
Process Query Language

Artem Polyvyanyy

Abstract A process is a collection of actions that were already, are currently being,
or must be taken in order to achieve a goal, where an action is an atomic unit of
work, for instance, a business activity or an instruction of a computer program.
A process repository is an organized collection of models that describe processes,
for example, a business process repository and a software repository. Process
repositorieswithout facilities for process querying and process manipulation are like
databases without Structured Query Language, that is, collections of elements with-
out effective means for deriving value from them. Process Query Language (PQL)
is a domain-specific programming language for managing processes described in
models stored in process repositories. PQL can be used to query and manipulate
process models based on possibly infinite collections of processes that they repre-
sent, including processes that support concurrent execution of actions. This chapter
presents PQL, its current features, publicly available implementation, planned
design and implementation activities, and open research problems associated with
the design of the language.

1 Introduction

Computing revolutionizes many aspects of our lives by innovating how data is
collected and processed. The innovations often stem from the ability to design,
manage, and automatically learn semantically rich artifacts from the data, for
example, using machine learning, statistical analysis, and data and process mining
techniques. Such semantically rich artifacts reflect different types of patterns present
in the data, calling for dedicated methods for querying and manipulating them to
allow systematic derivation of value. One such type of patterns concerns temporal
aspects of the data, capturing how work is carried out in processes.

A. Polyvyanyy (�)
School of Computing and Information Systems, Faculty of Engineering and Information
Technology, The University of Melbourne, Parkville, VIC, Australia
e-mail: artem.polyvyanyy@unimelb.edu.au

© Springer Nature Switzerland AG 2022
A. Polyvyanyy (ed.), Process Querying Methods,
https://doi.org/10.1007/978-3-030-92875-9_11

313

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92875-9_11&domain=pdf
mailto:artem.polyvyanyy@unimelb.edu.au
https://doi.org/10.1007/978-3-030-92875-9_11

314 A. Polyvyanyy

A process is a collection of actions that, when executed, lead to the accomplish-
ment of a goal. An action is an atomic unit of work. For example, an action can
represent a business activity or a computer program instruction. Execution of an
action in a process leads to a change in the state of the process. A process can contain
already executed actions, actions that are currently being executed, and actions that
yet are awaiting their execution. A process solely composed of already executed
actions represents a historical process that was observed in the real-world. In turn, a
process comprising only designed but not executed actions is an envisioned process
that may be observed in the future. A process model is a model that describes a
collection of processes that encode different ways to accomplish the same goal. Note
that a process model often describes an infinite collection of processes to address
the need to iterate certain actions an initially unknown number of times to achieve
the desired process state. Finally, a process repository is an organized collection
of process models. For example, models can be organized into folders to impose
their logical grouping. Examples of process repositories include business process
repositories and software repositories.

Process repositories without process querying and process manipulation capa-
bilities are of low practical utility, as their manual processing is often infeasible.
Process Query Language (PQL) is a domain-specific programming language for
querying and manipulating process models based on the processes these models
describe. It is a declarative language with SQL-like syntax. PQL programs are also
called queries.

To support process querying, PQL implements two classes of predicates. The
first class comprises the 4C behavioral predicates, a collection of constraints
that systematically explore the fundamental behavioral relations of co-occurrence,
conflict, causality, and concurrency in processes [19, 25]. These predicates, for
instance, can be used to retrieve models that describe processes in which a
given action always occurs or in which a given pair of actions can be executed
concurrently. The second class is composed of process scenarios, sequences of
actions with wildcards [22]. Despite being declarative, process scenarios allow
checking whether a model describes processes that contain requested sequences
of actions. Hence, process scenarios can be used to retrieve models that describe
processes that obey the requested imperative constraints.

PQL supports statements for process manipulation. Concretely, one can use PQL
to specify and execute instructions for manipulating models to insert, delete, and
update processes in the collections of processes these models describe. The process
insertion capabilities of PQL are implemented as a solution to the process repair
problem [17, 22]. The delete and update process manipulations are not implemented
in the current version of PQL. Still, they are demonstrated here for the completeness
of the discussion of the intended scope for the language.

The next section presents several motivating examples of PQL programs for
querying and manipulating processes. Section 3 gives an overview of the features
currently supported by PQL. To facilitate the comparison of PQL with another
process querying methods, Sect. 4 positions PQL within the Process Querying
Framework [21]. Then, Sect. 5 discusses our open-source implementation of a

Process Query Language 315

process repository that supports PQL. Section 6 surveys open research problems
triggered by the design of PQL and lists planned efforts that aim to shape the
language. Finally, Sect. 7 closes the chapter with conclusions.

2 Motivating Examples

In this section, we present several motivating examples of PQL programs for
querying and manipulating process models. To this end, we use an example process
repository composed of six processmodels shown in Fig. 1. Themodels are captured
in Business Process Model and Notation (BPMN). In BPMN, rectangles with
rounded corners denote actions. Gateways are visualized as diamonds. Exclusive
gateways use the “×” marker inside the diamond shape, whereas parallel gateways
use the “+” marker. Directed arcs encode control flow dependencies. For simplicity,
the models in the example repository use abstract action labels; see labels A through
G in the figure. In general, an action label specifies the meaning of the action, for
example, “assess claim” or “archive case”. Models can be further supplied with
attributes, for instance, unique identifier, version, creation date, and author. Models
can be grouped into collections in a repository by putting them into folders, which,
similar to folders of a file system, can form a folder hierarchy.

Models in a repository can be queried using PQL SELECT statements. For
example, PQL queries Q1 and Q2 listed below implement process querying using
the 4C predicates, while PQL queries Q3 and Q4 use process scenarios.

Q1. SELECT ∗ FROM ∗
WHERE AlwaysOccurs("C") AND
Cooccur("B","C");

Q2. SELECT "Author", "Version" FROM "/examples"
WHERE (CanOccur("G") AND
(NOT Conflict("E","G"))) OR
(TotalConcurrent("C",{"B","D"},ANY) AND
AlwaysOccurs("C"));

Query Q1 requests to retrieve every model and all its attributes (see
“SELECT ∗”) from every folder of the repository (“FROM ∗”) that describes
(“WHERE”) a collection of processes in which every process contains at least one
occurrence of action C (“AlwaysOccurs("C")”) and actions B and C cooccur
in the processes (“Cooccur("B","C")”), that is, B cannot occur without C in a
process, C cannot occur without B in a process, and there exists at least one process
in the collection in which both actions B and C appear. Model 1 in Fig. 1 matches
query Q1 and, thus, should be retrieved if Q1 is executed over the repository.
Indeed, model 1 describes four processes: 〈A,B,C,D,E,F〉, 〈A,C,B,D,E,F〉,
〈A,B,C,D,B〉, and 〈A,C,B,D,B〉; we map BPMN models to Petri nets to interpret
them as collections of processes [4]. Note that action C occurs in every process,
while actions B and C cooccur in the processes of the model. Models 5 and 6 also
match query Q1. It is easy to verify that both actions B and C occur in all processes

316 A. Polyvyanyy

CB

D
A

D

E

A

D

A

B C

D E

FG

B
D

C
F

D E
A

E

G

B C

A C B

D E B

B

E
F

D

E

A

D

B C

G

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
1

1
2 4 6

53

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

F
ig
.1

A
n
ex
am

pl
e
pr
oc
es
s
re
po
si
to
ry

Process Query Language 317

these two models describe, as every process starts with one of these two prefixes:
〈A,B,C〉 or 〈A,C,B〉. To denote which models match which queries, in Fig. 1, under
each model, we mark corresponding checkboxes. Hence, models 2, 3, and 4 do not
match query Q1. For instance, the process 〈B,A〉 described by model 2 confirms
that neither C always occurs nor B and C cooccur in the processes of model 2.

Query Q2 requests to retrieve process models and their attributes Author and
Version (“SELECT "Author", "Version"”) located in the “/examples”
folder of the repository (“FROM "/examples"”) that satisfy at least one of the
two following conditions. First, the model should describe at least one process in
which action G occurs at least once (“CanOccur("G")”) and actions E and G do
not conflict (“NOT Conflict("E","G")”), where actions E and G conflict if
the model describes at least one process in which E occurs but G does not occur,
at least one process in which G occurs but E does not occur, and the model does
not describe a process in which both E and G occur. Second, in every process of
the model, action C occurs (“AlwaysOccurs("C")”), and all occurrences of
action C are either concurrent with all occurrences of B or with all occurrences of
D (“TotalConcurrent("C",{"B","D"},ANY)”). In general, two actions A
and B are in the total concurrent relation if in every process in which both A and B
occur, every occurrence of action A is concurrent with every occurrence of action
B; refer to Sect. 3 for details.

Assuming that all models in Fig. 1 are stored in the “/examples” folder,
models 3, 5, and 6 match query Q2. In model 3, action G can occur, consider, for
example, the process 〈A,G〉 of the model, and actions E and G do not conflict, as
evidenced, for instance, by the process 〈A,G,D,E,D〉 of the model. In models 5
and 6, in turn, action C always occurs and actions B and C are in the total concurrent
relation. Fig. 2 shows three, out of infinitely many, concurrent processes described
by model 5. In these three processes, actions B and C occur once and are concurrent;
there is no directed path between these actions; for details, again, see Sect. 3. The
same phenomenon can be observed for all the other processes of model 5. Note that
the only occurrence of action C is concurrent with the only occurrence of action D in
process 1. However, in processes 2 and 3, there are occurrences of action D that are
not concurrent with the occurrence of action C. These occurrences are highlighted
with gray background in the figure.

PQL query Q3 below requests to retrieve all process models in the repository that
support a process that commences with zero or more actions before action B occurs,
then eventually action D occurs in the process, followed eventually by another
occurrence of action B, and then the process completes via zero or more occurrence
of any other actions. Models 1 and 4 from the repository in Fig. 1 match query
Q3. This fact is evidenced by processes 〈A,B,C,D,B〉 and 〈A,B,D,B〉 described
by models 1 and 4, respectively. Query Q4, also shown below, requests to retrieve
models that describe the process 〈A,B,C,D,E,F〉 and does not describe processes
with two consecutive occurrences of action B. Models that match this query are
models 1, 5, and 6.

318 A. Polyvyanyy

B
D

C

F
A

E

B
D

C

F
A

E

G

D E

F

B
D

C

F
A

E

G

D E

F
G

D E

F

1
2

3

F
ig
.2

T
hr
ee

co
nc
ur
re
nt

pr
oc
es
se
s
of

m
od
el
5
fr
om

Fi
g.
1

Process Query Language 319

Q3. SELECT ∗ FROM ∗
WHERE Executes(<∗,"B",∗,"D",∗,"B",∗>);

Q4. SELECT ∗ FROM ∗
WHERE Executes(<"A","B","C","D","E","F">) AND
NOT Executes(<∗,"B","B",∗>);

The attentive reader has noticed that models 5 and 6 from the repository describe
the same processes. Thus, these two models, besides being structurally different,
are behaviorally equivalent. The result of a PQL query depends on the processes the
models describe and is independent of the particular way the models are structured.
Consequently, models 5 and 6 either both match or both do not match a given PQL
query; refer to the checkboxes next to these two models in Fig. 1.

PQL queries Q5–Q7 below capture instructions for manipulating processmodels.

Q5. INSERT <∗,"F","D","G",∗> INTO ∗
WHERE Executes(<∗,"F","G",∗>);

Q6. DELETE <"A","G"> FROM ∗
WHERE GetTasksAlwaysOccurs(GetTasks())
EQUALS {};

Q7. UPDATE <"A","G",∗>
SET <"A","F",∗>
FOR ∗;

Query Q5 ensures that each model from every folder of the repository
(“INTO ∗”) that describes a process in which an occurrence of action G immedi-
ately follows an occurrence of actionF (“WHERE Executes(<∗,"F","G",∗>)
”) also describes a process in which an occurrence of F is immediately followed
by an occurrence of D that, in turn, is immediately followed by an occurrence
of G (“INSERT <∗,"F","D","G",∗>”). If a model that describes the former
process also describes the latter requested process, the model is not manipulated.
Otherwise, the model is manipulated to obtain an extended version of the model
that also describes the requested latter process. Models 5 and 6 in the repository
describe processes in which F is immediately followed by G and, hence, must be
manipulated. Model 7 in Fig. 3 is a model that can be created based on model 5
as a result of executing PQL query Q5. Note that model 7 describes the requested
process. Note also that the requested manipulation can be implemented in several
ways, which raises the question of the quality of the resulting model. This aspect is
a subject of ongoing research and is discussed in Sect. 6.

Query Q6 captures a request to manipulate every process model in the repository
(“FROM ∗”) that does not contain an action that occurs in each of its pro-
cesses (“WHERE GetTasksAlwaysOccurs(GetTasks()) EQUALS {}”)
and describes the process that starts with an occurrence of action A and then
immediately completes with an occurrence of action G so that the resulting
model does not describe that process (“DELETE <"A","G">”). Models 2 and 3
from the repository match the condition in the WHERE clause. However, only
model 3 describes process 〈A,G〉, and, thus, should be manipulated. The resulting,
manipulated by PQL, model is added as a fresh model to the repository. Similar
as for the INSERT statement, several valid resulting models can be considered.
For example, models 8 and 9 in Fig. 3 can be accepted as models that result from

320 A. Polyvyanyy

A

B C

D E

FG
D

E
D

B C

D

E

A

D

B C G
D

D

E

A

D

B C

F

D

8
7 9

10

F
ig
.3

M
an
ip
ul
at
ed

pr
oc
es
s
m
od
el
s

Process Query Language 321

executing query Q6 over model 3. While model 8 does not describe all the processes
with prefix 〈A,G〉 described by model 3, including the requested process 〈A,G〉, the
processes described by model 9 differ from those described by model 3 by exactly
one process 〈A,G〉. Note that the implementation of the DELETE statement can vary
between versions of PQL.

Finally, query Q7 requests to update all models in the repository (“FOR ∗”) by
updating processes that start with the prefix 〈A,G〉 (“UPDATE <"A","G",∗>”) to
start with the prefix 〈A,F〉 (“SET <"A","F",∗>”). Again, multiple implementa-
tions of the UPDATE statement can be envisaged, andmodel 10 in Fig. 3 is a possible
result of executing query Q7 over model 3, which is also the only model in Fig. 1
that must be manipulated according to query Q7.

3 Process Query Language

This section reviews the core features of PQL. First, Sect. 3.1 discusses the main
primitives of PQL for querying process models. Then, Sect. 3.2 presents the
currently implemented PQL mechanisms for manipulating process models.

3.1 Process Querying

For the purpose of process querying, PQL interprets a process model as a collection
of concurrent processes. A concurrent process is a collection of actions such that for
some pairs of actions in the collection, it is specified that one of the actions causally
precedes the other in the executions of the process. The control flow arcs and the
transitive dependencies that these arcs induce in Fig. 2 define the causal precedence
relations of the corresponding concurrent processes. In concurrent process 1 in
Fig. 2, for example, action A causally precedes action E, which, in turn, causally
precedes action F. In contrast, for the pairs of actions that are not in the causal
precedence relation, it is accepted that they are independent, or concurrent, and,
thus, can be performed simultaneously in the executions of the process. For instance,
actions B and E are concurrent in process 1 in Fig. 2. As already explained in Sect. 2,
a process model can describe infinitely many concurrent processes.

Every concurrent process describes a collection of (sequential) processes. These
are processes that do not violate the causal precedence constraints of the concurrent
process. For example, concurrent process 2 in Fig. 2 describes twelve sequen-
tial processes, induced by all the interleavings of the concurrent actions; these
twelve processes include, for instance, processes 〈A,B,C,E,D,F,G,D,E,F〉 and
〈A,C,B,E,D,F,G,E,D,F〉. Every concurrent process describes a finite collection
of sequential processes. But, needless to say, a model that describes infinitely many
concurrent processes also describes infinitely many sequential processes.

To perform process querying using PQL, the user can specify a query that
requests to retrieve models that fulfill a condition verified over all the processes

322 A. Polyvyanyy

Table 1 Occurrence predicates; the predicates are evaluated in the context of a process model

Predicate Definition

CanOccur(A) The predicate evaluates to true if the model describes at least one
process with at least one occurrence of action A; otherwise, it
evaluates to false.

AlwaysOccurs(A) The predicate evaluates to true if every process the model describes
has at least one occurrence of action A; otherwise, it evaluates to
false.

of the models. One way to specify a condition is by using behavioral predicates, as
detailed in Sect. 3.1.1, or scenarios, as discussed in Sect. 3.1.2.

3.1.1 Behavioral Predicates

Process models describe processes composed of actions that can be executed and,
thus, observed in the real-world. One way to convey how many occurrences of an
action, or pairs of actions in a specific behavioral relationship, can be observed
in the executions of processes described by the model is by using predicates
with quantifiers.1 When studying process models, the user may, for instance, be
interested in how often certain actions can occur, how often certain actions can cause
occurrences of other actions, or how often actions can be executed simultaneously.

The 4C spectrum is a systematically organized repertoire of predicates that
assess in how many processes that a model describes how many occurrences of one
action are in a specific behavioral relation with how many occurrences of another
action [25]. The predicates of the spectrum explore the fundamental behavioral rela-
tions of co-occurrence, conflict, causality, and concurrency of action occurrences in
processes. Hence, we refer to these predicates as behavioral predicates.

A PQL query can use predicates of the 4C spectrum as atomic propositions in
the propositional logic formula of its WHERE clause. When a model is matched
to a query, the value of each predicate is established based on the processes that
the model describes. If the formula in the WHERE clause of a SELECT statement
evaluates to true for a particular model, then the model is included in the result of
the query. Additional checks may need to be applied for other PQL statement types
to confirm that the model indeed must be manipulated.

To accompany the 4C predicates, all of which are binary predicates, that is, they
take two actions as input, PQL supports two unary predicates listed in Table 1.
As suggested by their definitions, these predicates allow verifying the frequencies
of individual action occurrences, for example, before applying the 4C predicates,
which then can explain how these occurrences relate to each other.

1 A predicate is a function that evaluates to either true or false truth value, while a quantifier is
an operator that specifies how many elements from the given collection should satisfy an open
formula.

Process Query Language 323

Table 2 Co-occurrence and conflict predicates; the predicates are evaluated in the context of a
process model

Predicate Definition

CanConflict(A,B) The predicate evaluates to true if the model describes at least one
process with at least one occurrence of action A and no
occurrences of action B; otherwise, it evaluates to false.

CanCooccur(A,B) The predicate evaluates to true if the model describes at least one
process with at least one occurrence of action A and at least one
occurrence of action B; otherwise, it evaluates to false.

Conflict(A,B) The predicate evaluates to true if the model describes no process
with at least one occurrence of action A and at least one
occurrence of action B; otherwise, it evaluates to false.

Cooccur(A,B) The predicate evaluates to true if every process the model describes
that has at least one occurrence of action A also has at least one
occurrence of action B, and vice versa; otherwise, it evaluates to
false.

Requires(A,B) The predicate evaluates to true if the model describes no process
with at least one occurrence of action A and no occurrences of
action B, at least one process with at least one occurrence of action
B and no occurrences of action A, and at least one process with at
least one occurrence of action A and at least one occurrence of
action B; otherwise, it evaluates to false.

Independent(A,B) The predicate evaluates to true if the model describes at least one
process with at least one occurrence of action A and no
occurrences of action B, at least one process with at least one
occurrence of action B and no occurrences of action A, and at least
one process with at least one occurrence of action A and at least
one occurrence of action B; otherwise, it evaluates to false.

Table 2 lists six 4C predicates grounded in the conflict and co-occurrence
behavioral relations. Note that the CanConflict and CanCooccur predicates
are seminal as the remaining four predicates from the table can be expressed as
propositional logic formulas over them. Hence, these four predicates can be seen as
macros that can simplify the conditions the user may want to express in the WHERE
clause of a PQL query. The CanConflict and CanCooccur predicates can be
combined into logic formulas to express other conditions that explore conflict and
co-occurrence behavioral relations. According to one classification, 63 conflict and
15 co-occurrence properties can be expressed this way [25].

Table 3 lists all the 4C predicates grounded in the causal precedence and
concurrency behavioral relations. Given actions A and B, the predicates emerge
through universal or existential quantification over three domains, namely the
collection of all concurrent processes that the model describes (see column “Pr.”
in the table), the collection of all occurrences of action A in a concurrent process the
model describes (column “A”), and the collection of all occurrences of action B in
the same concurrent process, and the choice of the behavioral relation between the
occurrences of actionsA and B (column “Rel.”), either causal precedence (“Causal.”)
or concurrency (“Concur.”). These configurations lead to eight causality and eight

324 A. Polyvyanyy

T
ab

le
3

C
on
cu
rr
en
cy

an
d
ca
us
al
it
y
pr
ed
ic
at
es
;
“P
r.”
—

co
nc
ur
re
nt

pr
oc
es
se
s
of

th
e
m
od
el
,
“A

”—
oc
cu
rr
en
ce
s
of

ac
ti
on

A
in

th
e
co
nc
ur
re
nt

pr
oc
es
s,

“B
”—

oc
cu
rr
en
ce
s
of

ac
ti
on

B
in

th
e
co
nc
ur
re
nt

pr
oc
es
s,

“∀
”—

ev
er
y
co
nc
ur
re
nt

pr
oc
es
s
of

th
e
m
od
el
/e
ve
ry

oc
cu
rr
en
ce

of
th
e
ac
ti
on

in
th
e
co
nc
ur
re
nt

pr
oc
es
s,

“∃
”—

ex
is
ts

a
co
nc
ur
re
nt

pr
oc
es
s
of

th
e
m
od
el
/e
xi
st
s
an

oc
cu
rr
en
ce

of
th
e
ac
ti
on

in
th
e
co
nc
ur
re
nt

pr
oc
es
s,

“R
el
.”
—

be
ha
vi
or
al

re
la
ti
on
,
“S
yn
ta
x”
—

PQ
L

sy
nt
ax

fo
r
ex
pr
es
si
ng

th
e
pr
ed
ic
at
e,
an
d
“N

am
e”
—

th
e
na
m
e
of

th
e
pr
ed
ic
at
e.
T
he

pr
ed
ic
at
es

ar
e
ev
al
ua
te
d
in

th
e
co
nt
ex
to

f
a
pr
oc
es
s
m
od
el

Pr
.

A
B

R
el
.

Sy
nt
ax

N
am

e

∀
∀

∀
C
au
sa
l.

T
o
t
a
l
C
a
u
s
a
l(

A
,
B
)

To
ta
l(
m
ut
ua
l)
ca
us
al

∀
∀

∀
C
on
cu
r.

T
o
t
a
l
C
o
n
c
u
r
r
e
n
t(

A
,
B
)

To
ta
l(
m
ut
ua
l)
co
nc
ur
re
nt

∀
∀

∃
C
au
sa
l.

T
o
t
a
l
F
u
n
c
t
i
o
n
a
l
C
a
u
s
a
l(

A
,
B
)

To
ta
lf
un
ct
io
na
lc
au
sa
l

∀
∀

∃
C
on
cu
r.

T
o
t
a
l
F
u
n
c
t
i
o
n
a
l
C
o
n
c
u
r
r
e
n
t(

A
,
B
)

To
ta
lf
un
ct
io
na
lc
on
cu
rr
en
t

∀
∃

∀
C
au
sa
l.

T
o
t
a
l
D
o
m
i
n
a
n
t
C
a
u
s
a
l(

A
,
B
)

To
ta
ld

om
in
an
tc
au
sa
l

∀
∃

∀
C
on
cu
r.

T
o
t
a
l
D
o
m
i
n
a
n
t
C
o
n
c
u
r
r
e
n
t(

A
,
B
)

To
ta
ld

om
in
an
tc
on
cu
rr
en
t

∀
∃

∃
C
au
sa
l.

T
o
t
a
l
E
x
i
s
t
C
a
u
s
a
l(

A
,
B
)

To
ta
le
xi
st
en
ti
al
ca
us
al

∀
∃

∃
C
on
cu
r.

T
o
t
a
l
E
x
i
s
t
C
o
n
c
u
r
r
e
n
t(

A
,
B
)

To
ta
le
xi
st
en
ti
al
co
nc
ur
re
nt

∃
∀

∀
C
au
sa
l.

E
x
i
s
t
T
o
t
a
l
C
a
u
s
a
l(

A
,
B
)

E
xi
st
en
ti
al
to
ta
lc
au
sa
l

∃
∀

∀
C
on
cu
r.

E
x
i
s
t
T
o
t
a
l
C
o
n
c
u
r
r
e
n
t(

A
,
B
)

E
xi
st
en
ti
al
to
ta
lc
on
cu
rr
en
t

∃
∀

∃
C
au
sa
l.

E
x
i
s
t
F
u
n
c
t
i
o
n
a
l
C
a
u
s
a
l(

A
,
B
)

E
xi
st
en
ti
al
fu
nc
ti
on
al
ca
us
al

∃
∀

∃
C
on
cu
r.

E
x
i
s
t
F
u
n
c
t
i
o
n
a
l
C
o
n
c
u
r
r
e
n
t(

A
,
B
)

E
xi
st
en
ti
al
fu
nc
ti
on
al
co
nc
ur
re
nt

∃
∃

∀
C
au
sa
l.

E
x
i
s
t
D
o
m
i
n
a
n
t
C
a
u
s
a
l(

A
,
B
)

E
xi
st
en
ti
al
do
m
in
an
tc
au
sa
l

∃
∃

∀
C
on
cu
r.

E
x
i
s
t
D
o
m
i
n
a
n
t
C
o
n
c
u
r
r
e
n
t(

A
,
B
)

E
xi
st
en
ti
al
do
m
in
an
tc
on
cu
rr
en
t

∃
∃

∃
C
au
sa
l.

E
x
i
s
t
C
a
u
s
a
l(

A
,
B
)

E
xi
st
en
ti
al
(m

ut
ua
l)
ca
us
al

∃
∃

∃
C
on
cu
r.

E
x
i
s
t
C
o
n
c
u
r
r
e
n
t(

A
,
B
)

E
xi
st
en
ti
al
(m

ut
ua
l)
co
nc
ur
re
nt

Process Query Language 325

concurrency predicates. The syntax of the behavioral predicates in PQL and their
names are provided in columns “Syntax” and “Name” of Table 3, respectively.

For example, the total concurrent predicate evaluates to true for input actions A
and B, if in every (“∀”) concurrent process the model describes that has at least one
occurrence of action A and at least one occurrence of action B, it holds that every
(“∀”) occurrence of action A is concurrent (“Concur.”) with every (“∀”) occurrence
of action B; otherwise, the total concurrent predicate evaluates to false for that input.
Thus, TotalConcurrent(B,C) evaluates to true for model 5 in Fig. 1. Indeed,
every concurrent process of model 5 contains exactly one occurrence of action B,
exactly one occurrence of action C, and these occurrences are concurrent; see three
out of infinitely many concurrent processes model 5 describes in Fig. 2. In contrast,
TotalConcurrent(D,E) evaluates to false for model 5 and processes 2 and 3
in Fig. 2 evidence this, as they contain occurrences of D and E that are in the
causal precedence relation. However, process 1 in Fig. 2 justifies the fact that
ExistTotalConcurrent(̃D,E) holds true. This predicate verifies whether
there exists a concurrent process described by the model in which all occurrences
of actions are concurrent. In process 1, there is exactly one occurrence of action
D, exactly one occurrence of action E, and these two occurrences are concurrent.
Note, however, that “stronger” concurrency relations also hold between actions
D and E in model 5, for instance, TotalFunctionalConcur(D,E) and
TotalFunctionalConcur(E,D). Indeed, in every (“∀”) concurrent process
of model 5, for every (“∀”) occurrence of action D in the process, there exists (“∃”)
an occurrence of action E that is concurrent with that occurrence of D, and vice
versa.

As examples of the causality predicates, note that TotalCausal(B,D) holds,
but TotalCausal(C,D) does not hold for model 5 from Fig. 1. In every concur-
rent process in Fig. 2 it holds that the only occurrence of action C is concurrent to
one occurrence of action D, invalidating the total causal relation between the actions.
In contrast, the only occurrence of action B is in the causal precedence relation with
every occurrence of action D in every concurrent process of model 5.

Table 4 lists definitions of all the eight 4C causality predicates. The definitions of
the eight concurrency predicates can be obtained by replacing the causal precedence
relations with the concurrency relations. Furthermore, Polyvyanyy et al. [25]
formalize all the predicates using mathematical notation.

As already mentioned, causality and concurrency predicates can be distinguished
based on their “strength.” Fig. 4 summarizes implications between the pairs
of causality (or concurrency) predicates from the 4C spectrum; the transitive
implications are not shown. The vertices represent causality (or concurrency)
predicates, while the labels encode the quantifiers from the first three columns in
Table 3. Hence, for example, the fact that the ExistTotalCausal predicate
holds for a given pair of actions (see the “∃∀∀” label in Fig. 4) implies that both
ExistFunctionalCausal (“∃∀∃”) and ExistDominantCausal (“∃∃∀”)
predicates hold and, transitively, ExistCausal (“∃∃∃”) holds for the same pair of
actions; note that the converse implications, in general, do not hold. Consequently,

326 A. Polyvyanyy

Table 4 Causality predicates. The predicates are evaluated in the context of a process model

Predicate Definition

ExistCausal(A,B) The predicate evaluates to true if the model describes
at least one concurrent process in which at least one
occurrence of action A causally precedes at least one
occurrence of action B; otherwise, it evaluates to false.

ExistDominantCausal(A,B) The predicate evaluates to true if the model describes
at least one concurrent process with at least one
occurrence of action B and, in that concurrent process,
there is one occurrence of action A that causally
precedes every occurrence of action B; otherwise, it
evaluates to false.

ExistFunctionalCausal(A,B) The predicate evaluates to true if the model describes
at least one concurrent process with at least one
occurrence of action A and, in that concurrent process,
there is one occurrence of action B such that every
occurrence of action A causally precedes that
occurrence of action B; otherwise, it evaluates to false.

ExistTotalCausal(A,B) The predicate evaluates to true if the model describes
at least one concurrent process with at least one
occurrence of action A, at least one occurrence of
action B, and, in that concurrent process, every
occurrence of action A causally precedes every
occurrence of action B; otherwise, it evaluates to false.

TotalExistCausal(A,B) The predicate evaluates to true if in every concurrent
process the model describes that has at least one
occurrence of action A and at least one occurrence of
action B, at least one occurrence of action A causally
precedes at least one occurrence of action B; otherwise,
it evaluates to false.

TotalDominantCausal(A,B) The predicate evaluates to true if in every concurrent
process the model describes that has at least one
occurrence of action A and at least one occurrence of
action B, there is one occurrence of action A that
causally precedes every occurrence of action B;
otherwise, it evaluates to false.

TotalFunctionalCausal(A,B) The predicate evaluates to true if in every concurrent
process the model describes that has at least one
occurrence of action A and at least one occurrence of
action B, there is one occurrence of action B such that
every occurrence of action A causally precedes that
occurrence of action B; otherwise, it evaluates to false.

TotalCausal(A,B) The predicate evaluates to true if in every concurrent
process the model describes that has at least one
occurrence of action A and at least one occurrence of
action B, every occurrence of action A causally
precedes every occurrence of action B; otherwise, it
evaluates to false.

Process Query Language 327

Fig. 4 The 4C spectrum
causality/concurrency
lattice [25]

AAA EAA

AEA EEA

EEEAEE

EAEAAE

we say that ExistTotalCausal is stronger than the other existential causality
predicates.

In a study with the prospective stakeholders of PQL, all twelve prese-
lected 4C predicates were recognized as suitable for process querying. The
CanOccur, AlwaysOccurs, Cooccur, Conflict, TotalCausal, and
TotalConcurrent predicates were, in addition, identified as most useful and
such that are most likely to be used for solving practical problems [19].

3.1.2 Scenarios

Any finite repertoire of behavioral predicates is limited in its expressive power, as
it can only express a finite number of conditions over a fixed collection of actions,
while the number of process collections that process models can express over the
same actions is unbounded [18]. Therefore, in addition to querying based on the 4C
predicates, PQL supports scenario-based querying [22].

The concept central to scenario-based querying is the notion of a trace with
wildcards. A trace with wildcards is a finite sequence in which every element is
either a special wildcard element “∗” or a pair composed of an action and a number
between zero and one. For example,ω = 〈∗, (A, 1.0), (B, 0.8), ∗, (A, 1.0)〉 is a trace
with wildcards composed of five elements.

A trace with wildcards defines a collection of processes. These processes result
from the concatenation of collections of sequences defined by the elements of the
trace. The concatenation is performed in the order the corresponding elements
appear in the trace. The special “∗” element defines the collection of all finite
sequences over all possible actions. In turn, an element that is a pair of an action
x and a number y defines the collection of all sequences composed of one action,
where the actions are taken from the set of all actions that are similar with x to
the level of at least y; the similarity should be established based on some given
similarity function that maps pairs of actions to their similarity scores between zero
and one. Different similarity functions can be used. For instance, one such similarity
function can be established based on the similarity of action names or labels. Thus,
ω defines the collection that includes every process in which action A eventually
occurs, that occurrence is immediately followed by an occurrence of action B, or an

328 A. Polyvyanyy

occurrence of some similar with B action, and then some other actions can occur
before the process ends with yet another occurrence of action A.

The Executes predicate takes as input a trace with wildcards and verifies,
in the context of a given process model, whether the model describes at least
one process that is also included in the collection of processes defined by the
trace. In other words, it verifies whether the model can execute actions according
to the pattern captured by the trace. If so, the predicate returns true; other-
wise, it returns false. The concrete syntax of the Executes predicate for the
input trace with wildcards ω is Executes(<∗,"A","B"[0.8],∗,"A">), or
Executes(<∗,"A",~"B",∗,"A">) if the process querying tool is configured
to use 0.8 as the default action similarity threshold.

The Executes predicates can be used, together with the 4C predicates, as
atomic propositions in the propositional logic formula of the WHERE clause of
a PQL query, thus enriching the expressive power of the language. Indeed, by
combining Executes predicates, one can, for instance, express a condition to
check whether a given model describes, or does not describe, some finite collection
of processes of interest. Note that, in general, the number of such conditions is
unbounded. For more information on the scenario-based querying support in PQL,
refer to [22].

3.2 Process Manipulation

Process manipulations in PQL are implemented using the concept of an optimal
alignment between a process and a processmodel [1, 31]. An alignment is composed
of moves. A synchronous move is a pair in which both elements are the same
action, for example (A, A). In contrast, an asynchronous move is a pair in which
one element is an action, and the other element is a special “no move” element,
denoted by “�”. An alignment is a sequence of synchronous and asynchronous
moves for which two conditions hold. First, the first elements from the moves, when
positioned in the order the corresponding moves appear in the alignment and all the
“no move” elements are skipped, form the process. Second, the second elements
from the moves, again positioned as in the alignment and without the “no move”
elements, form a process described by the model. Finally, an optimal alignment
between a process and model is an alignment between the process and model such
that every other alignment between them has more asynchronous moves than an
optimal alignment.

An alignment is often summarized as a table. For instance, Table 5 shows an
optimal alignment between process 〈F,D,G〉 and process model 5 from Fig. 1. It
is a sequence of thirteen moves. In the table, moves are encoded as columns, such
that two successive columns refer to two successive moves in the alignment. Each
column has two rows. The top row of each column specifies the first element in
the corresponding move, while the bottom row specifies the second element in the

Process Query Language 329

Table 5 An optimal alignment between process 〈F,D,G〉 and process model 5 from Fig. 1

� � � � � F D G � � �
A C B E D F � G D E F

move. Hence, the optimal alignment in Table 5 consists of two synchronous and
eleven asynchronous moves.

For instance, PQL relies on the alignment from Table 5 to implement query Q5
discussed in Sect. 2 on model 5 from Fig. 1. Indeed, the alignment demonstrates
that the process fragment 〈F,D,G〉 requested to be inserted into the model, see
“INSERT <∗,"F","D","G",∗>” in the query, has a “gap” captured by the
asynchronous move (D, �) in the processes described by the model, see the move
highlighted with gray background in the alignment. This asynchronous move deter-
mines the place in the model at which action D can be inserted; after process-prefix
〈A,C,B,E,D,F〉 and before process-suffix 〈G,D,E,F〉. The concrete modifications
on the model are then implemented using process repair techniques [7, 17] from
the field of process mining [30]. Recall that model 7 in Fig. 3 is a model that results
from executing query Q5 on model 5.

4 Process Querying Framework

The Process Querying Framework (PQF) is an abstract system of components that
can be selectively replaced to result in a new process querying method [21]. In
this section, we identify which active and passive components of the framework are
supported in PQL. The aim of this exercise is threefold: Tracking the status of the
PQL implementation, planning the next design and implementation activities, and
preparation of PQL for comparison with other process querying methods positioned
within the framework.

Figure 5 shows a schematic view of the framework. In the figure, rectangles
and ovals denote active and passive components, respectively. The arcs denote
input and output passive components of active components. That is, the passive
components are consumed and produced by the active components. Dashed lines
encode the aggregation relationships between the passive components. Finally, we
use different backgrounds to reflect the different implementation statuses of the
components; refer to the legend in the figure. The framework consists of four
parts, each responsible for one dedicated function, including managing processes
and queries, preparing and executing queries, and supporting the interpretation of
querying results. In Fig. 5, each part is enclosed in an area with a dotted border.

The “Model, Simulate, Record, and Correlate” part of the framework is responsi-
ble for the management of the process repository and process queries. In general, the
repository can comprise different types of models of processes. PQL was initially
introduced to address querying of process models, that is, conceptual models that

330 A. Polyvyanyy

Pr
oc

es
s
Q
ue

ry
in
g

Pr
oc

es
s

R
ep

os
ito

ry
A

Pr
oc

es
s

R
ep

os
ito

ry
B

Si
m
ul
at
in
g

...

Si
m
ul
at
io
n

M
od
el

...

PQ
L

Fo
rm
al
iz
in
g

+
=

In
de
xi
ng

In
de
x

an
d
Pr
oc
es
s

St
at
is
tic
s

Ev
en
tL
og

C
or
re
la
tio
n

M
od
el

D
yn
am
ic

Sy
st
em 1

Prepare

Ex
ec

ut
e

M
od

el
,S

im
ul
at
e,

R
ec

or
d

an
d
C
or
re
la
te

O
pt
im
iz
in
g

Ex
ec
ut
io
n

Pl
an

Pr
oc
es
s

Q
ue
ry
in
g

St
at
is
tic
s

C
ac
he

C
ac
hi
ng

Interpret

Fi
lte
rin
g

Fi
lte
re
d
Pr
oc
es
s

R
ep
os
ito
ry
A'

Si
m
ul
at
in
g

An
im
at
in
g

Pr
oj
ec
tin
g

Vi
su
al
iz
in
g

In
sp
ec
tin
g

Ex
pl
ai
ni
ng

Tr
an
sl
at
in
g

...

P
ro

c
e
ss

Q
u
e
ry

L
a
n
g
u
a
g
e

D
yn
am
ic

Sy
st
em 2

Pr
oc
es
s

M
od
el

...
D
yn
am
ic

Sy
st
em n

R
ec
or
di
ng

M
od
el
in
g

C
or
re
la
tin
g

.cr
ea
te

.re
ad

.up
da
te

.de
le
te

....
Pr
oc
es
s

Q
ue
ry
in
g

In
st
ru
ct
io
n

Q
ue
ry

In
te
nt

Q
ue
ry

C
on
di
tio
n
1

Q
ue
ry

C
on
di
tio
n
1

Q
ue
ry

C
on
di
tio
n

1

(P
ar
tly
)i
m
pl
em
en
te
d

ac
tiv
e
co
m
po
ne
nt

(P
ar
tly
)i
m
pl
em
en
te
d

pa
ss
iv
e
co
m
po
ne
nt

Le
ge

nd
:

Pl
an
ne
d
ac
tiv
e

co
m
po
ne
nt

Pl
an
ne
d
pa
ss
iv
e

co
m
po
ne
nt

N
ot
im
pl
em
en
te
d
ac
tiv
e

co
m
po
ne
nt

N
ot
im
pl
em
en
te
d

ac
tiv
e
co
m
po
ne
nt

F
ig
.5

A
sc
he
m
at
ic
vi
ew

of
th
e
co
m
po
ne
nt
s
of

th
e
Pr
oc
es
s
Q
ue
ry
in
g
Fr
am

ew
or
k
im

pl
em

en
te
d
in

PQ
L
;a
da
pt
ed

fr
om

[2
1]

Process Query Language 331

describe collections of processes. Examples of process models are Petri nets, BPMN
diagrams, Event-driven Process Chains (EPCs), and UML Activity Diagrams. The
current implementation of PQL works with process models formalized as Petri
nets. Note that for many process modeling notations, the corresponding mappings
to Petri nets have been devised. Being able to query process models, PQL can be
adapted for querying their recorded executions, also known as event logs in process
mining [30], and, consequently, to simulation models, as combinations of models
and their executions. The extension of PQL to support querying over event logs
and simulation models is future work. Other models that describe processes, for
instance, correlation models that specify relationships between multiple processes,
are not currently supported by PQL. A process querying instruction specifies an
intent to query or manipulate a process repository utilizing various query conditions.
PQL is a language for formalizing process querying instructions. It supports process
querying by means of the read intent implemented using SELECT statements. In
the current version of PQL, process manipulation is implemented using INSERT
statements that address the create and update process querying intents. In the future,
the support of the update intent will be supplemented by UPDATE and DELETE
PQL statements.

The “Prepare” part of the framework, as its name suggests, is responsible for
preparing the process repository for efficient querying. The framework offers two
types of preparations: indexing and caching. The Indexing component takes a pro-
cess repository as input and constructs its alternative representation, called an index,
which is then used to optimize computations during the execution of process queries.
PQL implements indexing of the 4C behavioral predicates for all the processmodels
in the repository. At runtime, when computing PQL programs, the precomputed
behavioral relations are accessed in the index in close to real-time and reused. We
plan to implement an additional index based on the special data structures, called
untanglings of process models [20]. Untanglings can be used to efficiently identify
groups of actions that can be executed together in some process. The Caching
component stores data computed in the previous executions of PQL programs that
then gets reused in computations of the future PQL programs. We plan to implement
caching in PQL based on the statistics of the past PQL program executions.

The “Execute” part is responsible for executing process queries and comprises
components for filtering process repositories and optimizing and executing process
queries. For efficiency considerations, before a PQL program is executed, models
that clearly should not be included in the result of the program are filtered away.
The Filtering component of PQL checks whether actions that, according to the
PQL program, must or must not be present in the result of the program are indeed
described or not described, respectively, by the input model. We will extend this
capability with filtering based on the untanglings to detect if combinations of actions
can or cannot occur in an execution of the candidate model or process. Design and
implementation of comprehensive query optimization mechanisms in PQL is future
work. In the current implementation of the language, the execution plan of a PQL
program is guided by its parse tree. Basic execution optimizations are supported.
For example, when the result of a propositional logic formula is known based on

332 A. Polyvyanyy

a subset of its propositions, the other propositions are not computed. Finally, the
Process Querying component of the PQL method implements the formal semantics
of the language; see [19, 22] for details. When a PQL program is executed, it
takes as input a process repository and produces another repository consisting of
the retrieved and manipulated, as requested by the PQL program, models.

The “Interpret” part of the framework is responsible for communicating the
querying results to the user. All the components of this part aim to improve the
comprehension of the results. The components are inspired by the various means for
improving comprehension of conceptual models [13]. PQL results are encoded as
process models or processes. The user can foster their understanding by inspecting,
or reading, them. Future work will address the design, implementation, and
evaluation of other techniques for explaining, projecting, translating, visualizing,
animating, and simulating results of PQL programs for their better comprehension.

5 Implementation

The PQL querying method has been implemented in an open-source process repos-
itory.2 Users interact with the repository via command-line interfaces (CLIs) of two
utilities: the PQL bot and the PQL tool. The PQL bot prepares models for querying,
while the PQL tool executes PQL programs over the models stored in the repository.

PQL programs process only indexedmodels. The PQL bot systematically indexes
models in the repository. One can start multiple bot instances simultaneously to
index multiple models in parallel. To construct an index, a bot instance computes
all the 4C behavioral predicates over all the actions of the model using three
types of analysis over the reachable states described by the model: the reachability
analysis [9], the coverability analysis [26], and the structural analysis over a
complete prefix [6, 15] of the unfolding [16] of the model. PQL bots use the solutions
to the reachability and covering problems implemented in the LoLA tool version
2.0 [28]. The implementation of the algorithm by Esparza et al. [6], available as part
of the jBPT library [24], is used to construct finite complete prefixes of unfoldings.

Process models stored in the repository are Petri nets described using the Petri
Net Markup Language (PNML) [2]. Many high-level process modeling languages,
such as BPMN and EPC, can be translated to Petri nets [4, 29]. As a result, PQL can
be used to query and manipulate models developed using a wide range of notations.

The listing below shows a sample output of a PQL bot instance. One can
configure a bot instance by specifying its name (option -n), time to sleep (i.e.,
stay idle) between indexing two models (option -s), and maximal time to attempt
indexing a model (option -i). Once started, a bot instance alternates sleeping
and indexing phases and sends periodic alive messages to the repository. Before
indexing, models are checked for semantic correctness.

2 https://github.com/processquerying/PQL.git.

https://github.com/processquerying/PQL.git

Process Query Language 333

>> java -jar PQL.BOT-1.0.jar -n=Brisbane -s=60 -i=3600
>> ===
>> Process Query Language (PQL) Bot ver. 1.0
>> ===
>> Name: Brisbane
>> Sleep time: 60s
>> Max. index time: 3600s
>> ===
>> 10:45:18.487 Brisbane - There are no pending jobs
>> 10:45:18.487 Brisbane - Sent an alive message
>> 10:45:18.497 Brisbane - Going to sleep for 60 seconds
>> 10:46:18.505 Brisbane - Woke up
>> 10:46:18.525 Brisbane - Retrieved indexing job for the model with ID 1
>> 10:46:18.575 Brisbane - Start checking model with ID 1
>> 10:46:23.506 Brisbane - Finished checking model with ID 1
>> 10:46:23.506 Brisbane - Start indexing model with ID 1
>> 10:47:03.608 Brisbane - Finished indexing model with ID 1
>> 10:47:03.608 Brisbane - Going to sleep for 60 seconds
>> 10:48:03.613 Brisbane - Woke up
>> 10:48:03.623 Brisbane - Retrieved indexing job for the model with ID 2
>> 10:48:03.673 Brisbane - Start checking model with ID 2
>> 10:48:13.248 Brisbane - Finished checking model with ID 2
>> 10:48:13.249 Brisbane - Start indexing model with ID 2
>> 10:49:52.679 Brisbane - Finished indexing model with ID 2
>> 10:49:52.679 Brisbane - Going to sleep for 60 seconds
>> 10:50:52.704 Brisbane - Woke up
>> 10:50:52.704 Brisbane - There are no pending jobs
>> ...

Table 6 lists several CLI options of the PQL tool. For example, the PQL tool can
be used to store (option -s), check (option -c), index (option -i), and delete
(option -d) a process model, visualize the parse tree of a PQL program (option -p),
execute a PQL program (options -q), and to reset the repository (option -r).

To store models in the repository, the CLI option -s of the PQL tool must be
accompanied by the -pnml option that specifies a path to a single PNML file or to a
directory that containsmany PNML files. If a path to a single PNML file is specified,
the call must include option -id to specify a unique identifier to associate with the
model; otherwise, the models are attempted to be stored using their file names as
unique identifiers. A stored model can be indexed by a PQL bot instance or by the
PQL tool using the CLI option -i accompanied by option -id that specifies the

Table 6 CLI options of the PQL tool

Option name Short name Parameter Description Required option

-check -c Check if model can be indexed -id

-delete -d Delete model (and its index) -id

-index -i Index model -id

-identifier -id <string> Model identifier

-parse -p Show PQL program parse tree -pql

-pnmlPath -pnml <path> Path to a PNML file

-pqlPath -pql <path> Path to a PQL file

-query -q Execute PQL program -pql

-reset -r Reset repository

-store -s Store model in the repository -pnml (-id)

334 A. Polyvyanyy

unique identifier of the model that should be indexed. When indexing a model, the
PQL tool uses the same routines as the PQL bot.

To execute a PQL program, the user can use options -q and -pql of the PQL
tool. The latter specifies a path to a file that contains the program. An example
command-line output of executing a PQL program is shown below. Here, the PQL
tool is requested to execute the PQL program stored in the prog.pql file. The
program requests to retrieve every model in the repository in which the “process
payment” action, or a similar action, occurs in every execution the model describes;
note that two similar actions, “process payment by cash” and “process payment
by check”, were found in the repository for the requested similarity threshold of
0.8. The tool retrieved two models that match the query. These are models with
identifiers 364 and 778; see the last line of the listing.

>> java -jar PQL.TOOL-1.0.jar -q -pql=prog.pql
>> PQL query: SELECT * FROM * WHERE AlwaysOccurs("process payment"[0.8]);
>> Attributes: [UNIVERSE]
>> Locations: [UNIVERSE]
>> Task: "process payment"[0.8] -> ["process payment by cash",
>> "process payment by check"]
>>
>> Result: [364, 778]

The PQL tool supports multi-threaded querying. The user can configure the
desired number of threads to use for executing PQL programs. As a result of execut-
ing a PQL program, the tool returns a collection of matching and augmentedmodels.

6 Discussion

The design of PQL aims to maximize the number of supported process querying
and process manipulation techniques, as requested by the process querying compro-
mise [21], which identifies a concrete process querying method as an intersection of
implemented decidable, efficient, and suitable techniques. In this section, we discuss
research problems that emerged during the design of PQL, and solutions to these
problems that shaped PQL and will inform the future extensions to the language.
First, Sect. 6.1 discusses four fundamental problems of process querying that PQL
aims to solve. Then, Sect. 6.2 discusses problems that aim to ensure the quality of
process querying and manipulation operations performed by PQL. Next, Sect. 6.3
summarizes conducted work to establish the suitability of PQL. Finally, Sect. 6.4 is
devoted to the aspects related to the ability to compute PQL queries efficiently.

Process Query Language 335

6.1 Querying and Manipulation

Given a process model and a process query that describes a collection of processes,
the process querying problem is a decision problem that consists in checking
whether the model describes processes from the collection.

Process querying problem. Given a process model and a description of a col-
lection of processes, check if the model describes processes included in the
collection.

PQL can be used to pose and solve process querying problems via SELECT
statements. One may want to augment a process model so that the collection of
processes it describes includes specified processes. This task can be fulfilled by
solving the process insertion problem.

Process insertion problem. Given a process model and a description of a collec-
tion of processes, construct a process model that describes processes captured in
the model and included in the collection.

PQL INSERT statements can be used to express and solve process insertion
problems. In contrast, if a model needs to be augmented to describe processes
of the original model without some specific processes, a process deletion problem
must be solved.

Process deletion problem. Given a process model and a description of a collec-
tion of processes, construct a process model that describes processes captured in
the model but not included in the collection.

One can use PQL DELETE statements to formulate and solve process deletion
problems. However, if specific processes must be replaced in the collection of
processes described by a model, a process update problem must be solved.

Process update problem. Given a process model, a description of a collection of
source processes, and a description of a collection of target processes, construct
a process model that describes processes captured in the model and included in
the target collection but not included in the source collection.

PQL UPDATE statements can be used for expressing and solving process update
problems. Future solutions to the above four problems will be considered for inclu-
sion in PQL by implementing and offering them to the users via the corresponding
PQL statements.

6.2 Quality

Given a process model and a query, process querying solves a decision problem
with a yes-or-no answer that indicates whether the model matches the query or not.

336 A. Polyvyanyy

The quality of such a decision is also binary; the decision is either correct or not.
Process manipulation is different, as a requested manipulation can be fulfilled to
various degrees. To compare methods for manipulating process models, either to
select a method to implement as part of PQL or to choose an already implemented
method for triggering during PQL query execution, one should be able to measure
and compare their quality in terms of the resulting models they produce. The quality
of manipulated process models can be compared against different aspects. Several
of these aspects are discussed below, giving rise to three research problems.

Simplicity problem. A process model that results from a solution to a process
insertion, deletion, or update problem should be simple.

It may be necessary to manually analyze a process model that results from PQL
manipulations, for example, to obtain feedback on the model from a process analyst
or a domain expert. Hence, the manipulated models must be comprehensible.
That is, they should be simple to understand for human readers. Simplicity is
the desired quality for many artifacts automatically learned from data using data
mining and process mining techniques. The simplicity criteria for learned models
are often implemented as realizations of the Occam’s Razor principle [8] that
states that a model should use as few constructs as possible. Alternatively, this
principle can be interpreted as if a model should not be overcomplicated without
necessity. Consequently, existing simplicity criteria [10–12] from the field of
process mining [30] can be reused to assess the simplicity of the manipulated by
PQL models. The model simplicity criteria that will be developed in the future may
consider the specifics of the process manipulation problems, refer to Sect. 6.1.

Resemblance problem. A process model that results from a solution to a process
insertion, deletion, or update problem for a given process model should resemble
the original model.

As PQL manipulations are applied over a given process model, it may be desirable
that a resulting manipulated model resembles the original model. This desire, again,
can stem from the potential necessity to assess manipulated models manually, this
time in the context of the original model. Indeed, the user may know the model
they request to manipulate and, consequently, expect that the resulting model is not
radically different from the model they know, especially if the intended changes to
the model are not extensive. This intention to keep resemblance with the original
model is similar to the desire of repaired models, studied in process mining [30], to
resemble the original models that were repaired. Thus, measures of model resem-
blance developed in the context of process manipulation can draw inspiration from
the corresponding measures studied as part of the process repair problem [7, 17].

Correctness problem. A process model that results from a solution to a process
insertion, deletion, or update problem should describe the requested processes.

A solution to a process manipulation problem, either an insertion, deletion, or
an update problem, should construct a process model that describes a specific,

Process Query Language 337

β γ2

D

M'
δ1

α

ε1

ε2

δ2

γ1

MM D

β γ2αγ1

(a) (b)

Fig. 6 A schematic visualization of the participating process collections in the context of a
solution to the process deletion problem: (a) the problem definition and (b) a possible problem
solution

requested collection of processes. However, methods for process manipulation can
produce models that do not fulfill this correctness criterion; for instance, to avoid
constructing complex models or models that do not resemble the input models.
Various measures can be introduced to assess the correctness of manipulated models
in terms of the processes they describe. These measures can quantify and compare
collections of processes that were requested and appeared, were requested and did
not appear, were not requested and appeared, and were not requested and did not
appear in the processes described by the manipulated model.

Figure 6a visualizes an example process deletion problem schematically. Con-
cretely, given a model that describes a collection of processes M , the problem
requests to construct a model that describes processes captured in the input model
but not in a collection of processes D. Hence, the resulting model should describe
the collection of processesM\D, denoted by the shaded region in the figure. In turn,
Fig. 6b shows a collection of processes M ′ described by some model constructed as
a solution to the problem superposed on the two process collections from Fig. 6a.
Several sets of processes emerge in this situation. Processes α are the processes that
should and are described by the resulting model, while processes β are the processes
that should not but are described by the resulting model. The resulting model does
not describe processes γ1 and γ2. However, while processes γ2 were correctly
deleted, processes γ1 should be present in M ′. Processes δ1∪δ2 are not participating
in the problem definition but are described by the resulting model. Finally, processes
ε1 ∪ ε2 were requested to be deleted and were not described by the input model,
but ended up as described by the resulting model. A good solution to the process
deletion problem should aim to minimize the sizes of sets γ1, β, δ1, δ2, ε1, and
ε2. The measures of the correctness of process manipulations should quantify this
intuition to support the design of correct methods. Here, again, we can learn from
the subarea of conformance checking [3, 23] in process mining [30], which studies
ways to diagnose commonalities and discrepancies between processes.

338 A. Polyvyanyy

Consider models 8 and 9 in Fig. 3 that can result from executing query Q6
presented in Sect. 2 on model 3 from Fig. 1. If we apply the reasoning from Fig. 6
to these two models, then for model 8 it holds that β is empty and γ1 = AG(DED)+,
where γ1 is specified by a regular expression, while for model 9 sets β and γ1 are
both empty. Hence, model 9 can be considered as a more correct, and hence a better,
result of query Q6 than model 8.

6.3 Suitability

The suitability of a method refers to its quality of being appropriate for a purpose.
Conducted empirical studies on the suitability of the current process querying
methods guide their design and implementation.

To evaluate the suitability of the 4C behavioral predicates for the purpose
of process querying and to identify the most relevant predicates to implement
in PQL, we performed a user study [19]. In that study, we conducted semi-
structured interviews with business analysts that actively work with process models.
In the interviews, besides explaining the high-level design of PQL, we tested the
understanding of twelve preselected 4C predicates and asked to evaluate their ability
to fulfill the process querying tasks. The twelve predicates were selected to ensure
they include, and combine in different ways, all the features of all the 4C predicates.
Our questions to the stakeholders probed usefulness, importance, likelihood, and
frequency of using the predicates in daily work. All the predicates were identified
as suitable, while the six most relevant were implemented in PQL. These are
the CanOccur, AlwaysOccurs, Cooccur, Conflict, TotalCausal, and
TotalConcurrent predicates.

Process querying grounded in the collection of the 4C predicates, or any other set
of similar predicates, has a fundamental limitation. A querying method that relies
on a finite number of behavioral predicates can distinguish between a finite number
of model classes [18], where any two models from the same class are considered
equivalent by every query. The scenario-based process querying facilities of PQL
extend its expressiveness [22]. PQL querying based on traces with wildcards, as
explained in Sect. 3.1.2, can be used to express an intent to retrieve a model that
describes processes that contain, or do not contain, any finite collection of processes
and, thus, can be used to discriminate infinitely many models.

Future studies will strengthen the current results on the suitability of PQL for
fulfilling process querying and process manipulation tasks.

6.4 Decidability and Efficiency

Karsten Wolf demonstrated that computations of all the 4C predicates currently
implemented in PQL can be reduced, often via exponential space transformations,

Process Query Language 339

to model checking [32]. In that work of Karsten Wolf, the reduction of one 4C pred-
icate, namely the total existential concurrent predicate, was left open, and its decid-
ability, for the general case, is currently unknown. In addition, the proposed transfor-
mations for four 4C predicates are applicable only in the special case of the absence
of auto-concurrency in process models. Note that model checking over infinite-
state systems is undecidable and is PSPACE-complete over finite-state systems [5],
making it from challenging to impossible to evaluate the predicates at runtime.
Hence, we precompute and store values of the predicates we can obtain in an index
and access this index in close to real-time during the computation of PQL queries.

To perform scenario-based querying, that is, to check if a model describes a
process that matches a sequence of actions with wildcards (see queries Q3 and Q4 in
Sect. 2), first, the queriedmodel gets transformed. The size of the transformedmodel
is proportional to the size of the model and the scenario of interest. Then, an optimal
alignment between the transformed model and a sequence of actions induced by
the scenario of interest is constructed, and its cost is analyzed. The problem of
computing an optimal alignment is equivalent to the reachability problem [1, 31],
which is decidable [27] with the exponential space as the lower bound [14]. Despite
its high computational complexity, the proposed method works in close to real-time
on industrial and synthetic models [22]. To speed up query processing, we propose
to use the untangling-based index [20] that allows identifying models that describe a
process in which all actions from the scenario of interest occur. Then, further checks
should be applied to verify if the actions occur in a requested order.

PQL queries that solve the process insertion problem are implemented using
the impact-driven process model repair method [17]. Similar to scenario-based
querying, the method relies on optimal alignments to compute queries. However,
in this case, the alignments are used to identify the minimal required changes to the
model to fulfill the query.

7 Conclusion

This chapter gives an overview of PQL, a domain-specific programming language
for process querying and process manipulation. PQL is a declarative language with
the SQL-like syntax. It is useful for managing process models stored in process
repositories based on the processes that these models describe. Process querying is
supported in PQL by means of the SELECT statements, while process manipulation
is implemented using the INSERT, DELETE, and UPDATE statements. The chapter
also discusses the currently supported features of the language, a publicly available
implementation of a process repository with PQL support, future design and
implementation efforts aimed at shaping the language, and open research problems
triggered by the design of the language.

340 A. Polyvyanyy

References

1. Adriansyah, A.: Aligning observed and modeled behavior. Ph.D. thesis, TU/e (2014). http://
dx.doi.org/10.6100/IR770080

2. Billington, J., Christensen, S., van Hee, K.M., Kindler, E., Kummer, O., Petrucci, L., Post, R.,
Stehno, C., Weber, M.: The Petri net markup language: Concepts, technology, and tools. In:
ICATPN. LNCS, vol. 2679, pp. 483–505. Springer, New York (2003)

3. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking - Relating
Processes and Models. Springer, New York (2018). https://doi.org/10.1007/978-3-319-99414-
7

4. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process models
in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008)

5. Esparza, J., Nielsen, M.: Decidability issues for Petri nets—a survey. Bull. EATCS 52, 244–
262 (1994)

6. Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding algorithm.
Formal Methods Syst. Des. 20(3), 285–310 (2002)

7. Fahland, D., van der Aalst, W.M.: Model repair—aligning process models to reality. Inf. Syst.
47, 220–243 (2015). http://dx.doi.org/10.1016/j.is.2013.12.007

8. Grünwald, P.D.: The Minimum Description Length Principle (Adaptive Computation and
Machine Learning). The MIT Press, Cambridge (2007)

9. Hack, M.: Decidability Questions for Petri Nets. Outstanding Dissertations in the Computer
Sciences. Garland Publishing, New York (1975)

10. Kalenkova, A.A., Polyvyanyy, A., Rosa, M.L.: A framework for estimating simplicity of
automatically discovered process models based on structural and behavioral characteristics.
In: BPM. Lecture Notes in Computer Science, vol. 12168, pp. 129–146. Springer, New York
(2020)

11. Laue, R., Gruhn, V.: Complexity metrics for business process models. In: BIS. LNI, vol. P-85,
pp. 1–12. GI (2006)

12. Lieben, J., Jouck, T., Depaire, B., Jans, M.: An improved way for measuring simplicity during
process discovery. In: EOMAS@CAiSE. Lecture Notes in Business Information Processing,
vol. 332, pp. 49–62. Springer, New York (2018)

13. Lindland, O.I., Sindre, G., Sølvberg, A.: Understanding quality in conceptual modeling. IEEE
Softw. 11(2), 42–49 (1994)

14. Lipton, R.: The Reachability Problem Requires Exponential Space. Research report. Depart-
ment of Computer Science, Yale University (1976)

15. McMillan, K.L.: Using unfoldings to avoid the state explosion problem in the verification of
asynchronous circuits. In: Computer Aided Verification (CAV). Lecture Notes in Computer
Science, vol. 663, pp. 164–177. Springer, New York (1992)

16. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains, Part I. Theor.
Comput. Sci. 13, 85–108 (1981)

17. Polyvyanyy, A., van der Aalst, W.M.P., ter Hofstede, A.H.M., Wynn, M.T.: Impact-driven
process model repair. ACM Trans. Softw. Eng. Methodol. 25(4), 28:1–28:60 (2017)

18. Polyvyanyy, A., Armas-Cervantes, A., Dumas, M., García-Bañuelos, L.: On the expressive
power of behavioral profiles. Formal Asp. Comput. 28(4), 597–613 (2016). http://dx.doi.org/
10.1007/s00165-016-0372-4

19. Polyvyanyy, A., ter Hofstede, A.H.M., Rosa, M.L., Ouyang, C., Pika, A.: Process query
language: Design, implementation, and evaluation. CoRR abs/1909.09543 (2019)

20. Polyvyanyy, A., La Rosa, M., ter Hofstede, A.H.M.: Indexing and efficient instance-based
retrieval of process models using untanglings. In: CAiSE. LNCS, vol. 8484, pp. 439–456.
Springer, New York (2014)

21. Polyvyanyy, A., Ouyang, C., Barros, A., van der Aalst, W.M.P.: Process querying: Enabling
business intelligence through query-based process analytics. Dec. Support Syst. 100, 41–56
(2017). https://doi.org/10.1016/j.dss.2017.04.011

http://dx.doi.org/10.6100/IR770080
http://dx.doi.org/10.6100/IR770080
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-319-99414-7
http://dx.doi.org/10.1016/j.is.2013.12.007
http://dx.doi.org/10.1007/s00165-016-0372-4
http://dx.doi.org/10.1007/s00165-016-0372-4
https://doi.org/10.1016/j.dss.2017.04.011

Process Query Language 341

22. Polyvyanyy, A., Pika, A., ter Hofstede, A.H.M.: Scenario-based process querying for compli-
ance, reuse, and standardization. Inf. Syst. 93, 101563 (2020)

23. Polyvyanyy, A., Solti, A., Weidlich, M., Ciccio, C.D., Mendling, J.: Monotone precision and
recall measures for comparing executions and specifications of dynamic systems. ACM Trans.
Softw. Eng. Methodol. 29(3), 17:1–17:41 (2020)

24. Polyvyanyy, A., Weidlich, M.: Towards a compendium of process technologies: the jBPT
library for process model analysis. In: CAiSE Forum, CEUR Workshop Proceedings, vol.
998, pp. 106–113. CEUR-WS.org (2013)

25. Polyvyanyy, A., Weidlich, M., Conforti, R., Rosa, M.L., ter Hofstede, A.H.M.: The 4C
spectrum of fundamental behavioral relations for concurrent systems. In: Petri Nets. LNCS,
vol. 8489, pp. 210–232. Springer, New York (2014)

26. Rackoff, C.: The covering and boundedness problems for vector addition systems. Theor.
Comput. Sci. 6, 223–231 (1978)

27. Reutenauer, C.: The Mathematics of Petri Nets. Prentice-Hall, Inc., Upper Saddle River, NJ
(1990)

28. Schmidt, K.: LoLA: A low level analyser. In: Application and Theory of Petri Nets (ICATPN).
Lecture Notes in Computer Science, vol. 1825, pp. 465–474. Springer, New York (2000)

29. van der Aalst, W.M.P.: Formalization and verification of event-driven process chains. Inf.
Softw. Technol. 41(10), 639–650 (1999)

30. van der Aalst, W.M.P.: Process Mining—Data Science in Action, 2nd edn. Springer, New York
(2016)

31. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on process models
for conformance checking and performance analysis. Data Min. Knowl. Discov. 2(2), 182–192
(2012). https://doi.org/10.1002/widm.1045

32. Wolf, K.: Interleaving based model checking of concurrency and causality. Fund. Inf. 161(4),
423–445 (2018). https://doi.org/10.3233/FI-2018-1709

https://doi.org/10.1002/widm.1045
https://doi.org/10.3233/FI-2018-1709

	Process Query Language
	1 Introduction
	2 Motivating Examples
	3 Process Query Language
	3.1 Process Querying
	3.1.1 Behavioral Predicates
	3.1.2 Scenarios

	3.2 Process Manipulation

	4 Process Querying Framework
	5 Implementation
	6 Discussion
	6.1 Querying and Manipulation
	6.2 Quality
	6.3 Suitability
	6.4 Decidability and Efficiency

	7 Conclusion
	References

