 �= w2. W.l.o.g. assume w1 < w2. Also, let
r = w2

w1
> 1. The realization of any 3-cycle of G is one of the following types of

triangles: i. an equilateral (small equilateral) triangle of side w1, ii. an equilateral
(big equilateral) triangle of side w2, iii. an isosceles (tall isosceles) triangle with
base w1 and two sides of length w2, and iv. an isosceles (flat isosceles) triangle
with base w2 and two sides of length w1; refer to Fig. 5.

Fig. 5. The four possible types of triangles that represent the 3-cycles of G.

Let �1 and �2 be two triangles realizing two different 3-cycles in a PR of G.
We say that �1 is drawn inside �2 if all the points of �1 are points of �2 and
at least one vertex of �1 is an interior point of �2. Let T be the decomposition
tree of G. We have the following.

Lemma 1. If T is rooted at the 3-cycle with the largest sum of edge lengths and
�1 is drawn inside �2, then �1 is a leaf triangle that shares a side with �2.

By Lemma 1, we assume that T is rooted at a 3-cycle with the largest sum
of edge lengths. The framework of G is the subgraph GF ⊆ G obtained, in
linear time, as follows: For each leaf triangle �i that can be drawn inside its
parent or a sibling triangle �j , we remove from G the vertex v that �i does
not share with �j , along with the two edges incident to v. Note that i. GF is
a 2-tree which may contain any type of triangle, ii. by Lemma 1, no triangle of
GF is drawn inside any other triangle in any PR of G, and iii. T is rooted at a
triangle of the framework. We test in linear time if GF is outerplanar and, in such
case, we compute in linear time its unique outerplanar embedding E . Exploiting
Theorem 2, we test if GF admits a PR respecting E . In the negative case G
admits no PR, otherwise we denote by ΓF the obtained PR of GF . Hereafter,
we assume that ΓF exists.

Refer to Fig. 6, where we show an example of a PR of a weighted 2-tree. Let
L� be the set of leaf triangles that were removed from G to obtain GF . Observe
that L� is formed by small equilateral and flat isosceles triangles. We show how
to extend ΓF to a PR of G by embedding the triangles of L�, if possible. Let
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Fig. 6. (Left) A PR of a weighted 2-tree G. Dashed triangles represent alternative
embeddings for some 3-cycles, which would generate conflicts. (Right) The decompo-
sition tree of G rooted at the framework triangle �1. Triangles of ΓF are thick, and
edges of the leaf triangles of L� that are not in ΓF are thin.

� denote a triangle in L�. The triangle � has a side in GF that is incident to
either two internal faces, or to an internal face and the outer face of ΓF ; hence �
has exactly two embedding choices. We say that � has an internal embedding if
it is embedded inside an internal face of ΓF , and an outer embedding otherwise.
We say that � induces a framework conflict if it has an outer embedding and
ΓF ∪� is not planar; e.g., see the (dashed) outer embedding of �16 in Fig. 6. Let
�i and �j be two triangles of L�. We say that �i and �j induce an internal
conflict if both have an internal embedding and ΓF ∪�i ∪�j is not planar; e.g.,
see the (dashed) internal embedding of �9 and the (solid) internal embedding
of �18. On the other hand, we say that �i and �j induce an external conflict
if both have an outer embedding and ΓF ∪ �i ∪ �j is not planar; e.g., see the
(dashed) outer embeddings of �6 and �13.

Lemma 2. Let �i and �j be two leaf triangles of L� that can both be drawn
inside some triangle � ∈ ΓF . The triangles �i and �j induce an internal
conflict if at least one of the following properties holds true:

(a) �i and �j share an edge;
(b)

√
3 < r ≤ 2 cos(π/12) and � is a tall isosceles;

(c) 1 < r ≤
√

3.

The weighted 2-tree shown in Fig. 6 is such that
√

3 < r ≤ 2 cos(π/12), that
is r < 2. By Property b of Lemma 2, two flat isosceles triangles can be drawn
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inside a big equilateral triangle without inducing conflicts, and any pair of leaf
triangles (i.e., either two flat isosceles triangles or a flat isosceles triangle and
a small equilateral triangle) induce an internal conflict inside a tall isosceles
triangle. On the other hand, by Property a of Lemma 2 and the fact every
triangle in L� has two embedding choices, for a PR of G to exist, it must hold
that no three triangles in L� share the same edge with a triangle of GF . If L�
satisfies this requirement, then we say that L� is consistent.

Lemma 3. If L� is consistent, then there are O(1) pairs of triangles sharing
an edge with the same triangle of GF that induce an internal conflict.

Proof. By Lemma 1, two triangles of L� that induce an internal conflict share
an edge with a common triangle � of GF . Since L� is consistent, there exist at
most 6 triangles in L� incident to �. Hence, at most

(
6
2

)
= 15 pairs of triangles

sharing an edge with � can induce an internal conflict. ��

Extending ΓF to a PR of G. Next, we show how to test whether there is a
choice of embeddings for the triangles in L� that yields a PR of G. We distinguish
two cases, based on whether r ≥ 2 or r < 2.

Case r ≥ 2. In this case there are no flat isosceles triangles, and hence the
setting is much simpler than the one depicted in Fig. 6. Every leaf triangle in
L� is a small equilateral triangle whose parent is a tall isosceles triangle. We act
as follows. For any two triangles �1,�2 ∈ L� that share an edge e, we embed
�1 and �2 in ΓF on opposite sides of e. We embed every other leaf triangle
in L� inside its parent triangle. At the end of this process we obtain, in linear
time, a straight-line realization Γ of G, and a plane embedding E of G.

Lemma 4. G has a PR if and only if Γ is planar.

Proof Sketch. First, if two leaf triangles share an edge e, then they lie on opposite
sides of e in any PR, since they would overlap otherwise. Second, each isosceles
triangle may contain only one leaf triangle, since it has only one side of length
w1. Hence, embedding a leaf triangle � inside an isosceles triangle that shares
an edge with � cannot cause crossings, since � does not induce internal con-
flicts. Therefore, a crossing in Γ can only be caused by framework and external
conflicts, which are, however, unavoidable. ��

By Lemma 4, in order to test whether G admits a PR, we can apply Theorem
1 to test in O(n) time whether Γ is a PR of G with embedding E .

Case r < 2. In this case there might be flat isosceles triangles in G which might
or might not need to be embedded inside a framework triangle; in Fig. 6 such
triangles are shaded light gray. Also, more than one leaf triangle can be drawn
inside the same framework triangle which might or might not induce internal
conflicts. Recall that the triangles in L� are small equilateral triangles and/or
flat isosceles triangles.

We construct a 2SAT formula φ with a Boolean variable for each triangle
� ∈ L�. The values of φ are associated with the two possible embeddings of �.
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If two triangles in L� induce a conflict for certain embeddings, then φ contains
a clause that is True if and only if, at least one of the variables representing the
triangles does not have the value corresponding to the embedding generating the
conflict. Further, for each triangle that induces a framework conflict, φ contains
a clause that is True if and only if, the variable representing the triangle does
not have the value corresponding to an outer embedding. We test in O(|φ|)
time if φ is satisfiable [6]. In the positive case, we obtain a PR of G from ΓF

by embedding each triangle in L� according to the value of the corresponding
variable. We reject the instance in the negative case.

It only remains to prove that the number of conflicts (and hence the size of φ)
is in O(n) and that such conflicts can be found in O(n) time. Detecting internal
conflicts is fairly easy: i. by Lemma 1, triangles inducing an internal conflict
are “close” in T (they share an edge with a common framework triangle); ii.
by Lemma 3, there exist O(1) leaf triangles sharing an edge with the same
framework triangle; and iii. since L� is consistent, the maximum degree of T is
bounded by a constant.

Hence, by traversing T we compute in O(n) time the set of O(n) pairs of leaf
triangles that induce an internal conflict.

Efficiently detecting external and framework conflicts is more challenging.
Let L′

� be the subset of L� composed of those triangles that are incident to
external edges of ΓF . We give an outer embedding to every triangle in L′

�.
This results in a (possibly non-planar) straight-line realization Γ ′

F of the graph
G′

F := GF ∪ L′
�. We now construct a bounded-degree graph H whose nodes are

associated with sets of vertices of G′
F so that the following properties hold: (a)

Each node is associated with O(1) degree-2 vertices of G that belong to triangles
in L′

�, (b) if two triangles in L′
� induce an external conflict, then their degree-2

vertices are associated either with the same node or with adjacent nodes, and
(c) if a triangle � ∈ L′

� intersects an edge e of GF (inducing a framework
conflict), then the degree-2 vertex of � and the end-vertices of e are associated
either with the same node or with adjacent nodes.

After constructing H, the external and framework conflicts can be detected
with a linear-time traversal of H.

The graph H is defined as follows. Assume that the bottom-left corner of the
bounding box of Γ ′

F lies on the origin of the Cartesian axes. Consider a square
grid covering the plane whose grid cells have side length 3w2; see Fig. 7. Assign
a label l(v) = (�x(v)

3w2
�, �y(v)

3w2
�) to each vertex v of G′

F . Then H has a node for
each label assigned to at least one vertex of G′

F , and two distinct nodes (i, j)
and (i′, j′) are connected if and only if |i − i′| ≤ 1 and |j − j′| ≤ 1. Note that H
has O(n) edges since it has at most n nodes and maximum degree 8.

We now prove that H satisfies Property (a). The number of degree-2 vertices
of G that belong to triangles in L′

� and are associated with a node (i, j) of H, is
upper bounded by the number k of framework triangles that i. are contained in
the union of the grid cell (i, j) and its 8 surrounding grid cells, and ii. share an
edge with a triangle in L′

�. Note that k is actually the number of big equilateral
and tall isosceles triangles in such nine cells. Since the area of a big equilateral
or tall isosceles triangle is at least the area of a small equilateral triangle, then
k is upper bounded by the ratio between the area of 9 cells, which is 81w2

2, and
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Fig. 7. The straight-line realization Γ ′
F of the graph G′

F := GF ∪ L′
�, where each

triangle in L′
� has an outer embedding. The triangles of GF are gray and those in

L′
� are white. The leaf triangles in the dashed cell can induce conflicts only with the

triangles in the eight highlighted cells surrounding such a cell.

the area of a small equilateral triangle, which is w2
1

√
3/4. Therefore, since r < 2,

we have that k ∈ O(r2) ⊆ O(1).
We next sketch an algorithm to construct H in O(n) time. The vertex set of

H is constructed by removing repetitions from the set of labels l(v) computed for
the vertices v in G′

F . To this aim, we compute a total order π of the vertices of
G′

F such that, for any two vertices u and v with l(u) = (iu, ju) and l(v) = (iv, jv),
we have u ≺π v if and only if i. iu < iv or ii. iu = iv and ju < jv.

Since G′
F is connected and any edge of G′

F has length at most w2, then
0 ≤ i, j ≤ w2n

3w2
= 1

3n for any label (i, j). Hence, we compute π in O(n) time with
counting sort. Since vertices with the same label are consecutive in π, repetitions
can be removed with a linear scan of π.

The edge set of H consists of four disjoint subsets E−, E|, E/, and E\. These
sets contain the edges that connect nodes of H corresponding to grid cells that
are adjacent horizontally, vertically, along the main, and the minor diagonal,
respectively; see Fig. 8. We appropriately define four orders π−, π|, π/, and π\
of the nodes of H such that nodes that are connected by an edge in E−, E|, E/,
and E\ are consecutive in the corresponding order. We compute the four sets of
edges with a linear scan of the orders π−, π|, π/, and π\.

4 Maximal Outerplanar Graphs

In this section we study the FEPR problem for weighted outerplanar 2-trees,
i.e., for weighted maximal outerplanar graphs. We prove the following theorems.

Theorem 5. LetG be an n-vertex weighted maximal outerpath. There is anO(n)-
time algorithm to test whether G admits a PR and to construct one, if any.
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Fig. 8. The edge set of the graph H computed from the drawing Γ ′
F in Fig. 7. The sets

E−, E|, E/, and E\ are shown in yellow, blue, green, and red, respectively (Color figure
online).

Theorem 6. Let G be an n-vertex weighted maximal outerpillar. There is an
O(n3)-time algorithm to test whether G admits a PR and to construct one, if any.

Let G be a weighted 2-tree and e be an edge of G. An e-outer realization of G is a
PR of G such that e is incident to the outer face. An e-outer realization Γ of G is
e-optimal if, for every e-outer realization Γ ′ of G, there is a rigid transformation
of Γ such that the segment representing e coincides with the one in Γ ′ and such
that the interior of Γ is a subset of the interior of Γ ′.

We sketch the proof of Theorem 5; the proof of Theorem 6 uses similar ideas.
Let G be an n-vertex weighted maximal outerpath; see Fig. 9. Let T be the dual
tree of the outerplane embedding O of G; since G is an outerpath, T is a path
(p1, . . . , pk). For i = 1, . . . , k, let ci be the 3-cycle of G bounding the internal face
of O dual to pi and let Ci be the unique, up to rigid transformation, PR of ci.
For i = 1, . . . , k − 1, let ei be the edge of G dual to (pi, pi+1). Let x ∈ {1, . . . , k}

Fig. 9. A maximal outerpath G.
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be such that cx has maximum edge length sum. Let G1 and G2 be the subgraphs
of G composed of the cycles c1, c2, . . . , cx−1 and cx+1, cx+2, . . . , ck, respectively.
Since the length of cx is maximum, the restrictions of any PR of G to G1 and G2

are ex−1-outer and ex-outer realizations, respectively. We prove that G1 (resp.
G2) admits an ex−1-outer (resp. ex-outer) realization if and only if it admits an
ex−1-optimal (resp. ex-optimal) realization. The core of the proof of Theorem 5
is an O(n)-time algorithm, called Outer-Checker, that constructs an ex−1-
optimal (resp. an ex-optimal) realization Γ1 of G1 (resp. Γ2 of G2) and its plane
embedding, if any such a realization exists. If Outer-Checker concludes that
both G1 and G2 admit a PR, then Γ1 and Γ2 (as well as their embeddings) can
be combined in four ways with Cx (see Fig. 10) and each resulting straight-line
realization can be tested for planarity in O(n) time, by Theorem 1.

ex−
1

e
x ex−

1

e
x

ex−
1

e
x e
x

ex−
1

Fig. 10. The four different ways to combine Γ1 and Γ2 with Cx.

We describe how Outer-Checker works on G1. A key observation is that
the restriction of any ex−1-optimal realization of G1 to the graph Gi

1 composed
of the cycles c1, c2, . . . , ci is an ei-optimal realization of Gi

1. This allows Outer-
Checker to work by induction on i to decide whether Gi

1 has an ei-optimal
realization Γ i

1. If i = 1, the graph G1
1 is the cycle c1 whose unique PR C1 is e1-

optimal. If i > 1, an ei-optimal realization Γ i
1 of Gi

1 is constructed, if it exists,
by combining Γ i−1

1 and Ci so that ei−1 coincides in the two realizations. Three
things might happen. First, if Γ i−1

1 “fits” inside Ci, as in Fig. 11(left), then the
resulting PR Γ i

1 is ei-optimal. Else, if Γ i−1
1 “fits” outside Ci, as in Fig. 11(middle),

once cycles Ci and Ci−1 lie on different sides of ei−1, then the resulting PR Γ i
1 is

ei-optimal. Otherwise, Gi
1 admits no ei-optimal realization, as in Fig. 11(right).

A naive implementation of Outer-Checker takes O(n2) time. Indeed, for
each of the O(n) inductive steps, one can check in O(n) time whether Γ i−1

1

fits inside and/or outside Ci using Theorem 1. We achieve O(n) total running
time avoiding a planarity test at each step. For i = 1, . . . , x − 1, we compute
a “candidate” straight-line realization Γ i

1 of Gi
1, and only test for planarity the

final realization Γ x−1
1 . By “candidate” we mean that, if Gi

1 admits an ei-optimal
realization, then Γ i

1 is such a realization. In order to do that, Outer-Checker
dynamically maintains the boundary Bi

1 of the convex hull of Γ i
1, which is guar-

anteed to actually be the boundary of the convex hull of Γ i
1 if Γ i

1 is planar.
We compute Bi

1 by suitably exploiting a linear-time algorithm by Melkman [35],
which incrementally computes the convex hull of a point set spanned by a planar
path, provided that the points are given in the order of the path.
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e
i−

1

e i
−
1

e i
−
1

Fig. 11. The three cases in the construction of Γ i
1 . The triangle Ci is bold. (Left) Γ i−1

1

fits inside Ci. (Middle) Γ i−1
1 does not fit inside Ci, but it fits outside Ci. (Right) Γ i−1

1

fits neither inside nor outside Ci.

After constructing Γ x−1
1 (which comes with a plane embedding), we test

its planarity in O(n) time using Theorem 1. If the test is successful, Γ x−1
1 is

an ex−1-optimal PR of Gx−1
1 , otherwise no ex−1-optimal PR of Gx−1

1 exists.
Each step of Outer-Checker takes O(1) time, except for the computation of
the boundary Bi

1. However, the computation of the boundaries B1
1,B2

1, . . . ,Bx−1
1

takes O(n) time in total [35]. Hence, the overall running time of Outer-
Checker is in O(n).

5 2-Trees with Short Longest Path

In this section, we sketch a proof of the following theorem.

Theorem 7. Let G be an n-vertex weighted 2-tree and let � be the length of a
longest path of G. There is an nO(4�)-time algorithm to test whether G admits a
PR and to construct one, if any.

Theorem 7 is actually a corollary of a stronger theorem, which relates to SPQ-
trees; these are a specialization for 2-trees of the well-known SPQR-trees [22,29].
The SPQ-tree T of G is a tree that represents a recursive decomposition of G into
subgraphs along separation pairs. Each node μ of T corresponds to a subgraph
Gμ of G, which is joined to the rest of the graph via two vertices uμ and vμ.
Assume that T is rooted at the neighbor of an edge of G with maximum length
and let h be the height of T . We design an nO(2h)-time algorithm that tests
whether G admits a PR and, in the positive case, constructs such a realization.
Then Theorem 7 follows, as we can prove that h ≤ 2� − 2.

The nO(2h)-time algorithm performs a visit of T . When visiting a node μ,
the algorithm either concludes that G admits no PR, or constructs a set Rμ

of “optimal” PRs of Gμ. Here, “optimal” means that, for every PR Γμ of Gμ,
there is a PR Γ ′

μ ∈ Rμ whose interior is a subset of the interior of Γμ, after
a suitable rigid transformation. The main ingredient needed for bounding the
running time of the algorithm is the following. Suppose that Gμ consists of a
“parallel” composition of graphs Gν1 , . . . , Gνk

. Then “few” of the permutations
of Gν1 , . . . , Gνk

need to be considered when constructing Rμ. Namely, we can
sort Gν1 , . . . , Gνk

by increasing length of the 2-edge paths between uμ and vμ

they contain. Then, in any PR of G, the graph Gνi
is either “to the left” or “to the
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right” of all the graphs Gν1 , . . . , Gνi−1 ; further, whether a PR of G is optimal
only depends on the choice of the “leftmost” and “rightmost” graphs among
Gν1 , . . . , Gνk

(and on their drawings, which are taken from Rν1 , . . . ,Rνk
), and

not on the permutation of the remaining graphs, as long as planarity is ensured.

6 Open Problems

Our results on the FEPR problem when G is a 2-tree motivate the study of
several open questions:

– Determine the computational complexity of the FEPR problem for weighted
2-trees with 3 prescribed edge lengths (we proved it is linear-time solvable for
2 and NP-hard for 4).

– Determine if it is possible to improve our XP algorithm for general 2-trees to
an FPT algorithm.

– Study the computational complexity of the FEPR problem for general max-
imal outerplanar graphs.

– Study the computational complexity of the FEPR problem for graphs with
treewidth 2 and for 2-degenerate planar graphs; both these classes generalize
the one of 2-trees.
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Abstract. We consider the problem of drawing an outerplanar graph
with n vertices with at most one bend per edge if the outer face is already
drawn as a simple polygon. We prove that it can be decided in O(nm)
time if such a drawing exists, where m ≤ n − 3 is the number of interior
edges. In the positive case, we can also compute such a drawing.

Keywords: Partial embedding · Outerplanar graphs · Visibility
graph · Simple polygon

1 Introduction

One of the fundamental problems in graph drawing is to draw a planar graph
crossing-free under certain geometric or topological constraints. Many classical
algorithms draw planar graphs under the constraint that all edges have to be
straight-line segments [6,17,18]. In practical applications, however, we do not
always have the freedom of drawing the whole graph from scratch, as some
important parts of the graph may already be drawn.

This problem is known as the Partial Drawing Extensibility problem.
Formally, given a planar graph G = (V,E), a subgraph H = (V ′, E′) with
V ′ ⊆ V and E′ � E called the host graph, and a planar drawing ΓH of host H,
the problem asks for a planar drawing ΓG of G such that the drawing of H in ΓG

coincides with ΓH . This problem was first proposed by Brandenburg et al. [3] in
2003 and has received a lot of attention in the subsequent years.
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Problem Statement. In this paper, we consider a special drawing extension set-
ting, in which G is a biconnected outerplanar graph with n vertices and m
interior edges, the host graph H is the simple cycle bounding the outer face of
G, and ΓH is a 1-bend drawing of H. In other words, we have a simple poly-
gon P = ΓH as input and we want to draw the interior edges of G inside P
without crossings. Testing for a straight-line extension is trivial. Moreover, for
any integer k, there exists some instances that have a k-bend extension but no
(k − 1)-bend extension; see, e.g., Fig. 1a for k = 2. Hence, it is of interest to test
for a given k whether a k-bend extension exists. In this paper, we present an
algorithm that solves this problem for k = 1 in O(nm) time. More formally, we
prove the following theorem.

Theorem 1. Given a biconnected outerplanar graph G = (V,E) with n vertices
and m interior edges, and a 1-bend drawing of the outer face of G, we can decide
in O(nm) time whether G admits an outerplanar drawing with at most one bend
per edge that contains the given drawing of the outer face. In the positive case,
we can also compute such a drawing.

Related Work. For the case of extending a given straight-line drawing of a planar
graph using straight-line segments as edges, Patrignani [15] showed the prob-
lem to be NP-hard, but he could not prove membership in NP, as a solution
may require coordinates not representable with a polynomial number of bits.
Recently, Lubiw, Miltzow, and Mondal [10] proved that a generalization of the
problem, where overlaps (but not proper crossings) between edges of E \E′ and
E′ are allowed, is hard for the existential theory of the reals (∃R-complete).

These results motivate allowing bends in the drawing. Angelini et al. [1]
presented an algorithm to test in linear time whether there exists any topological
planar drawing of G with pre-drawn subgraph, and Jeĺınek, Kratochv́ıl, and
Rutter [9] gave a characterization via forbidden substructures. Chan et al. [4]
showed that a linear number of bends (72|V ′|) per edge suffices. This number is
also asymptotically worst-case optimal as shown by Pach and Wenger [14] for
the special case of the host graph not containing edges (E′ = ∅).

Special attention has been given to the case that the host graph H is exactly
the outer face of G. Already Tutte’s seminal paper [18] showed how to obtain a
straight-line convex drawing of a triconnected planar graph with its outer face
drawn as a prescribed convex polygon. This result has been extended by Hong
and Nagamochi [8] to the case that the outer face is drawn as a star-shaped
polygon without chords. Mchedlidze and Urhausen [12] study the number of
bends required based on the shape of the drawing of the outer face and show
that one bend per edge suffices if the outer face is drawn as a star-shaped polygon.
Mchedlidze, Nöllenburg, and Rutter [11] give a linear-time algorithm to test for
the existence of a straight-line drawing of G in the case that H is biconnected
and ΓH is a convex drawing. Ophelders et al. [13] characterize the instances in
which G is a (planar) graph and H is a cycle that admit a positive solution for
any straight-line drawing ΓH as the outer face.
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Fig. 1. (a) The edge e = (u, v) requires two bends. (b) A biconnected outerplanar
graph and its dual tree (dash-dotted) rooted in f7. (c) A drawing of G4 in P4.

Notation and Preliminaries. For a pair of vertices u and v, we denote by uv the
straight-line segment between them. Starting at u and following the boundary
∂P of P in counterclockwise order until reaching v, we obtain the interval P (u, v).

The faces of G induce a unique dual tree T [16] where each edge of T corre-
sponds to an interior edge of G; see Fig. 1b. In the following, we consider T to
be rooted at some degree-1 node fm+1.

We will traverse the dual tree twice – first bottom-up and then top-down. In
the bottom-up traversal, we incrementally process the interior edges of G and
refine P by cutting off parts that cannot be used anymore. In the top-down
traversal, we compute positions for the bend points inside the refined polygons.

We label the faces of G as f1, . . . , fm+1 according to the bottom-up traversal.
This sequence also implies a sequence of subtrees of T . For step i = 1, . . . ,m, let
Ti be the subtree of T induced by the nodes fi, . . . , fm+1. We denote by p(fi)
the parent of fi in T , and by ei the edge of G corresponding to the edge of T
between fi and its parent. We say that fi and fj are siblings if p(fi) = p(fj).
We denote by Gi the subgraph of G induced by the vertices incident to the faces
fi, . . . fm+1, hence G = G1. Similar to the sequence of subtrees, we also have
a corresponding sequence of refined polygons P = P1 ⊆ . . . ⊆ Pm+1, where Pi

contains (at least) the vertices of Gi.
We draw the edge ei inside Pi with one bend point b. This drawing of ei

cuts Pi into two parts; the part that contains all the vertices of Gi+1 is the
unobstructed region Ui(b) of b, the other part is the obstructed region Oi(b) of b;
see Fig. 2a. We classify edge ei based on the type of corner that b will induce in
Ui(b). Edge ei is either (i) a convex edge if it is possible to draw ei such that b
is a convex corner in Ui(b), or (ii) a reflex edge otherwise, i.e., any drawing of ei
results in a strictly reflex corner at b in Ui(b); see Fig. 2b.

2 Refining the Polygon

During the bottom-up traversal of T , we maintain the invariant that Gi+1 can be
drawn in Pi+1 if and only if Gi can be drawn in Pi. Observe that, while P1 = P
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Fig. 2. (a) The region Oi(b) for some b ∈ Vi; (b) ei is reflex and b′ is the minimal bend
point. (c–d) ei = (u, v) is convex: (c) Construction of Vi; (d) Construction of pu, pv,
the obstructed region O∗

i , and the set of minimal bend points.

represents a 1-bend drawing of the outer face of G1 = G, in general some edges
on the outer face of Gi might be drawn in the interior of Pi; see Fig. 1c. To this
end, to obtain Pi+1, we want to refine Pi in the least restrictive way – cutting
away as little of Pi as possible. In particular, we will choose Pi+1 as the union
of the unobstructed regions for all possible bend points of ei.

Among all leaves of Ti, we choose the next node fi to process as follows: If Ti

has a leaf corresponding to a reflex edge, then we process the corresponding
interior edge next. Otherwise, all leaves in Ti correspond to convex edges, and
we choose one of the nodes of the dual tree among them that has the largest
distance to the root fm+1 in T . We do this to make sure that a convex edge is only
chosen if all siblings corresponding to reflex edges have already been processed.
The idea is that for a reflex edge we can determine its “best” drawing, namely
one that cuts off only a part of the polygon that would be cut off by any valid
drawing of this edge (see Lemma 1), while for convex edges this is generally not
possible. Furthermore, drawing a reflex edge may restrict the possible drawings
for siblings corresponding to convex edges, while drawing convex edges (with
a convex bend point) does not (see Lemma 2), so after processing all siblings
corresponding to reflex edges, we can compute all possible bend points for a
convex edge.

Consider a leaf fi and the corresponding interior edge ei = (u, v). W.l.o.g.
assume that Pi(u, v) does not contain an edge of the root fm+1. Let V(u) and
V(v) be the (closed) regions inside Pi visible from u and v, respectively, and let
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Vi = V(u) ∩ V(v) be their intersection – the region visible by both end points of
ei; see Fig. 2c. Clearly, any valid bend point for ei needs to be inside Vi; thus,
if the interior of Vi is empty, then we reject the instance. We define a set of
minimal bend points for ei: a point b ∈ Vi is minimal for ei if there is no other
point b′ ∈ Vi with Oi(b′) � Oi(b). Note that all minimal bend points for ei lie
on ∂Vi, so they are not valid bend points.

For reflex edges, we have the following lemma regarding minimal bend points.

Lemma 1. Let ei = (u, v) be a reflex edge. If there is a valid drawing of ei in
Pi, then there is a unique minimal bend point b for ei.

Proof. For a contradiction, let b1 and b2 be two minimal bend points for ei.
Since ei is a reflex edge, both b1 and b2 must lie on the same side of the line uv.
Hence, there must be a crossing b′ between one of the segments ub1, b1v and one
of the segments ub2, b2v. Further, Oi(b′) = Oi(b1) ∩ Oi(b2), so Oi(b′) ⊆ Oi(b1)
and Oi(b′) ⊆ Oi(b2). Since Oi(b1) �= Oi(b2), one of b1 and b2 is not minimal.

Based on Lemma 1, we construct Pi+1 as the polygon Pi(v, u) ◦ ub ◦ bv for a
reflex edge ei having minimal bend point b. Note that we can efficiently find b
since it is a corner of Vi.

For a convex edge ei = (u, v), we can no longer rely on having a single
minimal bend point. Hence, we need to refine our notation.

We define the obstructed region O∗
i =

⋂
b∈Vi

Oi(b) of ei to be the region of Pi

obstructed by all valid drawings of ei – wherever we place the bend point of ei,
all the points of O∗

i will be cut off. Conversely, for every point p ∈ Pi\O∗
i , there is

a placement of the bend point of ei such that p is not cut off; see Fig. 2d. In view
of this, we are going to set Pi+1 = Pi \O∗

i . However, we cannot directly compute
O∗

i according to its definition, as this would require considering all possible bend
points. Thus, in the following we describe an efficient way to compute Pi+1.

If u and v lie in Vi, then let pu = u and pv = v. Otherwise, let (u, u′) and
(v′, v) be the segments of Pi(u, v) incident to u and v, respectively. Shoot a ray
from u through u′. Rotate this ray in counterclockwise direction until it hits
Vi; let this point be pu. Do the same with the ray from v through v′, rotating
it clockwise; let the point where it hits Vi be pv. Let Vi(pu, pv) be the path
from pu to pv along ∂Vi in counterclockwise order. Then, Pi+1 is the polygon
Pi(v, u) ◦ upu ◦ Vi(pu, pv) ◦ pvv.

Note that all vertices of Gi+1 lie on Pi(v, u), so they are contained in Pi+1.
The bend point of ei has to lie in Vi, which is completely contained in Pi+1.
Hence, no bend point of another edge ej , j > i can lie in the region O∗

i = Pi\Pi+1,
because then ei and ej would cross.

If we manage to construct a non-degenerate polygon Pm+1, i.e., its interior is
non-empty, then we declare the instance as positive and we compute a drawing
of G in P as follows. We first draw Gm+1 in Pm+1, by picking an arbitrary bend
point b from the interior of Vm in Pm+1 for em. Suppose that we have a drawing
Γi+1 for Gi+1 in Pi+1 where edge ei+1 = (u, v) is drawn with bend point b. To
draw Gi in Pi, we have to find valid bend points for the edges corresponding to
the children of fi inside the polygon P ′

i = Pi(u, v) ◦ vb ◦ bu. Consider such an
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ui viuj
vj

Ri O∗
i

Rj

(a)

ui viuj
vj

bj

Ri O∗
i

(b)

Fig. 3. (a) uj and vj lie in P (ui, vi) ◦ viui, but Ri and Rj are interior-disjoint.
(b) P (uj , vj) forces bend bj to lie inside Ri. Then, bj creates a reflex angle.

edge ej = (u′, v′). If ej is reflex, then we place its bend point inside Vj , very
close to the minimum bend point. If ej is convex, then we place its bend point
on an arbitrary point in the interior of Vj that induces a convex corner.

3 Correctness

In this section, we show that Gi+1 can be drawn in Pi+1 if and only if Gi can
be drawn in Pi. If ei is a reflex edge, then Pi+1 contains exactly the points not
cut off by placing ei at its unique minimal bend point b, as Lemma 1 indicates.
Hence, Gi+1 can be drawn in Pi+1 if and only if Gi can be drawn in Pi with the
bend point of ei arbitrarily close to b inside Vi.

For each convex edge ei = (u, v), we define the open restricted region in Pi as
Ri = interior

[((⋃
b∈Vi

Oi(b)
) \ O∗

i

) ∩ (Pi(u, v) ◦ vu)
]
; see Fig. 3a.For each point

r ∈ Ri, there are two convex bend points b and b′ for ei such that bending ei
at b cuts off r, whereas bending ei at b′ does not. Note that ∂Ri contains all
minimal bend points for ei. Recall that we only process a convex edge ei if all
siblings of fi in the dual tree Ti are leaves and correspond to convex edges. We
now prove that the restricted region of ei does not interfere with the restricted
regions of these siblings.

Lemma 2. Let ei, ej be convex edges such that fi and fj are leaves and siblings
in Ti. Then, the restricted regions Ri and Rj are interior-disjoint.

Proof. Let ei = (ui, vi) and ej = (uj , vj). Since fi and fj are siblings, P (ui, vi)
and P (uj , vj) do not share any interior point.

By definition, the restricted regions of ei and ej lie in the polygon P (ui, vi) ◦
viui and the polygon P (uj , vj) ◦ vjuj , respectively; see Fig. 3a. Hence, if these
two polygons are disjoint, the statement follows. W.l.o.g. assume that at least
one of uj , vj lies in P (ui, vi) ◦ viui. This implies that Ri(vi, ui) has exactly one
bend that forms a reflex angle in Ri. Further, by construction, there is no vertex
in the interior of Ri; in particular, neither uj nor vj can lie in the interior of Ri.
Therefore, no point of P (uj , vj) ◦ vjuj lies in the interior of Ri.
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It follows from Lemma 2 that the bend points for ei and ej can be chosen
independently. Note that the only reason for ej to be drawn with its bend point
inside Ri is that some part of P (uj , vj) intersects ujvj ; see Fig. 3b. This would
imply that ej is a reflex edge; this is why we process the leaves that correspond
to reflex edges before the leaves that correspond to convex edges.

We are now ready to prove the correctness of our algorithm.

Lemma 3. If interior(Vi) = ∅, then Gi cannot be drawn in Pi. Otherwise, Gi

can be drawn in Pi if and only if Gi+1 can be drawn in Pi+1.

Proof (Sketch). The first statement of the lemma follows immediately.
For the second statement, first assume that we have a drawing Γi of Gi in Pi.

Recall that Pi+1 = Pi \ O∗
i . The bend point of ei cannot lie in O∗

i and so ei is
drawn in Pi+1. Hence, the edges ei+1, . . . , em also must be drawn in Pi+1. Thus,
restricting Γi to Gi+1, we obtain a drawing of Gi+1 in Pi+1.

Now assume that we have a drawing of Gi+1 in Pi+1 where ei is drawn with
bend point b. In the top-down traversal of the algorithm, we place the bend
points of the edges corresponding to the children of fi in the interior of the
polygon P ′

i = Pi(u, v) ◦ vb ◦ bu. These edges cannot cross any edge ei, . . . , em.
For any child fh of fi, we can prove that there is still a valid bend point

for eh inside P ′
i . For any pair of children fh, fj of fi, eh and ej do not cross.

This can be proven using Lemma 1 or 2, depending on whether these edges are
convex or reflex. The full proof can be found in the full version of the paper [2].

We are now ready to prove Theorem 1, which is the main result of this paper.
We report the statement for the reader’s convenience.

Theorem 1. Given a biconnected outerplanar graph G = (V,E) with n vertices
and m interior edges, and a 1-bend drawing of the outer face of G, we can decide
in O(nm) time whether G admits an outerplanar drawing with at most one bend
per edge that contains the given drawing of the outer face. In the positive case,
we can also compute such a drawing.

Proof. The correctness follows immediately from Lemma 3.
For the running time, we first argue that, for every 0 ≤ i ≤ m, Pi+1 has

O(n) corners. If ei is a reflex edge, then obviously Pi+1 has fewer corners than
Pi, so assume that ei is a convex edge. To create Pi+1 from Pi, we cut off the
obstructed region O∗

i of ei. Through an easy charging argument, we can charge
the new corners on the boundary of Pi+1 to removed corners of Pi: each of the
new introduced edges on the boundary of Pi+1 has one end point that is a corner
of Pi, and it cuts off at least one corner from Pi. Note that two newly introduced
edges may form a new vertex, but both of these edges cut off at least one vertex.

In each step of the algorithm, we have to compute the visibility region Vi

for ei. Since Vi is a simple polygon with O(n) edges, it can be computed in O(n)
time, as demonstrated by Gilbers [7, page 15]. Doing two traversals, the visibility
region of each edge needs to be computed at most twice. The remaining parts of
the algorithm (computing the dual graph of G, choosing the order of the faces
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fi in which we traverse the graph, computing O∗
i , “cutting off” parts of Pi, and

placing the bend points) can clearly be done within this time.
Thus, the total running time is O(nm).

4 Open Problems

There are several interesting open problems related to our work. What if we allow
more than one bend per edge? What if we allow some well-behaved crossings,
e.g., outer-1-planar drawings [5]? The ∃R-completeness proof by Lubiw, Miltzow,
and Mondal [10] for any graph with pre-drawn outer face allows overlaps between
interior edges and edges of the outer face. Is the problem still ∃R-complete if
overlaps are forbidden?

References

1. Angelini, P., et al.: Testing planarity of partially embedded graphs. ACM Trans.
Algorithms 11(4), 1–42 (2015). https://doi.org/10.1145/2629341
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Abstract. This paper studies the problem of computing quasi-upward
planar drawings of bimodal plane digraphs with minimum curve com-
plexity, i.e., drawings such that the maximum number of bends per edge
is minimized. We prove that every bimodal plane digraph admits a quasi-
upward planar drawing with curve complexity two, which is worst-case
optimal. We also show that the problem of minimizing the curve com-
plexity in a quasi-upward planar drawing can be modeled as a min-cost
flow problem on a unit-capacity planar flow network. This gives rise to

an Õ(m
4
3 )-time algorithm that computes a quasi-upward planar draw-

ing with minimum curve complexity; in addition, the drawing has the
minimum number of bends when no edge can be bent more than twice.
For a contrast, we show bimodal planar digraphs whose bend-minimum
quasi-upward planar drawings require linear curve complexity even in
the variable embedding setting.

1 Introduction

Let G be a plane digraph, i.e., a directed graph with a given planar embedding.
A vertex v of G is bimodal if the circular order of the edges around v can be
partitioned into two (possibly empty) sets of consecutive edges, one consisting of
the incoming edges and the other one consisting of the outgoing edges. If every
vertex of G is bimodal, G is a bimodal plane digraph. See for example Fig. 1(a).

A planar drawing of a bimodal plane digraph G is upward planar if all the
edges are represented by curves monotonically increasing in the vertical direction.
A digraph that admits an upward planar drawing is upward planar. Having a
bimodal embedding is a necessary but not sufficient condition for a digraph to
be upward planar [12]. For example, the (embedded) digraph in Fig. 1(a) is not
upward planar.
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Fig. 1. (a) A bimodal plane digraph G. (b) A quasi-upward planar drawing of G. (c)
The same drawing with poly-line edges.

Garg and Tamassia [20] proved that testing a bimodal digraph for upward
planarity is NP-hard in the variable embedding setting, i.e., when all possible
bimodal planar embeddings must be checked. In this setting, an O(n4)-time
algorithm exists for series-parallel digraphs [17], where n is the number of ver-
tices. FPT solutions, SAT formulations, and branch-and-bound approaches have
also been proposed for general digraphs (see, e.g., [3,10,17,22]). On the other
hand, upward planarity testing can be solved in polynomial time in the fixed
embedding setting, i.e., when the input is a bimodal plane digraph G and the
algorithm tests whether G admits an upward planar drawing that preserves the
given bimodal embedding [4]. See also [16] for a survey on upward planarity.

Motivated by the observation that only restricted families of bimodal
digraphs are upward planar, Bertolazzi et al. introduced quasi-upward planar
drawings [3]. A drawing Γ of a digraph G is quasi-upward planar if it has no
edge crossings and for each vertex v there exists a sufficiently small disk R of
the plane, properly containing v, such that, in the intersection of R with Γ , the
horizontal line through v separates the incoming edges (below the line) from the
outgoing edges (above the line); see Fig. 1(b). Intuitively, all the incoming edges
enter v from “below” and all the outgoing edges leave v from “above”. A digraph
that admits a quasi-upward planar drawing is quasi-upward planar. An edge of a
quasi-upward planar drawing that is not upward has at least one horizontal tan-
gent. Each point of horizontal tangency is called a bend (see Fig. 1(b)). This term
is justified by the fact that an edge with b points of horizontal tangency can be
represented as a poly-line with b bends (substituting each point of tangency with
a vertex v and suitable orienting the edges incident to v, we obtain an upward
planar digraph which always has a straight-line upward planar drawing [12]);
see Fig. 1(c).

Bertolazzi et al. [3] prove that, different from upward planarity, having a
planar bimodal embedding is necessary and sufficient for a digraph to be quasi-
upward planar. They also study the problem of computing quasi-upward planar
drawings with the minimum number of bends and use a suitable flow network
to solve it in Õ(n2)-time in the fixed embedding setting. They also describe a
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branch-and-bound algorithm in the variable embedding setting. A list of papers
about quasi-upward planarity also includes [7–9].

Our Contribution. In this paper we study the problem of computing quasi-
upward planar drawings with minimum curve complexity of bimodal plane
digraphs possibly having multiple edges. The curve complexity is the maximum
number of bends along any edge of the drawing. We recall that minimizing the
curve complexity is a classical subject of investigation in Graph Drawing (see,
e.g., [2,5,7,11,13–15,23,25,26]). Our results can be summarized as follows.

– In Sect. 3 we prove that every bimodal plane digraph admits an embedding-
preserving quasi-upward planar drawing with curve complexity two. This is
worst-case optimal, since the number of bends per edge in a quasi-upward
planar drawing is an even number and not all bimodal plane digraphs are
upward planar [12]. This result is the counterpart in the quasi-upward planar
setting of a well-known result by Biedl and Kant who prove, in the orthogonal
setting, that every plane graph of degree at most four admits an orthogonal
drawing with curve complexity two [5].

– In Sect. 4 we study the problem of minimizing the curve complexity in a
quasi-upward planar drawing. This problem can be modeled as a min-cost flow
problem on a unit-capacity planar flow network. By exploiting a result of Kar-
czmarz and Sankowski [24] we obtain an algorithm to compute embedding-
preserving quasi-upward planar drawings that minimize the curve complexity
and that have the minimum number of bends when no edge can be bent more
than twice that runs in Õ(m

4
3 ) time, where m is the number of edges of the

input digraph. We recall that the problem of computing planar drawings that
minimize the number of bends while keeping the curve complexity bounded by
a constant has already been studied, for example in the context of orthogonal
representations (see, e.g., [18,19,27]).

– A quasi-upward planar drawing with minimum curve complexity may have
linearly many bends in total. Thus, a natural question to ask is whether these
many bends are sometimes necessary if we just minimize the number of bends
independent of the curve complexity and, if so, what the curve complexity
may be. In Sect. 5 we prove that for every n ≥ 39 there exists a planar bimodal
digraph with n vertices whose bend-minimum quasi-upward planar drawings
have at least cn bends on a single edge, for a constant c > 0. We show that
this bound holds even in the variable embedding setting. This result can be
regarded as the counterpart in the quasi-upward planar setting of a result by
Tamassia et al. [28] showing a similar lower bound on the curve complexity
of bend-minimum planar orthogonal representations.

Preliminaries are in Sect. 2, while Sect. 6 lists some open problems. Proofs
marked with (�) are omitted or sketched and can be found in [6].

2 Preliminaries

We consider multi-digraphs, that are directed graphs which can have multiple
edges. For simplicity we shall call them digraphs. We also assume the digraphs
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to be connected; indeed a digraph G has a quasi-upward drawing if and only
if each connected component of G has a quasi-upward drawing. A vertex of a
digraph G without incoming (outgoing) edges is a source (sink) of G. A vertex
that is not a source nor a sink is an internal vertex.

A drawing Γ of a digraph G = (V,E) is a mapping of the vertices of V
to points of the plane, and of the edges in E to Jordan arcs connecting their
corresponding endpoints but not passing through any other vertex. Drawing Γ is
planar if any two edges can only meet at common endpoints. A digraph is planar
if it admits a planar drawing. A planar drawing of a planar digraph G subdivides
the plane into topologically connected regions, called faces. The infinite region
is the external face. A planar embedding E of G is an equivalence class of planar
drawings that define the same set of faces and have the same external face.
A planar embedding of a connected digraph can be uniquely identified by the
clockwise circular order of the edges around each vertex and by the external
face. A plane digraph G is a planar digraph with a given planar embedding. The
number of vertices encountered in a closed walk along the boundary of a face f
of G is the degree of f , denoted as δ(f). If G is not biconnected, a vertex may
be encountered more than once, thus contributing more than once to the degree
of the face. The dual digraph of G is a plane digraph with a vertex for each face
of G and an edge e′ between two faces for each edge e of G shared by the two
faces. The edge e′ is oriented from the face to the left of e to the face to the
right of e.

3 Subdivisions of Bimodal Plane Digraphs

In this section we show how to suitably subdivide the edges of a bimodal plane
digraph so to obtain an upward plane digraph. We start by recalling the notions
of large angles and upward consistent assignments [4].

Bimodality and Upward Consistent Assignments. Let G be a bimodal
plane digraph. Let f be a face of G, let e1 and e2 be two consecutive edges
encountered in this order when walking counterclockwise along the boundary of
f , and let v be the vertex shared by e1 and e2; the pair (e1, e2) is an angle of f at
vertex v (Fig. 2(a) highlights the angles of a face f). Notice that if v has exactly
one incident edge e, then e1 = e2 = e and the pair (e, e) is also an angle of f at
v. Let f be a face of G, let v be a vertex of f , and let (e1, e2) be an angle of f
at v. Angle (e1, e2) is a source-switch of f if e1 and e2 are both outgoing edges
for v; (e1, e2) is a sink-switch of f if e1 and e2 are both incoming edges for v.
An angle of f that is neither a source-switch nor a sink-switch is a non-switch of
f . It is easy to observe that for any face f the number of source-switches equals
the number of sink-switches (in Fig. 2(a) the source- and sink-switches of f are
indicated). The number of source-switches in a face f is denoted by A(f). The
capacity of f is A(f) + 1 if f is the external face and it is A(f) − 1 otherwise.

Lemma 1 [4]. Let G be a bimodal plane digraph. The number of source and sink
vertices of G is equal to the sum of the capacities of the faces of G.
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Fig. 2. (a) Angles (shown in gray), source-switches, and sink-switches of a face f of
a bimodal plane digraph G; A(f) = 2; (b) An upward planar drawing of G. (c) The
assignments of L labels to the angles of G (L(f)=1, L(f ′)=3).

Let G be an upward plane digraph and let Γ be an embedding-preserving
upward planar drawing of G. The angles of G correspond to geometric angles in
Γ . In particular, an angle (e, e) of G corresponds to a 2π angle in Γ . For each
face f of G, and for each source- or sink-switch a of f , we assign a label L to a,
if a is larger than π in Γ ; in this case we say that a is a large angle. Figure 2(b)
shows an embedding-preserving upward planar drawing of the graph in Fig. 2(a)
with the angles larger that π highlighted; the corresponding angles in Fig. 2(c)
are labeled with an L. We denote the number of L labels on the angles of f by
L(f). Also, if v is a vertex of G, we denote by L(v) the number of L labels on
all angles at vertex v. In [4] it is shown that L(v) = 0 if v is an internal vertex,
and L(v) = 1 if v is a source or a sink. Also, L(f) = A(f)+1 if f is the external
face and L(f) = A(f) − 1 otherwise; in other words, the number of large angles
inside each face is equal to its capacity (see, e.g., faces f and f ′ in Fig. 2(c)).

A bimodal plane digraph G is upward planar if and only if it is acyclic and it
admits an upward consistent assignment [4]. An upward consistent assignment
is an assignment of the source and sink vertices of G to its faces such that: (i)
Each source or sink v is assigned to exactly one of its incident faces. (ii) For
each face f , the number of source and sink vertices assigned to f is equal to the
capacity of f . Assigning a source or sink v to a face f corresponds to assigning
an L label to an angle that v forms in f . See Fig. 2(c) for an example.

2-Subdivisions of Bimodal Plane Digraphs. Let G be a bimodal plane
digraph. A face f of G is nice if δ(f) = 4 and each angle of f is either a source-
switch or a sink-switch (see, e.g., f2 in Fig. 3(a)). We augment G by adding edges
(possibly creating multiple edges) so that the augmented digraph G′ is bimodal
and each face of G′ either has degree two, or three, or it is nice (note that there
can be more than one such augmentations). The resulting digraph is called a
quasi-triangulation of G and all its faces have degree at most four. See Figs. 3(a)
and 3(b). The following lemma, whose proof is reported in [6] for completeness,
can also be derived as a special case of [1, Lemma 5].
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Fig. 3. (a) A bimodal plane digraph G; f2 is nice, while f1 is not; f3 is such that
δ(f3) ≥ 5. (b) A quasi-triangulation of G: The added edges are dashed.

Lemma 2 (�). Every bimodal plane digraph admits a quasi-triangulation.

The 2-subdivision of a bimodal plane digraph G is the graph Ĝ obtained
from G by replacing each edge e = (u, v) of G with the three edges (u, te),
(se, te), (se, v), where se and te are two subdivision vertices. See Fig. 4(a) for
an illustration. Notice that se is a source and te is a sink. Furthermore, the 2-
subdivision Ĝ of G is bimodal, it has no multiple edges, and it is acyclic even
if G is not. We prove that Ĝ is upward planar, which implies that G admits an
embedding preserving quasi-upward planar drawing with curve complexity two.
Since Ĝ is bimodal and acyclic, it is sufficient to prove that Ĝ admits an upward
consistent assignment. We model the problem of computing an upward consistent
assignment of Ĝ as a matching problem on a suitably defined bipartite graph.

The bipartite description of Ĝ is the bipartite graph HĜ = (A,B,E) defined
as follows. The vertex set A contains for each face f̂ of Ĝ a set of vertices
a1(f̂), a2(f̂), . . . , ac(f̂), where c is the capacity of f̂ . Each vertex ai(f̂) (for i =
1, . . . , c) is called a representative vertex of face f . The vertex set B contains the
source and sink vertices of Ĝ. There is an edge (ai(f̂), v) in E if v is a source or
sink vertex of face f̂ (for i = 1, . . . , c). See Fig. 4(b) for an illustration.

Lemma 3 (�). The 2-subdivision of a bimodal plane digraph admits an upward
consistent assignment if and only if its bipartite description has a perfect
matching.

A bimodal plane digraph is face-acyclic if its face boundaries are not cycles.
To prove the main result of this section, we first consider face-acyclic bimodal
plane digraphs. We then show how to extend the result to the general case.

Lemma 4. The 2-subdivision of a face-acyclic bimodal plane digraph is upward
planar.

Proof. Let G be a face-acyclic bimodal plane digraph. We assume that G is
a quasi-triangulation. If not, by Lemma 2 we can augment G to a quasi-
triangulation and the statement follows because the 2-subdivision of G is a
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Fig. 4. (a) The 2-subdivision Ĝ of the graph G in Fig. 3(b). (b) A portion of the
bipartite description HĜ of Ĝ.

subgraph of the 2-subdivision of the obtained quasi-triangulation. By Lemma
3, it suffices to prove that HĜ has a perfect matching. According to Hall’s the-
orem HĜ = (A,B,E) has a perfect matching if and only if for each A′ ⊆ A,
we have that |A′| ≤ |N(A′)|, where N(A′) ⊆ B is the set of neighbors of the
vertices in A′ [21]. Let A′ be a subset of A and let {f1, . . . , fk} be the faces
with a representative vertex in A′. A′ is complete if it contains all representative
vertices for each face fi (1 ≤ i ≤ k).

Claim 1. Let A′ and A′′ be two distinct subsets of A that contain the represen-
tative vertices of the same set of faces. If A′ is complete and |A′| ≤ |N(A′)|,
then |A′′| ≤ |N(A′′)|.
Proof. Since A′′ ⊆ A′ and since all the representative vertices of a face have the
same neighbors in B, we have that |A′′| ≤ |A′| and N(A′) = N(A′′). �

By Claim 1, it is sufficient to prove that Hall’s theorem holds for any complete
subset A′ of A. Let N1(A′) = {v ∈ N(A′) | v is a subdivision vertex of Ĝ} and let
N2(A′) = N(A′)\N1(A′). Let F be the set of the faces of G and let F ′ ⊆ F be the
set of faces whose representative vertices are in A′. We denote by GF ′ the bimodal
plane subgraph of G induced by the edges of the boundaries of the faces in F ′.
Note that GF ′ can have faces other than those in F ′ (see Figs. 5(a) and 5(b)).
Let F ′′ be the set of faces of GF ′ that are not in F ′. Each face in F ′′ is the union
of one or more faces of F \ F ′. Further, let F ′

i = {f ∈ F ′ | f has degree i in G},
for i = 2, 3, 4. Let Eb be the set of edges of G shared by the faces in F ′ and
those in F ′′ (bold edges in Fig. 5(b)). Finally, we set α = 1 if the external face
of G belongs to F ′, and α = 0 otherwise.

Claim 2. |N1(A′)| − |A′| = |Eb| − |F ′
4| − 2α.

Proof. For each edge of GF ′ there are two vertices in N1(A′) because each edge
has two subdivision vertices. Thus |N1(A′)| = 2|Eb| + 2|Ex|, where Ex is the set
of edges of GF ′ that are not in Eb.
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Fig. 5. Illustration for Lemma 4. (a) Faces in F ′ are gray. (b) The graph GF ′ ; faces of
F ′′ have a light background. The largest vertex belongs to SF ′ . The edges of Eb are bold.

Since G is face-acyclic, each face of degree 2 (resp. 3 and 4) in G has capacity
2 (resp. 3 and 5) in Ĝ if it is an internal face, and it has capacity 4 (resp. 5 and 7)
if it is the external face. It follows that for each face in F ′

2 there are two vertices
in A′, for each face in F ′

3 there are three vertices in A′, and for each face in F ′
4

there are five vertices in A′. If the external face of G belongs to F ′, then there
are two additional vertices in A′. Thus, |A′| = 2|F ′

2| + 3|F ′
3| + 5|F ′

4| + 2α and
|N1(A′)| − |A′| = 2|Eb| + 2|Ex| − 2|F ′

2| − 3|F ′
3| − 5|F ′

4| − 2α.
Each face in F ′

i has i edges in GF ′ , for i = 2, 3, 4. Each edge of Ex belongs
to two faces of F ′, while each edge of Eb belongs to only one face of F ′. Thus
we have |Eb| + 2|Ex| = 2|F ′

2| + 3|F ′
3| + 4|F ′

4| and therefore |N1(A′)| − |A′| =
|Eb| + (2|F ′

2| + 3|F ′
3| + 4|F ′

4|) − 2|F ′
2| − 3|F ′

3| − 5|F ′
4| − 2α = |Eb| − |F ′

4| − 2α. �

Graph GF ′ can have some source or sink vertices that are not source or sink
vertices of G because GF ′ has a subset of the edges of G (see for example the
red vertex in Fig. 5(b)). Let SF ′ be the set of such vertices. Also, let F ′′

2 and F ′′
3

be the set of faces of F ′′ that have degree 2 and 3, respectively, in GF ′ and let
F ′′
x be the set F ′′ \ (F ′′

3 ∪ F ′′
2 ).

Claim 3. |N2(A′)| ≥ |F ′
4| − |Eb|

2 − |F ′′
3 |
2 − |F ′′

2 | − |F ′′
x | + 2.

Proof. By Lemma 1, the number of source and sink vertices of GF ′ is equal to
the total capacity of the faces of GF ′ . The number of source and sink vertices
of GF ′ is |N2(A′)| + |SF ′ |. The total capacity of the faces of GF ′ is given by two
terms: The total capacity C ′ of the faces in F ′ plus the total capacity C ′′ of the
faces in F ′′. We have C ′ = |F ′

4|+2α. Indeed, let f be a face of F ′: If f is internal
it has capacity 0 if it has degree 2 or 3 and it has capacity 1 if it has degree 4; if
f is the external face of GF ′ , it has capacity 2 if it has degree 2 or 3 and it has
capacity 3 if it has degree 4. The term C ′′ is equal to

∑
f∈F ′′(A(f)−1)+2(1−α),

where 2(1 − α) takes into account the fact that the external face of GF ′ may
belong to F ′′. (Recall that the capacity of a face is A(f) − 1 if it is internal and
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A(f) + 1 if it is external. Also, if α = 1 the external face of GF ′ belongs to F ′,
otherwise it belongs to F ′′.)

Each vertex in SF ′ belongs to at least one face of F ′′. Let v be a vertex of
SF ′ and let f be a face of F ′′ that contains v. Since v is a source or a sink vertex,
f has at least one angle at v that is either a source-switch or a sink-switch. In
other words, for each vertex in SF ′ there is at least one source-switch or a sink-
switch in a face of F ′′. Since at least |SF ′ |

2 of these angles are source-switches or
sink-switches, we have that

∑
f∈F ′′ A(f) ≥ |SF ′ |

2 (recall that A(f) is equal to the
number of source-switches of f , which is equal to the number of sink-switches of
f). It follows that C ′′ =

∑
f∈F ′′(A(f) − 1) + 2(1 − α) ≥ |SF ′ |

2 − |F ′′| + 2(1 − α).

Thus, we have |N2(A′)|+ |SF ′ | = C ′+C ′′ ≥ |F ′
4|+2α+ |SF ′ |

2 −|F ′′|+2(1−α).
From F ′′ = F ′′

2 ∪F ′′
3 ∪F ′′

x , we obtain |N2(A′)| ≥ |F ′
4|− |SF ′ |

2 −|F ′′
2 |−|F ′′

3 |−|F ′′
x |+2.

Since each edge of Eb is shared by a face of F ′ and a face of F ′′ and since each
face of F ′′ has only edges of Eb in its boundary, we have that

∑
f∈F ′′ δ(f) = |Eb|.

Also, each face in F ′′
3 has at most two switches and therefore at least one of its

vertices does not belong to |SF ′ |. It follows that |SF ′ | ≤ ∑
f∈F ′′ δ(f) − |F ′′

3 | =

|Eb|− |F ′′
3 |, and therefore |N2(A′)| ≥ |F ′

4|− |Eb|
2 + |F ′′

3 |
2 −|F ′′

2 |− |F ′′
3 |− |F ′′

x |+2 =

|F ′
4| − |Eb|

2 − |F ′′
3 |
2 − |F ′′

2 | − |F ′′
x | + 2. �

In order to prove that the condition of Hall’s theorem holds for A′, we will
show that |N(A′)| − |A′| ≥ 0. By Claims 2 and 3, |N(A′)| − |A′| = |N1(A′)| +
|N2(A′)| − |A′| ≥ |Eb| − |F ′

4| − 2α + |F ′
4| − |Eb|

2 − |F ′′
3 |
2 − |F ′′

2 | − |F ′′
x | + 2 =

|Eb|
2 − |F ′′

3 |
2 − |F ′′

2 | − |F ′′
x | + 2 − 2α.

Since the faces in F ′′ do not share edges, we have that |Eb| ≥ 2|F ′′
2 | + 3|F ′′

3 | +
4|F ′′

x |, and therefore |N(A′)| − |A′| ≥ 2|F ′′
2 |

2 + 3|F ′′
3 |

2 + 4|F ′′
x |

2 − |F ′′
3 |
2 − |F ′′

2 | −
|F ′′

x | + 2 − 2α = |F ′′
3 | + |F ′′

x | + 2 − 2α. Since α is either 0 or 1, we have that
|N(A′)| − |A′| ≥ |F ′′

3 | + |F ′′
x | ≥ 0 and the condition of Hall’s theorem holds. �

The next theorem extends Lemma 4 to graphs that may not be face-acyclic.

Theorem 1. The 2-subdivision of a bimodal plane digraph is upward planar.

Proof. Let G be a bimodal plane digraph. If G is face-acyclic the statement
follows from Lemma 4. Otherwise, for every face f of G whose boundary is a
cycle, we insert a source vertex v inside f and connect it to every vertex of
the boundary of f . Let G′ be the resulting digraph. Clearly, G′ is a face-acyclic
bimodal digraph and by Lemma 4 the 2-subdivision Ĝ′ of G′ is upward planar.
Since the 2-subdivision of G is a subgraph of Ĝ′, the statement follows. �

4 Computing Minimum Curve Complexity Drawings

To efficiently compute quasi-upward planar drawings with minimum curve com-
plexity, we define a variant of the flow network used by Bertolazzi et al. [3].
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Fig. 6. (a) A bimodal planar embedding of the graph G of Fig. 1(a). (b) The unit-
capacity flow network Nu(G). The dashed arcs (vertex-to-face arcs) have cost 0, while
solid arcs (face-to-face arcs) have cost 2. The number close to each face-node indicates
the capacity of the face. (c) A feasible flow ϕ for Nu(G). A unit of flow traverses the
edges highlighted in bold. The cost of the flow is 2. A 2-bend drawing of G corresponding
to ϕ is the one shown in Fig. 1(b).

Feasible flows in this network correspond to quasi-upward planar drawings. Intu-
itively, each unit of flow represents a large angle; large angles are produced by
sources and sinks and are consumed by the faces.

Let G be a bimodal plane digraph. The unit-capacity flow network of G,
denoted as Nu(G), is defined as follows (see Fig. 6). For each edge e of Nu(G),
we denote by β(e), χ(e) and ϕ(e) the capacity, the cost, and the flow of e,
respectively.

– The nodes of Nu(G) are all the sources and sinks (vertex-nodes), and all the
faces (face-nodes) of G.

– Each vertex-node v of Nu(G) supplies a flow equal to 1. This means that
exactly one of the angles at v must be large.

– Each face-node of Nu(G) that corresponds to a face f demands a flow equal
to the capacity of f . This means that f must have a number of large angles
equal to its capacity. If f is an internal face and it is a directed cycle then
A(f) = 0 and the capacity of f is −1, that is, f supplies a flow equal to 1.

– For each source or sink v that belongs to a face f , there is a vertex-to-face
arc (v, f) in Nu(G) such that β(v, f) = 1 and χ(v, f) = 0. Intuitively, a unit
of flow on this arc means that f has a large angle at v.

– For each edge e of G shared by two faces f and g, there is a pair of face-
to-face arcs (f, g) and (g, f) in Nu(G) such that β(f, g) = β(g, f) = 1 and
χ(f, g) = χ(g, f) = 2. Intuitively, a unit of flow on (f, g) or on (g, f) represents
the insertion of two bends along e. This corresponds to two units of cost. The
two arcs (f, g) and (g, f) are called the dual arcs of edge e.
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Fig. 7. (a) Supplier gadget. (b) Barrier gadget.

We remark that the main differences between the flow network defined above
and the flow network N (G) defined by Bertolazzi et al. [3] are as follows: (i)
In Nu(G) we have two opposite face-to-face arcs for each edge e of G, while in
N (G) there are two opposite face-to-face arcs for each pair of adjacent faces,
even when they share more than one edge; (ii) the capacity of the face-to-face
arcs is one in Nu(G) and it is unbounded in N (G). The fact that Nu(G) is
well-defined is a consequence of Lemma 1. The following lemma will be used to
prove that a quasi-upward planar drawing with minimum curve complexity can
be computed by means of the flow network Nu(G).

Lemma 5 (�). Let G be a bimodal plane digraph. For each feasible flow ϕu in
Nu(G) there exists a quasi-upward planar drawing Γ of G such that the number
of bends along each edge e of G is equal to the sum of the costs of the flows along
the two face-to-face arcs that are the dual arcs of e.

The next theorem gives the main result of this section and exploits the algo-
rithm by Karczmarz and Sankowski [24] to compute a min-cost flow on a planar
unit-capacity flow network.

Theorem 2 (�). Let G be a bimodal plane digraph with m edges. There exists
an Õ(m

4
3 )-time algorithm that computes a quasi-upward planar drawing Γ of

G with the following properties: (i) Γ has minimum curve complexity, which is
at most two. (ii) Γ has the minimum number of bends among the quasi-upward
planar drawings of G with minimum curve complexity.

If G does not have homotopic multiple edges (i.e., multiple edges that define
a face), then m ∈ O(n) and the time complexity of Theorem 2 is Õ(n

4
3 ).

5 A Lower Bound on the Curve Complexity

By Theorem 2, every bimodal plane digraph admits a quasi-upward planar draw-
ing with curve complexity two, which is worst-case optimal. One may wonder
whether curve complexity two and minimum total number of bends can be simul-
taneously achieved. The next lemma shows that this is not always possible.
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Fig. 8. Graph G6 in the proof of Lemma 6. The dashed arrow represents a path in
the dual that is shorter than the one represented by the dot-dashed arrow. The dotted
arrow also represents a shortest path.

Lemma 6 (�). For every integer k ≥ 3, there exists a bimodal planar acyclic
digraph Gk with 14k−3 vertices and 41k−13 edges such that every quasi-upward
planar drawing of Gk with the minimum number of bends has one edge with at
least 2k − 2 bends.

Sketch of Proof. For each k ≥ 3, we construct a graph Gk by suitably combining
different copies of two gadgets. The first gadget is shown in Fig. 7(a) and it is
called supplier gadget because it contains one source and one sink vertex, denoted
as s and t in Fig. 7(a), that supply two units of flow. Graph Gk has k copies of
the supplier gadget that in total supply 2k units of flow; Gk is such that k − 1
units of this flow have to reach a specific face. To force these k − 1 units of flow
to “traverse” the same edge (thus creating 2k − 2 bends along this edge), we
use the second gadget, shown in Fig. 7(b). This gadget is called barrier gadget
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because it is used to prevent the flow to traverse some edges. Graph Gk is shown
in Fig. 8 for k = 6. See [6] for more details on the construction of Gk.

We now prove that every quasi-upward planar drawing of Gk with the mini-
mum number of bends has at least one edge with at least 2k − 2 bends. Let Γ
be any quasi-upward planar drawing of Gk with the minimum number of bends
and let ψ be the planar embedding of Γ . Drawing Γ corresponds to a minimum
cost flow on the flow network N (Gk) defined on the planar embedding ψ [3].
Since Gk is triconnected, all its planar embeddings have the same set of faces
and each embedding is defined by the choice of a face as the external one. Let
f∗ be the face that is external in the embedding of Gk shown in Fig. 8. Face f∗

has k source-switches, which implies that its capacity is at least k −1 in N (Gk):
Namely, it is k +1 if f∗ is the external face in ψ and k −1 otherwise. Since there
are one source and one sink in each of the k supplier gadgets, the total amount
of flow consumed by the faces is 2k. In any planar embedding of Gk the cycle η,
highlighted by bold edges in Fig. 8, separates the source and sink vertices from
f∗. It follows that at least k − 1 units of flow must go through the dual arcs of
the edges of η, thus creating at least 2k − 2 bends along the edges of η. We now
prove that all these bends are on the edge (s1, tk). Consider a unit flow that goes
from a source or a sink node v to f∗ following a path π in N (Gk); the cost of
sending this unit of flow along π is equal to the number of face-to-face arcs in π
because face-to-face arcs have cost two. Each face-to-face arc of π is the dual arc
of an edge in Gk shared by two adjacent faces. Hence, to obtain a minimum cost
flow, each unit of flow that goes from a source or a sink node v to f∗ in N (Gk)
follows a shortest path π in the dual graph of Gk connecting a face incident to
v with f∗. The lemma holds because any shortest path in the dual graph of Gk

connecting a face incident to v with f∗ includes a dual arc of the edge (s1, tk).
(See [6] for more details.) ��

The next theorem extends the result of Lemma 6 to the cases when n is not
equal to 14k − 3, for some k > 0.

Theorem 3 (�). For every n ≥ 39 there exists a bimodal planar digraph with n
vertices such that every bend-minimum quasi-upward planar drawing has curve
complexity at least n−24

7 .

6 Open Problems

We conclude by mentioning some open problems that are naturally suggested
by the results in this paper.

– Is it possible to improve the time complexity stated by Theorem 2?
– We showed that every bimodal plane digraph becomes upward planar if every

edge is subdivided twice. It would be interesting to minimize the total number
of subdivision vertices (with at most two subdivision vertices per edge) such
that the resulting graph admits an upward straight-line drawing of polynomial
area.
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1 Faculty of Information Technology, Czech Technical University in Prague,
Prague, Czech Republic

2 Computer Science Institute, Charles University, Prague, Czech Republic
3 Czech Academy of Sciences, Institute of Computer Science,

Prague, Czech Republic
4 Department of Applied Mathematics, Faculty of Mathematics and Physics,

Charles University, Prague, Czech Republic

Abstract. Let Vn be a set of n points in the plane and let x /∈ Vn. An
x-loop is a continuous closed curve not containing any point of Vn. We
say that two x-loops are non-homotopic if they cannot be transformed
continuously into each other without passing through a point of Vn. For

n = 2, we give an upper bound eO(
√
k) on the maximum size of a family

of pairwise non-homotopic x-loops such that every loop has fewer than
k self-intersections and any two loops have fewer than k intersections.
The exponent O

(√
k
)
is asymptotically tight. The previous upper bound

2(2k)
4
was proved by Pach et al. [6]. We prove the above result by proving

the asymptotic upper bound eO(
√
k) for a similar problem when x ∈ Vn,

and by proving a close relation between the two problems.

Keywords: Graph drawing · Non-homotopic loops · Curve
intersections · Plane

1 Introduction

The crossing lemma bounds the number of edge crossings of a graph drawn in
the plane where the graph has n vertices and m ≥ 4n edges. It was proved inde-
pendently by Ajtai, Chvátal, Newborn, and Szemerédi [1] and by Leighton [5].
Recently, Pach et al. [6] proved a modification of the crossing lemma for multi-
graphs with non-homotopic edges. In the proof, they used a bound on the maxi-
mum size of collections of so-called non-homotopic loops. We focus on improving
the bounds for two settings – one used by the authors of [6] and a slightly altered
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one. We provide an upper bound eO(
√

k) with the asymptotically tight exponent
O

(√
k
)

in both settings (Theorem 1); we also show a new relation between the
extremal functions in the two settings (Proposition 1).

For an integer n ≥ 1, let Vn = {v1, . . . , vn} be a set of n distinct points in
the plane R

2. Given x ∈ R
2, an x-loop is a continuous function � : [0, 1] → R

2

such that �(0) = �(1) = x and �(t) �∈ Vn for t ∈ (0, 1). Two x-loops �0, �1 are
homotopic, denoted �0 ∼ �1, if there is a continuous function H : [0, 1]2 → R

2 (a
homotopy) such that

H(0, t) = �0(t) and H(1, t) = �1(t) for all t ∈ [0, 1],
H(s, 0) = H(s, 1) = x for all s ∈ [0, 1], and

H(s, t) �∈ Vn for all s, t ∈ (0, 1).

In the case when x ∈ Vn, we will, without loss of generality, assume x =
v := v1, and refer to x-loops as v-loops (dropping the subscript for simplicity).
Henceforth, when we use the term x-loop, we will tacitly assume that x /∈ Vn.
When x (or v) is clear from the context we will also call an x-loop (v-loop)
simply a loop.

A self-intersection of a loop � is an unordered pair {t, u} ⊂ (0, 1) of distinct
numbers such that �(t) = �(u), while an intersection of two loops �1, �2 is an
ordered pair (t, u) ∈ (0, 1)2 such that �1(t) = �2(u).

Given integers n, k ≥ 1 and x /∈ Vn (v ∈ Vn), let f(n, k) (respectively, g(n, k))
be the largest number of pairwise non-homotopic x-loops (respectively, v-loops)
such that every loop has fewer than k self-intersections and any two loops have
fewer than k intersections.

Pach et al. [6] considered x-loops (they also added a convenient restriction
that no loop passes through x, which holds trivially in the setting of v-loops).
The quantities f(n, k) and g(n, k) are related by the following inequalities. In
[3] we proved that for every n, k ≥ 1 we have

g(n, k) ≤ f(n, k) ≤ g(n + 1, k). (1)

In the current paper we give the following inequality, which allows us to improve
the upper bound from [6] on f(n, k) by proving an upper bound on g(n, k).

Proposition 1. For every n, k ≥ 1 we have

f(n, k) = O(k2) · g(n, 5k). (2)

Proposition 1 is proved (with a multiplicative constant of 484) in Sect. 6.
Pach et al. [6] showed that for n ≥ 2

f(n, k) ≤ 2(2k)2n (3)

and

f(n, k) ≥
{

2
√

nk/3, for n ≤ 2k,
(n/k)k−1, for n ≥ 2k.

(4)
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Pach et al. [6] also proved that if n = 1, then there are at most 2k + 1 non-
homotopic loops with fewer than k self-intersections (that is, if we do not bound
the number of intersections) implying f(1, k) ≤ 2k + 1.

In our main result we focus on the function g in case n = 2.
Inequalities (1) and (3) imply that g(2, k) ≤ 216k4

. After submitting this
paper to GD2021, the authors became aware that the latter inequality was
not the best at that time. From the proofs in the paper of Juvan, Malnič and
Mohar [4] it follows that f(2, k) ≤ kCk2

for some absolute constant C > 0 (this
paper focuses on the generality of spaces in which the loops are drawn rather
than on quantitative bounds; it also implies good bounds for f(n, k) for any
fixed n).

In [3] the authors proved

g(n, k) = 2O(k).

The following theorem (which we prove in Sect. 5) improves the upper bounds
on g(2, k) and f(2, k) significantly. Interestingly, the bound on g(2, k) only uses
the restriction on self-intersections (this is not enough for n ≥ 3), while the
restriction on intersections is used only in Proposition 1.

Theorem 1. Let n = 2. For any k, the size of any collection of non-homotopic
v-loops with fewer than k self-intersections is eO(

√
k). In particular g(2, k) =

eO(
√

k), and, in view of (2), we have f(2, k) = eO(
√

k).

Note that in view of (4) the exponent O
(√

k
)

is asymptotically tight.
There is still a huge gap between lower and upper bounds on f(n, k) (and

g(n, k)) for general n; see [6] (also the implicit bounds from [4] are probably
better for many pairs (n, k)). In the proof of Theorem 1, we use several lemmas
(Lemmas 1–7), which might help to narrow this gap, as they provide useful tools
and are usually stated for general n.

2 Setup and Notation

2.1 Obstacles, Equator and Gaps

Depending on the context, we will treat S := R
2 \ Vn either as the plane with

n points removed, or as a sphere with n + 1 points removed (where n of these
points come from the set Vn = {v1, . . . , vn} and the last point, denoted by v0,
corresponds to the “point at infinity”). We define V ∞

n = {v0} ∪ Vn and refer to
the elements of V ∞

n as obstacles.
Given a finite collection of loops, by infinitesimal perturbations, without

creating any new intersections or self-intersections, we can ensure that

1. no two (self-)intersections occur at the same point of S,
2. every (self-)intersection is a crossing, that is, one loop “passes to the other

side” of the other loop (rather than two loops ‘touching’).
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Given a drawing of the loops satisfying the above conditions, we choose a
closed simple curve on the sphere which goes through the obstacles v0, . . . , vn

in this order (for x-loops, we choose this curve so that it also avoids x). We
call this loop the equator. Removing the equator from the sphere, we obtain
two connected sets, which we arbitrarily name the northern hemisphere and the
southern hemisphere. We refer to the n+1 open curves into which the equator is
split by excluding points vi as gaps. We assign label i to the gap between vi and
vi+1, with indices counted modulo n+1. Moreover, when talking about v-loops,
we treat v = v1 as an additional, special gap, with a label v; see Fig. 1, where
the equator is drawn as a circle, for simplicity.

Fig. 1. The equator, the gaps, and a v-loop that induces the word w = v2102v.

By a careful choice of the equator, we can assume the following conditions:

3. every loop in the collection intersects the equator a finite number of times,
4. each of these intersections (except for, possibly, the intersection at v) is a

crossing, (i.e., no loop touches the equator),
5. no point of self-intersection or intersection lies on the equator.

2.2 Segments and Induced Words

Part of a given loop � between a pair of distinct intersections with the equator
(inclusively) is called a segment. Treating a loop (respectively, a segment) as a
function � : [0, 1] → ∞ (respectively, the restriction of � to a closed subinterval of
[0, 1]), gives a natural orientation of a loop or a segment. A minimal segment is
called an arc. If an arc intersects itself, we can remove the part of the arc between
these self-intersections without changing the homotopy class of the loop, which
allows us to make yet another assumption that

6. there are no self-intersections within any arc.
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Consider a segment s that intersects the equator t times (including the begin-
ning and the end). By listing the labels of gaps that the loop crosses as it traverses
s, we obtain a word w = w1 . . . wt. In this case we say that s is a w-segment. If we
take the maximal segment of a loop �, that is, from the first to the last crossing
of equator (which is the whole loop in the case of v-loops), then we say that
word w is the word induced by �; see Fig. 1. Given a loop that induces a word
w, the segments of the loop correspond to subwords (that is, words consisting
of consecutive letters of w) of length at least 2.

Note that the word induced by a v-loop � starts and ends in v. Dropping
these vs we obtain a word which we call the inner word induced by a v-loop �.

If we reverse the orientation of a segment s, the order of gaps is reversed and
hence we obtain the reverse of the word w, denoted w := wt . . . w1. Sometimes
we talk about segments as unoriented objects, treating a segment simultaneously
as a w-segment and a w-segment.

Given an oriented segment s, we define the polarity of s as the hemisphere to
which the first arc of s belongs. We call an oriented w-segment a w-downsegment
or a w-upsegment whenever we want to specify the polarity of the first arc.

Remark 1. For a word w of even length (that is, with an even number of letters)
a w-segment is also a w-segment of the same polarity, while for a word w of odd
length a w-segment is also a w-segment of the opposite polarity.

For example, consider a v-loop with the first arc in the southern hemisphere
that induces the word 01201. It has 01-segments of both polarities (and hence
10-segments of both polarities), as well as a 012-downsegment (which is also a
210-upsegment) but, say, there is no 012-upsegment.

2.3 Patterns

To simplify notation we use a concept of pattern, that is a finite sequence of
symbols, usually, the first letters of the Greek alphabet α, β, . . . . Given a pattern
T , we say that a word w is a T -word if it is obtained by replacing symbols by
letters, so that two letters in w are equal if and only if the symbols in T are
equal. For example, words 010, 202, 121 match the pattern αβα, but 111 does not.
Given a pattern T , we say a word is T -free, if it contains no subword matching
the pattern T . With a slight abuse of notation, by a T -segment we also mean a
w-segment such that word w matches the pattern T .

3 General n

In this section we state and prove several facts that are valid for general n,
including all prerequisites for the proof of Theorem 1.
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3.1 Simplifying Words

Part (i) of the following lemma allows to simplify the words induced by a given
family of v-loops, in particular simplifying the setting for the proof of Theorem 1.
Part (ii) is used in the proof of the inequality (2) of Proposition 1.

Lemma 1. Assume that n ≥ 1.

(i) Given any family of v-loops, each loop can be replaced by a homotopic v-loop
inducing an αα-free inner word, with the first and last letters in {2, . . . , n},
so that the numbers of pairwise intersections or self-intersections do not
increase.

(ii) Suppose that a family of x-loops and the equator are such that there is a path
connecting x to some v ∈ Vn which does not intersect any loop or the equator.
Then each x-loop can be replaced by a homotopic x-loop inducing an αα-free
word so that the numbers of pairwise intersections or self-intersections do
not increase.

The part (i) was already proved in [3] and the part (ii) is easily established
using the same ideas. The details of the proof can be found in the full version of
this paper [2].

3.2 Characterization of Homotopic Loops

Once we can simplify loops using Lemma 1, we can use the following lemma to
describe the homotopy classes of loops in terms of induced words.

Recall that v-loops start and end at v1, which is incident to gaps 0 and 1.

Lemma 2. (i) Two x-loops inducing αα-free words w1 and w2 are homotopic
if and only if w1 = w2.

(ii) Suppose that two v-loops �1 and �2 are such that all four initial/final arcs
lie in the same hemisphere. Suppose �1, �2 induce αα-free inner words

w1 = x1u1z1, and w2 = x2u2z2, (5)

where (possibly zero-length) words x1, x2, z1, z2 use only letters 0 and 1 and
words u1, u2 start and end in letters other than 0 or 1 (if ui is empty, we
assume that xi = wi and zi is empty). Then �1 and �2 are homotopic if and
only if u1 = u2 and the lengths of x1 and x2 have the same parity.

(iii) If two v-loops �1 and �2 induce words w1 and w2 that start and end in a
letter other than 0 or 1, then �1 and �2 are homotopic if and only if �1 and
�2 start in the same hemisphere, end in the same hemisphere, and w1 = w2.

Lemma 2 is proved in the full version of this paper [2]. It is based on the descrip-
tion of the (fundamental) homotopy group of the plane with several points
removed and the correspondence between words and the generators of this group.

The idea of the part (ii) is that we may “unwind” the initial and final seg-
ments that just “wind around” the obstacle v, without changing the homotopy
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class. The reason why, say, the prefixes x1 and x2 have to have matching parities
(and merely u1 = u2 is not enough), is that otherwise the segments correspond-
ing to the subwords u1 and u2 would have opposite polarity. One can see, say,
that if two loops start and end in the northern hemisphere and induce words 02
and 20 (so that u1 = u2 = 2), they are not homotopic (in fact, �1 is homotopic
to �2 reversed).

3.3 Subwords Forcing Intersections

The equator has two natural orientations. For any ordered triple (a, b, c) of dis-
tinct gaps we assign the orientation of the equator such that if we circle the
equator starting from the gap a, we encounter the gap b before c. In partic-
ular, for any three distinct gaps a, b, c triples (a, b, c), (b, c, a), (c, a, b) have the
same orientation while triples (a, b, c) and (c, b, a) have opposite orientations. For
example, if n ≥ 2, recalling our labeling of gaps from Sect. 2 (in particular that
the vertex v = v1 is a special gap) we have that (0, v, 1), (v, 1, 2) and (0, 1, 2)
have the same orientation.

Lemma 3. Let k ≥ 0 be an integer. Consider two segments of the same polarity
corresponding to αα-free words a0a1 . . . akak+1 and b0b1 . . . bkbk+1 such that for
i = 1, . . . , k we have ai = bi, while a0 �= b0 and ak+1 �= bk+1. Suppose that
(a0, b0, a1) and (ak, bk+1, ak+1) have opposite orientations for even k, and the
same orientation for odd k. Then there is i ∈ {0, . . . , k} such that the aiai+1-arc
of the first word intersects the bibi+1-arc of the second word.

Proof Idea. Assume, for a contradiction, that the aiai+1-arc and the bibi+1-arc
are disjoint for every i. It follows inductively that the orientation of the triple
(ai, bi+1, ai+1) is uniquely determined for every i. In particular, it must be the
same as the orientation of (a0, b0, a1) for even i and opposite otherwise. For
i = k, we arrive at a contradiction. The details of the proof are included in the
full version [2].

3.4 Windings in v-Loops

We now focus on v-loops and describe the intersections forced by specific alter-
nating words.

For a word w we write wk a concatenation of k copies of w, say (ab)2 = abab.
Given an obstacle vi, i �= 1, let a, b be the gaps incident to vi. For integer s ≥ 1,
an s-winding around vi is a w-segment, where w has a form tw′u, where w′ is of
the form (ab)sa, (ba)sb, (ab)s+1 or (ba)s+1 and t, u are letters other than {a, b}.
Assuming the gaps incident to v1 are 0 and 1, an s-winding around v := v1 is a
w-segment with w of the same form as above (for {a, b} = {0, 1}), but with t, u
being letters other than 0, 1, and v (the difference from the first case is that we
do not allow t = v or u = v), see the left part of Fig. 2.

The proofs of the following lemmas are sketched at the end of this subsection;
the detailed proofs are included the full version of this paper [2].
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Fig. 2. Left: a 2-winding around v with word 2(01)32; right: a (2, 2)-snail with word
2(01)20v. The dashed line is the equator.

Lemma 4. Suppose S and T are an s-winding and a t-winding, respectively,
both around the same obstacle v ∈ Vn. Then

(i) Segment S has at least s self-intersections.
(ii) S and T have at least 2 · min{s, t} mutual intersections (provided S �= T ).

We excluded from the definition of windings the case where the obstacle is v1
and the alternating sequence appears at the beginning/end of the (inner) word.
Given a positive integer m, let (ab)−m := (ba)m and let (ab)0 stand for an empty
word. Given an integer s and a letter a other than 0, 1 (but possibly v), by a
(s, a)-snail we call a w-segment where w is a αα-free word of the form

v(01)sw′a, where w′ ∈ {0, 1, 01, 10}, a /∈ {0, 1},

see the right part of Fig. 2. (Note: since w is αα-free, we cannot, say, have
w′ ∈ {1, 10} if s > 0.)

Lemma 5. Consider a (s, a)-snail and a (t, b)-snail of the same polarity. If
st < 0, the snails intersect at least min{|s|, |t|} times. If st > 0 and a, b �= v,
then the snails intersect at least |s − t| − 1 times.

The following lemma is used in the proof of the inequality (2) of Proposition 1.

Lemma 6. Fix a word u that starts an and ends in a letter other than 0 or 1.
If we have a family F with more than 4(2k + 1)2 v-loops of the same polarity,
each of which induces an even-length αα-free word of the form

v(01)sw′uw′′(10)tv, t, s ∈ Z, w′, w′′ ∈ {0, 1, 01, 10}, (6)

then there are �1, �2 ∈ F (possibly �1 = �2) with at least k (self)-intersections.

We note in passing that Lemmas 4 and 5 are proved by finding sufficiently
many segment pairs that satisfy the conditions of Lemma 3 and arguing that
each pair implies a distinct intersection. Lemma 6 then follows from Lemma 5
by relatively straightforward pigeonhole-type arguments.

The detailed proofs of Lemmas 4 to 6 are included in the full version of this
paper [2].
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4 Expansions of Words

Given an αα-free word w of length at least two, consider all maximal sub-
words that use two letters. For example, if w = 2010212, the maximal words
are 20,010,02, and 212. Ordering these words by the position of the first letter,
it is clear that every two consecutive words overlap in a single letter. We classify
these subwords according to the pair of letters they use. For distinct a, b a maxi-
mal subword that uses a and b is called an ab-word (the ordering of a and b does
not matter). For a given pair a, b, the ab-words are disjoint and surrounded by
letters other than a and b (we assume that w is extended by adding the letter v
at each end).

Each ab-word starts either with ab or ba. If we replace each of these two-letter
subwords by its power, say, ab by (ab)s+1, s ≥ 0, we obtain another αα-free word,
which we call an ab-expansion of w. Hence if w has � ab-words, each ab-expansion
of w is uniquely described by a vector s = (s1, ..., s�) of nonnegative integers.

If, in addition, w is αβαβ-free, then for each distinct a, b all maximal ab-
words have at most three letters. If w is not αβαβ-free, it can be obtained by
consecutive ab-expansions of a αβαβ-free word, one for each pair a, b of distinct
letters.

The self-intersection number of a loop-word w is defined as the smallest
number of self-intersections in a loop that induces w.

Lemma 7. Let a, b be two gaps adjacent to the same obstacle v. Let � = �(k) ≥
2
√

k be a positive integer.
Let w be an αα-free word which contains no subword abab or baba. Suppose

that there are at most � maximal ab-words in w. If v = v1, then also assume
that none of these words appears at the beginning or the end of w. The number
of ab-expansions of w with the self-intersection number smaller than k is

(
�√
k

)O(
√

k)
eO(

√
k).

In particular, if also � = O
(√

k
)
, then the above estimate becomes eO(

√
k).

4.1 Sketch of the Proof of Lemma 7

Let �′ be the number of maximal ab-words in w and consider an ab-expansion
of w determined by a vector s = (s1, . . . , s�′). In this expansion the ith maximal
ab-word, together with the letters surrounding it, is either an si-winding or an
(si + 1)-winding around v. By Lemma 4 such an ab-expansion has at least

∑

i

si + 2
∑

i<i′
min{si, si′} (7)

self-intersections.
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Our goal is to give an upper bound, in terms of k and �, on the number of
vectors s of length �′ such that (7) is smaller than k. Since �′ ≤ � and the number
of such vectors is clearly largest for �′ = �, let us further assume that �′ = �.

For i = 0, . . . , k, let mi = mi(s) denote the multiplicity of i in s, formally,

mi = mi(s) := | {j ∈ [�] : sj = i} |.
Given an integer α ≥ 0, let us write m≥α :=

∑
i≥α mi and note that

m≥0 = �. (8)

Moreover
m≥α ≤

√
k/α, α = 1, 2, . . . , k, (9)

since otherwise, noting that m≥α = {j : sj ≥ α}, by (7) the self-intersection
number is at least

m≥αα + 2
(

m≥α

2

)
α = m2

≥αα > k,

giving a contradiction.
An upper bound on the number of vectors s can be obtained by bounding

(i) the number of vectors s giving the same vector m = (m0, . . . ,mk) and (ii)
the number of distinct vectors m = (m0, . . . ,mk) with nonnegative integer coor-
dinates satisfying the constraints (8) and (9). The product of the two obtained
bounds is then an upper bound on the number of vectors s. The two bounds
are obtained by combinatorial methods in the full version of this paper [2], and
they are (�/

√
k)

√
keO(

√
k) for (i) and eO(k1/3(ln �+ln k)) for (ii). Their product is

of order (�/
√

k)O(
√

k)eO(
√

k), which gives Lemma 7.

5 Proof of Theorem 1

Recall that without loss of generality we assume v = v1 so that the gaps adjacent
to v are 0 and 1. By Lemma 1 we can assume that every v-loop in the collection
induces an αα-free word so that the first and the last letters are 2. By Lemma 2
(iii), the v-loops induce different words, so it is enough to show that the number
of words of the such form with self-intersection numbers less than k is eO(

√
k).

Recall that the inner words use letters in {0, 1, 2}. Whenever we talk about
two distinct letters a, b, let c refer to the remaining third letter. The maximal
ab-words are disjoint and each of them is surrounded by c or v. We can replace w
by an αβαβ-free word w′ by repeatedly applying an operation which replaces a
subword of a form abab, for some distinct letters a and b, by a subword ab. Note
that this does not change the structure of maximal words and when the procedure
terminates, every maximal word is a αβ-word or a αβα-word. Moreover, w′

remains αα-free and the first and last letters remain 2 in each intermediate
word.

As discussed in Subsect. 4, word w can be reconstructed from an αβαβ-free
word w′ by three consecutive ab-expansions, one for each ab ∈ {01, 02, 12}. Note
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that we can also assume that, as in w, the first and the last letters in both w′

and the intermediate expansions are 2.
In view of this claim, it is enough to count αβαβ-free words with fewer than

k self-intersections, calculate the bound � on the number of maximal ab-words
in such a word, and apply Lemma 7 three times.

We claim that an αα-free word with fewer than k self-intersections has at
most 4

√
k maximal ab-words for each pair ab. Assume the contrary. Let v be the

obstacle incident to gaps a and b. If at least
√

k of the maximal ab-words are s-
windings around v with s ≥ 1, then there are at least k self-intersections by (7).
So further we assume there are at least 3

√
k maximal ab-words of the form cabc

or cbac. Note that each such word corresponds either to a cab-upsegment or a
cab-downsegment. If among them there are at least

√
k of each polarity, then we

again have k self-intersections between cab-upsegments and cab-downsegments
by Lemma 3. So further assume there are more than 2

√
k words cabc of the same

polarity (note that reversing cabc does not change the polarity). In particular
there is a pair of such maximal ab-words which has no other maximal ab word
between them. Since their polarity is the same, between them there is an even-
length word which starts and ends in a letter other than c. We claim that such
subword contains ab, giving a contradiction. Say the word has 2m letters and
argue by induction: if m = 1, the first and last letter is not c, so the word is
ab or ba. Otherwise either the first two letters are ab or ba (in which case we’re
done) or one of ac and bc, in which case removing them we are left with a shorter
word of even number of letters starting and ending not in c, which by induction
hypothesis contains ab.

We have shown that every word w with fewer than k self-intersections is a
‘triple’ extension of a αβαβ-free word w′ with at most � := 4

√
k maximal ab-

words for each ab ∈ {01, 02, 12}. Since the first maximal word in w′ has at most
three letters, and each subsequent maximal word has at most two additional
letters, w′ has at most 3 + 2(3� − 1) = 6� + 1 letters. Taking into account that
w′ is αα-free and necessarily starts with 2, there are at most

6�+1∑

i=2

2i−1 ≤ 26� = eO(
√

k) (10)

choices of w′. Now Lemma 7 implies that the number of ab-expansions is eO(
√

k),
which, together with (10) implies that the number of different words induced by
the v-loops is eO(

√
k). By the remark at the beginning of the proof, this proves

the theorem. �

6 Proof of Proposition 1

For the detailed proof, see the full version of this paper [2].

Proof Sketch. Let f = f(n, k) and choose a family of non-homotopic x-loops
�1, . . . , �f in S of the maximal size. We choose an obstacle v, a point x′ on some
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loop, and a path P from v to x′ that does not intersect any loop. We assume
without loss of generality that x′ lies on the loop �f .

We first turn the x-loops into non-homotopic x′-loops while keeping the num-
ber of pairwise intersections and self-intersections bounded. We choose a path R
with no self-intersections that connects x to x′ and is contained in the graph of
�f . The x-loop �f is already an x′-loop and we turn every other x-loop �i into an
x′-loop �′

i by (i) following R from x′ to x, (ii) going along �i, and (iii) returning
back to x′ via R. Note that to avoid an infinite number of (self-)intersections,
the loops cannot follow R precisely. Rather, they use pairwise disjoint paths that
run along R in sufficiently small distance so that if any loop intersects them it
must also intersect R (and thus �f ). See the left and middle parts of Fig. 3.

Fig. 3. Transforming x-loops into x′-loops (note that for simplicity of the example we
assume f = 3, so �3 = �f is unchanged) and then transforming x′-loops into v-loops.

It is easy to see that the obtained x′-loops are pairwise non-homotopic. And
since R is a subset of the loop �f , every newly created crossing between a pair
of loops �′

i and �′
j corresponds to some crossing between �i and �f , or �j and �f .

This fact allows us to bound the total number of additional (self-)intersections
by 4k.

Now we choose the equator so that it does not cross the path P (see Fig. 4).
Applying Lemma 1.(ii) we modify the x′-loops without increasing the numbers
of intersections so that they induce αα-free words.

Finally we turn each x′-loop �′
i into a v-loop �′′

i so that no additional inter-
sections are created, and the inner word that �′′

i induces is the same as the word
induced by �′

i. This is done similarly as before – the loop �′′
i is obtained by con-

catenating (i) a path closely following P from v to x′, (ii) the x′-loop �′
i, and

(iii) a path closely following P back to v. See the right part of Fig. 3.
Some resulting v-loops may be homotopic. Partition the v-loops into maximal

sets of homotopic v-loops H1, . . . , Hm and note that m ≤ g(n, 5k). Since the first
and the last arc of every v-loop lies in the same hemisphere, by Lemma 2 (ii) for
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Fig. 4. Drawing the equator (the thicker line) so that it does not separate x′ from the
obstacle v. Path P is dashed.

each set Hj there is a word uj starting in letters other than 0 or 1 so that each
� ∈ Hj induces an even-length word of the form

vw′
�ujw

′′
� v,

where words w′
� and w′′

� use letters 0 and 1. Applying Lemma 6, we see that
|Hj | ≤ 4(2 · 5k + 1)2 ≤ 4(11k)2 = 484k2 for every j. And since m ≤ g(n, 5k),
this implies that f(n, k) ≤ 484k2g(n, 5k).

Acknowledgement. We thank the referees for a careful reading and numerous cor-
rections, in particular, one of the referees for pointing out the upper bound by Juvan,
Malnič and Mohar.
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Abstract. We prove that the number of edges of a multigraph G with n
vertices is at most O(n2 log n), provided that any two edges cross at most
once, parallel edges are noncrossing, and the lens enclosed by every pair
of parallel edges in G contains at least one vertex. As a consequence, we
prove the following extension of the Crossing Lemma of Ajtai, Chvátal,
Newborn, Szemerédi and Leighton, if G has e ≥ 4n edges, in any drawing

of G with the above property, the number of crossings is Ω
(

e3

n2 log(e/n)

)
.

This answers a question of Kaufmann et al. and is tight up to the loga-
rithmic factor.

Keywords: Multigraphs · Lenses · Crossing lemma

1 Introduction

A topological graph is a graph drawn in the plane such that its vertices are
represented by points, and the edges are represented by simple continuous arcs
connecting the corresponding pairs of points. In notation and terminology, we do
not distinguish between the vertices and the points representing them and the
edges and the arcs representing them. The edges are allowed to intersect, but
they cannot pass through any vertex other than their endpoints. If two edges
share an interior point, then they must properly cross at that point, i.e., one
edge passes from one side of the other edge to its other side.

A multigraph is a graph in which two vertices can be joined by several edges.
Two edges that join the same pair of vertices are called parallel.
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According to the crossing lemma of Ajtai, Chvátal, Newborn, Szemerédi [1]
and Leighton [4], every topological graph G with n vertices and e > 4n edges
has at least c e3

n2 edge crossings, where c > 0 is an absolute constant. In notation,
we have

cr(G) ≥ c · e3

n2
. (1)

In a seminal paper which was an important step towards the solution of
Erdős’s famous problem on distinct distances [2], Székely [9] generalized the
crossing lemma to multigraphs: for every topological multigraph G with n ver-
tices and e > 4n edges, in which the multiplicity of every edge is at most m, we
have

cr(G) ≥ c
e3

mn2
. (2)

As the maximum multiplicity m increases, (2) gets weaker. However, as was
shown in [7] and [3], under certain special conditions on the multigraphs, the
inequality (1) remains true, independently of m. Some related results were estab-
lished in [6]. In all of these papers, one of the key elements of the argument was
to find an analogue of Euler’s theorem for the corresponding classes of “nearly
planar” multigraphs.

Throughout this paper, we consider only single-crossing topological multi-
graphs, i.e., we assume that any two edges cross at most once. Hence, two edges
that share an endpoint may also have a common interior point. Two edges are
said to be independent if they do not share an endpoint, and they are called
disjoint if they are independent and do not cross.

Definition 1. A multigraph G is called separated if no two parallel edges of G
cross, and the “lens” enclosed by them has at least one vertex in its interior.

It was conjectured in [3] that any separated single-crossing topological multi-
graph with n vertices has at most O(n2) edges. The aim of this note is to verify
this conjecture apart from a logarithmic factor.

Theorem 1. The number of edges of a separated single-crossing topological
multigraph G on n vertices satisfies |E(G)| ≤ O(n2 log n).

Note that in a separated multigraph, any pair of vertices can be connected by
at most n− 1 edges. This immediately implies the bound |E(G)| ≤ (

n
2

)
(n− 1) =

O(n3).
If we plug in Theorem 1 into the machinery of [3] and [7], a routine calculation

gives the following.

Corollary 1. Every separated single-crossing topological multigraph on n ver-
tices and e ≥ 4n edges has at least c e3

n2 log(e/n) crossings, where c > 0 is a suitable
constant.

For simplicity, we will assume that a multigraph does not have loops. It is
easy to see that Theorem 1 also holds for topological multigraphs with loops,
assuming that each loop contains a vertex.
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Theorem 1 does not remain true if we replace the assumption that G is
single-crossing by the weaker one that any two edges cross at most twice. To see
this, let the vertices of G lie on the x-axis: set V (G) = {1, 2, . . . , n}. Let each
edge consist of a semicircle in the upper half-plane and a semicircle below it that
meet at a point of the x-axis. More precisely, for any pair of integers i, j ∈ V (G)
with i < j, and for any k with i ≤ k < j, pick a distinct point pikj in the open
interval (k, k+1). Let γikj be the union of two semicircles centered at the x-axis:
an upper semicircle connecting i to pikj and a lower one connecting pikj to j.
Let E(G) consist of all arcs γikj over all triples i ≤ k < j. Observe that any
two edges of G cross at most twice: once above the x-axis and once below it. No
two parallel edges, γihj and γikj with h < k, cross each other, and the region
enclosed by them contains the vertex k ∈ V (G). Therefore, G is a separated
topological multigraph with

∑
i,j(i<j)(j − i) = Ω(n3).

The proof of Theorem 1 is presented in the next section.
All logarithms used in the sequel are of base 2. We omit all floor and ceiling

signs wherever they are not crucially important.

2 Proof of Theorem 1

We will need the following simple lemma.

Lemma 1. Let G be a single-crossing topological graph on n vertices with no
parallel edges, in which every pair of independent edges cross. Then we have
|E(G)| ≤ 4n.

Proof. Let V (G) = A ∪ B be a bipartition of the vertex set such that at least
half of the edges of G run between A and B. Denote the corresponding bipartite
graph by G(A,B). Any pair of independent edges of G(A,B) cross once, that
is, an odd number of times. Assume without loss of generality that A and B
are separated by a horizontal line. By “flipping” one of the half-planes bounded
by this line from left to right, we obtain a drawing of G(A,B), in which any
pair of independent edges cross an even number of times. According to the
Hanani-Tutte theorem [8,10], this implies that G(A,B) is a planar graph. Any
bipartite planar graph on n ≥ 3 vertices has at most 2n − 4 edges. Therefore,
|E(G)| ≤ 2|E(G(A,B))| ≤ 4n − 8.

Proof (Proof of Theorem 1). Let G = (V,E) be a separated single-crossing topo-
logical multigraph on n vertices. If two vertices, u and v, are joined by j > 1
parallel edges, then they cut the plane into j pieces, one of which is unbounded.
The bounded pieces are called lenses. Each lens is bounded by two adjacent
edges joining a pair of vertices. Let L denote the set of lenses determined by G.

If |L| ≤ |E(G)|
2 , then keeping only one edge between every pair of adjacent

vertices, we obtain a simple graph G′ whose number of edges satisfies

|E(G)|
2

≤ |E(G′)| ≤
(

n

2

)
.
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This implies that |E(G)| < n2, and we are done.
From now on, we can and will assume that

|L| ≥ |E(G)|
2

. (3)

For any lens � ∈ L, let |�| denote the number of vertices in the interior of
�. For t = log n, we partition L into t parts, L1 ∪ L2 ∪ · · · ∪ Lt, where � ∈ Li

if and only of 2i−1 ≤ |�| < 2i. By the pigeonhole principle, there is an integer
k, 1 ≤ k ≤ t, such that

|Lk| ≥ |L|
log n

. (4)

Fix an integer k with the above property, and let dk(v) denote the number
of lenses in Lk that contain vertex v in its interior. Then we have

∑

v∈V

dk(v) =
∑

�∈Lk

|�| ≥ |Lk|2k−1.

Hence, there is a vertex v ∈ V that lies in the interior of at least |Lk|2k−1

n
lenses from Lk. Assume without loss of generality that v is located at the origin
o, and let Lo denote the set of lenses in Lk which contain the origin. Hence, we
have

|Lo| ≥ |Lk| · 2
k−1

n
.

Combining this with (3) and (4), we obtain

|Lo| ≥ |E(G)|
n log n

· 2k−2. (5)

Let Go denote the subgraph of G consisting of all vertices and the edges that
bound a lens in Lo. Any two vertices of Go are connected by 0 or 2 edges of Go.

Now we use the idea of the probabilistic proof of the crossing lemma; see [5].
Let W be a random subset of V in which each vertex is picked independently
with probability p = 2−k. Let Go[W ] be the subgraph of Go induced by W . Let
Lo(W ) denote the set of empty lenses in Go[W ] (that is, the set of lenses with
empty interiors). For the expected values of |W | and |Lo(W )|, we have

E[|W |] = pn

and
E[|Lo(W )|] ≥ p2(1 − p)2

k |Lo|.
By linearity of expectation, there is a subset W ′ of V such that

|Lo(W ′)| − 4W ′| ≥ E[|Lo(W )|] − 4E[|W |] ≥ p2(1 − p)2
k |Lo| − 4pn. (6)

For each lens in � ∈ Lo(W ′), we arbitrarily pick one of the two edges enclosing
�, and denote the resulting simple topological graph by G′. We now make the
following observation.
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Lemma 2. Any two independent edges of G′ cross each other.

Proof. Suppose, for contradiction, that G′ has two independent edges, e and e′,
which do not cross. Let � and �′ be the corresponding empty lenses in Go[W ′].
Since the interiors of � and �′ are empty, neither of them can contain an end-
point of the other. Both of these lenses contain the origin o, which implies that
they cannot be disjoint. Therefore, both sides of � must cross both sides of �′,
contradicting the choice of e and e′. Here, we used the assumption that G and,
hence, G′ are single-crossing.

In view of Lemma 2, we can apply Lemma 1 to G′. We obtain |E(G′)| =
|Lo(W ′)| ≤ 4|W ′| and hence by (6) we have p2(1 − p)2

k |Lo| ≤ 4pn. It follows
that

|Lo| ≤ 4p−1(1 − p)−2kn.

Substituting p = 2−k, we get

|Lo| ≤ 16 · 2kn.

Comparing this with (5), we conclude that

|E(G)| ≤ O(n2 log n).

This completes the proof of Theorem 1.
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9. Székely, L.A.: Crossing numbers and hard erdös problems in discrete geometry.
Comb. Probab. Comput. 6, 353–358 (1997)

10. Tutte, W.T.: Toward a theory of crossing numbers. J. Comb. Theory Ser. A 8,
45–53 (1970)

https://doi.org/10.1007/978-3-030-04414-5_17
https://doi.org/10.1007/978-3-030-04414-5_17
https://doi.org/10.1007/978-1-4613-0039-7
https://doi.org/10.1007/978-1-4613-0039-7
https://doi.org/10.1007/978-3-030-68766-3_28
https://doi.org/10.1007/978-3-030-68766-3_28
https://doi.org/10.1007/s00454-018-00052-z


Linear Layouts



On the Queue-Number of Partial Orders

Stefan Felsner1, Torsten Ueckerdt2(B), and Kaja Wille1

1 Institut für Mathematik, Technische Universität Berlin, Berlin, Germany
felsner@math.tu-berlin.de, wille@campus.tu-berlin.de

2 Institute of Theoretical Informatics, Karlsruhe Institute of Technology,
Karlsruhe, Germany

torsten.ueckerdt@kit.edu

Abstract. The queue-number of a poset is the queue-number of its cover
graph viewed as a directed acyclic graph, i.e., when the vertex order must
be a linear extension of the poset. Heath and Pemmaraju conjectured
that every poset of width w has queue-number at most w. Recently,
Alam et al. constructed posets of width w with queue-number w + 1.
Our contribution is a construction of posets with width w with queue-
number Ω(w2). This asymptotically matches the known upper bound.

Keywords: Poset · Queue-number · Width · Lower bounds

1 Introduction

A queue layout of a graph consists of a total ordering on its vertices and a
partition of its edge set into queues, i.e., no two edges in a single block of the
partition are nested. The minimum number of queues needed in a queue layout
of a graph G is its queue-number and denoted by qn(G).

To be more precise, let G be a graph and let L be a linear order of the
vertices. A k-rainbow is a set of k edges {aibi : 1 ≤ i ≤ k} such that a1 < a2 <
· · · < ak < bk < · · · < b2 < b1 in L. A pair of edges forming a 2-rainbow is said
to be nested. A queue is a set of edges without nesting. Given G and L, the edges
of G can be partitioned into k queues if and only if there is no rainbow of size
k +1 in L. The queue-number of G is the minimum number of queues needed to
partition the edges of G over all linear orders L.

Queue layouts were introduced by Heath and Rosenberg in 1992 [6] as a coun-
terpart of book embeddings. Queue layouts were implicitly used before and have
applications in fault-tolerant processing, sorting with parallel queues, matrix
computations, scheduling parallel processes, and in communication management
in distributed algorithm (see [4,6,8]). There is a rich literature exploring bounds
on the queue-number of different classes of graphs [2,4,6,9].

Here we study the queue-number of posets. This parameter was introduced
in 1997 by Heath and Pemmaraju [5], inspired by the older concept of the queue-
number of directed acyclic graphs. For a queue layout of a directed acyclic graph,
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it is required that a precedes b in the total vertex ordering whenever there is a
directed edge a → b. I.e., it is a topological ordering of the graph.

A poset is a pair P = (X,<) of a finite set X of elements, called the ground
set, and a transitive (if a < b and b < c, then a < c) and antisymmetric (if a < b,
then b �< a) binary relation < on X. Two elements a, b are called comparable
if either a < b or b < a, and incomparable otherwise. A relation a < b in P
is a cover if it is not implied by transitivity, i.e., there is no element c such
that a < c < b. In the context of drawings, embeddings and layouts for posets
P = (X,<), it is natural to work with their directed cover graphs, having vertex
set X and a directed edge a → b for every cover relation a < b in P . For example
a diagram of P is an upward drawing of the directed cover graph where the
direction on edges is usually omitted as each edge is implicitly directed upwards.

Now, a linear extension L of P is simply a topological ordering of its directed
cover graph, and we write a < b in L if a precedes b in L (though not necessarily
in P ). The queue-number of P , denoted by qn(P ), is the smallest k such that
there is a linear extension L of P for which the resulting linear layout of the
directed cover graph contains no (k + 1)-rainbow. Figure 1 shows an example.

Fig. 1. A poset of width 5 and a queue layout with 2 queues indicated by colors.

Clearly, if GP denotes the undirected cover graph of P , then qn(GP ) ≤
qn(P ), i.e., the queue-number of a poset is at least as large as the queue-
number of its (undirected) cover graph. It was shown by Heath and Pem-
maraju [5] that even for planar posets P there is no function f such that
qn(P ) ≤ f(qn(GP )). They also investigated the maximum queue-number of
several classes of posets, in particular with respect to bounded width (the max-
imum number of pairwise incomparable elements) and height (the maximum
number of pairwise comparable elements). In particular they gave a nice argu-
ment showing that qn(P ) ≤ width(P )2 (see Proposition 2 below). The poset P
of height 2 and width w whose cover graph is the complete bipartite graph Kw,w

attains qn(P ) = width(P ). Actually, Heath and Pemmaraju conjectured that
qn(P ) ≤ width(P ) for every poset P .

Knauer, Micek and the second author [7] showed that the inequality qn(P ) ≤
width(P ) holds for all posets of width 2. Last year, Alam et al. [1] constructed
a non-planar poset P3 of width 3 whose queue-number is 4; thus refuting the
conjecture of Heath and Pemmaraju. Using a simple lifting argument from [7],
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Alam et al. generalized their example and constructed for every w > 3 a poset Pw

with width(Pw) = w and qn(Pw) = w + 1. Figure 2 shows their construction. In
fact, consider the lifting construction in the middle of Fig. 2 and a fixed linear
extension L. If a < b in L, then the cover edge from the bottommost element
to b nests above the lower copy of Pw−1. Symmetrically, if b < a in L, the cover
edge from b to the topmost element nests above the upper copy of Pw−1. In any
case, we extend any rainbow in Pw−1 by one edge. Similarly, in the right of Fig. 2
one of the diagonal cover edges will nest above one of the copies of Pw−1 in any
linear extension.

Let us also mention that a second contribution of Alam et al. consists in a
slight improvement of the upper bound: They show qn(P ) ≤ (w − 1)2 + 1 for all
posets P of width at most w.

Pw−1

Pw−1

Pw

b a

P3

Pw−1

Pw−1

Pw

b a

Fig. 2. Left: The construction of Alam et al. of a poset P3 of width 3 and queue-
number 4. Middle and right: Two possibilities of lifting a poset Pw−1 s.t. width(Pw) =
width(Pw−1) + 1 and qn(Pw) ≥ qn(Pw−1) + 1.

Our contribution is the following theorem.

Theorem 1. For every w > 3 there is a poset Pw of width w with

qn(Pw) ≥ w2/8.

These examples (asymptotically) match the upper bound. Besides yielding
a strong improvement of the lower bound, we also believe that the analysis of
our construction is conceptually simpler than the example provided by Alam et



234 S. Felsner et al.

Fig. 3. A poset P of width w = 4 (A partition into 4 chains is indicated in grey.)
and a linear extension L (ordering the elements by their y-coordinates) of P with a
w2-rainbow.

al. to disprove the conjecture of Heath and Pemmaraju. The key difference is
that we improve the lifting step rather than the base case. In particular, we show
how to lift any poset of width w so that the width goes up by only 2, but the
queue-number goes up by at least �(w − 1)/2�.

As an open problem we promote the question whether the original conjecture
holds for planar posets. In [7] it was shown that the queue-number of planar
posets of width w is upper bounded by 3w − 2 and that there are such planar
posets P with qn(P ) = width(P ) = w.

2 Preliminaries

Before presenting our construction, we like to revisit the nice upper bound argu-
ment of Heath and Pemmaraju. Let P = (X,<) be a poset of width w. Dilworth’s
Theorem asserts that X can be decomposed into w chains of P .

Proposition 2 (Heath and Pemmaraju). For every poset P we have
qn(P ) ≤ width(P )2.

Proof. Let w = width(P ), let C1, . . . , Cw be a chain partition, and let L be any
linear extension of P . Partition the cover edges into w2 sets Qi,j with i, j ∈ [w]
such that (u, v) ∈ Qi,j if u ∈ Ci and v ∈ Cj . We claim that each Qi,j is a queue.

Let a < b < c < d in L support a pair of nesting cover edges and suppose that
both edges (a, d) and (b, c) belong to Qi,j . By definition a, b ∈ Ci and c, d ∈ Cj

and from the ordering in L we get a < b and c < d in P . Now we have a < b
and b < c and c < d in P and thus the relation a < d is implied by transitivity.
This contradicts that (a, d) is a cover edge. 	
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Fig. 4. A poset P , its dual P̄ , and a 2-dimensional drawing of P .

In fact we have shown a much stronger statement: If P and a chain partition
C1, . . . , Cw are given, then there is a partition of the edges of the cover graph
of P into parts Qi,j with i, j ∈ [w] such that each Qi,j is a queue for every(!)
linear extension L of P . Let us remark that for some posets P and some linear
extensions L of P , the resulting queue layout indeed has a width(P )2-rainbow.
An example is indicated in Fig. 3.

2.1 Concepts Needed for the Construction

Let P be a poset. The dual of P , denoted P̄ , is the poset on the same ground
set such that: x < y in P ⇐⇒ y < x in P̄ . In terms of its diagram, the dual
of P is obtained by flipping along a horizontal line.

A poset P is 2-dimensional if and only if there are two linear extensions L1

and L2 such that: x < y in P ⇐⇒ x < y in L1 and L2. Such a pair L1, L2 is
called a realizer of P .

When drawing 2-dimensional posets, it is common to represent each ele-
ment x by a point with coordinates (x1, x2) where x1 is the position of x in L1

and x2 is the position of x in L2, see Fig. 4. This is also called a dominance
drawing.

3 Proof of Theorem 1

We define Pw recursively, focusing on the recursive step. As mentioned in the
introduction, the recursive step involves lifting a given poset Pw−2 of width w−2
to the desired poset Pw of width w such that qn(Pw) ≥ qn(Pw−2)+ �(w −1)/2�.
Our lifting can be seen as an extension of the situation on the very right of Fig. 2.
Specifically, for w ≥ 3, the construction of Pw is based on

– a copy of Pw−2,
– a reinforcement poset Rw−2 of width w − 2,
– two linear extensions Lx and Ly of Rw−2, and
– the duals Pw−2, Rw−2, Lx, Ly of the above.
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We invite the reader to take a look at Fig. 5, which shows the construction of Pw

using Pw−2 and Rw−2 as a black box. Formally, let r = r(w−2) denote the num-
ber of elements in Rw−2. Then, Pw contains besides Pw−2, Rw−2, Pw−2, Rw−2,
two additional elements a and b, and four chains of additional r elements
x1 < · · · < xr, y1 < · · · < yr, xr < · · · < x1, and yr < · · · < y1, together
with the following additional relations:

– b is below x1, y1 and above x1, y1.
– a is above all elements in Pw−2 and below all elements in Pw−2.
– All elements of Pw−2 are above all elements of Rw−2, and all elements of

Pw−2 are below all elements of Rw−2.
– xi is above the i-th element in the linear extension Lx of Rw−2, i = 1, . . . , r.
– xi is below the i-th element in the dual Lx of Rw−2.
– yi is above the i-th element in the linear extension Ly of Rw−2, i = 1, . . . , r.
– yi is below the i-th element in the dual Ly of Rw−2.
– All relations that are transitively implied by the above.

First we observe that width(Pw) = width(Pw−2) + 2 = w, as width(Pw−2) =
width(Rw−2) = w − 2 and the additional elements (except a, which can be
incorporated into an existing chain) can be covered by two chains. Also note
that the number p(w) of elements of the poset Pw is given by the recursion
p(w) = 2p(w−2)+6r(w−2)+2. (Recall that r(w−2) is the number of elements
of Rw−2.) Further note that xi and the i-th element of Lx in Rw−2 indeed form
a cover edge, as Lx is a linear extension of Rw−2, i = 1, . . . , r. Similarly for the
edges between Rw−2 and yi, as well as between Rw−2 and xi, yi, i = 1, . . . , r.

Fig. 5. Recursive construction of Pw.
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Furthermore, it can be seen that Pw is self-dual; the reflection Pw ↔ Pw

having two fixed points a and b. This shows that when analyzing qn(Pw), we
can restrict the attention to linear extensions L of Pw which have a before b.
With this assumption, a rainbow between Rw−2 and either X = {x1, . . . , xr} or
Y = {y1, . . . , yr} nests above every rainbow of Pw−2. See Fig. 6 for an illustration.
If we let qw−2 be the size of a rainbow between Rw−2 and either X or Y , then
we have the recursion:

qn(Pw) ≥ qn(Pw−2) + qw−2 (1)

We think of this use of a self-dual construction as the symmetry trick. Again,
let us mention that constructions given in [7] (proof of Prop. 2) and [1] (proof of
Thm. 4) also use a recursion based on two copies of the poset from the previous
level of the recursion, as illustrated in the middle of Fig. 2. However, this only
forces one edge to nest over the rainbow from the previous level of the recursion.
Our lifting forces a rainbow of edges whose size is linear in the width to nest over
the previous level construction and its rainbow; thus giving overall a quadratic
lower bound.

aPw−2 bRw−2 L
x1 xr· · ·

y1 yr· · ·

Fig. 6. The general structure of a linear extension L of Pw with a before b.

It remains to construct the poset Rw−2 together with two linear extensions Lx

and Ly such that in any linear extension L having Rw−2 entirely before X ∪ Y ,
a large rainbow between Rw−2 and either X or Y appears. Recall that qw−2

denotes the largest such rainbow and we seek to construct Rw−2 such that qw−2

is at least linear in w.
As the elements in X form a chain x1 < · · · < xr and thus are ordered in

this way in L, rainbows between Rw−2 and X are in bijection with subsets of
elements in Rw−2 that are oppositely ordered in L and Lx. Similarly, rainbows
between Rw−2 and Y appear when elements in Rw−2 are oppositely ordered in L
and Ly. Thus our goal is to construct Rw−2, Lx and Ly such that for every linear
extension L of Rw−2 there is a long increasing sequence in L which is decreasing
in Lx or Ly.

To illustrate this idea, suppose that for each width u < w, we choose the
poset Ru to be an antichain of size u and the linear extensions Lx and Ly to
be a realizer (think of Lx as the identity permutation and of Ly as its reverse).
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The Lemma of Erdős-Szekeres asserts that in every linear extension of Ru there
is an increasing or a decreasing sequence of size at least

⌈√
u
⌉
, i.e., qu =

⌈√
u
⌉
.

This value of qu together with Inequality (1) yields

qn(Pw) ≥
∑

u<w; u≡w(2)

⌈√
u
⌉

∈ Θ(w3/2).

For the proof of the theorem we need a better construction for the rein-
forcement posets Ru. In particular, we seek to have qu ≥ �u+1

2 � instead of just
qu ≥ ⌈√

u
⌉
. A construction of such a Ru is given in Subsect. 3.1 and based on

the following lemma.1

Lemma 3. For each u ≥ 1, there is a 2-dimensional poset Ru of width u with a
realizer Lx, Ly, such that if L is a linear extension of Ru and dx and dy denote
the maximum lengths of an increasing sequence in L which is decreasing in Lx

and Ly respectively, then dx + dy ≥ u + 1.

The lemma says that we can assume the value qu = �u+1
2 �. With Inequal-

ity (1) we get:

qn(Pw) ≥
∑

u<w; u≡w(2)

⌈
u + 1

2

⌉

In the case w odd, w = 2s + 1, we get qn(Pw) ≥ ∑s
k=1 k =

(
s+1
2

)
. In the

case w even, w = 2s, we get qn(Pw) ≥ ∑s
k=2 k =

(
s+1
2

)−1. A simple computation
shows that for w ≥ 4 we get qn(Pw) ≥ w2/8, independent of the parity of w.
This completes the proof of Theorem 1.

The base of our recursive construction is the case w = 1 or w = 2, depending
on the parity of w. For the validity of Theorem 1, it is enough to let Pw with
w ∈ {1, 2} be any poset of width w. Of course, it is beneficial to start with a
higher queue-number, also given that our bound of w2/8 is less than the w+1 of
Alam et al. [1] for small w. The best results are achieved by starting at width 3
or 4 (depending on the parity of the target width w) with the poset of Alam
et al. [1] with queue-number 4, respectively 5.

3.1 The Construction of Ru for Lemma 3

The construction of Ru is again recursive. Let R1 be a single element. Then
clearly dx + dy = 2. For the construction of Ru for u ≥ 2 we again use the
symmetry trick. We take two copies Q1, Q2 of Ru and two additional elements a
and b. Then Ru is obtained by a series composition of Q1+a+Q2, and a parallel
composition of the result with element b. Formally,

– a is above every element of Q1 and below every element of Q2, while
1 The lemma with a different proof was discovered (but not yet published) in October

2020 by the first and the second author together with Francois Dross, Piotr Micek,
and Micha�l Pilipczuk.
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– b is incomparable to all other elements.

The two linear extensions of the realizer Lx, Ly of Ru are obtained as follows.

– Lx = b, Lx(Q1), a, Lx(Q2)
– Ly = Ly(Q1), a, Ly(Q2), b,

where Lx(Qi), Ly(Qi) is the realizer of the copy Qi of Ru−1, i = 1, 2. We
invite the reader to look at Fig. 7 for two illustrations of this recursive construc-
tion step for Ru and its realizer Lx, Ly.

First, we observe that width(Ru) = width(Ru−1) + 1 = u, as element b can
be covered by a new chain and element a can be incorporated into an existing
chain. Also note that the number r(u) of elements in Ru is given by the recursion
r(u) = 2r(u − 1) + 2, which with r(1) = 1 solves for r(u) = 3

2 · 2u − 2. Further
observe that Ru is again self-dual. In particular the two copies Q1 and Q2 of Ru−1

are isomorphic. The reflection Ru ↔ Ru has two fixed points a and b.

Q2

Q1

b a

x1

xr

. .
.

y1

yr

. . .

Q1

Q2

a

b

x

y

x

y

Lx

Ly

Fig. 7. The recursive construction of Ru with its realizer Lx, Ly.

Now let L be any linear extension of Ru. First suppose that a < b in L. Let L′

be the restriction of L to Q1. By induction the lengths d′
x and d′

y of increasing
sequences of L′ which are decreasing in the two linear extensions of the realizer
Lx(Q1), Ly(Q1) of Q1 satisfy d′

x + d′
y ≥ u. Since b precedes Q1 in Lx and comes

after Q1 in L, we have dx ≥ d′
x + 1. Together with the trivial dy ≥ d′

y, we get
dx + dy ≥ u + 1.

If we have b < a in L, then we consider Q2. As before we get the two values d′
x

and d′
y for the restriction L′ of L to Q2 and know by induction that d′

x +d′
y ≥ u.

This time b precedes Q2 in L but comes after Q2 in Ly, which gives dy ≥ d′
y +1.

Together with the trivial dx ≥ d′
x we again see that dx + dy ≥ u + 1. This

completes the proof of Lemma 3.
We remark that in both the construction of Pw and Ru, the element a is

used only for the sake of the exposition. It would suffice to add all relations
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between Pw−2 and Pw−2, respectively Q1 and Q2. While this gives slightly
smaller constructions for Pw and Ru, they would still be exponential in their
width. (Recall that r(u) = 3

2 ·2u−2 and hence p(w) = 2p(w−2)+6r(w−2)+2 =
Θ(2w).)

4 Conclusions

We have made substantial progress in the understanding of queue-numbers of
partially ordered sets. We take the opportunity to list and comment on open
questions in the field.

– An obvious question is to ask for improved upper and lower bounds. More
precisely, we now know that the growth rate of the maximum queue-number
of posets of width w is (C + o(1))w2 for some constant C between 1/8 and 1.
What is the precise value of constant C?

– Our reinforcement poset Ru is 2-dimensional for every u. However our entire
lower bound example Pw is not (already for w = 3), and the same holds for
the example of Alam et al. in the left of Fig. 2. We think it is interesting to see
whether there exists any 2-dimensional poset P with qn(P ) ≥ width(P ) + 1.

– What is the maximum queue-number of posets of width w with a planar dia-
gram? Knauer, Micek, and the second author [7] proved the lower bound w
by observing that the simple lifting operation in the middle of Fig. 2 pre-
serves planarity, while their upper bound is 3w − 2. Clearly, the better lifting
operation introduced here necessarily introduces crossing cover edges.

– Heath and Pemmaraju [5] conjectured that planar posets on n elements
have queue-number at most

√
n. Their lower bound construction is an r-

antichain R with realizer Lx, Ly together with an r-chain X = x1 < · · · < xr

matched upward in order of Lx and an r-chain Y = y1 < · · · < yr matched
downward in order of Ly; see Fig. 8. The Lemma of Erdős-Szekeres implies
for this planar poset P with n = 3r elements that qn(P ) ≥ ⌈√

n/3
⌉
. It is

open whether there is an asymptotically matching upper bound.

Fig. 8. Heath and Pemmaraju’s construction [5] of a planar poset P on n = 3r elements
with qn(P ) ≥ ⌈√

n/3
⌉
.
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– Dujmović and Wood [3] show that a random vertex ordering for an undirected
graph G has with positive probability no rainbow of size

⌈
e
√

m
⌉
, where e is

the base of the natural logarithm and m is the number of edges in G. Can
a similar result be obtained by considering a random linear extension of a
poset P? Note that a positive answer would resolve (up to a constant factor)
the previous question of Heath and Pemmaraju about planar posets.

– In [7] is was shown that posets P of width 2 have qn(P ) ≤ 2. In [1] it was
shown that posets P of width 3 may have qn(P ) ≥ 4 and satisfy qn(P ) ≤ 5.
Is 4 or 5 the best upper bound in this case?
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Abstract. A long-standing conjecture by Heath, Pemmaraju, and
Trenk states that the upward book thickness of outerplanar DAGs is
bounded above by a constant. In this paper, we show that the conjec-
ture holds for subfamilies of upward outerplanar graphs, namely those
whose underlying graph is an internally-triangulated outerpath or a cac-
tus, and those whose biconnected components are st-outerplanar graphs.
On the complexity side, it is known that deciding whether a graph has
upward book thickness k is NP-hard for any fixed k ≥ 3. We show that
the problem, for any k ≥ 5, remains NP-hard for graphs whose domina-
tion number is O(k), but it is FPT in the vertex cover number.

1 Introduction

A k-page book embedding (or k-stack layout) of an n-vertex graph G = (V,E) is
a pair 〈π, σ〉 consisting of a bijection π : V → {1, . . . , n}, defining a total order
on V , and a page assignment σ : E → {1, . . . , k}, partitioning E into k subsets
Ei = {e ∈ E | σ(e) = i} (i = 1, . . . , k) called pages (or stacks) such that no two
edges uv,wx ∈ E mapped to the same page σ(uv) = σ(wx) cross in the following
sense. Assume, w.l.o.g., π(u) < π(v) and π(w) < π(x) as well as π(u) < π(w).
Then uv and wx cross if π(u) < π(w) < π(v) < π(x), i.e., their endpoints
interleave. The book thickness (or stack number) of G is the smallest k for which
G admits a k-page book embedding. Book embeddings and book thickness of
graphs are well-studied topics in graph drawing and graph theory [12,17,24,29].
For instance, it is NP-complete to decide for k ≥ 2 if the book thickness of a
graph is at most k [7,12] and it is known that planar graphs have book thickness
at most 4 [30]; this bound has recently been shown tight [6]. More in general, the
book thickness of graphs of genus g is O(

√
g) [25] and constant upper bounds

are known for some families of non-planar graphs [4,5,18].
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Upward book embeddings (UBEs) are a natural extension of book embeddings
to directed acyclic graphs (DAGs) with the additional requirement that the
vertex order π respects the directions of all edges, i.e., π(u) < π(v) for each uv ∈
E (and hence G must be acyclic). Thus the ordering induced by π is a topological
ordering of V . Book embeddings with different constraints on the vertex ordering
have also been studied in [2,3,20]. Analogously to book embeddings, the upward
book thickness (UBT) of a DAG G is defined as the smallest k for which G
admits a k-page UBE. The notion of upward book embeddings is similar to
upward planar drawings [14,16], i.e., crossing-free drawings, where additionally
each directed edge uv must be a y-monotone curve from u to v. Upward book
embeddings have been introduced by Heath et al. [22,23]. They showed that
graphs with UBT 1 can be recognized in linear time, whereas Binucci et al. [10]
proved that deciding the UBT of a graph is generally NP-complete, even for
fixed values of k ≥ 3. On the positive side, deciding if a graph admits a 2-page
UBE can be solved in polynomial time for st-graphs of bounded treewidth [10].

Constant upper bounds on the UBT are known for some graph classes:
directed trees have UBT 1 [23], unicyclic DAGs, series-parallel DAGs, and N-free
upward planar DAGs have UBT 2 [1,15,23,26]. Frati et al. [19] studied UBEs of
upward planar triangulations and gave several conditions under which they have
constant UBT. Interestingly, upward planarity is a necessary condition to obtain
constant UBT, as there is a family of planar, but non-upward planar, DAGs that
require Ω(n) pages in any UBE [21]. Back in 1999, Heath et al. [23] conjectured
that the UBT of outerplanar graphs is bounded by a constant, regardless of their
upward planarity. Another long-standing open problem [28] is whether upward
planar DAGs have constant UBT; in this respect, examples with a lower bound
of 5 pages are known [27] and there is no known upper bound better than O(n).

Contributions. In this paper, we contribute to the research on the upward book
thickness problem from two different directions. We first report some notable
progress towards the conjecture of Heath et al. [23]. We consider subfamilies
of upward outerplanar graphs (see Sect. 2 for definitions), namely those whose
underlying graph is an internally-triangulated outerpath or a cactus, and those
whose biconnected components are st-outerplanar graphs, and provide constant
upper bounds on their UBT (Sect. 3). Our proofs are constructive and give rise
to polynomial-time book embedding algorithms. We then investigate the com-
plexity of the problem (Sect. 4) and show that for any k ≥ 5 it remains NP-
complete for graphs whose domination number is in O(k). On the positive side,
we prove that the upward book thickness problem is fixed-parameter tractable
in the vertex cover number. These two results narrow the gap between tractable
and intractable parameterizations of the problem. Proofs of statements marked
with a (�) have been sketched or omitted and can be found in [8].
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2 Preliminaries

We assume familiarity with basic concepts in graph drawing (see also [13]).

BC-tree. The BC-tree of a connected graph G is the incidence graph between
the (maximal) biconnected components of G, called blocks, and the cut-vertices
of G. A block is trivial if it consists of a single edge, otherwise it is non-trivial.

Outerplanarity. An outerplanar graph is a graph that admits an outerplanar
drawing, i.e., a planar drawing in which all vertices are on the outer face, which
defines an outerplanar embedding. Unless otherwise specified, we will assume our
graphs to have planar or outerplanar embeddings. An outerplanar graph G is
internally triangulated if it is biconnected and all its inner faces are cycles of
length 3. An edge of G is outer if it belongs to the outer face of G, and it is
inner otherwise. A cactus is a connected outerplanar graph in which any two
simple cycles have at most one vertex in common. Therefore, the blocks of a
cactus graph are either single edges (and hence trivial) or cycles. The weak dual
G of a planar graph G is the graph having a node for each inner face of G, and an
edge between two nodes if and only if the two corresponding faces share an edge.
For an outerplanar graph G, its weak dual G is a tree. If G is a path, then G
is an outerpath. A fan is an internally-triangulated outerpath whose inner edges
all share an end-vertex.

Directed Graphs. A directed graph G = (V,E), or digraph, is a graph whose edges
have an orientation. We assume each edge e = uv of G to be oriented from u to v,
and hence denote u and v as the tail and head of e, respectively. A vertex u of G
is a source (resp. a sink) if it is the tail (resp. the head) of all its incident edges. If
u is neither a source nor a sink of G, then it is internal. A DAG is a digraph that
contains no directed cycle. An st-DAG is a DAG with a single source s and a single
sink t; if needed, we may use different letters to denote s and t. A digraph is upward
(outer)planar, if it has a (outer)planar drawing such that each edge is a y-monotone
curve. Such a drawing (if any) defines an upward (outer)planar embedding. An
upward planar digraph G (with an upward planar embedding) is always a DAG
and it is bimodal, that is, the sets of incoming and outgoing edges at each vertex v
of G are contiguous around v (see also [13]). The underlying graph of a digraph is
the graph obtained by disregarding the edge orientations. An st-outerplanar graph
(resp. st-outerpath) is an st-DAG whose underlying graph is outerplanar graph
(resp. an outerpath). An st-fan is an st-DAG whose underlying graph is a fan and
whose inner edges have s as an end-vertex.

Lemma 1 (�). Let G be an upward outerplanar graph and let c be a cut-vertex
of G. Then there are at most two blocks of G for which c is internal.

Basic Operations. Let π and π′ be two orderings over vertex sets V and
V ′ ⊆ V , respectively. Then π extends π′ if for any two vertices u, v ∈ V ′ with
π′(u) < π′(v), it holds π(u) < π(v). We may denote an ordering π as a list
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〈v1, v2, . . . , v|V |〉 and use the concatenation operator ◦ to define an ordering from
other lists, e.g., we may obtain the ordering π = 〈v1, v2, v3, v4〉 as π = π1 ◦ π2,
where π1 = 〈v1, v2〉 and π2 = 〈v3, v4〉. Also, let π be an ordering over V and let
u ∈ V . We denote by πu− and πu+ the two orderings such that π = πu− ◦〈u〉◦πu+ .
Consider two orderings π over V and π′ over V ′ with V ∩ V ′ = {u, v}, and such
that: (i) u and v are consecutive in π, and (ii) u and v are the first and the last
vertex of π′, respectively. The ordering π∗ over V ∪ V ′ obtained by merging π
and π′ is π∗ = πu− ◦ π′ ◦ πv+ . Note that π∗ extends both π and π′.

3 Book Thickness of Outerplanar Graphs

In this section, we study the UBT of three families of upward outerplanar graphs.
We begin with internally-triangulated upward outerpaths (Sect. 3.1), which are
biconnected and may have multiple sources and sinks. We then continue with
families of outerplanar graphs that are not biconnected but whose biconnected
components have a simple structure, namely outerplanar graphs whose bicon-
nected components are st-DAGs (Sect. 3.2), and cactus graphs (Sect. 3.3).

3.1 Internally-Triangulated Upward Outerpaths

In this subsection, we assume our graphs to be internally triangulated. We will
exploit the following definition and lemmas for our constructions.

Definition 1. Let G be an st-outerpath and uv be an outer edge different
from st. An UBE 〈π, σ〉 of G is uv-consecutive if the following properties hold:
(i) u and v are consecutive in π, (ii) the edges incident to s lie on one page,
and (iii) the edges incident to t lie on at most two pages.

An st-outerplanar graph is one-sided if the edge st is an outer edge.

Lemma 2. Let G be a one-sided st-outerplanar graph. Then, G admits a 1-page
UBE 〈π, σ〉 that is uv-consecutive for each outer edge uv �= st.

Proof. Consider the path of the outer face of G that encompasses all vertices of
G and does not contain the edge st. Let 〈π, σ〉 be the 1-page UBE in which π
is the ordering defined by such path. One easily verifies that no two edges cross
and that the endpoints u, v of each outer edge uv �= st are consecutive in π.

Lemma 3. Let G be an st-fan and let uv �= st be an outer edge of G. Then, G
admits a 2-page uv-consecutive UBE.

Proof. Let P� = {s, a1, . . . , a�, t} and Pr = {s, b1, . . . , br, t} be the left and right
st-paths of the outer face of G, respectively. Then the edge uv belongs to either
P� or Pr. We show how to construct an UBE 〈π, σ〉 of G that satisfies the
requirements of the lemma, when uv belongs to P� (see Fig. 1); the construction
when uv belongs to Pr is symmetric (it suffices to flip the embedding along st).



246 S. Bhore et al.

Fig. 1. Cases for the proof of Lemma 3. The edge uv is dashed. In all figures, the
drawings are upward, hence the edge orientations are implied. For interpretation of the
colors in this and the next figures, the reader is referred to the online coloured version
of this article.

Since uv �= st, we have either (a) u = s and v �= t, or (b) v = t and
u �= s, or (c) {u, v} ∩ {s, t} = ∅. In case (a), refer to Fig. 1(a). We set π =
〈s, a1, . . . , a�, b1, . . . , br, t〉 (that is, we place P� before Pr), σ(e) = 1 for each
edge e �= a�t, and σ(a�t) = 2. In case (b), refer to Fig. 1(b). We set π =
〈s, b1, . . . , br, a1, . . . , a�, t〉 (that is, we place P� after Pr), σ(e) = 1 for each edge
e �= brt, and σ(brt) = 2. In case (c), we can set π and σ as in any of case (a) and
(b). In all three cases, all outer edges (including uv) are consecutive, except for one
edge e incident to t; also, all edges (including those incident to s) are assigned to
the same page, except for e, which is assigned to a second page.

The next definition allows us to split an st-outerpath into two simpler graphs.
The extreme faces of an st-outerpath G are the two faces that correspond to the
vertices of G having degree one.

Definition 2. An st-outerpath G is primary if and only if the path forming G
has one extreme face incident to s.

Let G′ be an st-outerpath and refer to Fig. 2(a). Consider the subgraph Fs

of G′ induced by s and its neighbors, note that this is an sw-fan. Assuming
Fs �= G′, and since G′ is an outerpath, one or two edges on the outer face of Fs

are separation pairs for G′. In the former case, it follows that G′ is primary, since
G′ is a path having one face of Fs as its extreme face. In the latter case, since
G′ has a single source s and a single sink t, (at least) one of the two separation
pairs splits G′ into a one-sided uv-outerpath H1 (for some vertices u, v of Fs)
and into a primary st-outerpath G. We will call H1, the appendage at uv of G′.
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Fig. 2. (a) Decomposing G′ into an appendage H1 (light blue) and a primary st-
outerpath G (light gray). (b) An st-fan decomposition of G with differently colored
fans, and fat edges ei. (c) A UBE of G for the proof of Lemma 6.

Let G be an st-outerpath (not necessarily primary). Consider a subgraph F of
G that is an xy-fan (for some vertices x, y of G). Let 〈f1, . . . , fh〉 be the ordered
list of faces forming the path G. Note that F is the subgraph of G formed by a
subset of faces that are consecutive in the path 〈f1, . . . , fh〉. Let fi be the face
of F with the highest index. We say that F is incrementally maximal if i = h or
F ∪ fi+1 is not an xy-fan. We state another key definition; refer to Fig. 2(b).

Definition 3. An st-fan decomposition of an st-outerpath G is a sequence of
siti-fans Fi ⊆ G, with i = 1, . . . , k, such that: (i) Fi is incrementally maximal;
(ii) For any 1 ≤ i < j ≤ k, Fi and Fj do not share any edge if j > i + 1, while
Fi and Fi+1 share a single edge, which we denote by ei; (iii) s1 = s; (iv) the tail
of ei is si+1; (v) edge ei �= siti; and (vi)

⋃k
i=1 Fi = G.

We next show that primary st-outerpaths always have st-fan decompositions.

Lemma 4 (�). Every primary st-outerpath G admits an st-fan decomposition.

Proof (Sketch). By Definition 2, one extreme face of G is incident to s; we denote
such face by f1, and the other extreme face of G by fh. We construct the st-fan
decomposition as follows. We initialize F1 = f1 and we parse the faces of G in
the order defined by G from f1 to fh. Let Fi be the current siti-fan and let fj

be the last visited face (for some 1 < j < h). If Fi ∪ fj+1 is an siti-fan, we set
Fi = Fi ∪ fj+1, otherwise we finalize Fi and initialize Fi+1 = fj .

Lemma 5 (�). Let G be a primary st-outerpath and let F1, F2, . . . , Fk be an
st-fan decomposition of G. Any two fans Fi and Fi+1 are such that if Fi+1 is
not one-sided, then ei = si+1ti.

Lemma 6. Let G be a primary st-outerpath and let F1, F2, . . . , Fk be an st-fan
decomposition of G. Also, let e �= sktk be an outer edge of Fk. Then, G admits
a 4-page e-consecutive UBE 〈π, σ〉.
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Proof. We construct a 4-page e-consecutive UBE of G by induction on k; see
also Fig. 2(c), which shows a UBE of the primary st-outerpath in Fig. 2(b).

Suppose k = 1. Then G consists of the single s1t1-fan and a 2-page e-
consecutive UBE of G exists by Lemma 3.

Suppose now k > 1. Let Gi be the subgraph of G induced by F1∪F2∪· · ·∪Fi,
for each 1 ≤ i ≤ k. Recall that ei is the edge shared by Fi and Fi+1 and that
the tail of ei coincides with si+1. Let 〈π, σ〉 be a 4-page ek−1-consecutive UBE
of Gk−1, which exists by induction since ek−1 �= sk−1tk−1 by condition (v) of
Definition 3, and distinguish whether Fk is one-sided or not.

If Fk is one-sided, it admits a 1-page e-consecutive UBE 〈π′, σ′〉 by Lemma 2.
In particular, e �= ek−1, since ek−1 is not an outer edge of Gk. Also, ek−1 = sktk,
and hence the two vertices shared by π and π′ are sk, tk, which are consecutive in
π and are the first and the last vertex of π′. Then we define a 4-page e-consecutive
UBE 〈π∗, σ∗〉 of Gk as follows. The ordering π∗ is obtained by merging π′ and
π. Since ek−1 = sktk is uncrossed (over all pages of σ), for every edge e of Fk,
we set σ∗(e) = σ(ek−1), while for every other edge e we set σ∗(e) = σ(e).

If Fk is not one-sided, by Lemma 3, Fk admits a 2-page e-consecutive UBE
〈π′, σ′〉. Then we obtain a 4-page e-consecutive UBE 〈π∗, σ∗〉 of Gk as follows.
By Lemma 5, it holds ek−1 = sktk−1, and thus sk and tk−1 are the second-to-last
and the last vertex in π, respectively; also, sk is the first vertex in π′. We set
π∗ = πtk

− ◦ π′. Since 〈π, σ〉 is a ek−1-consecutive UBE of Gk−1, by Definition 1
we know that the edges incident to tk−1 can use up to two different pages. On
the other hand, these are the only edges that can be crossed by an edge of Fk

assigned to one of these two pages. Therefore, in Lemma 3, we can assume σ′

uses the two pages not used by the edges incident to tk−1, and set σ∗(e) = σ′(e)
for every edge e of Fk and σ∗(e) = σ(e) for every other edge.

Next we show how to reinsert the appendage H1 (Lemma 8). To this aim, we
first provide a more general tool (Lemma 7) that will be useful also in Sect. 3.2.

Lemma 7 (�). Let G = (V,E) be a primary st-outerpath with a 4-page e-
consecutive UBE of G obtained by using Lemma 6, for some outer edge e of
G. For i = 1, . . . , h, let Hi = (Vi, Ei) be a one-sided uivi-outerplanar graph such
that E∩Ei = {ui, vi}. Then G′ = G∪H1∪· · ·∪Hh admits a 4-page e-consecutive
UBE, as long as e �= ei (i = 1, . . . , h).

Lemma 8 (�). Let G′ = G ∪ H1 be an st-outerpath, such that G is a primary
st-outerpath and H1 is the appendage at uv of G′. Let F1, F2, . . . , Fk be an st-fan
decomposition of G. Let e be an outer edge of G′ that belongs to either Fk or H1,
or to F1 if H1 = ∅. Also, if e ∈ Fk, then e �= sktk, otherwise e �= s1t1. Then,
G′ admits an e-consecutive 4-page UBE 〈π, σ〉.

We now define a decomposition of an upward outerpath G; refer to Fig. 3.
Let P ⊂ G be an st-outerpath, then P is the subgraph of G formed by a subset
of consecutive faces of G = 〈f1, . . . , fh〉. Let fj and fj′ be the faces of P with the
smallest and highest index, respectively. Let F i be the incrementally maximal
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Fig. 3. An st-outerpath decomposition of an upward outerpath; edges ei are fat.

siti-fan of Pi (assuming 〈fj , . . . , fj′〉 to be the ordered list of faces of Pi). We say
that P is incrementally maximal if i = h or if P ∪ fi+1 is not an st-outerpath or
if P ∪ fi+1 is still an st-outerpath but the edge siti of F i is an outer edge of P .

Definition 4. An st-outerpath decomposition of an upward outerpath G is a
sequence of siti-outerpaths Pi ⊆ G, with i = 1, 2, . . . , m, such that: (i) Pi is
incrementally maximal; (ii) For any 1 ≤ i < j ≤ m, Pi and Pj share a single
edge if j = i + 1, which we denote by ei, while they do not share any edge
otherwise; and (iii)

⋃m
i=1 Pi = G.

Lemma 9 (�). Every upward outerpath admits an st-outerpath decomposition.

An st-outerpath that is not a single st-fan is called proper in the following.
Let P1, P2, . . . , Pm be an st-outerpath decomposition of an upward outerpath G,
two proper outerpaths Pi and Pj are consecutive, if there is no proper outerpath
Pa, such that i < a < j. We will use the following technical lemmas.

Lemma 10 (�). Two consecutive proper outerpaths Pi and Pj share either a
single vertex v or the edge ei. In the former case, it holds j > i+1, in the latter
case it holds j = i + 1.

Lemma 11 (�). Let Pi and Pj be two consecutive proper outerpaths that share
a single vertex v. Then each Pa, with i < a < j, is an sata-fan such that v = sa

if v is the tail of ei, and v = ta otherwise.

Lemma 12 (�). Let v be a vertex shared by a set P of nP outerpaths. Then at
most two outerpaths of P are such that v is internal for them, and P contains
at most four proper outerpaths.
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Fig. 4. Illustration for the proof of Theorem 2.

We are now ready to prove the main result of this section.

Theorem 1 (�). Every internally-triangulated upward outerpath G admits a
16-page UBE.

Proof (Sketch). Let P1, P2, . . . , Pm be an st-outerpath decomposition of G
(Lemma 9). Based on Lemma 10, a bundle is a maximal set of outerpaths that
either share an edge or a single vertex. Let Gb be the graph induced by the first
b bundles of G (going from P1 to Pm). We prove the statement by induction on
the number l of bundles of G. In particular, we can prove that Gl admits a eg(l)-
consecutive 16-page UBE 〈πlσl〉, where g(l) is the greatest index such that Pg(l)

belongs to Gl, and such that each single siti-outerpath uses at most 4 pages. In
the inductive case, we distinguish whether the considered bundle contains only
two outerpaths that share an edge, or at least three outerpaths that share a
vertex. Here, we exploit the crucial properties of Lemmas 8, 11 and 12, which
allow us to limit the interaction between different outerpaths in terms of pages.

3.2 Upward Outerplanar Graphs

We now deal with upward outerplanar graphs that may be non-triangulated and
may have multiple sources and sinks, but whose blocks are st-DAGs. We begin
with the following lemma, which generalizes Lemma 8 in terms of UBT.

Lemma 13 (�). Every biconnected st-outerplanar graph G admits a 4-page
UBE.

Proof (Sketch). By exploiting a technique in [14], we can assume that G is inter-
nally triangulated. Let 〈f1, . . . , fh〉 be a path in G whose primal graph P ⊂ G
is a primary st-outerpath. Each outer edge uv of P is shared by P and by a
one-sided uv-outerpath. Then a 4-page UBE of G exists by Lemma 7.

We are now ready to show the main result of this subsection.

Theorem 2 (�). Every upward outerplanar graph G whose biconnected compo-
nents are st-outerplanar graphs admits an 8-page UBE.
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Proof (Sketch). We prove a stronger statement. Let T be a BC-tree of G rooted
at an arbitrary block ρ, then G admits an 8-page UBE 〈π, σ〉 that has the page-
separation property: For any block β of T , the edges of β are assigned to at most
4 different pages. We proceed by induction on the number h of cut-vertices in G.
If h = 0, then G consists of a single block and the statement follows by Lemma
13. Otherwise, let c be a cut-vertex whose children are all leaves. Let ν1, . . . , νm

be the m > 1 blocks representing the children of c in T , and let μ be the parent
block of c. Also, let G′ be the maximal subgraph of G that contains μ but does
not contain any vertex of ν1, . . . , νm except c, that is, G = G′ ∪ ν1 ∪ · · · ∪ νm.
By induction, G′ admits an 8-page UBE 〈π′, σ′〉 for which the page-separation
property holds, as it contains at most h − 1 cut-vertices. On the other hand,
each νi admits a 4-page UBE 〈πi, σi〉 by Lemma 13. By Lemma 1, at most two
blocks in {μ} ∪ {ν1, . . . , νm} are such that c is internal.

Let us assume that there are exactly two such blocks and one of these two
blocks is μ, as otherwise the proof is just simpler. Also, let νa, for some 1 ≤ a ≤ m
be the other block for which c is internal. Up to a renaming, we can assume that
ν1, . . . , νa−1 are st-outerplanar graphs with sink c, while νa+1, . . . , νm are st-
outerplanar graphs with source c. Refer to Fig. 4. Crucially, we set:

π = π′
c− ∪ πa

c− ∪ π1
c− ∪ · · · ∪ πa−1

c− ∪ {c} ∪ πa+1
c+ ∪ · · · ∪ πm

c+ ∪ πa
c+ ∪ π′

c+ .

The page assignment is based on the fact that e and e′, such that e ∈ νi and
e′ ∈ G′, cross each other only if i = a and in such a case e′ is incident to c.

3.3 Upward Cactus Graphs

The first lemma allows us to consider cactus graphs with no trivial blocks.

Lemma 14 (�). A cactus G′ can always be augmented to a cactus G with no
trivial blocks and such that the embedding of G′ is maintained.

It is well known that any DAG whose underlying graph is a cycle admits a 2-page
UBE [23, Lemma 2.2]. We can show a slightly stronger result, which will prove
useful afterward; see Fig. 5(b).

Lemma 15 (�). Let G be a DAG whose underlying graph is a cycle and let s be
a source (resp. let t be a sink) of G. Then, G admits a 2-page UBE 〈π, σ〉 where
s is the first vertex (resp. t is the last vertex) in π.

Using the proof strategy of Theorem 2, we can exploit Lemma 15 to show:

Theorem 3 (�). Every upward outerplanar cactus G admits a 6-page UBE.

Proof (Sketch). By Lemma 14, we can assume that all the blocks of G are non-
trivial, i.e., correspond to cycles. Also, let T be the BC-tree of G rooted at any
block. The theorem can be proved by induction on the number of blocks in T . In
fact, we prove the following slightly stronger statement: G admits a 6-page UBE
in which the edges of each block lie on at most two pages. The proof crucially
relies on Lemma 1 and follows the lines of Theorem 2.
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Fig. 5. (a) A cactus G and (b) a 2-page UBE of the red non-trivial block of G.

4 Complexity Results

Recall that the upward book thickness problem is NP-hard for any fixed
k ≥ 3 [10]. This implies that the problem is para-NP-hard, and thus it belongs
neither to the FPT class nor to the XP class, when parameterized by its natural
parameter (unless P=NP). In this section, we investigate the parameterized com-
plexity of the problem with respect to the domination number and the vertex
cover number, showing a lower and an upper bound, respectively.

4.1 Hardness Result for Graphs of Bounded Domination Number

A domination set for a graph G = (V,E) is a subset D ⊆ V such that every vertex
in V \D has at least one neighbor in D. The domination number γ(G) of G is the
number of vertices in a smallest dominating set for G. Given a DAG G such that
UBT(G) ≤ k, one may consider the trivial reduction obtained by considering the
DAG G′ obtained from G by introducing a new super-source (connected to all
the vertices), which has domination number 1 and for which it clearly holds that
UBT(G′) ≤ k + 1. However, the other direction of this reduction is not obvious,
and indeed for this to work we show a more elaborated construction.

Theorem 4 (�). Let G be an n-vertex DAG and let k be a positive integer. It
is possible to construct in O(n) time an st-DAG G′ with γ(G′) ∈ O(k) such that
UBT(G) ≤ k if and only if UBT(G′) = k + 2.
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Proof (Sketch). The proof is based on the construction in Fig. 6. We obtain graph
G′ by suitably combining G with an auxiliary graph H whose vertices have the
same order in any UBE of H, and UBT(H) = k + 2. The key property of G′

is that the vertices of G are incident to vertices c and f of H, and that edges
incident to each of these vertices must lie in the same page in any UBE of G′.

Fig. 6. The graph G′ in the reduction of Theorem 4. The edges of the auxiliary graph
H are solid. The black edges lie in k pages.

Since testing for the existence of a k-page UBE is NP-hard when k ≥ 3 [10],
Theorem 4 implies that the problem remains NP-hard even for inputs whose
domination number is linearly bounded by k. We formalize this in the following.

Theorem 5. For any fixed k ≥ 5, deciding whether an st-DAG G is such that
UBT(G) ≤ k is NP-hard even if G has domination number at most O(k).

Theorem 5 immediately implies that the upward book thickness problem
parameterized by the domination number is para-NP-hard. On the positive side,
we next show that the problem parameterized by the vertex cover number admits
a kernel and hence lies in the FPT class.

4.2 FPT Algorithm Parameterized by the Vertex Cover Number

We prove that the upward book thickness problem parameterized by the vertex
cover number admits a (super-polynomial) kernel. We build on ideas in [9]. A
vertex cover of a graph G = (V,E) is a subset C ⊆ V such that each edge in E has
at least one incident vertex in C (a vertex cover is in fact a dominating set). The
vertex cover number of G, denoted by τ , is the size of a minimum vertex cover
of G. Deciding whether an n-vertex graph G admits vertex cover of size τ , and
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if so computing one, can be done in O(2τ + τ ·n) time [11]. Let G = (V,E) be an
n-vertex DAG with vertex cover number τ . Let C = {c1, c2, . . . , cτ} be a vertex
cover of G such that |C| = τ . The next lemma matches an analogous result in [9].

Lemma 16 (�). G admits a τ -page UBE that can be computed in O(τ ·n) time.

For a fixed k ∈ N, if k ≥ τ , then G admits a k-page UBE by Lemma 16. Thus
we assume k < τ . Two vertices u, v ∈ V \ C are of the same type U if they have
the same set of neighbors U ⊆ C and, for every w ∈ U , the edges connecting
w to u and w to v have the same orientation. We proceed with the following
reduction rule. For each type U , let VU denote the set of vertices of type U .
R.1: If there exists a type U such that |VU | ≥ 2 · kτ + 2, then pick an arbitrary
vertex u ∈ VU and set G := G − u.
Since there are 2τ different neighborhoods of size at most τ , and for each of
them there are at most 2τ possible orientations, the type relation yields at most
22τ distinct types. Therefore assigning a type to each vertex and applying R.1
exhaustively can be done in 2O(τ) +τ ·n time. We can prove that the rule is safe.

Lemma 17 (�). The reduction rule R.1 is safe.

Proof (Sketch). Let u ∈ VU , such that |VU | ≥ 2 · kτ + 2. Suppose that G − u
admits a k-page UBE 〈π, σ〉. Two vertices u1, u2 ∈ VU \ {u} are page equivalent,
if for each vertex w ∈ U , the edges u1w and u2w are both assigned to the same
page according to σ. By definition of type, each vertex in VU has degree exactly
|U |, hence this relation partitions the vertices of VU into at most k|U | ≤ kτ sets.
Since |VU \{u}| ≥ 2 ·kτ +1, at least three vertices of this set are page equivalent.
One can prove that these three vertices are incident to only one vertex in C.
Then we can extend π by introducing u right next to any of these three vertices,
say u1, and assign each edge uw incident to u to the same page as u1w.

Theorem 6 (�). The upward book thickness problem parameterized by the ver-
tex cover number τ admits a kernel of size kO(τ).

Corollary 1 (�). Let G be an n-vertex graph with vertex cover number τ . For
any k ∈ N, we can decide whether UBT(G) ≤ k in O(τ τO(τ)

+ τ · n) time. Also,
within the same time complexity, we can compute a k-page UBE of G, if it exists.

5 Open Problems

The next questions naturally arise from our research: (i) Is the UBT of upward
outerplanar graphs bounded by a constant? (ii) Are there other parameters that
are larger than the domination number (and possibly smaller than the vertex
cover number) for which the problem is in FPT? (iii) Does the upward book thick-
ness problem parameterized by vertex cover number admit a polynomial kernel?
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Abstract. A page (queue) with respect to a vertex ordering of a graph
is a set of edges such that no two edges cross (nest), i.e., have their end-
points ordered in an abab-pattern (abba-pattern). A union page (union
queue) is a vertex-disjoint union of pages (queues). The union page num-
ber (union queue number) of a graph is the smallest k such that there is
a vertex ordering and a partition of the edges into k union pages (union
queues). The local page number (local queue number) is the smallest k for
which there is a vertex ordering and a partition of the edges into pages
(queues) such that each vertex has incident edges in at most k pages
(queues).

We present upper and lower bounds on these four parameters for the
complete graph Kn on n vertices. In three cases we obtain the exact result
up to an additive constant. In particular, the local page number of Kn is
n/3±O(1), while its local and union queue number is (1−1/

√
2)n±O(1).

The union page number of Kn is between n/3 − O(1) and 4n/9 + O(1).

Keywords: Page number · Stack number · Queue number · Local
covering numbers · Union covering numbers · Complete graphs

1 Introduction

A linear layout of a graph consists of a vertex ordering together with a partition
of the edges. For a fixed vertex ordering ≺, we say that two independent edges
vw and xy with v ≺ w and x ≺ y

– nest if v ≺ x ≺ y ≺ w or x ≺ v ≺ w ≺ y and
– cross if v ≺ x ≺ w ≺ y or x ≺ v ≺ y ≺ w.

A queue, respectively a page (also called stack), is a subset of edges that are
pairwise non-nesting, respectively non-crossing. A queue layout, respectively a
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book embedding, is a linear layout whose partition of the edge set consists of
queues, respectively pages. The queue number and page number (also called
stack number or book thickness) denote the smallest k such that there is a linear
layout consisting of at most k queues, respectively at most k pages. Both queue
layouts and book embeddings were intensively investigated in the past decades,
where complete graphs are one of the very first considered graph classes [1,9].

Queue layouts and book embeddings model how the edges of a graph can be
assigned to and processed by queues, respectively stacks. It was first asked by
Heath, Leighton, and Rosenberg [8] whether queues or stacks are more powerful
in this context. Recently, Dujmović et al. [4] partly answered this question by pre-
senting a class of graphs with bounded queue number that needs an unbounded
number of stacks, showing that stacks are not more powerful than queues for
representing graphs. In the classical variant in this question, the total number of
necessary queues or stacks serves as a measure for the power of queues and stacks.
Local and union variants relax the setting by allowing more queues or stacks, as
long as each vertex is touched by a small number of queues, respectively stacks,
or if they operate on vertex-disjoint subgraphs.

Local and union variants of queue layouts and book embeddings were recently
introduced by the second and third author [13,14]. A linear layout is called k-local
if each vertex has incident edges in at most k parts of the edge partition. The local
queue number, respectively local page number, is the smallest k such that there
is a k-local queue layout, respectively a k-local book embedding for G. Given a
fixed vertex ordering, a union queue (union page) is a vertex-disjoint union of
queues (pages). The union queue number, respectively union page number, then
is the smallest k such that there is a linear layout whose edge partition consists
of at most k union queues, respectively union pages.

Local and union variants have been considered for numerous graph decom-
position parameter, such as boxicity, interval numbers, planar thickness, poset
dimension, several arboricities, and many more. Especially in recent years,
there has been a lot of interest in these variants in various directions, see
e.g. [2,3,6,10–12].

In this paper, we continue the investigation of local and union variants of
linear layouts, that is, queue numbers and page numbers. We establish bounds
on the respective graph parameters for complete graphs, which interestingly
turns out to be non-trivial; in contrast to their classic counterparts. Our results
show that the local and union variants of queue numbers and page numbers for
n-vertex complete graphs are located strictly between the trivial lower bound of
(n−1)/4 due to the density [13,14, see also Sect. 2] and �n/2�, respectively �n/2�,
which is the queue number, respectively page number, of complete graphs [1,9].

Outline. In Sect. 2, we survey the relation between local and union variants of
queue layouts and book embeddings. We give a lower bound on the local queue
number of complete graphs and sketch how to obtain the same upper bound for
the union queue number in Sect. 3 (up to an additive constant). The full proof
and an improved upper bound on the local queue number is given in the full
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version [7]. Section 4 continues with a lower and a matching (up to an additive
constant) upper bound on the local page number, while our upper bound on the
union page number is proved in the full version [7].

Our Results. Both the local queue number and the union queue number of Kn

are linear in n with the leading coefficient being 1 − 1/
√

2 ≈ 0.29289. For the
local queue number, the error term O(1) is small; it is between −0.21 and +2.

Theorem 1. The local queue number and the union queue number of Kn satisfy

qn�(Kn) = (1 − 1√
2
)n ± O(1) and qnu(Kn) = (1 − 1√

2
)n ± O(1).

The local page number of Kn is also linear in n with the leading coefficient
being 1/3. In this case, the error term O(1) is between 0 and 4. The local page
number also gives a lower bound on the union page number, whereas the leading
coefficient of our upper bound is 4/9.

Theorem 2. The local page number and the union page number of Kn satisfy

1
3
n ± O(1) = pn�(Kn) � pnu(Kn) � 4

9
n + O(1).

2 Preliminaries

In this section, we summarize some known results on local and union linear
layouts, which are presented in [13,14] in detail.

First, we have pn�(G) � pnu(G) � pn(G) and qn�(G) � qnu(G) � qn(G),
where the gap between the union and global variants can be arbitrarily large.
There are graph classes (e.g. k-regular graphs for k � 3) with bounded union
queue number and union page number but unbounded queue number and page
number. In contrast, the local page number, the local queue number, the union
page number, and the union queue number are all tied to the maximum average
degree, which is defined by mad(G) = max{2 |E(H)|/|V (H)| : H ⊆ G,H 
= ∅}.
In particular, we have the following connection between the maximum average
degree and the union queue number, respectively the union page number. See
also [7] for a proof.

Proposition 3. Every graph G admits a (mad(G) + 2)-union queue layout and
a (mad(G) + 2)-union book embedding with any vertex ordering.

In addition, the local queue number and the local page number are lower-
bounded by mad(G)/4, which gives a lower bound of (n − 1)/4 for Kn.

In the following sections, we consider the complete graph Kn with vertex set
V (Kn) = {v1, . . . , vn}. Due to symmetry, we may throughout assume that the
vertex ordering of Kn is given by v1 ≺ · · · ≺ vn. Partitioning the edges is the
difficult part.
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3 Local and Union Queue Numbers

We first establish the lower bound of Theorem 1. As the union queue number
is lower-bounded by the local queue number, we only consider the latter. Note
that (9 − 4

√
2)/16 ≈ 0.21.

Lemma 4. For any n we have qn�(Kn) > (1 − 1√
2
)n − 1

16
(9 − 4

√
2).

Proof. Consider a k-local queue layout Q of Kn. Without loss of generality,
each edge is contained in exactly one queue. Moreover, the vertices are ordered
v1 ≺ · · · ≺ vn and the length of an edge vivj is defined as |i−j|. Now for any edge
e = vivj with i < j consider the queue Q ∈ Q containing e. We call e left-longest
if there is no edge in Q that is longer than e and has the same right endpoint
as e, i.e., Q contains no edge vi′vj with i′ < i. Similarly, we call e = vivj ∈ Q
right-shortest if there is no edge in Q that is shorter than e and has the same
left endpoint as e, i.e., Q contains no edge vivj′ with i < j′ < j. We have that

(i) every edge of Kn is left-longest or right-shortest (or both).

In fact, if vivj ∈ Q is of neither type, then Q would contain two edges vi′vj and
vivj′ with i′ < i < j′ < j, and hence Q would not be a queue.

For each vertex vi let �i, respectively ri, denote the number of left-longest
edges whose right endpoint is vi, respectively the number of right-shortest edges
whose left endpoint is vi. That is,

�i = #{va ∈ V (Kn) | a < i and vavi left-longest} and
ri = #{vb ∈ V (Kn) | i < b and vivb right-shortest}.

Further let bi denote the number of queues in Q with at least one edge whose
right endpoint is vi and at least one edge whose left endpoint is vi. That is,

bi = #{Q ∈ Q | ∃a, b with a < i < b and vavi, vivb ∈ Q}.

We can then write the number of queues in Q containing the vertex vi in terms
of �i, ri and bi. Indeed, if Q ∈ Q contains an edge incident to vi, then it contains
a left-longest or a right-shortest or both, i.e., the contribution of Q to �i +ri − bi

is exactly one.

(ii) Vertex vi has incident edges in exactly �i + ri − bi queues in Q.

As every vertex is in at most k queues, we have bi � k for i = 1, . . . , n. Also
every vertex vi is the right endpoint of at most i − 1 edges and thus bi � i − 1.
Similarly, vi the left endpoint of at most n−i edges and thus bi � n−i. Together,

(iii) for every vertex vi we have bi � min{i − 1, n − i, k}.
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Using the above and assuming k � n/2 (we are done otherwise), we calculate

kn �
n∑

i=1

#{Q ∈ Q | vi ∈ V (Q)} (ii)
=

n∑

i=1

(�i + ri − bi)
(i)
� |E(Kn)| −

n∑

i=1

bi

(iii)
�

(
n

2

)
−

k∑

i=1

(i − 1) −
n∑

i=n−k+1

(n − i) − (n − 2k)k

=
(

n

2

)
− 2

(
k

2

)
− (n − 2k)k.

For a � 1 and b > 0 we have
√

a + b <
√

a + b/2. (1)

Using this we get the desired bound for k as follows.

kn �
(

n

2

)
− 2

(
k

2

)
− (n − 2k)k

⇐⇒ 0 � k2 + (1 − 2n)k +
(

n

2

)

=⇒ k � (n − 1
2
) −

√

(n − 1
2
)2 −

(
n

2

)
= (n − 1

2
) −

√
1
2
(n2 − n +

1
2
)

= (n − 1
2
) −

√
1
2
(n − 1

2
)2 +

1
8

(1)
> (n − 1

2
) −

√
1
2
(n − 1

2
)2 − 1

16

= (1 − 1√
2
)(n − 1

2
) − 1

16
= (1 − 1√

2
)n − 1

16
(9 − 4

√
2)

��
Now let us turn to the upper bound of the union queue number in Theorem 1.

We thereby also prove an upper bound for the local queue number. However, we
improve on this bound with a different construction in the full version [7].

Lemma 5. For any n � 0, we have

qn�(Kn) �
⌈
1 − 1√

2

⌉
n + 11 and qnu(Kn) �

⌈
1 − 1√

2

⌉
n + 42.

We prove that whenever k � (1 − 1/
√

2)(n + 1), there is a (k + 11)-local
queue layout and a (k + 42)-union queue layout of Kn+1. Let v1 ≺ · · · ≺ vn+1

be a fixed vertex ordering of Kn+1. For ease of presentation, we model the edge
set of Kn+1 as a point set Tn in Z

2 with triangular shape defined by

Tn = {(x, y) ∈ Z
2 | x + y � n + 1; x � 1; y � 1}.

The elements in Tn correspond to the entries of the adjacency matrix of Kn+1.
That is, element (x, y) of Tn corresponds to edge vn+2−yvx in Kn+1 and con-
versely edge vivj in Kn+1 with i > j corresponds to element (j, n + 2 − i) in Tn.
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Two edges vivj with i > j and vi′vj′ with i′ > j′ nest if and only if the corre-
sponding elements (j, n + 2 − i) and (j′, n + 2 − i′) in Tn are comparable in the
strict dominance order of Z2 (i.e. coordinate-wise strict inequalities of points).
To see this, observe that small y-coordinates correspond to a left endpoint hav-
ing a small index, whereas small x-coordinates correspond to a right endpoint
with a large index. Hence, an edge set Q ⊆ E(Kn+1) forms a queue if and only
if the corresponding points in Tn form a weakly monotonically decreasing chain,
see Fig. 1.

Fig. 1. Left: Triangle T8 corresponding to K9 and the hook of vertex 4. The blue (dark)
entries represent a queue, the zig-zag (light blue) shows that the edges are non-nesting.
Right: Linear layout of the blue queue. (Color figure online)

A vertex vi of Kn+1 corresponds to column i and row n + 2 − i in Tn. We
call the union of column i and row n + 2 − i the hook of vertex vi. If H is
the hook of vertex vi and Q is a queue corresponding to chain C ⊆ Tn, then
vertex vi is contained in queue Q if and only if H ∩ C 
= ∅. For our construction
of a (k + 11)-local queue assignment of Kn+1, we use the equivalent model of
covering the triangular point set Tn with monotone chains such that no hook
intersects more than k + 11 chains.

Analogously to union queues, we call a subset S ⊆ Tn a union chain if there
is a partition of S into weakly monotonically decreasing chains such that each
hook intersects at most one of them. To prove Lemma 5, we partition Tn into
k + 42 union chains and therefore get a (k + 42)-union queue layout for Kn+1.

Lemma 6. For any integer n � 0 and any integer k � (1 − 1/
√

2)(n + 1), the
points of Tn can be partitioned into k + 42 union chains. In addition, the points
of Tn can be partitioned into weakly monotonically decreasing chains such that
each hook intersects at most k + 11 chains.

Proof (sketch). First, we define weakly monotonically decreasing chains that
cover Tn such that no hook intersects more than k+11 chains. We then partition
these chains into sets of chains that form the basis for our union chains. We
assume that n is even and that k is the smallest even integer with k � (1 −
1/

√
2)(n+1). To compensate for this assumption, we construct chains such that

each hook intersects at most k +9 chains and a partition of Tn into k +40 union
chains. We need 3n � 10k for the construction, which is the case for n � 294.
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For n � 56, we have �(n + 1)/2� � �1 − 1/
√

2�(n + 1) + 11, so an �(n + 1)/2�-
queue layout of Kn+1 gives the desired partition of Kn+1, respectively Tn, into
queues, respectively chains. For any n between 56 and 294, one can check that
the desired bounds can be obtained from a queue layout of some Kn′ with a
slightly smaller or greater number of vertices.1

We start by defining a family L of k chains L1, . . . , Lk, illustrated in Fig. 2.
Chain Li is composed of three blocks. The first block consists of the 2(k − i+1)
topmost elements in column i of Tn. The second block starts at the lowest element
of the first block, continues with a right and down alternation for 2(n−2(k−1))
steps, and ends in row i. The last block consists of the 2(k − i + 1) rightmost
elements in row i. Formally, for i = 1, . . . , k we set

Li = {(i, y) ∈ Tn | n + 1 − i � y � n − 2k + i}
∪ {(x, y) ∈ Tn | x, y � i and n − 2(k − i) � x + y � n − 2(k − i) + 1}
∪ {(x, i) ∈ Tn | n − 2k + i � x � n + 1 − i}.

The chains of L cover all points of Tn except for the bottom left triangle Tn−2k.
The remaining points are covered by chains containing only points of a single
column or row. We refer to these chains as vertical and horizontal chains, respec-
tively. Note that vertical and horizontal chains correspond to stars in Kn+1. The
resulting layout of Tn−2k is illustrated in Fig. 2.

The chains for Tn−2k are formally defined and analyzed in the full version [7].
We obtain that each hook intersects at most k +9 chains, which yields a (k +9)-
local queue layout. To obtain a (k +40)-union queue layout, we partition the set
of all chains into sets of chains S1, . . . ,Sk+6 with Li ∈ Si for i = 1, . . . , k.

We first introduce some notions that allow us to transform a set of chains
into a union chain. Consider some set S = {S1, . . . , Sm} of chains. Note that⋃

i∈[m] Si is not necessarily a union chain as two chains may intersect the same
hook. We call the set of all hooks that intersect at least two chains of S the
common hooks of S. If S has no common hooks, then S is already a union chain.
Otherwise, we assign each of the common hooks to at most one chain. A point
that is contained in some chain S ∈ S and in some common hook that is not
assigned to S is called a bad point. Removing all bad points yields chains that
together form a union chain.

We now aim to define S1, . . . ,Sk+6 such that the resulting bad points can be
covered by a constant number of union chains. For this, we associate each vertical
1 Indeed, for each n between 56 and 294 and corresponding k, one of the following

two cases applies. First, there is an even n′ � n such that k′ = �(1 − 1/
√

2)(n′ + 1)�
is even, 3n′ � 10k′ holds, and we have qn�(Kn) � qn�(Kn′) � k′ + 9 � k + 11,
respectively qnu(Kn) � qnu(Kn′) � k′ + 40 � k + 42. Or second, there is an even
n′ such that n − 4 � n′ � n, k′ = �(1 − 1/

√
2)(n′ + 1)� is even, 3n′ � 10k′ holds,

and the queue layout we obtain for Kn′ can be augmented to a queue layout of Kn

matching the desired bounds. To do so, we attach at most two of the additional
n′ − n � 4 vertices to the left and at most two to the right and use two additional
queues to cover the new edges. We then observe that k′ + 2 � k, which gives the
desired bounds for Kn.
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Fig. 2. Chains L1, . . . , Lk (top right). The triangle Tn−2k is covered by families
A, . . . ,G and A′, . . . ,G′ of vertical, respectively horizontal, chains (bottom left).

(horizontal) chain C with the interval IC ⊆ [k] that consists of the y-coordinates
(x-coordinates) of the points contained in C. We say two vertical (horizontal)
chains overlap if the corresponding intervals are not disjoint. Consider the set Si

for some i = 1, . . . , k + 6. We add vertical and horizontal chains to Si such that

(i) chains in Si do not overlap,
(ii) the y-coordinates (x-coordinates) of all points in vertical (horizontal) chains

in Si are smaller than i, and
(iii) there is no vertical (horizontal) chain in Si in column (row) i.

We first assume that Conditions (i) to (iii) hold and show that they can indeed be
satisfied at the end of the proof. We merge vertical (horizontal) chains of Si that
are in the same column (row) into a single chain. For some vertical (horizontal)
chain C, let HC denote the hook that contains C. If HC is a common hook, we
assign it to C and say that the bad points in HC are caused by C. Let G ⊆ Kn+1



Linear Layouts of Complete Graphs 265

denote the graph that is induced by all bad points. For a vertical or horizontal
chain C ⊆ Tn−2k, let vC ∈ V (Kn+1) denote the vertex that is represented by
hook HC . We orient the edges of G such that every edge whose corresponding
bad point is caused by chain C is oriented away from vC . Each hook contains
at most four vertical or horizontal chains (see Fig. 2 and recall that each hook
either contains vertical chains or horizontal chains). In the full version [7], we
show that each chain causes at most four bad points. Thus, the out-degree of
every vertex of G is at most 16. By Proposition 3, the graph G can be covered
with mad(G) + 2 � 2 · 16 + 2 = 34 union queues using an arbitrary vertex
ordering. Hence, the bad points can be covered by 34 union chains.

Finally, we show how to partition the vertical chains of the presented (k+9)-
local layout such that Conditions (i) to (iii) are satisfied. Let H denote the
interval graph that is given by the intervals that correspond to vertical chains,
i.e., V (H) = {IC ⊆ [k] | C ∈ A ∪ · · · ∪ G} and there is an edge between two
vertices if and only if the intervals are not disjoint. A clique of m vertices in H
corresponds to a row that intersects m vertical chains. From the analysis in the
full version [7], we get that every row y = 1, . . . , k intersects at most k − y + 5
vertical chains. In particular, the clique number of H is at most k + 4.

Note that any proper (k + 6)-coloring and an arbitrary mapping between
color classes and the sets of chains S1, . . . ,Sk+6 satisfies Condition (i). We next
find a coloring with less than k + 6 colors that also satisfies Conditions (ii) and
(iii). We define an ordering on the vertices of H by decreasing topmost points
of the intervals, i.e., [a, b] ≺ [a′, b′] if and only if b > b′ or b = b′ and a > a′.
We color the vertices of H greedily with k + 5 colors k + 6, . . . , 2. That is, for
an interval in column x, we choose the largest color that is not used by any
smaller neighbor and that does not equal x. We then define Si to contain the
vertical chains whose intervals have color i. Since H is an interval graph, the set
consisting of a vertex [a, b] ∈ V (H) and its smaller neighbors induces a clique
that corresponds to row b. The vertex [a, b] thus has at most k − b + 4 smaller
neighbors. There are at least two colors left that are larger than b and that are
not already used by a smaller neighbor. Choosing one that does not equal x
satisfies Conditions (ii) and (iii).

By symmetry, we color the horizontal chains with colors k+6, . . . , 2 such that
Conditions (i) to (iii) hold. We now have a partition of all chains into k + 6 sets
of chains S1, . . . ,Sk+6, each forming a union chain when bad points are removed.
Together with the 34 union chains for bad points, we get a partition of Tn into
k + 6 + 34 = k + 40 union chains. ��

Lemma 5 provides an upper bound of (1−1/
√

2)n+O(1) both for the union
queue number and the local queue number and thus completes the proof of
Theorem 1. For the local queue number, however, we obtain an improved upper
bound of

⌈
(1 − 1/

√
2)n

⌉
+ 1, which is proved in the full version [7].
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4 Local and Union Page Numbers

For book embeddings, it is convenient to think of the spine as being circularly
closed. The placement of the vertices together with straight-line edges yields
a convex drawing of Kn. A page assignment is a partition of the edges into
non-crossing subsets, i.e., into outerplanar subdrawings of this drawing of Kn.

First, we analyze the outerplanar subgraphs on each page of a book embed-
ding and thereby show the lower bound of Theorem 2. The proof gives insight
into how book embeddings for a matching upper bound on the local or union
page number should look like. This bound is also the best lower bound we obtain
for the union page number. The upper bound for the union page number is given
in the full version [7].

Lemma 7. For any n we have pn�(Kn) >
1
3
n − 1.

Proof. Let P be a page assignment of Kn which minimizes the local page number.
We assume that pn�(P) � n/3, otherwise we are done. Let k be the average
number of vertex-page incidences over all vertices, i.e., k = 1

n

∑
P∈P |VP |. We

shall show that k > 1
3n − 1, which in particular proves that pn�(P) > n/3 − 1.

Later we will use that k � pn�(P) � n/3, i.e.,

k � n

3
. (2)

Note that every edge of Kn belongs to exactly one page of P. Now for each
page P ∈ P we consider an outerplanar graph OP consisting of all edges of P
and their incident vertices VP together with the edges of the convex hull CP of
VP . For each page P ∈ P we color the edges of OP :

– The black edges are edges of CP belonging to P .
– The red edges are edges of CP which do not belong to P .
– The green edges are inner edges of OP which belong to P .

Observe that every edge e of Kn has a color in {black, green} for exactly one
page, while e may be red for any number of pages.

For a vertex v and a page P containing v, let the forward edge fwdP(v) at v
be the edge of CP which leaves v in clockwise direction. Let rv be the number of
pages for which the forward edge of v is red, and bv be the number of pages for
which the forward edge of v is black. As v has exactly one forward edge on each
page, v is incident to exactly rv + bv pages in P. Hence, denoting R =

∑
v rv

and B =
∑

v bv, we have

k n =
∑

P∈P
|VP | =

∑

v

(rv + bv) = R + B. (3)

Now for each page P and each edge e = uv of CP with u clockwise followed
by v, let len(e) be the distance along Kn when going clockwise from u to v, i.e.,
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if u = vi and v = vj and i < j then len(e) = j − i and len(e) = j − i + n if j < i.
Since CP is a cycle, we have

∑
e∈CP

len(e) = n. Thus

|P| · n =
∑

P∈P

( ∑

e∈CP

len(e)
)

=
∑

P∈P

( ∑

v∈VP

len(fwdP(v))
)

=
∑

v

( ∑

P :v∈VP

len(fwdP(v))
) (�)

�
∑

v

( bv∑

�=1

�
)

�
∑

v

b2v
2

(∗)
� 1

2n

( ∑

v

bv

)2

=
1
2n

B2 (3)
=

1
2n

(kn − R)2 � 1
2n

(k2n2 − 2knR) =
k2

2
n − kR

(2)

� k2

2
n − n

3
R.

For (�) ignore red forward edges at v and use that the black forward edges at v
are pairwise distinct and for (∗) use the Cauchy-Schwarz inequality with the
vectors (bv1 , . . . , bvn

) and (1, . . . , 1).
Dividing both sides of the above by n we get

|P| � k2

2
− R

3
. (4)

Now consider the green edges in Kn. Since OP is outerplanar and the green
edges of OP are the inner edges there are at most |VP |−3 green edges on page P .
Therefore, we have

#green edges �
∑

P∈P
(|V (P )| − 3) = kn − 3|P|

(4)

� kn − 3k2

2
+ R and (5)

#green edges = |E(Kn)| − #black edges =
(

n

2

)
− B

(3)
=

(
n

2

)
− kn + R. (6)

Combining (5) and (6) we conclude:

kn − 3k2

2
+ R �

(
n

2

)
− kn + R

⇐⇒ 0 � 3k2

2
− 2kn +

(
n

2

)

⇐⇒ 0 � k2 − 4n

3
k +

n(n − 1)
3

=⇒ k � 2n

3
−

√(
2n

3

)2

− n(n − 1)
3

=⇒ k � 2n

3
−

√
n2

9
+

n

3
>

2n

3
−

√
(n + 3)2

9
=

n

3
− 1

Thus we have k >
n

3
− 1, as desired. ��

Note that for the lower bound to be tight there can be no red edges, i.e.,
each page contains the edges of the convex hull of its vertices. This is the case
in the construction for the upper bound for Theorem 2, which is given next.
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Lemma 8. For any n, we have pn�(Kn) � 1
3
n + 4.

Proof. We shall show that if n = 18k − 3 for some positive integer k, then
pn�(Kn) � n/3 = 6k − 1. For n of the form n = 18k − 3 + i with i < 18 we get a
page assignment with locality 6k − 1 + i by adding the stars of the i additional
vertices on an extra page each. A second option is to use a page assignment of
K18(k+1)−3 and remove 18−i vertices, this yields a page assignment with locality
6(k + 1) − 1 = 6k + 5. By taking the better of these two choices we achieve a
locality of at most n/3 + 4, as desired.

From now on we assume that n = 18k − 3, i.e., k = (n + 3)/18. We define
the length of an edge as the shorter distance between its two endpoints along
the cyclic ordering. The length of edge e is denoted len(e). As n = 18k − 3
is odd, there are exactly (n − 1)/2 = 9k − 2 different lengths, each realized
by exactly n edges. For each vertex v of Kn we define a set of k pages, each
containing v, and together covering exactly one edge of each length 1, . . . , 9k−2.
These pages each contain an outerplanar graph and are denoted by Ov(t), where
t = 0, . . . , k − 1. The page Ov(0) contains seven edges (and five vertices) while
for t > 0 page Ov(t) has nine edges (and six vertices). In total this makes the
needed 9(k − 1) + 7 = 9k − 2 = (n − 1)/2 edge lengths.

Recall that the vertices of Kn are v1, . . . , vn in this cyclic ordering. Below
we describe the pages corresponding to v1 = vn+1. For ease of notation, let
O(t) = Ov1(t). For t = 0, . . . , k−1, we define the vertices r1(t), . . . , r6(t) of O(t):

r1(t) = v1 = v18k−2 r2(t) = v2k−2t r3(t) = v5k+1

r4(t) = v8k−t r5(t) = v8k+t r6(t) = v13k+2t

Fig. 3. O(t) for t = 0 (left), t ≈ k/2 (middle) and t = k − 1 (right)

We refer to Fig. 3 for an illustration. Note that for t = 0 we have r4(t) = r5(t)
and for all t � k the vertices r1(t), . . . , r6(t) appear in the order of their indices
in the cyclic ordering of Kn. The edges of O(t) are the cycle edges e12(t) =
r1(t)r2(t), e23(t) = r2(t)r3(t), e34(t) = r3(t)r4(t), e45(t) = r4(t)r5(t), e56(t) =
r5(t)r6(t), e61(t) = r6(t)r1(t), except for e45(0) which would be a loop, and the
inner edges e14(t) = r1(t)r4(t), e24(t) = r2(t)r4(t), e15(t) = r1(t)r5(t), again for
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t = 0 there is an exception, we disregard e15(0) because it equals e14(0). Note
that O(t) is indeed outerplanar. We claim that for every length � in the interval
[1, 9k − 2] there is an edge of length � in some O(t).

� odd, � ∈ [1, 2k − 1] : len(e12(t)) = (2k − 2t) − 1 = 2k − 2t − 1
� even, � ∈ [1, 2k − 1] : len(e45(t)) = (8k + t) − (8k − t) = 2t

� ∈ [2k, 3k − 1] : len(e34(t)) = (8k − t) − (5k + 1) = 3k − t − 1
� odd, � ∈ [3k, 5k − 1] : len(e23(t)) = (5k + 1) − (2k − 2t) = 3k + 2t + 1
� even, � ∈ [3k, 5k − 1] : len(e61(t)) = (18k − 2) − (13k + 2t) = 5k − 2t − 2

� ∈ [5k, 6k − 1] : len(e56(t)) = (13k + 2t) − (8k + t) = 5k + t

� ∈ [6k, 7k − 1] : len(e24(t)) = (8k − t) − (2k − 2t) = 6k + t

� ∈ [7k, 8k − 1] : len(e14(t)) = (8k − t) − 1 = 8k − t − 1
� ∈ [8k, 9k − 2] : len(e15(t)) = (8k + t) − 1 = 8k + t − 1

For a vertex vi and some t we obtain the page Ovi
(t) from O(t) by a rotation

which maps v1 to vi. Hence, for each vi we get a collection Pi = {Ovi
(t) | t =

0, . . . , k − 1} of pages. We claim that P =
⋃

v Pv covers all the edges of Kn.
Consider an arbitrary edge vavb, we assume that the arc from va to vb is the
shorter arc, i.e., the length of the arc is len(vavb) = �. From the analysis above we
know that there is a unique t and a unique edge eij(t) ∈ O(t) with len(eij(t)) = �.
There is a rotation which maps ri(t) to va and consequently also rj(t) to vb. If
this rotation maps v1 = r1(t) to vc, then Ovc

(t) contains the edge vavb. Hence,
P is a covering of the edges of Kn with outerplanar graphs.

In P1 there are 6(k − 1) + 5 = 6k − 1 vertex-page incidences, hence the total
number of vertex-page incidences in P is n(6k − 1) = n2/3. Due to symme-
try, each of the n vertices is incident to exactly n/3 pages. This proves that
pn�(Kn) � n/3 whenever n is of the form n = 18k − 3 for some positive
integer k. ��

5 Conclusions

We have shown bounds on the local page number, the local queue number, and
the union queue number of complete graphs that are tight up to a constant
additive term. However, there remains a gap between the lower bound of n/3 −
O(1) and the upper bound of 4n/9 + O(1) on the union page number of Kn.

Question 9. What is the union page number of complete graphs?

Comparing queues and stacks, we find that both in the local and in the union
setting, queues are more powerful than stacks for representing complete graphs
as both the local and the union queue number is smaller than the respective
variant of the page number.

Finally, we point out complete bipartite graphs as another dense graph
class. Heath and Rosenberg [9] proved qn(Km,n) = �m/2�, where m � n. For
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the page number, it is known that pn(Km,n) = m if n � m2 − m + 1 [1],
pn(Kn,n) � �2n/3� + 1, pn(K�n2/4�,n) � n − 1 [5], and in general pn(Km,n) �
�(m + 2n)/4� [15]. In light of the unclear situation for the page number, we ask
for the local and union variants of queue number and page number of complete
bipartite graphs.

Acknowledgments. The first, third and fourth author would like to thank the orga-
nizers and all participants of the Seventh Annual Workshop on Geometry and Graphs
in Barbados, where part of this research was carried out.
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Abstract. A k-queue layout is a special type of a linear layout, in which
the linear order avoids (k+1)-rainbows, i.e., k+1 independent edges that
pairwise form a nested pair. The optimization goal is to determine the
queue number of a graph, i.e., the minimum value of k for which a k-
queue layout is feasible. Recently, Dujmović et al. [13] showed that the
queue number of planar graphs is at most 49, thus settling in the pos-
itive a long-standing conjecture by Heath, Leighton and Rosenberg. To
achieve this breakthrough result, their approach involves three different
techniques: (i) an algorithm to obtain straight-line drawings of outerpla-
nar graphs, in which the y-distance of any two adjacent vertices is 1 or 2,
(ii) an algorithm to obtain 5-queue layouts of planar 3-trees, and (iii) a
decomposition of a planar graph into so-called tripods. In this work,
we push further each of these techniques to obtain the first non-trivial
improvement on the upper bound from 49 to 42.

Keywords: Queue layouts · Planar graphs · Queue number

1 Introduction

Linear layouts of graphs have a long tradition of study in different contexts,
including graph theory and graph drawing, as they form a framework for defin-
ing different graph-theoretic parameters with several applications; see, e.g., [10].
Here, we seek to find a total order of the vertices of a graph that reaches a cer-
tain optimization goal [3,8,19]. In this work, we focus on a well-studied type of
linear layouts, called queue layout [13,17,18,21], in which the goal is to minimize
the size of the largest rainbow, i.e., a set of independent edges that are pairwise
nested. Equivalently, the problem asks for a linear order of the vertices and a
partition of the edges into a minimum number of queues (called queue num-
ber), such that no two independent edges in the same queue are nested [18]; see
Fig. 1b.
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Fig. 1. (a) The octahedron graph and (b)–(c) different linear layouts of it.

Queue layouts of graphs were introduced by Heath and Rosenberg [18] in 1992
as the “dual problem” of stack layouts (widely known also as book embeddings),
in which the edges must be partitioned into a minimum number of stacks (called
stack number), such that no two edges in the same stack cross [7]; see Fig. 1c. Since
their introduction, queue layouts of graphs have been a fruitful subject of intense
research with several important milestones over the years [1,2,4,14,17,21,22].

The most intriguing problem in this research field is undoubtedly the problem
of specifying the queue number of planar graphs. This problem dates back to a
conjecture by Heath, Leighton and Rosenberg, who in 1992 conjectured that the
queue number of planar graphs is bounded [17]. Notably, despite the different
efforts [2,9,11], this conjecture remained unanswered for more than two decades.
That only changed in 2019 with a breakthrough result of Dujmović et al. [12],
who managed to settle in the positive the conjecture, as they showed that the
queue number of planar graphs is at most 49. The best-known corresponding
lower bound is 4 due to Alam et al. [1].

The gap between the currently best-known lower and upper bounds is rather
large, which implies that the exact queue number of planar graphs is, up to the
point of writing, still unknown. Note that this is in contrast with the maximum
stack number of planar graphs, which was recently shown to be exactly 4 [6,23].
Also, the existing gap in the bounds on the queue number of planar graphs gives
the intuition that it is unlikely that the upper bound of 49 by Dujmović et al. [12] is
tight, even though in the last two years no improvement appeared in the literature.

Our Contribution. We verify the aforementioned intuition by reducing the
upper bound on the queue number of planar graphs from 49 to 42 (see Theorem
1 in Sect. 4). To achieve this, we present improvements to each of the following
three main techniques (outlined in Sect. 2) involved in the approach by Dujmović
et al. [12]: (i) an algorithm to obtain straight-line drawings of outerplanar graphs,
in which the y-distance of any two adjacent vertices is 1 or 2 [15], (ii) an algorithm
to obtain 5-queue layouts of planar 3-trees [1], and (iii) a decomposition of a
planar graph into so-called tripods [12]; see Sect. 3.

Preliminaries. A vertex order ≺ of a simple undirected graph G is a total order
of its vertices, such that for any two vertices u and v of G, u ≺ v if and only if u
precedes v in the order. Let F be a set of k ≥ 2 independent edges (ui, vi) of G,
that is, F = {(ui, vi); i = 1, . . . , k}. If u1 ≺ . . . ≺ uk ≺ vk ≺ . . . ≺ v1, then we
say that the edges of F form a k-rainbow, while if u1 ≺ v1 ≺ . . . ≺ uk ≺ vk, then
the edges of F form a k-necklace. The edges of F form a k-twist, if u1 ≺ . . . ≺
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Fig. 2. Illustration of (a) a 3-rainbow, (b) a 3-necklace, and (c) a 3-twist.

uk ≺ v1 ≺ . . . ≺ vk; see Fig. 2. Two independent edges that form a 2-rainbow
(2-necklace, 2-twist) are referred to as nested (disjoint, crossing, respectively).

A k-queue layout of a graph consists of a vertex order ≺ of G and a partition
of the edge-set of G into k sets of pairwise non-nested edges, called queues. A
preliminary result by Heath and Rosenberg [18] states that a graph admits a k-
queue layout if and only if it admits a vertex order in which no (k+1)-rainbow is
formed. The queue number of a graph G, denoted by qn(G), is the minimum k,
such that G admits a k-queue layout. Accordingly, the queue number of a class
of graphs is the maximum queue number over all its members.

2 Sketch of the Involved Techniques

Here, we outline the main aspects of the three algorithms mentioned in Sect. 1.

Outerplanar Graphs. The main ingredient of the algorithm by Dujmović, Pór
and Wood [15] is an algorithm to obtain a straight-line drawing Γ (G) of a maximal
outerplane graph G whose output can be transformed into a 2-queue layout of G.
The recursive construction of Γ (G) maintains the following invariant properties:

(O.1) The cycle delimiting the outerface consists of two strictly x-monotone
paths, referred to as upper and lower envelopes, respectively.

(O.2) The y-coordinates of the endvertices of each edge differ by either one
(span-1 edge) or two (span-2 edge).

To maintain (O.1) and (O.2), Dujmović et al. adopt an approach in which at each
recursive step a vertex of degree 2 is added to the already constructed drawing;
see Fig. 3 (for details refer to [5]). Drawing Γ (G) is transformed to a 2-queue
layout of G as follows: (i) for any two vertices u and v of G, u ≺ v if and only
if either y(u) > y(v), or y(u) = y(v) and x(u) < x(v) in Γ (G), (ii) edge (u, v) is
assigned to the first (second) queue if it has span 1 (2, respectively) in Γ (G).

Fig. 3. Introducing a degree-2 vertex v along the upper envelope, when its two neigh-
bors u and w are connected with (a) a span-1 edge, and (b) a span-2 edge.
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Planar 3-Trees. Alam et al. [1] adopt a peeling-into-levels approach [16] to pro-
duce a 5-queue layout of a maximal plane 3-tree H. Initially, the vertices of H are
partitioned into levels L0, . . . , Lλ with λ ≥ 1, such that L0-vertices are incident
to the outer face of H, while Li+1-vertices are in the outer face of the subgraph
of H obtained by the removal of all vertices in L0, . . . , Li. The edges of H are
partitioned into level and binding, depending on whether their endpoints are on
the same or on consecutive levels. As each connected component of the subgraph
Hi of H induced by the edges of level Li is an internally triangulated outerplane
graph, it is embeddable in two queues. This implies that each connected com-
ponent c of Hi+1 (which is outerplane) lies in the interior of a triangular face of
Hi, therefore there are exactly three vertices of Hi that are connected to c. The
constructed 5-queue layout of H satisfies the following invariant properties:

(T.1) The linear order ≺H is such that all vertices of level Lj precede all vertices
of level Lj+1 for every j = 0, . . . , λ − 1;

(T.2) Vertices of each connected component of level Lj appear consecutively in
≺H for every j = 0, . . . , λ;

(T.3) Level edges of each of the levels L0, . . . , Lλ are assigned to two queues
denoted by Q0 and Q1;

(T.4) For every j = 0, . . . , λ − 1, the binding edges between Lj and Lj+1

are assigned to three queues Q2, Q3 and Q4 as follows. For each con-
nected component c of Hj+1, let x, y and z be its three neighbors in Hj so
that x ≺H y ≺H z. Then, the binding edges between Lj and Lj+1 incident
to c are assigned to Q2, Q3 and Q4 if they lead to x, y and z, respectively.

General Planar Graphs. Central in the algorithm by Dujmović et al. [13] is
the notion of H-partition,1 defined as follows. Given a graph G, an H-partition
of G is a partition of the vertices of G into sets Ax with x ∈ V (H), called bags,
such that for each edge (u, v) of G with u ∈ Ax and v ∈ Ay either x = y holds
or (x, y) is an edge of H. In the former case, (u, v) is called intra-bag edge, while
in the latter case inter-bag. A BFS-layering of G is a partition L = (V0, V1, . . .)
of its vertices according to their distance from a specific vertex r of G, i.e., it is
a special type of H-partition, where H is a path and each bag Vi corresponds to
a layer. In this regard, an intra-bag edge is called intra-layer, while an inter-bag
edge is called inter-layer.2 An H-partition has layered-width � with respect to a
BFS-layering L if each bag of H has at most � vertices on each layer of L.

Lemma 1 (Dujmović et al. [13]). For all graphs G and H, if H admits a
k-queue layout and G has an H-partition of layered-width � with respect to some
layering L = (V0, V1, . . .) of G, then G admits a (3�k + � 3

2��)-queue layout using
vertex order

−→
V0,

−→
V1, . . . , where

−→
Vi is some order of Vi. In particular,

1 To avoid confusion with notation used earlier, note that, in the scope of the algorithm
by Dujmović et al. [13], graph H denotes a plane 3-tree, as we will shortly see.

2 Dujmović et al. [13] refer to the intra- and inter-layer edges as intra- and inter-
level edges, respectively. We adopt the terms intra- and inter-layer edges to avoid
confusion with the different type of leveling used in the algorithm of Alam et al. [1].
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Fig. 4. Illustration of (a) Intra-bag edges; the intra-layer ones are dotted, while the
inter-layer ones are solid, and (b) inter-bag edges; the intra-layer ones are dotted, while
the inter-layer ones are solid (forward) and dashed (backward).

qn(G) ≤ 3� qn(H) + � 3
2��. (1)

In the proof of Lemma 1, the order of the vertices of G on each layer of L is
defined as follows. Let x1, . . . , xh be the vertices of H as they appear in a k-
queue layout QL(H) of H and let Ax1 , . . . , Axh

be the corresponding bags of the
H-partition. Then, the order

−→
Vi of each layer Vi with i ≥ 0 is:

−→
Vi = Ax1 ∩ Vi, Ax2 ∩ Vi, . . . , Axh

∩ Vi

where each subset Axj
∩ Vi is ordered arbitrarily. This gives the total order

≺G for the vertices of G. The edge-to-queue assignment, which completes the
construction of QL(G), exploits the following two properties; see Fig. 4:

(P.1) Two intra-bag edges nest in ≺G, only if they belong to the same bag.
(P.2) Two inter-layer edges nest in ≺G, only if their endpoints belong to the same

pair of consecutive layers of L.

For the edge-to-queue assignment, the edges of G are classified into four cate-
gories given by the bags of the H-partition and the layers of L. We start with
edges whose endpoints belong to the same bag (i.e., intra-bag edges); see Fig. 4a.

(E.1) Intra-layer intra-bag edges of G are assigned to at most � �
2� queues, as the

queue number of K� is � �
2� [16].

(E.2) Inter-layer intra-bag edges of G are assigned to at most � queues, as the
queue number of K�,� is �, when all vertices of the first bipartition precede
those of the second.

The remaining edges of G connect vertices of different bags (i.e., inter-bag
edges); see Fig. 4b. We further partition the inter-layer inter-bag edges into two
categories. Let (u, v) be an inter-layer inter-bag edge with u ∈ Ax ∩ Vi and
v ∈ Ay ∩ Vi+1, for some i ≥ 0. Then (u, v) is forward, if x ≺H y holds in QL(H);
otherwise, it is backward. For all inter-bag edges, in total, 3�k queues suffice
(see [13, Lemma 9]).
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(E.3) Intra-layer inter-bag edges of G are assigned to at most �k queues; on
each layer, an edge of H corresponds to a subgraph of K�,�, where the first
bipartition precedes the second.

(E.4) Forward inter-layer inter-bag edges of G are assigned to at most �k queues;
for two consecutive layers, an edge of H corresponds to a subgraph of K�,�,
where the first bipartition precedes the second.

(E.5) Symmetrically all backward inter-layer inter-bag edges of G are assigned
to at most �k queues.

The next property follows from the proof of Lemma 9 in [13]:

(P.3) For 1 ≤ i ≤ r, let (ui, vi) be an edge of G, such that ui ≺G vi, ui ∈ Axi

and vi ∈ Ayi
. If all these r edges belong to one of (E.3)–(E.5) and form

an r-rainbow in ≺G, while edges (x1, y1), . . . , (xr, yr) of H are assigned to
the same queue in QL(H), then r ≤ � and either u1, . . . , ur or v1, . . . , vr

belong to the same bag of the H-partition of G.

If G is maximal plane, few more ingredients are needed to apply Lemma 1. A
vertical path of G in a BFS-layering L is a path P = v0, . . . , vk of G consisting
only of edges of the BFS-tree of L and such that if v0 belongs to Vi in L, then
vj belongs to Vi+j , with j = 1, . . . , k. Further, we say that v0 and vk are the
first and last vertices of P . A tripod of G consists of up to three pairwise vertex-
disjoint vertical paths in L whose last vertices form a clique of size at most
3 in G. We refer to this clique as the base of the tripod. Dujmović et al. [13]
showed that for any BFS-layering L, G admits an H-partition with the following
properties:

(P.4) H is a planar 3-tree and thus QL(H) is a k-queue layout with k ≤ 5 [1].
(P.5) Its layered-width � is at most 3, since each bag induces a tripod in G,

whose base is a triangular face of G, if it is a 3-clique.

Properties (P.4) and (P.5) along with Eq. (1) imply that the queue number of
planar graphs is at most 3 · 3 · 5 + � 3

2 · 3� = 49.

3 Refinements of the Involved Techniques

In this section, we present refinements of the algorithms outlined in Sect. 2.

Outerplanar Graphs. We modify the algorithm by Dujmović et al. [15] to
guarantee two additional properties (stated in Lemma 2) of the outerplanar
drawing. To this end, besides Invariants (O.1) and (O.2), we maintain a third one:

(O.3) The lower envelope consists of a single edge.

To achieve this, we use the fact that a biconnected maximal outerplane graph
with at least four vertices contains at least two non-adjacent degree-2 vertices, x
and y. We fix one of them, say x, and we do not remove x at any recursive step
in the approach by Dujmović et al. [15]. Hence, x will be drawn at the base of
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the recursion, such that the bottom envelope consists of one edge incident to x
that lies on the outer face of G. Subsequent vertices are always added along the
upper envelope, which guarantees the invariant (see [5] for a formal proof).

Let 〈u, v, w〉 be a face of drawing Γ (G) such that y(u) − y(w) = 2 and
y(u)−y(v) = y(v)−y(w) = 1. We refer to vertices u, v and w as the top, middle
and bottom vertex of the face, respectively.3 Further, we say that face 〈u, v, w〉
is a bottom, side and top triangle for vertices u, v and w, respectively.

Lemma 2. Let Γ (G) be an outerplanar drawing satisfying Invariants (O.1)–
(O.3) of a biconnected maximal outerplane graph G. Then, each vertex of G is

(a) the top vertex of at most two triangular faces of Γ (G) and
(b) the side vertex of at most two triangular faces of Γ (G).

Proof. For (a), consider a vertex u of G. If u is the top vertex of a face, then u
is incident to a span-2 edge (u, v) with y(u) > y(v). By Invariant (O.3), u is a
successor of v in the recursive approach by Dujmović et al. [15], i.e., when u is
placed in Γ (G), vertex v belongs to the upper envelope. We now claim that u
cannot be incident to two edges (u, v) and (u, v′) with the properties mentioned
above; this claim implies the lemma. Assuming the contrary, by Invariant (O.2),
when u is placed in Γ (G) at most one edge incident to u has span 2. So, at most
one of (u, v) and (u, v′) is drawn when u is placed in Γ (G), which implies that
at least one of v and v′, say v′, is a successor of u. Thus, y(u) < y(v′) holds; a
contradiction. The proof of (b) is deferred to [5].

Planar 3-Trees. To maintain Invariant (T.3), Alam et al. [1] use the algorithm
by Dujmović et al. [15] to assign the level edges of L0, . . . , Lλ of the input plane
3-tree H to two queues Q0 and Q1, since on each level these edges induce a
(not necessarily connected) outerplane graph. Unlike in the original algorithm,
in our approach we adopt the above modification for the algorithm by Dujmović
et al. [15]. As Invariants (O.1) and (O.2) are preserved, queues Q0 and Q1 suffice.

To maintain Invariant (T.4), Alam et al. [1] adopt the following assignment
scheme for the binding edges between Lj and Lj+1 to queues Q2, Q3 and Q4,
for each j = 0, . . . , λ − 1. Consider a binding edge (u, v) with u ∈ Lj and
v ∈ Lj+1. Then, vertex u belongs to a connected component Cu of the subgraph
Hj of H induced by the level-Lj vertices, while vertex v belongs to a connected
component Cv of Hj+1. Further, Cu is outerplane and its 2-queue layout has
been computed by the algorithm by Dujmović et al. [15], while Cv resides in the
interior of a triangular face Tv of Cu in the embedding of H, such that u is on
the boundary of Tv. Edge (u, v) is assigned to Q2, Q3 or Q4 if and only if u is
the top, middle or bottom vertex of Tv, respectively [1]. For a vertex u ∈ Lj

with j = 0, . . . , λ − 1, we denote by N2(u), N3(u) and N4(u) the neighbors of u
in Lj+1 such that the edges connecting them to u are assigned to queue Q2, Q3

and Q4, respectively.

3 Alam et al. [1] refer to the middle vertex of a triangular face in Γ (G) as its anchor.
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Fig. 5. (a) Tripod τ with parents τ1, τ2 and τ3. (b) Illustration for (P.6) and (P.8).

Lemma 3. For j = 0, . . . , λ−1, let u ∈ Lj be a vertex of H in our modification
of the peeling-into-levels approach by Alam et al. [1]. Then, the vertices of N2(u)
precede those of N3(u), and the vertices of N2(u) (or of N3(u)) belong to at most
two connected components of Hj+1 (residing within distinct faces of Hj).

Proof. The first part of the lemma is proven in [1]. For the second part, consider
a binding edge (u, v) with v ∈ N2(u); a similar argument applies when v ∈ N3(u).
Thus, u is the top vertex of the triangular face Tv of Hj , in which the connected
component Cv of Hj+1 that contains v resides. Since by Lemma 2(a) vertex u
can be the top vertex of at most two triangular faces of Hj , there exist at most
two connected components of Hj+1, to which vertex v can belong.

General Planar Graphs. Dujmović et al. [13] recursively compute the
bags (i.e., the tripods) of the H-partition. Each newly discovered tripod τ is
adjacent to at most three tripods τ1, τ2 and τ3 already discovered. We say that
τ1, τ2 and τ3 are the parents of τ ; see Fig. 5a. Also, each of the three vertical
paths of τ is connected to only one of its parents via an edge of the BFS-tree
of L (black in Fig. 5a). This property gives rise to at most three sub-instances
(gray in Fig. 5a), which are processed recursively to compute the final tripod
decomposition. For i ∈ {1, 2, 3}, let p1i , p2i and p3i be the three vertical paths
of τi (if any). Up to renaming, assume that τ lies in the cycle bounded by (parts
of) p11, p21, p12, p22, p13 and p23 as in Fig. 5a. The next properties follow by planarity
and the BFS-layering:

(P.6) There is no edge connecting a vertex of τ to a vertex of p3i for i = 1, 2, 3;
see the dotted edge in Fig. 5b.

(P.7) Let vp
i be the vertex of vertical path p of τ on layer Vi of L. For two

vertical paths p and q of τ , edge (vp
i , vq

j ) belongs to G only if |i − j| ≤ 1.
(P.8) For vertical paths p and q of τ , at most one of the edges (vp

i , vq
i+1) and

(vp
i+1, v

q
i ) exists in G; see the dashed edges of Fig. 5b.

Note that (P.6)–(P.8) hold even if τ has less than three parents, or if the cycle
bounding the region of τ does not contain two vertical paths of each parent tri-
pod.
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Fig. 6. (a) A tripod τ in G where the edges incident to its three vertical paths are
drawn dotted, and (b) the result after contracting τ to vτ .

In the original algorithm by Dujmović et al. [13], each vertex vτ in H cor-
responds to a tripod τ in G, and an edge (vτ , vτ ′) exists in H, if τ is a parent
of τ ′ in G, or vice versa. Also, H is a connected partial planar 3-tree, which is
arbitrarily augmented to a maximal planar 3-tree H ′ (to compute a 5-queue lay-
out of it). Here, we adopt a particular augmentation to guarantee an additional
property for the graph H ′ (see Lemma 4). Similarly to the original approach,
we contract the vertices of each tripod τ of G to a single vertex vτ . However,
in our modification, we keep self-loops that occur when an edge of G has both
endpoints in τ (unless this edge belongs to one of its vertical paths), as well
as, parallel edges that occur when two vertices of τ have a common neighbor
not in τ . Since G is planar, this contraction ensures the next two properties; see
Fig. 6:

(P.9) The edges around each contracted vertex vτ appear in the same clockwise
cyclic order as they appear in a clockwise traversal along τ in G.

(P.10) The edges having at least one endpoint on the same vertical path of τ
appear consecutively around vτ ; see Fig. 6b.

To guarantee simplicity, we focus on homotopic self-loops and pairs of parallel
edges, which contain no vertex either in the interior or in the exterior region
that they define. We remove such self-loops and keep one copy of such parallel
edges. Then, we subdivide each self-loop twice, and for each edge with multi-
plicity m > 1, we subdivide all but one of its copies. In this way, each vertex
vτ corresponding to a tripod τ in G always lies in the interior of a separating
3-cycle C that contains all the vertices corresponding to its parent tripods on its
boundary (see [5] for details). Since subdivision vertices are of degree 2, the result
is a simple (possibly not maximal) planar 3-tree, which is a supergraph of H.
To derive H ′, we augment it to maximal by adding edges, while maintaining
its embedding [20].

Lemma 4. Let vτ and vτp be two vertices of H ′ that correspond to a tripod
τ and to a parent tripod τp of τ in G. If Li and Lj are the levels of vτ and vτp

in the peeling-into-levels approach for H ′, then i ≥ j.
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Proof. Let C be the inclusion-minimal separating 3-cycle of H ′ containing vτ

in its interior and all vertices that correspond to the parent tripods of τ on
its boundary. Let Lk, Ll and Lm be the levels of the three vertices of C, with
k ≤ l ≤ m, in the peeling-into-levels approach for H ′. As τp is a parent of τ ,
j ∈ {k, l,m} holds. Since C is a 3-cycle and since each edge in the peeling-into-
level approach is either level or binding, m ≤ k + 1 holds. The fact that vτ lies
in the interior of C and is connected to each of the vertices in H ′ corresponding
to its parent tripods in G, implies that vτ is on level Lk+1, i.e., i = k + 1. So,
j ≤ m ≤ k + 1 = i holds.

As in the original algorithm by Dujmović et al. [13], we compute a 5-queue
layout QL(H ′) of H ′. However, we use our modification of the algorithm by Alam
et al. [1] described earlier. Denote by x1, . . . , xh the vertices of the subgraph H
of H ′ as they appear in QL(H ′) (i.e., we ignore subdivision vertices introduced
when augmenting H to H ′) and by Q0, . . . ,Q4 the queues of QL(H ′) as described
in Invariants (T.1)–(T.4). To compute the linear layout QL(G) of G, we use
Lemma 1, which orders the vertices of each layer Vi, with i ≥ 0, of L as:

−→
Vi = Ax1 ∩ Vi, Ax2 ∩ Vi, . . . , Axh

∩ Vi,

where Ax1 , . . . , Axh
are the bags (i.e., the tripods) of the H-partition of G.

Unlike in the original algorithm, we do not order the vertices in each subset
Axj

∩Vi, with j ∈ {1, . . . , h}, arbitrarily. Instead, we carefully choose their order
as follows. Let τ be the tripod of bag Axj

. Then, Axj
∩ Vi contains at most

one vertex of each vertical path of τ . We will order the three vertical paths of
τ , which defines the order of the (at most three) vertices of Axj

∩ Vi for every
i ≥ 0.

Let Ll be the level of vτ in the peeling-into-levels of H ′, with 0 ≤ l < λ.
By Lemma 3, there are at most four connected components c1s, c2s, c1t and c2t of
the subgraph H ′

l+1 of H ′ induced by the vertices of Ll+1, such that the edges
connecting vτ to vertices of c1s and c2s (c1t and c2t ) belong to Q2 (Q3, respectively).
Let c be one of c1s, c2s, c1t and c2t ; c may contain vertices that correspond to tripods
in G (i.e., not to subdivisions introduced while augmenting H to H ′). We refer to
the union of these vertices of G as the tripod-vertices of c. By Invariant (T.1), vτ

precedes the vertices of c1s, c2s, c1t and c2t in QL(H ′). Also by (T.2), we may assume
that the vertices of c1s (c1t ) precede those of c2s (c2t , respectively). Additionally,
Lemma 3 ensures that the vertices of c2s precede those of c1t .

Since an edge (vτ , vτ ′) exists in H, if τ is a parent of τ ′, or vice versa, by
Lemma 4, for each vertex vτ ′ of H that is a neighbor of vτ in one of c1s, c2s, c1t
and c2t , it follows that τ is a parent of τ ′. By Property (P.6), there is a vertical
path of τ in G, say p (q), such that no tripod-vertex of c2s (c2t , respectively) is
adjacent to it in G. Note that p and q might be the same vertical path of τ .

We now describe the order of the three vertical paths of τ . We only specify
the first one; the other two can be arbitrarily ordered: (i) if the tripod-vertices
of c1s and c2s are connected to all three vertical paths of τ in G, then p is the
first vertical path of τ ; (ii) if the tripod-vertices of c1t and c2t are connected to all
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Fig. 7. Illustration for the proof of Lemma 5.

three vertical paths of τ in G, then q is the first vertical path of τ ; (iii) otherwise,
any vertical path of τ can be first. We prove in [5] that Cases (i) and (ii) cannot
apply simultaneously. Next, we state two important implications of the described
choice for the first vertical path of τ .

(P.11) Under our assumption that all vertices of c1s precede those of c2s, if tripod-
vertices of c1s and c2s are connected to all three vertical paths of τ , then
tripod-vertices of c2s are not connected to the first vertical path of τ .

(P.12) Also, under our assumption that all vertices of c1t precede those of c2t , if
tripod-vertices of c1t and c2t are connected to all three vertical paths of τ ,
then tripod-vertices of c2t are not connected to the first vertical path of
τ .

4 Reducing the Bound

For intra-bag inter-layer edges (E.2), the original algorithm by Dujmović
et al. [13] uses three queues, since � = 3. We prove that no three intra-bag inter-
layer edges form a 3-rainbow, implying that the upper bound on the queue num-
ber of planar graphs can be improved from 49 to 48.

Lemma 5. In the queue layout computed by our modification of the algorithm by
Dujmović et al. [13], no three intra-bag inter-layer edges of G form a 3-rainbow.

Proof. Assume to the contrary that there exist three such edges (u1, v1), (u2, v2)
and (u3, v3) forming a 3-rainbow in QL(G) so that u1 ≺G u2 ≺G u3 ≺G v3 ≺G

v2 ≺G v1. By (P.1) these edges belong to the same bag A of the H-partition, while
by (P.2) their endpoints belong to two consecutive layers Vi and Vi+1 of L. Due to
the order, u1, u2, u3 ∈ Vi and v1, v2, v3 ∈ Vi+1. The order of A∩Vi and A∩Vi+1 is
u1 ≺G u2 ≺G u3 and v3 ≺G v2 ≺G v1; see Fig. 7. Let p1, p2 and p3 be the first,
second and third vertical paths of tripod τ forming A. Then, (u1, v3) ∈ p1,
(u2, v2) ∈ p2 and (u3, v1) ∈ p3. However, (u1, v1) and (u3, v3) contradict (P.8).

For inter-bag edges (E.3)–(E.5), the algorithm by Dujmović et al. [13] uses 3 · 15
queues, since k = 5 and � = 3. We exploit (P.3) to prove that 3 ·13 queues suffice.
This further improves the upper bound on the queue number of planar graphs
from 48 to 42 (see [5] for omitted details).
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Lemma 6. In the queue layout computed by our modification of the algorithm
by Dujmović et al. [13], the inter-bag edges of G do not form a 40-rainbow.

Proof sketch. We partition the inter-bag edges into 15 sets Ei
j = {(u, v) ∈ (E.j) :

u ∈ Ax, v ∈ Ay, (x, y) ∈ Qi}, where i ∈ {0, . . . , 4} and j ∈ {3, 4, 5}. We prove
that the edges of Ei

j do not form a 3-rainbow, when i ∈ {2, 3} and j ∈ {3, 4, 5}.
Hence, we save one queue for each of the six sets. For a contradiction, assume
that (u1, v1), (u2, v2) and (u3, v3) form a 3-rainbow in E2

3 ; similarly we argue
for the other sets. By (P.3) and (T.4), u1, u2 and u3 belong to the same bag
of the H-partition; in particular, to the first, second and third vertical paths of
the tripod τ of this bag. By Lemma 4 followed by Lemma 3, v1 v2 and v3 are
tripod-vertices of exactly two connected components c1s and c2s of H ′. In fact, if
the vertices of c1s precede those of c2s in QL(H ′), then v1 is a tripod-vertex of c2s.
Further, the tripod-vertices of c1s and c2s are connected to all three vertical paths
of τ in G, and (P.11) implies that tripod-vertices of c2s, are not adjacent to the
first vertical path of τ . Hence, (u1, v1) cannot exist in G; a contradiction.

We are now ready to state the main theorem of this section.

Theorem 1. Every planar graph has queue number at most 42.

5 Conclusions

We believe that our approach has the potential to further reduce the upper bound
by at least 3 (i.e., from 42 to 39). However, more elaborate arguments that exploit
deeper the planarity of the graph are required, and several details need to be
worked out. Still the gap with the lower bound of 4 remains large and needs to be
further reduced. In this regard, determining the exact queue number of planar
3-trees becomes critical, since an improvement of the current upper bound of 5
(to meet the lower bound of 4) directly implies a corresponding improvement
on the upper bound on the queue number of general planar graphs. On the
other hand, to obtain a better understanding of the general open problem, it is
also reasonable to further examine subclasses of planar graphs, such as bipartite
planar graphs or planar graphs with bounded degree (e.g., max-degree 3).

Acknowledgments. The authors would like to thank the anonymous referees for
useful comments and suggestions.
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15. Dujmović, V., Pór, A., Wood, D.R.: Track layouts of graphs. Discrete Math. Theor.
Comput. Sci. 6(2), 497–522 (2004). http://dmtcs.episciences.org/315

16. Heath, L.S.: Embedding planar graphs in seven pages. In: FOCS, pp. 74–83. IEEE
Computer Society (1984). https://doi.org/10.1109/SFCS.1984.715903

17. Heath, L.S., Leighton, F.T., Rosenberg, A.L.: Comparing queues and stacks as
mechanisms for laying out graphs. SIAM J. Discrete Math. 5(3), 398–412 (1992).
https://doi.org/10.1137/0405031

18. Heath, L.S., Rosenberg, A.L.: Laying out graphs using queues. SIAM J. Comput.
21(5), 927–958 (1992). https://doi.org/10.1137/0221055

19. Horton, S.B., Parker, R.G., Borie, R.B.: On minimum cuts and the linear arrange-
ment problem. Discrete Appl. Math. 103(1–3), 127–139 (2000). https://doi.org/
10.1016/S0166-218X(00)00173-6

20. Kratochv́ıl, J., Vaner, M.: A note on planar partial 3-trees. CoRR arXiv:1210.8113
(2012)

21. Wiechert, V.: On the queue-number of graphs with bounded tree-width. Electr.
J. Comb. 24(1), P1.65 (2017). http://www.combinatorics.org/ojs/index.php/eljc/
article/view/v24i1p65

https://doi.org/10.1007/s00453-018-0487-5
https://doi.org/10.1051/ita/1995290604871
https://doi.org/10.1051/ita/1995290604871
https://doi.org/10.1137/19M125340X
http://arxiv.org/abs/2106.08003
https://journals.carleton.ca/jocg/index.php/jocg/article/view/504
https://journals.carleton.ca/jocg/index.php/jocg/article/view/504
https://doi.org/10.1016/0095-8956(79)90021-2
https://doi.org/10.1002/jgt.3190060302
https://doi.org/10.1002/jgt.3190060302
https://doi.org/10.1137/130908051
https://doi.org/10.1145/568522.568523
https://doi.org/10.7155/jgaa.00454
https://doi.org/10.1109/FOCS.2019.00056
https://doi.org/10.1137/S0097539702416141
https://doi.org/10.1137/S0097539702416141
http://dmtcs.episciences.org/315
https://doi.org/10.1109/SFCS.1984.715903
https://doi.org/10.1137/0405031
https://doi.org/10.1137/0221055
https://doi.org/10.1016/S0166-218X(00)00173-6
https://doi.org/10.1016/S0166-218X(00)00173-6
http://arxiv.org/abs/1210.8113
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v24i1p65
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v24i1p65


284 M. A. Bekos et al.

22. Wood, D.R.: Queue layouts, tree-width, and three-dimensional graph drawing.
In: Agrawal, M., Seth, A. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 348–359.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36206-1 31

23. Yannakakis, M.: Embedding planar graphs in four pages. J. Comput. Syst. Sci.
38(1), 36–67 (1989). https://doi.org/10.1016/0022-0000(89)90032-9

https://doi.org/10.1007/3-540-36206-1_31
https://doi.org/10.1016/0022-0000(89)90032-9


Contact and Visibility Representations



Optimal-Area Visibility Representations
of Outer-1-Plane Graphs

Therese Biedl1(B) , Giuseppe Liotta2 , Jayson Lynch1 ,
and Fabrizio Montecchiani2

1 David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, Canada

{biedl,jayson.lynch}@uwaterloo.ca
2 Department of Engineering, University of Perugia, Perugia, Italy

{giuseppe.liotta,fabrizio.montecchiani}@unipg.it

Abstract. This paper studies optimal-area visibility representations of
n-vertex outer-1-plane graphs, i.e. graphs with a given embedding where
all vertices are on the boundary of the outer face and each edge is
crossed at most once. We show that any graph of this family admits
an embedding-preserving visibility representation whose area is O(n1.5)
and prove that this area bound is worst-case optimal. We also show
that O(n1.48) area can be achieved if we represent the vertices as L-
shaped orthogonal polygons or if we do not respect the embedding but
still have at most one crossing per edge. We also extend the study to
other representation models and, among other results, construct asymp-
totically optimal O(n pw(G)) area bar-1-visibility representations, where
pw(G) ∈ O(log n) is the pathwidth of the outer-1-planar graph G.

Keywords: Visibility representations · Outer-1-plane graphs ·
Optimal area

1 Introduction

Visibility representations are one of the oldest topics studied in graph drawing:
Otten and van Wijk showed in 1978 that every planar graph has a visibility
representation [38]. A rectangle visibility representation consists of an assignment
of disjoint axis-parallel boxes to vertices, and axis-parallel segments to edges in
such a way that edge-segments end at the vertex boxes of their endpoints and do
not intersect any other vertex boxes. (They can hence be viewed as lines-of-sight,
though not every line-of-sight needs to give rise to an edge.)

Vertex-boxes are permitted to be degenerated into a segment or a point
(in our pictures we thicken them slightly for readability). The construction by
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Otten and van Wijk is also uni-directional (all edges are vertical) and all vertices
are bars (horizontal segments or points). Multiple other papers studied uni-
directional bar-visibility representations and showed that these exist if and only
if the graph is planar [24,39,41,42].

Unless otherwise specified, we assume throughout this paper that any visi-
bility representation Γ (as well as the generalizations we list below) are on an
integer grid. This means that all corners of vertex polygons, as well as all attach-
ment points (places where edge-segments end at vertex polygons) have integer
coordinates. The height [width] of Γ is the number of grid rows [columns] that
intersect Γ . The area of Γ is its width times its height. Any visibility represen-
tation can be assumed to have area O(n2) (see also Observation 1). Efforts have
been made to obtain small constants factors [28,32].

In this paper, we focus on bi-directional rectangle visibility representations,
i.e., both horizontally and vertically drawn edges are allowed. For brevity we
drop ‘bi-directional’ and ‘rectangle’ from now on. Recognizing graphs that have
a visibility representation is NP-hard [40]. Planar graphs have visibility represen-
tations where the area is at most n2, and Ω(n2) area is sometimes required [30].
For special graph classes, o(n2) area can be achieved, such as O(n·pw(G)) area
for outer-planar graphs [5] (here pw(G) denotes the pathwidth of G, defined
later), and O(n1.5) area for series-parallel graphs [4]. The latter two results do
not give embedding-preserving drawings (defined below).

Variations of Visibility Representations. For graphs that do not have visibility
representations (or where the area-requirements are larger than desired), other
models have been introduced that are similar but more general. One option
is to increase the dimension, see e.g. [1,2,14]. We will not do this here, and
instead allow more complex shapes for vertices or edges. Define an orthogonal
polygon [polyline] to be a polygon [polygonal line] whose segments are horizon-
tal or vertical. We use OP as convenient shortcut for ‘orthogonal polygon’. All
variations that we study below are what we call OP-∞-orthogonal drawings.1

Such a drawing is an assignment of disjoint orthogonal polygons P (·) to vertices
and orthogonal poly-lines to edges such that the poly-line of edge (u, v) con-
nects P (u) and P (v). Edges can intersect each other, and they are specifically
allowed to intersect arbitrarily many vertex-polygons (hence the “∞”), but no
two edge-segments are allowed to overlap each other. The vertex complexity is the
maximum number of reflex corners in a vertex-polygon, and the bend complexity
is the maximum number of bends in an edge-poly-line.

One variation that has been studied is bar-(k, j)-visibility representation,
where vertices are bars, edges are vertical line segments, edges may intersect
up to k bars that are not their endpoints, and any vertex-bar is intersected by
at most j edges that do not end there. Bar-(k,∞)-visibility representations were
introduced by Dean et al. [19], and testing whether a graph has one is textsfNP-
hard [17]. All 1-planar graphs have a bar-(1, 1)-visibility representation [15,26].

1 We do not propose actually drawing graphs in this model (its readability would not
be good), but it is convenient as a name for “all drawing models that we study here”.
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In this paper, we will use bar-1-visibility representation as a convenient shortcut
for “unidirectional bar-(1, 1)-visibility representation”.

Another variation is OP visibility representation, where edges must be hor-
izontal or vertical segments that do not intersect vertices except at their end-
points. OP visibility representations were introduced by Di Giacomo et al. [22]
and they exist for all 1-planar graphs. There are further studies, considering the
vertex complexity that may be required in such drawings [16,22,27,36,37].

Finally, there are orthogonal box-drawings, where vertices must be boxes and
edges do not intersect vertices except at their endpoints. We will not review the
(vast) literature on orthogonal box-drawings (see e.g. [10,13] and the references
therein), but they exist for all graphs.

All OP-∞-orthogonal drawings can be assumed to have area O(n2) (assuming
constant complexity and O(n) edges), see also Observation 1. We are not aware
of any prior work that tries to reduce the area to o(n2) for specific graph classes.

Drawing Outer-1-planar Graphs. An outer-1-planar graph (first defined by
Eggleton [25]) is a graph that has a drawing Γ in the plane such that all vertices
are on the infinite region of Γ and every edge has at most one crossing. We will
not review the (extensive) literature on their superclass of 1-planar graphs here;
see e.g. [35] or [23,34] for even more related graph classes. Outer-1-planar graphs
can be recognized in linear time [3,33]. All outer-1-planar graphs are planar [3],
and so can be drawn in O(n2) area, albeit not embedding-preserving.

Very little is know about drawing outer-1-planar graphs in area o(n2). Auer
et al. [3] claimed to construct planar visibility representations of area O(n log n),
but this turns out to be incorrect [7] since some outer-1-planar graphs require
Ω(n2) area in planar drawings. Outer-1-planar graphs do have orthogonal box-
drawings with bend complexity 2 in O(n log n) area [7].

Our Results. We study visibility representations (and variants) of outer-1-planar
graphs, especially drawings that preserve the given outer-1-planar embedding.
Table 1 gives an overview of all results that we achieve. As our main result, we
give tight upper and lower bounds on the area of embedding-preserving visibility
representations (Sect. 3 and 4): It is Θ(n1.5). We find it especially interesting that
the lower bound is neither Θ(n log n) nor Θ(n2) (the most common area lower
bounds in graph drawing results). Also, a tight area bound is not known for
embedding-preserving visibility representations of outerplanar graphs.

We also show in Sect. 5 that the Ω(n1.5) area bound can be undercut if we
relax the drawing-model slightly, and show that area O(n1.48) can be achieved
in three other drawing models. Finally we give further area-optimal results in
other drawing models in Sect. 6. To this end, we generalize a well-known lower
bound using the pathwidth to all OP-∞-orthogonal drawings, and also develop
an area lower bound for the planar visibility representations of outer-1-planar
graphs based on the number of crossings in an outer-1-planar embedding. Then
we give constructions that show that these can be matched asymptotically. We
conclude in Sect. 7 with open problems.

For space reasons we only sketch the proofs of most theorems; a (�) symbol
indicates that further details can be found in [12].



290 T. Biedl et al.

Table 1. Upper and lower bound on the area achieved in various drawing styles in
this paper. The column title e-p stands for embedding-preserving, pw(G) denotes the
pathwidth of G, χ(G) denotes the number of crossings in the 1-planar embedding.

Drawing-style e-p Lower bound Upper bound

Visibility representation ✓ Ω(n1.5) [Theorem 1] O(n1.5) [Theorem 3]

Complexity-1 OP vis.repr. ✓ Ω(n pw(G)) [Theorem 6] O(n1.48) [Theorem 4]

1-bend orth. box-drawing ✓ Ω(n pw(G)) [Theorem 6] O(n1.48) [Theorem 4]

Visibility representation ✗ Ω(n pw(G)) [Theorem 6] O(n1.48) [Theorem 4]

Bar visibility representation ✓ Ω(n2) [Theorem 2] O(n2) [Theorem 5]

Bar-1-visibility representation ✗ Ω(n pw(G)) [Theorem 6] O(n pw(G)) [Theorem 8]

Planar visibility representation ✗ Ω(n(pw(G)+χ(G))) [Theo-

rem 6&7]

O(n(pw(G)+χ(G))) [Theo-

rem 8]

2 Preliminaries

We assume familiarity with standard graph drawing terminology [21]. Through-
out the paper, n and m denotes the number of vertices and edges.

A planar drawing of a graph subdivides the plane into topologically connected
regions, called faces. The unbounded region is called the outer-face. An embed-
ding E(G) of a graph G is an equivalence class of drawings whose planarizations
(i.e., planar drawings obtained after replacing crossing points by dummy vertices)
define the same set of circuits that bound faces. An outer-1-planar drawing is a
drawing with at most one crossing per edge and all vertices on the outer-face.
An outer-1-planar graph is a graph admitting an outer-1-planar drawing. An
outer-1-plane graph G is a graph with a given outer-1-planar embedding E(G).
We use χ(G) for the number of crossings in E(G). An outer-1-plane graph G
is plane-maximal if it is not possible to add any uncrossed edge without losing
outer-1-planarity or simplicity. The planar skeleton of an outer-1-plane graph
G, denoted by G, is the graph induced by its uncrossed edges. If G is plane-
maximal, then G is a 2-connected graph whose interior faces have degree 3 or 4
[20]. Let G∗ be the weak dual of G and call it the inner tree of G. Since G is
outer-plane, G∗ is a tree (as the name suggests), and since each face of G has
degree 3 or 4, every vertex of G∗ has degree at most 4. An outer-1-path P is an
outer-1-plane graph whose inner tree P ∗ is a path.

Consider a graph G with a fixed embedding E(G). An OP-∞-orthogonal
drawing is embedding-preserving if (1) walking around each vertex-polygon we
encounter the incident edges in the same cyclic order as in E(G), and (2) no
edge crosses a vertex, and the planarization of the OP-∞-orthogonal drawing
has the same set of faces as E(G). Note that bar-1-visibility representations by
definition violate (2), but we call them embedding-preserving if (1) holds.

Our results will only consider the smaller dimension of the drawing (up to
rotation the height), because the other dimension does not matter (much):

Observation 1. Let Γ be an OP-∞-orthogonal drawing with constant vertex
and bend complexity. Then we may assume that the width and height is O(n+m).
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Fig. 1. The graph for Lemma 1. For interpretation of the colors in this and the next
figures, the reader is referred to the online coloured version of this article.

Observation 2. Let Γ be an OP-∞-orthogonal drawing with constant vertex
complexity in a W × H-grid. Then max{W,H} ∈ Ω(maximum degree of G).

Observation 1 holds because we can delete empty rows and columns (and was
mentioned for visibility representations in [6]); Observation 2 holds since some
vertex-polygons must have sufficient width or height for its incident edges. (�)

Remark. In consequence of Observation 2, if we know a lower bound f(G) on the
width and height of a drawing, then (after adding degree-1 vertices to achieve
maximum degree Θ(n)) we know that any drawing of the resulting graph G′

has (up to rotation) width Ω(n) and height Ω(f(G)), so area Ω(n f(G)). This
is assuming G′ is within the same graph class and f(G′) ∈ Θ(f(G)); both hold
when we apply this below.

3 Lower Bound on the Height

In this section, we show that embedding-preserving visibility representations
must have height Ω(

√
n) for some outer-1-plane graphs. A crucial ingredient is

a lemma that studies the case where the height of vertex-boxes is restricted.

Lemma 1. For any h, � > 0 there exists an outer-1-plane graph Gh,� with O(h·�)
vertices such that any embedding-preserving visibility representation in which
each vertex-box intersects at most h rows, has width and height Ω(�).
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Proof. To build graph Gh,�, we first need a graph H1,� with 5� + 1 vertices,
depicted in Fig. 1(a) (top). This graph consists of a path v0, . . . , v� such that at
each edge (vi−1, vi) (for 1 ≤ i ≤ �) there are two attached K4’s {vi−1, ai, bi, vi}
and {vi−1, ci, di, vi} (drawn such that (vi−1, bi) crosses (vi, ai) and (vi−1, di)
crosses (vi, ci)).

Next define Hh,� for h ≥ 2, � ≥ 1 by taking H1,� and adding 2(� − 1)(h − 2)
vertices of degree 1 (we call these leaves), as shown in Fig. 1(a) (bottom). Namely,
at each vertex vi for 0 < i < �, we add h − 2 leaves between bi and ai+1 (in the
order around vi), and another h − 2 leaves between ci+1 and di. Clearly graph
Hh,� is outer-1-planar.

Graph Gh,� consists of three copies of Hh,�, with the three vertices v0 com-
bined into one, see also Fig. 1(b). Furthermore, add h − 1 leaves at v0 between
any two copies, i.e., between c1 of one copy and a1 of the next copy. Graph Gh,�

has n = 15� + 1 + 6(� − 1)(h − 2) + 3(h − 1) ∈ Θ(�h) vertices.

Fig. 2. Illustration for the proof of Lemma 1.

One can argue (�) that inside any embedding-preserving visibility represen-
tation Γ of Gh,�, there exists a copy of Hh,� whose drawing ΓH satisfies (up to
symmetry) the premise of the following claim.

Claim. Let ΓH be an embedding-preserving visibility representation of Hh,� such
that all edges at box P (v0) go downward, with edge (v0, a1) leftmost among
them. Assume that all boxes of ΓH intersect at most h rows. Then ΓH uses at
least � + 1 rows and P (v0) has width at least 4� + 1.

Proof. We proceed by induction on �. In the base case (� = 1) we have five
vertical downward edges at v0; this means that the height is at least 2 and P (v0)
must have width at least 5 as required.

Now assume � ≥ 2 and study the five downward edges from v0 to a1, b1, v1, c1,
d1, see also Fig. 2. The vertical edges (v0, b1) and (v0, d1) are crossed by edges
(a1, v1) and (v1, c1), which means that the latter two edges must be horizontal.
Since (v0, a1) is leftmost, and the embedding is preserved, edge (a1, v1) attaches
on the left side of P (v1) while (v1, c1) attaches on the right side.
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The counter-clockwise order of edges at v1 contains h − 1 edges (to b1 and
leaves) between a1 and a2. Since P (v1) intersects at most h rows, and (v1, a1)
attaches on its left side, therefore (v1, a2) can not attach on its left side. Likewise
(v1, c2) can not attach on the right side of P (v1). To preserve the embedding,
therefore the edges from v1 to the rest of Hh,� must be drawn downward from
P (v1), with (v1, a2) leftmost. Also observe that Hh,� \{v0, a1, b1, c1, d1} contains
a copy of Hh,�−1. Applying induction, there are at least � rows below P (v1), and
P (v1) has width at least 4�−3. Adding at least one row for P (v0), and observing
that P (v0) must be at least four units wider than P (v1) proves the claim. �

So the claim holds, and ΓH (and with it Γ ) has width and height Ω(�). �
As a consequence, we obtain two lower bound for visibility representation.

Theorem 1. For any N there is an n-vertex outer-1-plane graph with n ≥ N
such that any embedding-preserving visibility representation has area Ω(n1.5).

Theorem 2. For any N there is an n-vertex outer-1-plane graph with n ≥ N
such that any embedding-preserving bar visibility representation has area Ω(n2).

Roughly speaking, Theorem 1 uses G√
N,

√
N , with leaves added to have max-

imum degree Θ(n), while Theorem 2 uses G1,N . (�). The bounds then hold by
Lemma 1 and Observation 2.

4 Optimal Area Drawings

In this section we show how to compute an embedding-preserving visibility rep-
resentation of area O(n1.5) which is tight by Theorem 1. By Observation 1 it
suffices to construct a drawing of height O(

√
n).

Our construction is quite lengthy, so we mostly sketch it here via figures. We
assume that G is maximal-planar and a reference-edge (s, t) on the outer-face of
G is fixed, and first choose a path π in dual tree G∗ (rooted at the face incident to
(s, t)). Let F ∈ Θ(n) be the size of G∗ (hence the number of inner faces of G). As
shown by Chan for binary trees [18] and generalized by us to arbitrary trees [11],
π can be chosen such that αp +βp ≤ (1−δ)F p, where α [β] is the maximum size
of a left [right] subtree of π, p = 0.48 and δ > 0 is a constant. Define a recursive
function h(F ) = maxα,β{h(α) + h(β)} + O(

√
F ) (with appropriate constants

and base cases). Here the maximum is over all choices of α, β that satisfy the
inequality. We construct a drawing of height h(F ).

So we first discuss how to draw the outer-1-path Pπ whose inner dual is
π, plus all its hanging subgraphs (i.e., maximum subgraphs in G \ Pπ). To do
so, first create a visibility representation of Pπ on 5 rows such that edges with
attached hanging subgraphs are drawn horizontally in the top or bottom row
(see Fig. 3). Assume that each hanging subgraph H has a TCσ,τ -drawing (for
{σ, τ} = {1, 2}), i.e., a drawing where the endpoints of the reference-edge occupy
the Top Corners and have height σ and τ . Then we can easily merge all hanging
subgraphs, after expanding some boxes of Pπ one row outward. The resulting
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drawing has height h(α)+h(β)+O(1) since all hanging subgraphs below [above]
correspond to left [right] subtrees of π.2

Fig. 3. Drawing an outer-1-path (dark gray) and merging hanging subgraphs (blue
striped) after expanding some vertex-boxes (light gray). (Color figure online)

Alas, this path-drawing is not a TCσ,τ -drawing as required for the recursion.
So we change the approach and first draw a larger subgraph that includes Pπ.
First extract the cap C1, consisting of all neighbours of s and t, see Fig. 4. This
is an outer-1-path, so we can use a path-drawing and get a TCσ,τ -drawing of the
cap (see the corresponding part in Fig. 5). The part of Pπ not in C1 could be
drawn as for outer-1-paths, but instead we first extract another cap C2 at the
edge common to C1 and the rest of Pπ. We draw C2 as a path and place it (after
suitable expansion of the vertices of C1) below the drawing of C1. This repeats
k times for some parameter k of our choice (k = 2 in the example). Then we
draw the rest of Pπ (which we call handle) as a path.

A major difficulty is combining the drawing of the caps with the handle-
drawing. Let (xi, yj) be the edge common to caps and handle. It is not too
difficult to change the boxes of xi and yj to combine the two boxes that repre-
sented them in the two drawings, see also Fig. 5. The main challenge is that for
the two hanging subgraphs incident to yj , there is no suitable place to merge a
TCσ,τ -drawing. To resolve this, we split these hanging subgraphs further, and
can then merge all their parts after adding d(yj) more rows, where d(yj) is the
number of edges that yj has in these subgraphs (Fig. 6).

So the goal is to choose the parameter k such that d(yj) is small, because we
need d(yj) additional rows beyond the h(α) + h(β) that we budget for hanging
subgraphs. Each extra cap also requires O(1) additional rows but changes which
vertex will take on the role of yj . Crucially, the vertices Y1, . . . , Yk that take on
the role of yj have disjoint edge sets that count for d(·). Since there are O(n) edges

2 Readers familiar with LR-drawings [11,18,31] may notice the similarity of construct-
ing the path-drawing with the (rotated) LR-drawing of π, except that we draw the
outer-1-planar graph rather than its dual tree.
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in total, there exists a k ∈ O(
√

n) such that d(Yk) ∈ O(
√

n). With this choice
of k, the recursive formula for the height hence becomes h(α) + h(β) + O(

√
n),

which by F ∈ Θ(n) and αp + βp ≤ (1 − δ)np resolves to O(
√

n). (�)

Fig. 4. Our running example.

Theorem 3. Every n-vertex outer-1-plane graph has an embedding-preserving
visibility representation of area O(n1.5), which is worst-case optimal.

5 Breaking the
√
n-barrier

We know that the height-bound of Theorem 3 is asymptotically tight due to
Theorem 1. But the lower bound only holds for embedding-preserving visibility
representations—can we get better height-bounds if we relax this restriction?

Theorem 4. Any outer-1-planar graph G has

– An embedding-preserving OPVR of complexity 1, and
– An embedding-preserving 1-bend orthogonal box-drawing, and
– A visibility representation that is not necessarily embedding-preserving and

has at most one crossing per edge,

and the drawings have area O(n1.48).
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Fig. 5. Drawing the complete example except for two hanging subgraphs Hyjyj+1 and
Hyj−1yj . Here j = 5.

Fig. 6. Closeup on breaking up and merging Hyjyj+1 and Hyjyj−1 .
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We again give the proof mostly in figures. (�) We assume as in Sect. 4 that
the graph is planar-maximal, a reference-edge (s, t) is given, and we construct a
TCσ,τ -drawing for any given {σ, τ} = {1, 2}. We use k = 1, i.e., we draw one cap
and use the rest of Pπ as handle. Recall that the main difficulty in Sect. 4 was
that two hanging subgraphs could not be merged using TCσ,τ -drawings since no
suitable space was available.

If we change the drawing model (using a Γ -shape or a box in the cap-drawing
for yj) then one of these hanging subgraphs can use a TCσ,τ -drawing, and all
edges can still be drawn, perhaps after adding a bend or changing the embedding.
See Fig. 7. The other hanging subgraph uses a new drawing-type (i.e., different
restrictions on shapes and locations of the endpoints of the reference-edge). It
is not obvious that this exists, but we can show that it can be constructed
by adding two rows. With this, the recursion for the height-function becomes
h(α) + h(β) + O(1), which resolves to O(n0.48) [18].

Fig. 7. Inserting the two remaining hanging subgraphs when permitting ortho-
polygons, or bends in edges, or after changing the embedding.

6 Optimum-height Drawings in Other Drawing Models

In this section we give drawings whose height (and area) is also optimal, but
they are in a different drawing model (hence different lower bounds apply).

6.1 Embedding-preserving Bar Visibility Representations

We proved in Theorem 2 that any embedding-preserving bar-visibility-represen-
tation has height Ω(n) for some outer-1-plane graphs. A fairly straight-forward
greedy-construction shows that we can match this. The main difficulty is show-
ing that such a drawing exists as all; the area-bound then follows from Obser-
vation 1). (�)

Theorem 5. Any outer-1-planar graph G has an embedding-preserving bar-
visibility representation of area O(n2) which is worst-case optimal.
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6.2 More Lower Bounds

We now prove other lower bounds on the height that depend on the pathwidth
pw(G) and the number of crossings χ(G) of the outer-1-plane graph.

We recall that a path decomposition of a graph G consists of a collection
B1, . . . , Bξ of vertex-sets (“bags”) such that every vertex belongs to a consecutive
set of bags, and for every edge (u, v) at least one bag contains both u and v. The
width of such a path decomposition is maxi{|Bi| − 1}, and the pathwidth pw(G)
is the minimum width of a path decomposition of G. Any outer-1-planar graph
has pathwidth O(log n), since it has treewidth 3 [3].

For planar drawings, the width and height of a drawing is lower-bounded by
the pathwidth of the graph [29].

Less is known for non-planar drawings. It follows from the proof of Corollary 3
in [9] that any bar-1-visibility representation of graph G has height at least
pw(G) + 1. Roughly speaking, we can extract a path decomposition of G by
scanning left-to-right with a vertical line and attaching a new bag whenever the
set of intersected vertices changes. We use the same proof-idea here to show a
lower bound for all OP-∞-drawings. (�)

Theorem 6. Any OP-∞-drawing of a graph G (not necessarily outer-1-planar)
has height and width Ω(pw(G)).

By the remark after Observation 2 hence some outer-1-planar graphs require
area Ω(n pw(G)) in all OP-∞-orthogonal drawings.

If we specifically look at drawings that have no crossings, then we can also
create a lower bound based on the number of crossings. This is easily obtained
by modifying the lower-bound example from [7]. (�)

Theorem 7. For any k and n ≥ 4k, there exists an outer-1-plane graph with n
vertices and k crossings that requires at least 2k height and width in any planar
drawing.

In particular, the lower bound on the height of a planar OP-∞-orthogonal
drawing of G is Ω(max{pw(G), χ(G)}), which is the same as Ω(pw(G) + χ(G)).

6.3 More Constructions

We now turn towards creating bar representations that prove that Theorems 6
and 7 are tight.

Theorem 8. Every outer-1-plane graph G has a planar bar visibility represen-
tation of area O((pw(G)+χ(G))n) and a bar-1-visibility representation of area
O(n·pw(G)).

We can again only sketch the proof (�). We first draw the planar skeleton
of some outer-1-path and the hanging subgraphs much as was done for outer-
planar graphs in [5]. Based on the pathwidth (or actually the closely related
parameter rooted pathwidth), extract a root-to-leaf path π in the dual tree G∗
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Fig. 8. (a) Example-graph. (b) Drawing its skeleton and merging hanging subgraphs
inward. Some vertex-boxes are artificially wide to match (c). (c) The bar-1-visibility
representation obtained by moving some bars and sometimes traversing bars. (d) The
planar bar-visibility representation obtained by moving some bars and extending them
rightwards. Arrows indicate vertices that get moved outward beyond their neighbour
on the right.
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such that the rooted pathwidth of all subtrees is smaller. Expand Pπ by adding
all neighbours of s to get P+

π . Create a bar visibility representation of P+
π on

three rows. See Fig. 8(b). Now merge hanging subgraphs “inward”, i.e., inside
the faces of Pπ. They hence share rows and the height is only O(1) more than
the one of the subgraphs and works out to O(pw(G)). For the merging we need
TC1,1-drawings, but with our placement of (s, t) this can easily be achieved.

However, we have not yet drawn the crossings in P+
π . One of each pair of

crossing edges can be realized inside a face of P+
π . For bar-1-visibility represen-

tations, we realize the other edges by moving vertex-bars inward or outward by
one unit (plus some special handling near s and t). After suitable lengthening
of bars the other edge in a crossing can then be realized, sometimes by travers-
ing a bar. See Fig. 8(c). For planar drawings, we move bars outward sufficiently
far (proportionally to the number of crossings on the right) such that they can
be extended rightward without intersecting other elements of the drawing. The
other edge in a crossing can then be drawn on the right. See Fig. 8(d).

7 Conclusions and Open Problems

In this paper, we studied visibility representations of outer-1-planar graphs. We
showed that if the embedding must be respected, then Ω(n1.5) area is sometimes
required, and O(n1.5) area can always be achieved. We also studied numerous
other drawing models, showing that o(n1.5) area can be achieved as soon as
we allow bends in the vertices or the edges or can change the embedding. We
also achieve optimal area for bar-1-visibility representations and planar visibility
representations. Following the steps of our proofs, it is clear that the drawings
can be constructed in polynomial time; with more care when handing subgraph-
drawings (and observing that path π can be found in linear time [8,11]) the
run-time can be reduced to linear. A number of open problems remain:

– Our drawings of height O(n0.48) were based on the idea of so-called LR-
drawings of trees [18], which in turn were crucial ingredients for obtaining
small embedding-preserving straight-line drawings of outer-planar graphs.
With a different approach, Frati et al. [31] achieved height O(nε) for drawing
outer-planar graphs. Can we achieve height O(nε) (hence area O(n1+ε) in
some of our constructions as well?

– Our bar-1-visibility representations do not preserve the embedding, both
because the edges that go through some vertex-bar are not in the right place
in the rotation, and because we merge hanging subgraphs inward. What area
can we achieve if we require the embedding to be preserved?

– We achieved height O(n0.48) in complexity-1 OPVRs. It is not hard to achieve
the optimal height O(pw(G)) if we allow higher complexity (complexity 4 is
enough; we leave the details to the reader). What is the status for complexity
2 or 3, can we achieve height o(n0.48)?

Finally, are there other significant subclasses of 1-planar graphs for which we
can achieve o(n2)-area drawings, either straight-line or visibility representations?
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Abstract. A unit disk intersection representation (UDR) of a graph G
represents each vertex of G as a unit disk in the plane, such that two
disks intersect if and only if their vertices are adjacent in G. A UDR with
interior-disjoint disks is called a unit disk contact representation (UDC).
We prove that it is NP-hard to decide if an outerplanar graph or an
embedded tree admits a UDR. We further provide a linear-time decidable
characterization of caterpillar graphs that admit a UDR. Finally we show
that it can be decided in linear time if a lobster graph admits a weak
UDC, which permits intersections between disks of non-adjacent vertices.

1 Introduction

The representation of graphs as contacts or intersections of disks has been a
major topic of investigation in geometric graph theory and graph drawing. The
famous circle packing theorem states that every planar graph has a contact
representation by touching disks (of various size) and vice versa [14]. Since then,
a large body of research has been devoted to the representation of planar graphs
as contacts or intersections of various kinds of geometric objects [5,6,9,10]. In
this paper, we are interested in unit-radius disks. A set of unit disks in R

2 is a
unit disk intersection representation (UDR) of a graph G = (V,E), if there is a
bijection between V and the set of unit disks such that two disks intersect if and
only if they are adjacent in G. Unit disk graphs are graphs that admit a UDR.
Unit disk contact graphs (also known as penny graphs) are the subfamily of unit
disk graphs that have a UDR with interior-disjoint disks, which is thus called
a unit disk contact representation (UDC). This can be relaxed to weak UDCs,
which permit contact between non-adjacent disks; see Fig. 1 for examples.

The recognition problem, where the objective is to decide whether a given
graph admits a UDR, has a rich history [2,3,11,12]. Breu and Kirkpatrick [4]
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Fig. 1. Specific contact and intersection graphs of unit disks. In a UDR (a–b) disks
overlap is allowed, and contact of disks implies an edge between their vertices. In a
weak UDC disks are interior disjoint, but contact between non-adjacent disks is allowed.
The disks of backbone vertices are colored grey (b–c).

proved that it is NP-hard to decide whether a graph G admits a UDR or a UDC,
even for planar graphs. Klemz et al. [13] showed that recognizing outerplanar
unit disk contact graphs is already NP-hard, but it is decidable in linear time
for caterpillars, i.e., trees whose internal vertices form a path (see Fig. 1b).

Recognition with a fixed embedding is an important variant of the recogni-
tion problem. Given a plane graph G, the objective in this problem is to decide
whether G admits a UDC in the plane that preserves the cyclic order of the neigh-
bors at each vertex. Some recent works investigated the recognition problem of
UDCs with/without fixed embedding, and narrowed down the precise boundary
between hardness and tractability; see [2,7,8,13]. A remaining open question is
to settle the complexity of recognizing non-embedded trees that admit a UDC.
Some of these works focused on weak UDCs, where disks of non-adjacent vertices
may touch. In this model, the recognition of non-embedded trees that admit a
weak UDC is NP-hard [8]. We summarize the results on weak UDCs in Table 1.

While several results of the past years have shed light into the recognition
complexity gap for UDCs, not much is known in this regard for the more general
class of UDRs since the NP-hardness for planar graphs from 1998 [4].

Our Contribution. We investigate the unit disk graph recognition problem for
subclasses of planar graphs. We show that recognizing unit disk graphs remains
NP-hard for non-embedded outerplanar graphs (see Fig. 1a) – strengthening the
previous hardness result for planar graphs [4] – and for embedded trees (Sect. 3).
This line of research aims to extend earlier investigations [2,7,8] of UDCs to the
UDR model and builds in particular on the work of Bowen et al. [2].

On the positive side, we provide a linear-time algorithm to recognize cater-
pillar graphs (see Fig. 1b) that admit a UDR (Sect. 4). In Sect. 5, we return to
the problem of recognizing unit disk contact graphs and extend the tractabil-
ity boundary for non-embedded graphs. While it was known that a weak UDC
for caterpillar graphs can be constructed in linear time (if one exists), but the
same recognition problem is NP-hard for trees [8], we prove that we can decide
in linear time if a lobster graph admits a weak UDC on the triangular grid,
where a lobster is a tree whose internal vertices form a caterpillar (see Fig. 1c).
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Table 1 summarizes our results and remaining open problems. Proofs and details
of results marked with a star (�) can be found in the complete version [1].

Table 1. State of the art, our results, and open problems on unit disk graph recognition.
Upward arrows indicate, that a result follows from the one below.

Graph class Weak UDC UDR

Non-embedded Embedded Non-embedded Embedded

Planar ↑ NP-hard ↑ NP-hard NP-hard [4] ↑ NP-hard

Outerplanar ↑ NP-hard ↑ NP-hard NP-hard (Thm. 1) ↑ NP-hard

Trees NP-hard [8] ↑ NP-hard Open NP-hard (Thm. 2)

Lobsters O(n) (Thm. 4) ↑ NP-hard Open Open

Caterpillars O(n) [8] NP-hard [7] O(n) (Thm. 3) Open

2 Preliminaries

A graph G = (V,E) with V = {v1, . . . , vn} is a unit disk graph if there exists
a set of closed unit disks D = {d1, . . . , dn} and a bijective mapping d : V → D,
s.t., d(vi) = di and vivj ∈ E if and only if di and dj intersect. We call D a
unit disk intersection representation (UDR) of G. If all disks in D are pairwise
interior disjoint we also call D a unit disk contact representation (UDC) of G.
A graph is a unit disk contact graph if it admits a UDC. A weak UDC permits
contact between two disks di and dj , even if vivj �∈ E.1

A caterpillar graph G is a tree, which yields a path, when all leaves are
removed. We call this path, the backbone BG of G. Similarly a lobster graph
G′ is a tree, which yields a caterpillar graph G′′, when all leaves are removed.
The backbone of G′ is the backbone of G′′. For each vertex v of the backbone,
we denote the set of vertices that are reachable from v on a path that does not
include any other backbone vertex, as the descendants of v.

The set of disks D induces an embedding ED(G) of G by placing every vertex
v at the center of d(v) and linking neighboring vertices by straight-line edges. We
will therefore also use v as the center of d(v). We say that a UDR D preserves the
embedding of an embedded graph G with embedding E(G) if ED(G) = E(G). Let
a, b, c be three points in R

2. We use �abc to denote the clockwise angle defined
between the segments ab and bc. We define the angle �didjdk as the clockwise
angle �vivjvk in ED(G).

1 Note that weak UDRs, in contrast, are not interesting, since a complete graph Kn

can easily be represented as a UDR and therefore every graph admits a weak UDR.
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3 NP-Hardness Results

Fig. 2. Auxiliary structure details used by Bowen et al. [2]. All Figures are recre-
ations/adaptions from their paper. The incidence graph is embedded on a hexagonal
grid (a). The edges are short corridors in which the blue hexagons are fitted, hinged
at white vertices. Hexagons in the variable cycle (red line, grey backdrop) have two
states (b) and (d). The clause gadget (c) requires one hexagon, which does not enter
the junction. (Color figure online)

In this section, we prove that recognizing unit disk graphs remains NP-hard
for non-embedded outerplanar graphs and for embedded trees. Our proofs apply
the generic machinery of Bowen et al. [2] to decide realizability of polygonal link-
ages, which requires to construct gadgets that can model hexagons and rhombi
in a stable way. First we sketch the reduction of Bowen et al. (full details in
Appendices A.1–A.3 of the full version [1]), then we describe our constructions
of the required stable structures with outerplanar (Sect. 3.1) and embedded tree
gadgets (Sect. 3.2).

Bowen et al. [2] proved that recognizing unit disk contact graphs is NP-hard
for embedded trees, via a reduction from planar 3-SAT, which uses an auxiliary
construction formulated as a realization of a polygonal linkage. A polygonal
linkage is a set of polygons, which are realizable if they can be placed in the plane,
s.t., predefined sets of points on the boundary of these polygons are identified.
Bowen et al. define a set of hexagons in a hexagonal tiling (Fig. 2a) with small
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gaps between them, which form a hexagonal grid, in which a representation of
the incidence graph of the planar 3-SAT instance is fitted. Smaller hexagons are
fitted into cycles in this grid, s.t., they admit only two different realizations, see
Fig. 2b, and determine the state of neighboring small hexagons, see Fig. 2d. The
cycles represent variables in a true or false state. The states of the cycles are
transmitted via chains of smaller hexagons into the gaps. The vertex, where three
such chains meet, contains a small hexagon on a thin connection, which can only
be realized if at least one transmitted state is true, see Fig. 2c. The polygonal
linkage is realizable if and only if the planar 3-SAT instance is satisfiable. For a
detailed description, we refer to Appendix A of the full version [1] and Bowen et
al. [2]. The building blocks of this reduction are hexagons of variable sizes and
short segments. Bowen et al. [2] approximate the hexagons by creating graphs,
whose UDCs must be within a constant (asymmetric) Hausdorff distance2 of
a hexagon and the segments similarly by providing graphs, whose UDCs must
be within a constant (asymmetric) Hausdorff distance of long thin rhombi. We
extend their notion of λ-stable approximations to UDRs.

Definition 1. A graph G is a λ-stable approximation of a region P in the plane
if, in every UDR of G, there exists a congruence transformation f : R2 → R

2

such that the union U of all unit disks in the UDR has an asymmetric Hausdorff
distance dH(f(P ), U) ≤ λ.

3.1 Non-embedded Outerplanar Graphs

We prove that recognition of unit disk graphs is hard for non-embedded outer-
planar graphs by providing outerplanar graphs GH

k and GR
k , which are 7-stable

approximations of a hexagon of side length 2k−1 and a rhombus of width 2k+6,
respectively. Then, the NP-hardness follows immediately from the construction
of Bowen et al. [2] sketched above. To obtain the 7-stable approximations we
present two graphs, which enforce local bends in one direction of at least π and
4π
3 in any UDR.

A ladder Lk (see Figs. 3a and 3c) is a chain of pairwise connected vertices vi

and v′
i, for i = 1, . . . , k, also called the outer and inner vertices of Lk, respec-

tively. Additionally, so-called extension neighbors, which are connected to only
one outer vertex each, are added on one side of the ladder, s.t., the outer vertices
have alternating degrees of four and five. Since the ladder consists of a chain of
C4’s, these neighbors are forced to be placed all on the outside in an outerplanar
embedding. The minimal height of such a ladder is 2

√
3 + 2 − ε, which is the

height of the smallest bounding box of a tight packing of three rows of unit disks
minus an (arbitrarily) small constant ε > 0.

The permission of overlap between adjacent disks allows for a placement of
one extension neighbor almost on top of its adjacent outer vertex, which leads
to an ever so slight inwards bend and, more importantly, any outwards bend
is impossible. In order to enforce an inward bend of at least 4π

3 , we connect

2 Recall that the asymmetric Hausdorff distance from a set A to a set B in a metric
space with metric d is defined as dH(A, B) = supa∈A infb∈B d(a, b).
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Fig. 3. Components for creating λ-stable approximations GH
k and GR

k . Ladder L17 (a)
and its UDR (c), as well as a corner connector (b) and its UDR (d). The corner connector
connects two ladders (lighter colored parts) and its actual parts have a darker color in
(b). The bends in the UDRs are required but exaggerated. (Color figure online)

the last inner vertex u1
j of one ladder with the first inner vertex u2

1 of a sec-
ond ladder and the last and first outer vertex v1

j /v2
1 of the first and second

ladder, respectively, both with a vertex vc, which has three attached extension
neighbors, see Fig. 3b. This construction is called a corner connector. Since it
is impossible to place the disk of any extension neighbor of vc inside the 5-
cycle d(v1

j ), d(u1
j ), d(u2

1), d(v2
1), d(vc), without overlapping at least two disks in

the UDR, all extension neighbors are still forced to the outside and therefore
�v1

j vcv
2
1 > 4π

3 , see Fig. 3d.
Placing two ladders opposite each other and connecting them on one end

with three corner connectors as shown in Fig. 4, yields a 7-stable approximation
GR

k of a thin rhombus. The following lemma is analogue to Lemma 10 in [2].

Lemma 1 (�). For every positive integer k the outerplanar graph GR
k in Fig. 4

is a 7-stable approximation of a rhombus of width 2k + 6 and height 6
√

3 + 2.

Proof (Sketch). The graph GR
k is made up of components, which make any bend

to the outside impossible, see Fig. 4a. Since two ladders need to be overlap free,
the minimum height of the ladders guarantees that part of the boundary of the
union over all disks in the UDR of GR

k lies above and below the line c0l0, see
Fig. 4b. The largest vertical distance of the rhombus to this line is 3

√
3 + 1 ≈

6.196 < 7.

Lemma 2 (�). For every integer k = 6n+4, n ∈ N, the outerplanar graph GH
k

in Fig. 5a is a 7-stable approximation of a regular hexagon of side length 2k − 1.

Proof (Sketch). The 7-stable approximation GH
k of a hexagon of side length

2k − 1 uses again ladders and corner connectors to trace the outline of the
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Fig. 4. A 7-stable approximation GR
7 of a rhombus superimposed on its UDR. The

maximal distance of any point of the UDR to c0l0 is smaller or equal 7 (a) and at all
points of c0l0 a part of the UDR lies above and below c0l0 (b). Both UDRs require a
small inward bend to be valid and hatched disks indicate almost overlapping placement
of a red disk on a blue disk, with a small shift to the outer side. Both inward bends
and outward shifts are omitted. (Color figure online)

hexagon. Then the inside of this construction is filled with a set of ladders until
no additional ladders can be added, see Fig. 5a. Outwards bends are impossible
by construction of the ladders and corner connectors and inwards bends are
strongly limited since the interior of the hexagon is almost completely filled
with ladders. Since the amount of compression in a ladder is very limited, this
leaves only a constant amount of space on the inside of a UDR of GH

k .

Theorem 1. Recognizing unit disk graphs is NP-hard for outerplanar graphs.

Proof. This result follows from Lemmas 1 and 2 by using the polygonal linkage
reduction of Bowen et al. [2] (see also Appendix A of the full version [1]). Note
that we can emulate hinges exactly as in the original reduction.

3.2 Embedded Trees

By slightly adapting the construction of the outerplanar graphs of Sect. 3.1, we
can prove that recognizing unit disk graphs is NP-hard for embedded trees. The
crucial observation is that we used the outerplanarity of GR

k and GH
k exclusively

to be able to build a tree-like structure out of chains of 4- and 5-cycles. We used
this to force the placement of leaf disks to a specific side of these chains in any
UDR of GR

k and GH
k . As we are concerned with embedded trees in this section,

we can omit the inner vertices of the ladder, as the given embedding puts the
leaves on the desired side of the chains. This results in a tree. We call a ladder
without the inner vertices a chain.

We can now use a very similar construction idea as for GR
k and GH

k above.
We need to augment both gadgets with an additional chain in order to retain
the property, that no parts of these gadgets can be folded onto themselves. The
resulting trees TR

k and TH
k are shown in Figs. 5b and 6.
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Fig. 5. 7-stable hexagon approximations. Hatched disks indicate almost overlapping
placement of disks. Necessary infinitesimal bends are omitted. The bend directions
of the inner components are indicated with gray arrows. The approximated regular
hexagon is indicated by the dashed green outlines. (Color figure online)
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Theorem 2 (�). Recognizing unit disk graphs is NP-hard for embedded trees.

Fig. 6. A 7-stable approximation T R
k of a long thin rhombus superimposed on its UDR.

The maximal distance of any point of the UDR to c0l0 is smaller or equal 7 (a) and at
all points of c0l0 a part of the UDR lies above and below c0l0 (b). In both cases at any
point along c0l0 at least one point on the boundary of the union of all disks in a UDR
of T R

k lies on or above c0l0 and on or below c0l0.

4 Recognition Algorithm for Caterpillars

We propose a linear-time algorithm using similar ideas to Klemz et al. [13], that
recognizes if an input caterpillar graph G = (V,E) admits a UDR or not; it is
constructive and provides a representation if one exists. However, we need to
address several new issues as we show that a larger class of graphs admits a
UDR compared to a UDC. Clearly, if G contains a vertex of degree at least 6,
then due to the unit disk packing property, it does not admit a UDR. Hence,
every realizable caterpillar must have maximum degree Δ ≤ 5. Moreover, it is
easy to observe that all caterpillars with Δ ≤ 4 admit a UDC (and thus a UDR),
as also noted by Klemz et al. [13]. Not every caterpillar with Δ = 5, however, is
realizable as UDR. We show that two consecutive degree-5 vertices on BG cannot
be realized. The following lemma gives a sufficient condition for a “No” instance
to be used in the recognition algorithm.

Lemma 3 (�). If BG contains two adjacent degree 5 vertices u, v, then it does
not admit a unit disk intersection representation.

4.1 The Algorithm

As a preprocessing step we augment all backbone vertices of degree 3 or lower
with additional degree-1 neighbors, s.t., they have degree 4. Consider a chain
v1, . . . , vn of backbone vertices. Now assume all vertices are of degree 4 or lower.
We place them on a horizontal line. For each 1 ≤ i ≤ n at disk d(vi), we place its
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leaf neighbor disks d(vt
i), d(vb

i ) first at the top and then at the bottom of d(vi),
see Fig. 7a, s.t., the clockwise angle �vt

iviv
b
i = 4π

3 − 2iε. The rotational ε offset
avoids adjacencies between the leaf disks. While these offsets can add up, we can
choose ε small enough for every finite caterpillar, s.t., this is negligible.

Now we assume that not all vertices are of degree 4 or lower. To keep the entire
construction of the backbone x-monotone, whenever we encounter a degree 5
vertex u after a degree four vertex vk, we place d(ut′

) of its additional leaf ut′

alternatingly on the top or the bottom side with a π
3 + ε rotational offset to

d(ut) (or d(ub)). We will assume that we placed the disk at the top. Therefore
�ut′

uub ≤ π − (2k + 1)ε, i.e., an almost horizontal connection, see Fig. 7b.
If the next vertex x has also degree five, then due to Lemma 3 we know that

the sequence is not realizable. Otherwise, we place d(x), s.t., it is touching d(u)
with a π

3 + ε rotational offset to d(x), see Fig. 7b. We place d(xb) at the planned
position relative to d(x) at the bottom, i.e., with a π

3 +(k+2)ε counterclockwise
offset relative to the x-axis, however, we place d(xt) almost exactly on top of
d(x) with a very small shift of ε

Cn orthogonal to ux, for some large constant C.
This prevents touching of d(u) and d(xt), without creating an adjacency between
d(ut′

) and d(xt).

Fig. 7. Chains of degree-4 vertices are placed in a dense packing formation with small
offsets (a). A degree-5 vertex places an additional leaf on one side (b). The next vertex
vk+3 can again be placed with the desired angle of just over 2π

3
between two neighbors

(c). Placement of vk+3 is possible if its degree is 5 (d). Note that, the rotational offset
angles are exaggerated, for better readability.

From this point onwards, we consider the direction of ux to be the direction
in which we extend the backbone of the caterpillar. Any following disk d(vk+3)
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can be placed again in the new extension direction touching d(x). Its leaf disks
d(vt

k+3) and d(vb
k+3) can be placed in their planned positions, i.e. with a clockwise

or counterclockwise offset of π
3 +(k+3)ε relative to the new extension direction,

respectively, which results in a clockwise angle �utuub ≤ 4π
3 − (2k + 6)ε. Note

that vk+3 can have a degree of four (Fig. 7c) or five (Fig. 7d) and that at this
point, if vk+3 has degree five, we can immediately repeat this procedure.

As a postprocessing step, we remove all degree-1 vertices that were added in
the preprocessing step. Then from the above description of the algorithm and
the correctness analysis in Appendix B.2 of the full version [1] we obtain the
following theorem.

Theorem 3. Let G = (V,E) be a caterpillar graph. G admits a UDR if and only
if G does not contain any two adjacent degree-5 vertices in the backbone path BG

of G. This property can be tested in linear time and if a UDR exists then it can
be constructed in linear time.

5 Weak UDCs of Lobsters on the Triangular Grid

We have shown that recognition of UDRs is NP-hard for outerplanar graphs
and linear-time solvable for caterpillars, which mirrors the results for UDCs and
weak UDCs; it leaves the recognition complexity for (non-embedded) trees as an
open question for both UDRs and UDCs. For weak UDCs, however, recognition
has been proven NP-hard for trees [8]. In order to investigate the complexity of
weak UDCs further, we zoom in on the gap between trees and caterpillars and
investigate the graph class of lobsters.

The spine of a weak UDC of a lobster G is the polyline defined by connecting
the centers of all disks belonging to the vertices of BG in order. A weak UDC
is straight, if its spine is a straight line segment. Similarly, a weak UDC is x- or
y-monotone, if its spine is x- or y-monotone. Since we consider weak UDCs with
contacts between non-adjacent disks permitted, we focus our attention on weak
UDCs placed on a triangular grid (similarly to previous work on weak UDCs [8]).

5.1 Straight Backbone Lobsters

Since any caterpillar G, admits a weak UDC if and only if it admits a straight
weak UDC [8] we investigate lobster graphs, which admit a straight weak UDC.
These are not all lobsters, since any simple lobster graph containing a non-
backbone vertex of degree 6 only admits a non-straight weak UDC. We observe
that already for this restricted subclass, a greedy placement scheme similar to
Cleve’s approach [8] for caterpillars is not possible; again shown by an example.

We specify two lobster graphs G and G′, see Fig. 8. It can be checked via
exhaustive enumeration that G admits 18 different weak UDCs, while G′ admits
only 12. The subgraphs induced by their first three backbone vertices are iden-
tical, however the realization of the descendants of v3 (highlighted in red) is
unique for both graphs (up to symmetry) and dependent on the structure of the
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Fig. 8. The subgraphs of G and G′ induced by their first three backbone vertices
are equal, however, depending on the following vertices a different realization of the
neighbors of v3 is necessary.

graphs beyond this point. We can therefore not simply scan over the backbone in
a greedy manner and fix all positions for the disks of descendants of a backbone
vertex and then continue on to the next. It is, however, still possible to do this in
linear time with dynamic programming. The requirements for this are actually
less strict, as it is already sufficient to have a strictly x-monotone rather than a
straight backbone, which we show in the next section.

5.2 Monotone Weak UDCs

If we can guarantee that a lobster can be realized as a strictly x-monotone weak
UDC, we can compute such a weak UDC with a linear-time dynamic programming
algorithm. The dynamic program uses the following three observations.

Observation 1 (�). The number of possible placements of a backbone vertex vi

and its descendants is constant for a fixed position of vi.

Observation 2 (�). For a fixed grid position, the number of backbone vertices
of a strictly x–monotone weak UDC, who can occupy this position by themselves
or with a descendant is constant. Moreover, the distance in graph between the
first and the last such vertex is constant.

Observation 3 (�). Let C be a sufficiently large constant, and let A,B be two
weak UDC, whose last C backbone vertices have placed themselves and their
descendants in such a manner, that the pattern of occupied grid positions and
the placement of the last backbone vertex is equivalent up to translation and rota-
tion. Then any extension graph C, which can be appended to A, s.t., the combined
graph admits a weak UDC can also be appended to B, s.t., their combined graph
admits a weak UDC and vice versa.

With these three claims we obtain the following Lemma.

Lemma 4 (�). Using dynamic programming it can be checked in linear time if
a lobster graph admits an x-monotone weak UDC on the triangular grid.
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5.3 General Lobsters

The algorithm sketched in the previous section recognizes lobster graphs, which
admit a strictly x-monotone weak UDC in linear time. Now we set out to prove
that every lobster which admits a weak UDC also admits a strictly x-monotone
weak UDC. We prove this by induction. The induction step is done as a computer-
assisted proof. See Appendix D in the full version [1].

Lemma 5. Every lobster graph, which admits a weak UDC on the triangular
grid, also admits an x-monotone weak UDC on the triangular grid.

Proof. We use induction on the length of the backbone. The base cases are
backbones of length one, two or three. The spine of any realization is at most a
polyline consisting of two segments and can therefore always be rotated to be x-
monotone. The induction hypothesis is, that any lobster graph, with a backbone
of length k admits an x-monotone weak UDC. In the induction step we need to
show that any extension to a graph G′ with a backbone of length k + 1, can be
realized as a weak UDC if and only if it can be realized in an x-monotone way.
The extensions are done by appending a single new backbone vertex vk+1, whose
descendants are specified as a sorted list of the degrees of its direct neighbors.
Since the total degree of every vertex is at most 6, the set Γ of options for
vk+1 is constant (Observation 1). Let Θ be the set of possible combinations
of already occupied grid positions where vk+1 is placed such that the spine
remains x-monotone. Let Δ6 and Δ3 be the sets of possible placements of disks
of descendants of vk+1, when vk+1 is placed at one of six (in the unrestricted
case) or one of three (in the strictly x-monotone case) positions. Therefore we
can enumerate all triples (γ ∈ Γ, δ3 ∈ Δ3, θ ∈ Θ) and (γ ∈ Γ, δ6 ∈ Δ6, θ ∈ Θ)
and check if they are realizable. By exhaustive enumeration,3 we have found that
for every possible (γ, δ6, θ), which is realizable, we can find a suitable (γ, δ3, θ),
which is realizable, too. This concludes the induction step.

From Lemmas 4 and 5, we conclude the following theorem.

Theorem 4. It can be decided linear time if a lobster graph admits a weak UDC
on the triangular grid.

6 Conclusions

We have investigated the existing complexity gap for the recognition problem of
UDRs and weak UDCs. In addition to the open problems for various graph classes
in different settings (recall Table 1 in Sect. 1) there are two main open questions.
First, we have investigated weak UDCs of lobsters on the triangular grid, however,
it is not entirely clear if every lobster, which admits a weak UDC, also does so on
the grid. Second, it seems reasonable to assume that our enumeration approach can

3 The cases were reduced, by considering symmetry and infeasibility beforehand. Enu-
meration was done in the form of a computer-assisted proof. Details are explained
in Appendix D of the full version [1].
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be extended to graph classes beyond lobsters, which admit a weak UDC at least on
the triangular grid. In fact, we conjecture that every class of trees, in which each
vertex has bounded distance to a central backbone in extension of caterpillars and
lobsters, can be recognized in polynomial time by such an approach.

Acknowledgements. We thank Jonas Cleve and Man-Kwun Chiu for fruitful discus-
sions about the project during their research visits in Vienna.
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Abstract. We investigate two optimization problems on area-propor-
tional rectangle contact representations for layered, embedded planar
graphs. The vertices are represented as interior-disjoint unit-height rect-
angles of prescribed widths, grouped in one row per layer, and each edge
is ideally realized as a rectangle contact of positive length. Such rectangle
contact representations find applications in semantic word or tag cloud
visualizations, where a collection of words is displayed such that pairs
of semantically related words are close to each other. In this paper, we
want to maximize the number of realized rectangle contacts or minimize
the overall area of the rectangle contact representation, while avoiding
any false adjacencies. We present a network flow model for area mini-
mization, a linear-time algorithm for contact maximization of two-layer
graphs, and an ILP model for maximizing contacts of k-layer graphs.

Keywords: Contact graphs · Layered planar graphs · Semantic word
clouds

1 Introduction

Contact representations of planar graphs are a well-studied topic in graph theory,
graph drawing, and computational geometry [7,8,10]. Vertices are represented
by geometric objects, e.g., disks or polygons, and two objects touch if and only
if they are connected by an edge. They find many applications, for instance in
VLSI design [19], cartograms [13], or semantic word clouds [1,18].

Word or tag clouds are popular visualizations that summarize textual infor-
mation in an aesthetically pleasing way. They show the main themes of a text by
displaying the most important keywords obtained from text analysis and scale
the word size to their frequency in the text. Word clouds became widespread
after the first automated generation tool “Wordle” was published in 2009 [15].

Word clouds with their different font sizes and words packed without seman-
tic context, such as the one shown in Fig. 1, have also received some criticism
as their audience sometimes fails at understanding the underlying data (while
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Fig. 1. Word cloud generated from the apnews.com frontpage by worditout.com on the
day of the certification of Joe Biden’s victory in the 2020 US elections.

enjoying their playful nature) [9]. For example, neighboring words that are not
semantically related can be misleading (see marked words in Fig. 1). As a way
to improve readability, semantic word clouds have been introduced [1,6,18]. In
semantic word clouds, an underlying edge-weighted graph indicates the seman-
tic relatedness of two words, whose positions are chosen such that semantically
related words are next to each other while unrelated words are kept far apart.

Classic word clouds are often generated using forced-based approaches, along-
side with a spiral placement heuristic [15–17] that allows for a very compact final
layout. This method is powerful even when the rough position of a word is dic-
tated by an underlying map [4,12]. Semantic word clouds on the other hand
have been approached with many different techniques, e.g., force directed [6],
seam-carving [18], and multidimensional scaling [2]. The problem has also been
studied from a theoretical point of view, where an edge of the semantic word
graph is realized if the bounding boxes of two related words properly touch; the
realized edge weight is gained as profit. Then the semantic word cloud prob-
lem can be phrased as the optimization problem to maximize the total profit.
Barth et al. [1] and later Bekos et al. [3] gave several hardness and approxi-
mation results for this problem (and some variations) on certain graph classes.
The underlying geometric problem also has links to more general contact graph
representation problems, like rectangular layouts [5] or cartograms [11].

In most of the literature about layered graphs, vertices are assigned to rows
without a predefined left-to-right order, yet this has interesting properties in the
context of word clouds. For instance, layered rectangle contact representations
are compact, assuming a good assignment they have an even distribution of
words and our eye naturally understands words grouped in rows or tables. In
this paper we study row-based contact graphs of unit-height but arbitrary-width
rectangles, which may represent the bounding boxes of words with fixed font size.
Problem Description. As input we take a layered graph G = (V,E) on L lay-
ers, with an arbitrary number of vertices per layer. Each vertex vi,j ∈ V is
indexed by its layer i ∈ [0, L − 1] and its position j within the layer: vi,j is the
jth vertex on the ith layer. The edge set E consists of edges connecting each
vertex vi,j to its neighbors vi,j−1 and vi,j+1 on the same row (if they exist),

https://apnews.com
https://worditout.com
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v1,0 v1,4
v1,5

v2,0
v2,1 v2,3 v2,4

v0,0 v0,1 v0,3

R0,0 R0,3

R1,0 R1,1 R1,4 R1,5

R2,3R2,2R2,1R2,0

Fig. 2. Partial drawing of a graph G, along with a representation R of the visible
vertices of G. Fat red edges are not realized, due to the gray gap in R. (Color figure
online)

and connections between adjacent rows form an internally triangulated graph.
We associate each vertex with an axis-aligned unit-height rectangle Ri,j with
width wi,j , and y-coordinate i. We want to compute its x-position xi,j given
by the x-coordinate of its bottom left corner such that the rectangles do not
overlap except on their boundaries (see Fig. 2). Leaving whitespace between two
rectangles on the same layer is allowed and forms a gap. Such a layout R is
called a representation of G. An edge (u, v) ∈ E is realized in a representation
R if rectangles Ru and Rv, representing vertices u and v, intersect along their
boundaries for a positive length ε > 0, which we denote by (Ru, Rv) ∈ R. If Ru

and Rv are horizontally adjacent we call the contact a horizontal contact.
Otherwise, the intersection is located along a horizontal boundary if Ru and

Rv are on adjacent layers; these are called vertical contacts. Contacts between
rectangles whose vertices are not adjacent in G are false adjacencies. Such adja-
cencies can mislead a user to infer a link between unrelated words, invalidating
the representation. Within this model we study two problem variations, area
minimization and contact maximization.

For the area minimization problem the goal is to produce a representation R
that minimizes the total width of the gaps in R. The contact maximization
problem asks to maximize the number of adjacencies realized in R, as specified
by edge set E. For both optimization criteria, false adjacencies are forbidden:
otherwise a trivial gap-less representation would always be a solution to the area
minimization problem and in the case of contact maximization, false adjacencies
may reduce the number of lost contacts with respect to a valid optimal solution
as Fig. 3 shows. We say a representation is valid if it has no false adjacencies.

Fig. 3. Allowing false adjacencies (fat/red) could reduce lost contacts (dashed/blue).
(Color figure online)
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2 Area Minimization

To solve the area minimization problem, we construct a flow network N = (G′ =
(V ′, E′); l; c; b; cost) for a given vertex-weighted layered graph G = (V,E), with
edge capacity lower bound l : E′ → R

+
0 , edge capacity c : E′ → R

+
0 , vertex

production/consumption b : V ′ → R and cost function cost : E′ → R
+
0 . Each

unit of cost will represent a unit length gap and each unit of flow on an edge
will represent a unit length contact. To build the network we create two vertices
va and vb for each rectangle, that respectively receive the flow from the lower
layer and output flow to the upper layer, and one for each potential gap, located
between each sequential pair of rectangles in the same layer. Every edge e that
ends on a gap vertex has cost(e) = 1. We also add an edge e between va and vb

for each Ri,j with l(e) = c(e) = wi,j and no cost to ensure that rectangle nodes
receive exactly as much flow as they are wide.

The intuition behind the network is that it represents a stack of layers con-
sisting of rectangles and gaps, with a maximum width of wmax · K, K being
the maximum number of rectangles per layer, and wmax the width of the widest
rectangle. To facilitate this flow on all layers, there are buffer vertices on both
sides of each layer. Each rectangle is as wide as the amount of flow its vertices
va and vb receive, and has contacts with its upper and lower neighbors as wide
as the flow on the edges representing these contacts. Every vertex has edges to
the layer above as far as its rectangle is allowed to have contacts: a rectangle
Ri,j that has only one upper neighbor, will have an edge to that neighbor, and
to the gaps on that neighbor’s right and left side. Any further edge would be to
another rectangle with which Ri,j should not share a contact, and such edges
would hence result in false adjacencies. We picture the stack bottom-up, mean-
ing that the flow comes in at the bottom layer and exits from the top layer. A
gap block gi,j will reach as far left and right as its left and right neighbors in the
same row: if rectangle Ri,j lies directly left of gi,j , then the furthest left upward
neighbor of Ri,j is the furthest left upward neighbor of gi,j . If gi,j could reach
even further, then it would essentially push Ri,j into a false adjacency. The exact
construction is detailed in the full paper [14] and sketched in Fig. 4.

Theorem 1. Given a graph G = (V,E), the cost of a minimum-cost flow f in
N equals the minimum total gap length of any valid representation of G. An
area-minimal representation of G is constructed from f in polynomial time.

Proof. Given any graph G = (V,E), the associated network N has production
equal to its consumption

∑
v∈V ′ b(v) = b(s) + b(t) = 0. The source produces

b(s) = wmax · K flow, which is available to every vertex on layer 1 (except vb

vertices whose incoming neighbor is va on the same layer). Any vertex va
1,j must

receive w1,j units of flow, as its only edge towards vb
1,j has capacity constraint

c = l = w1,j . Because w1,j ≤ wmax and since there are at most K vertices va
1,j

on layer 1, the capacities can be satisfied. Any edge in E′ goes from layer i to
i + 1, except for (va

i,j , v
b
i,j), but the exact amount of flow that comes from layer
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Fig. 4. Parts of a flow network: outgoing edges from the source (orange, bottom), a
rectangle (green) and a gap (white); buffer rectangles (red, left); gray edges cost 1.
(Color figure online)

i − 1 into va
i,j will go through vb

i,j to layer i + 1. Hence for the same reason as
in layer 1, there is enough flow to satisfy the edge capacity constraints, while
excess flow is routed through (0-cost) buffers or (1-cost) gaps.

Since in this network only flow that goes into a gap vertex has a (non-zero)
cost, flow into gap vertices, and therefore also the total gap width, is minimized.
The minimum cost procedure finds this optimal flow f .

We construct a minimum-area representation R by placing rectangles row by
row: we leave buffers and gaps equal to the flow routed through the corresponding
vertices, and align all rows on the left. The total width of each row, including
buffers and gaps, is wmax · K. Since the flow through each rectangle is constant,
the area of the buffers is maximized, to minimize the area occupied by gaps. ��

While this method minimizes the area occupied by the drawing it will not
always lead to the representation with the minimum bounding box. To minimize
the size of the bounding box, we propose to limit the amount of flow outgoing
from the source node and incoming into the sink node. If the chosen bound is
too small then the flow network will not be realizable. We can thus perform a
binary search between the width of the longest layer Wmax as a lower bound and
wmax · K as an upper bound. Assuming input widths have integer values, this
method would add a O(log(wmax · K − Wmax)) factor to the flow runtime.

3 Maximization of Realized Contacts

In this section we propose algorithms that maximize the number of realized
contacts. We start with a linear-time algorithm for L = 2, followed by an integer
linear programming model for L > 2. The complexity for L > 2 remains open.
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3.1 Linear-Time Algorithm for L = 2

In this section we describe an algorithm A for the case where the input has
2 layers. On a 2-layer graph, a vertex either has one neighbor in the adjacent
layer, or more than one. If a vertex has one neighbor we call it a T-vertex and
if there are more neighbors, it is called a fan. A block is a maximal sequence of
consecutive rectangles in a layer i, for which each horizontal contact is realized.
A block from the jth until the lth vertex of row i is the sequence (Ri,j , . . . , Ri,l),
where for each k ∈ [j, l − 1] holds that (Ri,k, Ri,k+1) ∈ R.

In a given 2-layer graph, there will always be a layer that starts on a fan,
while the opposite layer starts on a T-vertex. Assume without loss of generality
that R0,0 is a fan, otherwise swap the two rows for the duration of the algorithm.
Algorithm A first places R0,0, followed by all its neighbors on the adjacent layer,
from left to right, ending with R1,j . Rectangle R1,j is again a fan, and the process
of placing all opposite-row neighbors, left to right, is repeated for R1,j and every
consecutive fan, as they are encountered. We call this placement ordering ≺.

When we add a rectangle Ri (fan or T-vertex), we always first attempt to add
it next to its horizontal predecessor, if possible (no false adjacency). Though, if
the horizontal predecessor is too far left, we place Ri in the leftmost allowed
position. Let R0 be the first rectangle in ≺, which is placed on position x0 by A.
Algorithm A then proceeds by adding R1, representing a T-vertex in the opposite
row. Rectangle R1, with width w1, is placed leftmost, on coordinate x0 + ε−w1.
We then proceed to add all rectangles corresponding to other T-vertices of R0

one by one, such that all horizontal contacts are realized. Once a T-vertex Ri

cannot reach R0, we store the amount of contacts currently realized by R0 as
well as its position x0, and slide R0 rightward, to the leftmost position x′

0 that
allows a contact of ε with Ri. Note that, since we placed R1 in the leftmost
position that allowed a contact of width ε with R0, we lose at least one contact
by moving R0 rightward. If placing R0 at x′

0 ties the amount of contacts of x0,
then we set x0 := x′

0. If x′
0 is strictly worse, then the representation is reset to

having R0 at x0. From that point on, every time we add a new rectangle, we
attempt this shift of the fan and update the position when we find a tie or when
we realize more contacts. We repeat this operation for each rectangle, following
the order ≺, always shifting the last encountered fan.

However, once we consider a fan Rf that is not R0, any sliding operation will
be attempted on the block containing Rf , rather than just Rf . As before, we
always shift the block to the leftmost position that realizes the contact between
Rf and the newly placed rectangle. We remember position xf that realizes most
contacts, and favor the newest position on a tie. In case moving the block con-
taining Rf leads to strictly less contacts, we also try to move only Rf instead.
This starts a new block containing just Rf . Below we sketch the proof for The-
orem 2, the complete proof can be found in the full paper version [14].

Theorem 2. Algorithm A computes a contact maximal valid representation
with contacts of length at least ε for a given 2-layer graph G in linear time.
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Fig. 5. Two configurations where Rl is necessarily a fan (blue) or a T-vertex (yellow).
(a) If Rn can achieve only a vertical contact, Rf is a fan. (b) If Rn can achieve only
a horizontal contact and is a fan, Rf is a T-vertex. (Color figure online)

Proof (Sketch). We show that during algorithm A, the invariant holds that a
representation of the first n rectangles in ≺ maximizes the number of contacts.

We assume that the invariant holds after A placed n−1 rectangles, such that
the current representation R∗ is a contact maximal representation of the first
n − 1 rectangles in ≺, and realizes k contacts. Algorithm A now adds the next
rectangle Rn. We show that the new representation is contact maximal.

We first prove that the maximum number of contacts that the new represen-
tation can realize is k + 2, since Rn can achieve at most one vertical and one
horizontal contact. If these contacts happen naturally, when placing Rn leftmost,
then the invariant trivially holds. We therefore prove via a case distinction that
in all other cases k +1 adjacencies are optimal. We distinguish between the con-
tact that is achieved by Rn, either vertical or horizontal. A sole vertical contact
with fan (necessarily, forced by the placement ordering) Rf is achieved only if
the horizontal predecessor Rl of Rn is a fan, as shown in Fig. 5a. If Rn is a
T-vertex, a single horizontal contact can arise only if Rf is not moved to Rn,
as can be seen in Fig. 6. However, when Rn is a fan, this requires Rl to be a
T-vertex, see Fig. 5b. The invariant will therefore still be true after A added all
rectangles, producing a contact maximal representation.

Algorithm A considers each rectangle either once, or its degree many times,
when a fan is shifted. As the input graph G is planar, A runs in linear time. ��

3.2 ILP

To solve the contact maximization problem on L > 2 layers we propose an
ILP formulation, which intuitively works as follows. We create a binary contact
variable c(e) for each edge e in the input graph. If a contact is not realized, we
set c(e) = 1 to satisfy the position constraints, otherwise we can set c(e) = 0.
To handle false adjacencies we add for each rectangle a constraint on the first
false contact that happens from the right and left on the row above, if they
exist. We use hard constraints on the rectangle coordinates to prevent the false
adjacencies. The objective is to minimize the sum over all contact variables,
under all these constraints, to maximize the number of realized contacts in a
solution. Additional details can be found in the full paper [14].
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Fig. 6. Three configurations where T-vertex Rn does not realize vertical contacts with
Rf initially. We move Rf and either (a) reset if the number of contacts is strictly
worse, or save when we find (b) a tie, or (c) an increase in contacts.

minimize
∑

(v,v′)∈E

c(v, v′) (1)

The following inequalities ensure that there is no overlap between rectangles
on the same layer (2), and check whether the horizontal contact is realized (3).

xi,j + wi,j ≤ xi,j+1 ∀(vi,j , vi,j+1) ∈ E (2)

xi,j+1 ≤ xi,j + wi,j + c(vi,j , vi,j+1)M ∀(vi,j , vi,j+1) ∈ E (3)

The next inequalities verify that the contacts between rectangle Ri,j and all
of its neighbors on layer i + 1 are realized.

xi+1,j′ ≤ xi,j + wi,j − ε + c(vi,j , vi+1,j′)M ∀e(vi,j , vi+1,j′) ∈ E (4)
xi,j ≤ xi+1,j′ + wi+1,j′ − ε + c(vi,j , vi+1,j′)M ∀e(vi,j , vi+1,j′) ∈ E (5)

Finally, we model false adjacencies using pairs (vi,j , vi+1,j′) stored in sets FL

(resp. FR) that indicate the index of the first block in row i+1 that is left (resp.
right) of a neighbor of Ri,j , but is not itself a neighbor of Ri,j .

xi+1,j′ + wi+1,j′ ≤ xi,j ∀(vi,j , vi+1,j′) ∈ FL (6)
xi,j + wi,j ≤ xi+1,j′ ∀(vi,j , vi+1,j′) ∈ FR (7)
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Abstract. An arrangement of circles in which circles intersect only in
angles of π/2 is called an arrangement of orthogonal circles. We show
that in the case that no two circles are nested, the intersection graph of
such an arrangement is planar. The same result holds for arrangement
of circles that intersect in an angle of at most π/2.

For the general case we prove that the maximal number of edges
in an intersection graph of an arrangement of orthogonal circles lies in
between 4n − O (

√
n) and

(
4 + 5

11

)
n, for n being the number of circles.

Based on the lower bound we can also improve the bound for the number
of triangles in arrangements of orthogonal circles to (3+5/9)n−O (

√
n).

Keywords: Circle arrangements · Orthogonal intersection ·
Intersection graphs · Planar graphs

1 Introduction

A collection of n circles in the plane, is called an arrangement of orthogonal
circles if any two intersecting circles intersect orthogonally. Here, we call an
intersection orthogonal, if the tangents at the intersection point form an angle
of π/2. By definition circles cannot touch in an arrangement of orthogonal circles.

A natural object that arises from an arrangement of orthogonal circles is its
intersection graph. A graph G is a (geometric) intersection graph if its vertices
can be realized by a set of geometric objects, such that two objects intersect if and
only if their corresponding vertices form an edge in G. Thus, for an arrangement
of orthogonal circles A we define its intersection graph G(A) as the graph, whose
vertices correspond to the circles in A and two vertices are adjacent, if and only
if the associated circles intersect in A. The graph G(A) is called an orthogonal
circle intersection graph.

Arrangements of orthogonal circles and their intersection graphs were
recently introduced by Chaplick et al. [5]. Here it was shown that the inter-
section graph of n circles contains at most 7n edges. Furthermore, it is NP-hard
to test whether a graph is an orthogonal unit circle intersection graph. Chaplick
et al. also provide bounds for the maximal number of digonal, triangular and
quadrilateral cells in arrangements of orthogonal circles.
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Related Work. General (non-orthogonal) arrangements of circles or disks have
been studied extensively before. Giving a complete overview over the results
in this field is out of scope for this article. We will hence only mention a few
selected results. For the special case where all circles have the same radius the
intersection graphs are known as unit disk graphs. For general arrangements of
circles or balls the recognition problems for the corresponding intersection graphs
are usually hard (for example for unit disk graphs [3]). We refer the reader to the
survey of Hlinený and Kratochv́ıl [11] for more information. Other work focused
on bounding the number of small faces in arrangements of circles [1] or about
the circleability of topologically described arrangements [10,13].

Note that we can have general circle arrangements in which all circles pairwise
intersect. Thus, the density of the intersection graph can be Θ(n2), although
many graphs are not intersection graphs of circle arrangements [16] (for example
every graph containing K3,3 as a subgraph [11]). Hence, asking for the maximum
density for intersection graphs in this setting is not an interesting question.

If the circles are allowed to only intersect pairwise in one point, then the
intersection graph is called a contact graph and the corresponding arrangement
is a circle packing. Due to the famous Andreev–Koebe–Thurston circle packing
theorem [2,15] the disk contact graphs coincide with the planar graphs. One
direction of the circle packing theorem is obvious, a planar straight-line drawing
of the contact graph can be derived by placing the vertices at the disk centers. A
related result is due to Alon et al. [1]. A lune is a digonal cell in an arrangement
of circles. If we restrict the intersection graph of the (general) circle arrangement
to intersections that are formed by lunes (we call this the lune-graph) then also in
this setting we can obtain a planar straight-line drawing by placing the vertices
at the circle centers.

Every arrangement of orthogonal circles with the same radius can be turned
into a unit circle packing by shrinking the circle size by a factor of

√
2/2, but there

are unit disk contact graphs that are not intersection graphs of an arrangement
of orthogonal circles [5].

A well established quality criteria for drawing graphs is to avoid crossings.
However, crossings with large angles are considered less problematic [12]. For
this reason graphs that can be drawn with right-angle crossings (known as RAC-
drawings) are considered an interesting class from a graph drawing perspective.
It was shown that graphs that have straight-line RAC-drawings have at most
4n − 10 edges [7], for n being the number of vertices. Recently this approach
was carried over to drawings with circular arcs that can intersect in right angles
only. Chaplick et al. showed that graphs that have circular arc RAC-drawings
can have at most 14n − 12 edges and there are such graphs with 4.5n − O(

√
n)

edges [6].
Orthogonal circle arrangements can also be seen as circular arc drawings (of

4-regular graphs) with perfect angular resolution. Such drawings are known as
Lombardi drawings and have been studied deeply [8,9,14].

Results. We prove bounds for the maximal number of edges in an intersection
graph of an arrangement of n orthogonal circles. We show an upper bound of
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(
4 + 5

11

)
n and present a lower bound of 4n − O (

√
n). As a crucial intermediate

result we show that in the case of arrangements without nested circles, the
intersection graph is planar. In particular, (in a similar vein to disk contact
graphs and lune graphs) we obtain a planar straight-line drawing by placing the
vertices at the centers of the corresponding circles. As an immediate consequence
we get that for arrangements of nonnested orthogonal circles the intersection
graph has at most 3n−6 edges. We can refine the analysis to improve this bound
to 3n − 8. This bound is tight, since we can show a matching lower bound. Our
lower bound constructions can be slightly modified to also improve the bounds
for the maximal number of triangular cells in arrangements of orthogonal circles
to (3 + 5/9)n − O (

√
n).

Organization. We first prove in Sect. 2 that the orthogonal circle intersection
graphs are planar in the nonnested case. In Sect. 3 we extend our ideas to general
circle arrangements and prove the upper bound. In Sect. 4 we discuss lower bound
constructions.

2 Bounds for Nonnested Arrangements

For an arrangement of orthogonal circles we call the straight-line drawing of its
intersection graph that is obtained by placing the vertices on the corresponding
circle centers the embedded intersection graph. Figure 1 depicts such an arrange-
ment and its embedded intersection graph. In this section we prove that the
embedded intersection graph is noncrossing.

Fig. 1. A nonnested circle arrangement and its embedded intersection graph.

We start with properties of arrangements of two or three nonnested orthogo-
nal circles. The first observation is a simple application of Pythagoras’ theorem.
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Observation 1. Let A and B be two circles with centers CA and CB and radii
rA and rB, respectively. Then A and B are orthogonal if and only if |CACB |2 =
r2A + r2B.

Lemma 1. In an arrangement of nonnested orthogonal circles, the center of a
circle A is not contained inside a circle other than A.

Proof. Let A and B be two nonnested circles with centers CA and CB and radii
rA and rB , respectively. Assume that CA lies inside B. Obviously, A and B
intersect, since otherwise the circles are nested. Since A and B intersect orthog-
onally it holds that |CACB |2 = r2A + r2B . Further, since CA is in B, we have
|CACB | < rB and thus |CACB |2 < r2B . We get that r2A + r2B < r2B , which is a
contradiction for rA, rB ∈ R.

Lemma 2. In an arrangement of nonnested orthogonal circles, for every pair
of circles A and B and every point p on A it holds that B intersects the line
segment CAp in at most one point.

Proof. Let A and B be two circles with centers CA and CB and radii rA and
rB , respectively. Assume that there exist a point p on A such that B intersects
CAp twice. We call these intersection points q and s with |CAq| < |CAs| < rA
and denote the midpoint between q and s with t. By Lemma 1 CB lies outside
of A. So, for the circle B to have a point inside of A, B has to intersect A in
some point u (see Fig. 2). Since the circles intersect orthogonally, CAuCB is a
right triangle. Further, since qs is a chord of the circle B, the triangle sqCB is
isosceles and its height is CBt. Thus, we have a right angle at t between CAp
and CBt and CAtCB is a right triangle.

Fig. 2. Illustration of the construction in the proof of Lemma 2.

Since the right triangles CAtCB and CAuCB share the same hypotenuse
CACB we get by Thales’ theorem that t and u have to be on the circle with
diameter CACB . We know that |CBu| = rB and |CBt| < |CBq| = rB . Hence, t
lies closer to CB than u. It follows that u is closer to CA than t, thus CAt >
CAu = rA. This implies that t is outside of A, which is a contradiction.
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Lemma 3. In an arrangement of nonnested orthogonal circles, for every inter-
secting pair of circles A and B there is no third circle that intersects the line
segment between the centers of A and B.

Proof. Let A, B and D be three circles with centers CA, CB and CD and radii
rA, rB and rD, respectively. The circles A and B intersect. Assume for a con-
tradiction that the circle D intersects the line between CA and CB .

If the circle D intersects the line segment between CA and CB just once,
either CA or CB would be inside D, a contradiction to Lemma 1. Thus, D has
to intersect the line segment CACB twice. We denote these intersection points
by q and s with |CAq| < |CAs| < |CACB | and midpoint between q and s by t.
Due to Lemma 2 q and s cannot lie in the same circle, so one lies in A and the
other in B. Thus, D intersects both A and B. By Lemma 1 the center CD of D
has to be outside of the circles A and B. Thus, for the circle D to have a point
in the inside of the circles A and B, the circle D has to intersect the circles A (in
some point uA) and B (in some point uB). The situation is depicted in Fig. 3.

Fig. 3. Illustration of the construction in the proof of Lemma 3.

Since all circles intersect orthogonally we have right angles at uA between
CAuA and CDuA and at uB between CBuB and CDuB . Also, since sq is a chord
of the circle D, the triangle sqCD is isosceles and its height is CDt. Thus, we
have a right angle at t between CACB and CDt. This gives us five right triangles
CACDuA and CBCDuB (red, dashed), qCDt , CBCDt and CACDt. We obtain

|CACD|2 = r2A + r2D, |CBCD|2 = r2B + r2D, |CBCD|2 = |CBt|2 + |CDt|2

|CACD|2 = |CAt|2 + |CDt|2, r2D =
( |qs|

2

)2

+ |CDt|2.

Combining these equations we get

|CAt|2 = |CAt|2 + |CDt|2 − |CDt|2 = |CACD|2 − |CDt|2 = r2A + r2D − |CDt|2

= r2A +
( |qs|

2

)2

.



334 S. Carmesin and A. Schulz

It follows that |CAt| > rA. By a symmetric argument we see also that |CBt| >
rB . We get |CAt| + |CBt| > rA + rB , which is a contradiction.

We can now combine our observations to prove the following result.

Theorem 1. The embedded intersection graph of an arrangement of nonnested
orthogonal circles is noncrossing.

Proof. Suppose for contradiction four circles A,B,D,E with centers CA, CB , CD

and CE that are arranged in such way that their embedded intersection graph
has two edges CACB and CDCE that cross in the point h. This means we have
two pairs of intersecting circles A,B and D,E. Note that CACB is contained
in the union of A and B. Hence, h has to lie in at least one of the circles A
or B. By the same reasoning h also has to lie in at least one of the circles D
or E. Without loss of generality we can assume that h lies in D. By Lemma 1
the circle D cannot enclose CACB completely, thus it has to intersect the line
segment CACB . This, however, contradicts Lemma 3.

By Theorem 1 the intersection graph is planar and we can further show that
the boundary face of the embedded intersection graph is at least a pentagon
if we have five or more circles (the proof can be found in the full version [4]).
Applying Euler’s formula yields the following result.

Corollary 1. The intersection graph of an arrangement of nonnested orthogonal
circles has at most 3n − 8 edges for n ≥ 5.

In Sect. 4 we show that the bound of 3n − 8 in Corollary 1 is tight. In the
full version [4] we show that Theorem 1 also holds when all circles intersect in a
(not necessarily identical) angle of at most π/2.

3 Bounds for General Orthogonal Arrangements

In this section we prove an upper bound of
(
4 + 5

11

)
n edges for intersection

graphs of orthogonal circle arrangements with nested circles. We first discuss
the general approach and introduce necessary terminology before continuing
with details and proofs.

For every circle C in an arrangement A we define its depth t(C) as the
maximum cardinality of a set of pairwise nested circles in A that are properly
contained in C. A circle with depth 0, i.e., it contains no circles properly, is
referred to as shallow otherwise as deep.

As a first step we show that in every arrangement we can find a circle with
depth at most 1 that is orthogonal to at most seven deep circles (Lemma 9). We
select one circle with this property and name it the red circle. We then look at the
circles properly contained in the red circle. We call these circles black circles; see
Fig. 4. The key observation is that we can delete the set of black circles from the
arrangement and by doing so we only lose few edges from the intersection graph,
i.e. at most (4+5/11) ·n for n black circles. To obtain this bound we distinguish
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between intersections between the black circles and intersections between a black
circle and a circle that intersects a black and the red circle (such circles are called
green circles). To make our analysis work we have to partition the black circles
further. If a black circle center lies on the boundary of the embedded intersection
graph induced by the vertices of the black circles we call the corresponding circle
boundary black circle, otherwise inner black circle.

Fig. 4. Illustration of the red (dashed), black and green (dotted) circles. This arrange-
ment has only one inner black circle. (Color figure online)

We color edges in the intersection graph according to the color of the corre-
sponding circles as follows: An intersection between a black and a green circle
yields a green edge and an intersection between two black circles yields a black
edge. If there are n black circles and b of those are boundary black circles, then
we have at most 3n − b − 3 black edges as a consequence of Euler’s formula
and Theorem 1. We will prove that each black circle can be orthogonal to at
most two green circles (Lemma 5). However, the inner black circles can only be
intersected by green circles with depth at least 1 (Lemma 11). We can chose the
red circle so that there are at most seven deep green circles. The intersection
graph of these seven circles has at most eight edges (Observation 2 and Lemma
12). We exploit this fact to show that only eight inner circles can be orthogonal
to two green circles (Lemma 13). As a final observation we show that if there
are at most 11 black circles in the red circle, there are at most 3 inner black
circles that intersect two of the green circles. We can then combine our findings
to prove that we can always find a set of n black circles that intersects at most
(4 + 5/11) n circles.

We are now continuing with the proofs and details. We begin by stating a
few properties of arrangements of orthogonal circles. The first lemma was proven
by Chaplick et al. [5].

Lemma 4 ([5]). No orthogonal circle intersection graph contains a K4 or an
induced C4.

Lemma 5. Let A and B be two nested circles. There are at most two circles
that intersect both A and B orthogonally.
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Proof. Suppose that there are two nested circles A and B (B lies inside A)
that both intersect at least three circles D, E and F orthogonally. Consider the
intersection graph of A, B, D, E and F . If the circles D, E and F are pairwise
orthogonal to each other the vertices corresponding of A, D, E and F form a
K4, a contradiction due to Lemma 4. However, if two of the circles D, E and F
are not orthogonal to each other their corresponding vertices together with B
and A induce a C4, which yields a contradiction due to Lemma 4.

Thus, at most two circles that intersect both A and B orthogonally.

Lemma 6. If a circle C intersects the circles A and B orthogonally, then one of
the following holds: (i) A and B do not intersect, or (ii) A and B are orthogonal
and C contains precisely one of the intersection points of A and B.

Proof. We prove that if (i) does not hold, then (ii) holds. So assume A and B
intersect. We apply a Möbius transformation that maps A to a straight line.
Note that such a transformation is conformal and thus maintains the angles; see
Fig. 5. The centers of B and C will then have to lie on A. Clearly, if C contains
both points of A ∩ B then it also has to contain B, but since B intersects C, we
have a contradiction. Also, if C does not contain any point of A∩B, then it has
to be either contained in B or is to the left or right of B along A, but since B
intersects C, we have again a contradiction.

B

A

CB CC

C

Fig. 5. Situation in the proof of Lemma 6 when C contains A ∩ B. CB (CC) is the
center of B(C).

Lemma 7. In an arrangement of orthogonal circles let A and B be two circles
that intersect. All circles that are orthogonal to A and B that contain the same
intersection point of A and B are nested.

Proof. Assume that there are two nonnested circles C and D that both contain
the same intersection point u of A and B. Since C and D contain u but are not
nested, they must intersect each other. Both also intersect A and B. This means
the intersection graph of the four circles is a K4. This contradicts Lemma 4.

The following lemma is again taken from Chaplick et al. [5, Lemma 5]. The
“Moreover”-part is not explicitly written down, but it is apparent from the
construction given in its proof.
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Lemma 8 ([5]). Every arrangement of orthogonal circles has a circle that is
orthogonal to at most seven other circles. Moreover, this circle is a shallow circle.

We can deduce a similar lemma for deep circles.

Lemma 9. Every arrangement of orthogonal circles with nested circles has a
circle C with depth t(C) = 1 that is orthogonal to at most seven other circles
with depth at least 1.

Proof. Let A be an arrangement of orthogonal circles. By deleting all shallow
circles we obtain the arrangement A′. According to Lemma 8 we can find a
shallow circle C in A′ that is orthogonal to at most seven other circles. Since C
is shallow in A′ it has depth t(C) = 1 in the arrangement A.

In the following we select any circle that meets the requirements of Lemma 9
and refer to it as the red circle. We remind the reader that we call the circles
contained in the red circle the black circles.

Lemma 10. The set of black circles SB inside a red circle C corresponds to a
vertex set VB in the intersection graph incident to no more than 4nB + i − 3
edges, for nB = |SB | and i being the number of inner black circles in SB, that
each are orthogonal to two circles not in SB.

Proof. Let C be the red circle. We count the edges incident to VB. Edges with
two endpoints in VB are black edges, edges with one endpoint in VB are green
edges. We denote the number of boundary black circles by b. According to The-
orem 1 the intersection graph of the arrangement restricted to the SB is planar.
Moreover this planar graph has b vertices on its outer face. Thus, by Euler’s
formula we have at most than 3nB − b − 3 black edges.

We now count the green edges. Every circle D /∈ SB that intersects a circle
in SB has to intersect C as well. According to Lemma 5, each of the nB black
circles is orthogonal to at most two green circles. By our assumption nB − b − i
black inner circles intersect at most one green circle. Thus, we have at most
2nB − (nB − b− i) = nB + b+ i green edges. Adding the 3nB − b− 3 black edges
yields the upper bound of 4nB + i − 3 as stated in the lemma.

Lemma 11. Every green circle intersecting an inner black circle is a deep circle.

Proof. Let D be the red circle and SD be the set of black circles. Suppose
for a contradiction that there is a shallow green circle E with center CE that
intersects an inner circle F ∈ SD with center CF . Note that in this case E also
has to intersect D. By Lemma 1 CE , is therefore outside of D; see Fig. 6.

Let A be the arrangement consisting of the circles in SD and E. All circles in
SD and the circle E have depth 0 so the arrangement A is nonnested. According
to Theorem 1 the embedded intersection graph G(A) is noncrossing.

Let A′ be the arrangement consisting only of the circles in SD. Again, all
the circles are shallow, thus the arrangement is nonnested and the intersection
graph G(A′) noncrossing.
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Since CE is outside D it lies in the outer face of G(A′). On the other hand F is
an inner circle, so its corresponding vertex is not on the boundary of G(A′). The
straight-line edge between CE and CF must intersect an edge on the boundary
of the outer face of G(A′). This yields a crossing and thus a contradiction.

Fig. 6. Illustration of the arrangement in Lemma 11.

By Lemma 8 a red circle C intersects at most 7 deep circles. We now take
a look at the possible intersections of the seven deep circles. We start with the
following observation.

Observation 2. Let IC be the set of deep circles that intersect a red circle. The
intersection graph of IC has

– No induced C4, according to Lemma 4 and
– No induced C3, since every circle in IC is orthogonal to the red circle and

according to Lemma 4 there is no K4 in the intersection graph of the arrange-
ment consisting of IC and C.

By a case distinction we can limit the graphs that fulfil the constraints listed
in Observation 2. The proof is given in the full version [4].

Lemma 12. Every graph G with at most seven vertices without an induced C3

or C4 has at most 8 edges.

We can now bound the number of intersection points of the circles in IC .

Lemma 13. Let C be the red circle and let IC be the set of deep circles inter-
secting C. The arrangement of circles in IC has at most sixteen intersection
points of which eight are inside of C.
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Proof. According to Lemma 12 the intersection graph of IC has at most eight
edges. Hence, there are eight pairs of intersection points in the arrangement
consisting of the circles in IC . Due to Lemma 6 for every pair exactly one inter-
section point is inside of C. Thus, at most eight intersection points of circles in
IC are inside the circle C.

Lemma 14. In the intersection graph of every arrangement of orthogonal circles
we can find a nonempty subset VC that is incident to at most 4n+5 edges, where
n = |VC |.
Proof. Let A be an arrangement of orthogonal circles. According to Lemma 9
we can a find a red circle C with depth t(C) = 1 that is orthogonal to at most
seven deep circles. We denote the black circles by SC and set n = |SC |. Further
let VC denote the vertex set corresponding to SC .

We now prove that there are at most 8 inner black circles in SC that are
orthogonal to two circles not in SC . According to Lemma 11 the inner black cir-
cles can only be intersected by deep green circles. If a black circle intersects two
green circles, then the green circles have to intersect, otherwise the intersection
graph of the black, the two green and the red circle would induce a C4. According
to Lemma 6 a black circle that intersects two green circles contains their inter-
section point. Lemma 7 states that all circles containing the same intersection
point must be nested. Since the black circles are not nested, only one black circle
contains a given intersection point. By Lemma 13 the seven deep green circles
have at most eight intersection points inside C. Thus, at most eight inner black
circles are orthogonal to two deep green circles. We now apply Lemma 10 with
i2 ≤ 8 to obtain that VC is incident to at most 4n − 3 + i2 = 4n + 5 edges.

Our goal is to apply the last lemma for bounding the density of the intersec-
tion graph. If we can repeatedly take out vertex sets of size k with ck incident
edges (for a constant c), then the density of the graph is no more than cn, for
n being the number of vertices. Unfortunately, because of the additive constant
Lemma 14 is too weak if the subsets are small. Hence, we analyse small sets
separately to get a better bound. The analysis including the proofs can be found
in the full version [4]. It culminates in the following statement.

Lemma 15. In the intersection graph of an arrangement of orthogonal circles
we can find a subset VC of n vertices that has at most

(
4 + 5

11

)
n edges.

Theorem 2. The intersection graph of an arrangement of n orthogonal circles
has at most

(
4 + 5

11

)
n edges.

Proof. Assume there exist arrangements with n orthogonal circles, whose inter-
section graphs have more than

(
4 + 5

11

)
n edges. Consider a smallest such

arrangement A in terms of numbers of circles and its intersection graph G(A) =
(V,E). By Lemma 15 there exists a subset S ⊂ V of n′ vertices that is incident to
at most

(
4 + 5

11

)
n′ edges. We take out S and all incident edges. The new graph

has (n−n′) vertices and more than
(
4 + 5

11

)
(n−n′) edges. This contradicts the

assumption that A is minimal.
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4 Lower Bounds

Fig. 7. The arrangement B3,15. Hub circles are drawn with thick, satellite circles with
thin lines. Corresponding satellite and hub circles have the same color.

In this section we discuss lower constructions. Our ideas are based on the arrange-
ment Bx,a, parametrized by two integers a ≥ 5 and x ≥ 1, which is constructed
as follows. We start with arranging a circles with the same radius in such a way
that their centers lie on a circle and two neighboring circles intersect. We call
these circles the satellite circles. We add another circle (called hub circle) to this
arrangement such that it intersects every satellite circle orthogonally. We name
this arrangement a wheel of circles. An arrangement Bx,a is then constructed by
“nesting” x wheels of circles with a satellite circles each inside each other such
that each satellite circle of one wheel intersects two satellite circles of the next
wheel and two satellite circles of the previous wheel (Fig. 7). The details of this
construction (including the proof that the arrangement is orthogonal) can be
found in the full version [4].

Lemma 16. The intersection graph of Bx,a has x · (a+1) vertices and 4xa−2a
edges.

Proof. The arrangement consists of x wheel of circles, each having a satellite
circles and one hub circles. Thus, the intersection graph has x · (a + 1) vertices.
Every vertex corresponding to a hub circle has clearly degree a. Further, every
vertex corresponding to a satellite circle has degree 7, except those corresponding
to a satellite circle on the inner or outermost wheel of circles, which have degree 5.
So the sum of the vertex degrees is

∑
v∈V (Gx,a)

deg(v) = ax+7a(x−2)+5a ·2 =
8xa − 4a. This number equals twice the number of edges, and therefore the
intersection graph has 4xa − 2a edges.

Lemma 17. For every n there is an arrangement of orthogonal circles, whose
intersection graph has n vertices and 4n − O (

√
n) edges.
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The proof of the lemma is obtained by counting the edges in the arrangement
Bx,a with x and a being Θ(

√
n). Details are given in the full version [4].

We now give a lower bound for nonnested orthogonal circles based on the
construction shown in Fig. 8. The proof is given in the full version [4].

Lemma 18. For every n ≥ 6 for which n mod 5 = 1 the arrangement
B((n−1)/5),5 with only the innermost hub circle is nonnested and its n-vertex
intersection graph has 3n − 8 edges.

Fig. 8. Detail of the arrangement used to prove the lower bound in the nonnested case
in Lemma 18.

Chaplick et al. [5] investigated the maximal number of triangular cells in an
orthogonal circle arrangement. They proved an upper bound of 4n and gave
a lower bound of 2n triangular cells, which they later improved to 3n − 3.
This bound can be improved by taking the arrangement Bx,a and place a small
(orthogonal) circle around every intersection point. This implies the following
lemma which proof is given in the full version [4].

Lemma 19. For infinitely many values of n there is an arrangement of n
orthogonal circles with

(
3 + 5

9

)
n − O (

√
n) triangular cells.
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Abstract. We show that several types of graph drawing in the hyper-
bolic plane require features of the drawing to be separated from each
other by sub-constant distances, distances so small that they can be accu-
rately approximated by Euclidean distance. Therefore, for these types of
drawing, hyperbolic geometry provides no benefit over Euclidean graph
drawing.

Keywords: Hyperbolic graph drawing · Realistic graph drawing ·
Vertex-edge resolution · Vertex-vertex resolution · Angular resolution

1 Introduction

Although most graph drawing algorithms place vertices and edges in the
Euclidean plane, several past works instead use a different geometry, the hyper-
bolic plane. Beginning in the 1990s, researchers proposed hyperbolic graph draw-
ings to combine focus and context: the fisheye-like view provided by the Poincaré
disk visualization of the hyperbolic plane allows parts of the drawing to be shown
in an expanded view, with the rest compressed into the margins of the Poincaré
disk but remaining entirely visible [22]. This line of research also includes similar
techniques using three-dimensional hyperbolic geometry [26–28,35]. The hyper-
bolic plane has also been used for greedy graph drawings, with the property that
a path to any vertex can be found by always moving to a neighboring vertex
that is closer to the eventual destination. Unlike the Euclidean plane, the hyper-
bolic plane allows such drawings for any graph [4,15,19]. Hyperbolic geometry
was central to our construction of Lombardi drawings for graphs of maximum
degree three [14] and for Halin graphs [11]. We have also developed algorithms
for finding a good choice of initial views in hyperbolic visualizations [3], and
used spring embedding techniques to find high-quality hyperbolic graph draw-
ings [20]. Other investigations of hyperbolic graph drawing include the use of
circle packings to construct hyperbolic drawings [25], interactive systems using
hyperbolic drawing [13,38], hyperbolic drawing of power-law graphs [5], hyper-
bolic Euler diagrams [34], distance distortion of hyperbolic embeddings [7,32,36],
and hyperbolic multidimensional scaling [31,37].
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In this paper, we investigate hyperbolic geometry from the point of view of
realistic graph drawing. This type of analysis, previously applied to Euclidean
graph drawing [1,10], treats the vertices and edges of a graph drawing as having
nonzero radius or thickness, rather than being idealized mathematical points
and curves, so that they can be seen by a reader of the drawing. This required
thickness has been formulated mathematically in several related ways, includ-
ing placing constraints on the vertex-vertex resolution (the minimum distance
between center points of vertices) or vertex-edge resolution (the minimum dis-
tance of the center point of any vertex from an edge that it is not an endpoint
of). In ink-based bold graph drawing methods all features of the drawing must
have visible parts that are not covered by other features, so that the graph may
be unambiguously determined from its drawing [21,29]. These parameters are
also related to angular resolution, the sharpest angle between two edges incident
at the same vertex, as edges forming sharp angles need high length to be visibly
separated from each other [16,18,23].

Any Euclidean drawing can be scaled to achieve constant vertex-vertex or
vertex-edge resolution, so these parameters are typically compared against the
area of a bounding box of the drawing. A drawing style is considered to be good
when it achieves polynomial area, and bad when the area is exponential [12].
But in hyperbolic graph drawing, there is an absolute length scale, and it is not
possible to rescale a drawing without changing its shape. This hyperbolic length
scale is essential to focus+context applications of hyperbolic visualizations, as
it controls the sizes of objects near the center of the visualization, relative to
the overall view. In greedy drawings, constant vertex separation in this absolute
length scale is necessary, because drawings with smaller vertex distances would
be approximately Euclidean, constraining greedy drawings to have bounded ver-
tex degree. More generally, parts of a hyperbolic graph drawing with features
significantly smaller than the unit of absolute length would be approximately
Euclidean, failing to take advantage of any differences between hyperbolic and
Euclidean geometry. Therefore, we will define a realistic hyperbolic drawing to
be one in which the resolution parameters of the realistic graph drawing model,
such as vertex-vertex resolution, vertex-edge resolution, or line thickness, are at
least constant in absolute length. We consider realistic drawing to be impossible
when these parameters are forced by the constraints of the drawing to be o(1).

Our work shows that this realistic model of hyperbolic graph drawing is
severely limited, providing a partial explanation of the failure of hyperbolic
approaches to focus+context to come into wider use. In particular, we prove:

– Every straight-line crossing-free drawing of an n-vertex maximal planar graph
in the hyperbolic plane has vertex-edge resolution O(1/

√
n) (Theorem 1).

Moreover, there exist n-vertex planar graphs (the well-known nested triangle
graphs) for which every straight-line crossing-free drawing has vertex-edge
resolution O(1/n) (Theorem 2). Both bounds are tight.

– Although planar graphs have hyperbolic drawings with high vertex-vertex
resolution, these drawings have exponentially small angular resolution for all
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maximal planar graphs (Theorem 3). This differs from Euclidean drawings,
whose angular resolution is bounded by a function of the degree [23].

– Simple structure is not enough to avoid these problems: some series-parallel
graphs of bounded bandwidth require polynomially small vertex-edge resolu-
tion and either small vertex-vertex resolution or exponentially small angular
resolution (Theorem 4). Grid graphs also obey similar bounds (Theorem 5).

– Beyond planar graph drawing, every n-vertex graph has a Euclidean drawing
with unit vertex-vertex resolution and angular resolution Θ(1/n). However,
we prove that for hyperbolic drawings with unit vertex-vertex resolution,
some graphs require angular resolution O(1/n2) (Theorem 6) and their bold
drawings require edge width O(1/n) (Theorem 7).

Fig. 1. A tessellation of the Poincaré disk model of the hyperbolic plane by squares.
Arbitrarily large subgraphs of this graph have constant vertex-edge resolution, unlike
the maximal planar graphs. Although the internal faces of this tessellation can be
triangulated, it is impossible to add edges that make the outer face triangular without
violating planarity.

2 Vertex-Edge Resolution

In this section, we examine the vertex-edge resolution (the minimum hyperbolic
distance between a vertex and an unrelated edge) of graphs, drawn in the hyper-
bolic plane with (hyperbolically) straight edges. There exist planar graphs that
can be drawn in this way with at least constant vertex-edge resolution (Fig. 1).
However, as we show, this is not the case for any maximal planar graph.

Lemma 1. Every hyperbolic triangle has area at most π.
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Proof. This follows from the well-known formula for the area of a hyperbolic
triangle as π − ∑

θi, where θi are the internal angles of the triangle.

Lemma 2. In a planar straight-line hyperbolic drawing of an n-vertex maximal
planar graph, at least one face has area ≤ π

2n−3 .

Proof. By Lemma 1 the exterior face has area ≤ π. The remaining 2n − 3 faces
partition this area into disjoint subsets, one of which must be ≤ π/(2n − 3).

Lemma 3 (tangent rule for hyperbolic right triangles). If a hyperbolic
right triangle has legs of length x and y, the angle θ opposite x satisfies

tan θ =
tanh x

sinh y
.

Proof. See [24, Corollary 32.13, p. 431].

Lemma 4. A hyperbolic right triangle with leg lengths x ≤ y ≤ 1 has area
Θ(xy).

Proof. This follows by expressing the area as π minus the sum of angles, express-
ing these angles in terms of x and y according to Lemma 3, replacing these
expressions by their power expansions, and omitting lower-order terms; see [24,
p. 434].

Lemma 5. Let h be the height (minimum distance from any vertex to the oppo-
site edge) of a hyperbolic triangle T . Then T has area Ω

(
min(1, h2)

)
.

Proof. Let height h be achieved by a line segment from vertex v to the opposite
side S. In order avoid smaller height at another vertex, S extends for distance at
least h/2 on either side of this segment. The result follows by applying Lemma 4
to the right triangles formed by the segment of length h and the perpendicular
segments of S of length h/2. They are disjoint and lie entirely within T , so their
total area lower-bounds that of T .

Theorem 1. Every straight-line planar hyperbolic drawing of an n-vertex max-
imal planar graph has vertex-edge resolution O(1/

√
n).

Proof. By Lemma 2, at least one face has area O(1/n). By Lemma 5, the height
of this face is O(1/

√
n). Therefore, this face has a vertex and non-incident edge

that are at distance O(1/
√

n) from each other.

Theorem 1 is tight: some n-vertex maximal planar graphs have vertex-edge
resolution O(1/

√
n). For instance, obtain G from a square grid graph by tri-

angulating each square and adding three surrounding vertices to form an outer
face, shrink the drawing to have unit radius, and draw it within a unit disk of
the Klein model of the hyperbolic plane (which preserves straight line drawings)
giving a hyperbolic drawing whose vertex-edge resolution is the scale factor,
O(1/

√
n).

To strengthen Theorem 1 for some graphs, we use a maximal planar version
of the nested triangles graph (Fig. 2), formed from n/3 nested triangles by adding
edges between consecutive triangles to make the graph maximal planar.
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Fig. 2. A maximal planar version of the nested triangles graph, for which any planar
straight-line hyperbolic drawing has vertex-edge resolution O(1/n).

Theorem 2. If the maximal planar nested triangles graph on n vertices is given
a straight-line planar drawing in the hyperbolic plane, then the drawing must have
vertex-edge resolution O(1/n).

Proof. Among the n/3 nested triangles of the graph, at least n/6 must be drawn
as nested regardless of the choice of outer face. In any drawing, consider the
middle triangle T of these n/6 triangles. We distinguish two cases.

– If the hyperbolic diameter of triangle T is ≥1, then each of the n/12 rings of
six faces that surround it in the drawn-nested subset of n/6 triangles must,
to completely surround T , include at least two triangular faces of diameter
Ω(1). Because these n/6 high-diameter triangular faces are all disjoint, and
all lie within the ≤ π area of the outer face of the drawing (Lemma 1), one
of them must have area ≤ 6π/n. By Lemma 4, this triangular face, with
diameter Ω(1) and area O(1/n), must have height O(1/n).

– If the hyperbolic diameter of triangle T is ≤ 1, then T surrounds a drawing
of a nested triangles graph consisting of n/4 vertices in n/12 nested triangles,
all drawn within a region of the hyperbolic plane of diameter ≤ 1. Within this
region, hyperbolic distances can be approximated to within a constant factor
by Euclidean distances. It is known that Euclidean straight-line drawings of
the nested triangles graph must have two vertices whose distance is O(1/n)
times the diameter [9], and the same follows for the hyperbolic drawing within
T . If these two close-together vertices are adjacent on a single face of the
drawing, then that face must have height O(1/n), and otherwise they are
separated by an edge and their distance from that edge is O(1/n).

As both cases give a vertex-edge pair at distance O(1/n), the result follows.

Again, this result is tight. One may draw any planar graph in the hyperbolic
plane with vertex-edge resolution Ω(1/n), in an essentially non-hyperbolic way,
by first constructing a straight-line drawing in a Euclidean grid of size O(n) ×
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O(n) [6,17,33] and then using the Klein model of hyperbolic geometry to map
this drawing to a straight-line grid drawing within a subset of the hyperbolic
plane of diameter O(1), with constant distortion of distances.

3 Vertex-Vertex Resolution and Angular Resolution

It is not possible to upper-bound only the vertex-vertex resolution of hyperbolic
drawings of planar graphs, as the following observation shows.

Observation 6. For every planar graph G, and every distance d, there is a
planar hyperbolic drawing of G with vertex-vertex resolution ≥ d.

Proof. We may assume without loss of generality that G is maximal planar, and
use a de Fraysseix–Pach–Pollack [17] style graph drawing algorithm (without
horizontal shifting) in which vertices are placed into the drawing one-by-one in
a canonical ordering, starting from two adjacent vertices on the outer face of the
eventual drawing, so that when each vertex is added to the drawing it is adjacent
to a consecutive subsequence of vertices on the outer face of the current drawing.

Fig. 3. An ideal hyperbolic triangle (black) in the upper halfplane model of the hyper-
bolic plane (above the horizontal line), with an inscribed circle of radius ln

√
3 (shaded).

The hyperbolic line segments within the circle meet at its center (the incenter of the
triangle), which is somewhat below its Euclidean center.

In the upper halfplane model of the hyperbolic plane, place the first two ver-
tices on two arbitrary points with distinct x-coordinates. Place each subsequent
vertex above the midpoint of the x-interval spanned by its earlier neighbors,
so that at each stage the upper boundary of the drawing is an x-monotone
piecewise-linear curve. Choose the vertical position of each vertex, both high
enough that it is visible (along a hyperbolic line segment) to all of its previously-
placed neighbors, and high enough that it is at distance at least d from all pre-
viously placed vertices; these two requirements do not interfere with each other.
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Nevertheless, when the vertex-vertex resolution is large, it may force the
drawing to be bad in other ways, as the remainder of this section shows.

Lemma 7. Every hyperbolic triangle has an inscribed circle touching all three
of its sides. Its radius (the inradius of the triangle) is at most ln

√
3 ≈ 0.5493.

Proof. See for instance [30, Theorem 13.4, p. 103]. The limiting case of inradius =
ln

√
3 occurs for ideal triangles (Fig. 3), with all vertices at infinity.

Lemma 8. Let v be a vertex of a hyperbolic triangle T , at distance d from the
incenter of T . Then the angle of T at v is upper bounded by an exponentially
small function of d.

Proof. Assume without loss of generality that d > 2 because otherwise the upper
bound of the lemma is O(1), trivially valid for all angles.

Let V be the subset of T between the inscribed circle C and vertex v. Replace
the sides of T by two asymptotic lines, tangent to the inscribed circle of T at
points wider than the tangent points of T to the same circle, and expand C if
necessary until the radius of the expanded circle Ĉ is exactly ln

√
3, enclosing V

in the corresponding subset V̂ of an ideal triangle T̂ having the same incenter,
with v equally far from the two sides of T̂ . By choosing the point at infinity
where the two sides of T̂ meet to be the point at vertical infinity of an upper
halfplane model of the hyperbolic plane, V̂ can be made to be the region two
vertical lines and above a circle Ĉ seen in the upper center of Fig. 3.

In the upper halfplane model, the infinitesimal unit of length ds is given by

(ds)2 =
(dx)2 + (dy)2

y2
,

where x and y are Cartesian coordinates. This distance is locally Euclidean,
with a scale factor inversely proportional to height, so two points on the vertical
lines of Fig. 3 at Euclidean distance y above the blue line are at hyperbolic
distance O(1/y) from each other. Integrating this scaled distance over a vertical
line segment, the distance from (x, y1) to (x, y2) (with y1 < y2) simplifies to
ln(y2/y1). Therefore, for point v to be at hyperbolic distance d above the center
of Ĉ in this model, its y-coordinate is exponentially larger than the y-coordinate
of the center of C. At that height, the scale factor of hyperbolic distance is so
small that the two vertical sides of T̂ are exponentially close. The points along
the two sides of T at unit distance from v are at a height corresponding to
hyperbolic distance ≥ d − 1 above the center of Ĉ, and are also exponentially
close in hyperbolic distance, because they are sandwiched between the two sides
of T̂ that are exponentially close at that height.

The angle of T at v equals the angle formed at v by these two exponentially-
close points at unit distance from v, so it is exponentially small.

Theorem 3. For every constant c, and every n-vertex maximal planar graph
G, every hyperbolic planar straight line drawing of G that has vertex-vertex res-
olution ≥ c also has angular resolution that is exponentially small in n, with the
base of the exponential depending on c.
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Proof. Let T be the outer face of a drawing of G, and partition T into four
regions: its inscribed circle C, and the three regions between this circle and the
three vertices of T . The inscribed circle has bounded diameter by Lemma 7
and can contain only O(1) points of minimum separation c, so there must be
a vertex v of the outer face and a region V between C and v that contains
Ω(n) vertices of the drawing. Partition V into regions of bounded diameter by
classifying the points of V according to their distance from the center of C,
rounded to an integer; each of these regions can contain only O(1) points of
minimum separation c, so there must be a vertex w within a region at distance
Ω(d) from the center of C. Vertex v itself must be even farther away, in order
for T to enclose w. Therefore, by Lemma 8, the angle of T at v is exponentially
small.

Fig. 4. K1,1,9

4 Special Classes of Planar Graphs

4.1 Series-Parallel Graphs

The proofs of Theorem 1 and of Theorem 3 depend only on the property of
maximal planar graphs that they have a triangle (the outer triangle of their
planar embedding) that contains a linear number of other vertices. Therefore, it
can be adapted to other graphs with analogous properties.

Theorem 4. For every n, there exists an n-vertex series-parallel graph G of
bounded bandwidth with the following properties:

– Every hyperbolic planar straight line drawing of G has vertex-edge resolution
O(1/

√
n).

– For every c, every hyperbolic planar straight line drawing of G that has vertex-
vertex resolution ≥ c also has angular resolution that is exponentially small
in n, with the base of the exponential depending on c.

Proof. Let G = K1,1,n−2 (Fig. 4). Up to permutation of the vertices all its pla-
nar straight-line drawings consist of a nested triangles on one side of the edge
between the two singleton sets of the tripartition, for 0 ≤ a ≤ n − 2, and of
n − 2 − a nested triangles on the other side. Therefore, if T is the outermost
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triangle on the side with the larger number of triangles, T contains Ω(n) other
vertices of G.

The bound on vertex-edge resolution follows the same lines as the proof of
Theorem 1: T is partitioned into Ω(n) faces (one triangle and the rest quadrilat-
erals), so one of these faces has area O(1/n). If this low-area face is a triangle, the
bounds on triangle height used in the proof of Theorem 1 show that it already
has vertex-edge resolution O(1/

√
n). If it is a quadrilateral, add a diagonal, sub-

dividing it into two triangles of area O(1/n) and height O(1/
√

n). If the heights
of both triangles are defined by the distances of a vertex to the added diagonal,
then each of these vertices also has distance O(1/

√
n) to a non-adjacent side

of the quadrilateral. If one or both of the triangles has a height that does not
involve the added diagonal, then we get vertex-edge resolution O(1/

√
n) directly.

The result on vertex-vertex resolution and angular resolution follows directly
by applying the argument from the proof of Theorem 3 to T .

4.2 Grid Graphs

The n × n grid graphs, in their standard Euclidean drawing, are particularly
well-behaved: all edges have the same length, and the vertex-vertex, vertex-edge,
and angular resolutions are all constant. Unlike the maximal planar graphs, they
do not have cycles of bounded length containing many vertices. This does not
prevent problems when drawing them hyperbolically:

Theorem 5. Every hyperbolic planar straight line drawing of an n × n grid
has vertex-edge resolution O(1/

√
n). All such drawings that have vertex-vertex

resolution Ω(1) have angular resolution exponentially small in n.

Proof. If the grid is drawn with the standard outer face, a polygon with 4(n−1)
sides, this polygon can be triangulated into O(n) triangles. By Lemma 1 the
bounded faces of the drawing cover an area of O(n), and one of the (n − 1)2

grid quadrilaterals has area O(1/n). For a different outer face, the area is even
smaller. The argument from a quadrilateral of small area to small vertex-edge
resolution is the same as for Theorem 4.

Now suppose we have a drawing with vertex-vertex resolution Ω(1), and tri-
angulate its boundary polygon. Let v be any non-boundary vertex of the grid.
Define two polygonal curves to the boundary from v, that step to the nearest
points on two different sides of the triangle containing v in the boundary trian-
gulation, then repeatedly cross successive triangles on shortest crossing segments
until reaching the boundary. The dual graph of the boundary triangulation (like
any triangulation of any simple polygon) is a tree, and these curves follow a
path in this dual tree, so they must terminate at the boundary, crossing each
triangle at most once. We say that v is captured by triangle T if one of these
curves crosses T , v is within distance ≤ γn of the incenter of T (for a constant
of proportionality γ to be determined later) or within unit distance of a vertex
of T , and v is not captured by any triangle crossed earlier by the curve.

If vertex v is captured by triangle T , then before the curve for v reaches T
it can only cross segments of other triangles that are exponentially short (as a
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function of n), by the same reasoning as in Lemma 8. Therefore, the grid vertices
captured by T are exponentially close to T . Partitioning the region close to T
into subsets of bounded diameter in the same way as in the proof of Theorem 3
shows that, if T captures kT grid vertices, then one must be at distance Ω(k)
from the incenter and more than unit distance from all vertices of T . However,
captured vertices are defined as being within distance ≤ γn of the incenter or
unit distance of a vertex of T , so kT = O(γn). The boundary triangulation
has O(n) triangles, so the total number of captured vertices over all triangles
is O(γn2). If we choose γ to be a sufficiently small constant (depending on the
vertex-vertex resolution), this number will be less than the number (n − 2)2

of interior vertices of the grid, and at least one interior vertex v will remain
uncaptured.

Each of the O(n) steps in the two curves from v to the boundary has
exponentially-small length, so both paths are exponentially short. Therefore,
v is sandwiched between two exponentially-close edges of the boundary, and
moreover is at least unit distance from the edge endpoints. Because v is an inte-
rior vertex of the grid, it has degree four, and has at least two edges extending in
at least one of the two directions approximately parallel to the boundary edges
that sandwich v. These two edges must form an exponentially small angle at v.

5 Nonplanar Drawings

Beyond planar graph drawing, any n-vertex graph has a Euclidean drawing with
unit vertex-vertex resolution and angular resolution Θ(1/n), with vertices on a
unit regular n-gon. The analogous placement in hyperbolic geometry has angular
resolution Θ(1/n2). In this section, we prove that this is optimal: every hyper-
bolic drawing of Kn with unit vertex-vertex resolution has angular resolution
O(1/n2).

A key ingredient is the relation between hyperbolic circle area and perimeter:

Lemma 9. Every hyperbolic circle of perimeter p > 1 has area p + o(p).

Proof. This follows immediately from the formulas for the area 4π sinh2(r/2)
and perimeter 2π sinh r of a hyperbolic circle of radius r [2]. In the limit as r
becomes large, the ratio of these two formulas converges to 1.

We also need the following counterintuitive property of hyperbolic geometry,
which in this respect is very different from Euclidean geometry:

Lemma 10. Divide the hyperbolic plane into four quadrants by two perpendicu-
lar lines. Then every line from a point in one quadrant to a point in the opposite
quadrant passes within distance ln(1 +

√
2) ≈ 0.8814 of the crossing.

Proof. Choose an upper halfplane model of the hyperbolic plane that represents
the two perpendicular lines as congruent semicircles, and the two opposite quad-
rants crossed by any given line as the two congruent regions to the left and right
of their crossing (Fig. 5). The convex hull of the two quadrants is bounded by
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two more hyperbolic lines, asymptotic to the crossing lines (the boundaries of
the light yellow region in the figure). All lines from one quadrant to another
remain within the hull, crossing the red circle in the figure.

The figure may be given Cartesian coordinates in which the semicircles repre-
senting the two perpendicular lines have (Euclidean) centers at the points (−1, 0)
and (1, 0) and cross at the point (0, 1), the hyperbolic center of the red circle.
With these coordinates, these semicircles have Euclidean radius

√
2. The top

point of the red circle is at (0, 1 +
√

2), and the result follows from the formula
ln(y2/y1) for the hyperbolic length of a vertical line segment.

Theorem 6. For every constant c, every hyperbolic drawing of the complete
graph Kn with vertex-vertex resolution ≥ c has angular resolution O(1/n2).

Proof. By ignoring one vertex if necessary, assume without loss of generality
that n is even. Consider any drawing with vertex-vertex resolution ≥ c, find a
hyperbolic line splitting the vertices of the drawing into equal subsets, and (by
applying the intermediate value theorem to the partitions by perpendicular lines)
find a second perpendicular line splitting the vertices into two equal subsets. Let
x be the crossing point of these two lines. Among the four quadrants formed by
these two lines, opposite quadrants necessarily have equal numbers of points, so
two opposite quadrants Q and Q′ each contain at least n/4 vertices.

Fig. 5. Illustration for Lemma 10. Two perpendicular lines (shown as semicircles in
an upper halfplane model above the horizontal line) determine two opposite quadrants
(dark shading) whose convex hull (light shading) is bounded by two lines asymptotic
to the two perpendicular lines. All lines from the left quadrant to the right quadrant
remain within the hull and pass through the circle shown, of radius ln(1 +

√
2). (Color

figure online)

Within Q, because of the vertex spacing, not all vertices can be in a quarter-
circle centered at r of area o(n). Therefore, by Lemma 9, for some vertex v in
Q, a circle of radius xv has perimeter Ω(n). If we center such a circle at v, then
the circle of radius ln(1 +

√
2) centered at x (the red circle in Fig. 5) spans only

a constant number of units of the perimeter, an O(1/n) fraction of the total
perimeter, so the angle spanned by the red circle as viewed from v is O(1/n).

Within this O(1/n) angle as viewed from v, at least n/4 vertices in Q′ are also
visible, by Lemma 10. By the pigeonhole principle, some two of these vertices in
Q′ must be within an angle of O(1/n2) of each other as viewed from v.
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Following van Kreveld [21] we define a bold hyperbolic drawing to draw ver-
tices as hyperbolic disks of a given radius and edges as thickened hyperbolic line
segments of width less than this radius, with all edges and all vertices having
part of their boundary visible.

Theorem 7. Any bold hyperbolic drawing of Kn has edge width O(1/n).

Proof. Let the edge width of a drawing be w < 1. As in the proof of Theo-
rem 6, find two perpendicular lines partitioning the centers of the vertices into
quadrants, with two opposite quadrants Q and Q′ containing at least n/4 vertex
centers each; let C be the circle of radius ln 1 +

√
2 centered at the crossing

point, and let D be the diameter of C halfway between Q and Q′. Each vertex
in Q has ≥ n/4 edges to Q′, all crossing D, among which O(1/w) can have
an exposed portion of boundary between the vertex and D, because each edge
whose boundary is not entirely covered by edges from the same vertex covers a
segment of D of length at least w. Similarly, each vertex in Q′ has O(1/w) edges
with exposed boundaries. Unless w is O(1/n), the total number of edges with
exposed boundaries either near their endpoint in Q or near their endpoint in Q′

will be less than the (n/4)2 number of edges from Q to Q′, and at least one edge
will be totally covered.

6 Conclusions

We have performed an initial investigation into hyperbolic graph drawing under
realistic graph drawing models, showing that for many variations of these models,
drawings are impossible or seriously limited. Other questions in this area, which
we leave open for future research, include:

– Which planar graphs have planar hyperbolic drawings with bounded vertex-
edge resolution? These include all trees, and all outerplanar graphs (using a
placement of vertices on a large regular polygon), but not all planar graphs
and not even all bounded-bandwidth series-parallel graphs. Are there other
natural classes of planar graphs that always have such drawings?

– For Euclidean planar drawings, edge-edge resolution is not usually studied
separately, because it is essentially the same as vertex-edge resolution. How-
ever, in the hyperbolic plane, edges may approach each other closely even
when all vertex-edge pairs are well separated. Does this cause differences
between hyperbolic vertex-edge resolution and edge-edge resolution?

– RAC graphs (graphs drawn with right-angle crossings) are motivated by real-
istic graph drawing: crossings with high angles are easier to understand than
sharp crossing angles [8]. However their definition strongly depends on geom-
etry: edges that cross at right angles in the Euclidean plane have bipartite
intersection graphs such as cycles of four edges. In the hyperbolic plane, odd
cycles of right-angle-crossing edges are possible; however, 4-cycles are not
possible. How do these differences affect the hyperbolic RAC graphs?
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Our results should not be interpreted as shutting off research on hyperbolic
graph drawing, which remains important in applications such as greedy routing
where realistic drawing assumptions do not fit the problem, and as a building
block for Euclidean drawing methods such as Lombardi drawing.
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Abstract. We prove that circle graphs (intersection graphs of circle
chords) can be embedded as intersection graphs of rays in the plane with
polynomial-size bit complexity.

We use this embedding to show that the global curve simplification
problem for the directed Hausdorff distance is NP-hard. In this problem,
we are given a polygonal curve P and the goal is to find a second polygo-
nal curve P ′ such that the directed Hausdorff distance from P ′ to P is at
most a given constant, and the complexity of P ′ is as small as possible.

1 Introduction

Problems in the area of graph drawing often find application in complexity theory
by providing a basis for NP-hardness proofs for geometric problems. In this
paper, we study an application of embedding circle graphs (intersection graphs
of chords of a circle) as ray graphs (intersection graphs of half-lines) to the
analysis of the complexity of global curve simplification. In particular, we prove
(refer to Sect. 2 for precise problem definitions):

– All circle graphs are ray graphs that have a representation as a set of inter-
secting rays described by coordinates that have a polynomial number of bits
(Theorem 1);

– Hamiltonian Path is NP-hard on such ray graphs (Corollary 1);
– Directed Curve Simplification is NP-hard (Theorem 4).

1.1 Global Curve Simplification

Curve simplification is a long-studied problem in computational geometry and
has applications in many related disciplines, such as graphics, and geographical
information science (GIS). Given a polygonal curve P with n vertices, the goal
is to find another polygonal curve P ′ with a smaller number of vertices such
that P ′ is sufficiently similar to P . Methods proposed for this problem famously
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Fig. 1. For a target Hausdorff distance δ, the boldened red curve (middle) is a global
simplification of the input curve (left), but it is not a local simplification, since the
first shortcut does not closely represent its corresponding curve section (right). (Color
figure online)

include a simple heuristic scheme by Douglas and Peucker [12], and a more
involved classical algorithm by Imai and Iri [18]; both are frequently implemented
and cited. Since then, numerous further results on curve simplification, often in
specific settings or under additional constraints, have been obtained [1–5,9,10,
14,17].

Recently, the distinction was made between global simplification, when a
bound on a distance measure must be satisfied between P and P ′, and local
simplification when a bound on a distance measure must be satisfied between
each edge of P ′ and its corresponding section of P [20]. A local simplification is
also a global simplification, but the reverse is not necessarily true, see Fig. 1.

Agarwal et al. [2] were first to consider the idea of global simplification under
the Fréchet distance. They introduce what they call a weak simplification: a
model in which the vertices of the simplification are not restricted to be a sub-
set of the input vertices, but can lie anywhere in the ambient space. Kostitsyna
et al. [22] present a polynomial-time algorithm for this model but for the Haus-
dorff distance; in particular, the directed Hausdorff distance from the simplifi-
cation curve to input curve. Van Kreveld et al. [24] consider a different setting
in which the output vertices should be a subsequence of the input, and they
also consider the Hausdorff distance. They give a polynomial-time algorithm for
the directed Hausdorff distance from the simplification curve to input curve, but
they show the problem is NP-hard for the directed Hausdorff distance in the
opposite direction, and also for the symmetric (undirected) Hausdorff distance.
Van de Kerkhof et al. [20] prove that the hardness result for the unrestricted
Hausdorff distance can be extended to the non-restricted case as well; in addi-
tion, they introduce an intermediate curve-restricted model where the vertices
of the simplified curve should lie on the input curve. Surprisingly, the prob-
lem is hard under this model for all three variants of the Hausdorff distance.
Table 1 summarizes the state of the art for global curve simplification under the
Hausdorff distance.

1.2 Embeddings of Geometric Intersection Graphs

Geometric intersection graphs have long been studied due to their wide range
of applications, and lie on the interface between computational geometry, graph
theory, and graph drawing [26]. The graph classes corresponding to intersections



360 M. van de Kerkhof et al.

Table 1. Results for global curve simplification under the Hausdorff distance between
the curve P and its simplification P ′. The result in bold is from this work.

Distance Vertex-restricted
(V)

Curve-restricted (C) Non-restricted (N )

−→
H (P, P ′) NP-hard [24] NP-hard [20] NP-hard−→
H (P ′, P ) O(n4) [24]

O(n2polylog n) [20]
NP-hard [20] poly(n) [22]

H(P, P ′) NP-hard [24] NP-hard [20] NP-hard [20]

of geometric shapes form a natural hierarchy that links to the complexity of
those shapes: more complex shapes allow to represent more graphs. Arguably
the most restricted class in this family are the unit interval graphs [19], and
the most general class of intersection graphs of connected shapes in R

2 are the
string graphs [13]. Between these two, a hierarchy of classes exist; part of it is
illustrated in Fig. 2.

Hartmann et al. [16] introduce grid intersection graphs where the shapes are
aligned to an orthogonal grid; Mustata [27] gives an overview of the state of the
art and also discusses the complexity of computational problems on such classes.
Cardinal et al. [7] prove several relations between segment intersection graphs
and ray intersection graphs; in particular they introduce downward ray graphs:
intersection graphs of rays that all point into a common half-plane. Their main
result is that recognition of several classes is complete for the existential theory of
the reals. Circle graphs are intersection graphs of chords of a circle; equivalently,
they may be defined as interval graphs where there is an edge between two
intervals on a line when they intersect but are not nested [15]. Circle graphs are
known to be contained in 1-string graphs [8]. We are not aware of any published
statements of stricter containment; we show in this paper that they are in fact
contained in the downward ray graphs.

When utilizing graph embedding algorithms in hardness proofs, one impor-
tant issue is the representation of the embedding. The class of graphs which can
be represented as intersection graphs of a given set of shapes is not necessarily
the same as the class of graphs which can be represented as intersection graphs
of shapes which each can be represented with coordinates of bounded complex-
ity. For instance, McDiarmid and Müller [25] show that not all realizable unit
disk graphs can be realized with coordinates of logarithmic complexity, and the
same is true for segment graphs [23].

2 Preliminaries, Overview and Challenges

2.1 Polygonal Curves and the Hausdorff Distance

A polygonal curve (also called a polyline) P = {p1, p2, . . . , pn} is defined
by an ordered sequence of n vertices. We can treat P as a continuous map
P : [1, n] → R

d that maps real values in the interval [1 . . . n] to points on the
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polyline by linearly interpolating between the vertices, which allows us to visu-
alize a polyline as n − 1 line segments linked one after the other. We will refer to
these segments as the polyline’s links. For integer i, P (i) will return the vertex
pi. Points on P ’s i’th link are parametrized as P (i + λ) = (1 − λ)pi + λpi+1.
The directed Hausdorff distance from curve P to curve Q, which have n and m

vertices respectively, is given by
−→
H (P,Q) = max

i∈[1...n]
min

j∈[1...m]
||P (i) − Q(j)||. I.e.

it is equal to the Euclidean distance from the point on P furthest from Q to
the point on Q closest to that point. The (undirected) Hausdorff distance is the
maximum over both directions, i.e. H(P,Q) = max{−→

H (P,Q),
−→
H (Q,P )}.

Fig. 2. Intersection graph classes and their inclusion relations. The thickened edge indi-
cates our contribution. In order to keep the figure readable many classes and refinements
have been omitted; for an extensive overview we refer the reader to e.g. [6,7,27] or to
graphclasses.org.

2.2 Problem

The problem we wish to tackle (and which we will prove NP-hard) is:

Problem 1. Directed Curve Simplification. Given a polyline P , integer k
and a value δ, find another polyline P ′ such that the directed Hausdorff distance
from P to P ′ is at most δ and the number of links in P ′ is at most k.

http://graphclasses.org/
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Fig. 3. The idea for a small example (which does not admit a Hamiltonian cycle). (a) A
set of rays R (blue) whose intersection graph is G, and the complement C (red, dashed).
(b) Zooming out until we can draw a circle that contains all intersections among rays
in C. (c) Replacing each ray in C by a needle. (d) Zooming back in. (e) The extensions
of the needles (blue, dotted) correspond to the original rays. (f) A polygon covering
all needles must correspond to a Hamiltonian cycle in G (here, there is no solution).
(Color figure online)

Note that van de Kerkhof et al. [20] call this problem the non-restricted global
curve simplification problem to distinguish it from other variants; in the remain-
der of the present paper we use the shorter name for convenience. We will find
that the key difficulty in solving Directed Curve Simplification lies in the
following similar problem:

Problem 2. Segment Polyline Cover. Given a set L of line segments in the
plane and integer k, find a polyline P such that every segment in L is covered
by P (contained in at least one segment of P ), and P has at most k links.

2.3 Proof Idea

Our approach is to show that Segment Polyline Cover is hard by a reduction
from Hamiltonian Path on ray intersection graphs. Specifically, we use the
following idea.
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Observation 1. Let G be a ray intersection graph with n vertices. There exists
a set L of 2n segments such that G has a Hamiltonian cycle if and only if there
is a polygon covering L with 2n vertices.

We can use Observation 1 to prove Segment Polyline Cover is NP-hard and
then reduce Segment Polyline Cover to Directed Curve Simplification,
proving it NP-hard as well.

We sketch the proof of Observation 1 here; the rest of the paper is devoted
to making it precise. The high level proof idea is illustrated in Fig. 3. Let R be a
set of rays in R

2, and G its intersection graph. The complement of a ray r is the
ray with the same origin and the same supporting line as r which points in the
opposite direction. Let C be the complement of R. We cut the rays in C to a set
of segments S in such a way that C and S have the same intersection graph. Then
we replace each segment s ∈ S by a needle: a pair of segments both very close to
s that share one endpoint (different from the corresponding ray’s origin). Let L
be the resulting set of 2n segments. Now, any polygon with 2n segments covering
L must use the two edges of one needle consecutively (since, by construction, the
extension of these segments does not intersect the supporting line of any other
segment), and it can connect an edge from one needle to an edge of another
needle exactly when the corresponding original rays in R intersect.

2.4 Challenges

Though the idea is conceptually simple, there are several difficulties in turning
Observation 1 into a proof that Directed Curve Simplification is NP-hard.

– The simple idea above is phrased in terms of a Hamiltonian Cycle and
covering segments by a polygon; for our proof we need to use a polyline. We
need to be careful in how to handle the endpoints.

– We need to establish that Hamiltonian Path is indeed NP-hard on ray
intersection graphs.

– We need to know how to embed a ray intersection graph as an actual set of
rays with limited bit complexity.

– We need to model the input to Directed Curve Simplification as an
instance of Segment Polyline Cover. Specifically, the complement of a
set of rays is not necessarily connected; but the input to Directed Curve
Simplification must be connected.

– The Segment Polyline Cover problem closely resembles Directed
Curve Simplification for δ = 0; to extend it to the case δ > 0 we (again)
need to carefully consider the complexity of the embedding.

Most of these challenges can be overcome, as we show in the remainder of this
paper. However, since the problem of recognizing if a graph can be embedded as
a set of intersecting rays is complete for the existential theory of the reals [7], we
know that there are ray intersection graphs that cannot be embedded by a set
of rays with subexponential bit complexity, unless NP = ∃R. In this paper, we
work around this problem by considering a smaller class of graphs, and allowing
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a superpolynomial grid for our embeddings, which we show is sufficient for the
proof of Theorem 4.

3 Hamiltonian Cycles in Ray Intersection Graphs

3.1 Embedding Circle Graphs as Ray Graphs

We will show that each circle graph can be embedded as a ray intersection graph.
To show this, we construct a set of n points that lie on a convex, increasing curve
such that all chords connecting a pair of points can be extended to a ray to the
right, and none of these rays will intersect below the curve. This requires the
curve to grow very fast. We use the points (x, x!) for x ∈ [1..n], where x! = Πx

i=1i
is the factorial function. Indeed, these points have the following property.

Lemma 1. Let a, b, c, d ∈ [1..n] be four numbers such that a < b and c < d.
Let A be the ray starting at (a, a!) and containing (b, b!), and let B be the ray
starting at (b, b!) such that B ⊂ A. Similarly, let C be the ray starting at (c, c!)
and containing (d, d!), and let D be the ray starting at (d, d!) such that D ⊂ C.
Then B and D do not intersect; hence, A and C intersect if and only if A\B
and C\D intersect.

Proof. Since every ray is drawn between two points on the curve of the func-
tion x!, we know that it intersects this curve only at these points. The dis-
tance between y-coordinates of successive points keeps rapidly increasing as x
increases, but the distance between x-coordinates of successive points is con-
stant. Thus the slope of a ray r1 whose intersection points with the curve lie to
the right of those of ray r2 will be greater than the slope of r2. Without loss of
generality we assume a < c. There are three possible cases, see Fig. 4:

– c < b < d: Here it is clear that A and C will intersect at an x-coordinate
somewhere between c and b, and so B and D will not intersect.

– b < c: Here we can easily see that B and D do not intersect, as B starts below
D and has a lower slope.

– d < b: Whereas the first two cases only require the curve to be convex and
increasing, this case also requires the function to grow quick enough: Since
D starts to the left of B it could possibly intersect B if its slope was higher.
We will now show, however, that the factorial function grows quick enough
so that this cannot happen. For a fixed b, the lowest slope that B can have
is when a = 1. The highest slope that D can have occurs when c = b − 2
and d = b − 1. The slope of B is equal to the slope of A, which would be
b!−1!
b−1 = b · (b − 2)! − 1

b−1 . The slope of D (and C) in this scenario would be
(b−1)!−(b−2)!

1 = (b − 2) · (b − 2)!. We can see that the slope of B is higher than
D if 2 · (b − 2)! ≥ 1

b−1 which obviously holds for all b > 2. So since B starts
above D and has higher slope, B and D will not intersect.
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Fig. 4. The three cases for two rays. a and b are the x-coordinates of the points where
the first ray intersects with the curve y = x!, and c and d are those values for the
second ray. No matter the case, the rays will not intersect below the curve.

Once we have constructed these points we can “unroll” any circle graph by
picking one chord endpoint on the circle to be the first point and then traversing
the circle in clockwise order and assigning each chord endpoint we encounter the
next point of our set. See Fig. 5 for a sketch. Because the y-coordinate for a point
will not grow bigger than O(nn) we can represent the points using polynomial
bit complexity. At this point, we have shown that circle graphs are contained in
ray graphs. In fact, our construction gives a bit more:

Theorem 1. The class of circle graphs is contained in the class of ray intersec-
tion graphs. Furthermore, every circle graph can be embedded as the intersection
graph of a set of rays such that:

– every ray is grounded on a common curve (grounded ray graph [7]);
– every ray points towards the upper right quadrant (downward ray graph [7]);
– every ray is described by a point and a vector with polynomial bit complexity.

3.2 Hamiltonian Paths and Cycles

Next, we show that Hamiltonian Path problem is NP-hard on ray graphs, and
in particular, on ray graphs with polynomial bit complexity.

We reduce from the Hamiltonian Path problem on circle graphs. We make
use of the proof from Damaschke [11]. He shows that Hamiltonian cycle is NP-
hard on circle graphs, by reducing from Hamiltonian Cycle in cubic bipartite
graphs. He also claims that there is an easy adaptation that shows the Hamil-
tonian path problem is also NP-hard for circle graphs. We will start by making
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Fig. 5. (a) A circle graph with colors assigned to the chords. The chosen starting point
is marked with a red dot. (b) Unrolled version of (a), by assigning chord endpoints in
counterclockwise order to points on the convex curve they can be extended into rays
without intersecting. (Color figure online)

this adaptation explicit: We construct an instance of the circle graph problem
as described in [11], but then we replace one of the X-chords with two paral-
lel chords close to where the X-chord was, so that they both intersect the same
chords that were intersected by the X-chord. For both of the new chords we then
add one new chord that only intersects that chord and no others. Now we know
that the circle graph will have a Hamiltonian path if and only if the bipartite
graph has a Hamiltonian cycle. From Theorem 1 we now immediately have:

Corollary 1. Hamiltonian Path is NP-hard on intersection graphs of rays that
have a polynomial bit complexity.

4 Connected Segment Polyline Cover

Next, we introduce the Connected Segment Polyline Cover problem, and
show that it is NP-hard by a reduction from Hamiltonian Path problem on circle
graphs through the construction outlined above.

Problem 3. Connected Segment Polyline Cover. Given a set L of n line
segments whose union is connected, and an integer k, decide if there exists a
polyline of k links that fully covers all segments in L.



Embedding Ray Intersection Graphs and Global Curve Simplification 367

We start by embedding the circle graph as a ray intersection graph in the
manner outlined above. Then, we compute all intersection points between sup-
porting lines of the rays. One of these intersection points will have the low-
est y-coordinate. We will then choose a value that is lower than this lowest
y-coordinate, which we will denote as y�. For each ray r, let pr be its starting
point. Let r̄ be r’s complement: the part of the supporting line that is not cov-
ered by r. Let r̃ be the part of r̄ that has y ≥ y�. Now we construct a needle for
each ray’s complement: Two line segments that share one endpoint at the point
where r̄ has y-coordinate y�. The other endpoint for both segments lies very close
to pr. The endpoints are on opposite sides of the ray starting point so we get a
wedge-like shape that runs nearly parallel to r̃. In addition to these 2n segments,
which we will refer to as needle segments, we create three more segments which
we will refer to as the leading segments: We create one horizontal segment we call
sh with y-coordinate between y� and the lowest intersection point between ray
supporting lines, that starts far to the right of the needle segments and ends to
the left of them, intersecting all of the needles. Attached to sh is a large vertical
segment we call sv, running up to a point above the highest starting point of
a ray. Attached to that is another horizontal segment we call st, this one being
short and ending to the left of any ray starting point. See Fig. 6 for a sketch.

Fig. 6. (a) Sketch of a reduction of a circle graph with three chords. Segments shown
in black. (b) Polyline of 2n + 3 links covering the constructed segments, corresponding
to a Hamiltonian Path traversing the rays, starting with the ray with the largest slope
and ending with the ray with the smallest slope.
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Now we have 2n + 3 segments in total, where n is the number of chords in
the original graph.

Lemma 2. We can cover all segments using a polyline of 2n + 3 links if and
only if the circle graph has a Hamiltonian Path.

Proof. To see why this is true, consider that since none of the segments are
collinear and no three segments intersect in the same point, a suitable polyline
must fully cover one segment with each link. For a polyline to be able to bend
from fully covering one segment to fully covering another, either the segments
must have a shared endpoint, or the supporting lines of the segments must
intersect in a point not contained in either segment. Segment sh intersects all
needle segments in their interior and is parallel to st, so we know that a suitable
polyline must start1 by covering sh, and it must bend at the common endpoint
with sv and then fully cover sv. All of the intersection points between sv and
the supporting lines of needle segments lie below the endpoint it shares with sh,
so to be able to cover sv with the second link the polyline must next connect
to st, meaning it bends at the shared endpoint of sv and st. The third link is
horizontal, covering st. Since the supporting line of st intersects all of the rays,
the polyline can bend to any needle segment for its next link.

Since we have covered our additional segments sh, sv, and st, the rest of the
2n links must cover one needle segment each. Observe that the needle segments
all extend downward to below the lowest intersection point between support-
ing lines. This means that when a link covers a needle segment when travelling
downward, the next link must then travel upward on the other half of the needle,
as all intersection points with supporting lines of other segments lie in the seg-
ment’s interior. When the next link then covers a needle segment when travelling
upward, the only places the polyline can viably bend next are near places where
the ray associated with the previous needle intersects another ray. So we can
cover the 2n needle segments using a polyline of 2n links if and only if there is
a Hamiltonian Path in the ray intersection graph and thus a Hamiltonian Path
in the original circle graph.

Since the transformation is polynomial, we know the problem is NP-hard.
We can also see that the problem is in NP, since for any instance we can expect
that if a polyline of k links exists covering a set L, one must also exist where
each vertex has coordinates of polynomial complexity, since the vertices could
all lie on the intersection points of the supporting lines of the segments, or
otherwise on points with rational coordinates on those supporting lines. This
polyline could serve as a certificate for the verification algorithm. This gives the
following theorem:

Theorem 2. Connected Segment Polyline Cover is NP-complete.

1 A suitable polyline could also end with sh, but we will define the polyline to be in
this direction for ease of notation.
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5 Directed Curve Simplification

Finally, we reduce Connected Segment Polyline Cover to Directed
Curve Simplification. As a problem instance, we are given a set L of n non-
collinear line segments in the plane whose union is connected. We construct an
input polyline of polynomial size that completely covers the set of segments and
no other points. We could do this, for example, by treating the segment end-
points and intersection points as vertices of a graph connected by edges, and
have our polyline be the path of a breadth-first search through the graph. We
set δ to 0. Now we know that, since a simplification must cover the union of L,
any simplification of our input polyline that has n links must cover each seg-
ment in L completely with one link. This means such a simplification would be a
solution to our instance of Connected Segment Polyline Cover. Since the
reduction is polynomial in size, we know that this variant of the GCS problem
is NP-hard, and using a similar argument to the one for Connected Segment
Polyline Cover it is easy to see that it is in NP as well.

Theorem 3. Directed Curve Simplification, restricted to instances where
δ = 0, is NP-complete.

5.1 Non-zero δ

We can also extend this reduction to non-zero δ by picking δ > 0 but still small
enough such that it would not change the combinatorial structure of the space
the polyline can lie in, so each link of the polyline must still correspond to exactly
one segment in L. For the segments we have constructed in the earlier reduction,
we will show that setting δ < 3

4n! will guarantee the structure of the space will
not change. So a simplified polyline of 2n + 3 links with 0 < δ < 3

4n! will only
exist if and only if it also exists for δ = 0.

For space reasons, we only sketch the ideas of the proof here; details can be
found in the full version [21].

The main idea is to choose δ sufficiently small so that there are no additional
intersections between extensions of segments that are not supposed to intersect.
When δ = 0, the space the simplified polyline can occupy is exactly the input
segments, but for non-zero δ, the polyline does not have to exactly cover the
original segment. If we center two circles with radius δ on the endpoints of a
segment, the two inner tangents of these circles will form the bounding lines of a
cone that covers all possible polyline links that are able to “cover” a segment. We
will call the part of the cone that is within δ of the segment the tip of the cone,
and the rest of the cone the tail of the cone. For δ = 0, the supporting line for
the segment forms a degenerate cone of width 0. To preserve the combinatorial
structure, fattening the cones cannot introduce intersections between cone tails,
as these correspond to two segments’ supporting lines intersecting in the exterior
of the segments. To simplify the algebra, we consider a slightly larger cone,
between the lines connecting points created by going 2δ to the left and right
of the original endpoints of the needle segments. It is easy to see that these
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larger cones contain the true cones. We reach the bound on δ given above by
case distinction of different configurations of potentially intersecting cones, and
taking the minimum.

Since we can have a small enough δ of polynomial bit complexity, this means
the Directed Curve Simplifiction problem is NP-hard in general, as for
larger values of δ the construction could be scaled up.

If the general problem is in NP is hard to say, since our approach for show-
ing this for the previous problems does not extend, and it might be possible
that inputs exist where the only possible simplifications of k links have vertex
coordinates of exponential bit complexity. This remains an open problem.

Theorem 4. Directed Curve Simplification is NP-hard.

6 Conclusion

We have shown that Directed Curve Simplification is NP-hard, which com-
pletes the results in Table 1 and completely settles the complexity of global curve
simplification under the Hausdorff distance.

As the main tool in our reduction, we have shown that every circle graph can
be embedded as an intersection graph of rays with coordinates of polynomial
complexity. It is still an open question if it is possible to embed every circle
graph as rays with coordinates of logarithmic complexity. Whether Directed
Curve Simplification is in NP is another open problem that remains.
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Abstract. By leveraging recent progress of stochastic gradient descent
methods, several works have shown that graphs could be efficiently laid
out through the optimization of a tailored objective function. In the mean-
time,DeepLearning (DL) techniques achieved great performances inmany
applications. We demonstrate that it is possible to use DL techniques to
learn a graph-to-layout sequence of operations thanks to a graph-related
objective function. In this paper, we present a novel graph drawing frame-
work called (DNN)2 : Deep Neural Network for DrawiNg Networks. Our
method uses Graph Convolution Networks to learn a model. Learning
is achieved by optimizing a graph topology related loss function that
evaluates (DNN)2 generated layouts during training. Once trained, the
(DNN)2 model is able to quickly lay any input graph out. We experiment
(DNN)2 and statistically compare it to optimization-based and regular
graph layout algorithms. The results show that (DNN)2 performs well and
are encouraging as the Deep Learning approach to Graph Drawing is novel
and many leads for future works are identified.

Keywords: Graph drawing · Deep Learning · Graph Convolutions

1 Introduction

Optimization-based (OPT) and Deep Learning (DL) methods are gaining
increasing interest in the information visualization field [30,34]. From the very
design of visualizations to their evaluations, such techniques have shown to per-
form well and present benefits over standard methods. These advances moti-
vated the exploration of these techniques adaptation to graph drawing. Some
studies [1,17,35] used OPT approaches to optimize an objective function for a
single graph with Stochastic Gradient Descent (SGD) and obtained good results;
Zheng et al. [35] even outperformed some state-of-the-art layout algorithms. On
the other hand, if DL techniques have been applied on graph and graph drawing
related problems (e.g., evaluate aesthetic metrics) [9,11,20], to the best of our
knowledge, only one study made use of this technique to draw graphs, Deep-
Drawing [31]. Their framework leverages DL techniques to learn a model to
reproduce layouts (i.e., ground truths) by optimizing a Procrustes-based cost
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function that compares the produced layout to the ground truth one. A major
flaw of optimizing such a cost function by opposition to a graph topology related
function is that the model is trained to optimize a similarity to a ground truth
graph layout (that can be suboptimal) rather than the emphasis of the topology.
This paper presents Deep Neural Networks for DrawiNg Networks, (DNN)2 , a
graph layout framework relying on unsupervised Deep Learning. It proposes to
adapt well-proven Convolutional Neural Network architecture to graph context
using Graph Convolutions [5,16]. To the best of our knowledge, it is the first
Deep Neural Network (DNN) architecture trained to lay generic graphs out by
optimizing a graph-drawing related cost function. We propose an experimenta-
tion of (DNN)2 where we use ResNet [14] architecture as a basis to optimize
the Kruiger et al. [17] adaptation of the Kullback-Leibler divergence. In DL, as
a model performance and its capability to generalize to unseen data are often
incompatible, we also study the benefits of pre-training (DNN)2 . Finally, we sta-
tistically compare (DNN)2 with state-of-the-art methods on aesthetic metrics
and find that it competes with them. By efficiently learning a bounded sequence
of operations that lays generic graphs out, (DNN)2 experimentation suggests
that graph drawing can be modeled as a mathematical function.

The remainder of the paper is organized as follows. Section 2 presents
related works on OPT and DL methods in graphs context. Section 3 introduces
(DNN)2 and its key concepts while Sect. 4 presents the results of its experimen-
tal evaluation. Section 5 discusses the visual aspect of (DNN)2 layouts and its
limitations. Conclusions and leads for future works are presented in Sect. 6.

2 Related Works

First, we define the conventional notations used in this paper. Let G(V,E) be
a graph: V is its set of nodes {vi}, i ∈ [1, N ], N = |V | and E ⊆ V × V its
set of edges. Graphs are considered simple and connected. Let nodes positions
be encoded in a vector X ∈ RN×2 where Xi is the 2D position of node vi,
||Xi − Xj | | relates to the Euclidean distance between points Xi and Xj .

Optimization-based (OPT) and Deep Learning (DL) techniques applications
to Graph Drawing are gaining popularity and have been applied to a variety of
graph and graph drawing related problems. For instance, Kwon et al. [19] used
Machine Learning techniques to approximate a graph layout and its aesthetic
metrics at the same time. Haleem et al. [11] also proposed to predict aesthetic
metrics using a DL model. Several studies [10,22,27] used OPT to compute a
feature vector embedding of a graph nodes. Kwon and Ma [20] proposed a Deep
encoder-decoder to learn smooth transitions between different layouts of a graph.

Recently, OPT and DL techniques were proposed to lay graphs out and
did compete with state-of-the-art layout algorithms. Kruiger et al. [17] pro-
posed to optimize the Kullback-Leibler divergence by gradient descent. Kullback-
Leibler divergence is a measure of dissimilarity between two probabilities distri-
bution P and Q which was used to visualize data [13,28] and is defined as:
DKL =

∑

i

P (i) log P (i)
Q(i) . The proposed optimization framework, tsNET , showed
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to perform well, although its execution time is extremely high (i.e., several sec-
onds for graphs with N < 100). The authors proposed an improved variant of
their method for which nodes positions are initialized with PivotMDS rather
than randomly. This variant showed to be more efficient in terms of aesthetic
metrics and converged faster on larger graphs. S GD2 [35] relies on the opti-
mization of stress by stochastic gradient descent (SGD). Stress is modeled by a
set of constraints between nodes that are relaxed by iteratively moving pairs of
nodes. GD2 [1] also leveraged SGD to optimize a set of aesthetic metrics whose
combination can be tuned by associating a weight to each metric.

On the other hand, GraphTSNE [21] learned a shallow Neural Network made
of Graph Convolutions to predict a graph layout. The key idea of their work is
to train a model for each graph to draw, the train dataset being the graph nodes
themselves. Even if their model cannot be described as deep, their work confirms
that a t-SNE based loss can be optimized by Graph Convolutions networks. Deep-
Drawing [31] is the first method to train a DNN to compute graph layouts. It
aims to mimic a target algorithm given as ground truth and can be seen as a fast
approximation of its target. This was also studied by Espadoto et al. [7] and both
studies raised several limitations to this approach. First, it requires to run the
target algorithm thousands of times to generate labeled training data. Due to
model convergence issue, the labeled data generation should be manually super-
vised and the model cannot reproduce results of a non-deterministic algorithm
either. Second, as the model learns to mimic an algorithm, it cannot produce
better results than its target baseline and it also learns its defects. Finally, as the
function optimized by the model is not related only to its input data, it does not
learn features from its input but rather from its combination input–target algo-
rithm. Hence, it is unclear how well it can generalize to unseen data for which no
target result was ever provided. As opposed to DeepDrawing, (DNN)2 training
is unsupervised (i.e., no groundtruth layout is provided) and generated graph
layouts are evaluated according to a graph topology related cost function based
on t-SNE.

3 (DNN)2Framework Design

3.1 (DNN)2Architecture

A ResNet-Like Basis. The design of (DNN)2 architecture leverages Convolu-
tional Neural Networks (CNNs) by adapting them to a graph context with Graph
Convolutions [5,16]. The architecture reproduces ResNet [14], a CNN designed
to classify images and reaching a high accuracy on the ImageNet challenge [6]. It
is composed of residual blocks that contain shortcuts which enable the model to
work on several levels of abstraction. It is made of 52 spectral Graph Convolutions
(see Sect. 3.1) organized in 16 residual blocks as in the ResNet architecture (see
Fig. 1). In addition, three node-wise fully connected layers with shared weights
are added after the last convolution, the final layer being the model output.
To handle graphs of varying sizes, the model inputs are fixed to an arbitrary
size Nmax and are padded with fictive nodes to fit this size. After each residual



378 L. Giovannangeli et al.

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output: Output:

Output:Output:

Output: Output:

Output:

Output:

Output: Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output: Output:

Output: Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output: Output:

Output: Output: 

Nodes Features Chebyshev
Filters *

Output: Output:

Output:

Output:

Output:

Output:

Output:

Output:

Output:

Graph. Conv.
Layer

Input Layer

Dense Layer
(Fully Connected)

Output Layer

ReLu activation

Linear activation

Add

Legend

R
es

id
ua

l b
lo

ck
 w

ith
C

on
vo

lu
tio

n 
sh

or
tc

ut
R

es
id

ua
l b

lo
ck

 w
ith

 
re

gu
la

r s
ho

rt
cu

t

Mask of
fictive nodes *

Every Graph Convolution gets
Chebyhev Filters and Mask of nodes

as input

Every Graph Convolution gets
Chebyhev Filters and Mask of nodes

as input

Output:Output:

Output: Output:

Output:Output:

Output:

Output:Output:

Output:

Fig. 1. (DNN)2 architecture based on ResNet50 [14]. Some details have been omitted:
(i) Chebyshev filters input is provided up to order 4 to all Graph Convolution layers
except the 9 last layers (up to order 2); (ii) features vectors (i.e., convolutions outputs)
are normalized after every convolution; (iii) normalized features vectors are applied a
mask encoding the real-fictive nodes information; and (iv) only the first two residual
blocks are emphasized out of the 16 blocks.

block, its resulting features tensor is multiplied with a mask of real-fictive nodes
Mask ∈ 1Nmax where Maski = 0 if vi is a fictive node, 1 otherwise. Padding
the model inputs to match the expected shape could create a bias during the
training: if fictive nodes are always padded at the same position in the tensors,
some trainable weights will mostly see irrelevant features of fictive nodes and be
underfitted. To avoid this bias, the padded model inputs are randomly permuted.

Spectral Graph Convolutions. Abbreviated Graph Convolutions, they were
defined by Kipf and Welling [16] to operate on a graph signal encoded as a
features vector for every node. The convolution kernel size K is defined to con-
volve a node with its K-hop neighborhood. The graph topology is provided
through the graph spectrum (i.e., eigendecomposition of the normalized Lapla-
cian matrix) [3], approximated with Chebyshev polynomials [12]. Graph Convo-
lutions are formally defined as a function of a signal x:

gθ � x = UgθU
T x (1)
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Fig. 2. Graph Convolutional layer diagram. It takes two tensors as input: (i) a feature
vector to convolve (X); and (ii) a data structure that encodes the graph topology (T ).
X can refer to a node features vector at any step of the training.

where U is the matrix of eigenvectors of the symmetric normalized Laplacian
matrix L so that L = UΛUT where Λ are the eigenvalues of L. As the evaluation
of Eq. 1 and the eigendecomposition of L are expensive, the operation can be
approximated [12] using the Chebyshev polynomials Tk(x) up to order K:

gθ′ � x ≈
K∑

k=0

θ′
kTk

(
L̃

)
x (2)

where L̃ is the rescaled symmetric normalized Laplacian L̃ = 2
λmax

L − IN , λmax

being the highest eigenvalue in Λ and IN the identity matrix of size N . θ′ ∈ RK

is a vector of Chebyshev coefficients and Tk(x) is the Chebyshev polynomial
defined as T0(x) = 1, T1(x) = x and Tk(x) = 2xTk−1(x) − Tk−2(x),∀k ≥ 2 and
that costs O(K|E|) to be computed up to order K [12]. The Graph Convolution
computation in this paper (illustrated in Fig. 2) can be formally defined as:

Z =
K�

k=0

Tk

(
L̃

)
· X · Θ (3)
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where X ∈ RN×F is the nodes features vectors (i.e., graph signal) where each
node has F features, and Θ ∈ R(F∗(K+1))×F ′

is the learned graph convolution
kernel where F ′ is the size of the desired output feature vector for every node.
The symbol

�
is used as a concatenate operator on all the Tk(L̃) · X tensors.

Finally, (DNN)2 is fed with three tensors: the graph signal (nodes feature
vectors, defined later in Sect. 3.3), a mask of real-fictive nodes and the Chebyshev
polynomials (also referred to as Chebyshev filters). Its output is set to a Nmax

×2 tensor of nodes positions in the plane. The time complexity of a forward pass
in the model is O(Nmax) as this constant bounds the tensors size.

3.2 Loss Function

Unlike DeepDrawing [31], (DNN)2 is trained to optimize a loss function that
captures the graph layout quality based on its topology. As optimizing a func-
tion for a whole dataset is fundamentally different from optimizing it for specific
graphs, the loss function should have already been used with standard and OPT
methods to lay graphs out so that we can compare their performances. This
mainly let us with two possible functions: stress and Kullback-Leibler(KL) min-
imization (see Sect. 2). If we believe both can be optimized by (DNN)2 , we
selected the KL minimization from Kruiger et al. [17] as it adapted better to
the framework throughout experimentations. The loss is then defined as:

C = λKLCKL +
λc

2N

∑

i

||Xi||2 − λr

2N2

∑

i,j∈V,i�=j

log (||Xi − Xj || + εr) (4)

where CKL is the main topology-related cost term based on the Kullback-Leibler
divergence proposed by Kruiger et al. [17]. The second and third terms are respec-
tively a compression that minimizes the scale of the drawing and a repulsion that
counter-balances the compression. (λKL, λc, λr) are weights used to tune the loss
function during the optimization. εr = 1

20 is a regularization constant.
Kruiger et al. [17] defined two stages for their tsNET algorithm. In the first

stage, the three λ factors are set to (λKL = 1, λc = 1.2, λr = 0) while in the sec-
ond stage, they are switched to (1, 0.01, 0.6). They also proposed a variant called
tsNET ∗ with two differences: nodes positions are initialized with PivotMDS [2]
and the first stage lambda factors are (1, 0.1, 0). In this paper, (DNN)2 extends
both tsNET variants and is compared to their implementation1.

3.3 Graph Signal: Initial Nodes Features

The graph signal is defined as a features vector for every node. Some methods
already exist to extract a graph signal [10,22,27]. As standard layout algorithms
achieved to lay graphs out only using their topology [8,15,35], we assume it can
be sufficient to feed the model with this information encoded through Chebyshev

1 https://github.com/HanKruiger/tsNET, consulted on February 2021.

https://github.com/HanKruiger/tsNET
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Table 1. Random and Rome graphs datasets properties.

Graphs distribution Dataset size

|V| |E| Degree Train Validation Test

Random graphs [2, 128] [1, 6502] [1, 118] 127 000 25 400 –

Rome graphs [10, 107] [9, 158] [1, 13] 8000 1600 1931

filters. Nodes features are then represented by a tensor F ∈ RN×2 with nodes id
to help the model differentiate them and a random metric to reduce overfitting.

With this nodes features tensor, it can be expected that adding meaningful
features should help the model achieving better layouts. We experimented addi-
tional features by adding PivotMDS 2D positions such as in tsNET ∗ variant [17],
raising its size to F ∈ RN×4. This tensor is then transformed throughout the
model successive Graph Convolution and Dense layers as presented in Fig. 1.

As all the nodes features are not necessarily of the same order of magnitude,
they are normalized to give them the same importance.

4 Experimentation and Statistical Comparison

4.1 Datasets

Two datasets were considered for this experimentation (see Table 1), both being
split for Deep Learning validation purposes (i.e., hold out validation). In our
terminology, train and validation sets are used during training to feed the model
and evaluate it. Test set is used to benchmark models on unseen data.

Random Graphs. Used to pretrain (DNN)2 , its train set was generated to
sample 1000 random graphs for each graph size between 2 and Nmax. It is
noteworthy that by generating 1000 instances of each graph size, the model
will see many isomorphic graphs (mainly of small size). It means the model
could overfit on small graphs, but this kind of overfitting could be beneficial for
it. Since graphs can be decomposed into subgraphs of smaller size, the model
capability to layout a small graph g can help it laying out a larger graph G
having g as a subgraph. The validation set was generated with 200 instances per
graph size.

Rome Graphs. Rome is a dataset of undirected graphs provided by the Graph
Drawing symposium2 made of 11 534 graphs, 3 of them being excluded as they
are disconnected. The set was randomly split as presented in Table 1 and the
layout methods of this experiment will be evaluated on the Rome test set.

2 http://www.graphdrawing.org/data.html, consulted on February 2021.

http://www.graphdrawing.org/data.html
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Fig. 3. (DNN)2 training and evaluation pipeline. Six models are initially trained and
compared. Then, the best selected models for the two loss variants are compared to
tsNET , tsNET ∗ and state-of-the-art layout methods.

4.2 Training

In this experiment, Nmax was set to 128 to be slightly larger than the biggest
graph in the Rome dataset. Transformed features tensors sizes were defined
experimentally and are described in Fig. 1. Chebyshev filters were computed
up to order 4 for all the Graph Convolution layers except the nine last ones
which were only provided up to order 2. Therefore, more weight is given to
direct neighborhood which minimizes overdraws that are critical for the drawing
quality.

Since we want to compare our DL approach to the original tsNET and
tsNET ∗ algorithms, an instance of (DNN)2 is trained for each of them. We
refer to these two variants as (DNN)2 and (DNN)2*. Similarly to tsNET , the
models were trained in two stages. First, to optimize the loss C (see Eq. 4) with
their respective tsNET lambda weights (see Sect. 3.2). Second, the optimizer is
reset and models are trained to optimize C with second stage lambda weights.

(DNN)2 variants were trained with three methods to be evaluated on Rome
graphs: (i) pretraining on Random graphs, (ii) finetuning (after the pretraining)
on Rome graphs, (iii) training from scratch on Rome graphs. The goal is to
verify if pretraining the model on a large set of random graphs improves its
performances, and whether training on a specific dataset leads to better results
than on random graphs. There are six (DNN)2 instances in total (see Fig. 3).
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Table 2. Quality metrics used in our benchmark and references to their definition.
* represents metrics inverted to allow a lower is better reading for all of them.

Metric Reference

Aspect ratio* As defined in [1]

Angular resolution* As defined in [1]

Edge crossings number Well-known aesthetic metric [1,24]

Cluster overlap Autocorrelation metric in [32] with MCL clustering [29]

Neighborhood preservation* As defined in [17]

Stress Well-known aesthetic metric [1], normalized by N

The nodes features are rescaled in [0; 1] based on the train set. The random
permutation of the model inputs (see Sect. 3.1) is fixed for the test set graphs so
that every model is evaluated on the same permuted graphs.

4.3 Metrics and Comparison Procedure

Designing quality metrics for assessing a graph drawing quality that corrobo-
rates how well human subjects understand the drawing is a challenging ques-
tion [23,24,26,33]. We use a set of common metrics to assess (DNN)2 efficiency
and statistically compare it to state-of-the-art methods. Following the recom-
mendations of Purchase [25], some metrics (marked with * ) were inverted so
that all metrics can be read as lower is better (see table Table 2). In addition,
we measured Execution times of each algorithm in milliseconds (ms).

In the next, the efficiency of different graph drawing techniques are statisti-
cally compared on the presented metrics. To assess which method performs sig-
nificantly better, a Kruskal-Wallis test [18] first verifies whether the differences of
performances between all the compared methods on a given metric are significant
or not. If so, a post-hoc Conover test [4] is applied to verify which pairs of methods
are performing significantly different on that metric. For both tests, the acceptance
threshold is set to α = 0.05 and all Kruskal-Wallis tests passed.

4.4 Training Methods Evaluation

This section compares the 6 variants of (DNN)2 to determine which training
method is the most beneficial for the model. Execution times are not studied here
and Fig. 4 presents other metrics averages and standard deviations on the Rome
test set for each (DNN)2 instance. A red bar indicates that the corresponding
model performance is significantly different to all others. An arc between two blue
bars indicates that the difference of their performance is statistically significant.

Pretrained instances perform significantly worse than others on all metrics
but aspect ratio where they lead by a fair margin. From scratch instances never
perform the best on any metric. Overall, finetuned (DNN)2 lead to better scores
with most metrics. It could be expected as it is well known in the Image Pro-
cessing community that initialize weights to pretrained values tends to speed up
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the training process and to lead to better performances including generalization
to unseen data. The idea is that it is easier for the model to learn to solve a
specific task if it already knows high-level features. As finetuned models results
are best, pretraining effectively learned the model such features that helped it
to finetune.

In the next, only finetuned instances of (DNN)2 are compared to state-of-
the-art methods since they perform better on the graph drawing task.

Fig. 4. Comparison of (DNN)2 instances on the Rome test set. A red bar indicates
that the corresponding model performance is significantly different to all others. An
arc between two blue bars indicates pairwise significance. (Color figure online)

4.5 Comparison with tsNET

In this section, we study how the (DNN)2 adaptation of tsNET loss performs
compared to the original Optimization-based implementation of tsNET as both
use the same cost function. The results are presented in Table 3.

(DNN)2 has significantly lower scores than tsNET on all metrics but Stress
and Execution time. Though it is significant, the difference on Edge Crossings
Number is small. The Execution time difference is heavily in favor of (DNN)2 :
20.4 ms as opposed to 6541 ms for tsNET . The trends are about the same
between (DNN)2*and tsNET ∗, but their scores are closer and the differences
in Angular Resolution and Edge Crossings Number are not significantly different
anymore. (DNN)2*is also better on Stress and strongly better on Execution
time.
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Table 3. (DNN)2 and (DNN)2*pair comparison with their respective tsNET algo-
rithm on the Rome test set. o (resp. +) indicates a significant difference with
(DNN)2 (resp. (DNN)2*). The best significant results are bold (i.e., no bold value
when the difference is not significant).

Aspect ratio Angular res. Cross. number Cluster overlap Neighb. preserv. Stress Exec. time

(DNN)2 o 0.3± 0.136 0.963± 0.101 34.9± 40.5 0.55± 0.207 0.451± 0.159 0.117± 0.041 20.4± 10.4

tsNET 0.191± 0.091 o 0.885± 0.155 o 27.7± 31.8 o 0.489± 0.229 o 0.407± 0.1o 0.144± 0.155 o 6541± 5068 o

(DNN)2* + 0.229± 0.104 0.905± 0.15 30.0± 35.7 0.507± 0.214 0.397± 0.14 0.111± 0.042 24.8± 8.61

tsNET∗ 0.206± 0.10 0.872± 0.181 + 27.1± 32.0 0.49± 0.218 + 0.386± 0.115 + 0.124± 0.049 + 5836± 5933 +

Table 4. (DNN)2 and (DNN)2*pair comparisons with selected state-of-the-art algo-
rithms. o (resp. +) indicates a significant difference with (DNN)2 (resp. (DNN)2*).
The best significant result(s) for each metric is(are) bold (i.e., several bold values
when the differences between the best algorithms is not significant).

Aspect ratio Angular res. Cross. number Cluster overlap Neighb. preserv. Stress Exec. time

(DNN)2 o 0.294± 0.134 + 0.969± 0.092 + 36.3± 39.9 + 0.58± 0.197 + 0.468± 0.154 + 0.128± 0.06 + 21.0± 10.3 +

(DNN)2* + 0.229± 0.105 o 0.917± 0.138 o 30.6± 34.8 o 0.541± 0.206 o 0.409± 0.136 o 0.115± 0.046 o 25.1± 8.36 o

t-SNE 0.276± 0.158 o+ 0.97± 0.038 o+ 69.1± 48.9 o+ 0.598± 0.252 o+ 0.584± 0.097 o+ 0.56± 0.771 o+ 166± 71.7 o+

PivotMDS 0.298± 0.125 + 0.978± 0.088 o+ 38.7± 43.6 + 0.623± 0.202 o+ 0.49± 0.17 o+ 0.104± 0.035 o+ 0.546± 0.478 o+

GEM 0.573± 0.197 o+ 0.972± 0.034 o+ 54.4± 61.2 o+ 0.722± 0.162 o+ 0.617± 0.123 o+ 0.24± 0.062 o+ 5.22± 3.83 o+

S GD2 0.263± 0.123 o+ 0.812± 0.208 o+ 32.2± 36.6 o 0.583± 0.204 + 0.439± 0.181 o+ 0.066± 0.027 o+ 1.13± 0.91 o+

It is noteworthy that tsNET and tsNET ∗ suffers from a significantly high
Execution time standard deviation, meaning that the methods hardly converge
on some graphs. In addition, 450 out of 1931 (i.e., 23%) graphs were excluded
from the test set as the tsNET ∗ implementation would not complete on these.

We can conclude that the (DNN)2 implementation that adapts tsNET to a
Deep Learning approach is faster but does not lead to better drawings according
to most of the metrics. Although quality metrics differences are significant, they
remain small and should undeniably be alleviated by future works.

tsNET is designed to optimize a specific input graph at a time whereas, with
the Deep Learning approach, we aim at optimizing the model and not the draw-
ing of a single graph. If the DL training process is computationally expensive,
the resulting model should be capable of computing the layout without any fur-
ther need for optimization. In fact, if a DL model learns well to lay graphs out
by optimizing a generic cost function, it suggests that there exists a bounded
sequence of operations that efficiently projects a graph in a 2D space.

4.6 Comparison with State-of-the-Art Layout Algorithms

This section studies how (DNN)2 performs compared to selected layout algo-
rithms from the literature: t-SNE [28], since we leverage the Kullback-Leibler
divergence, PivotMDS [2], a deterministic Multidimensional Scaling used by
(DNN)2*and tsNET ∗, GEM [8], a well-established force-directed technique
and S GD2 [35], a stress Optimization-based approach with SGD. The meth-
ods are compared on the Rome test set and the results are reported in Table 4.
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(DNN)2 scores are slightly different from Table 3 since all test graphs are taken
into account here.

(DNN)2*performs better than (DNN)2 as all aesthetic metrics are signifi-
cantly in its favor. (DNN)2*is slower due to the extra processing of PivotMDS
it requires. This outcome was expected in view of tsNET variants comparisons
in [17].

(DNN)2 is better than GEM on all quality metrics; and is significantly better
than t-SNE on all metrics but Aspect ratio. It performs better than PivotMDS
on Angular resolution, Cluster overlap and Neighborhood preservation, but is
outperformed on Aspect ratio and Stress, while the difference is not significant
on Edge Crossings Number. Finally, S GD2performs significantly better than
(DNN)2 on all metrics but Cluster overlap.

Overall, (DNN)2*is significantly better on Aspect ratio, Cluster overlap and
Neighborhood preservation than all the other considered methods. It is also the
best in Edge Crossings Number with S GD2. While it was observed to be better
than tsNET ∗ on Stress, it is here outperformed by PivotMDS and S GD2.

As for Execution time, we can see that both (DNN)2 variants are slower
than other methods except t-SNE. However, they are less sensible to graph size
variations: (DNN)2 variants execution time standard deviations are 33% and
47% of their average, while they range between 43% and 87% for other methods.
It is important to note that a forward pass time in (DNN)2 is almost constant
and only takes 1.4 ms (i.e., 6% of its total execution time), the remaining time
being used to pre-process data for the model inputs.

Although (DNN)2 is not the best performing variant, its results indicate that
a Deep Learning framework, without any knowledge of what is a graph layout,
can learn a sequence of operations that lays graphs out. (DNN)2*leveraged its
PivotMDS input and drawn better layouts according to the quality metrics. Its
performances make it a good trade-off between tsNET ∗ and S GD2. The latter
performed surprisingly well, while GEM underperformed in this evaluation.

5 Discussion

5.1 Visual Evaluation

Graph layout examples of (DNN)2 are presented in Fig. 5 alongside tsNET ∗

and S GD2ones. S GD2drawings being all pleasing and only a few defects away
from being perfect, we can use them to see how the layouts should look like. For
(DNN)2 , the dodecahedron and the grid graph structures can be observed but
are severely distorted. It seems that topologically equivalent nodes (i.e., nodes
that can be mapped to each other by an automorphism) are grouped together.
Both drawings are therefore folded, which also emphasizes their symmetry. From
what we experienced, this behavior might be caused by the compression of the
first stage training (see Sect. 3.2) and too similar nodes features and Chebyshev
filters. Another explanation might be that the model had seen such small patterns
more often during the training stage and somehow overfitted on them. On the
two Rome graphs, the model has successfully laid the graphs structures out, but
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Fig. 5. Layout examples for (DNN)2 , (DNN)2*, tsNET ∗ and S GD2.

its tendency to group topologically equivalent nodes leads to unbalanced edge
lengths, edge crossings and overplots. On the other hand, (DNN)2*layouts are
visually more pleasing. The dodecahedron structure can clearly be identified.
Despite a lack of regularity, the grid layout is also acceptable. The two Rome
graph layouts demonstrate (DNN)2*good performances. The model was able to
separate topologically equivalent nodes, though they could have been repulsed
a little more. tsNET ∗ also produces nodes overlaps where neighborhoods are
similar, as it can be observed in the top right of its Rome graph 1 layout and on
the right side of Rome graph 2.

Overall (DNN)2 and in particular (DNN)2*performed well even compared
to OPT methods. The latter optimizing their cost function for a specific graph
at a time, we could expect them to provide better results than a DL approach.



388 L. Giovannangeli et al.

Nevertheless, (DNN)2 results acts as a proof-of-concept showing that we can
learn unsupervised DL models to lay graphs out. It is therefore encouraging as
we believe there is still a large room for improvement.

5.2 Limitations

The main limitation of (DNN)2 is the technical need to set a maximum graph
size Nmax so that the architecture tensors size is static. Setting Nmax to an
arbitrarily high number might not be an option either since it would signifi-
cantly increase the data pre-processing cost which is the most expensive step
in (DNN)2 . It is also not certain such model would learn if it is only fed with
small graphs (i.e., with N � Nmax), as each graph convolution kernel weight
would be underfitted.

Another limitation is the resources required to obtain a well-trained model.
First, if the use of the trained model is straightforward, the model training
relies on many design choices that can only be efficiently made through a trials
and errors process by an informed expert. Second, the computational resources
required to train the model can be prohibitive. If Deep Learning-designed com-
puters can easily handle small to mid-scale training (e.g., finetuning), heavier
training (e.g., pretraining) can require to generate hundreds of thousands of
graphs, which required the use of a Big Data platform in this experiment.

Finally, (DNN)2 has not been tested on disconnected, weighted or directed
graphs. Though the handling of these graph properties is straightforward with
this framework, it is not part of the scope of this study.

6 Conclusion

We introduced (DNN)2 , a Deep Learning based framework for graph drawing.
(DNN)2 proposes to adapt well-established Deep Neural Network architectures
in image classification to compute the layout of an input graph by using Graph
Convolutions. To the best of our knowledge, it is the first DL model trained to
lay graphs out by directly optimizing a graph topology related cost function.

We provided an experimentation of the framework and compared its perfor-
mances to graph drawing algorithms from the literature. The experiment showed
that (DNN)2 performs well compared to these algorithms despite some Deep
Learning related limitations. The results highly suggest that Deep Learning is a
promising approach for the future of graph drawing. It also implies that there
exists a mathematical function that efficiently projects any graph structure into
a drawing, and that can be learned by Deep Learning models.

Future work leads include trying out other (DNN)2 implementations, mean-
ing other Deep Neural Network architectures, loss functions (e.g., stress) and
input node features (e.g., node2vec, DeepWalk). Another interesting direction
is to train and evaluate (DNN)2 on other graph datasets or on specific graph
families. Expanding the scale of the graphs size (DNN)2 can handle, or apply it
to other specific graph drawing applications are also promising leads for future
work.
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Drawing Game
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Abstract. Sprouts is a two-player pencil-and-paper game invented by
John Conway and Michael Paterson in 1967. In the game, the players
take turns in joining dots by curves according to simple rules, until one
player cannot make a move. The game of Sprouts is very popular and
simple-looking, so it may come as a surprise that there are essentially no
AI Sprouts players available. This lack of computer opponents is caused
by the fact that the game hides a surprisingly high combinatorial com-
plexity and implementing it involves fascinating programming challenges.

We overcome all the implementation barriers and create the first user-
friendly Sprouts application with a strong artificial intelligence after
more than 50 years of the existence of the game. In particular, we
combine results from the theory of nimbers with new methods based
on Delaunay triangulations and crossing-preserving force-directed algo-
rithms to develop an AI Sprouts player which plays a perfect game
on up to 11 spots.

Keywords: Sprouts · Combinatorial game · Graph drawing · Nimbers

1 Introduction

Sprouts is a 2-player combinatorial paper-and-pencil game with very simple rules.
The game starts with n initial spots and the players alternate in connecting the
spots by curves and adding a new spot on each newly drawn curve. No curve
can cross or touch another curve or itself and each spot can be incident to at
most three curves. The first player who cannot make a move loses the game; see
an example of a Sprouts game with 2 spots in Fig. 1.

Sprouts was invented by John Conway and Mike Paterson at the University of
Cambridge in 1967 with an intention to create a game that is simple to play and
yet hard to analyze [5,19]. It was later popularized by Gardner [13] in a Scientific
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Fig. 1. An example of a 2-spot game. The first player loses after 4 moves.

American article. In 1969, Anthony [3] mentioned Sprouts in his science-fiction
novel Macroscope and, few years later, Pritchard [17] listed Sprouts in his com-
pilation of world’s best games for two players. Eventually, Sprouts became very
popular with dozens of publications about the game and with the World Game
Of Sprouts Association, which regularly held Sprouts championships. Yet, even
after more than half a century, there are essentially no implementations of this
game with a computer opponent [8]. This is very surprising at first, given how
simple-looking and well-known the game of Sprouts is. However, the combinato-
rial complexity of Sprouts is very high and implementing the game thus involves
various programming challenges.

We identify three main implementation barriers that cause many difficulties
to potential developers. The first problem is to handle free-form input drawings.
The drawn positions tend to degenerate and become confusing throughout the
game and thus one has to come up with a method to maintain them stable and
clear. Second, the number of possible moves can be exponential with respect to
the number of initial spots, which makes creating a solid computer opponent
very difficult. Finally, it is highly nontrivial to synchronize the free-form inputs
of a human player with the game representation used by a computer.

In this paper, we overcome all these challenges and create the first user-
friendly Sprouts implementation with a strong artificial intelligence. To do so,
we apply techniques from the theory of nimbers used by the state-of-the-art
Sprouts solver by Lemoine and Viennot [16] and combine them with our own spin-
dle method for performing computer moves using Delaunay triangulations and
crossing-preserving force-directed algorithms. Our program Sprouts: A Drawing
Game supports games on up to 20 spots and contains an AI player that plays
perfectly on n-spot positions with n ≤ 11, surpassing all existing Sprouts imple-
mentations. The first version of our program is available at [9].

2 Related Work

In Table 1, we list an overview of all implementations of Sprouts that we are
aware of. There are several Sprouts applications that allow to play only against
human players. This includes SproutsPlus [2], Sprouts Game [11], and the Uni-
versity of Utah Sprouts Applet [1]. The application 3Graph by Stefan Reiss [18]
is the only Sprouts implementation with AI players. It plays a perfect game on
n-spot positions with n ≤ 8 and supports all features listed in Table 1 except
of the remote game. Although 3Graph is, in our opinion, currently the best
Sprouts implementation, there are some places for improvement. It is not very
user-friendly, supports games with only at most 8 spots, and often crashes due to
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Table 1. An overview of the existing Sprouts implementations with the following
info: current availability of the program (CA), the support of the free-form inputs (FI),
crossing detection (CD), position maintaining (PM), computer opponent (CO), remote
game (RG), and the target platform (TP). Our application Sprouts: A Drawing Game
supports all the listed features.

CA FI CD PM CO RG TP

Sprouts - A Game of Maths! ✗ ? ? ? ✓ ? iOS

SproutsPlus ✓ ✗ ✗ ✗ ✗ ✓ iOS

Sprouts Game ✓ ✓ ✗ ✗ ✗ ✗ iOS

UoU Sprouts Applet ✓ ✓ ✓ ✗ ✗ ✗ Applet

3Graph ✓ ✓ ✓ ✓ ✓ ✗ Windows

various internal errors. Browne [8] also mentions Sprouts - A Game of Maths! [15]
as a Sprouts application with AI players, but he states that it did not work on
any tested device and it is currently unavailable.

Besides these programs, there are several papers analyzing the implementa-
tion challenges of Sprouts [7,8,16] and even some intentions to create Sprouts
applications with AI [1,8,20]. For example, Browne [8] mentions creating a com-
plete Sprouts-playing app and investigating AI methods for playing the game at
arbitrary sizes. However, no such result has been published yet.

Although almost no AI players are available, there are some computer Sprouts
solvers. The outcomes of n-spot positions for n ≤ 7 were determined by hand [12,
14]. Applegate, Jacobson, and Sleator [4] wrote the first computer analysis of
Sprouts and successfully determined the winning player of n-spot games for
each n ≤ 11. They also introduced the famous Sprouts conjecture which states
that each n-spot game is winning for the first player if and only if n is equal to
3, 4 or 5 modulo 6. Lemoine and Viennot [16] created the interactive Sprouts
position editor GLOP that was used to determine all outcomes up to 44 spots
and even some outcomes up to 53 spots. These are the strongest results to date
and each of the computed outcomes agrees with the Sprouts conjecture, which,
however, still remains open.

3 Preliminaries

We now introduce some notation and show basic properties of Sprouts. Let P be
a class of plane graphs with maximum degree at most 3, obtained from a finite
set of isolated vertices by a sequence of moves that obey the rules of Sprouts. The
plane graphs from P are called positions. Each vertex of a position corresponds
to one of the initial spots or to one of the spots added along the drawn curves.
Edges of a position are formed by the portions of the curves between two spots;
see part (a) of Fig. 2. For n ∈ N, the n-spot position is a position consisting
of n isolated vertices. The number of lives of a vertex v in a position P is
l(v) = 3 − degP (v). A vertex v is alive if l(v) > 0 and dead otherwise. The faces
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Fig. 2. (a) A Sprouts position with five regions. (b) A zone Z(v) with a new location
v′ of the vertex v moved in the direction F (v).

of P are called regions. The outer face of P is called the outer region of P and
all other faces are called inner regions of P . For a region R of P , we let PR

be the plane subgraph of P induced by vertices that are incident to R. Every
connected component of PR is a boundary of R. For an inner region R, the
unique boundary incident to the outer region of PR is the border boundary of
R. The other boundaries are called inner boundaries, including all boundaries of
the outer region. A region R is alive if

∑
v∈R l(v) > 1 and dead otherwise.

It is quite easy to show that each game on the n-spot ends after at most 3n−1
moves and lasts at least 2n moves [5]. It follows that Sprouts is a finite game.
In fact, it is an impartial game [10] and thus there exists a winning strategy for
one of the players in every position.

4 Graphical Representation

We assume that the edges of a Sprouts position P are drawn as piece-wise linear
arcs and that P is contained in [0, 1]2, which represents the playing area. Vertices
of the graphical representation gr(P ) are the endpoints of the line segments
forming the piece-wise linear arcs representing the edges of P or Sprouts spots
that stand alone somewhere in a region of P . The vertices in the latter case are
called singletons. The game vertices correspond to the real Sprouts spots. They
are either singletons or the endpoints of the edges of P .

In gr(P ), we represent an edge e of P by a sequence gr(e) of vertices of e
starting and ending with the game vertices that are the endpoints of e. The
ordering of gr(e) is determined by the order in which e was drawn. The line
segment connecting two consecutive vertices of gr(e) is called a small edge. A
boundary β of P is represented by a circular list of the sequences representing
the edges of β. It is important for the move insertion that all inner boundaries
in a region of P are oriented in the same way while the orientation of the border
boundary is opposite. A region R is represented by a set of the lists representing
the boundaries of P organized into a tree-like hierarchical structure, which is
used to identify the region that contains a given point.

The graphical representation is used for correct insertion of the moves, cross-
ing detection, and for redrawing of positions. Due to space limitations, we
describe only the redrawing algorithm in detail.
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4.1 Redrawing Algorithm

To keep the freely-drawn positions stable and clear, we implemented a modifica-
tion of the redrawing algorithm PrEd by Bertauls [6] and its improved version
ImPrEd by Simonetto et al. [21]. PrEd and ImPrEd are iterative force-directed
algorithms that improve a given graph drawing while preserving its edge-crossing
properties. At each iteration, we compute a force F (v) ∈ R

2 for each vertex v
of a position P and then move v in the direction F (v). The amplitude of each
move is restricted so that the edge-crossing properties are preserved.

We let V be the vertex set of P , E be the set of edges of P , and Es be the set
of small edges of P . We define the set S of four additional static edges around the
game board [0, 1]2, which prevent vertices to move outside of the playing area.

We use three different forces between vertices and small edges: the attraction
force F a between vertices that are connected by a small edge, the repulsion
force F r between pairs of vertices, and the repulsion force F e between vertices
and small edges. To achieve better results, we count the force F r only between
vertices that do not lie on the same edge of P unless they are both game vertices.
We use three different constants βu,v, γ, and δ that customize the balance of
these forces. The constant γ is the optimal distance of edges and δ is equal to
the optimal length lopt of a small edge. The value of βu,v, which depends on two
vertices u and v, is mainly used to strengthen the repulsion force between u and
v if u and v are adjacent game vertices. The precise values of the attraction force
F a :

(
V
2

)
→ R

2 and the repulsion force F r :
(
V
2

)
→ R

2 are

F a(u, v) =
‖u − v‖

δ
(u − v) and F r(u, v) =

(
βu,v

‖u − v‖

)2

(v − u),

where F r(u, v) = (0, 0) if ‖u − v‖ ≥ βu,v. The force F e : V × Es → R
2 is given

by

F e(v, ab) =

{
(γ−‖v−vab‖)2

‖v−vab‖ (v − vab) vab ∈ ab, ‖v − vab‖ < γ

(0, 0) otherwise,

where v is a vertex disjoint from the edge ab and the point vab is the projection
of the vertex v onto the line determined by the small edge ab. The overall force
F : V → R

2 is computed for each vertex v as follows

F (v) =
∑

u∈V
uv∈Es

F a(u, v)+
∑

u∈V \{v}
�e∈E : uv∈e

F r(u, v)+
∑

ab∈Es∪S
v/∈ab

F e(v, ab)−
∑

u,w∈V
vw∈Es

u/∈vw

F e(u, vw).

After each force is computed, the vertices are moved in the direction F (v).
To preserve edge-crossings, we restrict the amplitude of these movements in the
same way as in PrEd [6]. For each vertex v, we define a zone Z(v) as a union
of eight circular sectors Z1(v), . . . , Z8(v) with radii r1(v), . . . , r8(v), respectively;
see part (b) of Fig. 2. At the end of each iteration, we compute the zone of
each vertex v, find a sector Zi(v) that intersects the computed force F (v), and
then we move v in the direction F (v) by min{‖F (v)‖, ri(v)}. We set the radii
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Fig. 3. Redrawing a Sprouts position with 6 initial spots using 30 iterations.

r1(v), . . . , r8(v) so that the edge-crossings are preserved. To compute the radii of
a zone Z(v), we only consider small edges ab of P that are disjoint from v. Based
on each such a small edge ab, we restrict the appropriate radii of the vertices
v, a, and b. The initial values of the radii are set to a maximum size Mmax of
a movement within a single iteration. Updating the radii is then done as in [6],
which implies that the same proof of the correctness still applies here.

To avoid having too short or too long edges, we merge too short small edges
together after each iteration. If there are two adjacent small edges uv and vw
with the distance ‖u − w‖ below a certain value lmer, then the small edges uv
and vw are replaced by a new small edge uw. To prevent crossings, we merge
uv and vw only if there is no vertex of P in the triangle uvw. We also subdivide
the small edges of e whose length is greater than a certain value lsub.

To speed up the computation, we update zones of vertices only for small
edges that lie in the same region. Moreover, we use a graphical data structure
quadtree as proposed by Simonetto et al. [21]. The use of quadtrees leads to a
sublinear time of searching for vertices that are close to a given point. Since the
amplitude of the movements of vertices is bounded by the finite value Mmax, we
update each zone Z(v) using only small edges s whose distance from v is less than
2Mmax using quadtrees. We also compute forces only between elements that are
close enough. More precisely, we compute the repulsion force F r(u, v) between
vertices u and v only if their distance is less than βu,v. Similarly, we compute
the edge repulsion force F e(v, ab) only if the distance between the vertex v and
the small edge ab is less than γ. To determine close pairs of two vertices and of
a vertex and a small edge, we implemented quadtrees for vertices and for edges.

Our redrawing algorithm is suitable for real-time computations in games with
up to 20 spots; see Fig. 3. We use 30 iterations with a time limit after which the
redrawing is terminated even if not all the iterations have finished. We also draw
all curves with Bezier splines to make the moves look smoother.

5 Computer Opponent

To implement a strong computer opponent, we apply methods used in the cur-
rently best Sprouts solver GLOP [16]. First, we encode each Sprouts position P
in a compact way using a string representation sr(P ), which was considered by
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many authors [4,8,16]. We describe the string representation and the methods
very briefly, as we use them in the same way as Lemoine and Viennot [16].

The string representation sr(P ) of a position P is a string of game vertices,
which are denoted by capital letters. Each boundary β forms a block of con-
secutive letters in sr(P ) in the order we meet the corresponding game vertices
when traversing β. The boundaries are separated by dots in sr(P ). The regions
are represented by consecutive blocks of boundaries separated by | in sr(P ). The
position P is also split into lands which are mutually independent parts of P . The
lands are separated by + in sr(P ). The strings of inner boundaries within the
same region have the same orientation while the orientation of the string of the
border boundary is opposite. For example, the position P from Fig. 4 can be rep-
resented by the string A.BCDEFGFEDH|DCBH.IJKJLMLJIN.O|IN+PQGFGQ.RS|RS.

5.1 String Simplification

A single Sprouts position can be represented by many different strings which
leads to repetitive computations. Therefore, we simplify the string representation
by applying two methods called the string reduction and the string canonization.

String Reduction. The string reduction simplifies strings using five steps. After
the reduction, the string A.BCDEFGFEDH|DCBH.IJKJLMLJIN.O|IN|PQGFGQ.RS|RS
of the position from part (a) of Fig. 2, which is not partitioned into lands, becomes
0.AB2C|BAC.1a1a2.0+12.AB|AB; see Fig. 4.

1. Delete dead parts: We delete all dead vertices, then all boundaries that
newly become empty, and then all dead regions and all empty lands.

2. Apply generic names: We rename each singleton to 0 and each vertex with
two lives to 1. After merging vertices that occur twice in a row, we rename
each letter that occurs only once in the string to 2.

3. Split lands: We split the position into lands.
4. Rename letters: We rename vertices contained in a single boundary starting

from a in the order they occur in the string. Then we rename all other letter
vertices within a single land starting from A in the order they occur.

5. Merge boundaries: For every region R with
∑

v∈R l(v) ≤ 3, we merge all
boundaries of R. This considerably reduces the number of strings.

String Canonization. Even after the string sr(P ) is reduced, there can be many
reduced strings representing P since they might differ only by reordering of
the boundaries, regions, lands and by relabeling of the vertices. A canonization
selects the lexicographically minimal string representing P and thus makes the
representation unique. However, the canonization takes too much running time.
We thus perform only the pseudocanonization used by Lemoine and Viennot [16].
This does not make the string unique, but it considerably reduces the number of
strings. For example, the string 0.AB2C|BAC.1a1a2.0+12.AB|AB then becomes
0.12a1a.ABC|0.2ABC+12.AB|AB, which we would get in the full canonization.
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Fig. 4. The position from part (a) of Fig. 2 after the string reduction, which produces
the string 0.AB2C|BAC.1a1a2.0+12.AB|AB.

Algorithm 1: Computing the nimber of a position P

Function ComputeNimber(P )
n ← 0;
while True do

if ComputeOutcome(P + n) is Loss then
return n;

n ← n + 1;

5.2 Computation of Outcomes

Since Sprouts is an impartial game, we can determine the outcome of each posi-
tion P . If the first player has a winning strategy, then P is winning and its
outcome is Win. Otherwise, P is losing with the outcome Loss. To determine
the outcome of P , we apply the theory of nimbers [5]. The nimber |P | of a posi-
tion P is the smallest non-negative integer that is not a nimber of a child of
P . It follows that P is losing if and only if |P | = 0. The nimbers speed up the
computation as positions tend to consist of several lands and the outcome of
P can be obtained by merging the nimbers of the lands of P according to the
following result.

Theorem 1 ([5,16]). The nimber of a Sprouts position P consisting of lands
L1, . . . , Ln is |P | = |L1| ⊕ · · · ⊕ |Ln|, where ⊕ denotes the bitwise exclusive or.

Instead of computing the outcome of P , we compute the outcome of a couple
(P +n) which consists of a parallel game of Sprouts on P and the game of Nim [5]
on a single heap of n objects. This corresponds to computing nimbers of Sprouts
positions which allows us to apply Theorem 1 and split positions into lands on
which we proceed independently. We apply Algorithm 1 to efficiently compute
the nimber of P using that the outcome of (P +n) is Loss if and only if |P | = n.

We apply the Alpha-beta pruning algorithm to compute the outcome of (P +
n); see Algorithm 2. The set of children of (P + n) is equal to the union of
{ (C, n) : C is child of P } and { (P,m) : m < n }. Note that the outcome of P is
the same as the outcome of (P + 0). We only store losing couples, which means
that we only store positions whose nimber is known. Also, we store only single
lands in our database as we are computing the lands separately.
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Algorithm 2: Computing the outcome of a couple (P + n)
Function ComputeOutcome(P + n)

merge nimbers of lands whose nimbers are stored in the database with the
nimber part of (P + n) using the bitwise exclusive or ⊕;
compute the unknown nimbers of all lands remaining in P except of one
land P ′ and merge them with the nimber part of (P + n);

(P ′ + n′) ← the updated couple (P + n) after the previous steps;
foreach child C of (P ′ + n′) do

outcome ← ComputeOutcome(C);
if outcome is Loss then

return Win;

store (P ′ + n′) into the database;
return Loss;

5.3 Creating the Computer Opponent

The computer opponent tries to compute the outcome of a position P . If it is Win,
then he plays a move that leads to a losing child. Otherwise the outcome is Loss
and all children are winning. The AI player can then select an arbitrary move.
To make the exploration of the game tree faster, we use known techniques such
as a suitable children priorities [16] and boundary matching on singletons [8].

We also implemented new features to improve the AI player. To make sure
that the perfect AI never takes too long in finding a best move, we support
databases of pre-trained positions. Unlike Sprouts solvers, the AI player has to
consider all moves in the human player’s turns so it is necessary to explore the
game tree in a much larger width. This is a problem, as the game trees are very
large. For example, already the tree of the 6-spot position contains 393103 strings.
We solve this by restricting the set of possible moves of the AI player so that we
do not have to explore the whole tree. The computer also selects children that
are simpler to analyze in wining positions and children with proportionally most
losing children in losing positions to increase a chance of opponent’s mistake.

Lemoine and Viennot [16] also suggested to implement distributed computing
for determining the outcomes. We implemented this improvement with threads
using a global database that is equipped by synchronization primitives to prevent
deadlocks. The outcome computation can be much faster with more threads.

6 Drawing a Computer Move

Here, we synchronize the graphical representation gr(P ) with the string repre-
sentation sr(P ) of a position P so that we can draw a computer move found
with sr(P ) into gr(P ). This is one of the most difficult steps we had to deal
with and as far as we know, it is not fully described in the literature. Browne [8]
sketched out the idea of using Delaunay triangulations and Voronoi diagrams.
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Although his solution works for the n-spot positions, there are several missing
parts for more complicated positions. So we apply our own new spindle method.

We also use Delaunay triangulations for computer’s drawing. The constrained
conforming Delaunay triangulation (CCDT) of a region of P is a constrained
Delaunay triangulation using Steiner points to meet given constraints on the
minimum angle and the maximum area of the triangles. We use the CCDT to
triangulate a region whose edges are all constrained; see Fig. 5. Let p1 and p2 be
two non-Steiner points of a CCDT T . We define a plane graph GT = GT (p1, p2)
by letting the vertices of GT be the points p1, p2 and the midpoints of all non-
constrained edges of T . Two vertices are connected by an edge in GT if they
lie in the same triangle of T but not on the same edge of T . If p1 and p2 lie in
the same triangle T , then we connect them through the center of gravity of T
in GT .

Fig. 5. A region triangulated by a CCDT T and of two paths (surrounded by shaded
triangles) in GT that connect different vertex occurrences of the same vertices.

We distinguish two types of moves depending on whether they connect
vertices from different boundaries or from the same boundary of P . Consider
two different boundaries A1 · · · Ai · · · Am and B1 · · · Bj · · · Bn of P . The double-
boundary move that connects two vertex occurrences Ai and Bj creates a new
boundary A1 · · · AiZBj · · · BnB1 · · · BjZAi · · · Am where Z is the newly added
vertex. Let A1 · · · Ai · · · Aj · · · An be a boundary in a region R with boundaries
partitioned into sets Bmajor, Bminor, and {β}. The single-boundary move that
connects (not necessarily different) vertex occurrences Ai and Aj and separates
the boundaries Bmajor from the boundaries of Bminor splits R into the major
region Ai · · · AjZ.Bmajor and into the minor region A1 · · · AiZAj · · · An.Bminor.

Drawing a Double-Boundary Move. To draw a double-boundary move m between
two vertex occurrences Ai and Bj in a region R, we construct a triangulation T
of R and we let m be the shortest path in GT (Ai, Bj) between Ai and Bj .
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Drawing a Single-Boundary Move. Consider a single-boundary move m connect-
ing vertex occurrences Bi and Bj with i ≤ j on a boundary β of a region R with
boundaries B that splits the boundaries B \ {β} into a major partition Bmajor

and a minor partition Bminor. Drawing of m is much more complicated since we
have to correctly split B into Bmajor and Bminor. The first step is to connect
all the inner boundaries from B \ {β} by a curve called spindle that starts and
ends in the border boundary (or the border of the playing area if R is the outer
region); see Fig. 6. Then we intertwine m with the spindle so that the partitions
Bmajor and Bminor are on the correct sides of m; see Fig. 7. Intertwining m also
uses triangulations and requires a lot of technical steps that are sketched below.

Setting up the Spindle. The spindle starts at an arbitrary vertex occurrence of
the border boundary and leads to the closest vertex of an inner boundary from
B\{β}. Then it continues from a vertex of the last visited boundary to the closest
vertex of a non-visited inner boundary from B \ {β} until we visit all the inner
boundaries from B \{β}. We end the spindle by connecting it to the closest non-
visited vertex occurrence of the border boundary; see Fig. 6. The spindle divides
the border polygon of R into the primary polygon Pprim, which is the polygon
that contains β or the occurrences Bi and Bj if β is the border boundary, and
the secondary polygon Psec. The orientation of the spindle is opposite to the
orientation induced by the counterclockwise orientation of Pprim.

Fig. 6. Spindles (heavier orange curves) that split the region into Pprim and Psec.
(Color figure online)

Intertwining the Spindle. Let C be a set of some of the inner boundaries visited
by the spindle s. We intertwine the move m with s using an enfolding of C; see
Fig. 7. To enfold C, we first draw a curve in Pprim from v0 = Bi to a vertex
v1 of the first segment of s that precedes a boundary from C with respect to
the orientation of s. In Psec, we then connect v1 with a vertex v2 of the first
segment of s that precedes a boundary not in C. We continue connecting vi with
vi+1 like this alternatingly in Pprim and Psec until we get at the end of s. At
the end, if we should continue drawing in Psec, we just draw a curve to the last
segment of s to get back to Pprim. Finally, we draw a curve in Pprim from the
last connected vertex to Bj . If C is empty, we connect Bi with the first vertex of
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the last segment of s in Pprim, then we go to the last vertex of the last segment
of s in Psec, and then we return to Bj in Pprim. In a reversed enfolding of C, we
intertwine s in the opposite direction.

Fig. 7. The enfoldings of the boundaries from C (green curves with empty discs). (Color
figure online)

Choosing the Right Enfolding. We have four options how to enfold the partitions.
We can choose C as the set of inner boundaries from Bmajor or from Bminor. We
can also apply either the enfolding or the reversed enfolding. However, since
the enfolded boundaries C always lie in the major region of m whereas the
reversely enfolded boundaries C always lie in the minor region and since the
border boundary cannot be enfolded nor reversely enfolded, we are left with a
single option for enfolding. We enfold C = Bmajor if Bmajor does not contain the
border boundary and we reverse enfold C = Bminor otherwise; see Fig. 8.

Fig. 8. The (a) correctly and (b–d) incorrectly chosen enfoldings for drawing a move
(blue) from Bi to Bj with the partitions Bmajor (full red) and Bminor (empty green).
(Color figure online)
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Optimizing Moves. We use various techniques to make the moves nicer, as they
should resemble moves drawn by a human player. For example, we take shorter
equivalent moves if the border boundary is dead, we enfold only sets of close sin-
gletons as singletons are interchangeable, and we handle empty single-boundary
moves separately. Finally, we note that some technical steps in the analysis
of intertwining (for example the case Bi = Bj) are omitted in this extended
abstract.

7 Conclusions and Future Work

We applied all the techniques described above to implement the Windows appli-
cation Sprouts: A Drawing Game [9] that allows to play against a computer
opponent; see Fig. 9 for a screenshot. Our program supports various forms of
the game. We have a Campaign mode consisting of 150 positions derived from
the n-spot positions with n ≤ 11 where one can play against a perfectly playing
computer opponent or against three other levels of AI. In a Quick play mode,
it is possible to play against various computer opponents or against a human
opponent on the n-spot positions with n ≤ 20 or on custom positions made in
the Custom maps mode. The program is not restricted to only local games but it
also supports a Remote game mode where the players can connect to a Sprouts
server and play against each other remotely.

Fig. 9. A screenshot from our application Sprouts: A Drawing Game.

All the computed outputs agree with the results of GLOP. In particular, we
obtained the same sizes of the game trees of the n-spot positions with n ≤ 6.
Moreover, the computation of outcomes with our program is slightly faster than
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with GLOP, even when using a single thread; see Fig. 10. With four threads,
the computation can speed up significantly. We encode positions using the same
notation as GLOP so its databases can be used in our program as well.

Fig. 10. Comparison of the computation times of GLOP and Sprouts: A Drawing
Game (SADG). Every column (i, j) contains the average times (in milliseconds) of
determining the outcome of 3 games starting on the i-spot position with j randomly
selected moves with empty databases of pre-trained moves. All the computations were
performed on a computer with the Intel(R) Core(TM) i7-6700HQ CPU running at 2.60
GHz with 16 GB of RAM.

We plan to further improve our application, for example, we would like opti-
mize the enfolding of singletons to make the computer moves even more natural.
Another possible plan is to employ the distributed computations of outcomes in
an implementation of a new Sprouts solver in order to determine the outcomes
of new n-spot positions and to tackle the Sprouts conjecture. Also, we would
like to modify our program and develop an application for mobile devices since
the game of Sprouts is ideal for touchscreens.
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Abstract. This report describes the 28th Annual Graph Drawing Con-
test, held in conjunction with the 29th International Symposium on
Graph Drawing and Network Visualization (GD’21) in Tübingen, Ger-
many. Due to the global COVID-19 pandemic, the conference and thus
also the contest was held in a hybrid format, with both on-site and online
participants. The mission of the Graph Drawing Contest is to monitor
and challenge the current state of the art in graph-drawing technology.

1 Introduction

Following the tradition of the past years, the Graph Drawing Contest was divided
into two parts: the creative topics and the live challenge.

Creative topics were comprised by two data sets. The first data set modeled
Movie Remakes by different directors. The second data set shows a logical recon-
struction of a scientific debate among 19th century geologists, namely the Great
Devonian Controversy, as an Argumentation Network. The data sets were pub-
lished about a year in advance, and contestants submitted their visualizations
before the conference started.

The live challenge took place during the conference in a format similar to a
typical programming contest. Teams were presented with a collection of challenge
graphs and had one hour to submit their highest scoring drawings. This year’s
topic was to minimize edge-length ratio in a planar polyline drawing graph with
vertex locations restricted to a grid and a maximum number of bends per edge
allowed.

Overall, we received 26 submissions: 7 submissions for the creative topics and
19 submissions for the live challenge.

2 Creative Topics

The general goal of the creative topics was to model each data set as a graph and
visualize it with complete artistic freedom, and with the aim of communicating

c© Springer Nature Switzerland AG 2021
H. C. Purchase and I. Rutter (Eds.): GD 2021, LNCS 12868, pp. 409–417, 2021.
https://doi.org/10.1007/978-3-030-92931-2_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92931-2_29&domain=pdf
https://doi.org/10.1007/978-3-030-92931-2_29
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as much information as possible from the provided data in the most readable
and clear way.

We received 7 submissions for the first topic, and 0 for the second. Submis-
sions were evaluated according to four criteria:

(i) Readability and clarity of the visualization,
(ii) aesthetic quality,
(iii) novelty of the visualization concept, and
(iv) design quality.

We noticed overall that it is a complex combination of several aspects that
make a submission stand out. These aspects include but are not limited to the
understanding of the structure of the data, investigation of the additional data
sources, applying intuitive and powerful data visual metaphors, careful design
choices, combining automatically created visualizations with post-processing by
hand, as well as keeping the visualization, especially the text labels, readable.
All submissions were printed on large poster boards and presented at the Graph
Drawing Symposium. We also made all the submissions available on the contest
website in the form of a virtual poster exhibition. During the conference, we
presented these submissions and announced the winners. For a complete list
of submissions, refer to http://www.graphdrawing.org/gdcontest/contest2021/
results.html.

2.1 Movie Remakes

A movie remake is a production of a film that is based upon an earlier production.
A remake tells the same story as the original but uses a different cast and may
alter the theme or target audience. See Tang et al. [1] for related work on this
topic.

For this topic, the task was to visualize a graph of movie remakes by different
directors. The data contains a list of directors, and pairs of movies: the original
and the remake (both with title, year, and directors). The data has been crawled
from Wikipedia and consists of 91 directors and 102 pairs of movies. The par-
ticipants were free to decide which parts of the data to visualize and how to
visualize it.

http://www.graphdrawing.org/gdcontest/contest2021/results.html
http://www.graphdrawing.org/gdcontest/contest2021/results.html
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Shared 2nd Place: Najla Amira Ochoa Leonor and Daniela Martinez
Duarte (TU Wien). The authors used Louvain’s method for community detec-
tion. Within each community, they identified film directors related to six or
more directors as the most influential movie directors. Using these directors as
the backbone for the visualization, they extracted a Steiner tree from the cine-
matographic graph. Then they used a spring layout for the visualization, where
each influential director is shown in a radial drawing resembling a film reel.
The authors also added context information for the data set, addressing com-
mon questions a reader could ask of the data set, such as the largest time span
between a movie and its remake or the proportion of female directors. This was
probably the prettiest submission and the committee appreciated the aesthetics
and the design quality of the visualization.
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Shared 2nd Place: Michael Häglsperger, Sven Teufel, Rinor Kelmendi,
and Henry Förster (Universität Tübingen). The authors arranged the
original movies together with their remakes on a timeline where movies of the
same director are grouped together. The dependency of movies is illustrated by
edges pointing from the original to their remakes. The visualization mimics a
video editor program, for this the movies of one director are arranged on the
same height, so the grouped nodes look similar to tracks in an editing soft-
ware. The authors also created an interactive version of the graph where it is
possible to highlight dependencies by clicking on a movie, remake, director, or
year. The interactive graph can be accessed at https://algo.inf.uni-tuebingen.
de/movie-remakes. The committee liked the approach and the design quality of
the submission, which made it easy to explore the data and explore interesting
structures.

Winner: Simon Pointner, David Ammer and Thorsten Korpitsch (TU
Wien). The authors show the movies along the vertical axis and their release
dates on the horizontal axis. Colored trees connect movies made by the same
director. To avoid overlaps of the trees, the authors computed an order of the
movies by optimizing the distance from the centroid of each node in a tree. The
committee was impressed by the aesthetics and the clarity of the visualization.
We especially liked the idea to connect movies by the same director by a tree,
which turns out to reveal a lot of information and structure in the data that
otherwise cannot be seen.

https://algo.inf.uni-tuebingen.de/movie-remakes
https://algo.inf.uni-tuebingen.de/movie-remakes
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Our main focus point was putting the movies as the central piece of in-
formation and therefore putting them on the horizontal axis while con-
necting the movies created by the same director mostly on the vertical
axis. To minimize the number of crossings and the area for each director
tree we optimized the order using a metaheuristic approach, in detail
simulated annealing. The cost is defined as the divergence of movies, of
the same director, from their centroid.
Simon Pointner

2.2 Argumentation Network

The network shows a logical reconstruction of a scientific debate among 19th cen-
tury geologists, namely the Great Devonian Controversy. The network contains
335 vertices which are of two types: statements and arguments. Each argument
has one or more sentences as premises and one sentence as a conclusion. Ver-
tices are grouped into 12 thematic clusters. The 1016 edges connect statements
to statements and statements to arguments. Each edge has an associated type
that describes the logical relation between vertices: contrary, contradictory,
or entails.
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Unfortunately, we have received no submission for this topic. During the con-
ference, we conducted a brief survey to find the reasons why nobody submitted
a drawing for this graph. The main reason seemed to be that the topic of the
argumentation, the Great Devonian Controversy, is largely unknown and that
it is difficult to find additional information on it. Most submissions have been
done by students (supervised by more experienced researchers), when given the
choice they all found the Movie Remakes graph to be more interesting and chose
to work on that one instead. Overall, it was not the graph itself, but the topic
that was not appealing enough for the participants. Based on the results of the
survey, we decided not to pose the same graph again and will instead hand out
two new topics for the Graph Drawing Contest 2022.

3 Live Challenge

The live challenge took place during the conference and lasted exactly one hour.
During this hour, local participants of the conference could take part in the man-
ual category (in which they could attempt to draw the graphs using a supplied
tool: http://graphdrawing.org/gdcontest/tool/), or in the automatic category
(in which they could use their own software to draw the graphs). Because of the
global COVID-19 pandemic, we allowed everybody in both categories to partic-
ipate remotely. To coordinate the contest, give a brief introduction, answering
questions, and giving participants the possibility to form teams, we were kindly
provided with both a room in the conference building, and a dedicated room in
the gather.town of the conference.

The challenge focused on minimizing the planar polyline edge-length ratio on
a fixed grid. The planar edge-length ratio of a straight-line drawing is defined as
the ratio between the length of longest edge and the length of the shortest edge.
There has been recent attention to this topic with several publications. The
planar polyline edge-length ratio is a generalization of the planar edge-length
ratio where edges do not have to be straight-line segments, but can be polylines
with a maximum number of bends per edge defined by the input.

The input graphs were planar undirected graphs. For the manual category,
each graph came already with a planar drawing.

The results were judged solely with respect to the edge-length ratio; other
aesthetic criteria were not taken into account. This allows an objective way to
evaluate each drawing.

http://graphdrawing.org/gdcontest/tool/
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3.1 The Graphs

In the manual category, participants were presented with six graphs. These were
arranged from small to large and chosen to contain different types of graph
structures. In the automatic category, participants had to draw the same six
graphs as in the manual category, and in addition another seven larger graphs.
Again, the graphs were constructed to have different structure.

For illustration, we include the fourth graph, which was given with a drawing
where every edge has length 1, except one long diagonal edge with length 10

√
2 ≈

14.14, in its initial state with vertices moved around randomly, the best manual
solution we received (by team New keyboard, who dis? ), and the best automatic
solution we received (by team TheWorstLayoutProducers).

Provided drawing

edge-length ratio 14.14

Best manual solution
New keyboard, who dis?
edge-length ratio 1.41

Best automatic solution
TheWorstLayoutProducers
edge-length ratio 3.16

For the complete set of graphs and submissions, refer to the contest website at
http://www.graphdrawing.org/gdcontest/contest2021/results.html. The graphs
are still available for exploration and solving Graph Drawing Contest Submission
System: https://graphdrawingcontest.appspot.com.

Similarly to the past years, the committee observed that manual (human)
drawings of graphs often display a deeper understanding of the underlying graph
structure than automatic and therefore gain in readability. The committee was
also impressed by the fact that for all of the six small graphs the manual drawings
were better than the automatic drawings. For the larger graphs, it turned out
that the allowed grid sizes of the input were too restrictive and it was hard to
get any planar drawing at all. Only for two of the seven large graphs, a feasible
solution has been submitted.

http://www.graphdrawing.org/gdcontest/contest2021/results.html
https://graphdrawingcontest.appspot.com
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3.2 Results: Manual Category

Below we present the full list of scores for all teams. The numbers listed are the
edge-length ratios of the drawings; the horizontal bars visualize the correspond-
ing scores.

Third place: New keyboard, who dis?, consisting of Soeren Nickel, Anäıs
Villedieu, and Jules Wulms.
Second place: Team perpendicular table, consisting of Fouli Argyriou, Henry
Förster, and Martin Gronemann
Winner: Zinklos, consisting of Jonathan Klawitter and Felix Klesen.

After the shocking event that gave our team its name, namely, a per-
son with the name Zink leaving our team just minutes before the event
started, we picked ourselves up again and got the adrenalin flowing. We
then attacked each instance with the following steps. First, we checked
if there is some structure in the graph that we can use such as a grid
structure or other regularities. Second, since a good planar embedding
is important for a good score, it was often worthwhile to search for a
suitable one. In particular for the last instance, we made a timewise
heavy investment to change the whole embedding such that a perfect
edge length ratio could be achieved. Third, when the longest edges could
not be shorted anymore, we iteratively extended the shortest edge by
adding bends and drawing them zigzagily.
Jonathan Klawitter

3.3 Results: Automatic Category

In the following we present the full list of scores for all teams that participated
in the automatic category. The numbers listed are the edge-length ratios of the
drawings; the horizontal bars visualize the corresponding scores.
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Third place: Graphiti, consisting of Lukas Schmitt and David Rumpf.
Second place: SPEIX, consisting of Haolin Pan, Yiming Qin, and Kunhao
Zheng.
Winner: TheWorstLayoutProducers, consisting of Moritz Greiner, Axel
Kuckuk, Michael Bekos, and Maximilian Pfister.

While working on this task, we quickly realized that the drawings that
optimize the given quality metric are far from nice. Hence, our team
WorstLayoutProducers focused on producing the worst such layouts,
which was enough to give us the first place. To be more precise, as a
first step we compute a valid drawing of the (abstract) graph, and af-
terwards we used an iterative scheme that tries to improve the current
solution by slightly modifying the current drawing without changing its
embedding, as this turned out to be more efficient for larger graphs.
Maximilian Pfister

Acknowledgments. The contest committee would like to thank the organizing and
program committee of the conference; the organizers who provided us with a room with
hardware for the live challenge, monetary prizes, and beer glasses for the winners; the
generous sponsors of the symposium; and all the contestants for their participation.
Special thanks goes to Maarten Löffler for providing the data for the Movie Remakes
graph. Further details including all submitted drawings and challenge graphs can be
found at the contest website: http://www.graphdrawing.org/gdcontest/contest2021/
results.html.

Reference

1. Tang, Y., Yu, J., Li, C., Fan, J.: Visual analysis of multimodal movie network data
based on the double-layered view. Int. J. Distributed Sens. Netw. 11, 906316:1–
906316:16 (2015)

http://www.graphdrawing.org/gdcontest/contest2021/results.html
http://www.graphdrawing.org/gdcontest/contest2021/results.html


Poster Abstracts



Graphomone: A Dynamic Network Player and
Creation Tool

Eleni Katsanou1(B) , Tamara Mchedlidze2 , Chrysanthi Raftopoulou1 ,
and Antonios Symvonis1

1 Department of Mathematics, National Technical University of Athens, Athens,
Greece

2 Utrecht University, Utrecht, Netherlands
t.mtsentlintze@uu.nl

Abstract. We introduce the software tool Graphomone, designed to
create and display dynamic networks in the form of node-link diagrams.
With Graphomone, we aim to fill the existing gap in the variety of
tools for network visualization, that is, to provide an easy and intu-
itive interface to create dynamic networks, to model dynamic attributes,
and, finally to observe the changes in the network over time enhanced
by the use of a change-warning colored halo.

Keywords: Dynamic network · Dynamic player · Dynamic editor

Introduction. Dynamic networks appear as models in diverse applications
ranging from humanitarian [3] to industrial [10]. The information visualization
community has developed various visualization methods for dynamic networks
that contribute to their understanding and communication. Among them are ani-
mation (time-to-time mapping), applied to both node-link diagrams or matrix
visualization, and timeline (time-to-space mapping), where node-link diagrams
may appear juxtaposed [9]. While many scientific papers and software packages,
e.g. [2, 4, 7, 8, 15] concentrate on the development of sophisticated visualization
methods and user interfaces to present and analyse dynamic networks, such sim-
ple tasks as viewing a dynamic network and its creation are not easily accessible
with the freely available tools. In this poster, we present Graphomone, an easy
to use dynamic graph player and creator.

Dynamic Network Model and Its Visualization. At this state of the imple-
mentation, the network model of Graphomone is rather simple, consisting of
nodes and edges, where both can have a small number of categorical and spa-
tial attributes that are easy to be presented in a node-link diagram. Common
visual attributes for nodes and edges are the visibility state (specifying whether
the node/edge is visible), color and label. Additionally, nodes can change their
shape (ellipse or rectangle), position and icon; and edges can change their width,
style (solid, dashed or dotted) and arrow visibility (specifying whether the edge
c© Springer Nature Switzerland AG 2021
H. C. Purchase and I. Rutter (Eds.): GD 2021, LNCS 12868, pp. 421–424, 2021.
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is directed). The dynamic nature of the network model in Graphomone can be
represented in two different ways, using integers time stamps or dates. Both
nodes and edges of the dynamic network model are “alive” for a specific inter-
val. Note that, by using the visibility feature mentioned above nodes/edges can
appear or disappear during their lifespan. All other attributes can change their
values only within the object’s lifespan, regardless of whether it is visible or not.

File Format. To describe the aforementioned dynamic network model and to
allow network export and import actions into Graphomone, we introduce a new
file format, GRDYN. The file is written in XML and the information is divided
into four parts: the time format of the dynamic model (integers or dates), a
declaration of the user-defined attributes, node information and edge informa-
tion. For each node, it is specified when it is added and when it is deleted, when
it changes its visibility state and when its visual attributes change values. The
information regarding an edge is presented in a similar way, with the addition
that its source and target nodes are specified together with info regarding its
arrow visibility. The main reason for introducing a new file format and not using
the already well-known GEXF (supported by Gephi) is that GEXF does not
support dynamic changes of the visual attributes of nodes and edges.

Software Design. Graphomone offers two basic functionalities: dynamic net-
work player and creation. The player displays the dynamic network transitions
from one timestamp to the next; the changes that may take place are the addi-
tion/deletion of nodes/edges as well as alterations of their visual attributes.
Graphomone supports both abrupt and smooth change of the visual attributes. In
smooth mode, the user can choose the visual attributes that are changed smoothly.
In particular, addition/deletion of elements is performed with a fade-in/out effect,
relocation of nodes is performed with a smooth motion. Inspired by the tool Graph-
Diaries [7], the changing object is also highlighted with a halo, having configurable
color. Graphomone allows for an interactive creation of dynamic networks: the user
can create a new dynamic network, insert nodes and edges into it, and edit their
lifespan, visibility periods and visual attributes. Note that, while GraphDiaries [7]
is a sophisticated tool for dynamic network visualization and analysis, it does not
support any network creation functionality.

Use Case. Graphomone can be used for creation, editing and visualization of
dynamic networks and it aims to make this process intuitive and user-friendly. As
a use case we have considered the field of literature, where character networks are
dynamic, describing the various interactions among the players over time. Using
Graphomone, we have re-modeled the dynamic network of Hrafnkels Saga that
appeared as one of the creative topics of Graph Drawing Challenge in 2020 [1].

Future Work. From the Hrafnkels Saga case, we concluded that in order
to allow for an easy and natural applicability to literary dynamic networks,
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a slightly more complex network model is necessary which supports node classes
and their dynamic changes. We plan to extend the design of the file format
and the software support for more complex models of multilayer networks, by
carefully choosing the right level of model complexity [12] necessary for the tar-
geted applications. Having targeted a certain application domain, we will eval-
uate Graphomone with domain experts and improve it based on their input. A
special effort will be devoted to making the software tool freely accessible and
compatible with other network visualization tools such as e.g. Gephi by the mean
of import an export functionalities that will allow an easy conversion among the
file formats.
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Motivation. Directed graphs appear in a plethora of practical applications. While
real-world graphs often are not planar, the literature on beyond planarity so far
lacks results on directed graphs [3] aside from one on upward RAC drawings [1].
Here we study the following version of the problem, which is inspired by fanplanar
drawings, where each edge e can be intersected only by a fan of edges emerging
from a common endpoint from either the left or the right side of e.

Let e be an edge in a directed graph G = (V,E) and let Γ be a drawing of
G. By the direction of e, the left and right side of e in Γ is well-defined. In Γ ,
each edge e′ crossing e can be seen as entering from the left of e and leaving
to the right of e or vice versa. Edge e is called one-way crossed if all edges e′

that cross e enter from the same side. We call Γ one-way k-crossed if all edges
of G are one-way crossed in Γ and each edge is involved in at most k crossings.
Finally, we call G one-way k-crossable if it admits a one-way k-crossed drawing.

Results. We establish several density bounds for one-way k-crossable graphs:

k Density upper bound Density lower bound

1 4(n − 2) 4(n − 2)

2 13
3
(n − 2) 13

3
(n − 2)

3 5(n − 2) 5(n − 2) − 2

≥ 7 6(n − 2) 6(n − 2) − 6

We first prove a general density upper bound:

Theorem 1. Let G = (V,E) be one-way k-crossable. Then, G is a bi-planar
graph, i.e., its thickness is 2. Hence, G has m ≤ 6n − 12 edges.

Proof. We color the edges of G using two colors, red and blue, so that no two
edges of the same color cross each other, i.e. each color induces a planar subgraph
of G: All edges e in G that are crossed by edges coming from the left hand side
of e are colored blue. The remaining edges are then colored red; see Fig. 1. ��

In fact, this upper bound can be reached for k = 7 up to a constant value:

Theorem 2. There are infinitely many n-vertex one-way 7-crossable graphs
with m = 6n − 18 edges.
c© Springer Nature Switzerland AG 2021
H. C. Purchase and I. Rutter (Eds.): GD 2021, LNCS 12868, pp. 425–427, 2021.
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Fig. 1. Proof of Theorems 1 and 2 (Color figure online)

Proof. Figure 1 shows a one-way 7-crossable graph G that has 6n−18 edges. The
red graph consists of nested rings of 8 triangulated quadrangles. Each quadrangle
shares an edge with the corresponding quadrangle of the next ring. Blue edges
are routed within the rings and connect vertices of two consecutive rings. ��

Now that we established an almost-tight upper bound, a natural question
is, whether there are smaller values of k so that there is a one-way k-crossable
graph with 6n − O(1) edges. We address this question in the following. First, it
is easy to see that for k = 1 the maximum density of one-way k-crossable graphs
is restricted by the maximum density 1-planar graphs [4] as any orientation of
a 1-planar graph is one-way crossed:

Theorem 3. Let G be one-way 1-crossable. Then, G has at most 4n − 8 edges
which is a tight bound.

Next, we provide a tight density bound for one-way 2-crossed graphs:

Theorem 4. Let G be one-way 2-crossable. Then, G has at most 13
3 (n−2) edges

which is a tight bound.

Proof. We claim that every blue edge of G can be assumed to have its endvertices
in red faces of size 3 from which the maximum density of one-way 2-crossable
can be directly derived since each triangular face of the red subgraph can contain
the endvertex of at most two blue edges. Assume that a blue edge (u, v) crosses
a red edge (p, q) as shown in Fig. 2. Clearly one of (p, u), (p, v), (u, q), (v, q) must
exist in G. Let that edge be (p, u). Additionally another planar red edge can be
added when removing at most 1 blue edge as shown in Fig. 2.

A corresponding lower bound is obtained from the optimal 2-planar graphs
as characterized in [2] by removing one edge from each outer-2-planar K5. ��

Finally, it is possible to prove along the same lines the following:

Theorem 5. Let G be one-way 3-crossable. Then, G has at most 5(n−2) edges.
Also, there are infinitely many one-way 3-crossable graphs with 5n − 12 edges.
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Fig. 2. Proof of Theorem 4 (Color figure online)

Conclusions. We initiated the study of one-way k-crossable graphs and investi-
gate Turán type questions related to this new graph family. While it remains
open to find the minimum k for which there are one-way k-crossable graphs
with 6n − O(1) edges, our results imply that the correct k is between 3 and 7.
Moreover, the recognition of one-way k-crossable graphs may be of interest.
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1 Introduction

In this poster, we study planar straight-line grid drawings with constant edge-
vertex resolution, that is, the minimum distance between a vertex and any point
of a non-incident edge is at least a predefined constant independent of the number
of vertices. The motivation to study such drawings stems from practical applica-
tions, in which each vertex is represented by a unit disk (a disk whose diameter
is 1) and edge-vertex intersections should be avoided, that is, the edge-vertex
resolution should be at least 1

2 . Early results date back to 1996, when Chrobak,
Goodrich and Tamassia [2] claimed that every 3-connected planar graph admits
a convex planar straight-line grid drawing on a grid of size (3n− 7)× (3n− 7)/2
with edge-vertex resolution at least 1

2 . However, the details of the algorithm
(and of its proof) supporting this claim never appeared in the literature. In this
regard, very recently, Bekos et al. [1] proved (among other results) that every
3-connected planar graph admits a planar straight-line grid drawing on a grid of
size (3n − 7) × (3n − 7)/2 with edge-vertex resolution at least 1

2 . However, the
obtained drawing is not necessarily convex.

We improve both results mentioned above by providing a linear-time algo-
rithm to compute planar straight-line grid drawings with edge-vertex resolution
at least 1

2 that are convex and that fit on a grid of size (n − 2 + a) × (n − 2 + a),
where a denotes the minimum of the number of faces f of the input graph and
n−3, that is, a = min{f, n−3}. In particular, if the input graph is maximal pla-
nar (that is, f = 2n−4), our technique yields drawings of area (2n−5) × (2n−5).
On the other hand, if the input graph is 3-connected cubic planar (that is,
f = n/2 + 2), then our technique yields drawings of area 3n/2 × 3n/2. Our
result is summarized in the next theorem, whose proof is sketched in the follow-
ing section.
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Theorem 1. Every 3-connected plane graph with n vertices and f faces admits
a convex planar straight-line drawing with edge-vertex resolution at least 1

2 on a
grid of size (n − 2 + a) × (n − 2 + a), where a = min{f, n − 3}.

2 Sketch of the Algorithm

To prove Theorem 1, we build on a well-known algorithm by Chrobak and Kant
[3], which produces a convex planar straight-line drawing of a 3-connected plane
graphs G with n vertices on a grid of size (n−2)× (n−2). Let π = (P0, . . . , Pm)
be a canonical ordering [5] of G, such that P0 = {v1, v2}, Pm = {vn}, and edges
(v1, v2) and (v1, vn) exist and belong to the outer face of G. For k = 0, . . . , m,
let Gk be the subgraph induced by

⋃k
i=0 Pi and denote by Ck the contour of Gk

defined as follows. If k = 0, then C0 is the edge (v1, v2), while if k > 0, then Ck

is the path from v1 to v2 obtained from the cycle delimiting the outer face of Gk

after the removal of edge (v1, v2). Our algorithm also makes use of a Schnyder-
like [4, 6] 4-coloring of the edges of G based on π. Namely, G0 consists of a single
edge (v1, v2), which is assigned the black color. Assuming that a 4-coloring has
been constructed for Gk−1, we extend it for Gk as follows. We first color the
edges of Gk that do not belong to Gk−1 and that are on the contour Ck. We
color the first such edge encountered in a traversal of Ck from v1 to v2 as blue,
the last one as green and all remaining ones (i.e., those having both endpoints
in Pk) as black. Similar to the Schnyder coloring of maximal planar graphs, we
assign the color red to the remaining edges of Gk that do not belong to Gk−1

(i.e., those are incident to Pk and are not part of Ck). Note that the latter case
only arises if Pk is a singleton (i.e., it consists of a single vertex).

For k = 1, . . . ,m, assume that a planar internally convex grid drawing Γk−1

of Gk−1 with edge-vertex resolution at least 1
2 has been computed such that

the following condition, called contour condition, holds: the edges of Ck−1 are
drawn as straight-line segments with slopes 0, −1 and in [+1,∞); in particular,
the slope of each blue edge of Ck−1 is at least 1, the slope of each black edge
of Ck−1 is 0, while the slope of each green edge of Ck−1 is −1. Moreover, each
vertex v in Gk−1 has been associated with a so-called shift-set S(v).

Our algorithm works as follows. Initially, vertices v1 and v2 of P0 are placed at
points (0, 0) and (1, 0), respectively (as in the original algorithm). For placing Pk,
with k = 1, . . . ,m, our algorithm first shifts the vertices of Γk−1 appropriately
to guarantee that the obtained drawing Γk has edge-vertex resolution at least
1
2 . If Pk contains more than one vertex, one can prove that this is guaranteed
already by the construction proposed in the original algorithm. The difficulties
arise in the case where Pk is a singleton, where additional shifts are required. In
particular, we can prove that, for each red edge incident to the singleton vertex,
shifting one more unit the shift set S(v) of a suitably defined critical vertex v
in Γk−1 is enough to achieve the desired edge-vertex resolution.

The proof that the resulting drawing Γk is internally convex and preserves
the contour condition easily follows by construction. On the other hand, proving
that Γk has edge-vertex resolution at least 1

2 is non-trivial and requires a careful
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analysis of the geometric configuration of each face modified by the additional
shifts. Finally, the proof that the final width (and hence height) is n − 2 + a is
based on a charging scheme aimed at showing that the total number of additional
shifts is bounded by the minimum between the number of faces and the number
of red edges of G.
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1 Introduction

In 2020, the worldwide pandemic of COVID-19 had a profound impact on soci-
ety. One of the most important metrics that is being used to investigate the
effectiveness of various interventions to control the spread of the pandemic is R,
the effective reproduction number. It is talked about extensively in the news, and
a wide-ranging array of different interventions are put in place by governments
with the aim of getting R below 1 to curb the spread of the disease. In this
abstract, we will investigate what R means from a graph drawer’s perspective
and aim to open up interesting and relevant research avenues.

2 Defining R

To define R, we start with a temporal network [2] G of the contacts between
people, for example all contacts within a city or country. Each node u represents
a person, and a temporal edge et = (u, v) represents that person u was in contact
with person v at discrete time t. We overlay the disease we are interested in on G.
Some nodes will be index cases, the initial cases where the disease emanates from.
These nodes are exposed to the disease from outside the network (i.e. a pangolin
or international travel). A person v who has become infectious at time t, has a
chance to expose their neighbors over edges with a time greater than t until v is
no longer infectious. After an incubation time, these neighbors become infectious
in turn, and can propagate the disease further. This propagation through the
network creates an infection map: A set of rooted directed trees T , where each
node v represents a person and has a value e(v) which indicates when this node
was exposed to the disease. Using this infection map, we can define R.
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Fig. 1. Example calculation of Rt. (a) Contact graph with highlighted paths of infec-
tion. Values within nodes show exposure time e(v). (b) The resulting infection map is a
single infection tree. Nodes with the same exposure time have the same color. (c) Rt cal-
culation table. Rt is the average over the 7 values of R∗

t : (2+0+3+0+0+0+0)/7 ≈ 0.71

There are two different R’s that are of interest to epidemiologists. R0 (known
as, “R naught” or “basic reproduction number”), which indicates the capacity
for the disease to spread when the entire population is susceptible and no inter-
ventions are in place [1], and the R commonly used by the media: Rt (“R” or
“effective reproduction number”), which takes interventions and immunity into
account [3, 4]. The t in Rt is the time point of interest, often a day or a week,
but is ultimately dependent on the characteristics of the disease and available
data. In graph-theoretical terms, we can define Rt as follows. Let Yt denote the
nodes with e(v) = t. Let Xt be the set of children of Yt in T . The Rt value for a
single point in time is then: R∗

t = |Xt|
|YT | . Due to pragmatic issues such as reporting

issues and weekly updates for policymakers, Rt is often averaged over a period
of time (usually 7 days for COVID) to give the final Rt value. This calculation
of Rt is shown in Fig. 1.

3 Open Problems in Real and Simulated Data

We briefly examine various (open) problems that are encountered when using
this graph-based data. We first consider problems in the temporal network. In
real data, both edges and nodes are missing from the graph. The time of contact
could be incorrect, and is at best an approximation (often at day accuracy) even
for simulated data. Continuing with problems in determining the spread of the
disease over the network, the directionality of the edges is generally unknown.
It is also not typically known for certain whether one nodes infected another, or
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if there was an outside influence. The time of exposure is often an estimation,
as testing requires time, and the results might even be incorrect. For both real
and simulated data, these data characteristics lead to the graph structure of the
infection map being a large forest of small trees, with a few larger trees. While
not all of these problems and characteristics are unique to epidemic graphs, we
believe that there are nevertheless a number of interesting research questions
present in this setting, and research from the Graph Drawing community could
help in assisting with the current pandemic and mitigating future pandemics.

References

1. Anderson, R.M., May, R.M.: Infectious Diseases of Humans: Dynamics and Control.
Oxford University Press, Oxford (1992)
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1 Introduction

One of the applications of graph drawing is visualising disease spread in a popula-
tion. Specifically, event-based graph animation can help visualise contact tracing
model simulations. Building on the DynNoSlice algorithm [3, 4], we propose a
way of incorporating two types of relationships useful in epidemiology into a
dynamic graph animation: the vector-infected relationship as well as the ‘loca-
tion of infection’ relationship. We focus on a COVID contact tracing model [2],
which provides information on an infected person’s infection status, who they
were in contact with and the place or setting of infection. These characteristics
are accounted for in the presented algorithm, and encoded, respectively, with
colour (including saturation), insertion of edges (denoting either the location,
or the infection relationship), and grouping of nodes with using the ‘cluster’
elements. Graphs are drawn synchronously on a 2D plane, and in a space-time
cube, with planes as time slices arranged perpendicularly to the time axis T .
Variations of the algorithm use graph forces in either 2D or 2D + T, component
filtering, and node highlights to accentuate various aspects of the model.

2 Clusters and Cluster Forces

When drawing the temporal network in the space-time cube, we propose an
additional cluster graph element. It facilitates visual encoding of commonalities
between nodes. Related nodes become members of a cluster, attracted towards its
pole, represented as a location node in a 2D drawing (Fig. 1). Non-cluster-specific
forces in the algorithm follow the DynNoSlice algorithm [3, 4] and are in 2D + T.
The presented algorithm introduces a number of new forces to position clusters
in the drawing, and which also are functions of regular nodes’ relationships
to cluster pole nodes, other cluster member nodes and non-member nodes. A
member node, also marked out with an edge inserted between it and its pole, is
affected by the following forces:

1. A node-to-node attraction force is applied between the pole node and the
cluster’s member nodes.

2. A circumference repulsion force, itself a node-to-edge force, repelling nodes
from an abstract polygon superimposed on the circumference, modelled after
the PrEd algorithm [1].
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Fig. 1. Visualisation of graph topology and location of infection. Colour legend is on the
left. Colours from green (exposed), through yellow (asymptomatic infection), orange
(symptomatic infection) and red (severely symptomatic) encode various stages of infec-
tion progression. Blue encodes recovery, black - deceased persons. Three locations are
shown in the drawing on the right (circles), with nodes in various stages of infection.
The fully coloured version of the figure is available online. (Color figure online)

F (v, (a, b)) ←− (γ − ‖pv − ve‖)2

‖pv − ve‖ (pv − ve)

v ∈ (a, b), a �= v, b �= v, ‖pv − ve‖ < γ

where px is the position of node x, γ is the desired distance from a node to
an edge, and ve is the position of node v on a line which is defined by the
edge (a, b).

3. A node-to-pole repulsion force is applied to every non-member node (all nodes
that are unassigned to a cluster).

F r
u(v, u) ←−

(
γ

‖pv − ve‖
)8

v̂u

γ is the desired distance between two nodes, pu and pv are the positions of the
member node and the pole node respectively, and v̂u is the unit vector point-
ing in the direction from pu to pv. The exponent value of 8 was determined
through experimentation on our data sets.

Variations of the algorithm allow for the pole nodes to be pinned to one
location in 2D, which then affects the space-time cube synchronised view. Then
the algorithm generates forces that are different in 2D and 2D + T.

3 Functionalities

The implementation offers a range of options to highlight, filter or compare data
set features from the perspective of location. Each of these options creates a
dynamic graph animation corresponding to its space-time cube drawing. One of
the algorithm variations is implemented as Continuous with Multiple Locations
Attraction.
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Given multiple location nodes ni (where n stands for a cluster’s index), each
drawn as a cluster pole node, represent a given set of locations. All nodes asso-
ciated with location i will be encouraged to stay within the i’th cluster’s cir-
cumference. If there are enough vectors pulling node ni in the attracted node’s
component away from the i’th cluster, there is a chance that n may be pulled
out of the circumference.
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In many practical applications, graphs are directed such that the direction of
edges itself is an essential information. To convey this information to the reader,
upward drawings are used. Namely, a planar drawing of a directed acyclic graph
is upward if every edge (u, v) is drawn as a y-monotone curve, such that u lies
below v; a graph is upward planar if it admits an upward planar drawing.

Here, we focus on st-planar graphs, i.e., directed acyclic planar graphs with
a single source s and a single sink t. Since not all st-planar graphs admit upward
planar straight-line drawings in polynomial area [3], one seeks for correspond-
ing poly-line drawings with as few bends as possible. Gronemann [6] observed
that every st-planar graph that admits a so-called bitonic st-ordering admits an
upward planar straight-line drawing in quadratic area. Intuitively, a bitonic st-
ordering forms a special type of st-ordering that takes the underlying embedding
into account. More specifically, the successors of every vertex form an increasing
and then decreasing subsequence (bitonic subsequence) in the st-ordering w.r.t.
the embedding. While not every st-planar graph admits such an ordering, one
may split certain edges to obtain one. Gronemann [6] proves that n − 3 splits
are sufficient. In particular, splits are imposed by forbidden configurations [5].

It follows that every n-vertex st-planar graph admits an upward planar draw-
ing in O(n2) area with at most one bend per edge and at most n − 3 bends
in total [6]. If the maximum degree is 3, then the corresponding drawing is
bendless [2]. Next, we prove that the bound on the total number of bends can
be reduced from n − 3 to n

2 when the maximum degree is 5 using a technique
of [7].

Theorem 1. Let G = (V,E) be an st-planar graph with n vertices and maxi-
mum degree 5. There is a set of edges E′ ⊆ E with |E′| ≤ n

2 so that the graph G′

obtained by splitting each edge in E′ or the reversed graph G̃′ of G′ is bitonic.

Proof (sketch). Since a vertex v �= s has outdegree at most 4, v is a source of
at most three internal faces. One belongs to all forbidden configurations with
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source v and its transitive edge can be split. Since an outdegree of at least 3 is
required for v to be the source of a forbidden configuration in G, it cannot be
a source of a forbidden configuration in the reversed graph G̃ of G. Hence, each
vertex contributes at most one split in either G or G̃. ��

Fig. 1. (a) A 6-coil. (b–d) Illustration for the area requirement proof. In (a–c) V-shapes
have empty triangular arrow heads while Λ-shapes have pointed arrow heads. In (d),
different coils have different arrow heads.

When constructing upward planar drawings with the approach by Grone-
mann [6], n − 5 bends may be required even for max. degree-6 graphs, while
n
2 −2 bends may be required for max. degree 4 graphs. These limitations are tai-
lored to the adopted approach, e.g., there are st-planar graphs that need a linear
number of splits but admit bend-less upward planar drawings in linear area [6].

To investigate if these limitations are caused by the specific approach or are
already imposed by the nature of upward planarity, we study lower bounds on the
total number of bends under the polynomial-area requirement, independently of
the required number of splits and of the allowed number of bends per edge. Our
findings imply that the upper bounds on the number of bends obtained by the
approach by Gronemann are worst-case almost tight, even if several bends per
edge are allowed. A key ingredient is the notion of a k-coil, which is a path of k
edges that spirals around an st-path; see Fig. 1a. A coil consists of alternating

and ; red and blue in Fig. 1a, resp. A k-coil requires Ω(2k) area in
any upward planar straight-line drawing [4]. We extend this result as follows:

Lemma 1. Let G be an st-plane graph containing a k-coil ξ = 〈v0, v1, . . . , vk〉.
In any polyline upward planar drawing of G, ξ is drawn in ω(poly(k)) = ω(2log k)
area unless k/2 − O(log k) edges of ξ have at least one bend.

Proof (sketch). A V- or Λ-shape is valid, if it has no bend and the next bendless
shape is of different type. We observe that a sequence of b bent edges along ξ
invalidates at most 2b shapes, namely, the b edges are part of b+1 shapes and if
b is even, there are two consecutive bendless shapes of the same type. Assume to
the contrary that less than k/2−O(log k) edges along ξ are bent. Then, there is
an alternating sequence of c = ω(log k) valid shapes. A valid V-shape will nest
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the next valid Λ-shape. We can prove via shearing that the V-shape covers at
least 4 times the area that the Λ-shape covers; see Fig. 1b and 1c. As a result, ξ
requires ω(4c) = ω(poly(k)) area; a contradiction. ��
Lemma 1 applied to the graph family in Fig. 1d and the lower bound construction
in [1] yields the following:

Theorem 2. There are infinitely many graphs that require n − O(log n) bent
edges in any upward planar drawing of polynomial area. If the maximum degree
is 4, the required number of bent edges is n/2 − O(log n).
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Abstract. In this poster, we propose an approach to generalize mixed
metro map layouts with user-defined shapes for route-finding and adver-
tisement purposes. In a mixed layout, specific lines are arranged in an
iconic shape, and the remaining are in octilinear styles. The shape is
expected to be recognizable, while the layout still fulfilling the classical
octilinear design criteria for metro maps. The approach is in three steps,
where we first search for the best fitting edge segment that approximates
the guide shape and utilize least squares optimization to synthesize the
layout automatically.

Keywords: Metro maps · Least squares optimization ·
Shape-preserving Dijkstra algorithm · Fréchet distance

1 Introduction

Metro maps are schematic representations of a metro network in order to facili-
tate effective route findings. Creating such maps manually is a challenging task,
and thus several automatic approaches have been developed in the last two
decades [10]. Most approaches aim for a single style, e.g., octolinear layouts
(based on a set of slopes of multiples of 45◦) [7, 8] or curvilinear layouts [3]
(lines represented as smooth continuous curves). However, handcrafted metro
maps often employ more than one style in a single map, to emphasize specific
lines in the system, where some parts are arranged in an iconic shape and some
in an octolinear style. The official Moscow metro map with its characteristic cir-
cles is a typical example [6]. Moreover, such maps could be used for advertising
purposes or special events [11].

In this poster, we present an approach to generalize a mixed layout problem
with a user-defined guide shape, represented as a polyline, as input. To guarantee
the visual quality, the guide shape should be recognizable in the final layout,
while the layout still fulfills the classical octolinear design criteria [7].
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Fig. 1. Paris metro map, consisting of 236 stations and 268 edges. The layout is created
with a cloud-shaped guide. (a) Geographically accurate layout with a potential path
P highlighted. The input guide shape is shown on the top left. (b) The smooth layout
and (c) the mixed layout with smooth edges highlighted.

2 Method

In our approach, we take a metro graph G = (V,E) with geographic coor-
dinates and a user-defined (open or closed) polyline L as input. This line
L = [l0, l1, . . . , ln] with line segments (li, li+1) serves as the user-specified guide
shape for our mixed layout. Our approach is in three steps. First, the approach
searches for the path that is the best representative of the user-defined guide
shape. Then, we deform the metro graph to a smooth and finally to a mixed
layout following the aforementioned design criteria.

To find a good alignment, we adapt the shape-preserving Dijkstra algo-
rithm [5], which allows us to iteratively find potential paths P = (vi, vj , ...)
in G that are similar to the input guide shape L (Fig. 1(a)). In contrast to the
original approach [4, 5], we quantify the difference between the path P and L
using the Direction-Based Fréchet Distance [1]. After finding a good path P in
the metro graph, we scale the guide shape and align the bounding boxes of the
found path and the input guide shape for better deformation.

Our deformation is inspired by the approach of Wang et al. [9]. We first
create a smooth layout (Fig. 1(b)), and then the mixed layout (Fig. 1(c)). Here,
we optimize four constraints Ω = wlΩl + waΩa + wpΩp + wcΩc. Ωl enforces
uniform edge lengths, Ωa maximizes angular resolutions, and Ωp minimizes the
distance of the position of a metro station v ∈ V to its geographical location. In
addition, Ωc forces the layout to approximate the guide shape. This constraint
pushes a station vi ∈ V in the direction of the guide shape L, if vi is a close
candidate that should be selected for shape approximation. More precisely, vi
will be moved toward the direction of point pi, which is a projected point of vi
on the polyline L after bounding box alignment. To create a clear layout, we
approximate each small segment of the guide shape with one single metro edge
and, therefore, apply Ωc only to a subset of the vertices. Let v′

i be a copy of vi,
which has been rotated around pi by 180◦. To determine if the constraint Ωc

should be applied to the vertex vi ∈ V , we check if any edge e ∈ E is located
between vi and its projection pi or between v′

i and pi. If no such edge is found,
the constraint Ωc is added for this vertex.
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To create the mixed layout, we differentiate between two types of edges.
Smooth edges (highlighted in Fig. 1(c)) approximate the shape and should align
to a section of the guide shape L. The remaining edges are octolinear edges, which
have to be drawn with an octolinear slope. We determine if an edge (vi, vj) ∈ E is
a smooth edge or not by checking if another edge is located between the vertices
vi and vj and the guide shape L, as we do in the smoothing step. Similar to
the smoothing step, we again create the mixed layout using the least squares
optimization [9].

3 Results

Our approach creates visually pleasing and interesting results. The tested shapes
are embedded well as shown in Fig. 1(c). Note that in our results, the guide shape
is not approximated by a single connected line but multiple line segments in the
metro system. Following the Gestalt Laws (Law of Closure, Law of Prägnanz) [2],
we confirm that even paths with multiple discontinuities (resulting from the
topology of the metro system) can be perceived and recognized by humans. In our
experiments, the relative positions of vertices in the metro graph are not changed
and no stations are located too close to another edge or station - making the
final layout not only visually interesting but also usable for navigation purposes.
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Abstract. We propose the software grApp, which is a web-based open-
source editor for graphs. Its main feature is a smoothly animated visu-
alization, which allows users to modify and analyze the graphs interac-
tively.

Keywords: Smooth interactive graph visualization · Open-source ·
Graph6 · d3.js · NetworkX

1 Why Do We Need grApp?

When it comes to displaying graphs, there is an abundance of graph visualiza-
tion tools available today, from which users may choose. E.g., there are commer-
cial graph editors like Microsoft Visio and yEd, some of which are freely avail-
able but not open-source, there are graph drawing libraries like NetworkX [2]
and OGDF [1], which are open-source but do not provide build-in interactive
graph visualization, and there are the widely known web-based data libraries
d3.js (https://d3js.org/) and vis.js (https://visjs.org/), which provide fast and
smooth animation of data, but usually lack graph-specific functionalities stan-
dard graph editors have.

We therefore aim to combine the features of d3.js and NetworkX in order
to provide an open-source and web-based graph editor that allows smoothly
animated and interactive graph visualization.

The official websites of grApp are https://www3.tuhh.de/e11/schmidt/
grApp/ and https://github.com/iviv62/grapp.

2 Features

In a nutshell, grApp supports the following features:

– Smooth and interactive graph visualization and modification in 2D and 3D
– Fully web-based and thus platform-independent
– Open-source
– Interface for user-created executables (interacting with the graph via .gml)
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– Import, export and conversion of 10 different graph formats
– Graph6 webinterface

In more detail, we build upon the force-based layout implementation used
in d3.js, upon graph import and layout algorithms used in NetworkX and many
other open-source third-party tools like e.g. Django. In order to display the
graph, the layouting process of d3.js is performed continuously. This allows for a
smooth animation of any interaction with the graph (like moving around vertices
or deleting edges) by which we mean that there are many frames per second,
for which the difference between the object coordinates in these frames is very
small. The user may also select and define clusters of vertices with different
specifications regarding the forces. This way vertices may be specified as having
a fixed position, which means no forces will be applied (they are “pinned”), while
others repel or attract each other.

(a) User interface (b) A larger net-
work

Fig. 1. The graphical user interface.

grApp supports user-made binaries that may interact with the displayed
graph and its current layout; here, the interface to the graph is provided by
exchanging a .gml-specification of the graph, which the binary has to read in
and output again (after possibly modifying it). The user may also manually
modify all details of the current graph or its current visualization using the
build-in JSON Editor. In addition, it is possible to share the abstract graph that
is currently displayed as a web-link by using the share button on the toolbar
(see Fig. 1a); then a web-link with the graph encoded in graph6-format will be
generated and is available for anyone that has this link as long as the grApp
server is online.

The displayed graph can be modified (creating and deleting vertices and
edges and their visualization properties) and interacted with via mouse and key
commands. A detailed manual of these commands is available on the grApp
webpage on the Instructions page.
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Graph drawing beyond planarity focuses on drawings of high visual quality for
non-planar graphs which are characterized by certain forbidden edge configu-
rations. A natural criterion for the quality of a drawing is the number of edge
crossings. While empirical studies suggest that the number of crossings is not
the only factor that influences human understanding of a drawing, it is neverthe-
less one of the most relevant aesthetic indicators [4–7]. However, it is NP-hard
to compute the minimum number of crossings of a graph G across all possible
drawings of G [3]. This minimum number of crossings is also referred to as the
crossing number of G, denoted by cr(G).

In recent years there has been particular interest in drawings of beyond-planar
graphs, which are characterized by certain forbidden crossing configurations of
the edges; see the recent survey by Didimo et al. [2]. The question then arises
whether beyond-planar drawings have a significantly larger crossing number than
unrestricted drawings. The restricted crossing number crF (G) of a graph G is
the minimum number of crossings required to draw G such that the drawing
satisfies the restrictions imposed by the beyond-planar family F . For a beyond-
planar family F , the crossing ratio �F is defined as �F = supG∈F crF (G)/cr(G),
that is, the supremum over all graphs in F of the ratio between the restricted
crossing number and the (unrestricted) crossing number.
Results. Chimani et al. [1] gave bounds on the crossing ratio for 1-planar,
quasi-planar, and fan-planar graphs. Their 1-planarity bound also applies to
k-planarity when allowing parallel edges. We show that parallel edges are not
needed when extending their proof to k-planarity. To do so, we introduce the
concept of k-planar compound edges, which exhibit essentially the same behavior
as k parallel edges. We further show how to extend the proof constructions of
Chimani et al. for quasi-planar and fan-planar graphs to two additional classes of
beyond-planar graphs. These constructions use the concept of �-compound edges;
we also show how to use such �-compound edges to prove lower bounds for two
further families of beyond-planar graphs. Finally, we introduce the concept of �-
bundles which allow us to prove tight bounds on the crossing ratio for families of
graphs where these bounds are quadratic in the number n of vertices. All bounds
are summarized in Table 1. Bounds that are tight for a fixed k are indicated in
boldface. For our upper bounds we assume the drawings to be simple, that is, two
edges share at most one point. All bounds also apply to straight-line drawings.
Full version: https://arxiv.org/abs/2105.12452
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Table 1. Bounds for the crossing ratio.

Family Forbidden configurations Lower Upper

k-planar An edge crossed more than k

times

Ω (n /k) O (k
√

kn )

k-quasi-planar k pairwise crossing edges Ω(n/k3) [1] f(k)n2 log2 n [1]

Fan-planar Two independent edges

crossing a third or two

adjacent edges crossing

another edge from different

“sides”

Ω(n) [1] O(n2) [1]

(k, l)-grid-free Set of k edges such that each

edge crosses each edge from a

set of l edges.

Ω
( n

kl(k + l)

)
g(k, l)n2

k-gap-planar More than k crossings mapped

to an edge in an optimal

mapping

Ω (n /k3) O (k
√

kn )

Skewness-k Set of crossings not covered by

at most k edges

Ω (n /k) O (kn + k2)

k-apex Set of crossings not covered by

at most k vertices

Ω(n/k) O(k2n2 + k4)

Planarly connected Two crossing edges that do

not have two of their endpoint

connected by a crossing-free

edge

Ω (n2) O (n2)

k-fan-crossing-free An edge that crosses k

adjacent edges

Ω (n2/k3) O (k2n2)

Straight-line RAC Two edges crossing at an angle

< π
2

Ω (n2) O (n2)
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Abstract. We show that perfect binary trees with n−1 vertices can be
optimally embedded in 3D, that is, they admit a straight-line drawing on
a 3

√
n by 3

√
n by 3

√
n grid without intersecting edges. To show it, we adapt

a recursive approach used in 2D by Akitaya et al. [GD’18] to construct
compact embeddings of perfect binary trees on a square grid.

Recently, Dujmović et al. [3] showed that planar graphs admit a 3D straight-line
grid drawing in linear volume. This was previously shown for planar graphs of
bounded degree [2]. The bound in particular applies to perfect binary trees. In
this work we show that this class of graphs in fact admits a compact embed-
ding in 3D with optimal aspect ratio. In a compact embedding all points of a
given grid except for maybe one are used. We follow a similar strategy to that
in Akitaya et al. [1]. The authors recursively construct two types of compact
embeddings of perfect binary trees in 2D.

Our construction in 3D uses three recursive blocks Fk, Gk, and Hk. Every
block is a compact embedding of a perfect binary tree Tk of height k, where on
one grid point the root of Tk is located and one grid point is empty and does not
correspond to any vertex of Tk. The critical difference between the blocks is the
placement of the empty node with respect to the root node. The coordinates of
these nodes in the three blocks can be found in Table 1.

Table 1. Root node and free node placement for F , G, and H.

The trivial blocks correspond to drawings of a perfect binary tree of height 2
in a 2×2×2 grid. Each non-trivial block can be recursively constructed from eight
c© Springer Nature Switzerland AG 2021
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smaller blocks, which are then connected by non-intersecting edges to complete
the drawing of the perfect binary tree. More precisely, to draw a perfect binary
tree Tk with height k, the eight subtrees of height k − 3 are recursively drawn
using sub-blocks and the top three levels of Tk carefully connect the sub-blocks.

We next present the recursive definition of the three types of blocks.
The eight sub-blocks are listed from bottom to top (−z to +z), from front to

back (−y to +y), and from left to right (−x to +x).
Block Fk. (see Fig. 1 (left)).
Sub-blocks: Fk−3, Gk−3 (rotated π around the z-axis), Fk−3, Hk−3 (rotated π
around the z-axis), Fk−3, Hk−3 (rotated π around the z-axis and rotated π
around the x-axis), Fk−3, and Gk−3 (rotated π around the z-axis and rotated π
around the x-axis).
Block Gk. (see Fig. 1 (middle)).
Sub-blocks: Fk−3, Gk−3 (rotated π around the z-axis), Fk−3, Hk−3 (rotated π
around the z-axis), Gk−3, Fk−3 (rotated π around the z-axis), Hk−3 (rotated π
around the x-axis), and Fk−3 (rotated π around the z-axis).
Block Hk. (see Fig. 1 (right)).
Sub-blocks: Fk−3, Gk−3 (rotated π around the z-axis), Fk−3, Hk−3 (rotated π
around the z-axis), Fk−3, Hk−3 (rotated π around the z-axis and rotated π
around the x-axis), Fk−3, and Gk−3 (rotated π around the z-axis).

The connections (top three levels of the tree) are all similar in all blocks:
the third level connects the root nodes of the sub-blocks with the empty node
of the same or an adjacent F sub-block; the second level connects these empty
nodes with the two empty nodes of the two H sub-blocks on a different yz plane.
Finally, these two nodes are connected to the empty node of a G sub-block.

All blocks define straight-line drawings without crossings. To see it is enough
to focus on the edges that are not recursively defined as part of a sub-block.
The projection of these edges on the yz plane defines a crossing-free drawing.
Moreover, these edges either connect the root and empty nodes of an F sub-block
or they connect the two sides of one of the three planes that split the sub-blocks.
From these observations it follows that each of the blocks Fk, Gk, and Hk defines
a crossing-free compact drawing of the perfect binary tree of height k.

Fig. 1. Recursive definitions of the blocks F (left), G (middle), and H (right). (For
extra clarity, the online colored version of the paper depicts the different types of
sub-blocks with different colors.) (Color figure online)
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Theorem 1. The perfect binary tree with height k = 3x − 1 for x ∈ N with
n − 1 = 2k+1 − 1 vertices has a compact embedding on the 3

√
n × 3

√
n × 3

√
n grid.
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Abstract. A new heuristics for rectilinear crossing minimization is pro-
posed. It is based on the idea of iteratively repositioning nodes after a
first initial graph drawing. The new position of a node is computed by
casting rays from the node towards graph edges. Each ray receives a
mark and the one with the best mark determines the new position.

The heuristic has interesting performances when compared to the best
competitors which can be found in classical graph drawing libraries like
Tulip [1].

Keywords: Rectilinear crossing minimization · Graph drawing ·
Computational geometry

Problem Statement. The problem of graph design has been studied for more
than sixty years producing an impressive number of publications. Several criteria
are commonly accepted as characterizing a good graph drawing, such as the
angle resolution, the distribution of vertices in the plane and the number of edge
crossings. In this work, we focus on the last one. Indeed, we search for a drawing
which minimizes the number of crossings when the edges are drawn as straight
lines. We call this problem the rectilinear crossing minimization problem.

Remark that the problem of determining the minimal crossing number of a
generic graph is complete for the existential theory over the reals and hence its
complexity (in the classical setting) is somewhere between NP and PSPACE [4].
This fact motivates the introduction of heuristics which try to find a good com-
promise between exact solutions and reasonable computational time. Our work
follows this direction.

The New Heuristic. A rectilinear drawing (or embedding) D of a graph G =
〈V,E〉 is an injective mapping from V to R

2. The algorithm starts with an
initial rectilinear drawing (all vertices positioned on a circle for example) and
then iteratively tries to change the vertex positions to decrease the number of
crossings.

The (potentially) new position p of a vertex v is obtained by casting a number
R of rays from D(v) (the actual position of v). A ray segment ri is a half-line
defined by a position pi and a direction di . These two values determine a new
point pi+1, which is the first intersection with an edge of G encountered by ri,
or with one of the four false edges which delimits the bounding box of the initial
c© Springer Nature Switzerland AG 2021
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drawing, if it intersects none of the edges. Next, a suitable score function decides
if ri crosses this edge (and hence di+1 = di) or reflects on it like if the edge acted
like a mirror (in this case di+1 is the incident angle of reflection). Repeating this
routine provides a sequence of p0, . . . , pnr

where p0 = D(v), the pi are obtained
by applying the routine i times and nr−1 is the number of ray segments. Finally,
p is the middle between pnr−1 and pnr

.
Each ray r determines a position p(r). To update D(v), we compare all the

positions obtained on two criteria: first, the number of crossings induced by the
movement of v to p(r); second, the sum of the squared norms of the Hooke’s
law forces applied to the edges of v, when positioned on p(r). If none of the
evaluated positions gives better results then D(v) is kept unchanged and we
process another vertex. The algorithm keeps trying to move vertices until no ray
offers a position which significantly improves the above criteria.

Complexity. To move one node v the algorithm runs in O(kERnr), where E is
the number of edges and k is the degree of v. At each iteration, it runs through
the nodes until one can be moved to a better location. This leads to a total
complexity of O(E2Rnr) per iteration.

Experiments. Our heuristic has been tested using the datasets provided on the
site of the International Symposium on Graph Drawing. Namely, we used graphs
from three classes: NORTH, ROME and DAG. For each class, two parametriza-
tions of our algorithm were compared with the best rectilinear algorithm of
OGDF implemented in Tulip: stress minimization. Regardless of the class, our
algorithm presents significantly less crossings. Moreover, it finds more planar
drawings if the given graph is planar, at least for the NORTH and ROME
classes. More experiments are needed to better assess the performance of our
heuristics especially for large and dense graphs. In particular, it would be intest-
ing to compare them to similar approaches based on the same principle of vertex
movement [2, 3].
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Abstract. Finding clusters in bipartite graphs is a popular problem in
many communities such as data mining or bioinformatics. Drawing these
clusters is simple as long as the clusters are disjoint but when the clusters
share vertices then the task becomes more complicated. We formalize the
problem of drawing a given clustering of overlapping clusters in bipartite
graphs and we formulate an objective function that captures how well
the clustering is visualized. We also present algorithms that optimize our
objective function and we evaluate our methods on real-world datasets.

In many data science tasks the goal is to understand the relationship of two
different sets of entities. This problem is often modelled using bipartite graphs
where the two sides of the bipartite graph correspond to the two sets of different
entities. An edge indicates that two entities interact with each other (e.g., a
customer has bought a product). Many (bi-)clustering algorithms try to find
groups of related entities by finding dense subgraphs in the bipartite graph.

The development of algorithms for finding such clusterings has been an active
research area for decades [2, 4, 6]. However, these algorithms typically return
their solutions in a format that is not human-readable. Therefore, inspecting the
results can be difficult and visualization tools can be helpful.

Computing such a visualization is simple as long as all clusters are disjoint,
i.e., they do not share any vertices. However, when the clusters overlap, i.e.,
some vertices are contained in multiple clusters, the visualization becomes more
difficult [8]. The main challenge is that, due to the overlap of the clusters, we
might be forced to draw some clusters non-consecutively and the visualization
needs to make a choice which clusters should be split up. Such overlapping
clusters occur, for instance, in data mining [4, 5] and in bioinformatics [3].

In our work, we develop novel algorithms for drawing a given clustering of a
bipartite graph even when the clusters overlap. This is in contrast to seriation
algorithms [1, 9] which also allow us to find clusters in graphs but they can-
not visualize a clustering that they obtain as input. Unlike many leaf-ordering
approaches, we do not assume access to a (dis-)similarity function for the clusters
or for the rows and columns of the input matrix; we elaborate on this below.
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Fig. 1. Two visualizations of the same dataset using different clusterings obtained from
the PCV algorithm [6] (left) and the Basso algorithm [4] (right).

In our visualization we decide to draw the (bi-)adjacency matrix of the bipar-
tite graph. Since the clusters represent dense subgraphs within the bipartite
graph, each cluster induces a dense area of 1-entries in the adjacency matrix. In
Fig. 1 we visualize the outputs of two different clustering algorithms that were
run on the same dataset. The figure suggests that the left method finds smaller,
denser clusters, whereas the right method finds larger, slightly sparser clusters.
The left clustering in Fig. 1 also shows that some of the clusters have significant
overlap (several columns appear in different row-clusters).

To obtain a good visualization of the clustering we need to reorder the rows
and the columns of the biadjacency matrix based on the clustering. We propose
an objective function that generalizes to the overlapping setting and incentivizes
orderings in which each cluster is drawn as a consecutive rectangle of 1-entries.
When this is not possible, our objective function tries to maximize the squared
area of the different non-consecutive parts of the clusters. We show that our
objective function is NP-hard to optimize by proving that the associated decision
problem: “Can all clusters be drawn as a consecutive rectangle?” is NP-complete
via a reduction from MAX-Hamiltonian Path.

We also provide heuristics to optimize our objective function. To improve
efficiency, we run a pre-processing step that decomposes the overlapping clusters
into disjoint blocks. The blocks form a partition of the rows and columns of the
matrix and each cluster corresponds to the union of a set of blocks. To obtain
our visualization, it suffices to reorder the blocks, as an ordering of the blocks
implies an ordering of the rows and columns. The complexity of our ordering
problem only depends on the number of blocks, which is small in practice.

In a post-processing step we aim to improve the global visualization; this is in
contrast to our objective function which only locally ensures that each clusters
is drawn well individually. To ensure that the local structure of the visualization
is not altered, we guarantee that we do not decrease the objective function.

An interesting question for future work is whether leaf-ordering methods
such as dendosort [7] can be used to order the blocks that we create in the pre-
processing. The main conceptual difference is that when drawing dendrograms,
one has access to a function that measures the (dis-)similarity of a pair of clusters.
However, in our setting we do not have such a similarity function for the blocks
and proposing such a function seems like an interesting direction.
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Abstract. In this poster, we give a pictorial depiction of graph drawing
beyond planarity, which illustrates several edge density results, inclusion-
relationships and incomparabilities between different graph classes.

1 Introduction

Graph drawing beyond planarity is a relatively new research direction, which
deals with non-planar graphs that locally avoid specific edge-crossing configura-
tions or guarantee specific properties for the edge crossings. Its primary motiva-
tion stems from cognitive experiments [23] showing that the absence of specific
kinds of edge-crossing configurations has a positive impact on the human under-
standing of a graph drawing.

In this context, different restrictions on the edge crossings naturally give rise
to different classes of beyond-planar graphs. Some of the most studied classes
include: (i) k-planar graphs, in which each edge is crossed at most k 1 times [1,
10, 25–28], (ii) k-quasiplanar graphs, which disallow k 1 pairwise crossing
edges [2, 3, 8], (iii) fan-planar graphs, in which no edge is crossed by two inde-
pendent edges or by two adjacent edges from different directions [7–9, 24], and
(iv) RAC graphs, in which edge crossings only happen at right angles [15–17].

Two notable sub-classes of 1-planar graphs are the IC-planar graphs [11, 30],
in which crossings are independent (i.e., no two crossed edges share an endpoint),
and the NIC-planar graphs [29], where crossings are nearly independent (i.e., no
two pairs of crossed edges share two endpoints). Additional subclasses are defined
by placing extra restrictions on the obtained drawings, namely, that the vertices
are required to lie either on two parallel lines (2-layer setting; see, e.g., [8, 9, 13,
14]) or on the outer face of the drawing (outer setting; see, e.g., [6, 7, 12, 20,
21]). For an extensive introduction refer to [22].

From the combinatorial point of view, the main question concerns the max-
imum number of edges for a graph in a certain class, which is in general linear
in the number of vertices. Also, the study of possible inclusion-relationships
between different graph classes has received attention [4, 17]. From the complex-
ity side, recognizing whether a graph belongs to a beyond-planar graph class has
often been proven to be NP-hard [5, 7, 9, 11, 19], while polynomial-time testing
algorithms can be derived for the outer and for the 2-layer setting [7, 8, 20].
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2 Contribution

Our contribution is a pictorial depiction of several results from the literature on
graph drawing beyond planarity, which we call the universe beyond planarity.
In our poster, we use planet systems as a metaphor to stress different types of
information. Our universe has three suns of different colors representing general
(yellow), outer (blue) and 2-layer planarity (red). Around each sun there exist
planets (arranged in orbits) corresponding to different classes of graphs beyond
planarity. Each orbit stands for a certain density range, such that the closer an
orbit is to the sun the sparser are the corresponding graph classes; planets along
the same orbit have the same edge density up to additive constants. The size of
each planet additionally denotes the density of the corresponding graph class.
Comets denote graph classes whose density is nearly identical to the planets next
to the comets.

Directed edges denote inclusion relationships between different graph classes,
while an incomparability between a pair of graph classes is denoted by a
dashed edge. An additional information that is included in the poster is the
fact that several classes of graphs beyond planarity have corresponding opti-
mal versions, which correspond to proper subclasses achieving the maximum
edge density. This information is indicated by a ring surrounding the cor-
responding planet. Planets whose corresponding graph classes admit an effi-
cient recognition algorithm are shown illuminated. The poster is available at:
algo.inf.uni-tuebingen.de/gd2021/posters/beyond-planarity.pdf.
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