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Abstract CONTEXT: Practical facilities for querying, constraining, and trans-
forming models (“model management”) can significantly improve the utility of
models, and modeling. Many approaches to model management, however, are very
restricted, thus diminishing their utility: they support only few use cases, model
types or languages, or burden users to learn complex concepts, notations, and tools.
GOAL: We envision model management as a commodity, available with little
effort to every modeler, and applicable to a wide range of use cases, modeling
environments, and notations. We aim to achieve this by reusing the notation for
modeling as a notation for expressing queries, constraints, and transformations.
METHOD: We present the VM* family of languages for model management. In
support of our claim that VM* lives up to our vision we provide as evidence a string
of conceptual explorations, prototype implementations, and empirical evaluations
carried out over the previous twelve years.
RESULTS: VM* is viable for many modeling languages, use cases, and tools.
Experimental comparison of VM* with several other model querying languages
has demonstrated that VM* is an improvement in terms of understandability. On
the downside, VM* has limits regarding its expressiveness and computational
complexity.
CONCLUSIONS: We conclude that VM* largely lives up to its claim, although the
final proof would require a commercial implementation, and a large-scale industrial
application study, both of which are beyond our reach at this point.
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1 Introduction

The Visual Model Manipulation Language VM* is a lineage of languages that
allows to express queries (VMQL), constraints (VMCL), and transformations
(VMTL); refer to Table 1. Figure 1 illustrates the relationship between these three
languages. VM* aspires to be truly useful, addressing the problems faced by the
working modeler. Thus, our design goals are usability and learnability, versatility
and practical use cases, coverage of all relevant visual modeling notations and
compatibility with existing modeling environments. As a consequence, there is a
limit to the expressiveness and the scope of application scenarios VM* addresses.
For instance, VM* is not suited to process ultra large models, or express very
complex model transformations. In our experience, those situations are rare.

Starting out as a query language, VM* has evolved into a full blown model
manipulation language that can also handle constraints and transformations. Obvi-

Table 1 Main publications on VM* and its precursors, most notably VMQL and VMTL. In
column “Intent”, Q, C, and T refer to queries, constraints, and transformations, respectively,
whereas bullets indicate the types of instructions addressed in the corresponding publications. In
column “Type”, W, C, J, and TR stand for Workshop, Conference, Journal paper, and Technical
Report, respectively. BSc, MSc, PhD refer to theses of the respective types. References [7, 32, 34]
are re-publications, posters, and excerpts

Intent

Year Ref. Type Q C T Title (abbreviated)

2005 [24] TR • • MoMaT: A lightweight platform for MDD

2007 [25] W • A PROLOG approach to representing & querying models

2009 [39] BSc • MQ: A visual query-interface for models

[26] W • A logical model query-interface

[27] C • VMQL: A generic visual model query language

2011 [28] C • Expressing model constraints visually with VMQL

2012 [29] J • VMQL: A visual language for ad-hoc model querying

[3] MSc • An implementation of VMQL

[5] W • MQ-2: A tool for prolog-based model querying

2013 [30] W • Improving the usability of OCL as an ad-hoc MQ language

[31] W • MOCQL: A declarative language for ad-hoc model
querying

[35] W • Querying business process models with VMQL

2014 [6] W • Efficient model querying with VMQL

[8] W • • Hypersonic: Model analysis and checking in the cloud

2015 [33] J • • Cost-effective evolution of prototypes: The MACH case
study

2016 [10] J • • • VMTL: A language for end-user model transformation

[9] C • • • Model transformation for end-user modelers with VMTL

[4] PhD • • • Model manipulation for end-user modelers

[2] WIKI • • • The VM* Wiki
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VMQL
Queries

VMCL
Constraints

VMTL
Transformations

VM* match by query, trigger by positive/negative application conditions,
control  by priorities, bundling sets of expressions as one rule

negative queries, mark up query as constraint

match model fragments, enrich semantics by annotations

Fig. 1 VM* is a family of model manipulation languages that allows to express queries (VMQL),
constraints (VMCL), and transformations (VMTL)

ously, there is a natural succession arising out of the symmetry between queries
and constraints. Then, transformations are just pairs of an application condition and
a consequence, both of which can be expressed like queries. In that sense, there
is not just a natural symmetry but also a great practical opportunity by leveraging
queries to constraints and transformations. More importantly, however, there is a
practical need for constraints and transformations once queries are established, like
progressing from text search to search-and-replace. Model querying is useful, but it
is incomplete without checks and transformations. From a high-level point of view,
we can characterize queries, constraints, and transformations as follows.

Queries. Assume that a model M is a set of model elements ME. A Boolean
property α : P(ME) → bool characterizes those parts of M that satisfy α. So,
applying α to all fragments of M amounts to querying M, and the set of all
fragments Rα that satisfy α is the result of the query.

Constraints. Conversely, the dual of Rα are those model fragments of M that do
not satisfy α. If we formulate α just so that it yields all admissible fragments
of M, and look at the complement of the result, we have a constraint. So, we
need a way of choosing whether we consider Rα or Rα as the result. Also, we
need to express the complement, or, more generally, a form of negation so that
constraints may be expressed in a concise way.

Transformations. Similarly, model transformations are sets of rules, each of
which consists of an application condition (“left-hand side”) and a consequence
(“right-hand side”). The application condition is again a query or a constraint,
while the right-hand side must express matching and changing, i.e., it is a query
with side effects.

The general idea of VM* is to reuse the syntax of the modeling language at
hand (the host language) as the syntax of the query, constraint, or transformation
language, adding only a small set of textual annotations. Then, a query is matched
against model fragments of the host language based on structural similarity. In the
process, annotations are evaluated. Any matching fragments are presented as results.
Conversely, when evaluating a constraint, fragments not matching the constraint
are presented as violations. For transformations, two parts have to be provided per
transformation rule, expressing the left-hand side and right-hand side of the rule.
Left-hand side expressions are effectively queries and/or constraints. If it is satisfied,
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the right-hand side is executed, either replacing or modifying the matched fragment.
The unique approach of VM* provides three main benefits.

Syntax transparency. Queries, constraints, and transformations are expressed
using the host language, while VM* only consists of a few annotations on
models and diagrams. Thus, any modeler is, by definition, already capable of
expressing simple queries, constraints, and transformations in VM*. For more
complex expressions, a few new concepts have to be learned.

Environment transparency. Grace to syntax transparency, any modeling tool
can be used as a front end for VM*. Therefore, any modeler can, by definition,
use the VM* tool, which is just the editor the modeler uses anyway. Integrating
the tool for executing a query or transformation, or checking a constraint, can be
seamless.

Execution transparency. Unlike other approaches, VM* is not semantic, but
syntactic, that is, it does not consider the meaning of model elements, but the
notation alone. VM* is ignorant to what boxes and lines mean. While this
imposes limits on the expressiveness of VM*, it also avoids semantic problems,
makes the language more accessible, and simplifies implementation.

We argue that the restriction in expressiveness is rarely relevant in practice, while
universal applicability, learnability, and usability are always a concern. VM* is
applicable for any host language satisfying two conditions.

1. It must have a metamodel. This is trivially the case for any language that is
implemented in a tool, in particular, for languages created with metamodeling
tools like Adonis [15], EMF [23], or Meta-Edit [36].

2. It must have a way of adding textual comments to model elements, which is true
for any modeling tool we have seen in practice.

It cannot be overemphasized that VM* is completely independent of the seman-
tics of the host language. Conceptually, one may consider a model as a graph with
labeled nodes. Unlike the original graph transformation approaches (e.g., [14, 18]),
though, this graph is never exposed to the user. This means that VM* is applicable
to many modeling languages, including languages for dynamic models like BPMN,
EPCs, Use Case Maps, Simulink, or Role-Activity-Diagrams, as well as languages
for static models like ER Diagrams, i∗, KAOS, etc. Thus, VM* is also applicable
to broad-spectrum languages with multiple notations, like UML, SysML, IDEF,
or ArchiMate. Similarly, VM* is applicable to many Domain Specific Languages
(DSLs). It would be exceedingly difficult to ascertain that VM* works with any
visual notation as its host language, but we believe the prerequisites are very modest.
We have yet to encounter a notation that cannot serve as a host to VM*. As a
matter of notation, when referring to the instantiation of VM* for UML, we write
VM*UML, and VM*BPMN for the instantiation of VM* for BPMN.

When using the same editor to create source models as well as the queries, con-
straints, and transformations to be applied to them, it is also irrelevant how models
are represented in the editor. In practice, most modeling tools are less than com-
pletely compliant to whatever standards they aspire to implement. So, a model query



VM*: A Family of Visual Model Manipulation Languages 153

implementation that relies on standard compliance may be of limited use, or entirely
incompatible. This way, many research prototypes are tied to the single modeling
environment in which they happen to be implemented. It is hard to overstate the
benefit of execution and environment transparency for industrial applications.

2 Examples

In this section, we present a high-level process model expressed as a UML Use
Case diagram, a low-level process model expressed as a UML Activity Diagram,
and another low-level process model expressed in BPMN. Throughout this paper,
we denote metamodel concepts and VM* expressions by typewriter font
and CamelCaps, while “elements” from sample models or queries are printed in
sans-serif font and enclosed in quotation marks.

2.1 High-Level Process Models Expressed as Use Case
Diagrams

As a first example, consider Fig. 2. Here, we use UML Use Case Diagrams to model
the high-level views of process models, like function trees Value Added Chain
Diagrams and process landscapes [13, pp. 239]. The Use Case Diagram at the top
left represents the model repository; the other diagrams represent actions on the
model: progressing clockwise from the top right, we see an example of a query, a
constraint, and a transformation.

The query in Fig. 2 (top right) is a find pattern identified by the looking-glass
icon. It matches all its elements against the model repository. For every successful
binding of all query elements, one solution is generated. The wildcard acts as
expected, matching any string. Therefore, the query will yield two results: the use
case “request installment loan” and the use case “request revolving loan”. Use
cases “specify loan details” and “buy credit insurance” do not match because
their names do not match. Use cases “calculate risk” and “request loan” do not
match because they are not associated with an actor. Use case “request loan” also
does not match because it is abstract, and the use case of the query is not. In this
query, only one annotation is required, namely the name pattern of the use case.
Since this is a frequent case, we allow using wildcards in names without an explicit
annotation. Escaping wildcards symbols allows to use them as proper symbols of
names.

The constraint in Fig. 2 (bottom right) is again a find pattern, but this time it
has a context annotation which defines the application condition of a constraint.
Executing a constraint works just like executing a query: all the elements of the
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constraint are matched against the model repository. However, the results are treated
slightly differently. There are three cases:

• If there is no binding for all of the elements of the context, the constraint is not
applicable.

• If there is a binding for all context elements, but not for all the other elements, the
constraint is violated, and the binding set is returned.

• Finally, if both the context elements and the other elements are matched, the
constraint is satisfied.

The following schema summarizes when VM* constraints are applicable, and when
they are satisfied or violated.

Elements matched Constraint

Within context Outside context is

Not all – Not applicable

All None Violated

All Some Violated

All All Satisfied

In the interest of compact specification, this rule is modified by atLeast
annotations. An individual atLeast annotation groups together related model
elements. The annotation set relates such element groups, specifying how many
times such groups must be matched to satisfy the constraint. In the example in
Fig. 2 (bottom right), the parameter is 1, meaning that either there is at least
one Includes relationship or one association attached to the “context”
use case. The actor and the included use case are required because the UML
syntax demands that Associations and Includes relationships may not be
“dangling”. Connected to other model elements as they are in this example, however,
they would have to match in order to not violate the constraint. Since the intention is
for these elements not to match, we need to add another atLeast constraint. This
constraint is satisfied for “Base Model”: the first four use cases are associated with
“Customer”, “calculate risk” is included in another use case, and “request loan”
is abstract, while the context use case in the constraint is not. Hence the constraint
in Fig. 2 (bottom right) is satisfied.

Figure 2 (bottom left) shows a simple transformation for cleaning up “orphan”
use cases. It consists of a single transformation rule expressed as one diagram
defining both the left-hand side and the right-hand side of the rule. The left-hand
side is a query for the model elements in the diagram, only that the actor and the
association prevent matching due to the omit annotation. In other words, wherever
these elements are present, the rule does not match. The right-hand side consists of
the instruction to delete the use case.

In order to distinguish transformations from queries and constraints, yet express
their similarity, the transformation is identified by both the looking-glass and the
cogwheel icon. Transformations are interpreted similar to queries and constraints:
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elements of the base model are matched against the elements of the transformations
as explained above. Then, those annotations that indicate updates are triggered, in
this case the delete clause. In this particular example, there are the following
cases:

• If the use case is matched, and there is also an associated actor that matches, the
whole transformation fails, and is not executed, because of the omit annotation on
the actor and its association.

• On the other hand, if the use case is matched, but there is no associated actor, the
transformation can be applied, deleting the “orphan” use case.

In this example, only “calculate risk” fits into that mold and is deleted. “calculate
risk” fits structurally but is abstract.

2.2 Low-Level Process Models Expressed as Activity Diagrams

Now consider an example of a process model expressed as a UML Activity Diagram
shown in Fig. 3. As before, there is one diagram that we use as the model repository
(Fig. 3, left). To illustrate the VM*UML language capabilities, we use a query that
we develop in several steps.

Suppose we want to find out what happens after a loan application is received
and before the eligibility report is sent out, i.e., what are the exact steps to determine
whether a client receives a loan or not? The general idea is to specify the delimiters
“receive loan application” and “send eligibility report”, and find Actions
between them. A first attempt to express this query may look like Q2a (Fig. 3, top
right). Executing this query yields the empty result set, though, as we have specified
that there should be a single Action that is directly connected to both delimiters.
In the base model, however, there are paths of varying lengths.

In order for this query to find all Actions at any distance from the delimiters,
we have to relax the condition and allow paths of arbitrary lengths instead of
directly connected Flows. This is achieved by annotating the arcs with steps
= *, which means “any number of steps” (see query Q2b, at the middle right
of Fig. 3). However, this still yields no results. The reason is that the definition
of steps restricts paths to contain only the kinds of node types adjacent to
the ControlFlow arc on which it is defined. In this case, there is a plain
Action (“send eligibility report” and the target node in the middle) and a
ReceiveEventAction “receive loan application”, but no ForkNode or
JoinNode. However, all the paths in the desired result set do contain fork or join
nodes. So, in order to yield the expected result, we need to also relax the types of
nodes on paths by using the type annotation in the next query (Q2c, at the bottom
right of Fig. 3). Going beyond the example, we could be even more relaxed here and
allow any type of node by specifying type_is_any.
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AD Coverage Quote Processing AD Q2a: Intermediate Steps

AD Q2b: Intermediate Steps

AD Q2c: Intermediate Steps

receive loan
applica�on

verify
customer account

send
eligibility report

gather 
background data

check
eligibility

prepare
eligibility report

get
payment informa�on

no�fy 
underwriter

send
credit insurance offer

[error]

Contract

receive loan
applica�on

$Actions

send
eligibility report

steps = *
<<VM* Annota�on>>

receive loan
applica�on

$Actions

send
eligibility report

steps = *,type = Ac�vityNode
<<VM* Annota�on>>

receive loan
applica�on

$Actions

send
eligibility report

could have used
“indirect” instead

Fig. 3 A UML Activity Diagram with an exception (left) and related queries (right). Note that
in UML, tokens within an InterruptibleActivityRegion (the gray area with a dashed
borderline) are discarded upon firing an ExceptionFlow edge (marked with a lightning symbol)

2.3 Low-Level Process Models Expressed as BPMN Diagrams

In order to support our claim of general applicability, we now present VM* queries
on BPMN (see [35] for more details). The top half of Fig. 4 defines how insurance
quote requests are processed by an insurance company, while the bottom half
presents five queries.

Suppose a business analyst is interested in finding all activities that deal with
insurance coverage. She can succinctly express this request in VM* using Query 1,
consisting of a task named $A and a comment containing VM* annotations. The
name of the task starts with a “$” sign, indicating that it is a variable declaration.
The name of any matching activity in the source model must be bound to $A.
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Q
ue

ry
: B

PM
N

Q
ue

ry
 2

Q
ue

ry
: B

PM
N

Q
ue

ry
 1

Q
ue

ry
: B

PM
N

Q
ue

ry
 3

Q
ue

ry
: B

PM
N

Q
ue

ry
 4

Q
ue

ry
: B

PM
N

Q
ue

ry
 5

BP
M

N
Co

ve
ra

ge
 Q

uo
te

 R
eq

ue
st

 P
ro

ce
ss

in
g

vm
* 

st
ep

s=
* 

an
d 

ty
pe

 in
 

   
{S

eq
ue

nc
eF

lo
w

, D
at

aI
np

ut
A

ss
oc

ia
tio

n}

vm
* 

 ty
pe

 is
a 

G
at

ew
ay

vm
* 

 in
di

re
ct

vm
* 

ty
pe

 is
a 

Ac
tiv

ity
, n

am
e 

=
‘*

co
ve

ra
ge

*’
vm

* 
st

ep
s 

= 
m

in

vm
* 

st
ep

s 
= 

m
in

F
ig

.4
H

an
dl

in
g

co
ve

ra
ge

qu
ot

e
re

qu
es

ts
in

an
in

su
ra

nc
e

ad
m

in
is

tr
at

io
n

sy
st

em
:

Pr
oc

es
s

m
od

el
ex

pr
es

se
d

in
B

PM
N

(t
op

),
an

d
fiv

e
V

M
*B

PM
N

qu
er

ie
s

(b
ot

to
m

)



VM*: A Family of Visual Model Manipulation Languages 159

The text annotation starts with the vm* keyword, indicating that it should be
interpreted as a VM* expression. The annotation type isa Activity ensures
that all of the BPMN activity types and their subclasses are considered, e.g.,
Task, CallActivity, SubProcess, and SendTask. In the example, this
annotation enables the query to also return the compute coverage collapsed sub-
process, which according to the BPMN metamodel is actually not a Task. Rather,
Task and SubProcess are both subclasses of the Activity abstract meta
class, see [19, p. 149]. Finally, the name = ’*coverage*’ annotation uses a
regular expression to specify that all activities matching the query must contain the
string “coverage” in their name. A VM* implementation parses and evaluates such
constraints when computing the result set. In the example, this applies to the first
three nodes of the upper branch.

A similar, slightly more complex case is shown in Query 2. Here, the intention is
to find all tasks which can only be executed after an ExclusiveGateway. This
clearly applies to “modify coverage limit”, “check coverage limit”, and “create
account”. Observe that it will also find “consult account”, even though the flow
from the ExclusiveGateway to “consult account” is marked as default, while
the flow in the query is not marked as default. The reason is that being a default
flow is an optional property of the gateway, and the query does not specify a
value for this property, which means it matches all values. On the other hand,
“compute coverage” is not matched because its type is SubProcess while the
type specified in the query is Task.

Query 3 detects if the “create account” and “consult account” tasks are
executed exclusively, in parallel, or in some other manner, depending on the gateway
preceding them. The type isa Gateway annotation indicates that the gateway
preceding the tasks may be of any type as long as it is a subclass of the Gateway
abstract meta class. The default=any is required to ensure that both default and
non-default flows will be matched indiscriminately—this resembles the abstract
property of UML Classifiers. The steps = min annotation limits the
number of possible matches by stating that only the gateway-node closest to the
two tasks should be returned. Considering the source model, Query 3 will then yield
that the two tasks are executed exclusively.

The goal of Query 4 is to determine which part of the process has access to the
“Contract” data input before a quote is sent to the customer. Observe that we allow
paths of arbitrary length and all relevant types by the steps and type annotations,
respectively. These two kinds of annotations occur frequently together so we have
created the indirect annotation that is a shortcut for steps=* and type is
any. So, Query 4 returns all paths from “Contract” to “send quote to customer”.

Query 5 illustrates the difference between syntactic and semantic querying. The
intention of the query is to verify if the “modify coverage limit” task may be
reached after executing the “check general coverage” task. Syntactically, the
source model contains a path between the two tasks. Therefore, Query 5 will return
this path. However, the question of reachability may not be reliably answered
without considering semantics. Indeed, the path connecting the two tasks in the
source model contains a false condition on one of its flow arrows, with the
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intended meaning that control will never traverse this flow (i.e., task “modify
coverage limit” will never execute). Answering this type of inquiry about process
execution is a desirable but as of now unavailable feature in VM*. Also, it is this
very feature of VM* that allows us to express Query 4 as succinctly as we have
done, highlighting the trade-off between expressiveness and usability of VM*.

3 Query Language

In this section we discuss the abstract and concrete syntax, and formalize the
semantics of VM*.

3.1 Abstract Syntax

VM* queries, constraints, and transformations consist of model fragments with
(optional) textual annotations as defined above and formalized in the VM* meta-
model, see Fig. 5. A VMStarExpression contains one or more Rules, each
of which contains one or more Patterns, each of which contains one or more
elements of the host language. All containments are exclusive, and there may
be annotations on expressions, rules, or patterns. The components of the VM*
metamodel must be mapped to existing elements of the host language metamodel. If

CD VM*L-Metamodel

NamedElement
Annota�on

Host Language
Element

VMStarExpression

+rules1..*

0..*

+pa�erns

+annota�ons

Pa�ern

Rule

+priority: Integer

+name: String

+kind: ExpressionKind

+kind: Pa�ernKind

1..*

1..*
+elements

FindPa�ern
ForbidPa�ern
ProducePa�ern
UpdatePa�ern
RequirePa�ern

Pa�ernKind
<<enumera�on>>

VMQuery
VMConstraint
VMTransforma�on

ExpressionKind
<<enumera�on>>

context: VMStarExpression
inv:  kind is in 
    {VMQuery, VMConstraint} 
 implies 
 rules.patterns.kind is in
    {FindPattern, ForbidPattern}

<<OCL>>

+body: Text

Fig. 5 The VM* metamodel
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Table 2 Mapping of VM* metamodel constructs into UML language constructs to create
VM*UML. In order to implement this mapping, a UML profile with these constructs must be
created, and applied to any UML Packages containing VM* expressions

Stereotype Applies to Description

«VM* Annotation» Comment Annotation for any complete scope, e.g., a
package of several expressions

«VM* Query»
«VM* Constraint»
«VM* Transformation»

Package Annotation for a complete expression

«VM* Find» Package,
Comment

Find patterns are used as queries,
constraints, or as the left-hand side (LHS)
of a transformation rule. A rule may
contain at most one find pattern. A rule
must contain either a find pattern or an
update pattern

«VM* Forbid» Package,
Comment

Forbid patterns are negative application
condition (NAC) for a transformation rule
or constraint. A rule can contain any
number of forbid patterns and will be
executed only if none of these patterns is
matched in the source model

«VM* Require» Package,
Comment

Require patterns represent a positive
application condition (PAC) for a
transformation rule. A rule can contain any
number of require patterns, and will be
executed only if all of these patterns are
matched in the source model

«VM* Produce» Package,
Comment

Produce patterns represent the Right-hand
side (RHS) of a transformation rule,
specifying how the target model is to be
obtained from the source model. A rule
may contain at most one produce pattern,
and if there is a produce pattern, there
must also be a find pattern in the same rule

«VM* Update» Package,
Comment

Update patterns amalgamate a find and a
produce pattern. There may be at most one
update pattern per rule, and there may not
be an update pattern and a find pattern
together in a rule

the host language offers extension mechanisms, like the profiles and stereotypes of
UML, these should be used. For instance, for VM*UML, annotations are encapsu-
lated in UML comments annotated by the VM* Annotation stereotype. Table 2
shows how the VM* constructs map to the host language UML. For languages
lacking extension facilities, naming conventions can be used to the same effect.

VM* specifies five pattern types: find, forbid, require, produce, and update.
Queries and constraints consist of exactly one find pattern, and any number of forbid
patterns. Constraints must have at least one annotation with the body context. In
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transformations, all kinds of patterns may occur in any number. The transformation-
annotations may only be used in update and produce patterns, and must be anchored
to at least one model element of the pattern. Transformational patterns correspond to
Left-Hand Side (LHS), Right-hand side (RHS), Negative, and Positive Application
Condition (NAC and PAC, respectively) from graph transformation theory [14].

3.2 Concrete Syntax

The core of the VM* language is the set of annotations it provides. In the interest of
expressiveness and succinctness, we sometimes cannot avoid referring to elements
of the VM* metamodel explicitly. Also, sometimes execution options for queries,
constraints, and transformations must be specified. Both of these can be achieved
with annotations. See Table 3 for a complete overview of VM* annotations.

We start our overview of VM*’s annotation syntax by describing user-defined
variables. They can be declared and manipulated within VM* annotations, and also
used as meta-attribute values in pattern specifications. The names of user-defined
variables are prefixed by the $ character. Their scope extends across all patterns
included in a query, and they are therefore employed for identifying corresponding
model elements across different patterns. The type of a user-defined variable is
inferred at query execution time. VM* supports the Boolean, Integer, Real,
and String data types, in addition to the Element data type used for storing
instances of host language meta classes. Regardless of their type, user-defined
variables also accept the undefined value (“*”). A variable with this value is
interpreted as possibly storing any accepted value of its respective data type.

For variable manipulation, VM* supports the arithmetic, comparison, and logic
operators listed in Table 3. Logic operators can be expressed using shorthand
notations (“,”, “;”, “!”, “->”) or full textual notations (and, or, not, if/then).
The implication (“->”) and disjunction (“;”) operators can be combined to form
a conditional if/then/else construct. The navigation operator (“.”) accesses
model element meta-attributes, operations, and association-ends.

Apart from user-defined variables, VM* relies on special variables as a means
of controlling query execution (the injective, precision and steps special
variables) and accessing the contents of the source model (the id, self, and
type special variables). Special variables have a predefined scope, identifying
the specification fragment to which they are applicable. With the exception of the
injective variable, the scope of all special variables is limited to the annotated
model element. The injective variable has a global scope: its value determines
how all patterns of a query are matched in the source model.

Clauses are the main building blocks of VM* annotations: each annotation
consists of one or more clauses connected by logic operators. The use of clauses
is inspired by logic programming languages and benefits annotation conciseness.
A clause is an assertion about the pattern model elements to which it is anchored,
about its containing pattern as a whole, or about user-defined or special variables.
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Table 3 VM* annotations grouped by function (top to bottom): features for queries, constraints,
and transformations, and generic arithmetic and logic operators

Annotation Meaning

$ Declares a variable to be matched (e.g., with the name of a model element)
match Matches two variables (e.g., a name and a variable)
self Denotes the model element to which an annotation is attached
id Stores a model element identifier to match corresponding elements across

patterns
?, * The usual wildcards may be used in matching names of model elements
:= Assigns a value to a user-defined variable, special variable, or model

element meta-attribute
injective When set to false, query elements may match more than one target model

elements (default true)
steps Used in an expression to restrict path lengths and types of nodes and edges

on paths, allowing either comparisons to constants, the value * for
“unrestricted”, or the values min or max denoting the paths extending to
the shortest or longest paths available

indirect Syntactic sugar for steps=* and type is any

type is x Specify the type (meta class) of the annotated model element as being x,
allowing any for x

type isa x Specify the type (meta class) of the annotated model element as being a
subclass of x

context Anchor for constraints, must be present at least once in any constraint
omit Annotated element must not be matched
atLeast(k) At least k groups of annotated elements must be matched
atMost(k) At most k groups of annotated elements must be matched
either Syntactic sugar for atMost(1) and atLeast(1)

create Part of the right-hand side of a transformation rule, create the annotated
model element

create if not
exists

Like create, but triggers only if the element does not already exist
beforehand

delete Part of the right-hand side of a transformation rule, delete the annotated
model element

priority Sets the priority of a rule (default 1)
+, -, *, / The usual arithmetic operators. Note that the overloading of ∗ can be

resolved by context
=, <>, <, <=, >, >= The usual comparison operators, where string comparison employs the

wildcards * and ? in the canonical way
in The usual set containment operator, where sets are enumerated between

curly braces
like A similarity-based matching operator for strings (global threshold)
precision Annotated element is not required to match exactly but does allow a

similarity-based matching with the given threshold

and, or, not The usual logical operators
,, ;, ! Shorthands for logical and, or, and not
if <e> then
<c1> else <c2>

The usual (eager) conditional, where the else-branch is optional, and -> is
allowed as a syntactic shortcut

. The usual dot-notation to access attributes of objects
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The main role of clauses is to act as additional constraints on pattern matching. Note
that variable assignment (“:=”) is treated as a clause.

The either clause can only be included in annotations anchored to several
pattern model elements. All other clauses listed in Table 3 can be included in
annotations anchored to one or more pattern elements. In general, anchoring a clause
to several pattern elements instead of creating several annotations containing the
same clause leads to more compact specifications. The variable assignment clause
(“:=”) can also appear un-anchored to any pattern elements, as variables always
have a query-wide scope in VM*.

The annotations associated with VM* language elements play one of two roles:
(i) When anchored to a host language element of a VM* pattern, annotations offer
additional information or specify constraints related to that specific element. (ii)
When anchored to the VM* expression itself, annotations specify execution options,
such as global constraints on identifiers and variables.

3.3 Semantics

The central operation of the process of interpreting a VM* query, constraint or
transformation is the matching of VM* patterns with corresponding source model
fragments. For queries and constraints, the find patterns are matched against the
source model, resulting in a set of intermediate bindings. Then, the forbid patterns
are matched against the intermediate bindings, and the result is returned. For
efficiency reasons, the annotations should be applied with decreasing strength. For
instance, the context annotation is executed first.

For transformations, the rule with the highest priority is selected, and its left-
hand side part is executed like a regular query. Any resulting bindings are then
subjected to the right-hand side part of the rule. The rule application is continued
until no more (new) results are yielded from executing the left-hand side. Then,
the rule with the next highest priority is selected, and the process is repeated, until
there are no more rules to apply. VM* currently only allows endogenous model-
to-model transformations, that is, transformations in which the source and target
models conform to the same metamodel [12, 16]. VM* transformations can be
executed in-place to modify an existing model, as well as out-of-place to produce a
new model.

As a means of formalizing the identification of matches between VM* patterns
and a source model, it is useful to consider them both as typed attributed graphs. A
model graph is defined as a typed attributed graph intended for representing models.

Definition 3.1 A model graph corresponding to a model M is a tuple
〈N,E, T ,A, V, type, source, target, slot, val〉 where:

• N and E are finite sets of nodes and directed edges, respectively, with E∩N = ∅;
• T is the set of node types corresponding to the meta classes included in M’s

metamodel;
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• A is the set of node and edge attributes corresponding to the meta-attributes
included in M’s metamodel;

• V is the set of possible attribute values;
• type : N → T is a function assigning a type to each node;
• source : E → N is a function defining the source node of each edge;
• target : E → N is a function defining the target node of each edge;
• slot : (N ∪E) → 2A is a function assigning a set of attributes to nodes and edges;
• val : N × A 	→ V is a partial function associating a value v ∈ V to pairs (n, a),

where n ∈ N , a ∈ A, and a ∈ slot (n).

Edges are uniquely defined by their source, target, and slots, i.e., ∀e, e′ ∈ E :
(source(e) = source(e′)) ∧ (target(e) = target(e′)) ∧ (slot(e) = slot(e′)) �⇒
e = e′. The “undefined” element denoted ⊥ is not a member of any set.

The canonical subscript notation is used in what follows to denote elements of
a particular model graph. For example, Ng and Eg denote the nodes and edges of
model graph g. Both bindings and matches between a VM* pattern and a source
model may be represented as model graphs; see Fig. 6 for an example representing
Query Q1 from Fig. 2 as the actual query in the editor (top), the internal data
structure a modeling tool might use to store the model (middle), and the semantic
structure as a graph with labeled nodes (bottom).

Definition 3.2 Given two model graphs q and m representing a VM* pattern and a
source model, respectively, a binding is an injective function β : Nq → Nm from
the nodes of q to those of m.

Computing a binding generates potential matches, but actual matches must meet
two more conditions. First, nodes mapped by the binding must have the same type.
Second, model nodes must have at least the same slots, values, and interconnecting
edges as the query nodes they are bound to.

Definition 3.3 A binding β is a match between a VM* pattern q and a source model
m iff the following conditions hold:

(i) ∀n ∈ Nq : (type(n) = type(β(n))) ∧ ∀a ∈ slot(n) : val(n, a) = val(β(n), a),
(ii) ∀e ∈ Eq : ∃e′ ∈ Em : slot(e) = slot(e′) ∧ β(source(e)) = source(e′) ∧

β(target(e)) = target(e′).

We define binding and match in two separate steps to highlight the algorithmic
structure of VM*: Computing the binding generates potential solutions that are then
pruned by computing the match. Implemented naively, this approach is computa-
tionally inefficient, and practically useless. Informing the binding-algorithm with
the matching constraints, however, drastically reduces the complexity.

Most of the VM* annotations introduced in Sect. 3.2 have no other effect on
the above definitions than to simply modify a pattern before it is matched with a
source model. The self, type, and steps special variables are such examples.
Other annotations such as either and optional imply that several different
versions of a pattern must be matched with the source model. Again, this does
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not interfere with each individual pattern’s matching process. The unique clause
imposes a filter on match results after they have been computed, i.e., only one match
is allowed. All of the aforementioned annotations do not interfere with the match
computation, but simply work on the results. The only annotations affecting match
computation are the injective and precision special variables: assigning
false to injective removes the injectivity condition in Definition 3.2. Adjust-
ing precision tweaks the matching precision.1

4 Implementation

Developing VM* iterated through many cycles of conceptual work, exploratory
prototyping, and evaluation not dissimilar to the design science methodology. In
this way, three product lines have emerged over the years, implementing (parts of)
VM* in turn.

moq We started with exploratory coding in PROLOG to determine the algorith-
mic feasibility and complexity [25, 26]. This branch later developed into query
textual interfaces to study the concepts independent of the notation [30, 31].
The last step in this line is the MACH environment [33] which is available for
download.2 It can also be used without installation on SHARE [37].3

MQ We started exploring the visual notation aspect for model manipulation,
with the ModelQuery systems, MQ-1 [39] and MQ-2 [3, 5].4 Both are plugins
to the MagicDrawTM modeling environment.5 These implementations allowed
to validate the overall approach, the syntax, semantic details, and the query
execution performance under realistic conditions. A screenshot of MQ-2 is
shown below in Fig. 8.

vm* Finally, in order to prove the execution transparency of VM*, we realized it
on two fundamentally different execution engines: Henshin [11], and as a REST-
style Web-interface [4, 10].

Due to the limited space available, we can only explain one implementation here.
We select MQ-2, since it is the basis of most evaluations. In the remainder of this

1 Over the course of the years, the semantics of VM* languages has been defined in different
terminologies and notations, and with slightly different meanings. The view presented here is
the one proposed in [4], superseding earlier definitions such as the logic programming-based
formalization presented in [29]. There, all annotations are viewed as logic constraints to be checked
by an inference engine as part of the match computation process. Here, however, we decouple
pattern matching from annotation interpretation, thus allowing a much wider array of existing
matching engines, particularly ones based on graph matching.
2 https://www.pst.ifi.lmu.de/~stoerrle/tools/mach.html.
3 http://fmt.cs.utwente.nl/redmine/projects/grabats/wiki.
4 https://www.pst.ifi.lmu.de/~stoerrle/tools/mq2.html.
5 www.magicdraw.com.

https://www.pst.ifi.lmu.de/~stoerrle/tools/mach.html
http://fmt.cs.utwente.nl/redmine/projects/grabats/wiki
https://www.pst.ifi.lmu.de/~stoerrle/tools/mq2.html
www.magicdraw.com
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Fig. 7 The architecture of the MQ-2 system and the main dataflow of executing queries. Numbers
in black circles indicate the sequence of steps in creating and executing a query. Numbers in white
circles indicate the steps for creating or changing models in the model base. Rectangles are used
to represent data. Rectangles with rounded corners are used to represent actions. Arrows indicate
dataflow

section, we will refer to VMQL rather than VM*, because VM* did not exist yet
at the time of implementation. Figure 7 shows an architectural overview of MQ-2,
while Fig. 8 presents a screenshot. The process of executing a query is shown by
the numbers in black/white circles in Fig. 7. We will start with the white circles that
highlight the steps for transforming the model base.

A source model is created using some modeling language (UML in this
implementation) and stored in the tool’s model base.
The model base is exported to an XMI-file, the standard file-representation of
UML, using MagicDraw’s built-in export facility.
The XMI-file is mapped into PROLOG predicates (see [29] for details). The
mapping is bidirectional and generic, i.e., it does not limit generality of the
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Fig. 8 The prototype implementation of VMQL. In the foreground, MQ-2 presents a list of
“available queries” (top left), the one currently selected (top right), and the current result binding
(bottom). One of the result bindings is selected, and a diagram in which this binding appears is
shown in the background. The bound elements are highlighted with bold green borders
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solution. Note that later implementations map models into graphs rather than
to PROLOG predicates.

Now we turn to the process of translating and evaluating queries, indicated by
numbers in black circles in Fig. 7. Since VMQL queries are annotated fragments of
regular models, executing a query on a given model base boils down to finding
matches between the query and the model base, and checking the constraints
provided by the annotations.

A VMQL expression is entered as a regular UML model with constraints
packaged in stereotyped comments.

Then, the model query is transformed just like the source model. Constraints
are directly mapped to predefined Prolog predicates and added to the predicates
yielded from translating the query. Note that the precise way of how the
constraint predicates are added is crucial for the computational complexity. In
later implementations, queries are mapped to graph transformations instead of
Prolog predicates.
Next, the predicate resulting from translating the model query is run on the
Prolog-database resulting from transforming the source model. The two models
are matched and the constraints are evaluated.

Finally, the user selects one of the matches found in the previous step.
To support this, a list of all diagrams containing elements of the match is
computed. These may be either exact or approximate matches, as controlled
by the precision constraint. If appropriate, the list is sorted by decreasing
similarity. The diagram selected in the previous step is presented, and all
elements of the binding are highlighted with fat green outlines (like in Fig. 8).
The user may return to the previous step and select another match, and eventually
terminate this query.

While the user interaction is tool specific, the query engine and the model
interpretation are not (i.e., the lower part of Fig. 7). It should thus be fairly easy
to port MQ-2 to other UML tools, to DSL tools, or, in fact, to any modeling tool as
long as it provides an open plugin API.

MQ-2 and the other implementations of (parts of) VM* have matured over
several years of iterative refinement. Still, none of these implementations has
reached the level of maturity and quality to compare to commercial products.
However, our implementations do serve as evidence for several points. First, they
prove feasibility of VM* in all its parts and aspects, and the soundness of the
concepts and ideas behind VM*. Second, the implementations allowed us to get
a better understanding of the computational complexity of executing VM*. This is
particularly important, because executing VM* is ultimately based on sub-graph
matching, a problem well-known to be computationally expensive in the worst case.
So, it was not clear from the outset whether VM* would lead to a viable solution
for practical situations. As it turns out, VM* is indeed viable for the intended use
case, namely interactive queries, checks, and manipulations of models by modelers.
However, it is likely not capable of supporting online processing of extremely large
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model repositories or very complex and large sets of model transformations. It is
neither suitable to aggregate trace data into process models (“process mining”). Due
to lack of space, we cannot explore this aspect further in the present paper, and refer
the reader to [6]. Third, we claim practical value of VM* particularly for usability.
In fact, it is this aspect that led us to develop VM* in the first place, and it is here
that we have placed the greatest emphasis of our work.

5 Usability Evaluation

Usability is rarely considered an important concern in many modeling commu-
nities.6 For us, it is the key to the success of any modeling related approach.
Therefore, the cornerstone of the model querying research done in the context of
VM* is, of course, the series of user studies to explore the usability of various model
manipulation approaches. Table 4 lists the empirical studies we have conducted
over the years to evaluate the relative usability of various languages for querying
or transforming models. In Table 4, every line corresponds to a distinct study.
Obviously, it is impossible to present all experimental results here in adequate detail,
so we refer the reader to the original publications once more and restrict ourselves
here to a discussion of the insights we obtained.7

Our initial hypothesis was that visual query languages should “obviously” be
much better than textual languages. This turned out to be wrong in study 1 [30, 32]:
All participants (senior practitioners) reached a perfect score on the OCL condition,
even though they had never seen OCL before. In fact, they reached perfect scores
under all treatments, whereas the student participants in study 0 had reached fairly
low scores under each treatment. When asked, the participants in study 1 would
explain that they had considered it to be some kind of pseudo-code, and simply
executed it mentally, based on their intuition of the names of the operators and
functions. Based on their extensive personal experience, they apparently understood
the concepts, even if the syntax was new to them, and, as they asserted, less
comprehensible than the syntax of the other languages tested. This gave rise to
the hypothesis that there are at least two relevant factors to understanding model
queries: the querying concepts (abstract syntax) and the querying notation (concrete
syntax). We also speculated that participants’ scores in our tests should be less
relevant than their cognitive load. Therefore, we started asking for preferences as
a hint towards load levels.

6 Of late, some different opinions are heard, though, cf. e.g., [1].
7 We cite the main publications reporting on these studies, though many times results contributed
to several publications, and there are several publications presented (parts of) the results. The
names of the languages have evolved over time, we use here the name that the respective languages
have had at the end of the research program, to make comparison easier for the reader. The first
study was an exploratory pilot study to develop the research question rather than to provide
meaningful results.
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Table 4 Main empirical studies evaluating VM* and its precursors. In column “Method”, E, QE,
and TA refer to Experiments, Quasi-Experiments, and Think Aloud protocols, respectively. The
columns under “Participants” detail the kind and number of participants in the study (Students,
Practitioners, and domain Experts). In column “Mode”, R, and W stand for reading and writing of
queries or transformations

Participants

No. Ref. Method S P E Languages Intent Mode

0 [26] QE 5 VMQL, OCL, NLMQL, LQF Query R, W

1 QE,TA 5

2 [30, 32] E 12 6 6 VMQL, OQAPI, NLMQL Query R

3 E 16

4 [29] E 20 VMQL, OQAPI Query R, W

5 E 17

6 [4] E 24 VM*, OQAPI Query R, W

7 [4, 10] E 30 4 VM*, Epsilon, Henshin Transformation R

8 E 44

9 TA VM*

In studies 2 and 3, we switched from an exploratory research method to the
classic experimental paradigm. Besides increasing the number of participants, we
also explored sub-populations with different levels of qualification, and studied the
controls more carefully, with surprising effects. NLMQL is a made-up purely textual
model query language that we had introduced as a control, pitching textual vs. visual
styles of querying. We had expected that the visual VMQL would outperform not
only OCL (including the improved OCL-variant OQAPI) but also NLMQL. But the
opposite happened, which led us to speculate that there are more factors at play than
just the visual or textual notation of a query language. We attributed the difference
to the proximity of the concepts in the query language and the concepts referred to
in the experimental tasks. Put in another way: part of the usability of a model query
language could be found in the appropriateness of the language concepts.

The subsequent studies 4 and 5 replicated the effects found previously and
confirmed our speculations. Thus, we consider it an established fact that there are
clear differences in usability of different languages, both with respect to reading
and creating queries and constraints. Furthermore, the available evidence suggests
that there is indeed a second factor which we call language concept appropriateness
(LCA). Actually, the influence of LCA seems to be larger than whether a notation
is visual or textual. We also stipulate that the effect can be masked by expertise and
intellectual prowess, and so manifests itself mostly under stress (e.g., time pressure),
and through variation across a population rather than through in vitro experiments.

Re-analyzing our data, we also hypothesize that there might be a third factor
at play beyond the syntax and concepts of the queries that were presented to our
participants: in all our experiments, the answer options for participants to choose
from were given as prose. This might bias our results in favor of the textual,



VM*: A Family of Visual Model Manipulation Languages 173

prose-like notation (NLMQL, see studies 0–3 in Table 4). There is currently no
experimental evidence to confirm this speculation, though.

After study 5, a major redesign of the language took place in the context
of extending it to covering model transformations, yielding the VMTL-language.
Of course, we also had to switch our controls from model query to model
transformation languages (MTLs). We picked two best-in-class languages, namely
the visual MTL Henshin, and the textual MTL Epsilon. In studies 7 & 8, we obtained
similar results than we saw previously for model query languages. These studies
showed no substantial advantage of one language over the other, and we currently
do not understand why this is the case. In particular, we were surprised by the
comparatively good results found for the “Epsilon” treatment. We hypothesized that
this is due to the sampled population: Their educational background (CS graduate
students) might introduce a bias in favor of Epsilon, which is very similar in style to
common programming languages. This would be in line with our very first results,
where the strong CS background of the study participants obviously had allowed
them to cope with a language like OCL, despite its obvious usability deficiencies
[26, 29, 30].

However, this is of course far from the “normal” situation, where domain experts
typically do not have CS expertise—they have domain expertise, and probably some
experience in reading models, and maybe even in creating models. Such users, we
speculate, should have a much harder time coping with OCL, Epsilon and other
languages created by computer scientists for computer scientists. Such users, we
believe, outnumber CS experts by far, and they deal with models (in their domains)
on a daily basis. They have no experience in programming or Model Driven Devel-
opment technology, nor do they have an intrinsic motivation to use this technology.

Pursuing this idea, we conducted an observational study involving participants
with and without a programming background (study 9). Interested in their opinion
and thought processes rather than their scores, we switched to a think aloud protocol
to find out how users understood the various languages. As expected, the presence of
substantial programming experience lead to a completely different approach as com-
pared to the non-programmers. Given that this is an interactive, observational study
based on a very small set of participants, our results do not support strong interpre-
tations and broad generalizations. On the other hand, our results likely generalize
from queries to constraints and transformations, based on the structural similarities
outlined in the first section of this paper. So, queries are the essential building blocks
for all kinds of model manipulations, and likely the most used part, too.

6 Applications and Use Cases

In the Software Engineering domain, several types of models occur frequently, e.g.,
class or entity-relationship models, state machines, interaction models, and so on.
Numerous powerful model manipulation languages and tools have been developed
in the context of the MDE-paradigm, which places “model transformation at the
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heart of software implementation” [22, p. 42]. Their origin has shaped them in
a profound way, particularly considering the application scenarios, model types
and the capabilities expected from modelers: Understanding and using MDE-
style model manipulation approaches hinges on a perfect understanding of the
metamodels underlying the modeling languages. Obviously, this is hardly part of the
skill set of most domain experts. This means that MDE-flavored model manipulation
languages, while expressive and supported by powerful tools, cater only for a very
small audience of MDE-experts.8

On the other hand, the BPM community has more readily considered modelers
which are experts in the domain modeled rather than technology. Thus, usability
of model manipulation tools is a concern of much greater importance here.
However, this domain typically considers only one type of models, namely process
models. Additionally, existing approaches typically only deal with models of one
particular notation. So, while a potentially much greater audience is addressed, a
smaller set of models is covered. We believe that conceptual models are abundant
today, created and used by knowledge workers without MDE expertise—think of
organizational charts, shift plans, mechanical and electrical engineering models,
Enterprise Architecture models, and chemical process schemas. These types of
conceptual models have complex and long-lasting lifecycles. They are created,
refactored, translated, and migrated in much the same ways as software models.
End-users working with conceptual models are usually academically trained and
highly skilled in their domains. We call them End-User Modelers (EUM), and they
are at the focal point of our vision of model manipulation. We aspire high degrees
of usability and learnability to cater for

EUMs, yet expressive and generic enough to cover their many application
intents and modeling languages. This is an instance of the “Process Querying
Compromise” [21, p. 12]. Pursuing this goal we are prepared to give up a degree
of expressiveness.9 We win, however, a world of applications, as we shall illustrate
in the remainder of this section.

Imagine a world where lawyers, mechanical engineers, accountants, and other
domain experts have access to a language and tool that allows them to specify model
transformations, queries, and constraints in a manner so close to their application
domain and so simple to use that they can actually do it themselves. This would
empower large numbers of knowledge workers to validate and update their models
in a more efficient and less error-prone manner. The economic benefits would be
hard to overstate. For instance, in an, as yet unpublished, interview study, a leading
software architect from a major automotive supplier said about model querying:
“. . . so I asked them: guys, how long does this and that take . . . then I took their
hourly rate, the working hours, and so on, calculated how much we would save if

8 This might have contributed to the hesitant industrial adoption of MDE [38].
9 In fact, some queries cannot be expressed in VM* [29], and some VM* queries are not
computable [4, Sec. 6.3]. Also, there is a poor worst case performance of the underlying execution
algorithm. We argue, however, that VM* still covers a large part of the actual application space.
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we can only shave off 5 minutes a day. Those tens of millions [of e]. . . they didn’t
ask any more questions after that.”

As a first example, consider a supplier of financial services. Over the last decade,
substantial new legislation has been implemented to regulate financial markets. It
is now widely accepted that “a comprehensive understanding of business processes
is crucial for an in-depth audit of a company’s financial reporting and regulatory
compliance” [17]. A current trend in making this possible involves audits of the
business processes, or, to be more precise, audits of the business processes models.
Given the large number of processes and applicable regulations, companies are
struggling to have fast and cost-effective audits. If auditors can create their own
queries on these process models, they will be more effective in narrowing down
items to check manually. Since this is already beneficial, imagine the added benefit
of replacing non-compliant patterns of activity with compliant ones automatically
and consistently.

As a second example, consider an Enterprise Architecture scenario focusing on
compliance and change-management. Industrial installations with potential impact
on safety and environment are subject to stringent regulation explicitly demanding
up-to-date digital models of the installation so that, e.g., malfunctions resulting
in environmental pollution can be traced back. Also, emergency response forces
need full technical details of a plant, say, to effectively carry out their work if
needed. Imagine an oil rig where a maintenance engineer discovers a burst pipe
spilling oil and blocking an evacuation corridor on the rig. Even more importantly
than repairing the damage is forwarding the information to all people and systems
concerned. With models as the backbone of information management of the
industrial installation, this amounts to the need for fast and accurate update to
several interconnected models. While speed is of the essence, ensuring that all the
right elements of the model are found and consistently updated globally is difficult,
slow, and error-prone for simple editing or search/replace. On the other hand, pre-
defining changes or back-up models is insufficient due to the unpredictability of
changes and mitigating actions. Deferring the update to a back office loses vital
context information and takes too long time. In such a situation, the maintenance
crew should do the update on the spot.

7 VM* and PQF

Polyvanyy and colleagues have introduced the so-called Process Querying Frame-
work (PQF) [21]), which “aims to guide the development of process querying
methods”, where “querying” includes all kinds of model manipulations in their
terminology. Using PQF as a frame of references, we discuss VM* using the
concepts and viewpoints defined there.

PQF consists of four parts with a number of activities (“active components”) to
be executed on models. Of the 16 activities defined explicitly in PQF, the following
six are instantiated in VM*.
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Formalize, Index, Cache. The process of compiling VM* specifications into
executable Henshin transformations [4] or Prolog programs [3, 5] is fully
automated. The translation of models includes manipulations that amount to
indexing and caching (see steps and in Fig. 7).

Inspect. Matched model fragments are presented to users using the same notation
and tool used to create the host model and the VM* query specification. The
modeling tool used for creating the target models in the first place is also used to
inspect the model.

Visualize. The concrete syntax of the host modeling language is used to visualize
query results (see Fig. 8 for an example).

Filter. PQF’s notion of model repository corresponds to a common (large) UML
model, so that selecting sub-models by VM* queries amounts to filtering in
PQF’s understanding of the term. PQF only considers static reductions of the
search space, though.

Other components of the PQF are not instantiated in VM*. PQF also defines a set of
variation points (“design decisions”) by which process query approaches may vary.
VM* has the following stance on these design decisions.

Design Decision 1: Models. VM* aspires to be applicable to all model types,
and to all (common) modeling languages. The restrictions to our aspirations are
discussed below and are fairly limited. As long as a modeling language has a
visual syntax, is implemented in a tool, and is defined using a metamodel (or,
indeed, a meta-metamodel such as MOF or Ecore, [20, 23]), VM* is applicable.

Design Decision 2: Semantics. VM* is based on syntactic matching. The under-
lying semantics is not considered in this process and may only enter the picture
in special cases. Considerations of the execution semantics such as fairness,
termination, and finiteness are not relevant for VM*. Conversely, semantic
differences along these dimensions cannot be expressed in VM* other than by
additional, semantics-specific annotations.

Design Decision 3: Operation. Considering a CRUD context, the VM* lan-
guages address the query intents Read, Update, and Delete. The fourth intent
(Create) is not supported directly in the sense that VM* is not able to create
models from scratch, though it could be achieved by update rules with empty
application conditions. The supported query conditions (i.e., VM* annotations)
are designed with learnability and comprehensibility as priorities.

These decisions come at a price. First of all, the generality and usability are
achieved, sometimes, at the expense of expressiveness: some queries cannot be
expressed in VM* [29]. We have discussed the trade-off between language expres-
siveness, usability, and predictability of query results in [4, Section 8.2]. We argue
that VM* still covers a large part of the actual application space.

Second, some VM* queries are not computable [4, Sec. 6.3], and there is a poor
worst case performance of the underlying execution algorithm, which, in the end,
amounts to graph matching. While, theoretically, this incurs an exponential run-time
for the worst case, this case is rarely met in industrial applications. With suitable
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optimizations and heuristics, a practical solution has been implemented, as we have
shown, at least for the scenarios we have considered.

8 Conclusion

We present VM*, a family of languages for expressing queries, constraints, and
transformations on models. Our focal point is the End-User Modeler, i.e., a domain
expert working with models, but without programming background. We claim that
our approach is feasible and usable and present evidence obtained through many
iterations of implementation and improvement as well as a string of empirical
user studies. We also claim that our approach is suitable to work with almost any
commonly used modeling language, including DSLs. Since 2007, there have been
over 20 publications on VM* and the steps leading up to it (see Table 1). An
extensive discussion of the related work is provided in [4, Ch. 3].

The genuine contribution of this line of research is that it is the first to take
usability into serious consideration for model manipulation languages. VM* is
also comprehensive in the sense that it applies to all widely used visual modeling
languages, covers many use cases, and provides many practical advantages, e.g.,
it readily adapts to any modeling environment. Pursuing our goal of combining
usability with generality, we traded in a degree of expressiveness: some queries
cannot be expressed in VM* [4, Sect. 8.2], and some VM* queries are not
computable [4, Sect. 6.3]. Also, the theoretical worst case run-time of the execution
algorithm of VM* is exponential.

Our line of research claims to provide a greater level of scientific certainty
than its predecessors or competitors, as it has been (re-)implemented several times,
and evaluated for usability and performance to a much greater extent than other
approaches as of writing this. An obvious gap in our validation is the absence of
a large scale, real life case study, i.e., an observational study in industry where a
sufficiently large set of modelers uses VM* for an extended period of time on actual
work items. Obviously, such a study would require a sufficiently well-developed
tool. While we have created many tools over the years implementing (parts of) VM*,
none of them has reached the level of maturity and product quality to compare to
professional solutions.

This suggests two desirable avenues of progress: an industry-grade implemen-
tation and an observational case study in industry. Both of these will be very hard
to achieve, and we consider them long term goals. In the nearer future, we plan to
provide a structured literature review (SLR) of this field, and a cognitively informed
theory of the usability factors for model querying.
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