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Abstract This chapter introduces the concepts of observability and observer for
linear systems, as well as the concept of slidingmode. It is demonstrated how to build
an observer for a linear dynamical system with unknown inputs. The determination
of the observer’s gain in order to ensure convergence leads to the solution of an LMI
issue (bilinear matrix inequalities). The technique based on a change of variables
is used to resolve these LMI restrictions, allowing the matrices characterizing the
observer to be determined.

1 Introduction

The complete or partial knowledge of the state of the considered system is an impor-
tant requirement in the fields of control, diagnosis and monitoring of systems. This
requirement is difficult to satisfy in most cases. This is due, on the one hand, to
the fact that the state variables do not always have a physical meaning and their
direct measurement is impossible to achieve. On the other hand, the sensors needed
to measure the state variables are unavailable or of insufficient accuracy. Moreover,
from an economic point of view, it is desirable to install a minimum of sensors in
order to reduce the costs of instrumentation and maintenance.

The measurements made at the output of the system do not give complete infor-
mation on the internal states of this system. It is therefore essential to reconstruct the
unmeasured state variables. The idea used for several years, is the replacement of
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hardware sensors by software sensors or by state observers, which allow to recon-
struct the internal information (states, unknown inputs) of the system from the system
model, the known inputs and the measured outputs.

A physical system is often subject to disturbances, such as measurement noise,
measurement uncertainties, system faults and external disturbances. These noises
have an adverse effect on the normal behavior of the process, and their estimation
can be used to design a control system capable of minimizing these effects. These
disturbances are called unknown inputs when they appear as additional inputs to the
process, and their presence can make the estimation of system states difficult.

Several works have been devoted to the synthesis of observers for linear systems
with unknown inputs [1–7] The first results on linear state estimation date back to the
1970’s. They can be grouped into two categories. The first category assumes a priori
knowledge of information about these non-measurable inputs; in particular, Johnson
[1] proposes a polynomial approach and Meditch [8] suggests to approximate the
unknown inputs by the response of a known dynamical system. The second category
proceeds either by estimating the unknown input [7] or by its complete elimination
from the system equations [9].

Reduced order observers have been considered by several authors during the
last years [10, 11]. However, Yang and Wilde [10] demonstrated that the full order
unknown input observer can have a faster convergence speed than the reduced order
observer.

The use of observers with unknown inputs for fault diagnosis and process moni-
toring systems has also attracted much attention [9, 11, 12]. In this chapter, we
present some basic notions of observability and observers as well as some methods
for reconstructing the states and unknown input of linear systems in the presence of
unknown input.

2 Observability

In the literature, it is shown that an observer exists if and only if the state realization of
the system in question is observable. Indeed, the observability of a system expresses
the possibility of reconstructing the state from the sole knowledge of the input and
output signals.

3 Observability of Linear Systems

The observability criteria of a linear system are described in many references [13,
14]. Let us consider the continuous linear time-invariant dynamical system:
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{
ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
(1)

where t ≥ 0; x(t) ∈ R
n; u(t) ∈ R

m ; y(t) ∈ R
p, are the state vector, the input and

the output of the system (1), respectively. A, B, C are the matrices of the system of
appropriate dimensions, and the initial conditions are defined byx(t0) = x0: Let us
recall some definitions and results on observability.

Definition 1 (Borne [14]) The system (1) is said to be observable if there exists a
time t f ≥ t0 such that the knowledge of the input u(t) and the output y(t) on the
interval t ∈[

t0t f
]
is sufficient to determine the initial condition x0 in a unique way.

For linear systems, the information produced at the output is the superposition of
that generated by the input and that generated by the initial condition. If we assume
the free regime (u = 0) then we can adopt the following definition.

Definition 2 (Borne [14]) The system (1) is observable if and only if, in the free
regime (u(t) = 0; ∀t≥ t0), the observation of a uniformly zero output y(t) t ∈ [

t0 t f
]

is possible only for an initial state x(t0) zero.

Remarks 1 When all state variables are observable, then the system is said to be
completely observable, otherwise it is said to be partially observable.

The observability condition is a necessary and sufficient condition to be able to
estimate the state of the system from the information collected on the inputs and
outputs. Note that the knowledge of x0 and the state model of the system is sufficient
to reconstruct the state x(t) at any time t ≥ t0. The observability property of a linear
time invariant system is a structural property and depends only on the matrices A
and C of the model. The most used criterion to check this property is the Kalman
rank criterion formulated by the observability matrix below.

The system described by (1) is completely observable if and only if rank (O) = n
such that (O) is the observability matrix defined by:

O =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C

CA

.

.

.

CAn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)
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4 Synthesis of Observers for Linear Systems Without
Unknown Inputs

A solution to the problem of state estimation of linear systems has been proposed by
Luenberger [15] in the deterministic framework and by Kalman [16] in the stochastic
framework. Sliding mode observers are also used for linear systems even if they are
themselves of nonlinear structure.

4.1 Luenberger Observer

The theory of observation is essentially based on pole placement techniques. Let x
∧
(t)

be the estimate of x(t); and y
∧
(t) the estimate of y(t).

The observer proposed by Luenberger for the system (1) is described by the
following equations:

{ ˙̂x(t) = Ax̂(t) + Bu(t) + K (y(t) − ŷ(t)); x̂(t0) = x̂0
ŷ(t) = Cx̂(t)

(3)

where K∈Rn∗p is the gain of the observer (3). The block diagram of the observer is
illustrated by Fig. 1. The estimation error is given by

e(t) = x(t) − x̂(t)

The dynamics of this error is governed by the following equation:

ė(t) = (A − KC)e(t); e(t0) = e0 = x0 − x̂0

If the gain is chosen such that the matrix (A−KC) is Hurwitz, i.e., has strictly
negative eigenvalues, then the estimation error converges asymptotically to zero.
As the observer replaces the sensor, we must therefore ensure a convergence of the
estimation error to zero very fast, at least ten times faster than the dynamics of the
system. If the couple (A, C) is observable, then it is possible to determine the gain
K to have a convergence dynamics chosen beforehand. The problem of constructing
the observer is therefore equivalent to solving a pole placement problem. We choose
a desired dynamics (choice of the desired eigenvalues of (A−KC), then using the
pole placement principle, we determine the gain K.
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Fig. 1 Block diagram of the Luenberger observer

4.2 Sliding Mode Observer

Techniques based on the theory of variable structures, ensuring the robustness of the
controller or the observer, are currently the subject of several research works. One of
the best known classes of robust observers is that of sliding mode observers [17–20].

In [18], the principle of sliding mode observers consists in constraining, by means
of discontinuous functions, the dynamics of a system of order n to converge to a
sliding surface S of dimension (n−p) (p being the dimension of the measurement
vector y). The attractiveness of this surface is ensured by conditions called sliding
conditions. If these conditions are satisfied, the system converges towards the sliding
surface and evolves there according to a dynamics of order (n-p). In the case of sliding
mode observers, the dynamics concerned are those of the observation errors e(t) =
x(t) − x̂(t). From their initial values e0, these errors converge to the equilibrium
values in two steps:

In the first stage, the trajectory of the observation errors evolves towards the sliding
surface on which the errors between the observer output and the real system output
(the measurements) ey = y − ŷ are zero. This stage is called the attainment mode.

In the second phase, the trajectory of the observation errors slides on the sliding
surface with imposed dynamics so as to cancel all observation errors. This last mode
is called sliding mode.

Consider a nonlinear state system of order n:
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{
ẋ(t) = f (x(t), u(t))

y(t) = Cx(t)
(4)

where: x(t) ∈ R
n; u(t) ∈ R

m; y(t) ∈ R
p, f represent the state vector, the input

or control vector, the output vector, the sufficiently differentiable vector field,
respectively.

The different steps for the synthesis of the sliding mode observer are identified
in [17]. The first order sliding mode observer allowing to reconstruct the estimated
state vector x̂(t) is defined by the structure (5)

{ ˙̂x(t) = f (x̂(t), u(t)) + λsign(y − ŷ)

ŷ(t) = Cx̂(t)
(5)

where the input u is locally bounded and measurable.
Sign: Represents the usual sign function.
λ: is the observation gain matrix of dimension (n–p). The correction term used is

proportional to the discontinuous function sign applied to the output error.
For the estimated state to converge to the true state, the sliding mode observer

must satisfy two conditions:
Thefirst condition concerns themodeof reaching andguarantees the attractiveness

of the sliding surface S = 0 of dimension p.
The sliding surface is attractive if the Lyapunov function V (t) = ST S satisfies

the condition: V̇ (t) ≺ 0.
The second one concerns the sliding mode, during this step, the corrective gain

matrix acts so as to satisfy the following invariance condition:

{
S = 0

Ṡ = 0

During this mode, the dynamics of the system are reduced and the system of order
n becomes an equivalent system of order (n–p). These criteria allow the synthesis of
the sliding mode observer and determine its operation.

Phenomenon of reluctance

In practice, the discontinuous term on the right-hand side of the equation can excite
unmodelled high-frequency dynamics that lead to the appearance of what is known
as “reticence” or “chattering”, which is characterized by strong oscillations around
the surface.
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5 Synthesis of Observers for Linear Systems
with Unknown Inputs

5.1 Utkin Sliding Mode Observer with Unknown Input

Let us consider the continuous linear system time invariant with delay on the
measurement {

ẋ(t) = Ax(t) + Bu(t) + Rw(t)

y(t) = Cx(t)
(6)

x(t) ∈ R
n; u(t) ∈ R

m; y(t) ∈ R
p, w(t) ∈ R

q Are the state vectors, the vector of
known inputs, the vector of measurable outputs, the vector of unknown inputs of
the system (6), respectively. A∈ R

n∗n;B ∈ R
n∗m;C ∈ R

p∗n, R ∈ R
n∗q are the state

matrix, the matrix of known inputs, the influence matrix of unknown inputs and the
output matrix of the system (6), respectively. It is assumed that R is of full column
rank and the pair (A; C) is observable. The reconstruction of the state variables is
based on the measured outputs; a coordinate change can be performed to obtain the
regular form [21].

By respecting these conditions a non-singular transformation matrix allows to
rewrite respectively the output, state and control matrices in the new coordinates.

Ã = T1AT
−1
1 =

(
A11 A12

A21 A22

)
, B̃ = T1B =

[
B1

B2

]
, C̃ = CT−1

1 , R̃ = T1R =
[
R1

R2

]

où

T1 =
[
Q

C

]
[
x̃1(t)

y(t)

]
= T1x(t), x̃1(t) ∈ R

(n−p), R =
[
R1

R2

]

where Ip is the identity matrix of dimension p.
Q = [

0 In−p

]
the system (6) in the new coordinates is written as follows

{ ˙̃x1(t) = A11 x̃1(t) + A12y(t) + B1u(t) + R1w(t)

ẏ(t) = A21 x̃1(t) + A22y(t) + B2u(t) + R2w(t)
(7)

We note that CR = R2: so CR �= 0 and there exists the pseudo-inverse matrix
R+
2 of the matrix R2 such that R2R

+
2 = Im1 , m1 = rang(CR) = rang(R).

The following transformation is applied to the model given in (7)
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[
x1(t)

y(t)

]
=

[
In−p −R1R

+
2

0 Ip

][
x̃1(t)

y(t)

]

with

T2 =
[
In−p −R1R

+
2

0 Ip

]
, A = T2 ÃT

−1
2 =

[
A11 A12

A21 A22

]
, B = T2 B̃ =

[
B1

B2

]

C = C̃T−2
2 , R = T2 R̃ =

[
R1

R2

]

Where

R1 = 0

−R1R
+
2 is the pseudo-inverse of −R1R2 and x1(1) ∈ Rn−p.

The system (7) in the new coordinates is given by (8)

{ ˙̃x1(t) = A11x1(t) + A12y(t) + B1u(t)

ẏ(t) = A21x1(t) + A22y(t) + B2u(t) + R2w(t)
(8)

The pair (A11;A21) is observable because the pair (A; C) is observable [22], the
gain L is chosen such that the eigenvalues of the matrix A11 − L A21 are in the left
half plane of the complex plane.

5.2 Structure of the Utkin Sliding Mode Observer
with Unknown Input

The sliding mode observer structure considered for this system is:

{ ˙̂x1(t) = A11 x̂1(t) + A12 ŷ(t) + B1u(t) + Lv(t)

˙̂y(t) = A21 x̂1(t) + A22 ŷ(t) + B2u(t) + Iv(t)
(9)

where ŷ(t) and x̂1(t) are the estimates of y(t) and x1(t) respectively, L is the observer
gain and v(t) is the discontinuous function given by:

v(t) = Msign(ŷ(t) − y(t))

With M > 0. The state and output estimation errors

{
e1(t) = x̂1(t) − x1(t)

ey(t) = ŷ(t) − y(t)
(10)
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Subtracting (8) from (9), the dynamics of the estimation errors are written as
follows: {

ė1(t) = A11e1(t) + A12ey(t) + Lv(t)

ėy(t) = A21e1(t) + A22ey(t) − v(t) + R2w(t)
(11)

We perform the following change of variable

[
ẽ1(t)

ey

]
=

[
In−p −L
0 Ip

][
e1(t)

ey

]

The dynamics of the estimation errors will be written as follows:

{ ˙̃e1(t) = Ã11ẽ1(t) + Ã12ey(t) + LR2w(t)

ėy(t) = Ã21ẽ1(t) + Ã22ey(t) − v(t) + R2w(t)
(12)

ẽ1(t) = ẽ1(t) + Ley(t) and Ã11 = A11 − L A21.
Ã12 = A12 − L A22 + Ã11L and Ã22 = A22 − A21L .

Utkin [21] has shown using the theory of singular perturbations, for a large enough
gain M the sliding regime can be established on the error (12). So after a finite time
the error e(t) and its derivative will be zero and we have from Eq. (12).

˙̃e1(t) = Ã11e1(t)

The gain M is chosen such that Ã11 is stable and thus the system of Eqs. (12)
converges asymptotically to zero, and ẽ1(t) → 0 when t → ∞.

The equivalent control method is used to obtain the estimated unknown input. It
is assumed that the error of the system (12) is in the slip along ey = 0: thus ˙̃e1 = 0
and ˙̃ey = 0. The solution of the system of Eq. (12) for w(t) gives us the following
estimate of w(t):

ŵ ≈
(
(I + Ã21 Ã

−1
11 L̃)R̃2

)+
veq (13)

where veq is the equivalent command.
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6 Luenberger Observer with Unknown Input

In this section, we present the synthesis of large gain type observers for the class of
uniformly observable nonlinear systems to which we have added unknown inputs.
The proposed observers jointly estimate the entire state of the system as well as
all unknown inputs under sufficient conditions that will be given. Their synthesis
neither assumes nor adopts any mathematical model for the unknown inputs. We
simply assume that the first derivative with respect to time of each of the unknown
inputs is bounded.

Before presenting the class of nonlinear systems thatwill be the object of our study,
we propose to recall the necessary and sufficient conditions for the synthesis of an
observer with unknown inputs for linear systems. This will allow us to better under-
stand the sufficient conditions that we will adopt for the synthesis of the proposed
observers.

Note the necessary and sufficient conditions that will be recalled for linear systems
concern the synthesis of an observer allowing the estimation of states (via a full or
reduced order observer) without any knowledge about the unknown inputs. These
conditions can be relaxed if certain assumptions about these inputs, such as the
boundedness of their derivatives with respect to time, are adopted. We will come
back to this point later in this part.

• Reminders on observers with unknown input synthesis for linear systems:

We consider the following linear time invariant system:

∑ {
ẋ = Ax + Bu + Gv

y = Cx
(14)

where state x(t) ∈ R
n , known input u(t) ∈ R

μ, unknown input v(t) ∈ R
m , output

y ∈ R
p, A, B, G, and C are known constant matrices of appropriate dimensions, and

matrix G is assumed to be full rank in columns, i.e.

Rang(G) = m (15)

Without detracting from generality, we assume that the matrix C has the following
structure:

C = [
Ip 0 ... 0

]
(16)

In the same way, we will pose

G =
(
G1

G2

)
(17)
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where G1 ∈ R
p∗m and G2 ∈ R

(n−p)×m. Note that with this notation, we have

G1 = CG (18)

An observer with unknown inputs exists for this system if and only if the following
two rank conditions are satisfied: [3–5].

Rang(CG) = m (19)

Rang

(
s In − A G

C 0

)
= n + m, ,∀s ∈ C,�e(s) ≥ 0 (20)

We propose in the following to give some developments to show how these condi-
tions are obtained. These developments will be mainly used to bring some comple-
ments on the synthesis of the observer when the number of unknown inputs is equal
to the number of outputs.

The results we will present are described in [4] [3]. We will repeat them with
more details here in the case where the matrix C has the particular structure (but not
restrictive) (16).

The objective is to synthesize an observer that is written in the following form:

∑ {
ż = Nz + Ly + Du

x̂ = z − Ey
(21)

where the observer state z ∈ Rn , x
∧ ∈ R

n is the estimated state of the system x,
N ∈ R

n×n , L ∈ R
n×p, D ∈ R

n×μ, and E ∈ R
n×p are matrices that must be chosen

so that the observation error e = x
∧ − x converges asymptotically to 0.

To do this, let’s pose

P = In + EC (22)

The observation error is then written

e = x̂ − x

= z − Ey − x

= z − (In + EC)x

= z − Px

It follows that
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ė = ż − Pẋ

= Nz + Ly + Du − PAx − PBu − PGv

= N (e + Px) + LCx − PAx − (PB − D)u − PGv

= Ne + (N P − PA + LC)x − (PB − D)u − PGv

(23)

If the matrices N, L, D and E are chosen so that the following conditions are
satisfied

N is Hurwitz matrix (24)

PG = (In + EC)G = 0 (25)

D = PB = (In + EC)B (26)

LC − PA = −N P (27)

Then Eq. (23) becomes

ė = Ne (28)

And the observation error converges asymptotically to 0.
It is now necessary to study under which conditions the choice of matrices N, L

and E verifying (24), (25) and (27) is possible. Note that the matrix D is determined
from E by the relation (26).

Equation (27) can be rewritten as follows

0 = N P + LC − PA

= N (In + EC) + LC − PA ⇒
N = PA − LC − NEC

= PA − (L + NE)C

= PA − KC

(29)

K = L + NE (30)

With
If we replace N by its expression (29) in Eq. (30), we obtain

K = L + (PA − KC)E

Or in an equivalent way
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L = K − (PA − KC)E

= K (Ip + CE) − PAE
(31)

The dynamics of the observer (21) then becomes:

ż = (PA − KC)z + Ly + Du (32)

where thematrices P (or equivalently thematrix E), K, L andD are given byEqs. (25),
(30), (31) and (26). The problem of synthesizing the observer consists in finding a
matrix E satisfying (25) and a vector K so that the matrix PA–KC is a Hurwitz
matrix. This is a similar problem to that of the synthesis of classical observers. The
eigenvalues of the matrix PA–KC can be chosen arbitrarily if and only if the pair
(PA, C) is observable. Otherwise, a vector K such that the observation error (28)
converges asymptotically to 0, exists if and only if the pair (PA, C) is detectable.

We will now discuss the conditions under which the matrix E (or equivalently the
matrix P) exists.

Taking into account the particular structures considered for the C and G matrices
(Eqs. (16) and (17)), Eq. (25) becomes

EG1 = −G (33)

The solution of Eq. (33) depends on the rank of the matrix G1 = CG. Note that
since C is of rank plain with RankC = p and RankG = m, we have RankG1 =
min(p,m). There are two cases to consider:

1. Rank(G1) = p ≺ m
2. Rank(G1) = m ≤ p

Case 1: Rank(G1) = p ≺ m.
In this case, there is no solution for the matrix E. Indeed, the equality (33) cannot

take place since on the one hand we have:

Rank(EG1) ≤ Rank(G1) ≺ m

And on the other hand, we have

Rank(−G) = Rank(G) = m

Since two equal matrices have trivially the same rank, the equation in E (33) does
not admit any solution.

Case 2: Rank(G1) = m ≤ p.
The general solution of (33) is

E = −GG+
1 + Y (Ip − G1G

+
1 ) (34)
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where G+
1 is the left inverse of G1 and Y ∈ R

n×p is an arbitrary matrix. The matrix
P can then be expressed as follows:

P = In + EC

= In − GG+
1 C + Y (IP − GG+

1 )C

= In + YC − GG+
1 C − YCGG+

1 C

= In + YC − (In + YC)GG+
1 C

= (In + YC)(In − GG+
1 C)

(35)

Note that the maximum rank of the matrix,n − m, is obtained when the matrix
(In + YC) is non-singular [3].

We can now summarize the results obtained by the following theorem [3]:

Theorem 1 An observer of type (32) exists for the system (14) if and only if :

(1) Rank(CG) = Rank(G1) = m

(2) Rank

[
s In − PA

C

]
= n,∀s ∈ �e(s) ≥ 0

We now give a second theorem which shows that the results of Theorem (14)
correspond to the conditions generally adopted for the synthesis of the observer (32)
[3]:

Theorem 2 It is assumed that Rank(CG) = Rank(G1) = m and that Rank(P) =
n − m. Then the following four conditions are equivalent:

(1) The pair (PA,C) is detectable (observable);

(2) Rank

[
sP − PA

C

]
= n,∀s ∈ C; �e(s) ≥ 0, (∀s ∈ C);

(3) Rank

[
s In − PA

C

]
= n,∀s ∈ C; �e(s) ≥ 0;

4) Rank

[
s In − A G

C 0

]
= n + m,∀s ∈ C,�e(s) ≥ 0, (∀s ∈ C);

We will now take a closer look at the case m = p, i.e. when the number of outputs
is equal to the number of unknown inputs. This case has been discussed in [4] and
addressed in [3]. In this case we will give very simple conditions for the synthesis of
the observer and we will give more details on the choice of the poles of the observer,
when it exists.

Special case: Rank(G1) = m and p = m.
We will look directly for the matrices N, L and E satisfying the conditions (24),

(25) and (27).
Note that by multiplying each of the members of equality (27) on the right by G,

and taking into account equality (25), we obtain

LCG = PAG
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or equivalently, taking into account the structures of C and G,

LG1 = PAG (36)

Which then becomes the new equation fixing the choice of L.
As m = p and the matrix G1 is square and is invertible. From (33) and (36), we

obtain:

E = −GG−1
1

L = PAGG−1
1

It remains now to study the choice of the matrix N. By noticing that:

LC − PA = PAGG−1
1 C − PA

= PA(GG−1
1 C − In)

= −PA(EC + In)

(37)

= −PAP (38)

Equation (27) becomes

PAP = N P (39)

Given the particular structures of C and G, the matrix

P = In − GG−1
1 C

Has the following topology

P =
[
Im 0
0 In−m

]
−

[
Im 0

G2G
−1
1 0

]

=
[

0 0
−G2G

−1
1 In−m

]

Now considering the following partitions of A and N:

A =
[
A11 A12

A21 A22

]
; N =

[
N11 N12

N21 N22

]

where A11, N11 ∈ R
m×m , A12, N12 ∈ R

m×(n−m), A21, N21 ∈ R
(n−m)×m and

A22, N22 ∈ R
(n−m)×(n−m), we obtain
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PAP =
[

0 0
−(A22 − G2G

−1
1 A12)G2G

−1
1 A22 − G2G

−1
1 A12

]

N P =
[−N12G2G

−1
1 N12

−N22G2G
−1
1 N22

]

Equality (39) thus becomes imposes the following relations:

N12 = 0

N22 = A22 − G2G
−1
1 A12

(40)

We note that the matrix N12 and N22 are imposed by the relations (40). It follows
that a necessary condition for the matrix N to be Hurwitz is that the matrix A22 −
G2G

−1
1 A12 is also Hurwitz. Thus, observer synthesis is only possible if this matrix is

Hurwitz. In this case, only m poles of the observer can be chosen arbitrarily through
the choice of the matrix N11 (we can take N21 = 0). The other poles of the observer
are equal to the eigenvalues of the matrix A22 − G2G

−1
1 A12.

In what follows we will consider a class of nonlinear systems and we will propose
some sufficient conditions that allow either to simply estimate all the states of the
system without any knowledge about the unknown inputs, or to jointly estimate all
the states of the system and all the unknown inputs under the additional assumption
that the first derivative with respect to time of each unknown input is bounded.

• Class of non-linear systems considered:

Let be the following class of multi-input/multi-output nonlinear systems:

{
ẋ = f (u, x) + G(u, s)v

y = Cx = x1
(41)

where the state of the systemx ∈ R
n , x1 ∈ R

p is the output of the system, X ∈ R
n−p

is the part of x containing all unmeasured states; the known input u(t) ∈ U the
set of absolutely continuous functions ‘with bounded derivatives from R

+ into U a

compact ofRv;v ∈ R
m is the unknown input withm ≤ p; f (u, x) =

(
f 1(u, x)
fX (u, x)

)
∈

R
n, f 1(u, x) ∈ R

p, fX (u, x) ∈ R
n−pandG(u, s) =

(
G1(u, s)
GX (u, s)

)
is a matrix of

dimension n × m where G1(u, s)andGX (u, s) are respectively of dimension p ×
mand(n − p) × m matrices; s(t) is a known bounded signal whose first derivative
with respect to time is also bounded; finallyC = [

Ip 0p×(n−p)

]
.

• Observer synthesis procedure:

For observer synthesis, we adopt the following assumptions:
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(H1) The matrix G1(u, s(t)) is full rank in columns for all u ∈ U and for all
t ≥ 0.

(H2)The derivative with respect to time of the unknown input v(t) is a completely
unknown function,ε(t), which is uniformly bounded, i.e., sup

t≥0
‖ε(t)‖ ≤ βε where

βε > 0 is a strictly positive unknown real.

7 Conclusion

In this chapter, the notion of observability and observer for linear systems is
presented, also the notion of sliding mode is introduced. how to design an observer
for a linear dynamical system under the influence of unknown inputs is shown. The
determination of the gain of the observer to guarantee its convergence leads to the
resolution of a problem of the LMI type (bilinear matrix inequalities). The resolution
of these LMI constraints is performed by the method based on a change of variables
and which allows to determine the matrices describing the observer.
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