
Heterogeneous Parallel Algorithm
for Compressible Flow Simulations

on Adaptive Mixed Meshes

Sergey Soukov(&)

Federal Research Center Keldysh Institute of Applied Mathematics, Russian
Academy of Sciences, Moscow 12504, Russia

Abstract. The paper describes a parallel heterogeneous algorithm for com-
pressible flow simulations on adaptive mixed meshes. The numerical algorithm
is based on an explicit second order accurate finite-volume method for Navier-
Stokes equations with linear reconstruction of variables. Gas dynamics equa-
tions are discretized on hanging node meshes of tetrahedra, prisms, pyramids,
and hexahedra. The mesh adaptation procedure consists in the recursive
refinement and/or the coarsening of cells using predefined templates. Hetero-
geneous parallelization approach uses MPI + OpenMP + CUDA program
model that provides portability across a hybrid supercomputers with multicore
CPUs and Nvidia GPUs. A two-level domain decomposition scheme is used for
the static load balance among computing devices. First level decomposition
involves the mesh partitioning between supercomputer nodes. At the second
level node subdomains are partitioned between devices. The Cuthill-McKee
reordering is used to set cell local indexes in the MPI process computational
domain to speed up CFD kernels for the CPU. The CUDA implementation
includes a communication and computation overlap that hides the communi-
cation overhead. The heterogeneous execution scalability parameters are shown
by the example of simulating a supersonic flow around a sphere on different
adaptive meshes using up to 70 multicore CPUs and 105 GPUs.

Keywords: Heterogeneous computing � Unstructured mesh refinement �
Parallel CFD

1 Introduction

The time and results of CFD simulations strongly depend on the type and size (number
of nodes, elements, faces, etc.) of the computational mesh. Hybrid and mixed meshes
[1] are most suitable for modeling flows around the complex shape bodies. Adaptive
mesh refinement methods are often used to improve solution accuracy and decrease the
mesh size [2]. The adaptive mesh is statically or dynamically refined directly to the
flow features. Static adaptation is used for steady flow simulations. The launch of the
parallel CFD program alternates with the solution analysis and mesh adaptation [3].
This approach can be used for multiple simulations with different flow parameters and
the same starting coarse mesh. Dynamic adaptation techniques are applied for the
simulations of unsteady flows [4, 5]. The mesh is refined during the time the solution is
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being calculated. For example, the fine cells zones are moved according to the current
positions of the turbulent regions after each time integration step. In this case, the mesh
adaptation routines are included directly to the main CFD code.

This paper describes a parallel algorithm for compressible flow simulations on
hanging node mixed meshes. Heterogeneous parallelization approach is based on
MPI + OpenMP + CUDA hybrid program model. The CUDA implementation
includes a communication and computation overlap. A distinctive feature of the pro-
posed algorithm in comparison with existing CFD codes is that it can be used both for
simulations on hanging node meshes and arbitrary polyhedral meshes.

The paper is organized as follows. The mathematical model and numerical method are
briefly outlined in Sect. 2. The parallel algorithm and details of the overlap mode and
heterogeneous execution are described in Sect. 3. The results of the study of parallel effi-
ciency and performance are presented in Sect. 4. And Sect. 5 contains some conclusions.

2 Mathematical Model and Numerical Method

A compressible viscous fluid is modeled by the Navier–Stokes equations:

@Q
@t

þr � F ¼ 0; ð1Þ

where Q ¼ q; qu; qu; qu;Eð ÞT is a vector of conservative variables, F ¼ FC þFD is a
flux vector that consists of convective and diffusive fluxes, respectively.

The Eq. (1) are discretized on an hanging node mixed meshes using a explicit cell-
centered finite-volume method with a polynomial reconstruction. The starting con-
formal mesh combines tetrahedra, prisms, pyramids, and hexahedrons. The mesh
adaptation procedure consists in the recursive refinement and/or the coarsening of cells
using predefined templates (Fig. 1). A subset of the mesh cells are marked for dividing
or agglomeration based on the adaption function, which is created from numerical
solution data. After adaptation, neighboring cells can’t to differ by more than one level
of refinement.

During CFD simulations, non-conformal hanging node mesh is transformed to a
conformal polyhedral mesh. If a cell is adjacent to four cells along a face, then this face
is divided into four parts (Fig. 2).

Fig. 1. Cells refinement templates.
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Each polyhedral cell Ci has a volume Cij j and surface @Ci. In accordance with the
finite volume method, a balancing relation is written for cells as:

@

@t

Z
Ci

QdXþ
I
@Ci

FdS ¼ 0: ð2Þ

The discrete values of the mesh function Qi are defined at the cell-centroid ri as integral
average

Qi ¼ 1
Cij j

Z
Ci

QdX: ð3Þ

Surface @Ci of an internal cell consists of flat faces @Cij. The geometry of the face
@Cij between cells Ci and Cj is set by the unit normal nij, the face-midpoint rij and its
square Sij.

The discrete variant of (2) has the form

@Qi

@t
þ

X
j2Ii FC

ij þFD
ij

� �
Sij ¼ 0; ð4Þ

where Ii is the set of Ci neighbors.
The convective flux FC

ij is computed using a Riemann solver

FC
ij ¼ U QL

ij;Q
R
ij ; nij

� �
; ð5Þ

where QL
ij and QR

ij are the values from the left and right states evaluated at the interface
@Cij. The implemented set of Riemann solvers [6, 7] U includes CUSP, Roe, Roe–Pike
for subsonic flows; HLL, HLLE, HLLC, Rusanov and AUSMDV for supersonic flows.

a) prism and adjacent cells b) transformed prism

Fig. 2. Example of transforming a prism to a polyhedron.
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It is assumed that the solution is piecewise linearly distributed over the control
volume. In this case, the left and right states can be found from the relations

QL=R
ij ¼ Qi=j þWi=j rQi=j � rij � ri=j

� �� �
; ð6Þ

where rQi ¼ @Q=@x; @Q=@y; @Q=@zð Þ is the gradient of Q at the i-th cell center andW
denotes a limiter function [8, 9].

The algorithm for gradient calculation is based on the Green-Gauss approach. For
the original mesh cells, the linear reconstruction coefficients are calculated as

rQi ¼ 1
Cij j

X
j2Ii giijQi þ giijQj

� �
nijSij: ð7Þ

Geometrical coefficients giij and g j
ij are inversely to the distances from the cell-centroids

to the face plane and satisfy giij þ g j
ij ¼ 1.

For reconstruction over transformed polyhedra, dummy control volumes are used.
Dummy cell C

0
i vertices are placed at the points of intersection between @Cij planes and

lines connecting the polyhedra centroid ri and adjacent cells centroids rj. The volume
of C

0
i is bounded by triangulation of the convex hull of its vertices. The values of

variables at the vertices and faces midpoints are computed by linear interpolation on
segments and triangles. Figure 3 shows reconstruction control volume for transformed
prism (Fig. 2). The dummy control volume approach can also be used to calculate
gradients in the conformal mesh cells.

In order to evaluate the diffusive fluxes FD
ij first derivatives of the velocity com-

ponents and temperature at face-midpoints are computed as the combination of the
averaged gradients rQij and the directional derivatives:

a) polyhedron and nodes of b) dummy cell 

Fig. 3. Dummy control volume for transformed prism.
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rQij ¼
rQj þrQj

2
; ð8Þ

rQij ¼ rQij � rQijtij �
Qj � Qi

lij

� �
tij: ð9Þ

Here lij ¼ rj � ri
�� �� represents the distance between the cell-centroids, and tij ¼

rj � ri
� �

=lij is the unit vector along the line connecting them.
The boundary conditions are specified by setting the appropriate flow variables QR

iC
or fluxes FiC at the midpoints of the faces @CiC at the computational domain boundary
C.

Finally, explicit multi-stage Runge–Kutta (RK) time integration schemes are used.

3 Parallel Algorithm and Implementation

3.1 Sequential Time Integration Step Algorithm

Each explicit RK step include multiple execution of the following operations:

• Reconstruction kernel – to get gradients at the cell centers, a loop over the cells;
• Fluxes kernel – calculation of convective and diffusive fluxes through inner and

boundary faces, a loop over the faces;
• Update kernel – summation of fluxes along adjacent faces and calculation of the

flow variables at a new RK scheme stage or time step, a loop over the cells.

The statement blocks of the loops are data independent and are considered as the
parallelism units in the CPU (OpenMP) and GPU (CUDA programming model) CFD
kernel implementations.

3.2 Distributed-Memory MPI Parallelization

The problem of static load balancing between MPI processes is solved based on the
domain decomposition method. Each MPI process updates the flow variables for the
cells of the polyhedral mesh subdomain (Fig. 4).

Graph partitioning subroutines [10, 11] work with an unstructured node-weighted
dual graph. It is a graph in which nodes are associated with mesh polyhedrons, and
edges are adjacency relations by shared faces. The polyhedron weight is set as the
integer equal to the number of faces. As a result of decomposition, each mesh cell gets
the rank of the MPI process, the subdomain of which it belongs to, and each process
gets a list of its own cells.

The set of own cells is divided into subsets of inner and interface cells. The
interface cells spatial scheme stencil includes cells from neighbouring subdomains or
halo cells. Thus, the local computational domain of the MPI process joins up its own
and halo cells. The interface cells of one subdomain are halo cells for one or more
neighboring subdomains.
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The local indexes of the computational domain cells are ordered according to their
type: inner, interface, halo. In addition, Cuthill-McKee reordering [12] is used to set
indexes within inner and interface cell groups. This approach optimizes the data
location in RAM and improves the CFD kernels performance. The halo cell indexes are
ordered by the MPI process ranks. Figure 5 shows the distribution of cells by type for
the computational domain, built around the 8 � 8 cells subdomain of a structured grid.

Parallel execution of the RK stage starts with asynchronous MPI exchanges. The
data transfer includes only the flow variables. Halo cells gradients and interface/halo
face fluxes computations are duplicated. Persistent requests for messages are created
before the simulation starts by the subroutines MPI_Send_Init and MPI_Recv_Init. At
the synchronization point, the MPI process packs the interface data to the send buffers,
starts collecting requests (MPI_Startall routine) and then waits for all given requests to
complete (MPI_Waitall routine). Halo data is received directly to the calculation data
arrays without intermediate bufferization.

a) first level decomposition b) second level decomposition for red 
node subdomain

Fig. 4. Two-level decomposition.

Fig. 5. Computational domain structure in 2D.
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3.3 Heterogeneous Execution and Overlap Mode

Each MPI process is bound either to fixed CPU cores number or to one core (host) and
one GPU (device). The sizes of the local computational domains are proportional to the
device performance. The relative performance ratio between CPU and GPU is deter-
mined experimentally by the CFD kernels execution time.

If the CFD kernels are running on a GPU, parallel execution includes additional
device-to-host and host-to-device data transfers before and after the MPI exchange.
Interface flow variables are packed to intermediate buffers on the device and then
copied to the host MPI send messages buffers. Halo data received to intermediate host
buffers, which are copied to device data arrays.

The execution of the kernels on the GPU allows to overlap communication and
computation. The inner cells are computed simultaneously with the halo update
operation, then the interface cells are computed using the updated halo. In this case,
host intermediate buffers are allocated in page-locked (or pinned) memory. Two
asynchronous CUDA streams are created on the device. First stream used as a queue
for halo update procedures execution. CFD kernels are placed to the second stream.
The algorithm for executing the RK stage on the GPU in overlap mode is shown in
Fig. 6.

Fig. 6. RK stage execution algorithm.
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4 Parallel Efficiency and Scalability

The study of the parallelization efficiency, the overlap mode and the heterogeneous
execution performance was carried out during numerical simulation of the supersonic
flow around a sphere at Mach number 2 and Reynolds number 300. The mesh adap-
tation algorithm and the numerical simulation results discussed in [13]. The compu-
tational mesh is refined at the detached shock wave position, near the isosurface with a
local Mach number (M ¼ 1) and near the recirculation region boundary (Fig. 7a).
Figure 7b illustrates the flow structure.

Coarse and fine adaptive hanging node meshes were used for testing (Table 1).
Both meshes contain cells of the first and second refinement levels.

The parallel program was run on a heterogeneous supercomputer K-100 with
asymmetric nodes. Two Intel Xeon X5670 CPUs and three NVIDIA 2050 GPUs are
available on one node to run the program.

a) adaptive mesh structure b) Mach number field

Fig. 7. Flow around a sphere.

Table 1. Computational meshes parameters.

Parameter Coarse mesh Fine mesh

Number of nodes 452288 3486628
Number of tetrahedral 224696 1588900
Number of hexahedrons 306713 2463616
Number of prisms 99622 881851
Number of pyramids 9741 54911
Total number of cells 640772 4989278
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4.1 MPI Parallelization and Overlap Mode

Figure 8 shows parallel efficiency graphs for a coarse mesh in the GPU mode (3 MPI
processes per node). Blue line - results of pure computations without MPI exchange.
The minimum parameter value (24 GPU and about 25000 mesh cells per device) is
87%. Here, the CFD kernels execution time increases due to domain decomposition
imbalance and duplication of calculations at halo cells. Explicit MPI exchanges (red
line) visibly increase the program execution time. For a group of 24 devices, com-
munications are comparable to the computation time. Parallel efficiency drops to 64%
and the speedup turns out to be 1.6 times lower than the expected value. In overlap
mode, MPI exchanges are successfully hidden behind computations. Parallel efficiency
(green line) differs by only 2–5% compared to the results for CFD kernels.

4.2 Heterogeneous Execution

To measure the efficiency of a heterogeneous mode, the values of absolute and relative
performance are used. The absolute performance Pmode

N on N nodes for specific mode
(CPU only, GPU only, heterogeneous CPU + GPU) is equal to the number of RK time
integration steps per second. The relative performance Rmode

N is calculated as

Rmode
N ¼ Pmode

N

PCPU
N þPGPU

N
: ð10Þ

In CPU only mode, each MPI process occupies 3 cores to run OpenMP threads (4 MPI
processes per supercomputer node). The configuration for running 6 processes per node
in a heterogeneous mode is shown in Fig. 9. Here, MPI processes and OpenMP threads
get strong affinity to CPU cores.

Figure 10 shows a graph of relative performance for a coarse mesh. The ratio of
values practically does not change for a different number of nodes. The relative hetero-
geneous performance is about 83%. The difference between RHET

N and RCPU
N þRGPU

N ¼
1 is partly due to the fact that 3 cores are used to control the execution of CFD kernels
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Fig. 8. Parallel efficiency. (Color figure online)
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on devices. In this case, the ideal value is RHET
N ¼ 0:75RCPU

N þRGPU
N � 0:91. Thus, the

real RHET
N differs from the theoretical maximum value by only 8%.

4.3 Parallel Program Scaling

The study of the program scaling was carried out for a fine 5 million cells mesh.
Figure 11 shows a speedup graph for heterogeneous parallelization (green line). For
comparison, there is a graph of ideal linear speedup (red dashed line). The performance
ratio of the CPU and the GPU has a fixed value of 1:1.6. The low current efficiency of
the CFD algorithm implementation for the GPU is explained by the use of the same
parallelism units.

Fig. 9. Program launch configuration.
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The speedup for 35 nodes (70 CPUs, 105 GPUs, 210 processes MPI group size) is
29.3 times, which corresponds to a parallel efficiency of 84%. The absolute perfor-
mance is PHET

N � 56 steps per second. That is, it takes 0:0179 s for one time integration
step or 0:0045 s for RK stage (include MPI exchange).

5 Conclusions

This paper describes a heterogeneous CFD algorithm for compressible flow simulations
on adaptive mixed meshes. This algorithm can be successfully used in computations
using static adaptation mesh methods, when the solution analysis and mesh refining
routines are not included in the main CFD code. The algorithm software implemen-
tation has high scalability and parallel efficiency. In the future, the CUDA CFD kernels
will be optimized as described in [14] and dynamic adaptation methods will be added.
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