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Abstract. The state-of-the-art techniques ofmachine learning for assessingmate-
rial consumption in the construction of prestressed concrete (PC) road bridges are
described and analyzed in this paper. Formodel training and evaluation, a database
of material consumptions and design features for 75 PC bridges is compiled. The
achieved accuracy of the model for estimating prestressed steel consumption per
m2 was 6.55%, calculated as the mean absolute percentage error. Based on the
proposed model, a MATLAB-based software with a graphical user interface was
developed to allow for the input of basic variables and the calculation of esti-
mated prestressing steel quantities. The use of such software to determine the
ideal amount of steel will, inmost cases, result in the construction of higher-quality
structures that require less maintenance.

Keywords: Material consumption · Bridges · Prestressed concrete bridges ·
Machine learning

1 Introduction

In general, using modern algorithms to estimate the ideal amount of steel in a bridge or
other RC structure will result in the construction of a higher-quality structures that will
require less long-term maintenance. Early resource planning and optimization gives a
better foundation for later maintenance that is easier and less expensive.

There are many examples of such algorithm used for bridges. Marcous et al. [1] used
a neural networkmodel tomodel optimal concrete volume and the weight of prestressing
steel for 22 prestressed reinforced concrete bridges over the Nile River in Egypt. The
result was an error size of 7.5% in terms of predicting the amount of concrete and 11.5%
in terms of predicting the amount of prestressing steel. Fragkakis et al. [2] used regression
analyses in modeling the consumption of steel and concrete for bridge foundations in
order to consider the costs in the conceptual phase of the project. Mučenski et al. [3]
used a neural network model to estimate the required amounts of reinforcement and
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concrete in multi-storey buildings based on data from 115 major projects of residential
buildings. They obtained the best results using the network trained byBroyden–Fletcher–
Goldfarb–Shanno algorithmwith an average error of 12.49%. Fragkakis et al. [4] defined
regression equations for estimating the consumption of concrete and steel per meter of
culvert, based on the database of 104 culverts on the Egnatia highway in Greece. They
tested the models using tenfold cross-validation and evaluated against MAPE criteria.
The result showed the accuracy of the estimate in terms of consumed concrete and
steel, which is 13.78% and 19.79%, respectively. Marineli et al. [5] created a model to
estimate thematerial consumption in bridge superstructure using amultilayer perceptron
neural network model based on the data from 68 bridges in Greece. The models were
evaluated via the correlation coefficient R. The construction costs and consumption of
steel and concrete in underpasses were analyzed by Antoniou et al. [6]. Their database
included data from 28 underpasses inGreece. The paper points out the average values per
m2 of material consumption and the actual costs of construction of underpass bridges.
Dimitriou et al. [7] analyzed amodel for estimating the consumption of steel and concrete
in the construction of road bridges using linear regression models and neural network
models, based on the data on 68 bridges in Greece. The value ofMAPE and R2 have been
used to assess model accuracy. In the prediction of concrete consumption only for the
bridge superstructure, the value of MAPE ranged from 11.48% to 16.12% depending
on the bridge span, while the values for R2 range from 0.979 to 0.995. In terms of
consumption of concrete and steel per column, the obtained values of MAPE and R2

were, respectively, 37% and 0.962 for concrete and 31% and 0.962 for steel.
In this paper, we will develop, examine, and verify a number of predictionmodels for

early estimation of prestressed steel consumption per m2, based on artificial intelligence
approaches. For the assessment model, a database of design attributes for 75 PC bridges
in Serbia is constructed. All models will be trained and tested using cross-validation
under the same conditions.

2 Methods

2.1 Multilayered Perceptron Artificial Neural Network (MLP-ANN)

Amultilayer perceptron is a forward signal-propagating neural network havingminimum
of three neurons layers: the input, the hidden, and the output. As shown in Fig. 1, every
neuron of one layer is connected to every neuron of the next layer.

The number of neurons in the hidden layer and the activation type have a major
impact on the network’s features. When MLP-ANN is applied as an approximator,
activation functions are usually chosen to be continuous and differentiable. A linear
activation function is most typically used in the output layer. If the case of sufficient
number of neurons in the hidden layer [8], an arbitrary multidimensional function can
be approximated for a given data set using the MLP-ANN model with a single hidden
layer whose neurons’ activation function is bipolar sigmoid while for the output layer
the activation function is linear.
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The number of neurons in the hidden layer is established through trial and error,
with certain guidelines taken into account. The following formulas [8–11] can be used
to estimate the maximum of the number of hidden layer neurons NH :

NH ≤ 2 × Ni + 1 (1)

NH ≤ Ns

Ni + 1
. (2)

where Ni is the number of inputs, and Ns is the number of instances used for training.
Less than two acquired values for the number of neurons are accepted utilizing these
formulas based on the obtained values for the number of neurons.

Fig. 1. Schematic presentation of a multilayer perceptron artificial neural network [8].

2.2 Regression Tree Ensembles

The binary tree depicted in Fig. 2 represents an example of a regression tree model, in
which the entire set of data is started at the top of the tree, and observations are divided on
each node based onwhether or not theymeet specified conditions in that node. Individual
regions (R1,R2,R3,R4,R5,R6,R7,R8) correspond to the tree’s end nodes or leaves.

Fig. 2. Examples of space segmentation (left) and 3D regression surface in the regression tree
(right) [11].
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The regression model assigns a constant value cm to each region based on the defined
input variables:

f̂ (X ) =
∑8

m=1
cmI{(X1,X2) ∈ Rm} (3)

where the constant cm represents the mean of the output variable for region Rm, and
I{(X1,X2) ∈ Rm} is an indicator function that has a value of one for exact statements
and zero for all other statements.

Assuming that space segmentation is performed inM domains R1,R2, . . . ,RM , the
output model with a constant value of cm for each region in this case has the following
form

f (x) =
∑M

m=1
cmI(x ∈ Rm). (4)

The optimal value ĉm is the mean value yi for the region Rm, as determined by the
criterion of minimizing the sum of the squares

∑
(yi − f (xi))

2:

ĉm = ave(yi|xi ∈ Rm). (5)

where ave is the mean value.
A Greedy algorithm [12, 13] is used to find the input space’s binary segmentation

point. When using this algorithm, only the best results from each step of the process are
considered, with no consideration for subsequent steps.

Let us consider the variable j on which the split will be conducted, as well as the
value or split point s, and define a pair of half-planes starting with the entire set of data:

R1(j, s) =
{
X |Xj < s

}
i R2(j, s) = {

X |Xj > s
}
. (6)

The variable j, as well as the value of the split point s, must be determined to meet the
following expression:

min
j,s

[
min
c1

∑
xi∈R1(j,s) (yi − c1)

2 + min
c2

∑
xi∈R2(j,s) (yi − c2)

2
]
· (7)

By using the mean y for the region R1 and the mean y for the region R2 as follows, the
value in square brackets is minimized:

ĉ1 = ave(yi|xi ∈ R1(j, s)) and ĉ2 = ave(yi|xi ∈ R2(j, s)). (8)

The split point can be determined by examining all the model’s input variables. The
operation continues with further splitting of the space until a specified stop criterion
is met after finding the optimal point (which corresponds to the smallest value of the
formula (7)). A similar approach is used for multidimensional input variables, with the
exception that it is a matter of space segmentation in so-called hyperboxes in that case.
There is a chance that the produced regression tree has very good performance on the
training set but poor generalization on the test data set if the technique for constructing
a regression tree model is followed.
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The bootstrap samplingmethod [14–16], i.e., repeated sampling for the same training
dataset, can solve the aforementioned difficulty. Each of these sets can be used to train a
regression tree on its own. The ensemble is made up of the trees that have been generated
in this manner.

All input variables are considered potential splits in the Treebager method, but just
a subset of the input variables is used for tree splitting in the Random Forest method. If
the prediction function for the b-th bootstrap training set is f̂ ∗b(x) at the point x, then an
ensemble model [17] is created by averaging all B models (Fig. 3), with the prediction
function specified by the expression:

f̂bag(x) = 1

B

∑B

b=1
f̂ ∗b(x). (9)

Fig. 3. Regression tree ensembles with Bootstrap aggregation-bagging [11].

The Boosting approach employs sequential training of models, with new regression
trees that are added increasing the preceding tree collection’s performance [17]. For
quadratic error function (Gradient Boosting method), each sub-sequent step (Fig. 4)
adds a new sub-model to the basic model that best guesses the residuals of the preceding
model. By applying an iterative approach to the addition of a model, a definite model is
defined. Such model is an ensemble of the models that were obtained in previous steps.

Fig. 4. Regression tree ensembles using gradient boosting [11].
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2.3 Support Vector Regression (SVR)

Consider the following training datasets: {(x1, y1), (x2, y2), . . . , (xl, yl)} ∈ Rn × R,
where xi ∈ R

n is the n-dimenzional vector expressing the inputs and yi are the responses.
The approximation function can be written as:

f (x) =
∑l

i=1

(
α∗
i − αi

)
K(xi, x) + b. (10)

The empirical risk function needs to be minimized. The problem of minimizing of the
empirical risk function can be solved by using the Vapnik’s linear loss function with
ε-insensitivity zone (Fig. 5), which is defined as follows [18, 19]:

|y − f (x,w)|ε =
{
0 if |y − f (x,w)| ≤ ε

|y − f (x,w)| − ε otherwise.
(11)

As a result, the problem can be simplified to minimization of the equation below:

R = 1

2
‖w‖2 + C

∑l

i=1
|yi − f (xi,w)|ε. (12)

By introducing slack variables ξ and ξ∗, which are shown in Fig. 5, minimization of R
is equivalent to the minimization the following:

Rw,ξ,ξ∗ = 1

2

[
‖w‖2 + C

(∑l

i=1
ξ +

∑l

i=1
ξ∗
)]

, (13)

To implement the model, the LIBSVM software [20, 21] was utilized within the
MATLAB program.

Fig. 5. Nonlinear SVR with the ε-insensitivity zone [11].

2.4 Gaussian Process Regression (GPR)

Limited collections of the random variables are characterized by a multivariate normal
distribution. In other words, a finite linear combination of random variables is normally
distributed in a Gaussian process. Gaussian process regression model is a probability
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distribution over alternative functions, which fit a set of observed points. Let us consider
the following nonlinear regression problem:

y = f (x) + ε, ε ∼ N
(
0, σ 2

)
. (14)

where f (·) : Rn → R is an unknown function that must be estimated, y is the target and
x are the input variables while ε is an additive noise that is normally distributed.

The Gaussian process-type regression [22] implies that f (·) has a Gaussian distribu-
tion with a mean function μ(·), and a covariance function k(·, ·). Here, the observations
in an arbitrary data set y = {y1, ..., yn} may always be thought of as a sample from a
multivariate Gaussian distribution:

(y1, ..., yn)
T ∼ N (μ,K), (15)

whereμ = (μ(x1), ..., μ(xn))T is the mean vector, K is the n×n covariance matrix with
the (i, j) element defined as Kij = k

(
xi, xj

) + σ 2δij, and the Kronecker delta function
is represented by δij. Let x∗ be any of the test points and y∗ be the response. The joint
distribution (y1, ..., yn, y∗) is a (n + 1) variate normal distribution (y1, ..., yn, y∗) ∼
N
(
μ∗,

∑)
, where μ∗ = (μ(x1), ..., μ(xn), μ(x∗))T and covariance matrix:

∑
=

⎡

⎢⎢⎢⎢⎢⎣

K11 K12 · · · K1n K1∗
K21 K22 · · · K2n K2∗
· · · · · · · · · · · · · · ·
Kn1 Kn2 · · · Knn Kn∗
K∗1 K∗2 · · · K∗n K∗∗

⎤

⎥⎥⎥⎥⎥⎦
=
[

K K∗
K∗T K∗∗

]
(16)

where K∗ = (K(x∗, x1), . . . ,K(x∗, xn))T and K∗∗ = K(x∗, x∗).
Given y = (y1, ..., yn)T , the conditional distribution of y∗ is N

(
ŷ∗

, σ̂
∗2) with

ŷ∗ = μ
(
x∗)+ K∗TK−1(y − μ) (17)

σ̂
∗2 = K∗∗ + σ 2 − K∗TK−1K∗. (18)

Using the automatic relevance determination (ARD), hyperparameters may be utilized
to define the inputs that are more relevant than the others. Let us consider the squared
exponential covariance function and variable length scale parameters used for every
input (ARD SE):

k
(
xp, xq

) = v2exp

⎡

⎣−1

2

∑n

i=1

(
xip − xiq

ri

)2
⎤

⎦ (19)

where ri is the covariance function’s length scale along input dimension i. The input is
reduced if ri is very large [10, 17].

The maximum likelihood technique can be used to estimate the noise variance σ 2

and the hyperparameters of covariance functions. The training data’s log-likelihood is
given by:

L
(
v, r1, ..., rn, σ

2
)

= −1

2
log det K − 1

2
yTK−1y − n

2
log 2π. (20)
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3 Dataset

Theproposedmaterial consumptionmethods are basedon the creationof a data collection
that comprises project and contract documentation for prestressed concrete bridges built
in Serbia’s Corridor X (Fig. 6) [10]. On the eastern and southern branches of Corridor X,
the bridge data set comprises complete data on 75 PC bridges (prefabricated or cast on
site). The choice of input variables is critical in predicting material consumption in the
construction of PC bridges because the bridge design is often influenced by a number
of variables.

Fig. 6. Eastern and southern legs of Corridor X in Serbia [10].

To estimate the amount of prestressed steel, the following factors were used as
independent variables in the model: x1 – maximum individual bridge span, x2 – average
span, x3 – total bridge span, x4 – bridge width (Table 1).

Table 1. Mean, minimum and maximum values of variables in the model used to estimate the

prestressed steel consumption per m2 of the bridge superstructure

Variable Average value Minimum value Maximum value

Max. individual bridge span [m] 31.58 18.00 49.00

Average bridge span [m] 30.74 17.60 44.91

Total bridge span [m] 161.33 21.20 628.74

Bridge width [m] 12.81 8.40 17.80

Based on project documents, the dependent variable is y - mass in kg of prestressed
steel per m2 [23] of the bridge superstructure. The properties of prestressing steel ropes
are listed in the Table 2.
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4 Evaluation and Performance Measures

To assess the model quality, the following errors were analyzed: RMSE (root mean
square, MAE (mean absolute), R (Pearson’s Linear Correlation Coefficient), andMAPE
(mean absolute percentage). The RMSE, described by Eq. (21), is a measure of the
model’s overall accuracy, and is given in the same units as the modeled quantity:

RMSE =
√

1

N

∑N

k=1
(dk − ok)

2 (21)

where dk is the actual value (the target value), ok is the modeled output (forecast), and
N is the number of the used training samples.

Table 2. Geometrical and mechanical rope characteristics [23].

Abbreviated
name

Class Nominal values Guaranteed values Maximum
relaxation
at a force
of 0.7 Fpk
after
1000 h
[2.5%]

Diameter
Ø [mm]

Tensile
strength
[N/mm2]
fpk

Elastic
modulus
[kN/mm2]
E

Section
area
[mm2]
Apk

Characteristic
breaking
force [kN]
Fpk

Characteristic
0.1%
proof-stress
of
prestressing
steel [kN]
Fp0.1k

Y1770S7 A 15.2 1770 195 140 248 213 2.5

Y1860S7 B 15.2 1860 140 260 224

Y1770S7 A 16.0 1770 150 265 228

Y1860S7 B 16.0 1860 150 279 240

The MAE is also a measure of the model’s absolute accuracy. It is used to estimate
the model’s mean absolute error as follows:

MAE = 1

N

∑N

k=1
|dk − ok | (22)

The R coefficient, defined by expression (23), is a relative criterion for the evaluation of
the model’s accuracy:

R =
√[∑N

k=1

∣∣∣(dk − d)(ok − o)
∣∣∣
]2

×
[∑N

k=1

∣∣∣∣
(
dk − d

)2
(ok − o)2

∣∣∣∣

]−1

(23)

where o is the predicted mean that is obtained by the related model, while d is the mean
target value.

The MAPE criterion, which is defined by the Eq. (24), is a measure of the relative
accuracy of the model prediction.

MAPE = 100

N

∑N

k=1

∣∣∣∣
dk − ok

dk

∣∣∣∣ (24)
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The model cross-validation approach is used in the analysis. The approach was chosen
because it lowers the bias associated with random data partition into training and training
models, which should, in theory, have the same statistical features. The ten-fold cross-
validation procedure, for example, must be performed by dividing the data set randomly
into ten disjoint sections of the same size (10 folds) [24].

5 Results and Discussion

Because it is a regression problem, the output layer neurons number is one in the MLP
model, which has an architecture with the same number of input layer neurons as pre-
dictors, i.e., with four input layer neurons. For the hidden layer, the number of neurons
was determined experimentally by observing the upper value obtained using Eqs. (1)
and (2). The Levenberg-Marquardt algorithm [25] was employed to train theMLP-ANN
that had one hidden layer. The maximum epochs number of 1000, the minimum gra-
dient magnitude of 10−5, or the mean square error of 0 were used to determine when
the training should be stopped. Prior to training, the normalization of the input data was
done in the range [−1, 1].

In this situation, network architectures with up to 8 neurons in the hidden layer must
be examined. In terms of accuracy criteria, two similar models can be seen (Fig. 7).
According to the RMSE and R criterion, the model with three neurons within the hidden
layer is superior, while the model with four neurons within the hidden layer is better in
terms of MAE and MAPE (Table 4).

The parameters of the model were adjusted using the cross-validation procedure for
developing a model for estimating the amount of prestressed steel utilizing ensembles of
regression trees, and in order to attain appropriate predictive performance. The following
methods were used to generate the model:

• Bagging method (TreeBagger),
• Random Forests (RF) method,
• Boosted Trees method.

Alternative values of adjustable model parameters were analyzed when using the
TreeBagger (TB) approach, as follows:

• The number of the generated trees, B. The maximum number of generated trees is
limited to 500. The number of created trees is set to 100 by default in the MATLAB
software that is used to apply the Bagging method. The method of bootstrap aggrega-
tion was employed to construct trees, in which samples of the same size as the original
samples were formed, i.e., a total of 75 samples were formed throughout each iteration
to generate a tree model.

• Within the tree, the min leaf size, i.e., the minimum number of samples that are
assigned to the leaf. Values ranging from one to ten samples were evaluated, with a
step of one per tree leaf. When using the Bagging method in MATLAB, the default
setting takes 5 samples per tree leaf for regression problems. Within this study, a
somewhat greater range for the number of data per tree leaf was explored, as well as
the impact of the number of data on the model’s generalization.
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The RF method randomly selects a subset of input variables that are split in a tree.
Different values of adaptive model parameters were analyzed when this method was
implemented, as follows:

• The number of variables in the tree that are split. According to L. Breiman’s paper
Random Forests [26], the subsetm of the variables subjected to the splitting should be
approximately

√
(p) or p/3 predictors, depending onwhether the task is a classification

or regression problem. The number of input variables or predictors in this study is
4, therefore when the second regression criterion is used, the subset of variables on
which splits can be is 1 or 2. In this study, a slightly broader range of models is
examined (Fig. 8), namely models with two, three, and eventually four variables as
a subset of the variables subjected to the splitting. The TB method is obtained after
analyzing the splitting with all four variables.

• Within the tree, the min leaf size, i.e., the minimum number of samples that are
assigned to the leaf. We considered the values from 1 to 10 samples (Fig. 8) with
the step of 1 per tree leaf. When using the RF method in MATLAB, the default
configuration is to take 5 samples per tree for regression issues. In this study, it is
analyzed a slightly greater range for the number of data per tree leaf.

Fig. 7. Performance measures compared using MLP-ANNs with varying number of neurons
within the hidden layer: a) the RMSE and MAE criteria, b) the R and MAPE criteria.
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The parameters of the TB and RF procedures were defined using the grid-search
method. The impact of the number of splitting variables and the minimal number of data
for terminal leaf were investigated. The ideal model (Fig. 8) was found to be the RF
model, in which two input variables are separated and the number of the data per leaf is
kept to a minimum of one.

Fig. 8. Comparison of performance measures for tree-based ensemble methods a) RMSE, b)
MAE, c) R, d) MAPE.

In both the Boosting and other methods, the cross-validation procedure was utilized
to identify the parameters of the best model. The model parameters for the Boosting
Trees approach are as follows:

• The number of generated trees, B. When using the Boosting approach, there is a risk
of model overtraining if too many trees are formed. Since the number of the analyzed
models in this research is large, the number of trees (base models) in the ensemble is
limited to 100.

• Reduction parameter λ (learning rate). The λ parameter defines the model’s training
speed. Although the usual values are 0.01 and 0.001, we analyzed several values:
0.001; 0.01; 0.1; 0.5; 0.75, and 1.0.

• The number of splits in a tree, d. The values of the number of splits with an exponential
increase were analyzed. Tree models were created with a number of splits limited to
20 = 1, 21, 22, 23, 24, 25, 26 = 64.



336 M. Kovačević and B. Bulajić

Figure 9 shows the influence of the adopted parameters on the model’s accuracy, i.e.,
the influence of the maximum number of splits and reduction parameters on the model’s
accuracy in terms of the MSE value obtained by cross-validation. The boundary cases
are modeled with maximum number of splits equal to 64. The optimal model with the
lowest MSE value for the evaluated ensemble of 100 base models is shown in Fig. 9 and
is represented by a yellow line.

The following parameter values were determined for the optimal model: a total of
100 trees, learning rate of 0.1, and a number of splits limited to 8.

The use of various SVM kernel functions is examined in this study to discover the
optimal one. SVR models using RBF, linear, and sigmoid kernels were investigated.
Before training and testing the model, all input data were transformed into the range (0,
1) via normalization. For all kernels, the best model was found using the grid search
technique (C = 0.6208, ε = 0.0642 for the linear kernel; C = 1.2263, ε = 0.0302, γ

= 7.9800 for the RBF kernel; C = 243.9853, ε = 0.0656, γ = 0.0028 for the sigmoid
kernel).

A comparison examination of several SVR models reveals that the models have
different accuracy for different kernel functions. According to several criteria, models
with the linear and sigmoid kernels exhibit equivalent accuracy. Considering all criteria
functions, the SVR model with the RBF kernel has significantly highest accuracy.

The application of several covariance functions was investigated when analyzing the
consumption of prestressed steel per m2 of superstructure using GPR. The data used in
modeling are standardized. The so-called Z-score standardization [17] procedure was
performed on each column. Models with a constant base function were analyzed. The
parameter values are defined by maximization of the log marginal probability.

Table 3 shows the model’s parameters for different covariance functions. Table 4
shows the parameters of the model with ARD covariance functions. Table 5 shows the
results of different machine learning models.

Fig. 9. Dependence of the MSE value on the reduction parameter λ and the number of trees (base
models) used in the Boosted Trees method when the maximum number of splits is limited to 8.
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Table 3. The GPR model covariance functions parameters

GP model covariance function Covariance function parameters

Exponential k
((
xi, xj|�

)) = σ 2
f exp

[
− 1

2
r

σ 2
l

]

σl = 5.4002 σf = 9.9766

Squared exponential k
((
xi, xj|�

)) = σ 2
f exp

[
− 1

2

(
xi−xj

)T(xi−xj
)

σ 2
l

]

σl = 2.4565 σf = 10.7092

Matern 3/2 k
((
xi, xj|�

)) = σ 2
f

(
1 +

√
3r

σl

)
exp

[
−

√
3r

σl

]

σl = 5.1291 σf = 13.3442

Matern 5/2 k
((
xi, xj|�

)) = σ 2
f

(
1 +

√
5r

σl
+ 5r2

3σ 2
l

)
exp

[
−

√
5r

σl

]

σl = 3.6042 σf = 11.8095

Rational quadratic k
((
xi, xj|�

)) = σ 2
f

(
1 + r2

2aσ 2
l

)−α

σl = 2.6978 a = 2.8872 σf = 11.3713

where r =
√(

xi − xj
)T(xi − xj

)
.

In amodel, the relevance of specific predictors or variables can be seen utilizingARD
covariance (Automatic Relevance Determination) functions. Higher ARD covariance
function parameter values indicate less significance of the variable to which they refer.
Models using an ARD covariance function have higher accuracy than models with only
one length scale parameter, as shown by the values of the criteria (Table 5).

The study of the length scale parameters values may be used to see the significance
of individual variables (Fig. 10) for the model with the highest accuracy. This means
that our analysis will be performed on a model with an ARD exponential covariance
function.

The variable x1, which indicates the maximum individual span in the model with
ARD exponential function, has the largest value (the value of the variable from the aspect
of the analyzed model is inversely proportional to the length scale parameter) when the
values of the length scale parameters are examined. This can be explained by the fact
that bridges are usually made up of similar individual spans with little variation, so
the variable x2, which represents the mean value of the spans, implicitly contains some
information about the maximum span with little variation, and this information is hence
included in the model.
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Table 4. The GPR ARD model covariance functions parameters.

Parameters of covariance function

σ1 σ2 σ3 σ4

ARD exponential:

k
((
xi, xj|�

)) = σ 2
f exp(−r); σF = 7.9176; r =

√
d∑

m=1

(
xim−xjm

)2

σ 2
m

327822.2661 0.4200 8.4734 170.7902

ARD squared exponential:

k
((
xi, xj|�

)) = σ 2
f exp

[
− 1

2

d∑
m=1

(
xim−xjm

)2

σ 2
m

]
; σf = 8.4546

3,3532 0,8216 2,8218 11,5585

ARD matern 3/2:

k
((
xi, xj|�

)) = σ 2
f

(
1 + √

3r
)
exp

[
−√

3r
]
; σf = 5.7735

0,5812 0,9767 71499.7664 0,1014

ARD matern 5/2:

k
((
xi, xj|�

)) = σ 2
f

(
1 + √

5r + 5r2
3

)
exp

[
−√

5r
]
; σf = 7.1089

1,8478 0,3117 4243.2352 4,8180

ARD rational quadratic:

k
((
xi, xj|�

)) = σ 2
f

(
1 + 1

2α

d∑
m=1

(
xim−xjm

)2

σ 2
m

)−α

; α = 0.1673; σf = 8.8932

1,6509 0,3324 7441.4850 5.2814

where r =
√
∑d

m=1

(
xim−xjm

)2

σ 2
m

.

Table 5. Results of different machine learning models

Model RMSE MAE R MAPE/100

NN 4-3-1 3.0089 2.4901 0.8089 0.1556

NN 4-4-1 3.2766 2.4510 0.7352 0.1433

TreeBagger 2.4138 1.5349 0.8736 0.1433

Random forest 2.1705 1.5326 0.8849 0.0969

Boosted trees 2.3822 1.6650 0.8896 0.1025

SVR-Lin. kernel 3.2536 2.5971 0.7906 0.1498

SVR-RBF kernel 2.4980 1.8839 0.8762 0.1234

(continued)
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Table 5. (continued)

Model RMSE MAE R MAPE/100

SVR-Sig. kernel 3.2484 2.5866 0.7890 0.1490

Exponential 2.6536 1.4834 0.8565 0.0912

ARD-exponential 2.3800 1.3302 0.8870 0.0815

Squared exponential 2.8456 2.0747 0.8396 0.1293

ARD-Sq. exponential 2.4239 1.7913 0.8822 0.1099

Matern 3/2 3.6520 2.2463 0.7113 0.1331

ARD-matern 3/2 3.0418 1.9661 0.8087 0.1254

Matern 5/2 3.1981 2.2096 0.7851 0.1327

ARD-matern 5/2 3.1297 1.9085 0.7937 0.1147

Rational quadratic 2.9855 2.0910 0.8180 0.1289

ARD rational quadratic 2.6568 1.7374 0.8565 0.1069

The length of the bridge, x3, is variable with a larger value of the length scale
parameter or less relevance in comparison to the variable x2, which can be explained
by the fact that the output variable reflects prestressed steel consumption expressed in
m2. The significance of the variable x3 would be great if the output variable was, for
example, the total amount of prestressed steel. For the variable x4, i.e., the influence of
bridge width, a similar explanation can be given. Steel consumption per m2 of bridge
superstructure is between 12.5 and 22 kg/m2 in most investigated bridges, which is
consistent with the approximate values stated in the literature [27]. Figure 11 depicts
the modeled values in respect to the model’s target values. Figure 12 shows a regression
plot of the modeled and target values in the optimal model. The model that uses the

Fig. 10. Length scale parameter values for models with ARD exponential covariance function
for prestressed steel consumption models.
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most relevant variables is considered further in the analysis. In some circumstances, a
model with the same or superior accuracy can be obtained by employing a narrowed set
of variables.

Fig. 11. The GPR ARD Exponential model – target and modeled values.

Fig. 12. The GPR ARD Exponential model – the target and modeled values’ regression plot.

Three more models were investigated further:

a. Variables 2, 3, and 4 are included in the model.
b. Variables 2 and 3 are included in the model.
c. Only variable 2 is included in the model.

Table 6 compares alternative sets of input variables to the model of prestressed steel
consumption perm2 of bridge superstructure. In the table, a binary value (0 or 1) indicates
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that a variable is used in the model. By analyzing Table 5, it can be seen that by reducing
the number of input variables in a particular scenario, the model can be simplified while
also improving its accuracy. In the case of estimating prestressed steel consumption per
m2 in Model 2, improved values for the accuracy criteria RMSE, MAE, MAPE, and
R were obtained by eliminating variables x1 and x4 from a total of four studied input
variables. The values of RMSE and MAE indicate that the model is accurate, with the
value of RMSE being significantly higher than the value of MAE, indicating slightly
lower accuracy in predicting extreme values of steel consumption. The R and MAPE
values also imply that the model is accurate enough.

Table 6. Comparative analysis of themodel of prestressed steel consumption per m2 of the bridge
superstructure with alternative sets of input variables

Model x1 x2 x3 x4 RMSE MAE R MAPE

1 0 1 1 1 2.8232 1.3881 0.8368 8.2593

2 0 1 1 0 2.1676 1.0993 0.9096 6.5537

3 0 1 0 0 3.0318 1.7853 0.8088 10.0922

4 1 1 1 1 2.3800 1.3302 0.8870 8.1541

6 Conclusions

In order to decide whether or not to begin construction of the PC bridge, an early
techno-economic analysis must be conducted during the preparatory phase of the invest-
ment project, which must also contain the planned resources. The early planning and
optimization of the resources provides a better basis for later easier and less-costly
maintenance.

A number of prediction models for early estimation of prestressed steel consumption
per m2 were developed, examined, and verified in this paper, based on artificial intelli-
gence approaches. A database of design characteristics for 75 PC bridges was created
for the assessment model. Cross-validation was used to train and test all models under
same conditions.

Individual neural network models were used, and the results were unsatisfactory in
terms of accuracy across all criteria. Hence, the employment of regression tree ensembles
was proposed. The Bagging, Random Forests, and Boosting methods were investigated.
For each of the approaches, hyperparameters are defined, as well as a procedure for
optimizing them.

A comparison of multiple SVR models revealed that, depending on the kernel func-
tion, the models have varying accuracy for alternative criteria. The procedure for param-
eter optimization has been established. The grid search procedure produced an optimal
answer by optimizing parameters through a rough and detailed search. In terms of all
criterion functions, themodel with RBF kernel function showedmuch superior accuracy.
The results indicate that the RBF kernel would be our recommendation for solving this
and similar regression problems.
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The application of the Gaussian process to the problem of forecasting prestressing
steel consumption is also discussed. The usage of various covariance functions or kernel
functions is examined in this context. ARD covariance functions, which apply different
length scale parameters to input variables, have proved to be superior to covariance func-
tions with a single distance parameter. The results show that using the ARD exponential
covariance function is the optimum solution for the problem.

An accuracy ofRMSE= 2.1676was achieved using theARDexponential covariance
function, together with MAE = 1.0993, R = 0.9096, and MAPE = 6.55%, which is the
best result in terms of accuracy of all analyzed models. The application of the ARD
covariance function allows the relevance of individual input variables to be considered.
The model’s achieved accuracy can be considered satisfactory.

Based on the suggestedmodel, aMATLAB-based softwarewas createdwith a graph-
ical user interface for the input of basic variables, from which estimated prestressing
steel quantities can be derived. The use of such software for the estimation the optimal
amount of steel will in a general case lead to the construction of higher-quality structures
that will require less maintenance on a long-term basis.
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