
Investigating Performance of the XAMG
Library for Solving Linear Systems with

Multiple Right-Hand Sides

Boris Krasnopolsky(B) and Alexey Medvedev

Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia
{krasnopolsky,a.medvedev}@imec.msu.ru

Abstract. The paper presents capabilities and implementation details
for the newly developed XAMG library for solving systems of lin-
ear algebraic equations with multiple right-hand sides. The underlying
code design principles and the basic data objects implemented in the
library are described. Several specific optimizations providing significant
speedup compared to alternative state of the art open-source libraries
are highlighted. A great attention is paid to the XAMG library thor-
ough performance investigation. The step-by-step evaluation, performed
for two compute systems, compares the single right-hand side calcula-
tions against hypre, the performance gain due to simultaneous solution
of system with multiple right-hand sides, the effect of mixed-precision
calculations, and the advantages of the hierarchical MPI+POSIX shared
memory hybrid programming model. The obtained results demonstrate
more than twofold speedup for the XAMG library against hypre for the
equal numerical method configurations. The solution of systems with
multiple right-hand sides provides 2–2.5 times speedup compared to mul-
tiple solutions of systems with a single right-hand side.

Keywords: Systems of linear algebraic equations · Iterative methods ·
Multiple right-hand sides

1 Introduction

The need for solving systems of linear algebraic equations (SLAEs) with multiple
right-hand sides (RHS) occurs in a variety of applications, including the struc-
tural analysis problems [7], uncertainty quantification [8], Brownian dynamics
simulations [15], quantum chromodynamics [5], turbulent flow simulations [9],
and others. The use of methods performing multiple solutions at once allows to
significantly improve the performance of the calculations compared to the mul-
tiple solutions with single RHS due to increasing the arithmetic intensity of the
corresponding methods [17]. However, the required functionality is not imple-
mented in most of the popular open-source libraries typically used for solving
large sparse SLAEs.

c© Springer Nature Switzerland AG 2021
V. Voevodin and S. Sobolev (Eds.): RuSCDays 2021, CCIS 1510, pp. 337–351, 2021.
https://doi.org/10.1007/978-3-030-92864-3_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92864-3_26&domain=pdf
http://orcid.org/0000-0003-0292-5958
http://orcid.org/0000-0002-9312-391X
https://doi.org/10.1007/978-3-030-92864-3_26


338 B. Krasnopolsky and A. Medvedev

The newly developed XAMG library [13,14] is among the few examples of
the codes capable for solving systems with multiple RHSs. The library provides a
set of Krylov subspace and algebraic multigrid iterative methods widely used to
solve the systems corresponding to the elliptic differential equations. The XAMG
library focuses on solution of series of systems of equations, thus reusing the hypre
library to construct the multigrid matrix hierarchy and providing an optimized
implementation for the “solve”-part of the methods only. The brief description
of the XAMG library and several usage examples are presented in [13]. The
current paper supplements [13], highlights some aspects of the XAMG library
design and provides the thorough performance evaluation results.

The rest of the paper is organized as follows. The capabilities of the XAMG
library are summarized in the first section. The second section presents some
basic design features of the library developed. The third section describes some
specific optimizations, implemented in the code. The fourth section presents the
detailed performance evaluation results. Finally, Conclusions section summarizes
the paper.

2 Capabilities of the XAMG Library

The XAMG library is a header-style template-based C++ code based on C++11
standard specification. The library implements a set of iterative methods typ-
ically used to solve large sparse systems of linear algebraic equations, corre-
sponding to the elliptic differential equations. These include the Krylov subspace
(both classical and modified formulations [6,12,16]), algebraic multigrid, Jacobi,
Gauss-Seidel, and Chebyshev polynomial methods. The library provides hierar-
chical three-level parallelization with the hybrid MPI+POSIX shared memory
parallel programming model (MPI+ShM).

The library design combining dynamic polymorphism and static template-
based polymorphism opens up several opportunities compared to the popular
open-source libraries like hypre or PETSc. Among the examples is the possi-
bility to easily combine multiple solvers operating in different precision. The
combination of this kind was used in [11] to construct the mixed-precision iter-
ative refinement algorithm. The algorithm combines two solvers, the inner one
operating with single precision, and the outer one operating with basic (double)
precision. The proposed combination allows to perform most of the calculations
with single precision while preserving the overall solution tolerance in double
precision providing calculation speedup by a factor of 1.5–1.7.

The combination of compile-time polymorphism of matrix objects with the
object-oriented style of inheritance also makes it possible to implement a sophis-
ticated approach to data compression for different matrix elements. The matrix
construction algorithms are able to detect the minimal necessary precision of
integer index types for each matrix block at runtime and choose the suitable
pre-compiled object template with optimal index data types. This results in a
significant reduction of memory transfers.

Declaring the number of RHSs as a template parameter allows for a simple
automated vectorization of main vector-vector and matrix-vector subroutines



Investigating Performance of the XAMG Library 339

with basic C++ idioms and directives. The flexibility of the library design also
introduces the capability to extend the set of matrix storage formats utilized in
the library. Different storage formats can also be combined in a single matrix
hierarchy. The ability to add accelerators support is also a code design feature.

3 Basic Design Features

3.1 Program Code Elements of XAMG Library

The current section provides a brief outline of the XAMG program code design
principles by describing the main classes and subroutines implemented in the
XAMG library. These include the vector and matrix data structures, “blas”- and
“blas2”-like sparse linear algebra subroutines, solver classes, and solver param-
eter classes.

Vector Class. XAMG::vector::vector class is a simple representation of the
vector type. The main integer or floating-point data type is not used in class
specialization and is hidden inside via a simple type erasure technique. The
vector may, in fact, represent NV vectors. The real number of vectors in this
structure is not a compile-time specialization but a runtime one.

Matrix Classes. XAMG::matrix::matrix is an aggregation class. It holds
a complex hierarchical structure of the decomposed matrix. As a result of
the decomposition, the set of matrix subblocks appears, containing the actual
matrix data. The matrix subblocks are implemented as classes inherited from an
abstract XAMG::matrix::backend interface. These inherited classes represent
the data structures specific to a concrete sparse matrix data storage format.
The XAMG library contains implementation for two basic data storage formats,
CSR and dense, and they are implemented as the XAMG::matrix::csr_matrix
and XAMG::matrix::dense_matrix classes. Other matrix storage formats can
be added as well. The XAMG::matrix::matrix class holds only references to the
abstract XAMG::matrix::backend interface, so other matrix storage formats can
be easily added. The matrix subblocks can then be stored in different matrix for-
mats, even within a single matrix scope.

The inherited matrix classes are instantiated with a floating-point type and
index types as template parameters at compile time. The runtime polymorphism
of basic matrix data types is required for a more flexible design allowing ad hoc
reduced-precision floating-point calculations and compression of indices features
implementation. The special creator function is implemented for this purpose. It
chooses a correct template-specialized constructor of a matrix object using a bit-
encoded type fingerprint combined at runtime depending on the concrete matrix
properties and decomposition. This creator function provides a runtime choice
between all possible combinations of template types in matrix specializations,
and it is implemented as an automatically generated if-else tree, which can be
re-generated at compile time.



340 B. Krasnopolsky and A. Medvedev

Basic Subroutines. Functions and procedures grouped in XAMG::blas and
XAMG::blas2 namespaces are designed to cover all necessary vector and matrix-
vector arithmetic operations used in the main workflow of the XAMG solvers
code. Most of the subroutines are specialized by a template parameter of the
data type (typically, the floating-point type). Additionally, the number of RHSs,
NV , is specified as an integer template parameter. This fact makes it possible for
a C++ compiler to vectorize loops in the “blas” and “blas2” subroutines. The
subroutines are designed to implement a loop iterating over RHS as the most
nested loop. Therefore, since this loop appears to be a constant-range loop after
the template instantiation, the compiler’s vectorization possibilities are quite
straightforward.

The matrix-vector subroutines in XAMG::blas2 namespace are specialized
by both the concrete (non-abstract) matrix class and the NV parameter. The
abstract matrix class has a subset of virtual functions which work as a direct
connection to the XAMG::blas2 subroutines. This design decision makes it pos-
sible to call the XAMG::blas2 subroutines polymorphically in runtime for any
concrete matrix object via an abstract interface. This adds a necessary general-
ization level to a solver program code.

A special proxy-class blas2_driver is used to implement the “blas2” calls
from an abstract matrix interface. This class adds a connection between the
NV compile-time parameter, representing the number of RHSs and the concrete
matrix type. This artificial connection is required because the matrix itself is
not supposed to be specialized with the number of RHSs at a compile-time. The
proxy-class blas2_driver object belongs to each matrix subblock and is created
once the first “blas2” operation is started. The necessity to hold and to create
these proxy-objects in runtime is a trade-off of this design.

Solver Classes. The XAMG solvers are inherited from an abstract
basic_solver_interface class. The two main virtual functions are present:
setup() and solve(). The solve() function encapsulates the specific solver
algorithm. The setup() is typically an empty function, besides the algebraic
multigrid solver implementation: for this solver the actions of constructing the
multigrid hierarchy are placed into this function. The current multigrid solver
implementation in XAMG uses the subroutines from the hypre library to accom-
plish the multigrid hierarchy construction.

Solver Parameters. A two-level parameter dictionary organizes and holds all
the solver parameters. For each solver role, which can be one of the: “solver”,
“preconditioner”, “pre smoother”, “post smoother” and “coarse grid solver”,
the key-value directory of parameters is held. The available parameters are
defined by a solver method. The key for a parameter is a string; the value type is
defined individually for each parameter as a floating-point, integer, or string type.
For any parameter which is not set explicitly, the appropriate default value is
set by the library. The XAMG::global_param_list class represents the top-level
dictionary, the XAMG::param_list is a key-value holder for each solver parame-
ters’ set. XAMG::global_param_list::set_default() functions must be always



Investigating Performance of the XAMG Library 341

called after the parameters’ set up to handle the default settings correctly and
to perform some parameters consistency checks.

MPI+ShM Parallel Programming Model. The hierarchical three-level
hybrid parallel programming model is used in vector and matrix data types repre-
sentation and in basic subroutines design. The hybrid programming model imple-
ments the specific data decomposition which reflects the typical hardware struc-
ture of modern HPC systems. The hierarchy levels include cluster node level,
NUMA node level within a cluster node scope, and CPU core level. Decomposi-
tion ensures better data locality on each structural level. Moreover, the POSIX
shared memory is used as a storage media for all intra-node decomposition levels,
which makes it possible to eliminate the message-passing parallel programming
paradigm usage (MPI) on these levels and switch to shared-memory parallel
programming paradigm in the subroutines design. This MPI+ShM parallel pro-
gramming model helps to reach better scalability outlook compared to other
sparse linear algebra libraries.

4 Code Optimizations

The XAMG library contains several specific optimizations that improve the per-
formance of the calculations compared to other libraries. These include reduced-
precision floating-point calculations, compression of indices in the matrix sub-
blocks, vector status flags indicating if the whole vector is identical to zero, and
others. These optimizations are discussed in detail in the current section.

4.1 Reduced-Precision Floating-Point Calculations

The use of mixed-precision calculations for preconditioning operations is a well-
known way to improve the overall performance of linear solvers [3]. The reduced-
precision preconditioner calculations do not affect the overall solution tolerance,
but may increase the number of iterations till convergence. In most practical
cases, however, the use of single-precision floating-point numbers allows to obtain
the guess values without any penalty in the overall number of iterations till con-
vergence, and, thus, can be considered as an option to speed up the calculations.

4.2 Compression of Indices

The multilevel data segmentation implemented in the XAMG library [13], leads
to a multiblock representation of the matrices. Typically each block, except the
diagonal one, contains only several rows and columns, and the indices range can
be represented by 2-byte or even 1-byte integer numbers only. The theoretical
estimates allow to predict the range of the potential speedup due to reducing the
amount of memory to store the matrix by 10–20%. The corresponding speedup
is expected in the calculations.



342 B. Krasnopolsky and A. Medvedev

4.3 Vector Status Flags

An optimization proposed in [10] assumes the introduction of an additional
boolean flag indicating if the whole vector is equal to zero or not. Simple check if
the vector is zero in matrix-vector operations eliminates some trivial algorithmic
steps and speeds up the calculations. The current implementation in the XAMG
library extends that idea and the corresponding checks for zero vectors are used
in all vector and matrix-vector operations.

4.4 Per Level Hierarchy Construction

The hypre library provides various coarsening and interpolation algorithms as
well as lots of methods tuning parameters. Most of these algorithms and param-
eters can be set the same for all levels of multigrid matrix hierarchy. In practice,
however, mixed combinations of coarsening and interpolation algorithms can
provide a faster convergence rate or lower multigrid hierarchy matrices com-
plexity. The optional per level matrix hierarchy construction implemented in
the XAMG library allows to build the matrices level by level, and set specific
algorithm parameters for every hierarchy level.

4.5 Vectorization of Basic Operations

Vectorization of the computations is an important factor in achieving the max-
imal performance for modern CPUs. The efficient use of long registers can pro-
vide fold calculations speedup for compute-bound applications. However, for
memory-bound applications, the real performance gain is much lower. More-
over, the sparse linear algebra applications typically suffer serious difficulties in
the efficient implementation of operations with sparse matrices, including SpMV,
due to the use of specific data storage formats with indirect elements indexing.

The generalized sparse matrix-vector multiplication is a much better candi-
date for taking the benefits of CPU vector instructions. Due to the element-wise
indexing of the RHS elements (m RHSs with n unknowns line up in a long vec-
tor of m ·n elements with the element-by-element ordering, i.e. m elements with
index 0, m elements with index 1, etc.), this type of operations can at least be
vectorized over RHSs. The main computational kernels in the XAMG library,
including the vector and matrix-vector operations, are instrumented with prag-
mas to maximize the vectorization effect. The list of pragmas used includes the
compiler-specific data alignment and data dependency hints.

5 Performance Evaluation

The detailed evaluation procedure presented below shows the step-by-step inves-
tigation of the efficiency of the XAMG library and the impact of implemented
optimization features on the overall code performance. The evaluation starts
with a single-node performance analysis. This session includes (i) the compar-
ison of execution times for identical numerical method configurations in the



Investigating Performance of the XAMG Library 343

XAMG and hypre, (ii) the performance gain for multiple RHS calculations, and
(iii) the comparison of the double-precision, mixed-precision and single-precision
calculations. The multi-node runs investigate (i) the XAMG library scalability
compared to hypre, (ii) analysis of changes in the strong scalability for various
numbers of RHSs, and (iii) the effect of data compression optimizations on the
calculation time reduction.

5.1 Test Application

The examples/ directory of the XAMG source code [14] contains a couple of
usage examples in the form of some small and ready to use C++ and C example
programs. A written in C example program can be used as a reference to the C
language API of the XAMG library. Additionally, a comprehensive integration
test application is provided, making it possible to easily test all the library fea-
tures and make some productivity evaluations. This test code is located in the
examples/test/ directory of the library source tree. This integration test appli-
cation is used to produce all evaluation results presented below. This integration
test code also features:

– an internal matrix generator for two specific Poisson equation problems;
– an interface to the graph reordering library used to construct an optimal data

decomposition;
– a command-line parser and YAML configuration file reader;
– some additional performance monitoring tools and profilers integration;
– a run-time debugger integration;
– a YAML output generator for a test result.

The bunch of test configurations, which are present in the
examples/test/yaml/ directory, can be used for testing purposes the way like
this:

mpirun -np <N> ./xamg_test -load cfg.yml -result output.yml

The input YAML file, which name is given in the “-load” option here, stores all
method configurations in a key-value form. A short overview of allowed solver
parameters can be found in [2]. The “-result” key is optional and sets up
the file name for the test application report output. For information on other
command-line options of the integration test application, one may consult the
“-help” option output.

5.2 Testing Methodology

The performance evaluation is performed for two groups of SLAEs. The first one
corresponds to a set of model SLAEs obtained as a result of spatial discretization
of the 3D Poisson equation

Δu = f



344 B. Krasnopolsky and A. Medvedev

with the 7-point stencil in a cubic domain with the regular grid; the grid size
varies from 503 till 3003. The second group of test matrices corresponds to SLAEs
performed in direct numerical simulation of turbulent flow in a channel with a
wall-mounted cube [9]. This group includes two matrices of 2.3 mln. and 9.7 mln.
unknowns with constant RHSs. The corresponding matrix generators are avail-
able with the integration test application, published in the XAMG source code
repository.

The single-node runs performed in the test sessions, are calculated with native
matrix ordering. The multi-node runs use graph partitioning (the PT-Scotch
graph partitioning library [4] to construct optimal data decomposition) to reduce
the amount and volume of inter-node communications.

Various numerical method configurations are evaluated during the tests; the
specific set of the methods is indicated in the corresponding subsection. In order
to avoid possible variations in the convergence rate affecting the number of
iterations till convergence, all the results presented below indicate the calculation
times per one iteration of the corresponding numerical method.

Comparison with the hypre library is performed for the most recent ver-
sion 2.20.0 available to date. The library is built with Intel MKL [1] and OpenMP
parallelization support.

The two compute systems, Lomonosov-2 and HPC4, are used for the perfor-
mance evaluation to demonstrate the potential of the developed XAMG library.
The first one consists of compute nodes with a single Intel Xeon Gold 6126 pro-
cessor and InfiniBand FDR interconnect; Intel compilers 2019 with Intel MPI
Library 2019 Update 9 are used to compile the code. The HPC4 system con-
sists of compute nodes with two Intel Xeon E5-2680v3 processors and InfiniBand
QDR interconnect, and GNU compilers 8.3.1 with OpenMPI 4.0.1 are used in
the tests. In all the cases all available physical CPU cores per node (12 or 24 cores
correspondingly) are utilized during the calculations.

5.3 Single-Node Performance Evaluation Results

Single RHS Results Comparison with hypre. The performance evaluation
starts with the comparison of single-node calculation times for the XAMG and
hypre libraries when solving SLAE with a single RHS. The set of test cases
includes three numerical method configurations and a full set of first group test
matrices. The numerical method configurations considered include the BiCGStab
method used as the main solver and the classical algebraic multigrid method with
V-cycle as the preconditioner. The method configurations differ in the choice of
pre- and post-smoothers. The three configurations explore three popular ones,
i.e. the Jacobi method, the hybrid symmetric Gauss-Seidel method, and the
Chebyshev iterative method. The full method configurations can be found in
the corresponding YAML configuration files stored in the project repository in
examples/test/yaml/single_node directory.

The obtained comparison results for pure MPI execution mode demonstrate
that the XAMG library in all the cases outperforms hypre library (Fig. 1).



Investigating Performance of the XAMG Library 345

The observed performance gain is about 1.2–1.4 except for the smallest test
matrix, 503. In that case, the XAMG library demonstrates much higher per-
formance gain, on average by a factor of 2.2 for Lomonosov-2 and by a factor
of 6.5–7.5 for HPC4. Such a significant difference can in part be related to the
implementation of the direct method used as a coarse grid SLAE solver. Because
the solver setup phase is expected to be calculated only once for multiple SLAE
solutions, XAMG multiplies the inverse matrix by the RHS instead of solving
small SLAEs with the dense matrix.

Fig. 1. Comparison of single iteration calculation times with the XAMG and hypre
libraries, and relative calculations speedup for the single node of Lomonosov-2 (left)
and HPC4 (right) supercomputers. Pure MPI execution mode; from top to bottom:
Gauss-Seidel smoother, Chebyshev smoother, Jacobi smoother.

Multiple RHSs Results. The next test series focuses on the investigation
of the performance gain due to the simultaneous solution of the system with
multiple RHSs. The theoretical estimates, based on memory traffic reduction,



346 B. Krasnopolsky and A. Medvedev

predict the potential speedup by a factor of 2–2.5 [9]. The tests, performed with
the SLAE from the first group with the matrix 1503, demonstrate the behavior
of the single iteration calculation time per one RHS as a function of the number
of RHSs. The tests are performed for the Gauss-Seidel smoother configuration.

The obtained calculation results show a clear tendency to reduce the execu-
tion times when increasing the number of RHSs up to 32 (Fig. 2). The point of
32 RHSs becomes the global minimum for both compute systems, and the further
increase of the number of RHSs leads to a slow performance gain degradation.
The speedup per RHS, defined as

Pm =
mT1

Tm
,

where m is the number of RHSs and Ti is the calculation time with i RHS vectors,
demonstrate the performance gain by a factor of 2.2–2.5. These values are in
good agreement with theoretical estimates. The further increase in the number
of RHSs leads to slow performance degradation. The role of further matrix traffic
reduction becomes insignificant compared to increasing role of the matrix and
vector cache sweeping effect when performing the SpMV multiplication.

Fig. 2. Single iteration calculation times per RHS for the single node of Lomonosov-
2 (left) and HPC4 (right) supercomputers. Cube test matrix 1503, Gauss-Seidel
smoother configuration, pure MPI execution mode.

Reduced-Precision Floating-Point Calculations. The third test series
focuses on the investigation of the potential of reduced-precision floating-
point calculations. The test series includes a comparison of double-precision
calculations, double-precision calculations with multigrid preconditioner per-
formed with single-precision, and single-precision calculations. All the scenar-
ios can be easily realized with the XAMG library due to template-based
library design. The test session uses Chebyshev smoother configuration and
the first group test matrix 2003. The use of reduced-precision for multigrid
solver can be specified in the YAML configuration file by adding the param-
eter “mg_reduced_precision: 1” in the “preconditioner_params” section.



Investigating Performance of the XAMG Library 347

The single iteration calculation times presented in Fig. 3 are in agreement
with the ones, presented above for the other method configuration and matrix
size: the monotone decrease of the calculation time per RHS can be achieved
up to 16–32 RHSs. The double-precision calculations, as expected, provide
the highest calculation times among the configurations considered. The mixed-
precision calculations provide speedup up to 5–10% (Fig. 4). Finally, the single-
precision calculations demonstrate the speedup by a factor of 1.6–2. While the
performance gain for the mixed-precision calculations remains almost constant,
the single to double-precision calculation speedup shows a stable increase. The
observed speedup exceeds 2 and this effect is related to the lower cache load
when using single-precision floating-point numbers.

Fig. 3. Single iteration calculation times per RHS for the single node of Lomonosov-
2 (left) and HPC4 (right) supercomputers with various floating-point number tolerance.
Cube test matrix 2003, Chebyshev smoother configuration, pure MPI execution mode.

Fig. 4. Relative calculation speedup due to the use of reduced-precision floating-point
data types. Results for the single node of Lomonosov-2 (left) and HPC4 (right) super-
computers. Cube test matrix 2003, Chebyshev smoother configuration, pure MPI exe-
cution mode.



348 B. Krasnopolsky and A. Medvedev

5.4 Multi-node Performance Evaluation Results

The multi-node performance is investigated for several test matrices and two
numerical method configurations. The tests performed include the comparison
of the XAMG library performance with hypre for the SLAEs with a single RHS
as well as scalability results for the XAMG library with a different number of
RHSs.

Single RHS Calculation Results. The first set of experiments is performed
on the HPC4 compute system with two test SLAEs corresponding to cubic com-
putational domain with 1503 and 2503 unknowns. The same method configura-
tion with Gauss-Seidel smoother, as in the previous experiments, is used. The
test series performed includes five different runs: the hypre library calculations
in pure MPI and hybrid MPI+OpenMP execution modes, the XAMG library
calculations with pure MPI and MPI+ShM execution modes, and the XAMG
library calculations in hybrid MPI+ShM mode with data compression optimiza-
tions (compression of indices and reduced-precision floating-point calculations
for multigrid hierarchy). The hybrid MPI+OpenMP and MPI+ShM modes are
executed in the “2 × 12” configuration with a single communicating MPI process
per each processor.

The obtained performance evaluation results are presented in Fig. 5. The
data is presented in terms of the relative speedup, which is defined as a ratio of
the single-node calculation time for the hypre library, executed in a pure MPI
mode, to the calculation time with the specific number of compute nodes and
execution mode:

Si
p =

Thypre,MPI
1

T i
p

.

Results, presented in Fig. 5, show a clear advantage of hybrid programming mod-
els, and much better scalability for both the XAMG and hypre libraries com-
pared to the pure MPI results. The XAMG library with MPI+ShM programming
model significantly outperforms the hypre library. Additionally, the use of data
compression allows to obtain an extra 10% calculations speedup.

The second set of experiments is performed on the Lomonosov-2 supercom-
puter. Here, the test matrices of the second group are used with the optimized
iterative method configuration (this method configuration was used in [9] when
modeling turbulent flows). The method also uses the preconditioned BiCGStab
method with algebraic multigrid preconditioner and Gauss-Seidel smoother, but
the parameters of the multigrid method are tuned to minimize the coarse level
matrices fill in while preserving the same iterations convergence rate. The corre-
sponding YAML configuration file is also available with XAMG source code in
examples/test/yaml/multi_node/ directory.

Results, presented in Fig. 6, reproduce the same behavior for the XAMG
library as above: the use of the compression techniques allow to speedup the
calculations. The impact of the hybrid model (executed in the “1 × 12” config-
uration), however, is lower than for the HPC4 system due to twice lower the



Investigating Performance of the XAMG Library 349

number of MPI processes per node, UMA architecture (each compute node con-
tains a single processor only), and faster interconnect installed. Surprisingly,
the hypre calculation times with pure MPI mode become lower than the hybrid
mode ones for the considered range of compute nodes: the 1.5 times speedup is
observed. Nonetheless, the XAMG library in hybrid execution mode outperforms
the hypre library results by a factor of 1.5–1.7.

Fig. 5. Relative calculation speedup for the XAMG and hypre libraries in various
execution modes. HPC4 supercomputer, cube test matrices with 1503 (left) and 2503

(right) unknowns.

Fig. 6. Relative calculation speedup for the XAMG and hypre libraries in various exe-
cution modes. Lomonosov-2 supercomputer, second group test matrices with 2.3 mln.
(left) and 9.7 mln. (right) unknowns.

6 Conclusions

The details of the XAMG library for solving systems of linear algebraic equations
with multiple right-hand sides are presented in the paper. The XAMG library
provides the implementation of a set of iterative methods typically used to solve
systems of linear algebraic equations derived from elliptic differential equations.
The paper highlights some fundamental library design aspects, including the
basic data structures and a couple of specific optimizations implemented in the
code.



350 B. Krasnopolsky and A. Medvedev

The detailed performance evaluation is presented for two different compute
systems with UMA and NUMA architecture. The XAMG library is compared
with hypre for single-node and multi-node runs. The obtained results show for
the single-node runs the speedup against hypre by a factor of 1.2–1.3, and it
increases to 2 for parallel runs performed. The potential of the XAMG library
for solving SLAEs with multiple RHSs is demonstrated by a series of calculations,
demonstrating the performance gain due to solving system with multiple RHSs
compared to multiple solutions of SLAEs with a single RHS. The corresponding
results demonstrate the speedup by a factor of 2.2–2.5.

Acknowledgements. The current work is supported by the Russian Science Foun-
dation Grant No. 18-71-10075. The research is carried out using the equipment of the
shared research facilities of HPC computing resources at Lomonosov Moscow State
University and computing resources of the federal collective usage center Complex for
Simulation and Data Processing for Mega-science Facilities at NRC “Kurchatov Insti-
tute”.

References

1. Intel Math Kernel Library (2020). https://software.intel.com/content/www/us/
en/develop/tools/math-kernel-library.html. Accessed 27 Dec 2020

2. XAMG: parameters of the numerical methods (2020). https://gitlab.com/xamg/
xamg/-/wikis/docs/XAMG params reference. Accessed 12 Apr 2021

3. Carson, E., Higham, N.: Accelerating the solution of linear systems by iterative
refinement in three precisions. SIAM J. Sci. Comput. 40, A817–A847 (2018).
https://doi.org/10.1137/17M1140819

4. Chevalier, C., Pellegrini, F.: PT-Scotch: a tool for efficient parallel graph ordering.
Parallel Comput. 34(6), 318–331 (2008). https://doi.org/10.1016/j.parco.2007.12.
001. Parallel Matrix Algorithms and Applications

5. Clark, M., Strelchenko, A., Vaquero, A., Wagner, M., Weinberg, E.: Pushing mem-
ory bandwidth limitations through efficient implementations of Block-Krylov space
solvers on GPUs. Comput. Phys. Commun. 233, 29–40 (2018). https://doi.org/10.
1016/j.cpc.2018.06.019

6. Cools, S., Vanroose, W.: The communication-hiding pipelined BiCGstab method
for the parallel solution of large unsymmetric linear systems. Parallel Comput. 65,
1–20 (2017). https://doi.org/10.1016/j.parco.2017.04.005

7. Feng, Y., Owen, D., Perić, D.: A block conjugate gradient method applied to
linear systems with multiple right-hand sides. Comput. Methods Appl. Mech. Eng.
127(1), 203–215 (1995). https://doi.org/10.1016/0045-7825(95)00832-2

8. Kalantzis, V., Malossi, A.C.I., Bekas, C., Curioni, A., Gallopoulos, E., Saad, Y.: A
scalable iterative dense linear system solver for multiple right-hand sides in data
analytics. Parallel Comput. 74, 136–153 (2018). https://doi.org/10.1016/j.parco.
2017.12.005

9. Krasnopolsky, B.: An approach for accelerating incompressible turbulent flow sim-
ulations based on simultaneous modelling of multiple ensembles. Comput. Phys.
Commun. 229, 8–19 (2018). https://doi.org/10.1016/j.cpc.2018.03.023

10. Krasnopolsky, B., Medvedev, A.: Acceleration of large scale OpenFOAM simula-
tions on distributed systems with multicore CPUs and GPUs. In: Parallel Comput-
ing: on the Road to Exascale. Advances in Parallel Computing, vol. 27, pp. 93–102
(2016). https://doi.org/10.3233/978-1-61499-621-7-93

https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library.html
https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library.html
https://gitlab.com/xamg/xamg/-/wikis/docs/XAMG_params_reference
https://gitlab.com/xamg/xamg/-/wikis/docs/XAMG_params_reference
https://doi.org/10.1137/17M1140819
https://doi.org/10.1016/j.parco.2007.12.001
https://doi.org/10.1016/j.parco.2007.12.001
https://doi.org/10.1016/j.cpc.2018.06.019
https://doi.org/10.1016/j.cpc.2018.06.019
https://doi.org/10.1016/j.parco.2017.04.005
https://doi.org/10.1016/0045-7825(95)00832-2
https://doi.org/10.1016/j.parco.2017.12.005
https://doi.org/10.1016/j.parco.2017.12.005
https://doi.org/10.1016/j.cpc.2018.03.023
https://doi.org/10.3233/978-1-61499-621-7-93


Investigating Performance of the XAMG Library 351

11. Krasnopolsky, B., Medvedev, A.: Evaluating performance of mixed precision linear
solvers with iterative refinement. Supercomput. Front. Innov. 8(3), 4–16 (2021)

12. Krasnopolsky, B.: The reordered BiCGStab method for distributed memory com-
puter systems. Procedia Comput. Sci. 1(1), 213–218 (2010). https://doi.org/10.
1016/j.procs.2010.04.024. ICCS 2010

13. Krasnopolsky, B., Medvedev, A.: XAMG: a library for solving linear systems with
multiple right-hand side vectors. SoftwareX 14, 100695 (2021). https://doi.org/10.
1016/j.softx.2021.100695

14. Krasnopolsky, B., Medvedev, A.: XAMG: source code repository (2021). https://
gitlab.com/xamg/xamg. Accessed 12 Apr 2021

15. Liu, X., Chow, E., Vaidyanathan, K., Smelyanskiy, M.: Improving the performance
of dynamical simulations via multiple right-hand sides. In: 2012 IEEE 26th Inter-
national Parallel and Distributed Processing Symposium, pp. 36–47, May 2012.
https://doi.org/10.1109/IPDPS.2012.14

16. van der Vorst, H.A.: BI-CGSTAB: a fast and smoothly converging variant of BI-
CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput.
13(2), 631–644 (1992). https://doi.org/10.1137/0913035

17. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009).
https://doi.org/10.1145/1498765.1498785

https://doi.org/10.1016/j.procs.2010.04.024
https://doi.org/10.1016/j.procs.2010.04.024
https://doi.org/10.1016/j.softx.2021.100695
https://doi.org/10.1016/j.softx.2021.100695
https://gitlab.com/xamg/xamg
https://gitlab.com/xamg/xamg
https://doi.org/10.1109/IPDPS.2012.14
https://doi.org/10.1137/0913035
https://doi.org/10.1145/1498765.1498785

	Investigating Performance of the XAMG Library for Solving Linear Systems with Multiple Right-Hand Sides
	1 Introduction
	2 Capabilities of the XAMG Library
	3 Basic Design Features
	3.1 Program Code Elements of XAMG Library

	4 Code Optimizations
	4.1 Reduced-Precision Floating-Point Calculations
	4.2 Compression of Indices
	4.3 Vector Status Flags
	4.4 Per Level Hierarchy Construction
	4.5 Vectorization of Basic Operations

	5 Performance Evaluation
	5.1 Test Application
	5.2 Testing Methodology
	5.3 Single-Node Performance Evaluation Results
	5.4 Multi-node Performance Evaluation Results

	6 Conclusions
	References




