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Abstract. Due to the rapid development of Artificial Neural Networks
(ANN) models, the number of hyperparameters constantly grows. With
such a number of parameters, it’s necessary to use automatic tools for
building or adapting new models for new problems. It leads to the expan-
sion of Neural Architecture Search (NAS) methods usage, which performs
hyperparameters optimisation in a vast space of model hyperparame-
ters, so-called hyperparameters tuning. Since modern NAS techniques are
widely used to optimise models in different areas or combine many mod-
els from previous experiences, it requires a lot of computational power
to perform specific hyperparameters optimisation routines. Despite the
highly parallel nature of many NAS methods, they still need a lot of com-
putational time to converge and reuse information from the generations
of previously synthesised models. Therefore it creates demands for par-
allel implementations to be available in different cluster configurations
and utilise as many nodes as possible with high scalability. However, sim-
ple approaches when the NAS solving is performed without considering
results from the previous launches lead to inefficient cluster utilisation.
In this article, we introduce a new approach of optimisation NAS pro-
cesses, limiting the search space to reduce the number of search param-
eters and dimensions of the search space, using information from the
previous NAS launches that allow decreasing demands of computational
power and improve cluster utilisation as well.

Keywords: Hyperparameters tuning · NNI · HPC · Neural
Architecture Search

1 Introduction

Recent studies demonstrate a significant increase of ANN’s hyperparameters
of models currently used in production. The number of BERT’s [4] parame-
ters exceeds 110M. It means that even if we use computing nodes with modern
Tesla GPU’s (V100/A100), it is still not enough for this amount of parame-
ters neither inference nor training. Nowadays, many researchers utilize already
pre-trained ANN models as a starting point, since it allows to decrease time to

c© Springer Nature Switzerland AG 2021
V. Voevodin and S. Sobolev (Eds.): RuSCDays 2021, CCIS 1510, pp. 352–364, 2021.
https://doi.org/10.1007/978-3-030-92864-3_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92864-3_27&domain=pdf
https://doi.org/10.1007/978-3-030-92864-3_27


“Mini-Benchmarking” Approach to Optimize Evolutionary Methods 353

production and many analytical experiments. But in the work [7] it was demon-
strated that new fully-synthesized architecture may beat existing well-known
analytically-created models for certain areas of tasks. In [3] authors mentioned
other approaches which allow them to increase speedup convergence of such
methods, but with the certain amounts of assumptions, that limits parallel effi-
ciency. It leads us to the question about Neural Architecture Search and, in
general, hyperparameters tuning. Such a task can be formulated performing
optimization in vast search space of myriads of parameters, but since ANNs is
not a simple graph with certain nodes, such specific of HPO optimization (that
resulting graph of optimization should be a valid ANN) should be taken into
consideration. It means that we require a particular set of large-scale optimiza-
tion problem with certain constraints: the NAS (Neural Architecture search)
problem and refining particular network topology problem. This search method-
ology and connecting nodes in graphs oblige us to use algorithms with prebuilt
constraints to limit search space [7]. But such generic approaches can utilize a
lot of computational power, although can demonstrate remarkable results [13].
In production, the range of optimizing models (during the iterative process of
refining) usually are not so broad, so it leads us to the question: How we can
use the information of the previously optimized generations to improve Neural
Architecture Search convergence and computation power utilization?

2 Neural Architecture Search Problems

In this article we mainly focus on two formulated neural architecture search
problems:

– refining existing topology by applying to new particular task,
– synthesizing new topology from scratch (Neural Architecture search).

Because of the increased resource utilization of modern DNNs, topology adap-
tation of neural networks has become a significant problem. In this case, the
process looks like the best model development for the particular task that can
be used to tune different sets of hyperparameters and then build a “distilled”
model that fits the resource limitations on the particular device. In this article,
we want to cover both steps of a process. The implementation of hyperparam-
eters tuning requires a lot of computational resources, and it’s significant to
provide a possibility to perform such tuning on HPC clusters.

Adaptation Problem. The adaptation problem is considered as refining the exist-
ing model minθL(θn), θn = X(θn−1, ...θn−k), where L – loss function, θ – hyper-
parameters set, θ0 – initial hyperparameters (initial model) that are used as
a core of method, X – the iterative process of new model building, based on
previous hyperparameters.

Neural Architecture Search Definition. In the neural architecture search problem
we don’t have the initial value of hyperparameters. It limits the capabilities of
methods that rely on the quality of the initial approximation. The formal process
can be described as follows: L(θn), θn = X(θn−1, ...θn−k), θ0 = 0.
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Distributed Hyperparameters Optimization. Since both problems that we regard
in this article are large-scale hyperparameters optimization problems that typi-
cally utilize a lot of computational resources. The usage of distributed technolo-
gies and HPC is essential to carry on such type of problems in a meaningful time.
Moreover, since CoDeepNEAT utilizes evolution-based techniques, it has a natu-
ral fit for parallel computations. With other methods, even which doesn’t imply
parallel implementation, benefits of distributed optimization can be obtained
by running different tuners at the same time. The system we’ve chosen is NNI
(Neural Network Intelligence) [6], because it provides a tunable interface that
allows easily integrate bindings to different HPC schedulers in rather broad clus-
ter configurations. Some notes about SLURM integration to NNI were presented
in [13].

3 Techniques for Tuning Hyperparameters

CoDeepNEAT. The CoDeepNEAT (CoEvolution DeepNEAT) [7] is a rather
popular NAS method based on utilizing ideas of evolution methods to the NAS
problems. In general, CoDeepNEAT employs the concept of cooperative evolu-
tion of modules and the blueprints and use the idea of representing and encoding
a group of layers as a subject for evolution, proposed in the DeepNEAT [7]. In
general, CoDeepNEAT operates two populations: the modules population that
encodes the set of layers or parts of the network (like LSTM cells, GRU cells,
etc.), and the population of blueprints, which describes how modules of each
should be connected to form a fully-functional network. Of course, blueprints
don’t encode the particular blocks, but the type-identification (evolution level)
of the block. So, the blueprint is a network graph where the vertices correspond
to modules and edges to connections between them. But due to the mutations
modules on each side of the edge may have different dimensions, CoDeepNEAT
handles it in a semi-automatic manner and allows the user to either use general
upsampling/downsampling strategies or provides custom once. During the fitness
step of the evolution, the ANN built from modules according to the particular
blueprint. Then it performs training on the provided dataset. Still, with a small
number of epochs, the fitness function’s value is distributed in the population of
modules and templates as an average among all networks containing this module
or constructed using this blueprint. Since evolution-based techniques are respec-
tively widely used for general optimization problems and have possibilities of
parallel implementations, the performance analysis of CoDeepNEAT implemen-
tation and its comparison to other NAS methods of different types were made
in [12]. It proves a high degree of parallelism and beneficial usage of NVLink
technologies when the large NAS-tuning tasks like data-labelling with LSTM,
building RNN blocks from scratch and impact of different types of interconnect-
ing GPU-GPU utilization multi-GPU clusters.

The CoDeepNEAT evolution scheme is demonstrated in Fig. 1. CoDeepNEAT
proves its convergence rate and applicability compared to its predecessors since
this method has more possibilities for mutations. The most negligible mutations
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Fig. 1. Evolution scheme of CoDeepNEAT [7]

among the population of templates or modules lead to a significant change in
final networks.

4 NAS Search Space Optimization

Rather different approaches can be used for optimizing the efficiency of evolu-
tionary algorithms, like using different types of mutations per each set, using
egalitism policies (transferring best items to the next generations). In generic
NAS trainers like CoDeepNEAT, one of the main points of the optimization is
the search space and its limitations (e.g. it’s not the best variant to use many
GRU parts before the feature extraction CNN parts even in reinforcement learn-
ing tasks). So one of the root causes is to use the information of the previous
tasks launches. Such optimizations part considered as the crucial part of the
system described in [13]. Since we’ve observed the difference in performance
between launches in adaptation mode and NAS mode, we’ve performed tests in
this article separately; however, we can’t reuse the observations that correspond
to the different problem kind (Adaptation or FullNAS).

4.1 “Mini-Benchmarking” Approach

The key idea of the “mini-benchmarking” approach is to create some divided
clusters of networks where some pre-optimised (either with MorphNET or with
CDN-tuned) ANN topologies, where the block constraints are obtained as the
blocks used in the l recent generations. The k different classes corresponding to
the other problem types are tuned with CDN/MoprhNET, and topologies are
stored in the off-line section. In the initial trial, where the model is optimised,
the corresponding class is picked with the Random Forest method. Classification
is performed by analysing the input model as a graph of blocks and particular
features. As the base of such benchmarks set, we decided to use as base two most
popular and up-to-date benchmarks in NAS: NAS-HPO-BENCH [15] and NAS-
BENCH-201 [14] and add its semi-class tasks from [13] like HRM prediction and
TinyImageNET.
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How to Apply Information in Fine-Tuning Adaptation. The key idea of our
method is to use a similar encoding as in DeepNEAT [7]. We encode the input
model as the graph with nodes corresponds to a block of layers with some pre-
defined max folding size. Then we use such a set of input layers and use the
similarity approach from CoDeepNEAT to compare blocks and the order of such
folded layers to the original encoding and provide such certain block information
to the later phases.

After determining the number of the closest classes, we can obtain the initial
distributions of both blueprints and modules. With such encoding, it’s possible to
use CoDeepNEAT decomposing procedure to set up both initial populations and
perform a co-evolution step from the closest first approximation. The limitations
of the possible modules can be defined as follows:

– if we peek class t we peek all l initial distributions as the first steps with the
initial model.

– All footprints from the last t have been picked from.
– If the l * generation size > current trialgenerationsize, the first selection

is performed in the bipartite tournament manner.

If the number of classes is much larger than the t, the possible search space can
be decreased on module steps up to 1 − Numclasses

t .

How to Apply Information in NAS. In the NAS tasks, where the user doesn’t
provide the particular input model, the user can peek at the mix of the already
presented classes to obtain a similar speedup as in fine-tuning adaptation.

Building the “Benchmarking” Databases. A lot of tools that provide different lev-
els of NAS benchmarking approaches have been established recently. Of course,
different tools and benchmarks have different purposes. In this paper, we are
taking into consideration only a few of them that have the following properties:

– Has general applicability and has capability of testing modern NAS methods
with modern ANN-based datasets.

– Has ability to reflects certain difference of hyperparameters tuning specific of
methods.

– Has wide acceptance in NAS community and have ability of automatic
integration.

To fit these criteria, we’ve picked two major benchmarking datasets: NAS-HPO-
BENCH [15] and NAS-BENCH-201 [14]. In NAS-HPO-BENCH authors pro-
posed an approach for building a small benchmarking suite that can be per-
formed in a relatively small amount of time. It consists of 4 suites (Protein,
Naval, Slice and Parkinson) and about 150 tasks correspondingly. However, this
suite only covers a limited amount of ANNs’ areas of applicability and mainly
focuses on the precision of hyperparameters optimization with limited discrete
areas of certain hyperparameters. The authors used the fANOVA method [16]
to analyze the importance of specific hyperparameters across the whole mod-
els in different parts of the benchmarks suite. After all, the two problems of
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this benchmark are narrow to the particular range of the tasks (medical image
recognition). Another approach is described in [14]. The authors provided a quite
different approach for building a dataset. They took only three novel tasks from
the image-recognition area: CIFAR-10, CIFAR-100, ImageNet-16-120. After all
considerations, we have decided to use both approaches. We have built our bench-
marking suite on top of the NAS-HPO-BENCH [15] with adding more info from
NAS-BENCH-201 [14] and custom tasks for RNNs, including LSTM/GRUs and
complex tasks as HRM data prediction.

Adding New Classes to the Benchmark DB. With our approach adding new
benchmarks requires running the new set of experiments and obtaining the slice
of the last l generations of certain tasks. Then new reclassification to get the new
classification to be performed. It means that the peeking classifier method should
be scalable for reclassification. However, since the number l and the number of
classes is usually small, like in NAS-HPO-BENCH (144 classes), it shouldn’t be
considered as a serious problem.

5 Automatic System Architecture

The brief architecture of the NAS system that supports execution of tuning
problems using HPC cluster was described in [13]. The following changes were
applied to support this new approach in our system of hyperparameters tuning:

1. The new entity that is used as storage for modules and corresponding classes
in each part of the “benchmarking suite”.

2. Classifier that obtains certain set of available modules for the trials.

So now, the NAS or adaptation can be run in two different modes: utilizing
the previous information from storage or producing new benchmarking data
for it. Before NAS, we run our classifier and then pick the limited set of the
available modules. So the classifier runs after the tuners and cluster configuration
choose but before the actual optimization problem starts. Post-processing is
unaffected for the tuners selection. Also, we supported additional workflow for
integrating such data for model-dependent post-tuners. Such integration was
described in [13].

6 Experiments

6.1 Experimental Setup and Configuration

Clusters Configuration. The following clusters and their configurations were used
for the experimental study of the proposed approach (Fig. 2).

– 4 × nodes of Polus cluster with 2 × IBM POWER8 processors with up to
160 threads, 256 GB RAM and 2 × Nvidia Tesla P100 on each node [9].

– 33 nodes of Lomonosov-2 cluster with Intel Xeon E5-2697 v3 2.60 GHz with
up to 28 threads, 64 GB RAM and Tesla K40s on each node [10].
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Fig. 2. Modules UML class diagram, that briefly describe system’s architecture with
Tuners [6]

Setting Up the Custom “Benchmarking DB” and It’s Configuration. We’ve
decided to build two sets of benchmarks to analyze scalability and further perfor-
mance improvements of suggested Mini-benchmarking for limiting search space
of HPO tuners. The first one is the modified versions of NAS-BENCH-HPO and
NAS-BENCH-201. In both cases, we’ve added three different problems to cover
RNNs, and semi CNN-RNN approaches with canonical solutions as well. As new
problems, we’ve added:

– HRM data prediction on UBFC-RPPG [13]
– Tiny ImageNET
– minified CoLa dataset (sampled 10%).

Two modified datasets were divided into the two groups of “benchmarks”:

– Small dataset, where the all resulted networks are CNN without recurrent
layers (Fashion-MNIST, Tiny ImageNET, and CIFAR-100, minified CoLa).

– Large dataset where hybrid structures of ANN provide some benefits to con-
vergence like: UBFC-RPPG, Protein, ImageNET-16-120, Parkinson.

Baseline Results. As baseline results we run only NAS problem on both large
and small groups. Accuracy on each is presented in Table 1. Speedup of NAS task
can be observed in Fig. 3. Of course, in some datasets (like CoLa and Protein,
ImageNet-16-120), the provided accuracy is far from perfect but comparable
to some simple implementations which can be analytically obtained like simple
approaches from [15]. For some others like UBFC-RPPG and MNIST-like task,
the provided accuracy is comparable to the well-known implementations [13].

The Parallel efficiency highly depends on the number of modules available
for NAS and tuning correspondingly, such effect was also shown in [13], and
it means the less number of different types of modules we use in problem is
the more benefits from the parallel implementation we can obtain. It means
we should either minimize extra-types of nodes for each problem with better
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Table 1. CoDeepNEAT accuracy on different parts of the composed benchmarking
data

Protein UBFC-RPPG Fashion-MNIST Tiny ImageNET CIFAR-100 Imagenet-16-120 CoLa

0.643 0.702 0.83 0.672 0.738 0.651 0.682

classification or decrease the difference between modules increasing the folding
factor for analysis.

Convergence and Speedup in Small and Large Groups of “Benchmarks”. For eval-
uation, we tried to analyze the difference between the convergence and speedup
of using the “benchmarking” approach in the different groups and among the
whole set of datasets to analyze which parts are more crucial or essential depen-
dencies or blocks variations among each type of the problems.

Folding Factor Analysis. To analyze benefits, we vary folding factor between 1 and
10, and performed tests on data in a small group. The impact of such variation can
be observed in Fig. 4. It’s shown that folding factor 3 is optimal in many cases for
the “small part” of our “benchmarking” data; increasing the folding factor to more
than 7 leads to loss of accuracy in many parts of benchmarks like UBFC-RPPG
and Protein. The importance of the folding factor is related to the particular clas-
sifier and how particularly thus encoding represents similarities for each node. For
CoDeepNEAT, it means we can utilize the same encoding that we use in modules
population [7] and such layout can be reformulated with the same folding factor
for a group of layers or even connected noes of the modules population or not.

Convergence Analysis. We analysed average accuracy and loss per generation in
NAS and HPO-tuning tasks. Graphs can be found in Fig. 5. In each of the exper-
iments, we also close two or more class tasks to measure how accurate the gen-
eralised method can found networks from the unknown tasks. Accuracy on this
validation dataset is presented in Fig. 6, except for Tiny ImageNET/ImageNET-
16-120 because of similarities in group encodings. So as we can see, in general,
CoDeepNEAT, even in such unknown tasks, can rely on the similarities that
he can observe in data. So if the tasks are pretty unknown (like UBFC-RPPG
or Protein), it can recreate carefully only partial networks with worse accuracy.
The average population accuracy among first 50 epochs is presented in Fig. 7.

Parallel Efficiency. Parallel experiments have been performed on 32 nodes of
the Lomonosov cluster for the Large dataset and on 4 nodes of Polus in Small
datasets. Graphs for parallel efficiency (the ratio between observed speedup and
the ideal one) after experimenting in both parts are presented in Fig. 8. Increas-
ing of parallel efficiency during the NAS in both configurations demonstrates
the how beneficial of decreasing search-space dimensions for large-scalable tasks
can be done with such approach and it means that it’s possible to reduce the
required computational power for NAS and cluster utilization if you already have
set of tasks that you’ve optimized before.
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Fig. 3. Parallel efficiency of CoDeepNEAT on “large” and “small” parts of “bench-
marking” data

Fig. 4. Impact of folding factor to the accuracy of resulting networks and speedup in
Adaptation and NAS
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Fig. 5. Accuracy and loss of NAS and adaptation problems

Fig. 6. Accuracy on validation in NAS (left) and adaptation parts



362 K. Khamitov and N. Popova

Fig. 7. Average accuracy of first 50 epochs in NAS and adaptation modes
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Fig. 8. Comparison of benefits on each speedup.

7 Conclusion

The approach of NAS methods optimization with the “mini-benchmarking” app-
roach was tested in distributed clusters environment and integrated to the Auto-
matic NAS-tuning system described in [13]. To analyze the approach, we built a
custom benchmarking dataset that incorporates existing data from NAS-HPO-
BENCH and NAS-BENCH-201. The boost of accuracy can be observed in both
modes of hyperparameters tuning in all problem scales of benchmarking data.
The amount of computational power reduced up to 7%. During NAS tasks, the
observable changes may have a various impact, including the improving average
accuracy and speedup on each part of the benchmarking dataset. The average
speedup among each part is about 5% in NAS tasks and about 3.5% in adap-
tation tasks. The accuracy boost in NAS tasks and Adaptation tasks can reach
even 10%, if the training problems that used for classifying complements each of
the data, also in general, it’s observed that in adaptation tasks, the difference in
accuracy boost from the classification is up to 1.05 more than in NAS problems.
It enables more efficient cluster utilization when similar NAS/adaptation tasks
are processed, that demonstrated in Fig. 8. Also, It seems possible that using
such an approach allows creating more sophisticated device-dependant tuners
using collected information about the last generation.
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