
Artem Polyvyanyy   Editor

Process 
Querying 
Methods



Process Querying Methods



Artem Polyvyanyy
Editor

Process Querying Methods



Editor
Artem Polyvyanyy
School of Computing
and Information Systems
The University of Melbourne
Melbourne, VIC, Australia

ISBN 978-3-030-92874-2 ISBN 978-3-030-92875-9 (eBook)
https://doi.org/10.1007/978-3-030-92875-9

© Springer Nature Switzerland AG 2022
Chapter “Celonis PQL: A Query Language for Process Mining” is licensed under the terms of the
Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/).
For further details see license information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-92875-9
http://creativecommons.org/licenses/by/4.0/


Foreword

We have come a long way. Finally, thanks to the thought leadership of Artem
Polyvyanyy, this book on process querying has become available. Artem describes
the research area of business process querying as the study concerned with methods
for automatically managing repositories of business process models [9]. Every
bachelor student in computer science knows SQL, the structured query language that
allows us to efficiently formulate SELECT statements for retrieving the data from a
database that is currently of interest to us. So why it took so long until we had some-
thing similar available for working efficiently with business process repositories?

Let us go back to the year 2005 and let me share why I have always been excited
about process querying. Business process modeling was just awfully heterogeneous
at that time. The workflow patterns had just recently been published [14], which was
the first step towards overcoming the Babylonian language confusion of process
modeling. I saw the need for an integrated metamodel for process modeling [6],
but the topic turned out to be too complicated for a PhD thesis. Several layers had
to be disentangled: heterogeneous process modeling languages with heterogeneous
semantics, heterogeneous process modeling tools, heterogeneous process model
interchange formats, and industry was already working on what later became the
BPMN standard. It was several years later that we finally saw satisfactory solutions,
one in an initiative by Gero Decker, Hagen Overdick, and Mathias Weske on
Oryx [2], which would later become Signavio, and another driven by Marcello La
Rosa together with Hajo Reijers, Wil van der Aalst, Remco Dijkman, myself, Mar-
lon Dumas, and Luciano García-Bañuelos [5], laying the foundations for Apromore.

But it was not only the metamodel of a language-independent process modeling
repository that was missing. In 2005, we hardly understood how we could query
the behavior of a process model. There had been first proposals for process query
languages by Momotko and Subieta [8] as well as Klein and Bernstein [4], but the
key challenge was still how to query for the behavioral semantics and not syntactic
structures of a process model. Together with several colleagues, I investigated how
we can calculate the behavioral similarity between two process models together
with Boudewijn van Dongen, Wil van der Aalst, Remco Dijkman, Marlon Dumas,
and Reina Käärik [3, 7], but we were not the only ones. My move from Brisbane,
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vi Foreword

Australia, to Berlin, Germany, in 2008 turned out to be particularly fertile. Mathias
Weske’s team at HPI Potsdam had several talented PhD students with whom I
got to collaborate. Artem Polyvyanyy was one of them. Together with Ahmed
Awad, he worked on semantic querying of BPMN process models [1]. Step by
step, we developed the formal foundations based on these efforts. Behavioral
abstractions such as the behavioral profiles driven by Matthias Weidlich [15] turned
out to be the key mechanisms for querying—a work that Artem further extended
and generated towards the 4C spectrum of fundamental behavioral relations for
concurrent systems [10].

With Artem’s move to join the BPM group at QUT Brisbane in 2012, and
more recently the University of Melbourne, everything finally fell into its place.
The research on Apromore provided the ideal testbed for experimenting and
implementing process querying, first APQL [13] and more recently PQL [12].
Artem’s work on a generic query architecture [11] has become the de-facto standard
in this area. This book is a testament to these inspiring developments around
research and practice of process querying. Already for a while, querying for process
mining has become a natural extension of the original work that focused on models.
Maybe, as the formal foundations have been defined, tool implementations are
available, and now also a book is published, it is time to start standardizing process
querying like SQL. Enjoy this book and join the efforts towards further advancing
process querying!

Berlin, Germany Jan Mendling
October 2021
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Preface

Dear Reader,
The idea of this book is due to the last decade of observations and academic
discussions at scientific conferences in the areas of business process management [2,
14] and process mining [13]. These observations and discussions acknowledge the
existence of a core repertoire of techniques for retrieving and manipulating process-
related artifacts, for example, records of process executions, data generated by
process executions, process designs, and semantic process annotations that convey
domain knowledge. Such core techniques are reused in multiple contexts to support
various use cases. A selection of these use cases includes process compliance,
process standardization, process reuse, process redesign, process discovery and
enhancement, process instance migration, and process monitoring. Moreover, the
role of process querying as the mediator between the engine and the user interface
in commercial process mining tools becomes increasingly important. However,
process querying methods and techniques are often redefined, redeveloped, and
reimplemented, with inconsistent adaptations, across scattered academic and indus-
trial projects.

Process querying aims to identify techniques for retrieving and manipulating
processes, models of processes, and related artifacts that are inherent to the various
practical applications to promote centralized improvement and reuse of these
techniques for the benefit of the use cases they support. It is envisaged that these core
techniques will be made available for use via machine-readable instructions, called
process queries, as part of domain-specific programming languages. Process model
collections and process repositories, such as business process repositories, event log
collections, event streams, and software code repositories, without such languages
are like databases without SQL, that is, collections of tuples without effective and
efficient ways to systematically derive value from them.

I became interested in the topic of process querying in 2008, shortly after starting
my PhD project in Potsdam, Germany, in the group of Mathias Weske. Back then,
together with Ahmed Awad and Mathias Weske, we studied ways information
retrieval algorithms can improve techniques for retrieving process models [1]. How-
ever, my early interest in process querying did not go beyond a single publication.
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My next acquaintance with the topic of process querying happened in 2012 when I
joined the Queensland University of Technology, Brisbane, Australia, where Arthur
H. M. ter Hofstede was driving research on A Process-model Query Language
(APQL) [12]. While working on APQL, I got several ideas on how process querying
should be done. For the next several years, I worked on formal foundations of
process querying, including the work on untanglings [5, 12], behavioral profiles
in general [7] and the 4C spectrum of behavioral relations in particular [3], and
techniques for process model repair [8]. These works, and the ongoing thinking
process that never left me, in collaboration with my colleagues, led to the definition
of the problem of process querying, a concept of a process querying method,
and a framework for devising such methods. Simultaneously with the above-listed
activities, I was driving research on a language, called Process Query Language
(PQL) [4, 6, 10, 11], for querying collections of process models based on the
behaviors these models describe.

This book is intended for researchers, practitioners, lecturers, students, and tool
vendors. First, all the chapters in this book are contributed by active researchers in
the research disciplines of business process management, process mining, and pro-
cess querying. These chapters describe state-of-the-art methods for process query-
ing, discuss use cases of process querying, and suggest directions for future work for
advancing the field. Hence, we hope the book will inspire other researchers to join
the effort and develop elegant solutions to process querying problems outlined in
this book. Second, by reading this book, practitioners, like business and process ana-
lysts, and data and process scientists, can broaden their repertoires of tools for ana-
lyzing large arrays of process data. Third, lecturers can use the materials from this
book to present the concept of process querying and concrete methods for process
querying to their students, while higher degree research students can apply process
querying methods to solve engineering problems or, again, contribute to the research
in process querying. Finally, several tool vendors already embed principles of pro-
cess querying in their commercial tools; one of the chapters in this book comes from
a vendor who develops and successfully integrates process querying ideas and meth-
ods in their toolchain. Thus, for vendors, this book depicts the existing palette of
principles available in process querying to consider embedding them into their tools.

The book comprises 16 contributed chapters distributed over four parts and two
auxiliary chapters. The auxiliary chapters by the editor provide an introduction to
the area of process querying and give a summary of the area presented in this book
as well as methods and techniques for process querying. The introductory chapter
also presents a process querying framework, a system of abstract components that,
when instantiated, result in a concrete process querying method. The contributed
chapters present various process querying methods while also discussing how they
instantiate the framework. This link to the framework makes a common theme
through the book, supporting the comparison of the presented methods. The four
parts of the book are due to the distinctive features of the methods they include.
The first three parts are devoted to querying event logs generated by IT systems
that support business processes at organizations, querying process designs captured
in process models, and methods for querying both event logs and process models.
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The methods in these three parts usually define a language for specifying process
queries. The fourth part discusses methods that operate over inputs other than event
logs and process models, for example, streams of process events, or do not develop
dedicated languages for specifying queries, for example, methods for assessing
process model similarity.

I am thankful to all the contributors of this book, and concretely to Alexander
Artikis, Amal Elgammal, Amin Beheshti, Andreas Oberweis, Andreas Schoknecht,
Antonia M. Reina Quintero, Antonio Cancela Díaz, Boualem Benatallah, Carl
Corea, Chiara Di Francescomarino, Christoph Drodt, David Becher, Dennis
M. Riehle, Eduardo Gonzalez Lopez de Murillas, Emiliano Reynares, Fabrizio
Smith, Farhad Amouzgar, Francesco Taglino, Hajo A. Reijers, Hamid Reza
Motahari-Nezhad, Han van der Aa, Harald Störrle, Jerome Geyer-Klingeberg,
Jessica Ambrosy, Jorge Roa, Jose Miguel Pérez Álvarez, Kazimierz Subieta, Klaus
Kammerer, Luisa Parody, Manfred Reichert, María Laura Caliusco, María Teresa
Gómez-López, Mariusz Momotko, Martin Klenk, Matthias Weidlich, Maurizio
Proietti, Oktay Turetken, Pablo Villarreal, Paolo Tonella, Patrick Delfmann, Peter
Fettke, Ralf Laue, Remco M. Dijkman, Rik Eshuis, Robert Seilbeck, Rüdiger Pryss,
Samira Ghodratnama, Steffen Höhenberger, Thomas Vogelgesang, Tom Thaler,
Vlad Acreţoaie, and Wil van der Aalst. Thank you for your hard work, commitment,
and patience. I thank Springer for publishing this book and, specifically, Ralf
Gerstner for managing the communication from the publisher’s side and providing
timely recommendations related to the book preparation process. I thank Chun
Ouyang, Alistair Barros, and Wil van der Aalst, with whom we shaped the concept
of process querying and designed and validated a framework for defining process
querying methods [9]. I also thank Arthur H. M. ter Hofstede for drawing my
attention to the problem of process querying. Finally, I thank Jan Mendling for
many years of fruitful academic collaboration and for writing the foreword to this
book. Thank you All! Together, we have come a long way.

PS. For further resources on process querying and the book and information about
the workshop series on the topic of process querying, please refer to our Website:
processquerying.com.

Melbourne, VIC, Australia Artem Polyvyanyy
October 2021
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Introduction to Process Querying

Artem Polyvyanyy

Abstract This chapter gives a brief introduction to the research area of process
querying. Concretely, it articulates the motivation and aim of process querying,
gives a definition of process querying, presents the core artifacts studied in process
querying, and discusses a framework for guiding the design, implementation, and
evaluation of methods for process querying.

1 Introduction

A business process is a plan and coordination of activities and resources of
an organization that aim to achieve a business objective [22]. Business Process
Management (BPM) is an interdisciplinary field that studies concepts and methods
that support and improve the way business processes are designed, performed, and
analyzed in organizations. BPM enables organizations to systematically control
operational processes with the ultimate goal of reducing their costs, execution times,
and failure rates through incremental changes and radical innovations [4, 22].

Over the last two decades, many methods, techniques, and tools have been
devised to support BPM practices in organizations. Use cases addressed by BPM
range from regulatory process compliance, via process standardization and reuse,
to variant analysis, process instance migration, and process mining techniques for
automated process modeling, enhancement, and conformance checking based on
event data generated by IT systems. Despite being devised for different use cases,
BPM approaches and tools often rely on similar underlying algorithms, process
analysis techniques, and constructed process analytics. For example, process com-
pliance, standardization, reuse, and variant analysis methods rely on algorithms for
retrieving processes that describe a case with conditions that capture a compliance
violation or a process fragment suitable for standardization, variant identification, or
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reuse in fresh process designs. Process instance migration and process compliance
may further rely on techniques for automatically augmenting processes, such
as resolving the issues associated with the non-compliance of the processes or
adaptation of a long-running process instance from the old to a new process design.

Process querying aims to identify core algorithms, analysis, and analytics over
processes to promote their centralized development and improvement for later reuse
when solving practical problems concerned with the management of processes
and process-related artifacts, like resources, information, and data. We refer to
such core process-related computations as process querying methods. Process
querying multiplies the effect of process querying methods in different use cases
and suppresses reinventions of such methods in different contexts.

The remainder of this chapter is organized as follows. The next section elaborates
on the aim of process querying and gives definitions of process querying and a
method for process querying. Then, Sect. 3 presents a framework for devising
process querying methods. The framework consists of abstract components, each
with well-defined interfaces and functionality, that, when instantiated, result in a
concrete method for process querying. The chapter closes with conclusions that also
shed light on the directions for future work in process querying.

2 Process Querying

This section discusses the objective and the definition of the research area of process
querying and rigorously defines the concept of a process querying method.

2.1 Objective

Process querying aims to support systematic improvement and reuse of methods,
techniques, and tools for manipulating and managing models of processes, either
already executed or designed existing or envisioned processes, and process-related
resources, information, and data. The need for scoping the area of process querying
has emerged from numerous observations of non-coordinated efforts for developing
approaches for automated management and manipulation of process-related artifacts
in the research disciplines of BPM [4, 22] and process mining [19]. To name
a few, examples of research problems studied in BPM that fall in the scope
of process querying include process compliance, process standardization, process
reuse, process migration, process selection, process variance management, process
selection, process discovery, process enhancement, and correctness checking [13].
Existing solutions to these problems often rely on techniques that share algorithmic
ideas and principles. Hence, instead of conducting scattered, in silos, studies, with
process querying, we propose to identify and study such central ideas and principles
to improve and reuse them when solving practical process-related problems. Though
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process querying emerges from the research disciplines of BPM and process mining,
we envisage its application in other process-related fields, including software
engineering, information systems engineering, computing, programming language
theory, and process science.

2.2 Definition

Process querying emerges at the intersection of research areas concerned with
modeling, analysis, and improvement of processes. Before giving our definition
of process querying, we discuss several such areas and their relation to process
querying.

Big Data Big data studies ways to analyze large datasets. Here, we usually speak
about datasets that are too large to be analyzed using traditional techniques. Process
querying also researches ways to analyze extremely large datasets but is primarily
concerned with datasets that comprise event data, e.g., executions of IT systems,
records of business processes, user interactions with information systems, and
timestamped sensor data. In addition, process querying deals with descriptions of
potentially infinite collections of processes.

Process Modeling A process model is a simplified representation of a real-world
or an envisioned process, or collection of processes, that serves a particular purpose
for a target audience. Process modeling is a technique to construct a process model.
Process querying studies techniques that support instructions for automated and
semi-automated process modeling. Examples of such instructions include removing
or inserting parts of a process model to ensure it represents the desired collection of
processes for the envisaged purpose and audience.

Process Analysis Process analysis studies ways to derive insights about the quality
of processes, including their correctness, validity, and performance characteristics.
Process querying relies on existing and studies new process analysis techniques
to retrieve existing and modeling new processes with desired quality profiles. For
instance, a process query can specify an intent to retrieve all processes with duration
in a given range or augment process designs to ensure their correct future executions
under new constraints.

Process Analytics Process analytics studies techniques for computational and
statistical analysis of processes and the event data they induce. It is also concerned
with identifying meaningful patterns in event data and communication of these
patterns. Process querying relies on and extends process analytics to apply it when
retrieving and manipulating processes and related artifacts. An example of such
synergy between process analytics and querying is an instruction to retrieve and
replace process patterns that lead to negative overall process outcomes with the
patterns that were observed to result in positive outcomes.
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Process Intelligence Process intelligence studies ways to infer insights from
processes and the related resources, information, and data for their subsequent use.
Examples of such insights include causes for poorly performing or unsuccessful
process executions, while sample uses of the inferred insights include reporting and
decision-making.

The definition of process querying is an evolving concept that is continuously
refined via an iterative process of embracing and solving practical problems for
retrieving and manipulating models of process and process-related artifacts. The
current snapshot of this definition is given below:

Process querying combines concepts from Big data and process modeling and analysis
with process analytics and process intelligence to study methods, techniques, and tools
for retrieving and manipulating models of real-world and envisioned processes, and the
related resources, information, and data, to organize and extract process-related insights for
subsequent systematic use.

Therefore, the idea of process querying is to systematically extract insights from
descriptions of processes, e.g., event logs of IT systems or process models, and the
associated artifacts, e.g., resources used to support process executions, information
capturing the domain knowledge, and data generated during process executions,
stored in process repositories of organizations using effective instructions captured
in process queries implemented using efficient techniques. Consequently, the task
of process querying is to design those effective and efficient process queries over a
wide range of inputs capable of delivering useful insights to the users.

2.3 Methods

Processes are properties of dynamic systems, where a dynamic system is a system
that changes over time, for instance, a process-aware information system or a
software system. A process is an ordering of events that collectively aim to achieve
a goal state, where a state is a characteristic of a condition of the system at some
point in time. In other words, a state of a process specifies all the information that is
relevant to the system at a certain moment in time. An event is an instantaneous
change of the current state of a system. An event can be distinguished from
other events via its attributes and attribute values, for example, a timestamp, event
identifier, process instance identifier, or activity that induced the event.

Let Uan be the universe of attribute names. We distinguish three special attribute
names time, act, rel ∈ Uan, where time is the “timestamp”, act is the “activity”, and
rel is the “relationship” attribute name. Let Uav be the universe of attribute values.

Event. An event e is a mapping from attribute names to attribute values such
that each attribute name that participates in the mapping is related to exactly one
attribute value, i.e., e : Uan ⇀ Uav.

By E , we denote the universe of events. Similar to attribute names, we identify three
special classes of events. By Etime, we denote the set of all events with timestamps,
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i.e., Etime = {e ∈ E } time ∈ dom(e). By Eact, we denote the set of all events with
activity names, i.e., Eact = {e ∈ E } act ∈ dom(e). Let Urel = P(E ) ×P(E ) be
the set of all possible pairs of sets of events, where P(E ) is the power set of E ,
such that Urel are possible attribute values, i.e., Urel ⊂ Uav. Then, Erel is the set
of all events that assign a value from Urel to its relationship attribute, i.e., Erel =
{e ∈ E } rel ∈ dom(e) ∧ e(rel) ∈ Urel.

For example, e = {(case, 120328), (time, 2020-03-27T03:21:05Z), (act, “Close
claim”)} is an event with three attributes. A possible interpretation of these attributes
is that event e belongs to the process with case identifier e(case) = 120327, was
recorded at timestamp e(time) = 2019-10-22T11:37:21Z (ISO 8601), and was
generated by the activity with name e(act) = “Close claim”.

Process. A process π is a partially ordered set (E,≤), where E ⊆ E is a set
of events and ≤ ⊆ E × E is a partial order over E, i.e., ≤ is a reflexive,
antisymmetric, and transitive binary relation over E.

A process describes that certain pairs of events are ordered. Note that every pair of
related, by a process, events specifies that the first event precedes the second event,
while for any two unrelated events, their order is unspecified. It is a common practice
to interpret two unordered events as such that may be enabled simultaneously or
occur in parallel, refer to [12] for details.

A process that is a total order over a set of events is a trace.

Trace. A trace τ is a process (E,<), where < is a total order over E.

A behavior is a collection of processes in which the same process may appear
several times to denote the fact that it can be, or was, observed multiple times.

Behavior. A behavior b is a multiset of processes.

By B, we denote the universe of behaviors.
Behaviors can be described in conceptual models. According to Lindland et

al. [10], a conceptual model consists of an explicit model component and an implicit
model component. The explicit component is the set of all statements explicitly
made using some modeling language, whereas the implicit component is the set of
all statements that can be derived from the explicit component using deduction rules
of the modeling language.

We refer to a conceptual model that describes behaviors as a behavior model.Let
A ⊂ Uav be the universe of activities. Let Ums be the universe of explicit model
statements. Then, M = P(A ) ×P(Ums) is the universe of activity models, a
special class of explicit components of behavior models, where each activity model
is a pair composed of a set of activities and a set of model statements that compose
the activities into the model. By � = (∅,∅), � ∈M , we denote the empty model,
the model without activities and statements.

We define four classes of behavior models based on their explicit and implicit
components. These four classes are due to the requirements identified in [14].
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Behavior model. A behavior model is a pair (M,B), where M ∈ M is an
activity model and B ⊆ B is a set of behaviors:

• An event log is a behavior model (�, {b}), where b ∈ B is a finite multiset of
finite traces over Eact, i.e., the activity model is empty and only one behavior
is specified.

• A simulation model is a behavior model (M, {b}), where M = (A, S) ∈M
is a non-empty model and b ∈ B is a finite multiset of finite processes over
Eact such that for every event e in a process in b it holds that e(act) ∈ A.

• A process model is a behavior model (M,B), where M = (A, S) ∈M is a
non-empty model and every b ∈ B is a set of processes over Eact \Etime such
that for every event e in a process in b ∈ B it holds that e(act) ∈ A.

• A correlation model is a behavior model (M,B), where every b ∈ B is
a multiset of processes over Erel such that if M = (A, S) is a non-empty
model, then for every event e in a process in b ∈ B, it holds that act ∈ dom(e)

and e(act) ∈ A.

Behavior models are immense information resources. A behavior model can
characterize a dynamic system by describing potentially an infinite collection of
processes it supports and suggesting the ways to lead the system to possible states
that are not bounded by any finite collection of states [2].

We say that M and B are, respectively, the explicit component and the implicit
component of the behavior model (M,B). That is, M models behaviors B. We
also say that a behavior model (M,∅) is informal, i.e., the implicit component
of an informal model is empty to indicate that no implicit model statement can
be deduced from M . A behavior model (M, {b}), where b ∈ B, is formal. An
explicit component of a formal behavior model induces one behavior, i.e., all the
implicit model statements are deduced from M deterministically to define one
behavior. Finally, a behavior model (M,B), where |B| > 1, is semi-formal, i.e.,
an explicit component of a semi-formal behavior model can be interpreted as one of
the behaviors in B reflecting that the deduction rules of the modeling language used
to construct the explicit model are nondeterministic.

An event log is a collection of traces induced by some unknown explicit
component of a behavior model; hence, the empty activity model is used as the
first element in the pair that defines an event log. Each trace in a log describes
some observed process execution. To reflect that the same trace can be observed
multiple times, the implicit component of an event log contains a multiset of
traces. The multiplicity of a trace in this multiset denotes the number of times
this trace was observed. One of the core problems studied in process mining is
automatically discovering the explicit component of a behavior model that induced a
given log [19]. To support this use case, every event in a trace is required to have the
act attribute. A simulation model is an activity model together with a finite imitation
of its operations in the real-world [3]. The implicit component of a simulation
model contains a fraction of behavior that can be induced by the explicit component,
which constitutes the behavior imitated during some simulation exercise. To allow
traceability, each event of the implicit component has the act attribute that refers to
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Open
Claim

Close 
Claim

Review
Claim

e9={(act, “Open Claim”)} e10={(act, “Update Claim”)} e11={(act, “Close Claim”)}, ,τ3=

A1:

e1={(act, “Open Claim”)} e2={(act, “Review Claim”)} e3={(act, “Close Claim”)}, ,τ1=
e4={(act, “Open Claim”)} e5={(act, “Close Claim”)},τ2=

e6={(rel, ({e4},{e9}))} e7={(rel, ({},{e10}))} e8={(rel, ({e5},{e11}))}, ,c1=

Fig. 1 Example behavior models

the activity that induced the event. A process model is an activity model together
with a set of all possible behaviors that can be deduced from the statements the
activity model is composed of [16, 21]. Note that a behavior induced by an explicit
component of a process model can be infinite, for example, due to some cyclic
process dependencies. To reflect the fact that events in the implicit components of
process models are envisioned and were not observed in the real-world, they do
not have timestamps. Finally, a correlation model is a behavior model in which
every event specifies a relation between two sets of events. Correlation models, for
example alignments [9, 20], describe correspondences and discrepancies between
the events in two compared processes. Thus, each event in the implicit component
of a correlation model uses the rel attribute to specify the matching events from two
compared processes.

The top of Fig. 1 shows a process model with activity model A1 as the explicit
component, captured in BPMN. According to BPMN semantics, the diagram
describes two process instances τ1 and τ2, also shown in the figure. Hence, the
process model is defined by the pair (A1, {[τ1, τ2]}). The bottom of Fig. 1 shows
trace τ3, which is composed of three events e9, e10, and e11, that describes a process
that starts with activity “Open Claim”, followed by activity “Update Claim”, and
concluded by activity “Close Claim”. The pair L = (�, {[τ 5

1 , τ 2
3 ]}) specifies a

sample event log. Event log L specifies that trace τ1 was observed five times, while
trace τ3 was observed two times. Note that this log contains traces that cannot be
deduced from A1. Finally, one can use trace c1 from Fig. 1 to define a correlation
model, for example, (�, {[c1]}). Trace c1 relates traces τ2 and τ3 and specifies that
events e4 and e5 in trace τ2 relate to events e9 and e11 in trace τ3, respectively, while
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event e10 in trace τ3 does not correspond to any event in trace τ2. Hence, c1 captures
minimal discrepancies between traces τ2 and τ3 and corresponds to the concept of
optimal alignment between these two traces (assuming the use of the standard cost
function) [20].

A process repository is an organized collection of behavior models. Let Ure

be the set of all repository elements that are not behavior models, for example,
folders for organizing the models, and names and values of metadata attributes of
the models.

Process repository. A process repository is a pair (P,R), where P is a collection
of behavior models and R ⊆ Ure is a set of repository elements.

By Upr andUpq, we denote the universe of process repositories and process queries,
where a process query is an instruction that requests to retrieve artifacts from a
process repository or to manipulate a process repository. For example, a process
query may capture an instruction to replace a process in one of the behaviors of a
process model in a repository with a fresh process. Note that, to ensure consistency
between the explicit component and the implicit component, a realization of this
query may require updates in the explicit part of the corresponding behavior model.

Finally, a process querying method is a computation that given a process
repository, and a process query systematically performs the query on the repository.
The result of performing a query is, again, a process repository that implements the
query on the input repository.

Process querying method. A process querying method m is a mapping from
pairs, where each pair is composed of a process repository and a process query,
to process repositories, i.e., it is a function m : Upr ×Upq → Upr.

For example, a process querying method can support a process query that given a
process repository that contains the process model captured in Fig. 1 and updates it
to describe trace τ3 instead of trace τ2 to result in a process repository with a fresh
model shown in Fig. 2, which represents all the traces in log L discussed above.

Fig. 2 A process model

Open
Claim

Close
Claim

Review
Claim

Update
Claim
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3 Process Querying Framework

In [14], we proposed the Process Querying Framework (PQF) for devising process
querying methods. Schematic visualization of the framework is shown in Fig. 3.1 We
present the framework in Sect. 3.1. Then, Sect. 3.2 discusses decisions that one must
take when designing a new process querying method. Finally, Sect. 3.3 elaborates on
the challenges associated with the design decisions and how every process querying
method is a compromise of the decisions taken.

3.1 Framework

The PQF is an abstract system of components that provide generic functionality
and can be selectively replaced to result in a new process querying method. In
Fig. 3, rectangles and ovals denote active components and passive components,
respectively; note the use of an ad hoc notation. An active component represents
an action performed by the process querying method. In turn, a passive component
is a (collection of) data objects. Passive components serve as inputs and outputs of
actions. To show that a passive component is an input to an action, an arc is drawn
to point from the component to the action, while an arc that points from an action
to a passive component shows that the action produces the component. The dashed
lines encode the aggregation relationships. A component that is used as an input to
an action contains an adjacent component. For example, a process repository is an
aggregation of event logs, process models, correlation models, or simulation models,
refer to the figure.

The framework is composed of four parts. These parts are responsible for
designing process repositories and process queries (“Model, Simulate, Record
and Correlate”), preparing process queries (“Prepare”), executing process queries
(“Execute”), and interpreting results of the process querying methods (“Interpret”).
In the figure, the parts are enclosed in areas denoted by the dotted borders. Next, we
detail the role of each of these parts.

Model, Record, Simulate, and Correlate This part of the PQF is responsible for
modeling or creating behavior models and process queries. Behavior models can be
acquired in several ways. For example, they can be designed manually by an analyst
or constructed automatically using process mining [19] or process querying, as a
result of executing a query. Alternatively, an event log can be obtained by recording
the traces of an executing IT system. Finally, a behavioral model can be a result of
correlating steps of two different processes. Examples of behavior models include

1 © 2017 Elsevier B.V, Fig. 3 is reprinted from Decis. Support Syst. 100, Artem Polyvyanyy, Chun
Ouyang, Alistair Barros, Wil M. P. van der Aalst, Process querying: Enabling business intelligence
through query-based process analytics, pp 41–56, with permissions from Elsevier.
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process models like computer programs, business process specifications captured
in BPMN, YAWL, and BPEL notation, and formal automata and Petri net models,
event logs of IT systems [19], and correlation models like alignments [9, 20].

A process querying instruction specifies which processes, behaviors, or behavior
models should be added to, removed from, replaced in, or retrieved from which
processes, behaviors, or behavior models in a process repository. Such an instruction
is composed of a query intent that specifies the aim of the instruction and a list
of query conditions that parameterize the intent. The resulting process querying
instruction should unambiguously specify how to execute it over the process
repository. For example, an instruction can specify to retrieve, or read, processes
from the repository, while its conditions detail which processes should be included
in the query result and which should be left out. We refer to an instruction
captured in some machine-readable, i.e., formal, language as a process query.
The Formalizing active component of the framework is responsible for translating
process querying instructions into process queries expressed in domain-specific
programming languages or some other formalisms.

Prepare The Prepare part of the framework is responsible for making process
repositories ready for efficient querying. In its current version, the framework
suggests two methods for preparing for querying, namely indexing and caching.
In databases, indexing is a technique to construct a data structure, called an index, to
efficiently retrieve data records based on some attributes. In computing, caching is
a technique to store data in a cache so that future requests to that data can be served
faster, where the stored data might be the result of an earlier computation.

An index is usually constructed offline and uses additional storage space to
maintain an extra copy, or several copies, of the process repository. It is expected
that this additional storage will be used to speed up the execution of queries. A
process querying can also collect statistics over properties of the repository and its
indexes, referred to as process statistics in the figure. Process statistics should be
used to guide the execution of process queries. For example, a process querying
method can proceed by first executing queries over simple models to ensure that
initial results are obtained early and proposed to the user.

Caching in process querying can rely on process querying statistics to decide
which (parts of) query results should be stored for later prompt reuse. The
statistics may include aggregate information on the execution of process queries
and evaluation of process query conditions, e.g., frequencies of such executions and
evaluations. The results of the most frequent queries and evaluated query conditions
can then be put in the cache. Next time the user requests to evaluate a query or
a condition of a query stored in the cache, its result can be retrieved from the
cache instead of recomputed, which is usually more efficient. Caching decisions
can rely on process querying statistics that aims to keep track of recent frequent
query executions and query condition evaluations.

One can rely on other approaches to speed up the evaluation of process queries.
The standard approaches that can be explored include parallel computing, e.g., map-
reduce, algorithm redesign, e.g., stochastic and dynamic optimization, and hardware
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acceleration, e.g., in-memory databases and computing on graphics processing
units. Note, however, that such optimization approaches are often inherent to the
designs of techniques they optimize. Even though such optimizations are clearly
useful, we request that future approaches impose as few restrictions as possible on
the querying methods they are intended to be used with.

Execute The Execute part of the framework is responsible for executing process
queries over repositories. It comprises components for filtering process repositories
and optimizing and executing process queries.

Filtering is used before executing a query to tag those processes, behaviors, or
models in the repository that are known to be irrelevant for the purpose of the
process query. Then, the query execution routine can skip tagged artifacts to improve
the efficiency of query processing. For instance, if a query requests to select all
process models that describe a process with an event that refers to a given activity,
it makes no sense to execute the query over models that do not contain the given
activity. The filtering is performed by the eponymous active component of the
framework that takes the repository and a query as input and produces a filtered
process repository as output. A filtered repository is a projection of the original
repository with some of its parts tagged as irrelevant for the purpose of the query
processing. Clearly, to be considered useful, a concrete Filtering component must
perform filtering decisions more efficiently than executing the query over the same
parts of the repository.

The component responsible for query optimization, see the Optimizing compo-
nent in the figure, takes as input a query and all the information that can help produce
an efficient execution plan for the query. An execution plan is a list of commands
that should be carried out to execute the query using the least amount of resources
possible. Two types of optimizations are usually distinguished: logical and physical.
A logical optimization entails reformulating a given query into an equivalent but
easier—which usually means a faster to execute—query. A physical optimization,
in turn, consists of determining efficient means for carrying out commands in a
given execution plan.

Finally, the Process Querying component takes as input an execution plan of
a query, a corresponding filtered repository, as well as available index, process
statistics, and cache, and produces a new process repository that implements the
instruction specified by the query. As a side effect of executing a query, the
component updates the process querying statistics. The filtered repository and the
execution plan are the critical inputs of the querying component, as without these
inputs the querying cannot take place, while all the other inputs are optional or can
be empty.

Interpret An outcome of a process query execution falls into two broad categories:
successful or unsuccessful. The successful outcome signifies that the querying
instruction captured in the query was successfully implemented in the repository.
The latter situation may, for instance, arise when managing vast (possibly infinite)
collections of processes described in a process model using scarce (finite) resources
of a computer that processes the query.
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When a process query fails to execute because of resource limitations, one can
adopt at least two strategies to obtain a partial or the full query result. It may be
possible to reformulate the original query to give up on the precision of its results.
Alternatively, one may be able to optimize the querying method to allow handling
the special case of the original query or the class of queries the original query falls
into. The standard approaches for managing vast collections of processes include
symbolic techniques, such as binary decision diagrams, and abstractions based on
the structural model or behavior regularities.

It is often desirable to communicate the query results, successful or unsuccessful,
to the user who issued the query. The Interpret part of the framework serves this
purpose. All the active components of this part have a common goal: to contribute
to the user’s better comprehension of the querying results. The components listed in
Fig. 3 are inspired by the various means for improving comprehension of conceptual
models proposed by Lindland et al. [10]. As input, these components take the
(filtered) process repository, the query and its execution plan, and the resulting
process repository and aim to explain all the differences between the original and
resulting repositories and the reasons for the differences.

One can use several techniques to foster the understanding of process querying
results. First, a user can understand a concept or phenomenon by inspecting, or
reading, it. One can explore various approaches to facilitate the process of reading
process query results. For instance, important aspects can be emphasized, while the
secondary aspects downplayed. Besides, the inspection activities can be supported
by a catalog of predefined explanation notes prepared by process analysts and
domain experts. Second, by presenting process querying results diagrammatically
rather than in text, their comprehension can be improved. Third, the visual repre-
sentations of process query results can be further animated, e.g., to demonstrate the
dynamics of the processes that comprise the query result. A common approach to
animating the dynamics of a process is through a token game that demonstrates the
process state evolution superposed over the diagrammatic process model. Fourth,
the comprehension of the process querying results can be stimulated by projecting
away their parts, allowing the user to focus on a limited number of aspects at a time.
Fifth, one can simulate and demonstrate to the user the processes that constitute
the query result captured in a static model. Finally, process querying results can be
translated into notations that the user is more familiar with. The implementation of
these practices is the task of the corresponding active components of the framework.

3.2 Design Decisions

A design decision is an explicit argumentation for the reasons behind a decision
made when designing a system or artifact. When instantiating the PQF to define
a concrete process querying method, one needs to take several design decisions
imposed by the framework. Next, we discuss three decisions one needs to take
when configuring the framework, namely which behavior models, which model
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semantics that induce processes, and which process queries should the process
querying method support.

Which Behavior Models to Consider? An author of a process querying method
must decide which behavior models the method will support. Note that a method
that addresses querying of event logs will most likely be composed of active and
passive components of the PQF that are different from a method for querying
correlation models. Besides, the choice of supported formalisms for capturing
behavior models restricts the class of supported processes, or languages in the
terminology of the theory of computation [17], supported by the process querying
method. For instance, if behavior models are restricted to deterministic finite
automata, the class of processes described by the models is limited to the class of
regular languages [17, 18].

Which Processes to Consider? A behavior model can be interpreted as such that
describes several behaviors, each induced by a different model semantics criterion.
The choice of a semantics criterion determines the correspondence between the
model and the collection of processes associated with this model. For instance,
a process model can be interpreted according to the finite, infinite, or a fair
process semantics. According to the finite process semantics, a model describes
processes that lead to terminal goal states. In contrast, an infinite process semantics
accommodates processes that never terminate, i.e., processes in which after every
event there exists some next event that gets performed. A process in which, from
some state onward, an event can get enabled for execution over and over again but
never gets executed is an unfair process. A not unfair process, as per the stated
principle, is a strongly fair process [8]. A fair process can be finite or infinite. There
are different fairness criteria for processes. Several of them, including the strong
fairness criterion, are discussed in [1]. The choice of the correspondence between
models and collections of processes they are associated with defines the problem
space of the process querying method, as it identifies the processes to consider when
executing queries.

Which Process Queries to Consider? An author of a process querying method
must decide which queries the method will support. The design of a process query
consists of two sub-tasks of choosing the intent of the query and, subsequently,
fixing its conditions. The choice of supported process queries determines the
expressiveness of the corresponding process querying method, i.e., it defines the
ability of the method to describe and solve various problems for managing process
repositories. For example, a process querying method can support queries with
the intent to read process-related information from the repository, i.e., to retrieve
processes for which specific conditions hold. Alternatively, one can envision a
process querying method that supports queries with intents that address all the
CRUD operations over models, behaviors, or processes. To specify process queries
formally, one can provide formal descriptions of their abstract syntax, concrete
syntax, and notation [11].
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3.3 Challenges and Compromise

The design decisions taken when instantiating the PQF into a concrete process
querying method inevitably lead to challenges associated with their realization.
Next, in Sect. 3.3.1, we discuss three challenges associated with the design decisions
discussed in Sect. 3.2. After discussing the challenges, in Sect. 3.3.2, we conclude
that every process querying method is a compromise between specific solutions
taken to address the challenges.

3.3.1 Challenges

When implementing a process querying method, one inevitably faces three chal-
lenges: decidability, efficiency, and usefulness of the supported process queries.

Decidability Process queries must be decidable. In other words, they must be
solvable by algorithms on a wide range of inputs. Indeed, a process query that
cannot be computed is of no help to the user. The decidability requirement poses
a significant challenge, as certain process management problems are known to be
undecidable over specific classes of inputs. For example, process queries can be
expressed in terms of temporal logic formulas [2, 15]. However, temporal logic
formulas can be undecidable over some classes of process models [6, 7].

Efficiency Process querying aims to provide valuable insights into processes
managed by organizations. As part of this premise, process querying should
foster the learning of processes, behaviors, and behavior models contained in the
repository by the novice users of the repository. In other words, it should support
exploratory querying [23]. However, exploratory querying requires techniques
capable of executing queries close to real time. Therefore, another challenge of
process querying is to develop process queries that can be computed efficiently, that
is, fast and using small memory footprints. One can measure the efficiency of the
process queries using well-known techniques in computational complexity theory,
which study resources, like computation time and storage space, required to solve
computational problems with the goal of proposing solutions to the problems that
use less resources.

Suitability Process querying methods should offer a great variety of concepts and
principles to capture and exercise in the context of process querying. Thus, the
third challenge of process querying is concerned with achieving expressiveness in
terms of capturing all the suitable (appropriate for the purpose envisioned by the
users) process queries that specify instructions for managing process repositories.
Authors of process querying methods should strive to propose designs that support
all the useful (as perceived by the users) process queries. The suitability of process
querying methods can be assessed empirically or, similar to [5], by identifying
common reoccurring patterns in specifications of process querying problems.
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Fig. 4 Process querying
compromise
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3.3.2 Compromise

A process querying method is identified by a collection of process queries it
supports. The selection of queries to support is driven by the considerations of
decidability, efficiency, and suitability of queries. As these considerations often
forbid the method to support all the desired queries, we refer to the phase of selecting
which queries to support and not support as the process querying compromise.

The process querying compromise can be formalized as follows. Let D be the
set of all decidable process queries. Some decidable queries can be computed
efficiently; note that, in general, the decidability of certain process queries can be
unknown. Let E ⊆ D be the set of all process queries that are not only computable
but are also efficiently computable. Finally, let S be the set of all process queries
that the users perceive as suitable. Then, the queries in E ∩ S are the queries that
one should aim to support via process querying methods. Figure 4 demonstrates the
relations between sets D, E, and S visually. In an ideal situation, it should hold that
S ⊆ E, i.e., all the suitable queries are computable using some efficient methods.
However, in practice, it is often impossible to fulfill the requirement of S ⊆ E, or
even S ⊆ D. Then, one can strive to improve the efficiency of the techniques for
computing queries in (S ∩D) \ E, which are the decidable and practically relevant
queries for which no efficient computation procedure is known.

The existence of such compromise differentiates process querying from data
querying. Note that data queries usually operate over finite datasets, making it
possible to implement querying using, maybe not always efficient, but certainly
effective methods.

4 Conclusion

This chapter presents and discusses the problem of process querying. Process
querying aims to coordinate the efforts invested in the design, implementation,
and application of techniques, methods, and tools for retrieving and manipulating
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models of processes, and the related resources, information, and data. Consequently,
process querying supports centralized activities that improve process querying
practices and suppresses reinventions of such practices in different contexts and
variations. The chapter also presents an abstract framework for designing and imple-
menting process querying methods. The framework consists of abstract components,
each with a dedicated role and well-defined interface, which, when instantiated and
integrated, result in a concrete process querying method. Finally, the chapter argues
that every process querying method defines a compromise between efficiently
decidable and practically relevant queries, which is unavoidably associated with
challenges for designing and implementing such methods.

The concept of process querying emerged from the observations of theory and
practice in the research discipline of BPM and relates to other process-centric
research fields like software engineering, information systems engineering, and
computing. We envisage future applications, adaptations, and improvements of pro-
cess querying techniques contributed from within these fields. Future endeavors in
process querying will contribute to understanding the process querying compromise,
including which queries are practically relevant for the users to justify the efforts for
their design and use in practice.
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Accordingly, process data (i.e., BP execution data such as logs containing events,
interaction messages, and other process artifacts) are scattered across several
systems and data sources and increasingly show all typical properties of the Big
Data. Understanding the execution of process data is challenging as key business
insights remain hidden in the interactions among process entities: most objects
are interconnected, forming complex heterogeneous but often semi-structured
networks. In the context of business processes, we consider the Big data problem
as a massive number of interconnected data islands from personal, shared, and
business data. We present a framework to model process data as graphs, i.e., process
graph, and present abstractions to summarize the process graph and to discover
concept hierarchies for entities based on both data objects and their interactions
in process graphs. We present a language, namely BP-SPARQL, for the explorative
querying and understanding of process graphs from various user perspectives. We
have implemented a scalable architecture for querying, exploration, and analysis of
process graphs. We report on experiments performed on both synthetic and real-
world datasets that show the viability and efficiency of the approach.
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1 Introduction

A business process is a set of coordinated tasks and activities, carried out manually
or automatically, to achieve a business objective or goal [27]. In modern enterprises,
business processes (BPs) are realized over a mix of workflows, IT systems,
Web services, and direct collaborations of people. In such information systems,
business process analysis over a wide range of systems, services, and software
(which implement the actual business processes of enterprises) is required. This
is challenging as in today’s knowledge-, service-, and cloud-based economy the
information about process execution is scattered across several systems and data
sources. Consequently, process logs increasingly come to show all typical properties
of the Big data [20]: wide physical distribution, diversity of formats, nonstandard
data models, and independently managed and heterogeneous semantics. We use the
term process data to refer to such large hybrid collections of heterogeneous and
partially unstructured process-related data.

Understanding process data requires scalable and process-aware methods to
support querying, exploration, and analysis of the process data in the enterprise
because (i) with the large volume of data and their constant growth, the process
data analysis and querying method should be able to scale well and (ii) the
process data analysis and querying method should enable users to express their
needs using process-level abstractions. Besides the need to support process-level
abstractions in process data analysis scenarios, the other challenge is the need
for scalable analysis techniques to support Big data analysis. Similar to Big
Data processing platforms [30], such analysis and querying methods should offer
automatic parallelization and distribution of large-scale computations, combined
with techniques that achieve high performance on large clusters of commodity PCs,
e.g., cloud-based infrastructure, and be designed to meet the challenges of process
data representation that capture the relationships among data.

In this chapter, we present a summary of our previous work [5, 8, 10, 13]
in organizing, querying, and analyzing business processes’ data. We introduce
BP-SPARQL, a query language for summarizing and analyzing process data. BP-
SPARQL supports a graph-based representation of data relationships and enables
exploring, analyzing, and querying process data and their relationships by superim-
posing process abstractions over an entity-relationship graph, formed over entities in
process-related repositories. This will provide analysts with process-related entities
(such as process event, business artifacts, and actors), abstractions (such as case,
process instances graph, and process model), and functions (such as correlation
condition discovery, regular expressions, and process discovery algorithms) as first-
class concepts and operations. BP-SPARQL supports various querying needs such
as entity-level (artifacts, events, and activities), summarization (OLAP Style, Group
Style, and Partition Style), relationship (Regular Expression, Path Condition, and
Path Node), metadata (Time and Provenance), and user-defined queries.

The remainder of this chapter is organized as follows. In Sect. 2, we present the
background and contributions overview. We introduce the process graph model in
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Sect. 3. Section 4 presents the abstractions used to summarize the process data. In
Sect. 5, we present the query framework, and in Sect. 6 we present MapReduce
techniques to scale the analysis. In Sect. 7, we describe the implementation and
the evaluation experiments. Finally, we position our approach within the Process
Querying Framework in Sect. 8, before concluding the chapter in Sect. 9.

2 Background and Contributions Overview

The problem of understanding the behavior of information systems as well as the
processes and services they support has become a priority in medium and large
enterprises. This is demonstrated by the proliferation of tools for the analysis of
process executions, system interactions, and system dependencies and by recent
research work in process data warehousing and process discovery. Indeed, the
adoption of business process intelligence techniques for process improvement is
the primary concern for medium and large companies. In this context, identifying
business needs and determining solutions to business problems require the analysis
of business process data: this enables discovering useful information, suggesting
conclusions, and supporting decision-making for enterprises.

In order to understand available process data (events, business artifacts, data
records in databases, etc.) in the context of process execution, we need to represent
them, understand their relationships, and enable the analysis of those relationships
from the process execution perspective. To achieve this, it is possible to represent
process-related data as entities and any relationships among them (e.g., event
relationships in process logs with artifacts, etc.) in entity-relationship graphs. In this
context, business analytics can facilitate the analysis of process data in a detailed and
intelligent way through describing the applications of analysis, data, and systematic
reasoning [10]. Consequently, an analyst can gather more complete insights using
data-driven techniques such as modeling, summarization, and filtering.

Motivating Scenario Modern business processes (BPs) are rarely supported by a
single, centralized workflow engine. Instead, BPs are realized using a number of
autonomous systems, Web services, and collaboration of people. As an example,
consider the banking industry scenario. Recently, there is a movement happening in
the banking industry to modernize core systems for providing solutions to account
management, deposits, loans, credit cards, and the like. The goal is to provide
flexibility to quickly and efficiently respond to new business requirements. In order
to understand the process analysis challenges, let us consider a real-world case in the
loan scenario, where Adam (a customer) plans to buy a property. He needs to find a
lending bank. He can use various crowdsourcing services (e.g., Amazon Mechanical
Turk1) or visit mortgage bank to find a proper bank. Then, he needs to contact the

1 https://www.mturk.com/.

https://www.mturk.com/
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bank through one of many channels and start the loan pre-approval process. After
that, he needs to visit various Websites or real estate services to find a property.
Meanwhile, he can use social Websites (e.g., Facebook or Twitter) to socialize the
problem of buying a property and ask for others’ opinions to find a proper suburb.
After finding a property, he needs to choose a solicitor to start the process of buying
the property. Lots of other processes can be executed in between. For example, the
bank may outsource the process of evaluating the property or analyzing Adam’s
income to other companies.

In this scenario, the data relevant to the business process of bank is scattered
across multiple systems, and in many situations, stakeholders can be aware of
processes, but they are not able to track or understand them: it is important to
maintain the vital signs of customers by analyzing the process data. This task is
challenging as (i) a massive number of interconnected data islands (from personal,
shared, and business data) need to be processed, (ii) processing this data requires
scalable methods, and (iii) analyzing this data depends on the perspective of the
process analyst, e.g., “Where is loan-order #756? What happened to it? Is it
blocked? Give me all the documents and information related to the processing of
loan-order #756? What is the typical path of loan orders? What is the process flow
for it? What are the dependencies between loan applicationsA1 and A2? How much
time and resources are spent in processing loan orders that are eventually rejected?
Can I replace X (i.e., a service or a person) by Y? Where data came from? How
it was generated? Who was involved in processing file X? At which stage do loan
orders get rejected? How many loan orders are rejected in the time period between
τ1 and τ2? What is the average time spent on processing loan orders? Where do
delays occur? Etc.”

Answering these questions in today’s knowledge-, service-, and cloud-based
economy is challenging as the information about process execution is scattered
across several systems and data sources. Therefore, businesses need to manage
unstructured, data-intensive, and knowledge-driven processes rather than well
predefined business processes. Under such conditions, organizing, querying, and
analyzing process data becomes of a great practical value but clearly a very
challenging task as well. In the following, we provide an overview of the main
contributions of this chapter:

(1) Process-aware abstractions for querying and representing process data [5, 8]:
We introduce a graph-based model to represent all process-related data as
entities and relationships among those entities in an entity-relationship graph
(ER graph). To enable analyzing process entity-relationship graph directly, still
in a process-aware context, we define two main abstractions for summarizing
the process data (modeled as an ER graph): folder nodes (a container for the
results of a query that returns a collection of related process entities) and path
nodes (a container for the results of a query that returns a collection of related
paths found in the entity-relationship graph). We present other extensions of
folder and path nodes including timed folder nodes and also process metadata
queries to support process analysis needs in contexts such as process entity
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provenance [7] and artifact versioning. These summarization abstractions and
functions offer a comprehensive set that covers most prominent needs of
querying process-related data from different systems and services.

(2) Summarizing process data [10]: We introduce a framework and a set of methods
to support scalable graph-based OLAP (online analytical processing) queries
over process execution data. The goal is to facilitate the analytics over the ER
graph through summarizing the process graph and providing multiple views at
different granularities. To achieve this goal, we present a model for process
OLAP (P-OLAP) and define OLAP specific abstractions in process context
such as process cubes, dimensions, and cells. We present a MapReduce-based
graph processing engine, to support Big data analytics over process data.
We identify useful machine learning algorithms [2] and provide an external
algorithm controller to enable summarizing the process data (modeled as an ER
graph), by extracting complex data structures such as time series, hierarchies,
patterns, and subgraphs. We define a set of domain-specific abstractions and
functions such as process event, process instance, events correlation condition,
process discovery algorithm, correlation condition discovery algorithm, and
regular expression to summarize the process data and to enable the querying
and analysis of relationships among process-related entities.

(3) Scalable process data analysis and querying methods [13]. In order to support
the scalable exploration and analysis of process data, we present a domain-
specific language, namely BP-SPARQL, that supports the querying of process
data (modeled as an ER graph) using the abovementioned process-level abstrac-
tions. BP-SPARQL translates process-level queries into graph-level abstractions
and queries. To support the scalable and efficient analysis over process data,
BP-SPARQL is implemented over the MapReduce2 framework by providing
a data mapping layer for the automatic translation of queries into MapReduce
operations. For this purpose, we designed and implemented a translation from
BP-SPARQL to Hadoop PigLatin [22], where the resulting PigLatin program is
translated into a sequence of MapReduce operations and executed in parallel
on a Hadoop cluster. The proposed translation offers an easy and efficient
way to take advantage of the performance and scalability of Hadoop for
the distributed and parallelized execution of BP-SPARQL queries on large
graph datasets. BP-SPARQL supports the following query types: (i) entity-level
queries: for querying process-related entities, e.g., business artifacts, actors, and
activities, (ii) relationship queries: for discovering relationships and patterns
among process entities using regular expressions, (iii) summarization queries:
these queries allow for analyzing case-based processes to find potential process
instances by supporting OLAP Style, Group Style, and Partition Style queries,
(iv) metadata queries: for analyzing the evolution of business artifacts and their
provenance over time, and (v) user-defined queries.

2 The popular MapReduce [16] scalable data processing framework and its open-source realization
Hadoop [28] offer a scalable dataflow programming model.
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3 Process Abstractions

In this section, we provide a summary of our previous work [5, 6, 8] on modeling
process data as an ER graph. To organize the process data, we introduce a graph-
based data model. The data model includes entities (e.g., events, artifacts, and
actors), their relationships, and abstractions which act as higher level entities to
store and browse the results of queries for follow-on analysis. The data model is
based on the RDF [24] data representation.

Definition 3.1 (Entity) An entity N is a data object that exists separately and has
a unique identity.

Entities can be structured (e.g., customer, bank, and branch) or unstructured
(body of an e-mail message). Structured entities are instances of entity types. This
entity model offers flexibility when types are unknown and takes advantage of
structure when types are known. Specific types of entities include:

• (Entity: Business Artifact) is a digital representation of something, i.e., data
object, that exists separately as a single and complete unit and has a unique
identity. A business artifact is a mutable object, i.e., its attributes (and their values)
are able and are likely to change over periods of time. An artifact A is represented
by a set of attributes {a1, a2, . . . , ak}, where k represents the number of attributes.
An artifact may appear in many versions. A version v of a business artifact is
an immutable copy of the artifact at a certain point in time. A business artifact
A can be represented by a set of versions {v1, v2, . . . , vn}, where n represents
the number of versions. A business artifact can capture its current state as a
version and can restore its state by loading it. Each version is represented as
a data object that exists separately and has a unique identity. Each version vi

consists of a snapshot, a list of its parent versions, and metadata, such as commit
message, author, owner, or time of creation. In order to represent the history of a
business artifact, it is important to create archives containing all previous states of
an artifact. The archive allows us to easily answer certain temporal queries such
as retrieval of any specific version and finding the history of an artifact.

• (Entity: Actor). An actor R is an entity acting as a catalyst of an activity, e.g., a
person or a piece of software that acts for a user or other programs. A process
may have more than one actor enabling, facilitating, controlling, and affecting its
execution.

• (Entity: Event). An event is an object representing an activity performed by an
actor. An event E can be presented as the set {R, τ,D}, where R is an actor (i.e.,
a person or device) executing or initiating an activity, τ is a timestamp of the
event, and D is a set of data elements recorded with the event (e.g., the size of an
order). We assume that each distinct event does not have a temporal duration. For
instance, an event may indicate an arrival of a loan request (as an XML document)
from a bank branch, an arrival of a credit card purchase order from a business
partner, or a completion of a transmission or a transaction.

Definition 3.2 (Relationship) A relationship is a directed link between a pair of
entities, which is associated with a predicate defined on the attributes of entities that
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characterizes the relationship. A relationship can be explicit, such as “was triggered

by” in event1
(wasTriggeredBy)−−−−−−−−−−→ event2 in business processes (BPs) execution log, or

implicit, such as a relationship between an entity and a larger (composite) entity
that can be inferred from the nodes. An entity is related to other entities by time
(time-based), content (content-based), or activity (activity-based):

• (Time-Based Relationships). Time is the relationship that orders events, for
example, eventA happened before eventB . A timestamp is attached to an event
where every timestamp value is unique and accurately represents an instant in
time. Considering activities Aτ1 and Aτ2, where τ is a timestamp of an event,
Aτ1 happened before Aτ2 if and only if τ1 < τ2.

• (Content-Based Relationships). When talking about content, we refer to entity
attributes. In process context, we consider content-based relationships as cor-
relation condition-based relationships, where a correlation condition [21] is a
binary predicate defined over attributes of two entities Ex and Ey and denoted
by ψ(Ex,Ey). This predicate is true when Ex and Ey are correlated and false
otherwise. A correlation condition ψ allows to partition an entity-relationship
graph into sets of related entities.

• (Activity-Based Relationships). This is a type of relationship between two entities
that is established as the result of performing an activity. In this context, an
activity can be described by a set of attributes such as (i) What (types of
activity), (ii) How (actions such as creation, transformation, or use), (iii) When
(the timestamp in which the activity has occurred), (iv) Who (an actor that
enables, facilitates, controls, or affects the activity execution), (v) Where (the
organization/department where the activity happened), (vi) Which (the system
which hosts the activity), and (vii) Why (the goal behind the activity, e.g.,
fulfillment of a specific phase).

Other types of relationships are discussed in [4]. Figure 1 illustrates a sample
process data modeled as an ER graph, illustrating possible relationships among
entities in the motivating (banking) scenario. Next, we define RDF triples as a
representation of relationships.

Definition 3.3 (RDF Triple) The RDF terminology T is defined as the union of
three pairwise disjoint infinite sets of terms: the set U of URI references, the set L of
literals, and the set B of blanks. The set U ∪L of names is called the vocabulary. An
RDF triple (subject, predicate, object) is an element of (s, p, o) ∈ (U ∪B)×U×T ,
where s is a subject, p is a predicate, and o is an object.

An RDF graph is a finite set of RDF triples. An RDF triple can be viewed as a
relationship (an arc) from subject s to object o, where predicate p is used to label

the relationship. This is represented as s
(p)−→ o. Next, we define an ER graph as a

graph capable of representing process data as entities and relationships among those
entities. An ER graph may contain all possible relationships (from Definition 3.2)
among its nodes.

Definition 3.4 An entity-relationship (ER) graph G = (V ,E) is a directed graph
with no directed cycles, where V is a set of nodes and E ⊆ (V × V ) is a set of
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ordered pairs called edges. An ER graph G is modeled using the RDF data model
to make statements about resources (in expressions of the form subject–predicate–
object, known as RDF triples), where a resource in an ER graph is defined as
follows: (i) the sets VG and EG are resources and (ii) the set of ER graphs is closed
under intersection, union, and set difference: let G1 and G2 be two ER graphs, then
G1 ∪G2, G1 ∩G2, and G1 −G2 are ER graphs.

4 Summarizing Big Process Data

In this section, we provide a summary of our previous work [6, 10] on summarizing
the process data. We introduce a framework and a set of methods to support scalable
graph-based OLAP (online analytical processing) analytics over process execution
data.

We present two types of queries to summarize the process data (modeled as ER
graphs), namely “Correlation Condition” and “Regular Expression”:

• Correlation Condition is a binary predicate defined on the attributes of events that
allows to identify whether two or more events are potentially related to the same
execution instance of a process [5]. In particular, a correlation condition takes ER
graph and a predicate (as input), applies an algorithm (e.g., the one introduced in
our previous work [21]) to find the set of correlated events for that condition, and
returns a set of ER subgraphs {G′1,G′2, . . . ,G′k} representing correlated events.
Formally, G′ = (V ′, E′) is an ER subgraph of an ER graph G=(V, E) iff V ′ ⊆ V

and E′ ⊆ E and ((v1, v2) ∈ E′ → {v1, v2} ⊆ V ′).
• Regular Expression is a function which represents a relation between ER graph

G and a set of paths {P1, P2, . . . , Pm}, where a path P is a transitive relationship
between entities capturing sequences of edges from the start entity to the end
entity. A path can be represented as a sequence of RDF triples, where the object of
each triple in the sequence coincides with the subject of its immediate successor.
We developed a regular expression processor which supports optional elements,
loops, alternation, and grouping [9].

An example path is illustrated in Fig. 2c. This path depicts that the loan document
was transferred by Tim, used and transferred by Eli to Ben, who updated the
document and archived it. Paths (defined by regular expressions) are written by
domain experts, and BP-SPARQL takes care of the processing and optimization
that is needed for efficient crawling, analyzing, and querying of the ER graph. In
particular, a regular expression RE is an operator that specifies a search pattern and
can result in a set of paths. Related paths can be stored in a path node [5], i.e., a
container for a collection of related paths found in the entity-relationship graph.

Definition 4.1 (Path Node [5]) A path node is a place holder for a set of related
paths: these paths are the result of a given query that requires grouping graph
patterns in a certain way. We define a path node as a triple of (Vstart , Vend , RE)

in which Vstart is the starting node, Vend is the ending node, and RE is a regular
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expression. We use existing reachability approaches to verify whether an entity is
reachable from another entity in the graph. Path nodes can be timed. A timed-path
node [8] is defined as a timed container for a set of related entities which are con-
nected through transitive relationships, e.g., it is able to trace the evolution of pat-
terns among entities over time as new entities and relationships are added over time.

Besides applying queries to the relationships in ER graphs (where the result will
be a set of related paths and stored in path nodes), queries can be applied to the
content of the entities in the ER graph (without considering their relationships), i.e.,
the query may define criteria beyond existing relationships among entities to allow
for discovering other relationships. In this case, the result will be a set of correlated
entities and possible relationships among them stored in folder nodes.

Definition 4.2 (Folder Node) A folder node [5] contains a set of correlated entities
that are the result of applying a function (e.g., Correlation Condition) on entity
attributes. The folder concept is akin to that of a database view, defined on a graph.
However, a folder is part of the graph and creates a higher level node that other
queries could be executed on. Basic folders can be used to aggregate the same entity
types, e.g., related e-mails, Facebook feeds, or activities. Figure 2a illustrates a set
of basic folders. High-level folders, illustrated in Fig. 2b, can be used to create and
query a set of related folders with relationships at higher levels of abstraction. A
folder may have a set of attributes that describes it. Folder nodes can be timed.
Timed folders [8] document the evolution of folder node by adapting a monitoring
code snippet. New members can be added to or removed from a timed folder over
time.

Now, to support scalable graph-based OLAP analytics over process data, we
define a mapping from process data into a graph model.

Definition 4.3 (Process Instance) A Process Instance can be defined as a path P

in which the nodes in P are of type “event” and are in chronological order, and all
the relationships in the path are of type activity-based relationships.

A collection of (disconnected) ER graphs, each representing a process instance,
can be considered as a process instance graph and defined as follows:

Definition 4.4 (Process Instances Graph) A Process Instances Graph is a set of
related process instances. A Process Instances Graph is the result of a Correlation
Condition query (stored in a folder node) or a Regular Expression query (stored in
a path node).

In process analysis context, another common function applied on ER graphs
is process discovery. In particular, process mining techniques and tools offer a
wide range of algorithms for discovering knowledge from process execution data.
In BP-SPARQL, we have identified many useful machine learning algorithms [2]
and provide an external algorithm controller to enable summarizing large graphs,
by extracting complex data structures such as time series, hierarchies, patterns,
and subgraphs. Figure 3 illustrates a taxonomy of machine learning algorithms
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for summarizing large ER graphs. We provide an extensible interface to support
external graph reachability algorithms (such as [5, 29]: Transitive Closure, GRIPP,
Tree Cover, Chain Cover, Path-Tree Cover, and Shortest Path) to discover a set of
related paths and store them in path nodes.

Definition 4.5 (Process Model) A process model PM = (PG, Fpd) is a summa-
rized representation of a process instances graph PG obtained by applying a process
discovery algorithm Fpd .

To discover process models, a query can be applied on a previously constructed
process instances graph (stored in a folder node). For example, a process instances
graph, as a result of a correlation condition, may partition a subset of the events in
the graph into instances of a process.

5 Querying Big Process Data

In this section, we present a summary of our previous work [5, 8, 10, 13] on
querying process data. We present the BP-SPARQL (Business Process SPARQL),
an extension of SPARQL3 for analyzing business process execution data. BP-
SPARQL enables the modeling, storage, and querying of process data using Hadoop
MapReduce framework. In BP-SPARQL, we use folder and path nodes as first-class
entities that can be defined at several levels of abstraction and queried. BP-SPARQL
provides a data mapping layer for the automatic translation of SPARQL queries into
MapReduce operations. To additionally account for the subjectiveness of process
data analysis, as well as to enable process analysts to analyze business data in an
easy way, we support various querying needs over process data. Next, we present
various types of queries supported by BP-SPARQL including entity-level (artifacts,
events, and activities), summarization (OLAP Style, Group Style, and Partition
Style), relationship (Regular Expression, Path Condition, and Path Node), metadata
(Time and Provenance), and user-defined queries.

5.1 Entity-Level Queries

We support the use of SPARQL to query entities and their attributes. We introduce
the entity statement which enables process analysts to extract information about
process-related entities such as business artifacts, people, and activities in an easy
way. This statement has the following syntax:

entity [entity-type] \[attribute-name] =/!=/>/>=/</<= [value]

3 Among languages for querying graphs, SPARQL [24] is an official W3C standard based on a
powerful graph matching mechanism.
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In this statement, “entity” is a reserved word, “entity-type” is the type of process-
related entities, such as artifact and people, and the “value” represents the value of
the entity. The value should be quoted. The “\” character represents the filter to
be applied to entity attributes. The entity statement supports the conditional AND
and OR operators. Parenthesis can be used in complex filters. The result of this
query is an entity or a set of entities satisfying the condition. The entity statement
automatically translates to a SPARQL query. The details about this translation
process can be found in [5].

Example 5.1 Considering the motivating scenario, Tim (a process analyst) is
interested in finding home-loan documents submitted to “Sydney” branches.

entity artifact \category=‘home-loan’ AND \submission-branch=‘Sydney’

In this example, “artifact” is the type of the entity to be filtered, “\category=
‘home-loan”’ filters the category of the output entities to home-loan documents, and
“\submission-branch=‘Sydney”’ filters the output to entities whose “submission
branch” attribute is set to “Sydney”. More complex filters can be applied in this
query. For example, if Tim is interested to find artifacts submitted in December
2017, he needs to add “(\submission-date ≥ ‘01-12-2017’ AND \submission-date
≤ ‘31-12-2017’)” condition to the above query.

5.2 Summarization Queries

BP-SPARQL supports three types of summarization queries: OLAP Style, Group
Style, and Partition Style queries.

OLAP Style Queries BP-SPARQL supports scalable graph-based OLAP analytics
over process execution data [6, 10]. The goal is to facilitate the analytics over the
ER graph through summarizing the process graph and providing multiple views at
different granularities. To achieve this goal, we present a process OLAP (P-OLAP)
model and define OLAP specific abstractions in process context such as process
cubes, dimensions, and cells. For example, analytics queries can be used to partition
the ER graph in the example scenario into sets of related actors collaborating on
(specific) loan applications. To achieve this, a set of dimensions [10] coming from
the attributes of customer, loan documents, actors, and the relationship among them
should be analyzed.

Group Style Queries To summarize the process data, BP-SPARQL extensively
supports multiple information needs with one data structure (ER graph) and one
function (machine learning algorithms presented in Fig. 3). This capability enables
analysts summarizing the large process graph, by extracting complex data structures
such as time series, hierarchies, patterns, and subgraphs.



BP-SPARQL: A Query Language for Summarizing and Analyzing Big Process Data 35

Partition Style Queries A correlation condition query can be used to partition (a
subset of) the entities in the graph into related instances. Such partition style queries
enable the analyst to divide the process data into partitions that can be stored in
folder nodes and accessed separately. For example, it can be used to partition the
events in the process graph into a set of process instances. This statement has the
following syntax:

correlation [Correlation-Condition]

In this statement, “correlation” is a reserved word and “Correlation-Condition” is
the condition to be defined. The result of this query is a collection of related entities
satisfying the condition. The correlation statement is automatically translated to a
BP-SPARQL query. The details about this translation process can be found in [5].

Example 5.2 Tim is interested in partitioning the graph in the example scenario into
a set of related entities having the same type (e.g., customer, actors, and document).
The correlation condition ψ(nodex, nodey) : nodex.type = nodey.type can be
defined over the attribute type of two node entities nodex and nodey . This predicate
is true when nodex and nodey have the same type and false otherwise. Related
node entities will be stored in folders, where each folder conforms to an entity-type
described by a set of attributes.

A correlation condition can be assigned to a folder node to store the result of the
query. Also, timed folders [8] can be used to document the evolution of the folder
over time. A monitoring code snippet can be assigned to a folder, e.g., to execute
the correlation condition query over time or execute the query in case of triggers. In
this case, new entities can be added to timed folders over time.

5.3 Regular Expression Queries

Regular Expression queries can be used to discover transitive relationships between
two entities in the ER graph. In order to discover transitive relationships among
entities, BP-SPARQL supports regular language reachability algorithms [5, 29] over
ER graphs. The result of such a query is stored in a path node. In particular, BP-
SPARQL is designed to be customizable by process analysts who can codify their
knowledge into regular expressions that describe paths through the nodes and edges
in the ER graph.

A path through the graph recognized by a regular expression would be useful if,
by computing the path and its end point nodes, it answers a question posed by a
process analyst. In this context, regular expressions are written by domain experts
and will be executed over the ER graph. BP-SPARQL takes care of the processing
and optimization that is needed for efficient crawling, analyzing, and querying of
the graph. We introduce the relationship statement which enables process analysts
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to discover useful patterns among process-related entities. This statement has the
following syntax:

relationship [Regular-Expression]

In this statement, “relationship” is a reserved word and “Regular-Expression” is
a parameter. This statement will be automatically translated into a path query in
BP-SPARQL. The details about this translation process can be found in [5]. The
following examples illustrate how a domain expert can use regular expressions to
discover transitive relationships between business artifacts, people, and activities:

Example 5.3 Find bank staff who is working on Adam’s home-loan document.
Regular Expression:

Adam (edge node)* assigned-to Staff

Example discovered path:

Adam
(submitted)−−−−−−−−→ document

(part−of )−−−−−−−→ work-item
(assigned−to)−−−−−−−−−−→ Staff

Example 5.4 Find manager who approved Adam’s loan report.
Regular Expression:

Adam (edge node)+ approved-by Manager

Example discovered path:

Adam
(submitted)−−−−−−−−→ document

(part−of )−−−−−−−→ work-item
(assigned−to)−−−−−−−−−−→ staff

(created)−−−−−−→ report
(approved−by)−−−−−−−−−−→ Manager

Example 5.5 Find artifacts related to Adam.
Regular Expression :

Adam (edge node)* edge Artifact

Example discovered paths:

Adam
(submitted)−−−−−−−−→ Home-Loan-Document

Adam
(submitted)−−−−−−−−→ document

(part−of )−−−−−−−→ work-item
(assigned−to)−−−−−−−−−−→ Tim

(created)−−−−−−→ Home-Loan-Report

In these examples, regular expressions are used to discover sets of paths in the
process graph.

5.3.1 Path Condition Queries

Path condition queries are similar to relationship queries; they are able to store the
query results in folder nodes. In particular, a path condition [10] can be used to
group related entities in an ER graph based on a set of dimensions coming from
the attributes of network structures: we need to apply conditions not only on graph
entities but also on the relationships between them. A path condition φ is defined as
a binary predicate on the attributes of a path that allows to identify whether two or
more entities (in a given ER graph) are potentially related through that path.

For example, Tim is interested in finding a set of related actors (e.g., home-loan
employees) working on Adam’s home-loan application. Therefore, Tim is interested
in creating a folder node for a set of related actors and then adding related actors
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to this folder if there exists a specific path between the customer and an actor. The
path condition φ(nodestart , nodeend, RE) can be defined on the existence of the
path codified by the regular expression RE:[Adam (edge node)* assigned-to STAFF]
between starting node, nodestart , and ending node, nodeend . This predicate is true
if the path exists and false otherwise. A path condition can be assigned to a folder
node to store the result of the query (a set of entities). The details about this type of
queries can be found in [10].

5.3.2 Path Node Queries

There are situations where process analysts are interested in storing the discovered
paths as a result of a relationship query. This will enable to store a set of related
patterns in a path node and use them as an input for further analytics tasks. Notice
that results of relationship queries may be different over time, as new nodes and
relationships can be added over time. The details about this type of queries can be
found in [10].

5.4 Metadata Queries

In a process execution path, a huge amount of process-related metadata, such as
versioning (what are the various versions of an artifact and how are they related),
provenance (what manipulations were performed on the artifact to get it to this
version), security (who has access to the artifact over time), and privacy (what
actions were performed to protect or release artifact information) can be recorded.
These metadata can be used to imbue the process data with additional semantics.

In [8], we formalized metadata to be collected, while an activity is taking place,
including:

• When, to indicate the timestamp in which the activity has occurred
• Who, to indicate an actor that enables, facilitates, controls, or affects the activity

execution
• Where, to indicated the organization/department the activity happened
• Which, to indicate the system which hosts the activity
• Why, to indicate the purpose of the activity, e.g., fulfillment of a specific phase or

experiment

We highlighted that discovering paths through ER graphs forms the basis of
many metadata queries. Next, we present simple queries to discover evolution
(how the business artifact evolved over time?), derivation (what are the ancestors
of the business artifact?), and time series (what are the snapshots of the business
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artifact over time?) of business-related artifacts. The query template statement has
the following syntax:

metadata evolutionOf/derivationOf/timeseriesOf [artifact-name]
filter [who, where, which, when, ...]

This statement can be used for discovering evolution of artifacts (using evolu-
tionOf construct), derivation of artifacts (using derivationOf construct), and time
series of artifacts/actors (using timeseriesOf construct). The “filter” statement
restricts the result to those activities for which the filter expression evaluates to true.
Variables, such as artifact, type (e.g., lifecycle or archiving), action (e.g., creation,
use, or storage), actor, and location (e.g., organization), are defined as filters.

Example 5.6 For querying the evolution of an entity En, all activity paths on top
of En ancestors should be discovered. For example, considering the motivating
scenario, Tim is interested to see how version v2 of Adam’s loan document evolved
from version v1.

The following is a sample query template for this example:

evolutionOf Adam_loan_document_v2

Figure 4a illustrates the result of this query. Figure 4b illustrates how a set of
paths between the two versions can be stored in a sample path node. In particular,
three paths are recognized, assigned unique identifiers (e.g., path#1), and stored
under a path node name. Further user-defined queries can be applied to the path
nodes for subsequent analysis. Additional filters can also be added to the above
query. For example, if Tim is interested to see the activities that involved creating a
new artifact, he can use the following query template:

evolutionOf Adam_loan_document_v2 \what=‘lifecycle’ \how=‘create’

As a result, Tim will only see paths path#1 and path#2, in Fig. 4b. More examples
can be found in [8].

5.5 User-Defined Queries

Besides the abovementioned query templates, a process analyst may apply user-
defined queries. In this case, the analyst should be familiar with SPARQL syntax. In
particular, a basic SPARQL query has the following form:

select ?variable1 ?variable2 ...
where {pattern1. pattern2. #Other-Patterns}



BP-SPARQL: A Query Language for Summarizing and Analyzing Big Process Data 39

F
ig

.4
E

xa
m

pl
e

bu
si

ne
ss

pr
oc

es
s

ex
ec

ut
io

ns



40 A. Beheshti et al.

Each pattern consists of subject, predicate, and object, and each of these can be
either a variable or a literal. The query specifies the known literals and leaves the
unknown as variables. To answer a query, one needs to find all possible variable
bindings that satisfy the given patterns. It is possible to use the “@” symbol for
representing attribute edges and distinguishing them from the relationship edges
between graph nodes. As an example, considering the motivating scenario, Tim
may be interested in monitoring the conversations (e.g., messages) between the loan
approval team. For example, Tim may be interested in retrieving a list of messages
that have the same value on “requestsize” and “responsesize” attributes and the
values for their timestamps fall between t1 and t2. The following is the SPARQL
query for this example:

1: select ?m
2: where{
3: ?m @type message.
4: ?m @requestsize ?x.
5: ?m @responsesize ?y.
6: ?m @timestamp ?t.
7: FILTER (?x=?y && ?t > t1 && ?t < t2). }

In this query, variable ?m represents a message in the graph. Variables ?x, ?y, and
?t represent the value of the attribute “requestsize” (line 4), “responsesize” (line 5),
and “timestamp” (line 6), respectively. The FILTER statement restricts the result to
those messages for which the filter expression evaluates to true.

6 Scalable Analysis Using MapReduce

The popular MapReduce [16] scalable data processing framework and its open-
source realization Hadoop [28] offer a scalable dataflow programming model that
appeals to many users. In MapReduce frameworks, computations are specified
via two user-defined functions: a mapper that takes key–value pairs as input and
produces key–value pairs as output and a reducer that consumes those key–value
pairs (generated in the mapper phase) and aggregates data based on individual keys.
In practice, the extreme simplicity of the MapReduce programming model leads
to several problems. For example, it does not directly support complex N-step data
flows which often arise in practice. To address this problem, Apache Pig [22] system
offers compassable high-level data manipulation constructs in the spirit of SQL,
while at the same time retaining the properties of MapReduce systems makes them
attractive for certain users, data types, and workloads.
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Pig’s language layer consists of a textual language called PigLatin which
supports ease of programming, optimization opportunities, and extensibility. It is
possible to write a single script in PigLatin that is automatically parallelized and
distributed across a Hadoop cluster. A script in Pig often follows the input −
process− output (IPO) model: (i) Input: data is read from the Hadoop Distributed
File System (HDFS), (ii) Process: a number of operations (e.g., LOAD, SPLIT,
JOIN, FILTER, GROUP, and STORE) are performed on the data, and (iii) Output:
the resulting relation is written back to the file system.

Retrieving related graphs containing a graph query from a large RDBMS graph
database is a key performance issue, where a primary challenge in computing
the answers of such graph queries is that pairwise comparisons of graphs are
usually hard problems. We use Hadoop [28] data processing platform to store and
retrieve graphs in Hadoop file system and to support cost-effective and scalable
processing of graphs. We use Apache Pig, a high-level procedural language on top
of MapReduce, for querying large graphs stored in Hadoop file system. We use
the algebra proposed in [25] for mapping SPARQL queries to PigLatin programs
and consequently generating MapReduce operations. To capture the storage model
in Pig, an input graph needs to be “split” into property-based partitions using
PigLatin’s SPLIT command. Then, the star-structured joins are achieved using the
m-way JOIN operator, and chain joins are executed using the binary JOIN operator.

PigLatin queries are compiled into a sequence of MapReduce operations that run
over Hadoop. The Hadoop scheduling supports partition parallelism such that in
every stage, one operator is running on a different partition of data. In particular,
the logical plan for Pig queries can be described as follows: (i) load the input
dataset using the LOAD operator, (ii) create vertical partitioned relations using the
SPLIT operator, (iii) join partitioned relations based on join conditions: In SPARQL,
join conditions are implied by repeated occurrences of variables in different triple
patterns. Consequently, for each star join, the join will be computed in a single
MapReduce cycle, and (iv) store the result on disk using the STORE operator.

For example, consider the following query in the context of the motivating
scenario: “give the name of Australian banks which offer loan products (e.g., home
loan, business loan, variable/fix rates, etc.) within 15 days, along with the review
details for these products.” Figure 5 illustrates the corresponding BP-SPARQL
query and MapReduce execution flow. As illustrated, the query can be factorized
into three main sections: (three star-join structures (S1, S2, S3) describing resources
of type Vendor, Offer, and Review, respectively, two chain-join pattern (J1, J2)
combining the star patterns, and the filter processing. In particular, such queries
can be considered equivalent to the select–project–join construct in SQL, where
each MapReduce cycle may involve communication and I/O costs due to the data
transfer between the mapper and the reducer.
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7 Implementation

We have implemented a research prototype of BP-SPARQL platform for organizing,
indexing, and querying process data. The prototype supports two types of storage
backend: Relational Database System and Hadoop File System. We use Apache
Pig (pig.apache.org), a high-level procedural programming language on top of
Hadoop for querying large graphs. The main components of the query engine
include (i) Data Mapping Layer: this layer is responsible for creating data element
mappings between semantic Web technology and physical storage layer, i.e., rela-
tional database schema and Hadoop File System, (ii) Time-Aware Controller: RDF
databases are not static and changes may apply to graph entities (i.e., nodes, edges,
and folder/path nodes) over time. Time-aware controller is responsible for data
changes, data manipulation, and incremental graph loading, (iii) Query Mapping
Layer: this layer is responsible for BP-SPARQL queries translation and processing,
(iv) Regular Expression Processor: we developed a regular expression processor
which supports optional elements, loops, alternation, and groupings, (v) External
Algorithm/Tool Controller: this component is responsible for supporting external
graph reachability/mining algorithms, and (vi) GOLAP Controller: This component
is responsible for partitioning graphs and evaluation of OLAP operations indepen-
dently for each partition, providing a natural parallelization of execution.

The details on the implementation and evaluation can be found in our previous
work [5, 8, 10, 13]. Figure 6a illustrates BP-SPARQL graph processing architecture.

8 Process Querying Framework

Polyvyanyy et al. [23] proposed the framework for developing process querying
methods. Complimentary to the active components proposed in this framework, BP-
SPARQL focused on facilitating the querying and analysis of data-driven processes
and knowledge-intensive processes. Such processes include a set of coordinated
tasks and activities, controlled by knowledge workers to achieve a business objective
or goal. Examples include police investigation processes and government processes,
such as in immigration, health, and education departments. Facilitating the querying
and analysis of such processes is important, as the continuous improvement in
connectivity, storage, and data processing capabilities allows access to a data deluge
from sensors, social media, news, user-generated, government, and private data
sources. Accordingly, business processes become inseparable from data. Examples
of process data include data from the execution of business processes, documenta-
tion and description of processes, process models, process variants, artifacts related
to business processes, and data generated or exchanged during process execution.
In the following, we discuss some of the related works in organizing, querying, and
analyzing process data.
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From Data Lakes to Knowledge Lakes With data science continuing to emerge
as a powerful differentiator across industries, almost every organization is now
focused on understanding their business and transforming data into actionable
insights. The notion of a Data Lake [12] has been coined to address this challenge
and to convey the concept of a centralized repository containing limitless amounts of
raw (or minimally curated) data stored in various data islands. The rationale behind
a Data Lake is to store raw data and let the data analyst decide how to cook/curate
them later. While Data Lakes do a great job in organizing Big data and providing
answers on known questions, the main challenges are to understand the potentially
interconnected data stored in various data islands and to prepare them for analytics.

The notion of Knowledge Lake [14], i.e., a contextualized Data Lake, is
introduced to automatically transform the raw (process) data into contextualized
data and knowledge. The term Knowledge here refers to a set of facts, information,
and insights extracted from the raw data using data curation techniques, such as
extraction, linking, summarization, annotation, enrichment, classification, and more.
In particular, a Knowledge Lake is a centralized repository containing a virtually
inexhaustible amount of data and contextualized data that is readily made available
anytime to anyone authorized to perform analytical activities. Knowledge Lakes
provide the foundation for Big data analytics by automatically curating the raw data
in Data Lakes and preparing them for deriving insights.

Process Graph Modeling Graphs are essential modeling and analytical objects for
representing information networks. Several graph querying techniques [1] such as
pattern match query, reachability query, shortest path query, and subgraph search
have been proposed for querying and analyzing graphs. These methods rely on
constructing some indices to prune the search space of each vertex to reduce the
whole search space. In [1], the authors discuss a number of data models and
query languages for graph data. Many of these models use RDF [24] (Resource
Description Framework), an official W3C recommendation for semantic Web data
models, to model graphs and use SPARQL, an official W3C recommendation
for querying RDF graphs [24]. SPARQL queries are pattern matching queries
on triples that constitute an RDF data graph, where RDF is a data model for
schema-free structured information. Several research efforts have been proposed
to address efficient and scalable management of RDF data. SPARQL [24] is a
declarative query language, a W3C standard, for querying and extracting infor-
mation from directed labeled RDF graphs. SPARQL supports queries consisting
of triple patterns, conjunctions, disjunctions, and other optional patterns. However,
there is no support for querying grouped entities. Paths are not first-class objects
in SPARQL [24]. PSPARQL [3] extends SPARQL with regular expression patterns
allowing path queries. SPARQLeR [18] is an extension of SPARQL designed for
finding semantic associations (and path patterns) in RDF graphs. In BP-SPARQL,
we support folder and path nodes as first-class entities that can be defined at several
levels of abstractions and queried.

Knowledge-Intensive Processes Case-managed processes are primarily referred
to as semistructured processes, since they often require the ongoing intervention of
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skilled and knowledgeable workers. Such knowledge-intensive processes involve
operations that rely on professional knowledge. For these reasons, it is consid-
ered that human knowledge workers are responsible to drive the process, which
cannot otherwise be automated as in workflow systems [13]. Knowledge-intensive
processes often involve the collection and presentation of a diverse set of artifacts
and human activities around artifacts. This emphasizes the artifact-centric nature of
such processes. Many approaches [15, 17, 26] use business artifacts that combine
data and processes in a holistic manner and as the basic building block. The work
by Gerede et al. [17] used a variant of finite-state machines to specify lifecycles.
The theoretical work by Bhattacharya et al. [15] explored declarative approaches to
specifying the artifact lifecycles following an event-oriented style. Another line of
work in this category focused on querying artifact-centric processes [19].

Process Data Analytics In our recent book [11], we provided an overview of
the state-of-the-art in the area of business process management in general and
process data analytics in particular. This book provides defrayals on (i) technologies,
applications, and practices used to provide process analytics from querying to
analyzing process data, (ii) a wide spectrum of business process paradigms that
have been presented in the literature from structured to unstructured processes,
(iii) the state-of-the-art technologies and the concepts, abstractions, and methods
in structured and unstructured BPM including activity-based, rule-based, artifact-
based, and case-based processes, and (iv) the emerging trend in the business process
management area such as process spaces, Big data for processes, crowdsourcing,
social BPM, and process management in the cloud. BPM in the cloud solutions
offer visibility and management of business processes, low start-up costs, and fast
return on investment. Crowdsourcing can help organizations to increase productivity
by discovering and exploiting informal knowledge and relationships to improve
activity execution. Crowdsourcing can also enable socialBPM to assign an activity
to a broader set of performers or to find appropriate contributors for its execution.
Social BPMs inevitably require advanced crowd management capabilities in future
social computing platforms.

9 Conclusion

The continuous demand for the business process improvement and excellence
has prompted the need for business process analysis. Recently, business world is
getting increasingly dynamic as various technologies such as Internet and e-mail
have made dynamic processes more prevalent. In this chapter, we focused on the
problem of explorative querying and understanding of business processes data.
Our study shows that only part of interactions related to the process executions
are covered by process-aware systems as business processes are realized over a
mix of workflows, IT systems, Web services, and direct collaborations of people.
In order to fulfill the requirements, we proposed a framework for organizing,
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indexing, and querying ad hoc process data. In this framework, we proposed
novel abstractions for summarizing process data and a language, BP-SPARQL,
for the explorative querying and understanding of BP execution from various user
perspectives. In future work, we will employ interactive graph exploration and
visualization techniques (e.g., storytelling systems) to facilitate the use of BP-
SPARQL through visual query interface.
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Data-Aware Process Oriented Query
Language

Eduardo Gonzalez Lopez de Murillas, Hajo A. Reijers,
and Wil M. P. van der Aalst

Abstract The size of execution data available for process mining analysis grows
several orders of magnitude every couple of years. Extracting and selecting the
relevant data to enable process mining remains a challenging and time-consuming
task. In fact, it is the biggest handicap when applying process mining and other
forms of process-centric analysis. This work presents a new query language,
DAPOQ-Lang, which overcomes some of the limitations identified in the field of
process querying and fits within the Process Querying Framework. The language
is based on the OpenSLEX meta model, which combines both data and process
perspectives. It provides simple constructs to intuitively formulate questions. The
syntax and semantics have been formalized and an implementation of the language
is provided, along with examples of queries to be applied to different aspects of the
process analysis.

1 Introduction

One of the main goals of process mining techniques is to obtain insights into the
behavior of systems, companies, business processes, or any kind of workflow under
study. Obviously, it is important to perform the analysis on the right data. Data
extraction and preparation are among the first steps to take and, in many cases, up
to 80% of the time and effort, and 50% of the cost is spent during these phases [12].
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Being able to extract and query some specific subset of the data becomes crucial
when dealing with complex and heterogeneous datasets. In addition, the use of
querying tools allows one to find specific cases or exceptional behavior. Whatever
the goal, analysts often find themselves in the situation in which they need to develop
ad hoc software to deal with specific datasets, given that existing tools might be
difficult to use, too general, or just not suitable for process analysis.

Different approaches exist to support the querying of process data. Some of them
belong to the field of business process management (BPM). In this field, events are
the main source of information. They represent transactions or activities that were
executed at a certain moment in time in the environment under study. Querying
this kind of data allows us to obtain valuable information about the behavior and
execution of processes. There are other approaches originating from the field of data
provenance, which are mainly concerned with recording and observing the origins
of data. This field is closely related to scientific workflows in which the traceability
of the origin of experimental results becomes crucial to guarantee correctness and
reproducibility. In the literature, we find many languages to query process data.
However, none of these approaches succeeds at combining process and data aspects
in an integrated way. An additional challenge to overcome is the development of a
query mechanism that allows to exploit this combination, while being intuitive and
easy to use.

In order to make the querying of process event data easier and more efficient, we
propose the Data-Aware Process Oriented Query Language (DAPOQ-Lang). This
query language, first introduced in [3], exploits both process and data perspectives.
The aim of DAPOQ-Lang is not to theoretically enable new types of computations,
but to ease the task of writing queries in the specific domain of process mining.
Therefore, our focus is on the ease of use. We propose the following example to
show the ease of use of DAPOQ-Lang. Let us consider a generic question that could
be asked by an analyst when carrying out a process mining project:

GQ: In which cases, there was (a) an event that happened between time T1 and T2, (b) that
performed a modification in a version of class C, (c) in which the value of field F changed
from X to Y?

This query involves several types of elements: cases, events, object versions, and
attributes. We instantiate this query with some specific values for T1 = “1986/09/17
00:00”, T2 = “2016/11/30 19:44”, C = “CUSTOMER”, F = “ADDRESS”, X =
“Fifth Avenue”, and Y = “Sunset Boulevard”. Query 1 presents the corresponding
DAPOQ-Lang query. This example shows how compact a DAPOQ-Lang query can
be. The specifics of this query will be explained in the coming sections.

The rest of this chapter is organized as follows. Section 2 introduces some
background information, which is needed to understand the specifics of our
query language. Section 3 presents the query language, focusing on the syntax
and semantics. Section 4 provides information about the implementation and its
evaluation. Section 5 presents possible use cases. Section 6 positions DAPOQ-Lang
in the Process Querying Framework [10]. Section 7 concludes the chapter.
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Query 1 DAPOQ-Lang query to retrieve cases with an event happening between two dates that
changed the address of a customer from “Fifth Avenue” to “Sunset Boulevard”.

1 def P1 = c r e a t e P e r i o d ("1986/09/17 00:00" ,"2016/11/30 19:44" ,"yyyy/MM/dd HH:mm
↪→ " )

2
3 c as e s Of (
4 events Of (
5 vers ions Of (
6 a l l C l a s s e s ( ) . where {name == "CUSTOMER"}
7 ) . where {
8 changed ( [ at : "ADDRESS" , from :"Fifth Avenue" , to :"Sunset Boulevard" ] ) }
9 ) . where

10 {
11 def P2 = c r e a t e P e r i o d ( i t . t imes tamp )
12 during ( P2 , P1 )
13 }
14 )

2 Preliminaries

To enable our approach to data querying, we need to have access to data storage,
and the information should comply with a certain structure. An appropriate structure
has been previously defined as a meta model [4] and implemented in a queryable
file format called OpenSLEX. The meta model captures all the necessary aspects
to enable data querying with our language. This section describes the structure of
OpenSLEX and provides the necessary background to understand the details of
DAPOQ-Lang.

Standards of reference, like XES [5], are focused on the process view (events,
traces, and logs) of systems. OpenSLEX supports all concepts present in XES but,
in addition, considers the data elements (data model, objects, and versions) as an
integral part of its structure. This makes it more suitable for database environments
where only a small part of the information is process-oriented (i.e., events) with
respect to the rest of data objects of different classes that may be seen as an
augmented view on the process information. The OpenSLEX format is supported
by a meta model (Fig. 1) that considers data models and processes as the entities at
the highest abstraction level. These entities define the structure of more granular
elements like logs, cases, and activity instances with respect to processes and
objects with respect to classes in the data model. Each of these elements at the
intermediate level of abstraction can be broken apart into more granular pieces.
This way, cases are formed by events, and objects can be related to several object
versions. Both events and object versions represent different states of a higher level
abstraction (cases or objects) at different points in time. A detailed ER diagram
of the OpenSLEX format can be found online.1 The format makes use of an SQL

1 https://github.com/edugonza/OpenSLEX/blob/master/doc/meta-model.png.

https://github.com/edugonza/OpenSLEX/blob/master/doc/meta-model.png


52 E. G. L. de Murillas et al.

Fig. 1 ER diagram of the OpenSLEX meta model. The entities have been grouped into sectors,
delimited by the dashed lines
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schema to store all the information, and a Java API2 is available for its integration
in other tools. The use of OpenSLEX in several environments, e.g., database redo
logs and ERP databases, is evaluated in [4], focusing on the data extraction and
transformation phase. To provide the necessary background for the understanding
of this work, a simplified version of the meta model is formally presented below.
Every database system contains information structured with respect to a data model.
Definition 1 provides a formalization of a data model in the current context.

Definition 1 (Data Model) A data model is a tuple DM = (CL, AT,

classOfAttribute, RS, sourceClass, targetClass), such that

– CL is a set of class names.
– AT is a set of attribute names.
– classOfAttribute ∈ AT → CL is a function that maps each attribute to a class.
– RS is a set of relationship names.
– sourceClass ∈ RS → CL is a function mapping each relationship to its source

class.
– targetClass ∈ RS → CL is a function mapping each relationship to its target

class.

Data models contain classes (i.e., tables), which contain attribute names (i.e.,
columns). Classes are related by means of relationships (i.e., foreign keys). Defi-
nition 2 formalizes each of the entities of the OpenSLEX meta model, as can be
observed in Fig. 1, and shows connections between them.

Definition 2 (Connected Meta Model) Let V be some universe of values and
TS a universe of timestamps. A connected meta model is defined as a tuple
CMM = (DM, OC, classOfObject, OVC, objectOfVersion, EC, eventToOVLabel,
IC, eventAI, PMC, activityOfAI, processOfLog) such that

– DM = (CL, AT, classOfAttribute, RS, sourceClass, targetClass) is a data model.
– OC is a collection of objects.
– classOfObject ∈ OC → CL is a function that maps each object to its

corresponding class.
– OVC = (OV, attValue, startTimestamp, endTimestamp, REL) is a version collec-

tion, where OV is a set of object versions, attValue ∈ (AT × OV) �→ V is a map-
ping of pairs of object version and attribute to a value, startTimestamp ∈ OV →
TS is a mapping between object versions and start timestamps, endTimestamp ∈
OV → TS is a mapping between object versions and end timestamps, and
REL ⊆ (RS×OV×OV) is a set of triples relating pairs of object versions through
a specific relationship.

– objectOfVersion ∈ OV → OC is a function that maps each object version to an
object.

– EC = (EV, EVAT, eventTimestamp, eventLifecycle, eventResource,
eventAttributeValue) is an event collection, where EV is a set of events, EVAT

2 https://github.com/edugonza/OpenSLEX.

https://github.com/edugonza/OpenSLEX
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is a set of event attribute names, eventTimestamp ∈ EV → TS maps events to
timestamps, eventLifecycle ∈ EV → {start, complete, ...} maps events to life
cycle attributes, eventResource ∈ EV → V maps events to resource attributes,
and eventAttributeValue ∈ (EV × EVAT) �→ V maps pairs of event and attribute
name to values.

– eventToOVLabel ∈ (EV × OV) �→ V is a function that maps pairs of an event
and an object version to a label. The existence of a label associated with an event
and an object version, i.e., (ev, ov) ∈ dom(eventToOVLabel), means that both
event and object version are linked. The label defines the nature of the link, e.g.,
“insert”, “update”, “delete”, etc.

– IC = (AI, CS, LG, aisOfCase, casesOfLog, CSAT, caseAttributeValue, LGAT,

logAttributeValue) is an instance collection, where AI is a set of activity instances,
CS is a set of cases, LG is a set of logs, aisOfCase ∈ CS→P(AI) is a mapping
between cases and sets of activity instances,3 casesOfLog ∈ LG → P(CS) is a
mapping between logs and sets of cases, CSAT is a set of case attribute names,
caseAttributeValue ∈ (CS × CSAT) �→ V maps pairs of case and attribute name
to values, LGAT is a set of log attribute names, and logAttributeValue ∈ (LG ×
LGAT) �→ V maps pairs of log and attribute name to values.

– eventAI ∈ EV → AI is a function that maps each event to an activity instance.
– PMC = (PM, AC, actOfProc) is a process model collection, where PM is a set of

processes, AC is a set of activities, and actOfProc ∈ PM→P(AC) is a mapping
between processes and sets of activities.

– activityOfAI ∈ AI → AC is a function that maps each activity instance to an
activity.

– processOfLog ∈ LG→ PM is a function that maps each log to a process.

A connected meta model (CMM) provides the functions that make it possible to
connect all the entities in the meta model. This is important in order to correlate
elements, e.g., events that modified the same object. However, some constraints
must be fulfilled for a meta model to be considered a valid connected meta model
(e.g., versions of the same object do not overlap in time). The details about such
constraints are out of the scope of this work, but their description can be found in [4].
DAPOQ-Lang queries are executed on data structures that fulfill the constraints
set on the definition of a connected meta model. According to our meta model
description, events can be linked to object versions, which are related to each other
by means of relations. These relations are instances of data model relationships. In
database environments, this would be the equivalent to using foreign keys to relate
table rows and knowing which events relate to each row. For the purpose of this
work, we assume that pairwise correlations between events, by means of related
object versions, are readily available in the input connected meta model.

3 P (X) is the powerset of X, i.e., Y ∈P (X) if Y ⊆ X.
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3 DAPOQ-Lang

DAPOQ-Lang is a Data-Aware Process Oriented Query Language that allows the
user to query data and process information stored in a structure compatible with the
OpenSLEX meta model [4]. As described in Sect. 2, OpenSLEX combines database
elements (data models, objects, and object versions) with common process mining
data (events, logs, and processes), considering them as first-class citizens. DAPOQ-
Lang considers the same first-class citizens as OpenSLEX, which makes it possible
to write queries in the process mining domain enriched with data aspects with lower
complexity than in other general purpose query languages like SQL.

Intuitively, we could think that considering all the elements of the OpenSLEX
meta model as first-class citizens would introduce a lot of complexity in our lan-
guage. However, these elements have been organized in a type hierarchy as subtypes
of higher level superclasses (Fig. 2). It can be seen that MMElement (Meta Model
Element) is an abstract class at the highest level superclass. Next, we distinguish two
subtypes of elements: (1) stored elements (StoredElement), i.e., elements that can be
found directly stored in an OpenSLEX structure, such as activities, events, objects,
and logs and (2) computed elements (ComputedElements), i.e., elements that are
computed based on the rest, temporal periods of cases and temporal periods of
events. We will exploit this hierarchy to design a simple language, providing many
basic functions that can operate on any MMElement, and some specific functions
that focus on specific subtypes. Given a connected meta model CMM (Definition 2),
we define the concept of MMElement in DAPOQ-Lang as the union of all its
terminal subtypes: MMElement = AC∪ LG∪ EV ∪ REL∪OC∪ AT ∪CL∪ PER∪
PM∪CS∪AI∪OV∪RS∪DM. Some of the functions that we define operate on sets
of elements (P(MMElement)). However, as a constraint of our query language, we
require that the elements of those sets belong to the same subtype (i.e., a set of Class
elements, or a set of Version elements, or a set of Event elements, etc.). Therefore,
we define the set MMSets as the set of all possible subsets of each element type in a

Fig. 2 DAPOQ-Lang type hierarchy. Arrows indicate subtype relations
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meta model MM:

MMSets =P(AC) ∪P(LG) ∪P(EV ) ∪P(REL) ∪P(OC) ∪P(AT ) ∪P(CL) ∪
P(PER) ∪P(PM) ∪P(CS) ∪P(AI) ∪P(OV) ∪P(RS) ∪P(DM)

(1)

The output of any query will be an element set es ∈ MMSets, i.e., a set of
elements of the same type. The following subsections describe the syntax and
semantics of DAPOQ-Lang in detail.

3.1 Syntax

The language has been designed with the aim to find a balance between simplicity
and expressive power. To do so, we exploited the specifics of the underlying meta
model defining a total of 57 basic functions, as organized in 5 well-defined blocks,
that can be applied in the context of a given meta model MM. The functions
proposed in Sects. 3.1.1–3.1.5 will be used to define syntax and semantics of
DAPOQ-Lang in Sects. 3.1 and 3.2.

3.1.1 Terminal Meta Model Elements

We define a set of 13 basic terminal functions. Each of them maps to the set of all
elements of the corresponding type (Fig. 2) in the OpenSLEX meta model structure
(Definition 2). Given a connected meta model, we define the following:

1. allDatamodels: the set of all data models, i.e., DM.
2. allClasses: the set of all classes, i.e., CL.
3. allAttributes: the set of all class attributes, i.e., AT.
4. allRelationships: the set of all class relationships, i.e., RS.
5. allObjects: the set of all objects, i.e., OC.
6. allVersions: the set of all object versions, i.e., OV .
7. allRelations: the set of all relations, i.e., REL.
8. allEvents: the set of all events, i.e., EV .
9. allActivityInstances: the set of all activity instances, i.e., AI.

10. allCases: the set of all cases, i.e., CS.
11. allLogs: the set of all logs, i.e., LG.
12. allActivities: the set of all activities, i.e., AC.
13. allProcesses: the set of all processes, i.e., PM.
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3.1.2 Elements Related to Elements

The following 14 functions take as an input a set of elements of the same type and
return a set of elements related to them of the type corresponding to the return type
of the function, e.g., a call to eventsOf (es), being es ∈ P(LG) will return the set
of events that are related to the logs in the set es. Thanks to the subtype hierarchy,
in most of the cases, we can reuse the same function call for input sets of any type,
which leads to a more compact syntax. In the cases when an input of any type would
not make sense, we can still restrict the input type to a particular kind, as is the case
with the function versionsRelatedTo, which only accepts sets of object versions as
input.

14. datamodelsOf ∈ MMSets→P(DM): returns the set of data models related to
the input.

15. classesOf ∈ MMSets→P(CL): returns the set of classes related to the input.
16. attributesOf ∈ MMSets → P(A): returns the set of attributes related to the

input.
17. relationshipsOf ∈ MMSets → P(RS): returns the set of relationships related

to the input.
18. objectsOf ∈ MMSets→P(O): returns the set of objects related to the input.
19. versionsOf ∈ MMSets→ P(OV): returns the set of object versions related to

the input.
20. relationsOf ∈ MMSets → P(REL): returns the set of relations related to the

input.
21. eventsOf ∈ MMSets→P(E): returns the set of events related to the input.
22. activityInstancesOf ∈ MMSets →P(AI): returns the set of activity instances

related to the input.
23. activitiesOf ∈ MMSets → P(AC): returns the set of activities related to the

input.
24. casesOf ∈ MMSets→P(CS): returns the set of cases related to the input.
25. logsOf ∈ MMSets→P(LG): returns the set of logs related to the input.
26. processesOf ∈ MMSets → P(PM): returns the set of processes related to the

input.
27. versionsRelatedTo ∈ P(OV ) → P(OV): returns the set of object versions

directly related (distance 1) to the input object versions through any kind of
relationship.

3.1.3 Computation of Temporal Values

Some elements in our meta model contain temporal properties (e.g., events have
timestamps, object versions have life spans, etc.) which allows making temporal
computations with them. To do so, we provide the following 8 functions to compute
time periods (with a start and an end), as well as durations. Durations (DUR) are
special in the sense that they can be considered as a scalar and are not part of the
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Table 1 Relations in Allen’s interval algebra

Relation Name Illustration Interpretation

X < Y before X
X takes place before Y

Y > X after Y

X m Y meets X
X meets Y (i stands for inverse)

Y mi X meetsInv Y

X o Y overlaps X
X overlaps with Y

Y oi X overlapsInv Y

X s Y starts X
X starts Y

Y si X startsInv Y

X d Y during X
X during Y

Y di X duringInv Y

X f Y finishes X
X finishes Y

Y fi X finishesInv Y

X = Y matches
X

X is equal to Y
Y

MMElement subtype hierarchy. Durations can only be used to be compared with
other durations.

28. periodsOf ∈ MMSets → P(PER): returns the computed periods for each of
the elements of the input set.

29. globalPeriodOf ∈ MMSets→ PER: returns a global period for all the elements
in the input set, i.e., the period from the earliest to the latest timestamp.

30. createPeriod ∈ TS×TS→ PER: returns a period for the specified start and end
timestamps.

31. getDuration ∈ PER→ DUR: returns the duration of a period in milliseconds.
32. Duration.ofSeconds ∈ N → DUR: returns the duration of the specified

seconds.4

33. Dduration.ofMinutes ∈ N → DUR: returns the duration of the specified
minutes.

34. Duration.ofHours ∈ N→ DUR: returns the duration of the specified hours.
35. Duration.ofDays ∈ N→ DUR: returns the duration of the specified days.

3.1.4 Temporal Interval Algebra

Allen’s interval algebra, described in [1], introduces a calculus for temporal
reasoning that defines possible relations between time intervals. It provides the
tools to reason about the temporal descriptions of events in the broadest sense.
Table 1 shows the 13 base relations between two intervals. These temporal relations

4
N is the set of natural numbers.
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are used in our approach to reason about data elements for which we can compute
a temporal interval.

We have introduced the functions to compute and create periods of time. The
following 13 functions cover all the interval operators, described by Allen’s interval
algebra, that we can use to compare periods. Take (a, b) to be a pair of periods for
which:

36. before ∈ PER× PER→ B: before(a, b) iff a takes place before b.5

37. after ∈ PER× PER→ B: after(a, b) iff a takes place after b.
38. meets ∈ PER×PER→ B: meets(a, b) iff the end of a is equal to the start of b.
39. meetsInv ∈ PER× PER→ B: meetsInv(a, b) iff the start a is equal to the end

of b.
40. overlaps ∈ PER× PER→ B: overlaps(a, b) iff the end of a happens during b.
41. overlapsInv ∈ PER × PER → B: overlapsInv(a, b) iff the start of a happens

during b.
42. starts ∈ PER× PER→ B: starts(a, b) iff both start at the same time, but a is

shorter.
43. startsInv ∈ PER×PER→ B: startsInv(a, b) iff both start at the same time, but

a is longer.
44. during ∈ PER × PER → B: during(a, b) iff a starts after b started and ends

before b ends.
45. duringInv ∈ PER× PER → B: duringInv(a, b) iff a starts before b starts and

ends after b ends.
46. finishes ∈ PER× PER→ B: finishes(a, b) iff both end at the same time, but a

is shorter.
47. finishesInv ∈ PER× PER→ B: finishesInv(a, b) iff both end at the same time,

but a is longer.
48. matches ∈ PER × PER → B: matches(a, b) iff both have the same start and

end.

3.1.5 Operators on Attributes of Elements

Events, object versions, cases, and logs of the OpenSLEX meta model can be
enriched with attribute values. The following functions allow the user to obtain their
values:

49. eventHasAttribute ∈ EVAT × EV → B: true iff the event contains a value for a
certain attribute name.

50. versionHasAttribute ∈ AT × OV → B: true iff the object version contains a
value for a certain attribute name.

51. caseHasAttribute ∈ CSAT × CS → B: true iff the case contains a value for a
certain attribute name.

5
B is the set of Boolean values.
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52. logHasAttribute ∈ LGAT × LG → B: true iff the log contains a value for a
certain attribute name.

53. getAttributeEvent ∈ EVAT × EV �→ V : returns the value for an attribute of an
event.

54. getAttributeVersion ∈ AT × OV �→ V : returns the value for an attribute of an
object version.

55. getAttributeCase ∈ CSAT × CS �→ V : returns the value for an attribute of a
case.

56. getAttributeLog ∈ LGAT ×LG �→ V : returns the value for an attribute of a log.
57. versionChange ∈ AT × V × V × OV → B: true iff the value for an attribute

linked to an object version changed from a certain value (in the previous object
version) to another (in the provided object version).

By definition, getAttribute* functions (items 53 to 56) are defined for combina-
tions of elements and attributes for which the corresponding *HasAttribute function
(items 49 to 52) evaluates to true.

3.1.6 Abstract Syntax

The abstract syntax of DAPOQ-Lang is defined using the notation proposed
in [8]. In DAPOQ-Lang, a query is a sequence of Assignments combined with an
ElementSet:

Query � s : Assignments; es : ElementSet
Assignments � Assignment∗

The result of a query is an ElementSet, i.e., the set of elements (of the same type)
from the queried OpenSLEX dataset that satisfies certain criteria. An Assignment
assigns an ElementSet to a variable. Then, any reference to such variable, via its
identifier, will be replaced by the corresponding ElementSet.

Assignment � v : Varname; es : ElementSet
Varname � identifier

An ElementSet can be defined over other ElementSets by Construction or
Application. It can also be defined by means of a variable identifier, i.e., an
ElementSetVar, by a call to a terminal element function with an ElementSetTerminal
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(Sect. 3.1.1), by computation or creation of Periods, or by filtering elements of the
previous options with a FilteredElementSet.

ElementSet � Construction | Application | Period | ElementSetVar |
ElementSetTerminal | FilteredElementSet

ElementSetVar � identifier

An ElementSetTerminal is the ElementSet resulting from a call to the correspond-
ing terminal element function (e.g., allEvents).

ElementSetTerminal � AllDatamodels | AllClasses | AllAttributes |
AllRelationships | AllObjects | AllVersions |
AllRelations | AllActivityInstances | AllEvents |
AllCases | AllLogs | AllActivities | AllProcesses

An ElementSet can be composed from other ElementSets by applying set
operations such as union, exclusion, and intersection.

Construction � es1, es2 : ElementSet; o : Set_Op
Set_Op � Union | Excluding | Intersection

Also, an ElementSet can be constructed by means of a call to one of the
ElementOf_Op functions, which includes the functions described in Sect. 3.1.2
that return sets of elements related to other elements, and the periodsOf function
described in Sect. 3.1.3 that computes the periods of elements.

Application � es : ElementSet; o : ElementOf_Op
ElementOf_Op � datamodelsOf | classesOf | attributesOf | relationshipsOf |

objectsOf | versionsOf | relationsOf | eventsOf |
activityInstancesOf | casesOf | activitiesOf | logsOf |
processesOf | periodsOf | versionsRelatedTo

An ElementSet can be built by means of filtering, discarding elements of
another ElementSet according to certain criteria. These criteria are expressed as a
PredicateBlock, which will be evaluated for each member of the input ElementSet.
Depending on the result of evaluating the PredicateBlock, each element will be
filtered out or included in the new ElementSet.

FilteredElementSet � es : ElementSet;pb : PredicateBlock
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A PredicateBlock is a sequence of Assignments combined with a Predicate. Such
Predicate can be recursively defined as a binary (and, or) or unary (not) combination
of other Predicates.

PredicateBlock � s : Assignments;p : Predicate
Predicate � AttributePredicate | Un_Predicate | Bin_Predicate |

TemporalPredicate

Bin_Predicate � p1, p2 : Predicate; o : BinLogical_Op
Un_Predicate � p : Predicate; o : UnLogical_Op

BinLogical_Op � And | Or
UnLogical_Op � Not

Also, a Predicate can be defined as an AttributePredicate, which either refers
to AttributeExists function that checks the existence of an attribute for a certain
element, an operation on attribute values (e.g., to compare attributes to substrings,
constants, or other attributes), or an AttributeChange predicate, making use of the
functions specified in Sect. 3.1.5.

AttributePredicate � AttributeExists | AttributeV alueP red | AttributeChange
AttributeExists � at : AttributeName

AttributeValuePred � at1, at2 : Attribute; o : Value_Op

AttributeChange � at : AttributeName; from, to : Value
AttributeName � identifier

Value_Op � == | >= | <= | > | < | startsWith | endsWith | contains
Attribute � AttributeName | Value

Value � literal

Finally, a Predicate can be defined as a TemporalPredicate, i.e., a Boolean
operation comparing periods or durations. Period comparisons based on Allen’s
Interval Algebra are supported by the functions defined in Sect. 3.1.4. Duration
comparisons are done on simple scalars (e.g., ==, >, <, ≥, and ≤). A Period can
be either created from some provided timestamps with the function createPeriod or
computed as the global period of an element or a set of elements with the function
globalPeriodOf. Also, a Period can be constructed referring to a variable containing
another period by means of an identifier. Durations can be obtained from existing
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periods (with the function durationOf ) or created from specific durations in seconds,
minutes, hours, or days with the functions defined in Sect. 3.1.3.

TemporalPredicate � per1, per2 : Period; o : Period_Op |
dur1, dur2 : Duration; o : Numerical_Comp_Op

Period � PeriodCreation | PeriodVar
PeriodCreation � ts1, ts2 : Timestamp; o : createPeriod |

es : ElementSet; o : globalPeriodOf
PeriodVar � identifier

Period_Op � before | after | meets | meetsInv | overlaps |
overlapsInv | starts | startsInv | during |
duringInv | finishes | finishesInv | matches

Duration � p : Period; o : getDuration | v : Value; o : DurationOf
DurationOf � Duration.ofSeconds | Duration.ofMinutes |

Duration.ofHours | Duration.ofDays
Numerical_Comp_Op � == | >= | <= | > | <

Figure 3 shows the syntax tree of Query 1 according to the presented abstract
syntax. It also contains elements of the proposed concrete syntax, presented in detail
in Sect. 5, to demonstrate the mapping to real DAPOQ-Lang queries.

3.2 Semantics

In this section, we make use of denotational semantics, as proposed in [8], to
describe the meaning of DAPOQ-Lang queries. We define function MT to describe
the meaning of the nonterminal term T (e.g., MQuery describes the meaning of the
nonterminal Query). First, we introduce a notation of overriding union that will be
used in further discussions.

Definition 3 (Overriding Union) The overriding union of f : X → Y by g : X →
Y is denoted as f ⊕ g : X → Y such that dom(f ⊕ g) = dom(f ) ∪ dom(g) and

f ⊕ g(x) =
{

g(x) if x ∈ dom(g)

f (x) if x ∈ dom(f ) \ dom(g).
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Fig. 3 Syntax tree of DAPOQ-Lang Query 1

In the previous section, we have introduced the use of variables in the language.
These variables must be translated into a value in MMSets (Eq. 1) during the
execution of our queries. A Binding assigns a set of elements to a variable name:

Binding � Varname→ MMSets

Queries are computed based on a dataset complying with the structure of the
OpenSLEX meta model. Such a meta model can be seen as a tuple of sets of
elements of each of the basic types:

MetaModel � (AC, LG, EV, REL, OC, AT, CL, PER,

PM, CS, AI, OV, RS, DM)
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The meaning function of a query takes a query and a meta model dataset as an
input and returns a set of elements that satisfy the query:

MQuery : Query×MetaModel→ MMSets

This function is defined as

MQuery [q : Query, MM : MetaModel] � MElementSet(q.es, MM, MAssignments(q.s, MM, ∅))

The evaluation of the query meaning function MQuery depends on the evaluation
of the assignments and the element set involved. Evaluating the assignments means
resolving their corresponding element sets and remembering the variables to which
they were assigned.

MAssignments : Assignments×MetaModel× Binding→ Binding

A sequence of assignments resolves to a binding, which links sets of elements
to variable names. Assignments that happen later in the order of declaration take
precedence over earlier ones when they share the variable name.

MAssignments [s : Assignments, MM : MetaModel, B : Binding] �
if ¬(s.TAIL).EMPTY then

MAssignments(s.TAIL, MM, B ⊕MAssignment(s.FIRST, MM, B))

else B

The result of an assignment is a binding, linking a set of elements to a variable
name.

MAssignment : Assignment×MetaModel× Binding→ Binding

MAssignment [a : Assignment, MM : MetaModel, B : Binding] �
{(a.v, MElementSet(a.es, MM, B))}

An ElementSet within the context of a meta model and a binding returns a set of
elements of the same type that satisfy the restrictions imposed by the ElementSet.

MElementSet : ElementSet×MetaModel× Binding→ MMSets

An ElementSet can be resolved as a Construction of other ElementSets with the
well-known set operations of union, exclusion, and intersection. It can be the result
of evaluating an Application function, returning elements related to other elements,
the result of the creation of Periods, or the value of a variable previously declared
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(ElementSetVar). Also, it can be the result of a terminal ElementSet, e.g., the set
of all the events (allEvents). Finally, an ElementSet can be the result of filtering
another ElementSet according to PredicateBlock, which is a Predicate preceded
by a sequence of Assignments. These Assignments are only valid within the scope
of the PredicateBlock and are not propagated outside of it (i.e., if a variable is
reassigned, it will maintain its original value outside of the PredicateBlock). The
resulting FilteredElementSet will contain only the elements of the input ElementSet
for which the evaluation of the provided Predicate is true.

MElementSet[es : ElementSet, MM : MetaModel, B : Binding] �
case es of

Construction⇒
case es.o of

Union⇒ MElementSet(es.es1, MM, B) ∪MElementSet(es.es2, MM, B)

Excluding⇒ MElementSet(es.es1, MM, B) \MElementSet(es.es2, MM, B)

Intersection⇒ MElementSet(es.es1, MM, B) ∩MElementSet(es.es2, MM, B)

end

Application⇒ es.o(MElementSet(es.es, MM, B))

Period⇒ MPeriod(es, MM, B)

ElementSetVar⇒
⎧⎨
⎩B(es) if es ∈ dom(B)

∅ otherwise

ElementSetTerminal⇒ esMM

FilteredElementSet⇒ {e ∈ MElementSet(es.es, MM, B) |
MPredicate(es.pb.p, MM, MAssignments(es.pb.s, MM, B ⊕ (it, e)))}

end

A Predicate is evaluated as a Boolean, with respect to a MetaModel and a
Binding:

MPredicate : Predicate×MetaModel× Binding→ B

The meaning function of Predicate evaluates to a Boolean value, which can be
recursively constructed combining binary (and, or) or unary (not) predicates. Also,
a Predicate can be defined as an AttributePredicate that evaluates the existence
of attributes, comparisons of attribute values, or attribute value changes. Finally,
a Predicate can be defined as a TemporalPredicate, which can compare durations or
periods by means of Allen’s Interval Algebra operators.



Data-Aware Process Oriented Query Language 67

MPredicate[p : Predicate, MM : MetaModel, B : Binding] �
case p of

AttributePredicate⇒
case p of

AttributeExists⇒ if B(it) ∈ EV : eventHasAttribute(p.at, B(it))

elif B(it) ∈ OV : versionHasAttribute(p.at, B(it))

elif B(it) ∈ CS : caseHasAttribute(p.at, B(it))

elif B(it) ∈ LG : logHasAttribute(p.at, B(it))

else : ∅
AttributeValuePred⇒

p.o(MAttribute(p.at1, B(it), MM), MAttribute(p.at2, B(it), MM))

AttributeChange⇒
if B(it) ∈ MM.OV then : versionChange(p.at, p.from, p.to, B(it)) else : ∅

end

Un_Predicate⇒ ¬MPredicate(p.p, MM, B)

Bin_Predicate⇒
case p.o of

And⇒ Mpredicate(p.p1, MM, B) ∧Mpredicate(p.p2, MM, B)

Or⇒ Mpredicate(p.p1, MM, B) ∨Mpredicate(p.p2, MM, B)

end

TemporalPredicate⇒
case p.o of

Period_Op⇒ p.o(MPeriod(p.per1, MM, B),MPeriod(p.per2, MM, B))

Duration_Op⇒ p.o(MDuration(p.dur1, MM, B),MDuration(p.dur2, MM, B))

end

end

A Period for a given meta model dataset and a binding returns an instance of
PER, i.e., a single period element:

MPeriod : Period ×MetaModel× Binding→ PER
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The meaning function of Period will return a period element that can be created
(PeriodCreation) or assigned from a variable name containing a period (PeriodVar).
In the case of a PeriodCreation, a period can be created for the specified start and
end timestamps using the createPeriod function or it can be computed as the global
period of another set of periods (globalPeriodOf ).

MPeriod[p : Period, MM : MetaModel, B : Binding] �
case p of

PeriodCreation⇒
case p.o of

createPeriod⇒ p.o(p.ts1, p.ts2)

globalPeriodOf ⇒ p.oMM(MElementSet(p.es, MM, B))

end

PeriodVar⇒
{

B(p) if p ∈ dom(B)

∅ otherwise

end

A Duration is a value representing the length of a period, and it is computed
within the context of a meta model dataset and a binding:

MDuration : Duration×MetaModel× Binding→ DUR

A Duration can be evaluated based on the duration of a period (getDuration) or
a duration specified in scalar units (DurationOf ).

MDuration[d : Duration, MM : MetaModel, B : Binding] �
case d.o of

DurationOf ⇒ d.o(d.v)

getDuration⇒ d.o(MPeriod(d.p, MM, B))

end

Finally, an Attribute is a value assigned to an element in the context of a meta
model:

MAttribute : Attribute× Element×MetaModel→ Value

In order to evaluate the value of an Attribute, we can refer to the AttributeName,
in which case the value will be obtained in different ways depending on the type
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of element (event, object version, case, or log). Also, an Attribute can be explicitly
defined by its Value.

MAttribute[at : Attribute, e : Element, MM : MetaModel] �
case at of

AttributeName⇒
case e of

Event⇒ if eventHasAttribute(at, e) then : getAttributeEvent(at, e) else : ∅
Version⇒ if versionHasAttribute(at, e) then : getAttributeVersion(at, e)

else : ∅
Case⇒ if caseHasAttribute(at, e) then : getAttributeCase(at, e) else : ∅
Log⇒ if logHasAttribute(at, e) then : getAttributeLog(at, e) else : ∅

end

Value⇒ at

end

This concludes the formal definition of DAPOQ-Lang in terms of syntax and
semantics at an abstract level. The coming sections provide some details about the
concrete syntax, implementation, and its performance.

4 Implementation and Evaluation

DAPOQ-Lang6 has been implemented as a Domain Specific Language (DSL) on
top of Groovy7, a dynamic language for the Java platform. This means that, on top
of all the functions and operators provided by DAPOQ-Lang, any syntax allowed by
Groovy or Java can be used within DAPOQ-Lang queries. DAPOQ-Lang heavily
relies on a Java implementation of the OpenSLEX8 meta model using SQLite9 as
a storage and querying engine. However, DAPOQ-Lang abstracts from the specific
storage choice, which allows it to run on any SQL database and not just SQLite.
The platform PADAS10 (Process Aware Data Suite) integrates DAPOQ-Lang and

6 https://github.com/edugonza/DAPOQ-Lang/.
7 http://groovy-lang.org/.
8 https://github.com/edugonza/OpenSLEX/.
9 https://www.sqlite.org.
10 https://github.com/edugonza/PADAS/.

https://github.com/edugonza/DAPOQ-Lang/
http://groovy-lang.org/
https://github.com/edugonza/OpenSLEX/
https://www.sqlite.org
https://github.com/edugonza/PADAS/


70 E. G. L. de Murillas et al.

Table 2 Characteristics of the three datasets employed in the evaluation

Dataset # Objects # Versions # Events # Cases # Logs # Activities

A 6740 8424 8512 108, 751 34 14

B 7, 339, 985 7, 340, 650 26, 106 82, 113 10, 622 172

C 162, 287 277, 094 277, 094 569, 026 29 62

OpenSLEX in a user-friendly environment to process the data and run queries. The
current implementation relies on the SQLite library to store the data and execute
certain subqueries. Therefore, it is to be expected that DAPOQ-Lang introduces
certain overhead, given that data retrieval and object creation on the client side
consume extra time and memory compared to an equivalent SQL query. In order
to assess the impact of DAPOQ-Lang on query performance, we run a benchmark
of pairs of equivalent queries, as expressed in DAPOQ-Lang and SQL, on the
same database. The queries are organized in 3 categories and run on the 3 datasets
described in [4]: A (event data obtained from the redo logs of a simulated ticket
selling platform), B (event records from a financial organization), and C (ERP event
data from a sample SAP system) (Table 2).

The DAPOQ-Lang queries of each pair were run with two different configura-
tions: memory-based and disk-based caching. Memory-based caching uses the heap
to store all the elements retrieved from the database during the execution of the
query. This is good for speed when dealing with small or medium size datasets but
represents a big limitation to deal with big datasets given the impact on memory
use and garbage collection overhead. Disk-based caching makes use of MapDB,11

a disk-based implementation of Java hash maps, to serialize and store on disk all
the elements retrieved from the database. This significantly reduces the memory
consumption and allows handling much larger datasets, which comes at the cost
of speed given the overhead introduced by serialization and disk I/O operations.
Figure 4 shows the results of the benchmark, with one plot per query type, one box
per query engine (SQL, DAPOQ-Lang, and DAPOQ-Lang with disk caching), for
the three datasets. As expected, we observe that the performance of DAPOQ-Lang
queries is, in general, poorer than that of the equivalent SQL queries, especially
when it comes to queries regarding the order of activities. This is due to the overhead
on transmission and processing of data and the fact that many filtering operations
are performed on the client instead of the server side. Obviously, there is a trade-
off between ease of use and performance. Nevertheless, performance was never
the main motivation for the development of DAPOQ-Lang, but ease of use and
speed of query writing. In future versions, further efforts will be made to improve
performance and to provide more comprehensive benchmarks.

11 http://www.mapdb.org.

http://www.mapdb.org
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Fig. 4 Benchmark of queries run with DAPOQ-Lang, DAPOQ-Lang with disk-based caching,
and SQL on an SQLite backend. Note that the vertical axis is logarithmic

5 Application and Use Cases

The purpose of this section is to demonstrate the applicability of our approach and
tools. First, we explore the professional profiles, in the context of process mining,
to which this language is directed to, and we identify the most common data aspects
to query given each profile. Then, we provide some use cases of DAPOQ-Lang with
examples of relevant queries for each data aspect. Finally, we compare DAPOQ-
Lang to SQL by means of an example. The example highlights the expressiveness
and compactness of our query language.

5.1 Business Questions in Process Mining

Process mining is a broad field, with many techniques available tailored toward a
variety of analysis questions. “Process miners” (analysts or users carrying out a
process mining project) are often interested in discovering process models from
event data. Sometimes these models are provided beforehand and the focus is on
conformance between the models and events. It can be the case that assessing the
performance of specific activities is critical. Also, finding bottlenecks in the process
can be of interest for the analysts. In some contexts, where existing regulations and
guidelines impose restrictions on what is allowed and what is not in the execution
of a process, compliance checking becomes a priority. In the literature, we can find
examples of frequently posed questions for specific domains, like healthcare [7], in
which root cause analysis becomes relevant in order to trace back data related to a
problematic case. All these perspectives pose different challenges to process miners,
who need to “dig” into the data to find answers to relevant questions.

Previous works [6, 9] identified professional roles and profiles in the area of
business process management by analyzing job advertisements and creating a
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classification based on the competencies. We make use of this classification to point
out the corresponding data aspects relevant for each profile. Table 3 presents, in the
two leftmost columns, the classification of the roles, as proposed by the authors of
studies [6, 9]. In the column Main Focus, we propose, based on the role description,
the sub-disciplines of process mining and data engineering that become relevant
for each job profile (i.e., discovery, compliance checking, conformance checking,
performance analysis, root cause analysis, integration, and data integrity). The rest
of the columns indicate whether certain event data aspects become particularly
interesting to be queried for each professional role, considering the role description
and the main focus. We have grouped these event data aspects into two big categories
that reflect the expected output of the queries: (a) specialized sublogs are event
logs that contain only event data that reflects certain desired properties (e.g.,
temporal constraints, activity occurrence constraints), and (b) metrics, artifacts,
and provenance are the resulting values of the computation of certain event data
properties (e.g., performance metrics).

We see that there is a clear distinction between roles interested in performance
and root cause analysis, in contrast to those mainly interested in compliance.
The former will need to obtain performance metrics from the data, e.g., average
case duration, or most time-consuming tasks. Also, they are interested in finding
data related to problematic cases, e.g., obtaining all the products purchased in an
unpaid order (dependency relations), or finding out providers of a defective batch of
products (data lineage). However, those with a focus on compliance typically need
to answer questions related to temporal constraints (e.g., if cases of a particular type
of client are resolved within the agreed SLAs), activity occurrence constraints (e.g.,
whether a purchase was always paid), and order of actions (e.g., if an invoice is
created before a delivery is dispatched).

As the roles get more concerned with the technical aspects of IT systems, more
focus is put on performance and data properties. Especially, for technical architects,
data integrity is crucial, since they are the ones in charge of integrating both
applications and data storage systems. Being able to filter information based on data
properties and find irregular data changes is important to verify a correct integration
of different infrastructures.

Now that we have identified data aspects of interest, in what follows we present
a set of example DAPOQ-Lang queries. The aim of these examples is twofold: to
serve as a template to write queries and to demonstrate that the features of DAPOQ-
Lang indeed cover all the aspects described in Table 3.

5.2 Exporting Logs

One of the main purposes when querying process execution data is to export it as a
compatible event log format. DAPOQ-Lang provides utilities to export logs, cases,
and events as XES event logs, which can be further analyzed using process mining
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platforms such as ProM12 or RapidProM.13 The following queries show the way to
export XES logs for different types of data. These functions can be applied to all
the query types defined under the Specialized Sublogs category (Table 3) in order
to extract the corresponding XES event log. When a set of logs is retrieved, an
independent XES log is generated for each of them.

Query 2 Export all the logs with a specific name. The result can be one or many logs being
exported according to the XES format.

1 exportXLogsOf ( a l l L o g s ( ) . where{ name == "log01" } )

When the input of exportXLogsOf is a set of cases, one single XES log is
exported.

Query 3 Export in a single XES log all the cases of different logs.

1 exportXLogsOf ( c as e s Of ( a l l L o g s ( ) . where { name . c o n t a i n s ("1" ) } ) )

In the case of a set of events, a single XES log with a single trace is exported
(Query 4).

Query 4 Export in a single XES log all the events of different logs.

1 exportXLogsOf ( events Of ( a l l L o g s ( ) . where{ name . c o n t a i n s ("1" ) } ) )

A special situation is when we want to export a set of logs or cases while filtering
out events that do not comply with some criteria. In that case, we call exportXLogsOf
with a second argument representing the set of events that can be exported (Query 5).
Any event belonging to the log to be exported not contained in this set of events will
be excluded from the final XES log.

Query 5 Export one or many XES logs excluding all the events that do not belong to a specific
subset.

1 exportXLogsOf ( a l l L o g s ( ) , events Of ( a l l C l a s s e s ( ) . where { name == "BOOKING"} ) )

5.3 Specialized Sublogs

So far, we have seen how to export logs as they are stored in the dataset under
analysis. However, it is very common to focus on specific aspects of the data
depending on the questions to answer. This means that we need to create specialized
sublogs according to certain criteria. This section presents examples of queries to

12 http://www.promtools.org.
13 http://www.rapidprom.org/.

http://www.promtools.org
http://www.rapidprom.org/
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create specialized sublogs that comply with certain constraints in terms of temporal
properties, activity occurrence, order of action, data properties, or data changes.

Temporal Constraints A way to create specialized sublogs is to filter event data
based on temporal constraints. The creation and computation of periods makes it
possible to select only data relevant during a certain time span. Query 6 returns
events that happened during period p and that belong to the log “log01”.

Query 6 Temporal constraints. Retrieve all the events of “log01” that happened during a certain
period of time.

1 def evLog01 = events Of ( a l l L o g s ( ) . where{ name == "log01" } )
2 def p = c r e a t e P e r i o d ("2014/11/27 15:57" ,"2014/11/27 16:00" , "yyyy/MM/dd HH:mm

↪→ " )
3
4 events Of ( p ) . i n t e r s e c t i o n ( evLog01 )

Query 7 focuses on the duration of cases rather than on the specific time when
they happened. Only cases of log “log01” with a duration longer than 11 minutes
will be returned.

Query 7 Temporal constraints. Retrieve cases of “log01” with a duration longer than 11 minutes.
The variable “it” is used to iterate over all values of “c” within the “where” closure

1 def c = c as e s Of ( a l l L o g s ( ) . where{ name == "log01" } )
2
3 c . where { g loba lP er iodOf ( i t ) . getDurat ion ( ) > Duration . ofMinutes ( 1 1 ) }

Activity Occurrence Another way to select data is based on activity occurrence.
The following query shows an example of how to retrieve cases in which two
specific activities were performed regardless of the order. First, cases that include
the first activity are retrieved (casesA). Then, cases that include the second activity
are retrieved (casesB). Finally, the intersection of both sets of cases is returned.

Query 8 Activity occurrence. Retrieve cases where activities that contain the words “INSERT”
or “UPDATE” and “CUSTOMER” happened in the same case.

1 def actA = a l l A c t i v i t i e s ( ) . where {
2 name . c o n t a i n s ("INSERT" ) && name . c o n t a i n s ("CUSTOMER" ) }
3
4 def ac tB = a l l A c t i v i t i e s ( ) . where {
5 name . c o n t a i n s ("UPDATE" ) && name . c o n t a i n s ("CUSTOMER" ) }
6
7 def casesA = c as e s Of ( ac tA )
8 def c a s e s B = c as e s Of ( ac tB )
9

10 casesA . i n t e r s e c t i o n ( c a s e s B )

Order of Actions This time we are interested in cases in which the relevant
activities happened in a specific order. The following query, an extended version
of Query 8, selects the cases that include both activities. Yet, before storing the
intersection of cases containing events of the activities in the set actA with cases
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containing events of the activities in the set actB in a variable (line 13), the query
performs a filter based on the order of these two activities. To do so, for each case,
the set of events is retrieved (line 15). Next, the events of the first and second
activities are selected (lines 16 and 17). Finally, the periods of both events are
compared (line 18), evaluating the condition to the value true for each case in which
all the events of activity A happened before the events of activity B. Only the cases
for which the condition block (lines 14 to 18) evaluated to true are stored in the
variable casesAB and returned.

Query 9 Order of actions. Retrieve cases where activities that contain the words “INSERT” and
“CUSTOMER” happen before activities that contain the words “UPDATE” and “CUSTOMER”.

1 def actA = a l l A c t i v i t i e s ( ) . where {
2 name . c o n t a i n s ("INSERT" ) && name . c o n t a i n s ("CUSTOMER" ) }
3
4 def ac tB = a l l A c t i v i t i e s ( ) . where {
5 name . c o n t a i n s ("UPDATE" ) && name . c o n t a i n s ("CUSTOMER" ) }
6
7 def casesA = c as e s Of ( ac tA )
8 def c a s e s B = c as e s Of ( ac tB )
9

10 def even t s A = events Of ( ac tA )
11 def even t s B = events Of ( ac tB )
12
13 def casesAB = casesA . i n t e r s e c t i o n ( c a s e s B )
14 . where {
15 def ev = events Of ( i t )
16 def evA = ev . i n t e r s e c t i o n ( even t s A )
17 def evB = ev . i n t e r s e c t i o n ( even t s B )
18 before ( g loba lP er iodOf ( evA ) , g loba lP er iodOf ( evB ) )
19 }

Data Properties Some elements in our OpenSLEX dataset contain attributes that
can be queried. These elements are object versions, events, cases, and logs. The
following query shows how to filter events based on their attributes. First, the query
compares the value of the attribute resource to a constant. Also, it checks if the
attribute ADDRESS contains a certain substring. Finally, it verifies that the event
contains the attribute CONCERT_DATE. Only events that satisfy the first and either
the second or the third will be returned as a result of the query.

Query 10 Data properties. Retrieve events of resource “SAMPLE” that either have an attribute
ADDRESS which value contains “35” or have a CONCERT_DATE attribute.

1 a l l E v e n t s ( ) . where {
2 r e s o u r c e == "SAMPLEDB" && ( at .ADDRE. c o n t a i n s ( " 3 5 " ) | | has ( a t . CONCERT_DATE) ) }

Data Changes An important feature of our query language is the function named
changed. This function determines if the value of an attribute for a certain object
version changed. The function has the attribute name as a required parameter (at:)
and two optional parameters (from:, and to:). Query 11 returns all the events related
to object versions for which the value of the attribute “BOOKING_ID” changed.
No restrictions are set on the specific values. Therefore, the call to changed will be
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evaluated to true for an object version only if the value of the attribute in preceding
version was different from the value in the current one.

Query 11 Data changes. Retrieve events that affected versions where the value of “BOOK-
ING_ID” changed.

1 events Of ( a l l V e r s i o n s ( ) . where { changed ( [ at : "BOOKING_ID" ] ) } )

Query 12 shows a similar example. This time we want to obtain the events related
to object versions for which the attribute “SCHEDULED_DATE” changed from
“11-JUN-82” to a different one.

Query 12 Data changes. Retrieve events that affected versions where the value of “SCHED-
ULED_DATE” changed from “11-JUN-82” to a different value.

1 events Of ( a l l V e r s i o n s ( ) . where { changed ( [ at : "SCHEDULED_DATE" , from : "11-JUN
↪→ -82" ] ) } )

Query 13 instead retrieves the events related to object versions for which the
attribute “SCHEDULED_DATE” changed to “22-MAY-73” from a different one.

Query 13 Data changes. Retrieve events that affected versions where the value of “SCHED-
ULED_DATE” changed to “22-MAY-73” from a different value.

1 events Of ( a l l V e r s i o n s ( ) . where { changed ( [ at : "SCHEDULED_DATE" , to : "22-MAY-73"
↪→ ] ) } )

Finally, Query 14 imposes a stricter restriction, retrieving only the events related
to object versions for which the attribute “SCHEDULED_DATE” changed from
“24-MAR-98” to “22-MAY-73”.

Query 14 Data changes. Retrieve events that affected versions where the value of “SCHED-
ULED_DATE” changed from “24-MAR-98” to “22-MAY-73”.

1 events Of ( a l l V e r s i o n s ( ) . where {
2 changed ( [ at : "SCHEDULED_DATE" , from : "24-MAR-98" , to : "22-MAY-73" ] ) } )

5.4 Metrics, Artifacts, and Provenance

In the previous section, we have seen examples of how to obtain specialized sublogs
given certain criteria. However, we do not always want to obtain events, cases, or
logs as the result of our queries. In certain situations, the interest is in data objects,
and their relations to other elements of the dataset, e.g., objects of a certain type,
artifacts that coexisted during a given period, or data linked to other elements. Also,
one can be interested in obtaining performance metrics based on existing execution
data. All these elements cannot be exported as an event log, since they do not always
represent event data. However, they can be linked to related events or traces. This
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section shows example queries that exploit these relations and provide results that
cannot be obtained as plain event logs.

Data Lineage Data lineage focuses on the lifecycle of data, its origins, and where it
is used over time. DAPOQ-Lang supports data lineage mainly with the ElementsOf
functions listed in Sect. 3.1.2. These functions return elements of a certain type
linked or related to input elements of another type. As an example, we may have
an interest in obtaining all the products in the database affected by a catalog update
process during a certain period in which prices were wrongly set. The following
query finds the cases in log “log01” whose life span overlaps with a certain period
and returns the object versions related to them.

Query 15 Data lineage. Retrieves versions of objects affected by any case in “log01” whose life
span overlapped with a certain period of time. The date format is specified.

1 def P1 = c r e a t e P e r i o d ("2014/11/27 15:56" ,"2014/11/27 16:30" ,"yyyy/MM/dd HH:mm
↪→ " )

2
3 vers ions Of (
4 c as e s Of ( a l l L o g s ( ) . where{name=="log01"} )
5 . where {
6 o v e r l a p s ( g loba lP er iodOf ( i t ) , P1 )
7 }
8 )

Dependency Relations An important feature of the language is the ability to query
existing relations between elements of different types, as well as within object
versions of different classes. Query 15 showed an example of relations between
elements of different types (logs to cases, cases to versions). The following query
shows an example of a query on object versions related to other object versions.
First, two different classes of data objects are obtained (lines 1 and 2). Then, the
versions of the class “TICKET” are retrieved (line 3). Finally, the object versions
related to object versions belonging to class “BOOKING” are obtained (lines 5 and
6), and only the ones belonging to class “TICKET” are selected (line 7).

Query 16 Dependency relations. Retrieve versions of ticket objects that are related to versions of
booking objects.

1 def t i c k e t C l a s s = a l l C l a s s e s ( ) . where{ name == "TICKET"}
2 def b o o k i n g C l a s s = a l l C l a s s e s ( ) . where{ name == "BOOKING"}
3 def t i c k e t V e r s i o n s = vers ions Of ( t i c k e t C l a s s )
4
5 vers ions Re la tedTo (
6 vers ions Of ( b o o k i n g C l a s s )
7 ) . i n t e r s e c t i o n ( t i c k e t V e r s i o n s )

Performance Metrics As has been previously discussed, measuring performance
and obtaining metrics for specific cases or activities are very common and relevant
questions for many professional roles. DAPOQ-Lang supports this aspect by
computing periods and durations to measure performance. The resulting periods
can be used to compute performance statistics such as average execution time or
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maximum waiting time. The following query shows how to compute periods for a
subset of the events in the dataset.

Query 17 Performance metrics. Retrieve periods of events belonging to activities that contain the
words “UPDATE” and “CONCERT” in their name.

1 def a c t U p d a t e C o n c e r t = a l l A c t i v i t i e s ( ) . where {
2 name . c o n t a i n s ("UPDATE" ) && name . c o n t a i n s ("CONCERT" )
3 }
4
5 per iodsOf ( events Of ( a c t U p d a t e C o n c e r t ) )

Query 18 demonstrates how to filter out periods based on their duration. Cases
with events executed by a certain resource are selected and their periods are
computed. Next, only periods with a duration longer than 11 min are returned.

Query 18 Performance metrics. Retrieve periods of a duration longer than 11 minutes computed
on cases which had at least one event executed by the resource “SAMPLEDB”.

1 def c = c as e s Of ( a l l E v e n t s ( ) . where { r e s o u r c e == "SAMPLEDB" } )
2
3 per iodsOf ( c ) . where { i t . getDurat ion ( ) > Duration . ofMinutes ( 1 1 ) }

5.5 DAPOQ-Lang vs. SQL

So far, we have seen several examples of “toy” queries to demonstrate the use of
the functions and operators provided by DAPOQ-Lang. Obviously, any DAPOQ-
Lang query can be computed with other Turing-complete languages. When it comes
to data querying on databases, SQL is the undisputed reference. It is the common
language to interact with most of the relational database implementations available
today. It is a widespread language, known by many professionals from different
fields. Even without considering scripting languages like PL/SQL and just with
CTEs (Common Table Expressions) and Windowing, SQL has been proven to be
Turing-complete [2]. Therefore, the aim of DAPOQ-Lang is not to enable new types
of computations, but to ease the task of writing queries in the specific domain of
process mining.

Let us consider again the generic question (GQ) presented in Sect. 1:

GQ: In which cases, there was (a) an event that happened between time T1 and T2, (b) that
performed a modification in a version of class C, (c) in which the value of field F changed
from X to Y?

This question involves several types of elements: cases, events, object ver-
sions, and attributes. We instantiate this query with some specific values for
T1 = “1986/09/17 00:00”, T2 = “2016/11/30 19:44”, C = “CUSTOMER”, F =
“ADDRESS”, X = “Fifth Avenue”, and Y = “Sunset Boulevard”. Assuming that
our database already complies with the structure proposed by the OpenSLEX meta
model, we can write the following SQL query to answer the question:
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Query 19 Standard SQL query executed on the OpenSLEX dataset in [4] and equivalent to the
DAPOQ-Lang Query 1

1 SELECT d i s t i n c t C . i d AS "id" , CAT . name , CATV. value , CATV. t y p e
2 FROM
3 "case" AS C
4 JOIN a c t i v i t y _ i n s t a n c e _ t o _ c a s e AS AITC ON AITC . c a s e _ i d = C . i d
5 JOIN a c t i v i t y _ i n s t a n c e AS AI ON AI . i d = AITC . a c t i v i t y _ i n s t a n c e _ i d
6 JOIN e v e n t AS E ON E . a c t i v i t y _ i n s t a n c e _ i d = AI . i d
7 JOIN e v e n t _ t o _ o b j e c t _ v e r s i o n AS ETOV ON ETOV. e v e n t _ i d = E . i d
8 JOIN o b j e c t _ v e r s i o n AS OV ON ETOV. o b j e c t _ v e r s i o n _ i d = OV. i d
9 JOIN o b j e c t AS O ON OV. o b j e c t _ i d = O. i d

10 JOIN c l a s s AS CL ON O. c l a s s _ i d = CL . i d AND CL . name = "CUSTOMER"
11 JOIN a t t r i b u t e _ n a m e AS AT ON AT . name = "ADDRESS"
12 JOIN a t t r i b u t e _ v a l u e AS AV ON AV. a t t r i b u t e _ n a m e _ i d = AT . i d AND
13 AV. o b j e c t _ v e r s i o n _ i d = OV. i d
14 LEFT JOIN c a s e _ a t t r i b u t e _ v a l u e AS CATV ON CATV. c a s e _ i d = C . i d
15 LEFT JOIN c a s e _ a t t r i b u t e _ n a m e AS CAT ON CAT. i d = CATV. c a s e _ a t t r i b u t e _ n a m e _ i d
16 WHERE
17 E . timestamp > "527292000000" AND
18 E . timestamp < "1480531444303" AND
19 AV. va lue LIKE "Sunset Boulevard" AND
20 EXISTS
21 (
22 SELECT OVP. i d
23 FROM
24 o b j e c t _ v e r s i o n AS OVP,
25 a t t r i b u t e _ v a l u e AS AVP
26 WHERE
27 AVP . a t t r i b u t e _ n a m e _ i d = AT . i d AND
28 AVP . o b j e c t _ v e r s i o n _ i d = OVP . i d AND
29 OVP . o b j e c t _ i d = OV. o b j e c t _ i d AND
30 AVP . va lue LIKE "Fifth Avenue" AND
31 OVP . i d IN
32 (
33 SELECT OVPP . i d
34 FROM o b j e c t _ v e r s i o n AS OVPP
35 WHERE
36 OVPP . end_ t imes tamp <= OV. s t a r t _ t i m e s t a m p AND
37 OVPP . end_ t imes tamp >= 0 AND
38 OVPP . o b j e c t _ i d = OV. o b j e c t _ i d AND
39 OVPP . i d != OV. i d
40 ORDER BY OVPP . end_ t imes tamp DESC LIMIT 1
41 )
42 )

The logic is the following. Two subqueries are nested in order to retrieve (a)
object versions preceding another object version (lines 33–40) and object versions
that contain the attribute that changed (lines 22–41). Parts of the query focus on
checking the value of the attributes (lines 27–30), the timestamp of the events (lines
17–18), and the class of the object versions (line 10). The rest of the query is
concerned with joining rows of different tables by means of foreign keys.

The equivalent DAPOQ-Lang query, previously presented in Query 1, removes
most of the clutter and boilerplate code in order to join tables together and lets
the user focus on the definition of the constraints. The query is built up with an
assignment and several nested queries. First, a period of time is defined (line 1).
Then, object versions of a certain class are retrieved (lines 5–6) and filtered based
on the changes of one of the attributes (line 7). Next, the events related to such
object versions are obtained (lines 4–8) and filtered based on the time when they
occurred (lines 8–12). Finally, the cases of these events are returned (lines 3–13).
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Table 4 Event log obtained from the execution of Query 1

# Case Activity name Timestamp Class Address

1 1 Insert Customer 2014-11-27 15:57:13 CUSTOMER Fifth Avenue

2 1 Update Customer 2014-11-27 16:05:01 CUSTOMER Sunset Boulevard

3 2 Insert Customer 2014-11-27 15:58:14 CUSTOMER Fifth Avenue

4 2 Update Customer 2014-11-27 16:05:37 CUSTOMER Sunset Boulevard

5 3 Insert Customer 2014-11-27 15:59:16 CUSTOMER Fifth Avenue

6 3 Update Customer 2014-11-27 16:05:54 CUSTOMER Sunset Boulevard

7 4 Insert Customer 2014-11-27 16:01:03 CUSTOMER Fifth Avenue

8 4 Update Customer 2014-11-27 16:07:02 CUSTOMER Sunset Boulevard

Table 4 shows the event log obtained from the execution of this query, where we can
observe that insertions of new customers are followed by updates that modify the
address attribute.

In essence, the advantage of DAPOQ-Lang over SQL is on the ease of use in the
domain of process mining. The fact that we can assume how logs, cases, events, and
objects are linked allows us to focus on the important parts of the query. Also, pro-
viding functions that implement the most frequent operations on data (such as period
and duration computation) makes writing queries faster and less prone to errors.

6 DAPOQ-Lang and the Process Querying Framework

The Process Querying Framework (PQF) provides a comprehensive overview
of the aspects involved in the process querying cycle. This framework partly
originates from a collection of functional and non-functional requirements for
process querying in the process management field. The requirements, based on
CRUD operations (Create, Read, Update, and Delete), focus on the relevant BPM
use cases presented in [11]. As has been shown in Sect. 5, our query language fulfills
or supports, to some extent, the tasks involved in the requirements regarding “Check
conformance using event data” and “Analyze performance using event data.” In this
section, we instantiate DAPOQ-Lang in the PQF.

The first part of PQF is named “Model, Simulate, Record, and Correlate.”
DAPOQ-Lang does not aim to support any of the aspects covered by this part of
the framework. However, the OpenSLEX meta model, and more specifically its
implementation, enables the recording and correlation of behavioral and historical
data in a structured way, i.e., create and update operations. This feature enables the
construction of a dataset ready to be queried (i.e., read operations) by DAPOQ-
Lang’s query engine. Therefore, DAPOQ-Lang addresses event log and correlated
data querying with the intent of retrieving information previously recorded in an
OpenSLEX-compliant storage.
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With respect to the “Prepare” part of the PQF, DAPOQ-Lang’s support is
twofold: (1) It proposes the OpenSLEX meta model to structure behavioral and
object data in a format that enables indexing and makes the querying process
easier to carry out from the usability point of view. Also, it speeds up query
execution providing the most frequently requested information in a preprocessed
format. (2) The underlying OpenSLEX implementation makes use of caching to
speed up response time and make efficient use of memory. Two strategies are
supported: (a) in-memory caching, which benefits speed but suffers when dealing
with large datasets, and (b) disk-based caching, which makes it possible to handle
larger datasets that would not fit in memory but introduces an overhead due to the
serialization and disk-writing steps.

As DAPOQ-Lang is a query language with an existing implementation, it covers
the “Execute” part of the PQF. The nested nature of the expressions in DAPOQ-
Lang enables the filtering of the data, executing parts of the query only on the
relevant elements. The implementation includes several optimizations, like pre-
fetching of attributes as a way to save time in the filtering step of the query
execution. The execution of a query in DAPOQ-Lang yields results in the form
of a set of elements, obtained from the original dataset, representing the subset of
the original data that satisfies the expressed constraints.

Finally, the “Interpret” part of the framework is supported by DAPOQ-Lang
in two ways: (1) enabling the inspection of data using explorative queries and
(2) exporting the result of queries to XLog, which makes it possible to apply
any existing process mining technique that requires an event log as input, while
benefiting from the capabilities of DAPOQ-Lang to build relevant sublogs for the
query at hand.

7 Conclusion

In the field of process mining, the need for better querying mechanisms has
been identified. This work proposes a method to combine both process and data
perspectives in the scope of process querying, helping with the task of obtaining
insights about processes. To do so, DAPOQ-Lang, a Data-Aware Process Oriented
Query Language, has been developed, which allows the analyst to select relevant
parts of the data in a simple way to, among other things, generate specialized
event logs to answer meaningful business questions. We have formally described
the syntax and semantics of the language. We presented its application by means
of simple use cases and query examples in order to show its usefulness and
simplicity. In addition, we provide an efficient implementation that enables not only
the execution but also the fast development of queries. This work shows that it is
feasible to develop a query language that satisfies the needs of process analysts,
while balancing these with demands for simplicity and ease of use. Finally, we
positioned DAPOQ-Lang within the Process Querying Framework [10]. DAPOQ-
Lang presents certain limitations in terms of performance, expressiveness, and ease
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of use. As future work, efforts will be made on (a) expanding the language with new
functionalities and constructs relevant in the process mining context, (b) improving
the query planning and execution steps in order to achieve better performance, and
(c) carrying out empirical evaluations with users in order to objectively assess the
suitability of the language within the process mining domain.
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Abstract The use of Business Process Management Systems (BPMSs) allows com-
panies to manage the data that flows through process models (business instances)
and to monitor all the information and actions concerning a process execution. In
general, the retrieval of this information is used not only to measure whether the pro-
cess works as expected but also to enable assistance in future process improvements
by means of a postmortem analysis. This chapter shows how the measures extracted
from the process instances can be employed to adapt business process executions
according to other instances or other processes, thereby facilitating the adjustment
of the process behavior at run-time to the organization needs. A language, named
Process Instance Query Language (PIQL), is introduced. This language allows
business users to query the process instance measures at run-time. These measures
may be used both inside and outside the business processes. As a consequence, PIQL
might be used in various scenarios, such as in the enrichment of the information used
in Decision Model and Notation tables, in the determination of the most suitable
business process to execute at run-time, and in the query of the instance measures
from a dashboard. Finally, an example is introduced to demonstrate PIQL.
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1 Introduction

The management of the information regarding the current and past status of an
organization is crucial. The analysis of this information can be essential for different
purposes, such as to determine whether the objectives of the organization are
achieved, to ascertain whether the company evolves as was planned, to verify
whether decision-making processes must modify company’s evolution [5], and to
study how the management of the company can be improved. In this respect, it
could be stated that the sooner the state of the company is ascertained, the sooner
the decisions to “redirect” the company could be made. The status of an organization
is reflected in the information systems used to support its operations and, frequently,
by the BPMSs that are often used in business process-oriented organizations.

A BPMS enables the company’s activities to be assisted by means of automating
and monitoring the technical environment to achieve the defined objectives. In this
context, the status of the organization can be extracted from the data generated
during the execution of its activities, both stored in external repositories or by the
BPMSs [4]. Although the extraction of knowledge from external data repositories
is usually performed through SQL as the standard language that queries relational
data, the extraction of the status of the organization from a BPMS according to
the process executions has no standard form. However, BPMSs also help experts
to extract information about processes: how many instances of a process have been
executed, how many instances of a process are currently being executed, how the
process was executed (when it was started, finished, and/or canceled), and how
the activities of a process instance have been executed (who executed it, when it
was executed, the specific values of the data consumed and generated, or whether
the activity was canceled). In other words, BPMSs allow measuring how a specific
process works.

The state of executions of the processes can be inferred from measures of the
process instances, and consequently, these measures enable the improvement of
processes themselves. Note, however, that these measurements enable not only the
process execution improvement or a process model redesign but also the adaptation
of the current process instances according to the rest of the instances and available
resources at any given moment. These two different usages of measures are aligned
with the two types of monitoring at run-time: active and passive monitoring [6]. On
the one hand, active monitoring implies the automatic evaluation of measurements
since the system includes the adequate tools to detect deviations and notify them
at run-time. On the other hand, passive monitoring does not evaluate metrics
automatically, but it is the user who proactively requests their evaluation. The
monitoring of processes allows companies to ascertain whether certain performance
indicators, such as Key Performance Indicators (KPIs) and Process Performance
Indicators (PPIs), support the achievement of companies’ goals. KPIs represent the
companies’ business goals and are described in their strategic plans [7], whereas
PPIs are related to the processes instantiated in the companies to achieve their goals.
The incorporation of measures regarding the process instances into the business
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process execution can be crucial since it allows the adaptation of the process
execution according to the performance of other business process instances at any
given moment.

To measure the degree of efficiency of the process output and also the level of
achievement of the company goals supported by KPIs and PPIs, the involved mea-
sures must be queried. This chapter introduces Process Instance Query Language
(PIQL) as a mechanism to query these measures regarding the business process
status, thereby making it possible to adapt the current execution of the instances
based on the obtained measures. This language has been designed to be easily
understandable for nontechnical people, since the managers may not be familiar
with complex query languages. PIQL is close to the natural language and brings
flexibility and agility to organizations because it empowers the managers to adapt
many aspects of the organization by themselves.

The measures obtained by means of PIQL queries are useful in many scenarios,
e.g., internally, within the process instance under execution to make decisions based
on its status, or externally, in third-party applications that show the measured values
in a dashboard. For example, PIQL allows business experts to extract measures to
decide the assignment of a task to a person, depending on the number of activities
executed by him/her in the past, decide when a process must be started or stopped, or
determine whether a process evolves as expected. We have foreseen three scenarios
where the use of PIQL can be useful: decision-making using Decision Model and
Notation (DMN) [9], monitoring the evolution of the processes by means of external
dashboards, and management of business processes to decide the most suitable
process to execute and when it should be executed.

In order to illustrate a case where PIQL is used, an example is employed that
consists of a set of business processes related to component assembly in industry.
The example highlights the need to incorporate information about the instances of
other processes to adapt the execution of the current process according to the needs
and available resources at various moments.

The chapter is organized as follows: Firstly, Sect. 2 defines the main concepts
needed to understand the rest of the chapter. Secondly, Sect. 3 explains a scenario to
show the applicability of PIQL. Thirdly, Sect. 4 describes PIQL. Section 5 then
details the implementation of PIQL. Section 6 applies PIQL to the motivating
scenario, and Sect. 7 relates PIQL to the Process Querying Framework (PQF)
introduced in [11]. Finally, conclusions are drawn and future work is proposed in
Sect. 8.

2 Background

Processes of companies can be described using business process models. These
models represent the activities of a company, and they can be automated by means
of a Business Process Management System (BPMS). To lay the foundations of the
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basic business process terminology used in the chapter, we adopt the following
definitions provided by Weske in [12]:

Definition 2.1 A business process consists of a set of activities that are performed
in coordination in an organizational and technical environment.

Definition 2.2 A Business Process Management System (BPMS) is a generic
software system that is driven by explicit process representations to coordinate the
enactment of business processes.

Definition 2.3 A business process model is an abstract representation of a business
process that consists of a set of activity models and execution constraints between
them.

Definition 2.4 A business process instance represents a specific case of an opera-
tional business of a company and consists of a sequence of activity instances.

Activities in business processes can be manual activities (that is, not supported
by information systems), user interaction activities (performed by workers using
information systems), or system activities (which are executed by information
systems without any human involvement). Activities can also be classified into
atomic, those that cannot be decomposed, and non-atomic. An activity instance is
a specific case of an activity model. In other words, business process models act as
blueprints for business process instances, while activity models act as blueprints for
activity instances.

Definition 2.5 A task is an activity that cannot be decomposed.

BPMSs help companies to monitor the execution of business processes by means
of performance measures or indicators. These performance measures are usually
graphically represented in dashboards, which are software tools that help experts
to analyze data, detect business problems, and make decisions. KPIs and PPIs
are two kinds of performance indicators. KPIs are employed to describe what the
company wants to achieve (e.g., increase in the number of assembled components
by 10%). When the indicators are related to the measurements of the processes
of the organization, PPIs are used (e.g., reduce by 15% the time of the assembly
process). Several of these by measures, above all those related to PPIs, are usually
stored by BPMSs and can be obtained by observing processes and analyzing these
observations [1, 2]. The aforementioned notions can be defined as follows:

Definition 2.6 A dashboard is a tool commonly used in business to visually
represent the indicators that are related to business goal achievements.

Definition 2.7 A Key Performance Indicator (KPI) is an indicator that measures
the performance of key activities and initiatives that lead to the success of business
goals. A KPI often involves financial and customer metrics to describe what the
company wants. Achievement of KPIs indicates whether the company is attaining
its strategic goals or not.
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Definition 2.8 A Process Performance Indicator (PPI) is an indicator that involves
measures of the performance of the instances of the executed business processes.
PPIs are also related to the goals of the company but involve the measurement of
processes used to achieve them.

In order to support business process execution, every BPMS includes the follow-
ing components, as shown in the classical architecture published in [3]: an execution
engine, a process modeling tool, a worklist handler, and an administration and
monitoring tools. The external services represent external application or services
that are involved in the execution of a business process. The execution engine is
responsible for enacting executable process instances, distributing work to process
participants, and retrieving and storing data required for the execution of processes.
The process modeling tool is the component that allows users to create and modify
process models, annotate them with data elements, and store these models in or
retrieve them from a process model repository. The worklist handler is in charge
of offering work items to process participants and committing the participants to
work lists. Finally, the administration and monitoring tools administer and monitor
all the operational matters of a BPMS. These components retrieve and store data
from two repositories: the process model repository and the execution log repository.
The former stores process models, while the latter stores events related to process
execution. Note that in the classical architecture, there is no connection between
the data of the execution logs and the modeling module. In our approach, the PIQL
engine is the component in charge of connecting the administration and monitoring
tools and the process modeling tools. As a consequence, the modeler can execute
queries to evaluate the status of business process executions. In addition, the PIQL
engine is connected to execution engine, since the measures can be used internally in
the execution of other processes, and it is also connected to external services since
its measures can be used for different purposes, such as to monitor the status of the
BPMS in an external dashboard. Figure 1 shows the classical architecture with the
PIQL engine included.

Definition 2.9 Process Instance Query Language (PIQL) is a domain-specific
language (DSL) to query process and task instances in order to obtain measures
based on historical process executions.

Process modeling tools can use various notations to represent process models.
The de facto standard notation used for modeling business processes is Business
Process Model and Notation (BPMN), which supports business process modeling
by providing a notation that, on the one hand, is comprehensible to business users,
and, on the other hand, represents complex process semantics for technical users [8].

BPMN is not well-suited for modeling the decision logic since decisions are
often intermingled with the control flow of process models. The Object Management
Group (OMG) proposed DMN to decouple decision specifications from process
models. The goal of DMN is to provide a common notation that is readily
understandable by all business users in order to bridge the gap between the business
decision design and its implementation [9]. In other words, DMN can be seen as a
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Fig. 1 Architecture of a BPMS that includes a PIQL engine

tool that allows business users to describe repeatable decisions within organizations.
DMN provides two levels of modeling: the decision requirement level and the logic
level. The former is modeled by means of a Decision Requirement Diagram (DRD),
which shows how the decision is structured and what data is needed to make the
decision. The latter is modeled using decision tables, which is the standard way of
modeling complex business rules.

Definition 2.10 A decision table is a visual representation of a specification of
actions to be performed depending on certain conditions. A decision table consists
of a set of rules that specifies causes (business rule conditions) and effects (business
rule actions and expected results); it specifies which inputs lead to which outputs.

A decision table is represented by means of a table, where one column represents
one condition. For example, Table 1 shows a decision table that specifies which
assembly station should be used depending on the kind of available pieces and the
availability of the stations.

In Table 1, decision #1 states that if there are two or more #1657 pieces, five or
more #6472 pieces, and at least one #2471 piece, and only Station 6 is available,
then the component should be assembled in Station 6. Another example is Decision
#3 that results in the assembly of the component in Station 15. The letter “F” marked
with an “*” means “First” [9], and the decision engine will evaluate the rules in the
proposed order and stop once it has found a rule that applies.
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Table 1 Example DMN table for selecting a task based on the availability of resources

F* Input Output

No of pieces No. of pieces No of pieces Is Station 6 Is Station 12 Is Station 15
code #1657 code #6472 code #2471 available? available? available? Station

#ID (int) (int) (int) (Boolean) (Boolean) (Boolean) (string)
#1 >= 2 >= 5 >= 1 True False False Station 6
#2 >= 1 >= 2 >= 6 False True False Station 12
#3 >= 7 Any >= 1 False False True Station 15
. . . . . . . . . . . . . . . . . . . . . . . .

3 Motivating Scenario

In order to show the applicability of PIQL in a real-world context, we introduce
a motivating scenario related to the assembly process in a factory, similar to the
ones used in the automobile and aerospace industries. A factory produces a set of
Components in a production line. The production line is composed of a set of actions
defined as the Line of Pieces. Each Line of Piece is executed in a factory Station and
combines a set of Pieces. Figure 2 depicts a conceptual model of this scenario using
the Unified Modeling Language (UML) [10]. The conceptual model includes the
elements that are the most relevant elements to the assembly process.

The decision regarding which Components to assemble depends on the cus-
tomers’ requirements and the availability of the Pieces and Stations at the time. A
specific Piece can be used in various Components. As a consequence, when a Piece
is available, different assembly processes could be set up at that moment. Moreover,
the same Station can be used in different assembly processes, and therefore the
manager has to control the availability of the Station in each case. The management
of Stations and Pieces involves a set of crucial and risky decisions for the company.

Component
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Fig. 2 Conceptual model of assembly process in UML notation [10]
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Considering that there is a good amount of stock and that there are always Pieces
available, then the main problem is in making decisions about the Stations. These
decisions depend on all the running process instances, that is, Components that are
being assembled in parallel, Components that are waiting for the assembly to start,
or Components whose assembly is finishing.

Figure 3 shows two business processes related to the assembly of two different
types of components. These processes model the sequence of stations visited by
a component for its assembly. Although in both processes the components have to
pass through a number of stations, the order and requirements vary. On the one hand,
a “Type A Component” assembly must always pass through the three stations 6, 12,
and 15, although the order does not matter (hence the process model does not require
to visit all the three stations). On the other hand, a “Type B Component” assembly
varies according to the requirements of the component at any given time; it may visit
both stations, 12 and 15, or only visit one of the two. Finally, validation of “Type
A Component” is automated by checking if the component has visited all stations,
whereas validation of “Type B Component” requires expert supervision. The deci-
sions that route the execution from one station to the other can be seen in Table 1.

Querying data related to the status of the company, such as the number of
instances executed or availability of stations, is crucial in different contexts. The
following subsections introduce some of the contexts in which these queries are
essential.

Context 1: Dashboards
Business experts monitor and manage the evolution of the company’s business
processes, commonly by means of a dashboard. A dashboard visualizes several
indicators to help experts carry out correct management. For instance, the “increase
of the number of Type A Components by 24%” is an example of KPI defined for
measuring the goal “increase market share.” Meanwhile, “the number of instances
successfully executed” and “the instantiation time of the ‘Assembly of Type B
Component’ process” are examples of PPI. In order to obtain these indicators,
various measures should be defined: the number of executions of the “Assembly
of Type A Component” process indicates whether the KPI “increase of the number
of Type A Components by 24%” is reached, whereas the number of executions of
the “Assembly of Type B Component” process that have not been canceled solves
the PPI detailed above. To obtain the execution time of an instance, its start and
end times must be analyzed. In all these cases, the use of PIQL in obtaining these
measures is essential.

Context 2: DMN Tables
Another context in which PIQL is crucial is at decision points. In Fig. 3, both
diagrams contain decision tasks, such as the “Decide the tasks according to the
availability” task in the “Assembly of Type A Components” process. This task takes
into account the availability of Stations 6, 12, and 15 to decide which station should
be used to continue with the assembly of the component. The decision logic related
to this task can be modeled with a DMN table. In fact, Table 1 shows an example
logic behind the decision of the “Decide the tasks according to the availability”
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task. Depending on the number of pieces, whose codes are #1657, #6472, and
#2471, and on the availability of the stations, the decision varies. The availability
of Stations 6, 12, and 15 can be checked by executing a PIQL query since it is
necessary to ascertain whether other process instances are using these stations.

Context 3: Dataflow in Business Process Management
Finally, another context where PIQL becomes decisive is in the kind of information
that flows through the process, that is, the dataflow. At certain points, the infor-
mation related to other instances or resources is vital and should be included as
part of the dataflow. Following on with the previous example, after the execution
of the “Assemble in Station 5” task in the “Assembly of Type A Components”
process, there is a conditional event. The event needs to ascertain whether the
person in charge of the process instance is executing some task. If the person is
performing another task, then the process should wait until this person is released.
This information can be obtained through the execution of a PIQL query.

4 Process Instance Query Language

This section explains the main components of PIQL: syntax, semantics, and
notation. Furthermore, as the envisioned users of PIQL are nontechnical people,
a set of Patterns and Predicates is defined in this section to help them write queries
in a language that resembles the natural language.

A Process Instance Query Expression (PIQE) (an expression) is used to represent
a PIQL query, which is evaluated within the context of processes (P) or tasks
(T). The context specifies whether the query recovers information about process
instances or about task instances. Note that the result of a PIQE execution is
always a measure, that is, a numeric value. For example, Listing 1 shows a PIQE
that retrieves information about the number of process instances (note that the
expression starts with P to denote the process context). Furthermore, if we look
at the PIQE shown in Listing 1, we can find some other features such as (i) every
keyword or relation operator is written in uppercase letters and (ii) parentheses
could be used to group expressions.

Listing 1 Process instance query expression

P (ProcessName IS-EQUAL-TO "Assembly of Type A Components"
AND (Start IS-GREATER-THAN 2018-01-06)
AND (End IS-LOWER-OR-EQUAL-TO 2018-03-16));
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4.1 Syntax

The syntax of PIQL is defined using the Extended Backus-Naur Form (EBNF) [13].
Thus, if x and y are symbols, x? denotes that x can appear zero times or once, x+
denotes that x can appear one or more times, x* denotes that x can appear zero or
more times, and finally, x | y represents that either x or y can appear. In addition, non-
terminal symbols are enclosed in < and >, and symbols and keywords are enclosed
in single quotes. For the sake of clarity, the definition of the non-terminal symbol
<String> has not been included in the grammar shown below, but it should be taken
into account that a String is a sequence of characters that starts and ends with double
quotes. For instance, "This is a String" is a String.

〈PIQE〉 ::= 〈Context〉 〈Disjunction〉 ‘;’

〈Context〉 ::= ‘P’ | ‘T’

〈Disjunction〉 ::= 〈Conjunction〉 (‘OR’ 〈Conjunction〉)*
〈Conjunction〉 ::= 〈Negation〉 (‘AND’ 〈Negation〉)*
〈Negation〉 ::= ‘NOT’? 〈Comparison〉
〈Comparison〉 ::= 〈Addition〉 (〈ComparisonOperator〉 〈Addition〉)*
〈ComparisonOperator〉 ::= ‘IS-EQUAL-TO’ | ‘IS-NOT-EQUAL-TO’

| ‘IS-LOWER-THAN’ | ‘IS-GREATER-THAN’
| ‘IS-LOWER-OR-EQUAL-TO’
| ‘IS-GREATER-OR-EQUAL-TO’

〈Addition〉 ::= 〈ArithmeticOperand〉 ((‘PLUS’ | ‘MINUS’) 〈ArithmeticOperand〉)*
〈ArithmeticOperand〉 ::= ‘(’? 〈Operand〉 ‘)’? ((‘MULTIPLIED-BY’

|‘DIVIDED-BY’) ‘(’? 〈Operand〉 ‘)’? ‘)’*

〈Operand〉 ::= ‘(’ 〈Disjunction〉 ‘)’ | 〈Property〉 | 〈Value〉 | 〈Variable〉
〈Property〉 ::= ‘ProcessName’ | ‘TaskName’ | ‘Start’ | ‘End’ | ‘Canceled’

| ‘Who’

〈Value〉 ::= 〈Number〉 | 〈String〉 | 〈Date〉 | 〈Boolean〉 | ‘NULL’

〈Date〉 ::= 〈Integer〉 ‘/’ 〈Integer〉 ‘/’ 〈Integer〉
| 〈Integer〉 ‘-’ 〈Integer〉 ‘-’ 〈Integer〉

〈Boolean〉 ::= ‘true’ | ‘false’

〈Number〉 ::= 〈Integer〉 | 〈Float〉
〈Float〉 ::= 〈Integer〉? ‘.’ 〈Digits〉
〈Integer〉 ::= ‘-’?〈Digits〉
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〈Digits〉 ::= ‘(’‘0’..‘9’‘)’+

〈Variable〉 ::= ‘$’〈String〉

4.2 Semantics

The main concepts related to PIQL are detailed below.

Expression. An expression is a combination of one or more values, variables,
and operators. Each expression can be seen as one single query, and it should be
evaluated within a context: either the process or the task context.

Context. A context specifies whether one wants to retrieve information about
process instances (P) or task instances (T). The context determines the kind of
information and attributes that can be retrieved and/or used to define a query.

Process Instance Context. A process instance is described by a tuple

< CaseId,ProcessName, Start,End,Canceled,Who,ListOfGlobalData >,

where

• CaseId is an identifier that describes the process instance in an unequivocal way.
It is assigned by the BPMS when the instance is created.

• ProcessName is the name of the instantiated process model.
• Start is the date and time when the instance started.
• End is the date and time when the instance finished. If the instance has not

ended, this attribute is set to null.
• Canceled is the date and time when the instance was canceled. If the instance

has not been canceled, this attribute is set to null.
• Who is the person who has started the execution of the instance. If the instance

has been started by the system, this attribute is set to system.
• ListOfGlobalData is a collection of the process model global variables. The

instantiation of these variables can be crucial at decision points.

Task Instance Context. A task instance represents the information related to the
execution of a specific task within a process instance. It is described by the tuple:

< CaseId,TaskId,TaskName,ProcessName, Start,End,Canceled,Who >,

where the elements have the following meaning:

• CaseId is the identifier of the process instance of the activity being executed.
• TaskId is an identifier that describes the task instance in an unequivocal way. It

is assigned by the BPMS when the instance is created.
• TaskName is the name of the task.
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• ProcessName is the name of the process model that contains the task. Note
that this property is derived from CaseId (by querying the process whose id is
CaseId).

• Start is the date and time when the task started. If the task has not started, then
this attribute is set to null.

• End is the date and time when the task finished. If the task has not finished, then
this property is set to null.

• Canceled is the date and time when the execution of the task was canceled. If
the task has not been canceled, then this property is set to null.

• Who is the person who has started the execution of the task instance. If the
instance was started by the system, this attribute is set to system.

As already stated, the result of a PIQE is a measure, that is, a numeric value.
PIQE supports three types of operators to filter instances: Logical, Comparison, and
Arithmetic. Operators are modeled using uppercase letters and the hyphens symbol.
The operators supported by PIQL, and grouped by types, are described below.

Logical Operators combine two Boolean values. The following logical operators
are defined in PIQL:

• NOT: logical negation, it reverses the true/false outcome of the expression that
immediately follows.

• OR: it performs the logic operation of disjunction.
• AND: it performs the logic operation of conjunction.

Comparison Operators define comparisons between two entities. These com-
parison operators are applied to the data types specified in the grammar: Date,
Number, Float, Integer, and String. For numeric data types, natural sort order
is applied; for Date type, chronological order is applied; and the comparison
of String data is performed in alphabetical order. The following comparison
operators are defined in PIQL:

• IS-EQUAL-TO evaluates whether two elements have the same value.
• IS-NOT-EQUAL-TO evaluates whether two elements have different values.
• IS-GREATER-THAN evaluates to true if the first element of the expression has

a greater value than the second. For Dates, this means that the first date is later
than the second one.

• IS-GREATER-OR-EQUAL-TO returns false when the second element of the
expression has a higher value than the first one; otherwise, it returns true.

• IS-LOWER-THAN is the inverse of the previous operator. It returns true when
the first element of an expression has a lower value than that of the second
element; otherwise, it returns false. For Dates, this means that the first date is
earlier than the second one.

• IS-LOWER-OR-EQUAL-TO is the inverse of IS-GREATER-THAN operator.
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Table 2 Precedence of PIQL
operators

Precedence Operators Associativity

5 () Left to right

4 MULTIPLIED-BY Left to right

DIVIDED-BY

3 PLUS Left to right

MINUS

2 IS-EQUAL-TO Left to right

IS-NOT-EQUAL-TO

IS-LOWER-THAN

IS-GREATER-THAN

IS-LOWER-OR-EQUAL-TO

IS-GREATER-OR-EQUAL-TO

1 NOT Left to right

OR

AND

Arithmetic Operators are binary operators that define mathematical operations
between two entities. These operators are applied to numerical data. The
following arithmetic operators are defined in PIQL:

• PLUS: it performs the addition of the elements surrounding this operator.
• MINUS: in the A MINUS B expression, the MINUS operator performs the

subtraction of B from A.
• MULTIPLIED-BY: it performs the multiplication of the first and second

elements of the expression.
• DIVIDED-BY: it performs the division of the first element by the second

element.

Table 2 shows the precedence and associativity of the different operators defined
in PIQL. The column Precedence holds numbers that specify the precedence
of the operator specified in the row. The greater the number is, the higher
precedence the operators have.

Variable. A variable can be seen as a placeholder, as it is replaced with a specific
value at run-time. A variable can be used to write PIQEs in a more flexible way.
The value of a variable needs to be specified by the user at run-time. However,
there is also a set of system variables that do not need to be specified, which are:

• $yesterday evaluates to the day before the current date.
• $today or $current_date evaluates to the current date.
• $this_instant evaluates to the current timestamp.
• $tomorrow evaluates to the day after the current date.
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Two special symbols used in the PIQL grammar are composed of:

• “$”: this operator is used to indicate a variable.
• “;”: the semicolon operator marks the end of a PIQE.

4.3 Patterns and Predicates

Since we envision that the main users of PIQL will be nontechnical people, PIQL
is enriched with a set of patterns and predicates that help users to write queries in
a language that resembles the natural language. The patterns and predicates could
easily be defined for several languages. Thus, for example, there could be a set of
patterns for English speakers, another set for Spanish speakers, and so on. In this
chapter, the set of patterns for English speakers is defined, as shown in Tables 3
and 4. These patterns and predicates can be automatically translated into PIQEs.
Therefore, these patterns and predicates are not only the mechanisms that make
PIQL more friendly to nontechnical people but also the mechanisms that make the
language more flexible, because the patterns can be easily adapted to be closer to
the modeler’s mother tongue.

A pattern is a mapping between a sentence, or part of a sentence written in the
expert’s mother tongue, and an element of the PIQL grammar. For example, the
pattern “The number of instances of processes” is mapped to the Process Instance
Context element, in the case of the English language. This means that a nontechnical
user can start a query by writing “The number of instances of processes” instead
of just writing “P” to specify the context in which the query must be evaluated.
Table 3 shows the PIQL patterns defined for English speakers and their relation to
the grammar elements.

A predicate is a pattern that represents a Boolean-valued function written in
a natural language. For example, instead of writing “The number of instances of
processes whose end date is not equal to Null,” the user can write “The number
of instances of processes that are not finalized.” Predicates are transformed into
patterns, and then these patterns are transformed into PIQEs, written according
to the grammar introduced in Sect. 4.1. A set of predefined predicates and their
mappings to patterns is shown in Table 4.

Finally, note that the use of patterns and predicates is not mandatory. Thus,
third-party applications or technical users can also use the “raw” language (without
patterns and predicates).
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Table 3 PIQL patterns for English language

Grammar component Pattern

Process instance context The number of instances of processes

Task instance context The number of instances of tasks

Properties Attributes Pattern syntax
idCase With the case id

Process_Name With the name

Task_Name With the name

Start With the start date and time

End With the end date and time

Canceled Canceled

Who Executed by the user

ARITHMETIC_OP Operator Pattern syntax
PLUS Plus

MINUS Minus

MULTIPLIED-BY Multiplied by

DIVIDED-BY Divided by

BOOLEAN_OP Operator Pattern syntax
NOT Not

AND And

OR Or

COMPARISON_OP Operator Pattern syntax
IS-EQUAL-TO Is equal to

IS-NOT-EQUAL-TO Is not equal to

IS-LOWER-THAN Is less than

IS-GREATER-THAN Is greater than

IS-LOWER-OR-EQUAL-TO Is less than or equal to

IS-GREATER-OR-EQUAL-TO Is greater than or equal to

Table 4 PIQL predicates for English language

Predicate Transformed pattern

That are finalized End date is not equal to Null

That are not finalized End date is equal to Null

That are canceled Canceled is not equal to Null

That are not canceled Canceled is equal to Null

That are executed by {name} The user is equal to {name}

With start before {date and time} A start date is less than {date and time}

With end before {date and time} An end date is less than {date and time}

With start after {date and time} A start date is greater than {date and time}

With end after {date and time} An end date is greater than {date and time}
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5 Implementation

In order to validate the approach, an implementation of PIQL has been developed
using a set of mature technologies. The core element of the implementation is the
PIQL engine, which is in charge of executing queries and returning the results.1

Note that the PIQL engine can be connected to any system in order to integrate the
results of PIQEs in the various contexts in which PIQL may be used: dashboards,
DMN tables, and dataflows. Before going into the details of the PIQL engine
implementation, it should be mentioned that PIQL provides a dual format of a
query: a user format and a machine format, which is less verbose and better
processed by machines. The two formats and their relationships are depicted in
Fig. 4. Note that the user format is related to the set of patterns and predicates
introduced in the previous section, which helps users write queries in a language
closer to the natural language.

Figure 4 shows how the PIQL engine works. Firstly, a user writes a query using a
language close to English (user format). The PIQL engine then transforms the query
into a PIQE by means of a “Grammar preprocessor” (machine format). Note that a
PIQE does not contain any patterns or predicates and also that the “Grammar proces-
sor” is the component that allows the interaction with third-party applications that
may use the machine format. The “PIQL grammar processor” evaluates the PIQE by
extracting the information from the BPMS. Finally, the “Platform communication
interface” is the component that deals with different BPMS technologies by means
of different drivers. Figure 4 shows how the Camunda™ driver queries the BPMS
using a REST API.

As mentioned previously, PIQL can be used in different contexts: dashboards,
DMN tables, and dataflows. Hence, the PIQL engine should be integrated in each
context. As an example, Fig. 5 shows the architecture defined to include context
information in DMN tables. Since the integration of the PIQL engine in the other
contexts is similar to this model, the rest of the section details this example.

The BPMS chosen is that of Camunda™ since it is an open-source platform that
includes the workflow engine, the DMN evaluator, and the storage of logs for every
process, which are required to implement the proposed architecture. Camunda™
also includes a set of APIs, which is the mechanism employed to extract the
information regarding the processes and tasks needed for the evaluation of PIQEs.
The main components depicted in Fig. 5 are:

• REST Layer: This component is in charge of managing the communication
between Camunda™, the DMN evaluator, and the PIQL engine. This component
is implemented using a model—view—controller framework and it feeds the
DMN evaluator by means of a REST API that has been implemented using

1 The readers may test the PIQL engine at http://estigia.lsi.us.es:8099/piql-tester.

http://estigia.lsi.us.es:8099/piql-tester
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Fig. 4 Query transformation example

Jersey.2 The data exchanged using this component is in JSON format.3 When a
DMN decision has to be evaluated, the BPMS requests the information using the
REST Layer component. This request is then managed by the “Controller” layer.

• Controller: This component receives a request from the REST Layer and is
in charge of using the Grammar Preprocessor, if needed, and later, the PIQE
Grammar Helpers. Note that if the query is not written in the user-friendly
notation, then the preprocessor is not needed.

• Grammar Preprocessor: This component handles the mapping of the user-
friendly PIQL notation to PIQEs.

• PIQE Grammar Helper: This component, together with the PIQL Engine, is
responsible for resolving the PIQEs. The technology employed to implement this
component is xText, an open-source framework for the development of textual
domain-specific languages.4

• PIQL Engine: This component analyzes the query by means of the PIQE
Grammar Helpers. It then calculates the information needed to solve the query
and extracts that information from the BPMS. Finally, it returns the value of the
PIQE to the controller in order to finalize the request. Note that this component
does not have direct communication with the platform (Camunda™ in this case)
since, to decouple the engine from the platform, a driver is introduced. This driver
acts as an abstract interface to access the real platforms.

2 https://jersey.github.io/.
3 https://www.json.org/.
4 https://www.eclipse.org/Xtext/.

https://jersey.github.io/
https://www.json.org/
https://www.eclipse.org/Xtext/
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• Driver: A driver is responsible for communicating with a real platform and this
is the component that knows the specific details of that platform. Note that every
system can accept different requests and return different responses. Even worse,
there are ad hoc systems which do not provide any API but do provide other ways
of retrieving information. This means that one PIQE has to be reformulated, and
the reformulation depends completely on the system being used. For example, in
some cases, the driver should carry out data processing before returning PIQL
data, while in other cases a PIQE needs to be translated into several API requests.

• Camunda Driver: In the case of Camunda™ the driver uses the Camunda history
service, which, in turn, uses Camunda™ REST APIs.

• DAO Layer: This component is responsible for storing the business knowledge.
Hibernate is the technology employed to implement and manage the object-
relational mapping.5

• Business Knowledge Modeler: This component allows users to handle PIQEs and
to manage the DMN tables. The implementation of this component has taken
advantage of the architecture revealed herein and constitutes a Web application
implemented using HTML, CSS, and AngularJS.

6 Application

The following subsections show examples of queries that are used in the three
contexts explained during the chapter. Note that each query is written in the two
PIQL notations: the user-friendly format and the machine format.

6.1 Dashboard Enriched with PIQL

A dashboard is composed of a set of measures that enables business experts to
easily visualize the state of the company by means of different KPIs and PPIs.
An example of KPI in the context of the motivating scenario introduced in Sect. 3
could be “increase in the number of Type A Components by 24%.” The following
PIQL queries should be executed to obtain the measures that allow the user to verify
whether the KPI is reached:

• Query 1: The number of process instances with the name “Assembly of Type A
Components” that start after 2017-12-31 and end before 2019-01-01.

/* PIQE using user-friendly notation */
The number of instances of processes with the name

’Assembly of Type A Components’ that start
after 2017-12-31 and end before 2019-01-01

5 http://hibernate.org.

http://hibernate.org
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/* PIQE */
P ProcessName IS-EQUAL-TO ’Assembly of Type A Components

’ AND Start IS-GREATER-THAN 2017-12-31 AND End
IS-LOWER-THAN 2019-01-01;

• Query 2: The number of process instances with the name “Assembly of Type A
Components” that start after 2018-12-31 and end before today.

/* PIQE using user-friendly notation */
The number of instances of processes with the name ’

Assembly of Type A Components’ that start after 2018
-12-31 and end before $today

/* PIQE */
P ProcessName IS-EQUAL-TO ’Assembly of Type A Components

’ AND Start IS-GREATER-THAN 2018-12-31 AND End
IS-LOWER-THAN $today;

Note that the comparison of the results obtained from Query 1 and Query 2
determines whether the increase of 24% has been reached in 2019; if today is in
2019.

Additionally, an example of a PPI that could be shown in the dashboard is “the
number of successfully executed instances of the Assembly of Type B Component
process.” The corresponding PIQE calculates the number of process instances with
the name “Assembly of Type B Components” that are not canceled and that ended
before today.

/* PIQE using user-friendly notation */
The number of instances of processes with the name ’

Assembly of Type B Components’ that end before $today
and are not canceled

/* PIQE */
P ProcessName IS-EQUAL-TO ’Assembly of Type B Components’

AND End IS-LOWER-THAN $today AND Canceled IS-EQUAL-TO
null;

6.2 DMN Enriched with PIQL

In the DMN context, PIQL can be applied as an extension of the standard by means
of using expressions written in PIQL to define variables. These variables can be
included in decision tables. A decision table defines a set of input variables whose
values should be taken into account to make the decisions. In our approach, a PIQE
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Table 5 Adaptation of DMN Table 1 with PIQL

F* Input Output

No of pieces No of pieces No of pieces

cod. #1657 cod. #6472 cod. #2471 $avSt6 $avSt12 $avSt15 Station

#ID (integer) (integer) (integer) (integer) (integer) (integer) (string)

#1 >= 2 >= 5 >= 1 0 – – Station 6

#2 >= 1 >= 2 >= 6 – 0 – Station 12

#3 >= 7 Any >= 1 – – 0 Station 15

. . . . . . . . . . . . . . . . . . . . . . . .

can be used to calculate the value of the input variable. For example, the DMN table
in Sect. 3 (see Table 1) models the requirements that decide which task must be exe-
cuted in accordance with the availability of pieces and stations in the context of the
motivating scenario. Note that to calculate the availability of the different stations,
we need to query not only the running instances of the “Assembly of Type A Com-
ponent Process” but also the running instances of all the other processes that use
Station 6, 12, or 15. These queries can be executed using the PIQL engine. Table 5
is an adaptation of the DMN, Table 1, that takes the advantages of using PIQL.

The main difference between Tables 1 and 5 is related to the use of PIQL to
answer the questions, “Is Station 6 available?”, “Is Station 12 available?”, and “Is
Station 15 available?”. In Table 1, the cells in the “Is Station 6 available?” column
hold Boolean values, while the same cells in Table 5 hold integer values. These
integer values are the results of the evaluation of PIQEs whose values are stored
in the “$avSt6” variable. Equally, the “Is Station 12 available?” and “Is Station
15 available?” columns are replaced with the values that hold the “$avSt12” and
“$avSt15” variables. Note that the change of the data type (from Boolean to integer)
has been carried out because PIQEs always return numeric values. This requirement
is not a problem, because the availability of “Station 6” can be obtained by counting
the number of task instances with the name “Assemble in Station 6” and with a
null end date. If the result of this PIQE is 0, then the station 6 is available, that is,
nobody is using this station. In contrast, if the result of this PIQE is greater than or
equal to 1, then the station is not available. The PIQE that enables us to ascertain
whether station 6 is available, and whose value is stored in the “$avSt6” variable,
is formulated as follows:

/* PIQE using user-friendly notation */
The number of instances of tasks with the name ’Assemble in

Station 6’ that are not finalized

/* PIQE */
T TaskName IS-EQUAL-TO ’Assemble in Station 6’ AND End

IS-EQUAL-TO null;

Another place in which PIQL can be used is in the context of the “Validate
Process” task (see the “Assembly of Type A Components” process in Fig. 3). This
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task checks whether the component satisfies all the requirements to be assembled.
For example, one of the main requirements may be that all Type A Components
have to pass through the three stations (6, 12, and 15), without a predefined order,
to finish the assembly process. Thus, to check this requirement, the corresponding
PIQE has to answer the following question: Has a specific process instance already
executed the “Assemble in Station 6”, “Assemble in Station 12”, and “Assemble in
Station 15” tasks? Note that this question makes sense in a DMN scenario in which
a decision has to be made. In order to answer this question, three different queries
should be evaluated:

1. The number of instances of tasks with a name that is equal to Assemble in
Station 6 and with a case id that is equal to $id

2. The number of instances of tasks with a name that is equal to Assemble in
Station 12 and with a case id that is equal to $id

3. The number of instances of tasks with a name that is equal to Assemble in
Station 15 and with a case id that is equal to $id

After evaluating the queries, the decision task should check that the three results
are greater than zero.

/* PIQE using user-friendly notation */
/* $Q_St6 */
The number of instances of tasks with the name ’Assemble in

Station 6’ with CaseId is equal to $id
/* $Q_St12 */
The number of instances of tasks with the name ’Assemble in

Station 12’ with CaseId is equal to $id
/* $Q_St15 */
The number of instances of tasks with the name ’Assemble in

Station 15’ with CaseId is equal to $id

/* PIQE */
/* $Q_St6 */
T TaskName IS-EQUAL-TO ’Assemble in Station 6’ AND CaseId

IS-EQUAL-TO $id;
/* $Q_St12 */
T TaskName IS-EQUAL-TO ’Assemble in Station 12’ AND CaseId

IS-EQUAL-TO $id;
/* $Q_St15 */
T TaskName IS-EQUAL-TO ’Assemble in Station 15’ AND CaseId

IS-EQUAL-TO $id;

6.3 Dataflow Enriched with PIQL

Following with the motivating scenario introduced in Sect. 3, the conditional event
of the “Assembly of Type A Components” process (see Fig. 3) needs to determine
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whether the person in charge of the process instance is executing any task. The
availability of the person is stored in a variable of the process (whether local or
global), and its value can be obtained as a result of evaluating a PIQL expression.
Thus, the process uses the value of this variable to verify whether the event should be
thrown. The PIQE that is evaluated to calculate the value of the variable mentioned
previously should count the number of task instances executed by the user in charge
of the process instance that remain unfinished. Thus, if the user in charge of the
process is Lydia Friend, then the PIQE should be formulated as follows:

/* PIQE using user-friendly notation */
The number of instances of tasks executed by ’Lydia Friend’

that are not finalized

/* PIQE */
T Who IS-EQUAL-TO ’Lydia Friend’ AND End IS-EQUAL-TO null;

Remember that PIQEs return numeric values, and as a consequence, verification
of whether Lydia Friend is performing another task implies determining whether the
number of tasks that this person is executing is greater than zero or, in other words,
if the PIQE returns a number greater than zero.

7 Framework

Process Querying Framework (PQF) [11] establishes a set of components to be
configured to create a process querying method. As a query language, PIQL
implements some of these components. This section details these components and
how they relate to the framework. In addition, the answers to the decision questions
regarding the design that are implemented in PIQL, as suggested by the PQF, are
also included.

PIQL enables the extraction of information from process instances and the tasks
executed in these instances. During the execution of a specific process, not only the
information that flows through this process is crucial for making decisions about the
future evolution of the process, but also the information regarding the execution of
other processes. This dependency between process executions is due to information
and resources shared among them.

Therefore, since PIQL establishes a set of queries on top of the event log data
repository, the functional requirements become a set of Create, Read, Update, and
Delete (CRUD) operations over this repository. PIQL can read the system logs
at run-time to extract the necessary knowledge about past and current process
instances. Thus, the BPMS has to record the process and task executions and provide
a mechanism to query these executions, while PIQL establishes a set of “read
process” queries that isolates the user from technical details.

Figure 6 shows the main components of the PQF that PIQL supports. The
Model and Record active components denoted by rectangles are essential for
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Fig. 6 Instantiation of the process querying framework for PIQL

PIQL. Firstly, a process model is defined in a BPMS, and the event-log repository
is acquired automatically through the storage of the information generated by
process executions. This storage is carried out by the BPMS itself (see Fig. 1).
The majority of BPMSs enable the extraction of information about instances both
from past executions and from current executions (although the processes have not
finished). Therefore, this event-log repository includes information about finished
and unfinished processes. Section 4 defines the set of process querying instructions
supported by PIQL. PQF establishes that a Process Query Instruction is composed
of a process query intent and a set of process query conditions. The process query
intent of PIQL is to read in order to obtain a measurement (a specific quantity
value), and the process query conditions are its parameters, i.e., the inputs required
to execute a specific type of queries.

PIQL delegates the functionality of the “Prepare” component of the framework
to BPMSs, which internally have the necessary mechanisms for efficiently querying
the stored information and for providing the tools to take advantage of these
querying mechanisms. Once both the information stored and the queries are
established, the next step is the execution. As explained in Sect. 4, we define a
PIQL engine in order to execute the queries. At run-time, the PIQL engine links
the queries with the repositories and instantiates the specific values according to the
query under execution. The results of the PIQL queries are measurements that are
interpretable by users, which means the results may be integrated in a DMN table,
visualized in a dashboard, or used to enrich the dataflow, as seen in this Chapter.
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Finally, PIQL answers the decision questions regarding the design proposed by
the PQF [11] in the following way:

• DD1. Which behavior models to support?
PIQL defines queries over process instances and tasks executed in these instances.
Not only is the information generated by completed processes, but also the data
generated by running processes is considered to be stored. When certain pro-
cesses share the same resources and execute the same activities, the information
related to the running instances becomes crucial. Therefore, this information is
stored and queried using PIQL.

• DD2. Which processes to support?
PIQL establishes queries on top of finite process semantics, where the collection
of processes lead to a terminate state. However, since during the execution of a
process the information included in the instance is recorded, PIQL can extract the
instance information without the need of finishing the process.

• DD3. Which process queries to support?
The intent of PIQL is the reading in order to obtain a measurement, that is,
a numerical value. The operations in PIQL enable a combination of logic,
comparative, and arithmetic operations. PIQL is capable of selecting specific
behavior, i.e., process instance from a process repository, and of establishing a
measurement.

8 Conclusions and Future Work

This chapter introduces a query language called Process Instance Query Language
(PIQL) and the corresponding execution engine. In combination, these enable
business experts to extract information from BPMSs. The syntax of the language
has been specified using the Extended Backus-Naur Form (EBNF) grammar and
its semantics has been specified. In order to validate the approach, various artifacts
have been developed using a set of mature technologies: an implementation of the
grammar, an engine that can be used to extract information from different platforms,
and a driver for the integration of the engine with the Camunda™ BPMS platform.
The artifacts are part of a modular and extensible platform ready to be integrated
with other BPMS platforms.

In order to illustrate the potential of PIQL, a set of PIQL queries has been
presented. Furthermore, a real-world example of an assembly business process in
a factory has been introduced to demonstrate how PIQL may help nontechnical
people extract information about the status of the factory and, as a consequence,
improve the decision-making. The examples illustrate the flexibility of PIQL, and
how it can contribute to the organizations. Finally, we show how PIQL implements
the components of the PQF introduced in [11].

To conclude, future work will deal with (i) the extension of PIQL to enrich the
type of filters that can be included in queries with elements such as the use of
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resources, execution times, business load, and security aspects, (ii) the inclusion
of other data models to be queried, such as business models or business data. Note
that currently only business instances can be queried by means of PIQL, and (iii)
the improvement of the PIQL engine performance using data caches, indexing, and
other similar mechanisms.

Reprint Figures 1 and 5 are reprinted with permission from J. M. Pérez-Álvarez,
M. T. Gómez López, L. Parody, and R. M. Gasca. Process Instance Query Language
to Include Process Performance Indicators in DMN. IEEE 20th International Enter-
prise Distributed Object Computing Workshop. IEEE, 2016. pp. 1–8 (“© IEEE”).
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Process Model Querying



The Diagramed Model Query
Language 2.0: Design, Implementation,
and Evaluation

Patrick Delfmann, Dennis M. Riehle, Steffen Höhenberger, Carl Corea,
and Christoph Drodt

Abstract The Diagramed Model Query Language (DMQL) is a structural query
language that operates on process models and related kinds of models, e.g., data
models. In this chapter, we explain how DMQL works and report on DMQL’s
research process, which includes intermediate developments. The idea of a new
model query language came from observations in industry projects, where it
was necessary to deal with a variety of modeling languages, complex query
requirements, and the need for pinpointing the query results. Thus, we developed
the Generic Model Query Language (GMQL) tailored to deal with models of
arbitrary modeling languages and queries that express model graph structures of
any complexity. GMQL queries are formulas and professionals expressed the need
to specify queries more conveniently. Therefore, the next development step was
DMQL, which comes with functionality similar to GMQL, but allows to specify
queries graphically. In this chapter, we describe both query languages, their syntax,
semantics, implementation, and evaluation and come up with a new version of
DMQL, which includes new functionality. Finally, we relate GMQL and DMQL
to the Process Querying Framework.

1 Introduction

Manual analysis of process models has become unfeasible. Process models used in
industry often contain thousands or even tens of thousands of elements [15, 19].
Process model querying has become established as a useful means of extracting
relevant information out of process models, for instance, to support business process
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compliance management [13] or business process weakness detection [34]. Several
approaches and tools have been developed to provide automatic or semi-automatic
process model querying. Process model querying is applied at design time in
advance to and independent of the actual process execution [4, 13]. Most process
model query languages work in a similar way: one creates a formalized query that
describes the model part to be searched. Once the search is initiated, an algorithm
processes the search by analyzing the model for occurrences that adhere to the query
(matches). As a result, the query returns either TRUE or FALSE to denote that the
model matches the query or not, or it returns the entire set of matches depending
on the query approach. Figure 1 shows a small stylized example. Here, we query
the model for parts in which a document is edited after it is signed, which may be a
possible compliance violation or process weakness.

For detecting the described model part, the query in Fig. 1 describes two activities
that follow each other (not necessarily immediately, as indicated by the dashed
arrow). Both activities have an assigned document. The activities are labeled with
the respective verbs and wildcard characters to allow partial label matches. The two
documents are equated to enforce the detection of activities dealing with the same
document. After the search is finished, the detected match is highlighted, cf. Fig. 1.

Based on our experiences regarding requirements of model querying from
industry projects and various studies we conducted on existing query languages
[2, 8, 10], we identified a research gap which lead us to develop the Generic Model
Query Language (GMQL). GMQL aims to provide a structural query language
fulfilling the following requirements:

1. The query language should be applicable to any kind of graph-like conceptual
model, regardless of its modeling language or view (e.g., data model, process
model, or organizational chart). This means that it should be possible to
formulate queries for different model types (note that this does not mean that
the same GMQL query fits all kinds of models, but it is necessary to formulate
an event-driven process chain (EPC [30]) query for EPC models, a Business
Process Model and Notation (BPMN1) query for BPMN models, a Petri net [24]
query for Petri nets, etc.).

2. It should not be necessary to transform a conceptual model into a special kind of
representation (e.g., a state machine or the like) before a query can be executed.

3. It should be possible to formulate structural queries of any complexity.
4. The query language should consider attributes of any kind, i.e., attributes of

model vertices (such as type, name, cost, etc.) and edges (such as type, label,
transition probability, etc.).

5. Every match of a query in the regarded model or model collection should be
returned/highlighted.

Thus, the query language should realize configurable subgraph homeomorphism
working on both directed and undirected, vertex and edge attributed multigraphs,

1 ISO/IEC 19510:2013, https://www.iso.org/standard/62652.html.

https://www.iso.org/standard/62652.html
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Fig. 2 Exemplary queries in GMQL and DMQL

where parts of the attributes of the multigraphs represent the syntax of the
examined model’s modeling language. Unlike pure subgraph homeomorphism
[20], configurable means that it must be possible to adjust the kinds of returned
subgraphs according to the attributes of the vertices and edges and the length and
the vertex/edge contents of the paths that get mapped.

GMQL realizes the mentioned requirements and consists of the query language,
a query editor, and a query algorithm (we will further refer to all these components
as GMQL). It takes a query as input, which consists of a composition of set-altering
functions working on the sets of vertices and edges of the model to be queried.
The user defines (nested) functions, which denote specific sets of graph structures,
e.g., elements of a specific type, elements with a specific label, or elements that are
connected to other elements with specific characteristics. The sets that result from
the functions can be combined (e.g., unified, joined, subtracted, or intersected) to
assemble a query step by step.

We received feedback that GMQL is indeed helpful, but it is also difficult to use
as the query specification is hierarchical and text-based, and people are usually not
used to think in sets and formal notations [4]. Moreover, the users emphasized the
need for graphical specification of queries.

Therefore, we developed the Diagramed Model Query Language (DMQL) [8].
DMQL meets the aforementioned requirements, but, in addition, it provides a
graphical query editor and slightly extended analysis possibilities compared to
GMQL. DMQL is not based on GMQL, nor is it just a new concrete syntax for
GMQL. It comes with a different way of query specification, query formalization,
and search algorithm (for details, cf. Sect. 3). To provide a first impression of GMQL
and DMQL queries, the example query of Fig. 1 is formalized with GMQL and
DMQL in Fig. 2.

The development of GMQL and DMQL followed the Design Science Research
(DSR) methodology proposed by Peffers et al. [21]. First, we developed GMQL
and implemented it as a plug-in for the meta-modeling tool [εm].2 GMQL was

2 https://em.uni-muenster.de.

https://em.uni-muenster.de
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evaluated by applying it in a business process compliance management project in
the financial sector [4]. The mentioned issues (mainly the ease of use) resulted in the
development of DMQL, which was also implemented in [εm] (partly demonstrated
in [25]). DMQL was evaluated in two real-world scenarios, one dealing with
compliance checking in the financial sector [18] and the other one dealing with
business process weakness detection in several domains [9]. Based on the findings
of these evaluations, in this chapter, we introduce DMQL 2.0, which provides
enhanced functionality.

The remainder of this work is structured as follows: Sect. 2 introduces prelimi-
naries including definitions of conceptual models, modeling languages, query occur-
rences, and matches, which are valid for both GMQL and DMQL. Section 3 explains
GMQL and its abstract and concrete syntax and its semantics. Section 4 explains
DMQL including its basic functionality (Sects. 4.1 to 4.4) and the extensions of
DMQL 2.0 (Sect.4.5). Section 5 reports on the runtime complexity of GMQL’s and
DMQL’s matching algorithms, their runtime performance measured empirically,
and a utility evaluation. In Sect. 6, we position GMQL and DMQL within the
Process Query Framework [23]. Section 7 closes this work with a conclusion.

2 Preliminaries

GMQL and DMQL allow to query models regardless of the respective modeling
language, as both query languages are based on a meta-perspective of conceptual
models [10]. In essence, any model is seen as an attributed graph, which is
represented by its objects (vertices) and relationships (edges). The semantics of
the model’s objects and relationships is defined through attributes in the graph,
e.g., by specifying the type or other properties of an object or relationship. The
syntax is given through constraints on the graph that prescribe which kinds of
vertices and edges can be connected to each other. Given the attributed graph, it is
possible to formalize it (respectively, the original model) in a set-theoretic manner.
Accordingly, GMQL and DMQL are based on a generic meta-model of conceptual
models, shown in Fig. 3. Next, we provide a definition of a conceptual model based
on the meta-model.

Definition 2.1 (Conceptual Model) A conceptual model is a tuple M =
(V ,E, Tv, Te, C, α, β, γ ), where V is a set of vertices and E is a set of edges
between the vertices. Here, E is defined as E = ED ∪EU , where ED ⊆ V ×V ×N

is the set of directed edges, and EU = {{v1, v2, n} | v1, v2 ∈ V, n ∈ N} is the set
of undirected edges. We denote Z = V ∪ E as the set of all vertices and edges.
Tv(Te) are sets of vertex (edge) types such as “activity”, “event”, “control flow”,
“data input”, and the like. C is a set of captions, i.e., labels or other attribute values.
For assigning vertices (edges) to vertex (edge) types or vertices and edges to their
values, we use the functions α : V �→ Tv , β : E �→ Te, and γ : Z �→ C, where α
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Fig. 4 Exemplary conceptual model

assigns a node in V to its type in Tv , β assigns an edge in E to its type in Te, and γ

assigns an element in Z to a caption in C.

The reason why we use 3-tuples to define edges is that we need to be able to
define multiple, distinguishable edges between the same vertices in multigraphs.
This means that for each new edge between the same vertices, we create a new
3-tuple with an increased index n ∈ N. Note that we explicitly refrain from the state-
ment v1 �= v2 in the definition of undirected edges to allow undirected self-loops.

Vertices and edges can both have a value (i.e., their caption). It depends on the
modeling language if vertices should have additional attributes (such as duration,
cost, description, or the like). In such cases, we define additional attributes in the
same way as vertices. That is, such additional attributes are vertices. However, they
are visualized differently from common vertices. While common vertices are usu-
ally visualized as shapes, attributes are not. They can rather be accessed by opening
a context menu. Attributes are assigned to vertices via undirected edges. Attributes
also have values (e.g., “30 min” for the attribute duration of an activity vertex).

Figure 4 shows an exemplary process model in EPC notation. It can be
formalized via V = {v1, v2, v3, v4, v5}, E = {e1, e2, e3, e4}, e1 = (v1, v2, 1),
e2 = (v2, v3, 1), e3 = {v2, v4, 1}, e4 = {v2, v5, 1}, Tv = {function, event,
cost, duration}, Te = {control-flow_ef , control-flow_fe, function-cost, function-
duration}, C = {“bill arrived”, “check bill”, “bill checked”, “10,- e”, “5 min”},
α(v1) = α(v3) = event, α(v2) = function, α(v4) = cost, α(v5) = duration, β(e1) =
control-flow_ef , β(e2) = control-flow_fe, β(e3) = function-cost, β(e4) = function-
duration, γ (v1) =“bill arrived”, γ (v2) =“check bill”, γ (v3) =“bill checked”, γ (v4)

=“10,- e”, and γ (v5) =“5 min”.

Definition 2.2 (Modeling Language) A modeling language is a pair L = (TV ,

TE). TV describes a set of vertex types. TE = TED ∪ TEU is a set of edge
types, where TED ⊆ TV × TV × N is a set of directed edge types and TEU ⊆
{{tvx, tvy, n}|tvx, tvy ∈ TV , n ∈ N} is a set of undirected edge types (cf. [8]).

The definition above makes it possible to allow different edge types between the
same vertex types, as they are present in several modeling languages. For instance, in
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EPCs, it is common to use both the edge type input and the edge type output between
functions and data objects. As another example, class diagrams allow four edge
types, composition, association, generalization, and aggregation between classes.
Note that we explicitly refrain from the statement tvx �= tvy in the definition of
undirected edge types to allow undirected self-loops.

Definition 2.3 (Query Matches) A query Q that is applied to a model M returns
a set of query occurrences, which are subsections of the queried model graph. The
details of the formal definitions of GMQL and DMQL queries can be found in the
dedicated subsections below.

Given a conceptual model M , a query occurrence of a query Q in M is a set
Z′ ⊆ Z, where Z is the set of all vertices and edges (see Definition 1).

GMQL and DMQL can be used to query a conceptual model M and as a result
present the user a set of all query occurrences in M . We call such a set of query
occurrences query matches.

Let M be the set of all conceptual models, Q the set of all queries, and PM

the set of all possible query occurrences. Then, the query matches are defined as a
function Match: M×Q→P(PM ), which maps a specific model M to the set of
all query occurrences of Q contained in the model.

In other words, Match(M,Q) returns a set of subgraphs of M , which correspond
to query Q. Detailed formalizations of how matches are identified are given in
Sects. 3 and 4.

3 The Generic Model Query Language (GMQL)

GMQL provides set-altering functions and operators, which exploit the set-based
representation of a model to execute queries. GMQL queries return result sets, i.e.,
parts of models, which satisfy the conditions of the queries [10]. A GMQL query
can be composed of different nested functions and operators to produce arbitrarily
complex queries.

GMQL can be used to find model subgraphs, which are partly isomorphic and
partly homeomorphic with a predefined query. The query execution returns every
query occurrence and thus allows to present the user all sections of the model that
satisfy the query. In the following, we introduce the syntax and semantics of GMQL.

3.1 Syntax

A GMQL query consists of functions and operators, cf. [10]. A GMQL function
has an identifier and at least one input parameter. For instance, regard the GMQL
function

ElementsOfType(X, t). (1)
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The identifier of this function is “ElementsOfType”. This indicates that the
function can be used to return model elements of a certain type. The function takes
two parameters. The first parameter is a set X ⊆ Z (i.e., any set of model elements).
This set is the search space. It provides the information that is meant to be queried
by the function. In the statement of listing (1), the user could, for instance, provide
the set Z of all elements of a model as an input to the function. This would allow to
search the entire model. The second parameter is a parameter expression. In GMQL,
parameter expressions are inputs to functions which are not sets, that is, single
values. Depending on the specific functions, these could be integers, strings, values
of variables, or in the case of listing (1), an element type the elements of Z should
be of (i.e., a value of an enumerated type). For the example in Fig. 4, the query
ElementsOfType(Z, “Event”) would return the query occurrences {v1} and {v3}.

Other than providing sets as inputs to functions, it is also possible to nest
functions and operators. To this end, a function can, for instance, be provided as
the parameter X, e.g.,

ElementsOfType(GMQLFunction(Parameters), t). (2)

Here, an initial search space is modified via the inner GMQLFunction, with its
respective parameters, and this modified search space is then used as a basis for
the introduced ElementsOfType function. Nesting functions and operators allows to
define complex queries tailored by the user. Next, we define the syntax of GMQL
[10] using the Extended Backus-Naur Form (EBNF).3 A GMQL query Q is defined
as follows:

Q = subQueryExpression {"," equationExpression};

subQueryExpression = functionExpression |
operatorExpression |
setExpression;

Each query consists of a subQueryExpression that carries the actual query
and, optionally, one or more equation expression(s) used to compare variables from
the query. A subQueryExpression is either a functionExpression, an
operatorExpression, or a setExpression.

A setExpression is the simplest input of a query and represents the basic
input set V , E, or Z.

setExpression = "V" | "E" | "Z";

3 ISO/IEC 14977:1996, https://www.iso.org/standard/26153.html.

https://www.iso.org/standard/26153.html
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A functionExpression consists of the function’s identifier (see the list
of possible function identifiers below), followed by an opening bracket and one
or more subQueryExpressions or parameterExpressions. Using the
subQueryExpression as a function parameter makes it possible to nest queries.

functionExpression = functionIdentifier "(" subQueryExpression
["," (parameterExpression | subQueryExpression)] [","

(parameterExpression | subQueryExpression)]")";

functionIdentifier = "ElementsOfType" |
"ElementsWithAttributeOfValue" |
"ElementsWithAttributeOfDatatype" |
"ElementsWithRelations" |
"ElementsWithSuccRelations" |
"ElementsWithPredRelations" |
"ElementsWithRelationsOfType" |
"ElementsWithSuccRelationsOfType" |
"ElementsWithPredRelationsOfType" |
"ElementsWithNumberOfRelations" |
"ElementsWithNumberOfSuccRelations" |
"ElementsWithNumberOfPredRelations" |
"ElementsWithNumberOfRelationsOfType" |
"ElementsWithNumberOfSuccRelationsOfType" |
"ElementsWithNumberOfPredRelationsOfType" |
"ElementsDirecltyRelated" | "AdjacentSuccessors" |
"Paths" | "DirectedPaths" | "Loops" |
"DirectedLoops" | "PathsContainingElements" |
"DirectedPathsContainingElements" |
"PathsNotContainingElements" |
"DirectedPathsNotContainingElements" |
"LoopsContainingElements" |
"DirectedLoopsContainingElements" |
"LoopsNotContainingElements" |
"DirectedLoopsNotContainingElements";

A parameterExpression is used to input a single value into a function,
such as vertex or edge types. It is either an Integer allowing arbitrary numbers,
an AttributeValue allowing arbitrary strings, an ElementType allowing
one of the element types in (TE ∪ TV ), a variable used to make comparisons in
equationEx- pressions, or an AttributeDataType.
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parameterExpression = Integer | ElementType |
AttributeDataType | AttributeValue | Variable;

AttributeDataType = "INTEGER" | "STRING" | "BOOLEAN" |
"ENUM" | "DOUBLE";

An operatorExpression is either a unaryOperatorExpression
or a binaryOperatorExpression. Both start with an identifier, either
a unaryOperatorIdentifier or a binaryOperatorIdentifier,
followed by an opening bracket, one or two parameters, and a closing bracket.
The possible operator identifiers can be taken from the list below. SELFUNION and
SELFINTERSECTION take one parameter, and all the others take two.

operatorExpression = unaryOperatorExpression |
binaryOperatorExpression;

unaryOperatorExpression = unaryOperatorIdentifier
"(" subQueryExpression ")";

unaryOperatorIdentifier = "SELFUNION" | "SELFINTERSECTION";

binaryOperatorExpression = binaryOperatorIdentifier
"(" subQueryExpression "," subQueryExpression ")";

binaryOperatorIdentifier = "UNION" | "INTERSECTION" |
"COMPLEMENT" | "JOIN" | "INNERINTERSECTION" |
"INNERCOMPLEMENT";

Finally, an equationExpression is used to compare values of variables
that have been used in a query.

equationExpression = Variable ("=" | "!=" | "<" | ">" |
"<=" | ">=") Variable;

The values of the variables are calculated at runtime. For instance, the query

DirectedPaths(ElementsOfType(V,A),ElementsOfType(V,B)),

A = B,

returns all directed paths that start and end with a vertex of the same type (recall that
V is the set of all vertices of the input model). If the query was applied to an EPC,
for instance, it would return all directed paths from function to function, from event
to event, from XOR connector to XOR connector, etc. Each path that matches the
query is returned as one result set. This means that the overall result of the query can
consist of several sets. Each such set contains the start and end vertex of the path as
well as all vertices and edges on the path.
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3.2 Semantics, Notation, and Query Example

A GMQL query is performed by applying it to the set-based formalization of a
model in order to retrieve the respective matches. GMQL provides an extensive set
of functions and operators. Functions allow to query for element types, element
values, relations to other elements, paths, and loops. Operators, such as UNION,
INTERSECTION, COMPLEMENT, and JOIN, allow to combine functions to create
arbitrarily complex queries. Due to space limitations, we omit a full specification of
functions’ and operators’ semantics. Please refer to [10] for details.

To provide an example, we revisit the exemplary function ElementsOfType(X, t).
As discussed, this function returns a subset of elements from X which are of type
t . We recall that Z is the set of all elements of a conceptual model M , X ⊆ Z, and
α and β are functions that assign vertices and edges to their types. The semantics
of ElementsOfType is then defined by ElementsOfType(X, t)={x ∈X|α(x) =
t ∨ β(x) = t}.

When computing matches, query occurrences are determined through an appli-
cation of the respective function or operator semantics. In case of nested functions,
the output of inner functions is passed as input to outer functions, and the semantics
is evaluated accordingly. The overall query result builds up incrementally, allowing
to traverse the resulting query tree in post order.

To provide an example, we consider a scenario from business process weakness
detection. In business process models, certain constructs may be syntactically
correct but represent a shortcoming (i.e., represent an inefficient or illegitimate part
of the process) and should hence be avoided. To detect such parts, we can apply a
corresponding GMQL query. The query returns all occurrences of the weakness, and
the user can decide how the weak sections of the process model shall be improved.
An example of such a weakness pattern is a document that is printed and scanned
later on. The user may be interested in all parts of the process model where such a
“print–scan” pair of activities exists.

The corresponding GMQL query would require several functions and operators,
the semantics of which we introduce exemplarily. To express that we are searching
for execution paths, we use the function DirectedPaths(X1,X2), which takes two
sets of elements, where the first set represents possible starting points of the paths
and the second one represents possible end points of the paths. DirectedPaths
returns all directed paths that start in an element of X1 and end in an element of
X2, where each path is captured as a set of elements (i.e., both the vertices and
edges of the path). To express that the process model’s activities are annotated with
documents, we make use of the GMQL function AdjacentSuccessors(X1,X2). It
returns all pairs of elements (one from X1 and the other from X2) that are connected
by a directed edge, where the source of the edge is an element from X1 and the
target of the edge is an element from X2. To access the contents (i.e., the labels)
of model vertices, we use the function ElementsWithAttributeOfValue(X, t, u) that
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takes a set of elements X, an attribute type t , and a value u as input and returns
all elements from X that carry an attribute of type t , which in turn carries the value u.

DirectedPaths(
SelfUnion(InnerIntersection(
ElementsOfType(V,activity),
AdjacentSuccessors(
ElementsWithAttributeOfValue(
ElementsOfType(V,activity),caption,"*print*"),

ElementsWithAttributeOfValue(
ElementsOfType(V,document),caption,A)))

SelfUnion(InnerIntersection(
ElementsOfType(V,activity),
AdjacentSuccessors(
ElementsWithAttributeOfValue(
ElementsOfType(V,document),caption,B),

ElementsWithAttributeOfValue(
ElementsOfType(V,activity),caption,"*scan*"))))

A=B

Consider the query shown above. The most inner function ElementsWithAttribu-
teOfValue(ElementsOfType(V, activity), caption, “ ∗ print ∗ ") returns all activ-
ity vertices that carry “print” in their names. The other inner function
ElementsWithAttributeOfValue(ElementsOfType(V, document), caption,A) returns
all document vertices that carry a specific name not known at this stage, however
represented through the variable A. The next outer function AdjacentSuccessors
takes the results of the two inner functions as input and returns all model sections
where an activity vertex with “print” in its name is connected to a document vertex
via a directed edge pointing to the document vertex. The result of the other function
AdjacentSuccessors (sixth last row of the listing) is calculated analogously. As
the results are model sections, AdjacentSuccessors consequently returns a set of
sets as a result. To find paths that reach from a “print” activity vertex having a
document as output to a “scan” activity vertex having a document as input, we
search for paths from the former to the latter. DirectedPaths takes sets as input and
not sets of sets. Thus, we need to extract the activity vertices out of the intermediate
result sets before we use them as inputs for the DirectedPaths function. We do
this through the use of operator INNERINTERSECTION, which performs a set
intersection of ElementsOfType(V, activity) with the inner sets of the results of the
AdjacentSuccessor function. What remains is the activity vertices we searched for,
still in sets of sets. Hence, the last step is to transform the sets of sets into single sets,
which is done via SELFUNION. The outer function DirectedPaths now takes the
single sets as input that only carry the activity vertices having documents annotated.
The final result is a set of paths, each from an activity with a document annotated
to another activity with a document annotated. Each path is encoded as a set of
vertices and edges that lie on the path. To assure that we only find sections of a
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process where the same document is printed and scanned subsequently, we use the
variables A and B for the names of the documents and require that their values are
equal (cf. the last line of the listing).

The rest of the functions and operators of GMQL work similarly to those above
and allow to search for different kinds of structures and to assemble the sub-queries
in novel ways. To conclude, we can construct arbitrarily complex queries that
address the granularity of elements, the relationships between elements, constraints
regarding paths and loops, or specific multiplicities of certain elements or relations,
that is, counting. The queries can then be used to search conceptual models for query
occurrences and present these to the user.

Results of GMQL queries are highlighted in the model that is currently examined
by surrounding the vertices and edges involved in a query occurrence with colored
bold lines. If there is more than one query occurrence, the user can browse through
the results [10]. The GMQL function names are given in a comprehensible manner
to increase usability for unexperienced users. For further details on the semantics of
individual functions and operators, refer to [10].

3.3 The Transition from GMQL to DMQL

While GMQL is a powerful language for querying arbitrary conceptual models in
the context of the requirements identified in [8], the queries must be formulated
using textual formalisms. A utility evaluation of GMQL [4] has shown that users
appreciate graphical specification of queries, as formal textual statements are
regarded complicated with low ease of use. Hence, we developed a graphical
concrete syntax for GMQL called vGMQL [32]. However, we experienced that
assembling queries through defining, reducing, nesting, intersecting, unifying, and
joining sets of model elements as it is required by the abstract syntax of GMQL
merely with graphical symbols does not increase its ease of use. In other words, we
cannot “draw” a query in a way such that it looks like the kinds of model sections we
are searching for. Therefore, we created DMQL [8]. This model query language is
built on the same formal foundation as GMQL (see Sect. 2) and supports graphical
specification of queries. Particularly, the concrete syntax of DMQL is shaped in a
way such that a query looks much like the kinds of model sections that should be
searched for. Consequently, DMQL is not just a new concrete syntax for GMQL
(like vGMQL is), but a completely new language with an own way of specifying
queries, an own abstract and concrete syntax, and own semantics. The following
section introduces DMQL and discusses its relation to GMQL.

4 The Diagramed Model Query Language (DMQL)

While GMQL allows the user to define textual queries, DQML focuses on a
visual syntax [8–10]. This helps users to formalize queries in a more user-friendly
way. DMQL’s matching algorithm, unlike the one of GMQL, is based on an
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adapted graph matching algorithm known from algorithmic graph theory [8, 11]. In
particular, the query algorithm extends subgraph homeomorphism [20] working on
both directed and undirected, vertex and edge attributed multigraphs, where parts
of the attributes of the multigraphs encode the syntax of the examined models.
Thus, DMQL does not build up a query through set-altering functions and operators,
like GMQL does, but uses a visual query graph as input. DMQL then searches for
extended-homeomorphic occurrences of the input graph in the queried models [8].
In order to make the visual graph suitable as input for the algorithm, it is transformed
into a formal representation. Like GMQL, DMQL is capable of processing any
conceptual model, and therefore it is based on the same meta-model as GMQL (see
Fig. 3). Thus, the definition of the conceptual model, the modeling language, and
the query occurrence and query match is identical for both query languages and is
listed in Sect. 2, Definitions 1 to 3.

DMQL allows to query models of multiple modeling languages. This means that
we can define queries whose occurrences might span models of different modeling
languages. For instance, a query expressing the so-called four-eye-principle requires
that a document is checked twice in a process, where the second person who checks
is the supervisor of the person who makes the first check. The information about the
order of the activities can be taken from the process model; however, the information
if the second person is a supervisor of the first one can only be taken from an
organizational chart. Thus, a query that checks if the four-eye-principle is realized
in a business process has to work on multiple modeling languages.

4.1 Syntax

A DMQL query is a tuple. It is defined as Q = (VQ,EQ,PV , PE, δ, ε, Γ,G).
In DMQL, a query is a directed multigraph consisting of vertices VQ and edges
EQ ⊆ VQ × VQ × N. Each vertex vQ in VQ and each edge eQ in EQ can
be assigned properties, which define how the query vertices and edges should be
mapped to model vertices and edges. The properties are assigned by two functions:
δ : VQ → PV and ε : EQ → PE . PV and PE are sets of tuples and contain
vertex and edge properties, where PV ⊆ VID × VCAPTION × VTYPES and
PE ⊆ EID×ECAPTION×DIR×MINL×MAXL×MINVO×MAXVO×MINEO×
MAXEO × VTYPESR × VTYPESF × ETYPESR× ETYPESF × Θ . Γ is the set of
modeling languages the query is applicable to, and G is a set of global rules (see
explanation at the end of this section).

A property of a query vertex is a tuple and consists of the following components:
VID is a set of query vertex IDs, and vid ∈ VID is a string that represents the ID
of one query vertex. IDs are not immediately used for matching but to build rules
within a query (similar to the equation expression in GMQL, see section on global
rules below). VCAPTION is the set of all vertex matching phrases. Correspondingly,
vcaption ∈ VCAPTION defines the caption that a vertex in a model should have to
be matched. vcaption is a string and can contain wildcards. VTYPES = P(TV ) is
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the set of all possible sets of vertex types. Consequently, vtypes ∈ VTYPES is a set
of vertex types. Each vertex in a model that has one of these types is a matching
candidate.

A property of a query edge is a tuple and consists of the following components:
EID is a set of query edge IDs that are used analogously to vertex IDs. Correspond-
ingly, eid ∈ EID is a string that represents the ID of one query edge. ECAPTION
is the set of all edge matching phrases. ecaption ∈ ECAPTION defines the caption
that an edge in a model should have to be matched. It is a string and can contain
wildcards. DIR = P({org, opp, none}) is the set of all possible combinations
of edge directions. Therefore, dir ∈ DIR is a subset of {org, opp, none} (i.e.,
dir ⊆ {org, opp, none}) and defines which direction a model edge should have in
order to be mapped to the query edge. If a model edge to be mapped must have the
same direction as the original query edge, org needs to be chosen. If we choose opp,
then the model edge must have the opposite direction of that in the query. Lastly,
none means that the model edge to be mapped must be undirected. We can combine
these three options in an arbitrary way, for instance, if we choose org and opp, we
allow the mapped edges to have any direction.

MINL, MAXL, MINVO, MAXVO, MINEO, and MAXEO are sets of natural
numbers including −1, i.e., MINL = MAXL = MINVO = MAXVO = MINEO =
MAXEO = N0 ∪ {−1}. minl ∈ MINL and maxl ∈ MAXL, (minl ≤ maxl) define if
the query edge should be mapped to a single edge or a path in the model. If both
are equal to 1, then the query edge is mapped to a single edge in the model. If
maxl > minl, then the query edge is mapped to a path with at least minl and at most
maxl edges. If maxl = −1, then the paths to be mapped can have any maximum
length. The properties explained next are only evaluated if maxl ≥ 2.

minvo ∈ MINVO, maxvo ∈ MAXVO, mineo ∈ MINEO, and maxeo ∈ MAXEO
define if a path that gets mapped to a query edge is allowed to cross itself, that is, run
multiple times over the same model vertices and/or edges (so-called vertex and edge
overlaps). For instance, if minvo = 0 ∧ maxvo = 1, then the path to be mapped is
allowed to cross itself once in one vertex, that is, one vertex on the path is allowed
to be visited twice (but does not have to because minvo = 0). Edge overlaps are
controlled in a similar way by mineo and maxeo. If maxvo = −1 (maxeo = −1),
then the matching algorithm allows any number of vertex (edge) visits.

vtypesr ∈ VTYPESR (with VTYPESR = P(TV )) is a set of vertex types and
requires that for each vertex type contained in vtypesr there is at least one vertex
belonging to that type on the path. vtypesf ∈ VTYPESF (with VTYPESF =P(TV ))
is also a set of vertex types and requires that none of the vertices on the path belongs
to any of the vertex types contained in vtypesr.

etypesr ∈ ETYPESR (with ETYPESR =P(TE)) and etypesf ∈ ETYPESF (with
ETYPESF =P(TE)) work analogously to vtypesr and vtypesf , however with edge
types. Element types cannot be both required and forbidden on paths, so etypesr ∩
etypesf = ∅ and vtypesr∩vtypesf = ∅. All properties that relate to paths are ignored
as soon as maxl = 1. An exception is etypesr, which relates to a single edge in case
maxl = 1. Then, a single matched model edge must have one of the types in etypesr.
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θ ∈ Θ is a set of tuples, where Θ =P(Q×{req, preq, forb, pforb}). Each such
tuple refers to another query Q′ in Q and a constraint req, preq, forb, or pforb. The
constraint determines whether occurrences of Q′ are allowed/required to lie on the
path that is mapped to the query edge. For example, a query edge with θ �= ∅ can
be mapped to a path in a model if the following requirements hold [8, p. 485]:

• (Q′, req) ∈ θ : The path contains at least one complete occurrence of Q′, i.e., all
elements of at least one occurrence of Q′ lie on the path.

• (Q′, preq) ∈ θ : The path contains at least one partial occurrence of Q′, i.e., at
least one element of at least one occurrence of Q′ lies on the path..

• (Q′, forb) ∈ θ : The path does not contain any element of any occurrence of Q′,
i.e., no element of any occurrence of Q′ lies on the path.

• (Q′, pforb) ∈ θ : The path does not contain a complete occurrence of Q′ but can
contain parts of it.

Finally, G = (gmaxvo, gmaxeo, R) is a set of global rules, which apply to the
overall query. gmaxvo and gmaxeo are numbers handled similarly to maxvo and
maxeo. They define if the matched paths are allowed to overlap among each other
and how often. R is a set of rules that are operating on the properties of query
vertices and edges. A rule r ∈ R is an equation that must obey the following syntax
given in EBNF [8, p. 485]:

rule = ["NOT"] subrule | ["NOT"] "(" subrule boolop subrule")";

subrule = rule | comparison;
boolop = "AND" | "OR" | "XOR";

comparison = compitem compop compitem;
compop = "==" | "!=" | "LIKE" | "<" | ">" | "<=" | ">=";
compitem = number_expression | string_expression | boolean;

number_expression = number calcop number;
number = "(" number_expression ")" | number_function |

number_primitive;
number_function = "[" ID "].[" ID "].value" | "[" ID "]."

property "." aggregate;
property = "PREDECESSORS" | "SUCCESSORS" |

"UNDIRECTED_NEIGHBORS" | "NEIGHBORS" |
"OUTGOING_EDGES" | "INCOMING_EDGES" |
"UNDIRECTED_EDGES" | "EDGES" | "NODES";

aggregate = "count()" | "max([" TV "])" | "min([" TV "])" |
"avg([" TV "])" | "sum([" TV "])";

calcop = "+" | "-" | "*" | "/" | "%";
number_primitive = INTEGER | FLOAT;

string_expression = single_string {"+" string_expression};
single_string = string_function | string_primitive;



132 P. Delfmann et al.

string_function = "[" ID "]."type | "[" ID "].[" ID "].value";

string_primitive = STRING;

Boolean = "[" ID "].[" ID "].value" | "TRUE" | "FALSE";
ID = VID | EID;

Such a rule evaluates properties of query matches and returns either TRUE or
FALSE. Only those matches the rules of which evaluate to TRUE are returned. The
properties of everything that can be given an ID in the query can be compared
(i.e., vertices, edges, and paths). For instance, we can compare not only values of
attributes (i.e., strings, numbers, or Boolean values) of vertices and edges and types
of vertices and edges (i.e., strings) but also other aggregated properties such as the
number of adjacent edges or the maximum value of an attribute of the neighboring
vertices (i.e., numbers).

Strings, numbers, and Boolean values can be compared via comparison operators
(compop) that evaluate to TRUE or FALSE, while LIKE only works on strings
and >, <, <=, and >= only work on numbers. Attribute values can be strings,
numbers, or Boolean values. Properties describe the environment of a vertex or
edge (PREDECESSORS, SUCCESSORS, etc.) and can be evaluated with different
aggregate functions (count, max, etc.) and always return numbers. Numbers can be
combined with common math operators (calcop), and strings can be concatenated
using the + operator.

Consider the following example describing a rule that works on a fictional query
containing a vertex v1, and an edge e1, among others, where vid(v1) = “A”,
eid(e1) = “B”, minl(e1) = 1, and maxl(e1) = −1. The following rule would
require that the number of edges a vertex mapped to v1 is connected to must equal
the sum of the values of attributes of the type cost connected to each of the vertices
that exist on the path mapped to e1.4

[A].edges.count()== [B].nodes.sum([cost])

4.2 Notation

DMQL queries are mainly visualized through graphical symbols (cf. Fig. 5 and
[8]). As DMQL queries have several properties, we cannot display all of them
with graphical symbols without overcomplicating the query. Hence, some of the
properties are specified with lists and menus. Consequently, it only makes sense to
use DMQL when it is implemented as a modeling software add-on.

4 A full description of properties and aggregate functions can be found at
https://em.uni-muenster.de/wiki/GraphBasedModelAnalysisPlugin/
DMQL#Global_Rules.

https://em.uni-muenster.de/wiki/GraphBasedModelAnalysisPlugin/
https://dx.doi.org/
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Fig. 5 DMQL concrete syntax examples: Basics

In Fig. 5, shaded circles represent query vertices VQ with their IDs placed
within them. Their captions vcaption are placed onto the upper right corner (e.g.,
“*invoice*” in the figure). Depending on the number of allowed vertex types vtypes,
we either see the corresponding symbol of the vertex type at the lower right corner,
if |vtypes| = 1, or a small eye symbol, otherwise. The vtypes property is set by
using a list. The list can also be used to look up the allowed vertex types in case
|vtypes| > 1, refer to the figure.

Edges (EQ) are represented by line segments drawn between vertices. The edges’
IDs (eids) are placed onto the lines and their captions (ecaptions) onto their side.
Edges look different depending on their direction settings dir (cf. Fig. 5). While
edges with maxl = 1 are solid, edges with maxl > 1 are dashed. In the latter case,
minl and maxl are shown on the side of the edge.

All further properties of edges are set using lists that contain the currently
supported property values (e.g., the vertex types of the currently supported modeling
languages) or using free-text forms (cf. Fig. 6). In the figure, we show such selection
lists for etypesr with maxl = 1, etypesr and etypesf with maxl > 1, vtypesr, vtypesf ,
and θ . The minvo, maxvo, mineo, and maxeo parameters are adjusted using forms.
For global rules, we use forms for gmaxvo and gmaxeo and a formula editor for the
rule equations R.
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Fig. 6 DMQL concrete syntax: Edge settings and global rules

4.3 Semantics

Due to space restrictions, we abstain from defining DMQL’s semantics here and
refer the reader to previous work [8]. We have already commented on the impact of
each component of a query onto the query results in Sect. 4.1. The corresponding
matching algorithm is similar to the brute-force subgraph homeomorphism algo-
rithm [20] implemented using depth-first search. It is extended by several checks
that examine whether the vertex, edge, and path mapping candidates in the model
graph meet the requirements of the query vertex and edge properties (i.e., PV and
PE), which makes it possible to exclude candidates early and this way keep the
runtime relatively fast (cf. Sect. 5.1).
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Fig. 7 An exemplary DMQL query

4.4 Query Example

Figure 7 shows an example DMQL query tailored for EPC models. It represents
a violation of a compliance rule used in credit application processes. The rule
requires that a customer has to be informed about all aspects of a granted credit
before the money can be transferred. In this example, we assume that the models
are terminologically standardized, so we do not have to cope with name clashes
(e.g., we search for “check bill” but the modeler used “invoice auditing”) as there
are several approaches that already solve this problem (e.g., [17]). A violation of
the compliance rule means that we find an EPC function somewhere in the model
performing the money transfer, but the customer was not informed before. In order
to identify such violations, we formulate a query that searches for a path from any
start event of the process model to the transfer function with no function on the path
that informs the customer.

The query is assembled as follows: we define a vertex A allowing only events
as types (vtypes = {event}), however, arbitrary captions (vcaption =“*”). The
vertex connects to another vertex via a path of arbitrary length (minl = 1,
maxl = −1), where the direction points to the second vertex (dir = {org}). The
second vertex must be a function (vtypes = {function}), and its caption should be
vcaption =“Transfer money”. As we do not access the second vertex in any global
rule, we do not have to define any ID for it. To assure that the returned paths start at
a start event of the process model, we define a global rule [A].INCOMING_EDGES
.Count() == 0 that requires vertex A to have no incoming edges (i.e., to be a
start event). The path has a further property that forbids any function on it carrying
the caption “Inform customer”. The property is realized through a forbidden sub-
pattern, i.e., occurrences of a sub-query that are not allowed to be part of the path.
This sub-pattern is named “Inform customer” (θ = {("Inform Customer", forb)};
see selection list on the right-hand side of the figure, and note that the selection list
lists all available queries of Q, which is why we also find other entries in the list,
which are not selected as req, preq, forb, or pforb for the current query). It consists
of a single function with the caption “Inform customer” (see the lower right box in
the figure).
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4.5 DMQL 2.0

The reason why we decided to develop a new version of DMQL was that both
GMQL and DMQL were sometimes criticized due to their inability to express
queries requiring universal and negation properties. In other words, except the
feature that GMQL and DMQL can express that certain elements should not be
part of a path, they cannot express that certain elements should not be part of a
query occurrence in general. In turn, they also cannot express that properties of a
model must always be true (e.g., if there is activity A, it must always be followed
by activity B). As such features are common in some related query languages (e.g.,
those based on Computation Tree Logic [CTL; [7]]), we decided to include such
features in DMQL, too. To cover the always and not requirements, we introduce
the following new concepts in DMQL: forbidden vertices, forbidden edges, and
forbidden paths.

These three concepts cover situations that require negation, that is, cases where
certain elements should not be part of a query occurrence. In order to also cover
universal statements, we make use of anti-patterns using the “forbidden” concepts.
For instance, if it is required that specific activities must always be executed by a
specific person, one can search for activities that are connected to a forbidden vertex
representing that person. If we get a match, then we have found a violation.

In particular, the extensions are as follows. Firstly, we extend the definition of
the properties of query vertices PV and query edges PE , such that PV ⊆ VID ×
VCAPTION × VTYPES × FORBV and PE ⊆ EID × ECAPTION × DIR × MINL
× MAXL × MINVO × MAXVO × MINEO × MAXEO × VTYPESR × VTYPESF
× ETYPESR × ETYPESF × Θ × FORBE, where FORBV and FORBE are sets
of Boolean values. When forbv = TRUE (respectively, forbe = TRUE) the vertex
(respectively, the edge) becomes forbidden. This means that a query occurrence will
only be returned if the forbidden vertex (respectively, the edge) with all its other
properties is not part of the occurrence. For the forbidden elements, all properties
take effect, that is, only those elements are forbidden that match the properties.
For instance, if we search for vertices with vtypes = {function} connected to other
vertices with vtypes = {document}, where the latter are forbidden, then DMQL
would only return functions that are not connected to documents. Forbidden edges
and paths are handled analogously. If a forbidden vertex is connected to the rest
of the query, then its connection (i.e., the query edge) is automatically forbidden,
too. Queries may contain multiple forbidden elements. In such a case, only if all
forbidden elements are found in a prospective query match, the match is excluded
from the return set. Forbidden vertices and edges are colored red and tagged with a
small “X” in DMQL queries.

Consider the EPC query example in Fig. 8. The query searches for functions that
may be connected via a directed path of arbitrary length. Matches are only returned
if both of the functions are not connected to organizational units (denoted by yellow
ovals on the lower right of the vertices) as the organizational units are forbidden.
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Fig. 8 Example query with forbidden vertices

Fig. 9 Example query with a forbidden path edge

Another example shows a BPMN query (cf. Fig. 9). The query searches for
subsequent tasks that may follow each other across a path of arbitrary length.
These tasks are required to not communicate using data objects. The query realizes
this requirement with an additional directed path between the tasks, which is set
“forbidden” (see “forbidden” tag in the path properties menu on the right-hand side
of the figure; the forbidden path is the lower one), where the path is required to
contain at least one data object (see vertex-on-path settings in the selection list on
the lower left side of the figure). So, if there is such a path between the tasks, they
are not returned as a match.

5 Evaluation

The evaluation of GMQL and DMQL is manifold. First, the runtime complexity of a
query language’s matching algorithm gives first hints of its applicability. Second, as
the runtime complexity is a theoretical construct that does not necessarily consider
the actual performance of an algorithm when applying it in practice, an empirical
assessment of its performance is also of interest. Third, a query language can be
evaluated against its capabilities to express interesting queries, the effort it takes
to formalize queries, and the commercial success, that is, how a company can
benefit from using the query language. Next, we evaluate these aspects for GMQL
and DMQL.
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5.1 Runtime Complexity

The runtime complexity of GMQL strongly depends on the functions and operators
used in the queries. It reaches from O(|Z|) for ElementsOfType to O(|Z|!) for path
functions. The complexity of AdjacentSuccessors, for instance, is O(|Z|2 · degree),
where degree is the maximum vertex degree of the input model [10].

DMQL uses an extension of a subgraph homeomorphism algorithm that exploits
the attributes of the vertices and edges of a query. This way possible matching
candidates can be excluded early, and the average runtime complexity decreases.
In the worst case, that is, if we define a pattern in which we leave every property
open (i.e., we allow any vertex and edge type and caption and any path length), the
query turns into a subgraph homeomorphism problem, the complexity of which is
superexponential [20].

Such a complexity prohibits any practical use prima facie. However, conceptual
models are commonly sparse [22], which influences the runtime positively.

5.2 Performance

GMQL and DMQL were implemented as plug-ins for the meta-modeling tool
named [εm], which we have developed over the years.5 It comes with a meta-
modeling environment, where the user can specify the abstract and concrete syntax
of modeling languages. Subsequently, the languages can be used to create concep-
tual models. The users of [εm] are guided to create syntactically correct models.

Both GMQL and DMQL plug-ins provide a query editor and a mapping
algorithm, which executes the queries and shows their results by highlighting the
query occurrences in the models. Riehle et al. [26] created a video, which shows the
whole workflow of specifying a language using [εm]’s meta-model editor, creating
models, and running queries with DMQL. Furthermore, a detailed video about the
DMQL analysis plug-in is reported in [25].

The performance of the mapping algorithms was improved several times, and we
have conducted multiple runtime measurements using real-world model repositories
and challenging queries [10, 12]. An experiment consisted of 53 EPCs and 46
Entity-Relationship Models (ERMs [6]) containing from 15 to 264 model elements
and 10 different queries of low complexity (i.e., containing few functions of low
runtime complexity) to high complexity (i.e., containing several functions of high
runtime complexity) for each model. In total, we executed 10 · 53+ 10 · 46 = 990
queries. We observed runtimes from about 70 microseconds to about 0.9 s (time
for one query execution including the return of all matches of the query). In
particular, the queries took 633 microseconds on average for the EPC models

5 https://em.uni-muenster.de.

https://em.uni-muenster.de
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(standard deviation: 3.55 milliseconds) and 10 milliseconds on average for the
ERMs (standard deviation: 45.6 milliseconds). The comparatively high deviations
result from few queries showing long runtimes for large models, whereas most of the
queries showed short runtimes. We argue that because the size of the models used for
the experiment was common (i.e., the number of elements of the models was in a
range we often see in process models used in practice), and the high-complexity
queries were challenging ones, the results of the experiments are satisfactory.
DMQL showed a similar performance; however, it was slightly slower for the most
complex query [8].

5.3 Utility

We define the utility of a query language as its ability to provide useful query
results when applied to real-world process models with queries that arise from
real-world problems. To evaluate the utility of GMQL and DMQL (version 1.0),
we applied them in an experiment for concrete purposes in the field of business
process management, namely both weakness detection (e.g., [1, 9]) and business
process compliance management (e.g., [2, 4, 18]). We understand as weakness a
process part that hinders the process execution or that has potential to be shaped
more efficiently. A compliance violation is a process part which does not obey
preset (legal) policies. Once possible weaknesses or compliance rules are known,
they can be transformed into queries and searched in process models. There are
several works on process model weaknesses [1, 5, 28, 33, 34], which we reviewed
in order to identify weakness descriptions that can be formulated as queries for the
evaluation. In addition, we analyzed 2000 process models of a public administration
manually to derive further weaknesses [9]. In sum, we identified 280 process
weaknesses and consolidated them into 111 weakness types. We further divided
them into seven weakness categories, which we introduce in the following. The first
category named Modeling Error is concerned with general modeling and syntax
errors, for instance, a decision without a subsequent branch in the model. The second
category is Process Flow, which contains weaknesses that may hinder fluent process
execution such as manual editing after copying a document or redundant activities.
The Information Handling category deals with inappropriate use of information
(e.g., data is digitized twice). The Technology Switch category addresses inefficient
use of technology (e.g., a re-digitization of a document after it is printed). The
Automation category is concerned with manual tasks such as calculations that
could be automated. The Environment and Organization categories deal with the
organization of people, competencies, and communication. The former is directed
at the external environment of a company (e.g., multiple contact persons for one
customer), and the latter takes the internal view (e.g., “ping-pong” responsibilities).
Figure 10 shows an overview of the derived categories including some examples.
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We formalized the identified weakness categories in queries and analyzed 85
process models of four companies from the domains of retail, logistics, consulting,
and supply. They contained 1995 process activities and 5070 activity attributes such
as organizational units and documents [9]. The language of the models was icebricks
[3], which exists in different versions for different industries and comes with
corresponding glossaries that have to be used mandatorily when specifying activity
names. A nice side effect was that we did not have to cope with name clashes, as
the natural language words used in the queries could be taken from the glossaries.

We analyzed different aspects of utility in the experiment, namely, the amount of
issues that can be formalized with GMQL and DMQL, the time it takes to formalize
a query, query runtimes, and the quality of the query results.

It was possible to formalize 84% of the derived 111 weaknesses. The remaining
16% could not be formalized; however, this was mainly due to limitations of the
modeling language the models of the study were defined in (e.g., there was no object
type for IT systems). A minor portion of weaknesses that could not be formalized
was due to weaknesses that required negation or universal features that were not
included in DMQL 1.0 (cf. Sect. 4.5) and not included in GMQL.

For the DMQL queries, the average formalization time for a single query was
10:18 min. For the same GMQL queries, the formalization took 17:24 min on
average. The values include the time needed for the query creation from scratch
to the final query without any further need for adaptation (i.e., the queries were
correct). We measured the times manually during the creation of the queries.
The queries were created by graduate students, who were familiar with the query
languages. The final correctness check of the queries was done by the supervisors
of the students. In the case of shortcomings, the query had to be revised by the
students, and the additional editing time was recorded. We have to note that most
of the time was needed for specifying the caption match terms, because the term
glossaries contained synonyms.

A single search run (one model, one query, all matches) took 3:45 min on
average, even though this strongly depended on the model size. While about 99% of
the search runs (nearly 9000 search runs) could be executed in only 27 s on average,
the remaining 1% (less than 80 search runs) needed about 4:45 h to execute. These
long runtimes were mainly observed in 12 out of the 85 models. In particular, queries
in these models took up 94.4% of the total runtime. Correspondingly, Fig. 11 shows
that a few queries exhibit a significantly higher search duration than the majority
of the search runs. In the figure, only every second query and every fifth process
model are explicitly annotated to the axes for reasons of readability. The long
runtimes were mainly for queries that searched for unrestricted paths within models.
Furthermore, models that provided a high number of path possibilities (several
branches and many tasks) induced some of these longer runtimes. The significantly
longer runtimes of this experiment compared to those reported in Sect. 5.2 are due
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to significantly larger models examined in the experiment (about five times larger
on average).

The searches returned 8071 matches in the process models, of which 998 results
were identified as potential weaknesses. This result seems to be fair. However, the
results contained 5,364 matches that were duplicates. Duplicates may occur, for
instance, when a query contains undirected paths, the start vertices of which have
the same properties as the end vertices (because then the path can be “found” from
both directions). This insight provided us with valuable information for the further
development of the DMQL mapping algorithm, that is, to discard duplicates. As
a result, about 12% of the matches were identified as potential weaknesses (37%
after removing the duplicates). The potential weaknesses mostly stem from the
Modeling Error and Automation categories (about 85%). Especially, the weakness
query “Missing activity attributes” of the Modeling Error category, which indicates
necessary but missing attributes like organizational units, exhibited a high number of
results classified as potential weakness. This is not surprising as we often find such
shortcomings in process models, and sometimes such shortcomings are accepted or
even regarded as harmless, so, in turn, not regarded as actual weaknesses. Besides
possible modeling errors, the Automation category mainly concerned with tasks like
manual calculations, yielded about 32% of the potential weaknesses. Even though
many potential weaknesses stem from only a few queries, approximately one-third
of the queries returned at least one match, and we found matches in nearly all models
(95%). We further argue that approximately 12 potential weaknesses per process
model (998 potential weaknesses in 85 process models) is quite a high number.

In a similar way, GMQL and DMQL can support business process compliance
management, which is a well-elaborated topic in the literature, and the need for
automatic support is obvious [2, 13, 14, 16, 27, 29, 31]. Thus, we applied GMQL [4]
and DMQL [18] in this field. Query-based compliance checking works in the same
way as weakness detection. The derivation of compliance rules is different, however,
as these are often pre-formulated through regulations or laws. In our work [4], we
defined 13 compliance queries textually and in GMQL notation. We later extended
the collection to 29 queries and translated them into the DMQL notation. The
detailed derivation procedure for DMQL queries (how to turn law texts into queries)
is explained in [18]. We further queried process models of an IT service provider for
banks with 25 process models containing 3427 activities and 17,616 attributes. The
models represented the processes of the software the provider was producing and
hosting for affiliated banks. In total, we detected 49 potential compliance violations
that finally led the IT service provider to adapt her banking software running in more
than 4000 affiliated banks [4].6

6 Note that we cannot publish the name of the IT service provider due to a nondisclosure agreement.
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The results are promising and suggest that GMQL and DMQL can be applied
successfully in real-world scenarios.

6 GMQL, DMQL, and the Process Querying Framework

When relating GMQL and DMQL 2.0 (in this section referred to as G/DMQL)
to the Process Querying Framework [23], we come to the following result: in the
category behaviormodel, G/DMQL address process models only. Queries have to be
formalized by persons or can be taken from existing query catalogues.7 Depending
on the used language, the query is either a textual or visual formalism. G/DMQL
support the modeling component of the framework, i.e., they can be used to query
any kind of process model. Although G/DMQL are not restrictive in what kinds of
process model repositories should be queried, we regard it most reasonable to assign
them to repositories containing semi-formal models as these are the kinds of models
they operate on. G/DMQL’s query intention is read (retrieve) and read (project),
as they answer both the questions whether a model fulfills a query and return
corresponding details about the model (i.e., they pinpoint each query occurrence
by highlighting it in the queried model). G/DMQL’s querying technique is graph
matching as both are based on adapted forms of subgraph homeomorphism.

G/DMQL operate over semi-formal models, i.e., over the formalized graph
structure of the models, but not on their execution semantics like, for instance, token
concepts or traces. G/DMQL perform no kind of data preprocessing, meaning that
they operate on the sheer data of the models contained in a database, where the
structure of such a database should preferably have a schema similar to the model
shown in Fig. 3. No filtering takes place with the exception that G/DMQL queries
operate over the subsections of the model repository that the user has selected.
G/DMQL do not provide a dedicated optimizing mechanism. However, GMQL
implements caching. It caches sub-queries that occur multiple times in a query
structure [12]. After a query is executed, G/DMQL present visualizations to the user
(cf. Sects. 3 and 4), and the results can be browsed to inspect where in the queried
model the query occurrences can be found. There exists an option to animate the
execution of a query, so the user can trace intermediate results of the matching
algorithm, which are highlighted in sequence in the queried model.

Figure 12 shows the schematic view of the Process Querying Framework taken
from [23], where we marked the components addressed by G/DMQL in black.
Components that are only partly addressed by G/DMQL are marked in gray.

7 See, e.g., http://www.conceptual-modeling.org.

http://www.conceptual-modeling.org
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7 Conclusion

In this chapter, we reported on the development and evaluation of the (process)
model query languages GMQL and DMQL. The purpose was not to introduce new
query languages—we have done that before—but rather to outline how GMQL
and DMQL work and through how many and which iterations the development
traversed. We have seen that evolving requirements, criticism, hints, and evaluation
both from scholars and professionals have resulted in a research process of multiple
iterations. With the latest adaptation of DMQL, we addressed the problem of
previously missing negation and universal operators. For the future, we plan
to evaluate DMQL 2.0 in further field experiments that might result in further
adaptations. Through being able to directly compare several query languages with
the help of this book, we also aim to promote discussions on GMQL, DMQL, and
their related approaches.
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VM*: A Family of Visual Model
Manipulation Languages

Harald Störrle and Vlad Acreţoaie

Abstract CONTEXT: Practical facilities for querying, constraining, and trans-
forming models (“model management”) can significantly improve the utility of
models, and modeling. Many approaches to model management, however, are very
restricted, thus diminishing their utility: they support only few use cases, model
types or languages, or burden users to learn complex concepts, notations, and tools.
GOAL: We envision model management as a commodity, available with little
effort to every modeler, and applicable to a wide range of use cases, modeling
environments, and notations. We aim to achieve this by reusing the notation for
modeling as a notation for expressing queries, constraints, and transformations.
METHOD: We present the VM* family of languages for model management. In
support of our claim that VM* lives up to our vision we provide as evidence a string
of conceptual explorations, prototype implementations, and empirical evaluations
carried out over the previous twelve years.
RESULTS: VM* is viable for many modeling languages, use cases, and tools.
Experimental comparison of VM* with several other model querying languages
has demonstrated that VM* is an improvement in terms of understandability. On
the downside, VM* has limits regarding its expressiveness and computational
complexity.
CONCLUSIONS: We conclude that VM* largely lives up to its claim, although the
final proof would require a commercial implementation, and a large-scale industrial
application study, both of which are beyond our reach at this point.
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1 Introduction

The Visual Model Manipulation Language VM* is a lineage of languages that
allows to express queries (VMQL), constraints (VMCL), and transformations
(VMTL); refer to Table 1. Figure 1 illustrates the relationship between these three
languages. VM* aspires to be truly useful, addressing the problems faced by the
working modeler. Thus, our design goals are usability and learnability, versatility
and practical use cases, coverage of all relevant visual modeling notations and
compatibility with existing modeling environments. As a consequence, there is a
limit to the expressiveness and the scope of application scenarios VM* addresses.
For instance, VM* is not suited to process ultra large models, or express very
complex model transformations. In our experience, those situations are rare.

Starting out as a query language, VM* has evolved into a full blown model
manipulation language that can also handle constraints and transformations. Obvi-

Table 1 Main publications on VM* and its precursors, most notably VMQL and VMTL. In
column “Intent”, Q, C, and T refer to queries, constraints, and transformations, respectively,
whereas bullets indicate the types of instructions addressed in the corresponding publications. In
column “Type”, W, C, J, and TR stand for Workshop, Conference, Journal paper, and Technical
Report, respectively. BSc, MSc, PhD refer to theses of the respective types. References [7, 32, 34]
are re-publications, posters, and excerpts

Intent

Year Ref. Type Q C T Title (abbreviated)

2005 [24] TR • • MoMaT: A lightweight platform for MDD

2007 [25] W • A PROLOG approach to representing & querying models

2009 [39] BSc • MQ: A visual query-interface for models

[26] W • A logical model query-interface

[27] C • VMQL: A generic visual model query language

2011 [28] C • Expressing model constraints visually with VMQL

2012 [29] J • VMQL: A visual language for ad-hoc model querying

[3] MSc • An implementation of VMQL

[5] W • MQ-2: A tool for prolog-based model querying

2013 [30] W • Improving the usability of OCL as an ad-hoc MQ language

[31] W • MOCQL: A declarative language for ad-hoc model
querying

[35] W • Querying business process models with VMQL

2014 [6] W • Efficient model querying with VMQL

[8] W • • Hypersonic: Model analysis and checking in the cloud

2015 [33] J • • Cost-effective evolution of prototypes: The MACH case
study

2016 [10] J • • • VMTL: A language for end-user model transformation

[9] C • • • Model transformation for end-user modelers with VMTL

[4] PhD • • • Model manipulation for end-user modelers

[2] WIKI • • • The VM* Wiki
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VMQL
Queries

VMCL
Constraints

VMTL
Transformations

VM* match by query, trigger by positive/negative application conditions,
control  by priorities, bundling sets of expressions as one rule

negative queries, mark up query as constraint

match model fragments, enrich semantics by annotations

Fig. 1 VM* is a family of model manipulation languages that allows to express queries (VMQL),
constraints (VMCL), and transformations (VMTL)

ously, there is a natural succession arising out of the symmetry between queries
and constraints. Then, transformations are just pairs of an application condition and
a consequence, both of which can be expressed like queries. In that sense, there
is not just a natural symmetry but also a great practical opportunity by leveraging
queries to constraints and transformations. More importantly, however, there is a
practical need for constraints and transformations once queries are established, like
progressing from text search to search-and-replace. Model querying is useful, but it
is incomplete without checks and transformations. From a high-level point of view,
we can characterize queries, constraints, and transformations as follows.

Queries. Assume that a model M is a set of model elements ME. A Boolean
property α : P(ME) → bool characterizes those parts of M that satisfy α. So,
applying α to all fragments of M amounts to querying M, and the set of all
fragments Rα that satisfy α is the result of the query.

Constraints. Conversely, the dual of Rα are those model fragments of M that do
not satisfy α. If we formulate α just so that it yields all admissible fragments
of M, and look at the complement of the result, we have a constraint. So, we
need a way of choosing whether we consider Rα or Rα as the result. Also, we
need to express the complement, or, more generally, a form of negation so that
constraints may be expressed in a concise way.

Transformations. Similarly, model transformations are sets of rules, each of
which consists of an application condition (“left-hand side”) and a consequence
(“right-hand side”). The application condition is again a query or a constraint,
while the right-hand side must express matching and changing, i.e., it is a query
with side effects.

The general idea of VM* is to reuse the syntax of the modeling language at
hand (the host language) as the syntax of the query, constraint, or transformation
language, adding only a small set of textual annotations. Then, a query is matched
against model fragments of the host language based on structural similarity. In the
process, annotations are evaluated. Any matching fragments are presented as results.
Conversely, when evaluating a constraint, fragments not matching the constraint
are presented as violations. For transformations, two parts have to be provided per
transformation rule, expressing the left-hand side and right-hand side of the rule.
Left-hand side expressions are effectively queries and/or constraints. If it is satisfied,
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the right-hand side is executed, either replacing or modifying the matched fragment.
The unique approach of VM* provides three main benefits.

Syntax transparency. Queries, constraints, and transformations are expressed
using the host language, while VM* only consists of a few annotations on
models and diagrams. Thus, any modeler is, by definition, already capable of
expressing simple queries, constraints, and transformations in VM*. For more
complex expressions, a few new concepts have to be learned.

Environment transparency. Grace to syntax transparency, any modeling tool
can be used as a front end for VM*. Therefore, any modeler can, by definition,
use the VM* tool, which is just the editor the modeler uses anyway. Integrating
the tool for executing a query or transformation, or checking a constraint, can be
seamless.

Execution transparency. Unlike other approaches, VM* is not semantic, but
syntactic, that is, it does not consider the meaning of model elements, but the
notation alone. VM* is ignorant to what boxes and lines mean. While this
imposes limits on the expressiveness of VM*, it also avoids semantic problems,
makes the language more accessible, and simplifies implementation.

We argue that the restriction in expressiveness is rarely relevant in practice, while
universal applicability, learnability, and usability are always a concern. VM* is
applicable for any host language satisfying two conditions.

1. It must have a metamodel. This is trivially the case for any language that is
implemented in a tool, in particular, for languages created with metamodeling
tools like Adonis [15], EMF [23], or Meta-Edit [36].

2. It must have a way of adding textual comments to model elements, which is true
for any modeling tool we have seen in practice.

It cannot be overemphasized that VM* is completely independent of the seman-
tics of the host language. Conceptually, one may consider a model as a graph with
labeled nodes. Unlike the original graph transformation approaches (e.g., [14, 18]),
though, this graph is never exposed to the user. This means that VM* is applicable
to many modeling languages, including languages for dynamic models like BPMN,
EPCs, Use Case Maps, Simulink, or Role-Activity-Diagrams, as well as languages
for static models like ER Diagrams, i∗, KAOS, etc. Thus, VM* is also applicable
to broad-spectrum languages with multiple notations, like UML, SysML, IDEF,
or ArchiMate. Similarly, VM* is applicable to many Domain Specific Languages
(DSLs). It would be exceedingly difficult to ascertain that VM* works with any
visual notation as its host language, but we believe the prerequisites are very modest.
We have yet to encounter a notation that cannot serve as a host to VM*. As a
matter of notation, when referring to the instantiation of VM* for UML, we write
VM*UML, and VM*BPMN for the instantiation of VM* for BPMN.

When using the same editor to create source models as well as the queries, con-
straints, and transformations to be applied to them, it is also irrelevant how models
are represented in the editor. In practice, most modeling tools are less than com-
pletely compliant to whatever standards they aspire to implement. So, a model query
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implementation that relies on standard compliance may be of limited use, or entirely
incompatible. This way, many research prototypes are tied to the single modeling
environment in which they happen to be implemented. It is hard to overstate the
benefit of execution and environment transparency for industrial applications.

2 Examples

In this section, we present a high-level process model expressed as a UML Use
Case diagram, a low-level process model expressed as a UML Activity Diagram,
and another low-level process model expressed in BPMN. Throughout this paper,
we denote metamodel concepts and VM* expressions by typewriter font
and CamelCaps, while “elements” from sample models or queries are printed in
sans-serif font and enclosed in quotation marks.

2.1 High-Level Process Models Expressed as Use Case
Diagrams

As a first example, consider Fig. 2. Here, we use UML Use Case Diagrams to model
the high-level views of process models, like function trees Value Added Chain
Diagrams and process landscapes [13, pp. 239]. The Use Case Diagram at the top
left represents the model repository; the other diagrams represent actions on the
model: progressing clockwise from the top right, we see an example of a query, a
constraint, and a transformation.

The query in Fig. 2 (top right) is a find pattern identified by the looking-glass
icon. It matches all its elements against the model repository. For every successful
binding of all query elements, one solution is generated. The wildcard acts as
expected, matching any string. Therefore, the query will yield two results: the use
case “request installment loan” and the use case “request revolving loan”. Use
cases “specify loan details” and “buy credit insurance” do not match because
their names do not match. Use cases “calculate risk” and “request loan” do not
match because they are not associated with an actor. Use case “request loan” also
does not match because it is abstract, and the use case of the query is not. In this
query, only one annotation is required, namely the name pattern of the use case.
Since this is a frequent case, we allow using wildcards in names without an explicit
annotation. Escaping wildcards symbols allows to use them as proper symbols of
names.

The constraint in Fig. 2 (bottom right) is again a find pattern, but this time it
has a context annotation which defines the application condition of a constraint.
Executing a constraint works just like executing a query: all the elements of the
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constraint are matched against the model repository. However, the results are treated
slightly differently. There are three cases:

• If there is no binding for all of the elements of the context, the constraint is not
applicable.

• If there is a binding for all context elements, but not for all the other elements, the
constraint is violated, and the binding set is returned.

• Finally, if both the context elements and the other elements are matched, the
constraint is satisfied.

The following schema summarizes when VM* constraints are applicable, and when
they are satisfied or violated.

Elements matched Constraint

Within context Outside context is

Not all – Not applicable

All None Violated

All Some Violated

All All Satisfied

In the interest of compact specification, this rule is modified by atLeast
annotations. An individual atLeast annotation groups together related model
elements. The annotation set relates such element groups, specifying how many
times such groups must be matched to satisfy the constraint. In the example in
Fig. 2 (bottom right), the parameter is 1, meaning that either there is at least
one Includes relationship or one association attached to the “context”
use case. The actor and the included use case are required because the UML
syntax demands that Associations and Includes relationships may not be
“dangling”. Connected to other model elements as they are in this example, however,
they would have to match in order to not violate the constraint. Since the intention is
for these elements not to match, we need to add another atLeast constraint. This
constraint is satisfied for “Base Model”: the first four use cases are associated with
“Customer”, “calculate risk” is included in another use case, and “request loan”
is abstract, while the context use case in the constraint is not. Hence the constraint
in Fig. 2 (bottom right) is satisfied.

Figure 2 (bottom left) shows a simple transformation for cleaning up “orphan”
use cases. It consists of a single transformation rule expressed as one diagram
defining both the left-hand side and the right-hand side of the rule. The left-hand
side is a query for the model elements in the diagram, only that the actor and the
association prevent matching due to the omit annotation. In other words, wherever
these elements are present, the rule does not match. The right-hand side consists of
the instruction to delete the use case.

In order to distinguish transformations from queries and constraints, yet express
their similarity, the transformation is identified by both the looking-glass and the
cogwheel icon. Transformations are interpreted similar to queries and constraints:
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elements of the base model are matched against the elements of the transformations
as explained above. Then, those annotations that indicate updates are triggered, in
this case the delete clause. In this particular example, there are the following
cases:

• If the use case is matched, and there is also an associated actor that matches, the
whole transformation fails, and is not executed, because of the omit annotation on
the actor and its association.

• On the other hand, if the use case is matched, but there is no associated actor, the
transformation can be applied, deleting the “orphan” use case.

In this example, only “calculate risk” fits into that mold and is deleted. “calculate
risk” fits structurally but is abstract.

2.2 Low-Level Process Models Expressed as Activity Diagrams

Now consider an example of a process model expressed as a UML Activity Diagram
shown in Fig. 3. As before, there is one diagram that we use as the model repository
(Fig. 3, left). To illustrate the VM*UML language capabilities, we use a query that
we develop in several steps.

Suppose we want to find out what happens after a loan application is received
and before the eligibility report is sent out, i.e., what are the exact steps to determine
whether a client receives a loan or not? The general idea is to specify the delimiters
“receive loan application” and “send eligibility report”, and find Actions
between them. A first attempt to express this query may look like Q2a (Fig. 3, top
right). Executing this query yields the empty result set, though, as we have specified
that there should be a single Action that is directly connected to both delimiters.
In the base model, however, there are paths of varying lengths.

In order for this query to find all Actions at any distance from the delimiters,
we have to relax the condition and allow paths of arbitrary lengths instead of
directly connected Flows. This is achieved by annotating the arcs with steps
= *, which means “any number of steps” (see query Q2b, at the middle right
of Fig. 3). However, this still yields no results. The reason is that the definition
of steps restricts paths to contain only the kinds of node types adjacent to
the ControlFlow arc on which it is defined. In this case, there is a plain
Action (“send eligibility report” and the target node in the middle) and a
ReceiveEventAction “receive loan application”, but no ForkNode or
JoinNode. However, all the paths in the desired result set do contain fork or join
nodes. So, in order to yield the expected result, we need to also relax the types of
nodes on paths by using the type annotation in the next query (Q2c, at the bottom
right of Fig. 3). Going beyond the example, we could be even more relaxed here and
allow any type of node by specifying type_is_any.
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AD Coverage Quote Processing AD Q2a: Intermediate Steps

AD Q2b: Intermediate Steps

AD Q2c: Intermediate Steps

receive loan
applica�on

verify
customer account

send
eligibility report

gather 
background data

check
eligibility

prepare
eligibility report

get
payment informa�on

no�fy 
underwriter

send
credit insurance offer

[error]

Contract

receive loan
applica�on

$Actions

send
eligibility report

steps = *
<<VM* Annota�on>>

receive loan
applica�on

$Actions

send
eligibility report

steps = *,type = Ac�vityNode
<<VM* Annota�on>>

receive loan
applica�on

$Actions

send
eligibility report

could have used
“indirect” instead

Fig. 3 A UML Activity Diagram with an exception (left) and related queries (right). Note that
in UML, tokens within an InterruptibleActivityRegion (the gray area with a dashed
borderline) are discarded upon firing an ExceptionFlow edge (marked with a lightning symbol)

2.3 Low-Level Process Models Expressed as BPMN Diagrams

In order to support our claim of general applicability, we now present VM* queries
on BPMN (see [35] for more details). The top half of Fig. 4 defines how insurance
quote requests are processed by an insurance company, while the bottom half
presents five queries.

Suppose a business analyst is interested in finding all activities that deal with
insurance coverage. She can succinctly express this request in VM* using Query 1,
consisting of a task named $A and a comment containing VM* annotations. The
name of the task starts with a “$” sign, indicating that it is a variable declaration.
The name of any matching activity in the source model must be bound to $A.
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The text annotation starts with the vm* keyword, indicating that it should be
interpreted as a VM* expression. The annotation type isa Activity ensures
that all of the BPMN activity types and their subclasses are considered, e.g.,
Task, CallActivity, SubProcess, and SendTask. In the example, this
annotation enables the query to also return the compute coverage collapsed sub-
process, which according to the BPMN metamodel is actually not a Task. Rather,
Task and SubProcess are both subclasses of the Activity abstract meta
class, see [19, p. 149]. Finally, the name = ’*coverage*’ annotation uses a
regular expression to specify that all activities matching the query must contain the
string “coverage” in their name. A VM* implementation parses and evaluates such
constraints when computing the result set. In the example, this applies to the first
three nodes of the upper branch.

A similar, slightly more complex case is shown in Query 2. Here, the intention is
to find all tasks which can only be executed after an ExclusiveGateway. This
clearly applies to “modify coverage limit”, “check coverage limit”, and “create
account”. Observe that it will also find “consult account”, even though the flow
from the ExclusiveGateway to “consult account” is marked as default, while
the flow in the query is not marked as default. The reason is that being a default
flow is an optional property of the gateway, and the query does not specify a
value for this property, which means it matches all values. On the other hand,
“compute coverage” is not matched because its type is SubProcess while the
type specified in the query is Task.

Query 3 detects if the “create account” and “consult account” tasks are
executed exclusively, in parallel, or in some other manner, depending on the gateway
preceding them. The type isa Gateway annotation indicates that the gateway
preceding the tasks may be of any type as long as it is a subclass of the Gateway
abstract meta class. The default=any is required to ensure that both default and
non-default flows will be matched indiscriminately—this resembles the abstract
property of UML Classifiers. The steps = min annotation limits the
number of possible matches by stating that only the gateway-node closest to the
two tasks should be returned. Considering the source model, Query 3 will then yield
that the two tasks are executed exclusively.

The goal of Query 4 is to determine which part of the process has access to the
“Contract” data input before a quote is sent to the customer. Observe that we allow
paths of arbitrary length and all relevant types by the steps and type annotations,
respectively. These two kinds of annotations occur frequently together so we have
created the indirect annotation that is a shortcut for steps=* and type is
any. So, Query 4 returns all paths from “Contract” to “send quote to customer”.

Query 5 illustrates the difference between syntactic and semantic querying. The
intention of the query is to verify if the “modify coverage limit” task may be
reached after executing the “check general coverage” task. Syntactically, the
source model contains a path between the two tasks. Therefore, Query 5 will return
this path. However, the question of reachability may not be reliably answered
without considering semantics. Indeed, the path connecting the two tasks in the
source model contains a false condition on one of its flow arrows, with the
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intended meaning that control will never traverse this flow (i.e., task “modify
coverage limit” will never execute). Answering this type of inquiry about process
execution is a desirable but as of now unavailable feature in VM*. Also, it is this
very feature of VM* that allows us to express Query 4 as succinctly as we have
done, highlighting the trade-off between expressiveness and usability of VM*.

3 Query Language

In this section we discuss the abstract and concrete syntax, and formalize the
semantics of VM*.

3.1 Abstract Syntax

VM* queries, constraints, and transformations consist of model fragments with
(optional) textual annotations as defined above and formalized in the VM* meta-
model, see Fig. 5. A VMStarExpression contains one or more Rules, each
of which contains one or more Patterns, each of which contains one or more
elements of the host language. All containments are exclusive, and there may
be annotations on expressions, rules, or patterns. The components of the VM*
metamodel must be mapped to existing elements of the host language metamodel. If

CD VM*L-Metamodel

NamedElement
Annota�on

Host Language
Element

VMStarExpression

+rules1..*

0..*

+pa�erns

+annota�ons

Pa�ern

Rule

+priority: Integer

+name: String

+kind: ExpressionKind

+kind: Pa�ernKind

1..*

1..*
+elements

FindPa�ern
ForbidPa�ern
ProducePa�ern
UpdatePa�ern
RequirePa�ern

Pa�ernKind
<<enumera�on>>

VMQuery
VMConstraint
VMTransforma�on

ExpressionKind
<<enumera�on>>

context: VMStarExpression
inv:  kind is in 
    {VMQuery, VMConstraint} 
 implies 
 rules.patterns.kind is in
    {FindPattern, ForbidPattern}

<<OCL>>

+body: Text

Fig. 5 The VM* metamodel
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Table 2 Mapping of VM* metamodel constructs into UML language constructs to create
VM*UML. In order to implement this mapping, a UML profile with these constructs must be
created, and applied to any UML Packages containing VM* expressions

Stereotype Applies to Description

«VM* Annotation» Comment Annotation for any complete scope, e.g., a
package of several expressions

«VM* Query»
«VM* Constraint»
«VM* Transformation»

Package Annotation for a complete expression

«VM* Find» Package,
Comment

Find patterns are used as queries,
constraints, or as the left-hand side (LHS)
of a transformation rule. A rule may
contain at most one find pattern. A rule
must contain either a find pattern or an
update pattern

«VM* Forbid» Package,
Comment

Forbid patterns are negative application
condition (NAC) for a transformation rule
or constraint. A rule can contain any
number of forbid patterns and will be
executed only if none of these patterns is
matched in the source model

«VM* Require» Package,
Comment

Require patterns represent a positive
application condition (PAC) for a
transformation rule. A rule can contain any
number of require patterns, and will be
executed only if all of these patterns are
matched in the source model

«VM* Produce» Package,
Comment

Produce patterns represent the Right-hand
side (RHS) of a transformation rule,
specifying how the target model is to be
obtained from the source model. A rule
may contain at most one produce pattern,
and if there is a produce pattern, there
must also be a find pattern in the same rule

«VM* Update» Package,
Comment

Update patterns amalgamate a find and a
produce pattern. There may be at most one
update pattern per rule, and there may not
be an update pattern and a find pattern
together in a rule

the host language offers extension mechanisms, like the profiles and stereotypes of
UML, these should be used. For instance, for VM*UML, annotations are encapsu-
lated in UML comments annotated by the VM* Annotation stereotype. Table 2
shows how the VM* constructs map to the host language UML. For languages
lacking extension facilities, naming conventions can be used to the same effect.

VM* specifies five pattern types: find, forbid, require, produce, and update.
Queries and constraints consist of exactly one find pattern, and any number of forbid
patterns. Constraints must have at least one annotation with the body context. In
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transformations, all kinds of patterns may occur in any number. The transformation-
annotations may only be used in update and produce patterns, and must be anchored
to at least one model element of the pattern. Transformational patterns correspond to
Left-Hand Side (LHS), Right-hand side (RHS), Negative, and Positive Application
Condition (NAC and PAC, respectively) from graph transformation theory [14].

3.2 Concrete Syntax

The core of the VM* language is the set of annotations it provides. In the interest of
expressiveness and succinctness, we sometimes cannot avoid referring to elements
of the VM* metamodel explicitly. Also, sometimes execution options for queries,
constraints, and transformations must be specified. Both of these can be achieved
with annotations. See Table 3 for a complete overview of VM* annotations.

We start our overview of VM*’s annotation syntax by describing user-defined
variables. They can be declared and manipulated within VM* annotations, and also
used as meta-attribute values in pattern specifications. The names of user-defined
variables are prefixed by the $ character. Their scope extends across all patterns
included in a query, and they are therefore employed for identifying corresponding
model elements across different patterns. The type of a user-defined variable is
inferred at query execution time. VM* supports the Boolean, Integer, Real,
and String data types, in addition to the Element data type used for storing
instances of host language meta classes. Regardless of their type, user-defined
variables also accept the undefined value (“*”). A variable with this value is
interpreted as possibly storing any accepted value of its respective data type.

For variable manipulation, VM* supports the arithmetic, comparison, and logic
operators listed in Table 3. Logic operators can be expressed using shorthand
notations (“,”, “;”, “!”, “->”) or full textual notations (and, or, not, if/then).
The implication (“->”) and disjunction (“;”) operators can be combined to form
a conditional if/then/else construct. The navigation operator (“.”) accesses
model element meta-attributes, operations, and association-ends.

Apart from user-defined variables, VM* relies on special variables as a means
of controlling query execution (the injective, precision and steps special
variables) and accessing the contents of the source model (the id, self, and
type special variables). Special variables have a predefined scope, identifying
the specification fragment to which they are applicable. With the exception of the
injective variable, the scope of all special variables is limited to the annotated
model element. The injective variable has a global scope: its value determines
how all patterns of a query are matched in the source model.

Clauses are the main building blocks of VM* annotations: each annotation
consists of one or more clauses connected by logic operators. The use of clauses
is inspired by logic programming languages and benefits annotation conciseness.
A clause is an assertion about the pattern model elements to which it is anchored,
about its containing pattern as a whole, or about user-defined or special variables.
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Table 3 VM* annotations grouped by function (top to bottom): features for queries, constraints,
and transformations, and generic arithmetic and logic operators

Annotation Meaning

$ Declares a variable to be matched (e.g., with the name of a model element)
match Matches two variables (e.g., a name and a variable)
self Denotes the model element to which an annotation is attached
id Stores a model element identifier to match corresponding elements across

patterns
?, * The usual wildcards may be used in matching names of model elements
:= Assigns a value to a user-defined variable, special variable, or model

element meta-attribute
injective When set to false, query elements may match more than one target model

elements (default true)
steps Used in an expression to restrict path lengths and types of nodes and edges

on paths, allowing either comparisons to constants, the value * for
“unrestricted”, or the values min or max denoting the paths extending to
the shortest or longest paths available

indirect Syntactic sugar for steps=* and type is any

type is x Specify the type (meta class) of the annotated model element as being x,
allowing any for x

type isa x Specify the type (meta class) of the annotated model element as being a
subclass of x

context Anchor for constraints, must be present at least once in any constraint
omit Annotated element must not be matched
atLeast(k) At least k groups of annotated elements must be matched
atMost(k) At most k groups of annotated elements must be matched
either Syntactic sugar for atMost(1) and atLeast(1)

create Part of the right-hand side of a transformation rule, create the annotated
model element

create if not
exists

Like create, but triggers only if the element does not already exist
beforehand

delete Part of the right-hand side of a transformation rule, delete the annotated
model element

priority Sets the priority of a rule (default 1)
+, -, *, / The usual arithmetic operators. Note that the overloading of ∗ can be

resolved by context
=, <>, <, <=, >, >= The usual comparison operators, where string comparison employs the

wildcards * and ? in the canonical way
in The usual set containment operator, where sets are enumerated between

curly braces
like A similarity-based matching operator for strings (global threshold)
precision Annotated element is not required to match exactly but does allow a

similarity-based matching with the given threshold

and, or, not The usual logical operators
,, ;, ! Shorthands for logical and, or, and not
if <e> then
<c1> else <c2>

The usual (eager) conditional, where the else-branch is optional, and -> is
allowed as a syntactic shortcut

. The usual dot-notation to access attributes of objects
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The main role of clauses is to act as additional constraints on pattern matching. Note
that variable assignment (“:=”) is treated as a clause.

The either clause can only be included in annotations anchored to several
pattern model elements. All other clauses listed in Table 3 can be included in
annotations anchored to one or more pattern elements. In general, anchoring a clause
to several pattern elements instead of creating several annotations containing the
same clause leads to more compact specifications. The variable assignment clause
(“:=”) can also appear un-anchored to any pattern elements, as variables always
have a query-wide scope in VM*.

The annotations associated with VM* language elements play one of two roles:
(i) When anchored to a host language element of a VM* pattern, annotations offer
additional information or specify constraints related to that specific element. (ii)
When anchored to the VM* expression itself, annotations specify execution options,
such as global constraints on identifiers and variables.

3.3 Semantics

The central operation of the process of interpreting a VM* query, constraint or
transformation is the matching of VM* patterns with corresponding source model
fragments. For queries and constraints, the find patterns are matched against the
source model, resulting in a set of intermediate bindings. Then, the forbid patterns
are matched against the intermediate bindings, and the result is returned. For
efficiency reasons, the annotations should be applied with decreasing strength. For
instance, the context annotation is executed first.

For transformations, the rule with the highest priority is selected, and its left-
hand side part is executed like a regular query. Any resulting bindings are then
subjected to the right-hand side part of the rule. The rule application is continued
until no more (new) results are yielded from executing the left-hand side. Then,
the rule with the next highest priority is selected, and the process is repeated, until
there are no more rules to apply. VM* currently only allows endogenous model-
to-model transformations, that is, transformations in which the source and target
models conform to the same metamodel [12, 16]. VM* transformations can be
executed in-place to modify an existing model, as well as out-of-place to produce a
new model.

As a means of formalizing the identification of matches between VM* patterns
and a source model, it is useful to consider them both as typed attributed graphs. A
model graph is defined as a typed attributed graph intended for representing models.

Definition 3.1 A model graph corresponding to a model M is a tuple
〈N,E, T ,A, V, type, source, target, slot, val〉 where:

• N and E are finite sets of nodes and directed edges, respectively, with E∩N = ∅;
• T is the set of node types corresponding to the meta classes included in M’s

metamodel;
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• A is the set of node and edge attributes corresponding to the meta-attributes
included in M’s metamodel;

• V is the set of possible attribute values;
• type : N → T is a function assigning a type to each node;
• source : E → N is a function defining the source node of each edge;
• target : E → N is a function defining the target node of each edge;
• slot : (N ∪E)→ 2A is a function assigning a set of attributes to nodes and edges;
• val : N × A �→ V is a partial function associating a value v ∈ V to pairs (n, a),

where n ∈ N , a ∈ A, and a ∈ slot (n).

Edges are uniquely defined by their source, target, and slots, i.e., ∀e, e′ ∈ E :
(source(e) = source(e′)) ∧ (target(e) = target(e′)) ∧ (slot(e) = slot(e′)) �⇒
e = e′. The “undefined” element denoted⊥ is not a member of any set.

The canonical subscript notation is used in what follows to denote elements of
a particular model graph. For example, Ng and Eg denote the nodes and edges of
model graph g. Both bindings and matches between a VM* pattern and a source
model may be represented as model graphs; see Fig. 6 for an example representing
Query Q1 from Fig. 2 as the actual query in the editor (top), the internal data
structure a modeling tool might use to store the model (middle), and the semantic
structure as a graph with labeled nodes (bottom).

Definition 3.2 Given two model graphs q and m representing a VM* pattern and a
source model, respectively, a binding is an injective function β : Nq → Nm from
the nodes of q to those of m.

Computing a binding generates potential matches, but actual matches must meet
two more conditions. First, nodes mapped by the binding must have the same type.
Second, model nodes must have at least the same slots, values, and interconnecting
edges as the query nodes they are bound to.

Definition 3.3 A binding β is a match between a VM* pattern q and a source model
m iff the following conditions hold:

(i) ∀n ∈ Nq : (type(n) = type(β(n))) ∧ ∀a ∈ slot(n) : val(n, a) = val(β(n), a),
(ii) ∀e ∈ Eq : ∃e′ ∈ Em : slot(e) = slot(e′) ∧ β(source(e)) = source(e′) ∧

β(target(e)) = target(e′).

We define binding and match in two separate steps to highlight the algorithmic
structure of VM*: Computing the binding generates potential solutions that are then
pruned by computing the match. Implemented naively, this approach is computa-
tionally inefficient, and practically useless. Informing the binding-algorithm with
the matching constraints, however, drastically reduces the complexity.

Most of the VM* annotations introduced in Sect. 3.2 have no other effect on
the above definitions than to simply modify a pattern before it is matched with a
source model. The self, type, and steps special variables are such examples.
Other annotations such as either and optional imply that several different
versions of a pattern must be matched with the source model. Again, this does
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not interfere with each individual pattern’s matching process. The unique clause
imposes a filter on match results after they have been computed, i.e., only one match
is allowed. All of the aforementioned annotations do not interfere with the match
computation, but simply work on the results. The only annotations affecting match
computation are the injective and precision special variables: assigning
false to injective removes the injectivity condition in Definition 3.2. Adjust-
ing precision tweaks the matching precision.1

4 Implementation

Developing VM* iterated through many cycles of conceptual work, exploratory
prototyping, and evaluation not dissimilar to the design science methodology. In
this way, three product lines have emerged over the years, implementing (parts of)
VM* in turn.

moq We started with exploratory coding in PROLOG to determine the algorith-
mic feasibility and complexity [25, 26]. This branch later developed into query
textual interfaces to study the concepts independent of the notation [30, 31].
The last step in this line is the MACH environment [33] which is available for
download.2 It can also be used without installation on SHARE [37].3

MQ We started exploring the visual notation aspect for model manipulation,
with the ModelQuery systems, MQ-1 [39] and MQ-2 [3, 5].4 Both are plugins
to the MagicDrawTM modeling environment.5 These implementations allowed
to validate the overall approach, the syntax, semantic details, and the query
execution performance under realistic conditions. A screenshot of MQ-2 is
shown below in Fig. 8.

vm* Finally, in order to prove the execution transparency of VM*, we realized it
on two fundamentally different execution engines: Henshin [11], and as a REST-
style Web-interface [4, 10].

Due to the limited space available, we can only explain one implementation here.
We select MQ-2, since it is the basis of most evaluations. In the remainder of this

1 Over the course of the years, the semantics of VM* languages has been defined in different
terminologies and notations, and with slightly different meanings. The view presented here is
the one proposed in [4], superseding earlier definitions such as the logic programming-based
formalization presented in [29]. There, all annotations are viewed as logic constraints to be checked
by an inference engine as part of the match computation process. Here, however, we decouple
pattern matching from annotation interpretation, thus allowing a much wider array of existing
matching engines, particularly ones based on graph matching.
2 https://www.pst.ifi.lmu.de/~stoerrle/tools/mach.html.
3 http://fmt.cs.utwente.nl/redmine/projects/grabats/wiki.
4 https://www.pst.ifi.lmu.de/~stoerrle/tools/mq2.html.
5 www.magicdraw.com.

https://www.pst.ifi.lmu.de/~stoerrle/tools/mach.html
http://fmt.cs.utwente.nl/redmine/projects/grabats/wiki
https://www.pst.ifi.lmu.de/~stoerrle/tools/mq2.html
www.magicdraw.com
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Fig. 7 The architecture of the MQ-2 system and the main dataflow of executing queries. Numbers
in black circles indicate the sequence of steps in creating and executing a query. Numbers in white
circles indicate the steps for creating or changing models in the model base. Rectangles are used
to represent data. Rectangles with rounded corners are used to represent actions. Arrows indicate
dataflow

section, we will refer to VMQL rather than VM*, because VM* did not exist yet
at the time of implementation. Figure 7 shows an architectural overview of MQ-2,
while Fig. 8 presents a screenshot. The process of executing a query is shown by
the numbers in black/white circles in Fig. 7. We will start with the white circles that
highlight the steps for transforming the model base.

A source model is created using some modeling language (UML in this
implementation) and stored in the tool’s model base.
The model base is exported to an XMI-file, the standard file-representation of
UML, using MagicDraw’s built-in export facility.
The XMI-file is mapped into PROLOG predicates (see [29] for details). The
mapping is bidirectional and generic, i.e., it does not limit generality of the
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Fig. 8 The prototype implementation of VMQL. In the foreground, MQ-2 presents a list of
“available queries” (top left), the one currently selected (top right), and the current result binding
(bottom). One of the result bindings is selected, and a diagram in which this binding appears is
shown in the background. The bound elements are highlighted with bold green borders
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solution. Note that later implementations map models into graphs rather than
to PROLOG predicates.

Now we turn to the process of translating and evaluating queries, indicated by
numbers in black circles in Fig. 7. Since VMQL queries are annotated fragments of
regular models, executing a query on a given model base boils down to finding
matches between the query and the model base, and checking the constraints
provided by the annotations.

A VMQL expression is entered as a regular UML model with constraints
packaged in stereotyped comments.

Then, the model query is transformed just like the source model. Constraints
are directly mapped to predefined Prolog predicates and added to the predicates
yielded from translating the query. Note that the precise way of how the
constraint predicates are added is crucial for the computational complexity. In
later implementations, queries are mapped to graph transformations instead of
Prolog predicates.
Next, the predicate resulting from translating the model query is run on the
Prolog-database resulting from transforming the source model. The two models
are matched and the constraints are evaluated.

Finally, the user selects one of the matches found in the previous step.
To support this, a list of all diagrams containing elements of the match is
computed. These may be either exact or approximate matches, as controlled
by the precision constraint. If appropriate, the list is sorted by decreasing
similarity. The diagram selected in the previous step is presented, and all
elements of the binding are highlighted with fat green outlines (like in Fig. 8).
The user may return to the previous step and select another match, and eventually
terminate this query.

While the user interaction is tool specific, the query engine and the model
interpretation are not (i.e., the lower part of Fig. 7). It should thus be fairly easy
to port MQ-2 to other UML tools, to DSL tools, or, in fact, to any modeling tool as
long as it provides an open plugin API.

MQ-2 and the other implementations of (parts of) VM* have matured over
several years of iterative refinement. Still, none of these implementations has
reached the level of maturity and quality to compare to commercial products.
However, our implementations do serve as evidence for several points. First, they
prove feasibility of VM* in all its parts and aspects, and the soundness of the
concepts and ideas behind VM*. Second, the implementations allowed us to get
a better understanding of the computational complexity of executing VM*. This is
particularly important, because executing VM* is ultimately based on sub-graph
matching, a problem well-known to be computationally expensive in the worst case.
So, it was not clear from the outset whether VM* would lead to a viable solution
for practical situations. As it turns out, VM* is indeed viable for the intended use
case, namely interactive queries, checks, and manipulations of models by modelers.
However, it is likely not capable of supporting online processing of extremely large
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model repositories or very complex and large sets of model transformations. It is
neither suitable to aggregate trace data into process models (“process mining”). Due
to lack of space, we cannot explore this aspect further in the present paper, and refer
the reader to [6]. Third, we claim practical value of VM* particularly for usability.
In fact, it is this aspect that led us to develop VM* in the first place, and it is here
that we have placed the greatest emphasis of our work.

5 Usability Evaluation

Usability is rarely considered an important concern in many modeling commu-
nities.6 For us, it is the key to the success of any modeling related approach.
Therefore, the cornerstone of the model querying research done in the context of
VM* is, of course, the series of user studies to explore the usability of various model
manipulation approaches. Table 4 lists the empirical studies we have conducted
over the years to evaluate the relative usability of various languages for querying
or transforming models. In Table 4, every line corresponds to a distinct study.
Obviously, it is impossible to present all experimental results here in adequate detail,
so we refer the reader to the original publications once more and restrict ourselves
here to a discussion of the insights we obtained.7

Our initial hypothesis was that visual query languages should “obviously” be
much better than textual languages. This turned out to be wrong in study 1 [30, 32]:
All participants (senior practitioners) reached a perfect score on the OCL condition,
even though they had never seen OCL before. In fact, they reached perfect scores
under all treatments, whereas the student participants in study 0 had reached fairly
low scores under each treatment. When asked, the participants in study 1 would
explain that they had considered it to be some kind of pseudo-code, and simply
executed it mentally, based on their intuition of the names of the operators and
functions. Based on their extensive personal experience, they apparently understood
the concepts, even if the syntax was new to them, and, as they asserted, less
comprehensible than the syntax of the other languages tested. This gave rise to
the hypothesis that there are at least two relevant factors to understanding model
queries: the querying concepts (abstract syntax) and the querying notation (concrete
syntax). We also speculated that participants’ scores in our tests should be less
relevant than their cognitive load. Therefore, we started asking for preferences as
a hint towards load levels.

6 Of late, some different opinions are heard, though, cf. e.g., [1].
7 We cite the main publications reporting on these studies, though many times results contributed
to several publications, and there are several publications presented (parts of) the results. The
names of the languages have evolved over time, we use here the name that the respective languages
have had at the end of the research program, to make comparison easier for the reader. The first
study was an exploratory pilot study to develop the research question rather than to provide
meaningful results.
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Table 4 Main empirical studies evaluating VM* and its precursors. In column “Method”, E, QE,
and TA refer to Experiments, Quasi-Experiments, and Think Aloud protocols, respectively. The
columns under “Participants” detail the kind and number of participants in the study (Students,
Practitioners, and domain Experts). In column “Mode”, R, and W stand for reading and writing of
queries or transformations

Participants

No. Ref. Method S P E Languages Intent Mode

0 [26] QE 5 VMQL, OCL, NLMQL, LQF Query R, W

1 QE,TA 5

2 [30, 32] E 12 6 6 VMQL, OQAPI, NLMQL Query R

3 E 16

4 [29] E 20 VMQL, OQAPI Query R, W

5 E 17

6 [4] E 24 VM*, OQAPI Query R, W

7 [4, 10] E 30 4 VM*, Epsilon, Henshin Transformation R

8 E 44

9 TA VM*

In studies 2 and 3, we switched from an exploratory research method to the
classic experimental paradigm. Besides increasing the number of participants, we
also explored sub-populations with different levels of qualification, and studied the
controls more carefully, with surprising effects. NLMQL is a made-up purely textual
model query language that we had introduced as a control, pitching textual vs. visual
styles of querying. We had expected that the visual VMQL would outperform not
only OCL (including the improved OCL-variant OQAPI) but also NLMQL. But the
opposite happened, which led us to speculate that there are more factors at play than
just the visual or textual notation of a query language. We attributed the difference
to the proximity of the concepts in the query language and the concepts referred to
in the experimental tasks. Put in another way: part of the usability of a model query
language could be found in the appropriateness of the language concepts.

The subsequent studies 4 and 5 replicated the effects found previously and
confirmed our speculations. Thus, we consider it an established fact that there are
clear differences in usability of different languages, both with respect to reading
and creating queries and constraints. Furthermore, the available evidence suggests
that there is indeed a second factor which we call language concept appropriateness
(LCA). Actually, the influence of LCA seems to be larger than whether a notation
is visual or textual. We also stipulate that the effect can be masked by expertise and
intellectual prowess, and so manifests itself mostly under stress (e.g., time pressure),
and through variation across a population rather than through in vitro experiments.

Re-analyzing our data, we also hypothesize that there might be a third factor
at play beyond the syntax and concepts of the queries that were presented to our
participants: in all our experiments, the answer options for participants to choose
from were given as prose. This might bias our results in favor of the textual,
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prose-like notation (NLMQL, see studies 0–3 in Table 4). There is currently no
experimental evidence to confirm this speculation, though.

After study 5, a major redesign of the language took place in the context
of extending it to covering model transformations, yielding the VMTL-language.
Of course, we also had to switch our controls from model query to model
transformation languages (MTLs). We picked two best-in-class languages, namely
the visual MTL Henshin, and the textual MTL Epsilon. In studies 7 & 8, we obtained
similar results than we saw previously for model query languages. These studies
showed no substantial advantage of one language over the other, and we currently
do not understand why this is the case. In particular, we were surprised by the
comparatively good results found for the “Epsilon” treatment. We hypothesized that
this is due to the sampled population: Their educational background (CS graduate
students) might introduce a bias in favor of Epsilon, which is very similar in style to
common programming languages. This would be in line with our very first results,
where the strong CS background of the study participants obviously had allowed
them to cope with a language like OCL, despite its obvious usability deficiencies
[26, 29, 30].

However, this is of course far from the “normal” situation, where domain experts
typically do not have CS expertise—they have domain expertise, and probably some
experience in reading models, and maybe even in creating models. Such users, we
speculate, should have a much harder time coping with OCL, Epsilon and other
languages created by computer scientists for computer scientists. Such users, we
believe, outnumber CS experts by far, and they deal with models (in their domains)
on a daily basis. They have no experience in programming or Model Driven Devel-
opment technology, nor do they have an intrinsic motivation to use this technology.

Pursuing this idea, we conducted an observational study involving participants
with and without a programming background (study 9). Interested in their opinion
and thought processes rather than their scores, we switched to a think aloud protocol
to find out how users understood the various languages. As expected, the presence of
substantial programming experience lead to a completely different approach as com-
pared to the non-programmers. Given that this is an interactive, observational study
based on a very small set of participants, our results do not support strong interpre-
tations and broad generalizations. On the other hand, our results likely generalize
from queries to constraints and transformations, based on the structural similarities
outlined in the first section of this paper. So, queries are the essential building blocks
for all kinds of model manipulations, and likely the most used part, too.

6 Applications and Use Cases

In the Software Engineering domain, several types of models occur frequently, e.g.,
class or entity-relationship models, state machines, interaction models, and so on.
Numerous powerful model manipulation languages and tools have been developed
in the context of the MDE-paradigm, which places “model transformation at the
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heart of software implementation” [22, p. 42]. Their origin has shaped them in
a profound way, particularly considering the application scenarios, model types
and the capabilities expected from modelers: Understanding and using MDE-
style model manipulation approaches hinges on a perfect understanding of the
metamodels underlying the modeling languages. Obviously, this is hardly part of the
skill set of most domain experts. This means that MDE-flavored model manipulation
languages, while expressive and supported by powerful tools, cater only for a very
small audience of MDE-experts.8

On the other hand, the BPM community has more readily considered modelers
which are experts in the domain modeled rather than technology. Thus, usability
of model manipulation tools is a concern of much greater importance here.
However, this domain typically considers only one type of models, namely process
models. Additionally, existing approaches typically only deal with models of one
particular notation. So, while a potentially much greater audience is addressed, a
smaller set of models is covered. We believe that conceptual models are abundant
today, created and used by knowledge workers without MDE expertise—think of
organizational charts, shift plans, mechanical and electrical engineering models,
Enterprise Architecture models, and chemical process schemas. These types of
conceptual models have complex and long-lasting lifecycles. They are created,
refactored, translated, and migrated in much the same ways as software models.
End-users working with conceptual models are usually academically trained and
highly skilled in their domains. We call them End-User Modelers (EUM), and they
are at the focal point of our vision of model manipulation. We aspire high degrees
of usability and learnability to cater for

EUMs, yet expressive and generic enough to cover their many application
intents and modeling languages. This is an instance of the “Process Querying
Compromise” [21, p. 12]. Pursuing this goal we are prepared to give up a degree
of expressiveness.9 We win, however, a world of applications, as we shall illustrate
in the remainder of this section.

Imagine a world where lawyers, mechanical engineers, accountants, and other
domain experts have access to a language and tool that allows them to specify model
transformations, queries, and constraints in a manner so close to their application
domain and so simple to use that they can actually do it themselves. This would
empower large numbers of knowledge workers to validate and update their models
in a more efficient and less error-prone manner. The economic benefits would be
hard to overstate. For instance, in an, as yet unpublished, interview study, a leading
software architect from a major automotive supplier said about model querying:
“. . . so I asked them: guys, how long does this and that take . . . then I took their
hourly rate, the working hours, and so on, calculated how much we would save if

8 This might have contributed to the hesitant industrial adoption of MDE [38].
9 In fact, some queries cannot be expressed in VM* [29], and some VM* queries are not
computable [4, Sec. 6.3]. Also, there is a poor worst case performance of the underlying execution
algorithm. We argue, however, that VM* still covers a large part of the actual application space.
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we can only shave off 5 minutes a day. Those tens of millions [of e]. . . they didn’t
ask any more questions after that.”

As a first example, consider a supplier of financial services. Over the last decade,
substantial new legislation has been implemented to regulate financial markets. It
is now widely accepted that “a comprehensive understanding of business processes
is crucial for an in-depth audit of a company’s financial reporting and regulatory
compliance” [17]. A current trend in making this possible involves audits of the
business processes, or, to be more precise, audits of the business processes models.
Given the large number of processes and applicable regulations, companies are
struggling to have fast and cost-effective audits. If auditors can create their own
queries on these process models, they will be more effective in narrowing down
items to check manually. Since this is already beneficial, imagine the added benefit
of replacing non-compliant patterns of activity with compliant ones automatically
and consistently.

As a second example, consider an Enterprise Architecture scenario focusing on
compliance and change-management. Industrial installations with potential impact
on safety and environment are subject to stringent regulation explicitly demanding
up-to-date digital models of the installation so that, e.g., malfunctions resulting
in environmental pollution can be traced back. Also, emergency response forces
need full technical details of a plant, say, to effectively carry out their work if
needed. Imagine an oil rig where a maintenance engineer discovers a burst pipe
spilling oil and blocking an evacuation corridor on the rig. Even more importantly
than repairing the damage is forwarding the information to all people and systems
concerned. With models as the backbone of information management of the
industrial installation, this amounts to the need for fast and accurate update to
several interconnected models. While speed is of the essence, ensuring that all the
right elements of the model are found and consistently updated globally is difficult,
slow, and error-prone for simple editing or search/replace. On the other hand, pre-
defining changes or back-up models is insufficient due to the unpredictability of
changes and mitigating actions. Deferring the update to a back office loses vital
context information and takes too long time. In such a situation, the maintenance
crew should do the update on the spot.

7 VM* and PQF

Polyvanyy and colleagues have introduced the so-called Process Querying Frame-
work (PQF) [21]), which “aims to guide the development of process querying
methods”, where “querying” includes all kinds of model manipulations in their
terminology. Using PQF as a frame of references, we discuss VM* using the
concepts and viewpoints defined there.

PQF consists of four parts with a number of activities (“active components”) to
be executed on models. Of the 16 activities defined explicitly in PQF, the following
six are instantiated in VM*.
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Formalize, Index, Cache. The process of compiling VM* specifications into
executable Henshin transformations [4] or Prolog programs [3, 5] is fully
automated. The translation of models includes manipulations that amount to
indexing and caching (see steps and in Fig. 7).

Inspect. Matched model fragments are presented to users using the same notation
and tool used to create the host model and the VM* query specification. The
modeling tool used for creating the target models in the first place is also used to
inspect the model.

Visualize. The concrete syntax of the host modeling language is used to visualize
query results (see Fig. 8 for an example).

Filter. PQF’s notion of model repository corresponds to a common (large) UML
model, so that selecting sub-models by VM* queries amounts to filtering in
PQF’s understanding of the term. PQF only considers static reductions of the
search space, though.

Other components of the PQF are not instantiated in VM*. PQF also defines a set of
variation points (“design decisions”) by which process query approaches may vary.
VM* has the following stance on these design decisions.

Design Decision 1: Models. VM* aspires to be applicable to all model types,
and to all (common) modeling languages. The restrictions to our aspirations are
discussed below and are fairly limited. As long as a modeling language has a
visual syntax, is implemented in a tool, and is defined using a metamodel (or,
indeed, a meta-metamodel such as MOF or Ecore, [20, 23]), VM* is applicable.

Design Decision 2: Semantics. VM* is based on syntactic matching. The under-
lying semantics is not considered in this process and may only enter the picture
in special cases. Considerations of the execution semantics such as fairness,
termination, and finiteness are not relevant for VM*. Conversely, semantic
differences along these dimensions cannot be expressed in VM* other than by
additional, semantics-specific annotations.

Design Decision 3: Operation. Considering a CRUD context, the VM* lan-
guages address the query intents Read, Update, and Delete. The fourth intent
(Create) is not supported directly in the sense that VM* is not able to create
models from scratch, though it could be achieved by update rules with empty
application conditions. The supported query conditions (i.e., VM* annotations)
are designed with learnability and comprehensibility as priorities.

These decisions come at a price. First of all, the generality and usability are
achieved, sometimes, at the expense of expressiveness: some queries cannot be
expressed in VM* [29]. We have discussed the trade-off between language expres-
siveness, usability, and predictability of query results in [4, Section 8.2]. We argue
that VM* still covers a large part of the actual application space.

Second, some VM* queries are not computable [4, Sec. 6.3], and there is a poor
worst case performance of the underlying execution algorithm, which, in the end,
amounts to graph matching. While, theoretically, this incurs an exponential run-time
for the worst case, this case is rarely met in industrial applications. With suitable
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optimizations and heuristics, a practical solution has been implemented, as we have
shown, at least for the scenarios we have considered.

8 Conclusion

We present VM*, a family of languages for expressing queries, constraints, and
transformations on models. Our focal point is the End-User Modeler, i.e., a domain
expert working with models, but without programming background. We claim that
our approach is feasible and usable and present evidence obtained through many
iterations of implementation and improvement as well as a string of empirical
user studies. We also claim that our approach is suitable to work with almost any
commonly used modeling language, including DSLs. Since 2007, there have been
over 20 publications on VM* and the steps leading up to it (see Table 1). An
extensive discussion of the related work is provided in [4, Ch. 3].

The genuine contribution of this line of research is that it is the first to take
usability into serious consideration for model manipulation languages. VM* is
also comprehensive in the sense that it applies to all widely used visual modeling
languages, covers many use cases, and provides many practical advantages, e.g.,
it readily adapts to any modeling environment. Pursuing our goal of combining
usability with generality, we traded in a degree of expressiveness: some queries
cannot be expressed in VM* [4, Sect. 8.2], and some VM* queries are not
computable [4, Sect. 6.3]. Also, the theoretical worst case run-time of the execution
algorithm of VM* is exponential.

Our line of research claims to provide a greater level of scientific certainty
than its predecessors or competitors, as it has been (re-)implemented several times,
and evaluated for usability and performance to a much greater extent than other
approaches as of writing this. An obvious gap in our validation is the absence of
a large scale, real life case study, i.e., an observational study in industry where a
sufficiently large set of modelers uses VM* for an extended period of time on actual
work items. Obviously, such a study would require a sufficiently well-developed
tool. While we have created many tools over the years implementing (parts of) VM*,
none of them has reached the level of maturity and product quality to compare to
professional solutions.

This suggests two desirable avenues of progress: an industry-grade implemen-
tation and an observational case study in industry. Both of these will be very hard
to achieve, and we consider them long term goals. In the nearer future, we plan to
provide a structured literature review (SLR) of this field, and a cognitively informed
theory of the usability factors for model querying.
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The BPMN Visual Query Language
and Process Querying Framework

Chiara Di Francescomarino and Paolo Tonella

Abstract Business needs often demand business analysts to inspect large and
intricate business process models for analysis and maintenance purposes. Neverthe-
less, manually retrieving information in these complex models is not a rewarding
error-free activity. The automatic querying of process models and visualization
of the retrieved results represents a useful opportunity for business analysts in
order to save their time and effort. This demands for languages that can express
process model characteristics and, at the same time, are easy to use for and close
enough to the knowledge of people working with process models. This chapter
provides an overview of BPMN VQL, one of the languages for querying business
processes. BPMN VQL allows business analysts to query process models and
retrieve both structural information and knowledge related to the domain. Beyond
the performance of the query language implementation, we have investigated the
benefits and drawbacks of its use. An empirical study with human subjects has
been conducted in order to evaluate the advantages and the effort required, both
for BPMN VQL query formulation and understanding.

1 Introduction

Business process models can be very large in size and retrieving information
scattered across the control flow is often resource and time-consuming. One option
to retrieve aspects of interest is querying the process model, i.e., matching a query,
which expresses the desired concern, against the process elements. The possibility of
automatically querying processes and visualizing the retrieved results is potentially
very useful for business designers and analysts.
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Querying business processes demands for languages able to express process
model characteristics and, at the same time, easy to use for the people working with
process models. Many of the process query languages in the literature [13], in fact,
are visual languages, exploiting a process-like visual representation for expressing
the process model properties that constitute the query. BPMN VQL (BPMN Visual
Query Language) [5] belongs to this stream of languages for querying business
processes. BPMN VQL allows business analysts to query BPMN process models,
possibly annotated with domain semantic information. BPMN VQL has a syntax
close to BPMN and its semantics is grounded in SPARQL [14], a language for
querying RDF, that is, a semantic query language able to retrieve and manipulate
data stored in Resource Description Framework (RDF) format.

In this chapter, we present BPMN VQL. Moreover, we present an implemen-
tation of a framework that executes BPMN VQL queries by converting them
to SPARQL queries, and an evaluation of the language, both in terms of time
performance, as well as ease of use for business analysts. Specifically, we measured
the time performance of the query engine implementation on different types of
queries. For the second analysis, we performed an empirical study with human
subjects, in which we have investigated the advantages/disadvantages of using
BPMN VQL with respect to natural language queries. The results of the two studies
indicate that (i) the time performance of BPMN VQL is compatible with the online
usage of the language and (ii) the visual language presents advantages both in
terms of query formulation and query execution with respect to the same queries
expressed in natural language. The results of the empirical study, indeed, show that
understanding BPMN VQL queries is easier than understanding natural language
queries and that formulating BPMN VQL queries is easier than matching natural
language queries against a process model.

In the next sections, we introduce background knowledge on semantically
annotated business process models (Sect. 2) and present BPMN VQL (Sect. 3). In
Sect. 4, we describe an implementation (Sect. 4.1), the time performance evaluation
(Sect. 4.2), as well as an empirical evaluation (Sect. 4.3) of BPMN VQL. In
Sect. 5, we map the proposed query language onto the process querying framework
(presented in [13]). We finally report conclusions and future work in Sect. 6.

2 Background

Business process models are mainly focused on the representation of activities,
performers, and control- and dataflows. Domain information is conveyed in process
models only as informal labels associated with business process model elements
(e.g., the textual labels of BPMN activities). However, process element labeling is
usually not rigorously performed by designers, thus resulting, e.g., in case of large
business processes, in situations of label inconsistency. It may happen, in fact, that
tasks with different labels are used to represent the same activity or that different
labels are used for describing different specializations of the same activity, adding
irrelevant information with respect to the considered abstraction level. Moreover, the
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amount of information that can be encoded in a human readable label is necessarily
limited.

In order to deal with the problem of providing business process elements with
domain knowledge that is both clear for humans and accessible to machines (thus
enabling automated reasoning mechanisms), business process elements can be
enriched with annotations characterized by a semantics explicitly organized in a
structured source of knowledge, i.e., with semantic concepts belonging to a set
of domain ontologies [5]. Semantic annotations, in fact, can be used to provide a
precise, formal meaning to process elements.

The semantic annotation of business processes and, in particular, of their
underlying Business Process Diagrams (BPDs) is graphically represented by taking
advantage of the BPMN textual annotations. In detail, in such a semantic variant of
BPMN, ontology concepts associated with BPD elements are prefixed with the “@”
symbol. Figure 1 shows an example business process diagram semantically anno-
tated with concepts from a domain ontology, an extract of which is reported in Fig. 2.
For instance, the tasks starting the three parallel flows for the raw product purchase,
though exhibiting different labels (Look for product A in the warehouse, Check product
B availability and Search for product C), represent the same concept, i.e., all of them
check whether a product is available in the warehouse. Assuming that the domain
ontology that describes the domain contains a concept to_check_product_availability
(see Fig. 2), the three tasks can be semantically annotated using this, more general,
concept. This semantic annotation allows the unification of the semantics of the
three tasks, while preserving their original labels.

Semantic information is crucial for activities that involve reasoning and require
automated support [11], as for example documenting or querying a process. In order
to enable automated reasoning on a semantically annotated BPD, the process model
can be encoded into a logical knowledge base, the Business Process Knowledge
Base (BPKB) [3, 4]. Figure 3 describes the components characterizing the BPKB.

BPKB contains a BPMN Ontology,BPMNO [15], which describes the structural
properties of BPMN process models, and a business domain ontology BDO, used
for the semantic annotation of the process models. Moreover, the BPKB also
contains a set of constraints (merging axioms and process specific constraints),
related to both ontologies and, finally the BPD instances, i.e., the elements of
the semantically annotated business process model. The BPKB is implemented
using the standard semantic Web language OWL (Web Ontology Language) based
on Description Logics [12] (OWL-DL). Description Logics (DL) are a family
of knowledge representation formalisms which can be used to represent the
terminological and assertional knowledge of an application domain in a structured
and formally well understood way. The terminological knowledge, contained in the
so-called Tbox, represents the background knowledge and the knowledge about
the terminology (classes and properties) relevant for the described domain. In
our case, the terminological part, which is the stable description of the domain,
is provided by the upper level modules of Fig. 3, i.e., the BPMNO and BDO.
The assertional part, the so-called Abox, contains knowledge about the individuals
which populate the given domain in the form of membership statements. In our
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Fig. 2 Domain ontology

Fig. 3 BPKB overview

case, the assertional part, which is the changeable part, corresponds to a specific
process model description. The semantically annotated business process model is
encoded in the BPKB by populating it through the assertional knowledge. Each
semantically annotated process element in the BPD is instantiated as an individual
of both the BPMNO concept corresponding to the class of the BPMN construct it
represents and of the BDO concept corresponding to its domain semantics, i.e., the
concept that is used for its semantic annotation. In detail, in the assertional part of
the BPKB, for each semantically annotated element of the business process diagram,
we have a BPM-type assertion that specifies the BPMNO type of the element and
a BPM-semantic assertion that specifies its BDO type. For instance, assuming that
the process element labeled with Look for product A in the warehouse in Fig. 1 is
called t1, we declare that it is a task with the BPM-type assertion task(t1), while
the assertion to_check_product_availability(t1) states that task t1 is an instance of
the concept to_check_product_availability. Moreover, BPM-structural assertions are
used to store information on how the graphical objects are connected. For instance,
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assuming that the first parallel gateway in Fig. 1, the task Look for product A in the
warehouse and the sequence flow connecting the gateway to the task are called
g1, t1 and s1, respectively, the assertion has_sequence_flow_source_ref (s1, g1)

states that the sequence flow s1 originates from the gateway g1 and the assertion
has_sequence_flow_target_ref (s1, t1) states that the sequence flow s1 ends in t1.

3 BPMN VQL

BPMN VQL is a visual language for the automated querying of business processes.
It is able to quantify over BPMN business process elements, localize interesting
parts of the BPD, and, once identified, present the identified parts to the user by
visually highlighting their occurrences in the BPD. Moreover, since a critical issue
of the query language is usability (it is going to be used by business designers and
analysts), the proposed language is a visual language, as close as possible to what
business experts already know, i.e., BPMN itself.

3.1 Syntax

Queries in BPMN VQL are built by using:

• standard BPMN graphical notation, to quantify1 over BPD objects;
• stereotypes for BPMN hierarchies of BPD graphical objects;
• semantic annotations (and inference reasoning) for BPD objects with a specific

business domain semantics;
• composition of semantic annotations by means of the logical operators (∧,∨,

and ¬), to quantify over specific BPD objects or groups of objects with a precise
business domain semantics;

• composition of subqueries by means of the OR and/or NOT operators;
• the transitive closure of direct connections between BPD flow objects, expressed

by means of the PATH operator and matching two BPD objects connected by at
least one path in the BPD;

• the transitive closure of sub-process inclusions between BPD flow objects,
expressed by means of the NEST operator and matching activities nested in sub-
processes;

• domain ontology relationships, expressed by means of the DOR (Domain Ontol-
ogy Relationship) operator, which allows directly referencing aBDO relationship.

1 The term “quantification” is used here, as in Aspect Oriented Programming [6], to indicate the
capability of identifying and affecting several places of the process model.
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The language supports the creation of queries with a structure similar to those
formulated in SQL (Structured Query Language), a language for querying relational
databases. Indeed, regardless of the specific graphical notation being used, BPMN
VQL queries are characterized by a “matching” part (matching criterion), that
determines the criterion to match (i.e., the WHERE clause or selection in an SQL
query), and by a “selection” part (selection pattern), for identifying the selected
portion of the matching result (i.e., the SELECT clause or projection in an SQL
query). These two parts can be identified visually in the BPMN VQL query:
differently from the components of the matching pattern, those of the selection
pattern have dark background, thick lines and bold font style.

Since BPMN language and syntactic matching on BPMN allow analysts to
formulate queries that can trivially obtain, via enumeration, every process subpart,
including the whole process, the described visual language is complete. Moreover,
the features of BPMN VQL that support quantification and reasoning, allow for the
definition of complex queries in a compact form.

3.2 Semantics and Notation

In the following, we describe BPMN VQL in more detail using examples that refer
to the product assembly process shown in Fig. 1. For each example query, in order
to give it a precise semantics, we provide the translation of the query into SPARQL.

Queries Using Standard BPMN Graphical Notation
Individual graphical objects in the BPMN notation (e.g., rounded rectangles,
diamonds, arrows) are used to match either a specific instance of the BPD with a
specific label (if the BPD object in the query is labeled with that label), or all the
instances of the corresponding BPMNO class, i.e., of the corresponding BPMNO-
type, regardless of their label (if the BPD object in the query is unlabeled). In
the first case, it is necessary to specify both the BPMNO-type of the BPD object
and the label of the specific instance required. In the second case, it is sufficient to
provide the specific BPMN object representation, without any label, thus indicating
any instance of the specified BPMNO-type. However, the expressive power of the
BPMN notation in the BPMN VQL is not limited to individual graphical objects.
By composing together several BPD objects, in particular, by linking flow objects
and/or artifacts by means of connecting objects, it is possible to match subparts of
the process.

Queries Using Stereotypes
Stereotypes, which are indicated within guillemets inside the BPMN activity
symbols (i.e., rounded rectangles), can be used to represent (sub-)hierarchies of
BPD graphical objects. They match all the BPD instances of the specified BPMNO
class or of its subclasses. For instance, an � Activity � stereotype will match all
the BPD instances of type task or sub-process.
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Queries Using Semantic Annotations
Queries exploiting semantic annotations are used to select instances of the BPMNO
(i.e., of BPMNO-type), representing, directly (i.e., without inference) or indirectly
(i.e., with inference), a specific ontological concept of a given BDO-type. The
BPMNO instances in the query result, hence, are also instances of a class/superclass
of the BDO ontology. We can think about a scenario in which, for security reasons,
all the activities making checks have to be documented. In order to intervene on
these activities, they need to be retrieved in process models. In Fig. 4, for example,
we ask for all the tasks that check something. Although annotated with different (i.e.,
more specific) concepts, tasks are added to the result, as long as to_check is an ances-
tor of their annotations (e.g., their annotation being to_check_product_availability
and to_check_product_price). In another business scenario, it might be necessary to
understand (for marketing purposes) what is usually searched, and what happens
immediately after. Figure 5 provides an example in which standard BPMN VQL,
stereotypes and semantic annotations are used together for retrieving all the pairs
of directly connected activities and their connecting sequence flow, such that the
source of the pair is a to_search activity. The result of the query run on the process
model in Fig. 1 contains the task labeled with Search for product C supplier , the task
labeled with Check product C price and the sequence flow directly connecting them.

Queries Using Logical Operators for Semantic Annotations
In order to compose query annotations, the standard logical operators (∧, ∨, ¬) are
used. Their semantics is the following one: the∧ (and) operator is a binary operator
representing the intersection between two concepts, returning all the instances
common to the two operands in the ∧ expression. The ∨ (or) operator is another
binary operator representing the union between two concepts, returning all the
instances belonging to one or more operands in the ∨ expression. The ¬ (not)
operator is a unary operator representing the negation of a concept. It returns all
the instances that do not belong to the set of the concept instances. For instance, in
Fig. 6, the ∧ and the ¬ operators are composed together in order to select all the
activities (both tasks and sub-processes) in the process that check something, except
for the product price. The result of applying the query on the process model of Fig. 1
consists of the three tasks that check product availability.

Queries Using Operators for Composing Subqueries
In order to express complex queries, BPMN VQL provides three operators for
composing subqueries. The default operator between two or more subqueries is
the intersection of the results provided by each subquery. Two more operators are
introduced in order to support the union and the negation of subquery results. The
OR operator is depicted as a dotted table listing all possible alternative subparts
of the query. We can think about a scenario in which the documentation should be
delivered before the activities performing checks, as well as before all the decision
points. The query in the example in Fig. 7 asks for all the instances of any activity
followed by an exclusive gateway or by an activity that checks something. The result
consists of the eight activities preceding the six exclusive gateways and of the Search
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for product C supplier sub-process preceding the Check product C price task. The NOT
operator is depicted as a cross over the negated (set of) BPD object(s). The query in
Fig. 8, for example, looks for all the tasks that check something, but are not directly
preceded by a gateway. Therefore, the three tasks that are instances of theBDO class
to_check_product_availability are discarded from the results, while only the Check
product C price task is returned.

Queries Using the Transitivity Operators
In order to ensure an easier way to navigate through BPD objects connected by
one or more sequence flows or nested in sub-processes, two operators supporting
transitivity have been introduced: the PATH and the NEST operators.

The PATH operator allows to match paths connecting two BPD flow objects
at the same level of nesting. This operator is depicted as a BPMN sequence flow
with two heads, symbolizing any intermediate graphical object (both flow objects
and sequence flows) encountered along the path. We can think about a business
scenario in which a business analyst is interested in understanding which are
the purchase activities that are preceded sometime in the past by a check of the
product availability. The query in Fig. 9, for example, asks for all the activities
that buy a product and for which there exists a sequence flow path starting from a
to_check_product_availability activity. The result of this query, applied to the product
assembly process, consists of the three sub-processes annotated by to_buy_product,
since there exists at least a path from the tasks Look for product A in the warehouse,
Check for product B availability and Search for product C to the three sub-processes Buy
product A, Buy product B and Buy product C, respectively.

The NEST operator captures BPD graphical objects nested at any level of depth
in sub-processes. It is depicted as a small oblique arrow in the upper right corner
of the sub-process, with the head pointing to the external part of the sub-process.
In case a business analyst, with the purpose of improving the performance of data
storing sub-processes, is interested in understanding how many and which retrieval
operations are carried out in these sub-processes, the query in Fig. 10 retrieves
all the to_retrieve tasks directly or indirectly contained in sub-processes storing
purchase data. The result is provided by the task Retrieve stored data contained in
the sub-process Manage data storing, in turn contained in the to_store_purchase_data
sub-process.

Queries Using the DOR Operator
Sometimes it is useful to be able to express domain ontology relationships for
querying specific business elements related to the process domain. To this end,
BPMN VQL provides the DOR operator. It is depicted as a dashed arrow connecting
graphical objects or semantic concepts and it represents a domain ontology rela-
tionship. In a business scenario in which, for statistical purposes, business analysts
need to retrieve the information about product suppliers and corresponding products
manipulated by the process activities, the query in Fig. 11 looks for all the pairs
of instances of data objects, whose first component refers to supplier and whose
second component concerns any of the supplied products. The provides relationship
is a domain relation between the instances of the two semantic concepts: supplier
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and product The other two DOR operators, both labeled has_specifier, represent the
domain ontology relationships between the pairs of data objects’ BDO classes (in
this case derived from the BDO classes supplier_data and product_data) and their
specifiers (supplier and product, respectively). In the example shown in Fig. 11, the
two pairs of data objects (Product A supplier info, Product A data) and (Product C
supplier data, Product C information) are returned as results.

4 Implementation and Evaluation

A framework enabling the execution of BPMN VQL queries has been implemented.
In the next subsections, we detail the aforementioned framework implementation
(Sect. 4.1), we report a quantitative evaluation of the performance of the framework
(Sect. 4.2), and we provide a rigorous empirical qualitative evaluation of the BPMN
VQL language (Sect. 4.3), in order to estimate whether it is easy to use for business
analysts.

4.1 Implementation

The implementation2 of the framework enabling the execution of BPMN VQL
queries is based on three main components: BPD Populator, Query Translator and
Query Executor.

BPD Populator is in charge of automatically translating the semantically
annotated BPDs into the corresponding sets of axioms of the BPKB, as reported in
Sect. 2. Once the BPD has been encoded in the BPKB, a reasoner is invoked.3 The
reasoner is able to infer new knowledge, starting from the asserted knowledge
and from the terminological knowledge. For instance, by leveraging the fact
that a BPMN task is a subclass of a BPMN activity (terminological knowledge),
and the fact that a task t1 is an instance of the BPMNO class task (asserted
knowledge), the reasoner is able to infer that t1 is also an instance of the class
activity. Similarly, by leveraging the fact that the class to_check_product_availability is
a subclass of the class to_check, and the fact that t1 is an instance of the BDO class
to_check_product_availability, the reasoner can infer that t1 is also an instance of the
class to_check. Although the inference step can be performed also at querying time,
when a process model does not change often, an ontology preprocessing phase can
be applied for precomputing an inferred process model starting from the knowledge

2 The code is available at https://drive.google.com/drive/folders/1R3-vFF8y8dXMOkuLtHx4xpL
MpCtfuD1r.
3 In the current implementation, the Pellet reasoner (http://clarkparsia.com/pellet/) is used.

https://drive.google.com/drive/folders/1R3-vFF8y8dXMOkuLtHx4xpLMpCtfuD1r
http://clarkparsia.com/pellet/
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added to the BPKB. Such a preprocessing phase aims at saving time in the querying
phase.

Query Translator deals with the automatic conversion of BPMN VQL queries
into SPARQL (SPARQL Protocol and RDF Query Language) [8, 9] queries.
SPARQL is an RDF-based query language standardized by the World Wide
Web Consortium [8] and widely accepted in the semantic Web community (thus
supported by several implementations). The SPARQL translation of the BPMN
VQL queries is based on the BPMNO and BDO ontologies. The translation is
obtained by: (i) requiring that each BPD graphical object in the visual query is
an instance of the corresponding BPMNO class and each semantically annotated
BPD object is an instance of the BDO class corresponding to the annotation (e.g., in
Fig. 4, “?t1 rdf :type bpmn :task” and “?t1 rdf :type p :to_check”, respectively); (ii)
constraining the BPD graphical objects in the query according to the corresponding
BPMN structural properties (e.g., “?sf bpmn :has_sequence_flow_source_ref ?a1”
in Fig. 5); (iii) using FILTER and EXISTS SPARQL constructs for realizing
the NOT operator and the SPARQL UNION construct for the OR operator;
and (iv) using the SPARQL property paths for composing ontology properties
and/or denoting their transitive closure (e.g., “?a1 (bpmn :has_sequence_flow
_source_ref_inv/bpmn :has_sequence_flow_target_ref)∗ ?a2” in Fig. 9); (v) filling
the SPARQL SELECT clause with variables representing the part of the query to be
retrieved from the process (i.e., the dark or thick graphical objects and the semantic
annotations in bold).

Finally, the Query Executor (a SPARQL implementation) is responsible for the
execution of the queries over the BPKB populated with the BPD and its objects.

4.2 Performance Evaluation

Since the time spent for query answering is a critical factor for business analysts
and designers, we have conducted an experiment to evaluate whether BPMN VQL
queries have a reasonable response time.

In the experiment,4 we considered six different process models of increasing
size, with a number of process graphical elements ranging from 92 to 475, and, for
each of them, a set of seven queries, each aimed at assessing a different construct of
the BPMN VQL language. BPMN VQL queries were translated into SPARQL 1.1
queries and executed by means of the SPARQL ARQ implementation.5 The purpose
of the experiment was to study the performance of BPMN VQL as the size of the
BPKB (in terms of instances) grows and as the structure (and hence the complexity)
of the queries changes. The number of BPD graphical objects, the main characteris-

4 The machine used for the experiment is a desktop PC with an Intel Core i7 2.80GHz processor, 6
Gb of RAM, and running Linux RedHat.
5 http://jena.sourceforge.net/ARQ/.

http://jena.sourceforge.net/ARQ/
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Table 1 BPMN VQL performance

P1 P2 P3 P4 P5 P6

Process graphical 92 175 237 327 387 475

objects

DL expressiveness ALC ALC AL ALC AL ALC

Classes 124 124 101 114 79 124

Class axioms 133 133 101 113 77 133

Ontology loading 1.445 1.476 1.498 1.513 1.528 1.564

time (s) (0.033) (0.037) (0.037) (0.038) (0.037) (0.040)

Ontology 4.459 8.318 13.090 15.298 37.237 35.349

preprocessing (0.999) (0.373) (0.892) (2.935) (14.238) (6.393)

time (s)

Q1 (Fig. 4) (s) 0.003 0.004 0.012 0.006 0.012 0.008

(0.000) (0.000) (0.002) (0.000) (0.001) (0.001)

Q2 (Fig. 5) (s) 0.004 0.004 0.006 0.005 0.006 0.006)

(0.000) (0.000) (0.000) (0.000) (0.001) (0.001)

Q3 (Fig. 6) (s) 0.017 0.019 0.020 0.021 0.021 0.023

(0.001) (0.001) (0.001) (0.001) (0.002) (0.002)

Q4 (Fig. 7) (s) 0.011 0.014 0.018 0.022 0.025 0.030)

(0.001) (0.001) (0.001) (0.002) (0.003) (0.003)

Q5 (Fig. 8) (s) 0.003 0.004 0.004 0.005 0.005 0.006

(0.001) (0.000) (0.000) (0.000) (0.002) (0.002)

Q6 (Fig. 9) (s) 0.009 0.010 0.009 0.011 0.012 0.012

(0.000) (0.001) (0.001) (0.001) (0.002) (0.001)

Q7 (Fig. 10) (s) 0.003 0.003 0.005 0.004 0.005 0.005

(0.001) (0.000) (0.000) (0.000) (0.000) (0.000)

Query average 0.0071 0.0083 0.0106 0.0106 0.0123 0.0129

time (s)

tics and the Description Logic (DL) expressiveness of the domain ontologies6 used
to annotate the processes are listed in the top rows of Table 1, while a reference to
an example query similar to those used in this experiment is shown within brackets,
next to each query, in the first column of Table 1. In detail, the first query (Q1) looks
for tasks of a given business domain type (see Fig. 4); the second (Q2) retrieves
direct connections between pairs of flow objects, where the domain type of the first
one is specified (see Fig. 5); the third (Q3) investigates the use of logical operators
for the composition of semantic annotations (see Fig. 6); the fourth (Q4) makes use
of the OR operator (similarly to the query in Fig. 7); the fifth (Q5) contains the NOT
operator (see Fig. 8); the sixth (Q6) assesses the PATH operator (see Fig. 9); and,
finally, the seventh (Q7) assesses the use of the NEST operator (see Fig. 10).

6 Please refer to [1] for more details about the terminology used for denoting the expressive power
of ontologies.
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Table 2 BPMN VQL performance on non-preprocessed ontologies

P1 P2 P3 P4 P5 P6

Query average time (s) 0.1256 0.4769 0.9806 1.5899 3.0777 4.4373

Min query time (s) 0.034 0.083 0.138 0.206 0.295 0.411

Max query time (s) 0.292 0.891 1.817 2.922 5.763 8.492

The results of the experiment, i.e., the time required for the execution of each
query on a single model, are reported at the bottom of Table 1. Time is expressed
in seconds in the form avg(sd), where avg and sd are respectively the arithmetic
mean and the standard deviation of the execution times obtained over 100 runs on
the same input query. Times related to query executions have been collected after an
ontology preprocessing phase, in which the inferred model has been computed by
the Pellet7 reasoner (see Sect. 4.1). The preprocessing phase includes also the time
for structure construction, required for the execution of the first query. As expected,
not only the time required for loading the ontology increases when the process size
grows (sixth row in Table 1), but also the time used for ontology preprocessing
and for query execution, ranging from a query average time of 0.007 seconds for
the process with the smallest size to a query average time of about 0.013 seconds
for the process containing 475 process elements (see the last row in Table 1). On
the contrary, the type of query does not significantly impact the performance of
query execution, though minor differences among the considered types of queries
exist. The largest amount of time was taken by the query that uses logical operators
(both and and not operators) for the composition of semantic annotations (Q3),
and the one exploiting the OR operator for the composition of subqueries (Q4).
The “cheapest” queries, in terms of execution time, are Q5 and Q7, i.e., the query
using the NOT and the NEST operator, respectively. All types of queries, however,
complete their run in a very limited time, though a quite significant time is spent
for ontology preprocessing (around 35 s in case of the largest process). Ontology
preprocessing is effective when the ontology is rarely modified. When, instead,
frequent changes occur in the ontology, queries can be directly executed on the
original ontology, on which no reasoning is applied before query execution. We
collected the query execution performance also in this case and reported the average
values in seconds in Table 2. As expected, query execution on non-preprocessed
ontology takes more time than on the inferred ontology and execution time increases
as the process model size grows. However, the average and the worst response
times for querying a single model (4 and 8 s, respectively, for the largest process
model among the ones considered) are still reasonable and compatible with activities
involving human interaction.

Given these results, we can state that the use of the language for querying
processes is compatible with business designers’ and analysts’ needs. Results

7 http://clarkparsia.com/pellet/.

http://clarkparsia.com/pellet/
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confirm the applicability of BPMN VQL as a means for supporting the analysts
when retrieving relevant parts of a business process model.

4.3 Empirical Evaluation

In this subsection, we focus on the evaluation of effectiveness and efficiency, in
terms of benefits gained and effort required, associated with BPMN VQL, used for
retrieval and documentation purposes. In detail, we aim at comparing the advantages
of the adoption of BPMN VQL with respect to a baseline approach, natural
language, for retrieving and documenting information scattered across a process
model. To this purpose, we conducted an experimental study with human subjects.

In the next subsections we first describe the goal and the design of the experiment
(Sect. 4.3.1). We then report the experiment results (Sect. 4.3.2) and, finally, we
discuss the results (Sect. 4.3.3).

4.3.1 Experiment Definition, Planning, and Design

In this subsection, we describe the study by following the methodology presented
by Wohlin [17].

Goal of the Study and Research Questions
The goal of the study is to analyze two approaches, one based on natural language
queries and the other on BPMN VQL queries, with the purpose of evaluating
query understandability and ease of query formulation.8 The quality focus is the
accuracy of the results obtained, the time spent in matching the queries against the
process model and the subjective perception of the effort required during query
understanding and execution. The perspective considered is of both researchers
and business managers, interested in investigating the benefits of the adoption of
a visual language for supporting business designers and analysts in retrieving parts
of process models and documenting them. The context of the study consists of two
objects (two semantically annotated processes and the ontologies used for their
annotation) and a group of researchers and PhD students working at Fondazione
Bruno Kessler (FBK), a research center in Trento, Italy, as subjects.

The objective of the study is: (i) comparing the understandability of BPMN VQL
queries and of natural language (NL) queries; and (ii) evaluating the performance
(in terms of results and effort required) of BPMN VQL queries with respect to
NL for retrieving information. To this purpose, we asked the involved subjects
to perform two different types of assignment: the Query Understanding and the
Query Execution assignment. The Query Understanding assignment is aimed at

8 According to Wohlin, the goal of an empirical study has to be defined by specifying: the object(s),
the purpose, the quality focus, the perspective and the context of the study.
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comparing the ease of understanding queries in BPMN VQL and NL, and consists,
for both languages, of matching the queries against the process model. The Query
Execution assignment differs depending on the language. Since the purpose of the
Query Execution assignment is to evaluate the time required by the humans to
eventually achieve query execution, assuming that the starting point is a natural
language description of the query we want to execute, the assignment consists of
manual matching the query against the process, in case of NL, and in formulating
BPMN VQL queries, to be automatically executed by a tool, in case of BPMN VQL.

We conjecture that the graphical notation of BPMN VQL queries, as well as
their higher formality with respect to natural language, may help designers and
analysts disambiguate and clarify the queries and correspondingly the relevant
parts of the process that they represent. Moreover, we also expect that the task of
formulating queries in BPMN VQL, which are then executed automatically, should
be easier than matching NL queries against the process. These two expectations
provide a direction for the research questions and the hypotheses we are interested
in investigating:

RQ1 Are BPMN VQL queries easier to understand than natural language
queries?

RQ2 Is BPMN VQL query formulation easier to perform as compared to
matching the results of natural language queries?

RQ1 deals with the understandability of BPMN VQL queries with respect to NL
queries. The null hypothesis related to this question is: (H10) When performing
query understanding tasks, understanding BPMN VQL queries is not easier than
understandingNL queries.

We investigated the first research question by taking into account and inspecting
three different factors:

• the (objective) impact that query understanding has on the accuracy of the
obtained results (we expect higher accuracy for BPMN VQL queries);

• the (objective) effort (time) required to perform query understanding tasks (for
BPMN VQL queries we expect to observe a time not significantly higher than for
NL queries);

• the perceived (subjective) effort required to perform query understanding tasks
(we expect a lower perceived effort for BPMN VQL queries).

Hence, H10 can be decomposed into the following three sub-hypotheses:

• (H10A) The results obtained by performing BPMN VQL query understanding
tasks are not more accurate than those obtained when performing NL query
understanding tasks;

• (H10B) There is no difference between the time required to perform BPMN VQL
and NL query understanding tasks;

• (H10C) The effort perceived when performing BPMN VQL query understanding
tasks is not lower than the one perceived when performing NL query understand-
ing tasks.
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RQ2 deals with the effort required for executing queries. In detail, relying on
the assumption that queries are provided in natural language, RQ2 deals with
the formulation of BPMN VQL queries that can be then automatically matched
against the process by means of our tool, compared to the manual matching of
NL queries. Similarly to RQ1, the hypothesis for RQ2 is: (H20) When performing
query execution tasks, formulating BPMN VQL queries is not easier than matching
NL queries against the process model. Also in this case, in order to deal with the
research question, we considered and evaluated three main factors:

• the (objective) impact that query formulation/matching has on the accuracy of
the results obtained by respectively formulating/matching the query in query
execution tasks (we expect higher accuracy for BPMN VQL queries);

• the (objective) effort, in terms of time, required to perform query execution tasks
(for BPMN VQL queries we expect a time not higher than NL queries);

• the perceived (subjective) effort required to perform query execution tasks (we
expect a lower effort for BPMN VQL queries).

Similar to H10, H20 can be decomposed into three sub-hypotheses (H20A, H20B ,
and H20C) corresponding to the investigated factors. Hence, the corresponding
hypotheses in which H20 can be decomposed are the following:

• (H20A) The results obtained by formulating BPMN VQL queries are not more
accurate than those obtained by matching NL query matching in query execution
tasks;

• (H20B ) There is no difference between the time required to formulateBPMN VQL
queries and matching NL queries in query execution tasks;

• (H20C ) The effort perceived when formulating BPMN VQL queries is not lower
than the one perceived when matching NL queries against the process in query
execution tasks.

Context
The objects of the study are two semantically annotated business process models
describing real-life procedures: Bank Account Process and Mortgage Process.
The Bank Account Process9 represents the exchange of information between the
customer and the bank for opening and activating a bank account. It is composed
of 2 pools (the Bank and the Customer) and contains 30 activities, 16 events and 16
gateways.10 The associated ontology used for its annotation contains 77 concepts
and 30 of them were used for process semantic annotation.11 The Mortgage

9 The Bank Account Process is based on a process used as example in the book by Havey [10] (it is
reported in Havey’s article “Modeling Orchestration and Choreography in Service Oriented Archi-
tecture” available at http://www.packtpub.com/article/modeling-orchestration-and-choreography-
in-service-oriented-architecture).
10 The interested reader can find the models online at https://drive.google.com/drive/folders/
1eFTwhCKUdLxl0ZijM4H2-PyHjAAS0VB3.
11 The material is available online in the experimental package at http://selab.fbk.eu/
difrancescomarino/BPMNVQLEval/material/RepetitionPackage.zip.

http://www.packtpub.com/article/modeling-orchestration-and-choreography-in-service-oriented-architecture
http://www.packtpub.com/article/modeling-orchestration-and-choreography-in-service-oriented-architecture
https://drive.google.com/drive/folders/1eFTwhCKUdLxl0ZijM4H2-PyHjAAS0VB3
https://drive.google.com/drive/folders/1eFTwhCKUdLxl0ZijM4H2-PyHjAAS0VB3
http://selab.fbk.eu/difrancescomarino/BPMNVQLEval/material/RepetitionPackage.zip
http://selab.fbk.eu/difrancescomarino/BPMNVQLEval/material/RepetitionPackage.zip
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Table 3 Study balanced design

L1 L2

NL BPMN VQL NL BPMN VQL

GA Bank Account Process Mortgage Process

GB Bank Account Process Mortgage Process

GC Mortgage Process Bank Account Process

GD Mortgage Process Bank Account Process

Process12 is instead a process describing the procedure regulating the acceptance
or the refusal by the “Mortgage Co.” company of mortgage requests formulated
by potential customers. It is also composed of two pools (the Mortgage Co. and
the Potential Customer) and it is slightly larger than the Bank Account Process: it
contains 35 activities, 26 events and 18 gateways. The associated ontology has 99
concepts and 31 of them are used for semantically annotating the process.

The subjects involved in the study are 12 persons working at FBK in the
domain of software engineering or knowledge management: 5 PhD students and
7 researchers.

Design, Material, and Procedure
The design adopted in this study is a balanced design [17]. Subjects are divided
into four groups (G_A, G_B, G_C, and G_D) and asked to perform two types of
assignment (Query Understanding and Query Execution) on two different objects
(Bank Account Process and Mortgage Process) with two treatments (NL or BPMN
VQL queries) in two laboratory sessions (L1 and L2). Each group worked with both
treatments and with both objects, by performing both the Query Understanding and
Query Execution assignment, on one process with NL queries in one laboratory
and on the other process with BPMN VQL queries in the other laboratory. The
schema adopted in the study is reported in Table 3. Such a schema allows us to
limit the impact of the learning effect on the objects and to limit the interactions
between learning and treatment. During the experiment, subjects received the
following material13 to perform the required tasks: a pre-questionnaire collecting
information about knowledge and experience of subjects; a BPMN quick handbook;
a BPMN VQL handbook; a semantically annotated process (the Bank Account
Process or the Mortgage Process); the domain ontology used for annotating the
process; an extract of the BPMN ontology for clarifying relationships among BPMN
constructs; a description of the tasks to perform; the answer book (a set of 10 sheets)
for reporting the answers related to the 10 required tasks; a post-questionnaire
investigating personal judgments of the subjects about tasks and process; a final

12 The Mortgage Process is based on one of the process models used as running examples in the
BPMN book by White et al. [16].
13 The experimental package, containing the material used in the experiment, is available online at
http://selab.fbk.eu/difrancescomarino/BPMNVQLEval for repetition purposes.

http://selab.fbk.eu/difrancescomarino/BPMNVQLEval
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post-questionnaire collecting subjective judgments about the BPMN VQL benefits
versus effort. In detail, the description of the tasks to perform consists of:

• 10 queries: 6 NL queries to be matched against the process for the Query
Understanding assignment and 4 NL queries to be matched against the process
for the Query Execution assignment; or

• 10 queries: 6 BPMN VQL queries to be matched against the process for the Query
Understanding assignment and 4 queries in natural language to be translated into
BPMN VQL queries for the Query Execution assignment;

Before the experiment execution, subjects were trained in seminars on BPMN,
ontologies, semantic annotation of business process models and BPMN VQL.
Moreover, subjects were also provided with a description of the two process models
in order to let them familiarize with the domain.

After the training session, in the first laboratory, subjects were asked to fill a pre-
questionnaire. Then, for both assignments, subjects were asked to mark the starting
time before executing each task and the ending time after the task execution. The
Query Understanding consists, for both treatments, of matching the queries against
the process. The Query Execution for NL queries differs from BPMN VQL Query
Execution. The reason is that our goal is to evaluate, for each of the two approaches,
the effort required for executing the query. Hence, in case of NL queries, we have
to evaluate the effort required for matching the NL query, while, in case of BPMN
VQL queries, we have to evaluate the effort required for formulating the BPMN
VQL query, assuming that the query is then executed by an automatic tool at no
further cost for the user. An additional benefit of automatic query execution (not
evaluated in this study), is that by visualizing the retrieved results, the query tool
can reveal possible false positives/negatives associated with the formulated query,
hence supporting users in successive query refinement.

The use of the tool in the experiment, however, would not have been completely
fair with respect to manual natural language matching, because the manual matching
process cannot reliably point to false positives/negatives. Hence, we decided to
partially penalize subjects involved in the BPMN VQL treatment. We allowed them
to match the formulated BPMN VQL query, in order to verify its correctness, only
manually. We asked them to refine it, if necessary, and to record separately the
percentage of time spent in matching the query vs refining the query. At the end
of both laboratory sessions, subjects were asked to fill the final post-questionnaire.

Variables
The independent variable considered in this study is the type of query language used
for performing the assignments. The independent variable, hence, can assume only
one of two values, i.e., the two treatments: NL or BPMN VQL.

The number of dependent variables in the study is higher, since for the evaluation
of the two research questions we analyzed both objective and subjective factors. In
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Table 4 Dependent variable description

Hp Sub-hp Det. sub-hp Variable Unit/Scale Description

H10 H10A H10AP
PQU [0, 1] Precision

H10AR
RQU [0, 1] Recall

H10AFM FMQU [0, 1] f-measure

H10B H10BT
TQU sec. Time

H10C

H10CPEQU PEQU [0, 4] Perceived effort in query understanding

H10CPEOU PEOU [0, 4] Perceived effort in ontology understanding

H10CPEQM PEQM [0, 4] Perceived effort in query matching

H20

H20A

H20AP
PQE [0, 1] Precision

H20AR
RQE [0, 1] Recall

H20AFM FMQE [0, 1] f-measure

H20B H20BT
TQE sec. Time

H20C H20CPEQE PEQE [0, 4] Perceived effort in query execution

H20CPESU PESU [0, 4] Perceived effort in specification understanding

detail, we used the accuracy of the results of the Query Understanding and Query
Execution assignments as well as the time spent to perform the tasks as objective
measures; the personal judgments expressed by subjects about the effort required by
each task as subjective measures.

The set of dependent variables defined to answer the two research questions,
as well as the corresponding descriptions, are reported in Table 4. For each of
the two hypotheses, H10 and H20 (answering research questions RQ1 and RQ2,
respectively), the related sub-hypotheses have been considered (column “Sub-hp”
in Table 4). In turn, each sub-hypothesis has been further decomposed, according
to the different measures (e.g., precision, recall) considered for its evaluation, into
detailed sub-hypotheses (column “Det. sub-hp” in Table 4), each corresponding to
a dependent variable (column “Variable” in Table 4).

We evaluated the results obtained in the Query Understanding assignment in
order to investigate the query language understandability RQ1 and the results
obtained in the Query Execution assignment for RQ2. For the evaluation of the
accuracy of the task results, we exploited two metrics widely used in Information
Retrieval: precision and recall. In case of the Query Understanding assignment, for
each subject sj and for each query qi , we identified the set of correct results (CRqi )
of the query qi and the set of results reported by subject sj for query qi (RRqi ,sj).
In case of the Query Execution assignment, CRqi and RRqi ,sj are identified for each
NL query qi and subject sj exactly as above, while the corresponding values, for
each task ti involving the BPMN VQL treatment, are collected by automatically
executing the corresponding BPMN VQL query qi formulated by subject sj.
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Starting from these values we computed precision Pqi,sj , recall Rqi ,sj and F-
Measure FMsj,qi for each query qi and for each subject sj as follows:

Pqi,sj =
∣∣CRqi ∩ RRqi ,sj

∣∣∣∣RRqi ,sj

∣∣ (1)

Rqi,sj =
∣∣CRqi ∩ RRqi ,sj

∣∣∣∣CRqi

∣∣ (2)

FMqi ,sj =
2 ∗ Pqi ,sj ∗ Rqi, sj
(Pqi,sj + Rqi, sj)

(3)

Since in the performed study the size of the set of correct results is not the
same for all the queries and each query is read and interpreted independently by
subjects, we chose to evaluate each query separately, by computing precision and
recall for each of them, thus avoiding to penalize and emphasize too much possible
misunderstandings/perfect understandings in the specification of queries with a high
number of correct results.

In order to get a global result for each assignment k (i.e., k ∈ {Query Under-
standing, Query Execution}), and for each subject sj, we computed the average of
the three values (Pk,sj , Rk,sj and FMk,sj) over all the queries in the set of queries for
assignment k (Qk), that is:

Pk,sj =
∑

qi∈Qk
Pqi ,sj

|Qk| (4)

Rk,sj =
∑

qi∈Qk
Rqi,sj

|Qk| (5)

FMk,sj =
∑

qi∈Qk
FMqi ,sj

|Qk| (6)

In the objective evaluation, we also considered the time spent for completing
each assignment. In case of RQ1, the time required for performing the Query
Understanding assignment is collected. In detail, for each query qi the time spent
by the subject sj (Tqi,sj) is computed by considering both the time spent for reading
the NL/BPMN VQL query and for retrieving the query results against the process.
For RQ2, it is the time required for performing the Query Execution task: in case
of the NL treatment, Tqi,sj represents the time spent by subject sj for retrieving the
results of the query qi . In case of BPMN VQL queries, Tqi,sj is the time spent by
subject sj for formulating and, if necessary, refining the query. The time spent in
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matching the query is, however, excluded from Tqi,sj because, in principle, it can be
performed automatically.

As for Information Retrieval metrics, the average value per assignment type k ∈
{Query Understanding,Query Execution} and per subject sj has been computed:

Tk,sj =
∑

i∈Qk
Tsj,qi

|Qk| (7)

With respect to the subjective evaluation, a set of answers was collected through
the post-questionnaire. In detail, each subject was asked to express her evaluation
on a 5-point Likert scale (from 0 to 4, where 0 is very low and 4 is very high) about
the perceived effort in query understanding (PEQUsj), ontology understanding
(PEOUsj), query execution (PEQEsj) and specification understanding (PESUsj).

4.3.2 Experimental Results

Due to the violation of the preconditions for parametric statistical tests (small
number of data points and non-normal distribution), we decided to apply a non-
parametric test to compare the distributions of data obtained with the two different
treatments. Moreover, since subjects performed the assignments with both NL and
BPMN VQL treatment, we could perform a paired statistical test. Starting from
these considerations, we resorted to the Wilcoxon test [17], a non-parametric paired
test. Then, depending on the direction of the hypotheses to verify, i.e., whether a
direction was already present in the hypothesis (H10A, H10C; H20A, H20C) or not
(H10B; H20B), we opted for a one-tailed or two-tailed analysis, respectively.

In order to evaluate the magnitude of the statistical significance obtained,
we computed also the effect size, which provides a measure of the strength of
the relationship between two variables. To this purpose we used the Cohen’s d
formula [2] (the effect size is considered to be small for 0.2 ≤ d < 0.5, medium for
0.5 ≤ d < 0.8 and large for d ≥ 0.8).

The analyses are performed with a level of confidence of 95% (p-value < 0.05),
i.e., there is only a 5% of probability that the observed differences are due to chance.

Research Question 1
Table 5 reports the descriptive statistics of the data related to RQ1, i.e., the Query
Understanding assignment of the study. Figure 12a reports the boxplots of precision,
recall, and F-Measure for the same assignment. We can notice that the values of
precision, recall, and F-Measure obtained in case of BPMN VQL queries are higher
than those obtained in case ofNL queries. However, while in case of precision and F-
Measure, the first quartile for BPMN VQL queries is very far from the first quartile
of NL queries, the two values are much more closer in case of recall.

As shown in Table 6, two out of the three null sub-hypotheses related to H10A

(i.e., H10AP and H10AFM in Table 4) can be rejected. In detail, though we are not
able to reject the null hypothesis H10AR (corresponding to the variable RQU ), we



210 C. Di Francescomarino and P. Tonella

Table 5 Descriptive statistics for the Query Understanding assignment

Det. Mean Median

Sub-hp Variable NL BPMN VQL NL BPMN VQL

H10AP
PQU 0.870349326 0.978505291 0.916666667 1

H10AR
RQU 0.92037 0.951852 0.958333 1

H10AFM FMQU 0.861113 0.951918 0.883333 0.974074

H10BT
TQU 196 202 175 189

H10CPEQU PEQU 2.083333333 1.08333333 2 1

H10CPEOU PEOU 1.583333333 1 1.5 1

H10CPEQM PEQM 1.833333333 1.33333333 1.5 1

are able to reject H10AP (p-value = 0.02959) and H10AFM (p-value = 0.04118),
both with a medium effect-size value. Overall, by considering the F-Measure as a
global measure of the query answers and hence H10AFM as a the main detailed sub-
hypothesis, we can reject H10A, i.e., we can affirm that the use of BPMN VQL
allows to get more accurate results than NL.

Figure 12b depicts the boxplot of the time spent for the Query Understanding
assignment. In this case, for the BPMN VQL queries, the values of the time spent in
understanding BPMN VQL queries are only slightly higher than the time spent for
understanding NL queries. We applied a two-tailed Wilcoxon test for investigating
the null hypothesis H10B , related to the time. In this case, we were not able to
reject the two-tailed null hypothesis (p-value = 0.8501 in Table 6), hence we cannot
affirm that there is a difference of effort, in terms of time, to perform the Query
Understanding assignment in case of NL versus BPMN VQL queries.

Finally, Fig. 12c reports the boxplots of the perceived effort required for under-
standing the queries, understanding the ontology used for process annotation and
matching the queries against the process, both with NL and BPMN VQL. In all three
subjective ratings of the perceived effort with BPMN VQL, the boxplot is mostly
concentrated in the bottom part of the plot (i.e., in the interval [0, 2]), meaning that
subjects perceived a low/medium effort. The corresponding NL values, instead, are
higher. We applied a one-tailed Wilcoxon paired test in order to investigate the sub-
hypothesis H10C for all three dependent variables. The results allowed us to reject
each of the null hypotheses (see Table 6) and hence the whole H10C , i.e., the effort
perceived in understanding BPMN VQL queries is lower than the one perceived in
understanding NL queries. In the specific case of query understanding, the result
related to the perceived effort (PEQU ) is particularly strong, being associated with
a large Cohen d effect size (d = 0.886).

Research Question 2
The descriptive statistics of the data related to the query execution assignment are
reported in Table 7, while the corresponding boxplots are reported in Fig. 13.

Figure 13a shows that the boxplots related to precision, recall, and F-Measure
obtained by automatically executing theBPMN VQL queries formulated by subjects
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Fig. 12 Boxplots for the Query Understanding assignment. (a) Precision, recall and F-Measure.
(b) Time. (c) Query and ontology understanding, query matching perceived effort

are squeezed into the maximum possible value, of one. On the contrary,NL boxplots
are spread across the interval [0.8, 1]. BPMN VQL values for precision, recall, and
F-Measure are substantially higher than the values obtained by manual matching of
NL queries. Such visual impression is confirmed by the one-tailed Wilcoxon test,
whose results are reported in Table 8. In all three cases, we were able to reject, with
a level of confidence of 95%, the null hypothesis related to the specific dependent
variable. Moreover, in case of recall and F-Measure, the result is strengthened by
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Table 6 Paired analysis for
the Query Understanding
assignment. Statistically
significant p-values (< 0.05)

and large values of effect size
(> 0.8) are reported in bold

Det. Sub-hp Variable Wilcoxon p-value Cohen d

H10AP
PQU 0.02959 0.698703

H10AR
RQU 0.1308

H10AFM FMQU 0.04118 0.698885

H10BT
TQU 0.8501

H10CPEQU PEQU 0.009864 0.8864053

H10CPEOU PEOU 0.02386 0.6479058

H10CPEQM PEQM 0.04734 0.6267832

Table 7 Descriptive statistics of the Query Execution assignment

Det. Mean Median

Sub-hp Variable NL BPMN VQL NL BPMN VQL

H20AP
PQE 0.90625 0.989583 0.9375 1

H20AR
RQE 0.90625 1 0.958333 1

H20AFM FMQE 0.869742 0.994048 0.895833 1

H20BT
TQE 125 138 113 108

H20CPEQE PEQE 1.833333333 1.33333333 1.5 1

H20CPESU PESU 2.083333333 1.58333333 2 1.5

a high value of the Cohen d measure. Overall, the H20A sub-hypothesis can be
rejected, i.e., the results obtained by automatically executing BPMN VQL queries
formulated manually by subjects are much more accurate than those obtained by
manually matching NL queries against the process.

By looking at Fig. 13b, we can observe that the time spent for formulating and
refining the BPMN VQL queries is almost the same as the time spent for matching
the NL queries against the process. In Table 8, we can also find statistical evidence
for this visual observation. In fact, we were not able to reject the two-tailed null
sub-hypothesis H20B , i.e., we cannot affirm that there is a difference in the time
spent to match NL queries against the process vs. the time spent for translating them
into BPMN VQL.

For what concerns the effort perceived when executing the queries (i.e., either
matching the NL queries or formulating BPMN VQL queries), in Fig. 13c we can
observe that, differently from the NL boxplot, in case of BPMN VQL queries, the
boxplot is mainly distributed around the lower half of the Likert scale. The shapes
of the NL vs. BPMN VQL boxplots (two rightmost boxplots) for the perceived
understanding effort follow a similar pattern. By applying a one-tailed Wilcoxon
test, we were not able to reject the null hypothesis related to the perceived effort in
query execution (p-value = 0.07023), but we are able to reject the null hypothesis
related to the perceived specification understanding effort (p-value = 0.02054)
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Fig. 13 Boxplots for the Query Execution assignment. (a) Precision, recall and F-Measure. (b)
Time. (c) Query execution and task specification understanding perceived effort

Table 8 Paired analysis for
the Query Execution
assignment. Statistically
significant p-values (< 0.05)

and large values of effect size
(> 0.8) are reported in bold

Det. Sub-hp Variable Wilcoxon p-value Cohen d

H20AP
PQE 0.02099 0.588606

H20AR
RQE 0.01802 0.8436

H20AFM FMQE 0.007001 0.903492
H20BT

TQE 0.6377

H20CPEQE PEQE 0.07023

H20CPESU PESU 0.02054 0.7416198
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4.3.3 Discussion

The analysis shows that, on average, the results obtained when matching BPMN
VQL queries are more precise, more complete and, hence, more accurate than those
obtained when manually matchingNL queries (H10A). Although the result obtained
for recall shows only a trend, being not statistically relevant (p-value of RQU >

0.05), the one obtained for precision clearly shows that BPMN VQL allows business
analysts to be more precise in understanding requests related to semantically
annotated processes. This finding could be explained by the higher precision of
BPMN VQL with respect to NL. Indeed, BPMN VQL is able to precisely capture a
BPMN business process description enriched with semantic annotations.

Moreover, the positive result obtained for the accuracy of the answers is not
excessively penalized by the required effort (H10B). On average, the time spent for
performing the Query Understanding assignment in case of BPMN VQL queries is
only 3.8% more than the time spent for performing the same assignment in case of
NL queries, as shown in Fig. 12b. However, such slight extra time is not perceived as
an additional effort by subjects. As shown in Table 8, in fact, the effort perceived in
BPMN VQL query understanding is lower (p-value < 0.05) than the one perceived
for understanding NL queries. Moreover, results show that also the perceived effort
for understanding the ontology, as well as for matching the query, is significantly
lower (p-value < 0.05) for BPMN VQL queries than for NL queries. The former
result could be due to the formal structure in which ontologies are organized, which
is closer to BPMN VQL than to NL. Similarly, we can speculate that having in
mind a graphical representation of the pattern to look for, as well as having a clear
and formal description of the semantics of the searched pattern components, could
relieve the effort required by the matching task. By looking at Fig. 12c we can
also note that, when matching NL queries against the process, the most expensive
aspect of the activity seems to be query understanding (on average 2.08 in the Likert
scale, i.e., the perceived effort is slightly higher than the “medium” effort), followed
by query matching (on average 1.83 in the [0, 4] scale). This observation is in-
line with the qualitative answers provided by subjects. The main difficulties found
by subjects in understanding NL queries, in fact, are the ambiguity and the lack
of precision of the natural language, as well as the difficulty in mapping natural
language to structural properties of the process (5 subjects). When matching BPMN
VQL queries, instead, the activity requiring more effort is the actual query matching
(on average 1.33 in the Likert scale), that is, however, lower, on average, than the
effort required by NL query matching (H10C). On the other hand, the difficulties
encountered by subjects in query understanding are not common to more than one
subject and they tend to differ from subject to subject.

By considering the collected results and taking into account the different
factors analyzed, we can hence affirmatively answer the research question RQ1:
understanding BPMN VQL queries is easier than understanding NL queries.

With respect to the research question RQ2, we found several statistically relevant
results. The results obtained when automatically executing BPMN VQL queries
formulated by subjects are not only more specific than those obtained by manually
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executing NL queries, but they are also more sensitive and correspondingly more
accurate (H20A).

The good results obtained in terms of accuracy are not penalized by the
associated time performance (H20B). The time spent for formulating BPMN VQL
queries, in fact, is, on average, just slightly higher than the time spent for matching
NL queries (around 10% more). However, the high average time of BPMN VQL
queries is mainly due to two outliers. As shown in Table 7, in fact, the median
value of the BPMN VQL query formulation time is lower than the median time
required for matching NL queries. Since the time required for BPMN VQL query
formulation remains unchanged as the process size increases and the time spent for
automaticBPMN VQL query execution increases only slightly (a few milliseconds),
the BPMN VQL approach scales better (with respect to its time performance) than
the NL approach, which is dominated by the manual query matching time.

Other interesting findings are related to the perceived effort in the Query
Execution assignment. Although results are not statistically significant, the effort
perceived in formulating BPMN VQL queries is overall lower (on average 27%
lower) than the effort required for matching NL queries, as shown in the boxplots in
Fig. 13c. Moreover, the perceived effort required for understanding natural language
specifications seems to be positively influenced by the type of activity to be exe-
cuted: understanding natural language specifications with the aim of transforming
them into BPMN VQL queries is perceived as easier than understanding the
same specifications with the aim of matching them against the process. Moreover,
by inspecting the boxplots in Fig. 13c, we can observe that, as for the Query
Understanding assignment, most of the effort is spent in understanding the natural
language, both for BPMN VQL and NL tasks. The perceived effort required for
understanding natural language specifications is higher (in the same Likert scale)
than the effort perceived when formulating BPMN VQL queries or matching NL
queries against the process (H20C).

The qualitative answers related to the main difficulties faced in formulating
BPMN VQL queries for this assignment mainly concern the lack of the use of a
tool for inspecting the ontology (reported by three subjects) and the poor experience
with BPMN VQL (three subjects). These answers seem to confirm that results could
be further improved with tool availability and with more practice on BPMN VQL.

By taking into account these observations, we can, hence, also provide an
affirmative answer to RQ2.

As confirmed by the answers given to the last question in the post-questionnaire,
we can conclude that, overall, the proposed BPMN VQL language is easier to
understand than natural language and makes it easier to retrieve results scattered
across process models, i.e., it is better suited for solving the query task, thus
providing good support to business designers and analysts for documenting as well
as retrieving specific information scattered across large process models.
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5 Framework

This section maps BPMN VQL into the Process Querying Framework (PQF) [13].
The prerequisite for being able to make queries in BPMN VQL is the existence,

in the Model, Simulate, Record, and Correlate part of the framework, of (at least)
one process model described in the BPMN language and semantically annotated with
concepts from a domain ontology BDO (see Sect. 2). The semantically annotated
process model is then transformed into the BPKB (see Sect. 2). This activity, which
is performed by the BPD Encoder and focuses on the encoding of the business
process diagram into the RDF format, can be seen as a particular active component
of the Model, Simulate, Record, and Correlate part of PQF, whose passive output
will be the BPKB containing the RDF representation of the BPMN process model,
i.e., an RDF version of the process repository.

BPMN VQL queries implement a read intent, i.e., they do not create new process
models or update existing ones. Rather, BPMN VQL queries return parts of process
models (i.e., the selection pattern described in Sect. 3) matching the formulated
query (i.e., the matching criterion). Once queries have been formulated in the
BPMN VQL language, they are formalized in the corresponding SPARQL queries
to be executable on the BPKB. Passive components of the PQF’s Model, Simulate,
Record, and Correlate part (query intent, query condition and process querying
instruction), as well as the active query formalization component (corresponding to
the Query Translator module), are hence implemented in BPMN VQL.

Before being queried, an active component of the Prepare part of PQF pre-
processes the BPKB, so as to make it faster to be queried. In detail, the reasoner
of the BPD Encoder enriches the knowledge base by materializing inferences (see
Sect. 3). In this way, at query time, no time-costly reasoning is required and the
query response time is not high. The passive output of this step is the BPKB enriched
with the materialized triples.

In the execute part, the process query is transformed to SPARQL by the Query
Translator and executed by the Query executor on the BPKB containing the process
model diagram description and the inferred triples (see Sect. 4.1). The result of
process querying is a set of RDF triples representing the parts of the process model
matching the query.

Finally, in the Interpreter phase, query results could be visualized as parts of the
BPMN process model.

6 Conclusion and Future Work

In this chapter, we presented BPMN VQL, a visual language for automated
querying of semantically annotated business process models. While aiming to
provide reasonable response time, BPMN VQL also aims at being easy to use for
business people familiar with business process modeling languages, such as BPMN.
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A performance evaluation and an empirical study with human subjects have shown
that BPMN VQL queries can be executed online and that the language is easier to
use than the natural language.

In our future work, we plan to improve the implementation, for instance,
by exploiting recent and optimized RDF repositories and reasoners for query
execution [7]. It would be important to replicate the empirical study by involving
a higher number of subjects, including real business process analysts. We are also
interested in investigating the effort required to perform the semantic annotation of
business process models.
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Retrieving, Abstracting, and Changing
Business Process Models with PQL

Klaus Kammerer, Rüdiger Pryss, and Manfred Reichert

Abstract Due to the increasing adoption of process-aware information systems
(PAISs) in enterprises, extensive process model repositories have emerged. In turn,
this has raised the need for properly querying, viewing, and evolving process
models. In order to enable context-specific views on the latter as well as on
related process data, a PAIS should provide sophisticated techniques for abstracting
large process models. Moreover, to cope with the complexity of process model
changes, domain experts should be supported in evolving process models based
on appropriate model abstractions. This chapter presents the PQL language for
querying, abstracting, and changing process models. Due to the generic approach
taken, the definition of process model abstractions and changes on any graph-based
process model notation become possible. Overall, PQL provides a key contribution
to take process model repositories to the next level.

1 Introduction

Process-aware information systems (PAISs) provide support for business processes
at the operational level [28]. In particular, a PAIS separates process logic from
application code relying on explicit process models. This enables a separation of
concerns, which is a well-established principle in Computer Science to increase
maintainability and to reduce costs of change [38]. During the recent years, the
increasing adoption of PAISs has resulted in large process model repositories (i.e.,
process model collections) [36]. In many application environments, a process model
may comprise dozens or hundreds of activities [3, 4, 36]. Furthermore, process
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models may refer to business objects, organizational units, user roles, and other
kinds of resources [10]. Due to this high complexity, any PAIS should support the
various stakeholders with personalized views on the processes they are involved
in [33]. For example, managers rather prefer an abstract overview on a business
process, whereas process participants need a detailed view of the process parts they
are involved in.

Several approaches for creating process views and process model abstractions,
respectively, have been proposed in literature [5, 7, 16, 23, 24, 29, 32, 34]. Current
proposals, however, focus on fundamental model abstraction techniques (e.g., to
aggregate or reduce process model elements) in order to enable context-specific
(e.g., personalized) process views. These approaches neither allow specifying
abstractions independently from a particular process model (e.g., to create views
on different processes a particular user is involved in) nor defining them in a
more descriptive way. The latter means that it should be possible to express what
information shall be covered by a particular process view rather than to specify how
the view shall be created. With contemporary approaches, for each relevant process
model the required abstractions need to be created manually, e.g., by specifying
a sequence of aggregation / reduction operations. Consequently, the abstractions
need to be specified separately for each process model, which causes high efforts
in practice (cf. Fig. 1a). One approach to remedy this drawback is to decrease
the number of operations required for abstracting process models by composing
elementary operations to high-level ones [29]. Still, the application of respective
operations is specific to a particular process model.

In existing approaches (see [28] for an overview), process changes refer to
specific process model elements (e.g., nodes and edges) rather than to generic
process properties (e.g., expressed in terms of process attributes). In consequence, it
would be difficult to express, for example, that a specific user role shall be replaced
by another one in all process models stored in the repository [36], i.e., multi-model
changes would have to be separately applied by the user to each process model.

In many domains (e.g., database management), the use of descriptive languages
is common when facing large datasets. For example, SQL has been used to create,
query, and update data in relational databases [11]. With PQL (Process Query
Language), this chapter introduces a descriptive language for creating, querying and
updating process models in process repositories.

PQL not only allows querying process models, but also defining process views
(i.e., abstracting process models) in a declarative way. Moreover, updates on process
views may be specified with PQL and then be propagated in a controlled way to the
process model the view was derived from (cf. Fig. 1b). As an advantage of such
a declarative approach, PQL expressions can be automatically applied to multiple
process models (i.e., model sets) if required. For example, process participants may
use PQL to define personalized process views on their process, e.g., by abstracting
or hiding process information not relevant for them. Additionally, process model
collections can be easily updated using declarative specifications. For example, a
change of the same or similar process elements within multiple process models
(and process views respectively) may be triggered by one and the same PQL change
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description (e.g., changing all activities dealing with quality assurance in all variants
of a particular business process [1]).

This chapter extends our previous work on PQL [14]. First, we introduce
characteristic use cases for PQL in Sect. 2. In Sect. 3, we give detailed insights into
process model abstractions and provide additional examples. Section 4 shows how
to query, change, and abstract process model collections with PQL. Additionally, we
discuss how PQL can be used to evolve process models with PQL updates of related
process views. Section 5 gives insights into the architecture of a PAIS implementing
PQL and Sect. 6 positions PQL in respect to the Process Querying Framework [25].
The chapter concludes with a summary in Sect. 7.

2 Use Cases

In the following, different use cases for managing process models are illustrated
along a credit request process (cf. Fig. 2). The latter involves human tasks referring
to three user roles (i.e., customer, clerk, and manager) as well as automatic tasks
executed by the PAIS. For the sake of clarity and comprehensibility, the dataflow
between the process activities is not considered in this example.

The process is started by the customer filling out a credit request form (Step 1 ).
Then, the clerk reviews the credit request (Step 2 ), calculates the risk (Step 3 ), and
checks the creditworthiness of the customer with the credit protection agency (Step
4 ). After completing these tasks, the clerk decides whether to reject the request

(Step 5 ) or to forward it to his manager who finally decides on whether or not to
grant the credit request (Step 6 ). If the manager rejects the request, a respective
e-mail is sent to the customer (Step 7 ). Otherwise, a confirmation e-mail is sent
(Step 8 ) and the customer relationship management (CRM) database is updated
accordingly (Step 9 ). Finally, the clerk calls the customer in connection with after
sales (Step 10 ), before completing the process.

Note that several variants of process models for different types of credit requests
(i.e., low-medium-high volume and risk) may exist in a credit company.

Regarding the management of process models, different use cases need to be
supported. First, assume that the appropriate process model has to be selected out of
a set of process models (Use Case UC1: Selection of Process Models). Furthermore,
an evolution of the process model may become necessary, for example, when
inserting an automatic task after task “Fill Out Credit Request” to retrieve customer
data out of a database, if the customer has already been registered (Use Case UC2:
Updates on Selected Process Models). In general, updates may be applied to a set
of process models. Finally, the ability to delete or move tasks is crucial.

To increase the readability of process models [20] as well as to set a focus,
customized views on process models are required. For example, a clerk does not
want to see automated tasks, but only those he interacts with. Therefore, he should
be able to apply abstractions on process models, e.g., by hiding technical tasks (Use
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A

B

C F G

D

E

StartEvent Activity

ANDsplit

EndEvent

LOOPsplitLOOPjoin XORsplit XORjoin

ANDjoin

SESE block
(Single Entry Single Exit)

Fig. 3 Example of a process model captured in BPMN

Case UC3: Reduction of Tasks). As a complete reduction of all other tasks might
affect model readability, it should be possible to further consolidate the tasks not
executed by the clerk (Use Case UC4: Aggregation of Tasks).

Assume that the clerk wants to call a customer after sending out the confirmation.
For this purpose, he changes the process model and moves task “Call Customer”
after task “Send Confirmation”. In general, it is desirable to apply respective changes
on an abstracted process view instead of a complex process model. When changing
a process view, all process models associated with the view have to be updated
accordingly, as the change becomes relevant for all participants (Use Case UC5:
Change Operations on Process Model Abstractions).

PQL enables all these use cases based on concepts and technologies introduced
in the following sections.

3 Fundamentals of Process Model Abstractions

This section provides basic terminology as well as fundamentals on process model
abstractions needed for understanding the chapter. Section 3.1 defines basic notions,
whereas Sect. 3.2 introduces various change operations for process models. In turn,
Sect. 3.3 describes how to create and formally represent process model abstractions.
In this context, we illustrate how elementary model abstraction operations may be
composed to high-level (i.e., user-friendly) ones. Finally, Sect. 3.4 discusses how
process model changes can be accomplished based on abstracted process models
(i.e., process views).

3.1 Process Model

A process model comprises process elements, i.e., process nodes, as well as the
control flow between them (cf. Fig. 3). The latter is expressed in terms of gateways
and control flow edges (cf. Definition 3.1). Note that the data perspective of business
processes is excluded in this chapter to set a focus (see [17] for details on dataflow
abstractions).
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Definition 3.1 (Process Model) A process model is defined as a tuple P =
(N,NT,CE,EC,ET, attr, val), where:

• N is a set of process nodes (i.e., activities, gateways, and start/end nodes).
• NT : N → NodeType, with NodeType = {StartEvent,EndEvent,Activity,
ANDsplit,ANDjoin, XORsplit,XORjoin,LOOPsplit,LOOPjoin}, being a func-
tion with NT(n) returning the type of node n ∈ N . The nodes in N are divided into
disjoint sets either comprising activities A (NT(n) = Activity, n ∈ A) or structural
nodes S (NT(n) �= Activity, n ∈ S), i.e., N = A ∪ S.

• CE ⊆ N × N is a set of precedence relations (i.e., control edges):
e = (nsrc, ndest ) ∈ CE with nsrc �= ndest .

• EC : CE → Conds ∪ {TRUE} assigns to each control edge either a branching
condition or TRUE, with the latter meaning that the branching condition of the
respective control edge always evaluates to true.

• ET : CE → EdgeType, with EdgeType = {ET_Control,ET_Sync,ET_Loop}.
ET(e) assigns a type to edge e ∈ CE.

• attr : N ∪ CE → P1(Attr) assigns to each process element pe ∈ N ∪ CE its
corresponding attribute set attr(pe) ∈ P(Attr) (with Attr denoting the set of all
known attributes).

• val : (N ∪ CE)× Attr → valueDomain(Attr) assigns to any attribute x ∈ Attr
of a process element pe ∈ N ∪ CE its value:2,

val(pe, x) =
{
value(x), x ∈ attr(pe)

null, x �∈ attr(pe)
��

Definition 3.1 can be used for representing process models and corresponding
process model abstractions. In particular, Definition 3.1 is not restricted to a specific
activity-oriented modeling language, but may be applied to any graph-based process
modeling language. This chapter uses a subset of BPMN elements as modeling
notation and further assumes that process models are well-structured according
to the ADEPT meta model [27], i.e., sequences, parallel branchings, alternative
branchings, and loops are specified as blocks with well-defined start and end nodes
having the same gateway type. These blocks—also known as Single-Entry-Single-
Exit (SESE) blocks (cf. Definition 3.2)—may be arbitrarily nested but must not
overlap. Furthermore, ADEPT distinguishes between different edge types. Control
flow edges define the temporal order of activity executions and loop edges describe
re-entries in a process control flow. Accordingly, process models can be considered
acyclic when excluding loop edges during analysis. To increase expressiveness,
synchronization edges allow for a cross-block synchronization of parallel activities
(similar to the links known from WS-BPEL). In Fig. 3, for example, activity E must
not be enabled before G is completed, if a synchronization edge from activity G

1 Power set.
2 value(x) denotes the value of process attribute x.
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D
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ID=1 ID=2
name=A
assignedUser=Peter

ID=5
name=D
assignedUser=Peter 

ID=8
name=C
assignedUser=Maria 

ID=6
name=E
assignedUser=Peter 

Fig. 4 Example of a process model with attributes captured in BPMN

Table 1 Examples of change operations

Operation Description

InsertNode(P , npred, nsucc, n) Node n is inserted between nodes npred and nsucc in
process model P . Control edges between npred and n as
well as between n and nsucc are inserted to ensure the
existence of a control flow between these nodes.

DeleteNodes(P ,N∗) A set of nodes N∗ is removed from process model P .

MoveNode(P , n, npred, nsucc) Node n is moved from its current position to the one
between npred and nsucc; control edges are adjusted
accordingly.

to E exists. Additionally, process elements may be associated with attributes, e.g.,
activities have attributes like ID, name, and assignedRole (cf. Fig. 4).

Definition 3.2 (SESE Block [12]) Let P = (N,NT,CE,EC,ET, attr, val) be a
process model and X ⊆ N be a subset of activities (i.e., NT(n) = Activity∀n ∈ X).
Then, subgraph P ′ = (X,NT ′, CE′, EC′, ET ′, attr ′, val′) is called a SESE
(Single Entry Single Exit) block of P iff P ′ is connected and has exactly
one incoming and one outgoing edge connecting it with P. Further, (ns, ne) ≡
MinimalSESE(P,X) denotes start and end nodes of the minimal SESE comprising
all activities from X ⊆ N . ��
How to determine SESE blocks is described in [12]. As we presume well-structured
process models, a minimal SESE can be always determined [23].

3.2 Changing Process Models

Table 1 shows elementary change operations on process models. These may be
encapsulated as high-level change operations, e.g., to insert a complete process
fragment through the application of a set of InsertNode operations [37].

Change operation InsertNode(P, npred, nsucc, n) inserts node n between nodes
npred and nsucc in process model P . For this purpose, the control edge between
npred and nsucc is removed and two control edges between npred and n as well
as between n and nsucc are added to guarantee for connected nodes. Change
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Table 2 Examples of elementary abstraction operations

Operation Description

RedActivity(P , n) Activity n and its incoming and outgoing edges are removed
from P , and a new edge linking the predecessor of n with its
successor is inserted (cf. Fig. 5a).

AggrSESE(P ,N∗) All nodes of the SESE block defined by N∗ are removed in
P and an abstract activity is re-inserted instead (cf. Fig. 5b).

AggrComplBranches(P ,N∗) Complete branches of an XOR/AND branching are
aggregated to a branch with one abstracted node in P . N∗
must contain the activities of all branches (i.e., activities
between split and corresponding join gateway) that shall be
replaced by a single branch consisting of one aggregated
node (cf. Fig. 5c).

a) RedActivity(P,B)

A B C

A C

b) AggrSESE(P,{B,C})

A B C D

A BC D

A

B C

D

c) AggrComplBranches(P,{A,B,C})

ABC

D

Fig. 5 Examples of elementary abstraction operations

operationDeleteNodes(P,N ′), in turn, removes all nodes from N ′ in process model
P = (N,NT,CE,EC,ET, attr, val) and adjusts the control edges accordingly,
which results in process model P ′ = (N ′,NT ′,CE,EC,ET, attr, val), in particular,
∀n′ ∈ N ′ ⊆ N : e1 = (npred, n

′) ∈ CE ∧ e2 = (n′, nsucc) ∈ CE ⇒ e1, e2 /∈ CE′ ∧
(npred, nsucc) ∈ CE′ ∧ n′ /∈ N ′. Change operation MoveNode(P, n, npred, nsucc)

moves node n from its current position to the one between nodes npred and nsucc
in process model P and can be composed of operation DeleteNodes(P, n) and
InsertNode(P, npred, nsucc, n).

Due to lack of space, we omit a discussion of other change operations and refer
interested readers to [30] instead.

3.3 Process Model Abstractions

In order to abstract a given process model (i.e., to create a process model abstraction
or process view), its schema needs to be transformed accordingly. For this purpose, a
set of elementary operations with well-defined semantics are provided (cf. Table 2),
which may be further combined to realize high-level abstraction operations (e.g.,
to display all activities a particular actor is involved in as well as their precedence
relations) [23, 29].

At the elementary level, two categories of operations are provided: reduc-
tion and aggregation. An elementary reduction operation hides an activity of a
process model, e.g., RedActivity(P, n) removes activity n and its incoming/out-
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going edges, and re-inserts a new edge linking the predecessor of n with its
successor in process model P (cf. Fig. 5a). An elementary aggregation operation,
in turn, takes a set of activities as input and combines them to an abstracted
node. For example, AggrSESE(P,N ′) removes all nodes of the SESE block
induced by node set N ′ and re-inserts an abstract activity instead (cf. Fig. 5b). In
turn, AggrComplBranches(P,N ′) aggregates multiple branches of an XOR/AND
branching to a single branch with one abstracted node (cf. Fig. 5c). In general,
practically relevant abstractions of a process model can be created through the
consecutive application of elementary operations on the respective process model
(cf. Definition 3.3) [5, 29]. Note that there exist other elementary operations, which
refer to process perspectives other than control flow (e.g., dataflow, see [15]).

Definition 3.3 (Process Model Abstraction) Let P = (N,NT,CE,EC,ET,

attr, val) be a process model. A process model abstraction (also denoted as
process view) V(P) is described through a creation pair CSV (P ) = (P,Op) with
Op = 〈Op1, . . . ,Opn〉 being a sequence of elementary operations applied on P,
where Opi ∈ O ≡ {RedActivity(P, n),AggrSESE(P,N ′),AggrComplBranches
(P,N ′)}, i ∈ [1..n]. ��

A node n of the abstracted process model V (P) either directly corresponds to a
node n ∈ N of the original process model P or it abstracts a set of nodes from P.
PMNode(V (P ), n) reflects this correspondence by returning either {n} or node set
Nn aggregated in V(P), depending on creation pair CSV (P ). For example, consider
V (P) with CSV (P ) = (P,AggrComplBranches(P, (A,B,C))) (cf. Fig. 5c). Then,
PMNode(V (P ),D) = {D} and PMNode(V (P ),ABC) = {A,B,C} hold.

After abstracting a process model, unnecessarily complex control flow structures
might result due to the generic nature of the abstraction operations applied. For
example, certain branches of a parallel branching might become “empty” (i.e.,
nullified) or a parallel branching might only have one branch left after applying
reductions. In such cases, gateways no longer needed may be removed to obtain
an easier to comprehend schema of the abstracted model. For this purpose, well-
defined refactoring operations are provided. In particular, refactorings do not alter
the control flow dependencies of the activities and, hence, the behavioral semantics
of the refactored process model is preserved [36].

To abstract multiple perspectives of a process model (e.g., control and dataflow)
several elementary operations need to be co-applied [29]. For example, AggrSESE
and AggrComplBranch as well as AggrDataElements [17] may be combined to the
high-level operation AggregateControlAndDataFlow (cf. Fig. 6).

In general, the nodes to be abstracted (e.g., all activities performed by a specific
role) should be easy to select. Current abstraction approaches, however, require
the explicit specification of the respective nodes in relation to a particular process
model (e.g., activity A in process model P1). Thus, a declarative specification of
the nodes to be abstracted (e.g., to select all activities a particular user is involved
in) would significantly increase the usability of any approach dealing with process
model abstractions.
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3.4 Updating Process Models Based on Model Abstractions

Process model abstractions not only enable context-specific process views, but may
be also used as basis for updating large process models. In the following, we illus-
trate how updates of an abstracted process model can be specified and propagated to
the original model. We restrict our considerations to selected operations changing
the control flow, whereas update operations related to other process perspectives are
not considered (see [17] for details).

When allowing users to change a process model by adapting a related process
view (i.e., model abstraction), it needs to be ensured that the view update can be
automatically propagated to the original process model. For this purpose, well-
defined view update operations are provided, whose pre- / post-conditions ensure
that only those changes may be propagated to the original process model that do
not introduce any syntactical or semantical errors (see [18] for an overview of view
update operations). Note that the propagation of view updates to an original process
model is not straightforward. In certain cases, ambiguities occur when propagating
view updates to the original process model, e.g., it might be impossible to determine
a unique position for inserting a new activity in the original process model.

Consider the example from Fig. 7: when inserting activity X between activity A
and aggregated activity CD in process view V(P), several positions become possible
for inserting X in the original process model, i.e., there exist ambiguities in how to
transform the process view change into a corresponding process model change. For
example, X may be inserted before or after B. Note that such ambiguities are due to
the model abstractions applied (i.e., reduction of B in the example).

A C D

RedActivity(P,{B})

AggrSESE(P,{C,D}) 

a) Process Model P and Process Abstraction 
     Operations to be applied

b) Process Abstraction V(P) and Process
    Model Changes to be applied

Y

InsertSerial
(V(P),A,CD,X) 

InsertSerial
(V(P),CD,End,Y) 

c) Process Model P and occuring ambiguities when applying 
    Process Model Changes

B A CD

X

A C DB

InsertNode(P,A,B,X)

X

A C DXB

Y

Y

InsertNode(P,A,B,X)

c-1) V(P) with INSERT_SERIAL_MODE = EARLY

c-2) V(P) with INSERT_SERIAL_MODE = LATE

InsertNode(P,D,End,Y)

InsertNode(P,D,End,Y)

Fig. 7 Emerging ambiguities when propagating changes on process abstractions
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When propagating view updates to an original process model, it should be not
required from users to manually resolve ambiguities as this is a time-consuming and
error-prone task. Note that the original process model might be unknown to a user.
Therefore, we provide parameterizable view update operations [18], which may
then be configured in a way allowing for the automated resolution of ambiguities
according to a well-defined policy. For example, view update operation InsertSerial
in Fig. 7 has parameter InsertSerialMode = {EARLY,LATE,PARALLEL}, which
indicates the position at which an activity, which was added to a process view,
shall be inserted into the original process model in case of ambiguities. In general,
a process model abstraction may comprise a parameter set (cf. Definition 3.4) in
addition to the creation pair introduced in Section 3.3. The parameter values are then
used to define standard parameters for every parameterizable view update operation
(see [18] for details).

Definition 3.4 (Parameter Set) Let P = (N,NT,CE,EC,ET, attr, val) be
a process model. A process model abstraction (i.e., view) V(P) is described
through a creation pair CSV (P ) = (P,Op) and parameter set PSV (P ) = (P, p)

with p = 〈p1, . . . , pn〉 being a set of parameters defined for P: pi ⊆ P ≡
{InsertSerialMode, InsertBlockMode, InsertBranchMode,DeleteActivityMode,
DeleteBlockMode}, i ∈ [1..n]. ��

Definition 3.5 illustrates the parametrizable view update operation InsertSerial
to indicate how a process view change can be transformed into a corresponding
process model change, taking the chosen parameterizations into account.

We introduce the following auxiliary functions used in the following:
last(P, {x0, .., xn}) = xn, where x0, .., xn ∈ N and (x0, x1), .., (xn − 1, xn) ∈ CE,
first(P, {x0, .., xn}) = x0, where x0, .., xn ∈ N and (x0, x1), .., (xn − 1, xn) ∈ CE,
succ(P, n) = n′, where n, n′ ∈ N and (n, n′) ∈ CE,
with P = (N,NT,CE,EC,ET, attr, val).

Definition 3.5 (InsertSerial) Let V(P) be a process model abstraction of P (i.e., a
view), n′1 = last(PMNode(V (P ), n1)), n′2 = first(PMNode(V (P ), n2)), and
f = (succ(P, n′1) ≡ n′2). Let further p be an InsertSerialMode parameter, and
nnew be the activity to be inserted. Then:

InsertSerial(V (P ), n1, n2, nnew) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

InsertNode(P, n′1, n′2, nnew) f

InsertNode(P, n1, succ(P, n′1), nnew) ¬f ∧ (p = EARLY)

InsertNode(P, pred(P, n′2), n′2, nnew) ¬f ∧ (p = LATE)

Opsparallel ¬f ∧ (p = PARALLEL)

with (nsplit, njoin) = MinimalSESE(P, n′1, n′2),Opsparallel = {InsertNode(P, pred
(P, nsplit), nsplit,ANDsplit), InsertNode(P, njoin, succ(P, njoin),ANDjoin), InsertEdge
(P, ANDsplit,ANDjoin,ET_Control),InsertNode(P,ANDsplit,ANDjoin, nnew),

InsertEdge(P, n1, nnew,ET_SoftSync),InsertEdge(P, nnew, n2,ET_SoftSync)}. ��
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4 The PQL Language

Operations for creating process views refer to the process model they shall be
applied to. Thus, their effects cannot be described independently from this model,
which causes high efforts if a particular abstraction shall be reused, i.e., be applied to
multiple process models. To remedy this drawback, we introduce the process query
language PQL, which allows specifying abstractions independently from a specific
process model. Furthermore, PQL allows expressing changes that shall be applied
to a collection of process models.

4.1 Overview

PQL allows describing process model abstractions as well as process model changes
in a declarative way. Such declarative descriptions, in turn, may be applied to a
single process model or to a collection of process models showing some common
properties. In the following, we denote declarative descriptions of any abstraction or
change of a collection of process models as PQL requests. In general, a PQL request
consists of two sections: the selection section specifies the criteria for selecting the
process models concerned by the PQL request, whereas the modification section
defines the abstractions and changes to be applied to the selected process models.

Figure 8 illustrates the processing of a PQL request. First of all, an authorized
user sends a PQL request to the PQL interpreter (Step 1 ). Then, all process models
that match the predicates specified in the selection section of the PQL request are
selected from the process repository (Step 2 ). If applicable, the changes specified
in the modification section of the PQL request are then applied to all selected
process models (Step 3 ). Subsequently, the abstractions set out by the modification
section are applied to the selected process models as well (Step 4 ). Finally, all
selected, changed, and abstracted process models are presented to the user (Step
5 ). Note that Steps 3 and 4 are optional depending on the respective definition of

the modification section.
The specification of PQL requests is based on the Cypher Query Language [21],

which we adjust to the specific requirements of process model repositories. More
precisely, Cypher is a declarative graph query language known from the Neo4J
graph database. In particular, Cypher allows querying and changing the graphs
from a graph database [31]. Furthermore, it has been designed with the goals of
efficiency, expressiveness, and human-readability. Thus, Cypher is well suited as
basis for PQL. A first example of a PQL request expressed with Cypher is depicted
in Listing 1.

1 MATCH a1:ACTIVITY-[:ET_Control]->a2:ACTIVITY-[:ET_Control]->a3:ACTIVITY
2 WHERE not (a1-[:ET_Control]->a3)
3 RETURN a3

Listing 1 Example PQL request
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A

B

C F G

D

E

MATCH a1:ACTIVITY-[:ET_Control]->a2:ACTIVITY-[:ET_Control]->a3:ACTIVITY
WHERE not (a1-[:ET_Control]->a3)

Example of a
Matching Process Model

Fig. 9 PQL request determining a sequence of three activities

Line 1 refers to the selection of all process models that contain a path (i.e., a
sequence of edges with type ET_Control) linking activities a1, a2, and a3. Note that
a1, a2, and a3 constitute variables. To be more precise, the PQL request searches
for process models comprising any sequence consisting of three activities (cf. Line
1), which must not be direct predecessors of a1 (cf. Line 2), and returns only direct
successors of a2 (cf. Line 3). An application on the process model depicted in Fig. 3,
for example, returns activity G as the only possible match (cf. Fig. 9).

Listing 2 presents the general syntax of a PQL request in BNF grammar notation
[2]. Other relevant PQL syntax elements will be introduced step-by-step.

PQLrequest ::= match where? set?

Listing 2 BNF for a PQL request

4.2 Selecting Process Models and Process Elements

PQL enables a predicate-based selection of process models and process elements.
First, a search predicate describes the structural properties of the process models to
be queried, e.g., to select all process models comprising two sequential nodes n1 and
n2 (cf. Step 2 in Fig. 8). Second, process models and elements are selected through
predicate-based rules on process element attributes. Usually, the latter are defined
for each process model maintained in the repository, e.g., a user role designated to
execute certain activities [29]. In general, a predicate allows assigning properties
(i.e., attributes) to process elements and may be used to compare attributes of
process models and elements. In this context, comparison operators for numerical
values (i.e., �=,<,≤,=,≥,>) can be used. For example, for a string value we
can check its equality with a fixed value or calculate its edit distance to another
string value (to determine their similarity) [35]. Two or more predicates may be
concatenated using Boolean operations (i.e., AND, OR, and NOT ).

As aforementioned, PQL provides structural and attributional matching patterns
to determine whether a specific process fragment is present in a particular process
model. To be more precise, structural matching patterns consider the control flow
of a process model, i.e., they define the fragments that need to be present in selected
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process models. In turn, attributional matching patterns allow selecting process
models and elements based on process element attributes.

Structural matching patterns define constraints on the process fragments to
be matched against the process models stored in the repository. In PQL, structural
matching patterns are tagged with keyword MATCH (Line 1 in Listing 3), followed
by a matching pattern characterizing the respective process fragment (Line 3).

1 match ::= "MATCH" match_op (("," match_op)+)?
2 match_op ::= match_pat | "VIEW" any_val
3 match_pat ::= (PQL_PATHID "=")? (MATCH_FUNCTION "(" path ")" | path)
4
5 path ::= node ((edge) node)+)?
6
7 node ::= PQL_NODEID (":" NODETYPE)? ("(" NODEID ")")?
8
9 edge ::= cond_edge | uncond_edge

10 uncond_edge ::= ("--" | "-->")
11 cond_edge ::= (("-" edge_attrib "-") | ("-" edge_attrib "->"))
12 edge_attrib ::= "[" PQL_EDGEID? (":"
13 ((EDGETYPE ("|" EDGETYPE)* )? | edge_quant)?
14 "]"
15 edge_quant ::= "*" (EXACT_QUANTIFIER |
16 (MIN_QUANTIFIER ".." MAX_QUANTIFIER)?)?

Listing 3 BNF for structural matching in a PQL request

Structural matching patterns are further categorized into dedicated and abstract
ones. While dedicated patterns (Lines 9–14 in Listing 3) allow describing SESE
blocks of a process model, abstract patterns (Lines 15+16) offer an additional edge
attribute defining control flow adjacencies between nodes, i.e., the proximity of a
pair of nodes. For example, in order to select all succeeding nodes of activity A

in Fig. 4 abstract structural patterns are required. Table 3 summarizes basic PQL
structural matching patterns.

Attributional matching patterns allow filtering the process fragments selected
through structural matching. For this purpose, predicates referring to process
element attributes are defined (cf. Listing 4). Attributional matching is indicated
with keyword WHERE that may follow a MATCH keyword (cf. Table 4). Note that
attributional matching patterns refer to process elements pre-selected by a structural
matching pattern. For example, node variable a, which is selected with pattern
MATCH a, can be filtered with an attributional matching pattern to fit nodes with
attribute ID = 5 as follows:

MATCH a : ACTIVITY(*) WHERE a.ID = 5

1 where ::= "WHERE" predicate ((BOOL_OPERATOR predicate)+)?
2 predicate ::= comparison_pred | regex_pred
3
4 comparison_pred ::= PROPERTY_ID COMPARISON_OPERATOR any_val
5 regex_pred ::= PROPERTY_ID "=~" REGEX_EXPRESSION

Listing 4 BNF for attributional matching in a PQL request
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Table 3 Examples of structural matching patterns

Pattern Description Type

MATCH a->b Existence of an edge of any type between
nodes a and b.

dedicated

MATCH a(2)-[:E_TYPE]->b A process fragment whose nodes a and b

are connected by an edge of type
E_TYPE; furthermore, a has attribute ID
with value 2

dedicated

MATCH a(2)-[:]->b A process fragment whose nodes a and b

are connected by a control flow edge;
pattern “[:]” acts as shortcut.

dedicated

MATCH a-[*1..5]->b A process fragment with nodes a and b

that do not necessarily succeed directly,
but are separated by at least one and at
most five nodes.

abstract

MATCH a-[*]->b An arbitrary number of nodes between
nodes a and b.

abstract

MATCH p = minSESE(
a-[:*3]->c)

A minimum SESE block with a
maximum of three control edges between
nodes a and c.

abstract

Table 4 Examples of attributional matching patterns

Pattern Description

MATCH (a) WHERE (a.NAME="Review Request") Select all nodes with name
“Review Request”.

MATCH (a) WHERE HAS (a.attrib) Select all nodes for which an
attribute with name attrib is
assigned.

MATCH (a) WHERE a:ACTIVITY Select all nodes with node
type ACT IV IT Y .

MATCH (a-[*]->b) WHERE a:ACTIVITY(1), b(2) Select (1) activity a with
ID=1 and node type
ACTIVITY and (2) node b

with ID=2.

Attributional matching patterns may be combined with structural ones. For this
purpose, the abbreviated form shown in Listing 5 can be used, i.e., PQL request
MATCH (a) WHERE (a.NAME="Review Request") may be abbreviated
as MATCH a(NAME="Review Request").

1 node ::= PQL_NODEID (":" NODETYPE)?
2 ("(" (NODEID | predicate ((BOOL_OPERATOR predicate)+)?) ")")?

Listing 5 BNF for combined matching in a PQL request

Figure 10 illustrates the application of a matching pattern to the process model
from Fig. 4. Figure 10a matches a sequence of nodes n1, n2, and n3, with node n1
having attribute ID = 2, node n2 being an arbitrary node, and node n3 having type
ACTIVITY. Figure 10b matches for a node n1 with n1.ID = 8 and arbitrary nodes
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MATCH n1(2)-[:ET_Control]->n2-->n3:ACTIVITY MATCH n1(8)-[*2]->n2

MATCH(n)
WHERE HAS (n.assignedUser)

MATCH(n) 
WHERE n(2),n(5)

a) b)

c) d)

A
C G
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E
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D

E A
C G
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Fig. 10 Overview of PQL matching patterns

succeeding n1 with a maximum distance of 2 to n1 (i.e., nodes G and ANDjoin in the
example). In turn, Fig. 10c matches all nodes with assigned attribute assignedUser.
Finally, Fig. 10d matches nodes whose ID is either 2 or 5 (i.e., nodes A and D).

4.3 Changing Process Models

In contemporary process model repositories, usually, common changes to multiple
process models need to be applied separately to each model. This not only causes
high efforts for process engineers, but constitutes an error-prone task as well. To
remedy this drawback, PQL allows changing all process models defined in the
selection section of a PQL request in one go, i.e., by one and the same change
transaction. Structural matching patterns may be used to select the process models
to be changed. PQL change operations are listed in Sect. 3.2.

Consider the credit request process from Fig. 2. Assume that after filling out
the credit request, another activity, loading customer data from a database, shall be
inserted before reviewing the request. Listing 6 shows how to insert a node with type
ACTIVITY and name ‘Load Customer Data’ between nodes FillOutCreditRequest
and ReviewRequest. Note that the insertion will be applied to all process models
containing these nodes (Line 2). Model changes and abstractions can be defined in
one PQL request, with the changes being applied first.

1 MATCH a-[:]->b
2 WHERE a.NAME="Fill Out Credit Request", b.NAME="Review Request"
3 SET INSERTNODE(a, b, ACTIVITY, "Load Customer Data")

Listing 6 PQL request to insert a node
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4.4 Abstracting Process Models

This section illustrates how to define the abstractions that shall be applied to the
process models referred by the selection section of a PQL request. Based on the
matching patterns, PQL allows defining abstractions independently of a specific
process model. As opposed to elementary abstraction operations (cf. Sect. 3.3), two
high-level abstraction operations are introduced: AGGREGATE and REDUCE. Both
allow abstracting a set of arbitrary process elements (including data elements [17]).
Thereby, the process elements to be abstracted are categorized into process element
sets according to their type (e.g., node type). If an aggregation shall be applied
to a collection of process nodes, a minimum SESE block comprising all nodes is
determined and replaced by an abstracted node. In this way, the well-structuredness
and soundness of the resulting process model can be ensured.

PQL supports two ways of managing process abstractions. First, persistent pro-
cess abstractions are stored persistently. This materialization is similar to material-
ized views in relational databases. Second, inline process abstractions are generated
on-the-fly when processing the PQL request, without persisting query results.

We first introduce inline process abstractions. In PQL, abstractions of process
models are tagged with the keyword SET. In turn, keywords AGGREGATE and
REDUCE indicate the elements to be aggregated or reduced (cf. Listing 7, Fig. 10).

1 set ::= "SET" operation (("," operation)+)?
2 operation ::= abstraction | change_operation | view_operation
3 abstraction ::= ("AGGREGATE" | "REDUCE")+ "(" PQLrequest ")"
4 view_operation ::= "CREATE VIEW" any_val (abstraction)+
5 | "DELETE VIEW" any_val

Listing 7 BNF for structural matching in a PQL request

The PQL request depicted in Listing 8 selects all process models that contain two
nodes a and b with names Review Request and Call Customer. Process elements
selected by the first MATCH are aggregated if their type corresponds to ACTIVITY
and val(pe, assignedUser) = Clerk holds. When applying the PQL request to the
credit request process from Fig. 2, all nodes with assigned user Clerk (cf. Fig. 11a)
as well as automated activities (cf. Fig. 11b) are aggregated.

1 MATCH a:ACTIVITY(NAME="Review Request"),b:ACTIVITY(NAME="Call Customer")
2 SET AGGREGATE(
3 MATCH n:ACTIVITY(*)
4 WHERE n.assignedUser="Clerk"
5 OR n.assignedUser="Automatic*");

Listing 8 PQL request to aggregate nodes

Listing 9 depicts a PQL request removing parallel nodes Calculate Risk and
Check Credit Protection Agency (cf. Fig. 2). First, all process models are selected,
for which an ANDsplit node is succeeded by node a with name Calculate Risk and
node b with name Check Credit Request Agency (Lines 1+2). Then, nodes a and
b are reduced (cf. Fig. 12a), i.e., the nested PQL request (Line 4) uses the same
variables a and b as the parent PQL request, e.g., nested variable b refers to node
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Check Credit Request Agency defined in Lines 1+2. Note that AND gateways are
reduced due to the application of refactoring operations (cf. Sect. 3.3).

1 MATCH n:ANDsplit-[:]->a:ACTIVITY(NAME="Calculate Risk"),
2 n:ANDsplit-[:]->b:ACTIVITY(NAME="Check Credit Request Agency")
3 SET REDUCE(
4 MATCH a,b);

Listing 9 PQL request to reduce nodes

4.5 Handling Process Views with PQL

The specifications based on matching patterns and process abstractions are managed
either by the requesting entity or server side. In PQL, a process view references
related process models from a repository. This view, in turn, may define abstractions
to the selected process models. Accordingly, a process view comprises one or
multiple matching patterns (cf. Sect. 4.2), a parameter set (cf. Definition 3.4) and,
optionally, a set of process abstraction operations to be applied to the selected
process models (cf. Sect. 3.4).

As opposed to inline matching patterns and process abstractions, view creation
operations should not be transmitted for every PQL request, but be managed server
side. This centric approach allows for the reuse of the view by multiple entities,
similar to SQL views. Moreover, process views may either be materialized (i.e.,
explicitly stored on the server side) or be virtually handled. In the latter case,
the process view is generated upon a PQL request by first retrieving the process
models according to the matching patterns and then applying the stored abstraction
operations (i.e., aggregations and reductions) to them.

4.5.1 Creating, Updating, and Deleting Process Views

Listing 10 shows a PQL request for creating a process view. According to the
structural matching pattern (Line 1) the view is created on every process model
containing an activity with name FillOutCreditRequest. Moreover, the name of
the view (i.e., “ManagerView”) is specified (Line 2), together with the parameter
set applied for the view, i.e., parameter InsertSerialMode (Line 3). Default
values are defined for every parameter, if the latter is not set upon view creation
(cf. Sect. 3.4). Finally, abstraction operations aggregate and reduce are applied on
all matching (i.e., selected) process models. For example, if the PQL request is
applied on the credit request process from Fig. 2, the resulting process view solely
comprises aggregated tasks related to the clerk, whereas all service tasks (e.g., task
“Send Rejection”) are removed.
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1 MATCH a:ACTIVITY(NAME="Fill Out Credit Request")
2 SET CREATE VIEW ManagerView (
3 INSERT_SERIAL_MODE=EARLY,
4 AGGREGATE(
5 MATCH n:ACTIVITY(*)
6 WHERE n.assignedUser="Clerk"),
7 REDUCE(
8 MATCH n:ACTIVITY(*)
9 WHERE n.NAME="Automatic*"

10 )
11 )

Listing 10 PQL request to create a process view

Note that a process view can realize process abstractions as illustrated in Listing 10.
However, it may be also solely built based on matching patterns (cf. Listing 11)
as well, e.g., when selecting a collection of process models without changing or
abstracting them.

1 MATCH a:ACTIVITY(role="Clerk")
2 SET CREATE VIEW ClerkView

Listing 11 PQL request to create a process view with one matching pattern

In order to retrieve a process view, its name can be set as matching value, e.g.,
“ClerkView” in Listing 12.

1 MATCH VIEW ClerkView

Listing 12 PQL request to retrieve a process view

If the definition of a process view shall be updated, e.g., to change parameters
or abstraction operations, first of all, the view needs to be matched (Line 1 in
Listing 13), and then be overwritten by all parameters and operations specified
by the PQL request. In the below example, view “ClerkView” is overwritten
with parameter INSERT_BLOCK_MODE as well as an abstraction operation
aggregating all activities assigned to users with role “Manager”.

1 MATCH VIEW ClerkView
2 SET INSERT_BLOCK_MODE=EARLY_EARLY,
3 AGGREGATE(
4 MATCH n:ACTIVITY(*)
5 WHERE n.assignedUser="Manager")

Listing 13 PQL request to update a process view

Listing 14 shows a PQL request to delete a process view with name “ClerkView”.

1 MATCH VIEW ClerkView
2 SET DELETE VIEW

Listing 14 PQL request to delete a process view

4.5.2 Changing Abstracted Process Models

Process views not only enable context-specific process visualizations through model
abstractions, but also provide the basis (i.e., interface) for changing large process
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models based on simpler model abstractions. When changing a process view and,
subsequently, the original process model, the correctness of the resulting model
needs to be ensured and potential ambiguities be properly handled. More precisely,
the view changes need to be transformed into process model changes, i.e., a
sequence of change operations (cf. Sect. 3.4). In this context, potential ambiguities
are resolved through the use of the pre-specified configuration parameters.

If a process abstraction, created with an inline PQL request, shall be changed, the
PQL request must comprise the abstraction operations, configuration parameters,
and change operations. As example consider Fig. 7. The insertion of X between
A and aggregated activity CD in terms of an inline PQL request is expressed by
Listing 15. Note that variables ‘a’ and ‘cd’ of the matching pattern, which refer to
A and CD respectively, may be used by the insert operation.

1 MATCH a:ACTIVITY(NAME="A")-[:]->cd:ACTIVITY(NAME="CD")
2 SET AGGREGATE(
3 MATCH n:ACTIVITY(*)
4 WHERE n.NAME="C" OR n.NAME="D")
5 ,REDUCE(
6 MATCH n:ACTIVITY(*)
7 WHERE n.NAME="B")
8 ,INSERTNODE(a,cd, ACTIVITY, "X")

Listing 15 PQL request to change an inline process abstraction

Changes on a persistent process view look similar. Listing 16 shows two PQL
requests to (a) create a process view aggregating activities C and D and (b) to
reduce (i.e., hide) activity B (cf. Fig. 7). As opposed to inline PQL abstractions,
the abstraction operations are defined once in the respective process view (Lines
1–8), i.e., there is no need to specify them for every PQL request (Lines 10–11).

1 MATCH n
2 SET CREATE VIEW newView (
3 AGGREGATE(
4 MATCH n:ACTIVITY(*)
5 WHERE n.NAME="C" OR n.NAME="D")
6 ,REDUCE(
7 MATCH n:ACTIVITY(*)
8 WHERE n.NAME=‘B’))
9

10 MATCH newView, a:ACTIVITY(NAME="A")-[:]->cd:ACTIVITY(NAME="CD")
11 SET INSERTNODE(a,cd, ACTIVITY, "X")

Listing 16 PQL request to a) create a process view b) change this process view

5 Implementation

To demonstrate the applicability of PQL we developed Clavii BPM Platform3

[13], whose software architecture enables predicate-based specifications of process

3 http://www.clavii.com/.

http://www.clavii.com/
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abstractions as well as process changes with PQL [14].4 In this section, the PQL
processing pipeline and its components are described.

5.1 Software Architecture

Figure 13 gives an overview of Clavii BPM platform, which has been implemented
as Java EE application using the Activiti process engine [26]. Clavii comprises
two core components: Clavii Controller and Clavii Web Interface. The latter is
based on the Google GWT Web framework and interacts with the former through
remote procedure calls [19]. Clavii Controller implements the logic of Clavii BPM
platform, providing various engines for visualizing, changing, executing, and mon-
itoring processes. Additional components we implemented include TaskManager,
which executes service tasks as well as script tasks, and ProcessFilterManager that
allows filtering process models.

Using Clavii Web Interface, all Clavii functions can be accessed through a
Web-based application. Clavii fosters rapid prototyping as the creation of process
models follows the correctness-by-construction principle [8]. Moreover, (partial)
process models may be already executed during creation time, i.e., process elements
can only be modeled syntactically correct and, for example, missing process data
elements or decisions for branches necessary for correct execution are requested
upon execution.

PQL is based on several components including ProcessModelManager (i.e.,
management of process models) and ProcessFilterManager (i.e., management of
process views and process abstractions) (cf. Fig. 13).

Figure 14a illustrates the creation of a process model abstraction in Clavii. Drop-
down menu 1 shows a selection of pre-specified PQL requests that are directly
applicable to a process model. In turn, Fig. 14b depicts a screenshot of Clavii’s
configuration window, where the stored PQL request “Technical Tasks” 2 can be
altered. The displayed PQL request aggregates all nodes that neither correspond to
a service nor a script task 3 .

5.2 Processing Pipeline

Figure 15 shows the PQL processing pipeline that is based on the data state model
[6]. The latter describes stages and data transformation steps required to visualize
data. Stages show a status of processed data and are illustrated as diamonds, whereas

4 A screencast demonstrating the modeling and execution capabilities of Clavii may be retrieved
via the following link: http://screencast.clavii.com.

http://screencast.clavii.com
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Fig. 15 PQL processing
pipeline

Optional Steps

PQL Request

Process Model

Process Model

Process
Abstraction

Selection

Abstraction

Retrieval

Persistence

Process Model

Process Model/
Abstraction

transformation steps describe transformations of processed data and are illustrated
as rectangles. Steps act as transitions between stages.

Every PQL request passes this pipeline, which then processes the PQL actions
(e.g., model change operations) orchestrating the involved software components.
The processing pipeline comprises five steps, i.e., selection, modification, per-
sistence, abstraction, and retrieval, whereby the behavior of each step can be
configured (e.g., to indicate that certain steps are optional).

The selection step transforms a PQL request into an intermediate representation,
which is then interpreted by the PQL software architecture. For this purpose, the
interpreter checks the syntax of the PQL request against the PQL grammar, and
then creates a parse tree as intermediate representation comprising parsed process
fragments, dependency descriptions, and references to process models stored in the
repository. A dependency component manages dependencies between process frag-
ments and models, and evaluates the PQL change operations to be executed. Depen-
dencies and change operations are defined in a PQL request and may contain match-
ing patterns to select process models, change operations, and abstraction operations.
In order to select process models, the dependency component accesses the process
repository. In general, selecting process models based on graph matching requires
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significant CPU and memory resources. Clavii, therefore, stores copies of the
process models in a Neo4j graph database to benefit from its specific optimizations.

If a PQL request specifies process model changes, the modification step will
execute the change operations on the selected process models. In this context,
a dependency component is required to determine correct control flow positions
for the changes specified by the PQL request. Subsequently, the modification
component applies the changes to the selected process models. It manages the
structure, considers the expressiveness level and constraints of process models, and
ensures that all change operations are applied correctly.

Step persistence stores process model updates in the repository. The persistence
connector component is used for this task. After selecting a process model and,
optionally, performing changes, additional abstractions may be applied in the
abstraction step. Finally, step retrieval puts process models, and process views, into
an exchange container format.

5.3 PQL Lexer and Parser

To convert a PQL request into a set of methods to be invoked by the various
components, e.g., ProcessModelManager performing change operations, lexer and
parser are required. A lexer (i.e., a lexical analyzer) is a software that creates tokens
out of a sequence of characters (i.e., a string) according to specified rules. The text
must obey a specific syntax to correctly create the tokens, which are grouped strings
with special meaning. A parser, in turn, converts the tokens into a semantic model
(i.e., intermediate representation).

As parser generator, Clavii uses ANTLR (ANother Tool for Language Recog-
nition) [22], which enables the dynamic generation of lexers and parsers based on
a grammar, instead of developing them from scratch. ANTLR is written in Java
and generates recursive descent parsers, i.e., a parsable string is decomposed into
a parse tree and parsing is executed from the root element to the leaves (tokens)
of the parse tree. Generally, an ANTLR grammar consists of 4 abstract language
patterns: sequence, choice, token dependence, and nested phrase [22]. A sequence
(of characters) is a token, e.g., “GET” or “POST” in the HTTP-Protocol [9].
Sequences are grouped by rules. In turn, method:’POST’ describes a phrase
consisting of a rule method and an assigned token POST. The rule has to be
executed when the token occurs in the parsed string. Furthermore, a rule may include
choices between alternative phrases. Using phrase method:’POST’|’PUT’, for
example, rule method has to be executed when one of the two tokens is present.
Tokens may have dependent tokens. This occurs, for example, if a grammar requires
that both the opening and the closing bracket must be present in a sequence. This
dependency can be expressed by phrase methodList:’(’(method)+’)’,
where method constitutes another rule, which must occur between two tokens ’(’
and ’)’. Phrase ’(method)+’ expresses that rule method occurs at least once. Finally,
rules may refer to themselves, which we denote as nested phrases, e.g., phrase
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expr:’a”(’expr+’)’|INT defines a nested phrase allowing for recursive
definitions. Finally, sequence a(5) or sequence a(a(a(5))) are valid expressions
matching rule expr.

Using an ANTLR parser, every parsable string is converted into a parse tree.
The latter constitutes a tree for which every node represents a previously parsed
rule defined by a grammar. Figure 16 shows an example of the parse tree for the
PQL request MATCH a:ACTIVITY(id=2133) SET REDUCE(node.type
!= userTask)—tokens are highlighted in bold face. All non-capitalized nodes
of the parse tree (except leaves) represent rules. By contrast, capitalized nodes
correspond to tokens.

6 PQL and the Process Querying Framework

This section aligns PQL with different parts provided by the Process Querying
Framework [25].

6.1 Part 1: Model, Simulate, Record, and Correlate

Part 1 of the Process Querying Framework is responsible for acquiring and
constructing behavior models as well as for formalizing and designing process
queries.

PQL is based on methods to describe patterns of a process graph. Consequently,
PQL queries refer to process graphs, i.e., process models represented as graph
structure. On the one hand, PQL is not limited to a specific graph-based process
modeling language. On the other, it cannot be applied to other behavioral models
like event logs, simulation models, and correlation models. PQL queries are based
on the Cypher graph query language.

Using PQL, we are able to support the selection, change, and deletion of
process models (i.e., CRUD operations) from a repository. Correlation properties
for selecting process models are based on both structural and attributional matching
patterns. Structural matching patterns refer to the control flow of a process model,
whereas attributional matching patterns define the properties of a node or edge
within a process graph. Nodes may represent elements (e.g., activities) of a
process model. Attributional matching patterns, in turn, refer to process element
attributes that describe the various perspectives of a process model. Concerning
the organizational perspective, for example, PQL enables queries for searching all
activities a particular user is assigned to.

Although, PQL is described informally, its fundamental functions (e.g., creation
of process views) have been formalized.
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6.2 Part 2: Prepare

Part 2 of the framework shall ensure that process repositories are ready for
being efficiently queried. This includes components for constructing dedicated data
structures that can speed up the processing of the queries. The Process Querying
Framework suggests two methods for preparing queries: indexing and caching.
Indexing uses dedicated data structures to efficiently retrieve data records based
on defined attributes, whereas caching stores data in a cache to speed up future
repetitions of the requests. Preparation is currently not in the focus of the PQL
framework. However, as we store process models as graphs in a highly efficient
graph database (cf. Sect. 5), we can utilize the optimizations and preparations
provided by the graph database (e.g., indices on attribute names, efficient operations
on stored process graphs).

6.3 Part 3: Execute

Part 3 of the framework deals with the actual execution of process queries. In this
context, a filtering component takes a process repository and process query as input,
and produces a filtered process repository as output. Behavioral models, i.e., process
models, irrelevant for the process query, are filtered out. Moreover, the optimization
component of the Process Querying Framework is responsible for query optimiza-
tion, taking the same input as the filtering component and producing an efficient
execution plan. We did not develop explicit techniques enabling such logical
optimizations, e.g., to convert a PQL query into an equivalent, but more efficiently
processible PQL query. However, as shown along the presented processing pipeline,
PQL requests are processed according to a well-defined procedure (cf. Sect. 5.2).

The Process Querying component takes as inputs a filtered process repository,
execution plan, index, process statistics and cache, and then applies a process
querying method to produce a process repository implementing the query. We
showed how to convert PQL requests to an intermediate representation enabling
us to feed Clavii process querying components, i.e., ProcessModelManager and
ProcessFilterManager (cf. Sect. 5.3). PQL is not only able to read and filter (i.e.,
retrieve) process models, but also to abstract and/or update them. Note that PQL is
the only process querying language supporting updates on process models, either
directly or indirectly by changing related process views.

6.4 Part 4: Interpret

According to Part 4 of the framework, users shall be supported while designing
process queries and during the interpretation of query results. For example, if
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errors occur during the execution of a query, e.g., due to insufficient resources or
structural/semantical errors of the query, appropriate feedback to the user or the
requesting component shall be provided.

In Clavii, syntax errors of a PQL request are represented as Java Exceptions
(PQLSyntaxError), which are handled by the Clavii system. An error message will
be presented in the user interface, if a PQL syntax contains errors or querying a PQL
request takes longer than a pre-specified time threshold.

However, PQL does not provide concepts for the intent of explaining queries to
a user.

7 Conclusion

We introduced the Process Query Language (PQL), which enables users to automat-
ically select, abstract, and change process models in large process model collections.
Due to its generic approach, the definition of process model abstractions and
changes on any graph-based process notation becomes possible. For this purpose,
structural and attributional matching patterns are used, which declaratively select
process elements either based on the control flow structure of a process model
or element attributes. PQL has been implemented in a proof-of-concept prototype
demonstrating its applicability. Altogether, process querying languages like PQL
will become a key part of process repositories to enable a professional management
of abstractions and changes on large process model sets.

Reprint Figures 1, 3, 4, 5, 8, 9, 10, and 14 are reprinted with permission
from K. Kammerer, J. Kolb, and M. Reichert. PQL—A descriptive language for
querying, abstracting and changing process models. Enterprise, Business-Process
and Information Systems Modeling. Springer, 2015. pp. 135–150 (“© Springer
International Publishing Switzerland 2015”).
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QuBPAL: Querying Business
Process Knowledge

Maurizio Proietti, Francesco Taglino, and Fabrizio Smith

Abstract We present a query language, called QuBPAL, for retrieving knowledge
from repositories of business processes represented in the BPAL (Business Process
Abstract Language) framework. BPAL combines in a single modeling framework
the procedural and the ontological aspects of business processes. This is done
by providing a uniform, logic-based representation of both the workflow, with
its associated procedural semantics, and the domain knowledge that captures the
meaning of the entities participating in the process. This uniform representation
is achieved by using Logic Programming (LP) as an intermediate language, to
which we map BPMN models and OWL/RDF definitions. QuBPAL queries allow
combining structural, behavioral, and domain-related knowledge and hence enable
reasoning about the process from all these perspectives.

1 Introduction

Business Process (BP) modeling is the core of various methodologies and tools that
support the automation of Business Process Management [30]. Indeed, a BP model
represents the knowledge about a process in machine accessible form and may be
used to simulate, analyze, and enact a process. In particular, many aspects of a BP,
including performance and logical correctness, can be analyzed by querying the
model by means of suitable query processing methods [21].

Most BP modeling languages and frameworks focus on the representation and
analysis of the workflow graph, that is, they focus on how the BP activities are
orchestrated from a procedural point of view, so as to verify whether the behavior
of the process satisfies suitable properties (e.g., soundness [32]).
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However, the workflow structure is not the only relevant aspect of a process that
needs to be modeled. Indeed, the knowledge about the business domain where the
process is carried out is often as important as its procedural behavior, and in many
BP modeling frameworks, this type of knowledge is represented in an informal and
implicit way, typically expressed through natural language comments and labels
attached to the models. The lack of a formal representation of the domain knowledge
within BP models is a strong limitation on the use of those models for the effective
support of automated process management.

In order to overcome this limitation, various approaches have advocated the
application to BP modeling of techniques based on computational ontologies [8,
11, 13, 33], which have also been shown to be fruitful in the related area of Web
Services [4, 9]. These approaches have led to the concept of Semantic Business
Process, where process-related and domain-specific ontologies provide formal,
machine processable definitions for the basic entities involved in a process, such
as activities, actors, data items, and the relations between them.

The approach followed in this chapter combines in a single modeling framework,
called Business Process Abstract Language (BPAL), the procedural and the ontolog-
ical aspects of a BP [26]. This is done by providing a logic-based representation
of both the workflow, with its associated procedural semantics, and the domain
knowledge that captures the meaning of the entities participating in the process. This
representation is achieved by using Logic Programming (LP) [15] as an intermediate
language, to which we map de-facto standards for BP modeling and ontology
definition. Indeed, we do not define a new BP modeling language, but we provide
a translation of the Business Process Model and Notation (BPMN) [17] and of the
Ontology Web Language (OWL) [12] to Prolog.

The LP translation produces a Business Process Knowledge Base (BPKB) from
a BPMN model where process elements are annotated with concepts of an OWL
ontology. Then, we can reason about a BP, both from the procedural and ontological
point of views, by querying the BPKB. To this aim, we define a query language,
called QuBPAL, which answers queries that combine Prolog predicates representing
properties of the process behavior, and OWL < subject, property, object > triples
representing domain-related knowledge.

In this chapter, we present a brief overview of the BPAL framework and of the
associated QuBPAL query language. The chapter is organized as follows. In Sect. 2,
we present the BPAL framework [7, 26], which provides a logical representation of
the workflow structure and the procedural semantics. BPAL copes with a significant
fragment of the BPMN 2.0 specification. Then, we describe how BP elements
are annotated with semantic concepts and properties defined using an OWL 2 RL
ontology [16]. In Sect. 3, we introduce the QuBPAL query language. We present
its syntax, which is a variant of SPARQL, a widely accepted query language for
the Semantic Web [23], and its semantics, defined in terms of a translation to LP
queries. In Sect. 4, we present the use cases supported by the BPAL framework and
the associated QuBPAL query language. In Sect. 5, we describe the implementation
of BPAL and we present its graphical interface, which is intended to ease the
interaction with the user, and the mapping to XSB Prolog queries [29]. In Sect. 6, we
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put BPAL in relation with the Process Querying Framework [21]. Finally, in Sect. 7,
we discuss future developments and perspectives.

2 Business Process Knowledge Base

In this section, we explain how we formally represent (repositories of) business
processes by means of the notion of a Business Process Schema (BPS) [25]. A BPS,
its meta-model, its procedural (or behavioral) semantics, and its ontology-based
semantics, are specified by sets of rules, for which we adopt the standard notation
and semantics of logic programming (see, for instance, [15]). In particular, a term is
either a variable, or a constant, or a function applied to terms. Variable names have
uppercase initials, while constant and function names have lowercase initials. An
atom is a formula of the form p(t1, . . . , tm), where t1, . . . , tm are terms. A rule is of
the form A ← L1 ∧ . . . ∧ Ln, where A is an atom and L1, . . . , Ln are literals, i.e.,
atoms or negated atoms. If n = 0 we call the rule a fact. A rule (or an atom, or a
literal) is ground if no variables occur in it. A logic program is a finite set of rules.

The rest of the section is structured in the following subsections. In Sect. 2.1,
we show how a BPS is specified. Then, in Sect. 2.2, we present a formal definition
of the behavioral semantics of a BPS. Finally, in Sect. 2.3, we describe how BPAL
enables the semantic annotation of a BPS, i.e., the association of the elements of a
BPS with the concepts of an ontology that captures the knowledge about the domain
where the process is executed.

2.1 Business Process Schemas

We show how a BPS is specified with the help of an example. Let us consider the BP
po depicted in Fig. 1, where the handling of a purchase order is represented using
BPMN. The process starts with the ordering activity, which is performed by the
sales department (sales_dpt). A purchase order document is created (create_order)
and checked (check_order). If the order is approved, the approve_order activity is
executed, while if it is rejected the cancel_order activity is performed. Furthermore,
if the order needs to be completed, the modify_order activity is executed, and the
order is checked again. A label on an arc identifies the condition to traverse that
arc. For instance, c1, c2, and c3 identify the conditions that the order is approved,
rejected, and modified, respectively.

If the ordering activity times out (this is signaled by the exc event), or at the
end of the ordering activity the purchase order results to be rejected (i.e., condition
c2 holds), the rejection of the order is notified to the customer (notify_rejection).
Otherwise, if the order has been approved (i.e., condition c1 holds), the supplier
verifies the availability of the items specified in the order (check_inventory),
and produces a list of items (parts_list) containing also information about their
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availability in the inventory. If some items are currently unavailable (condition
c4), the acquire_parts activity is executed. If some items are available (condition
c5), the allocate_inventory activity is executed. Once all the items are at disposal
of the supplier, the requested product is available and delivered by the carrier
(deliver_products). At the same time, the financial department (financial_dpt)
creates the invoice (bill_client) and manages the payment (handle_payment).

A BP (e.g., po) consists of a set of flow elements (e.g., activities, events, and
gateways) and relations between them (e.g., flows). A BP is associated with a unique
start event and a unique end event, which are flow elements that represent the entry
point and the exit point, respectively, of the process. An activity is a unit of work
performed within the process. A task is an atomic activity (e.g., approve_order),
i.e., no further decomposable, while a compound activity is associated with a
process that provides the definition of its internal structure (e.g., ordering). An
intermediate event is an event that occurs between the start and the end of the
process (e.g., the time-out exception, namely exc, attached to the ordering activity).
The order of execution of the flow elements is specified by the sequence flow relation
(corresponding to solid arrows). The branching/merging of the control flow is
specified using three types of gateways: exclusive (XOR, e.g., g1 and g2), inclusive
(OR, e.g., g5 and g6), and parallel (AND, e.g., g7 and g8). The item flow relation
(corresponding to a dotted arrow) specifies that a flow element gets as input or
produces as output a particular item, i.e., a data object. For instance, approve_order
has order as input, and bill_client has invoice as output. A participant is a role
associated with a lane (e.g., sales_dpt) or a pool (a collection of lanes, not shown in
our example).

Other entities usually employed to model processes, such as messages, are not
presented here for lack of space. However, BPAL can represent most constructs
based on the BPMN specification [17].

A BPS is a formal representation of a BP, which is specified in BPAL by a set of
ground facts of the form p(c1, . . . , cn), where c1, . . . , cn are constants denoting BP
elements (e.g., flow elements, items, and participants), and p is a predicate symbol
taken from the BPAL vocabulary. BPAL also includes a set of rules that represent
meta-model properties of a BPS, defining a number of structural properties that a
BPS should satisfy as a directed graph, where edges correspond to sequence and
item flow relations. Two categories of structural properties should be satisfied by
a well-formed (i.e., syntactically correct) BPS: (i) local properties related to its
elementary components (e.g., every task must have at most one ingoing and at
most one outgoing sequence flow), and (ii) global properties related to the overall
structure of the BPS (e.g., every flow element must lie on a path from the start to
the end event).

In Table 1, we report a partial list of BPAL predicates, which are sufficient to get
an idea of how a BPS is specified.

Table 2 shows the representation of the ordering compound activity, which is a
sub-process of po, by means of the BPAL predicates. The rest of the BPS is omitted
for reasons of space.
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Table 1 BPS and meta-model predicates

Predicate Meaning

bp(p, s, e) p is a business process (or sub-process) with start event s and
end event e

flow_el(x) x is either an event or an activity or a gateway

event(x) x is either a start event (i.e., start_ev(x)) or an intermediate
event (i.e., int_ev(x)) or an end event (i.e., end_ev(x))

activity(x) x is either an atomic task (i.e., task(x)) or a compound activity
(i.e., comp_act(x, s, e), for some s and e)

gateway(x) x is either a parallel branch (i.e., par_branch(x)), or an
exclusive branch (i.e., exc_branch(x)), or an inclusive branch
(i.e., inc_branch(x)), or a parallel merge (i.e.,
par_merge(x)), or an exclusive merge (i.e., exc_merge(x)), or
an inclusive merge (i.e., inc_merge(x))

item(x) x is a data object

participant(x) x is a role associated with a lane or a pool

seq(x, y, p) there is a sequence flow from x to y in process p

it_flow(a, d, p) activity a has data item d as input (i.e., input(a, d, p)) or output
(i.e., output(a, d, p))

assigned(a, r, p) activity a is assigned to participant r in process p

exception(e, a, p) exception e is associated with activity a in process p

occurs(x, p) the flow element x belongs to process p

c_seq(cond, x, y, p) there is a sequence flow from x to y in process p with
associated condition cond

reachable(x, y, p) there is a path of sequence flows from x to y in p, or in a
compound activity of p

wf_sub_process(p, s, e) s and e are the boundary flow elements of a
single-entry-single-exit (SESE) region [20] of process p

str_sub_proc(p, s, e) s and e are the boundary elements of a structured [19]
sub-process of p

2.2 Behavioral Semantics

This section presents a formal definition of the behavioral semantics, or enactment,
of a BPS, by following an approach inspired by the Fluent Calculus, a well-known
calculus for action and change (see [31] for an introduction). In the Fluent Calculus,
the state of the world is represented as a collection of fluents, i.e., terms representing
atomic properties that hold at a given instant of time.

An action, also represented as a term, may cause a change of state, i.e., an update
of the collection of fluents associated with it. Finally, a plan is a sequence of actions
that leads from the initial to the final state.

A fluent is an expression of the form f (a1, . . . , an), where f is a fluent symbol
and a1, . . . , an are constants or variables. In order to model the behavior of a
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Table 2 A BPS representing the ordering sub-process from Fig. 1

Activity Gateway Event
comp_act(ordering, s1, e1) exc_merge(g1) start_ev(s1)

task(create_order) exc_branch(g2) end_ev(e1)

task(check_order) exc_merge(g3) int_ev(exc)
task(approve_order)
task(cancel_order)
task(modify_order)
Sequence flow Item Item flow
seq(s1, create_order, ordering) item(order) output(create_order, order, ordering)
seq(create_order, g1, ordering) input(check_order, order, ordering)
seq(g1, check_order, ordering) output(check_order, order, ordering)
seq(check_order, g2, ordering) input(approve_order, order, ordering)
c_seq(c1, g2, approve_order, ordering) output(approve_order, order, ordering)
c_seq(c2, g2, cancel_order, ordering) input(cancel_order, order, ordering)
c_seq(c3, g2,modify_order, ordering) output(cancel_order, order, ordering)
seq(modify_order, g1, ordering) input(modify_order, order, ordering)
seq(approve_order, g3, ordering) output(modify_order, order, ordering)
seq(cancel_order, g3, ordering)
seq(g3, e1, ordering)

BPS, we represent states as finite sets of ground fluents. We take a closed-world
interpretation of states, that is, we assume that a fluent F holds in a state S iff
F ∈ S. This set-based representation of states relies on the assumption that the BPS
is safe, i.e., during its enactment there are no concurrent executions of the same flow
element [32]. This assumption enforces the set of states reachable by a given BPS
to be finite. The safeness assumption can be relaxed by representing the states as
multisets of fluents, but then the finiteness of the state space is no longer guaranteed.

A fluent expression is built inductively from fluents, the binary function symbol
and , and the unary function symbol not . The satisfaction relation assigns a truth
value to a fluent expression with respect to a state. This relation is encoded by a
predicate holds(F, S), which holds if the fluent expression F is true in state S:

• holds(F, S) ← F = true;
• holds(F, S) ← F ∈ S;
• holds(not (F ), S)← ¬holds(F, S);
• holds(and(F1, F2), S)← holds(F1, S) ∧ holds(F2, S).

We consider the following two kinds of fluents: cf (E1, E2, P ), which means
that the flow element E1 has been executed and the flow element E2 is waiting for
execution, during the enactment of process P (cf stands for control flow); en(A, P ),
which means that the activity A is being executed during the enactment of the
process P (en stands for enacting). To clarify our terminology note that, when a flow
element E2 is waiting for execution, E2 might not be enabled to execute, because
other conditions need to be satisfied, such as those depending on the synchronization
with other flow elements (for instance, in the presence of merge gateways).
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We assume that the execution of an activity has a beginning and a completion,
while the other flow elements execute instantaneously. Thus, we consider two kinds
of actions: begin(A), which starts the execution of an activity A, and complete(E),
which represents the completion of the execution of a flow element E (possibly,
an activity). The change of state determined by the execution of a flow element is
formalized by a relation result(S1, A, S2), which holds if the result of performing
action A in state S1 leads to state S2. For defining the relation result(S1, A, S2),
we use the following auxiliary predicates: (i) update(S1, T ,U, S2), which holds if
S2 = (S1\T )∪U , where S1, T ,U, and S2 are sets of fluents, and (ii) setof (F,C, S),
which holds if S is the set of ground instances of fluent F such that condition C

holds. The relation r(S1, S2) holds if state S2 is a successor of state S1, that is, there
is a begin or complete action A that can be executed in state S1 leading, in one step,
to state S2:

r(S1, S2)← result(S1, A, S2).

We say that a state S2 is reachable from a state S1 if there is a finite sequence of
actions (of length ≥ 0) from S1 to S2, that is, reachable_state(S1, S2) holds, where
the relation reachable_state is the reflexive-transitive closure of r .

In order to get an idea of the fluent-based formalization of the behavioral
semantics of a BPS, we show the case of task execution. The beginning of the
execution of an atomic task A in process P is modeled by adding the en(A, P )

fluent to the state:

(T1) result(S1, begin(A), S2)← task(A) ∧ holds(cf(X,A,P ), S1)∧
update(S1, {cf (X,A,P )}, {en(A, P )}, S2)

At the completion of A, the en(A, P ) fluent is removed and the control flow moves
on to the unique successor of A:

(T2) result(S1, complete(A), S2)← task(A) ∧ holds(en(A, P ), S1)∧
seq(A, Y, P )∧ update(S1, {en(A, P )}, {cf (A, Y, P )}, S2)

The BPAL framework provides a fluent-based formalization of the behavioral
semantics of a BPS by focusing on a core of the BPMN language, including events,
compound activities, parallel, inclusive, and exclusive gateways. More details can
be found in [26].

The execution of a process is modeled as an execution trace, i.e., a sequence
of actions of the form [act1(a1), . . . , actn(an)], where, for i = 1, . . . , n, acti is
either begin or complete. Thus, a trace is a formal representation of a process log.
The predicate trace(s1, t, s2) defined in terms of the predicate result holds if t is a
sequence of actions that lead from state s1 to state s2. The predicate c_trace(t, p)

holds if t is a correct trace of a BPS p, that is, t is a trace that leads from the initial
state (containing the fluent cf (start, s, p), where s is the start event of p) to the final
state of p (containing the fluent cf (e, end, p), where e is the end event of p).

In order to provide a general verification mechanism for behavioral properties,
the BPAL framework implements a model checking methodology based on the
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temporal logic CTL (Computation Tree Logic, see [5] for a comprehensive overview,
and [10, 14] for its application in the area of BP verification).

The validity of a CTL temporal formula ϕ in a state s is defined by the predicate
holds(ϕ, s). For instance, we have the following:

• holds(ex(ϕ), s): ϕ holds at the successor state of s;
• holds(eu(ϕ1, ϕ2), s): there exists a sequence of states starting from s, where ϕ1

holds until ϕ2 holds;
• holds(ag(ϕ), s): ϕ holds at every states reachable from s;
• holds(af (ϕ), s): for every sequence of states starting from s, ϕ eventually holds.

Then, we can define behavioral properties like precedence and response using
CTL formulas as follows:

• prec(ϕ1, ϕ2, p): ϕ1 precedes ϕ2, i.e., every state where ϕ2 holds is always
preceded by one where ϕ1 holds. This predicate is defined by the formula
holds(not(eu(not(ϕ2), and(ϕ1, not(ϕ2)))), initial(p)), where initial(p) is the term
denoting the initial state of p;

• resp(ϕ1, ϕ2, p): ϕ2 responds to ϕ1, i.e., every state where ϕ1 holds is eventually
followed by one where ϕ2 holds. This predicate is defined by the formula
holds(ag(imp(ϕ1, af (ϕ2))), initial(p)), where imp denotes logical implication.

2.3 Semantic Annotations

The BPAL framework enables an explicit representation of the domain knowledge
regarding the entities involved in a BP, i.e., the business environment in which the
process is carried out. This is done by allowing semantic annotations to enrich the
procedural knowledge specified by a BPS with domain knowledge expressed in
terms of a given business reference ontology (BRO). In Table 3, an excerpt of a

Table 3 Business reference ontology excerpt

Purchase_Order  AccountingDocument AvailablePL  PartList

SubmittedPO  Purchase_Order UnavailablePL  PartList

PassedPO  Purchase_Order UnavailablePL � AvailablePL  ⊥
RejectedPO  Purchase_Order RejectedPO � PassedPO  ⊥
IncompletePO  Purchase_Order PassedPO � IncompletePO  ⊥
DeliveredPO  Purchase_Order RejectedPO � IncompletePO  ⊥
Invoice  AccountingDocument Product  Value_Object

EmittedInvoice  Invoice Refusal  Communication

PaidInvoice  Invoice Carrier  TransportationCompany

DeliveredPO �∃related.PaidInvoice  FulfilledPO Supply  Logistics

CorporateCustomer  BusinessPartner Transportation  Logistics

recipient  related contents  related
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BRO is reported. We use standard notation from Description Logics [3]:  denotes
concept inclusion, ⊥ denotes the empty concept (interpreted as the empty set of
individuals),� denotes concept intersection, and ∃ denotes existential quantification.
Table 3 shows some axioms of the taxonomy (e.g., Purchase_Order is a kind of
AccountingDocument), and also some constraints between concepts, such as their
disjointness (e.g., any individual which is an instance of RejectedPO cannot be an
instance of PassedPO).

Annotations provide two kinds of ontology-based information: (i) formal def-
initions of the basic entities involved in a process (e.g., activities, actors, items),
which specify their meaning in an unambiguous way (terminological annotations),
and (ii) specifications of preconditions and effects of the enactment of tasks, as well
as conditions associated with sequence flows (functional annotations).

In Sect. 2.3.1 we briefly recall the fragment of an ontology language used in
BPAL for representing the semantics of a business domain. Then, in Sects. 2.3.2
and 2.3.3, we show how to specify terminological and functional annotations,
respectively.

2.3.1 Rule-Based Ontologies

A BRO is intended to capture the semantics of a business domain in terms of
the relevant vocabulary plus a set of axioms, i.e., the Terminological Box (TBox),
which defines the intended meaning of the vocabulary terms. To represent the
semantic annotations and the behavioral semantics of a BPS in a uniform way,
we formalize ontologies as sets of rules. In particular, we consider a fragment
of OWL falling within the OWL 2 RL profile [16], which is an upward-
compatible extension of RDF and RDFS whose semantics is defined via a set
of Horn rules (that is, rules without negated atoms in their body), called OWL
2 RL/RDF rules. OWL 2 RL ontologies are modeled by means of the ternary
predicate t (s, p, o) representing an OWL statement with subject s, predicate
p, and object o. For instance, the assertion t (a, rdfs : subClassOf , b) represents
the inclusion axiom a  b. Reasoning on triples is supported by OWL 2
RL/RDF rules of the form t (s, p, o) ← t (s1, p1, o1) ∧ · · · ∧ t (sn, pn, on). For
instance, the rule t (A, rdfs : subClassOf , B) ← t (A, rdfs : subClassOf , C) ∧
t (C, rdfs : subClassOf , B) defines the transitive closure of the subsumption
relation.

2.3.2 Terminological Annotations

A terminological annotation associates elements of a BPS with concepts of the
BRO, in order to describe the former in terms of a suitable conceptualization of
the underlying business domain provided by the latter. This association is specified
by a set of OWL assertions of the form BpsEl : ∃termRef .Concept, where:
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Table 4 Terminological annotation examples

BPS element Terminological annotation

order ∃termRef .P urchase_Order

invoice ∃termRef .Invoice

sales_dpt ∃termRef .Sales_Department

carrier ∃termRef .Carrier

deliver_products ∃termRef .(Transportation � ∃related.Product)
notify_rejection ∃termRef .(Refusal � ∃content.Purchase_Order �

∃recipient.CorporateCustomer)

• BpsEl is an element of a BPS;
• Concept is either i) a named concept defined in the ontology, (for instance,
Purchase_Order), or ii) a complex concept, defined by a class expression (for
instance, Refusal � ∃content.Purchase_Order);

• termRef is an OWL property name.

Example 1 In Table 4, we list examples of annotations of the po process (Fig. 1)
using concepts of the BRO shown in Table 3. The order and invoice items are
annotated with the Purchase_Order and the Invoice concepts, respectively, while
the sales_dpt and carrier participants with the Sales_Department and the Carrier
concepts, respectively. The deliver_products task is defined as a Transportation
related to a Product (e.g., the products which are the contents of the delivered
packages). Finally, the notify_rejection task is annotated as a Refusal, which is
a Communication (e.g., through an e-mail message) of a Purchase_Order to a
CorporateCustomer.

2.3.3 Functional Annotations

By using the ontology vocabulary and axioms, we define semantic annotations for
modeling the behavior of individual process elements in terms of preconditions
under which a flow element can be executed and effects on the state of the world
after its execution. Preconditions and effects can be used, for instance, to model
input/output relations of activities with data items, which is the standard way of
representing information handling in BPMN diagrams. Fluents can represent the
status of a data item affected by the execution of an activity at a given time during
the execution of the process. A precondition specifies the status a data item must
possess when an activity is enabled to start, and an effect specifies the status of a data
item after having completed the activity. Moreover, in order to select the successors
of decision points, we can associate fluent expressions with the arcs outgoing from
inclusive or exclusive branch gateways.

Functional annotations are formulated by means of the following three relations:

• pre(A,C, P ), which specifies that fluent expression C, called enabling condition,
must hold to execute element A in process P;
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• eff (A,E−, E+, P ), which specifies that fluents E−, called negative effects, do
not hold after the execution of element A, and that fluents E+, called positive
effects, hold after the execution of A in process P . We assume that E− and E+
are disjoint sets;

• c_seq(C,B, Y, P ), which specifies a conditional sequence flow: C is a condition
associated with the exclusive or inclusive branch gateway B, i.e., a fluent
expressions that must hold in order to enable flow element Y , successor of B

in process P .

In the presence of functional annotations, the enactment of a BPS is mod-
eled as follows. Given a state S1, a flow element A can be enacted if A is
waiting for execution according to the control flow semantics, and its enabling
condition C is satisfied, i.e., holds(C, S1) is true. Moreover, given an annotation
eff (A,E−, E+, P ), when A is completed in a given state S1, then a new state S2
is obtained by taking out from S1 the set E− of fluents and then adding the set
E+ of fluents. We need to check that effects satisfy a consistency condition which
guarantees that: (i) no contradiction can be derived from the fluents of S2 by using
the state independent axioms of the reference ontology, and (ii) no fluent belonging
to E− holds in S2.

The state update is formalized by extending the result relation so as to take into
account the pre and eff relations. We only consider the case of task execution. The
other cases are similar and are omitted.

result(S1, begin(A), S2)← task(A) ∧ holds(cf (X,A,P ), S1) ∧ pre(A,C, P )∧
holds(C, S1) ∧ update(S1, {cf (X,A,P )}, {en(A, P )}, S2)

result(S1, complete(A), S2)← task(A)∧ holds(en(A, P ), S1) ∧
eff (A,E−, E+, P )∧ seq(A, Y, P ) ∧
update(S1, {en(A, P )} ∪ E−, {cf (A, Y, P )} ∪ E+, S2)

The enabling conditions and the negative and positive effects occurring in func-
tional annotations are fluent expressions built from fluents of the form tf (s, p, o),
corresponding to the OWL statement t (s, p, o), where we adopt the usual rdf,
rdfs, and owl prefixes for names in the OWL vocabulary, and the bro prefix for
names relative to the business reference ontology of our running example. We
assume that the fluents appearing in functional annotations are either of the form
tf (a, rdf : type, c), corresponding to the unary atom c(a), or of the form tf (a, p, b),
corresponding to the binary atom p(a, b), where a and b are individuals, while c

and p are concepts and properties, respectively, defined in the BRO. Thus, fluents
correspond to assertions about individuals that represent the Assertion Box (ABox)
of the ontology. Hence, the ABox may change during process enactment due to the
effects specified by the functional annotations, while the ontology definitions and
axioms, i.e., the TBox of the ontology, do not change.

The semantics of inclusive and exclusive branches is extended to evaluate the
associated conditions. We show the case of exclusive branches. The other is similar.

result(S1, complete(B), S2)← exc_branch(B)∧ holds(cf (A,B, P ), S1)∧
c_seq(G,B,C, P )∧holds(G, S1)∧update(S1, {cf (A,B, P )}, {cf (B,C, P )}, S2)
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Table 5 Functional annotations for the po process

Flow element Enabling condition Effects

create_order E+: tf (o, rdf : type, bro : SubmittedPO)

check_order tf (o, rdf : type, bro : SubmittedPO) E+: tf (o, rdf : type, bro : PassedPO)

E−: tf (o, rdf : ype, bro : SubmittedPO)

check_order tf (o, rdf : type, bro : SubmittedPO) E+: tf (o, rdf : type, bro : RejectedPO)

E−: tf (o, rdf : ype, bro : SubmittedPO)

check_order tf (o, rdf : type, bro : SubmittedPO) E+: tf (o, rdf : type, bro : IncompletePO)

E−: tf (o, rdf : ype, bro : SubmittedPO)

modify_order tf (o, rdf : type, bro : IncompletePO) E+: tf (o, rdf : type, bro : SubmittedPO)

E−: tf (o, rdf : ype, bro : IncompletePO)

check_inventory tf (o, rdf : type, bro : PassedPO) E+: tf (a, rdf : type, bro : AvailablePL)

check_inventory tf (o, rdf : type, bro : PassedPO) E+: tf (u, rdf : type, bro : UnavailablePL)

check_inventory tf (o, rdf : type, bro : PassedPO) E+: tf (a, rdf : type, bro : AvailablePL),

tf (u, rdf : type, bro : UnavailablePL)

acquire_parts tf (u, rdf : type, bro : UnavailablePL) E+: tf (p, rdf : type, bro : Product)
allocate
_inventory tf (a, rdf : type, bro : AvailablePL) E+: tf (p, rdf : type, bro : Product)
bill_client tf (o, rdf : type, bro : PassedPO) E+: tf (i, rdf : type, bro : EmittedInvoice),

tf (o, bro : related, i)

handle_payment tf (i, rdf : type, bro : EmittedInvoice) E+: tf (i, rdf : type, bro : PaidInvoice)
E−: tf (i, rdf : type, bro : EmittedInvoice)

deliver_products tf (o, rdf : type, bro : PassedPO), E+: tf (o, rdf : type, bro : DeliveredPO)

tf (p, rdf : type, bro : Product)

Table 6 Conditions associated with exclusive and inclusive branch gateways

Gateway Target Condition

g2 approve_order c1: tf (o, rdf : type, bro : PassedPO)

g2 cancel_order c2: tf (o, rdf : type, bro : RejectedPO)

g2 modify_order c3: tf (o, rdf : type, bro : IncompletePO)

g4 check_inventory c1: tf (o, rdf : type, bro : PassedPO)

g4 g9 c2: tf (o, rdf : type, bro : RejectedPO)

g5 acquire_parts c4: tf (a, rdf : type, bro : UnavailablePL)

g5 allocate_inventory c5: tf (u, rdf : type, bro : AvailablePL)

Let us now present an example of specification of functional annotations. In
particular, our example shows nondeterministic effects, that is, a case where a flow
element A is associated with more than one pair (E−, E+) of negative and positive
effects.

Example 2 Tables 5 and 6 specify the functional annotations for the po process of
Fig. 1. These annotations determine the behavior of the process.

The positive effect tf (o, rdf : type, bro : SubmittedPO) of the create_order activ-
ity (see Table 5) states that, when the activity is executed, an order o is created and
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o is a SubmittedPO. The result of the subsequent check_order task is that order o is
no longer a SubmittedPO (see the negative effect of check_order in Table 5) and o

is either approved (i.e., o is a PassedPO), or rejected (i.e., o is a RejectedPO), or it
is incomplete (i.e., o is an IncompletePO). The approve_order, cancel_order, and
modify_order tasks are executed if the order o is either a PassedPO, RejectedPO, or
IncompletePO, respectively. The selection of those tasks is the result of associating
conditions c1, c2, and c3, with the arcs outgoing from g2. Conditions c1 and c2
associated with the arcs outgoing from g4 enforce that if the order is approved
then the check_inventory task is executed, and if the order is rejected then the
notify_rejection task is executed. The effect of the check_inventory task is the
production of either a list of parts that are available in the inventory (a is an
AvailablePL) or a list of parts that are not available in the inventory (u is an
UnavailablePL), or both. The fluents expressing the effects of check_inventory are
also associated with the sequence flows outgoing from the inclusive branch g5,
and enable either the allocate_inventory task or the acquire_parts task, or both.
The effect of allocate_inventory and/or acquire_parts is that a Product p is made
available. Finally, the product is delivered by the deliver_products activity, which
has a DeliveredPO effect, and in parallel, an invoice is emitted (an EmittedInvoice
is an effect of bill_client) and the payment is managed (a PaidInvoice is an effect of
handle_payment).

In order to evaluate a statement of the form holds(tf (s, p, o), x), where
tf (s, p, o) is a fluent and x is a state, the definition of the holds predicate given
previously must be extended to take into account the axioms belonging to the BRO.
Indeed, we want that a fluent of the form tf (s, p, o) be true in state X not only if it
belongs to X, but also if it can be inferred from the fluents in X and the axioms of
the ontology. This is done by adding extra rules, derived from the OWL 2 RL/RDF
rules, which infer holds(tf (s, p, o), x) atoms from the fluents holding in a state and
the axioms of the ontology. For instance, for concept subsumption, we add the rule:

holds(tf (S, rdf : type, C),X) ← holds(tf (S, rdf : type, B),X) ∧
t (B, rdfs : subClassOf , C).

3 Querying the Business Process Knowledge Base

A repository of BPs is represented by a Business Process Knowledge Base (BPKB),
i.e., a collection of BPSs together with the facts and rules formalizing the meta-
model, the behavioral semantics, the business reference ontology, and the semantic
annotations. A BPKB represents a rich knowledge from various perspectives: (1) the
structural perspective, modeled by the business process schema, (2) the ontology-
based domain knowledge, modeled by the semantic annotations, and (3) the
procedural perspective, modeled by the rule-based behavioral semantics. To query
and reason about a BPKB with respect to all the above mentioned perspectives, we
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have defined the QuBPAL query language, through which the various retrieval and
reasoning services are delivered.

QuBPAL queries are SELECT-FROM-WHERE statements, whose syntax is
inspired by SPARQL, a query language for RDF data stores developed by the
World Wide Web Consortium, which is widely accepted in the Semantic Web
community [23]. QuBPAL can be considered as an extension of SPARQL, in the
sense that SPARQL queries are expressed in terms of RDF triples, while QuBPAL
queries can be made out of conjunctions of t (s, p, o) triples together with any
other predicate defined in the BPKB. QuBPAL queries are translated into Logic
Programming (LP) queries, and then evaluated by using the underlying Prolog
inference engine.

In Sect. 3.1, we present the syntax of the QuBPAL query language. Then, in
Sect. 3.2, we describe the translation into LP queries that defines the semantics of
QuBPAL queries. Finally, in Sect. 3.3, we illustrate the use of the language through
some example queries.

3.1 Syntax

The syntax of a QuBPAL query is shown in Table 7.
The symbol ε denotes the empty sequence. Identifiers prefixed by question marks

(i.e., ?bpId and ?x) denote variables. The SELECT statement defines the output of
query evaluation, which is specified using the following constructs:

• an optional process identifier, denoted by <?bpId >;
• a (possibly empty) sequence ?x∗ of variables occurring in the WHERE statement.

When the SELECT statement has the empty sequence of variables, the query returns
either true or false. The FROM statement indicates the process(es) from which data
are to be retrieved. If it is omitted, the whole repository is considered; otherwise one
can specify a non-empty sequence of process identifiers < bpId >+.

The WHERE statement specifies an expression denoting a property which the set
of data returned by the query must satisfy. This expression is a sentence built from:

• the set of the predicates defined in the BPKB;
• the logical connectives AND, OR, NOT, and the equality predicate =, with the

standard logic semantics;
• another QuBPAL query, enclosed in curly brackets, thereby allowing nested

queries, which may return values for the variables occurring in their SELECT
statement.

Table 7 QuBPAL syntax
SELECT ( ε | <?bpId >) ?x∗

( ε | FROM < bpId >+)

WHERE expression
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The arguments of the predicates appearing in the WHERE statement of a query are:

• variables, which can be semantically typed (e.g., ?x :: Concept); at most one
process variable occurs in the statement;

• individual constants;
• complex terms, such as fluent expressions and lists.

Predicates of the WHERE Statement

The predicates used in the WHERE statement of a QuBPAL query allow the
definition of complex properties combining structural, ontological, and behavioral
properties. Below, we list some of these predicates.

BPS Predicates. Any predicate used to specify a BPS and its meta-model proper-
ties, and in particular the ones of Table 1 (see Sect. 2.1).

Semantic Annotation Predicates. Any predicate specifying a semantic (termi-
nological or functional) annotation (see Sects. 2.3.2 and 2.3.3). In particu-
lar, in order to query terminological annotations, we introduce the predicate
sigma(x, c), meaning that x is annotated with some concept a, via the OWL
property termRef, and a is a subclass of c. Instances of the sigma(x, c) predicate
are automatically generated by semantically typed variables. For instance, the
semantic typing ?x :: Concept is translated into sigma(X, ‘Concept′). Functional
annotations can be queried using the following predicates:

• enabling_cond(e, f, p): fluent f is an enabling condition of element e in
process p;

• pos_eff (e, f, p): fluent f is a positive effect of element e in process p;
• neg_eff (e, f, p): fluent f is a negative effect of element e in process p.

Triple Predicates. Any ternary predicate of the form t (s, p, o) representing
an OWL 2 RL/RDF statement with subject s, predicate p and object o (see
Sect. 2.3.1).

Behavioral Predicates. Any predicate that defines a property of the behav-
ioral semantics of a process, such as the predicates holds(f, s),
reachable_state(s1, s2), c_trace(t, p), prec(f1, f2, p), and resp(f1, f2, p)

defined in Sect. 2.2. Other behavioral predicates are the following:

• all_traces(t, p, n): t is a trace from the initial state of p of length at most n;
• deadlock(s, p): s is a deadlock state, that is, a non-final state of p with no

successor;
• dead_act(a, p): a is a dead activity, that is, an activity that cannot be

executed in any enactment of p;
• imp_comp(s, p): s is a final state of p where improper completion holds,

i.e., some activity is being executed;
• opt_com(p): process p satisfies the option to complete property, i.e., from

any reachable state, it is possible to complete the process;
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• inconsistent(s, p): s is a state of p that violates an integrity constraint
defined in the ontology (i.e., holds(false, s));

• non_exec(a, p): a is an activity that can be reached by the control flow in a
state of p where its enabling condition is not satisfied;

• always_in_final(c, p): every possible execution of p eventually completes
with a final state satisfying the concept c;

• act_prec(a1, a2, p): in all possible executions of p, the enactment of activity
a1 precedes the enactment of activity a2, that is, the predicate prec(en(a1, p),

en(a2, p), p) holds;
• act_resp(a1, a2, p): in all possible executions of p, the enactment of activity

a1 is eventually followed by the enactment of activity a2, that is, the predicate
resp(en(a1, p), en(a2, p), p) holds.

3.2 Semantics

The semantics of a QuBPAL query is formally defined by its translation into an LP
query, which is similar to the translation of SQL into Datalog [1]. Now, we describe
this translation for a subset of the legal queries. The extension to the general case is
straightforward.

A SELECT-FROM-WHERE statement St corresponds to a predicate q , defined
by a set of clauses {q(V1, . . . , Vm) ← body1, . . . , q(V1, . . . , Vm) ← bodyn}.
V1, . . . , Vm correspond to the variables occurring in the SELECT statement of St .
(Each LP variable Vi , for i = 1, . . . ,m, corresponds to a QuBPAL variable ?vi .)
Each clause corresponds to a process (or sub-process) identifier appearing in the
FROM statement of St , and the variables occurring in the process selector of St are
bound to the constants specified in the FROM statement, as shown in Table 8.

The connective AND is directly translated to the logical conjunction “∧”. The
connective OR generates one clause for each disjunct (see Table 9).

Nested queries are simply replaced by an atom that represents the head of the
clauses obtained by translating the nested query, as shown in Table 10, where we
assume that qnest has only one clause.

Suppose that the expression in the WHERE statement contains a negated pred-

icate NOT pred[−→?x,
−→
?y ], where

−→
?y is the tuple of variables occurring in predicate

Table 8 FROM statement translation pattern. Variable P is omitted from the arguments of q if
<?p > does not appear in the SELECT statement

SELECT <?p > ?x1 . . .?xm−1 FROM < p1 > · · · < pn > WHERE pred

q(P ,X1, . . . , Xm−1) ← P = p1 ∧ bp(P , S,E) ∧ pred

. . .

q(P ,X1, . . . , Xm−1) ← P = pn ∧ bp(P , S,E) ∧ pred
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Table 9 Conjunctive and disjunctive queries translation pattern

SELECT . . . FROM . . . WHERE pred1 AND (pred2 OR pred3)

q(. . .) ← . . . ∧ pred1 ∧ qor (. . .)

qor (. . .) ← pred2

qor (. . .) ← pred3

Table 10 Nested queries translation pattern

SELECT . . . FROM . . . WHERE pred1 AND

{SELECT <?p > ?x . . . FROM . . . WHERE pred2 }

q(. . . ) ← . . . ∧ pred1 ∧ qnest (P ,X, . . . )

qnest (P ,X, . . . ) ← . . . ∧ pred2

Table 11 Negated queries translation pattern

SELECT . . . FROM . . . WHERE pred1[−→?x ] AND NOT pred2[−→?x ,
−→
?y ]

q(
−→
X , . . . ) ← . . . ∧ pred1[−→X ] ∧ ¬qneg(

−→
X )

qneg(
−→
X )← pred2[−→X ,

−→
Y ]

pred[−→?x,
−→
?y ] and not elsewhere in the statement. If pred[−→?x,

−→
?y ] is an atomic

predicate and
−→
?y is the empty tuple, then NOT pred[−→?x ] is translated to the negative

literal ¬pred[−→X ]. Otherwise, if pred[−→?x,
−→
?y ] is a non-atomic predicate, or

−→
?y is not

empty, we replace the negated predicate by a literal ¬qneg(
−→
X ), and we introduce

the clause qneg(
−→
X )← pred[−→X ,

−→
Y ] (see, e.g., Table 11).

It has been shown [28] that given any QuBPAL query Q not containing trace
predicates (such as c_trace or all_traces), if Q can be translated into a non-
floundering LP query (i.e., an LP query that does not call a non-ground negative
subgoal [15]), then Q terminates in polynomial time with respect to |Q| × |S |
(using Prolog with tabling [29]), where |Q| is the size of the query and |S | is
the cardinality of the set of reachable states. (Note that S is a finite set, because a
state is a finite set of fluents and each fluent is a ground term f (c1, . . . , cn), where
f, c1, . . . , cn are taken from a finite set of symbols.) Thus, querying BPKBs with
respect to behavioral predicates is practically feasible only when the number of
activities that can be executed in parallel during process enactments, and hence the
set of reachable states, is not too high.

3.3 Query Examples

In this section, we present some examples of queries over a BPKB. We provide
a natural language description of the query, its formulation in QuBPAL, and the
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corresponding translation into LP clauses. Then, we present the answer to the query
with respect to the BP po depicted in Fig. 1.

Example 3.1 Retrieve all the Transportation activities assigned to a Transpora-
tionCompany.
QuBPAL query

SELECT ?a
FROM <po>
WHERE activity(?a::bro:Transportation) AND

assigned(?a, ?c::bro:TransporationCompany, ?p)

LP translation

q(A)← P = po ∧ activity(A) ∧ sigma(A, ‘bro : Transportation’) ∧
assigned(A,C, P ) ∧ sigma(C, ‘bro : TransporationCompany’).

where A,P are the LP variables that translate the QuBPAL variables ?a, ?p,
respectively, and po is the LP constant that denotes the process identifier occurring
in the FROM statement.

The answer to this query is the deliver_products activity from Fig. 1. Indeed, this
activity is annotated with a concept (see Example 1) which is a subclass of the Trans-
portation concept (see Table 3), and it is assigned to the carrier participant, which is
annotated with the Carrier concept (see Example 1), a specialization of the Trans-
porationCompany concept (see Table 3). Note that variables ?c and ?p do not appear
in the SELECT statement, and hence no value is returned for them in the answer.

Example 3.2 The following query retrieves all pairs (a1, a2) of activities such
that a1 generates a SubmittedPO (see Table 5 for the functional annotations of the
activities), a2 is a Communication activity (see Example 1 for the terminological
annotations), and a2 is reachable from a1 via a sequence flow path of the po process.

QuBPAL query

SELECT ?a1 ?a2
FROM <po>
WHERE reachable(?a1, ?a2, ?p) AND

activity(?a1) AND
pos_eff(?a1, ?f1, ?p) AND
?f1=tf(?o, rdf:type, bro:SubmittedPO) AND
activity(?a2::bro:Communication)

LP translation

q(A1, A2)← P = po ∧ reachable(A1, A2, P ) ∧ activity(A1)∧
pos_eff (A1, F1, P ) ∧ F1 = tf (O, ‘rdf : type′, ‘bro : SubmittedPO′)∧
activity(A2)∧ sigma(A2, ‘bro : Communication′).
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The answer to this query consists of two pairs of activities, namely (create_order,
notify_rejection) and (modify_order, notify_rejection). Indeed, the create_order
and modify_order tasks are the only activities that generate a SubmittedPO, and
the notify_rejection task, which is annotated by a Refusal concept, is the only
Communication activity in the po process (note that Refusal is a specialization
of Communication in the ontology of Table 3). Moreover, there is a sequence
flow path from create_order to notify_rejection, and one from modify_order to
notify_rejection. Indeed, in the definition of the reachable predicate, we assume
that the successor g4 of the compound activity ordering is also a successor of the
end event e1 of that activity.

Example 3.3 The following query searches for all the tasks that take as input a
Purchase_Order and precede the deliver_products task in any possible execution of
the process po.

QuBPAL query

SELECT ?t
FROM <po>
WHERE task(?t) AND

input(?t, ?i::bro:Purchase_Order, ?p) AND
act_prec(?t, deliver_products, ?p)

LP translation

q(T )← P = po ∧ bp(P, S,E) ∧ task(T ) ∧ input(T , I, P )∧
sigma(I, ‘bro : Purchase_Order′) ∧ act_prec(T , deliver_products, P ).

This query returns the tasks check_order, approve_order, and check_inventory,
which are the only tasks that take as input a Purchase_Order and must be completed
in all executions of the BP po that reach the deliver_products task. Indeed, in order
for deliver_products to be executed, the fluent tf (o, rdf : type, bro : PassedPO),
which is one of the possible effects of check_order, must be true. This fluent
must hold when approve_order is executed (see condition c1 in Fig. 1). Obviously,
check_inventory must also be executed, as it lies on all paths from the start event to
deliver_products. In contrast, the cancel_order and modify_order activities might
not be executed, in particular, when the effect produced by the check_order activity
is not tf (o, rdf:type, bro:PassedPO).

The queries shown in Examples 3.1–3.3 are solved by the BPAL reasoner in at
most 30 ms each on an Intel Core i7-7560U, equipped with 2.40 GHz×4 CPU and
16 GB RAM. This time refers to a BPKB representing the po process and includes:
(i) the time spent to translate the query from the SELECT-FROM-WHERE format to
the LP representation and (ii) the time spent for the visualization of the answer in the
BPAL Graphical User Interface (see Sect. 5 for more details on the implementation
of the BPAL framework).
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More realistic experiments have been conducted in a pilot of the European
Project BIVEE1 and in the context of a collaboration between the Italian National
Research Council (CNR) and SOGEI (ICT Company of the Italian Ministry of
Finance). The former is related to the modeling of production processes in man-
ufacturing oriented networked enterprises, while the latter regards the procedural
modeling of legislative decrees in the tax domain. The experiments revealed good
efficiency for very sophisticated queries over small and medium sized BPs (about
one hundred of activities and several thousands of reachable states) [27].

4 Use Cases

The end-user tools provided by the BPAL platform (i.e., the software platform
that implements the BPAL framework) allow the semantic annotation of existing
BP models as well as the modeling of BPs from scratch. Furthermore, reasoning
capabilities over the BPKB are made available through the QuBPAL querying
mechanism.

Figure 2 summarizes the use cases supported by the BPAL platform. They are
briefly described in the rest of the section. A non-directed arc connecting a user and a
use case means that the user can perform that use case. A directed dotted arc, labeled
as include, from a use case to another use case means that the execution of the former
requires the execution of the latter. Finally, a solid line ending with a triangle from
a use case to another means that the former is a specialization of the latter.

Model BP The platform provides functionalities to create (Create BP use case),
edit (Edit BP use case) and view (View BP use case) business processes in terms of
the BPMN notation. The choice of providing a support for BPMN is motivated
by the wide adoption and acceptance of BPMN that is witnessed by the huge
number of modeling tools that implementing it. However, while BPAL has been
strongly inspired by BPMN, its constructs are common to a large variety of
process and workflow languages, e.g., BPEL [2] and UML activity diagrams [18].
Hence, a relevant non-functional requirement that has been considered during the
implementation is the extensibility of the platform to provide support for importing
BPs designed using other notations/formats into a BPAL repository.

Import BP Besides the possibility of creating a business process from scratch, the
BPAL platform offers functionalities to import a BPMN file. In particular, the import
is allowed for those BPMN serializations which are XML files containing only the
structural description of the process, leaving out all the graphical details; this format,
supported, e.g., by Intalio Process Modeler,2 has been also used in several research

1 BIVEE: Business Innovation and Virtual Enterprise Environment (FoF-ICT-2011.7.3-285746).
2 http://www.intalio.com/process-designer.

http://www.intalio.com/process-designer
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Fig. 2 Use cases supported by the BPAL platform

projects since it is adopted by the Eclipse SOA Tools Platform,3 an open-source
BPMN editor.

Annotate BP. The support provided for the semantic annotation includes: (i) associ-
ating BPS elements with OWL expressions built in terms of a reference ontology
through the sigma predicate (terminological annotation), and (ii) associating flow
elements of a BPS with preconditions and effects in terms of ontology-based
expressions (functional annotation).

Import Ontology. OWL/RDF ontologies can be loaded in the platform in order to
define terminological and functional annotations.

View Ontology. An ontology imported in the platform can be shown in a hierarchical
view to support the annotation and querying activities.

Export BPKB. The platform supports the generation of formal logic-based rep-
resentations of a business process. In particular, it allows the export to OWL
(Export2OWL use case), and to Prolog (Export2Prolog use case).

Query BPKB. The platform enables reasoning over a business process knowledge
base by posing queries either in the QuBPAL language (QuBPAL Querying use
case) or in Prolog syntax (Prolog Querying use case).

3 http://www.eclipse.org/bpmn/.

http://www.eclipse.org/bpmn/
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Fig. 3 The BPAL platform macro architecture

5 Implementation

The BPAL platform4 is a prototypical implementation of the framework discussed
so far, and it is implemented as an Eclipse Plug-in.5 Below, we outline the
architectural aspects and the main implementation choices.

The BPAL platform is organized as a three-tier (i.e., Graphical User Interface,
Application Logic, and Knowledge Layer) application. Figure 3 sketches these
three layers. Boxes with rounded corners represent main functional components,
while cylinders represent knowledge repositories. Furthermore, arrows represents
dataflow. In particular, directed arrows emphasize the main flow direction, while
non-directed arrows indicate that the flow can occur in both directions.

Next, we define each of these tiers.

5.1 Graphical User Interface

This component provides the graphical user interface to define a BPKB and to
interact with the BPAL Reasoner. A screen-shot of the main components of the
GUI is depicted in Fig. 4.

4 http://saks-wiki.iasi.cnr.it/xwiki/bin/view/Tools/BPAL/public.
5 http://www.eclipse.org/.

http://saks-wiki.iasi.cnr.it/xwiki/bin/view/Tools/BPAL/public
http://www.eclipse.org/
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• The BP Editor (Fig. 4a) is based on the STP BPMN Modeler,6 which comprises a
set of tools to model business process diagrams using BPMN.

• The Semantic Annotation Editor (Fig. 4b) allows the annotation of process
elements with respect to a reference ontology.

• The Query Panel provides a prompt to access the BPAL reasoner through the
querying mechanism. In particular, in Fig. 4c and d, the QuBPAL tab panel
is shown, with query definition and query results on the left and right side,
respectively. As an alternative, a Prolog panel, from where one can make any
Prolog query, can be opened through the Prolog tab.

• The Ontology Viewer (Fig. 4e) allows the visualization of OWL ontologies. This
panel is particularly helpful for BPS annotation and query definition.

• The Navigator (Fig. 4f), provides a tree view of the resources available in the
workspace, such as BP schemas and ontologies.

5.2 Application Logic

This layer includes all the components that implement the functionalities of
the platform that correspond to the use cases presented in Sect. 4. The main
components are:

• Semantic BP Manager, which is in charge of storing all the updates of the BPKB.
• Ontology Import, which allows an OWL ontology to be loaded in the platform in

order to define terminological and functional annotations.
• BPMN2BPAL Export, which translates semantically annotated BPMN processes

into BPAL. Two BPAL serializations are allowed: OWL/RDF and Prolog, gen-
erated by the BPMN2OWL and the BPMN2Prolog sub-modules, respectively. In
particular, while the export to OWL starts directly from the .bpmn file, the export
to Prolog takes as input the OWL representation.

• BPAL Reasoner, which enables the resolution of queries over the Prolog repre-
sentation. If a query is expressed in QuBPAL, the QuBPAL2Prolog sub-module
translates the query to Prolog. A Prolog query is taken as input by the Prolog
Engine sub-module, which is in charge of compiling the queries and collecting the
results of the evaluations. In the current implementation, the core of the Prolog
Engine is XSB,7 a Logic Programming and deductive database system. The OWL
representation can also be directly queried by giving it as input to an OWL
reasoner or by loading it into a triple store8 and making SPARQL queries [23].

6 https://wiki.eclipse.org/index.php?title=SOA/BPMN_Modeler.
7 http://xsb.sourceforge.net/.
8 A triple store is a database suitable for managing OWL/RDF ontologies.

https://wiki.eclipse.org/index.php?title=SOA/BPMN_Modeler
http://xsb.sourceforge.net/
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5.3 Knowledge Layer

This layer represents the knowledge repository of the BPAL platform, and it is
organized as follows:

• Semantically Enriched BPMN, which contains the serialization of the business
processes (.bpmn files), and their terminological and functional annotations (.ser
files).

• External Ontologies, which contains the OWL ontologies that can be used to
define terminological and functional annotations.

• BPAL-OWL, which contains the BPAL ontology that defines the constructs of
the BPAL meta-model, and the OWL representation of the semantically enriched
processes (OWL export).

• BPAL-Prolog, which contains the Prolog code for the BPKB rules, and the Prolog
export of the processes and ontologies that are needed to resolve queries both on
the structure and the execution of business processes.

6 Framework

The aim of this section is to put the BPAL platform in relation with the Process
Querying Framework (PQF) proposed in [21], by identifying the PQF components
which are addressed, and to what extent, by the BPAL platform. PQF is a reference
abstract architecture whose components are intended to be selectively replaced in
order to devise new process querying methods. PQF distinguishes between active
components and passive components. The former identify functionalities performed
by the querying methods, while the latter identify input and output objects.
Furthermore, the framework organizes the components into four logical groups. In
the following, the four groups are briefly outlined, and the functionalities of the
BPAL platform that correspond to the PQF components of each group are recalled.

Model, Simulate, Record, and Correlate This group collects the components
responsible for the acquisition and construction of process models, as well as for
the design and formalization of process queries.

The BPAL platform provides functionalities for modeling business processes by
using BPMN. In particular, the platform allows the user to graphically design, or
import, BPMN processes models. Furthermore, process models can be semantically
enriched by associating process components with terminological and functional
annotations in the form of logic-based expressions built in terms of a reference
ontology.

At present, the BPAL framework does not offer direct support to recording
event logs, simulating, and correlating processes. However, some of the BPAL
functionalities could be useful for those tasks, as we briefly discuss below.
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• Recording event logs can be realized by representing logs as lists of events. Then,
we can use predicates over traces, such as c_trace and all_traces, to reason about
event logs (e.g., to check conformance with respect to a given process model).

• Simulating non-deterministic executions of processes can be achieved by querying
the BPKB using trace predicates, like the above mentioned c_trace and all_traces.
Indeed, by leveraging the features of Prolog execution, these predicates can be
used not only to check that a given trace is a legal enactment of a process model,
but also to generate traces that satisfy the properties specified by the model.

• Correlating different processes can take advantage of both the behavioral and
ontology-based predicates provided by BPAL. By using behavioral predicates
one can prove or discover properties relating process executions. Moreover,
by annotating processes using the same reference ontology one can realize
terminological alignments between process components, possibly belonging to
different processes.

Concerning the definition and formalization of queries, the BPAL platform accepts
queries both in Prolog and in QuBPAL, a user friendly SELECT-FROM-WHERE
language. For queries in the QuBPAL syntax, a translation to Prolog is performed.

Prepare This group collects components responsible for making process reposito-
ries ready to resolve queries in an efficient manner. With respect to that, the BPAL
platform supports caching facilities by leveraging on the tabling mechanisms of
the XSB system. In fact, tabling avoids redundant subcomputations, and by doing
so guarantees the termination of evaluation also for recursive predicates such as
reachable_state (see the end of Sect. 3.2 for a brief discussion of the termination of
QuBPAL queries).

Execute This group includes components responsible for executing queries over
process repositories. In the BPAL platform, the component that is in charge of
resolving queries on business processes is the BPAL Reasoner, which is built upon
the XSB system (see Sect. 5.2). Filtering is ensured by the FROM constraints
specified in the QuBPAL query, which allows a user to restrict the processing of
the query over a subset of all the processes in the repository.

Interpret This group collects the components in charge of processing query results,
e.g., for presentation and explanation purposes. With respect to that, the BPAL
platform can exploit the features of the underlying Logic Programming engine
to explain and inspect the result of a query. For instance, since Prolog computes
bindings for the free variables appearing in a query, BPAL can extract a trace that
satisfies, or violates, a given property of the behavior of a process, on the basis of
the result of a query concerning such a property.
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7 Conclusions and Future Work

In this chapter, we presented QuBPAL, the query language of the BPAL platform, a
framework for semantic BP modeling. The BPAL platform provides a graphical user
interface to assist the user in the definition and interrogation of a BP Knowledge
Base. We discussed how functionalities for modeling, semantically annotating,
and querying BPs are made available by the tool, and how knowledge about the
process can be retrieved and processed via QuBPAL queries. The main design
choices have been oriented at guaranteeing both a sound foundation and a high
level of practical usability. The soundness of the foundation is guaranteed by the
logic-based approach underpinning the BPAL framework. The practical usability
derives from the support of widely used and accepted standards and technologies.
Indeed, we adopted BPMN as a graphical modeling notation, and its XML textual
format to import and manipulate BP models, possibly designed through external BP
management systems. For the domain knowledge representation, we use OWL/RDF,
the current de-facto standard for ontology modeling and metadata exchange. The
whole platform is packaged as an Eclipse plug-in, which extends the Eclipse
STP BPMN Modeler, an established open-source BPMN editor. The querying and
reasoning engine is built on top of a standard LP engine (XSB).

The results have been quite encouraging in practice. Indeed, the rule-based
implementation of the OWL reasoner and the effective tabled evaluation mechanism
of the XSB engine have demonstrated good response time and scalability, for small
and medium-sized repositories of BP models [27].

In the literature, several approaches have been proposed for dealing with the three
main perspectives of process knowledge: graph-matching for structural querying,
model checking for behavioral verification, description logics for domain knowl-
edge representation (see also various chapters in this book). Each of them proposes
techniques that have been proven effective with respect to the specific aspect they
address. The goal of the BPAL approach is to manage a BPKB which organizes and
stores the conceptual knowledge about the three aforementioned perspectives, and
it allows inference over this structure in a uniform and formal framework.

Several directions of research deserve further investigation.
On the technical level, we would like to incorporate query optimization tech-

niques to enhance the reasoning approach. As it stands, the reasoner performs
only simple optimizations based on the re-ordering of literals, and all the queries
are evaluated with a purely goal-oriented, top-down approach, without any pre-
processing of the knowledge base. We are confident that the query evaluation
process can be strongly improved through more sophisticated query rewriting
techniques, which have been largely investigated in the area of Logic Programming.

We also think that the BPAL framework could be used in other phases of the
BP lifecycle, besides modeling and analysis at design time. In particular, the trace
semantics of BPAL appears a suitable starting point to support: (i) querying at run-
time, i.e., over a running instance of the process during its enactment, and (ii)
querying a-posteriori, i.e., over the execution logs of completed enactments. Fur-
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thermore, an approach based on using QuBPAL for querying BP repositories can be
a valid support for process reuse and composition, as discussed in recent work [24].

Finally, we plan to extend the BPAL framework to model other aspects of process
knowledge, such as constraints on data and time duration. Initial steps for the
enhancement of our approach towards that direction have been already taken [6, 22].
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GNCS National Research Group.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Boston (1995)
2. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D.,

Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: BPEL4WS, business process execution
language for Web services version 1.1. IBM (2003). http://download.boulder.ibm.com/ibmdl/
pub/software/dw/specs/ws-bpel/ws-bpel.pdf

3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The
Description Logic Handbook: Theory, Implementation, and Applications. Cambridge Univer-
sity Press, Cambridge (2003)

4. Burstein, M., et al.: OWL-S: Semantic Markup for Web Services. W3C Member Submission
(2004). http://www.w3.org/Submission/OWL-S/

5. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge (1999)
6. De Angelis, E., Fioravanti, F., Meo, M.C., Pettorossi, A., Proietti, M.: Verification of time-

aware business processes using constrained Horn clauses. In: Proceedings of the 26th
International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR
2016). LNCS, vol. 10184 (2017)

7. De Nicola, A., Missikoff, M., Proietti, M., Smith, F.: An open platform for business process
modeling and verification. In: Database and Expert Systems Applications, 21st International
Conference. LNCS, vol. 6261, pp. 76–90. Springer, New York (2010)

8. Di Francescomarino, C., Ghidini, C., Rospocher, M., Serafini, L., Tonella, P.: Semantically-
aided business process Modeling. In: International Semantic Web Conference. LNCS,
vol. 5823, pp. 114–129. Springer, New York (2009)

9. Fensel, D., Lausen, H., Polleres, A., de Bruijn, J., Stollberg, M., Roman, D., Domingue, J.:
Enabling Semantic Web Services: The Web Service Modeling Ontology. Springer, New York
(2006)

10. Fu, X., Bultan, T., Su, J.: Analysis of interacting BPEL Web services. In: Proceedings of the
International Conference on World Wide Web, pp. 621–630. ACM, New York (2004). http://
doi.acm.org/10.1145/988672.988756

11. Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel, D.: Semantic business process
management: a vision towards using semantic Web services for business process management.
In: Proceedings of International Conference on e-Business Engineering. IEEE Computer
Society, Washington (2005)

12. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL: the
making of a Web Ontology Language. Web Semant.: Sci. Serv. Agents World Wide Web
1(1), 7 – 26 (2003)

13. Lin, Y.: Semantic annotation for process models: facilitating process knowledge management
via semantic interoperability. Ph.D. thesis, Norwegian University of Science and Technology
(2008)

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf
http://www.w3.org/Submission/OWL-S/
http://doi.acm.org/10.1145/988672.988756
http://doi.acm.org/10.1145/988672.988756


284 M. Proietti et al.

14. Liu, Y., Müller, S., Xu, K.: A static compliance-checking framework for business process
models. IBM Syst. J. 46, 335–361 (2007)

15. Lloyd, J.W.: Foundations of Logic Programming. Springer Inc., New York (1987)
16. Motik, B., et al.: OWL 2 Web Ontology Language Profiles (Second Edition). W3C

Recommendation (2012). http://www.w3.org/TR/owl2-profiles/
17. OMG: Business Process Model and Notation (2013). http://www.omg.org/spec/BPMN/2.0.2
18. Penker, M., Eriksson, H.E.: Business Modeling With UML: Business Patterns at Work. Wiley,

New York (2000)
19. Polyvyanyy, A.: Structuring process models (2012). Ph.D. thesis, University of Potsdam,

Germany
20. Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and generalization of the

refined process structure tree. In: Bravetti, M., Bultan, T. (eds.) Proceedings 7th International
Workshop Web Services and Formal Methods (WS-FM 2010). Lecture Notes in Computer
Science, vol. 6551, pp. 25–41. Springer, New York (2011)

21. Polyvyanyy, A., Ouyang, C., Barros, A., van der Aalst, W.M.P.: Process querying: enabling
business intelligence through query-based process analytics. Dec. Support Syst. 100, 41–56
(2017)

22. Proietti, M., Smith, F.: Reasoning on data-aware business processes with constraint logic. In:
Proceedings of the 4th International Symposium on Data-driven Process Discovery and Analy-
sis (SIMPDA 2014), Milan, Italy, November 19–21, 2014, CEUR Workshop Proceedings, vol.
1293, pp. 60–75 (2014)

23. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF (2008). W3C
Recommendation. http://www.w3.org/TR/2007/WD-rdf-sparql-query-20070326/

24. Smith, F., Bianchini, D.: Selection, ranking and composition of semantically enriched business
processes. Comput. Ind. 65(9), 1253–1263 (2014)

25. Smith, F., Missikoff, M., Proietti, M.: Ontology-based querying of composite services. In:
Business System Management and Engineering, pp. 159–180 (2010)

26. Smith, F., Proietti, M.: Rule-based behavioral reasoning on semantic business processes. In:
ICAART (2), pp. 130–143. SciTePress, Setubal (2013)

27. Smith, F., Proietti, M.: BPAL: a tool for managing semantically enriched conceptual process
models. In: Cunningham, P., Cunningham, M. (eds.) Proceedings of eChallenges (e-2014).
IIMC International Information Management Corporation, Dublin (2014)

28. Smith, F., Proietti, M.: Ontology-based representation and reasoning on process models: a logic
programming approach. CoRR abs/1410.1776 (2014). http://arxiv.org/abs/1410.1776

29. Swift, T., Warren, D.: XSB: extending the power of Prolog using tabling. In: Theory and
Practice of Logic Programming (TPLP), vol. 12(1–2), pp. 157–187. Cambridge University
Press, Cambridge (2012)

30. ter Hofstede, A.M., van der Aalst, W.M.P., Adamns, M., Russell, N. (eds.): Modern Business
Process Automation: YAWL and its Support Environment. Springer, New York (2010)

31. Thielscher, M.: Introduction to the fluent calculus. Electron. Trans. Artif. Intell. 2, 179–192
(1998)

32. van der Aalst, W.M.P.: The application of Petri nets to workflow management. J. Circ. Syst.
Comput. 8(1), 21–66 (1998)

33. Weber, I., Hoffmann, J., Mendling, J.: Beyond soundness: on the verification of semantic
business process models. Distrib. Parallel Databases 27, 271–343 (2010)

http://www.w3.org/TR/owl2-profiles/
http://www.omg.org/spec/BPMN/2.0.2
http://www.w3.org/TR/2007/WD-rdf-sparql-query-20070326/
http://arxiv.org/abs/1410.1776


CRL and the Design-Time Compliance
Management Framework

Amal Elgammal and Oktay Turetken

Abstract Following the crisis in 2008, the financial industry has faced growing
numbers of laws and regulations globally. The number and complexity of these
regulations are creating significant issues for governance, risk, and compliance
management in almost all industrial sectors. This emergent business need calls for a
structured and formal framework for managing business process compliance, which
is sustainable throughout the complete business process lifecycle. A preventive
focus is essential such that compliance is considered from the early stages of busi-
ness process design, thus enforcing compliance by design. This chapter introduces
the Compliance Request Language (CRL), which is at the heart of a formal design-
time compliance verification, analysis, and management framework and addresses
the “Check Compliance” use case. Following a model-driven engineering approach,
CRL is a graphical domain-specific language that is formally grounded and enables
the abstract pattern-based specification of compliance requirements to alleviate the
complexities of formal/mathematical languages. An integrated tool-suite has been
developed as an instantiation artifact, and the various validation activities have been
conducted to ensure the validity, efficacy, and applicability of the proposed language
and framework.

1 Introduction

The global regulatory environment has grown in complexity and scope since the
financial crisis in 2008. This is causing significant problems for organizations in all
industrial sectors, as the complexity of hard and soft regulations is neither under-
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stood nor appreciated [31]. Take, for example, the Dodd–Frank Wall Street Reform
and Consumer Protection Act of 2010 that has an estimated 1,500 provisions and
398 rules, which are being drafted by relevant regulatory agencies—approximately
40% of these rules are in force since 2013. The US Bank Secrecy Act Anti-Money
Laundering (AML) rules are equally complex and far-reaching, with a raft of major
banks found not to be in compliance in 2012. As a consequence, Standard Chartered
Bank, London, was fined a total of $459 million by US regulators in December 2012.
Worse still, HSBC Holdings Plc. paid a record $1.92 billion in fines to US regulators
for similar anti-money laundering offences. Similar examples are ample.

In a broader perspective, compliance is about unambiguously ensuring con-
formance to a set of prescribed and/or agreed upon rules [27]. These rules may
originate from various sources, including laws and regulations, standards, public and
internal policies, partner agreements, and jurisdictional provisions. To address this
emergent business need, many organizations typically achieve compliance on a per-
case basis resulting into myriad of ad-hoc solutions. In practice, these solutions are
generally handcrafted for a particular compliance problem, which creates difficulties
for reuse and evolution. Furthermore, compliance and business concepts may be
treated differently by different stakeholders. This ambiguity results in inconsistency,
which makes it difficult to share and reuse business and compliance specifics. All
these problems make it infeasible for automated compliance checking and analysis
at any phases of the Business Process Management (BPM) lifecycle, i.e., design-
time, runtime, and offline monitoring.

Based on the structured comparative analysis we conducted in [13, 14], a set
of requirements have been drawn that must be supported by any compliance
management framework. “Formality”, “Expressiveness”, “Usability”, “Declarative-
ness”, “Semantic alignment”, and “Intelligible feedback” are among the validated
requirements of highest priority. These can be described as follows:

• Formality: The framework should be formally grounded to pave the way for the
application of associated automatic analysis, reasoning, and verification tools and
techniques.

• Expressiveness: The framework should incorporate a compliance specification
language that is expressive enough to be able to capture the intricate semantics
of compliance requirements.

• Usability: The languages and framework components should not be excessively
complex for the prospective users (business or legal users with no formal/mathe-
matical background) so that they would be able to understand and use them.

• Declarativeness: Compliance requirements are commonly normative and descrip-
tive, indicating what needs to be done [35]. Therefore, declarative languages are
more suited for their formal representation, as opposed to Business Process (BP)
models, which are often captured using prescriptive languages/models.

• Semantic alignment: The need to manage regulatory and compliance data,
especially in heavily regulated domains, exceeds the abilities of modern
information systems. Our research indicates that a framework for compliance
management should be founded on a semantic knowledge base that incorporates
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ontologies capturing the different perspectives of the compliance and business
domains [9, 11].

• Intelligible feedback: In case of a violation of a compliance rule, it is important
to provide the user with guidance of why a violation occurs and how to resolve
compliance deviations [12, 15].

In this chapter, we introduce a design-time compliance verification, analysis,
and management framework that realizes the aforementioned requirements. In the
heart of the framework is the Compliance Request Language (CRL) [11, 16], which
adopts a model-driven engineering (MDE) [21] approach and is a graphical pattern-
based domain-specific language, capturing and formally representing recurring
compliance patterns, primarily in financial domains. CRL capacitates the abstract
specification of compliance requirements to alleviate the complexities of formal/-
mathematical languages to cross the usability gap, which generally represents the
main obstacle in adopting powerful and mathematically proven methods for solving
various potential problems in various domains.

From a structural perspective, compliance requirements may fall into four classes
that pertain to the basic structure of business processes, which are [22]: (i) workflow
constraints (control-flow requirements), (ii) information usage (data validation
requirements), (iii) employed resources (task allocation and access rights), and (iv)
real-time constraints. The compliance patterns incorporated in CRL support these
four structural facets of BPs.

CRL and its supporting framework address the “Read” operation of the classical
“CRUD” querying operations to support the “Check Compliance” use case as a
sub-type of the “Check Conformance” process query use case. The framework
introduced in this chapter focuses on design-time BP compliance management;
however, CRL can also be used for compliance checking of the subsequent BP
phases including runtime and offline monitoring, as proposed in [10, 36]. One of
the strengths of an MDE approach is that the same Platform Independent Model
(PIM) is used and can be mapped to different Platform Specific Models for diverse
objectives. However, to keep the discussion focused, in this chapter, only design-
time compliance checking is considered and presented.

The subsequent discussion is organized as follows: CRL design-time compliance
verification and analysis framework is discussed in Sect. 2. This is followed by a
description of a real-life case study used as a running scenario in this chapter. The
framework preliminaries/background is presented in Sect. 4. Then, CRL, its syntax,
semantics, and notation are discussed in Sect. 5. Implementation, evaluation and val-
idation efforts are explained in Sects. 6 and 7. Finally, Sect. 8 concludes the chapter.

2 CRL Framework

This section presents the CRL compliance verification, analysis, and management
framework as an instantiation of the generic BP querying framework presented
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in [33]. The proposed framework mainly realizes the newly introduced “Check
Compliance” use case as a sub-type of the “Check Conformance” process query
use case introduced in [33], by focusing on design-time compliance checking and
analysis. Figure 1 shows a schematic view of the proposed framework.

To support different types of queries, three main components should be designed,
formalized, and implemented: a data model, where queries/rules are evaluated;
an expressive query/specification language; and an efficient evaluation algorithm.
These components are realized in our framework as

• Expressive query/specification language: CRL represents the query/specification
language component, mainly supporting design-time compliance verification and

Fig. 1 CRL compliance management framework
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analysis. This meets “Formality”, “Usability”, “Expressiveness”, and “Declara-
tiveness” requirements discussed in Sect. 1.

• Data model represented by the Compliance Management Knowledge Base
(CMKB), which meets the “Semantic Alignment” requirement discussed in Sect. 1
(see “Knowledge” component of the framework proposed in Fig. 1).

• Evaluation algorithm: It refers to formal model-checking techniques and
addresses the “Formality” requirement discussed in Sect. 1.

Following the generic BP querying framework proposed in [33], the CRL
compliance management framework constitutes three logical parts (depicted as
dashed rounded rectangles in Fig. 1): (i) Model, (ii) Execute, and (iii) Interpret. Fur-
thermore, we introduce an additional fourth part, (iv) Knowledge, as an extension
to the original reference framework in [33].

In Fig. 1, rectangles represent actions (active components), while ovals represent
objects and aggregations of objects, which are called passive components and
they act as inputs/outputs of actions. Solid arrows represent inputs/outputs that
flow to/from actions (active components). Dashed lines are used to represent
aggregation relationships, e.g., in the figure, a “Process Querying Instruction”
aggregates one query intent and one or more CRL pattern expressions. A query
intent is an instruction and CRUD (Create, Read, Update, Delete) operation(s) to
elicit requirements and categories of process querying problems [33], e.g., Design
model use case is associated with the Create operation.

2.1 “Model” Part

The first part is the “Model” (the upper part of Fig. 1). It represents the practices of
designing (i) process models, including service descriptions (left-hand side of the
“Model” part) and (ii) process queries that represent compliance requirements in
our case (right-hand side of the “Model” part). The Business Process (BP) definition
involves the specification of process models using the widely used Business Process
Execution Language (BPEL) standard [29]. However, other BP modeling languages,
such as BPMN [30], can also be treated in a similar way.

Compliance management practices (right-hand side of the “Model” part in
Figure 1) commence with the refinement of compliance constraints originating
from various compliance sources into a set of organization-specific compliance
requirements. This involves not only compliance but also business process domain
knowledge. The proposed refinement approach is based on the COSO [4] frame-
work, which is the original and primary source used for establishing efficient
internal control systems in organizations. For a more detailed discussion on this
refinement methodology and its application in two real-life case studies, we refer
the interested reader to [37, 38].

The refinement methodology concludes with combining compliance patterns
using the CRL to render organization-specific compliance requirements. This
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satisfies the usability requirement discussed in Sect. 1 and serves as an auxiliary
step to represent refined compliance requirements into formal statements (e.g.,
Linear Temporal Logic (LTL)/Metrical Temporal Logic (MTL) formulas) meeting
the “formality”, “declarativeness”, and “expressiveness” requirements.

2.2 “Knowledge” Part

CMKB represents the backbone of the framework for maintaining and semantically
aligning business (BP models and artifacts) and compliance specifics (compliance
sources linked to internal controls all the way to corresponding compliance rules
following the refinement methodology in [37, 38]) specified in the Model part, as
illustrated in Sect. 2.1. CMKB is a semantic knowledge base that incorporates
and integrates a set of ontologies capturing the different perspectives of the
compliance and business spheres. Therefore, the Knowledge part represents
a uniform conceptualization of the process and compliance spaces, enabling
the sharing and reusing of compliance and business knowledge, eliminating
ambiguities, and improving the level of automation. The semantic compliance
management framework, as reported in [9, 11], is agnostic of the underlying adopted
languages/technologies, and identifies the set of minimal ontologies attempting to
address various compliance problems.

Typically, the design and development of ontologies constitutes two main
parts/components [26, 39]: (i) Terminological component (TBox), which is a
conceptualization of a given domain of interest, and (ii) Assertional component
(ABox), which represents the individuals or the instances of the TBox. We have
identified three main ontologies as part of the TBox:

• BP Ontology: An ontology capturing the semantics of the adopted BP language,
e.g., BPMNO [17], BPEL ontology [28]. Since we consider BPEL in this chapter,
then BPEL ontology [28] is used.

• Domain Ontology: An ontology representing the concepts and relationships that
exist in the domain of interest, e.g., medical, transport, banking, aerospace,
finance, etc. Since the case study presented in the next section addresses the
financial domain, we adopted the OMG Financial Industry Business Ontology
(FIBO)1 standard.

• Regulatory Ontology: An ontology capturing the requirements, controls, and rules
of compliance imperatives. We have developed such an ontology in [9, 11], which
we call Financial Industry Regulatory Ontology (FIRO).

The TBox also constitutes a high-level ontology that captures and links important
high-level concepts of the business and compliance spheres, i.e., compliance
management ontology, which is refined into the BP ontology and Regulatory

1 FIBO: http://www.omg.org/hot-topics/fibo.htm.

http://www.omg.org/hot-topics/fibo.htm
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ontology. The ABox component of the CMKB as shown in Fig. 1 maintains the
instances of the semantically aligned compliance rules and BPEL models, which
are maintained in the Compliance Requirements Repository (CRR) and Business
Process Repository (BPR), respectively, for maintenance and reusability purposes.

2.3 “Execute” Part

The flow then proceeds to the Execute part of the framework, where the query/com-
pliance evaluation/verification takes place. At one end of the spectrum (compliance
requirements side—right-hand side of the Execute part), graphical CRL expressions
are automatically transformed into LTL formulas. The verification of business
process specifications mainly involves checking formal business process (BPEL)
specifications (i.e., Promela code) against formal compliance rules (LTL rules) using
the SPIN model checker [24]. SPIN is a popular open-source software tool that is
intensively used in both academia and industry for the formal verification of large-
scale distributed software and hardware systems. SPIN takes as inputs: (i) a Promela
(Program Meta Language) code that captures the behavior of a BPEL specification,
and (ii) a set of LTL rules capturing relevant compliance requirements, and verifies
whether the Promela code complies or violates each LTL rule.

For the automated mapping of BPEL models to Promela code, we utilize
WSAT [19] (an open-source tool) and its underlying formal mapping approach [18].
Accordingly, first, a BPEL specification is abstracted into a Guarded Automaton
(GA) representing the global sequence of messages exchanged between participat-
ing services. GA is a Finite State Automaton augmented with an unbounded queue
for incoming messages. Guards can be specified on transitions that are represented
as XPath expressions, which enable rich data manipulation and analysis. Next, GA
is mapped into the Promela code. Promela is the input language accepted by SPIN
model checker. As advocated in [18], having BPEL specifications intermediary
represented as GA decouples the BP specification language and formal verification
tools from a translator, which enables the loose-coupling and the modular integra-
tion of other formal languages, if needed. In addition, it enables the application of
other static analysis techniques, e.g., synchronizability and realizability analysis.
After the SPIN model checker automatically checks the compliance between the
two specifications, the “Verification Results” merely indicate whether a compliance
requirement is satisfied or violated, without providing any insights of the possible
causes of such violations and guidance on how to resolve them.

2.4 “Interpret” Part

The Interpret part of the framework analyzes and reasons about root-causes of
detected compliance violations. The outcome of SPIN is typically a “yes-no” answer
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indicating whether the LTL rule is satisfied or violated. In case of violations, root-
causes can be induced by applying the integrated root-cause analysis approach
we proposed in [12, 15] based on CRL that utilizes formal Current Reality Trees
(CRTs) technique [5]. The root-cause analysis approach also provides the user with
suggestive guidelines of how compliance anomalies can be resolved. The business
expert(s) can then alter the process specifications (reverting to the Model part)
taking these guidelines into consideration, which is followed by the automated re-
mapping of the BPEL specification into Promela and then the SPIN model checker
re-verifies it against the set of applicable formal compliance rules. This forms a
closed feedback loop to the Execute part, which is terminated when all violated CRs
are resolved and a statically compliant business process model is produced.

3 Case Study

The case study that is used as a running scenario in this chapter represents a
simplified version of an Anti-money laundering (AML) business process. The AML
process was conducted as a part of Governance, Risk, and Compliance Technology
Center (GRCTC: http://www.grctc.com/) Irish project and is presented in [11].

AML is a pressing concern to any organization operating in the financial industry,
as it is tightly related to terrorism and proliferation financing. Despite the fact that
it is not possible to precisely quantify the amount of money laundered every year,
in [34], it has been shown that billions of US dollars are certainly laundered every
year. As part of our previous work [9], we built an end-to-end BP model that captures
money laundering detection and reporting of the US Patriot Act.2 The BP model is
established based on the best practices and the 40 recommendations of the Financial
Action Task Force (FATF).3

Figure 2 refers to this process, which proceeds as follows: It starts by a customer
initiating a money transfer. Once the order is received by a bank, and if the order
amount is greater than 5,000 Euros, an automated check is carried out to detect if
the transaction is suspicious. If the automated module detects that the transaction
is suspicious, the transaction is marked for manual re-checking by reviewing
clearance records and other available records, and contacting the customer for
further information, if necessary.

If the transaction is proved to be suspicious, the transaction is flagged as
suspicious and then deferred, and a Suspicious Activity Report (MSB) is sent to
FinCEN (Financial Crimes Enforcement Network).4 The customer will be notified

2 https://gettingthedealthrough.com/area/50/jurisdiction/23/anti-money-laundering-2017-united-
states/.
3 The 40 Recommendations: http://www.fatf-gafi.org/publications/fatfrecommendations/
documents/the40recommendationspublishedoctober2004.html.
4 FinCEN: http://www.fincen.gov/.

http://www.grctc.com/
https://gettingthedealthrough.com/area/50/jurisdiction/23/anti-money-laundering-2017-united-states/
https://gettingthedealthrough.com/area/50/jurisdiction/23/anti-money-laundering-2017-united-states/
http://www.fatf-gafi.org/publications/fatfrecommendations/documents/the40recommendationspublishedoctober2004.html
http://www.fatf-gafi.org/publications/fatfrecommendations/documents/the40recommendationspublishedoctober2004.html
http://www.fincen.gov/


CRL and the Design-Time Compliance Management Framework 293

F
ig

.2
M

on
ey

la
un

de
ri

ng
de

te
ct

io
n

an
d

re
po

rt
in

g
pr

oc
es

s
re

pr
es

en
te

d
in

B
PM

N
v2



294 A. Elgammal and O. Turetken

Table 1 Excerpt compliance requirements relevant to the AML case study

ID Control Comp. req. Comp. source

C1 It is obligatory that the financial institution reports
any suspicious transaction that involves or
aggregates funds of at least $5,000.

Identity
Reporting
related
provisions

US Patriot Act.
§1022. 210
§1022.320

C2 It is necessary that customer identification and
verification includes name, date of birth, address,
and identification number of a person.

C3 It is obligatory that the identification of a
suspicious transaction is from a manager role
reviewing clearance record or other record of
money order that is sold and processed, which
should be segregated from the activity of
suspending a transaction.

C4 It is obligatory that the customer gets notified by
either the acceptance or deference of the money
order.

Transparency of
the transaction

Internal Policy

C5 It is obligatory that a financial institution
maintains each copy of each Suspicious Activity
Report-MSB filed for 5 calendar years.

Retention of
Record of related
provisions

US Patriot Act.
§1022.320(c)

in both cases on the status of her transaction, while retaining supporting documents
in case they are requested by FinCEN during its investigation.

Table 1 lists a selection of the compliance requirements (CRs) applicable to this
case study. These CRs are specified in CRL in Sect. 5. These are verified against
the BP model shown in Fig. 2 following the steps of our compliance verification
framework (cf. Sect. 2) to deduce whether each of these CRs is satisfied or violated.

4 Linear Temporal Logic

Linear Temporal Logic (LTL) [32] is a temporal logic used to formally specify
temporal properties of software or hardware designs. In LTL, each state has
one possible future and can be represented using linear state sequences, which
corresponds to a single execution of the system.

LTL formulas are of the form ϕ = Ap, where A is a universal path quantifier
and p is a path formula. A path formula is composed of a finite alphabet of atomic
propositionsP . The formation rules of LTL formulas are as follows [32]:

• " and ⊥ are formulas (where" represents tautology and⊥ represents contradic-
tion);

• If p and q are path formulas, then ¬p, p∨q , p∧q , X p, F p, G p, p U q , p W q ,
and p R q are path formulas (where “∨” represents the “or” logical operator and
“∧” represents the “and” logical operator), such that:
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– G p (always) holds if formula p is true in all the states of the path.
– X p (next) holds if formula p is true in the next state of the path.
– F p (eventually) holds if p is true at some state in the future.
– p U q (until) holds if the second formula q is true in some state in the future;

then, the first formula p must be true in all the subsequent states within the path
until state x.

– p W q (weak until) holds the same semantics as p U q; however it evaluates to
true if q never occurs.

– p R q (release) holds if the second formula q is true until and including the
point where the first formula p first becomes true; if p never becomes true, q

must remain true forever. R (release) is the dual of U (until).

LTL Semantics:

• LTL formula ϕ stands for properties of paths (traces) and a path can either fulfill
the LTL formula or not.

• The semantics of ϕ is defined as a language Words(ϕ), where Words(ϕ) contains
all infinite words over the alphabet P that satisfy ϕ.

• The semantics of ϕ can be extended to interpretations over paths and states of
a transition system K (i.e., Kripke Structure representation of the system under
consideration, BP model in our case, as formally defined below).

• A transition system K satisfies LTL property p if all K traces respect p; that is, if
all behaviors of K are admissible.

• A state satisfies p whenever all traces (paths) starting in this state fulfill p.
• The Kripke structure K satisfies ϕ if K satisfies LTL property Words(ϕ).

Definition 4.1 A Kripke structure is a tuple K = 〈S, s0,→, L〉 where:

• S is a set of states.
• s0 ∈ S is a designated initial state.
• →: S × S is a transition relation.
• L : S → 2P is a labeling function.

Definition 4.2 A path in a Kripke structure K is an infinite sequence π :=
〈s0, s1, s2, s3, . . .〉, such that for all i ≥ 0, we have si → si+1; π(i) denotes the
ith state on the path and πi denotes the ith suffix 〈si , si+1, si+2, . . .〉 of π .

Definition 4.3 LTL semantics is formally defined as (|� denotes the satisfaction
relationship and �|� denotes the dissatisfaction relationship) [32]:

• K,π |� p ⇔ p ∈ L(π(0))

• K,π |� ¬ϕ ⇔ K,π �|� ϕ

• K,π |� ϕ ∧ ψ ⇔ K,π |� ϕ and K,π |� ψ

• K,π |� X ϕ ⇔ K,π1 |� ϕ

• K,π |� ϕ U ψ ⇔ there exists k ∈ N such that K,πk |� ψ and K,πi |� ϕ for all
0 ≤ i < k

• K,π |� F ϕ ⇔ K,π |� "U ϕ

• K,π |� G ϕ ⇔ K,π |� ¬F ¬ϕ

• K,π |� ϕ R ψ ⇔ K,π |� ¬(¬ϕU¬ψ)
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LTL is used in the discussion of the next section as the formal foundation of
compliance patterns pertaining the control-flow, data validation, and task allocation
CRs (as discussed in Sect. 1). However, LTL lacks the support to the real-time aspect
of BPs, which represents real-time compliance requirements. Various extensions
to LTL have been proposed in the literature to overcome this limitation, e.g.,
Metrical Temporal Logic (MTL) [2] and ForSpec Temporal Logic (FTL) [3]. We
have selected MTL as the formal foundation of real-time CRs, mainly due to
its successful use in the literature, and it is supported by SPIN model checker
(presented in our framework in Sect. 2 and discussed in Sect. 6).

MTL is interpreted over a discrete time domain (over the set of natural numbers
N). Since MTL extends LTL, it holds the same semantics (and formation rules) as
LTL. In addition, in MTL, temporal operators can be annotated with a real-time
expression that represents a specific time interval, e.g., F>5 ϕ, which means that
in some future state after at least a delay of 5 time units, the path formula ϕ must
hold. MTL uses the digital-clock model [2], such that an external, discrete clock
progresses at a fixed rate. The granularity of the time can be set.

5 Compliance Request Language

In [1], we analyzed a wide range of compliance legislations and frameworks,
including Sarbanes-Oxley, Basel III, IFRS, FINRA (NASD/SEC), COSO, COBIT,
and OCEG, and examined a variety of relevant works on the specification of
associated compliance requirements. Based on this analysis and our joint work with
two industrial companies (PriceWaterHouseCoopers™, PwC, the Netherlands, and
Thales Services™, France), we have iteratively and incrementally identified struc-
tural patterns of frequently recurring compliance requirements imposed on business
processes. Based on the findings of the analysis, we have also identified a set of fea-
tures of a formal language for expressing compliance requirements (for details refer
to [13, 14]). Based on the identified features, we have iteratively built CRL following
the structured requirements engineering approach that spans over the four structural
aspects of compliance requirements discussed in Sect. 1 (control-flow requirements,
data validation requirements, resource allocation, and real-time constraints).

In the remaining of this section, we present the syntax, notation, and semantics
of CRL (Sect. 5.1), which is followed by a discussion of the four identified classes
of CRL patterns, namely, Atomic patterns (Sect. 5.2), Resource patterns (Sect. 5.3),
Composite patterns (Sect. 5.4), and Real-time patterns (Sect. 5.5).

5.1 Syntax, Notation, and Semantics

Figure 3 presents the meta-model of CRL as a UML class diagram. The Compliance
Pattern class in the figure is the core element of the language, and each pattern
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Fig. 3 Compliance request language meta-model

is a sub-type of this class. A Compliance Pattern is a template that represents
a frequently recurring compliance rule. The Compliance Pattern class has four
sub-classes: Atomic Pattern, Resource Pattern, Composite Pattern, and Real-time
Pattern (or Timed Pattern).

Atomic Patterns deal with occurrence and ordering constraints. Some patterns
(those that are line-shaded in Fig. 3) are adopted from Dwyer’s property spec-
ification patterns [7]. A Resource Pattern captures requirements related to task
assignments and authorizations, such as segregation of duties. A Composite Pattern
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is built from combinations (nesting) of multiple atomic patterns via Boolean
operators (not, and, or, xor) to allow for the definition of complex requirements.
A Timed Pattern allows capturing time-dependent real-time constraints.

As shown in Fig. 3, an expression comprises Compliance Pattern (pattern
in short) and one or more operand(s). Expressions can combine multiple
(sub-)expressions by using Boolean operators. For example, the expression
((P Precedes Q) and (R Exists)) comprises two sub-expressions: (P Precedes Q)

is the first expression and (R Exists) is the second expression, aggregated by
the “and” Boolean operator. Operands take the form of BP elements (such as
activities, events, business objects, etc.), their attributes, or conditions on them. For
example, the unary expression “CheckSuspiciousTransaction Exists” consists of
one operand, which is CheckSuspiciousTransaction BP activity as defined in the
AML BP model in Fig. 2, and uses the Exists atomic pattern, which mandates that
the operand holds at least once within the BP model.

“Label” and “Exception label” attributes are used to capture and automatically
verify non-monotonic compliance rules. “Label” is mandatory to identify the rule,
while “Exception label” is optional. Non-monotonic rules are less strict rules that
can be overridden under certain pre-defined conditions such that the rule (identified
by Label) is still considered as satisfied if it is overridden by one of its pre-
defined exceptions (identified by Exception Label). For example, the CR that states
that “Checking banking privileges is optional for trusted (gold) customers” [16]
represents a non-monotonic rule, such that the business expert is given the flexibility
to conduct this check (CheckingBankingPrivilege) or not. This is a necessary
requirement to enable relaxations and, thereby, handling exceptional situations.
Details about CRL and the framework’s support to these kind of requirements can
be found in [8, 16].

An expression built from Compliance Patterns and Operand(s) has a direct
mapping into an LTL formula. The formal description of CRL grammar defining its
syntax in EBNF [20] is presented in [8]. CRL syntax and notation are presented in
this section in textual format to enable the conceptualization, sharing, and reuse of
knowledge in the CMKB (cf. Sect. 2). However, to address the usability concern of
the language, CRL is implemented as a graphical Domain-Specific Language (refer
to Sect. 6).

CRL has a formally defined operational semantics given by its mapping to
LTL/MTL, as presented in the subsequent sub-sections. Next, we describe Com-
pliance Pattern classes in more detail by exemplifying them using AML scenario
introduced in Sect. 3. Due to space limitations, only a subset of each class of patterns
is discussed. For the complete presentation of patterns, we refer the reader to [8, 16].

5.2 Atomic Patterns

Atomic pattern class can be used to describe the requirements that involve basic
occurrence and ordering of BP elements. They are founded on Dwyer’s property
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Table 2 Mapping rules from atomic patterns to LTL.

CRL expression Description LTL representation

P isAbsent P must not occur G (¬P )

P Exists P must occur at least once F(P )

P BoundedExists ≤ 2
∗with bound ≤ 2

P must occur at most 2
times

¬P W (P W (¬P W (P W ¬F (P ))))

P BoundedExists ≥ 2
∗with bound ≥ 2

P must occur at least 2
times

¬P W (P W (¬P W (P )))

P isUniversal P must always be true G (P )

P Precedes Q Q must always be preceded
by P

¬Q W P

P Precedes (S, T ) A sequence of S, T must be
preceded by P

(F (S ∧XF (T ))) ⇒ ((¬S)U P )

(S, T ) Precedes P P must be preceded by a
sequence of S, T

F (P )⇒ (¬P U (S ∧ ¬P∧
X (¬P U T )))

P LeadsTo Q P must always be followed
by Q

G (P ⇒ F (Q))

P LeadsTo (S, T ) P must be followed by a
sequence of S, T

G (P ⇒ F (S ∧XF (T )))

(S, T ) LeadsTo P A sequence of S, T must be
followed by P

G (S ∧XF (T ) ⇒
X (F (T ∧ F (P ))))

P ExistsOften P must occur frequently GF (P )

P DirectlyFollowedBy Q P must be directly followed
by Q

G (P ⇒ X(Q))

P Frees Q The second operand Q

must be true until and
including the point where
the P first becomes true

P R Q

specification patterns [6]. We have extended Dwyer’s patterns with four atomic
patterns: Else, ElseNext, DirectlyFollowedBy, and Frees.

Table 2 presents atomic patterns and their mappings to LTL formulas. “Else” and
“ElseNext” atomic patterns are used to represent compensations in a way analogous
to If-then-else statements, which are omitted in Table 2 due to space limitations
(more details are available [8, 16]).

For example, CRs C1 and C2 in Table 1 can be textually represented in CRL as

C1: (Order.Amount > 5000 and StillSuspiciousTransaction = “True”)
LeadsTo (SendSuspiciousActivityReport)

C2: (VerifyCustID) Exists and (VerifyCustID.name != null) and
(VerifyCustID.DOB != null) and (VerifyCustID.address != null) and
(VerifyCustID.ID != null)

By applying the mapping rules Table 2, the corresponding LTL formulas for C1
and C1 are (where R1 and R2 correspond to C1 and C2, respectively):
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R1: G (((Order.Amount>5000)∧(StillSuspiciousTransaction=“Yes”))⇒
X (SendSuspiciousActivityReport))

R2: (F (VerifyCustID)) ∧ (VerifyCustID.name != “” ∧ VerifyCustID.DOB !=
“”∧VerifyCustID.address != “”∧VerifyCustID.ID != “”)

5.3 Resource Patterns

Resource patterns involve task allocations, access control, and authorization con-
straints and constitute one of the important structural facets of the BP compliance.
CRL addresses this dimension through the Resource pattern class, which involves
basic BP concepts, like role, user (actor), and task (BP activity). We assume that
tasks are assigned to roles and users perform the tasks through the roles they play.
As shown in Fig. 3, we introduce eight resource patterns. A subset of these patterns
is described in Table 3, along with their mapping rules to LTL.

For example, to express C3 in Table 1 PerformedBy, SegregatedFrom resource
patterns and Precedes atomic pattern can be used and specified as three CRL
expressions (note that the three rules can be expressed as one rule using∧; however,
for simplicity, we present them as three simple rules):

C3.1: ReviewClearanceRecord PerformedBy Manager

C3.2: SuspendT ransaction SegregatedFrom ReviewClearanceRecord

C3.3: (ReviewClearanceRecord and ReviewClearanceRecord.Manual =
“Yes”)Precedes (SendSuspiciousActivityReport)

By applying the mapping rules in Table 3, the corresponding LTL formulas are:

R3.1: G (ReviewClearanceRecord ⇒ ReviewClearanceRecord.

Role(Manager))

R3.2: G ((SuspendT ransaction.Role(R) ⇒ G (¬(ReviewClearanceRecord.

Role(R)))))

Table 3 Resource patterns descriptions and their mapping rules to LTL

CRL expression Description LTL mapping rule

t PerformedBy R No other role than R is allowed
to perform activity t

G (t ⇒ t .Role(R))

t1 SegregatedFrom t2 Activities t1 and t2 must be
performed by different roles and
users

G (t1.Role(R) ⇒ ¬(t2.Role(R))

∧G (t1.User(U) ⇒
¬(t2.User(U))))

t1 USegregatedFrom t2 Activities t1 and t2 must be
performed by different users

G (t1.User(U) ⇒
¬(t2.User(U)))

t1 BoundedWith t2 Activities t1 and t2 must be
performed by the same user

G (t1.User(U) ⇒ t2.User(U)) ∧
G (t2.User(U) ⇒ t1.User(U))
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R3.3: ((¬SendSuspiciousActivityReport) U (ReviewClearanceRecord ∧
ReviewClearanceRecord.Manual = “Yes”)) ∨
(G (ReviewClearanceRecord ∧
ReviewClearanceRecord.Manual = “Yes”))

During design-time verification (cf. Sect. 6), only the roles that perform certain
tasks can be checked, but not the users (actors). This is due to the lack of such
contextual information during design-time, which is only available during runtime.
As mentioned in Sect. 2, CRL aims to provide an integrated solution addressing both
design-time and runtime phases of the BP lifecycle, where CRs formalized as CRL
expressions can be mapped into rules appropriate to the target Platform Specific
Language (PSM) for the specific verification phase. That is, during design-time,
which is in the focus of this chapter, CRL is mapped to LTL as the target language;
while during runtime, in [10] we proposed to map CRL into BPath expressions [36]
to achieve an integrated runtime compliance verification.

5.4 Composite Patterns

To facilitate the definition of complex requirements, composite patterns utilize
Boolean logical operators (not, and, or) to enable the nesting of multiple patterns.
For example, “P PLeadsTo Q” pattern introduced in [40] is a conjunction of
“P Precedes Q” and “P LeadsTo Q”, which indicates that operands P and Q

should “occur” and must take place sequentially. The semantics of “P Precedes Q”
alone is that it holds true if Q never occurs; i.e., the violation to this rule happens if
Q occurred and P never happened before it. Analogously, “P LeadsTo Q” is true if
P never happened; i.e., its violation occurs when P happened and Q did not appear
after it.

Table 4 presents a selection of composite patterns together with their mapping
rules to LTL. For full description, we refer the reader to [8, 16].

As an example, C4 in Table 1 can be represented by utilizing the MutexChoice
composite pattern and LeadsTo atomic pattern as follows:

C4: InitiateMoneyTransfer LeadsTo (SendAcceptNote MutexChoice
SendDeferNote)

This is mapped to LTL by applying the mapping rule in Table 4:

R4: G (InitiateMoneyTransfer⇒ F ((F (SendAcceptNote) ∧
G (¬SendDeferNote)) ∨ (F (SendDeferNote) ∧ G (¬ SendAcceptNote))))
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Table 4 Mapping rules from composite patterns into LTL.

CRL expression Description Atomic pattern equivalence LTL representation

P CoExists Q The presence of
P mandates that
Q is also present

(P Exists) ⇒ (Q Exists) F (P )⇒ F(Q)

P Exclusive Q The presence of
P mandates the
absence of Q, and
presence of Q

mandates the
absence of P

((P Exists) ⇒ (Q IsAbsent))∧
((Q Exists) ⇒ (P IsAbsent))

(F (P ) ⇒
G(¬Q))∧
(F (Q) ⇒ G(¬P ))

Q Substitute P Q substitutes the
absence of P

(P IsAbsent) ⇒ (Q Exists) G(¬P ) ⇒ F(Q)

P MutexChoice Q Either P or Q

exists but not any
of them or both of
them

(P Exists) Xor (Q Exists) =
((P Exists) ∧ (Q IsAbsent))∨
((Q Exists)∧ (P IsAbsent))

(F (P )∧G(¬Q))∨
(F (Q) ∧G(¬P ))

5.5 Timed Patterns

The real-time dimension is another key aspect in BP compliance and CRL addresses
time-related requirements with seven patterns: MinDur, MaxDur, Every, Within,
AtLeastAfter, ExactlyAt, ExactlyAfter. Timed patterns can be used in combination
with other compliance patterns (atomic or composite patterns) to form a “timed
composite pattern” expression. However, not every timed pattern can be composed
with all compliance patterns. In total, we defined 51 possible combinations, from
which a subset is presented in Table 5. For the complete list of combinations,
the reader is referred to [8]. Regarding the mapping from timed patterns to
corresponding formal statements, MTL is used as presented in Sect. 4.

Similar to resource patterns, many of the rules generated using timed patterns
can be fully checked only at runtime, as we typically lack the time information
at design-time. Therefore, for knowledge encapsulation purposes as discussed in
Sect. 2.2 (maintained in CMKB), respective timed compliance rules are specified
in CRL and reserved for subsequent runtime compliance monitoring. If the timing
information is encoded in the BP model, it could also be checked at design-time.
However, BP modeling languages, such as BPEL and BPMN have only limited
support to timing specifications through timeouts; i.e., it is not possible to enforce,
for example, when a specific activity starts or ends, or how activities are related in
real-time to each other (e.g., an activity should start within k time units after another
activity starts or ends).

CR C5 in Table 1 exemplifies timed patterns by exploiting LeadsTo atomic
pattern and IsAbsent Before timed pattern composite expression, as follows:

C5.1: CreateSuspiciousActivityReport LeadsTo RetainCopyOfMSB
C5.2: DeleteSuspiciousTransRecords IsAbsent Before

RetainCopyOfMSB.time+ 5
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Table 5 Mapping rules from combinations of compliance/timed patterns into MTL

Timed Compliance
pattern pattern CRL expression Description MTL representation

Before Exists P Exists
Before k

Specifies that BP
element P must hold at
sometime before k

F≤k(P )

IsAbsent P IsAbsent
Before k

Specifies that BP
element P must not
hold anytime before k

G≤k(¬P )

Within LeadsTo P LeadsTo Q

Within k

Indicates that BP
element Q has to follow
P within k time units
after the occurrence of
P

G(P ⇒ F≤k(Q))

Substitute P Substitutes Q

Within k

Q substitutes the
absence of P within at
most k time units from
the start of the BP

G(¬P ⇒ F≤k(Q))

AtLeastAfter LeadsTo P LeadsTo Q

AtLeastAfter k

Indicates that BP
element Q has to follow
P after k time units after
the occurrence of P

G(P ⇒ F≥k(Q))

CRL expression C5.2 states that no DeleteSuspiciousTransRecords activity
should take place before the elapse of 5 years after the time of retaining of MSB
report (captured by RetainCopyOfMSB.time). It is assumed here that the time unit is
a year. This can be automatically mapped to MTL as

R5.1: G (CreateSuspiciousMSB⇒ F(RetainCopyOfMSB))

R5.2: G≤RetainCopyOfMSB.time+5 (¬DeleteSuspiciousTransRecords)

6 Implementation

We have developed a prototypical tool-suite for design-time BP compliance man-
agement, implementing the framework/approach described in this chapter for
design-time compliance verification and management. Figure 4 presents three main
components of the tool-suite and their relationships: Compliance Rule Manager
(CRM), Design-time Compliance Verification Manager (DCVM), and Web Service
Analysis Tool (WSAT). Business Process Repository and Compliance Repository
in Fig. 4 represent an abstract view of the implementation of the Knowledge
component presented in Sect. 2.2 as a set of ontologies using the Web Ontology
Language (OWL) [39]. For details on the implementation of the knowledge
component, the interested reader is referred to [9, 11].
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Compliance Rule Manager CRM represents the CRL graphical editor that also
implements the mapping module of CRL expressions into LTL/MTL rules. CRM
is a standalone application developed in C# programming language. The upper left
hand side of Fig. 4 depicts the internal architecture of CRM, its components, and
their interaction with the Business Process and Compliance Repositories.

CRM comprises two sub-components: Compliance Rule Modeler and Text
Template Transformation Toolkit. Compliance Rule Modeler is a graphical modeler
that is used to visually design and create CRL expressions of CRs in a drag-and-drop
fashion. Figure 5 shows a screenshot of CRM. The patterns and the operand types
are situated on the left side of the GUI. The users drag and drop these constructs
on the drawing canvas to build CRL expressions. As described in Sect. 5, patterns
and operands are the main elements that comprise CRL expressions. When an
operand type, such as an activity, is selected from the toolbox and dragged onto
a swimlane, CRM retrieves the selected type of business process elements available
in the Business Process Repository and presents the list to the user for selection
(e.g., “Select an Activity” dialog box shown in Fig. 5).

The drawing canvas is divided into swimlanes to enable the specification of
multiple rules. For example, the upper swimlane in Fig. 5 (titled R3) shows a
pattern-based representation that merges R3.1 and R3.2 of the running scenario, as
described in Sect. 5.3, which uses “SegregatedFrom” binary resource pattern that
connects two activities (“SuspendTransaction” and “ReviewClearanceRecord”),
and “PerformedBy” unary resource pattern, represented graphically by the link
that connects the “Manger” role to the “ReviewClearanceRecord” activity. The
Text Template Transformation Toolkit enables the automatic generation of formal
compliance rules (as LTL/MTL formulas) from CRL expressions. The output is an
XML document that contains compliance rules as LTL/MTL formulas and their
properties through the implementation of the LTL/MTL mapping scheme discussed
in Sect. 5.

Design-Time Compliance Verification Manager Reverting back to Fig. 4,
DCVM supports the static (design-time) verification of BPEL specifications
against formal LTL rules. First, it retrieves a relevant BPEL model from the BP
Repository and transforms it into Promela code, as described in Sect. 2 (using the
integrated WSAT tool,5) so that it can be checked against applicable LTL/MTL
rules using the SPIN Model Checker.6 SPIN implements exhaustive state search
as well as multiple optimized evaluation algorithms, e.g., partial-order reduction,
hash-compact searches, which helps to solve the typical state explosion problem.

In order to investigate the performance of the tool-suite, we conducted an
experiment over the case study presented in Sect. 3. The experiment was conducted
on a machine with an Intel Pentium 4 processor 1.7 GHz with 4 GB RAM and

5 WSAT tool: http://www.cs.ucsb.edu/~su/WSAT.
6 SPIN Model Checker: http://spinroot.com.

http://www.cs.ucsb.edu/~su/WSAT
http://spinroot.com
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Microsoft Windows 7 operating system installed. The following results are reported:
WSAT took 49 seconds on average to transform the BPEL process of the running
scenario into its corresponding Promela code. The checking of the generated LTL
rules (only a subset is presented in this chapter) consumed between 0.035 to 15
seconds, for each of the rules. The average time of executing all the other rules was
4.6 seconds.

These verification results indicate that the following CRs are satisfied: C1, C4,
and C5, and these are violated: C2, C3. Finally, the results are retrieved from SPIN
and reported at the dashboard in a graphical and user-friendly manner.

With regard to the verification results, SPIN indicated that the following LTL
rules are satisfied with respect to the AML BP model in Fig. 2: R1, R3.3, R4,
R5.1; while these CRs are violated: R2, R3.1, R3.2. It was not possible to check the
compliance rule R5.2, since the exact time when each BP activity takes place is not
modeled in BPEL. However, this rule is maintained in the Compliance Repository
and marked for runtime monitoring.

7 Validation and Evaluation

The utility of a design artifact must be rigorously demonstrated via well-executed
evaluation methods [23]. Observational methods, such as case studies, allow an in-
depth analysis of the artifact and the monitoring of its use in multiple projects within
the technical infrastructure of the business environment. In [8, 16], we evaluated and
validated the expressiveness of CRL by applying it to the case study presented in
Sect. 3. We have also performed two other case studies conducted as part of the EU
funded COMPAS project (http://www.compas-ict.eu).

The other two case studies were performed in companies operating in different
industry sectors and covered processes from the e-business and banking domains.
Taking into account the demands for strong regulation compliance schemes, such
as Sarbanes-Oxley (SOX), ISO 27000 and sometimes contradictory needs of
the different stakeholders, such business environments raise several interesting
compliance requirements. The first case study involved an Internet re-seller
company that offers products through online systems. The study covered a wide
range of BPs, such as order processing, invoicing, cash receipting, and delivery. The
second case study covered “loan origination and approval” process that takes place
in the banking domain.

As a result of these case studies, we concluded that 72 out of 82 of these
requirements could fully take advantage of the proposed language and framework,
including their specification, verification, and analysis. The remaining 10 require-
ments concern mainly the data processing (e.g., rules that are related to the structure
and integrity of the data manipulated within the processes) and physical constraints
(that demanded locks or guards to protect against unauthorized access to physical
assets), which could not be represented in CRL. However, the framework partially
supports these requirements in capturing and encoding of knowledge, which is of

http://www.compas-ict.eu
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great value to business organizations as validated by COMPAS industrial partners
(PwC, the Netherlands and Thales Services, France). We refer the reader to [8, 16]
for detailed information about the case studies, experiments and findings, and the
further validation of CRL by means of functional testing and application of the
guidelines developed by Hevner et al. [23].

8 Discussion and Conclusion

Compliance Request Language is a specification language geared to capture com-
pliance requirements for their analysis and verification. It spans the four structural
aspects of business processes: control-flow, data validation, employed resources,
and real-time aspects. CRL meets the requirements/features that we have identified
as important for the language that aims to support business process compliance
management, based on a comparative analysis conducted in [13, 14].

CRL is an open and extensible language, which means that based on the consid-
ered problem domain, new patterns/pattern classes can be introduced in a plug-and-
play fashion, and the mapping scheme from CRL to other target/PSM languages can
also be defined. This can enable the specification of certain requirements that are not
expressible in LTL/MTL (and consequently in the current version of CRL).

In regard to the expressive power of CRL, it is limited to the underlying target
language; i.e., the expressive power of LTL/MTL in our case, and also the set of
defined patterns (that we have defined based on our extensive analysis of regulatory
frameworks, laws and regulations, and standards, as well as several cases [16]). As
demonstrated in our evaluation, CRL is not complete, i.e., it cannot represent all
compliance requirements that business processes are subjected to; instead, it targets
frequently recurring compliance requirements. In designing CRL, we targeted the
relevance and usability of CRL in practice. It is well-recognized that there is usually
a trade-off between these attributes and the expressiveness of the language/nota-
tion [25], and finding an appropriate balance between these two conflicting aspects
(expressiveness and usability) is of utmost importance. Therefore, we designed
CRL as an extensible language. By analyzing diverse application domains, such
as healthcare, agriculture, energy, and manufacturing, new pattern classes and
compliance patterns can be identified and incorporated into CRL.

Identification of new pattern classes and domain-specific patterns forms one of
the central themes in our future research efforts. In our ongoing work, we target at
the financial and healthcare domains, with the aim to identify new domain-specific
compliance patterns, and to apply the existing ones to provide further evidence
for their applicability and expressive power. Our future work will also focus on
improvements in our tool-suite for increasing its efficiency and usability in order to
facilitate its use in practice.
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Process Query Language

Artem Polyvyanyy

Abstract A process is a collection of actions that were already, are currently being,
or must be taken in order to achieve a goal, where an action is an atomic unit of
work, for instance, a business activity or an instruction of a computer program.
A process repository is an organized collection of models that describe processes,
for example, a business process repository and a software repository. Process
repositories without facilities for process querying and process manipulation are like
databases without Structured Query Language, that is, collections of elements with-
out effective means for deriving value from them. Process Query Language (PQL)
is a domain-specific programming language for managing processes described in
models stored in process repositories. PQL can be used to query and manipulate
process models based on possibly infinite collections of processes that they repre-
sent, including processes that support concurrent execution of actions. This chapter
presents PQL, its current features, publicly available implementation, planned
design and implementation activities, and open research problems associated with
the design of the language.

1 Introduction

Computing revolutionizes many aspects of our lives by innovating how data is
collected and processed. The innovations often stem from the ability to design,
manage, and automatically learn semantically rich artifacts from the data, for
example, using machine learning, statistical analysis, and data and process mining
techniques. Such semantically rich artifacts reflect different types of patterns present
in the data, calling for dedicated methods for querying and manipulating them to
allow systematic derivation of value. One such type of patterns concerns temporal
aspects of the data, capturing how work is carried out in processes.
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A process is a collection of actions that, when executed, lead to the accomplish-
ment of a goal. An action is an atomic unit of work. For example, an action can
represent a business activity or a computer program instruction. Execution of an
action in a process leads to a change in the state of the process. A process can contain
already executed actions, actions that are currently being executed, and actions that
yet are awaiting their execution. A process solely composed of already executed
actions represents a historical process that was observed in the real-world. In turn, a
process comprising only designed but not executed actions is an envisioned process
that may be observed in the future. A process model is a model that describes a
collection of processes that encode different ways to accomplish the same goal. Note
that a process model often describes an infinite collection of processes to address
the need to iterate certain actions an initially unknown number of times to achieve
the desired process state. Finally, a process repository is an organized collection
of process models. For example, models can be organized into folders to impose
their logical grouping. Examples of process repositories include business process
repositories and software repositories.

Process repositories without process querying and process manipulation capa-
bilities are of low practical utility, as their manual processing is often infeasible.
Process Query Language (PQL) is a domain-specific programming language for
querying and manipulating process models based on the processes these models
describe. It is a declarative language with SQL-like syntax. PQL programs are also
called queries.

To support process querying, PQL implements two classes of predicates. The
first class comprises the 4C behavioral predicates, a collection of constraints
that systematically explore the fundamental behavioral relations of co-occurrence,
conflict, causality, and concurrency in processes [19, 25]. These predicates, for
instance, can be used to retrieve models that describe processes in which a
given action always occurs or in which a given pair of actions can be executed
concurrently. The second class is composed of process scenarios, sequences of
actions with wildcards [22]. Despite being declarative, process scenarios allow
checking whether a model describes processes that contain requested sequences
of actions. Hence, process scenarios can be used to retrieve models that describe
processes that obey the requested imperative constraints.

PQL supports statements for process manipulation. Concretely, one can use PQL
to specify and execute instructions for manipulating models to insert, delete, and
update processes in the collections of processes these models describe. The process
insertion capabilities of PQL are implemented as a solution to the process repair
problem [17, 22]. The delete and update process manipulations are not implemented
in the current version of PQL. Still, they are demonstrated here for the completeness
of the discussion of the intended scope for the language.

The next section presents several motivating examples of PQL programs for
querying and manipulating processes. Section 3 gives an overview of the features
currently supported by PQL. To facilitate the comparison of PQL with another
process querying methods, Sect. 4 positions PQL within the Process Querying
Framework [21]. Then, Sect. 5 discusses our open-source implementation of a
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process repository that supports PQL. Section 6 surveys open research problems
triggered by the design of PQL and lists planned efforts that aim to shape the
language. Finally, Sect. 7 closes the chapter with conclusions.

2 Motivating Examples

In this section, we present several motivating examples of PQL programs for
querying and manipulating process models. To this end, we use an example process
repository composed of six process models shown in Fig. 1. The models are captured
in Business Process Model and Notation (BPMN). In BPMN, rectangles with
rounded corners denote actions. Gateways are visualized as diamonds. Exclusive
gateways use the “×” marker inside the diamond shape, whereas parallel gateways
use the “+” marker. Directed arcs encode control flow dependencies. For simplicity,
the models in the example repository use abstract action labels; see labels A through
G in the figure. In general, an action label specifies the meaning of the action, for
example, “assess claim” or “archive case”. Models can be further supplied with
attributes, for instance, unique identifier, version, creation date, and author. Models
can be grouped into collections in a repository by putting them into folders, which,
similar to folders of a file system, can form a folder hierarchy.

Models in a repository can be queried using PQL SELECT statements. For
example, PQL queries Q1 and Q2 listed below implement process querying using
the 4C predicates, while PQL queries Q3 and Q4 use process scenarios.

Q1. SELECT ∗ FROM ∗
WHERE AlwaysOccurs("C") AND
Cooccur("B","C");

Q2. SELECT "Author", "Version" FROM "/examples"
WHERE (CanOccur("G") AND
(NOT Conflict("E","G"))) OR
(TotalConcurrent("C",{"B","D"},ANY) AND
AlwaysOccurs("C"));

Query Q1 requests to retrieve every model and all its attributes (see
“SELECT ∗”) from every folder of the repository (“FROM ∗”) that describes
(“WHERE”) a collection of processes in which every process contains at least one
occurrence of action C (“AlwaysOccurs("C")”) and actions B and C cooccur
in the processes (“Cooccur("B","C")”), that is, B cannot occur without C in a
process, C cannot occur without B in a process, and there exists at least one process
in the collection in which both actions B and C appear. Model 1 in Fig. 1 matches
query Q1 and, thus, should be retrieved if Q1 is executed over the repository.
Indeed, model 1 describes four processes: 〈A,B,C,D,E,F〉, 〈A,C,B,D,E,F〉,
〈A,B,C,D,B〉, and 〈A,C,B,D,B〉; we map BPMN models to Petri nets to interpret
them as collections of processes [4]. Note that action C occurs in every process,
while actions B and C cooccur in the processes of the model. Models 5 and 6 also
match query Q1. It is easy to verify that both actions B and C occur in all processes
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these two models describe, as every process starts with one of these two prefixes:
〈A,B,C〉 or 〈A,C,B〉. To denote which models match which queries, in Fig. 1, under
each model, we mark corresponding checkboxes. Hence, models 2, 3, and 4 do not
match query Q1. For instance, the process 〈B,A〉 described by model 2 confirms
that neither C always occurs nor B and C cooccur in the processes of model 2.

Query Q2 requests to retrieve process models and their attributes Author and
Version (“SELECT "Author", "Version"”) located in the “/examples”
folder of the repository (“FROM "/examples"”) that satisfy at least one of the
two following conditions. First, the model should describe at least one process in
which action G occurs at least once (“CanOccur("G")”) and actions E and G do
not conflict (“NOT Conflict("E","G")”), where actions E and G conflict if
the model describes at least one process in which E occurs but G does not occur,
at least one process in which G occurs but E does not occur, and the model does
not describe a process in which both E and G occur. Second, in every process of
the model, action C occurs (“AlwaysOccurs("C")”), and all occurrences of
action C are either concurrent with all occurrences of B or with all occurrences of
D (“TotalConcurrent("C",{"B","D"},ANY)”). In general, two actions A
and B are in the total concurrent relation if in every process in which both A and B
occur, every occurrence of action A is concurrent with every occurrence of action
B; refer to Sect. 3 for details.

Assuming that all models in Fig. 1 are stored in the “/examples” folder,
models 3, 5, and 6 match query Q2. In model 3, action G can occur, consider, for
example, the process 〈A,G〉 of the model, and actions E and G do not conflict, as
evidenced, for instance, by the process 〈A,G,D,E,D〉 of the model. In models 5
and 6, in turn, action C always occurs and actions B and C are in the total concurrent
relation. Fig. 2 shows three, out of infinitely many, concurrent processes described
by model 5. In these three processes, actions B and C occur once and are concurrent;
there is no directed path between these actions; for details, again, see Sect. 3. The
same phenomenon can be observed for all the other processes of model 5. Note that
the only occurrence of action C is concurrent with the only occurrence of action D in
process 1. However, in processes 2 and 3, there are occurrences of action D that are
not concurrent with the occurrence of action C. These occurrences are highlighted
with gray background in the figure.

PQL query Q3 below requests to retrieve all process models in the repository that
support a process that commences with zero or more actions before action B occurs,
then eventually action D occurs in the process, followed eventually by another
occurrence of action B, and then the process completes via zero or more occurrence
of any other actions. Models 1 and 4 from the repository in Fig. 1 match query
Q3. This fact is evidenced by processes 〈A,B,C,D,B〉 and 〈A,B,D,B〉 described
by models 1 and 4, respectively. Query Q4, also shown below, requests to retrieve
models that describe the process 〈A,B,C,D,E,F〉 and does not describe processes
with two consecutive occurrences of action B. Models that match this query are
models 1, 5, and 6.
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Q3. SELECT ∗ FROM ∗
WHERE Executes(<∗,"B",∗,"D",∗,"B",∗>);

Q4. SELECT ∗ FROM ∗
WHERE Executes(<"A","B","C","D","E","F">) AND
NOT Executes(<∗,"B","B",∗>);

The attentive reader has noticed that models 5 and 6 from the repository describe
the same processes. Thus, these two models, besides being structurally different,
are behaviorally equivalent. The result of a PQL query depends on the processes the
models describe and is independent of the particular way the models are structured.
Consequently, models 5 and 6 either both match or both do not match a given PQL
query; refer to the checkboxes next to these two models in Fig. 1.

PQL queries Q5–Q7 below capture instructions for manipulating process models.

Q5. INSERT <∗,"F","D","G",∗> INTO ∗
WHERE Executes(<∗,"F","G",∗>);

Q6. DELETE <"A","G"> FROM ∗
WHERE GetTasksAlwaysOccurs(GetTasks())
EQUALS {};

Q7. UPDATE <"A","G",∗>
SET <"A","F",∗>
FOR ∗;

Query Q5 ensures that each model from every folder of the repository
(“INTO ∗”) that describes a process in which an occurrence of action G immedi-
ately follows an occurrence of actionF (“WHERE Executes(<∗,"F","G",∗>)
”) also describes a process in which an occurrence of F is immediately followed
by an occurrence of D that, in turn, is immediately followed by an occurrence
of G (“INSERT <∗,"F","D","G",∗>”). If a model that describes the former
process also describes the latter requested process, the model is not manipulated.
Otherwise, the model is manipulated to obtain an extended version of the model
that also describes the requested latter process. Models 5 and 6 in the repository
describe processes in which F is immediately followed by G and, hence, must be
manipulated. Model 7 in Fig. 3 is a model that can be created based on model 5
as a result of executing PQL query Q5. Note that model 7 describes the requested
process. Note also that the requested manipulation can be implemented in several
ways, which raises the question of the quality of the resulting model. This aspect is
a subject of ongoing research and is discussed in Sect. 6.

Query Q6 captures a request to manipulate every process model in the repository
(“FROM ∗”) that does not contain an action that occurs in each of its pro-
cesses (“WHERE GetTasksAlwaysOccurs(GetTasks()) EQUALS {}”)
and describes the process that starts with an occurrence of action A and then
immediately completes with an occurrence of action G so that the resulting
model does not describe that process (“DELETE <"A","G">”). Models 2 and 3
from the repository match the condition in the WHERE clause. However, only
model 3 describes process 〈A,G〉, and, thus, should be manipulated. The resulting,
manipulated by PQL, model is added as a fresh model to the repository. Similar
as for the INSERT statement, several valid resulting models can be considered.
For example, models 8 and 9 in Fig. 3 can be accepted as models that result from
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executing query Q6 over model 3. While model 8 does not describe all the processes
with prefix 〈A,G〉 described by model 3, including the requested process 〈A,G〉, the
processes described by model 9 differ from those described by model 3 by exactly
one process 〈A,G〉. Note that the implementation of the DELETE statement can vary
between versions of PQL.

Finally, query Q7 requests to update all models in the repository (“FOR ∗”) by
updating processes that start with the prefix 〈A,G〉 (“UPDATE <"A","G",∗>”) to
start with the prefix 〈A,F〉 (“SET <"A","F",∗>”). Again, multiple implementa-
tions of the UPDATE statement can be envisaged, and model 10 in Fig. 3 is a possible
result of executing query Q7 over model 3, which is also the only model in Fig. 1
that must be manipulated according to query Q7.

3 Process Query Language

This section reviews the core features of PQL. First, Sect. 3.1 discusses the main
primitives of PQL for querying process models. Then, Sect. 3.2 presents the
currently implemented PQL mechanisms for manipulating process models.

3.1 Process Querying

For the purpose of process querying, PQL interprets a process model as a collection
of concurrent processes. A concurrent process is a collection of actions such that for
some pairs of actions in the collection, it is specified that one of the actions causally
precedes the other in the executions of the process. The control flow arcs and the
transitive dependencies that these arcs induce in Fig. 2 define the causal precedence
relations of the corresponding concurrent processes. In concurrent process 1 in
Fig. 2, for example, action A causally precedes action E, which, in turn, causally
precedes action F. In contrast, for the pairs of actions that are not in the causal
precedence relation, it is accepted that they are independent, or concurrent, and,
thus, can be performed simultaneously in the executions of the process. For instance,
actions B and E are concurrent in process 1 in Fig. 2. As already explained in Sect. 2,
a process model can describe infinitely many concurrent processes.

Every concurrent process describes a collection of (sequential) processes. These
are processes that do not violate the causal precedence constraints of the concurrent
process. For example, concurrent process 2 in Fig. 2 describes twelve sequen-
tial processes, induced by all the interleavings of the concurrent actions; these
twelve processes include, for instance, processes 〈A,B,C,E,D,F,G,D,E,F〉 and
〈A,C,B,E,D,F,G,E,D,F〉. Every concurrent process describes a finite collection
of sequential processes. But, needless to say, a model that describes infinitely many
concurrent processes also describes infinitely many sequential processes.

To perform process querying using PQL, the user can specify a query that
requests to retrieve models that fulfill a condition verified over all the processes
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Table 1 Occurrence predicates; the predicates are evaluated in the context of a process model

Predicate Definition

CanOccur(A) The predicate evaluates to true if the model describes at least one
process with at least one occurrence of action A; otherwise, it
evaluates to false.

AlwaysOccurs(A) The predicate evaluates to true if every process the model describes
has at least one occurrence of action A; otherwise, it evaluates to
false.

of the models. One way to specify a condition is by using behavioral predicates, as
detailed in Sect. 3.1.1, or scenarios, as discussed in Sect. 3.1.2.

3.1.1 Behavioral Predicates

Process models describe processes composed of actions that can be executed and,
thus, observed in the real-world. One way to convey how many occurrences of an
action, or pairs of actions in a specific behavioral relationship, can be observed
in the executions of processes described by the model is by using predicates
with quantifiers.1 When studying process models, the user may, for instance, be
interested in how often certain actions can occur, how often certain actions can cause
occurrences of other actions, or how often actions can be executed simultaneously.

The 4C spectrum is a systematically organized repertoire of predicates that
assess in how many processes that a model describes how many occurrences of one
action are in a specific behavioral relation with how many occurrences of another
action [25]. The predicates of the spectrum explore the fundamental behavioral rela-
tions of co-occurrence, conflict, causality, and concurrency of action occurrences in
processes. Hence, we refer to these predicates as behavioral predicates.

A PQL query can use predicates of the 4C spectrum as atomic propositions in
the propositional logic formula of its WHERE clause. When a model is matched
to a query, the value of each predicate is established based on the processes that
the model describes. If the formula in the WHERE clause of a SELECT statement
evaluates to true for a particular model, then the model is included in the result of
the query. Additional checks may need to be applied for other PQL statement types
to confirm that the model indeed must be manipulated.

To accompany the 4C predicates, all of which are binary predicates, that is, they
take two actions as input, PQL supports two unary predicates listed in Table 1.
As suggested by their definitions, these predicates allow verifying the frequencies
of individual action occurrences, for example, before applying the 4C predicates,
which then can explain how these occurrences relate to each other.

1 A predicate is a function that evaluates to either true or false truth value, while a quantifier is
an operator that specifies how many elements from the given collection should satisfy an open
formula.
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Table 2 Co-occurrence and conflict predicates; the predicates are evaluated in the context of a
process model

Predicate Definition

CanConflict(A,B) The predicate evaluates to true if the model describes at least one
process with at least one occurrence of action A and no
occurrences of action B; otherwise, it evaluates to false.

CanCooccur(A,B) The predicate evaluates to true if the model describes at least one
process with at least one occurrence of action A and at least one
occurrence of action B; otherwise, it evaluates to false.

Conflict(A,B) The predicate evaluates to true if the model describes no process
with at least one occurrence of action A and at least one
occurrence of action B; otherwise, it evaluates to false.

Cooccur(A,B) The predicate evaluates to true if every process the model describes
that has at least one occurrence of action A also has at least one
occurrence of action B, and vice versa; otherwise, it evaluates to
false.

Requires(A,B) The predicate evaluates to true if the model describes no process
with at least one occurrence of action A and no occurrences of
action B, at least one process with at least one occurrence of action
B and no occurrences of action A, and at least one process with at
least one occurrence of action A and at least one occurrence of
action B; otherwise, it evaluates to false.

Independent(A,B) The predicate evaluates to true if the model describes at least one
process with at least one occurrence of action A and no
occurrences of action B, at least one process with at least one
occurrence of action B and no occurrences of action A, and at least
one process with at least one occurrence of action A and at least
one occurrence of action B; otherwise, it evaluates to false.

Table 2 lists six 4C predicates grounded in the conflict and co-occurrence
behavioral relations. Note that the CanConflict and CanCooccur predicates
are seminal as the remaining four predicates from the table can be expressed as
propositional logic formulas over them. Hence, these four predicates can be seen as
macros that can simplify the conditions the user may want to express in the WHERE
clause of a PQL query. The CanConflict and CanCooccur predicates can be
combined into logic formulas to express other conditions that explore conflict and
co-occurrence behavioral relations. According to one classification, 63 conflict and
15 co-occurrence properties can be expressed this way [25].

Table 3 lists all the 4C predicates grounded in the causal precedence and
concurrency behavioral relations. Given actions A and B, the predicates emerge
through universal or existential quantification over three domains, namely the
collection of all concurrent processes that the model describes (see column “Pr.”
in the table), the collection of all occurrences of action A in a concurrent process the
model describes (column “A”), and the collection of all occurrences of action B in
the same concurrent process, and the choice of the behavioral relation between the
occurrences of actionsA and B (column “Rel.”), either causal precedence (“Causal.”)
or concurrency (“Concur.”). These configurations lead to eight causality and eight
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concurrency predicates. The syntax of the behavioral predicates in PQL and their
names are provided in columns “Syntax” and “Name” of Table 3, respectively.

For example, the total concurrent predicate evaluates to true for input actions A
and B, if in every (“∀”) concurrent process the model describes that has at least one
occurrence of action A and at least one occurrence of action B, it holds that every
(“∀”) occurrence of action A is concurrent (“Concur.”) with every (“∀”) occurrence
of action B; otherwise, the total concurrent predicate evaluates to false for that input.
Thus, TotalConcurrent(B,C) evaluates to true for model 5 in Fig. 1. Indeed,
every concurrent process of model 5 contains exactly one occurrence of action B,
exactly one occurrence of action C, and these occurrences are concurrent; see three
out of infinitely many concurrent processes model 5 describes in Fig. 2. In contrast,
TotalConcurrent(D,E) evaluates to false for model 5 and processes 2 and 3
in Fig. 2 evidence this, as they contain occurrences of D and E that are in the
causal precedence relation. However, process 1 in Fig. 2 justifies the fact that
ExistTotalConcurrent(̃D,E) holds true. This predicate verifies whether
there exists a concurrent process described by the model in which all occurrences
of actions are concurrent. In process 1, there is exactly one occurrence of action
D, exactly one occurrence of action E, and these two occurrences are concurrent.
Note, however, that “stronger” concurrency relations also hold between actions
D and E in model 5, for instance, TotalFunctionalConcur(D,E) and
TotalFunctionalConcur(E,D). Indeed, in every (“∀”) concurrent process
of model 5, for every (“∀”) occurrence of action D in the process, there exists (“∃”)
an occurrence of action E that is concurrent with that occurrence of D, and vice
versa.

As examples of the causality predicates, note that TotalCausal(B,D) holds,
but TotalCausal(C,D) does not hold for model 5 from Fig. 1. In every concur-
rent process in Fig. 2 it holds that the only occurrence of action C is concurrent to
one occurrence of action D, invalidating the total causal relation between the actions.
In contrast, the only occurrence of action B is in the causal precedence relation with
every occurrence of action D in every concurrent process of model 5.

Table 4 lists definitions of all the eight 4C causality predicates. The definitions of
the eight concurrency predicates can be obtained by replacing the causal precedence
relations with the concurrency relations. Furthermore, Polyvyanyy et al. [25]
formalize all the predicates using mathematical notation.

As already mentioned, causality and concurrency predicates can be distinguished
based on their “strength.” Fig. 4 summarizes implications between the pairs
of causality (or concurrency) predicates from the 4C spectrum; the transitive
implications are not shown. The vertices represent causality (or concurrency)
predicates, while the labels encode the quantifiers from the first three columns in
Table 3. Hence, for example, the fact that the ExistTotalCausal predicate
holds for a given pair of actions (see the “∃∀∀” label in Fig. 4) implies that both
ExistFunctionalCausal (“∃∀∃”) and ExistDominantCausal (“∃∃∀”)
predicates hold and, transitively, ExistCausal (“∃∃∃”) holds for the same pair of
actions; note that the converse implications, in general, do not hold. Consequently,
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Table 4 Causality predicates. The predicates are evaluated in the context of a process model

Predicate Definition

ExistCausal(A,B) The predicate evaluates to true if the model describes
at least one concurrent process in which at least one
occurrence of action A causally precedes at least one
occurrence of action B; otherwise, it evaluates to false.

ExistDominantCausal(A,B) The predicate evaluates to true if the model describes
at least one concurrent process with at least one
occurrence of action B and, in that concurrent process,
there is one occurrence of action A that causally
precedes every occurrence of action B; otherwise, it
evaluates to false.

ExistFunctionalCausal(A,B) The predicate evaluates to true if the model describes
at least one concurrent process with at least one
occurrence of action A and, in that concurrent process,
there is one occurrence of action B such that every
occurrence of action A causally precedes that
occurrence of action B; otherwise, it evaluates to false.

ExistTotalCausal(A,B) The predicate evaluates to true if the model describes
at least one concurrent process with at least one
occurrence of action A, at least one occurrence of
action B, and, in that concurrent process, every
occurrence of action A causally precedes every
occurrence of action B; otherwise, it evaluates to false.

TotalExistCausal(A,B) The predicate evaluates to true if in every concurrent
process the model describes that has at least one
occurrence of action A and at least one occurrence of
action B, at least one occurrence of action A causally
precedes at least one occurrence of action B; otherwise,
it evaluates to false.

TotalDominantCausal(A,B) The predicate evaluates to true if in every concurrent
process the model describes that has at least one
occurrence of action A and at least one occurrence of
action B, there is one occurrence of action A that
causally precedes every occurrence of action B;
otherwise, it evaluates to false.

TotalFunctionalCausal(A,B) The predicate evaluates to true if in every concurrent
process the model describes that has at least one
occurrence of action A and at least one occurrence of
action B, there is one occurrence of action B such that
every occurrence of action A causally precedes that
occurrence of action B; otherwise, it evaluates to false.

TotalCausal(A,B) The predicate evaluates to true if in every concurrent
process the model describes that has at least one
occurrence of action A and at least one occurrence of
action B, every occurrence of action A causally
precedes every occurrence of action B; otherwise, it
evaluates to false.
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Fig. 4 The 4C spectrum
causality/concurrency
lattice [25]
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we say that ExistTotalCausal is stronger than the other existential causality
predicates.

In a study with the prospective stakeholders of PQL, all twelve prese-
lected 4C predicates were recognized as suitable for process querying. The
CanOccur, AlwaysOccurs, Cooccur, Conflict, TotalCausal, and
TotalConcurrent predicates were, in addition, identified as most useful and
such that are most likely to be used for solving practical problems [19].

3.1.2 Scenarios

Any finite repertoire of behavioral predicates is limited in its expressive power, as
it can only express a finite number of conditions over a fixed collection of actions,
while the number of process collections that process models can express over the
same actions is unbounded [18]. Therefore, in addition to querying based on the 4C
predicates, PQL supports scenario-based querying [22].

The concept central to scenario-based querying is the notion of a trace with
wildcards. A trace with wildcards is a finite sequence in which every element is
either a special wildcard element “∗” or a pair composed of an action and a number
between zero and one. For example, ω = 〈∗, (A, 1.0), (B, 0.8), ∗, (A, 1.0)〉 is a trace
with wildcards composed of five elements.

A trace with wildcards defines a collection of processes. These processes result
from the concatenation of collections of sequences defined by the elements of the
trace. The concatenation is performed in the order the corresponding elements
appear in the trace. The special “∗” element defines the collection of all finite
sequences over all possible actions. In turn, an element that is a pair of an action
x and a number y defines the collection of all sequences composed of one action,
where the actions are taken from the set of all actions that are similar with x to
the level of at least y; the similarity should be established based on some given
similarity function that maps pairs of actions to their similarity scores between zero
and one. Different similarity functions can be used. For instance, one such similarity
function can be established based on the similarity of action names or labels. Thus,
ω defines the collection that includes every process in which action A eventually
occurs, that occurrence is immediately followed by an occurrence of action B, or an
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occurrence of some similar with B action, and then some other actions can occur
before the process ends with yet another occurrence of action A.

The Executes predicate takes as input a trace with wildcards and verifies,
in the context of a given process model, whether the model describes at least
one process that is also included in the collection of processes defined by the
trace. In other words, it verifies whether the model can execute actions according
to the pattern captured by the trace. If so, the predicate returns true; other-
wise, it returns false. The concrete syntax of the Executes predicate for the
input trace with wildcards ω is Executes(<∗,"A","B"[0.8],∗,"A">), or
Executes(<∗,"A",~"B",∗,"A">) if the process querying tool is configured
to use 0.8 as the default action similarity threshold.

The Executes predicates can be used, together with the 4C predicates, as
atomic propositions in the propositional logic formula of the WHERE clause of
a PQL query, thus enriching the expressive power of the language. Indeed, by
combining Executes predicates, one can, for instance, express a condition to
check whether a given model describes, or does not describe, some finite collection
of processes of interest. Note that, in general, the number of such conditions is
unbounded. For more information on the scenario-based querying support in PQL,
refer to [22].

3.2 Process Manipulation

Process manipulations in PQL are implemented using the concept of an optimal
alignment between a process and a process model [1, 31]. An alignment is composed
of moves. A synchronous move is a pair in which both elements are the same
action, for example (A, A). In contrast, an asynchronous move is a pair in which
one element is an action, and the other element is a special “no move” element,
denoted by “�”. An alignment is a sequence of synchronous and asynchronous
moves for which two conditions hold. First, the first elements from the moves, when
positioned in the order the corresponding moves appear in the alignment and all the
“no move” elements are skipped, form the process. Second, the second elements
from the moves, again positioned as in the alignment and without the “no move”
elements, form a process described by the model. Finally, an optimal alignment
between a process and model is an alignment between the process and model such
that every other alignment between them has more asynchronous moves than an
optimal alignment.

An alignment is often summarized as a table. For instance, Table 5 shows an
optimal alignment between process 〈F,D,G〉 and process model 5 from Fig. 1. It
is a sequence of thirteen moves. In the table, moves are encoded as columns, such
that two successive columns refer to two successive moves in the alignment. Each
column has two rows. The top row of each column specifies the first element in
the corresponding move, while the bottom row specifies the second element in the
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Table 5 An optimal alignment between process 〈F,D,G〉 and process model 5 from Fig. 1

� � � � � F D G � � �
A C B E D F � G D E F

move. Hence, the optimal alignment in Table 5 consists of two synchronous and
eleven asynchronous moves.

For instance, PQL relies on the alignment from Table 5 to implement query Q5
discussed in Sect. 2 on model 5 from Fig. 1. Indeed, the alignment demonstrates
that the process fragment 〈F,D,G〉 requested to be inserted into the model, see
“INSERT <∗,"F","D","G",∗>” in the query, has a “gap” captured by the
asynchronous move (D, �) in the processes described by the model, see the move
highlighted with gray background in the alignment. This asynchronous move deter-
mines the place in the model at which action D can be inserted; after process-prefix
〈A,C,B,E,D,F〉 and before process-suffix 〈G,D,E,F〉. The concrete modifications
on the model are then implemented using process repair techniques [7, 17] from
the field of process mining [30]. Recall that model 7 in Fig. 3 is a model that results
from executing query Q5 on model 5.

4 Process Querying Framework

The Process Querying Framework (PQF) is an abstract system of components that
can be selectively replaced to result in a new process querying method [21]. In
this section, we identify which active and passive components of the framework are
supported in PQL. The aim of this exercise is threefold: Tracking the status of the
PQL implementation, planning the next design and implementation activities, and
preparation of PQL for comparison with other process querying methods positioned
within the framework.

Figure 5 shows a schematic view of the framework. In the figure, rectangles
and ovals denote active and passive components, respectively. The arcs denote
input and output passive components of active components. That is, the passive
components are consumed and produced by the active components. Dashed lines
encode the aggregation relationships between the passive components. Finally, we
use different backgrounds to reflect the different implementation statuses of the
components; refer to the legend in the figure. The framework consists of four
parts, each responsible for one dedicated function, including managing processes
and queries, preparing and executing queries, and supporting the interpretation of
querying results. In Fig. 5, each part is enclosed in an area with a dotted border.

The “Model, Simulate, Record, and Correlate” part of the framework is responsi-
ble for the management of the process repository and process queries. In general, the
repository can comprise different types of models of processes. PQL was initially
introduced to address querying of process models, that is, conceptual models that
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describe collections of processes. Examples of process models are Petri nets, BPMN
diagrams, Event-driven Process Chains (EPCs), and UML Activity Diagrams. The
current implementation of PQL works with process models formalized as Petri
nets. Note that for many process modeling notations, the corresponding mappings
to Petri nets have been devised. Being able to query process models, PQL can be
adapted for querying their recorded executions, also known as event logs in process
mining [30], and, consequently, to simulation models, as combinations of models
and their executions. The extension of PQL to support querying over event logs
and simulation models is future work. Other models that describe processes, for
instance, correlation models that specify relationships between multiple processes,
are not currently supported by PQL. A process querying instruction specifies an
intent to query or manipulate a process repository utilizing various query conditions.
PQL is a language for formalizing process querying instructions. It supports process
querying by means of the read intent implemented using SELECT statements. In
the current version of PQL, process manipulation is implemented using INSERT
statements that address the create and update process querying intents. In the future,
the support of the update intent will be supplemented by UPDATE and DELETE
PQL statements.

The “Prepare” part of the framework, as its name suggests, is responsible for
preparing the process repository for efficient querying. The framework offers two
types of preparations: indexing and caching. The Indexing component takes a pro-
cess repository as input and constructs its alternative representation, called an index,
which is then used to optimize computations during the execution of process queries.
PQL implements indexing of the 4C behavioral predicates for all the process models
in the repository. At runtime, when computing PQL programs, the precomputed
behavioral relations are accessed in the index in close to real-time and reused. We
plan to implement an additional index based on the special data structures, called
untanglings of process models [20]. Untanglings can be used to efficiently identify
groups of actions that can be executed together in some process. The Caching
component stores data computed in the previous executions of PQL programs that
then gets reused in computations of the future PQL programs. We plan to implement
caching in PQL based on the statistics of the past PQL program executions.

The “Execute” part is responsible for executing process queries and comprises
components for filtering process repositories and optimizing and executing process
queries. For efficiency considerations, before a PQL program is executed, models
that clearly should not be included in the result of the program are filtered away.
The Filtering component of PQL checks whether actions that, according to the
PQL program, must or must not be present in the result of the program are indeed
described or not described, respectively, by the input model. We will extend this
capability with filtering based on the untanglings to detect if combinations of actions
can or cannot occur in an execution of the candidate model or process. Design and
implementation of comprehensive query optimization mechanisms in PQL is future
work. In the current implementation of the language, the execution plan of a PQL
program is guided by its parse tree. Basic execution optimizations are supported.
For example, when the result of a propositional logic formula is known based on
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a subset of its propositions, the other propositions are not computed. Finally, the
Process Querying component of the PQL method implements the formal semantics
of the language; see [19, 22] for details. When a PQL program is executed, it
takes as input a process repository and produces another repository consisting of
the retrieved and manipulated, as requested by the PQL program, models.

The “Interpret” part of the framework is responsible for communicating the
querying results to the user. All the components of this part aim to improve the
comprehension of the results. The components are inspired by the various means for
improving comprehension of conceptual models [13]. PQL results are encoded as
process models or processes. The user can foster their understanding by inspecting,
or reading, them. Future work will address the design, implementation, and
evaluation of other techniques for explaining, projecting, translating, visualizing,
animating, and simulating results of PQL programs for their better comprehension.

5 Implementation

The PQL querying method has been implemented in an open-source process repos-
itory.2 Users interact with the repository via command-line interfaces (CLIs) of two
utilities: the PQL bot and the PQL tool. The PQL bot prepares models for querying,
while the PQL tool executes PQL programs over the models stored in the repository.

PQL programs process only indexed models. The PQL bot systematically indexes
models in the repository. One can start multiple bot instances simultaneously to
index multiple models in parallel. To construct an index, a bot instance computes
all the 4C behavioral predicates over all the actions of the model using three
types of analysis over the reachable states described by the model: the reachability
analysis [9], the coverability analysis [26], and the structural analysis over a
complete prefix [6, 15] of the unfolding [16] of the model. PQL bots use the solutions
to the reachability and covering problems implemented in the LoLA tool version
2.0 [28]. The implementation of the algorithm by Esparza et al. [6], available as part
of the jBPT library [24], is used to construct finite complete prefixes of unfoldings.

Process models stored in the repository are Petri nets described using the Petri
Net Markup Language (PNML) [2]. Many high-level process modeling languages,
such as BPMN and EPC, can be translated to Petri nets [4, 29]. As a result, PQL can
be used to query and manipulate models developed using a wide range of notations.

The listing below shows a sample output of a PQL bot instance. One can
configure a bot instance by specifying its name (option -n), time to sleep (i.e.,
stay idle) between indexing two models (option -s), and maximal time to attempt
indexing a model (option -i). Once started, a bot instance alternates sleeping
and indexing phases and sends periodic alive messages to the repository. Before
indexing, models are checked for semantic correctness.

2 https://github.com/processquerying/PQL.git.

https://github.com/processquerying/PQL.git
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>> java -jar PQL.BOT-1.0.jar -n=Brisbane -s=60 -i=3600
>> =======================================================================
>> Process Query Language (PQL) Bot ver. 1.0
>> =======================================================================
>> Name: Brisbane
>> Sleep time: 60s
>> Max. index time: 3600s
>> =======================================================================
>> 10:45:18.487 Brisbane - There are no pending jobs
>> 10:45:18.487 Brisbane - Sent an alive message
>> 10:45:18.497 Brisbane - Going to sleep for 60 seconds
>> 10:46:18.505 Brisbane - Woke up
>> 10:46:18.525 Brisbane - Retrieved indexing job for the model with ID 1
>> 10:46:18.575 Brisbane - Start checking model with ID 1
>> 10:46:23.506 Brisbane - Finished checking model with ID 1
>> 10:46:23.506 Brisbane - Start indexing model with ID 1
>> 10:47:03.608 Brisbane - Finished indexing model with ID 1
>> 10:47:03.608 Brisbane - Going to sleep for 60 seconds
>> 10:48:03.613 Brisbane - Woke up
>> 10:48:03.623 Brisbane - Retrieved indexing job for the model with ID 2
>> 10:48:03.673 Brisbane - Start checking model with ID 2
>> 10:48:13.248 Brisbane - Finished checking model with ID 2
>> 10:48:13.249 Brisbane - Start indexing model with ID 2
>> 10:49:52.679 Brisbane - Finished indexing model with ID 2
>> 10:49:52.679 Brisbane - Going to sleep for 60 seconds
>> 10:50:52.704 Brisbane - Woke up
>> 10:50:52.704 Brisbane - There are no pending jobs
>> ...

Table 6 lists several CLI options of the PQL tool. For example, the PQL tool can
be used to store (option -s), check (option -c), index (option -i), and delete
(option -d) a process model, visualize the parse tree of a PQL program (option -p),
execute a PQL program (options -q), and to reset the repository (option -r).

To store models in the repository, the CLI option -s of the PQL tool must be
accompanied by the -pnml option that specifies a path to a single PNML file or to a
directory that contains many PNML files. If a path to a single PNML file is specified,
the call must include option -id to specify a unique identifier to associate with the
model; otherwise, the models are attempted to be stored using their file names as
unique identifiers. A stored model can be indexed by a PQL bot instance or by the
PQL tool using the CLI option -i accompanied by option -id that specifies the

Table 6 CLI options of the PQL tool

Option name Short name Parameter Description Required option

-check -c Check if model can be indexed -id

-delete -d Delete model (and its index) -id

-index -i Index model -id

-identifier -id <string> Model identifier

-parse -p Show PQL program parse tree -pql

-pnmlPath -pnml <path> Path to a PNML file

-pqlPath -pql <path> Path to a PQL file

-query -q Execute PQL program -pql

-reset -r Reset repository

-store -s Store model in the repository -pnml (-id)
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unique identifier of the model that should be indexed. When indexing a model, the
PQL tool uses the same routines as the PQL bot.

To execute a PQL program, the user can use options -q and -pql of the PQL
tool. The latter specifies a path to a file that contains the program. An example
command-line output of executing a PQL program is shown below. Here, the PQL
tool is requested to execute the PQL program stored in the prog.pql file. The
program requests to retrieve every model in the repository in which the “process
payment” action, or a similar action, occurs in every execution the model describes;
note that two similar actions, “process payment by cash” and “process payment
by check”, were found in the repository for the requested similarity threshold of
0.8. The tool retrieved two models that match the query. These are models with
identifiers 364 and 778; see the last line of the listing.

>> java -jar PQL.TOOL-1.0.jar -q -pql=prog.pql
>> PQL query: SELECT * FROM * WHERE AlwaysOccurs("process payment"[0.8]);
>> Attributes: [UNIVERSE]
>> Locations: [UNIVERSE]
>> Task: "process payment"[0.8] -> ["process payment by cash",
>> "process payment by check"]
>>
>> Result: [364, 778]

The PQL tool supports multi-threaded querying. The user can configure the
desired number of threads to use for executing PQL programs. As a result of execut-
ing a PQL program, the tool returns a collection of matching and augmented models.

6 Discussion

The design of PQL aims to maximize the number of supported process querying
and process manipulation techniques, as requested by the process querying compro-
mise [21], which identifies a concrete process querying method as an intersection of
implemented decidable, efficient, and suitable techniques. In this section, we discuss
research problems that emerged during the design of PQL, and solutions to these
problems that shaped PQL and will inform the future extensions to the language.
First, Sect. 6.1 discusses four fundamental problems of process querying that PQL
aims to solve. Then, Sect. 6.2 discusses problems that aim to ensure the quality of
process querying and manipulation operations performed by PQL. Next, Sect. 6.3
summarizes conducted work to establish the suitability of PQL. Finally, Sect. 6.4 is
devoted to the aspects related to the ability to compute PQL queries efficiently.
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6.1 Querying and Manipulation

Given a process model and a process query that describes a collection of processes,
the process querying problem is a decision problem that consists in checking
whether the model describes processes from the collection.

Process querying problem. Given a process model and a description of a col-
lection of processes, check if the model describes processes included in the
collection.

PQL can be used to pose and solve process querying problems via SELECT
statements. One may want to augment a process model so that the collection of
processes it describes includes specified processes. This task can be fulfilled by
solving the process insertion problem.

Process insertion problem. Given a process model and a description of a collec-
tion of processes, construct a process model that describes processes captured in
the model and included in the collection.

PQL INSERT statements can be used to express and solve process insertion
problems. In contrast, if a model needs to be augmented to describe processes
of the original model without some specific processes, a process deletion problem
must be solved.

Process deletion problem. Given a process model and a description of a collec-
tion of processes, construct a process model that describes processes captured in
the model but not included in the collection.

One can use PQL DELETE statements to formulate and solve process deletion
problems. However, if specific processes must be replaced in the collection of
processes described by a model, a process update problem must be solved.

Process update problem. Given a process model, a description of a collection of
source processes, and a description of a collection of target processes, construct
a process model that describes processes captured in the model and included in
the target collection but not included in the source collection.

PQL UPDATE statements can be used for expressing and solving process update
problems. Future solutions to the above four problems will be considered for inclu-
sion in PQL by implementing and offering them to the users via the corresponding
PQL statements.

6.2 Quality

Given a process model and a query, process querying solves a decision problem
with a yes-or-no answer that indicates whether the model matches the query or not.
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The quality of such a decision is also binary; the decision is either correct or not.
Process manipulation is different, as a requested manipulation can be fulfilled to
various degrees. To compare methods for manipulating process models, either to
select a method to implement as part of PQL or to choose an already implemented
method for triggering during PQL query execution, one should be able to measure
and compare their quality in terms of the resulting models they produce. The quality
of manipulated process models can be compared against different aspects. Several
of these aspects are discussed below, giving rise to three research problems.

Simplicity problem. A process model that results from a solution to a process
insertion, deletion, or update problem should be simple.

It may be necessary to manually analyze a process model that results from PQL
manipulations, for example, to obtain feedback on the model from a process analyst
or a domain expert. Hence, the manipulated models must be comprehensible.
That is, they should be simple to understand for human readers. Simplicity is
the desired quality for many artifacts automatically learned from data using data
mining and process mining techniques. The simplicity criteria for learned models
are often implemented as realizations of the Occam’s Razor principle [8] that
states that a model should use as few constructs as possible. Alternatively, this
principle can be interpreted as if a model should not be overcomplicated without
necessity. Consequently, existing simplicity criteria [10–12] from the field of
process mining [30] can be reused to assess the simplicity of the manipulated by
PQL models. The model simplicity criteria that will be developed in the future may
consider the specifics of the process manipulation problems, refer to Sect. 6.1.

Resemblance problem. A process model that results from a solution to a process
insertion, deletion, or update problem for a given process model should resemble
the original model.

As PQL manipulations are applied over a given process model, it may be desirable
that a resulting manipulated model resembles the original model. This desire, again,
can stem from the potential necessity to assess manipulated models manually, this
time in the context of the original model. Indeed, the user may know the model
they request to manipulate and, consequently, expect that the resulting model is not
radically different from the model they know, especially if the intended changes to
the model are not extensive. This intention to keep resemblance with the original
model is similar to the desire of repaired models, studied in process mining [30], to
resemble the original models that were repaired. Thus, measures of model resem-
blance developed in the context of process manipulation can draw inspiration from
the corresponding measures studied as part of the process repair problem [7, 17].

Correctness problem. A process model that results from a solution to a process
insertion, deletion, or update problem should describe the requested processes.

A solution to a process manipulation problem, either an insertion, deletion, or
an update problem, should construct a process model that describes a specific,
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Fig. 6 A schematic visualization of the participating process collections in the context of a
solution to the process deletion problem: (a) the problem definition and (b) a possible problem
solution

requested collection of processes. However, methods for process manipulation can
produce models that do not fulfill this correctness criterion; for instance, to avoid
constructing complex models or models that do not resemble the input models.
Various measures can be introduced to assess the correctness of manipulated models
in terms of the processes they describe. These measures can quantify and compare
collections of processes that were requested and appeared, were requested and did
not appear, were not requested and appeared, and were not requested and did not
appear in the processes described by the manipulated model.

Figure 6a visualizes an example process deletion problem schematically. Con-
cretely, given a model that describes a collection of processes M , the problem
requests to construct a model that describes processes captured in the input model
but not in a collection of processes D. Hence, the resulting model should describe
the collection of processes M\D, denoted by the shaded region in the figure. In turn,
Fig. 6b shows a collection of processes M ′ described by some model constructed as
a solution to the problem superposed on the two process collections from Fig. 6a.
Several sets of processes emerge in this situation. Processes α are the processes that
should and are described by the resulting model, while processes β are the processes
that should not but are described by the resulting model. The resulting model does
not describe processes γ1 and γ2. However, while processes γ2 were correctly
deleted, processes γ1 should be present in M ′. Processes δ1∪δ2 are not participating
in the problem definition but are described by the resulting model. Finally, processes
ε1 ∪ ε2 were requested to be deleted and were not described by the input model,
but ended up as described by the resulting model. A good solution to the process
deletion problem should aim to minimize the sizes of sets γ1, β, δ1, δ2, ε1, and
ε2. The measures of the correctness of process manipulations should quantify this
intuition to support the design of correct methods. Here, again, we can learn from
the subarea of conformance checking [3, 23] in process mining [30], which studies
ways to diagnose commonalities and discrepancies between processes.
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Consider models 8 and 9 in Fig. 3 that can result from executing query Q6
presented in Sect. 2 on model 3 from Fig. 1. If we apply the reasoning from Fig. 6
to these two models, then for model 8 it holds that β is empty and γ1 = AG(DED)+,
where γ1 is specified by a regular expression, while for model 9 sets β and γ1 are
both empty. Hence, model 9 can be considered as a more correct, and hence a better,
result of query Q6 than model 8.

6.3 Suitability

The suitability of a method refers to its quality of being appropriate for a purpose.
Conducted empirical studies on the suitability of the current process querying
methods guide their design and implementation.

To evaluate the suitability of the 4C behavioral predicates for the purpose
of process querying and to identify the most relevant predicates to implement
in PQL, we performed a user study [19]. In that study, we conducted semi-
structured interviews with business analysts that actively work with process models.
In the interviews, besides explaining the high-level design of PQL, we tested the
understanding of twelve preselected 4C predicates and asked to evaluate their ability
to fulfill the process querying tasks. The twelve predicates were selected to ensure
they include, and combine in different ways, all the features of all the 4C predicates.
Our questions to the stakeholders probed usefulness, importance, likelihood, and
frequency of using the predicates in daily work. All the predicates were identified
as suitable, while the six most relevant were implemented in PQL. These are
the CanOccur, AlwaysOccurs, Cooccur, Conflict, TotalCausal, and
TotalConcurrent predicates.

Process querying grounded in the collection of the 4C predicates, or any other set
of similar predicates, has a fundamental limitation. A querying method that relies
on a finite number of behavioral predicates can distinguish between a finite number
of model classes [18], where any two models from the same class are considered
equivalent by every query. The scenario-based process querying facilities of PQL
extend its expressiveness [22]. PQL querying based on traces with wildcards, as
explained in Sect. 3.1.2, can be used to express an intent to retrieve a model that
describes processes that contain, or do not contain, any finite collection of processes
and, thus, can be used to discriminate infinitely many models.

Future studies will strengthen the current results on the suitability of PQL for
fulfilling process querying and process manipulation tasks.

6.4 Decidability and Efficiency

Karsten Wolf demonstrated that computations of all the 4C predicates currently
implemented in PQL can be reduced, often via exponential space transformations,
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to model checking [32]. In that work of Karsten Wolf, the reduction of one 4C pred-
icate, namely the total existential concurrent predicate, was left open, and its decid-
ability, for the general case, is currently unknown. In addition, the proposed transfor-
mations for four 4C predicates are applicable only in the special case of the absence
of auto-concurrency in process models. Note that model checking over infinite-
state systems is undecidable and is PSPACE-complete over finite-state systems [5],
making it from challenging to impossible to evaluate the predicates at runtime.
Hence, we precompute and store values of the predicates we can obtain in an index
and access this index in close to real-time during the computation of PQL queries.

To perform scenario-based querying, that is, to check if a model describes a
process that matches a sequence of actions with wildcards (see queries Q3 and Q4 in
Sect. 2), first, the queried model gets transformed. The size of the transformed model
is proportional to the size of the model and the scenario of interest. Then, an optimal
alignment between the transformed model and a sequence of actions induced by
the scenario of interest is constructed, and its cost is analyzed. The problem of
computing an optimal alignment is equivalent to the reachability problem [1, 31],
which is decidable [27] with the exponential space as the lower bound [14]. Despite
its high computational complexity, the proposed method works in close to real-time
on industrial and synthetic models [22]. To speed up query processing, we propose
to use the untangling-based index [20] that allows identifying models that describe a
process in which all actions from the scenario of interest occur. Then, further checks
should be applied to verify if the actions occur in a requested order.

PQL queries that solve the process insertion problem are implemented using
the impact-driven process model repair method [17]. Similar to scenario-based
querying, the method relies on optimal alignments to compute queries. However,
in this case, the alignments are used to identify the minimal required changes to the
model to fulfill the query.

7 Conclusion

This chapter gives an overview of PQL, a domain-specific programming language
for process querying and process manipulation. PQL is a declarative language with
the SQL-like syntax. It is useful for managing process models stored in process
repositories based on the processes that these models describe. Process querying is
supported in PQL by means of the SELECT statements, while process manipulation
is implemented using the INSERT, DELETE, and UPDATE statements. The chapter
also discusses the currently supported features of the language, a publicly available
implementation of a process repository with PQL support, future design and
implementation efforts aimed at shaping the language, and open research problems
triggered by the design of the language.
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Business Process Query Language

Mariusz Momotko and Kazimierz Subieta

Abstract Modern Business Process Management systems have to work effectively
in a distributed cloud environment and to adapt quickly to dynamic changes. One
of the key approaches to increase business process adaptability is to make process
definitions more flexible. Usually, this requires to express complex constraints
and conditions within a process definition. These complex elements are related
to the history of process execution, current organizational and application data. In
addition, such complex constraints and conditions should be represented in a stan-
dardized and yet simple way. In order to satisfy the above requirements, we need:
(1) a business process metamodel that includes proper data structures for process
definitions and the history of their execution; (2) a powerful and easy to understand
language to query models instantiated from the metamodel; (3) integration of that
query language with a widely used business process definition language. In this
chapter, we propose Business Process Query Language (BPQL) together with the
Business Process Metamodel. BPQL is integrated with the Business Process Model
and Notation language increasing significantly its expressiveness and flexibility. We
also present results of applying BPQL in the OfficeObjects® WorkFlow system.

1 Introduction

In the last two decades Business Process Management systems (BPM systems)
made a successful career. The BPM systems have been used for implementing
various types of business processes. Despite many advantages of applying those
systems, several significant limitations were observed. One of the major restrictions
was an assumption that business processes do not change too often during their
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Fig. 1 A simplified process for settlement of travel expenses

execution. While such assumption may be satisfied for majority of production
processes, for less rigid processes, such as administration ones, this is not true.
Because of the nature of the latter processes, they need to adapt to dynamic changes
[10, 14, 15] in business process environment (i.e., services, data, and (human)
resources) and benefit from information about their execution.

For example, we can identify such needs in a process for settlement of travel
expenses for a business trip. Its simplified definition is presented in Fig. 1. Accord-
ing to this definition, an employee can submit a request for settlement of travel
expenses. This request is then verified and accepted by both the employee’s
supervisor and a financial approver (level I). If travel costs are significant, the
request needs to be approved by a second financial approver (level II). If all
approvals are collected, the original financial approver makes a reimbursement.
Eventually, the employee gets information1 about the reimbursement, which was
made and completes the process.

The process definition also includes some additional constraints on participant
assignment. The employee’s supervisor must be a person who is a direct super-
visor or, if there is none, an employee from HR department possessing a role
“Travel.Reimbursement.DefaultApprover”. The financial approver (level I) must
play the role of “Travel.Reimbursement.FinApprover”. In addition, in order to
optimize the overall processing time, this approver must be selected from all the
available financial approvers as the one with minimal (current) workload. The most

1 This activity could be implemented in a different way, for example, as a message sent to the
employee. To make it simple we assumed that it is represented by an atomic activity and connected
with the rest of the process via control flow.
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complex constraint is defined for the second financial approver. He/she must be a
person who plays a role of “Travel.Reimbursement.FinApprover” and be not the
person who made the first approval. Yet, the second approver must be chosen as the
person with minimal workload too.

In order to satisfy the above requirements, we need to make process definition
more flexible and include conditions on participant assignment, which query:

• Organizational structure data (e.g., who possesses a given role, who is a supervisor
for a given person).

• Process definition data and its execution history (e.g., who performed a first
activity, who performed financial approval).

• Current state of execution of all processes in a given organization (e.g., who, of a
given role, has minimal current workload).

These conditions must be evaluated during process execution when performers of
relevant activities are determined.

There are many ways to represent such conditions in a process definition. Most
often, such conditions are hard-coded. This solution is efficient; however, any
change to these conditions requires code re-compilation. In addition, readability of
such hard-coded solution is limited and, practically, only programmers may modify
and deploy such changes.

An alternative approach is based on using a standardized query language that
is able to represent the mentioned conditions. As described in [5] and [7] such
language must be expressive enough to define queries on process definition data,
history of process executions as well as relevant data that come from business
process environment (e.g., organizational structure data). Yet, this language must
be understandable by process designers and have well-defined meaning of all the
constructs it uses.

In this chapter, we propose BPQL—a Business Process Query Language that
is able to satisfy the above requirements. In order to achieve this, we first define
a business process metamodel. This metamodel is then used to represent models
(in terms of data structures) for process definitions and history of their executions.
Those models can be queried by BPQL. Next, we specify BPQL syntax and explain
its semantics. Then we present how BPQL may be used to define built-in process
monitoring functions. We also define how BPQL may be integrated with a standard
process definition language and specify an architecture for a BPM system extended
by BPQL. Finally, we show real BPQL use cases and summarize the results
discussing opportunities for future extensions. In all consecutive sections of this
chapter we use the same example process for settlement of travel expenses.

2 Business Process Metamodel

According to Business Process Model and Notation of Object Management Group
(BPMN v2.0 of OMG, [8]), a business process is a sequence or flow of activities
in an organization with the objective of carrying out work. Usually, a business
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process is modeled (graphical notation) and defined (more detailed specification)
in a standard business process language, such as BPMN. Such definition is then
used to execute the business process. A single process definition may be used many
times for different business process execution.

A business process metamodel is a conceptual view (a schema) over data
structures, which is able to represent all possible business processes. Usually,
definition of data structures for a business process includes structures used for its
modeling and definition. However, complete data structures for a business process
should also include data structures related to process execution. An example of
some data structures on process execution are the process execution state (e.g., to
understand if a given process execution is running or is postponed) and the way
how activities are executed (e.g., how many performers executed this activity, when
it was started, and when it was completed).

In this section, we propose a business process metamodel that is able to represent
both definition and execution structures for all possible business processes. Thus,
this metamodel includes two parts: process definition part and process execution
part, which are related to each other. In addition, the metamodel defines core
elements of business process environment that are needed to execute business
processes. An instance of the metamodel is a business process model. This model
consists of instantiation of data structures representing definition of a given business
process together with instantiation of data structures representing all performed
executions of this process (according to its definition). A single execution of a
business process is called a process instance. In a given BPM system, the metamodel
specification together with all instantiated data structures are stored in a Business
Process Repository. This is presented in Fig. 2.

The proposed metamodel addresses all entities required to define and execute
business processes. The entities managed by a BPM system are explicitly defined
within the metamodel while the entities managed by the other IT systems are only
referenced within the metamodel. The process definition part of the metamodel

Fig. 2 Business process metamodel and examples of its models
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defines the top-level entities, their relationships, and basic attributes. This part is
used to design and implement a computer representation of business processes.
The process execution part of the metamodel defines the top-level entities, their
relationships, and basic attributes. This part is used to represent process executions
performed according to process definitions. Entities defined within the process
definition parts are a subset of entities defined in BPMN. Entities defined within
the process execution part have the same execution semantics as defined for BPMN.
The entities managed by other IT systems are treated as a BPM environment.

A BPM system uses data on users, roles, and organizational structure to assign
potential performers of human tasks during defining a process, as well as to evaluate
such assignments and determine actual performers during process execution. For
non-human, service tasks, BPM system uses data on IT services to define how
to invoke them, especially in terms of input and output parameters. In many
IT environments data on services are provided by a dedicated Service Registry.
During process execution, services are called directly by the BPM system. A BPM
system provides two main services to IT environment: it defines and executes
business processes. It also manages a BPM repository that stores all data on process
definitions and all their performed executions. An architecture explaining interfaces
between a BPM system and IT environment is presented in Fig. 3.

A high-level view of the metamodel is presented as a Unified Modeling
Language (UML) class diagram in Fig. 4. The main entity of the definition part
of the metamodel is ProcessDef. It provides basic information about the computer
representation of a business process. For every process a set of ContainerAttDef
is defined. These attributes are used during process execution for evaluation of
conditional expressions, such as transition conditions or pre- and post-conditions.
The set of container attributes depends on individual process definitions.

Process definition consists of activities. An Activity defines a piece of work that
forms a single logical step within a process. There are three types of activities:
atomic, compound, and route activities. An Atomic activity is the smallest logical
step within a process that cannot be divided. For every atomic activity it is possible
to define who can perform it, how it can be executed, and what data it can process.

Fig. 3 BPM system as a part of an IT environment
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An atomic activity may be performed by zero, one, or more participants. A partici-
pant is a user (or a group of users), a role, or an organizational unit. Zero participants
assigned means that a given activity is executed by a BPM system. Specification
of participants that can perform a given activity is called (workflow) participant
assignment. The way how an activity is performed is specified by an application
that is executed on behalf of the activity. Such specification also includes a set of
parameters that are passed to the application. It is represented in the metamodel by
ApplicationCallSpec. Since the mentioned application operates on data, also object
types that will be processed (i.e., created, modified, read, or deleted) by this activity
must be defined. Object types are represented in the metamodel as ObjectTypeSpec.

The second type of activity is a compound activity, which helps in splitting
a complex process into smaller parts. Those parts can be modeled and managed
separately. A compound activity is represented as a sub-process of a given process.
It can be nested and include other compound activities.

The last type of activity is a route activity. This type of activity performs no
work processing, neither object types nor applications are associated with it. A route
activity is used to express two core control flow operators: split and join operators.
There are three basic types defined for both operators, namely AND, OR, and XOR.
More advanced control flow constructs can be built using those operators. In BPMN
specification, splits and joins are called gateways.

The order of activities in a process is defined by transitions. A transition from
one activity to another activity may be conditional (involving expressions that are
evaluated to permit or inhibit the transition) or unconditional.

Once a process is defined, it can be executed many times. Execution of a process
according to its definition is called a process enactment. The context of an enactment
includes performers, relevant data, and application call parameters.

The representation of a single enactment is called a process instance. Its lifecycle
is expressed by states and is described as a UML state chart diagram. The history of
states for a given process instance is represented by process instance state entities.
Every process instance has its own data container. This container is an instantiation
of a data container type defined for a process and includes container attributes used
to control process execution (e.g., as a part of transition conditions).

Execution of a process instance may be regarded as execution of a set of activity
instances. An activity instance is performed either by a single human performer
or by a BPM system by invoking a single application. If for a given activity, its
participant assignment evaluates to more than one performer, then execution of this
activity is represented by a set of activity instances. In such case, the number of
activity instances is equal to the number of the activity performers. In case of an
application invocation, its input and output parameters are instances of data object
types assigned to the activity during process definition.

A route activity is performed automatically by the system, and there is neither
application nor data objects assigned to it. If an activity instance is a compound
activity, its execution is represented by a dedicated process instance performed
according to the definition of that activity.
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Fig. 5 The business process metamodel—process execution part

Similarly to process instance, the life cycle of an activity instance is represented
by a state diagram and is stored as a collection of state entities. Flow between
activity instances is represented by transition instances. When an activity instance is
accomplished, the system checks which transitions that are going from this activity
may be instantiated. If a transition has no condition or the transition condition is sat-
isfied, it is automatically instantiated by the BPM system. A transition instance may
be considered as a relation “predecessor-successor” between two activity instances.

The above description of the metamodel allows users to ask BPQL queries at the
level of entities. However, most of BPQL queries operates at the level of individual
attributes of the metamodel. An example of such detailing for the process execution
part is presented in Fig. 5. A complete, detailed description of the whole metamodel
is included in [5], Chapter 2.

Knowing the metamodel, we define a process model for execution of our example
process for settlement of travel expenses (see Fig. 1). For simplicity, presentation of
the model is limited to execution of its first four activities as shown in Fig. 6.

The process definition part includes a ProcessDef object and Activity objects.
The latter objects are connected via Transition objects. The process execution
part includes a ProcessInst object and ActivityInst objects. The latter object is
connected via TransitionInst objects. Every object has a unique identifier. The
objects from execution part always have references to relevant objects from the
definition part via instantiatedAs relations. For example ActivityInst object with
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id=“103”2 represents execution of “Accept request” activity with activityId=“3”.
Therefore, it is always clear what is the order of execution and what activities and
transitions were instantiated during the execution.

3 Query Language

The metamodel described in the previous section specifies business process entities
and relationships. In order to extract information from process models derived from
this metamodel, we propose BPQL—a business process query language.

Conceptually, BPQL is based on Stack-Based Approach (SBA, [1, 11–13]). SBA
allows BPQL to define its operational semantics based on an abstract machine and
operations, in which names, their bindings, and scopes defined by query and data
structure are central. BPQL, as an object-oriented query language, operates natively
on models derived from the Business Process Metamodel.

Before BPQL syntax and semantics is introduced, we explain some example
BPQL queries. All these queries use the execution part of the Business Process
Metamodel defined in the previous section. To visualize how the queries are
constructed, we present a (simplified) execution part of the metamodel together with
two example models in Fig. 7.

Below, we define six simple BPQL queries that query the example models.

1: ProcessInst
2: ProcessInst.id
3: ProcessInst where (id = ‘123’)
4: (ProcessInst where (id = ‘123’)).ConsistsOf.ActivityInst
5: count((ProcessInst where (id = ‘123’)).ConsistsOf.ActivityInst)
6: ActivityInst where (PerformedBy.Performer.name=‘johnb’)

The first query (line 1) returns all ProcessInst objects, that is two objects (with id
“123” and “124”). The second query (line 2) gets all ProcessInst objects and then
for every object returns its identifier. Thus the result of the second query consists of
two identifiers (i.e., “123” and “124”). The third query (line 3) filters the returned
ProcessInst objects. Since process instance identifier is unique at the level of the
BPM system, only one object (i.e., the one with id=“123”) is returned. The fourth
query (line 4) filters ProcessInst objects using an identifier and for the filtered
objects gets, via ConsistsOf relation, all the relevant ActivityInst objects. In our
example, two ActivityInst objects with identifiers “12” and “13” are returned. The
fifth query (line 5) counts all ActivityInst objects returned by the fourth query. The
query returns the value of 2. The last query (line 6) filters all ActivityInst objects
that are performed by “johnb”. The condition to filter ActivityInst objects is defined
on Performer.name attribute. A Performer object is reached from ActivityInst object

2 The identifiers used in BPQL are strings, not integers. Such solution is more flexible and allows
to add additional affixes (e.g., to group identifiers by the metamodel object type).
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Fig. 7 An extract of the execution part of the Business Process Metamodel with example models

via relation “PerformedBy” and the query returns two ActivityInst objects (with id
“12” and “34”).

3.1 Syntax

Syntax determines how BPQL queries are constructed. BPQL syntax is defined by
language tokens and syntactic rules. A BPQL language token is a character string
that can be included in a BPQL query. The following sets of language tokens are
defined in BPQL:

• L—set of literals. A literal may be numeric (i.e., an integer or float point
number), Boolean (i.e., true or false), or alpha-numeric (i.e., a string of characters
surrounded by single quotes). Some literals may have additional meaning such as
alpha-numeric literals that are considered as dates.

• N—set of entity names (e.g., attribute names, association names, class names).
This set is shared by all BPQL queries, which operate over a given process model.
The set also includes ad-hoc names that users can use in queries.

• O—set of BPQL operator names, imperative construct names, function and
procedure names (both built-in and user-defined), and other reserved words. The
content of this set is common for all BPQL queries.

• Parentheses and other tokens to determine syntactic structures of queries.

The sets of tokens are used in definition of the syntactic rules of BPQL queries:

R1 Any element of L is a query. For instance, 2, 3.14, “alaBama123”, “2004-05-
07”, and true are queries.

R2 Any element of N is a query. For example: ProcessInst (class), priority
(attribute), and InstantiatedAs (association) are queries.
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R3 If � is an algebraic unary operator and q is a query, then �(q) is a
query. Examples of such operators are: sqrt, sum, avg, log,−, not. For selected
operators (e.g.,−, not) the brackets may be omitted.

R4 If � is an algebraic binary operator and q1, q2 are queries, then q1 � q2 is a
query. Examples of such operator are: and, or,=,+,−, ∗, /,<, and >.

R5 If θ is a non-algebraic binary operator and q1, q2 are queries, then q1 θ q2 is
a query. Examples of such operator are selection (where), dependent join (join),
projection/navigation (.), and existential and universal quantifiers.

R6 If q is a query and n ∈ N then q as n is a query. The “as” operator is used
to introduce a temporal name (so called synonym).

R7 If q is a query and n ∈ N then q group as n is a query.
R8 If q is a query, then (q) is a query.
R9 If n ∈ O and q1, . . . , qk are queries, then n(q1, . . . , qk) is a query.
R10 If n ∈ O without parameters, then n() and n are queries.
R11 If q1, . . . , qk are queries, then (q1, . . . , qk), struct(q1, . . . , qk), sequence

(q1, . . . , qk), and bag(q1, . . . , qk) are queries.
R12 If q1, q2, q3 are queries, then if q1 then q2 and if q1 then q2 else q3 are

queries.

The BPQL grammar in Extended Backus–Naur Form is presented in Table 1.

3.2 Semantics

BPQL semantics is based on an abstract machine that executes a query and delivers
its result. In this chapter, we define this machine as a recursive evaluation procedure
that operates on a Data Storage (DS), ENVironment Stack (ENVS), and Query
RESult Stack (QRES). This evaluation procedure is used to define the meaning
of the individual BPQL operators (algebraic and non-algebraic) and imperative
constructs. The approach is universal, fully precise w.r.t. all BPQL operators, and
makes it possible to develop powerful query optimization methods (such as factoring
of independent sub-queries, removing dead sub-queries, indexing, etc.).

3.2.1 Architecture of the Query Evaluation Mechanism

The architecture of the BPQL query evaluation mechanism is presented in Fig. 8.
During execution of a BPQL query, the query evaluation mechanism operates

on business process objects, uses local variables, and calls appropriate procedures.
Business process objects that instantiate entities from the Business Process Meta-
model are managed by DS. Local variables, function call parameters, and other
query processing elements (e.g., parameter name binding) are controlled by ENVS.
The entities stored on this stack depend on the data storage content and current query
results. During query evaluation, all the intermediate results are managed by QRES.
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Table 1 EBNF notation of BPQL

Rule Additional assumptions

<query> ::= <query1> | <algExpr> | <logExpr>

<query1> ::= <literal> | <name> | <procedureCall> <name>∈ N

| <query><collectionOp><query>

| <collection>(<queryList>)

| <query> [as | group as] <aliasName> <aliasName>∈ N

| <query> [where | . | join] <query>

| for [some | any] <query>(<query>)

| <query> order by <query>

<algExpr> ::= <algSum>

<algSum> ::= <algProduct>{[+|-] <algSum>}

<algProduct> ::= <algItem>{[*|/] <algProduct>}

<algItem> ::= -<algItem> | (<algSum>) | <query1>

<logExpr> ::= <logSum>

<logSum> ::= <logProduct>{ or <logSum>}

<logProduct> ::= <logItem>{ and <logProduct>}

<logItem> ::= not<logItem> | <logCondition> | (<logSum>)

<logCondition> ::= <query1><opComp><query1> | <query1>

<opComp> ::= < | <= | = | => | > | <> | like
<CollectionOp> ::= union | intersect | diff | in
<collection> ::= [struct | bag | sequence] (<queryList>)

<procedureCall> ::= <pName>{({<queryList>})} <pName>∈ N

<procedure> ::= <pName>{<procParams>}<sBlock> <pName>∈ N

<procParams> ::= ({<param>{,<param>}})

<param> ::= {out}<parName> <parName>∈ N

<sBlock> ::= <statement>;
<sBlock> ::= ’{<statement>; {<statement>;}’}’’
<statement> ::= <create> | <assignment> | <forEach>

| <ifThenElse> | <switchCase>

| <whileDo> | <doWhile> | <procedureCall>

| return<query> | break | continue
<assignment> ::= <lValue>=<query> <lValue>∈ N

<forEach> ::= for each<query>do<sBlock>

<ifThenElse> ::= if<querySL>then<sBlock>{else<sBlock>}

<switchCase> ::= switch(<query>) ’{<case>{<case>}’}’’)
<case> ::= [case|default]:<sBlock>

<doWhile> ::= do<sBlock>while(<query>)

<whileDo> ::= while(<query>)do<sBlock>

<queryList> ::= <query>{,<query>}

<querySL> ::= <query> Result always a Boolean

<literal> ::= <text> | <integer> | <float> | <boolean>

<boolean> ::= true | false
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Both stacks can also contain other elements, such as numerical values, string values,
binders (named values). ENVS and QRES provide four standard stack operations:

• Push—Add a new element at the top of the stack. The number of the elements in
the stack increases by one.

• Pop—Extract the element that is placed on the top of the stack. The number of
elements in the stack decreases by one.

• Top—Read the top of the stack.
• Empty—Check whether the stack is empty.

In addition, ENVS provides a search for the required elements from top to bottom.

3.2.2 Environment Stack

ENVS (aka call stack) is used to store all local programming entities that are
necessary to execute a given procedure call (or function/method/operation call).
Examples of such entities are local variables, local constants, and procedure
parameters. The content of the call stack strictly depends on the operational context
(local and global environment), that is, on the place in the program where a given
programming command is executed. The ENVS stack is responsible for:

• Controlling the scope of names occurring in queries and their current bindings.
• Storing local objects or variables for procedures, functions, and methods calls.
• Storing procedure, function, and method arguments (parameters).
• Keeping the return trace for procedures, functions, and methods calls.

The basic assumptions for ENVS are the following:

• Single objects (i.e., one-element collection) and collections of objects stored in
ENVS are treated in the same way.

• From the conceptual point of view, the maximal size of ENVS is unlimited.
• ENVS consists of sections. Every section includes information about the environ-

ment of a recognizable part of BPQL query. For example, an environment for a
function call consists of local variables, local constants, and function parameters.

• The most recent, local section (e.g., section of the procedure which is currently
executed) is placed on the top of ENVS. Sections for the functions that were called
earlier are located in ENVS lower than the most recent, local section.

• At the bottom of the stack global sections are located. They include common
function libraries, global variables, references to database objects, etc.

• ENVS treats persistent and intermediate objects in the same way.
• ENVS stores information about query definitions (e.g., synonyms, quantifier

variables).
• ENVS stores references to the objects, not the objects themselves. The objects are

stored in DS.

ENVS consists of sections, which are ordered and managed according to the stack
principle. Each section is a set of binders. A binder is a pair < n, x > (denoted by
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n(x)) where n is a name (e.g., object name, procedure name, variable name, attribute
name, etc.) and x is a run time entity (usually an object reference) having this name.
The role of the n(x) binder is to bind name n in the query. The result of binding is x.
For any name occurring in a query, a corresponding binder should exist on ENVS.
This stack consists of sections, which are ordered and managed according to the
stack principle. Bindings are searched in the following order: first the “youngest”
section at the ENVS top is visited, then the section below the top of the stack, etc.
up to the global sections on the ENVS bottom. Detailed description of the ENVS
mechanism can be found in [13].

3.2.3 Query Result Stack

QRES is a generalization of the arithmetic stack known from programming lan-
guages. When query evaluation starts, QRES is empty. After the query evaluation,
QRES contains the final result. A query result may include one or more objects. If
a BPQL function (or operator) is evaluated and it requires n arguments, then these
arguments are taken one after another from the top of the QRES stack (i.e., pop
operation on n stack elements). After evaluation, the function result is stored on the
top of the stack (i.e., push operation). QRES can contain other elements required to
evaluate queries; see [5] for details.

3.2.4 Query Evaluation Procedure

The query evaluation procedure (referred subsequently to as eval) takes a BPQL
query as input, evaluates it, and returns its result in QRES. The procedure is driven
by a parser that constructs the syntactic tree of the query. The tree can be generated
earlier and stored in DS. The eval procedure in pseudo-code is summarized below:

1: procedure eval(q: BPQL query)
2: begin
3: parse(q); // generate or get already generated syntactical tree
4: case q recognised as literal:
5: ...
6: case q recognised as name:
7: ...
8: end;

During execution, the eval procedure operates on process objects stored in DS,
ENVS stack, and QRES stack. The final result of the eval procedure execution is
stored on the QRES top.

The definition of BPQL semantics is driven by its syntax. That means the eval

procedure is supported by a parser that is able to generate a syntactic tree of the
query (i.e., sub-queries, operators). An example of such syntactic tree for a simple
query: ProcessInst where id = “124” is presented in Fig. 9.

The result of a query evaluation is determined on the basics of the sub-queries
evaluation results and appropriate operators. The evaluation process is recursive.
First, the leaves of the syntactic tree are evaluated, and then again evaluation results
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Fig. 9 The syntactic tree of a
simple query

together with appropriate operators are evaluated. Such evaluation is repeated until
the top of the syntactic tree is reached and the final query evaluation result is
determined. The intermediate results stored in the QRES stack are consumed by
BPQL operators. For example, the equality operator takes two elements from the
QRES top (via the pop operation), compares them, and saves the Boolean result
back on the QRES top (via the push operation).

3.2.5 Collections and Structs

A collection is a group of objects or values that need to be processed together. The
size of collection is not restricted. Usually collections contain elements of the same
type, although this is not always obligatory. BPQL supports two types of collections:
bags and sequences. The basic collection type is a bag. All BPQL queries results
are returned as bags (sometimes as one-element bags). A bag may contain duplicate
elements. An example of a query that returns a bag of activity instances that have
been performed by “johnb” is given below:

ActivityInst where ((PerformedBy.Performer.name)= ‘johnb’)

There are five basic operators on collections, namely union (union), intersection
(intersect), difference (diff), subset (in), equality (=). The meaning of these operators
is similar as for those defined in the set theory. In addition, BPQL has the struct
(structure) construct that generalizes the corresponding construct known from
C/C++, Java, CORBA, ODMG, etc. A struct collects (named) values of different
types. Usually the size and type of structures are known during compile time. The
order of elements within struct can be important.

3.2.6 Literals and Names

An elementary BPQL query is a literal (l ∈ L) or a name (n ∈ N). A fragment of the
eval procedure for such queries expressed in the pseudo-code is presented below:



362 M. Momotko and K. Subieta

1: procedure eval(q: BPQL query)
2: ...
3: parse(q); // syntactical tree generation
4: case q recognised as literal:
5: push(QRES, literal);
6: case q recognised as name:
7: push(QRES, bind(name));
8: ...

If the query is a literal (line 4), the eval procedure pushes it on the QRES top (line
5). If the query is a name (line 6), the eval procedure calls the bind function with
this name as a parameter. The function accomplishes binding the name on the ENVS
stack, and then the binding result is pushed on the QRES top (line 7).

3.2.7 Algebraic Operators

In BPQL, there are unary and binary algebraic operators. All algebraic operators
operate only on the objects stored in QRES and return new results. Pseudo-code
representation of the eval procedure is given below:3

1: procedure eval(q: BPQL query)
2: ...
3: case q recognised as Δ(q1) or Δ q1:
4: begin
5: resQ, resQ1: Result;
6: eval(q1); // evaluate q1, its result is stored on the QRES top
7: resQ1:= top(QRES); pop(QRES); // pop q1 from the QRES top
8: resQ:=Δ(resQ1); // run the function
9: push(QRES, resQ); // store the result on the QRES top

10: end;
11: case q recognised as q1 Δ q1:
12: begin
13: resQ, resQ1, resQ2: Result;
14: eval(q1); // evaluate q1, store its result on the QRES top
15: eval(q2); // evaluate q2, store its result on the QRES top
16: resQ2:= top(QRES); pop(QRES); // pop q2 evaluation result
17: resQ1:= top(QRES); pop(QRES); // pop q1 evaluation result
18: resQ:=Δ(resQ1, resQ2); // run the function
19: push(QRES, resQ)); // store the overall query evaluation result the QRES top
20: end;
21: ...

3.2.8 Non-algebraic Operators

Formalization of non-algebraic operators is the essence of the stack-based
approach. All non-algebraic operators are binary. This group includes selection,
dependent join, projection/navigation, existential and universal quantifiers, and
transitive closures. As discussed in [7], semantics of non-algebraic operators cannot
be expressed using relational or object algebras. To cope with this challenge,
non-algebraic operators are parameterized by expressions. For instance, selection

3 The symbol “Δ” denotes an algebraic operator, the symbol “Δ”—function that implements this
operator, q1 and q2 represent BPQL queries.
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operator is parameterized by a condition. Such a condition does not belong to the
language of algebra but to its not formalized meta language. This mix of formal and
informal notions is frustrating and problematic in didactics and implementation.
This problem has been solved in SBA in which non-algebraic operators are not
parameterized by (informal) meta-language names or conditions. This is the
fundamental difference to the ideas provided by relational and object-oriented
algebras. In consequence, unlike algebras, in SBA there is no need to subdivide
names into “first class” (e.g., object names) and “second class” (e.g., attribute
names). Every name occurring in a query is considered on the same semantic
level and is processed by the scope and binding rules. This unification has a great
advantage for implementation and query optimization.

Semantics of non-algebraic operators may be expressed using the eval procedure
introduced previously using the same formal pattern. In addition to the functions
used for other BPQL operators, the eval procedure requires a functionality to
traverse via composed object and expose its individual parts for further processing.
For that purpose, we define a function named nested . For an object provided as in
input, this function returns a set of binders for the individual attributes of this object.
For example, having an ActivityInst and Performer objects defined for the Process2
model in Fig. 7:4

<‘34’, ‘ActivityInst’,{<i1, ‘performedBy’, ‘78’>}>
<‘78’, ‘Performer’, {<i2, ‘name’, ‘johnb’>}>

The nested function for these objects results in following binders:

nested(‘34’) = {performedBy(i1)}
nested(‘78’) = {name(i2)}

A generalized algorithm for nested function (r means a single result) is defined as
follows:

• If r is an identifier of a complex object, then nested(r) returns binders referring to
sub-objects of this object, as shown above.

• If r is a binder, then nested(r)={r} (i.e., the result contains this single binder).
• If r is an identifier of a linked object, then nested returns a set containing a single

binder referring to an object pointed to by r .
• For structures, nested(struct{v1,v2,v3,...})=nested(v1)∪nested(v2)∪nested(v3)...
• For any other cases, nested returns an empty set.

In order to evaluate the query q1θq2, the following activities have to be
performed:

1. Evaluate q1 and return a collection (bag) of elements.
2. For every element e that belongs to the returned collection:

4 An object is represented by a triple < i, n, v > representing object identifier, name, and value,
respectively.
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a. Calculate the value of the function : nested(e). The result is a set of binders.
b. Insert the calculated set of binders as a new section on the top of ENVS.
c. Evaluate q2 in this new environment.
d. Calculate the intermediate result for e by joining it with every result returned

by q2. The function join strictly depends on the type of operator θ .
e. Remove the inserted ENVS section.

3. Aggregate all intermediate results into the final one. The way how the interme-
diate results are aggregated depends strictly on the type of operator θ .

A fragment of the eval procedure for non-algebraic operators is presented below.
The meaning of sumθ function depends on individual non-algebraic operators and
is briefly explained below.

1: procedure eval(q: BPQL query)
2: ...
3: case q recognised as q1 θ q2 : // non-algebraic binary operators
4: begin
5: tmpResBag: bag of Result; // set of all temporal results
6: tmpRes : Result; // single temporal results
7: finalRes : Result; // final query results
8: singleRes: Result; // single result of q1
9: tmpResBag := ∅;

10: eval(q1); // evaluate q1, store its result on QRES top
11: for each e in top(QRES) do // for each single result of q1
12: begin
13: push(ENVS, nested(e)); // creates a new section on ENVS stack
14: eval(q2); // evaluate q2, store its result on QRES top
15: tmpRes := join(e, top(QRES)); // join single result of q1 with q2;
16: tmpResBag := tmpResBag union {tmpRes};
17: pop(QRES); pop(ENVS);
18: end;
19: finalRes := sumθ(tmpResBag); // sum all temporary results
20: pop(QRES) // remove from QRES the results of q1 evaluation
21: push(QRES, finalRes) // store the final results on QRES top
22: end;
23: ...

Selection is used to extract objects of a given type that satisfy a set of criteria.
In BPQL, selection is expressed as the binary where operator and has the following
syntax: q1 where q2. Its left argument is a query to retrieve selection objects. Its
right argument is a query that represents a selection criterion. The latter query must
return a Boolean value. For example, we may use selection if we want to extract a
set of activity instances that had been created before the 1st January 2004.

ActivityInst where (creationDate < ‘2004-01-01’)

According to the eval procedure, for every object e of the result retrieved by q1 the
join function returns: (a) one-element bag if the query q2 operated on e returned
true, (b) empty bag if the query q2 operated on e returned f alse. The sumθ

function aggregates all the intermediate results.
Projection (or navigation) is used to extract objects that are related to the other

objects in some way (e.g., by association or being a part of). In BPQL, projection
is expressed by the “.” operator and has the following syntax: q1.q2. The left
argument is a query that defines the way to get to the objects returned by the right
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argument. According to the eval procedure, the join function returns the results
retrieved by q2 ignoring the results retrieved by q1. The sumθ function aggregates
all the intermediate results of q2. For example, we may use several projections (aka
path expression) to extract all names of performers that participate in any activity
instance.

ActivityInst.PerformedBy.Performer.name

Existential quantifier checks if there is at least one value that satisfies a given
condition. In BPQL, existential quantifier is represented by for some operator and
has the following syntax: for some q1(q2) (equivalent to q1 ∃ q2 ). Its left argument
defines a collection of values that are checked. Its right argument is a query
representing a condition. We use this operator in the prefix syntax rather than in
the infix syntax as for other non-algebraic operators. For example, we may use the
existential quantifier to check whether there exists an activity instance started before
1st of January 2004, which has not been finished yet (i.e., its current operational
superstate is different than “Finished”).

for some (ActivityInst as ai)
(ai.creationDate < ‘2004-01-01’ and ai.currState.opSuperState <> ‘Finished’)

According to the eval procedure, the join function returns all the values returned by
q2 ignoring values returned by q1. The sumθ function returns: a) true if at least one
intermediate result returned from q2 is true, b) false if all the intermediate results
returned from q2 are false.

Universal quantifier is used to check whether the given condition is satisfied
for all the checked values. In BPQL, the universal quantifier is expressed by for
all operator and has the following syntax: for all q1(q2) (equivalent to q1 ∀ q2 ). Its
left argument defines a collection of values that are checked. Its right argument
represents a condition that has to be satisfied for all the values. For example, we
may use a universal quantifier to check whether all activity instances started before
the 1st of January 2004 have already finished (i.e., its current operational superstate
is “Finished”).

for all (ActivityInst as ai)
(ai.creationDate < ‘2004-01-01’ and ai.currState.opSuperState = ‘Finished’)

According to the eval procedure, the join function returns all the values returned by
q2 ignoring values returned by q1. The sumθ function returns true if all the values
returned by q2 are true (or if the number of the values is zero); false otherwise.

3.2.9 Imperative Constructs

Imperative constructs enable BPM systems to express complex requests that require
some programming features. Together with procedures and functions, imperative



366 M. Momotko and K. Subieta

constructs can be used to simplify BPQL queries. Below we present some basic
imperative constructs available in BPQL.

A statement is a programming instruction. Every imperative construct is a
statement. The simplest statement is an assignment. A statements block is a set of
statements that should be considered and executed as a group. A statement block can
consist of a single statement. If a statement block includes more than one statement,
two additional tokens are used to begin (“{”) and end (“}”) the block.

Control flow operators are used to change the sequence of executed statements.
In BPQL there are two such operators: if-then-else operator and switch-case
operator. The former operator has the following syntax:

if query then block-of-statements1 else block-of-statements2.

The query must return a Boolean value. If the returned value is true, then block-of-
statements1 is executed. Otherwise, block-of-statements2 is executed. There is also
a simplified version of this operator: if query then block-of-statements1. Its meaning
is the same as for the appropriate parts of the previous form. An example of how this
operator may be applied is given below. If “johnb” has no task assigned, the query
returns a Resource object that represents “johnb”. Otherwise, it returns the resource
with the minimal number of tasks currently assigned:

if for some (ActivityInst as a)
(a.currState.opSuperState=‘Running’ and a.PerformedBy.Performer.name=‘johnb’)

then return Resource where (
count(isPerformer.Performer.Performs.ActivityInst where

(currState.opSuperState) = ‘Running’) =
min(Resource.count(IsPerformer.Performer.Performs. ActivityInst where

(currState.opSuperState) = ‘Running’)));
else return Resource where name = ‘johnb’;

Switch-case operator has the following syntax: switch (query) do list-of-cases.
The query must return a single value s of a numeric, Boolean, or string type. The
list-of-cases includes one or more cases. A single case has the following syntax:
case value: block-of-statements. If the value is equal to s, then block-of-statements
is executed. After that the other cases are checked against the value. To leave a
switch-case operator one has to use the break statement.

For-each operator is used to process a collection of values returned by a query;
one after another. In BPQL, for-each operator is expressed by the for each keyword
and has the following syntax: for each query do block-of-statements. The query
returns a collection of values and the statement block is executed for every element
of the returned collection. For example, one can use the for each operator to suspend
all the activity instances delayed for more than 20 days.

for each (ActivityInst where
(DiffDate(CurrDate(),deadline,‘d’)>20) and (currState.opSuperState)=‘Running’)
do currState.opState:=‘Suspended’;
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3.2.10 Procedures and Functions

BPQL provides mechanisms to define procedures and functions. This mechanism
can be used to simplify complex queries and to encapsulate repeatable query parts.
A procedure is a block of statements. A procedure may have input and output (with
out keyword) parameters. The former is a call-by-value parameter that can only be
read in the procedure body. The latter is a call-by-reference parameter and may be
used to modify objects that are kept outside the procedure as local environment.
The procedure body consists of one or more statements. Every statement ends
with semicolon. The return operator may be treated as a special statement that
finishes the procedure immediately. A function is a procedure that may return a
value compatible with results of queries. In the stack-based approach implemented
in BPQL, procedures can be recursive. Semantics for a procedure/function call is
defined as follows (eval procedure):

1. Bind the procedure name on ENVS and get a reference to the procedure.
2. Initialize a procedure call. ENVS is extended with a new section (an activation

record) having the following information: (i) binders storing procedure parame-
ters, (ii) binders to local objects of the procedure, and (iii) a return trace to return
to the caller code after terminating the procedure.

3. Evaluate procedure parameters (BPQL queries) and store results on QRES top.
4. Store procedure parameters binders in the activation record according to their

values stored at QRES. Remove these values from QRES.
5. If local objects were declared, they are stored as volatile objects. Their binders

are inserted into the activation record on ENVS.
6. The procedure body is executed. Queries in the procedure body have access to

all ENVS binders, including volatile objects and parameters of the procedure.
7. If the procedure control reaches a return statement, then it finishes. For a return

value, it is evaluated and its result is stored on the top of QRES.
8. The procedure is finished. All intermediate objects are being removed. ENVS is

cleared from the activation record. The system returns to the point of program
according to the return trace. The procedure result is stored at the top of QRES.

3.2.11 Predefined Context-Dependent Functions

We also need in BPQL some functions that would extract the context of evaluated
queries. For example, if one wants to assign the same performer as for previously
executed activity, one needs to know what is the current activity instance and then
find its predecessor. Thus in BPQL we introduce BPQLQueryContext object with
two attributes: processInstId and activityInstId and propose two BPQL functions:

• ThisProcessInst returning a reference to the process instance (its identifier is equal
to the processInstId attribute).

• ThisActivityInst returning a reference to the activity instance (its identifier is equal
to the activityInstId attribute).
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4 Monitoring Functions

BPQL constructs can express most, if not all, useful queries over the proposed
metamodel. For most real applications, however, these queries are complex and
include repeatable fragments. Definition of the same fragments many times may
be quite annoying and cause additional mistakes.

To avoid such problems, we propose a set of predefined BPQL functions that can
be used to build more advanced BPQL queries or functions. Since these functions
mostly query the execution data of the models instantiated from the metamodel, we
refer to them as BPQL monitoring functions. There are three main types of BPQL
monitoring functions: participant assignment functions, process flow functions, and
quality of service functions. A list of about 50 BPQL monitoring functions can be
found in [5], Appendix A.

Participant assignment functions are used for selecting “best” participants to
perform given activities. There are various criteria that define what “best” means.
The most popular techniques are based on calculation of the number of the assigned
tasks, their overall cost, or the total time required to perform them.

An example of such a participant assignment function is a function to calculate
the current number of the assigned activity instances or tasks for given participants.
An assigned task is defined as an activity instance for which the current superstate
is “Created” or “Running”.5 This example implemented as BPQL function is
presented below. The function calculates the number of assigned/performed tasks
for every resource passed as its argument.

1: procedure GetPerformerWorkload(inputPerfList) {
2: return (inputPerfList as e).
3: (
4: (e as performer),
5: (count(e.Performs.ActivityInst
6: where (currState.opSuperState) in (‘Created’,‘Running’)) as workload
7: )
8: );
9: }

The function gets Performer objects as its input (line 1) and returns relevant
(performer, workload) structures (lines 4 to 7). In order to generate the structure for
every participant provided in the input, we use a BPQL projection operator (lines
2 to 7). The left argument of the operator is represented by the participant objects
(line 2) while the right argument is the mentioned structure (line 3 to 7).

Process flow functions simplify query operations on business process models.
The process flow functions are provided for process definition and process execution
parts. Examples of process flow functions include:

• StartActivity, EndActivity - start/end activities for given process definitions
• SuccActivity, PredActivity - successors/predecessors of an activity

5 Specification of lifecycle states for an activity instance is provided in [5].
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• StartActivityInst, EndActivityInst - start/end activity instance (process instance)
• SuccActivityInst, PredActivityInst - activity instance successors/predecessors

Quality of Service (QOS) functions supports QoS management. This man-
agement operates on QoS factors. Following the concept presented in [3, 4], and
[16] three main basic QoS factors for business processes include time, cost, and
reliability. Usually these factors are set according to the initial business process
requirements during the business process definition. Then, the required QoS factors
are compared with those retrieved from the business process execution. Finally, the
results of the comparison are used to improve business processes and make them
possible to meet the initial QoS requirements. These factors are defined on four
levels, namely activity instance, process instance, activity, and process levels.

4.1 Settlement of Travel Expenses Example

The process for settlement of travel expenses has been presented in Fig. 1 and
described in Sect. 1. Next, we come back to this example and define in BPQL the
most advanced participant assignment for the financial approver II re-using one of
already defined BPQL monitoring functions. To make this participant assignment
more generic, we implement it as a parameterized BPQL function.

1: procedure GetPerformerByRoleWithExcludedActPerformer(role, actInstId) {
2: return
3: (GetPerformerWorkload(
4: (Performer where
5: (id in GetResIdListByRole(role))
6: )
7: intersect
8: (ThisProcessInst.ConsistsOf.ActivityInst where id=actInstId)
9: .PerformedBy.Performer

10: )
11: group as perfList)
12: .(perfList where workload = min(perfList.workload))
13: .performer.id;
14: }

Line 1 specifies the interface of the BPQL function. It has two input parameters:
expected performer role and activity instance identifier executed by a performer
who should be excluded from this searching. The function returns an identifier of
the performer who has minimal workload. Lines 3 to 10 represent an invocation of
GetPerformerWorkload BPQL function defined in the previous section. This func-
tion gets a collection of Performer objects and returns a collection of (performer,
workload) structures. The input collection of performers (lines 4 to 9) is determined
as an intersection (line 7) of employees who play the role provided as the first input
parameter (lines 4 to 6) and the employee who performed activity instance provided
as the second input parameter (lines 8, 9). To get the collection of performers, we use
functionGetResourceIdListByRole that, for a given role name, returns a collection of
employees’ identifiers. We assume that this function is provided to the BPM system
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via organizational service. To get the performer of the activity instance provided
as the second input parameter, we look for an ActivityInst object that represents
execution of the activity of id=actInstId and then via PerformedBy relation extracts
the relevant Performer object. The collection of structures (performer, workload)
returned by GetPerformerWorkload function is grouped by the name perfList (line
11). Next, this collection is used to find another structure that represents a performer
with minimal workload (line 12). To find this performer, we use min function that
operates on workload attribute of all the mentioned structures grouped as perfList.
Finally, from the structure with minimal workload we get the performer attribute
representing a Performer object and extract its identifier (line 13). An invocation
of the above BPQL function for the process for settlement of travel expenses is
presented below.

1: GetBestPerformerByRoleWithExcludedActPerformer(
2: ‘Travel.Reimbursement.FinancialApprover’, ‘4’)

5 Architecture and Standardization

After defining the metamodel and BPQL, in the next step we explain how BPQL
can be integrated with existing BPM solutions in order to increase business process
adaptability and to make process definitions more flexible. Two requirements must
be satisfied to achieve this goal. Firstly, BPQL queries should be a part of a process
definition that is evaluated during process execution. Secondly, BPQL as a software
component must be integrated with a BPM system that executes such extended
process definitions. This section address both these requirements. We present how
BPQL may extend BPMN and then show an architecture of a BPM system extended
with BPQL. Finally, we compare this tandem (i.e., BPM+BPQL) with Process
Querying Framework (PQF, [9]).

5.1 BPQL Embedded in BPMN

BPMN is a standardized language to model and define business processes. BPMN
definition of a business process can include expressions that are evaluated during
process execution. A default language to define those expressions is XPath;
however, BPMN allows to use any other business process query language such as
BPQL. To use another language, a BPMN definition of a business process must
specify Definitions.expressionLanguage attribute as it is presented below.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<definitions id="Definition"
...
xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
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xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
expressionLanguage="http://bpql.org/BPQL/v1">
...

</definitions>

Any expression defined in a query language is represented in BPMN by FormalEx-
pression object. Such expression may be used to determine performers of a human
task or to control flow conditions. In BPMN, a human task is an activity that is
performed by one or more people called resources. Using ResourceAssignmentEx-
pression object it is possible to determine task performers dynamically. This object
has just one attribute: expression of FormalExpression type. This attribute may be
used to specify a BPQL query that will be evaluated during process execution. For
example, a participant assignment for “Confirm financial approval” human task can
be defined in BPMN in the following way:

<userTask id="6" name="Confirm financial approval">
<humanPerformer>

<resourceAssignmentExpression>
<formalExpression>

GetBestPerformerByRoleWithExcludedActPerformer(
‘Travel.Reimbursement.FinancialApprover’, ‘4’)

</formalExpression>
</resourceAssignmentExpression>

</humanPerformer>
</userTask>

5.2 Architecture

BPQL can be embedded into a BPM system. An architecture of a BPM system
extended with BPQL is presented in Fig. 10, a diagram on the left.

Fig. 10 BPM and BPQL architecture
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There are two main use cases of BPQL Manager. In the first use case BPQL
Manager provides data about BPQL queries in order to embed them in a process
definition. In the second case, BPQL is invoked during process execution to evaluate
a given BPQL query. In addition, BPQL Manager, during such evaluation, gets
process definition and process execution objects from BPM repository.

A detailed architecture of BPQL Manager is presented in Fig. 10, a diagram
on the right. BPQL Manager consists of BPQL Parser, BPQL Evaluator, and
BPQL Repository. BPQL Parser is responsible for syntactic and (partially) semantic
analysis of BPQL queries. During a process compilation (i.e., when a binary
representation of a process is generated) Process Modeler/Designer sends all BPQL
queries to BPQL Parser, which verifies them, generates their syntactic trees, and
returns identifiers of the parsed queries. BPQL Parser stores parsed BPQL queries
in DS part of BPQL Repository. BPQL Evaluator is responsible for evaluation of
BPQL queries.

A request for evaluation of a query is sent by BPM Enactment Engine during
process execution. Evaluation is made on the basis of the syntactic tree generated
earlier by BPQL Parser. As a result, BPQL Evaluator returns a collection of values
that satisfy the query. During evaluation, data stored in ENVS and QRES are used.
These data are managed by BPQL Repository. BPQL Repository is responsible for
storing BPQL built-in operators and monitoring functions, the current values of
ENVS and QRES stacks, as well as the query evaluation context and other BPQL
auxiliary data.

Finally, we discuss how BPQL fits into Process Querying Framework (PQF, [9]).
We present how BPQL currently supports active components (Table 2) and passive
components (Table 3).

6 Case Study

The first version of BPQL has been implemented for participant assignment and
integrated in OfficeObjects®WorkFlow (OO WorkFlow) system. This system has
been deployed at major Polish public institutions (e.g., Ministry of Labour and
Social Policy and Ministry of Transport). First practical verification of BPQL in
OO WorkFlow was done for the system of electronic document exchange between
Poland and European Council (EWDP system [2]). In this system, OO WorkFlow
was used to implement the process for preparation of the Polish standpoint
concerning a given case that was discussed at the European Council, EU Committee
of Permanent Representatives (COREPER) and COREPER working groups. The
process consisted of more than 40 activities and included about 10 process roles.
An extract from process execution history is presented in Fig. 11.6 It was used by all

6 Due to copyrights some elements of the application user interface were hidden.
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Table 2 PQF active components supported by BPQL

PQF component BPM/BPQL component

Modeling Process modeling is performed by Process Modeler/Designer (a part of a
BPM system). Definition of the modeled processes are stored in BPM
Process Repository. Elements of a business process definition, such as
participant assignment, can be represented by BPQL queries

Simulating In most BPM systems, simulation is a part of business process modeling
and built in BPM Modeler/Designer. During simulation, BPQL queries
are evaluated by BPQL Manager using data stored in Process Repository

Formalizing BPQL Parser is responsible for parsing a BPQL query, verifying it, and
generating its syntactic tree. The tree is stored in BPQL Repository while
its identifier is kept in a process definition within BPM Process
Repository

Recording Process execution is performed by a Process Enactment Engine (a part of
a BPM system). All the execution traces are stored in the BPM Process
Repository. During process execution, the enactment engine invokes
BPQL Manager to evaluate BPQL queries included in the process
definition

Indexing Indexing is a part of the BPM Process Repository where huge amount of
data (esp. coming from process execution) is stored. So far, indexing is
based on database indexing. BPQL can use indexing to more efficient
retrieval of the business process objects

Filtering All filtering is done by BPQL Evaluator on current basis during a BPQL
query evaluation

Process Querying BPQL Evaluator is responsible for BPQL query evaluation using data
from BPM Process Repository (process definitions and history of process
execution). All intermediate results during a query evaluation are stored
in BPQL repository using DS, ENVS and QRES

Interpreting Since the result of a BPQL query represents objects defined in the
metamodel, those objects are self-describing. So far, BPQL does not
provide any tool to analyze how a given query was evaluated

Polish Ministries and central offices with over 10,000 registered users. Daily, there
were about 200 documents processed.

Originally, it was planned to have separate processes for every ministry, which
could make in total more than twenty processes. These processes differed mainly in
the rules to assign individual participants to the same or very similar activities. Using
BPQL, it was possible to express the complex assignment rules and unify them.
Eventually, EWDP system had just one, unified process for all ministries. Complex
rules to assign participants were expressed in BPQL and used for selecting: (1)
main coordinator who assigns Polish subjects to individual EU documents, (2)
leading and supporting coordinators who assign experts to the processed document,
and (3) leading and supporting experts. Participant assignment was based on roles,
competences, current workload, process execution history, and availability of the
experts. In addition, the pilot implementation phase for EWDP system was intensive
and required many refinements of the process. All together, there were more than
80 versions of the process, and a significant part of those was related to updates in
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Table 3 PQF passive components supported in BPQL

PQF component BPM/BPQL component

Process Model Business process definitions are stored in BPM Process
Repository. The structure of this data is compliant with the
metamodel, process definition part

Event Log Execution traces are stored in BPM Process Repository. The
structure of this data is compliant with the metamodel, process
execution part

Querying Instruction BPQL Repository, Data Storage includes definition of BPQL
Monitoring Functions and BPQL configuration

Process Query BPQL Repository, Data Storage includes syntactic trees of BPQL
queries

Process Repository BPM Process Repository plays the role of Process Repository A.
There is no need for Process Repository B since all the objects
returned by a BPQL query evaluation are directly passed to BPM
Enactment Engine. Local variables and intermediate results during
query evaluation are stored in ENVS and QRES in BPQL
Repository

Execution Plan Execution plan for a BPQL query is compliant with traversing its
syntactic tree. Such trees are stored in BPQL Repository, DS.
More advanced execution plans are also possible but not
implemented yet

Fig. 11 A process execution history in EWDP system
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process assignment. Thanks to BPQL these updates were made on-the-fly, without
re-compiling the code.

7 Conclusion

In this chapter, we introduced BPQL together with the Business Process Metamodel.
To understand the concept of BPQL, we described its syntax, explained its
semantics, and provided several usage examples. We also showed how BPQL can
be integrated in a BPM system and embedded in BPMN. Because of the size limit
of this chapter, some parts of BPQL description had to be significantly reduced.
More detailed description with further examples can be found in [5]. In addition, it
is planned a demo project on GitHub (see [6]), which will include examples on how
to use BPQL.

Summarizing the results of using BPQL, we observe that it is well suited to
make business processes more flexible, especially in terms of dynamic participant
assignment. We also believe that using BPQL makes a significant step forward
to assure business process adaptability. BPQL can also be used to address other
challenges in business process management, such as checking process correctness.
However, we do not see immediate advantages of BPQL compared to the other
languages dedicated for this particular purpose. There are still open issues in BPQL,
such as efficient querying data sources outside of the metamodel, but we believe that
flexibility, simplicity, and unambiguity of BPQL is worth a try and we encourage
the readers to do that.
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Celonis PQL: A Query Language
for Process Mining

Thomas Vogelgesang, Jessica Ambrosy, David Becher, Robert Seilbeck,
Jerome Geyer-Klingeberg, and Martin Klenk

Abstract Process mining studies data-driven methods to discover, enhance, and
monitor business processes by gathering knowledge from event logs recorded by
modern IT systems. To gain valuable process insights, it is essential for process
mining users to formalize their process questions as executable queries. For this
purpose, we present the Celonis Process Query Language (Celonis PQL), which is a
domain-specific language tailored toward a special process data model and designed
for business users. It translates process-related business questions into queries and
executes them on a custom-built query engine. Celonis PQL covers a broad set
of more than 150 operators, ranging from process-specific functions to machine
learning and mathematical operators. Its syntax is inspired by SQL, but specialized
for process-related queries. In addition, we present practical use cases and real-
world applications, which demonstrate the expressiveness of the language and how
business users can apply it to discover, enhance, and monitor business processes.
The maturity and feasibility of Celonis PQL is shown by thousands of users from
different industries, who apply it to various process types and huge amounts of event
data every day.

1 Introduction

Process mining is a data-driven approach to reconstruct, analyze, and improve
business processes using log data recorded by modern IT systems, like enterprise
resource planning (ERP) or customer relationship management (CRM) systems
[15]. The starting point of process mining is an event log, which is a record of
what happens when a business process is performed. Process mining applies special
algorithms on the event log data to uncover the actual process execution, to reveal
undesired process behavior and to identify inefficiencies [15]. Typical business use
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cases for process mining are procurement (e.g., purchase-to-pay), sales (e.g., order-
to-cash), accounting (e.g., accounts payable), or production (e.g., make-to-order).

Due to their strong ability to provide transparency across complex business
processes, process mining capabilities have been adopted by many software vendors
and academic tools. A key success factor for any process mining tool is the ability to
translate business questions into executable process queries and to make the query
results accessible to the user. To this end, we developed Celonis Process Query
Language (Celonis PQL). It takes the input from the user and executes the queries
in a custom-built query engine. This allows the users to analyze all facets of a
business process in detail, as well as to detect and employ process improvements.
Celonis PQL is a comprehensive query language that consists of more than 150
(process) operators. The language design is strongly inspired by the requirements of
business users. Therefore, Celonis PQL achieved a wide adoption by thousands of
users across various industries and process types.

This chapter is organized as follows: Sect. 2 provides the background knowledge,
which is required to understand the specifics of our process query language.
Section 3 gives an overview of the various application scenarios of Celonis PQL.
Section 4 presents the query language, its syntax, and operators. Section 5 demon-
strates the applicability of Celonis PQL to solve widespread business problems.
Section 6 outlines the implementation of the query language. Section 7 positions
Celonis PQL within the Process Querying Framework (PQF). Finally, Sect. 8
concludes the chapter.

2 Background

In this section, we introduce the general concept of process mining and how the
Celonis software architecture enables process mining through our query language.
We also present the history of Celonis PQL as well as the design goals that were
considered during the development of the query language.

2.1 Process Mining

In the course of digitization, an increasing number of log data is recorded in IT
systems of companies worldwide. This data is of high value, as it represents how
processes are running inside a company. Process mining technology can be applied
to such data to gain insights about business processes, discover inefficiencies, and
find potential improvements.
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CASE ACTIVITY TIMESTAMP DEPARTMENT ITEM
1 Create Purchase Order Item 2019-01-23 08:15 D1 Screw
1 Request Approval 2019-01-23 08:20 D1 Screw
1 Grant Approval 2019-01-23 11:00 D2 Screw
1 Send Purchase Order 2019-01-23 11:10 D1 Screw
1 Receive Goods 2019-01-25 10:30 D3 Screw
1 Scan Invoice 2019-01-25 11:30 D3 Screw
1 Clear Invoice 2019-01-28 17:15 D3 Screw
2 Create Purchase Order Item 2019-01-23 13:00 D1 Screw Driver
2 Request Approval 2019-01-23 15:00 D1 Screw Driver
2 Reject 2019-01-23 18:00 D2 Screw Driver

Fig. 1 Example event log

Process mining is based on event logs. An event log is a collection of events. An
event is described by a number of attributes. The following three event attributes are
always required for process mining:

Case. The case attribute indicates which process instance the event belongs to. A
process instance is called a case. A case usually consists of multiple events.

Activity. The activity attribute describes the action that is captured by the event.
Timestamp. The timestamp indicates the time when the event took place.

A sequence of events, ordered by their timestamps, that belong to the same case
is called a trace. The traces of all the different cases with the same activity sequence
represent a variant. The throughput time between two events of a case is the time
difference between the corresponding timestamps. Accordingly, the throughput time
of a case is equal to the throughput time between the first and the last event of the
corresponding trace.

Figure 1 shows an example event log in procurement. Each case represents a
process instance of one purchase order. In the first case, the order item is created
in the system, an approval for purchasing is requested and approved. After the
approval, the order is sent to the vendor. Two days later, the ordered goods are
received, the invoice is registered and eventually paid. In the second case, an order
item is created, but the approval to actually order it is rejected. Besides the three
required attributes of an event log mentioned above, the example also includes
attribute DEPARTMENT, which specifies the executing department for each event, as
well as attribute ITEM containing the description of the corresponding order item.

Process mining techniques that are applied on an event log to understand and
improve the corresponding process can be assigned to three groups [15]: discovery,
conformance, and enhancement. Discovery uses the event log as input and generates
a business process model as output. Conformance takes the event log and an a priori
process model to detect discrepancies between the log data and the a priori model.
Enhancement takes the event log and an a priori model to improve the model with
the insights generated from the event log.
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2.2 Architecture Overview

Celonis PQL is an integral component of the Celonis software architecture, which
is shown in Fig. 2. All Celonis applications use this language to query data from
a data model. The data model contains metadata like schema information and the
foreign key relationships between the tables, as well as the actual data from the
source systems. Celonis PQL queries are evaluated by the Celonis PQL Engine.

Source system. A source system is the system containing the business data to be
analyzed by the Celonis applications. ERP systems like SAP, CRM systems like
Salesforce, and many other standard systems are supported. Celonis applications
can also connect to a variety of database systems on the customer’s premises like
PostgreSQL. It is also possible to upload Excel or CSV files. Data from multiple
source systems can be combined in one data model.

Data model. A data model combines all tables from the source system (or
multiple source systems), which contain the data about a process that a user
wants to analyze. In the data model, the foreign key relationships between the
source tables can be defined. This is performed here because specifying joins
is not part of the query language itself. The tables are arranged in a snowflake
schema, which is common for data warehouses, and the schema is centered
around explicit case and activity tables. Other data tables provide additional
context. Figure 3 shows an example data model. It contains the event log of
Fig. 1 in the ACTIVITIES table, including the DEPARTMENT column. It is linked
to the CASES table, containing information about each order item. The ITEM

Source System A

Transformations

Source System Z

Transformations

Metadata

Data Model

Celonis PQL
Engine

Application 1 Application N

Data

PQL

PQLPQL

Fig. 2 Celonis architecture overview
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ACTIVITIES
CASE ACTIVITY TIMESTAMP DEPARTMENT

1 Create Purchase Order Item 2019-01-23 08:15 D1
1 Request Approval 2019-01-23 08:20 D1
1 Grant Approval 2019-01-23 11:00 D2
1 Send Purchase Order 2019-01-23 11:10 D1
1 Receive Goods 2019-01-25 10:30 D3
1 Scan Invoice 2019-01-25 11:30 D3
1 Clear Invoice 2019-01-28 17:15 D3
2 Create Purchase Order Item 2019-01-23 13:00 D1
2 Request Approval 2019-01-23 15:00 D1
2 Reject 2019-01-23 18:00 D2

CASES
CASE ITEM QUANTITY ORDERVALUE ORDERNO

1 Screw 100 50 4711
2 Screw Driver 1 99 4711

ORDERS
ORDERNO SHIPPINGTYPE VENDORNO

4711 Standard V10

VENDORS
VENDORNO NAME COUNTRY

V10 Screws Inc. DE

Fig. 3 Example data model with four tables, including activity and case tables

attribute from the example event log of Fig. 1 is contained in the CASES table,
as the data model should contain normalized table schemas. Both order items
(i.e., both cases) belong to the same purchase order, which is sent to one vendor.
Details about the purchase orders and the vendors are available in the ORDERS

and VENDORS tables of the data model.
Activity table. The data model always contains an event log, which we call the

activity table. The activity table always contains the three columns of the core
event log attributes, while additional columns may be present. Within one case,
the corresponding rows in the activity table are always sorted based on the
timestamp column.
Usually, the activity table is not directly present in the source systems and
therefore needs to be generated depending on the business process being
analyzed. Since the source system is a relational database in most cases, this
is usually done in SQL in the so-called transformation step. The transformation
result can be a database view. However, a persisted table is usually created for
performance reasons. This procedure is comparable to the extract, transform,
load procedure (ETL) in data warehouses. Like all the other tables, the resulting
activity table is then imported into the data model. The user can specify the case
and activity table in a graphical user interface (GUI) and mark the corresponding
columns of the activity table as the case, activity, and timestamp columns.

Case table. The case table provides information about each case and acts as the
fact table in the snowflake schema. It always includes the case column, contain-
ing all distinct case IDs, while other columns provide additional information on
the cases. There is a 1:N relationship between the case table and the activity
table. If the case table is not specified in the data model, it will be generated
automatically during the data model load. The case table then consists of one
column containing all distinct case IDs from the activity table. This guarantees
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that a case table always exists, and the Celonis PQL functions and operators can
rely on it.

Celonis PQL Engine. Celonis PQL Engine is an analytical column-store main
memory database system. It evaluates Celonis PQL queries over a defined data
model. Section 6 describes the Celonis PQL Engine in more detail.

Applications. Celonis applications provide a variety of tools for the business
user to discover, monitor, and enhance business processes. All applications
use Celonis PQL to query the required data. They include easy-to-use GUIs,
providing a convenient way for the users to interact with the process and business
data. In the applications, the users can specify custom Celonis PQL queries.
There are also many auto-generated queries sent by the applications to retrieve
various information, which is then presented to the user in the graphical interface.
An overview of the different applications that use Celonis PQL is given in Sect. 3.

2.3 History of Celonis PQL

The first version of Celonis PQL was introduced with version 2.4 of Celonis Process
Mining, which was released in 2014. Celonis PQL was an extension to SQL,
providing commands to query and filter process flows and patterns in addition to
the standard SQL commands. For example, the process filter process# START
’Activity XYZ’ could be used to filter all cases that start with activity “Activity
XYZ”. The custom Celonis PQL commands were translated into standard SQL
in the background and executed directly on the source database system. Multiple
source systems like SAP HANA, MSSQL, and Oracle were supported.

In SQL, different database systems support different SQL dialects. For example,
function names and syntaxes for certain functionalities like date and time calcu-
lations are database specific. However, Celonis PQL was independent of the SQL
dialect of the underlying database system. If necessary, Celonis PQL functions were
mapped to equivalent SQL functions based on the appropriate dialect.

For version 4.0 of Celonis Process Mining, which was released in February 2016,
the concept of Celonis PQL was fully redesigned based on the experiences gained
from the first version of the language. Instead of being an extension to SQL, Celonis
PQL became an independent language inspired by SQL. Now, Celonis PQL queries
are executed on the custom-built Celonis PQL Engine, which is a query engine that
is highly optimized for process mining capabilities. In comparison to the previous
approach, this enables much better performance. Also, all functionalities are fully
independent of the underlying database dialect, which makes it easier to support
a wider range of source systems. Several patents were registered as part of the
development efforts.

In October 2018, Celonis Intelligent Business Cloud (IBC) was released. This
transition from an on-premises product to a modern native cloud solution provides
easier access to process mining and, consequently, IBC increased the number of
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Celonis PQL users significantly. Many new applications, all using Celonis PQL to
query process data, are included in IBC, as described in Sect. 3.

The language is continuously extended with new functionalities. This is mostly
driven by customers who use Celonis PQL on a daily basis to explore their data.
Due to the rich functionality and possibility to use it in various Celonis applications,
Celonis PQL is used by a high number of users in many production systems.

2.4 Design Goals

The first version of Celonis PQL was an extension to SQL. While it had several
convenient process mining functions, the actual queries evaluated on the database
were complicated. Furthermore, it was difficult to extend the language with new
functionality. To overcome these issues, the query language was redesigned based
on previous experiences, with the following design goals in mind:

Simplicity. The query language should be easy to use for business users. Provid-
ing an easy way to translate complex process questions into data queries should
make process mining accessible for business users.

Flexibility. The query language should not include specialized functions. Instead,
the goal is to provide a set of generic functions and operators that can be
combined in a wide range of queries. This flexibility is very important, since
the users should be able to formulate all their questions in the query language,
regardless of the processes they address.

Event log-centered. In contrast to SQL, the language should be designed to
support dedicated process mining functionality. This should be reflected in the
query language by process functions, which operate on the given event log.

Business focus. Event data can be augmented with additional business infor-
mation. It is therefore important to combine process mining and business
intelligence (BI) capabilities within one query language. To achieve this, besides
specific process mining functionality, the query language should also provide a
variety of functions known from SQL, like aggregations, string modifications,
and mathematical functions.

Frontend interaction. To simplify the use of the query language, the user should
be able to formulate queries with support of a GUI. Consequently, the goal is
to design a language that provides easy integration via GUI components. The
simple query creation using a GUI is a key factor for the usability of a product,
which results in high acceptance, usage, and adoption by the users.
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3 Applications

As a result of emerging technologies, the requirements on tools used for analyzing
processes within different business departments go beyond the simple tracking
of performance. For this reason, process mining at Celonis is evolving into a
holistic approach that serves as a performance accelerator for business processes.
Necessary steps that are included within this approach are the discovery, enhance-
ment, and monitoring of processes. Within discovery, process mining can capture
digital footprints from all source systems involved in the process, visualize the
respective processes, and understand the root causes of deviations between the as-
is process and the to-be process. Thus, the discovery step serves as the starting
point for process improvements. During enhancement, process mining supports the
automation of tasks, proposes intelligent actions, and proactively drives process
interventions and improvements. Monitoring allows the user to continuously track
the development of key figures that are defined during the discovery step. This
enables the ongoing benchmarking of processes—internally, as well as externally.
Celonis PQL enables all these activities and tasks, and it is used in all Celonis
products as depicted in Fig. 4.

• Process Analytics is part of discovery and can be used to visualize and identify
the root causes of issues within a process. Furthermore, it identifies the specific
actions that have the greatest impact on solving the issue. For that purpose,
Celonis PQL is used to obtain performance metrics, such as the average case
duration, the change rate in the process, or the degree of process automation. In
addition, Celonis PQL enables the user to enrich the event log data with data
related to the problematic cases, such as finding the vendor causing the issue, or
identifying sub-processes that prolong throughput times.

Enhance

• Process Analytics

   Center
• Action Engine

• Machine Learning
   WorkbenchMonitor

Discover
PQL

PQL
PQL

Fig. 4 The Discover, Enhance, Monitor approach
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• Process Conformance is, as shown in Fig. 4, also part of the discovery step. It
is used to identify deviations from the defined to-be process and to uncover the
root causes of process deviations. In this context, Celonis PQL allows utilizing
the calculated process conformance to obtain metrics leading to the discovery of
root causes for deviations [16].

• Action Engine is part of the enhancement step and uses insights gained from the
discovery step to recommend actions to improve process performance [1]. The
foundation to generate these findings is Celonis PQL. The findings can include all
the relevant information that impacts a decision about whether or how an action,
like executing a task in the source system or triggering a bot, is performed. In
addition, Celonis PQL assists in prioritizing necessary actions.

• Machine Learning Workbench enables the usage of Jupyter notebooks within
Celonis IBC for creating and using Python predictive models. As part of the
enhancement step, it supports building predictive models on process data to
proactively avoid downstream friction like long running process steps, leading
to e.g., late payments in finance. Celonis PQL is crucial for querying the process
data necessary as input for the predictive models.

• Process Automation allows to automatically trigger specific actions in down-
stream applications, like SAP, Gmail, and Salesforce, based on predefined process
conditions. Therefore, Process Automation is part of the enhancement step. In this
context, Celonis PQL is used for process condition querying.

• Transformation Center is part of the monitoring step. It measures and monitors
the progress of the process metrics defined within the discovery step. Therefore,
it assists in achieving Key Performance Indicators (KPIs) and business outcomes.
As with Process Analytics, Celonis PQL is used in this context to obtain the
performance metrics by querying the underlying event log data and to enrich event
log data with relevant business context.

Celonis IBC enables customers to use the entire product range on-demand,
containing all products described above. As shown in Fig. 5, Celonis IBC is
currently (as of October 2019) managing more than 10,000 users and more than

Celonis
IBC

> 5k data
models

~ 2M queries
per day

> 10k users
~ 90% query

execution < 1s

~ 370ms query
execution time

Fig. 5 Celonis IBC statistics (as of October 2019)
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5000 data models. Two million queries are executed per day, written in Celonis PQL,
and processed by the Celonis PQL Engine with an average execution time of 370
milliseconds per query. In reality, the execution time per query is often much lower,
but especially complex Celonis PQL statements on huge datasets lead to outliers in
execution time. In around 90% of the cases, the execution time is less than a second.
Nevertheless, we still aim for continuous performance improvements in order to
further reduce the execution time of complex Celonis PQL statements, like heavily
nested queries, in the future.

4 The Celonis Process Query Language

The intention of Celonis PQL is to provide a query language for performing process
mining tasks on large amounts of event data. As described in Sect. 2.2, it is based on
a relational data model. The event and business data as well as all results (including
the mined process models) are represented as relational data.

Currently, the supported data types comprise STRING, INT, FLOAT, and DATE.
Boolean values are not directly supported, but can be represented as integers. Each
data type can hold NULL values. In general, Celonis PQL treats NULL values as non-
existing and ignores them in aggregations. Also, row-wise operations like adding the
values of two columns will return NULL if one of its inputs is NULL.

Operators usually create and return a single column that is either added to an
existing table (e.g., the case or activity table) or to a new, temporary result table.
Only a few operators (e.g., for computing a process graph) create and return one
or more tables with multiple columns. However, these operators are only used
internally by GUI components and are not exposed to the end-user.

Currently, Celonis PQL provides more than 150 different operators to process the
event data. Due to space limitations, we cannot sketch the full language. However,
we can offer a brief overview of the major language features before we present
selected examples to showcase the expressiveness of the language. Comprehensive
documentation of the Celonis PQL operators can be accessed via the free process
mining platform Celonis Snap.1

4.1 Language Overview

Even though Celonis PQL is inspired by SQL, there are major differences between
the two query languages. Figure 6 shows these differences by comparing how to
query the cases and the number of involved departments for all orders with a value

1 https://www.celonis.com/snap-signup/ (registration required).

https://www.celonis.com/snap-signup/
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SELECT
   COUNT ( DISTINCT "Activities"."Department" ),

   "Cases"."CaseID"

FROM
   "Activities"
LEFT JOIN
   "Cases"
ON
   "Activities"."CaseID" = "Cases"."CaseID"

GROUP BY
   "Cases"."CaseID"

WHERE
   "Cases"."OrderValue" > 1000 ;

TABLE (
   COUNT ( DISTINCT "Activities"."Department" ),

   "Cases"."CaseID"
);

FILTER "Cases"."OrderValue" > 1000 ;

SQL Celonis PQL

KPI

Implicit joins
from Data Model

Implicit
grouping

Filter

Dimension

Fig. 6 Comparing SQL and Celonis PQL by an example query

of more than 1000 euros in both languages. Furthermore, it also illustrates the key
concepts of Celonis PQL.

Similar to SQL, Celonis PQL enables the user to specify the data columns to
retrieve from the data model. This can either be an aggregation, which we call a KPI,
or an unaggregated column, which we call a dimension. While the data columns are
part of the SELECT statement in SQL, Celonis PQL requires them to be wrapped in
the TABLE operator, which combines the specified columns into a common table.

In contrast to SQL, Celonis PQL does not require the user to define how to join
the different tables within the query. Instead, it implicitly joins the tables according
to their foreign key relationships that have to be defined only once in the data
model. Also, the grouping clause is not needed in Celonis PQL as each selected
column, which is not aggregated (i.e., a dimension), is implicitly used as a grouper.
According to the design goals, implicit joins and groupings significantly reduce the
size and complexity of the queries and make it much simpler to formulate them.

Both languages offer the possibility to filter rows. While SQL requires the user
to formulate the filter condition in the WHERE clause of the query, Celonis PQL
offers the FILTER statements that are separated from the TABLE statements but
executed together. Splitting the data selection and the filters into different statements
enables the user to define multiple filter statements in different locations inside an
application, which then can be combined into the table statement to query the data.

Beyond this simple structure, Celonis PQL provides a wide range of different
operators that can be combined to answer complex business questions. The follow-
ing list gives an overview of the most important classes of operators.

Aggregations. Celonis PQL offers a wide range of aggregation functions, from
simple standard functions like count and average, to more advanced aggregations
like standard deviation and quantiles. Most of the aggregation functions are also
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available as window-based functions computing the aggregation not over all
values but over a user-defined sliding element window.

Data functions. These are operators like REMAP_VALUES (see Sect. 4.2) and
CASE WHEN (see Sect. 5.1), which allow for conditional changes of values.

Date and time functions. These functions enable the user to modify, project, or
round a date or time value, e.g., add a day to a date or extract the month from
a timestamp. There are also functions to compute date and time difference (e.g.,
between timestamps of events).

Index functions. Index functions create indices based on columns. The function
INDEX_ACTIVITY_LOOP, for example, returns for each activity how many
times it has occurred in direct succession in a case. This is useful, e.g., for
identifying self-loops and computing their cycle lengths.

Machine learning functions. There are various machine learning functions
available, e.g., to cluster data using the k-means algorithm or learn decision trees.

Math functions. Celonis PQL offers a wide range of mathematical functions,
e.g., for arithmetic computations, rounding float numbers, and computing
logarithms.

Predicates and logical operators. For expressing complex filter conditions,
Celonis PQL offers a variety of predicates (like range-based or pattern-based
comparison) and standard Boolean operators (AND, OR, and NOT).

Process functions. Process functions comprise all process-specific functions that
operate on the activity table and take its configuration into account. Examples
are pattern-based process filters, SOURCE and TARGET operators (see Sect. 4.2),
and computation of variants (see Sect. 4.3). There are also special process mining
operators for discovering process models, clustering variants, and checking the
conformance of a process model to the event data (see Sect. 4.4).

String modification. These functions enable the user to modify string values,
e.g., trimming whitespaces, changing case, and creating substrings.

A major difference between SQL and Celonis PQL is the different language
scope. Hence, Celonis PQL does not support all operators that are available in
SQL. This is due to the fact that the development of the language is driven by
customer requirements, and only operators that are needed for the target use cases
are implemented. For example, generic set operators like UNION are not supported,
as they have not been required so far.

Another major difference to SQL is the missing support of a data manipulation
language (DML). As all updates in the process mining scenario should come from
the source systems, there is no need to directly manipulate and update the data
through the query language. As the data can be considered to be read-only, this also
allows for specific performance optimizations during implementation (see Sect. 6).

Furthermore, Celonis PQL does not provide any data definition language (DDL).
As the data model is created by a visual data model editor and stored internally,
there has not been any need for this so far.

In contrast to SQL, Celonis PQL is domain-specific and offers a wide range of
process mining operators that are not available in SQL. Consequently, Celonis PQL
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seamlessly integrates the data with the process perspective. In the following, we
explain selected process operators like SOURCE and TARGET (Sect. 4.2),VARIANT
(Sect. 4.3), and CONFORMANCE (Sect. 4.4) in more detail.

4.2 Source and Target Operators

In process mining applications it is often required to relate an event to another
event that directly or eventually follows. For instance, this is required to compute
the throughput time between two events by calculating the difference between the
corresponding timestamps. Due to the relational data model, the timestamp values
to subtract are stored in different rows. However, the operators (e.g., arithmetic
operations) usually can only combine values from the same row. Therefore, we need
a way to combine values from two different rows into the same row for performing
such computations.

To overcome this issue, Celonis PQL relies on the SOURCE and TARGET
operators. Figure 7 shows an example that illustrates how SOURCE and TARGET can
be used to compute the throughput time between an event and its direct successor.
While SOURCE always refers to the actual event, TARGET refers to its following
event. Consequently, SOURCE and TARGET can be used to combine an event with
its following event in the same row of a table. Both operators accept a column of
the activity table as input and return the respective value of the referred event, as
illustrated in Fig. 7.

For the first event in the ACTIVITIES table, SOURCE returns the activity name “A”
of the current event, while TARGET returns the activity name “B” of the following
event (refer to 1 in Fig. 7). For the second event of the input table, SOURCE returns

TABLE (
SOURCE ( "ACTIVITIES"."ACTIVITY" ),
TARGET ( "ACTIVITIES"."ACTIVITY" ),
MINUTES_BETWEEN ( SOURCE ("ACTIVITIES"."TIMESTAMP" ), 

TARGET ("ACTIVITIES"."TIMESTAMP" ) )
);

Query

Input Output

CASE_ID ACTIVITY TIMESTAMP
1 ‘A’ 2019-01-01 13:00:00

1 ‘B’ 2019-01-01 13:01:00

1 ‘C’ 2019-01-01 13:07:00

1 ‘D’ 2019-01-01 13:09:00

Source Target Throughput Time (mins)
‘A’ ‘B’ 1
‘B’ ‘C’ 6
‘C’ ‘D’ 2

ACTIVITIES

RESULT

1
1

2

3

2
3

Fig. 7 Example of throughput time computation using SOURCE and TARGET operators
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“B” and TARGET returns “C” (refer to 2 in Fig. 7) while they return “C” and “D”
for the third event (refer to 3 in Fig. 7).

The example also demonstrates how the SOURCE and TARGET operators can be
used to compute the throughput time. Instead of the activity column, we can use the
column containing the timestamp of the events as input. Consequently,SOURCE and
TARGET return the timestamps of the referred events. Then, we can pass the result
columns of the SOURCE and TARGET operators to the MINUTES_BETWEEN oper-
ator to compute the difference between the timestamps of an event and its following
event in minutes. In the example of Fig. 7, this results in throughput times of 1
minute from “A” to “B”, 6 minutes from “B” to “C”, and 2 minutes from “C” to “D”.

Syntax 1 SOURCE and TARGET operators

SOURCE ( input_column [, filter_column ] [, edge_config ] )

TARGET ( input_column [, filter_column ] [, edge_config ] )

edge_config ← ANY_OCCURRENCE[] TO ANY_OCCURRENCE[]
| FIRST_OCCURRENCE[] TO ANY_OCCURRENCE[]
| FIRST_OCCURRENCE[] TO ANY_OCCURRENCE_WITH_SELF[]
| ANY_OCCURRENCE[] TO LAST_OCCURRENCE[]
| FIRST_OCCURRENCE[] TO LAST_OCCURRENCE[]

Syntax 1 shows the syntax of the SOURCE and TARGET operators, which is
similar for both operators. The first parameter is a column of the activity table. Its
values are mapped to the referred events and returned as result column. The result
column is stored in a temporary result table that can be joined with the case table.

To skip certain events, the SOURCE and TARGET operators accept an optional
filter column as a parameter. This column must be of the same size as the activity
table. The SOURCE and TARGET operators ignore all events that have a NULL value
in the related entry of the filter column. Usually, the filter column is created using
the REMAP_VALUES operator.

Syntax 2 REMAP_VALUES operator

REMAP_VALUES ( input_column ( , [ string , string ] )+ [, other_value ] )

REMAP_INTS ( input_column ( , [ integer , integer ] )+ [, other_value ] )

The syntax of the REMAP_VALUES operator is shown in Syntax 2. The first
parameter is an input column of type string that provides the values that should
be remapped as input. For creating a filter column for the SOURCE and TARGET
operators, this input column is usually the activity column of the activity table.
However, REMAP_VALUES can be generally applied to any column of type string.
The second parameter is a list of one or more pairs of string values that describe the
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mapping. Each occurrence of the first value of the pair will be remapped to the sec-
ond value of the pair. Finally, the operator accepts an optional string value that will
replace all values that are not remapped within the mapping. If this optional default
replacement value is missing, all values not considered in the mapping will remain
unchanged. As the REMAP_VALUES operator is only applicable to columns of type
string, REMAP_INTS provides a similar functionality for columns of type integer.

Figure 8 shows a simple example of the REMAP_VALUES operator. It takes the
activity column of the activity table as input and maps “B” and “C” to NULL. As the
optional replacement value is not defined, all the other values (“A” and “D”) remain
the same. Figure 9 demonstrates how to use the result of the REMAP_VALUES as
filter column for the SOURCE and TARGET operators by an example query.

The query returns the activity names of the source and target events given in the
input table ACTIVITIES. However, the RESULT table only shows one row relating
“A” to “D” because the activities “B” and “C” are filtered out. This is achieved
by passing the result of the REMAP_VALUES operator as shown in Fig. 8 to the
SOURCE operator as filter column. As both activities “B” and “C” are mapped

TABLE (
  REMAP_VALUES ( "ACTIVITIES"."ACTIVITY", [ 'B', NULL ], [ 'C', NULL ] ) )
);

Query

Input Output

CASE_ID ACTIVITY TIMESTAMP
1 ‘A’ 2019-01-01 13:00:00
1 ‘B’ 2019-01-01 13:01:00
1 ‘C’ 2019-01-01 13:07:00
1 ‘D’ 2019-01-01 13:09:00

ACTIVITIES

Remapped Values
‘A’
NULL
NULL
‘D’

RESULT

Fig. 8 Example of REMAP_VALUES operator

TABLE (
  SOURCE ( "ACTIVITIES"."ACTIVITY", 

REMAP_VALUES ( "ACTIVITIES"."ACTIVITY", [ 'B', NULL ], [ 'C', NULL ] ) ),
  TARGET ( "ACTIVITIES"."ACTIVITY" ),
  MINUTES_BETWEEN ( SOURCE ("ACTIVITIES"."TIMESTAMP" ), 
                    TARGET ("ACTIVITIES"."TIMESTAMP" ) )
);

Query

Input Output

CASE_ID ACTIVITY TIMESTAMP
1 ‘A’ 2019-01-01 13:00:00
1 ‘B’ 2019-01-01 13:01:00
1 ‘C’ 2019-01-01 13:07:00
1 ‘D’ 2019-01-01 13:09:00

ACTIVITIES

Source Target Throughput Time (mins)
‘A’ ‘D’ 9

RESULT

Fig. 9 Example for omitting activities “B” and “C” in SOURCE and TARGET operators
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A B C

A B CB

A B CB

A B CB

A B CB

(a) ANY_OCCURRENCE[] TO ANY_OCCURRENCE[] (default)

(d) ANY_OCCURRENCE[] TO LAST_OCCURRENCE[]

(e) FIRST_OCCURRENCE[] TO LAST_OCCURRENCE[]

(c) FIRST_OCCURRENCE[] TO ANY_OCCURRENCE_WITH_SELF[]

(b) FIRST_OCCURRENCE[] TO ANY_OCCURRENCE[]

Fig. 10 Available edge configuration options of the SOURCE and TARGET operators

to NULL, the next subsequent activity of “A” is “D” with a throughput time of 9
minutes.

To define which relationships between the events should be considered, the
operators offer the optional edge configuration parameter. Figure 10 illustrates the
different edge configuration options. The first option (a) is the default and only
considers the direct follow relationships between the events, while option (b) only
considers relationships from the first event to all subsequent events. Option (c) is
similar to option (b) but also considers self-loops of the first event. Option (d) is the
opposite of option (b) and only considers relationships going from any event to the
last event. Finally, option (e) only considers the relationship between the first and the
last event. The different options enable the user to compute KPIs between different
activities of the process. For example, you can use option (b) to compute how many
minutes after the start of the process (indicated by the first activity “A”) an activity
was executed. This is illustrated in Fig. 11 where SOURCE always refers to the first
event of the case (activity “A”) while TARGET refers to any other event (activities
“B”, “C”, and “D”). Consequently, MINUTES_BETWEEN computes the minutes
elapsed between the occurrence of “A” and all the other activities of the case. For
computing the remaining process execution time for each activity of the process,
you can simply adapt the edge configuration in the query from Fig. 11 to option (d).

To simplify the query, the optional edge configuration and the filter column need
to be defined in only one occurrence of SOURCE or TARGET per query. The settings
are implicitly propagated to all other operators in the same query. This can be seen
in the query in Fig. 9, where the TARGET operator inherits the filter column from
the SOURCE operator.

Besides the computation of custom process KPIs, like the throughput time
between certain activities, SOURCE and TARGET also enable more advanced use
cases, like the segregation of duties, as we will demonstrate in Sect. 5.3. A concept
similar to the SOURCE and TARGET operators has recently been proposed in [3].
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TABLE (
  SOURCE ( "ACTIVITIES"."ACTIVITY", FIRST_OCCURRENCE[] TO ANY_OCCURRENCE[] ),
  TARGET ( "ACTIVITIES"."ACTIVITY" ),
  MINUTES_BETWEEN ( SOURCE ("ACTIVITIES"."TIMESTAMP" ), 
                    TARGET ("ACTIVITIES"."TIMESTAMP" ) )
);

Query

Input Output

CASE_ID ACTIVITY TIMESTAMP
1 ‘A’ 2019-01-01 13:00:00

1 ‘B’ 2019-01-01 13:01:00

1 ‘C’ 2019-01-01 13:07:00

1 ‘D’ 2019-01-01 13:09:00

Source Target Throughput Time (mins)
‘A’ ‘B’ 1
‘A’ ‘C’ 7
‘A’ ‘D’ 9

ACTIVITIES

RESULT

1
2
3

31 2

Fig. 11 Example for computing how many minutes after the start of the process an activity was
executed

4.3 Variant Computation

The computation of variants is a vital task in process mining. Most process discovery
algorithms, like the Inductive Miner [8] or the Heuristics Miner [17], use them as
input instead of the raw events and cases to significantly speed up the computation.
To compute variants, Celonis PQL provides the VARIANT operator that aggregates
all events of a case into a string, which represents the variant of the case. The
resulting column is added to the case table such that each case is related to its
respective variant.

Syntax 3 VARIANT operator and VARIANT operator with reduced self-loops

VARIANT ( input_column )

SHORTENED ( VARIANT ( input_column ) [, max_cycle_length ] )

The syntax of the VARIANT operator is shown in Syntax 3. As input, the operator
uses a column of type string from the activity table. The operator concatenates the
string values of the given column into a single string delimited by comma and adds
the result to the row of the related case. Usually, the activity column is used as
input; however, other columns of the activity table, like the name of the executing
department or user, can be used.

Sometimes, different cases may have self-loops of the same activity but with
a different number of activities. Consequently, these cases are related to different
variants. However, in some applications it is not of interest how often an activity
is repeated but only if there is a self-loop or not. For such cases, the VARIANT
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TABLE (
  "CASES"."CASE_ID",
  VARIANT ( "ACTIVITIES"."ACTIVITY" ),
  SHORTENED ( VARIANT ( "ACTIVITIES"."ACTIVITY" ) )
);

Query

Input Output

CASE_ID ACTIVITY TIMESTAMP
1 ‘A’ 2019-01-01 13:00:00
1 ‘B’ 2019-01-01 13:01:00
1 ‘C’ 2019-01-01 13:02:00
2 ‘A’ 2019-01-01 13:03:00
2 ‘B’ 2019-01-01 13:04:00
2 ‘B’ 2019-01-01 13:05:00
2 ‘C’ 2019-01-01 13:06:00
3 ‘A’ 2019-01-01 13:07:00
3 ‘B’ 2019-01-01 13:08:00
3 ‘B’ 2019-01-01 13:09:00
3 ‘B’ 2019-01-01 13:10:00
3 ‘C’ 2019-01-01 13:11:00

CASE_ID Variant Shortened
1 ‘A, B, C’ ‘A, B, C’
2 ‘A, B, B, C’ ‘A, B, B, C’
3 ‘A, B, B, B, C’ ‘A, B, B, C’

ACTIVITIES

RESULT

CASE_ID
1
2
3

CASES

ACTIVITIES.CASE_ID CASES.CASE_ID
Foreign Keys

Fig. 12 Example for the VARIANT operator with and without reduced self-loops

operator can be wrapped by the SHORTENED command, which shortens self-loops
to a maximum number of occurrences. In this way, it is possible to abstract from
repeated activities and reduce the number of distinct variants. The limit for the
length of the self-loops can be specified by an optional parameter. The default value
for the maximum cycle length is 2.

Figure 12 shows an example query for the variant computation. The input data
consists of an activity table and a case table, which can be joined by the foreign
key relationship between the CASE_ID columns of both tables. For each case, the
query result shows the variant string (VARIANT column) and the variant string with
reduced self-loops (SHORTENED column). Column VARIANT of the RESULT table
shows individual variants (with a varying number of “B” activities) for each case,
while column SHORTENED shows equal variants for the cases 2 and 3 where the
third “B” activity of case 3 is omitted.
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4.4 Conformance Checking

Besides process discovery, conformance checking is another important process
mining technique that relates a process model to an event log [4]. It enables the
identification of deviations of the as-is process—as reflected by the data in the event
log—from the to-be process as defined by a prescriptive process model. Celonis
PQL offers such conformance checking capability via the CONFORMANCE operator.

Syntax 4 CONFORMANCE operator

CONFORMANCE ( activity_column, model )

READABLE ( CONFORMANCE ( activity_column, model ) )

model ← places, transitions, flows, mapping, start_places, end_places
places ← node_list
transitions ← node_list
start_places ← node_list
end_places ← node_list
node_list ← [ ( string_id )+ ]
flows ← [ ( [ string_id string_id ] )+ ]
mapping ← [ ( [ string string_id ] )+ ]

The syntax of the CONFORMANCE operator is shown in Syntax 4. It accepts an
activity column and a description of a process model, as a Petri net, as input. The
first part of the model description is a list containing all places of the Petri net, each
specified by a unique string ID. It is followed by a similar list of all transitions.
The third part of the model description is a list of flow relations, where each flow
relation is specified as a pair of the source place and the target transition or a pair
of the source transition and the target place, respectively. After that, a list of value
pairs defines the mapping of activity names to the related transitions. The first value
in such a pair is an activity name as a string while the second value is the ID of
a transition that must be defined in the list of transitions. The last two parts of the
model description are the lists of start and end places, respectively. Both lists consist
of place IDs that must be specified in the first part of the model description.

The CONFORMANCE operator replays the activities’ names from the input
column on the process model. As a result, it adds a temporary column of type integer
to the activity table. The value of a row in this fresh column indicates if there is a
conformance issue or not. Also, the type of violation and the related activities in the
process model are encoded in this value.

As the integer encoding is not suitable for the end-user, the CONFORMANCE
operator can be wrapped in the READABLE command. If there is a violation, this
will translate the encoding into a message explaining the violation.

Figure 13 shows an example query that uses the CONFORMANCE operator, which
takes an activity table with three different cases as input. The process model that
should be related to the event log is illustrated in Fig. 14. It is a simple Petri net
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Fig. 13 CONFORMANCE operator example with integer encoding and readable explanation

A B
P_0 P_1 T_12 T_01 P_2 

Fig. 14 Simple Petri net used in conformance checking example

consisting of two transitions and three places forming a trivial sequence of two
activities “A” and “B”.

The result of the query consists of four columns with CASE_ID as the first, and
ACTIVITY as the second column. The third column (CONFORMANCE) shows the
integer encoded result of the CONFORMANCE operator, while the fourth column
(READABLE) shows intuitive messages explaining the deviations. Even though
activity “A” matches the model, the first row is marked as incomplete because it
is the last activity of case 1, which does not reach the end of the process due to the
missing activity “B”. For case 2, the first activity (row 2) conforms, but the second
activity (“C” in row 3) is not part of the process model and, therefore, is marked as
an undesired activity. In contrast to that, case 3 fully conforms, which is indicated
for all its activities (rows 4 and 5) of the output.

As the example illustrates, the model description is quite extensive even for such
a small model that seems to contradict the design goal of keeping the language
as simple as possible. However, the conformance operator is usually called from a
GUI component. Using this component, the user can upload, automatically discover,
or manually model a process model in Business Process Model and Notation
(BPMN) [12] representation, which is automatically translated into the required
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string description. The GUI component can also bind the model description string
to a variable. Instead of defining the process model in the query, the user can simply
insert the variable, which makes it much easier to use the CONFORMANCE operator
in other GUI components. For example, the user can apply the CONFORMANCE
operator in a filter in order to restrict a data table or chart only to cases that are
marked as incomplete.

5 Use Cases

This section demonstrates the applicability of Celonis PQL for solving real-
world problems of business users. First, we show how Celonis PQL is used to
discover working capital optimizations. In our example, we identify early invoice
payments to improve the on-time payment rate (Sect. 5.1). Second, we demonstrate
how Celonis PQL is used to identify ping-pong-cases in IT service management
processes in order to reduce ticket resolution times (Sect. 5.2). Third, we show the
application of Celonis PQL for detecting segregation of duties violations to prevent
fraud and errors in procurement (Sect. 5.3).

5.1 Working Capital Optimization by On-Time Payment
of Invoices

Working capital is defined as the difference between a company’s current assets
and its current liabilities essential for the smooth operation of a business, and is a
key figure for measuring a company’s liquidity and its short-term financial health.
Working capital management aims to optimize liquidity while ensuring sustained
operations in the long term. Typical ways to optimize the working capital are
inventory reduction, faster collection of receivables, and lengthening of the payable
cycle. Activities for optimization within these areas are manifold. One example
for lengthening the payable cycle is on-time payment of invoices by avoiding both
early and late payments. Eradicating early payments can improve working capital
by keeping assets until the day they are due. Preventing late payments can stop late
payment penalties and allows to take advantage of cash discounts.

Query 1 shows a Celonis PQL statement for the calculation of the early payment
ratio per vendor. Using this query, the user is able to discover the vendors that have
the highest ratio of invoices paid more than three days early.

The distinction whether an invoice was paid more than three days before the
due date is made within the CASE WHEN statement (lines 7–17) by calculating
the throughput time with the CALC_THROUGHPUT function (lines 9–12). The
CALC_THROUGHPUT operator takes the timestamp of the first occurrence of
activity “Clear Invoice” and the timestamp of the first occurrence of activity
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Query 1 Average days of early payments per vendor

1 FILTER PROCESS EQUALS ’Clear Invoice’;
2 FILTER PROCESS EQUALS ’Due Date passed’;
3

4 TABLE (
5 "Invoice"."VendorName",
6 AVG(
7 CASE
8 WHEN COALESCE(
9 CALC_THROUGHPUT(

10 FIRST_OCCURRENCE[’Clear Invoice’] TO
11 FIRST_OCCURRENCE[’Due Date passed’],
12 REMAP_TIMESTAMPS("Activities"."Eventtime", DAYS)),
13 0
14 ) > 3
15 THEN 1.0
16 ELSE 0.0
17 END
18 ) AS "TooEarlyRatio"
19 ) ORDER BY "TooEarlyRatio" DESC;

“Due Date passed” and calculates the difference. The second parameter, given as
REMAP_TIMESTAMPS operator (line 12), counts time units in the specified interval
DAYS based on the timestamps in the activity table to enable the calculation of
the throughput time. As the CALC_THROUGHPUT operator returns NULL if the
end date is before the start date, the result of the calculation is wrapped in the
COALESCE (lines 8–14) operator to return 0 in these cases. The result of the
COALESCE operator is then compared to the specified three days (line 14). If the
result is greater than 3, the CASE WHEN statement returns 1; otherwise 0.

The whole CASE WHEN statement is wrapped in the AVG operator (lines 6–
18), allowing to calculate the ratio of invoices paid more than three days early. By
specifying the vendor name ("Invoice"."VendorName") as a dimension in
the TABLE statement (lines 4–19), the ratio is calculated per vendor. To get the
vendors with the highest ratio of early invoice payments, the result of the AVG
calculation is sorted in descending order by the ORDER BY statement (line 19).
The two FILTER statements (lines 1 and 2) at the beginning of the query ensure
that only cases with an already paid invoice and a specified due date are considered
within the calculation.

5.2 Identifying Ping-Pong-Cases for Ticket Resolution Time
Reduction

IT service management (ITSM) refers to the measurements and methods performed
by an organization to ensure the optimal support of IT services provided to
customers. Service-level agreements (SLAs) between the organization (also referred
to as service provider) and the customers (also referred to as service user) define



Celonis PQL: A Query Language for Process Mining 399

Query 2 Direct ping-pong-case ratio per country

1 TABLE (
2 "Tickets"."Country",
3 COUNT(DISTINCT
4 CASE
5 WHEN "Activities"."Activity" = ’Change Assigned Group’
6 AND "Activities"."Activity" = ACTIVITY_LEAD("Activities"."Activity",2)
7 AND "Activities"."Activity" != ACTIVITY_LEAD("Activities"."Activity",1)
8 THEN "Activities"."TicketId"
9 ELSE NULL

10 END
11 )
12 /
13 COUNT_TABLE("Tickets")
14 AS "DirectPingPongRatio"
15 ) ORDER BY "DirectPingPongRatio" DESC;

particular aspects of the provided support like availability, responsibility, and most
important quality. SLAs are important factors influencing service quality levels and
customer happiness. Therefore, compliance with defined SLAs is essential.

Customer support within ITSM systems is usually carried out by creating a ticket
for each customer inquiry in the system and solving these tickets. Thus, an important
key figure for ITSM is the resolution time of a ticket. A ticket is ideally resolved
without the interference of many departments or teams. However, in so-called ping-
pong-cases, a ticket is repeatedly going back and forth between departments or
teams. This is massively slowing down the resolution time. To prevent this, the
identification of ping-pong-cases is crucial.

Query 2 shows a Celonis PQL query to identify direct ping-pong-cases. A
case in this context is equivalent to a ticket. Direct ping-pong refers to tickets in
which the same activity appears (at least) two times with only one other activity
in between, e.g., “Change Assigned Group” directly followed by “Review Ticket”
directly followed by “Change Assigned Group”.

The query calculates whether a ticket is a ping-pong-case or not within the CASE
WHEN statement (lines 4–10). If the current activity equals “Change Assigned
Group”, the second next activity is equal to the current activity, and the next activity
is not equal to the current activity, the ticket is classified as ping-pong-case and
the CASE WHEN statement returns the ticket ID. The comparison between the
current activity, the next, and the second next activity is achieved by using the
ACTIVITY_LEAD operator (lines 6 and 7). In general, the ACTIVITY_LEAD
operator returns the activity from the row that follows the current activity by offset
number of rows within a case. As the timestamp column of the activity table is
defined in the data model, the ACTIVITY_LEAD operator can implicitly rely on
the correct ordering of events. The CASE WHEN statement is wrapped in a COUNT
operator (lines 3–11) to count the total number of ping-pong-cases. By adding
DISTINCT (line 3) to the COUNT operator, it is guaranteed that a ticket is only
counted once although ping-pong activities can occur multiple times within a ticket.
The result of the COUNT operator is then divided by the total number of tickets to get
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Query 3 Indirect ping-pong-case ratio per country

1 FILTER "Activities"."Activity" = ’Change Assigned Group’;
2

3 TABLE(
4 "Tickets"."Country",
5 COUNT(DISTINCT
6 CASE
7 WHEN ACTIVATION_COUNT("Activities"."Activity") > 1
8 AND "Activities"."Activity" != ACTIVITY_LAG("Activities"."Activity",2)
9 AND "Activities"."Activity" != ACTIVITY_LAG("Activities"."Activity",1)

10 THEN "Activities"."TicketId"
11 ELSE NULL
12 END
13 )
14 /
15 COUNT_TABLE("Tickets")
16 AS "IndirectPingPongRatio"
17 ) ORDER BY "IndirectPingPongRatio" DESC;

the ratio of ping-pong-cases. Thereby, the total number of tickets is calculated using
the COUNT_TABLE operator (line 13). COUNT_TABLE is a performance-optimized
function for counting the number of rows of a specified table. By specifying
the country ("Tickets"."Country", line 2) as a dimension in the TABLE
statement (lines 1–15), the ratio of ping-pong-cases is calculated per country. In
order to get the countries with the highest ratio of ping-pong-cases, the calculated
ratio is sorted in descending order by the ORDER BY statement (line 15).

Query 3 shows a Celonis PQL query to identify indirect ping-pong-cases. Indirect
ping-pong refers to tickets in which the activity “Change Assigned Group” appears
at least two times with more than one other activity in between, e.g., “Change
Assigned Group”, directly followed by “Review Ticket”, directly followed by “Do
some work”, directly followed by “Change Assigned Group”.

The query shown in Query 3 calculates whether a ticket is an indirect ping-
pong-case or not by using the operators ACTIVATION_COUNT (line 7) and
ACTIVITY_LAG (lines 8 and 9) within a CASE WHEN statement (lines 6–12).

ACTIVATION_COUNT returns, for every activity, how many times it has already
occurred (so far) in the current case. Within the CASE WHEN statement, the ticket
ID is returned if the ACTIVATION_COUNT is greater than 1 and the current
activity is not equal to the last and the second last activity. The latter comparison is
calculated by the ACTIVITY_LAG operator. In general, ACTIVITY_LAG returns
the activity from the row that precedes the current activity by offset number of rows
within a case.

If one of the expressions in the WHEN-clause (lines 7–9) is FALSE, the CASE
WHEN statement returns NULL. As in the example for direct ping-pong-cases, the
CASE WHEN statement is wrapped in a COUNT operator (lines 5–13) to count the
total number of ping-pong-cases. By adding DISTINCT (line 5) to the COUNT
operator, it is guaranteed that a ticket is only counted once as an indirect ping-
pong-case. The result of the COUNT operator is then, again, divided by the total
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Query 4 Violated SoD ratio per purchase organization

1 TABLE (
2 "PurchaseOrders"."PurchaseOrganization",
3 AVG(
4 CASE
5 WHEN SOURCE ( "Activities"."Department",
6 REMAP_VALUES ( "Activities"."Activity",
7 [ ’Request Approval’, ’Request Approval’ ],
8 [ ’Grant Approval’, ’Grant Approval’ ],
9 NULL

10 )
11 ) = TARGET ( "Activities"."Department" )
12 THEN 1.0
13 ELSE 0.0
14 END
15 )
16 ) AS "SoDViolationRatio"
17 ) ORDER BY "SoDViolationRatio" DESC;

number of tickets to get the ratio of indirect ping-pong-cases. Thereby, the total
number of tickets is calculated using the COUNT_TABLE operator (line 15). The
country ("Tickets"."Country", line 4) is specified as a dimension in the
TABLE statement (lines 3–17) to calculate the ratio of indirect ping-pong-cases per
country. To get the countries with the highest ratio of indirect ping-pong-cases, the
calculated ratio is sorted in descending order by the ORDER BY statement (line 17).
The FILTER statement (line 1) at the beginning of the query ensures that the current
activity is “Change Assigned Group”.

5.3 Fraud Prevention by Identifying Segregation of Duties
Violations

Segregation of Duties (SoD) is a concept based on shared responsibilities: It
ensures that certain activities are not executed by the same person or department. It
applies the four-eyes principle and decreases the power of an individual person or
department in order to prevent fraud and errors. Therefore, the concept is essential
for effective risk management and internal controls. In procurement, unauthorized or
unnecessary purchase orders or purchase orders for personal use may occur if duties
are not separated properly. With this in mind, it is best practice in procurement to
have different people, or departments, for purchase approvals and invoice payment
approvals.

Query 4 shows a Celonis PQL query for the calculation of the ratio of purchase
orders in which the SoD for the activities “Request Approval” and “Grant Approval”
was violated because the same department executed both tasks. The ratio is
calculated per purchase organization to discover the ones with the highest violation
ratio. Comparing whether the activities “Request Approval” and “Grant Approval”
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were executed by the same department is done within the CASE WHEN statement
(lines 4–14). The statement contrasts the source event department to the target event
department by using the SOURCE and TARGET operators (lines 5–11). A detailed
description of these operators can be found in Sect. 4.2. The REMAP_VALUES
function (lines 6–10) passed as a parameter to the SOURCE operator allows to
extract the activities “Request Approval” and “Grant Approval” by mapping them
to the same name while mapping all the other activities to NULL. If the comparison
between the source department and the target department returns true, the CASE
WHEN statement returns 1 (line 12); otherwise 0 (line 13).

The AVG operator (lines 3–15) in which the CASE WHEN statement is wrapped
calculates the ratio of violations of the SoD. By specifying the purchasing
organization ("PurchaseOrders"."PurchaseOrganization") as a
dimension in the TABLE statement (lines 1–17), the ratio of violations is calculated
per purchase organization. The result of the AVG calculation is sorted in descending
order by the ORDER BY statement (line 17) to get the organizations with the highest
violation rate.

6 Implementation

Celonis PQL is the basis of a commercial product that promises interactive process
mining and business intelligence using datasets with hundreds of millions of events.
For this reason, the implementation of the language has to fulfill high requirements
regarding performance, scalability, and low latency.

The implementation targets business intelligence and process mining because
our experience is that process mining unfolds its full potential in combination with
classic BI. Many insights into customer data could only be derived by taking into
account further dimensional tables, in addition to the event log. For example, to
find the country with the most segregation of duties violations (see Sect. 5.3),
information about the countries has to be available.

In the past, different types of software addressed two fields: BI and process
mining. BI is the domain of relational database systems. This is also reflected by
the TPC-H benchmark [5], which is the de facto standard benchmark for analytical
databases. The benchmark portrays a wholesale supplier in a data warehouse and
focuses on classic BI questions, but it does not consider any process mining aspects.
As a result, databases perform well in answering BI questions, but they are not
optimized to answer process mining questions.

Besides the Celonis PQL implementation, process mining is done on relational
databases, specialized implementations, or graph databases [6]. Graph databases can
be considered as a reasonable choice, because a process instance can be interpreted
as a graph. While they deliver a decent performance for process mining, a graph
database is not optimized for business intelligence. This is why our objective was
not to build upon an existing data processing solution. Instead, we wanted to
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design a system from scratch, which combines techniques from relational and graph
databases.

Like most state-of-the-art database systems, the Celonis PQL implementation
is a main memory database. This means that it uses main memory as primary
storage instead of the disk in order to avoid slow disk access. It is implemented
in C++ and Java. C++ is used for all software modules in which active control over
the main memory is necessary, like the storage layer and the performance-critical
process mining algorithms. Java is used for non-performance-critical sections, like
the parser, because of its memory safety.

The Celonis PQL Engine uses state-of-the-art techniques from the database
research community like just-in-time (JIT) compilation and dictionary encoding.
JIT compilation is a technique that generates and compiles code to execute a query.
It allows achieving a good cache locality and a low number of CPU instructions
resulting in a very high performance as shown by Neumann [11]. Dictionary
encoding is a standard compression technique to reduce the memory overhead [10].

Elements that are taken from the graph community are some algorithms and data
structures, like the adjacency list. The Celonis PQL Engine thereby exploits features
of an event log, like process instances, which in most cases represent graphs with a
rather low number of nodes.

The Celonis PQL Engine implementation focuses on analytical queries. It is
snapshot-based, which means that the engine answers queries based on the data of
the source system at a particular point in time. The data is not constantly updated.
Instead, a bulk update mechanism is in place. This avoids some overhead, which
would be introduced by a concurrency control mechanism like MVCC [2].

The Celonis PQL Engine implementation is also focused on scaling with the
number of CPU cores within one server. The challenge here is that the implementa-
tion has to be lightweight enough to run on commodity laptop hardware, while it has
to be sophisticated enough to make use of all the power a high-end server provides.
This is achieved by parallel intra query execution, refer to Leis et al. [9] for details.

The Celonis PQL Engine implementation, however, is not designed to process
queries across multiple servers. This is a conscious decision because the Celonis
PQL Engine needs to provide results with low latency. Synchronizing multiple
machines across the network to execute a Celonis PQL query adds overhead,
which is against the low latency goal. The work of Schüle et al. [14] supports
our single-node approach by demonstrating that a single server can handle even
large scale applications like Wikipedia. To support such applications, lightweight
in-memory compression techniques have to be in place. The Celonis PQL Engine
implementation uses an approach for in-memory compression, which is inspired by
the work of Lang et al. [7].
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7 Celonis PQL and the Process Querying Framework

The Process Querying Framework (PQF) [13] is an abstract system consisting of a
set of generic components to define a process querying method. Celonis PQL covers
many of these components. This section describes the integration of Celonis PQL
into the PQF.

Figure 15 illustrates how Celonis PQL instantiates the main components of the
PQF. The first part of the framework (Model, Record, and Correlate) retrieves or
creates the behavioral models and formalizes the business questions into process
queries. The event logs are recorded by information systems like ERP or CRM
systems, and extracted from these source systems into the Celonis IBC platform.
The process models are either manually modeled (e.g., in Celonis IBC or in an
external tool) or discovered by process mining techniques, like the Inductive Miner
[8]. The correlation models are created by the conformance checking operator (see
Sect. 4.4), relating activities of the event log to tasks in the process model. However,
the different kinds of model repositories overlap due to their related storage, as
relational data within the same data model. For example, the result column of the
conformance checking operator (correlation model) is added to the activity table
(event log).

The query intent of Celonis PQL is limited to create and read. While all
supported kinds of behavioral models can be read, process models and correlation
models can also be created by Celonis PQL queries (e.g., by process discovery and
conformance checking). The update and delete query intents are not included—
especially for the event logs—as they should always stem from the source systems.
Therefore, event log updates can be achieved by delta loads that regularly extract
the latest data from the source systems. The process querying instruction is usually
defined by an analyst through a user interface. For example, the user defines the
columns to be shown in a table, which can be considered as the query conditions.
The selections from the user interface are then formalized into a Celonis PQL query.

The Prepare part of the framework focuses on increasing the efficiency of the
query processing. The Celonis PQL Engine—that processes the queries—maintains
a cache for query results, refer to Sect. 6. After the application starts, it warms up the
cache with the most relevant queries derived from the Process Querying Statistics
to provide fast response times. According to [13], the Indexing component does
not only include classical index structures but also all kind of data structures for
an efficient retrieval of data records. It is covered by the dictionary encoding of
columns, as discussed in Sect. 6.

The Execute part of the framework combines an event log with an optional
process model and a Celonis PQL query into a query result, which can be either
a process model, KPIs, filtered and processed event log data, or conformance
information. The concrete input and output of the query depend on the selected
query intent and the query conditions. The Filtering component reduces the input
data of the query. This can either be achieved by the REMAP_VALUES operator and
the filter column of the SOURCE and TARGET operators, as described in Sect. 4.2,
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or by the general filter statement shown in the example in Fig. 6. The Optimizing
component uses basic database technology to rewrite the query and create the
Execution Plan, which describes a directed graph of operator nodes. The Process
Querying component then executes the execution plan on the filtered data. It also
retrieves data from the cache to avoid re-computation of either the full query or
certain parts of it, which are shared with previous queries.

The Interpret part of the framework communicates the query results to the user
and improves the user’s comprehension of them. The applications in the Celonis IBC
platform incorporate Celonis PQL and make the results accessible to the user. The
Process Analytics presents the query results as process graphs, charts, and tables.
Beyond pure visualization, it is highly interactive with dynamic filtering to drill-
down the processes to specific cases of interest. This interactivity offered by all
GUI components is achieved through the dynamic creation of Celonis PQL queries.

Process Conformance [16] shows the deviations between process model and
event log in a comprehensive view, including a comparison of KPIs between
conforming and non-conforming cases. In contrast to this, the focus of the Action
Engine [1] is not to present query results, but to trigger user actions, for instance,
by informing about deliveries that are expected to be late. The Action Engine can
also trigger automated workflows that are executed by the Process Automation
component. Within this component, the workflows can query data from the event
log using Celonis PQL.

Transformation Center supports process monitoring. It historicizes the query
results to show how the processes evolved over time. Finally, Machine Learning
Workbench provides a platform for user-defined machine learning analyses over
event logs and retrieves the event data using Celonis PQL queries.

8 Conclusion and Future Work

In this chapter, we introduced Celonis PQL, which is an independent query language
with a custom-built query engine. It is highly optimized for process mining
capabilities, and although it was inspired by SQL, the design of Celonis PQL is
mostly driven by requirements of business users. A key difference to SQL is that
Celonis PQL is a domain-specific language tailored toward a concrete data model.
As a consequence, it does not require the user to explicitly define joins of data tables
or groupings within the query, which is done implicitly.

As Celonis PQL comprises more than 150 different operators to process event
data, we could only provide an overview of the major language features that are
currently offered to users and showcase the expressiveness of the language with a
few examples. Besides the description of the language, we illustrated the application
of Celonis PQL within the various products available in Celonis IBC. Presented
statistics show the extensive usage of Celonis PQL within these products. In
addition, we presented the applicability of the query language for solving different
real-world problems customers are facing, such as fraud prevention with segregation
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of duties and speed up of service requests by identifying ping-pong-cases. Finally,
we described the position of Celonis PQL within the Process Querying Framework
(PQF) [13]. Celonis PQL instantiates all parts of the PQF, except for the capability
to simulate models. Moreover, create and read query intents are covered.

Future work on Celonis PQL will focus on the implementation of new operators
to further enrich the capabilities and use cases of the query language. Additionally,
efforts will be made to improve query performance. New features will be developed
in co-innovation projects with academic and commercial partners, and with our
customers.

Readers can access a wide range of PQL functionalities for free. Business users
can use Celonis PQL in the free Celonis Snap2 version. Academic users can get free
access to the full Celonis IBC technology including the wide range of Celonis PQL
capabilities via the Celonis IBC—Academic Edition.3
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Process Querying Using Process Model
Similarity

Remco M. Dijkman and Rik Eshuis

Abstract This chapter describes a specific form of process querying: process
querying using process model similarity. This form of process querying can be
applied to find one or more process models that are similar to a given query process
model. Process querying is useful when searching within a collection of reference
process models for a process model that is similar to your own. It is also useful
when refactoring a collection of process models, in which case it can be applied
to find similar process models and extract the similar parts to create common sub-
processes. Process querying consists of a set of measures that can be used to quantify
similarity between two process models as well as indexing techniques that can be
used to efficiently find a process model within a collection of process models. The
chapter shows the applicability of the techniques in a use case.

1 Introduction

A specific form of process querying is when the query takes the form of a complete
process model. There are various use cases in which querying for similar business
processes is useful. For example, when merging two organizations or organizational
units, it is interesting to determine which process in one organization corresponds to
which process in the other organization. This provides a basis for starting to merge
the two organizations or organizational units on an operational level. As another
example, for a collection of business processes it is interesting to establish where
overlap exists in the collection, in order to reduce it.

Figure 1 shows an example, in which there is a simple business process
repository, which contains three models (A, B, and C). The models are represented
in the Business Process Model and Notation (BPMN). We can query the repository
for a model that is similar to the “query model” that is also shown in the figure. In
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Fig. 1 Running example for process querying using process model similarity

this particular instance, the query should return model A, possibly model B, but not
model C. Process similarity querying is the research area that concerns itself with
the development of techniques that can do this.

The goal of this chapter is to introduce the topic of process model similarity in
such a way that the readers can start to develop their own process model similarity
querying techniques. To this end, and in accordance with the Process Querying
Framework, the chapter presents measures that can be used to determine process
model similarity. It then presents indexing structures that can be used to efficiently
query a collection of business process models for models that are similar to a given
(query) business process model. Finally, the chapter presents a detailed use case for
business process similarity querying.

2 Measures of Business Process Similarity

The basic idea behind similarity-driven process querying is to be able to determine
the level of similarity between two process models on a scale from 0 to 1. In that
way, when a query model is presented to a process repository, that model can be
compared to all models in the repository and the repository models that have a
similarity to the query model above a certain threshold can be returned (in their
order of similarity). In this section, we present various measures of business process
similarity, after presenting the preliminary definitions that are required to define the
measures.
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2.1 Preliminaries

There exist many different business process modeling languages. To define business
process similarity measures that work for each of these languages, and can even be
used to compute the similarity of business processes that are modeled in different
languages, we consider each business process as a graph [7].

Definition 2.1 (Business Process Graph) Let T be a set of types and Ω be a set
of labels. A business process graph is a tuple (N,E, τ, λ, α), in which:

– N is a finite set of nodes.
– E ⊆ N × N is a finite set of edges.
– τ : (N ∪ E)→ T associates nodes and edges with types.
– λ : (N ∪ E)→ Ω associates nodes and edges with labels.
– α : (N ∪ E)→ P(T → Ω) associates nodes and edges with attributes, where an

attribute is a combination of a type and a label.

Figure 2 shows an example in which the query model from Fig. 1 is transformed
into a graph. In this transformation, each of the nodes in the BPMN model becomes
a node in a graph and each edge between nodes becomes an edge in the graph.
The typing (τ ) function can be used to distinguish different types of nodes, such
as “tasks” and “gateways”, and possibly different types of edges, such as “flow”
and “message”. Types can also be used to represent other relations, such as the

= task
= Buy goods

τ
λBuy goods

Receive 
goods

Verify 
invoice

Store 
goods

BPMN model

= exclusive gatewayτ

= inclusive gatewayτ
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= start eventτ
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= task
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τ
λ
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= Store goods

τ
λ= task

= Verify invoice
τ
λ

Business Process Graph

Fig. 2 Transformation of a BPMN model into a business process graph
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relation between an embedded sub-process and its contents and the relation between
a boundary event and the activity that it can interrupt. In our example, there is only
one type of edge in the BPMN model (i.e., “control flow” edge), and since there
can be no confusion, for ease of reading, we omit the edge types. The labeling
(λ) function associates nodes and edges with labels. The attribute (α) function
associates nodes and edges with attributes. In our example, there are no attributes.
However, we could, for example, associate the start event with an interarrival time:
α(s1) = {(interarrival time, 5 minutes)}.

In the remainder of this chapter, we use business process graphs constructed
from BPMN models as examples, such that the different types of nodes, edges,
and attributes are taken from BPMN. To also enable comparison between business
process models in different notations, the types of nodes, edges, and attributes must
be standardized and mappings between the types from the different notations and
the standard types must be defined.

A similarity measure is a measure that, given two business process graphs,
returns a score. Often the score is chosen to be between 0 and 1, where 0 means
that the graphs are very different and 1 means that the graphs are very similar or
even identical. However, other scoring models have also been used.

Definition 2.2 (Similarity Measure) Let G be the domain of all business process
graphs. A similarity measure is a function

sim: G × G → R.

2.2 Activity-Based Similarity Measures

Activity-based similarity measures use activities to determine the similarity between
business process graphs. These measures require some way to determine the
similarity of individual tasks. There are many different ways to do this. In this
chapter, we discuss syntactic activity similarity, semantic activity similarity, and
attribute activity similarity.

Syntactic similarity between two activities is determined based on a string
comparison of the labels of the activities. A common way to determine the similarity
of two strings is by using string-edit distance [18]. The string-edit distance of
two strings is the minimum number of string operations (insert character, delete
character, and substitute character) that is necessary to transform one string into
another. For example, the edit distance between “alpha” and “beta” is 4: remove the
first “a” and substitute the characters “lph” by “bet”. The edit distance of two strings
can be transformed into a measure of similarity in various ways, for example by
taking the inverse of the edit distance. Here, we will use the measure of edit distance
similarity, which has some properties that are interesting from a similarity measure
perspective, in particular that it yields a number between 0 and 1 (inclusive), that it
yields the value 1 for identical strings, and that it is symmetric.
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Definition 2.3 (Edit-Distance Similarity) Let s, s1, s2 be strings. Furthermore,
let |s| represent the length of the string s and ed(s1, s2) the edit distance of the two
strings s1 and s2. The edit distance similarity of the two strings s1 and s2, denoted
by ed(s1, s2), is defined as

es(s1, s2) = ed(s1, s2)

max(|s1|, |s2|) .

Semantic similarity between two activities is determined by comparing the
“meaning” of the words in their labels. There exist various measures for the similar-
ity of words, based on their “meaning” (e.g., [17, 20, 28]). Here, we introduce the
one by Lin [20]. This measure assumes that words are organized in a tree, such as in
the online dictionary WordNet [21]. In such a tree, we can determine the probability
that a concept is a member of a class. For example, Fig. 3 shows a part of the
WordNet tree of “word meanings.” It shows that a dog IS-A canine IS-A carnivore.
The resulting tree must be trained based on a relevant corpus of words. This corpus
is used to count the number of times a particular word occurs. For our example in
Fig. 3, fictitious word counts are shown between brackets. Assuming that our entire
vocabulary is made up of the words from Fig. 3, then the probability that a concept
is a member of the class “dog” is 100

300 and the probability that a concept is a member
of the class “canine” is 150

300 . Word similarity can then be defined as follows [20]:

Definition 2.4 (Word Similarity) Let w1, w2 be two words. Let C1 be the class
in the tree that word w1 is in and C2 the class that word w2 is in, and C0 the lowest
common ancestor of C1 and C2. Furthermore, let P(C) be the probability that an
arbitrary word is a member of class C. The word similarity between the two words,
denoted by ws(w1, w2), is

ws(w1, w2) = 2 · log P (C0)

log P (C1)+ log P (C2)
.

This definition is based on information content theory. In this theory, the amount
of information that is revealed by an observation equals −log p, where p is the
probability of that observation occurring. In our case, we model the probability
that we encounter a particular word or synonym of that word. Based on that, we
calculate the similarity by dividing the amount of information that the words have in

Fig. 3 An excerpt from the
WordNet “word meaning”
tree

carnivore (50)

canine (50) feline (30)

dog (100) big cat (0)

lion (70)
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common by the amount of information that each word reveals individually. We need
to multiply this value by 2 to ensure that a value between zero and one is always
produced, because the divisor is the sum of two sub-classes. In the example from
Fig. 3, for the words w1 =“dog” and w2 =“canine”, P(C1) = 100

300 , P(C2) = 150
300 ,

and P(C0) = 150
300 , such that ws(w1, w2) ≈ 0.77.

Word similarity can be further improved using a number of pre-processing
techniques. Stemming [27] can be used to reduce different inflections of words to
their “stem” form (e.g., to reduce “levels”, “leveling”, and “leveled” to “level”),
thus enabling them to be related more easily to their dictionary entry. Part-of-speech
tagging [3] can be used to determine which word in the label of a task is a noun,
which is a verb, and so on, to ensure that the correct entry in the dictionary is used. It
could, for example, be used to distinguish the noun “level” from the verb “to level”.
Finally, stop-word removal can be used to remove commonly occurring words, such
as “the” and “an”, that do not add to the semantics of the label. For example, from
the perspective of semantic similarity, it does not matter if the label contains the text
“the client” or just “client”.

Once the similarity between words has been established, the similarity between
two labels, λ1 and λ2, that are composed of these words can be established. A simple
way to do that is by determining the similarity between each pair of words consisting
of a word from label λ1 and a word from label λ2, and subsequently keeping the set
of pairs that have the highest average similarity and in which each word is in at
most one pair. The average similarity is the similarity of the labels. For example,
consider two labels “evaluate customer application” and “application assessment”
with a similarity of 0.1 between the words “evaluate” and “application”, and
between “customer” and “application”, a similarity of 1.0 between “application” and
“application”, a similarity of 0.8 between “evaluate” and “assessment”, and a simi-
larity of 0.1 between “customer” and “assessment”, and between “application” and
“assessment”. The mapping between words from the first label and words from the
second label that produces the highest average similarity is the mapping that maps
“application” to “application” with a score of two times 1.0 (one for each word) and
“evaluate” to “assessment” with a score of two times 0.8. Consequently, with a total
of five words that can potentially be mapped, the score is 2·(1.0+0.8)

5 = 0.72.
Attribute similarity between two activities determines similarity based not only

on the labels, but also on the attributes, of these activities. Attribute similarity can
be computed by constructing a “virtual document” [33] for each activity. In this
context, a virtual document is a dynamically constructed description of an activity
that consists of the activity’s label as a title, as well as document sections for each
attribute, where each section has the name of the attribute as its title and the value
of the attribute as its content. Once these documents have been constructed, typical
text-search techniques can be used to compare the documents. For example, for
an activity that has the label “evaluate application”, input data “application”, and
output data “evaluation”, the following virtual document can be constructed: “Label:
evaluate application. Input data: application. Output data: evaluation”.
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Syntactic activity similarity, semantic activity similarity, and attribute activity
similarity lead to similarity of pairs of activities. This still must be reworked into
similarity of complete models. This can be done by determining an optimal mapping
between activities from the query model and activities from the document model,
based on their similarity. More precisely:

Definition 2.5 (Activity-Based Similarity) Let B1 = (N1, E1, τ1, λ1, α1) and
B2 = (N2, E2, τ2, λ2, α2) be two business process graphs. Furthermore, let lsim
be a measure to determine the similarity of activity labels as defined above, and
ts ⊆ T be the set of node types that represent activities. An optimal similarity
mapping is a mapping Mopt : N1 � N2, such that there exists no M ′ : N1 � N2
with

∑
(n1,n2)∈M ′ lsim(n1, n2) >

∑
(n1,n2)∈Mopt

lsim(n1, n2). The activity-based
similarity of B1 and B2 is the similarity induced by the optimal similarity mapping
Mopt between the tasks of the business process graphs T1 = {n1 ∈ N1|τ (n1) ∈ ts}
and T2 = {n2 ∈ N2|τ (n2) ∈ ts}:

2 ·∑(n1,n2)∈Mopt
lsim(n1, n2)

|T1| + |T2| .

The intuition behind this measure is that divisor represents the theoretical maximum
similarity, which is reached when each task from both labels is mapped with a
similarity score of 1. The dividend represents the actual similarity score of mapped
tasks. This is multiplied by 2, because each mapping maps two tasks. It is important
to note that the optimal mapping can assign a task to at most one other task.

For example, consider the query model and repository model A from our running
example in Fig. 1. Let the similarity between identical labels be 1, the similarity
between “Buy goods” and “Procure goods” be 0.9, the similarity between “Store
goods” and “Receive goods” be 0.4, and the similarity between the other labels
be 0. It is easy to see that the optimal similarity mapping maps “Buy goods” to
“Procure goods”, “Receive goods” to “Receive goods”, and “Verify invoice” to
“Verify invoice”. “Store goods” is not mapped because the mapping (�) requires
that each task is mapped at most once and mapping “Verify invoice” to one of the
tasks from the other model would lower the similarity. Consequently, the overall
similarity of the two models is 2·2.9

4+3 .

2.3 Structure-Based Similarity Measures

One common way to compare two (graph-based) models is by using the notion of
graph-edit distance [4]. The idea behind graph-edit distance is similar to the idea
behind string-edit distance. It is the minimum number of graph-edit operations that
is required to change one graph into another. The basic graph-edit operations that
are considered are:

• Insert a node into or remove a node from a graph.
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• Insert an edge into or remove an edge from a graph.
• Substitute a node for another node.

Each of the edit operations has a certain cost associated with it. We can, for
example, impose a cost of 1 for insertions and deletions. Substitution of nodes is
used to replace a node by another node. It would typically be used for nodes in one
model for which there exists a node in the other model with a similar label, type, and
attributes. The cost of substituting a node for another node could then be related to
that similarity (e.g., cost = 1 - similarity). However, these costs can be parameterized
and set to yield the best possible result, based on experimentation.

Against this background, we define graph-edit distance as follows.

Definition 2.6 (Graph-Edit Distance) Let B1 = (N1, E1, τ1, λ1, α1) and B2 =
(N2, E2, τ2, λ2, α2) be two business process graphs. Furthermore, let lsim be a
measure to determine the similarity of activity labels as defined above. A mapping
M : N1 � N2 imposes an edit distance between the two graphs, denoted by
edM(B1, B2), which is equal to the sum of:

• The number of deleted nodes: |{n1 ∈ N1|¬∃(n1, n2) ∈ M}|
• The number of inserted nodes: |{n2 ∈ N2|¬∃(n1, n2) ∈ M}|
• The number of deleted edges:
|{(n1, n

′
1) ∈ E1|¬∃(n1, n2), (n

′
1, n

′
2) ∈ M, such that (n2, n

′
2) ∈ E2}|

• The number of inserted edges:
|{(n2, n

′
2) ∈ E2|¬∃(n1, n2), (n

′
1, n

′
2) ∈ M, such that (n1, n

′
1) ∈ E1}|

• The distance between substituted nodes:
2 ·∑(n1,n2)∈M 1− lsim(λ1(n1), λ2(n2))

The graph-edit distance between the two graphs, denoted by ged(B1, B2), is the
distance that is defined by a mapping Mopt : N1 � N2 that is optimal, in the sense
that there exists no M ′ : N1 � N2 with edM ′(B1, B2) < edMopt (B1, B2).

The distance between the substituted nodes is multiplied by two because it applies to
two nodes instead of one (inserted or deleted) node. This ensures that the technique
will always prefer to substitute nodes, even in the case of a bad match.

The graph-edit distance similarity can now easily be defined by observing that
the maximum distance between two graphs is the distance that is computed when
the mapping that induced the edit distance is empty. In that case the distance is
equal to the number of nodes and edges in both graphs. Consequently, the graph-
edit distance similarity is equal to 1 minus the fraction between the actual distance
and this theoretical maximum distance.

Definition 2.7 (Graph-Edit Distance Similarity) Let B1 = (N1, E1, τ1, λ1, α1)

and B2 = (N2, E2, τ2, λ2, α2) be two business process graphs. The graph-edit
distance similarity is defined as

1− ged(B1, B2)

|N1| + |N2| + |E1| + |E2| .
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As an example, consider the query model and repository model A from the
running example in Fig. 1. The optimal mapping for graph-edit distance maps the
start events to each other (with a similarity of 1), “Buy goods” to “Procure goods”
(with a similarity of 0.9), the XOR-split from the query model to the first XOR-split
from repository model A (with a similarity of 1), the OR-join from the query model
to the second XOR-split from the repository model (with a similarity of 1), “Verify
invoice” to “Receive goods” (with a similarity of 0), “Receive goods” to “verify
invoice” (with a similarity of 0), and the AND-join to the end event (with a similarity
of 1). For this mapping, there are 3 deleted nodes: the AND-split, the “end event”,
and “Store goods”. There are 0 inserted nodes, 5 deleted edges, 1 inserted edge, and
a substitution score of 2 ·2.1. In this way, the similarity becomes 1− 4.2+3+0+5+1

10+7+11+7 ≈
0.62. Admittedly, this is not a very good mapping. The quality of mappings can be
fine-tuned by assigning weights to the different parts of the mapping. For example,
if the weight for inserted and deleted nodes is much higher than that of inserted and
deleted edges, the graph-edit distance would prefer to map “Buy goods” to “Procure
goods”, “Receive goods” to “Receive goods”, and “Verify invoice” to “Verify
invoice”. In addition, we can prevent that different types of nodes are matched
to each other. In prior work [7], we have experimented with different settings to
determine settings that yield good similarity scores. We refer to that work if the
reader is interested in creating an optimized similarity measure by setting weights.

A challenge that remains is determining the optimal mapping. A simple strategy
to determine an optimal mapping is by exhaustively trying all possible mappings
and keeping the one with the lowest edit distance. However, since the number of
possible mappings is exponential over the number of nodes, this would be a very
computationally expensive strategy. There exist many alternative algorithms [6]
that find an optimal mapping that is the same as, or close to, the one found by
the exhaustive strategy but have much better computational performance.

Additional operations can be envisioned and have indeed been used to improve
results. In particular, “grouping” and “ungrouping” operations have been used [34].
These operations are used to acknowledge that processes are not always modeled
at the same level of detail. If a part of one process is modeled in more detail than
the related part in the other process, its nodes can be grouped to bring it to the same
level of detail. Similarly, if the process is modeled in less detail, its nodes can be
ungrouped.

2.4 Behavior-Based Similarity Measures

The third class of measures not only takes the structure of a business process,
but also the behavior into account. In particular, these measures consider that
different combinations of gateways may lead to similar behavior and can therefore
be considered behaviorally, but not structurally, similar. This is a property that is not
captured in purely structural similarity measures.
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We use the notion of causal footprint [8] to capture and compare the behavior
of two processes. A causal footprint is an approximation of the behavior of a
business process, which represents the tasks that must succeed the occurrence of
another task and the tasks that must precede the occurrence of another task. This
is represented by look-ahead links and look-back links. The look-ahead link of a
task t is the set of tasks la, such that after the occurrence of t at least one of
the tasks from la must occur at a later stage in the process. The look-back link
of a task t is the set of tasks lb, such that before the occurrence of t at least
one of the tasks from lb must have occurred. In the query model of our running
example in Fig. 1, “Buy goods” will always be succeeded by “Verify invoice” and
sometimes by “Receive goods” and “Store goods”. This leads to the look-ahead link
(“Buy goods”, {“Verify invoice”}) and the look-back links ({“Buy goods”}, “Verify
invoice”), ({“Buy goods”}, “Receive goods”), and ({“Buy goods”}, “Store goods”).
More precisely, the causal footprint of a business process can be defined as follows.

Definition 2.8 (Causal Footprint) The causal footprint of a business process is a
tuple (T , Llb, Lla), in which:

• T is the set of tasks in the business process.
• Llb ⊆ P(T ) × T is the minimal set, such that for each (lb, t) ∈ Llb, it holds that

for each execution trace of the process, if t appears in the execution trace, some
t ′ ∈ lb must appear before t in the execution trace.

• Lla ⊆ T × P(T ) is the minimal set, such that for each (t, la) ∈ Lla, it holds that
for each execution trace of the process, if t appears in the execution trace, some
t ′ ∈ la must appear after t in the execution trace.

We define the similarity between processes in a vector space that is determined
by their causal footprints.

Definition 2.9 (Model Vector Space) The vector space for a set of causal foot-
prints is the vector space that has one dimension for each task in the causal
footprints, one dimension for each look-ahead link, and one dimension for each
look-back link.

For example, focusing on the tasks “Buy goods”, “Procure goods”, and “Verify
invoice” for the query model and repository model A from Fig. 1, the vector space
would be made up of the dimensions: “Buy goods”, “Procure goods”, “Verify
invoice” (“Buy goods”, {“Verify invoice”}), ({“Buy goods”}, “Verify invoice”),
({“Procure goods”}, “Verify invoice”).

Subsequently, we can determine the value of each model in each dimension and
with that the vector that represents each model in the vector space. This requires
that an optimal (activity-based) similarity mapping between the tasks of the models
has been established. The value in each dimension is then established as follows.

Definition 2.10 (Model Vector) Let Mopt : T1 � T2 be the optimal similarity
mapping (conform Definition 2.5) that is established between the tasks of two
causal footprints (T1, Llb1, Lla1), (T2, Llb2, Lla2) and let lsim be the label similarity
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measure that was used to establish the mapping. The value of a causal footprint in a
dimension d is

• 1, If d is a dimension that represents a task, look-ahead link, or look-back link that
is contained in the process model.

• Otherwise it is:

– lsim(t, t ′), if d is a dimension that represents a task t , and the process model
contains a task t ′, such that (t, t ′) ∈ Mopt or (t ′, t) ∈ Mopt

– lsim(t,t ′)
2|lb| , if d is a dimension that represents a look-back link (lb, t) ∈ Llb1 or

(lb, t) ∈ Llb2 , and the process model contains a task t ′, such that (t, t ′) ∈ M

or (t ′, t) ∈ M

– lsim(t,t ′)
2|la| , if d is a dimension that represents a look-ahead link (t, la) ∈ Lla1 or

(t, la) ∈ Lla2 , and the process model contains a task t ′, such that (t, t ′) ∈ M

or (t ′, t) ∈ M

– 0, otherwise

Now that a vector is established for each causal footprint, and therewith for each
model, the similarity between the models can be established using typical vector
distance measures. In this chapter, we use the Euclidian distance.

Definition 2.11 (Behavior-Based Similarity) Let M1 and M2 be two process
models with model vectors −→m1 and −→m2 as defined in Definition 2.10 in the vector
space defined in Definition 2.9. The behavior-based similarity of the two models is

−→
m1 ×−→m2

|−→m1| · |−→m2|
.

3 Indexing Structures for Business Process Similarity

To apply the measures from the previous section to search for a model in a
repository, the similarity of the query model to each of the models in the repository
must be computed. Subsequently, the repository models that have a “sufficient”
match to the query model are returned. The drawback of this approach is that
it requires a large number of comparisons. Indexing structures can be used to
reduce the number of comparisons. In this section, we discuss two possible indexing
structures: a tree-based index and feature nets (or F-Nets).

3.1 Tree-Based Index and Proper Metrics

It is possible to organize models in a tree structure. The tree structure can be set up in
such a way that measuring the similarity between a model and multiple other models
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can be done efficiently because the comparison can start at the root model and then
be recursively continued with only the child models that are “sufficiently similar.”

To be able to efficiently measure similarity with multiple models in this manner,
the so-called proper distance metric must be used [15].

Definition 3.1 (Proper Distance Metric) Let G be the domain of all business
process graphs. A distance measure is a function d : G × G → R that represents
the distance between two business process graphs. A distance measure is a proper
distance metric, if the following conditions hold:

• Symmetry: ∀g1, g2 ∈ G : d(g1, g2) = d(g2, g1)

• Non-negativity: ∀g1, g2 ∈ G : d(g1, g2) ≥ 0
• Identity: ∀g1, g2 ∈ G : g1 = g2 ⇒ d(g1, g2) = 0
• Triangle inequality: ∀g1, g2, g3 ∈ G : d(g1, g3) ≤ d(g1, g2)+ d(g2, g3)

Note that we measure distance rather than similarity here. However, a similarity
measure can easily be transformed into a distance measure, for example, by taking
the inverse of the similarity or 1 minus the similarity. Indeed, some of the similarity
measures that are introduced in the previous section are based on distance measures.

There exist different tree structures that can be used to build an efficient index
for similarity search based on proper metrics. One of the possible tree structures is
the metric tree [31]. A metric tree is constructed in the following manner. First, an
arbitrary business process graph r ∈ G is selected as the root node. Subsequently,
the median distance, m, of all business process graphs g ∈ G , g �= r is determined.
Then, all models with d(g, r) ≤ m are put in the left subtree of r , and all models
with d(g, r) > m are put in the right subtree of r . Next, the tree is recursively built
further for the left subtree and for the right subtree, using the set of models that is
placed in the respective subtree.

The metric tree can be searched efficiently for a query graph q and a threshold t ,
where each graph g ∈ G with d(g, q) ≤ t must be returned. To obtain the resulting
set of graphs, the query is recursively executed on a node of the metric tree that
represents a graph g and a median similarity m of its children, starting from the root
node, as follows:

1. If d(q, g) ≤ t , include g in the set of results.
2. If d(q, g) ≤ m+ t and the node has a left subtree, traverse the left subtree.
3. If d(q, g) > m− t and the node has a right subtree, traverse the right subtree.

It is easy to prove that this algorithm does not skip graphs that should be included
in the set of results because they are above the threshold distance (i.e., a graph
g′ ∈ G is skipped iff d(g′, q) > t) [31]. For the left side of the tree, we can
prove this as follows. None of the graphs g′ in the left side of the tree are included,
if d(q, g) > m + t . We know based on triangle inequality (Definition 3.1) that
d(q, g) ≤ d(q, g′) + d(g′, g), such that we can conclude: d(q, g′) + d(g′, g) >

m + t . We know from the construction of the left subtree that any g′ that is part
of the subtree of g has d(g′, g) ≤ m. This means that d(g′, g) = m − δ for some
δ ≥ 0. Using this equation in d(q, g′) + d(g′, g) > m + t , we can conclude that
d(q, g′) > t+δ. Consequently, d(q, g′) > t , so we were right to exclude the graphs



Process Querying Using Process Model Similarity 423

from this subtree, because their distance to the query was above the threshold. The
proof for the right side of the tree is analogous.

3.2 F-Net

An alternative indexing structure for similarity-driven process querying is the
feature net (or F-Net) [35]. An F-Net works by extracting small parts from the
models in the repository, which we call features, organizing them in an index and
keeping pointers to the models of which they are a part. A similarity query model
can also be decomposed into features, and via the index, the models can be returned
that have a sufficient number of features that overlap with the query model.

Figure 4 shows an example of an F-Net. It is a part of the F-Net that can be
constructed for the models of the running example. The features that are included
here are word, label, and composite features, where we use the term composite
feature to represent features that involve multiple tasks. Each feature references
the models that contain it, and the features that can be constructed from it. For
example, the word feature “procure” references the models A and B from Fig. 1,
which contain that feature, and the label features “Procure goods” and “Procure
services” that can be constructed from it.

To traverse an F-Net to find the models that should be returned as the result of a
given query, we assume that a matching function has been defined that returns, given
two features, if they are sufficiently similar to be called “matching features.” This
matching function can typically be defined using the similarity functions that are
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Fig. 4 A part of the F-Net for the running example of Fig. 1
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defined in the previous section, and some threshold value that defines how similar
two features need to be, to be called “matching features.”

Definition 3.2 (Feature Matching) Let f1 and f2 be two features. We say that two
features match, denoted as match(f1, f2), if and only if they are of the same type
and have a similarity level, according to a selected similarity function, that exceeds
a given threshold.

The F-Net can be traversed as follows. First, we decompose the query model
into features. For each feature of the query model, we can find matching features in
the F-Net, as well as the repository models that have these features. For example,
the search for matching word features can be done efficiently by using a text-based
index. For each pair of matching features, we can determine the sets of features that
are constructed from it in the query model and in the F-Net. These two sets can be
compared for matching features again. The benefit is that the sets of features that
must be compared can be small. We repeat the process of finding matching features,
until the F-Net no longer points to new features.

An F-Net traversal, given a query model, produces two results: (1) a set of
models; (2) for each model a set of features that matches the features of the query
model. We can use that to compute a similarity estimate of the query model to each
of the repository models from the result set. We compute the similarity estimate as
the fraction of matching features.

Definition 3.3 (F-Net-Based Similarity Estimate) Let F1 and F2 be two sets of
features. Furthermore, let match : F1×F2 → {True, False} be the feature matching
function as it is defined in Definition 3.2. The similarity estimate of the two sets of
features F1 and F2 is

|{f1 ∈ F1, f2 ∈ F2|match(f1, f2)}|
|F1| + |F2| .

While the estimate can be used as a similarity measure, it is also possible to use
it as a pre-processing step for similarity search. To use it as a pre-processing step,
the F-Net-based similarity estimate is used to categorize the repository models into
three classes:

• Models that are judged as not similar enough based on the estimate and will not
be returned as an answer to the similarity query

• Models that are judged as similar enough based on the estimate and will be
returned as an answer to the similarity query

• Models for which it is still uncertain if they are similar enough and that still
have to be compared to the query model, using one of the computationally more
expensive similarity measures described in the previous section.

In various experiments [35], we have shown that the F-Net-based similarity
estimate can be used as a pre-processing step at no penalty or at a minor penalty to
the quality of the search results; search result quality is defined in terms of models
that are returned as answers to a similarity query, but should not be, or models that



Process Querying Using Process Model Similarity 425

are not returned but should have been. However, while the penalty to quality is
minor, the search can be executed up to 10 times faster than when no pre-processing
step is used.

4 Use Case: Finding Optimal Outsourcing Partners

So far, the focus has been on technical definitions of process similarity. We conclude
this chapter by illustrating the practical use of similarity measures in the context of
business process outsourcing, in which a provider performs a process on behalf of a
client. In establishing an outsourcing relation between client and provider, similarity
measures play an essential role to determine whether or not there is a match between
the requested process of the client and the offered process of the provider. To
paint a complete picture of business process outsourcing, we first sketch different
outsourcing scenarios and requirements on matching relations. Next, we introduce
different types of matching relations for process outsourcing. Next, we elaborate the
different matching relations and explore how they connect with the different types of
similarity measures as they are defined in the previous sections. Finally, we discuss
the post-matching phase, in which similarity measures can also play a role, and we
reflect on other uses of similarity measures for business process outsourcing.

4.1 Scenarios and Requirements for Business Process
Outsourcing

Several scenarios for process matching in the context of business process outsourc-
ing have been proposed in the literature [9, 12, 13], partly inspired by matching
relations for semantic Web services [16, 19, 23]:

1. An Original Equipment Manufacturer (OEM) of high-tech products outsources
the production of a high-precision component to a supplier. The OEM requires
the just-in-time delivery of the component to assemble it into a custom-made
production unit. The supplier must comply with the specified request of the
client, i.e., it must offer a process that is the same as the requested processes.

2. An organization outsources the logistics of shipping products to consumers to a
logistics service provider. The logistics service provider must comply with the
process request of the client organization but may offer additional tasks in the
process that the client can choose to ignore. In other words, the offered process
delivers what is requested, but it is not the same as the requested process.

3. An organization outsources part of its business process to a service provider.
To find an optimal match, for instance the service provider offering the lowest
price, the organization is accepting a match that is close but not exact. Thus, the
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offered and requested processes may not be the same. After selecting a provider,
the client organization aligns its process to the process offered by the provider.

From these scenarios, the following requirements on matching can be inferred:

• Relevance: Matching relations should ignore irrelevant differences in syntax and
structure. At the level of activities, an irrelevant difference can be two activities
that are labeled differently even though are in an ontological sense equivalent, for
instance Assess claim versus Assess case. At the level of structure, languages like
the Business Process Execution Language (BPEL) [1] allow the use of different
constructs to express the same concept: for instance, a sequence between two
atomic tasks can be expressed in BPEL using either a sequence node as parent of
both tasks or by putting the tasks inside a flow node and defining a link between
the tasks. At the level of behavior, an irrelevant difference can be for instance
between a process that executes two tasks in parallel versus a process that executes
two equivalent tasks in arbitrary, serial order, so one by one. If the tasks have
short durations, both processes can be accepted as equivalent, so the difference in
structure is irrelevant. Comparing the state spaces of both processes is the most
reliable way to decide relevance. A wide range of similarity relations have been
defined for comparing state spaces of processes [32], from trace equivalence to
bisimulation.

• Efficiency: To establish an outsourcing relation, many possible providers may
need to be compared. In addition, outsourcing can be done dynamically, meaning
that a client wishes to establish very quickly (within seconds or milliseconds) an
outsourcing relation with a client, for instance for the second scenario. Comparing
many providers in a quick way implies that checking matching relations should
be done efficiently. Comparing the state spaces of all processes, which results in
relevant matches, is therefore typically not feasible. The size of the state space
is in the worst case exponential in the size of the process model structure due to
parallelism. This trade-off between quality (relevance) and efficiency in checking
for a match is well known from other application domains [30].

• Diversity: The scenarios illustrate that in practice different types of matching
relations can be used to find and establish a business process outsourcing relation
between a client organization requesting a process and a provider organization
offering a process.

Next, we define different matching relations and explore how the different
similarity measures can be used to define these relations.

4.2 Matching and Similarity Measures

As explained in Sect. 4.1, in business process outsourcing, a process requested by
a client needs to be matched to a process offered by a provider. Given that there
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are various scenarios and requirements, we define the following types of matching
relations [9]:

• Exact matching means both the requested process and the offered process are
identical, so the provider process strictly complies with the process request. Exact
matching supports the first scenario.

• Plug-in matching means the offered process can replace the requested process but
may offer additional process behavior like extra tasks that were not requested.
Plug-in matching supports the second scenario.

• Inexact matching means the offered process contains the main features of the
requested process but is not exactly the same. The matched processes differ so
much that a collaboration between the client and the provider is in general not
possible. Therefore, an additional step is taken: either one of the organizations
changes its process to ensure that at run time no logical errors like deadlock
result, or one of the organizations uses a process adaptor [11] to compensate the
differences in behavior. Thus, an inexact match assumes collaboration is possible.
Inexact matching is useful in the third scenario.

• Failure occurs when no exact, plug-in, or inexact matching is possible, even
though the two processes may share some tasks. Since no collaboration is
possible, there is no match.

The latter relation is a possible output of a matching check. However, in the sequel,
we ignore it, since it actually denotes the absence of the three other matching
relations.

In the previous work [9], we have formalized these matching relations in terms of
process trees, which abstract BPEL process models. The matching relations employ
behavioral relations that abstract from irrelevant details from process trees. The
matching definitions can be checked efficiently. Therefore, the three requirements
in Sect. 4.1 are satisfied.

To elaborate these different types of matching relations in more detail and
explore their connections with the similarity measures defined in Sect. 2, we
consider a concrete outsourcing example. The process to be outsourced handles job
applications in an organization (Fig. 5). The process has two stages. In the first stage,
applicants are screened or rejected immediately. In the second stage, an applicant
is selected and either hired or rejected. All rejected candidates, including the ones
rejected in the first stage, are informed by letter in the second stage. The organization
that employs the applicants wishes to outsource this job application process for
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Fig. 5 A job application process
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Fig. 6 Another job application process

certain types of jobs. Consequently, it contacts potential providers of such a process,
for instance headhunter companies, and it needs to compare the processes they offer
to the process that is requested.

Different types of matching relations may be useful in the following situations.

Exact Matching The provider may exactly offer the process requested in Fig. 5.
This does not imply the provider implements the actual tasks as specified in Fig. 5.
The provider may in practice decompose certain tasks into more concrete tasks,
for instance by interviewing an applicant as part of a Detailed screening task. This
means that the processes shown in this subsection are actually process views that
abstract private internal details from the actual performed processes [9]. Process
views can be viewed as mutually agreed contracts in the context of business process
outsourcing [10]. Process views have also been proposed to offer users personalized
visualizations of a process [2].

A minor variation could be that both processes use slightly different labels to
express the same task, for instance Send application instead of Submit application.
This means there is a full match on the structure and behavioral measures, but a
partial match on the activity (task) measure. In practice, activity mismatches are
typically prevented by using a common domain ontology like the Supply Chain
Operations Reference (SCOR) Model [29].

Plug-In Matching The provider process may offer tasks that are not requested, next
to all the requested tasks. For instance, compared to the requested process in Fig. 5,
the process model in Fig. 6 offers an extra task Perform assessment that can be
chosen instead of task Detailed screening. Since the requested process is supported
by this offered process, there is a plug-in match, since task Detailed screening can
be always chosen. But, there is no exact match because of the extra task Perform
assessment.

In this case, there is a full match on the activity measure for those tasks that
are shared between both processes. However, there is a partial but relatively high
match on the behavioral measures. The match on structural measures is high in
this case. However, since similar behavior can be expressed in different ways in a
process model, for instance using different combinations of gateways, the match on
structural measures could also be low for plug-in matching.
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Table 1 The relation between matching relations for process outsourcing and different types of
similarity scores

Similarity scores

Activity-based Structure-based Behavior-based

Exact matching High Full Full

Plug-in matching Full High, .., low High

Inexact matching Full High, .., low Low

Inexact Matching As a small variation on Fig. 6, consider that Perform assessment
is preceded and succeeded by parallel instead of exclusive gateways. In that case,
Perform assessment needs to be done always and cannot be bypassed by choosing
Detailed screening. Consequently, there is an inexact match: the behaviors of the
modified process and the original requested process are so much different that
the original process cannot be realized by the provider process, since the provider
performs an additional task.

For this example, and in general for inexact matching, there is a full match on the
activity measure for both processes, but a lower match on the behavioral measure.
The scores on structural measures can vary from low to high.

Relation with Similarity Measures In explaining the different types of matching,
we have mentioned several types of similarity measures and used qualitative values
such as full match, high match, and low match. However, as explained in Sect. 2,
a similarity measure returns a quantitative similarity score for two process graphs
expressed as a real (cf. Definition 2.2), which is often a value in the closed interval
between [0..1]. If a score s is not in this interval, then s can be normalized into a
value in the closed interval [0..1] by the formulae s−min/max−min, where min is
the minimal and max the maximal similarity score. We relate the qualitative values
as follows to the (normalized) quantitative similarity scores: a normalized similarity
score of exactly 1 is full, a score close to 1 is high, and a score close to 0 is low.

Using this convention, Table 1 summarizes the discussion of the different
matching relations, thus making explicit what is the relation between the different
types of matching on the one hand, and the different types of similarity measures
and their possible scores on the other hand.

Based on the table and the discussion on which it is based, we draw the following
conclusion. The activity-based measures require full or high similarity scores, since
a business process outsourcing relation assumes that both organizations have a
common understanding of the work that has to be done in the process. The behavior-
based measure scores have a strong relation with the different types of matching.
Structure-based measures focus on syntactic similarity of process models. They are
mainly useful to distinguish different inexact matches.
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4.3 Post-Matching

As mentioned in Sect. 4.2, matching the requested and offered business processes
is only one of the steps toward the goal of establishing an agreement between a
client requesting a process and a provider offering a process. After a match has been
established, the following steps could be performed.

If an exact or plug-in match is established, still the compatibility of the process
request and process offer needs to be checked. All matching relations are heuristics
that give an answer that may not be accurate. To check accuracy for an exact match,
formal verification tools like model checkers can check the state spaces of both
processes for equivalence (exact) or simulation (plug-in) relations. Note that such
verification tools are not efficient enough to replace matching relation altogether,
since equivalence checking is computationally expensive due to the large state
spaces of process models containing parallelism. Checking for exact or plug-in
matching helps to filter the processes that need to be compared in a verification
tool, so the use of heuristics and exact checks is complementary.

If the match is inexact, the process request and process offer need to be aligned
in order to establish a viable outsourcing relation. A relaxed alignment relation
between the two processes may already exist, for instance an isotactics relation [26].
An alternative way to achieve alignment is that one of the parties changes its process.
Typically, this is the client, if the provider offers a standardized process. However,
such a change may be difficult, since then most likely other internal processes that
are connected to the changed process should be changed as well.

Another way to achieve alignment is to use an adaptor [11], which is a process
that compensates differences in behavior between other processes. A client and
provider process communicate by exchanging messages that are consumed and
produced by tasks. An adaptor can intercept these messages and reorder them
before sending. This way, the incompatibility between client and provider processes
can be compensated. Adaptors can also be used to compensate differences in
message structure [22]. Adaptors are somewhat similar to correlation models in the
Process Querying Framework [24], since both aim to achieve alignment. However,
communication aspects of processes are not considered by correlation models.

These post-matching steps do not belong to any component of the Process
Querying Framework; in particular, they are different from the functionality that
is covered by the interpretation component, which focuses on user understanding
of the output of process querying. Post-matching focuses on establishing a run-
time collaboration between processes, which is not the aim of the Process Querying
Framework. This shows that for some application scenarios additional steps outside
the framework are needed to actually put the results of process querying to practice.
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4.4 Similarity Measures in Business Process Outsourcing

Finally, we briefly reflect on the additional application of process similarity
measures to business process outsourcing.

One of the trends in the area of business process outsourcing is that processes are
treated as commodities [5], meaning they are highly standardized. This increases
the likelihood of exact matching relations between clients and providers. In domain
such as logistics (cf. the second scenario in Sect. 4.1) and supply chain management,
ontologies like SCOR [29] play a key role to achieve this commoditization.
Ontologies not only standardize tasks, but also the processes referencing these
tasks. If there are minor variations of a standardized process, the different process
similarity measures proposed in this chapter can be useful to rank the variations.

Other process similarity measures than the ones presented in this chapter can
be used for process outsourcing. Often, BPEL [1] is used in this context. BPEL
process models have a tree structure. Process trees are a suitable formalism to
represent BPEL processes. Measures on BPEL process trees have been proposed
to support efficient matching in the context of outsourcing [9]. These measures can
be viewed as specializations of the behavior-based measures discussed in Sect. 2.
Also, structure-based measures, based on edit distance, for BPEL have been used to
rank different BPEL services that are retrieved for a requested BPEL process [14].

5 Process Similarity Querying and the Process Querying
Framework

The measures and indexing techniques that are part of process querying using
process model similarity can be incorporated into the Process Querying Frame-
work [25]. In the Process Querying Framework, process similarity querying is part
of three components: the “indexing” component, the “filtering” component, and the
“process querying” component. At this time, no optimization techniques are applied
to process similarity querying.

The “indexing” component can be implemented using the two indexing tech-
niques that are introduced: a tree-based index and an F-Net. Both indices introduce
an indexing structure, a tree, and a network, respectively, in which the nodes point
to process models from the process model repository. Given a query process model,
the indexing structure can be traversed to find the node that represents the process
model or process models that are most similar to the given query process model.

The “filtering” component can be implemented as part of a pre-processing step.
In that case the indexing technique quickly traverses the repository and creates an
“estimate” of process models that are potentially similar to the given query process
model, in addition to process models that are certainly similar and process models
that are certainly not similar to the given query process model. The benefit of this
pre-processing step is that a process querying technique, which is computationally
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more expensive than traversing an index, only has to compare the query process
model to the filtered potentially similar process models and not to all process
models.

The “process querying” component can be implemented for process similarity
querying by implementing one or more of the process similarity measures that
are introduced in this chapter. A process similarity measure compares two process
models and returns a value between zero and one to indicate the similarity of those
process models. Querying then works by iterating over all the process models
in the repository and returning those process models that have a similarity to a
given process query model that is above a certain threshold. The repository models
are returned in descending order of their similarity to the query process model.
Optionally, only filtered models have to be processed.

6 Conclusion

This chapter introduced techniques for process querying using process model
similarity. Those techniques include process model similarity measures and
indexing techniques. The process model similarity measures can be used to search
within a process model repository for process models that are similar to a given
query process model. The indexing techniques can be used to efficiently find those
similar process models.

Three types of process similarity measures were introduced: activity-based
measures, which are purely based on measuring the similarity of the activities
that constitute the process models; structure-based measures, which also look at
the arcs that connect the activities; and behavior-based measures, which look at
the behavioral semantics of the process models. Previous research [7] has shown
that structure-based measures have a slightly better performance than activity-
based measures in terms of the quality of the search results, while behavior-based
measures do not provide an additional benefit but are computationally expensive.

Two types of indexing techniques are introduced: a tree-based and an F-
Net-based technique. Both techniques have been shown in previous research to
substantially reduce the computational time that is required to perform a process
similarity search. The tree-based technique has the benefit that it returns exact
results. However, it does place constraints on the process similarity measures with
which it can be used. The F-Net-based technique is more flexible but only does pre-
processing, after which a selection of the returned process models may still have to
be compared to the query process model in the non-indexed manner. Consequently,
it is slightly slower than the tree-based technique.

We showed an application of the introduced techniques to a business process
outsourcing scenario. In such a scenario, process similarity querying can be used to
efficiently find potential business partners.

Previous research [7] has shown that process querying using process model
similarity performs well when applied to a business process model repository that
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uses relatively uniform terminology to label its activities and defines the process
models at the same level of granularity. Terminology is considered uniform when
the same word is used to describe the same concept in different process models.
When non-uniform terminology is used or when process models are specified at
different levels of granularity, performance drops dramatically. More research is
required to develop techniques that also work in such situations.

Since a large number of different techniques for measuring process similarity
already exist, in our opinion, the community would benefit most from a standardized
corpus of data that can be used to evaluate these techniques and other techniques that
may be developed in the future. Such a corpus would consist of a large collection
of process models and query process models, for which it is known which process
model is considered to be similar to which query model. The development of such a
collection represents a lot of work but is very important for the research community
to test and benchmark the various alternative techniques.
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Logic-Based Approaches for Process
Querying

Ralf Laue, Jorge Roa, Emiliano Reynares, María Laura Caliusco,
and Pablo Villarreal

Abstract Today, logic-based formalisms are supported by mature languages, tools,
and technologies for querying formal models. In this chapter, we show how process
querying can be achieved using these technologies. The main idea is to transform
the information of a business process model into a logic-based formalism for which
existing query languages can be used. More specifically, we show how Prolog and
ontologies together with SPARQL can be used to query BPMN process models.

1 Introduction

The main advantage of using visual process query languages is that users can
define a query in a formalism that is similar to the modeling language they use
for depicting the business process models. This means that a user can make queries
without having to learn a new language. However, this simplicity has limits. For
example, it can be difficult to express a combination of positive scenarios (what must
happen) and negative scenarios (what must not happen) using standard modeling
languages. It can also take some effort to develop tool support for specific visual
query languages.

In this chapter, we show how process querying can be achieved using languages,
tools, and technologies that already exist. The main idea is to transform the informa-
tion that is contained in a business process model into a formalism for which existing
query languages can be used. Those formalisms and corresponding query languages
(we discuss Prolog, SPARQL, and graph databases) are grounded in formal logics.
All information that is contained in a process model can be expressed in terms
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of logic facts. To be more specific: As business process models can essentially be
described as graphs, we can use existing query languages that work well for graph-
based structures. One such language is the logic programming language Prolog [17],
which will be discussed in Sect. 3. To use this language, the information contained
in the models is represented as logic predicates. An alternative way to represent
information is the graph-based RDF language, which uses subject–predicate–object
triples. For querying, we can use the SPARQL Protocol And RDF Query Language
(or simply SPARQL for short) [40]. Established in 1997, it is widely used in semantic
Web and knowledge management applications. We discuss model querying using
SPARQL in Sect. 4.

The advantage of using an existing formalism is that we can re-use existing tools
for process querying. Sophisticated algorithms (working with techniques such as
caching intermediate results) are included out-of-the-box in existing Prolog systems
and SPARQL implementations. A limitation is that the queries are based solely on
the graph structure. Querying models according to their behavior (i.e., related to
possible activity traces) given only their graph structure can be a hard problem.

In Sect. 2.1, we explain basic concepts of the modeling language BPMN and
the soundness property. Section 3 shows how different kinds of queries can be
expressed in Prolog. Section 4 discusses the same for semantic technologies, in
particular OWL 2 and SPARQL. Sections 5 and 6, respectively, shows how logic-
based technologies can be integrated into the Process Querying Framework [30] and
provides a conclusion.

2 Background

In this section, we introduce basic concepts of Business Process Model and Notation
[18] and the soundness property [38] as an example correctness criterion for
business process models.

2.1 Business Process Model and Notation

We use the process modeling language Business Process Model and Notation
(BPMN) [18] for illustrating the ideas of our approach, because this is a widespread
standard for business process modeling. The most basic elements of this language
are tasks, events, and gateways. Directed edges (arcs) depict the control flow
between them. Events (something that happen during the lifetime of a business
process) are represented as circles. An event is called a start event if it has no
incoming edges. It is called an end event if it has no outgoing edges. Tasks
are represented by rectangles with rounded corners. The control flow (called
sequence flow in BPMN terminology) between the nodes (flow elements in BPMN
terminology) is depicted by directed edges (arcs). The direction of such an edge
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shows in which order the nodes have to be executed. Gateways can be used for
forking and joining paths that have to be performed in parallel or (based on certain
conditions) alternatively. There are two kinds of gateways: Splits have more than
one outgoing edge, and Joins have more than one incoming edge. A gateway is
represented by a diamond shape.

When used as a split, an exclusive gateway directs the sequence flow to exactly
one of its outgoing branches. When used as a join, it awaits one incoming branch
being completed before triggering the outgoing flow. A gateway of this kind (which
we call XOR-gateway) is depicted by the symbol.

When splitting, a parallel gateway activates all outgoing branches; the activities
on these branches are executed in parallel. When used as a join, a parallel gateway
waits for all incoming branches to complete before triggering the outgoing flow (this
behavior is called synchronization of the incoming flows). A parallel gateway (also
called AND-gateway) is depicted by the symbol.

Tasks may have one or more incoming and outgoing sequence flows. A task with
more than one incoming sequence flow works as a join exclusive gateway. A task
with more than one outgoing sequence flow works as a parallel gateway, activating
all outgoing branches in parallel.

An inclusive gateway is something in-between an exclusive and a parallel
gateway. When used as a split, some of the outgoing branches (but at least one)
are activated. When merging, an inclusive gateway waits until all active incoming
branches have been completed before triggering the outgoing flow. An inclusive
gateway (or OR-gateway) is depicted by the symbol.

Figure 1 shows a simple BPMN model depicting a process of organizing the
participation at a trade show. The first task, after the start event (circle on the left),
indicates that the deposit has to be paid to the show organizer. The -gateways
denote that tasks “Sign contract for booth space” and “Determine visual booth
design” can be executed in parallel. When both tasks are completed, it will be
decided how the product should be presented at the show. This decision is depicted
by the symbol. If the product should be presented by means of a video, it is
necessary to produce the video and then the process ends. If the product should be
presented by means of a live demonstration, the human resources department must
recruit part-time workers who will do the demonstration and then the process ends.

Fig. 1 Example BPMN model
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BPMN has several more constructs, but those explained so far are sufficient for
explaining our approach.

2.2 The Soundness Property

The diagram in Fig. 1 shows a correct BPMN model. Technically speaking, it fulfills
the soundness property. The formal definition of this property can be found in
[38]; for the sake of our discussion, it is sufficient to describe it informally by the
following three properties:

1. Option to complete: When the process has been started from a start event, it is
possible that it reaches an end event.

2. Proper completion: If an end event is reached, there are no remaining join
gateways waiting for synchronization.

3. No dead elements: Each task in the model can potentially be executed.

Now let us assume that the company wants to change the process: The decision
about the product presentation should be made directly after signing the contract for
the booth space. The process modeler comes up with the diagram shown in Fig. 2.

Unfortunately, this diagram is wrong—the soundness property is violated: If it
will be decided that the product is to be presented by means of a product video, the
joining AND-gateway pj cannot synchronize. Such a situation—the process cannot
make any progress because an element (in this case, the joining AND-gateway) is
indefinitely waiting for incoming sequence flow (in this case, waiting for the upper
incoming path to complete)—is called a deadlock.

Another way to introduce an error into a process model is shown in Fig. 3.
Accidentally, the modeler used the wrong type of gateway for joining both paths
together ( instead of ). The meaning of such a model is that no synchronization
takes place to guarantee that the process does not proceed until both “Sign contract
for booth space” and “Determine visual booth design” have been executed. Instead,
the decision on how the product should be presented at the show will be executed

Fig. 2 Unsound BPMN model (deadlock)
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Fig. 3 Unsound BPMN model (lack of synchronization)

after completion of “Sign contract for booth space” (assuming that this is the first
of both parallel tasks to be completed) and once again after the completion of
“Determine visual booth design”. As a result, the decision of how the product should
be presented at the show would be executed twice, which is not the desired behavior.
This kind of control-flow problem is called lack of synchronization.

In the further course of this chapter, we will discuss how process querying for
typical patterns of such soundness violations can help to identify (and hence to
correct) this kind of modeling problems.

3 Process Querying Using Prolog

3.1 Expressing the Model as Logic Facts

The information contained in the diagram in Fig. 1 can be expressed as a set of logic
facts. Hereafter, we list those facts in the syntax of the logic programming language
Prolog. Prolog has its roots in First-Order Logic. In Prolog syntax, the information
from Fig. 1 is expressed by facts (statements that are known to be true) in the format
predicatename(argument1,argument2,. . . ). Each node or edge in the graph can be
represented by a unique id. For example, the fact that there is a task with id 1 can be
expressed by the unary predicate task (nodeid_1).

Thus, the model from Fig. 1 can be represented by logic predicates in Prolog
syntax as follows:

task(nodeid_1).
elementname(nodeid_1,’Pay deposit to tradeshow organizer’).
task(nodeid_2).
elementname(nodeid_2,’Sign contract for booth space’).
task(nodeid_3).
elementname(nodeid_3,’Determine visual booth design’).
task(nodeid_4).
elementname(nodeid_4,’Produce video’).
task(nodeid_5).
elementname(nodeid_5,’Recruit part-time workers
for demonstration’).
and(nodeid_6).
and(nodeid_7).
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xor(nodeid_8).
event(nodeid_9).
event(nodeid_10).
event(nodeid_11).
arc(edgeid_1,nodeid_9,nodeid_1).
arc(edgeid_2,nodeid_1,nodeid_6).
arc(edgeid_3,nodeid_6,nodeid_2).
arc(edgeid_4,nodeid_6,nodeid_3).
arc(edgeid_5,nodeid_2,nodeid_7).
arc(edgeid_6,nodeid_3,nodeid_7).
arc(edgeid_7,nodeid_7,nodeid_8).
arc(edgeid_8,nodeid_8,nodeid_4).
arc(edgeid_9,nodeid_8,nodeid_5).
arc(edgeid_10,nodeid_4,nodeid_10).
arc(edgeid_11,nodeid_5,nodeid_11).
condition(edgeid_8,’product video’).
condition(edgeid_9,’live demonstration’).

Those facts contain all the information that is described in Fig. 1.1 Other
BPMN elements (such as data objects, boundary events, etc.) can be expressed
in a similar way. It is not difficult to write a transformation from the XMI-based
serialization format of a BPMN diagram to the Prolog facts, e.g., by using an XSLT
transformation. Note that in our example, we have dealt with a single model (more
precisely: a single diagram) only. In the same way, we can get facts for a set of
models (where one model can be depicted as a sub-process of another model). In
this case, each fact should in addition contain a model identifier. For example, the
first fact would read as task(modelid_1,nodeid_1), etc.

Once we have transformed the information in the model into Prolog facts, we can
use Prolog rules and queries for reasoning and querying. For example, it would be
easy to find all models of which a given model is a sub-process.

Of course, the person who executes such queries is required to be familiar with
Prolog syntax. Some will see this as a disadvantage. However, it is possible (and
very advisable) to use a set of pre-defined rules, which simplify the compilation of
Prolog queries. For example, we can introduce startevent as a new name of a
predicate by defining that a start event is an event that does not have any incoming
sequence flow:

startevent(X) :- event(X),not(arc(_,_,X)).

This Prolog rule is interpreted as follows: The unary predicate “X is a start event”
holds true if X is an event and (denoted by the comma) there is no arc (with any id
originating from any node) that leads to X.

This way, we can build a set of similar predicates that are close to the modelers’
language. These predicates can then be used in queries.

1 With the exception of the information expressed by the layout of the diagram.
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3.2 Checking Syntactical Correctness

A rather simple, but important, type of queries would be those that ensure the
syntactic correctness of models by searching for models that violate the syntax rules
of the modeling language. In the case of BPMN, one such rule requires that while in
general start events are not mandatory, if the process model contains an end event,
then there must also be at least one start event. To find violations of this rule, we
would just have to look for models that contain an end event, but no start event with
a query such as:

endevent_without_startevent :- endevent(_),not(startevent(_)).

In the same way, we can search for models that do not adhere to organization-
wide style rules. In the case of BPMN such a style rule could stipulate, e.g., that
only a subset of the BPMN notational elements is allowed or that always an AND-
gateway must be used for depicting a parallel split instead of using multiple outgoing
sequence flows from a flow element.

We included such Prolog-based semantic checks into the Eclipse-based modeling
tools bflow* Toolbox (for Event-Driven Process Chains [EPCs]) [10] and openOME
(for i* models) [23]. In the case of EPC models, we observed in an experiment
that novice modelers who could make use of the checks had on average 1.7 syntax
errors in their models, while novice modelers without such support had on average
8.8 syntax errors in the same task [24].

3.3 Checking for Proper Layout

Another type of queries can identify violations of layout conventions. This turned
out to be useful for i* models. This language has been introduced for reasoning
about the goals of process participants and the various ways how to achieve them
[41]. i* uses the concept of a task decomposition. The decomposition of tasks into
sub-tasks that can again have sub-tasks is depicted in a tree-like manner. A task
that is decomposed into sub-task(s) should always be located above its sub-tasks(s);
otherwise, it is very likely that the reader will misinterpret the model. Similar
layout guidelines exist for other modeling languages as well. Some are language
independent (such as “avoid parallel lines/arrows that are too close together”),
and others refer to a given language (such as “end events should be the rightmost
symbols in a diagram” in BPMN models).

For the purpose of checking layout-based rules, we need to have layout-related
information stored in the Prolog fact base. In particular, the horizontal and vertical
positions as well as the size of an element (such as a task) can be stored as facts:

task(id_1).
shape(id_1, 180, 250, 200, 100).
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In this example, id_1 is the identifier of a task. The center of the shape depicting
this task has the (x,y)-coordinates (180,250), a height of 100 units, and a width of
200 units. Based on this, one can write layout-related queries. For example, it is
possible to find out by simple calculation whether two task boxes overlap in the
diagram.

It must be mentioned that when it comes to layout-based queries, we face a
difficulty. Standards for diagram interchange in languages such as BPMN define
serialization aspects only for basic layout information (in particular, the size and
position of the elements). However, other aspects such as text size or color are not
considered in the standards. If we want to define queries related to those aspects, the
vendor-specific extensions from the different modeling tools would have to be used.
This means that such queries cannot be used independently of a modeling tool.

3.4 Locating Patterns Indicating a Soundness Violation

Prolog-based queries can be used far beyond of identifying violations of syntax,
style, and layout rules. In [12], we show how pattern-based heuristics can identify
control-flow problems such as deadlocks. Compared with model checkers, the
pattern-based analysis was much faster and almost as exact as the results of model-
checking tools that explore the state space of the models. Of course, a downside of
a pattern-based approach is that (other than by using model checkers) we are unable
to locate 100% of the control-flow problems. On the other hand, other than model
checkers, the pattern-based approach does not suffer from the state-space explosion
problem.

In an analysis of 984 business process models [12], we found that the most
frequent patterns of control-flow problems were (i) a deadlock resulting from the
combination of an (exclusive or inclusive) OR-split gateway with an AND-join
gateway (see Fig. 2) and (ii) loop entries that were wrongly modeled by using an
AND-gateway instead of an exclusive gateway, resulting in a deadlock at the loop
entry.2 For identifying those patterns quickly, we made use of Prolog rules. For
example, in order to detect the combination XOR-split/AND-join, we aim to find an
XOR-split gateway s and an AND-join gateway j with the property that there are
two paths p1 and p2 from s to j such that s and j are the only nodes that are both in
p1 and p2. We call this a match between s and j , expressed by the Prolog predicate
match(s,j). This predicate is used not only for finding the deadlock pattern in
Fig. 2, but also in the definition of various other patterns. A detailed discussion of
such patterns indicating a soundness violation is done in Sect. 4.

For finding instances of patterns indicating a soundness violation in a model, the
predicate match is executed often. As this means that paths from a split gateway

2 The Prolog rules can be found in the source code of the open-source modeling tool bflow*
Toolbox, which can be downloaded from http://www.bflow.org.

http://www.bflow.org
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to a join gateway have to be explored, this can take a lot of time in large models.
We achieved a remarkable speed-up by two means. The first is the application of
reduction rules. “Well-structured” parts of the model (such as simple sequences of
tasks or, e.g., a combination of a parallel split [AND-split] and a synchronization
[AND-join]) are known to be sound. For the purpose of detecting patterns as those
shown in Figs. 2 and 3, such model fragments can be treated in the same way as a
single task. For this reason, those fragments have been reduced to such a single task
by repeatedly applying soundness-preserving reduction rules [22, 26]. The second
measure to speed up the process is caching: All match-relations are calculated
once and stored together with the model as additional Prolog facts. Of course, a re-
calculation can be necessary if a model changes. We found that both reducing and
caching were very helpful for locating control-flow anti-patterns quickly.

In a similar way, it is possible to define patterns for locating dataflow anti-patterns
[37] such as data that are written, but never read.

3.5 Locating Incorrect and Ambiguous Labels

Prolog is very well-suited for natural language processing [28], and therefore we can
also use it for analyzing the labels of tasks, events, and conditions that are placed
at sequence flow arrows. The BPMN standard does not restrict these labels in any
way. In most cases, they are written in unconstrained natural language. In [13, 25],
we describe how possible ambiguities and problems in business process models can
be located by searching for certain patterns in the labels of the model elements.
Those patterns either indicate an error, a violation of a style rule, or a “bad smell”
(a situation that could be problematic and needs further inspection). In order to find
those patterns, we reason about the labels in the business process model. Three
relations proved to be particularly useful for this purpose: the synonymy-relation,
the antonymy-relation, and the happens-before-relation.

Two words or phrases are in the synonymy-relation if they have the same
meaning. In fact, we defined this relation less strictly. For example, “to accept”, “to
grant”, and “to approve” were considered as synonyms because each of these verbs
refers to a positive decision. While synonymity has been defined for verbs as well
as for noun phrases and adjectives, the other relations were defined only between
two verbs: Two verbs are in the antonymy-relation if one of them has the opposite
meaning of the other one (e.g., forbid / permit). Two verbs are in the “happens-
before”-relation if the activity denoted by the first verb has to happen before the
activity denoted by the second verb when both verbs refer to the same object. For
example, “to produce” happens before “to ship”. For the purpose of defining the
mentioned predicates, we compiled our own list of word relations after realizing
that the well-known lexical database WordNet [7] does not meet our requirements.
One important reason for this was that the antonymy relation in WordNet does not
distinguish between different variants of antonymy such as complementary verbs
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Fig. 4 This situation should
be modeled by using an
XOR-gateway

(to accept / to reject) and pairs of verbs that show the same event from another
perspective (to borrow / to lend) [8].

Once we have defined those relations between single words (or groups of words),
it was possible to define Prolog predicates that work on the activity labels. The
following predicates, which all evaluate to true, should be self-explanatory and
can serve as an illustration of possible propositions that can be calculated for
business process activity labels:3

synonym(’The letter has been sent.’,’Letter sent’).
synonym(’Code contains errors’,’Code includes faults’).
antonym(’Test succeeded’,’Test failed’).
antonym(’customer record found’,’customer record not found’).
happens_before(’Pretest’,’Test).
happens_before(’copy form’,’recycle form’).

Using these predicates (and a few others), we can define interesting patterns for
finding modeling problems related to the labels in natural language. An instance
of one such pattern is shown in Fig. 4: Obviously, the inclusive OR-gateway ( )
should be replaced by an exclusive gateway ( ).

Other patterns that can be identified by inspecting the labels of the model
elements deal with violations of naming conventions. A special case are anti-
patterns that result from mixing natural language and control-flow logic [5]. Such
labels contain phrases such as “as long as” or “if . . . ”. Such situations should be
expressed explicitly by means of BPMN constructs instead of natural language [29].
Another type of linguistic anti-patterns in element labels deals with the use of weak
words such as “to assist”. As it may be unclear what the process participant has to
do in order to “assist” somebody, such words should be replaced by specific ones,
exactly describing the actions to be performed.

All the label-related queries mentioned before were aimed to identify erroneous
models. In a similar way, one can formulate queries for identifying correct, but
incomplete models. Incomplete models can successfully be used for communication
with domain experts who want to discuss the most important paths through a
process, ignoring possible exceptional cases. Using such models that show only
the so-called sunshine paths can be effective for the purpose of discussing about a

3 In fact, our tool works for business process models with German labels. The English examples
have been constructed for illustration purposes.
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process. However, when the process needs to be understood in detail, the exceptional
cases should be considered as well.

For the purpose of locating models that neglect the possibility of a negative
outcome, we identified verbs and adjective phrases that usually indicate an activity
with at least two possible outcomes. Examples for such verbs are “to test”, “to
check”, or “to decide”. Actions described by those verbs can have a positive
outcome (test successful / positive decision) and a negative one. In many cases,
the same is true for other verbs as “to search” (what happens if nothing is found?)
or “to compare” (what are the consequences if the objects being compared agree to
each other / do not agree to each other?). With such a list of verbs, it is not difficult
to build queries for finding activities that are not followed by an XOR-gateway
depicting the necessary decision among two paths. We show a query of this type by
using the predicate is_a_test, which concludes whether a task label describes a test
or decision. After such a task, a branching should occur. A potential problem can
be found by looking for tasks of this type that are not followed by an (exclusive or
inclusive) OR-split gateway:

task(T),elementname(T,TName),
is_a_test(TName),
arc(T,Next),not((orsplit(Next);xorsplit(Next))).

In a similar way, labels of events can be analyzed for finding models in which
errors have been disregarded. If the model contains an event with “positive”
adjective phrases such as “successful”, “in time”, “without errors”, etc., it is
reasonable to assume that the negative counterpart of this event should be modeled
as well. By using a list of verbs that should lead to a decision and another list of
“positive” adjective phrases, we are able to construct queries to find situations in
which only the good case has been modeled.

3.6 Suggesting Process Model Refactoring

In addition to queries that identify actual modeling errors, we used the method for
constructing queries suggesting a model refactoring. The aim of such a refactoring
is to reduce the number of elements in the model, which improves the model’s
understandability [11]. An example is shown in Fig. 5. A query to find such a
situation could look for at least two tasks with the same label, which precede an
XOR-join gateway.

xor(Xor),
task(Task1), task(Task2),
arc(_,Task1,Xor), arc(_,Task2,Xor),
Task1 @< Task2,
elementname(Task1,Name),elementname(Task2,Name).
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Fig. 5 Suggesting a model refactoring

The last line in this query ensures that T ask1 and T ask2 share the same label
and the predicate Task1@<Task2 essentially guarantees that T ask1 refers to a
different element than T ask2.

3.7 Suggesting Process Improvements

In addition to locating problems in the models, queries can also be used for locating
possibilities for improving the actual process. Once again, the verb classification
is helpful. It can be used for identifying patterns of potential process weaknesses,
for example, those discussed in [3]. However, a substantial difference between our
approach and those in [3] is that we do not require to provide additional information
about the type of an activity (such as “print something” or “document goes out”) at
modeling time. Instead, the type of a task can be concluded from the verb (at least,
in most cases). This way, it is possible to construct queries for patterns that point
to possible process improvements. For example, one can construct queries for the
following situations:

• An object is tested with a negative outcome. In the next step, some rework at the
object is done—but it is not tested again.

• A document is sent by more than one mean (such as by fax as well as by letter).
• An activity of the type “receive document” is directly followed by another activity

“forward document” (i.e., the model does not contain an activity where the
document is read or the decision to whom it should be forwarded is made).

• A document is printed and later the printed-out document is scanned.

As can be seen from the examples, a model that matches the query does not
necessarily have to be wrong, but the presence of one of the patterns is a strong
indicator for a potential need of process improvements.

4 Process Querying Using Semantic Technologies

An ontology is a formal and explicit specification of a shared conceptualization
that defines concepts used to represent knowledge and the relationships between the
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concepts. It provides a formalized vocabulary of terms, specifying terms’ definitions
by describing their relationships with other terms in the ontology. An ontology
covers a specific domain and it is shared by a community of users [14, 36].

The Web Ontology Language (OWL 2) is an ontology language with formal
semantics that is designed to facilitate ontology development and knowledge
sharing.4 The semantics of OWL 2 is based on Description Logic, a fragment of
First-Order Logic that has useful computational properties [2].

Semantic Web Rule Language (SWRL) is a language that extends OWL 2
with Horn-like rules. An SWRL rule is of the form of an implication between an
antecedent (body) and a consequent (head). The intended meaning can be read
as: whenever the conditions specified in the antecedent hold, then the conditions
specified in the consequent must also hold.5

OWL 2 ontologies are primarily exchanged as directed labeled graphs stored
as RDF documents. RDF is a standard model for data interchange on the Web.
It extends the linking structure of the World Wide Web to name the relationships
between things as well as the two ends of the link. This linking structure forms
a directed, labeled graph, where the edges represent the named link between two
resources, denoted by the graph nodes. Using this simple model, it allows structured
and semi-structured data to be stored and shared across different applications. The
performance issues constraining the management of large volumes of ontological
data in RAM memory have given rise to several technologies for storing ontologies
as RDF graphs.6

SPARQL is a language conceived to express queries across RDF data sources.
SPARQL contains capabilities for querying required and optional graph patterns
along with their conjunctions and disjunctions. It also supports extensible value
testing and constraining queries by source RDF graph.7

All the aforementioned languages have been proposed by the World Wide Web
Consortium (W3C) of the Semantic Web, but they have gradually evolved into a de
facto standard for a broad spectrum of applications, and over time they have become
widely known as part of the Semantic Technologies.

In the following subsections, we show how ontologies and graph-oriented
databases can be used to query process models by means of SPARQL.

4.1 Querying Process Models Stored as Ontologies

A process model can be encoded as an OWL 2 ontology using the BPMN ontology
proposed in [34]. The ontology of Raspocher et al. formalizes the BPMN meta-

4 https://www.w3.org/TR/owl2-overview/.
5 https://www.w3.org/Submission/SWRL/.
6 https://www.w3.org/RDF/.
7 http://www.w3.org/TR/sparql11-query/.

https://www.w3.org/TR/owl2-overview/
https://www.w3.org/Submission/SWRL/
https://www.w3.org/RDF/
http://www.w3.org/TR/sparql11-query/


450 R. Laue et al.

model by providing a formal description of the BPMN elements in terms of classes,
attributes, and relations.

We make use of the BPMN process model in Fig. 2 to exemplify part of the
ontological representation of a BPMN model as follows:

start_event(se)
end_event(ee1)
task(A)
parallel_gateway(ps)
parallel_gateway(pj)
data_based_exclusive_gateway(xs)
sequence_flow(sf1)
has_sequence_flow_source_ref(sf1,se)
has_sequence_flow_target_ref(sf1,A)

To improve the readability of examples, we refer to activities “Pay deposit to
trade show organizer”, “Sign contract for booth space”, “Produce video”, “Recruit
part-time workers for demonstration”, and “Determine visual booth design” in Fig. 2
as activities A, B, C, D, and E, respectively.

The ontology encoding the process model depicted in Fig. 2 was implemented
by means of Protégé, a free and open-source ontology editor, and HermiT, an
OWL reasoner based on a novel hypertableau calculus, which provides an efficient
reasoning algorithm [35].8,9

By encoding a process model as an OWL 2 ontology, several reasoning services
can be used, such as query answering or compliance checking [34]. In previous
work [31, 32], a clear application of this model is that we can use SPARQL
queries to define heuristics for determining whether a process model meets a
given set of properties. Heuristics are usually informally defined by examples with
textual or graphical descriptions or with informal languages [12, 15, 21, 39]. To
avoid ambiguities and different interpretations of what problem a given heuristics
represents, and how it should be applied or implemented to detect behavioral
errors in process models, we can formalize heuristics with ontologies, SWRL, and
SPARQL. For example, based on the BPMN2 ontology for process models [34], we
can define SWRL rules and SPARQL queries to find indicators for the presence of
a deadlock, or to find out if a given task will ever be reached during execution.

We use the process in Fig. 2 as an example. As explained in Sect. 2, in this process
there is a typical deadlock situation, where the AND-join pj cannot synchronize
since the sequence flow originating from sf8 does not complete. Next, we show a
SPARQL query (called #H1) that can be used to detect this deadlock in the process
model of Fig. 2.

SELECT ?psname ?pjname ?xsname ?ee1name
WHERE { ?ps a bpmn2:parallelGateway.

?ps bpmn2:name ?psname.
?pj a bpmn2:parallelGateway.

8 http://protege.stanford.edu.
9 http://www.hermit-reasoner.com/.

http://protege.stanford.edu
http://www.hermit-reasoner.com/
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?pj bpmn2:name ?pjname.
?xs a bpmn2:exclusiveGateway.
?xs bpmn2:name ?xsname.
?ee1 a bpmn2:endEvent.
?ee2 a bpmn2:endEvent.
?ee2 bpmn2:name ?ee2name.
?ps pack01:connected_to ?xs.
?xs pack01:connected_to ?ee1.
?xs pack01:connected_to ?pj.
?pj pack01:connected_to ?ee2.
?ee1 owl:differentFrom ?ee2.

}

The query presents a structural definition of the deadlock. It selects the names of
the parallel gateways (ps and pj), exclusive gateway (xs), and end event (ee1). We
assume that a query evaluates to true if it returns a non-empty set, indicating as result
the elements of the process that cause a deadlock. Otherwise, it evaluates to false.
It is necessary to take into account that this query is specific to detect a deadlock
caused by a given combination of elements. There could be other elements in a
process model that are not part of this query, which may also lead to a deadlock.
Other queries should be defined to detect those situations. To define this query,
it is necessary to formalize (by means of SWRL Horn-like rules) the notions of
connection and path between two BPMN elements. A path is defined recursively by
applying the notion of connection in a separate ontology as follows:

• A flow element x is said to be connected to a flow element y if there is a directed
edge (depicting sequence flow) from x to y (i.e., there is a direct connection
between the elements).

• A flow element x is connected to a flow element z if there is a flow element y such
that x is connected to y and y is connected to z.

• A path represents a sequence of sequence flows and flow nodes connecting two
given flow elements.

In the context of the aforementioned example, a flow element represents an
activity, an event, or a gateway.

The use of heuristics may lead to either false positive or false negative cases
[32]. We explain this with the process models in Fig. 6. To define these models,
we introduced slight modifications to the process model in Fig. 2. For example, in
process FP01, if sequence flow sf5 is activated, then activities C, D and sequence
flow sf8 will also be activated and, hence, pj will not lead to a deadlock. We say that
this is a false positive scenario for query #H1, since it returns the names of the flow
elements that satisfy the structural definition of the deadlock, but there is actually
no deadlock. A similar situation occurs with processes FP02, FP03, and FP04. In
FP02, activity D and sf8 will always be activated once activity E is executed and,
hence, pj will not lead to a deadlock. In FP03, activity D and sf8 will always be
activated once the process starts, and hence, pj will not produce a deadlock. In FP04,
activity D and sf8 will always be activated once activity A is executed and, hence, pj
will not lead to a deadlock.
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The previous examples show scenarios where heuristics may fail by wrongly
indicating an error (“false positive”). This raises the need to distinguish between
queries for positive scenarios and queries for negative scenarios. For the case of error
detection in process models, the former should allow detecting errors in process
models and we call this the problem heuristic, whereas the latter should allow
detecting scenarios where queries may fail and we call this false positive heuristics
[32]. Based on these concepts, a likely error is detected in a process model when a
problem heuristic is satisfied by the model and no false positive heuristic is satisfied
by the same model.

In [31, 32], we applied these concepts to verify the behavior of BPMN models
by formalizing a set of heuristics on an ontological specification of BPMN. In this
way, the structure of BPMN models is represented as instantiations of an ontological
specification of BPMN [34], extended with a set of rules that specify heuristics to
detect behavioral problems in process models.10

4.2 Querying Process Models Stored in Graph-Oriented DB

While traditional technologies allow to perform some reasoning procedures over
an ontology stored in the RAM memory of a computer, the management of large
ontologies (e.g., with some gigabytes of size) in main memory becomes impractical.
In the last decade, several development initiatives in query processing, access
protocols, and triple-store technologies [1, 4, 6, 9, 16, 19, 20, 27, 33] have emerged
to overcome this issue.

As a result of such advancements, today it is possible to store ontologies in
graph-oriented databases (also known as triple-stores), which provide mechanisms
for persistent storage and access to RDF graphs. This subsection shows how a
graph-oriented database can be used to query process models encoded as OWL 2
ontologies by means of SPARQL.

The graph-oriented database selected in this work is the community version (free
for non-commercial use) of Stardog. The last version of this tool (v 5.2.1) runs on
Java 8 and supports the RDF graph data model, SPARQL query language, property
graph model, and Gremlin graph traversal language, OWL 2 and user-defined rules
for inference and data analytics, virtual graphs, geospatial query answering, and
programmatic interaction via several languages and network interfaces.11,12,13

To show how to use a graph DB to query a BPMN process model to detect a
deadlock, we use the BPMN model in Fig. 2. A Stardog database is created to store

10 Examples of the OWL ontology for BPMN and SPARQL queries to formalize problem and false
positive heuristics of process models can be accessed via http://dx.doi.org/10.17632/xkg32p2bs6.1.
11 https://www.stardog.com/.
12 https://www.java.com/en/download/faq/java8.xml.
13 https://tinkerpop.apache.org/gremlin.html.

http://dx.doi.org/
https://www.stardog.com/
https://www.java.com/en/download/faq/java8.xml
https://tinkerpop.apache.org/gremlin.html
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Fig. 7 Query and results to detect the false positive case FP01 in Stardog Studio

(1) an ontology describing the BPMN meta-model proposed in [34], (2) an ontology
comprising the rules for the specification of problem and false positive heuristics,
(3) the ontologies specifying the negative scenarios presented before, and (4) the
ontologies specifying the false positive cases associated to the negative scenarios.

The problem and the corresponding false positive heuristics are formalized as
SPARQL queries. For a sake of space, just one of them is depicted here. Body and
results of the SPARQL query defined to detect the FP01 false positive occurrence
of problem heuristic #H1 are shown in Stardog Studio v0.1.0 interface (Fig. 7). The
query returns the paths between flow elements c and d, except those that contain the
exclusive gateway xs. See that c, d, and xs refer to variables in the query, not to the
names of activities in the process model. If the result is a non-empty set, then the
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false positive case FP01 is detected.14 In Fig. 7, the query is applied to the process
model in Fig. 2 and returns an empty set (see bottom of Fig. 7), which means that a
false positive was not detected.

5 Process Querying Framework

The Process Querying Framework (PQF) provides components with generic func-
tionality that can be selectively replaced to define a new process querying method
[30]. Components can be active or passive. Active components refer to the actions
performed by the process querying methods such as recording, modeling, or
formalizing, among others, whereas passive components refer to the inputs and
outputs of actions (objects and aggregations of objects) such as a process repository,
process queries, or process querying instructions, among others [30].

The PQF is grouped in components for (i) designing process repositories and
queries, (ii) preparing process queries, (iii) executing process queries, and (iv) inter-
preting results. It is possible to address several of the active and passive components
of the PQF by means of the existing technologies presented in this chapter.

For the design of process repositories, it is possible to use logical facts,
ontologies, and graph-oriented databases. Logical facts and ontologies can be seen
as passive components that represent process models. Hence, besides event log,
process model, correlation model, and simulation model, a process repository could
be composed of logical facts and ontologies that formalize the structure, semantics,
and domain knowledge of process models. The Formalizing component of the PQF
takes a process querying instruction as input and produces a process query capturing
the instruction by means of logical facts e.g., SWRL or SPARQL. The query intent
for the examples provided in Sect. 4 is Read Process, since such queries can select
process models satisfying structural (graph structures) based conditions. Besides
this query intent, it is possible to define logical facts and SPARQL queries for
creation, deletion, and update of process models.

A graph-oriented database provides the components for preparing and executing
process queries with dedicated data structures that can speed up the execution of
process queries. It also provides specific components for query optimization. In the
examples provided in Sect. 4, the results of executing queries indicate the elements
of the process that cause a deadlock or a false positive case. The component Interpret
should take the results of a query as input and provide a human-readable response
to the user, making the understanding of process query results easier.

14 Examples of the OWL ontology for BPMN and SPARQL queries to formalize problem and false
positive heuristics of process models can be accessed via http://dx.doi.org/10.17632/xkg32p2bs6.1.

http://dx.doi.org/
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6 Conclusion

The techniques described in this chapter allow process querying on process models
based on existing logic-based technologies. First, we showed how Prolog can be
used to encode a BPMN process model as a set of facts. These facts were used
to define different types of queries. These queries allow to locate various kinds
of patterns, e.g., violations of the BPMN standard, control-flow problems such as
deadlocks, possible ambiguities, and problems in labels of model elements.

In addition to Prolog, we showed how ontologies and SPARQL can be used
to query process models. In particular, we showed examples of how to define
queries to find process models with potential deadlocks, and how to improve the
precision of such queries by avoiding false positive cases. Since ontologies can have
performance issues when dealing with large volumes of ontological data, we showed
that ontological representations of business process models can be stored in the
Stardog graph-based database, which provides mechanisms for persistent storage of
and access to RDF graphs as a way to overcome performance issues. This type of
storage supports SPARQL queries.

We also discussed how to address various components of the Process Querying
Framework by means of the existing technologies presented in this chapter. After
process models have been encoded as logical facts, queries to the process repository
put into effect the query intent Read Process from the Process Querying Framework.
As the techniques do not only allow querying logic facts but also modifying them,
the query intents Create Process, Update Process, and Delete Process can be
supported as well.

A key advantage of using existing formalisms for process querying is that it
is possible to re-use existing tools. Sophisticated algorithms are included out-
of-the-box in existing Prolog systems and SPARQL implementations. For both
logic-based techniques (Prolog and ontologies), we showed by means of examples
the usefulness of these technologies for process querying.
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Process Model Similarity Techniques
for Process Querying

Andreas Schoknecht, Tom Thaler, Ralf Laue, Peter Fettke,
and Andreas Oberweis

Abstract Organizations store hundreds or even thousands of models nowadays
in business process model repositories. This makes sophisticated operations, like
conformance checking or duplicate detection, hard to conduct without automated
support. Therefore, querying methods are used to support such tasks. This chapter
reports on an evaluation of six techniques for similarity-based search of process
models. Five of these approaches are based on Process Model Matching using
various aspects of process models for similarity calculation. The sixth approach,
however, is based on a technique from Information Retrieval and considers process
models as text documents. All the techniques are compared regarding different
measures from Information Retrieval. The results show the best performance for
the non-matching-based technique, especially when a matching between models is
difficult to determine.

1 Introduction

Companies and other organizations own lots of business process models and store
them in so-called business process model repositories to describe and structure their
business operations. These repositories can contain hundreds, or even thousands, of
models (see, e.g., the collections mentioned in [14] and [25]), which makes sophis-
ticated operations like conformance checking, duplicate detection, or the reuse of
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(parts of) models hard to conduct without automated support. Therefore, querying
methods are used, for instance, to detect duplicate model fragments automatically.

Process model querying methods like the ones described in various chapters of
this book can be used to find models containing a specified model fragment. This
chapter, however, focuses on a different kind of querying approach, which is called
similarity-based search [8]. When using similarity-based search, a process model is
used as a query with the intention to find similar models in a repository.

Many similarity-based search techniques have been published (see, e.g., the
survey in [24] for an overview). These techniques can be classified into two
categories. Approaches from the first category are based on an underlying alignment
between the activities or other nodes of the compared process models, which is also
called Process Model Matching [2]. Before calculating a final similarity value, these
approaches require an alignment between the model nodes. Techniques from the
second category do not require such an alignment but use other means like process
model metrics or document vectors created from the textual content of models.

This chapter provides an assessment of the performance of six techniques for
similarity calculation of process models in the context of similarity-based search.
Thereby, we extend our analysis described in [28] by comparing the matching-based
similarity approaches with the LS3 technique [23], which does not require a match-
ing of process models for determining similarity values. Besides, we discuss further
evaluation results of these approaches regarding essential measures from the Infor-
mation Retrieval area such as Precision, Recall, F-Measure, and R-Precision [16].

The rest of this chapter is organized as follows: Sect. 2 provides fundamental
definitions that are necessary to understand the subsequent sections. Afterward, we
discuss related work and the relation of process model similarity to process querying
in Sect. 3. The compared similarity techniques are then presented in Sect. 4. The
setup of the comparative evaluation, the results of the evaluation, and the limitations
of our analysis are discussed in Sect. 5. Finally, Sect. 6 provides a conclusion of this
chapter and an outlook on future research.

2 Foundations

Fundamentals regarding business process models and the calculation of similarity
values for process models are introduced in this section. First, Sects. 2.1 and 2.2
introduce definitions for process models and process model instances, respectively.
Afterward, Sect. 2.3 describes Process Model Matching, which is an essential
part for calculating a similarity value in most existing process model similarity
techniques. We examine process model similarity in detail in Sect. 2.4. Finally,
Sect. 2.5 provides background on the measures used in our evaluations.
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2.1 Business Process Model

Similarity measurement in the context at hand primarily focuses on business process
models, where it is distinguished between informal, semi-formal, and formal
representations [5]. The models of interest typically have semi-formal or formal
characteristics and are mostly represented as EPCs [10], BPMN diagrams, [19] or
Petri Nets [18]. However, a business process model should not be understood as
a model of a particular modeling language, but as a model of a particular model
class describing business processes. Hence, an abstract definition of a process model
covering the wide range of existing modeling languages is needed as the foundation.
This definition requires an adequate generic representation of the graph structure
and labeled nodes, as these are essential components of existing similarity measures.

Several generic formalizations of business process models are proposed in
the literature, which generally address specific intentions. An analysis of these
formalizations is described in [24], which resulted in the following definition.

Definition 2.1 (Business Process Model) A business process model M =
(N,A,L, λ) is a directed graph consisting of three sets N,A, and L and a partial
function λ : N → L such that

• N = F ∪E∪C (F , E, C pairwise disjoint) is a finite non-empty set of nodes with

– F ⊆ N : a finite non-empty set of activities (also called functions, transitions,
tasks)

– E ⊂ N : a finite set of events
– C ⊂ N : a finite set of connectors (also called gateways)

• A ⊆ N × N is a finite set of directed arcs (also called edges) between two nodes
ni, nj ∈ N defining the sequence flow.

• L is a finite set of textual labels.
• λ assigns to each node n ∈ N a textual label l ∈ L.

Although further node types such as organizational units and resources are
relevant for describing business processes, they only play a minor role for existing
similarity measurement. Hence, in this work, we abstract from them.

2.2 Business Process Instances

While business process models describe a business process on an abstract level,
a business process instance represents an execution of a business process. An
execution can either be observed in the real world or simulated. Business process
instances are typically described as so-called traces (cf. [4]).

Definition 2.2 (Trace, Trace Length) A trace σ of a process model M =
(N,A,L, λ) is a valid sequence of activities from F . A trace denotes the order
in which the activities are executed. It is written as σ =< f1, . . . , fi , . . . , fn >,
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where 1 ≤ i ≤ n. fi may be equal to fj with i �= j as it is possible that an activity
occurs more than once in a trace. The length of a trace |σ | is the number of activities
in the trace.

Note that the term valid trace means that a trace cannot contain any sequence of
activities but only sequences which can actually be executed, i.e., which are allowed
by the semantics of the process model.

2.3 Business Process Model Matching

Structural correspondences of model elements are often the basis for calculating the
similarity between business process models. In that sense, matching describes the
procedure of taking two models as input, referred to as the source and target, and
producing a number of matches between the elements of these two models as output
based on a particular correspondence notion [21].

The more specific term Process Model Matching refers to the matching of single
nodes, sets of nodes, or node blocks of one process model to corresponding elements
of another process model based on criteria like similarity, equality, or analogy [26].
Referring to [31], it is generally distinguished between elementary and complex
node matches, which are defined as follows:

Definition 2.3 (Elementary/Complex Node Match) A match m is denoted by a
tuple (N1, N2) of two sets of nodes. A match (N1, N2) is called elementary match
iff |N1| = |N2| = 1 and complex match iff |N1| > 1 ∨ |N2| > 1.

There are various approaches that approximate correspondences, respectively
matches, between (sets of) nodes of models. A common technique is the
consideration of (normalized) edit distances [7] of node labels like the Levenshtein
distance [15]. Other approaches described in [2, 3] additionally apply techniques
from the area of Natural Language Processing (NLP), thereby taking into account,
e.g., semantic information of node labels concerning synonyms, homonyms, and
antonyms.

2.4 Business Process Model Similarity

Similarity measures quantify the similarity between business processes models,
while similarity is interpreted in different manners. Several dimensions of similarity
have been identified and studied in the literature, e.g., the graph structure and
state space of a process model, the syntax and semantics of process model labels,
the behavior of a process or the similarity perceived by a human, as well as
combinations of these dimensions [24].
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Independently from the interpretation of similarity, a similarity value is usually
expressed either on an interval or on a ratio scale. This provides the frame for a
typical operationalization of business process model similarity in a metric space.
Such a metric fulfills the properties of non-negativity, symmetry, identity, and
triangle inequality [33]. However, as shown in [11], most of the existing process
model similarity measures do not fulfill the abovementioned properties. Depending
on the similarity measurement objective, there might be good reasons for violating
particular properties. For example, if a similarity measure is used for searching
process models, it might be acceptable to violate the symmetry property.

In the specific “part-of search” scenario, the search query would be a process
model fragment. The similarity value should be one iff a process model contains
the query fragment. On the contrary, when interchanging the query fragment and
the process model containing the fragment, the resulting similarity value should be
lower. Essentially, fulfilling the symmetry property is not a necessary requirement
for that application.

2.5 Evaluation Measures

For the evaluation of the similarity-based search techniques presented in Sect. 5,
Precision, Recall and F-Measure are used. Precision is defined as the fraction of
relevant and obtained results (true positives T P ) to all obtained results (B), Recall
is defined as the fraction of relevant and obtained results to all relevant results (A),
and F-Measure is defined as the harmonic mean of Precision and Recall. Formally,
these values are calculated as follows:

P = |T P |
|B| , R = |T P |

|A| , F = 2 · P · R
P + R

.

In addition, we calculated R-Precision and Precision-at-k values to evaluate
ranked retrieval results. R-Precision measures Precision for a query with respect
to the first |A| models, whereby |A| is the amount of relevant results only. R-
Precision is therefore defined as the fraction |T P |

|A| with |T P | being the relevant and
obtained documents. The difference to Recall is that not all retrieved results are
taken into account, but only the |A| highest ranked results. Precision-at-k does not
use the |A| highest ranked models but considers the first k models instead. Hence,
the following fraction is calculated: |T P |

k
, again with |T P | being the relevant and

obtained documents. For further details on all the used evaluation measures, we
refer the reader to [16].
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3 Process Model Querying and Similarity-Based Search

Process model querying approaches and similarity-based search techniques pursue
the same goal: to provide users with a search functionality to satisfy their infor-
mation needs more efficiently compared to manual browsing of model repositories.
But while the goal may be the same, the used means are different. Process model
querying approaches provide some kind of query language, which can be used to
describe queries. These queries represent conditions which must be fulfilled by
models from a repository to be contained in the query result.

Some query languages allow to find possible execution traces through textual
query formulation, e.g., models that allow the execution of activity B after activity
A. Other query languages allow for the graphical modeling of queries comparable to
process modeling itself. In this context, a query is represented as a model fragment,
which must be contained in a model to be returned as a query result. Typically, these
query languages provide means to increase the variability of query formulation with
special query elements like a path connector or wildcard nodes. Finally, some query
languages incorporate Process Model Matching to widen the search scope of the
queries.

Instead, similarity-based search uses an existing process model as a query and
returns all models from the repository which have a similarity value with the
query above a certain threshold. Therefore, similarity measures on process models
are required to apply similarity-based search. Besides, most of the similarity-based
approaches use Process Model Matching as the foundation for similarity calculation
[24].

When comparing process model querying with similarity-based search, their
commonality is the basic idea of providing users with search functionalities for
process model repositories. Additionally, both approaches can rely on Process
Model Matching for finding suitable query results. The main difference, however, is
their search approach. While querying techniques use specific query languages to
formulate a query, an existing process model is used as query input in the similarity-
based search. Furthermore, querying techniques typically do not apply similarity
measures on process models to widen the search scope but use other means like
wildcard nodes.

Furthermore, similarity-based search can be related to the Process Querying
Framework described in [20]. Similarity-based search for process models also
requires some kind of process model repository for determining query results.
Similarity-based search techniques require that such repositories contain business
process models as one specific kind of behavior models mentioned in [20].
Additionally, for some techniques, other behavior models like event logs, execution
traces, or alignments might be required or must be computed from the process
models. A query itself is composed of a process model for which similar models
should be detected in a repository. Besides a query model, it can be useful to
provide a threshold value for specifying how similar resulting models should be
compared to the query model. The intent of a query is always the same: retrieving
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similar models. Hence, similarity-based search is not geared toward manipulating
or deleting models.

Regarding the Prepare part of the Process Querying Framework, the performance
of similarity-based search might be increased by indexing or caching mechanisms.
For example, the efficiency of queries with the document vector-based LS3 approach
[23] is increased when the document vectors of process models are stored in an
index. In this case, the document vector generation has to be performed only for
the query model. The document vectors for all models from the repository can be
retrieved from the index and do not have to be generated for each query.

Yet, not all techniques might be equally well supported by the index structures.
The calculation of matches between a query model and the models from the
repository are not as easily indexable or cacheable as the document vectors from
the previous example. This is due to the fact that the calculation of matches is
always dependent on the query model and the possible result models. One difficulty
is, for instance, that the matches between a query model and one process model
from a repository cannot be used to infer matches between the query model and
another process model without additional computations. The same applies for a new
query model. Even if matches between other query models and the models from
the repository are known, it is not possible to use these directly due to different
terminologies in labels or model structures.

With this in mind, it is also difficult to envision a filter mechanism for matching-
based similarity techniques, which can be used in the Execution part of the Process
Querying Framework. If, for example, two process models pm1 and pm2 from a
repository only have a low similarity score for a specific matching-based similarity
technique and if the similarity value between a query model qm and pm1 is also
low, pm2 cannot automatically be excluded from similarity calculation, i.e., pm2
cannot be filtered. The reason is again that matching-based similarity techniques
highly depend on the calculated matches. For the LS3 approach, however, a filtering
of results could be applied based on the angles between the document vectors. For
the two example models mentioned above, pm2 could be filtered from similarity
calculation if the angle between qm and pm1 is too big and the angle between qm

and pm2 would be even bigger.

4 Selection of Similarity Techniques

In order to evaluate the practical applicability and the limitations of the current state
of research for similarity search, we need to identify and select proper similarity
measurement techniques. This selection is based on the findings in [28]. As the
analysis in [28] showed, most similarity techniques produce highly correlating sim-
ilarity values. Hence, we only compare five of the eight approaches. The other three
approaches were not considered, since they already showed a very high correlation
with at least one of the selected ones. The selected techniques [1, 9, 12, 29, 32] differ
in the dimensions used for similarity calculation and in their complexity so that the
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Table 1 Functional characteristics of all compared techniques

LS3 SSCAN CF FBSE LAROSA LCST
Dimension/reference [23] [1] [29] [32] [12] [9]

Natural Lang.: Syntax x x x x x

Natural Lang.: Semantics x x

Graph structure x x x x

Behavior x x

Model as text x

Model as element labels x x x x x

selection should provide for a differentiated evaluation in the similarity-based search
context. All of these similarity approaches use matches to calculate the similarity of
process models. Therefore, we intentionally included another technique [23] in the
evaluation, which does not use matches for similarity calculation.

Table 1 contains an overview of the techniques used in the evaluation. The
calculation and setup details are described in the following subsections.

4.1 Latent Semantic Analysis-Based Similarity Search

The Latent Semantic Analysis-Based Similarity Search (LS3) approach [23] is based
on Latent Semantic Analysis [13], which is a technique from the Information
Retrieval area for searching similar documents. The basic idea of LS3 is to construct
so-called document vectors from process models. These document vectors form a
Term-Document Matrix, in which each column represents a process model, i.e., a
document vector, and each row represents a term1 from all process models in a
repository. The entries of the matrix contain weighted frequency values describing
the weight of a certain term in a specific model.

Afterward, singular value decomposition is applied to decompose the constructed
Term-Document Matrix of the process model repository into the product of
three matrices. These matrices are used to construct another matrix with reduced
dimensionality. The document vectors in the reduced matrix span a vector space
which is used for calculating the similarity of process models. The similarity of
two process models is thereby calculated as the cosine of the angle between their
document vectors.2 We did not include a classical Information Retrieval approach
in our comparison as LS3 performed better in an experimental evaluation [22].

1 In this context, a term should be understood as a word or a meaningful unit of words (e.g., statue
of liberty).
2 For calculating the similarity values, we used the code available at https://github.com/
ASchoknecht/LS3.

https://github.com/ASchoknecht/LS3
https://github.com/ASchoknecht/LS3
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4.2 Similarity Score Based on Common Activity Names

The similarity of two process models according to [1] (SSCAN) is calculated
based on the number of identically labeled activities. We used the implementation
proposed in the RefMod-Miner3 to determine similarity values.

4.3 Causal Footprints

In the approach from [29] (CF), each process model is transformed into a so-called
footprint vector, and the similarity of two models is determined as the cosine of
the angle of their footprint vectors. A footprint vector consists of the activities of
the process model as well as of two behavioral relations for each activity. The first
relation contains all activities that are executed before an activity and the second
relation contains all activities that are executed after that activity.

Hence, calculating the causal footprints requires a node matching between two
process models. Although there is a proposal of a semantic node similarity measure,
the used implementation from http://rmm.dfki.de considers two activities as a match
if both have the same label.

4.4 Feature-Based Similarity Estimation

The technique described in [32] (FBSE) uses the syntactical natural language
dimension as well as the graph-structural dimension to determine similarity values.
Regarding the syntactical dimension, a Levenshtein distance-based similarity value
between activity labels is calculated. For the graph-structural dimension, five roles
(start, stop, split, join, and regular) are used to characterize an activity. The graph-
structural similarity is then based on the common roles of two activities (so-called
role feature similarity). Two activities are considered as equivalent if both the
syntactic label similarity and the role feature similarity surpass an individual
threshold. Finally, the similarity between two process models is defined as the ratio
of equivalent activities to the overall number of activities in both models.

We used the implementation from http://rmm.dfki.de to determine similarity
values. Thereby, the thresholds were set as proposed in the original paper, and the
resulting similarity matrix was optimized using the greedy algorithm described
in [32].

3 RefMod-Miner as a Server: http://rmm.dfki.de and Code on GitHub: https://github.com/
tomson2001/refmodmine.

http://rmm.dfki.de
http://rmm.dfki.de
http://rmm.dfki.de
https://github.com/tomson2001/refmodmine
https://github.com/tomson2001/refmodmine
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4.5 La Rosa Similarity

The similarity calculation of [12] (LAROSA) is based on the graph-edit distance
similarity described in [6]. The basic idea of the technique is to determine matches
between two process models and to additionally consider the graph structure of
models by calculating a graph-edit distance. The matches in [12] are based on the
Levenshtein distance of the node labels and on a linguistic similarity measure using
a lexical database. The greedy algorithm in [6] for finding the optimal graph-edit
distance has been used with the original implementation. The parameter values were
set as described in [12].

4.6 Longest Common Sets of Traces

The approach proposed in [9] (LCST) uses the traces of two process models M1 and
M2 to quantify their similarity. Therefore, the two components trace compliance
degree cdtrace(σ1, σ2) and trace maturity degree mdtrace(σ1, σ2) are used, whereby
σ1 is a trace of M1 and σ2 is a trace of M2. The trace compliance degree covers
the extent to which a process adheres to ordering rules of activities, while the trace
maturity degree covers the extent to which the activities of the other model are
recalled. Both components are defined based on the length of their longest common
subsequence lcs, such that cdtrace(σ1, σ2) = |lcs(σ1,σ2)||σ2| and mdtrace(σ1, σ2) =
|lcs(σ1,σ2)||σ1| . Based on that, the compliance and maturity degree between two process
models are defined as the sum of the maximum trace compliance and trace maturity
degrees. Finally, two components are used to express in how far the traces of one
model are reflected by the traces of another model.

To provide a comparable similarity value, the average of both components
is calculated and interpreted as the final similarity value. The matches required
by this approach are determined using the Levenshtein distance-based similarity
calculation between two activity labels with a minimum threshold of 0.9. We used
the implementation from http://rmm.dfki.de to determine similarity values.

5 Evaluation

The selected process model similarity measurement techniques are evaluated in
this section. First, we present the used data collection (Sect. 5.1) and describe
the evaluation design (Sect. 5.2). Afterward, the evaluation results are presented
in Sect. 5.3, followed by a discussion of the results and the limitations in Sect. 5.4.

http://rmm.dfki.de
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5.1 Dataset

The dataset for the comparison is based on the model collection used in [28]. The
idea is to conduct an experimental analysis of similarity measures to characterize
their behavior in specific application scenarios. For that purpose, one can distinguish
laboratory and field investigations. In laboratory investigations, the process models
are (possibly synthetically) generated in a controlled environment, while in field
investigations, they are generated by human modelers. Since the results of a
laboratory investigation cannot easily be transferred to the field, the field setting
should be considered as well. We finally use three different groups of samples
with different characteristics which are partially taken from a large process model
corpus [27]. In contrast to [28], we added four additional laboratory model sets from
CamundaTM training sessions. All used model sets with their specific characteristics
are described below:

1. Field models: To develop these models, no restrictions regarding the labeling
of model elements were given to the modeler(s). Thus, in these models, equal
or similar aspects might be modeled in a different manner and expressed with
different words. A dataset, containing such models from the domain of university
admission (9 models) and the domain of birth registration (9 models), is provided
in [2].

2. Models from controlled modeling environments: Models are created in a
controlled environment, wherein different modelers independently model the
same process based on a natural language text description. As a terminology
is provided in the textual description, it is assumed that this terminology is used
by the modelers as well. Student exercises4 (18 models) serve as an adequate
dataset. Additionally, models from CamundaTM training sessions5 were included
in this group (40 models). An analysis based on this dataset covers a laboratory
investigation.

3. Mined models: The process models in this group are derived using process
mining techniques. Thus, the node labels are linguistically harmonized and are
(1) unambiguous and (2) consistent over the whole collection (matching problem
is essentially evaded as model elements representing the same real-world activity
are labeled identically). The models from Dutch governance presented in [30]
fulfill this requirement (80 models). However, one can argue whether they are
synthetically created in a laboratory sense or, as the processes are executed in the
real-world, whether they are derived from the field.

The overall model collection contains 156 distinct models, which were compared
to one another in every possible combination. This leads to similarity calculations
for 24,336 business process model pairs; both directions were checked as some of
the similarity measures are not symmetric (pseudo-metrics).

4 Model set “Exams” is available in the model repository at http://rmm.dfki.de.
5 The original models can be retrieved from https://github.com/camunda/bpmn-for-research.

http://rmm.dfki.de
https://github.com/camunda/bpmn-for-research


470 A. Schoknecht et al.

5.2 Query Results

Before we were able to determine the query results for each similarity measurement
technique, we needed to calculate the similarity values for all model pairs with each
technique. The interval used for the similarity values was [0, 1], with higher values
meaning more similar and lesser values meaning less similar.

The similarity values, calculated with the above mentioned techniques, were
used as the foundation for calculating the evaluation measures in the second step.
Therefore, a gold standard containing the relevant models to a specific query model
was needed to determine Precision, Recall, and F-Measure values. As the underlying
processes of the model collection are different, we decided to use all models related
to a specific process as the relevant models. For example, when one of the University
Admission models was used as a query model, we considered all of the nine
University Admission models to be the relevant models for this specific query. Note
that we did not remove the query model from the model dataset for querying as we
also wanted to analyze how the search approaches handle models identical to the
query model.

To finally calculate Precision, Recall, and F-Measure values, we used a threshold
value θ on the similarity values. Only models having a similarity value equal to or
above the threshold value with respect to a query model were deemed as a query
result.

Regarding the R-Precision and Precision-at-k evaluation measures, we did not
need a threshold value. For a query model, we simply ranked all models in
descending order according to their similarity values. Afterward, we calculated
Precision of the first |R| results to determine R-Precision. This means, for instance,
that we determined the R-Precision for one of the University Admission models
based on the nine models with the highest similarity values compared to this model.
The first nine models are used because the gold standard for one of the University
Admission models contains nine models. We also calculated the Precision-at-5
values by calculating Precision based on the 5 highest ranked models. We decided
to use k = 5 for the Precision-at-k measure to examine the first results, which are
most likely to be viewed by a user of such a search functionality. Besides, we used
quite a low value for k as the amount of relevant models was mostly nine or ten.
Only for the models from the student exercise, 18 relevant models were available.

5.3 Evaluation Results

Table 2 shows the results for the similarity-based search experiment described in the
previous section. The first two parts contain the macro and micro average values for
Precision, Recall, and F-Measure. The macro average calculates the average over
all queries, while the micro average is calculated by summing up true positives and
the amount of retrieved and relevant results before computing Precision, Recall, and
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Table 2 Statistics for query results (P: Precision, R: Recall, and F: F-Measure)

LS3 [23] LCST [9] FBSE [32] CF [29] SSCAN [1] LAROSA [12]

M
ac

ro

P
AVG 0.92 0.81 0.26 0.90 0.96 0.87

STD 0.18 0.31 0.19 0.20 0.15 0.26

R
AVG 0.89 0.55 0.59 0.64 0.56 0.79

STD 0.21 0.43 0.24 0.40 0.43 0.30

F
AVG 0.87 0.47 0.33 0.66 0.60 0.80

STD 0.19 0.34 0.19 0.36 0,39 0.27

M
ic

ro

P 0.86 0.47 0.20 0.87 0.95 0.88

R 0.89 0.52 0.59 0.59 0.53 0.78

F 0.87 0.49 0.30 0.71 0.68 0.83

R-Precision 0.95 0.50 0.37 0.82 0.78 0.88

Precision-at-5 0.99 0.62 0.56 0.91 0.93 0.93

F = 1 79 20 0 52 54 43

Threshold θ = 0.79 θ = 0.47 θ= 0.91 θ = 0.64 θ = 0.42 θ = 0.27

Calculation time 2s >1d 54min ∼1d 12min 2h

F-Measure. The third part contains the results for R-Precision, Precision-at-5, as
well as the amount of queries with the F-Measure value of 1. Finally, the last row
contains the threshold value, which maximized the macro average F-Measure value
of each considered search technique. The best result for each evaluation measure is
marked bold.

Regarding the unranked Precision, Recall, and F-Measure, four search techniques
showed very good results. LS3, CF, SSCAN, and LAROSA reached (at least for
some of the measures) high results. SSCAN got the highest Precision value (0.96),
which is expected, as this approach counts identically labeled nodes. Thus, there
is a high probability that two models with many identically labeled nodes, in fact,
describe the same process. With respect to the Recall and F-Measure values, LS3
reached the highest scores of 0.89 and 0.87, respectively. However, for CF and
SSCAN, Recall is the critical measure as their values are significantly lower (0.64
and 0.56). While LAROSA never reached the highest values, all evaluation values
are comparably high. Additionally, LAROSA also received the second-highest
scores for R-Precision and Precision-at-5. Only LS3 reached higher values for these
ranked evaluation measures. Besides, CF and SSCAN again got good to very good
values. The LCST and FBSE search techniques, however, reached only low values
for all the considered evaluation measures.

Finally, LS3 and SSCAN reached outstanding results. Both approaches show a
very good performance not only in terms of calculation complexity and calculation
time but also regarding the evaluated measures. LS3 shows the best F-Measure
values overall as well as the best R-Precision and the best Precision-at-5. On the
contrary, SSCAN reaches the best Precision. Depending on the actual scenario, it
might be meaningful to decide on the particular goal. A high Precision stands for a
high probability that a query result is relevant in terms of the search argument, while
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Table 3 Micro average values regarding easy and hard matching of models (P: Precision, R:
Recall, and F: F-Measure)

LS3 [23] LCST [9] FBSE [32] CF [29] SSCAN [1] LAROSA [12]

E
as

y

P 0.75 0.95 0.25 0.94 0.94 0.82

R 0.97 0.63 0.64 0.97 0.98 0.99
F 0.85 0.75 0.36 0.96 0.96 0.90

H
ar

d

P 1.00 0.28 0.17 0.69 1.00 0.98

R 0.82 0.42 0.54 0.25 0.12 0.60

F 0.90 0.33 0.26 0.37 0.21 0.74

a high Recall ensures that a great fraction of the expected results is found. Hence,
both Precision and Recall are valid isolated criteria for queries, but an aggregation
(F-Measure) of them makes sense for unknown scenarios as well.

In contrast to the lightweight LS3 and SSCAN approaches (in terms of the
estimated calculation time6), CF and LCST are very expensive to calculate. Both
require a derivation of traces or parts of traces to calculate a similarity value. Since
the state space of a process model can explode under certain circumstances, such
a calculation might even become impossible. Against that background, there is a
risk of running into a situation where the approaches cannot be applied. This is
indicated by the calculation times mentioned in Table 2, although these values do not
allow to derive any reliable statement on performance. In fact, it cannot be expected
that the implementations are optimized with regard to performance. Most of them
(all but LS3) perform a pairwise comparison, which require a separate loading
and parsing of the analyzed model files for each pairwise calculation. We tried to
eliminate that problem by performing the task of loading and parsing in isolation,
which was possible for all approaches except of LAROSA. Moreover, all approaches
considering models as elements need to interpret the source data and instantiate each
single node as a dedicated object. Finally, in the best case, the calculation times only
state an indication of performance but do not necessarily allow to derive a reliable
statement about a practical applicability.

Table 3 shows the micro average results for Precision, Recall, and F-Measure
divided into two categories based on the matching difficulty. In the easy part,
only the models from the Dutch municipalities dataset are included (80 models).
Calculating a matching between these models is simple as the same real-world
activities are labeled identically. The hard part contains the models from the field
and controlled modeling categories (76 models).

The numbers from Table 3 highlight one essential difference between the LS3
approach and the three top-ranked matching-based search techniques CF, SSCAN,
and LAROSA. For the easy part, LS3 is outperformed by the three matching-

6 The actual calculation time depends on the implementation. In case of a mapping-based similarity
calculation (which is the case for all evaluation measures expect of LS3), the calculation of the
mapping needs to be considered as well.
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based techniques regarding Precision and F-Measure. Recall values are very high
for all the four approaches. This clearly shows that especially CF and SSCAN can
calculate very good query results in case of easy matching. Yet, the evaluation shows
an inversing result for the hard part. In the case of a difficult matching, the LS3
approach outperforms the matching-based techniques. Especially, the Recall values
for CF and SSCAN drop to very low values. The problem for both approaches is
determining matches as they use simple matching calculations (both do only match
in the case of identical labels).

5.4 Discussion and Limitations

A limitation of the presented evaluation, and also for all other similar evaluations,
is the choice and the size of the model corpus (the used dataset). Since neither
the overall set of existing process models is available in a single corpus nor the
overall number of existing process models is known, it is not possible to select
a specific number of models randomly (which would be necessary to determine
the statistical significance). Instead, as mentioned above, we selected models that
are (1) appropriate for the evaluation scenario and (2) heterogeneous. Appropriate
in this case means that a search in the model set is meaningful—there exist
models with a naturally given similarity, so that the expected query results can be
determined. Heterogeneity describes the character of the models caused by their
origin, i.e., the domain, the modelers background or his modeling experience. This
highly influences the complexity of the matching problem: as mined models are
automatically derived, a matching problem by itself does not exist. Linguistically
similar labels are probable, if the models are designed based on a consistent textual
description—they are rather improbable, if this is not the case.

The similarity calculation uncovered limitations in the approaches “La Rosa
similarity” (LAROSA) [12] and “Longest common subsequence of traces” (LCST)
[9]. 9 of the 156 models in the evaluation dataset could not be processed by the
original LAROSA algorithm. Although it was not possible to identify the reason for
that, this led to a reduction of the model combinations to be processed by 2727, or,
conversely, the similarity of 21,609 out of the overall 24,336 model combinations
were successfully calculated. In case of “Longest common subsequence of traces,”
45 of the 156 models could not be processed. Therefore, the similarity could only
be calculated for 12,015 model combinations. The challenge for this approach
lies in the necessity to calculate all the theoretically possible execution traces
for a particular model, since the real-world traces are not available. The used
implementation applies the approach of [17] to derive traces; loops were passed
only once. Based on the used connectors and the size (in terms of nodes and
edges) of a model, this can become very expensive in time and memory. Based
on some preceding tests, it was decided to set a trace calculation limit of 40
seconds per model, which led to 41 cancellations. Syntactical errors were a second
reason for which the traces of four models could not be calculated. Since no
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Fig. 1 Similarity values for two selected models

other approach requires a syntactical correctness of the process model, this is an
important limitation. Nevertheless, a similarity analysis with this approach might be
meaningful in specific scenarios, e.g., when (1) the real-world traces are known, so
that it is not necessary to calculate them based on the model and (2) the intention is
to analyze the execution behavior instead of the process concept.

Figure 1 shows two selected models from the dataset with the corresponding
similarity values. The example shows several of the above discussed aspects
in a concrete setting of the evaluation. First, LCST was not able to deliver a
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similarity value since the runtime threshold for calculating all possible traces of 40
seconds was exceeded for at least one of the two models. Running the technique
without a time limit, it delivered the similarity value after 35 minutes. Second,
the implementation of LAROSA threw an exception since it was not able to
handle additional object types, which seem to be unknown by the algorithm. We
solved that problem for this model pair by manually removing the organizational
elements/lanes. Third, we see significant differences in the resulting similarity
values. Having a look at the element labels of the models uncovers a high similarity
for a human (both describe a process for a University Admission) although there
are different wordings in the process descriptions. Especially, the use of different
expressions, such as “take oral exam” vs. “conduct oral examination”, is challenging
for purely syntactical similarity measures, like SSCAN.

6 Conclusion and Outlook

Based on the practical empirical evaluation, it can be stated that different process
model similarity measures lead to substantially different similarity values. The
reason for that is founded in (1) different competencies regarding the characteristics
of the model dataset (easy vs. hard cases) and (2) the algorithmic approaches for
calculating similarity. While FBSE, SSCAN, and LAROSA calculate a similarity
value based on a particular node matching only, CF and LCST additionally focus on
behavioral characteristics, which are derived from the model structure. In contrast
to that, LS3 is the only evaluated measure, which does not require any mapping.

The measures were evaluated with a focus on process model search for process
querying, wherefore different relevance criteria can be argued. On the one hand,
a high Precision can be desired in order to ensure that all delivered result items
are relevant for the search. A high Recall or a high F-Measure can be argued
as desirable, as this improves the completeness of the result. Nevertheless, the
consideration of additional similarity criteria (like the model structure for CF and
LCST) did not lead to an improvement of the measurement results in terms of the
expected output (process model result list). LS3 showed an outstanding performance
regarding the F-Measure. Also, the results of SSCAN are convincing with constantly
high Precision values.

Although the evaluation was executed in the best possible way, there are several
threats to validity, which cannot be eliminated in such experiments:

1. Selection of the models: For the reason of statistical significance, it would be
necessary to randomly select a number of process models from the ground set
of existing process models. Since this ground set is unknown, the selection can
never be seen as random. Instead, we selected a meaningful mix of synthetic and
real-world models.

2. Validity of the gold standard: The gold standard is generally determined by
humans. Thus, the process of reaching the gold standard is challenging. A
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consistent understanding of similarity, correspondence, and the model content
is necessary to reach a consensus of the truth. The gold standard represents
this consensus, which might be debated again if an additional human is being
involved in creating the consensus.

3. Configuration of the evaluated similarity measurement techniques: The
configurability of similarity measurement techniques allows an adjustment that
considers the characteristics of the problem to solve, e.g., depending on the
origin of the model data. Since the search goal is not necessarily known, we
chose the recommended standard configuration, while other settings may lead to
significantly better results.

With these limitations, we can conclude that the measures with the lowest
functional complexity (SSCAN and LS3) bring the most appropriate results within
the application scenario of process model querying. Since this also affects an
outstanding calculation performance in terms of time and consumed resources, they
should be further evaluated for the purpose of querying large model repositories to
validate their practical applicability.
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Complex Event Processing Methods
for Process Querying

Han van der Aa, Alexander Artikis, and Matthias Weidlich

Abstract Business Process Management targets the design, execution, and opti-
mization of business operations. This includes techniques for process querying, i.e.,
methods to filter and transform business process representations. Some of these
representations may assume the form of event data, with an event denoting an
execution of an activity as part of a specific instance of a process. In this chapter, we
argue that models and methods developed in the general field of Complex Event Pro-
cessing (CEP) may be exploited for process querying. Specifically, if event data is
generated continuously during process execution, CEP techniques may help to filter
and transform process-related information by evaluating queries over event streams.
Against this background, this chapter first outlines how CEP fits into common use
cases and frameworks for process querying. We then review design choices of CEP
models that are of importance when adopting the respective techniques. Finally, we
discuss techniques for the application of CEP for process querying, namely those
for event–process correlation, model-based query generation, automated discovery
of event queries, and diagnostics for event query matches.
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1 Introduction

The field of Business Process Management (BPM) assumes a process-oriented view
on how organizations are structured [24]. In order to analyze the operations of an
organization, its business processes are assessed. Such a process is defined by a set
of activities, which denote atomic units of work, along with causal and temporal
dependencies for their execution. An example would be a Lead-to-Quote process,
which comprises activities such as loading contact data from customer-relationship-
management (CRM) system, estimating the project effort, and preparing a quote
template. Causal dependencies would then define that the loading of contact data
precedes the other two activities, which may then be executed concurrently.

Process querying is concerned with models and methods to filter and transform
representations of business processes [52]. As such, it supports manifold use
cases, reaching from process modeling support, through variation management and
performance simulation, to compliance verification. Process representations that are
subject to querying may take various forms: A process model captures the designed
behavior of a process. It specifies the activities and execution dependencies of a
process, thereby serving as a blueprint for the execution of a specific instance [39]. A
process model may be constructed for various purposes, such as process automation,
staff training, or performance simulation. Hence, even for a single process, there
may exist various models, each capturing the aspects of the process that are
important in light of the purpose of the model [65]. The notion of event data,
in turn, relates to process representations that capture the recorded behavior of a
process, such that an event denotes that a certain state has been reached (e.g., an
order request has been received) or that an activity has been executed as part of a
specific process instance [60]. Event data is often formalized as an event log, a set of
traces, each trace being a finite sequence of events that denotes the past behavior for
a particular process instance. Process-related data may also be available as an event
stream, a potentially infinite sequence of events that represent the current behavior
of a process.

Complex Event Processing (CEP) defines models and methods to make sense of
streams of event data [9, 20]. It defines languages to express queries, which are then
evaluated over an event stream, thereby implementing continuous filtering, trans-
formation, and pattern detection. It therefore suggests itself to adopt event-based
process querying through CEP, once process-related information is represented by
event streams.

While CEP is developed for such online event processing, event-based process
querying also enables various use cases for offline event analysis. This is achieved
by replaying event logs, which encode temporal event orders [60], thereby rendering
online event-based techniques applicable to static event data.
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In this chapter, we outline how CEP methods can be used in the context of process
querying. Specifically, this chapter delivers a contextualization and overview of
essential techniques in this area, as follows:

• We embed event-based querying by means of CEP methods in the larger process
querying context (Sect. 2). That is, we discuss CEP methods with respect to use
cases and frameworks for process querying.

• We review common design choices of CEP models (Sect. 3). We highlight
which aspects to consider when choosing among available event models, query
languages, and system infrastructures when using CEP for process querying.

• We discuss essential techniques for the application of CEP for process querying
(Sect. 4). This includes techniques to correlate events with other process repre-
sentations, to derive queries from process models for control-flow monitoring,
to discover such queries automatically from event logs, and to obtain diagnostic
information on specific process behavior that is identified by event queries.

The chapter closes with a discussion of open research issues in Sect. 5.

2 The Context of Event-Based Process Querying

Event-based process querying can be seen as a special variant of process querying,
where the filtered and transformed process representations assume the form of event
data. Below, we first elaborate on use cases for event-based querying. Subsequently,
we discuss how event-based techniques fit into the broader picture of process
querying and provide an illustrative example.

2.1 Use Cases

Methods for event-based querying enable the analysis of the recorded behavior
of a process. In general, different types of analysis are distinguished, along
several dimensions. Analysis questions may relate to a qualitative as well as a
quantitative property of a process [24]. The former relates to recorded execution
dependencies [18], e.g., whether two activities have been executed in a specific order
or a particular number of times. The latter may be defined in terms of execution and
wait times, or costs assigned to activity executions [23, 55]. In either case, however,
not only the control-flow dimension may be considered. In addition to recorded
activity executions, event data often also contains information on processed artifacts
or involved resources [45], which can also be subject to event-based querying.

To illustrate the spectrum of applications for event-based querying, we consider
two specific use cases: compliance verification and performance monitoring.
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Compliance Verification Today, the execution of processes is widely supported
by information systems. For processes in domains such as logistics [6] or health-
care [46], however, the execution of the actual activities is often conducted manually
by diverse stakeholders. Yet, there are expectations on how the process is conducted,
which, depending on the domain, originate, for instance, from reference models [27]
or legal frameworks [43]. When a system guides the execution of a process but does
not enforce a specification of its expected behavior, compliance (aka conformance)
between expected and recorded behavior needs to be verified explicitly [18, 43, 59].
Based on a formalization of compliance requirements, event-based process querying
helps to identify cases of non-compliant process execution [67]. Such mechanisms
are particularly useful if applied to event streams representing the most recent
behavior of a process: Detecting a compliance violation shortly after it occurred
enables the immediate implementation of mitigation and compensation schemes.

In order to fully exploit the potential of event-based querying for compliance
verification, several challenges should be addressed. First and foremost, compliance
requirements need to be linked to events. For instance, if a particular ordering
of activities is required, events must be correlated unambiguously with activity
executions as part of a specific process instance to enable conclusions on the
compliance of process execution. Moreover, the actual translation of compliance
requirements into event queries is cumbersome, since it requires the formalization of
the requirements in a (commonly declarative) query model. Hence, the construction
of event queries for compliance verification must be supported, e.g., based on
models that capture the expected behavior of a business process or event data
that is annotated with compliance violations. Furthermore, the interpretation of
compliance issues that have been detected by event-based querying is challenging.
From a practical point of view, understanding the cause for a compliance violation
is important to be effective in the mitigation and compensation of the issue.

Performance Monitoring For many processes, ensuring efficient process execu-
tion is a core requirement. Whether it is the cycle time of an order process at
an e-commerce platform, the wait time of patients as part of clinical pathways,
or the cost spent for claim handling processes at an insurance company, a good
share of the success of process management depends on quantitative properties of
how the process is conducted [24]. Event-based process querying helps to measure
these properties: It selects events that are used as input for the computation of
performance indicators [21], e.g., the average activity execution time, the delay
with which a particular activity is executed after activation, or the accumulated
costs induced by a specific type of process instance. At the same time, outliers
that represent process execution with anomalous performance can be extracted [54].
Beyond the sheer assessment of the performance, event-based process querying
further enables the detection of respective trends, such as continuous deterioration
of process performance as well as abrupt drifts [15]. Again, immediate detection
of performance issues is a prerequisite for effective countermeasures, which can be
achieved through querying of event streams, but not through post hoc analysis of
event logs.
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As for the previous use case, however, event-based querying for performance
monitoring faces the challenge of event correlation. That is, while performance
indicators are defined in terms of the business semantics of a process (e.g., based
on the time needed to reach a milestone), the task to correlate recorded events
with notions of process progress may be non-trivial. Also, the challenges on the
construction of event queries and the interpretation of their results, mentioned
above for compliance verification, are faced as well in performance monitoring. For
instance, a delay in the execution of a business process may lead to ripple effects,
so that a large number of performance requirements are not met. Upon detecting
all these performance issues, an understanding of the initial deviation that caused
further delays is important.

2.2 The Context of Event-Based Process Querying

Querying techniques that are grounded in event handling fit into established frame-
works for process querying. We illustrate that through the Process Querying Frame-
work (PQF) as introduced by Polyvyanyy et al. [52]. It defines active and passive
components, which jointly realize the functionality needed for process querying.

Figure 1 shows a fragment of the PQF, which organizes the respective func-
tionality into four parts, targeting (i) the design of process repositories and queries
through modeling, recording, and correlation; (ii) the preparation and (iii) execution

Event-based
Process Querying

Repository of
Event Data

Query
Matches

CEP
Query

Formalizing

+ =Indexing

Index 
and Process 

Statistics

Event LogCorrelation
Model

eraperP

Execute

Model, Record
and Correlate

Optimizing

Query
Execution

Plan

Process 
Querying
Statistics

Cache

Caching

Interpret

Filtering

Filtered
Event Data

...

Process 
Model

Process 
Querying
Instruction

Projecting

Explaining

Inspecting

Event
Stream

Fig. 1 Instantiation of a fragment of the Process Querying Framework [52] for event-based
process querying based on Complex Event Processing
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of queries; and (iv) result interpretation. In the context of event-based process
querying, components of this framework are instantiated as follows:

(i) Model, Record, and Correlate A repository, in general, may comprise various
types of artifacts, also referred to as behavior models. For event-based process
querying, some types of such models are of particular importance. First and
foremost, event logs and event streams represent the event data that is the actual
target of any event-based query mechanism. As discussed above, an event log is
a set of recorded traces of events that denote the past process execution [60],
whereas an event stream is a potentially infinite sequence of events that indicates
how the process is currently conducted [17, 31]. Event streams, therefore, cannot
be stored in a repository in their entirety. However, most use cases for process
querying inherently justify the consideration of a bounded subsequence of an event
stream. For instance, queries commonly analyze individual or specific groups of
process instances, so that, assuming that process instances eventually terminate, the
finiteness of event data relevant to a particular query is ensured.

Moreover, behavior models that assume the form of process models and corre-
lation models play a role for event-based process querying. Neither type of artifact
is used as a query target, i.e., they are not part of the repository in the sense of the
PQF but may guide the definition of event queries. This is achieved by formalizing
a process querying instruction. In part, this instruction may automatically be
generated from a process model [10, 67], which we detail later in this chapter. For
instance, for either of the above use cases, the expectations regarding compliant
and high-performance process execution may have been materialized as a process
model. As such, queries that are derived from it can be used to ensure that these
expectations are met in the process behavior as recorded in event data. To this end,
however, it may be required to first establish the relation between process model
elements and event data using a correlation model [11]. Again, we will highlight
essential techniques for this step.

In the absence of artifacts that can be used to formalize process querying instruc-
tions, the event data itself may also form a starting point for query development. As
we will detail later, based on event data that is annotated with relevant situations that
shall be matched, a respective query may actually be learned (semi-)automatically.

(ii) Prepare Given a repository of event data and an event query, the evaluation
of the query may be prepared. The PQF defines indexing and caching schemes
as the major means for such preparation. Those also apply to event-based process
querying, whereas their implementation depends on the specifics of the respective
type of event data and formalism adopted for event queries. Basic techniques
include indexing of specific types of events, their frequencies, or constraints on the
occurrence or absence of events in an event log or an event stream.

(iii) Execute As part of the execution stage, the information resulting from the
preparation is exploited to filter the event data and optimize the execution plan
of an event query. An example for the former is the projection of all events that
cannot be of relevance for the query at hand. Examples for the latter are satisfiability
checking [22], rewriting of event queries [68], or sub-pattern sharing [53] based on
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information on the event data. In any case, the execution of the query yields a set of
query matches. As those are given as event data, they may be thought of yet another
process repository as put forward by the PQF.

(iv) Interpret Obtained query matches represent the input to the last part of the
framework. Matches may be interpreted in light of the respective application
scenarios. For the aforementioned use cases, for instance, query matches may denote
compliance violations or aggregated performance measurements. By putting query
matches into context, e.g., comparing them to those obtained by other queries, for
other traces, or at other times, they may also enable the explanation of the queried
phenomena. As an example, we later review a technique that provides diagnostic
insights into non-compliance by assessing the interplay of the matches obtained
with event queries.

Query matches may also be used for further interpretation. In Fig. 1, we included
the option to project the results on behavior models for analysis purposes. For
instance, projecting query matches on the originating event data may be useful
to quantify the relative amount of observed matches. However, in practice, many
further types of interpretation of query matches are possible, so that this list is not
supposed to be understood as an exhaustive overview of how to make sense of query
matches.

2.3 An Example Scenario

We now turn to an exemplary scenario related to a Lead-to-Quote process, which
will serve as a running example throughout the remainder.

Key event types in such a Lead-to-Quote scenario will capture process milestones
including received a lead, project details entered into ERP (Enterprise Resource
Planning) system, and quote sent. Events of these types may be derived from the
relational data stored in the system, e.g., the insertion of a tuple into a relation that
captures leads can be interpreted as a signal that an instance of an activity received
a lead had been executed. Given these events, managers can establish monitoring
requirements that track behavioral properties, such as the qualitative requirement
that project details must always be entered into an ERP system before a quote can
be sent out, or a quantitative requirement used to ensure that a quote is sent out
within two weeks after receiving the lead. The automatic and continuous monitoring
of these requirements is then achieved by translating them into event queries. In the
presence of models or annotated data, this translation may even be supported using
automated techniques. The resulting queries can use both pattern recognition (e.g.,
events occurring in a particular order for a specific case) and data attribute analysis
(e.g., timestamps and other payload data associated with events) to monitor both
qualitative and quantitative monitoring requirements.

Finally, we introduce a process model for the Lead-to-Quote scenario, depicted in
Fig. 2. The modeled process starts with an import of contact data (activity a or b) or



486 H. van der Aa et al.

Lo
ad

 
C

on
ta

ct
 fr

om
 

C
R

M
 (a

)

Im
po

rt 
C

on
ta

ct
 fr

om
 

Ex
ce

l (
b)

U
pd

at
e 

C
on

ta
ct

 
D

et
ai

ls
 (d

)

R
ec

ei
ve

 
Q

uo
te

 
R

eq
ue

st
 (c

)

Ap
pr

ov
e 

& 
Se

nd
 Q

uo
te

 
(l)

G
et

 P
ro

je
ct

 
H

is
to

ry
 (h

)

En
te

r 
Pr

oj
ec

t 
D

et
ai

ls
 (g

)

U
pd

at
e 

R
eq

ui
re

m
en

ts
 (i

)

Pr
ep

ar
e 

Q
uo

te
 

Te
m

pl
at

e 
(j)Es

tim
at

e 
Pr

oj
ec

t 
Ef

fo
rt 

(k
)

C
he

ck
 

C
on

ta
ct

 D
at

a 
In

te
gr

ity
 (e

)

C
he

ck
 

R
eq

ue
st

 
D

et
ai

ls
 (f

)

F
ig

.2
E

xa
m

pl
e

L
ea

d-
to

-Q
uo

te
pr

oc
es

s
m

od
el

le
d

in
B

PM
N



Complex Event Processing Methods for Process Querying 487

with the receipt of a request for quote (c). In the former case (following a or b), the
contact details are updated (d). This step may be repeated if data integrity constraints
are not met (e). In the latter case (after c), the request details are checked (f ).
For both cases, the quote is then prepared by first entering prospective project
details (g). This is followed by conducting an effort estimation (h and k), updating
the requirements (i), and preparing the quote template (j ). These latter steps are
done concurrently. Finally, the quote is approved and sent (l). A process model like
this may have been created in order to capture the expected or required behavior of
the process. It can serve as a basis to (semi-)automatically derive monitoring queries
that allow for the continuous comparison of expected and actual process behavior,
as described later in this chapter.

3 Complex Event Processing

Complex Event Processing (CEP) emerged as a computational paradigm to handle
streams of event data [9]. This paradigm has to be seen in the context of the
broader areas of data stream processing [28] and stream reasoning [5], which are
all concerned with online processing of data that is continuously generated [20].
More specifically, the focus of common CEP models and methods is the detection
of event patterns, sets of events that are correlated in terms of their ordering, their
payload data, and the context in which they occur.

Even when considering only the scope of CEP, however, we note that a plethora
of different event processing models have been proposed in the literature. We
therefore refrain from adopting one particular model and rather highlight important
aspects of formalisms for event streams and event queries, as well as query
evaluation infrastructures. As such, our focus is to highlight the spectrum of models
and methods for CEP that may be exploited for process querying.

3.1 Event Streams

An event is commonly seen as an “occurrence within a particular system or
domain” [26]. It is a recording of some state change that is considered to be of
relevance. In the context of process querying, such state changes typically refer to
the progress of process execution as, for instance, indicated by the execution of an
activity as part of an instance of the process.

Events may be defined following different formalisms and conceptual models.
However, most models share the requirement to capture some essential information
about an event, as follows. First and foremost, an event e has an identifier, which
we denote by e.id. It renders the event uniquely distinguishable. Second, each event
is assigned a timestamp, denoted by e.t . Such event timestamps enable (relative)
ordering of events. In addition, they may be exploited in event queries to assess
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the absolute time difference between events. Third, each event is of a specific type,
denoted by e.type. A type refers to a specification that serves as a meta-model for a
set of events, i.e., events are instances of their type specification. In many application
scenarios, event types define both a specific syntax to capture respective events and
their semantics.

An event stream is defined by a potentially infinite set of events E and an order
relation ≺ ⊆ E × E (either partial or total). The fact that a stream is potentially
infinite means that, in practice, processing is based on the stream at a specific point
in time, i.e., the prefix of the stream up to this time.

Despite its simplicity, the above event stream model incorporates assumptions
and design choices along several dimensions:

Timestamp semantics: The exact meaning of the timestamp of an event may vary.
The timestamp can, for instance, denote the time of event occurrence, the time of
event recording (which is potentially delayed with respect to its occurrence), or
the time of event arrival at a CEP infrastructure [14].

Event atomicity: Events may have point-based or interval-based semantics, mean-
ing that an event is either atomic or has a duration [40]. Conceptually, an
even more fine-grained structure may be considered, in which events comprise
multiple intervals that represent suspension and resumption.

Stream ordering: Event stream models differ in their assumptions on the ordering
of events. Specifically, the order relation ≺ can be assumed to be a total order or
a partial order [69]. The former may keep synchronization issues out of the event
processing model, whereas the latter enables to incorporate event generation by
distributed, independent sources [3]. Also, note that incorporating more than one
timestamp semantics leads to multiple notions of order for the events of a stream,
e.g., an occurrence order and an arrival order, so that inconsistencies need to be
handled [42].

Payload data: While the type of an event defines its syntactic structure, this
structure may assume various forms. For instance, events may be structured
according to a relational model (a type defines a relational schema) [7], adopt an
object-oriented model (a type defines a set of concepts and their relations), or use
tree-based formalisms to define the data carried by an event (a type defines, for
instance, an XML schema) [72]. Note that relational models are often employed
already in the context of process querying [52].

Event semantics: In a simple model, semantics of events are directly induced by
their type definition. However, it has been argued that these semantics shall
also be specified explicitly, adopting appropriate formalisms for knowledge
representation [30, 57].

For illustration, we take up the scenario introduced in Sect. 2.3. Adopting a
relational model for the payload of events, Table 1 lists three exemplary events. This
illustrates some of the aforementioned aspects of event models: Instead of having
separate types per reached state or executed activity, the example events are of a
unified type Act (representing that an activity has been executed), while an attribute
name references milestones (e.g., QR for quote request received) and activities (e.g.,
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Table 1 Three example events for the introduced scenario

Id Timestamp Type order_id Name Client Price

11 21.09.18,15:12:36 Act O23 OR Franklin 74,500

12 21.09.18,15:12:36 Act O67 OR Meyers 28,200

42 24.09.18,09:72:10 Act O23 ED Franklin 74,500

ED for entering details). Moreover, events are atomic, while the timestamp semantics
is assumed to denote the end of activity execution. The identical timestamps of
events 11 and 12 illustrate that events may happen concurrently (e.g., a batch of
quote requests is received), inducing a partial order over the stream.

3.2 Event Query Languages

Numerous models and languages for the definition of event queries have been
proposed in recent years [9, 20, 34]. While there have been recent initiatives to
converge on a model, notably the match-recognize operator for row-based pattern
matching as included in SQL:2016 [36], as of today, there is no common standard
for event query languages. Rather, CEP systems define their own languages, differ-
ing in syntax and semantics. Since the respective languages have been developed
in various communities, any comparative assessment is further hindered by the
differences in the adopted terminologies and underlying event model [20]. In this
section, we therefore focus on an overview of generic types of query operators,
exemplify the syntax of query languages, and point to different ways to achieve a
formal grounding of queries.

Common Operators’ Types It has been noted that many languages for the
specification of event queries, despite all their differences, share at least a set of
common operator types [73]. While the specific definitions of query operators may
still vary in syntax and semantics, these types describe rather abstract functionality
that is typically supported by a query language. Specifically, these types are:

Disjunction and Conjunction: Query operators define that an event pattern is
characterized by the occurrence of either of a set of events (disjunction) or their
joint occurrence (conjunction).

Sequencing: A sequence operator defines a list of events that have to occur in the
respective temporal order for a query to match.

Kleene Closure: An operator defines a pattern as a recurring occurrence of a
specific event, with the number of occurrences being finite, but unbounded.

Negation: A query operator checks for the absence of a specific event, generating
query matches only if the respective event is not part of the processed stream.

Data Predicates: A query operator specifies conditions for events to be part of a
match, based on their data payload.
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Windowing: A window operator specifies time-based or ordering-based condi-
tions for events to become part of a query match.

Event Construction: A query operator specifies how a new event, emitted as part
of an output stream generated by a query, is constructed from matched events.

Again, it has to be stressed that the precise definitions of operators of these
types are typically language specific. For instance, the semantics of operators
such as sequencing and Kleene closure needs to be further disambiguated through
processing policies that clarify, for instance, how often a single event can be part of
a match; which further events may occur between matched events; and how to select
among multiple candidate events for a query match, see [1, 33].

Moreover, query languages differ significantly in terms of their compositionality,
i.e., the support to build complex queries by combining operators of the aforemen-
tioned types. Several existing languages restrict compositionality, e.g., in terms of
nesting Kleene closure operators.

Exemplary Languages To illustrate how the above operators are actually rep-
resented in common query languages, we now take up the example scenario
introduced in Sect. 2.3. Specifically, we focus on compliance verification and the
requirement that project details for a received quote request must be entered before
a quote can be sent out. As an additional condition, we require that this rule
applies only for quotes with a value of more than 10.000 Euro. Let us assume
that the underlying event model defines a single type for activity executions (with
an attribute capturing the activity) and incorporates atomic events that are totally
ordered and denote the occurrence of activity execution, while the event payload is
always defined by a relational schema.

Figure 3 exemplifies how such a query would be defined in two languages.
Figure 3a defines the query in the SASE language [73]. After specifying the input
stream, the query comprises a pattern definition. The latter includes a sequence
(SEQ) of three event variables (a1-a3), each of the same type Act, while the second
variable is negated (!Act a2). The Where clause then specifies conditions for the
pattern to detect. The clause captures processing policies (skip_till_next_match
means that irrelevant events may be skipped as long as no relevant event occurs) and

From act_stream
Pattern

SEQ(Act a1, !Act a2, Act a3)
Where skip_till_next_match(a1,a3)
And [request_id]
And a1.name=’QR’
And a2.name=’ED’
And a3.name=’SQ’
And a3.price > 10000
Within 10 days

(a)

Create Context qr_context
Partition By request_id
From act_stream;

Context qr_context
Select * From
Pattern [

Every Act(name=’QR’) -> (
Act(name=’SQ’ and price>10000)
And Not Act(name=’ED’))

Where timer:within(10 days)];

(b)

Fig. 3 Example queries. (a) Example query in SASE [73]. (b) Example query in EQL [25]
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data predicates, such as [request_id] correlating all events by the identifier of the
quote request and statements that refer to the names of executed activities. Finally,
a time-based window is defined for the query (Within).

Figure 3b illustrates a related (due to subtle differences in semantics not
equivalent) query in the Esper Pattern Language (EPL) [25]. Here, the partition
of the input event stream is realized through the definition of a context over the
attribute request_id. Under this context, the actual query then selects data from a
pattern that defines that an Act event, for which the name indicates a quote request,
shall be followed by an event related to the quote submission, without an event
capturing that the details have been entered. While adopting a different syntax, this
query also contains the respective data predicates as well as the window definition.

Formal Grounding For query languages such as those illustrated above, different
models have been proposed to use as a formal basis. Unfortunately, we note that
most of the proposed formalisms suffer from two problems: They are incomplete,
i.e., they capture only a subset of the aforementioned query operators; and they are
not based on well-established formalisms, so that existing theoretical results and
reasoning methods cannot be exploited in the context of query analysis.

As reviewed in [9], the most common proposals to formalize event queries
include automata-based, tree-based, and logic-based models. Systems as
Cayuga [16], SASE [73], and TESLA [19] adopt automata, in which the states
represent the progress in query processing, while state transitions carry guards
that encode the conditions for the evolution of a partial match. As these models
operate on an infinite universe of events, evaluate predicates over data, and produce
output explicitly, they incorporate ideas of symbolic and register automata as well
as transducers. However, the models proposed for CEP languages are typically not
directly based on such established notions of formal language theory.

Queries may also be formalized as trees, where non-leaf nodes are event
operators that construct partial matches from the events matched by their children.
Leaf nodes, in turn, define data predicates for the single events to be matched. An
example for this approach is the model of ZStream [48].

Finally, logic-based formalisms can serve as a basis for event queries. Examples
include chronicle recognition and the event calculus. The former relies on temporal
logic. It encodes the occurrence of events by logic predicates that define the time of
occurrence and the event payload; see the example of TESLA [19]. Contextual and
temporal constraints then define event operators, time windows, and data predicates
of an event query. The event calculus [8] relies on fluents as essential building
blocks. A fluent is a property that may assume different values over time, while
changes in this property are encoded by logic predicates. Queries in the event
calculus are then defined as rules over the fluents.
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3.3 Event Query Evaluation

Various systems and infrastructures have been proposed for the evaluation of event
queries. In most cases, the formal models mentioned above, which serve as a
basis for the definition of event queries, directly give rise to an execution model.
An automata-based formalization of a query is used as follows: A CEP system
keeps track of partial runs of the automaton. Processing an event then requires
to assess whether a new run shall be instantiated according to the initial state
of the automaton, and whether the existing runs shall be extended, duplicated,
or terminated [16]. Similarly, adopting a tree-based model for evaluation, a CEP
system maintains buffers for all leaf nodes. Upon filling them with a batch of new
events, buffers for partial matches at non-leaf nodes are filled or emptied [48]. For
logic-based models, a CEP system conducts logical inference to see whether query
matches materialize. In a streaming setting, this is done whenever facts representing
new events have been inserted into the knowledge base [8].

The continuous evaluation of queries over high-velocity event streams is a
common performance bottleneck, so that a plethora of optimization strategies have
been developed. A recent survey [35], focusing not only on CEP but also the broader
area of stream processing, classifies these optimization strategies based on whether
they change the topology of an operator graph, whether they change the semantics
of queries, and whether they are applicable at design time or run time. Specific
examples of optimization techniques include load shedding for CEP that limits
processing to a subset of the arriving events [32, 74]; delayed construction of partial
matches during run time [73]; semantic query rewriting based on constraints on the
event stream [68]; and sharing of partial matches among several queries [53].

4 Methods for Process Querying

The application of CEP models and methods as discussed above in the context
of event-based process querying has to cope with several challenges, partially
mentioned for two exemplary use cases in Sect. 2.1. In this section, we take up these
challenges and discuss four essential techniques to address them: event–activity
correlation (Sect. 4.1), model-based query derivation (Sect. 4.2), discovery of event
queries (Sect. 4.3), and diagnostics for event query matches (Sect. 4.4).

4.1 Event–Activity Correlation

A fundamental requirement for analysis techniques involving event data alongside
other representations of a process, i.e., process models, is that observed event types
can be linked to process model elements, such as activities or decision points.
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In terms of the Process Querying Framework [52], these links are captured in
a correlation model that establishes the relation between elements of different
process representations. For instance, in compliance verification, the expected
behavior of a process may be formalized by a process model, against which the
recorded behavior, i.e., events that denote activity executions, is assessed. Typically,
however, such required event–activity correlation is not readily available [11, 49].
Furthermore, manually establishing correlation is often unfeasible because analysts
rarely possess the necessary knowledge on the details of a process implementa-
tion [68]. Consequently, it is highly beneficial to establish event–activity correlation
in an automated fashion. However, to reliably achieve this, challenges including
cryptic data values in the definition of events, noisy and non-compliant behavior,
as well as complex event–activity relations must be taken into account [62]. A
variety of automated techniques have been developed that aim to overcome such
challenges and to identify correspondences between recorded events and process
model elements, for convenience referred to as activities in the remainder. In this
sense, the goal of event–activity correlation can be framed as a matching problem.
To address this problem, automated correlation techniques can consider various
types of information:

1. Event and Activity Label Information The labels (or values) assigned to
attributes that are associated with recorded events and process model activities
represent valuable information for the establishment of event–activity correlation.
In optimal scenarios, events and activities can be correlated when they have equal
or highly similar names, e.g., an event carries an attribute with the label project
information submitted, while an activity is labeled enter project details. A plethora
of similarity measures exist that can be used to compute the degree of similarity
between two text fragments. These measures can be generally divided into streams
of syntactic and semantic similarity measures [4].

Syntactic similarity measures, such as the string-edit distance and N-gram
distance, compute the degree of similarity between two text fragments by com-
paring their character sequences. By contrast, semantic similarity measures, such
as measures based on WordNet or on Distributional semantics, consider word
similarity based on the meaning of words [2]. For example, the words “contract”
and “agreement” have a high semantic similarity, because they both describe an
exchange of promises. Both types of similarity measures have their benefits and
disadvantages. This is illustrated in Table 2 (derived from [63]), which compares
the values of syntactic and semantic similarity measures, respectively, obtained
using the Levenshtein distance [71] and Lin similarity [41]. Note that both measures
range between 0.0 and 1.0, where 1.0 denotes perfect similarity. The table, for
instance, shows that syntactic similarity measures can recognize similarity in spite
of typographical errors (indicated by the high simsyntat ic value for agreement vs.
argeement), whereas semantic measures are able to differentiate among words with
similar syntax but different meanings (contract vs. contact). Therefore, both types
of similarity measures are often used in conjunction.
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Table 2 Comparison of
syntactic and semantic
similarity scores

t1 t2 simsyntactic simsemantic

agreement agreement 0.88 n/a

contract contact 0.88 0.10

contract agreement 0.11 0.96

Table 3 Exemplary declarative process constraints

Constraint Explanation

init(a) a is executed first in a process instance

coexistence(a, b) If a occurs in a process instance, then b also occurs, and vice versa

response(a, b) If a occurs in an instance, then b will eventually occur afterwards

chainResponse(a, b) If a occurs in an instance, then b will immediately occur afterwards

However, in practice, recorded events are often associated with far less useful
labels. For examples, attributes of an event may merely be associated with cryptic
database fields such as CDHDR or I_SM_E [12]. In these cases, not even advanced
linguistic analysis tools are able to reliably identify a correlation with process model
elements, if only label information is considered.

2. Structural Information Information on the behavioral relations that exist
among events and among process model activities can be highly relevant when
establishing event–activity correlation. As an illustration, consider the situation in
which two event types, e.g., E1 and E2, appear to be mutually exclusive, i.e., where
for every observed process instance at most one of them occurs. Such an event
relation can be a relevant indicator to determine that these event types correspond
to, for instance, the Import contact from Excel and Receive quote request activities
from the model in Fig. 2, which also exclude each other. Similarly, the position at
which events occur in process instances, e.g., toward the beginning of an instance,
can be a strong indicator that these events correlate with activities that appear at
comparable positions in the process model.

Event–activity correlation techniques consider structural properties in different
ways. Van der Aa et al. [61] propose a measure for positional similarity quantifying
similarity based on the average position in which events or activities occur in
process instances. Baier et al. [13] analyze more complex behavioral relations by
deriving declarative process constraints for events and activities. These constraints
can capture various structural relations, such as those depicted in Table 3. For
example, the init constraint can be used to specify that an event or activity
occurs first in a process instance, whereas constraints such as coexistence and
response identify inter-relations among events or activities. Given such structural
relations, the approach from [13] then identifies a 1:1 correlation between events
and activities for which the structural relations are most similar, through constraint-
based optimization.

A challenge regarding the derivation of process–event correlation based on
structural information is that this implicitly assumes that the observed events
follow the process in accordance with the specified process model. However, in
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practice, factors such as noise and non-compliant behavior can lead to deviations
between the recorded events and the specified process model. As a result, correlation
techniques can, for instance, not blindly assume that when a process model specifies
that activity A occurs before activity B, the corresponding events will always be
observed in this order as well. To deal with this, techniques such as the one from
Baier et al. [13] use probabilistic means to identify the most likely correlation,
taking into account potential process deviations.

3. Pattern Matching A key challenge when establishing event–activity correlation
is that there can exist complex relations between events and activities. Often,
recorded events correspond to more fine-granular process steps than process model
activities, which can lead to many-to-one or many-to-many relations [11]. Recog-
nizing such complex correlation generally requires the consideration of information
beyond event and activity labels or structural relations.

A technique by Baier et al. [11] aims to recognize one-to-many and many-to-
many correlations by considering natural language texts (i.e., work instructions)
that may be associated with process model activities. The premise of their approach
is that such work instructions contain detailed information regarding the execution
of process activities, which may correspond better to the level of detail of observed
events.

Still, event–activity correlation can be even more complex, in situations where
process model activities correspond to particular event patterns. In these situations,
a single model activity may correspond to the occurrence of an event pattern [44].
If these complex correlations are known, they can be manually established, though
such a task heavily depends on domain knowledge from analysts.

However, it is also possible to automatically correlate complex event patterns to
process model activities. For instance, Senderovich et al. [56] discover correlations
between sensor readings (i.e., events) and process model activities by analyzing
sensor readings that indicate employee interactions in healthcare environments.
Their approach considers factors such as the entities involved in the interaction, its
location and duration, and the preceding and succeeding interactions. Given these
factors, the approach then aims to identify event patterns that correspond to partic-
ular activities in a process model, ultimately yielding an event–activity correlation.

4.2 Model-Based Query Generation

As discussed in Sect. 2.1, compliance verification is an important use case for event-
based process querying. Assume that a specification of the expected behavior of a
process is available in terms of a process model and that its elements are linked to
event types by a correlation model. If the respective specification is not enforced
during execution, event queries may be formulated to detect any deviation of the
recorded from the modeled behavior. In this section, we therefore consider how to
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generate such monitoring queries from a process model. For this section, we follow
a generic architecture, as introduced next.

4.2.1 Overview

Figure 4 provides a generic architecture for systems that facilitate the automatic
generation of monitoring queries as well as the preprocessing of their results to
provide diagnostic insights. The system takes two kinds of input: process models
and process events. The process models are used to define the normative behavior
of processes. We do not impose any assumptions on the process model notation
or language used to define them. Regarding the process events, we assume that
these events reflect the completion of activities as recorded by some information
system. If recorded events do not directly capture this, correlation techniques such
as discussed in Sect. 4.1 can be used as a preprocessing step.

As depicted in the figure, the generation and preprocessing of monitoring queries
consists of four main steps: (1) the extraction of behavioral relations from process
models, (2) the generation of monitoring queries, (3) the evaluation of these queries
over process events, and (4) filtering and aggregating the detected deviations. In this
section, we focus on Steps 1 and 2, which result in the generation of monitoring
queries from normative process models. The evaluation of these queries (Step 3) is
performed by CEP engines, as discussed in Sect. 3.3. In the light of the different sets
of query operators provided by common query languages, here, we merely assume
that event queries may comprise binary operators for conjunctive (and), ordered
(ord), and subsequent occurrence (sub) of events of a particular type, whereas a
negation operator supports testing for the absence of events (not).

Fig. 4 Overview of a generic
architecture for the generation
of monitoring queries
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Finally, the post-processing of the identified deviations using filtering and
aggregation (Step 4) to provide diagnostic insights is discussed in Sect. 4.4.

4.2.2 Query Derivation

We derive monitoring queries from a process model by first computing behavioral
relations for the model. Behavioral relations [51], such as the sets of alpha
relations [58], (causal) behavioral profile relations [66], and the relations of the
4C spectrum [50], define constraints that should hold between process activities
according to a process model. Given a certain set of behavioral relations, we can
then establish a monitoring query that identifies when the behavioral relation is not
satisfied, i.e., when a compliance violation occurs.

As an illustration, we will discuss the derivation of monitoring queries for four
behavioral relations: exclusiveness, co-occurrence, strict order, and directly follows.

Exclusiveness The exclusiveness relation +, part of the behavioral profile relations,
denotes that two activities should not occur in the same process instance. For
instance, activities a and c should not occur in the same instance of the running
example from Fig. 2. To identify compliance violations of these constraints, we
define queries that match the joint execution of two exclusive activities, e.g., we
define a query that recognizes instances where both a and c are executed.

Using + to denote all pairs of process model activities that are in an exclusiveness
relation (including self-relations), we define the exclusiveness query set as follows:

Q+ =
⋃

(a1,a2)∈+
{and(a1, a2)}.

For the model in Fig. 2, monitoring exclusiveness comprises the following queries:
Q+ = {and(a, a), and(a, b), and(b, a), and(a, c), . . . , and(e, f )}. Mirrored
queries such as and(a, b) and and(b, a) have the same semantics and can, therefore,
be filtered through optimization techniques of a CEP implementation.

Co-occurrence The co-occurrence relation�, part of the causal behavioral profile
relations, denotes that two activities should always occur together in a completed
process instance. For example, for the model in Fig. 2, there is no trace that
can contain only activity c but not f , and vice versa. Contrary to the query
patterns derived for exclusiveness, co-occurrence constraints are violated not by the
presence of a certain activity execution, but by its absence. Therefore, a constraint
violation materializes only at the completion of a process instance. Only then it
becomes visible which activities are missing in the observed execution sequence
even though they should have been executed. Using� to denote the set of activities
in a co-occurrence relation for the behavioral profile of a model, we construct a
corresponding query set as follows:

Q� =
⋃

(a1,a2)∈�
{and(and(a1, END), not (a2))}.
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For a running process instance, the question whether an activity is missing cannot
be answered definitely, because the activity may still occur. Nevertheless, the strict
order relation can be exploited to identify states of a process instance, which may
evolve into a co-occurrence constraint violation. In particular, it is possible to query
for activities for which we deduced from the observed execution sequence that they
should have been executed already. That is, their execution is implied by a co-
occurrence constraint for one of the observed activities and they are in strict order
with one of the observed activities; see [67] for a detailed description.

Strict Order The strict order relation �, part of the behavioral profile relations,
indicates that two activities should occur in a particular order, if they both occur in
the same process instance. For example, for the running example, the relation e � g

holds, since g can never occur before e. By contrast, the relation d � e does not
hold, due to the loop surrounding the two activities. We query for violations of the
strict order of activities with an order query set that matches pairs of activities for
which the order of execution is not in line with the behavioral profile relation �.
Using � to denote the set of activities of a model in strict order, we define these
queries as

Q� =
⋃

(a1,a2)∈�
{ord(a2, a1)}.

For the model in Fig. 2, the order query set contains the following queries: Q� =
{ord(d, a), ord(e, a), ord(g, a), . . . , ord(l, k)}.
Directly Follows The directly follows relation < from the set of alpha relations
denotes that two activities only directly succeed each other in a particular order. For
instance, activities h and k are in the relation h < k, since k never directly precedes
h, while it can directly follow h. We query for violations of the respective relation
with a query set that matches pairs of activities with subsequent executions, which
are not captured by relation <. Let A be the set of all activities in a process model,
and let < denote the set of activities in the directly follows relation. Then, we define
the respective set of queries as

Q< =
⋃

(a1,a2)∈(A×A)\<{sub(a1, a2)}.

Again, we use the model in Fig. 2 for illustration. The query set contains the
following queries: Q< = {sub(a, b), sub(a, c), sub(a, e), . . . , sub(h, l)}.

4.3 Discovery of Event Queries

The previous section showed how to construct event queries based on a specification
of the expected behavior of a process, under the assumption that events have been
correlated with process model elements. However, such an approach may not be
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feasible. It may be impossible to link events to a process model, e.g., due to severe
differences in the assumed level of abstraction, or a process model specifying the
expected behavior may not be available at all. If so, however, historic event data
that is annotated with the situation of interest, e.g., a compliance violation or the
attainment of a milestone, may serve as the basis for process querying. In this
section, we first outline how such annotated event data leads to a supervised learning
problem, before discussing a specific algorithm to address this problem.

4.3.1 The Problem of Event Query Discovery

The setting of event query discovery is illustrated in Fig. 5. Some event data
(assumed to be totally ordered in the figure) is assigned annotations that indicate
that a specific situation materialized. Such a situation may, for example, be an
instance of the process violating a compliance rule or reaching a milestone during
processing. Either way, the respective situation may be identified in retrospect in
order to obtain such annotations. While the annotations identify the point in time
at which the situation occurred, the actual event pattern indicating it is not, or only
partially, known.

The problem of event query discovery is the construction of a query that matches
whenever an annotation indicates that the situation of interest occurred. That is, the
annotated event data serves as a training dataset with respect to some data without
annotations, presumably generated by the same process. Under the assumption that
the materialization of the situation in the annotated event data can be projected
to the one without annotations, analysis may then rely on the derived query to
detect formerly unknown occurrences of the situation. Put differently, query learning
postulates that the event pattern signaling the situation is the same in the annotated
and plain event data.

When aiming at the construction of a query that matches whenever there is
an annotation, the scope of potential matches has to be limited, though. As the
query shall generalize over the multiple occurrences of an event pattern (one per
annotation), a set of training sequences has to be derived from the annotated event

t

Situa�on of Interest
(compliance viola�on,
milestone reached, ...)

Interval-based
Training Sequences

Fixed Size
Training Sequences

Fig. 5 The setting of event query discovery
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data. As illustrated in Fig. 5, different approaches may be followed for this purpose.
For example, all events between two subsequent annotations may be considered as
a separate interval-based training sequence, so that no two sequences overlap. This
implicitly encodes an assumption on how occurrences of the situation of interest
materialize—on each occurrence the state of processing is entirely reset. Depending
on the process at hand, however, this assumption may not hold true. In that case,
fixed size training sequences may be derived from a fixed amount of the event data
preceding each annotation. Here, the amount may be determined based on volume
(a fixed number of events) or time (a fixed temporal period).

4.3.2 Discovery Algorithms

Any attempt to address the problem of event query discovery has to be tailored to
the models assumed for event streams and event queries, respectively. Intuitively,
the more expressive these models, the larger the space of candidate queries to be
considered as solutions for the discovery problem. A simple case would be the
one of an event stream that comprises a total order of symbols and a query model
that defines queries solely as a sequence of such symbols. Then, query discovery
may simply be traced back to frequent sequence mining [64, 70], detecting the
subsequences that are shared among all training sequences.

However, as described in Sects. 3.1 and 3.2, common models for event streams
and query languages, in particular in the context of event data generated by
processes, are much more complex. Events are not simple symbols but typed and
carry a structured payload. Queries are not limited to sequences of symbols but
may comprise data predicates, negation operators, and time windows. Against this
background, a few tailored algorithms have recently been proposed for event query
discovery, specifically iCEP [47] and the IL-Miner [29]. While these algorithms
cannot cope with the full expressiveness of CEP languages (e.g., neglecting Kleene
closure and negation operators), they discover queries built of sequence operators,
data predicates, and time windows. Below, we summarize the main ideas of the IL-
Miner [29], as it supports a more expressive query model compared to iCEP [47].
Note that there are also techniques for complex event pattern discovery supporting
logic-based approaches, such as OLED [37, 38] for event calculus.

In essence, one first tries to identify data predicates that refer to single events and
appear to be relevant for query discovery. To this end, it is assessed, for which atomic
predicates, an event that satisfies it can be found in any of the training sequences.
Subsequently, the identified predicates, coined in relevant event templates, are
used to abstract the training sequences, yielding sequences of templates. Based
thereon, standard frequent sequence mining is conducted, which yields sequences of
templates. Intuitively, each such sequence provides a skeleton for the construction
of a set of event queries. In a next step, to construct a query, each sequence
of templates is linked to the events of the original training sequences. From the
obtained sequences of events, further data predicates (e.g., those referring to more
than one event in a pattern) and a time window are extracted.
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Running such a discovery algorithm in practice may lead to a very large number
of discovered event queries, even when ignoring obvious redundancies such as
inclusion dependencies between queries. To cope with that phenomenon and to
enable manual inspection of the discovered queries, the result may be filtered to
obtain a representative set of queries. To this end, one may leverage clustering
techniques based on syntactic and semantic similarity measures for event queries.

Finally, it should be highlighted that various kinds of domain knowledge, if
available, may be incorporated to increase the effectiveness and efficiency of
event query discovery. For instance, knowing that particular attributes distinguish
instances of a process, then any discovered event query should contain the respective
data predicates that correlate events based on these attributes.

4.4 Diagnostics for Event Query Matches

This section discusses how to gain diagnostic insights into specific process behavior.
If a query, derived using the methods described in Sects. 4.2 and 4.3, matches, the
result needs to be interpreted as a violation of some normative behavior. Specifically,
diagnostics for these matches are important, as fine-granular queries may lead to
an overload of triggered alerts for certain deviations from the expected process
behavior. For example, the occurrence of a single out-of-order event may trigger
a large amount of strict order violations, even though these violations all stem from
the same source.

To avoid such an overload, monitoring alerts can be filtered by identifying the
earliest indicator of non-compliant behavior in a set of compliance violations. This
identification requires a different approach depending on the type of violation. Here,
we illustrate a diagnostics technique for the violation of two constraint types for
which the respective queries have been introduced in Sect. 4.2: exclusiveness and
ordering constraints. Afterwards, we discuss how these techniques may be lifted
beyond the control-flow perspective.

4.4.1 Diagnostics for Exclusiveness Violations

We first consider violations that stem from the exclusiveness monitoring query
set Q+. Let σ = 〈a1, a2, . . . , an〉 be the sequence of recorded events in a process
instance and + be the exclusiveness relation, as introduced in Sect. 4.2, of the
respective process model. Then, we derive the set of violations V n+ at the time event
an is recorded as follows:

V n+ = {(ax, ay) ∈ + | ay = an ∧ ax ∈ σ }.

Trigger Violation A single event may cause multiple exclusiveness violations.
Given such a set of violations, V n+, the trigger of these violations is the violation that
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relates to the earliest event in the sequence of recorded events σ = 〈a1, a2, . . . , an〉.
Therefore, the trigger refers to the earliest event that implies that the event an was
not allowed. We define a function trigger to extract the trigger for the most recent
violations with respect to an as follows:

trigger(V n+) = (ax, ay) ∈ V n+ such that ∀ (ak, al) ∈ V n+ [ x ≤ k ].

We illustrate the introduced concept for the process from Fig. 2. Assume that the
activities a and d have been executed, when we observe an event that signals the
completion of activity c, i.e., we recorded σ = 〈a, d, c〉. The exclusiveness mon-
itoring query set Q+ matches and identifies two violations, V 3+ = {(a, c), (d, c)}.
The violation of exclusiveness for a and c is the trigger, since a was the first activity
to complete in the recorded event sequence, i.e., trigger(V 3+) = (a, c).

Consecutive Violation The identification of a trigger for a set of violations triggered
by a single event is the first step to structure the feedback on violations. Once
a violation is identified, subsequent events may result in violations that logically
follow from the violations already observed. For a trigger violation (ax, ay),
consecutive violations (ap, aq) are characterized by the fact that either (1) ax with
ap and ay with aq are not conflicting or (2) this non-conflicting property is observed
for ax with aq and ay with ap. Further, we have to consider the case that potentially
it holds ap = ax or ap = ay . Consecutive violations are recorded but explicitly
marked once they are observed. Given a trigger (ax, ay) of exclusiveness violations,
we define the set of consecutive violations by a function consec.

consec+(ax, ay) ={(ap, aq) ∈ + | ((ax = ap ∨ ax �+ ap) ∧ (aq = ay ∨ ay �+ aq))

∨ ((ay = ap ∨ ay �+ ap) ∧ (ax = aq ∨ ax �+ aq))}.

Reconsider the process from Fig. 2 and the recorded event sequence σ =
〈a, d, c〉. Now, assume a subsequent recording of event e. The exclusiveness
monitoring query set Q+ matches and we extract a set of violations V 4+ = {(c, e)}
(in addition to V 3+) with the trigger trigger(V 4+) = (c, e). Apparently, this violation
follows directly from the violations identified when event c has been recorded,
because e is expected to occur subsequent to d . This is captured by our notion of
consecutive violations for the previously identified trigger (a, c). Since c and e are
expected to be exclusive and it holds ay = c = ap and a �+ e, we observe that
(c, e) ∈ conseq(a, c). Hence, the exclusiveness violation (c, e) would be reported
as a consecutive violation of the previous violations identified by their trigger
trigger(V 3+) = (a, c).

Further, assume that the next recorded event is b, so that σ = 〈a, d, c, e, b〉
and V 5+ = {(a, b), (c, b)}. Then, both violations represent a situation that does not
follow logically from violations observed so far, i.e., they are non-consecutive and
reported as independent violations to the analyst. Still, the feedback is structured
as we identify a trigger as trigger(V 5+) = (a, b), since event a has occurred before
event c.
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4.4.2 Diagnostics for Order Violations

Now, we consider violations that stem from the order monitoring query set Q�.
Let σ = 〈a1, a2, . . . , an〉 be a sequence of recorded events in a process instance
and � be the strict order relation, as defined in Sect. 4.2, of the respective
process model. Let �−1 be the inverse relation of the strict order relation,
(ax � ay) ⇔ (ay �−1 ax). Then, we derive the set of violations V n

� at the
time event an is recorded as follows:

V n
� = {(ax, ay) ∈�−1 | ay = an ∧ ax ∈ σ }.

Trigger Violation For this set of violations, it may be the case that a single event
causes multiple order violations. Given a set of order violations V n�, the trigger is
the violation that relates to the earliest event in the sequence of recorded events
σ = 〈a1, a2, . . . , an〉. Again, we define a function to extract this trigger.

trigger(V n
�) = (ax, ay) ∈ V n

� such that ∀ (ak, al) ∈ V n
� [ x ≤ k ].

For illustration, consider the example of Fig. 2 and a sequence of recorded events
σ = 〈a, d, h, k〉. Now, e is completed, which points to a violation of the order
constraint between e and h as well as between e and k. The idea is to report the
earliest event in the execution sequence, which was supposed to be executed after
e. Then, the violation trigger(V 5�) = (h, e) is identified as the trigger, since h has
been the first event in this case.

Consecutive Violation As for exclusiveness constraint violations, we also define
consecutive violations. These include violations from subsequent events that log-
ically follow from violations observed earlier. For a trigger (ax, ay), consecutive
violations (ap, aq) are characterized by the fact that either ax with ap and ay with
aq are in strict order or ax with aq and ay with ap, respectively. Taking into account
that it may hold ap = ax or ap = ay , we lift the function consec to triggers of strict
order violations. Given such a trigger (ax, ay), it is defined as follows:

consec(ax , ay) ={(ap, aq) ∈�−1 | ((ax = ap ∨ ax � ap) ∧ (aq = ay ∨ ay � aq))

∨ ((ay = ap ∨ ay � ap) ∧ (ax = aq ∨ ax � aq))}.

Consider the example of Fig. 2 and the sequence σ = 〈a, d, h, k, e〉, which resulted
in trigger(V 5�) = (h, e). Now, g is observed, which violates the order with h and k

as monitored by the order monitoring query Q�. Apparently, this violation follows
from the earlier violations. It is identified as a consecutive violation for the previous
trigger (h, e), since h is in both violations and e and g are not conflicting in terms
of order, i.e., (h, g) ∈ consec(h, e). Since k �−1 g, h � k, and e � g, this also
holds for the second violation. Hence, violations (h, g) and (h, k) are reported as
consecutive violations.
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4.4.3 Diagnostics on the Violation Context

Next to the identification of particular events that resulted in compliance violations,
it is possible to assess whether there are connections between violations and their
occurrence context as reflected in data attributes associated with process instances.
That is, the goal is to check for attribute values that differentiate cases with the
violation from cases without the violation.

As an illustration, consider that an organization monitors the time it takes from
receiving a lead to sending out a quote in their Lead-to-Quote process, particularly,
they want to identify where this takes more than two weeks. By considering
the data values associated with events, the organization may discover that these
violations occur for a specific context, e.g., for orders stemming from quote requests
originating from a particular country and that are related to a specific order type. If
such information can be identified, this provides valuable diagnostic insights into
the factors that are correlated with the observed delays, which may guide the efforts
to resolve the issue.

The automated identification of the context of specific violations can be achieved
by applying classification techniques on an annotated set of process instances, where
two classes are used to distinguish between instances with violations and instances
without. Classifiers that produce human interpretable output, such as decision trees,
are particularly useful for this setting. These techniques can produce clear rules
indicating in which contexts monitoring violations have been observed.

5 Discussion

This chapter outlined how Complex Event Processing methods can be leveraged
for process querying that works on event-based representations of processes. In
particular, we discussed how CEP can be embedded in the process querying context,
by relating CEP methods to process querying use cases and the Process Querying
Framework. In this way, we showed that event-based process querying can be
used both for online querying, through the analysis of event streams, and for
offline querying, by replaying event logs containing static event data. Moreover, we
highlighted design choices of CEP models, as those govern which of these models
may be appropriate for process querying in a specific application context.

We argued that using CEP methods for event-based process querying faces
several challenges, which may be addressed by four essential techniques: First,
event–activity correlation is used to link elements from a process specification
(e.g., process model activities) to types of observed events, which represents a
fundamental requirement for a broad range of analysis techniques. Second, model-
based query generation can be used to automatically derive monitoring queries from
process models, which enables the identification of deviations between modeled
and recorded behavior. Third, we also discussed how such monitoring queries can
be based on historic event data, in case a suitable process model is not available.



Complex Event Processing Methods for Process Querying 505

Fourth, we discussed techniques to analyze the matches of event queries, which can
be used to gain diagnostic insights into specific process behavior. Most importantly,
this includes the identification of trigger violations that represent the earliest signal
of deviating process behavior.

While the aforementioned have shown that CEP methods have a range of
applications in the context of process querying, open research questions remain. In
relation to the techniques discussed in Sect. 4, we identify the main open directions,
as follows:

• Although different techniques have been developed for event–activity correlation,
it has been recognized that this problem in practice has only been resolved
through the development of probabilistic techniques, which are unable to provide
correlations in a deterministic manner. As a result, analysis techniques should be
adapted to this so-called mapping uncertainty [62].

• Model-based query generation allows for the automatic establishment of monitor-
ing queries from process models. However, given a sufficiently complex model,
the amount of generated queries can quickly become unmanageable. Recognizing
that some process violations will have a greater impact on organizations than
others, the question of how to identify the semantically most relevant monitoring
queries remains open.

• The problem of specifically weighting the relevance of particular queries is
also present when discovering queries automatically from labeled event data.
Moreover, common discovery techniques do show scalability issues. Hence,
optimizations of discovery algorithms that incorporate domain knowledge on the
process are a promising direction for future research.

• Having exemplified the potential of diagnostics for the matches of event queries,
future work should focus on recognizing the complimentary nature of control-
flow and data-aware techniques. A combination of these types of techniques
would be able, for instance, to identify particular control-flow-related deviations
that only occur if the throughput time or other data-based values are above a
particular threshold. This is currently not achieved, because the control-flow and
data perspectives are only considered in isolation.

Reprint Figure 2 is reprinted with permission from M. Weidlich, H. Ziekow,
J. Mendling, O. Günther, M. Weske, and N. Desai. Event-Based Monitoring of
Process Execution Violations. 9th International Conference on Business Process
Management. Springer, 2011. pp 182–198 (“© Springer-Verlag Berlin Heidelberg
2011”).
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and relatedness using distributional and WordNet-based approaches. In: Proceedings of Human

https://doi.org/10.1007/s00778-003-0108-y
https://doi.org/10.1007/s00778-003-0108-y


506 H. van der Aa et al.

Language Technologies: The 2009 Annual Conference of the North American Chapter of
the Association for Computational Linguistics, pp. 19–27. Association for Computational
Linguistics (2009)

3. Akidau, T., Bradshaw, R., Chambers, C., Chernyak, S., Fernández-Moctezuma, R., Lax, R.,
McVeety, S., Mills, D., Perry, F., Schmidt, E., Whittle, S.: The dataflow model: A practical
approach to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-
order data processing. PVLDB 8(12), 1792–1803 (2015). https://doi.org/10.14778/2824032.
2824076. http://www.vldb.org/pvldb/vol8/p1792-Akidau.pdf

4. Algergawy, A., Nayak, R., Saake, G.: Element similarity measures in xml schema matching.
Information Sciences 180(24), 4975–4998 (2010)

5. Anicic, D., Rudolph, S., Fodor, P., Stojanovic, N.: Stream reasoning and complex event
processing in ETALIS. Semantic Web 3(4), 397–407 (2012). https://doi.org/10.3233/SW-
2011-0053

6. Appel, S., Kleber, P., Frischbier, S., Freudenreich, T., Buchmann, A.P.: Modeling and execution
of event stream processing in business processes. Inf. Syst. 46, 140–156 (2014). https://doi.
org/10.1016/j.is.2014.04.002

7. Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M., Ito, K., Motwani, R., Srivastava,
U., Widom, J.: STREAM: The Stanford data stream management system. In: Garofalakis et al.
[28], pp. 317–336. https://doi.org/10.1007/978-3-540-28608-0_16

8. Artikis, A., Sergot, M.J., Paliouras, G.: An event calculus for event recognition. IEEE Trans.
Knowl. Data Eng. 27(4), 895–908 (2015). https://doi.org/10.1109/TKDE.2014.2356476

9. Artikis, A., Margara, A., Ugarte, M., Vansummeren, S., Weidlich, M.: Complex event
recognition languages: Tutorial. In: Proceedings of the 11th ACM International Conference
on Distributed and Event-based Systems, DEBS 2017, Barcelona, Spain, June 19–23, 2017,
pp. 7–10. ACM (2017). https://doi.org/10.1145/3093742.3095106

10. Backmann, M., Baumgrass, A., Herzberg, N., Meyer, A., Weske, M.: Model-driven event query
generation for business process monitoring. In: Lomuscio, A., Nepal, S., Patrizi, F., Benatallah,
B., Brandic, I. (eds.) Service-Oriented Computing - ICSOC 2013 Workshops - CCSA, CSB,
PASCEB, SWESE, WESOA, and PhD Symposium, Berlin, Germany, December 2–5, 2013.
Revised Selected Papers. Lecture Notes in Computer Science, vol. 8377, pp. 406–418. Springer
(2013). https://doi.org/10.1007/978-3-319-06859-6_36

11. Baier, T., Mendling, J., Weske, M.: Bridging abstraction layers in process mining. Information
Systems 46, 123–139 (2014)

12. Baier, T., Rogge-Solti, A., Weske, M., Mendling, J.: Matching of events and activities - an
approach based on constraint satisfaction. In: IFIP Working Conference on The Practice of
Enterprise Modeling, pp. 58–72. Springer (2014)

13. Baier, T., Di Ciccio, C., Mendling, J., Weske, M.: Matching events and activities by integrating
behavioral aspects and label analysis. Softw. Syst. Model., 1–26 (2017)

14. Barga, R.S., Goldstein, J., Ali, M.H., Hong, M.: Consistent streaming through time: A vision
for event stream processing. In: CIDR 2007, Third Biennial Conference on Innovative Data
Systems Research, Asilomar, CA, USA, January 7–10, 2007, Online Proceedings, pp. 363–
374. www.cidrdb.org (2007). http://cidrdb.org/cidr2007/papers/cidr07p42.pdf

15. Bose, R.J.C., Van Der Aalst, W.M., Zliobaite, I., Pechenizkiy, M.: Dealing with concept drifts
in process mining. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 154–171 (2014)

16. Brenna, L., Demers, A.J., Gehrke, J., Hong, M., Ossher, J., Panda, B., Riedewald, M., Thatte,
M., White, W.M.: Cayuga: a high-performance event processing engine. In: Chan, C.Y.,
Ooi, B.C., Zhou, A. (eds.) Proceedings of the ACM SIGMOD International Conference on
Management of Data, Beijing, China, June 12–14, 2007, pp. 1100–1102. ACM (2007). https://
doi.org/10.1145/1247480.1247620

17. Burattin, A., Sperduti, A., van der Aalst, W.M.P.: Control-flow discovery from event streams.
In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2014, Beijing,
China, July 6–11, 2014, pp. 2420–2427. IEEE (2014). https://doi.org/10.1109/CEC.2014.
6900341

https://doi.org/10.14778/2824032.2824076
https://doi.org/10.14778/2824032.2824076
http://www.vldb.org/pvldb/vol8/p1792-Akidau.pdf
https://doi.org/10.3233/SW-2011-0053
https://doi.org/10.3233/SW-2011-0053
https://doi.org/10.1016/j.is.2014.04.002
https://doi.org/10.1016/j.is.2014.04.002
https://doi.org/10.1007/978-3-540-28608-0_16
https://doi.org/10.1109/TKDE.2014.2356476
https://doi.org/10.1145/3093742.3095106
https://doi.org/10.1007/978-3-319-06859-6_36
www.cidrdb.org
http://cidrdb.org/cidr2007/papers/cidr07p42.pdf
https://doi.org/10.1145/1247480.1247620
https://doi.org/10.1145/1247480.1247620
https://doi.org/10.1109/CEC.2014.6900341
https://doi.org/10.1109/CEC.2014.6900341


Complex Event Processing Methods for Process Querying 507

18. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking - Relating
Processes and Models. Springer (2018). https://doi.org/10.1007/978-3-319-99414-7

19. Cugola, G., Margara, A.: TESLA: a formally defined event specification language. In:
Bacon, J., Pietzuch, P.R., Sventek, J., Çetintemel, U. (eds.) Proceedings of the Fourth ACM
International Conference on Distributed Event-Based Systems, DEBS 2010, Cambridge,
United Kingdom, July 12–15, 2010, pp. 50–61. ACM (2010). https://doi.org/10.1145/1827418.
1827427

20. Cugola, G., Margara, A.: Processing flows of information: From data stream to complex event
processing. ACM Comput. Surv. 44(3), 15:1–15:62 (2012). https://doi.org/10.1145/2187671.
2187677

21. del-Río-Ortega, A., Resinas, M., Cabanillas, C., Cortés, A.R.: On the definition and design-
time analysis of process performance indicators. Inf. Syst. 38(4), 470–490 (2013). https://doi.
org/10.1016/j.is.2012.11.004

22. Ding, L., Chen, S., Rundensteiner, E.A., Tatemura, J., Hsiung, W., Candan, K.S.: Runtime
semantic query optimization for event stream processing. In: Alonso, G., Blakeley, J.A.,
Chen, A.L.P. (eds.) Proceedings of the 24th International Conference on Data Engineering,
ICDE 2008, April 7–12, 2008, Cancún, Mexico, pp. 676–685. IEEE Computer Society (2008).
https://doi.org/10.1109/ICDE.2008.4497476

23. Dumas, M., García-Bañuelos, L., Polyvyanyy, A., Yang, Y., Zhang, L.: Aggregate quality of
service computation for composite services. In: Maglio, P.P., Weske, M., Yang, J., Fantinato,
M. (eds.) Service-Oriented Computing - 8th International Conference, ICSOC 2010, San
Francisco, CA, USA, December 7–10, 2010. Proceedings. Lecture Notes in Computer Science,
vol. 6470, pp. 213–227 (2010). https://doi.org/10.1007/978-3-642-17358-5_15

24. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business Process
Management, 2nd edn. Springer (2018). https://doi.org/10.1007/978-3-662-56509-4

25. EsperTech: Esper documentation (2018). http://www.espertech.com/esper/esper-
documentation/

26. Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications Company (2010).
http://www.manning.com/etzion/

27. Fettke, P., Loos, P., Zwicker, J.: Business process reference models: Survey and classification.
In: Bussler, C., Haller, A. (eds.) Business Process Management Workshops, BPM 2005 Inter-
national Workshops, BPI, BPD, ENEI, BPRM, WSCOBPM, BPS, Nancy, France, September
5, 2005, Revised Selected Papers, vol. 3812, pp. 469–483 (2005). https://doi.org/10.1007/
11678564_44

28. Garofalakis, M.N., Gehrke, J., Rastogi, R. (eds.): Data Stream Management - Processing High-
Speed Data Streams. Data-Centric Systems and Applications. Springer (2016). https://doi.org/
10.1007/978-3-540-28608-0

29. George, L., Cadonna, B., Weidlich, M.: Il-miner: Instance-level discovery of complex event
patterns. PVLDB 10(1), 25–36 (2016). https://doi.org/10.14778/3015270.3015273. http://
www.vldb.org/pvldb/vol10/p25-weidlich.pdf

30. Grez, A., Riveros, C., Ugarte, M.: A formal framework for complex event processing. In:
Barcelo, P., Calautti, M. (eds.) 22nd International Conference on Database Theory (ICDT
2019), Leibniz International Proceedings in Informatics (LIPIcs), vol. 127, pp. 5:1–5:18.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2019). https://doi.
org/10.4230/LIPIcs.ICDT.2019.5. http://drops.dagstuhl.de/opus/volltexte/2019/10307

31. Hassani, M., Siccha, S., Richter, F., Seidl, T.: Efficient process discovery from event streams
using sequential pattern mining. In: IEEE Symposium Series on Computational Intelligence,
SSCI 2015, Cape Town, South Africa, December 7–10, 2015, pp. 1366–1373. IEEE (2015).
https://doi.org/10.1109/SSCI.2015.195

32. He, Y., Barman, S., Naughton, J.F.: On load shedding in complex event processing. In:
Schweikardt, N., Christophides, V., Leroy, V. (eds.) Proc. 17th International Conference on
Database Theory (ICDT), Athens, Greece, March 24–28, 2014, pp. 213–224. OpenProceed-
ings.org (2014). https://doi.org/10.5441/002/icdt.2014.23

https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1145/1827418.1827427
https://doi.org/10.1145/1827418.1827427
https://doi.org/10.1145/2187671.2187677
https://doi.org/10.1145/2187671.2187677
https://doi.org/10.1016/j.is.2012.11.004
https://doi.org/10.1016/j.is.2012.11.004
https://doi.org/10.1109/ICDE.2008.4497476
https://doi.org/10.1007/978-3-642-17358-5_15
https://doi.org/10.1007/978-3-662-56509-4
http://www.espertech.com/esper/esper-documentation/
http://www.espertech.com/esper/esper-documentation/
http://www.manning.com/etzion/
https://doi.org/10.1007/11678564_44
https://doi.org/10.1007/11678564_44
https://doi.org/10.1007/978-3-540-28608-0
https://doi.org/10.1007/978-3-540-28608-0
https://doi.org/10.14778/3015270.3015273
http://www.vldb.org/pvldb/vol10/p25-weidlich.pdf
http://www.vldb.org/pvldb/vol10/p25-weidlich.pdf
https://doi.org/10.4230/LIPIcs.ICDT.2019.5
https://doi.org/10.4230/LIPIcs.ICDT.2019.5
http://drops.dagstuhl.de/opus/volltexte/2019/10307
https://doi.org/10.1109/SSCI.2015.195
https://doi.org/10.5441/002/icdt.2014.23


508 H. van der Aa et al.

33. Hinze, A., Voisard, A.: EVA: an event algebra supporting complex event specification. Inf.
Syst. 48, 1–25 (2015). https://doi.org/10.1016/j.is.2014.07.003

34. Hirzel, M., Baudart, G.: Stream Processing Languages and Abstractions, pp. 1–8. Springer
International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-63962-8_260-1

35. Hirzel, M., Soulé, R., Schneider, S., Gedik, B., Grimm, R.: A catalog of stream processing
optimizations. ACM Comput. Surv. 46(4), 46:1–46:34 (2013). https://doi.org/10.1145/
2528412

36. ISO/IEC: Information technology - Database languages - SQL Technical Reports - Part 5: Row
Pattern Recognition in SQL. TR 19075-5

37. Katzouris, N., Artikis, A., Paliouras, G.: Online learning of event definitions. TPLP 16(5-6),
817–833 (2016). https://doi.org/10.1017/S1471068416000260

38. Katzouris, N., Artikis, A., Paliouras, G.: Parallel online event calculus learning for complex
event recognition. Futur. Gener. Comput. Syst. 94, 468–478 (2019). https://doi.org/10.1016/j.
future.2018.11.033

39. Kunze, M., Weske, M.: Behavioural Models - From Modelling Finite Automata to Analysing
Business Processes. Springer (2016). https://doi.org/10.1007/978-3-319-44960-9

40. Li, M., Mani, M., Rundensteiner, E.A., Lin, T.: Complex event pattern detection over streams
with interval-based temporal semantics. In: Eyers, D.M., Etzion, O., Gal, A., Zdonik, S.B.,
Vincent, P. (eds.) Proceedings of the Fifth ACM International Conference on Distributed Event-
Based Systems, DEBS 2011, New York, NY, USA, July 11–15, 2011, pp. 291–302. ACM
(2011). https://doi.org/10.1145/2002259.2002297

41. Lin, D.: An information-theoretic definition of similarity. In: ICML, vol. 98, pp. 296–304
(1998)

42. Liu, M., Li, M., Golovnya, D., Rundensteiner, E.A., Claypool, K.T.: Sequence pattern query
processing over out-of-order event streams. In: Ioannidis, Y.E., Lee, D.L., Ng, R.T. (eds.)
Proceedings of the 25th International Conference on Data Engineering, ICDE 2009, March 29
2009–April 2 2009, Shanghai, China, pp. 784–795. IEEE Computer Society (2009). https://
doi.org/10.1109/ICDE.2009.95

43. Ly, L.T., Maggi, F.M., Montali, M., Rinderle-Ma, S., van der Aalst, W.M.P.: Compliance
monitoring in business processes: Functionalities, application, and tool-support. Inf. Syst. 54,
209–234 (2015). https://doi.org/10.1016/j.is.2015.02.007

44. Mannhardt, F., De Leoni, M., Reijers, H.A., Van Der Aalst, W.M., Toussaint, P.J.: From low-
level events to activities-a pattern-based approach. In: International Conference on Business
Process Management, pp. 125–141. Springer (2016)

45. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Balanced multi-perspective
checking of process conformance. Computing 98(4), 407–437 (2016). https://doi.org/10.1007/
s00607-015-0441-1

46. Mans, R., van der Aalst, W.M.P., Vanwersch, R.J.B.: Process Mining in Healthcare - Evaluating
and Exploiting Operational Healthcare Processes. Springer Briefs in Business Process
Management. Springer (2015). https://doi.org/10.1007/978-3-319-16071-9

47. Margara, A., Cugola, G., Tamburrelli, G.: Learning from the past: automated rule generation
for complex event processing. In: Bellur, U., Kothari, R. (eds.) The 8th ACM International
Conference on Distributed Event-Based Systems, DEBS ’14, Mumbai, India, May 26–29,
2014, pp. 47–58. ACM (2014). https://doi.org/10.1145/2611286.2611289

48. Mei, Y., Madden, S.: ZStream: a cost-based query processor for adaptively detecting composite
events. In: Çetintemel, U., Zdonik, S.B., Kossmann, D., Tatbul, N. (eds.) Proceedings
of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2009,
Providence, Rhode Island, USA, June 29–July 2, 2009, pp. 193–206. ACM (2009). https://doi.
org/10.1145/1559845.1559867

49. Oliner, A., Ganapathi, A., Xu, W.: Advances and challenges in log analysis. Commun. ACM
55(2), 55–61 (2012)

50. Polyvyanyy, A., Weidlich, M., Conforti, R., Rosa, M.L., ter Hofstede, A.H.M.: The 4c spectrum
of fundamental behavioral relations for concurrent systems. In: Ciardo, G., Kindler, E. (eds.)
Application and Theory of Petri Nets and Concurrency - 35th International Conference, PETRI

https://doi.org/10.1016/j.is.2014.07.003
https://doi.org/10.1007/978-3-319-63962-8_260-1
https://doi.org/10.1145/2528412
https://doi.org/10.1145/2528412
https://doi.org/10.1017/S1471068416000260
https://doi.org/10.1016/j.future.2018.11.033
https://doi.org/10.1016/j.future.2018.11.033
https://doi.org/10.1007/978-3-319-44960-9
https://doi.org/10.1145/2002259.2002297
https://doi.org/10.1109/ICDE.2009.95
https://doi.org/10.1109/ICDE.2009.95
https://doi.org/10.1016/j.is.2015.02.007
https://doi.org/10.1007/s00607-015-0441-1
https://doi.org/10.1007/s00607-015-0441-1
https://doi.org/10.1007/978-3-319-16071-9
https://doi.org/10.1145/2611286.2611289
https://doi.org/10.1145/1559845.1559867
https://doi.org/10.1145/1559845.1559867


Complex Event Processing Methods for Process Querying 509

NETS 2014, Tunis, Tunisia, June 23–27, 2014. Proceedings. Lecture Notes in Computer
Science, vol. 8489, pp. 210–232. Springer (2014). https://doi.org/10.1007/978-3-319-07734-
5_12

51. Polyvyanyy, A., Armas-Cervantes, A., Dumas, M., García-Bañuelos, L.: On the expressive
power of behavioral profiles. Formal Asp. Comput. 28(4), 597–613 (2016). https://doi.org/10.
1007/s00165-016-0372-4

52. Polyvyanyy, A., Ouyang, C., Barros, A., van der Aalst, W.M.P.: Process querying: Enabling
business intelligence through query-based process analytics. Decis. Support Syst. 100, 41–56
(2017). https://doi.org/10.1016/j.dss.2017.04.011

53. Ray, M., Lei, C., Rundensteiner, E.A.: Scalable pattern sharing on event streams. In: Özcan,
F., Koutrika, G., Madden, S. (eds.) Proceedings of the 2016 International Conference on
Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26–July
01, 2016, pp. 495–510. ACM (2016). https://doi.org/10.1145/2882903.2882947

54. Rogge-Solti, A., Kasneci, G.: Temporal anomaly detection in business processes. In:
Sadiq, S.W., Soffer, P., Völzer, H. (eds.) Business Process Management - 12th International
Conference, BPM 2014, Haifa, Israel, September 7–11, 2014. Proceedings. Lecture Notes in
Computer Science, vol. 8659, pp. 234–249. Springer (2014). https://doi.org/10.1007/978-3-
319-10172-9_15

55. Sadiq, S., Governatori, G., Namiri, K.: Modeling control objectives for business process
compliance. In: International Conference on Business Process Management, pp. 149–164.
Springer (2007)

56. Senderovich, A., Rogge-Solti, A., Gal, A., Mendling, J., Mandelbaum, A.: The road from
sensor data to process instances via interaction mining. In: International Conference on
Advanced Information Systems Engineering, pp. 257–273. Springer (2016)

57. Teymourian, K., Rohde, M., Paschke, A.: Fusion of background knowledge and streams of
events. In: Bry, F., Paschke, A., Eugster, P.T., Fetzer, C., Behrend, A. (eds.) Proceedings of
the Sixth ACM International Conference on Distributed Event-Based Systems, DEBS 2012,
Berlin, Germany, July 16–20, 2012, pp. 302–313. ACM (2012). https://doi.org/10.1145/
2335484.2335517

58. Van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering process
models from event logs. IEEE Trans. Knowl. Data Eng. (9), 1128–1142 (2004)

59. Van der Aalst, W.M.P., van Hee, K.M., van der Werf, J.M.E.M., Kumar, A., Verdonk, M.:
Conceptual model for online auditing. Decis. Support Syst. 50(3), 636–647 (2011). https://
doi.org/10.1016/j.dss.2010.08.014

60. Van der Aalst, W.M.P.: Process Mining - Data Science in Action, Second Edition. Springer
(2016). https://doi.org/10.1007/978-3-662-49851-4

61. Van der Aa, H., Gal, A., Leopold, H., Reijers, H.A., Sagi, T., Shraga, R.: Instance-based process
matching using event-log information. In: International Conference on Advanced Information
Systems Engineering, pp. 283–297. Springer (2017)

62. Van der Aa, H., Leopold, H., Reijers, H.A.: Checking process compliance on the basis of
uncertain event-to-activity mappings. In: International Conference on Advanced Information
Systems Engineering, pp. 79–93. Springer (2017)

63. Van der Aa, H.: Comparing and Aligning Process Representations: Foundations and Technical
Solutions, vol. 323. Springer (2018)

64. Wang, J., Han, J.: BIDE: efficient mining of frequent closed sequences. In: Özsoyoglu, Z.M.,
Zdonik, S.B. (eds.) Proceedings of the 20th International Conference on Data Engineering,
ICDE 2004, 30 March–2 April 2004, Boston, MA, USA, pp. 79–90. IEEE Computer Society
(2004). https://doi.org/10.1109/ICDE.2004.1319986

65. Weidlich, M., Mendling, J., Weske, M.: Efficient consistency measurement based on behavioral
profiles of process models. IEEE Trans. Softw. Eng. 37(3), 410–429 (2011). https://doi.org/
10.1109/TSE.2010.96

66. Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Causal behavioural profiles–efficient
computation, applications, and evaluation. Fundamenta Informaticae 113(3-4), 399–435
(2011)

https://doi.org/10.1007/978-3-319-07734-5_12
https://doi.org/10.1007/978-3-319-07734-5_12
https://doi.org/10.1007/s00165-016-0372-4
https://doi.org/10.1007/s00165-016-0372-4
https://doi.org/10.1016/j.dss.2017.04.011
https://doi.org/10.1145/2882903.2882947
https://doi.org/10.1007/978-3-319-10172-9_15
https://doi.org/10.1007/978-3-319-10172-9_15
https://doi.org/10.1145/2335484.2335517
https://doi.org/10.1145/2335484.2335517
https://doi.org/10.1016/j.dss.2010.08.014
https://doi.org/10.1016/j.dss.2010.08.014
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1109/ICDE.2004.1319986
https://doi.org/10.1109/TSE.2010.96
https://doi.org/10.1109/TSE.2010.96


510 H. van der Aa et al.

67. Weidlich, M., Ziekow, H., Mendling, J., Günther, O., Weske, M., Desai, N.: Event-based
monitoring of process execution violations. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.)
Business Process Management - 9th International Conference, BPM 2011, Clermont-Ferrand,
France, August 30–September 2, 2011. Proceedings. Lecture Notes in Computer Science, vol.
6896, pp. 182–198. Springer (2011). https://doi.org/10.1007/978-3-642-23059-2_16

68. Weidlich, M., Ziekow, H., Gal, A., Mendling, J., Weske, M.: Optimizing event pattern matching
using business process models. IEEE Trans. Knowl. Data Eng. 26(11), 2759–2773 (2014).
https://doi.org/10.1109/TKDE.2014.2302306

69. White, W.M., Riedewald, M., Gehrke, J., Demers, A.J.: What is “next” in event processing?
In: Libkin, L. (ed.) Proceedings of the Twenty-Sixth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, June 11–13, 2007, Beijing, China, pp. 263–
272. ACM (2007). https://doi.org/10.1145/1265530.1265567

70. Yan, X., Han, J., Afshar, R.: CloSpan: Mining closed sequential patterns in large datasets. In:
Barbará, D., Kamath, C. (eds.) Proceedings of the Third SIAM International Conference on
Data Mining, San Francisco, CA, USA, May 1–3, 2003, pp. 166–177. SIAM (2003). https://
doi.org/10.1137/1.9781611972733.15

71. Yujian, L., Bo, L.: A normalized Levenshtein distance metric. IEEE Trans. Pattern Anal. Mach.
Intell. 29(6), 1091–1095 (2007)

72. Zeng, K., Yang, M., Mozafari, B., Zaniolo, C.: Complex pattern matching in complex
structures: The XSeq approach. In: Jensen, C.S., Jermaine, C.M., Zhou, X. (eds.) 29th IEEE
International Conference on Data Engineering, ICDE 2013, Brisbane, Australia, April 8–12,
2013, pp. 1328–1331. IEEE Computer Society (2013). https://doi.org/10.1109/ICDE.2013.
6544936

73. Zhang, H., Diao, Y., Immerman, N.: On complexity and optimization of expensive queries in
complex event processing. In: Dyreson, C.E., Li, F., Özsu, M.T. (eds.) International Conference
on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22–27, 2014, pp. 217–228.
ACM (2014). https://doi.org/10.1145/2588555.2593671

74. Zhao, B., Hung, N.Q.V., Weidlich, M.: Load shedding for complex event processing:
Input-based and state-based techniques. In: 36th IEEE International Conference on Data
Engineering, ICDE 2020, Dallas, TX, USA, April 20–24, 2020, pp. 1093–1104. IEEE (2020).
https://doi.org/10.1109/ICDE48307.2020.00099

https://doi.org/10.1007/978-3-642-23059-2_16
https://doi.org/10.1109/TKDE.2014.2302306
https://doi.org/10.1145/1265530.1265567
https://doi.org/10.1137/1.9781611972733.15
https://doi.org/10.1137/1.9781611972733.15
https://doi.org/10.1109/ICDE.2013.6544936
https://doi.org/10.1109/ICDE.2013.6544936
https://doi.org/10.1145/2588555.2593671
https://doi.org/10.1109/ICDE48307.2020.00099


Process Querying: Methods, Techniques,
and Applications

Artem Polyvyanyy

Abstract Process querying studies concepts and methods from fields like Big
data, process modeling and analysis, business process intelligence, and process
analytics and applies them to retrieve and manipulate real-world and designed
processes. This chapter reviews state-of-the-art methods for process querying,
summarizes techniques used to implement process querying methods, discusses
typical applications of process querying, and identifies research gaps and suggests
directions for future research in process querying.

1 Introduction

Process querying aims to combine concepts studied by disciplines that look into the
use of large and complex datasets, like Big data, and research areas that investigate
aspects related to process modeling and analysis, like business process management,
process mining, business process intelligence, and process analytics to develop
methods and tools for automatically manipulating, e.g., redesigning and optimizing,
real-world and designed processes, and systematically extracting process-related
information for subsequent use [28]. A process querying method is a technique
that given a collection of processes and a process query, i.e., a statement that
articulates a process-related information need or specifies an instruction for process
manipulations, systematically implements the query over the processes.

The idea of process querying started to shape at the beginning of the twenty-first
century. However, the lion’s share of concepts, principles, and methods for process
querying appeared only recently. The reason for this is at least twofold. First, recent
large-scale digitization of real-world processes governed by organizations has led
to the generation of large volumes of digital footprints of real-world processes and
supporting data. Second, increasing evidence of added value due to the use of data
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generated by processes [31], as well as of information about the processes in forms
of models and ontologies, for improving future real-world processes has spawn
research on new analysis techniques aimed to understand and interpret process
phenomena, giving the birth to the discipline of Process Science.

This chapter gives an overview of the state-of-the-art methods for process
querying. The methods are classified into those for querying observed and recorded
processes, i.e., event logs, as studied in process mining [40], process models, either
automatically discovered from event logs using process mining algorithms or man-
ually designed, as traditionally studied in business process management [11, 42],
and such that address the querying of both logs and models. Besides, the chapter
discusses techniques that underpin the existing process querying methods and
practical applications of process querying methods as recommended and employed
by academia and industry. The content of this chapter is based on the literature
reviews reported in [22, 28] and extends them by further insights reported by the
contributors of this book.

The rest of this chapter unfolds as follows. The next section provides the
foundations necessary for following the subsequent discussions. Section 3 discusses
the existing methods for process querying. Next, Sect. 4 gives an overview of
techniques that are commonly used to implement process querying methods.
Section 5 summarizes the main applications of process querying, as recommended
or evaluated by the authors of the process querying methods. Finally, Sect. 6 summa-
rizes research gaps and suggests directions for future research in process querying.

2 Foundations

This section lists basic concepts in process querying that are necessary to support
the subsequent discussions. Let Uan and Uav be the universe of attribute names and
attribute values, respectively.

Event. An event e is a relation between some attribute names and attribute values
with the property that each attribute name that participates in the relation is
related to exactly one attribute value, i.e., it is a partial function e : Uan ⇀ Uav.

For example, e = {(case, 120327), (time, 2020-02-03T00:27:29Z), (act, “Open
claim”)} is an event with three attributes. A possible interpretation of these attributes
is that event e belongs to the process with case identifier e(case) = 120327, was
recorded at timestamp e(time) = 2019-10-22T11:37:21Z (ISO 8601), and was
generated by the activity with name e(act) = “Open claim”.

Process. A process π is a partially ordered set (E,≤), where E is a set of events
and ≤ is a partial order over E.

Trace. A trace τ is a process (E,<), where < is a total order over E.
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A trace is often specified as a sequence of events with the same case identifier
ordered by timestamps in ascending order. Hence, a trace groups events that
were generated by the same process instance. For example, 〈e1, e2, e3〉 is a trace
composed of three events. In a process, in general, some events may be unordered
to reflect that they are independent and, thus, can be, or were already, executed
simultaneously.

Behavior. A behavior b is a multiset of processes.

The fact that a behavior is a multiset of processes can be used, for example,
when describing that a process was observed and recorded several times. Behavior
b1 = [

τ 9
1 , τ 3

2

]
, where τ1 = 〈{(act, “Open claim”)}, {(act, “Review claim”)},

{(act, “Close claim”)}〉 and τ2 = 〈{(act, “Open claim”)} , {(act, “Close claim”)}〉,
specifies that a claim is opened, then reviewed, and finally closed nine times and is
opened and then immediately closed three times.

Behavior model. A behavior model is a simplified representation of real-world
or envisioned behaviors, and relationships between the behaviors, that serves a
particular purpose for a target audience.

The model in Fig. 1 is a model of an envisioned behavior captured as a BPMN
diagram. According to the semantics of BPMN, the model specifies behavior
composed of traces τ1 and τ2, whereas behavior b1 is a possible description of the
observed behavior induced by the executions of the diagram. In [28], we suggest
several classes of behavior models. According to this classification, the diagram
in Fig. 1 identifies a process model, while behavior b1 identifies an event log. In
general, a process model describes a potentially infinite collection of envisioned
processes, whereas an event log captures a finite collection of already executed
processes. The reader can refer to [28] for further details on the different classes
of behavior models.

Process repository. A process repository is an organized collection of behavior
models.

For example, a process repository can be composed of process models and/or logs
organized in a folder hierarchy.

Process query. A process query is a statement that describes an information
need in a process repository or specifies an instruction to manipulate a process
repository.

Fig. 1 A process model

Open
Claim

Close
Claim

Review
Claim
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A sample process query q can specify an instruction to retrieve all process models
from a repository that describe behaviors with processes in which activity “Review
claim” occurs.

Let Upr and Upq be the universe of process repositories and the universe of process
queries, respectively.

Process querying method. A process querying method m is a relation between
ordered pairs, where in each pair the first entry is a process repository and
the second entry is a process query, and process repositories with the property
that each pair is related to exactly one process repository, i.e., it is a function
m : Upr × Upq → Upr.

Therefore, a process querying method maps an input process repository and a
process query onto a resulting process repository obtained by implementing the
query statement on the input repository. For instance, given that the model in
Fig. 1 is contained in the input repository, query q mentioned above will result in a
repository that contains the model.

3 Process Querying Methods

This section summarizes all the process querying methods covered in this book.
The methods are grouped based on the types of behavior models that can be taken
as input in process repositories and are referred to by the short names of the
corresponding languages for specifying process queries.

3.1 Log Querying

Process querying methods discussed in this section operate over event logs.

BP-SPARQL BP-SPARQL is a textual language for summarizing and analyzing
process execution data, for example, event logs [3–6]. The language extends
SPARQL with constructs for querying Big Process Data described in an RDF
graph of process-related entities. Such process-related entities are, for instance,
events, actors, and relationships. Examples of relationships include the ordering
relations between events and relations between entities and their attributes. The
language is implemented using Hadoop, Map Reduce, and Pig-Latin technologies.
Being an extension of SPARQL, BP-SPARQL allows querying using standard
SPARQL capabilities.

DAPOQ-Lang The Data-Aware Process Oriented Query Language (DAPOQ-
Lang) is a textual language for retrieving sub-logs of event logs and querying data
constraints [8, 9]. In this way, DAPOQ-Lang aims to support answering business
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questions that arise in process mining [40]. DAPOQ-Lang is an SQL wrapper that
aims to simplify SQL queries by defining and operating over a concrete meta-model
for representing event log data, called the OpenSLEX meta-model. Hence, the focus
is on the usability of the language as compared to corresponding SQL queries. The
language supports querying over events in traces and related data objects, their
versions, and data schemas, as well as over the temporal properties of all these
elements.

PIQL Process Instance Query Language (PIQL) is a textual language for comput-
ing Boolean and numeric process performance indicators over traces and instances
of process tasks [25]. The language aims to support business users in decision-
making and monitoring and management of business processes. PIQL is user
friendly to nonexperts, as in addition to machine-readable, it also offers a human-
readable syntax formulated in terms of natural language statements. The language
can be used to define decision logic that depends on the information kept in the
historical traces and used during future process execution. PIQL can be integrated
with Decision Model and Notation (DMN) to support process decisions, obtain
measurements to display on process dashboards, and support the dataflow.

3.2 Model Querying

This section summarizes methods for querying process models. These methods can
be split into those that operate over process model specifications and those that
target behaviors encoded in process models. The former methods can be further
split into two subclasses. The first subclass comprises methods originally proposed
for querying general conceptual models and reported useful for querying process
models. DMQL and VM* belong to this subclass. The second subclass consists of
dedicated techniques for querying process models. BPMN VQL and Descriptive
PQL are languages that belong to the second subclass. Finally, CRL, QuBPAL, and
PQL operate over behaviors encoded in process models.

DMQL The Diagramed Model Query Language (DMQL) is a visual language
for querying collections of conceptual models created in arbitrary graph-based
modeling languages [10]. The language also supports approximate analysis of the
executions of process models in the presence of loop structures. DMQL querying
is implemented as searching for model subgraphs that correspond to a predefined
pattern query. DMQL is proposed to query process models, but can also be used to
query data models, organizational charts, and other model types.

VM* The Visual Model Manipulation Language (VM*) is a family of languages
for expressing queries (VMQL), constraints (VMCL), and transformations (VMTL)
over conceptual models [1, 37, 38]. The authors of VM* languages advocate their
application over process models, for example, UML Activity Diagrams and BPMN
models. VM* extends the meta-model of the host language with several intuitive
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annotations. Such an approach broadens the usability of VM* queries, as they
resemble models captured in the host language, which decreases the user effort
for reading and writing queries. For example, VMQL for querying BPMN models
subsumes the syntax and notation of BPMN. The matching of VM* queries is
implemented through pattern matching over model graphs.

BPMN VQL BPMN Visual Query Language (BPMN VQL) is a visual process
query language. BPMN VQL can be used to retrieve structural information about
the queried models and knowledge related to the domain of the models. BPMN
VQL queries follow the structure of SQL, borrow the syntax from BPMN, while
the semantics of BPMN VQL queries is grounded in SPARQL [14]. A BPMN VQL
query consists of two parts. The matching part of the query specifies a structural
condition to match in process models, whereas the selection part specifies parts
of models to retrieve as a query result. When executed, BPMN VQL queries
get translated to SPARQL using a formalization of the BPMN meta-model as an
RDF ontology. The authors of the language have conducted empirical studies that
demonstrate that BPMN VQL queries are easier to understand than natural language
queries and that it is easier to formulate BPMN VQL queries than to match natural
language queries against process models.

Descriptive PQL Descriptive Process Query Language (Descriptive PQL) is a
textual language for retrieving process models and specifying abstractions and
changes over process models [17]. The manipulations on models are defined using
Single-Entry-Single-Exit subgraphs [23] and implemented via translations to the
Cypher graph query language, where Cypher is a declarative query language for
querying and changing graphs stored in graph database [21].

QuBPAL Querying Business Process Abstract modeling Language (QuBPAL)
is a textual ontology-based language for retrieving process fragments and their
subsequent reuse, e.g., when constructing fresh process models. QuBPAL queries
resemble SPARQL queries and are executed over collections of BPMN pro-
cess models, their meta-model and behavioral semantics, domain knowledge, and
semantic annotations. When executed, QuBPAL queries are translated into Logic
Programming queries and evaluated using the Prolog inference engine [33–35]. The
authors suggest that QuBPAL can also be used for querying at run-time over running
process instances and over the logs of completed processes.

CRL Compliance Request Language (CRL) is a process query language grounded
in temporal logic designed to support standard process compliance rules [13].
Specifically, CRL supports process compliance rules that address control flow,
resource, and temporal aspects of business processes. CRL queries are executed
over BPEL specifications by translating the queries to LTL or MTL and then model
checking the resulting temporal logic properties over BPEL specifications using
the SPIN model checker [16]. CRL is designed with the relevance and usability
of the supported queries in mind. For instance, the control flow compliance rules
are grounded in the patterns identified in a comprehensive survey [12].
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PQL Process Query Language (PQL) is a textual query language based on exe-
cutions and behavioral relations, e.g., ordering, mutual exclusion, and concurrency,
between tasks in executions of process models [26, 29, 30]. PQL reuses parts of the
abstract syntax of APQL and has an SQL-like concrete syntax. The semantics of
PQL is defined over all possible executions of process models and is independent of
notations used to describe process models.

The core of PQL is grounded in the behavioral relations of the 4C spec-
trum [24]—a systematic collection of the co-occurrence, conflict, causality, and
concurrency relations. In addition, PQL can reason at the level of process scenario
templates (a.k.a. sample process executions with placeholders). For example, one
can retrieve models from a process model collection that can execute a specified
process scenario or augment models to describe a fresh process scenario template.
The latter query type is implemented in PQL as a solution to the process model
repair problem [27].

3.3 Log and Model Querying

Methods from this section can be used to query process models and event logs.

BPQL Business Process Query Language (BPQL) is a textual language for
querying over process models and event logs [18, 19]. It aims at making process
specification more flexible by defining such elements as resource assignment
and transition conditions via BPQL queries evaluated during process execution.
The language is defined as an extension of the Stack-Based Query Language
(SBQL) [39]. The semantics of the language is defined over the proposed abstract
model for capturing process specifications and execution traces. The authors of
BPQL proposed BPQL templates for monitoring process execution and integrated
the language with the BPMN standard. BPQL can be used to aggregate information
over the attributes of tasks, for instance, to compute the cost of a trace based on the
costs of individual tasks in the trace.

Celonis PQL Celonis Process Query Language (Celonis PQL) is a domain-specific
language that operates over a process data model that combines data about a process
of interest from various systems into one snowflake schema [41]; snowflake schemas
are often used to develop data warehouses. Celonis PQL is designed for business
users and aims to support process discovery, enhancement, and monitoring, three
well-studied problems in process mining [40]. Business users can use Celonis
PQL to formalize their process questions and execute them automatically to
gain valuable process-related insights. The language supports over 150 operators,
including process-related functions, machine learning, and mathematical operators.
The syntax of the language resembles SQL. Thousands of users from different
industries use Celonis PQL daily.
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4 Process Querying Techniques

Existing process querying methods are often founded on well-established tech-
niques. Some most commonly used techniques used to implement process querying
are summarized in this section.

Structural Analysis Behavior models like process models or event logs can be
formalized as graphs. Several methods perform process querying by analyzing
structural properties of graphs used to describe behavior models, e.g., DMQL and
VM*. Examples of graph analysis tasks used for process querying include the
problem of determining if a path exists in a graph and subgraph isomorphism
problem.

Behavioral Analysis Several existing process querying methods can support the
analysis of properties of behaviors encoded in models, e.g., QuBPAL. These
methods can be used to issue process queries that specify conditions over all
the processes (of which there can be potentially infinitely many) encoded in the
behaviors of models stored in a process repository.

Given a model of a finite-state system, e.g., a behavior model or an event log,
and a formal property, model checking techniques verify whether the property holds
for the system [2]. The formal properties are usually specified using formal logics.

Temporal Logic A temporal logic is a formal language for specifying and rea-
soning about propositions qualified in terms of time [20]. Several process querying
methods are grounded in temporal logics, e.g., CRL. Given a process repository and
a process query, these methods proceed by translating the query into a temporal logic
expression, e.g., Linear Temporal Logic (LTL), Computation Tree Logic (CTL), or
Metrical Temporal Logic (MTL) expression. Then, each behavior model from the
repository is translated into a finite-state system and verified against the expression.
Those behavior models that translate to systems for which the property captured in
the expression holds constitute the query result.

First-Order Logic First-Order Logic (FOL) is a formal logic that extends proposi-
tional logic, which operates over declarative propositions, with the use of predicates
and quantifiers [36]. The QuBPAL language for process querying is an example
language that operates by translating its queries to FOL and model checking them
against the models in the repository. Hence, the process repository is interpreted as
a formal FOL theory, while queries verify the formal properties of the theory.

Process querying can be grounded in techniques for data querying.

Data Querying Data querying is a technique for retrieving and augmenting data.
Structured Query Language (SQL) is a language for managing data stored in a
relational database [7]. DAPOQ-Lang is an example language for process querying
grounded on SQL. It is an SQL wrapper that aims to simplify query formulation
over a relational model for storing collections of event logs.
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SPARQL Protocol and RDF Query Language (SPARQL) SPARQL is a seman-
tic query language for retrieving and manipulating data captured in the Resource
Description Framework (RDF) format [15]. Hence, SPARQL queries operate over
data stored as a collection of “subject-predicate-object” triples. Several methods for
process querying are based on SPARQL, e.g., BPMN VQL and BP-SPARQL. These
methods encode process repositories as RDF data and implement process querying
by first transforming process queries into SPARQL queries and then executing
SPARQL queries over the RDF data.

Graph Querying A graph querying technique can be used for data querying in
annotated graphs [32]. For instance, Descriptive PQL uses the Cypher graph query
language [21] to implement process querying; Cypher is a declarative graph query
language used in the Neo4J graph database. By relying on Cypher, Descriptive PQL
queries can formulate intents to retrieve and augment underlying graph structures of
the queried process models.

5 Process Querying Applications

Due to their generic purpose, namely retrieval, manipulation, and management of
behavior models stored in process repositories, process querying methods have
many applications in process mining and business process management. Some
example applications of process querying are listed below. These applications were
mentioned and exemplified by the authors of the process querying methods covered
in this book. The list is not meant to be exhaustive but should provide an impression
about the broad range of process querying applications.

Business Process Compliance Management Business process compliance man-
agement studies approaches to check and ensure that business processes satisfy
relevant compliance requirements, for example, legal regulations and policies.
Process queries are often used to specify conditions that lead to violations of
compliance requirements, while the corresponding query results contain models that
violate the requirements.

Business Process Weakness Detection A weakness of a business process is its
part that hinders process execution or has a negative impact on process performance.
Such weaknesses are often modeled using syntactically correct model fragments,
but according to their semantic, they are undesirable or even harmful. An example
of a weakness in a process is when a document is first printed and later scanned. A
condition that represents a business process weakness can be formulated as a process
query and then executed over a process repository to identify all occurrences of the
weakness.

Infrequent Behavior Detection Real-world event data are full of noise and rare
anomalous behavior. Using such raw data as input to process mining techniques
is detrimental to the results and, hence, insights about real-world processes these
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techniques deliver. Infrequent behavior detection studies algorithms for identifying
noise and irregular event patterns in event data to be filtered before applying process
mining. Some process querying methods allow specifying conditions and, thus,
querying for infrequent process behavior.

Process Discovery Process discovery is a problem studied in process mining and
consists of automating the task of process modeling. That is, given event data, e.g.,
an event log of an IT system, a process discovery algorithm automatically constructs
a process model that describes the data. Process querying methods can be used to
support process discovery, for example, by retrieving event data of interest and
filtering out the data that discovery algorithms deem not important for fulfilling
their tasks.

Process Enhancement Process enhancement can be seen as a problem that gen-
eralizes the problem of process discovery. Process enhancement aims to improve,
for example, extend, correct, or annotate, an existing process model based on
event data about its actual executions. Hence, process discovery can be seen
as process enhancement when the original process model is empty. Similar to
process discovery, various process queries can be used to support steps of process
enhancement algorithms concerning event data selection.

Process Instance Migration Process instance migration is the task of adapting
an incomplete execution of a process model to continue execution according to
the rules of a different process model. This different process model can be a
redesigned version of the original model that caters to new requirements. The
migration instructions can be formalized as process queries and executed using
process querying methods.

Process Model Comparison The problem of process model comparison deals
with assessing how similar two given process models are. Note that the problem
can be instantiated with different notions of similarity, including structural and
behavioral criteria. Such criteria for assessing similarity can be specified as process
queries. Then, models that get included in the results of most of such similarity
queries can be accepted as most similar.

Process Model Translation Process model translation deals with translating pro-
cess model labels from one natural language to another, for example, from English
to Ukrainian, or vice versa. Solving this problem is useful when process models
are used in multinational companies, as process models can be reused at different
branches of the company around the globe. The operationalization of the relabeling
of the process model concepts can be implemented through process querying.

Process Monitoring Process monitoring is the task of identifying problematic
and successfully performing processes. The aggregated information about the
performance of currently executing processes can often be implemented via process
queries and then visualized via process performance dashboards.
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Process Reuse Process reuse refers to the problem of constructing process models
from the existing ones or their fragments. Hence, existing process models, frag-
ments, and process patterns from other contexts are reused instead of creating them
from scratch. Process querying can be used to discover reusable process pieces with
desired characteristics for subsequent composition in new process models.

Process Scheduling As resources are in general scarce and usually follow certain
availability patterns, for example, due to the work shifts or maintenance cycles, their
availability needs to be scheduled. Process scheduling is concerned with determin-
ing which resources and when to utilize in order to maximize the performance of
currently executing processes or process parts. Process querying can support process
scheduling, for example, to inquire about the status of the resources, execute the
scheduling logic, or assign resources to pending process tasks.

Process Selection Process selection refers to the practice of choosing how an
organization carries out its operations, for instance, customer claim handling.
Indeed, the exact process followed may differ for customers of various demographic
groups. Such process selection rules, or business rules, can be encoded as process
queries that use process case information and information on past process executions
to implement the decision logic.

Process Standardization Standard process models are models that should be
used as references; that is, they are exemplar models for describing best practices
for certain classes of behaviors. Process standardization refers to the problem of
replacing similar process models or similar model fragments with a single unified
model or fragment. Process querying is useful at the early stages of process
standardization, as queries can help identify similar fragments that should be
standardized. Such similar models or model fragments can be included in the result
of a corresponding carefully designed process query.

Process Variance Management Process variance management is the task of
identifying, maintaining, and improving the handling of variants of the same process
in an organization. This task can be supported by process querying at various stages.
For example, process queries can specify conditions for identifying process variants,
pinpointing their differences, and supporting their standardization.

Syntactical Correctness Checking Syntactical correctness checking is the task of
identifying process models that violate the syntax rules of the modeling language
used to capture them. Alternatively, syntactical correctness checking can be used to
verify whether process models adhere to the modeling guidelines established by the
organization. For example, the organization can establish that only a subset of the
modeling constructs is allowed in process models. Rules for checking the syntactical
correctness of process models can be captured as process queries.
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6 Past, Present, and Future of Process Querying

Future work on process querying will aim to achieve process querying compro-
mise [28], i.e., it will propose new and improve the existing process querying
methods to support more practically relevant process queries that can be com-
puted efficiently. As of today, the development of process querying methods still
constitutes a non-coordinated effort. Many languages and systems for process
querying were designed and developed in silos. Future work should contribute
to the consolidation of various methods leading to the definition of a standard
meta-model for behavior models and behaviors that these models describe, and a
standard language for capturing process queries. Such consolidation may take place,
for instance, around the Process Querying Framework [28], which defines typical
components of a process querying solution as well as their interfaces and details
roles of the constituent components. This book is the first step in this direction.

The existing process querying languages and methods cover a wide range of use
cases and applications. A small tendency is observed toward the design of more
methods that operate over specifications of behavior models. Besides, while there is
a plethora of languages and techniques for capturing and executing instructions for
filtering process repositories, i.e., selecting processes with specific characteristics,
methods for manipulating process repositories, i.e., changing processes, are scarce
and are still in their infancy. Future research will close these gaps by devising
techniques that operate over the behaviors process models describe rather than their
structures and developing methods that manipulate models to include or exclude
certain behaviors they describe.

Many process querying techniques suffer from performance issues, if not for
most basic queries, then for the intricate ones. To overcome such performance
limitations, dedicated indexes can be designed and constructed for certain classes
of process queries to allow trading the additional space for storing the indexes for
the speedup in the processing of queries. This design of indexes should be guided by
empirical investigations on which queries are considered most useful by the users.
Indeed, those intricate and useful queries should inform the development of process
querying indexes. Unfortunately, only several such empirical works exist, and this
gap must be addressed in the future work.
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refactoring, 228, 447
selection, 234
similarity, 412, 462
translation, 520

Process modeling, 3
Process monitoring, 382, 384, 520
Process query, 8, 11, 513
Process querying, 4, 313, 314, 321, 332, 334

compromise, 15, 334, 522
decidability, 15
efficiency, 15
event-based, 483
instruction, 11, 331
method, 2, 8, 329, 511, 514
problem, 335

statistics, 11
suitability, 15

Process Querying Framework (PQF), 9, 175,
257, 329, 404

Process Querying Framework part (PQF part),
329

Execute, 12, 331
Interpret, 12, 332
Model, Simulate, Record, and Correlate, 9,

329
Prepare, 11, 331

Process Query Language (PQL), 220, 232, 313,
314, 321, 378

Process update problem, 335
Process weakness, 116, 139

automation, 139
detection, 116, 126, 519
environment, 139
information handling, 139
modeling error, 139
organization, 139
process flow, 139
technology switch, 139

Prolog, 256, 441
with tabling, 272
XSB, 256

Promela, 291

Q
QuBPAL, 256
Query, 116, 255

algorithm, 118
condition, 11
editor, 118
engine, 382
executor, 199
intent, 11
language, 118
occurrence, 122
result (see Query, occurrence)
translator, 199

Query intent, 11, 331
Create, 331
Read, 331
Update, 331

R
RDF, see Resource Description Framework
Reachability problem, 332
Recall, 463
Redo log, 53
Require pattern, 161
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Resource Description Framework (RDF), 448
Resource pattern, 300
Response, 263
Role-Activity-Diagram, 152
R-precision, 463
Rule, 257, 259

S
Segregation of Duties (SoD), 392, 397, 401,

402
SELECT, 269, 315, 331
Semantics

annotation predicate, 270
behavioral, 257
business process, 256
ontology-based, 257
procedural, 256

Semantic Web, 256
SESE, see Single-Entry-Single-Exit
Similarity

activity-based, 417
attribute, 416
behavior-based, 419
edit distance, 415
measure, 414
metric, 463
property, 463
scale, 463
semantic, 415
structure-based, 417
syntactic, 414
word, 415

Similarity-based search, 464
Simulation model, 6
Simulink, 152
Single-Entry-Single-Exit (SESE), 226
Snapshot, 403
Snowflake schema, 380
SoD, see Segregation of Duties
Software repository, 314
Soundness, 440

violation, 444, 450
SPARQL, see SPARQL Protocol and RDF

Query Language
SPARQL Protocol and RDF Query Language

(SPARQL), 256, 448, 519
SQL, see Structured Query Language
State, 4, 260

reachable, 262
successor, 262

Stemming, 416

Stop word removal, 416
Structural analysis, 518
Structured Query Language (SQL), 51, 313,

382, 383, 386
Subgraph homeomorphism, 116
Sub-pattern, 135
Summarization, 22, 23, 25, 33, 34, 45
Syntactical correctness, 443
Syntactical correctness checking, 521
Syntax transparency, 152

T
Task instance, 89, 94
TBox, see Terminological Box
Temporal interval algebra, 58

Allen’s interval algebra, 58
Temporal logic, 263, 518

Computational Tree Logic, 263
formula, 263
Linear Temporal Logic, 289
Metrical Temporal Logic, 289

Temporal property
duration, 57
period, 57

Term, 257
Terminological Box (TBox), 264
Throughput time, 379, 389, 397
Timed pattern, 302
Timestamp, 379
Trace, 5, 262, 512

correct, 262
with wildcards, 327

Triple predicate, 270

U
UML Activity diagram, 153, 156
UML Use Case diagram, 153
Unfolding, 332
Untangling, 331
UPDATE, 321, 331
Update pattern, 161
Use Case diagram, 153

V
Variant, 379, 393
Visual Model Manipulation Language, 150
VM*, 150

annotation, 162
pattern, 161
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W
Weakness category, see Process weakness
Web Ontology Language (OWL), 448

2.0, 448
WHERE, 269

Workflow, 255
Working capital optimization, 397

X
XES, 51
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