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Preface

The challenge of observer design comes naturally in a system approach whenever
there is a need for internal knowledge from exterior measurements (directly avail-
able). In general, we cannot use as many sensors as there are signals of interest
characterizing the system’s behavior (due to technological constraints, cost, etc.),
especially when such signals can be quite large in number and of various types: they
typically include constant signals (parameters), time-varying signals characterizing
the system (state variables), and random signals (disturbances). This information is
required for a variety of reasons, including modeling system management (control),
(identifying), and monitoring (fault detection). All of these goals are required to
work together to maintain a regulated system, as seen in Fig. 1 below. As a result,
the observer problem is central to a generic control theory problem. The goal of this
section will so be to provide a review of various potential techniques for the design
of observers (the linked issues of identification, control, and fault detection): In a
nutshell, an observer is information, reconstructive, closed-loop, model-based, and
measurement-based. In actuality, the model is in the form of state space, and we’ll
assume that state variables include all of the information that needs to be recon-
structed. In this case, we can either construct an explicit dynamic system whose state
approximates the true state of the nonlinear model, or we can easily fix the issues
through optimization. The first example will be discussed in this article, while the
second will be discussed in the following one. In terms of the model under consider-
ation, it might be either discrete time or continuous time, stochastic or deterministic,
infinite dimension or finite, “with singularities” or smooth. However, in order to
provide a reasonably consistent presentation, this review paper will confine itself to
continuous-time state-space descriptions, finite-dimensional, smooth and determin-
istic (even if some observer design concepts can be described in the literature for
several other cases).

In a nutshell, the goal is to focus on specific structures that are available to
observers (observer forms, as indicated in the diagram) and try to adapt the system
under investigation to such conditions. As a result, many foundations for observer
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Fig. 1 The observer serves as the control system’s heart.

design are presented initially, with two types of corrective gains: steady (input-
independent) and time-varying (possibly input-dependent). Then, either through link-
ages or transformations, techniques for hypothetical expansions of such designs to
more generic kinds of systems are given.

This book is composed of nine chapters:

• Chapter “Observers and Observability for Continuous-time Linear Systems”
The authors introduce the concepts of observability and observers for continuous-
time linear systems in this chapter. A general introduction is given first. The
authors next look at the observability issue for linear systems. The notion of
observability, as well as several observability criteria and certain instances, are
discussed. The concept of observers for linear systems is introduced in the
final section. The importance of both minimal-order and full-order observers is
stressed.

• Chapter “Generalities on Linear Matrix Inequalities and Observer Design
of Linear Systems”
TheLinearMatrix Inequalities (LMIs) are discussed in this chapter. Therewas also
discussion of the words “observability” and “observer.” A linear observer-based
control scheme employing the LMIs approach is also demonstrated.

• Chapter “Some Preliminaries on Unknown Input Observers, Discontinuous
Observers and Sliding Mode Observers Design”
In this chapter, some preliminaries on unknown input observers are given. Further-
more, the development of discontinuous observers and the methods in which they
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are designed are introduced. The final parts of the chapter are dedicated to the
sliding mode observer’s design.

• Chapter “Observers with Unknown Inputs of Linear Systems”
This chapter introduces the concepts of observability and observer for linear
systems, as well as the concept of sliding mode. It is demonstrated how to build an
observer for a linear dynamical systemwith unknown inputs. The determination of
the observer’s gain in order to ensure convergence leads to the solution of an LMI
issue (bilinear matrix inequalities). The technique based on a change of variables
is used to resolve these LMI restrictions, allowing the matrices characterizing the
observer to be determined.

• Chapter “Luenberger Observer of Impulsive Systems: A Survey”
In this chapter, some preliminaries on the state estimation of impulsive systems
have been conducted. This problem is rarely tackled for this class of systems
by researchers and they have designed an observer in the case of autonomous
impulsive linear systems, under the condition of strong observability, which does
not exist in this work.

• Chapter “Compensator Design Via the Separation Principle for a Class
of Nonlinear Uncertain Evolution Equations on a Hilbert Space”
Several researches have been conducted on the construction of compensators
for evolution equations in Hilbert spaces using the separation principle. A non-
linear time-varying Luenberger observer has been developed to estimate the
system states under uniformly Lipschitz continuous perturbation. The Luenberger
observer, which is based on a linear controller, has been shown to stabilize the
system. Partial differential equations are used to apply these findings.

• Chapter “Observer Desing for Non Linear Takagi-Sugeno Fuzzy Systems.
Application to Fault Tolerant Control.”
The problem of fuzzy fault tolerant control design for systems described by
Takagi-Sugeno models is studied in this chapter. The fault tolerant control design
requires the state and fault estimation. In order to make this estimation, a propor-
tional integral observer is conceived.Theproposedmethod shows that it is possible
to conceive simultaneously the proportional integral observer and the fuzzy fault
tolerant control. The cases of system affected by actuator and/or sensor faults are
considered. In order to conceive the fault tolerant control strategy for the case
of sensor faults, a mathematical transformation is used allowing conceiving an
augmented system, in which the initial sensor fault appears as an actuator fault.
The fault tolerant control and the proportional integral observer are both conceived
considering the augmented state. The noise effect on the state and fault estimation
is also minimized in this study, which provides some robustness properties to the
proposed control and observer. The fault tolerant control and proportional integral
observer design is formulated in terms of linear matrix inequalities (LMI).

• Chapter “On Observer Design of Systems Based on Renewable Energy”
This chapter compares two observation approaches, the adaptive observer and the
interconnected observer, as applied to a wind energy conversion system (WECS)-
based inductionmachine (IM). It has been discovered that the introduced intercon-
nected observer outperforms the standard adaptive one. In contrast, an adaptive
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interconnected observer is used in the second half of this chapter for both IM and
PMSM-based WECS. This type of observer is robust and adjusts for the impacts
of parametric changes.

• Chapter “On Observers-Based Controller Design for Induction Machine”
This chapter examines the stability of a controlled IMemploying both adaptive and
interconnected observers. The Lyapunov method is used to validate the recently
developed robust control. Under parametric changes, the global stability analysis
of the closed-loop system is demonstrated. Finally, simulation results for the
proposed observer-based controller architecture for the IM are shown.

Sfax, Tunisia
Sakaka, Saudi Arabia

Omar Naifar
Abdellatif Ben Makhlouf
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Observers and Observability
for Continuous-Time Linear Systems

Assaad Jmal, Jalloul Méliani, and Omar Naifar

Abstract In this chapter, the authors present the notions of observability and
observers for continuous-time linear systems. First, a general introduction is given.
Then, the authors investigate the observability problem for linear systems. The
observability definition, as well as different criteria of observability and some
examples are exposed. In the final part, the notion of observers for linear systems
is presented. Both cases of minimal-order observers and full-order observers are
highlighted.

1 Introduction

In the control theory, every dynamical system has its proper set of physical variables.
Within the state-space representation, these variables are actually the system states.
Note that, generally speaking, not always all the system states are accessible for
measurement, and even if they are measurable, there are some challenging aspects.
For example, in many situations, it’s not always possible to measure all the states
using sensors; in real situations, some states are simply impossible to access using
sensors. That’s said, there is a natural need to concept “software” sensors that would
reconstruct the system states. These software sensors are known as observers.

We can assign the following definition: An observer is a “software” “measur-
ing” technique that allows to reconstruct all the states of a given system, by having
a minimum of information about these states. This minimum of information is
obtained through a physical sensor. An observer therefore makes it possible to opti-
mize the number of sensors in an industrial application, hence his economic interest
in the industry. During the last decades much work, in the control theory, has been
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2 A. Jmal et al.

carried out on the design of observers. One crude way to observe the states of a
system is to digitally derive the information measured with sensors. Experience has
shown that this method has the disadvantage of giving erroneous results due to noise
amplification, caused by measurement imperfections.

However, the task of designing an observer is not systematic. There are some
sufficient conditions to beverified, in order to be able to practically design anobserver.
This problem is known as the observability problem.

From several decades, researchers have focused on solving the observability and
observer design problems for linear systems. Kalman-Bucy [1] introduced in 1961 a
solution for stochastic linear systems. Their result is currently known by the Kalman
filter. This filter also gives good results for deterministic systems. In 1964–1971,
Luenberger [2, 3] founded the observer theory which bears his name “Luenberger
Observers”. His idea is to add to the model put in the canonical companion form
(Brunovsky) a correction using the measurement provided by the sensors.

The rest of the chapter is organized as follows. In Sect. 2, the observability problem
for continuous-time linear systems is highlighted. The general observability defini-
tion is cited, two observability criteria are presented, and the relation betweenmodels
and observability is explained. Section 3 is dedicated to the observer design problem
for continuous-time linear systems. Some basic preliminaries are given, and both
cases of minimal-order observers and full-order observers are presented.

2 Observability for Continuous-Time Linear Systems

Let’s consider a linear system, described by the following equation, for any time
t ≥ t0 :

{
ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
(1)

where x(t), u(t) et y(t) are vectors of dimensions n,m et p, that represent respectively
the state, the input and the output vectors.

Definition 1 Observability

System (1) is said to be observable, if for an initial time t0, there exists a constant
instant t1 such that the knowledge of y(t0,t1) and u(t0,t1) allows to determine, in a
unique way, the state x(t0).

It is possible that this definition only holds for a part of the state vector, which
then constitute the observable states of the system. The definition of observability
makes no specific assumption about the nature of the input. This property can be
interpreted as the capacity of a system to reveal the history of its state vector through
that of its outputs. It depends in fact only on matrices A and C.
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2.1 Kalman Criterion

The observability matrix O of system (1) is defined as follows:

O = [
CCACA2 . . . . . .CA(n−1)

]T
(2)

The observability Kalman criterion says the following:
A necessary and sufficient condition for the observability of system (1) (i.e.: the

observability of the pair (A, C) is the regularity of the observability matrix O . That’s
said, the observability is guaranteed when the rank of the observability matrix is
maximum:

rank(O) = n (3)

Example 1 Consider the system:

⎧⎨
⎩
ẋ(t) =

(
0 1
1 3

)
x(t) +

(
0
1

)
u(t)

y(t) = (0 1 )x(t)

The observability matrix here is:

O = [CCA]T =
(
0 1
1 3

)

rank(O) = 2, which means that the system is observable.

Example 2 Consider the electronic system [4], represented by Fig. 1.

The chosen state vector is x = [x1x2] = [ vs1 vs2 − Vref ]. The input is the voltage
u = v1 and the output is the voltage y = vs . This choice, as well as the application of
the rules of electronics, by considering the operational power amplifiers as perfect,
lead to the following state representation:

⎧⎪⎨
⎪⎩
ẋ(t) =

(
− 1

R1C1
0

0 − 1
R2C2

)
x(t) +

(
1

R1C1

0

)
u(t)

y(t) = (−1 −1 )x(t)

(4)

The observability matrix here is:

O =
(

−1 −1
1

R1C1

1
R2C2

)
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Fig. 1 Electronic system scheme

rank(O) = 2, which means that this system is observable.
If someone considers vs1 as the output, then the output matrix becomes C = [10]

and the observability matrix becomes:

O =
(

1 0
− 1

R1C1
0

)

It’s clear that the rank of this matrix is 1, which means that such a system is no
longer observable.

2.2 Criterion for Jordan Forms: Matrix A Diagonalizable

In this case, there exists a passage matrix M which makes it possible to change the
basis and obtain the following realization:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ(t) =

⎛
⎜⎜⎜⎝

λ1 0 . . . 0
0
...

0

λ2
...

0

. . .

. . .

. . .

0
...

λn

⎞
⎟⎟⎟⎠x(t) +

⎛
⎜⎜⎜⎝

b1
b2
...

bn

⎞
⎟⎟⎟⎠u(t)

y(t) = ( c1 c2 . . . cn )x(t)
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In this case, we can assimilate the observability of a mode λi to that of component
xi of the associated state vector. Clearly, on this simple diagonal form, we note that
we can see an evolution of xi if the component ci is not zero.

We say that the mode λi is observable, if and only if ci �= 0.

Example 3 If we consider Example 2 of the previous sub-section (the electronic
circuit system), we can see from the state-space Eq. (4) that matrix A is diagonal and
the elements of the vector C are both non-zero. This means that, according to the
Jordan form criterion, the two modes are observable. This result is compatible with
the one obtained by the Kalman criterion.

2.3 Difference Between Models

Let’s consider the composite system given by Fig. 2, made up of three cascade
systems [5]:

A state-space representation is first established using x1, x2 and x3 as state
variables. The S3 subsystem clearly shows:

ẋ3 = −2x3 + u

Subsystem S2 gives:

ẋ2 = −2x2 + 3x2 + v = x2 − x3 + u

And subsystem S1 gives the following equation:

ẋ1 = −x1 + 2w = −x1 + 2x2 − 2x3 + 2u

These three differential equations allow, by expressing y = x1 + w in parallel, to
write the following state-space representation:

Fig. 2 Composite System
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⎧⎪⎪⎨
⎪⎪⎩
ẋ(t) =

⎛
⎝−1 2 −2

0 1 −1
0 0 −2

⎞
⎠x(t) +

⎛
⎝ 2
1
1

⎞
⎠u(t)

y(t) = (−1 1 −1 )x(t)

The system is therefore of order 3 and has for modes {−1; 1;−2}. The
observability matrix is:

O =
⎛
⎝−1 1 −1

1 −1 3
−1 1 7

⎞
⎠

The rank of this matrix is 2, which means that such a system has 1 non-observable
mode. Indeed, the rank deficiency provides information on the number of non-
observable modes. To know this non-observable mode, we can diagonalize the above
state-space equation. We use the following passage matrix:

V =
⎛
⎝ 1 1 4
0 1 1
0 0 3

⎞
⎠

One possible diagonal realization is the following one:

� = V−1AV =
⎛
⎝−1 0 0

0 1 0
0 0 2

⎞
⎠, C̃ = CV = (−1 0 −6 )

This diagonal realization, according to the criterion of paragraph 2.2, shows that
the mode 1 is not observable.

We now seek to establish the unique differential equation between u and y. The
subsystem S1 corresponds in fact to a block:

S1(p) = p − 1

p + 1

Which gives the following temporal equation:

ẏ + y = ẇ − w

Sub-system S2 corresponds to the following bloc:

S2(p) = p

p − 1
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Which gives the following temporal equation:

ẇ − w = v̇

Finally, sub-system S3 corresponds to the following bloc:

S3(p) = p + 1

p + 2

Which gives the following temporal equation:

v̇ + 2v = u̇ + u

These 3 differential equations lead to the following one:

ÿ + 3ẏ + 2y = ü + u̇

This is a differential equation of order, 2 which suggests that the system is of
order 2. The associated modes are −1 and −2. The global transfer function of this
system is:

G(p) = S1(p)S2(p)S3(p) = p

p + 2

This transfer function lets us assume that the system is of order 1 and that its only
mode is −2. So what happened? The differential equation has lost the unobservable
mode.

The differential equation represents only the observable part of the system.
We can see here that the state-space equation is a more complete model than

the differential equation, which is itself a more complete model than the transfer
function.

3 Observers for Continuous-Time Linear Systems

3.1 Preliminaries

3.1.1 Observation Principle

The principle of the observation is to use u and y to reconstruct a vector x
∧

which is as
close as possible to x, in order to then perform a state feedback, as shown in Fig. 3.

As shown in Fig. 3, the observer (also called state reconstructor) together with
the state feedback K constitutes a dynamic feedback which has two entries: u and y.
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Fig. 3 The Observer Principle

Synthesizing an observer consists of determining, on the basis of the process state
model, a state model for the observer. There are several techniques for carrying out
this synthesis, but before presenting two of them, we will dwell a little on a few
aspects first.

3.1.2 Design Goal of an Observer

The logic of observation is simple. It is utopian to want to construct an observer such
that x

∧

(t) = x(t) for any time t. Indeed, this would mean that the observer reacts
infinitely fast to a change in the state of the process even when x

∧

(0) �= x(0). On
the other hand, one can hope to obtain this equality as t → ∞. So if we define the
difference:

e(t) = x
∧

(t) − x(t) (5)

The main design goal of an observer would then be:

lim
t→∞e(t) = 0 (6)

3.1.3 Existence Condition of an Observer

A necessary and sufficient condition for the observability of a system is the
observability of the pair (A, C).

One can design a state observer, if and only if the pair (A, C) is observable.



Observers and Observability for Continuous-Time Linear Systems 9

3.2 Design of Minimal-Order Observers

In this part, it is a question of synthesizing a minimal order observer. We first give
its definition and structure. This is an observer whose state model corresponds to a
state vector of minimal dimension. It can be shown that to properly observe a state
vector of dimension n, the dimension of the state vector of the observer must be at
least (n−1). This leads to an observer model of the form:

{
ż(t) = Fz(t) + Py(t) + Ru(t)

x
∧

(t) = Lz(t) + Qy(t)
(7)

where z(t) ∈ R
n−1. To synthesize an observer here consists in determining suitably

F ∈ R
(n−1)×(n−1), L ∈ R

n×(n−1), {P, R} ∈ {Rn−1}2 and Q ∈ R
n×p, that is, to make

sure that Eq. (6) is verified.
If we set the following relation:

z(t) = T x(t), T ∈ R
(n−1)×n

For every time t, then one can have:

x
∧

(t) = Lz(t) + Qy(t) = LT x(t) + QCx(t) = (LT + QC)x(t)

which, since we want to verify x
∧

(t) = x(t), would lead to:

LT + QC = I (8)

But, as we have seen, it is utopian to hope for x
∧

(t) = x(t),∀t (i.e. here
z(t) = T x(t)). Indeed, it does not make sense to want to satisfy the equality
z(t) = T x(t),∀t ≥ 0 since z(t) is not a priori equal to a T x(0). So we just try
to get:

z(t) = T x(t) + μ(t), wi th lim
t→∞μ(t) = 0 (9)

Then, the dynamics of μ(t) would be governed by the following equation:

μ̇(t) = ż(t) − T ẋ(t) = Fμ(t) + (FT − T A + PC)x(t) + (R − T B)u(t)

Therefore, we can impose the constraints:

T A − FT = PC and R = T B

Thus, we obtain:
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μ̇(t) = Fμ(t)

which means that (9) holds when F is stable in the sense of Hurwitz, i.e. has only
eigenvalues with a real negative part. By taking into account (9) and the second
equation of (7), it comes:

x
∧

(t) = (LT + QC)x(t) + Lμ(t)

Which, if we consider (8), gives x
∧

(t) → x(t) as t → ∞.
Finally, it is by a judicious choice of the model (7) that we succeed in satisfying

(9). More precisely, this consists of:

• Choosing a matrix F, which is Hurwitz stable and whose modes are fater then the
ones of matrix A (to be able to observe x(t) faster than it evolves).

• Choosing matrices P and T such that: T A − PC = FT .
• Computing R = T B.
• Computing L and Q such that LT + QC = I .

3.3 Design of Full-Order Observers

In this part, we consider that the observer is of the same order as the process, ie n.
The definition and structure of such an observer are presented. A classical structure
of such an observer consists in expressing the latter as a loop system as follows:

{
ẋ
∧

(t) = Ax
∧

(t) + Bu(t) + Z(y
∧

(t) − y(t))
y
∧

(t) = Cx
∧

(t)
(10)

Here, the state vector of the observer is directly x
∧

(t) and its output y
∧

(t), are only
used to ensure a feedback within the observer itself as shown in Fig. 4.

The model of the observer is clearly based on that of the system and it is in fact a
question of determining Z of such so that the dynamic of the observer is faster than

Fig. 4 The full-order observer scheme
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that of the process on the one hand, and, on the other hand, that the relation (6) is
satisfied. Indeed, the observer Eq. (10) can be rewritten as follows:

ẋ
∧

(t) = (A + ZC)x
∧

(t) + Bu(t) − Zy(t) (11)

where we can clearly see that the choice of Z fixes the dynamics of the state matrix
A + ZC of the observer. Thus, if we analyze the evolution of the state estimation
error e(t), we see that:

ė(t) = (A + ZC)e(t) (12)

It is therefore necessary that matrix A + ZC be stable in the sense of Hurwitz,
i.e. have all its eigenvalues with a negative real part, so that we have x

∧

(t) = x(t) as
t → ∞. Otherwise (an eigenvalue with a real part that is not strictly negative), e(t)
cannot tend towards zero.

4 Conclusion

In this chapter, the authors have presented a theoretical overview of the observability
and observer design problem for continuous-time linear systems. First, the authors
have investigated the observability problem for linear systems. The observability
definition, as well as different criteria of observability and some examples have
been exposed. In the final part, the notion of observers for linear systems has been
presented. Both cases of minimal-order observers and full-order observers have been
highlighted.
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Generalities on Linear Matrix
Inequalities and Observer Design
of Linear Systems

Intissar Darwich, Dorsaf Etlili, Ayachi Errachdi, and Omar Naifar

Abstract In this chapter, the Linear Matrix Inequalities (LMIs) are presented.
The terms “observability” and “observer” were also discussed. A design of linear
observer-based control using the technique of LMIs is described, too.

1 Introduction

Over the last two decades, the performance of industrial equipment has improved
considerably. The integration of high-performance computers and automation
systems makes it possible to develop sophisticated algorithms at the level of control
and data processing. However, if the information they use is wrong, these algorithms
become ineffective. In the latter situation, the performance of the system is degraded,
but to make matters worse, the consequences of the equipment, the environment and
the safety of the personnel can be dramatic.

Two points play an important role in automatic. The first is the stability of the
system to be studied. In general, the stability is analyzed from its model which can
be linear or nonlinear. But as physical systems are never perfectly modeled, so there
is uncertainty about its structure (dimensions) and its parameters (numerical values).
It is therefore appropriate to have study techniques which take these uncertainties
into account. The second issue is the reconstruction of all or part of the state of a
system using observers. This is important in two areas of Automation: the control of
a system and its monitoring, both of which use knowledge of the system state. Many
research are conducted in this area, see [1–15]

The reconstruction of the state of an uncertain system (and by extension the
reconstruction of its release) is a classic problem of Automatic. Luenberger [16]
studied a state reconstructor which his name has been assigned. The Luenberger
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observer is not always sufficient for fault detection, because the estimation error
(of the state or of the output) generated by this observer for an uncertain system
or with unknown inputs does not necessarily converge towards zero. In order to
overcome this problem, we can use observers of singular systems [17] or observers
with unknown inputs [18]. The design problem of proportional and integral action
observers, for linear systemswith unknown inputs, has also been considered [19, 20].

This chapter discusses Linear Matrix Inequalities (LMIs). There was also debate
about the terms “observability” and “observer.” The LMIs method is also used to
define a linear observer-based control system.

2 Convex Analysis and Linear Matrix Inequalities

2.1 Convex Analysis

The notion of convexity sustains an important place in this book given the chosen
orientations. Indeed, the analysis and synthesis problems are formulated, when
possible, in terms of convex optimization [21].

The convexity of an optimization problem has a dual benefit:

– the calculation times are reasonable to find a solution;
– there is no local minimum of the cost function to be optimized; the result obtained

corresponds to a single global minimum.

The convexity is a concept both set and functional, the following are definitions
in each case.

Definition 1 (Convex set) Let ε ⊂ R
n be a set,ε is a convex set if and only if:

∀λ ∈ [01] ⊂ R,∀(x1, x2) ∈ ε2, λx1 + (1 − λ)x2 ∈ ε (1)

Definition 2 (Convex function) Let f be a function f : ε ⊂ R
n → Rwith ε a convex

set, then f is convex if and only if:

∀λ ∈ [01] ⊂ R,∀(x1, x2) ∈ ε2, f (λx1 + (1 − λ)x2) ≤ λ f (x1) + (1 − λ) f (x2)
(2)

Thus, a convex optimization problem is stated as follows: min
x∈e f (x), where ε is a

convex set and f is a convex function.

Likewise, a constraint fi (x) ≤ 0 is known us to be convex if the function fi is
convex. One of the advantages of convexity is that any optimization of a convex
function defined on a convex set can be processed locally because any local solution
becomes global.
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2.2 Classic LMI Problems

In recent years, many studies have emerged with the main objective of reducing
a wide variety of synthesis or analysis problems to convex optimization problems
involving LMIs. At the same time, efficient methods of solving convex optimiza-
tion problems have been developed. These methods, called interior-point methods,
initially developed by Karmarkar [22] for linear programming, were later extended
by Nesterov and Nemirovskii [23] to the case of convex programming in the space
of positive definite matrices.

Definition 3 Considering a family of symmetric matrices P0 and Pi ,i ∈ {1, . . . , n}
ofRp×p and a vector x = (x1, x2, . . . xn)

T ∈ R
n
, a strict LMI (respectively not-strict)

in xi , i ∈ {1, . . . , n} is written in this form:

F(x) = P0 +
n∑

i=1

xi Pi (respectively ≥ 0) (3)

It should be noted that the set E defined by E = {x ∈ R : F(x) > 0} is convex,
which leads us to consider an LMI constraint as a convex constraint.

The form of LMI come across three most common convex optimization which
are:

– Realizability (Feasibility) problem: it is a question of finding a vector S such that
the convex constraint F(x) > 0 is satisfied. This problem can be solved by finding
the vector x minimizing the scalar t such that:

−F(x) < t.I (4)

If the minimum value of t is negative, the problem is feasible.
– Eigenvalue problem (EVP): it is a question of minimizing the largest eigenvalue

of a symmetric matrix under an LMI type constraint:

minimize λ

under the constraints

{
λI − A(x) > 0

B(x) > 0

(5)

– Generalized eigenvalue problem (GEVP): this is to minimize the largest general-
ized eigenvalue of a pair of matrices, with respect to an LMI constraint:

minimize λ

under the constraints

⎧
⎨

⎩

λB(x) − A(x) > 0
B(x) > 0
C(x) > 0

(6)
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These convex optimization problems can then be solved by different types of
methods [24, 25]:

– Secant planes method
– Ellipsoid method
– Simplex type method
– Interior point method

2.3 Writing Constraints in LMI Form

Among the most classic examples of an LMI type constraint we will need throughout
this paper it’s includes:

– Schur’s complement: let three matrices R(x) = RT (x), Q(x) = QT (x) and S(x)
be affine with respect to the variable x. The following LMIs are equivalent:

1.

(
Q(x) S(x)
ST (x) R(x)

)
> 0

2. R(x) > 0, Q(x) − S(x)R−1(x)ST (x) > 0

– Convex quadratic constraints: the constraint on the norm ‖Z(x)‖ < 1, where
Z(x)∈ R

p×q is affine with respect to the variable x∈ R
p is represented by:

(
Ip Z(x)

ZT (x) Iq

)
> 0 (7)

2.4 LMI Regions

Definition 4 Chilali and Gabinet [26]: a region S of the complex plane is named
an LMI region if there exists a symmetric matrix α∈ R

m×m ∈ Rm × m is a matrix
β∈ R

m×m such that:

S = {z ∈ C : fS(z) < 0} (8)

with fS(z) = α + zβ + z∗. The notation z∗ signifies the conjugate of z. fs(z) is
so-called the characteristic function of S.

In other words, the LMI region is a region of the complex plane which is charac-
terized by an LMI as a function of z and z∗, or of a = Re(z) and b = Im(z). The
LMI regions are therefore convex sets.

Examples of LMI regions.
By setting a = Re(z) and b = Im(z), we get:
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Fig. 1 Examples of LMI regions

a = z∗ + z

2
and b = z − z∗

2 j
(9)

The left half plane can be characterized by a < 0, the characteristic function of
this one is given by:

fS(z) = z∗ + z (10)

Consider the three regions of the left complex half-plane illustrated in Fig. 1. The
region S1 of the complex plane, a < −ζ , is the LMI region characterized by the
following function fS1(z):

fS1(z) = z∗ + z + 2ζ (11)

The disk centered at the origin of the complex plane S2 is a region characterized
by the succeeding relationship:

z∗z − ρ2 < 0 (12)

Or by the way of using Schur’s complement:

fS2(z) =
(−ρ z

z∗ −ρ

)
(13)

SectorS2, atan(θ) < −|b|, of the complex plane is an LMI region characterized
by the following function fS3(z) (using Schur’s complement):

fS2(z) =
(
sin θ(z + z∗) cos θ(z − z∗)
cos θ(z∗ − z) sin θ(z + z∗)

)
(14)
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2.5 Pole Placement by LMI Approach

Theorem 1
[26]: the eigenvalues of a real matrix M are placed in an LMI region S (31) of the
complex plane if, and only if, there exists a symmetric matrix X such that:

Ms(M, X) = α ⊗ X + β ⊗ MX + βT ⊗ XMT < 0 (15)

where “⊗” denotes the Kronecker matrix product.
In other words, the eigenvalues of a real matrix M are all in a region of the

complex plane, if there is a matrix X > 0 such that the LMI MS(M, X) < 0 is
achievable, where MS(M, X) is resolute by performing the following substitution in
the characteristic function S:

∃X > 0 : 2ζ X + MX + XMT < 0 (16)

The eigenvalues of the matrix M are so all in the region S1 of the complex plane
if and only if:

∃X > 0 : 2ζ X + MX + XMT < 0 (17)

Similarly, the eigenvalues of the matrix M are all in the S2 region of the complex
plane if and only if:

∃X > 0 :
( −ρX MX
XMT −ρX

)
< 0 (18)

At last, the eigenvalues of the matrix M are all in the region S3 of the complex
plane if and only if:

∃X > 0 :
(
sinθ(MX + XMT ) cosθ(MX − XMT )

cosθ(XMT − MX) sinθ(MX + XMT )

)
< 0 (19)

Theorem 2 Chilali and Gabinet [26]: let be two LMI regions S1 and S2 of the
complex plane. The eigenvalues of the matrix M are all in the region LMI S1∩S2 if
and only if there exists a symmetric matrix X > 0 solution of the system.

MS1(M, X) < 0

MS2(M, X) < 0
(20)

These results will be used in the fourth chapter within the framework of the
synthesis of the observers gains with unknown inputs.
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3 Observability and Observers

The observability of a process is a very important concept in Automatics. Indeed,
to reconstruct the state and the output of a system, it is necessary to know, a priori,
whether the state variables are observable or not. In general, for reasons of technical
feasibility, cost, etc. The size of the output vector is smaller than that of the state. This
result drives to at the specified instantt , the state x(t) can’t be algebraically deduced
from the output y(t) at this instant. On the other hand, under observability conditions
which will be explained later, this state can be deduced from the knowledge of the
inputs and outputs over a previous time interval ([0, t]), y([0, t]).

The goal of an observer is to accurately provide an estimate of the current value of
the state based on the previous inputs and outputs. This estimate should be obtained
in real time, the observer usually takes the form of a dynamic system.

Definition 5 [27]: an observer of a dynamic system is as follows:

S(t) :
{
ẋ(t) = f (x(t), u(t))

y(t) = h(x(t))
(21)

An auxiliary dynamic systemO whose the inputs are the input and output vectors
of the system to be observed and whose the output vector x

∧

(t) is the estimated state:

O(t) :
{
ż(t) = f

∧

(z(t), u(t), y(t))
x
∧

(t) = h
∧

(z(t), u(t), y(t))
(22)

where the error between the state vector x(t) and x
∧

(t) tends asymptotically towards
zero.

‖e(t)‖ = ‖x(t) − x
∧

(t)‖ → 0whilet → ∞ (23)

The diagram of such observer is referred in Fig. (2).
The question asked before any observer synthesis, whether or not its design is

possible. The notion of observability and certain properties of the inputs applied to

Fig. 2 Structural diagram



20 I. Darwich et al.

the system provide the necessary conditions for the synthesis of an observer. We
discuss in this part the observability of linear systems.

3.1 Observability

The fundamental problem of the observability analysis of a physical system is to be
able to say whether the state of the system can be determined by inputs and outputs.
If that is the case, estimation theory provides tools to reconstruct this state; we recall
that the knowledge of unmeasured state components which is generally necessary to
tune or to detect the faults of a system.

The initial value of a system’s state is generally unknown. We can then request:
under what conditions can the state of the system be determined from the outputs and
inputs? This issue is named the observability problem. A definition of observability
based on the notion of in distinguishability is offered.

Definition 6 [27]: for the system (20), two states x0 and x
′
0 are supposed to be

indistinguishable, whether for any input function u(t) and for any t ≥ 0, the outputs
h(x(t), x0) and h(x(t), x

′
0) (h (x (t)) which result are equal.

Definition 7 [27]: the system (20) is said to be observable if it doesn’t have a pair
of distinct initial states

{
x0, x

′
0

}
indistinguishable.

3.2 Observability of Linear Systems

The observability criteria of a linear system are described in numerous references
[28–30]. We will only present those concerning certain and regular linear systems.
let’s us Consider the linear dynamic system:

ẋ(t) = Ax(t) + Bu(t) (24a)

y(t) = Cx(t) (24b)

where x(t) ∈ R
n , u(t) ∈ R

m and y(t)∈ R
p. The matrices A, B and C have appropriate

dimensions. The system observability matrix is defined [29] by:

O =

⎛

⎜⎜⎜⎝

C
CA
...

CAn−1

⎞

⎟⎟⎟⎠ (25)
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The observability of the system (24) is guaranteed if the rank of the observability
matrix O is equal to n [31]. O’Reilly [28] presented a second criterion; the system
(24) is completely observable if:

rank =
(
s I − A

C

)
= n (26)

for any complex s. If a linear system is completely observable, it is globally observ-
able, that is mean all components of the state vector of the system are observable, and
therefore can be reconstructed by an observer. If the system is nonlinear, we need to
distinguish global observability from the local one.

3.3 Observer Synthesis for a Certain Linear System

An observer is used for the purpose of estimating state or a linear state function (such
as the output of a system) [32, 33]. The comparison of the measured output with its
estimated allows to generate signals called “residues” which must be able to inform
us about the operating state of the sensors and actuators including the state of the
process.

As shown in Fig. (2), a state reconstructor or estimator is a systemhaving as inputs,
inputs and outputs of the process and whose output is an estimate of the state of this
process. Therefore, we seek to estimate the state of a system linear deterministic
defined by (24).

The construction basis of an observer is to correct the estimation error between
the actual output and the reconstructed output. This observer is defined by:

ẋ
∧ = Ax

∧

(t) + Bu(t) + K
(
y(t) − y

∧

(t)
)

= (A − KC)x
∧

(t) + Bu(t) + Ky(t)

y
∧

(t) = Cx
∧

(t) (27)

where K ∈ R
n×p is the gain of the observer (27). Having regard to the state and

output equations of the observer (27) and the system (24), we deduce the structural
diagram presented in Fig. 3.

The observer is synthesized in such a way that the difference between the state of
the system and its estimate tends towards zero when t t tends towards ∞, so if the
eigenvalues of (A−KC) are in the left half-plane of the complex plane then the gain
of the observer K can be determined by the pole placement method if the following
theorem is proved:
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Fig. 3 Structural diagram

Theorem 3 The eigenvalues of (A − KC) can be fixed arbitrarily if and only if the
pair (A,C) is observable [32].

If the pair (A,C) is observable, then a boundless freedom allows the user to fix the
matrix K . In general, it is chosen such that the eigenvalues of the matrix (A − KC)

are in the left half-plane of the complex plane and that the real part of the eigenvalues
is greater, in absolute value, than the real part of the eigenvalues of the state matrix A;
under these conditions, the dynamics of the observation error is consequently faster
than that of the process (system). But there are two contradictory considerations
which one must take into account and which interfere in the choice of the matrix K
[34]:

– The disturbances on the pair (A, B) lead to, if they are significant, choose a high
value of the matrix K in order to enhance the influence of the measurements on
the state estimation.

– The noise affecting the measurement of the output quantities, amplified by the
gain, requires a small value of K .

Therefore, the observer’s gain must be chosen by making a compromise to best
meet these constraints.
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4 Observer-Based Control Via LMI Approach

In some cases, a part of the state is not accessible. We must then use an observer.
We obtain an augmented model composed of a model, a controller and an observer.
Such a model is represented on the following Fig. 4:

Consider the stationary linear dynamic system described by:

⎧
⎪⎨

⎪⎩

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

x(0) = x0

(28)

where x and u are the state and control vectors respectively. A, B and C are known
real matrices.

The corrector with observer is given by:

u(t) = K x̂(t) (29)

K is the static gain of the corrector and x
∧

is the estimated state whose dynamics
is described by:

ẋ(t) = Ax̂(t) + Bu(t) + L[Cx̂(t) − y(t)] (30)

L is the gain of the observer.
The stabilization conditions of the system controlled by state feedback from an

observer are given by:

[
J1 PB

BT P −I

]
≺ 0

[
J2 KT

K −I

]
≺∼ 0

(31)

Fig. 4 Representation of the augmented system
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With
J1 = AT P + PA + KT BT P + PBK

J2 = AT Q + QA + CT LT Q + QLC
.

Proof Consider the observation error defined by: e(t) = x(t) − x(t).
Replacing e(t) with its value in the observer’s equation of state, we obtain:

˙̂x(t) = Ax̂(t) + Bu(t) + L[Cx̂(t) − y(t)]
= Ax̂(t) + BK x̂(t) + LC(x̂(t) − x(t))

= [A + BK ]x̂(t) − LCe(t)

(32)

ẋ(t) = Ax(t) + Bu(t)

= Ax(t) + BK x̂(t)

= Ax(t) + BK x(t) − BK x(t) + BK x̂(t)

= [A + BK ]x(t) − BK (x(t) − x̂(t))

= [A + BK ]x(t) − BKe(t)

(33)

The derivative of the error is then equal to:

x(t) − ˙̂x(t) = Ax(t) + BK x̂(t) − Ax̂(t) − BK x̂(t) + LCe(t)

ė(t) = [A + LC]e(t) (34)

Considering the augmented state vector defined by: z(t)

[
x(t)

e(t)

]
, we can write:

ż(t) =
[
ẋ(t)

ė(t)

]
=

[
A + BK −BK

0 A + LC

][
x(t)

e(t)

]
(35)

Consider a quadratic Lyapunov function defined by:

V (t) = zT
[
P 0
0 Q

]
z, with: P and Q are positive definite matrices.

By deriving this function, we obtain:
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V̇ (z) = żT
[
P 0
0 Q

]
z + zT

[
P 0
0 Q

]
ż

= [
xT eT

][ AT + KT BT 0
−KT BT AT + CT LT

][
P 0
0 Q

][
x

e

]

+[
xT eT

][ P 0
0 Q

][
A + BK −BK

0 A + LC

][
x

e

]

= [
xT eT

][ AT P + KT BT P 0
−KT BT P AT Q + CT LT Q

][
x

e

]
+

+[
xT eT

][ PA + PBK −PBK
0 QA + QCL

][
x

e

]

= [
xT eT

][ AT P + KT BT P + PA + PBK −PBK
−KT BT P AT Q + CT LT Q + QA + QLC

][
x

e

]

(36)

According to the Upper bound theorem, we have:

−eT K T BT Px − xT PBKe ≤ xT PBBT Px + eT K T Ke (37)

Hence:

V̇ (z) = xT (AT P + KT BT P + PA + PBK )x − eT K T BT Px

− xT PBKe + eT (AT Q + CT LT Q + QA + QLC)e

≤ xT (AT P + KT BT P + PA + PBK + PBBT P)x

+ eT (AT Q + CT LT Q + QA + QLC + KT K )e (38)

So if:

xT (AT P + KT BT P + PA + PBK + PBBT P)x

+eT (AT Q + CT LT Q + QA + QLC + KT K )e ≺ 0

Then V̇ (z) ≺ 0.
By applying the complement of Schur these equations can be written as follows:

[
X AT + Y T BT + Ax + BY B

BT −I

]
≺ 0

[
AT Q + QA + Y0C + CTY T

0 KT

K −I

]
≺ 0

(39)



26 I. Darwich et al.

The first equation is not linear. By multiplying it on both sides by:[
P−1 0
0 I

]
, we obtain:

[
P−1 0
0 I

][
AT P + KT BT P + PA + PBK PB

BT P −I

][
P−1 0
0 I

]
≺ 0 ⇒

[
P−1AT P + P−1KT BT P + P−1PA + P−1PBK P−1PB

BT P −I

][
P−1 0
0 I

]
≺ 0 ⇒

[
P−1AT + P−1KT BT + AP−1 + BK P−1 B

BT −I

]
≺ 0

By posing:

X = P−1

Y = K X

Y0 = LQ

We obtain:

[
X AT + Y T BT + Ax + BY B

BT −I

]
≺ 0

[
AT Q + QA + Y0C + CTY T

0 KT

K −I

]
≺∼ 0

The gains are given by:

K = Y X−1

L = Q−1Y0

5 Conclusion

The Linear Matrix Inequalities (LMIs) are discussed in this chapter. There was also
a discussion of the words “observability” and “observer.” A linear observer-based
control system employing the LMIs approach is also described.
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Some Preliminaries on Unknown Input
Observers, Discontinuous Observers
and Sliding Mode Observers Design

Boutheina Maalej, Jalloul Méliani, Omar Naifar, Nabil Derbel,
and Abdellatif Ben Makhlouf

Abstract In this chapter, some preliminaries on unknown input observers are given.
Furthermore, the development of discontinuous observers and the methods in which
they are designed are introduced. The final parts of the chapter are dedicated to the
sliding mode observers design.

Keywords Linear system · Observers · Observer design · Sliding mode

1 Introduction

The problem of optimal process control, when some state vector components are not
measurable, has undoubtedly initiated the first works on observers. These allow the
development of a state estimation model using the accessible variables of the system,
such as its inputs and outputs.

In the deterministic case, this model is known as a state observer [1, 2] and in the
case of a stochastic system, this model is called a filter [3–5].
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This state estimation uses the measured outputs of the system, its inputs and its
model. When a system is completely observable, the state reconstruction can be
performed either by a full order observer (the order of the observer is the same as
the one of the system), or by a reduced order observer (the order of the observer is
smaller than the one of the system).

The asymptotic convergence of the state estimation error to zero requires a very
precise determination of the observer matrices. Raymond [6] has shown that a small
error on the parameters of the system matrices could generate a large reconstruc-
tion, an important reconstruction error (obtained by comparing the estimate to the
measured ones). Several authors have presented state estimation techniques based
on the design of proportional and integral action observers for uncertain linear sys-
tems [7] and singular systems [8, 9]. In the presence of unknown inputs and sensor
faults, there are several techniques of state estimation which will be discussed in this
chapter.

2 Unknown Input Observer

A physical process is often subject to disturbances which have as origin the noise
due to the process environment, the measurement uncertainties, sensor or actuator
faults; these disturbances have adverse effects on the normal behavior of the process
and these estimation can be used to design a controlled system able to minimize their
effects. Disturbances are called unknown inputs when they affect the process input
and their presence can make it difficult to estimate the system state.

Severalworks have been done concerning the estimation of the state and the output
in the presence of unknown inputs and they can be grouped into two categories. The
first assumes a priori knowledge of information about these unmeasurable inputs, in
particular, Johnson [10] has proposed a polynomial approach and Meditch [11] has
suggested approximating the unknown inputs by a known dynamic system response.
The second category proceeds either by estimating the unknown input [12], or by its
complete elimination from the system equations [13, 14].

Among the techniques that do not require the elimination of unknown inputs, sev-
eral authors have proposed observer design methods capable of fully reconstructing
the state of a linear system in the presence of unknown inputs [15, 16]; Kobayashi
[17], Lyubchik [18] and Liu [19] have used a model inversion method for state
estimation.

Besides, among the techniques that allow the elimination of unknown inputs,
the one proposed by Kudva [20] is interested, in the case of linear systems, in the
existence conditions of the unknown input system observer based on the technique
of the generalized matrix technique. Guan has proceeded to the elimination of the
unknown inputs of the state equations for continuous linear systems [21]. Several
other variants exist, but the majority of them have been developed for linear systems.
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Koenig [8] has presented a simple method to design a proportional and integral
action observer for singular systems with unknown inputs. Sufficient conditions for
the existence of this observer have been established.

Reduced order observers have been considered by several authors in recent years
[22–24]. However, Yang and Wilde [22] have demonstrated that the full order
unknown input observer can have a faster convergence speed than the reduced order
observer.

The use of unknown input observers for fault diagnosis and process monitoring
systems has also attracted a lot of attention [13, 24–26] and [27]. Dassanayake, [13]
has considered an observer, by eliminating unknown inputs in the state equations, to
be able to detect and isolate several sensor faults, in the presence of unknown inputs,
on an engine (turbojet).

2.1 State Reconstruction by Eliminating Unknown Inputs

The reconstruction of the linear dynamical system state where several inputs are not
measurable is of a great interest in practice. In such circumstances, a conventional
observer, which requires the knowledge of the inputs, cannot be used directly. The
Unknown Inputs Observer (UIO) has been developed to estimate the system state,
despite the existence of unknown inputs or disturbances by eliminating them in the
state equations. This type of observer has attracted the attention of many researchers
[10, 16, 19, 28, 29].

In this section, we show that the convergence conditions of an unknown input
observer are solutions of bilinear matrix inequalities (BMI) which can be linearized
by different techniques to obtain linear matrix inequalities (LMI).

2.2 Reconstruction Principle

Consider the linear dynamic systemwith unknown inputs, described by the following
equations : {

ẋ(t) = Ax(t) + Bu(t) + Rū(t)
y(t) = Cx(t)

(1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the vector of known inputs,
ū(t) ∈ R

q , q < n is the vector of unknown inputs, y(t) ∈ R
p represents the vector

of measurable outputs. A ∈ R
n×n is the state matrix of the linear system, B ∈ R

n×m

is the input matrix, R ∈ R
n×q is the influence matrix of the unknown inputs and

C ∈ R
p×n is the output matrix.

We assume that the matrix R is of full column rank and that the pair (A,C) is
observable. The objective is the complete estimation of the state vector despite the
presence of the unknown inputs ū(t). Thus, consider the full order observer [30] :
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{
ż(t) = Nz(t) + Gu(t) + Ly(t)
x̂(t) = z(t) − Ey(t)

(2)

where z(t) ∈ R
n is the state vector, x̂(t) ∈ R

n is the estimate of the state vector x(t).
In order to guarantee this estimation, x̂(t)must asymptotically approach to x(t), that
is the state estimation error

e(t) = x(t) − x̂(t) (3)

approaches to zero asymptotically. The dynamics equation of the evolution of this
error is written as follows:

ė(t) = ẋ(t) − ż(t) + ECẋ(t) (4)

= (I + EC)ẋ(t) − ż(t)

= (I + EC)(Ax(t) + Bu(t) + Rū(t)) − (Nz(t) + Gu(t) + Ly(t))

= (I + EC)(Ax(t) + Bu(t) + Rū(t)) − (N x̂(t) + Gu(t) + (L + NE)Cx(t))

Let us consider P = I + EC , then we obtain :

ė(t) = Ne(t) + (PB − G)u(t) + PRū(t)) + (PA − N P − LC)x(t) (5)

The state estimation error converges asymptotically to zero if and only if:

LC = PA − N P (6a)

G = PB (6b)

PR = 0 (6c)

N is stable1 (6d)

The numerical solution of the system of equation (6) is based on the computation of
the pseudo-inverse of the (CR) matrix, this is possible if the matrix (CR) is of full
row rank [31].

E = −R(CR)T ((CR)(CR)T )−1 (7a)

P = I − R(CR)T ((CR)(CR)T )−1C (7b)

G = PB (7c)

N = PA − KC (7d)

L = K − NE (7e)

N is stable (7f)

Thus, if the system of equation (7) is satisfied, the dynamics of the state estimation
error reduces to :

ė(t) = Ne(t) (8)
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Given the properties of N , the state estimation error converges well asymptotically
to zero.

2.3 Convergence Conditions of the Observer

In this section, we develop sufficient conditions for the asymptotic convergence of
the state estimation error to zero. According to (8), this convergence is guaranteed if
there exists a symmetric and positive definite matrix X, such that

NT X + XN < 0 (9)

Since N = PA − KC , the inequality (9) becomes :

(PA − KC)T X + X (PA − KC) < 0 (10)

Unfortunately, we notice that the previous inequality (10) has the disadvantage of
being non-linear (bilinear) with respect to the variables K and X. Two methods of
resolution can be used:

• Linearization with respect to the variables K and X,
• Change of variables.

2.4 Resolution Methods

Solving methods have been proposed to solve nonlinear matrix inequalities and in
particular the bilinear ones [32].

2.5 Linearization with Respect to Variables

We can use a “local” method, based on the linearization of the inequalities, with
respect to the variables K and X, around the initial values K0 and X0 (well chosen).
We define:

K = K0 + ∂K and X = X0 + ∂X (11)

From the inequality (10), we obtain :
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⎧⎨
⎩

((PA − (K0 + �K )C) + (PA − (K0 + �K )CT )(X0 + �X)+
(X0 + �X)((PA − (K0 + �K )C) + (PA − (K0 + �K )CT )) < 0
X0 + �X > 0

(12)

Ignoring the second order terms of the inequality (12), we obtain:

⎧⎪⎪⎨
⎪⎪⎩

((PA − K0C + (PA − K0C)T )�X + �X ((PA − K0C) + (PA − K0C)T )−
�KCX0 − (CX0)

T�KT − CT�KT X0 − X0�KC+
((PA − K0C) + (PA − K0C)T )X0 + X0((PA − K0C) + (PA − K0C)T ) < 0
X0 + �X > 0

(13)

The system (13) is then a LMI (linear matrix inequality) type problem and its
solution with respect to �K and �X is standard [33]. Note that the choice of initial
values K0 and X0 remains the main drawback of this method and moreover the
convergence to a solution is not always guaranteed. Unfortunately, from a practical
point of view, one may have to examine various choices of initial values in order to
to obtain a solution.

Remark 1 TheLMI system (13) is valid only in the neighborhood of K0 and X0; this
encouraged us, in order to improve the resolution, to propose, to limit the variations
of the matrices δK and δX , the following additional constraints:

{ ‖�K0‖ < ε‖K0‖,
‖�X0‖ < ε‖X0‖ wi th 0 < ε � 1.

(14)

TheLMI formulation of these constraints (14) is described by the followingmatrix
inequalities:

[
ε‖X0‖In×n �X
�X ε‖X0‖In×n

]
> 0,

[
ε‖X0‖In×n �K
�K ε‖X0‖Im×m

]
> 0.

(15)

If the LMI systems (13) and (15) are feasible, then the observer (2) asymptotically
estimates the state of the linear system with unknown inputs (1).

2.5.1 Change of Variables

To overcome the drawbacks of the previous method, a method based on a variable
change ismore interesting. For that, let us consider the following change of variables:

W = XK (16)

The inequality obtained after this change of variables can be written as follows:
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Fig. 1 LMI area

�e(p)

�m(p)

−α

β

D(α, β)

(PA)T X + X (PA) − (CTWT + WC) < 0 (17)

The solution of the initial problem is obtained in two steps. First, we solve the linear
matrix inequality (17) with respect to the unknowns X and W. Then we deduce the
value of the gain K by the formula :

K = X−1W (18)

2.6 Pole Placement

In this section, we examine how to improve the performance of the observer in
particular with respect to the convergence speed to zero of the state estimation error.

For a better estimation of the state, the observer dynamics is chosen to be faster
than that of the system. For this, we fix the eigenvalues of the observer in the left
half-plane of the complex plane so that their real parts are larger in absolute value
than those of the state matrix.

To ensure some convergence dynamics of the state estimation error, we define the
complex region D(α, β) by the intersection of a circle with center (0, 0) and radius
equal to β and the left half of the region bounded by a vertical line of coordinates
equal to −α where α is a positive constant (Fig. 1).

2.6.1 Corollary

The eigenvalues of the matrix N are in the LMI regionD(α, β) if there exist matrices
�X and �K such that:
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[ −β(X0 + �X) NT
0 X − (�KC)T X0

XN0 − X0(�KC) − β(X0 + �X)

]
< 0 (19)

NT
0 �X + �XN0 − CT�KT X0 − X0�KC + NT

0 X0 + X0N0 + 2α(X0 + �X) < 0

with {
N0 = PA − K0C,

X = X0 + �X
(20)

3 Introduction to the Development of Discontinuous
Observers

In recent years, the control problem or diagnosis of uncertain dynamic systems
subject to external disturbances has been the subject of great interest. In practice, it
is not always possible to measure the state vector, in this case, a design method based
only on measured outputs and known inputs is used.

From a robust control perspective, the desirable properties of variable structure
control systems, especially with a sliding mode, are well developed [34, 35]. Despite
the successful research and development activity of variable structure control theory
and its insensitivity to uncertainties or unknown inputs, few authors have considered
the application of the fundamental principles to the observer design problem. Utkin
has presented the design of an observer method with a discontinuous structure for
which the error between the estimated and measured outputs is forced to converge
to zero [36]. Dorling and Zinober [37] have explored the practical application of this
observer to an uncertain system and examine the difficulties of choosing an appropri-
ate sliding gain.Walcott et al. [38],Walcott and Zac [39] and Zak [40] have presented
a method of observer design based on the Lyapunov approach. Under appropriate
assumptions, they have shown the asymptotic decay of the state estimation error in
the presence of bounded nonlinearities/uncertainties.

Recently, Ha [41] has presented amethodology to design a slidingmode controller
for an uncertain linear system based on the pole placement technique. Xiong [42] has
considered a sliding mode observer for the state estimation of an uncertain nonlinear
system, the uncertainties are considered as unknown inputs. Islam [43] has proposed
a theoretical and experimental evaluation of a sliding mode observer to measure the
position and the velocity on a switched reluctance motor. In this section, we seek to
construct a sliding mode observer building on the existing contributions described
above. A detailed reminder of the design approaches of Utkin [34] and Walcott
and Zac [39, 44] has been provided. Then, we are interested in the methodology
developed by Edwards and Spurgeon [45, 46] to determine the gain expression of an
observer, which overcomes the drawbacks of the observer of Walcott and Zak [39].
A Lyapunov approach have been proposed to ensure asymptotic convergence of the
state estimation error. The solution of the Lyapunov inequalities leads to the solution
of a LMI type problem.
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4 Methods for Discontinuous Observer Design

Considering the following uncertain dynamic system:

{
ẋ(t) = Ax(t) + Bu(t) + f (x, u, t)
y(t) = Cx(t)

(21)

where x(t) is the state vector, u(t) is the vector of known inputs, y(t) represents
the measurable output. A ∈ R

n×n , B ∈ R
n×m , C ∈ R

p×n with p ≥ m. The unknown
function f : Rn × R

m × R+ → R
n represents the uncertainties and satisfies the fol-

lowing conditions.

|| f (x, y, t)|| ≤ ρ,∀x(t) ∈ R
n, u(t) ∈ R

m, t ≥ 0 (22)

Moreover, the matrixC is assumed to have full row rank. The problem considered
here is the reconstructionof the state vector in spite of the presence of unknown inputs.

4.1 Utkin Observer

Consider first the system (22) and assume that the pair (A,C) is observable and
that the function f (x, u, t) ≡ 0. Since the state reconstruction relies on measured
outputs, it is natural to perform a coordinate change so that the system outputs appear
directly as components of the state vector. Without loss of of generality, the output
matrix can be written as follows:

C = [
C1 C2

]
(23)

where C1 ∈ R
p×(n−p), C2 ∈ R

p×p, wi thdet (C2) 
= 0, then the transformation
matrix

T−1 =
[

In−p 0
−C1C

−1
2 C−1

2

]
(24)

is non-singular and, in this new coordinate system, we can easily verify that the new
output matrix is written as follows:

CT−1 = [
0 Ip

]
(25)

The new state and control matrices are expressed as:

A = T AT−1 =
[
A11 A12

A21 A22

]
and B = T B =

[
B1

B2

]
(26)

The nominal system can then be written as follows:
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{
ẋ1(t) = A11x1(t) + A12y(t) + B1u(t)
ẏ(t) = A21x1(t) + A22y(t) + B2u(t)

(27)

where [
x1(t)
y(t)

]
= T x(t) and x1(t) ∈ R

n−p. (28)

The observer proposed by Utkin [36] has the following form:

{
ẋ1(t) = A11 x̂1(t) + A12 ŷ(t) + B1u(t) + Lυ(t)
˙̂y(t) = A21 x̂1(t) + A22 ŷ(t) + B2u(t) − υ(t)

(29)

where (x̂1(t), ŷ(t)) are the estimated values of (x1(t), y(t)), L ∈ R
(n−p)×p is the

gain observer and the components of the discontinuous vector υ(t) are defined by
the following equation :

υi (t) = Msign(ŷi (t) − yi (t)), f or M ∈ R+ (30)

where ŷi (t) and yi (t) are the components of the vectors ŷ(t) and y(t) respectively
and sign is the signum function.

Let us denote by e1(t) and ey(t) the state and output estimation errors.

e1(t) = x̂1(t) − x1(t) (31)

ey(t) = ŷ(t) − y(t)

From Eqs. (27), (29) and (31), the following system can be obtained:

{
ė1(t) = A11e1(t) + A12ey(t) + Lυ(t)
ėy(t) = A21e1(t) + A22ey(t) + υ(t)

(32)

As the pair (A,C) is observable, so is the pair (A11, A21). Therefore, L can be
chosen so that the eigenvalues of the matrix A11 + L A21 are in the left half-plane of
the complex plane. Now let us define the new change of variable:

T−1
s =

[
In−p −L
0 Ip

]
wi th

[
x ′
1(t)
y(t)

]
= Ts

[
x1(t)
y(t)

]
(33)

After this change of variable, the estimation errors can be written as:

ė′
1(t) = A′

11e
′
1(t) − A′

12ey(t) (34)

ė′
y(t) = A′

11e
′
1(t) − A′

22ey(t) − υ(t) (35)
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with ė′
1(t) = e1(t) − Ley(t) and A′

11 = A11 + L A21, A′
12 = A12 + L A22 − A′

11L
and A′

22 = A22 − A21L . It can be shown, using the theory of singular perturbations,
that for a M large enough, a sliding motion can arise on the output error (35). Thus,
after a finite time ts , the error ey(t) and its derivative are zero (ey(t) = 0, ėy(t) = 0).
Equation (34) becomes:

ė′
1(t) = A′

11e
′
1(t) (36)

By correctly choosing the gain matrix L (so that the matrix A′
11 is stable), the system

of error Eqs. (34)–(35) is stable, i.e., e′
1(t) → 0 when t → ∞.

Therefore x̂1(t) → x1(t) and the other component of the state vector x2(t) can be
reconstructed in the original coordinate system as follows:

x̂2(t) = C−1
2 (y(t) − C1 x̂1(t)) (37)

The main practical difficulty of this approach lies in the choice of an appropriate gain
M to induce a sliding motion in a finite time. Dorling and Zinober [37] have shown
the need to modify the gain M during the time interval in order to reduce excessive
switching.

4.2 Walcott and Żak Observer

The problem considered by Walcott and Żak [39, 44] is the state estimation of a
system described by (21) such that the error goes to zero exponentially despite the
presence of the considered uncertainties. In this part, we assume that :

f (x, u, t) = Rξ(x, t) (38)

where ξ : Rn × R+ → R
q is a bounded and unknown function, such that :

‖ξ(x(t), t)‖ ≤ ρ, ∀x(t) ∈ Rn, t ≥ 0

Consider a matrix G ∈ R
n×p such that the matrix A0 = (A − GC) has stable eigen-

values, a pair of symmetric, positive and definite Lyapunov matrices (P, Q) and a
matrix F respecting the following structural constraint:

(A − GC)T P + P(A − GC) = −Q (39)

CT FT = PR

The proposed observer can be expressed as:

˙̂x = Ax̂(t) + Bu(t) − G(Cx̂(t) − y(t)) + υ(t) (40)
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υ(t) =
⎧⎨
⎩−ρ

P−1CT FT FCe(t)

‖FCe(t)‖ if FCe(t) 
= 0

0 otherwise
(41)

where

e(t) = x̂(t) − x(t) (42)

The dynamics of the state estimation error generated by this observer is determined
by the following equation:

ė(t) = ˙̂x(t) − ẋ(t) (43)

= Ax̂(t) + Bu(t) − G(Cx̂(t) − y(t)) + υ(t) − (Ax(t) + Bu(t) + Rξ(x, t))

= (A − GC)e(t) + v(t) − Rξ(x, t)

The following Lyapunov function is considered:

V (e)(t) = eT (t)Pe(t) (44)

Its derivative along the trajectory of the estimation error can be written as:

V̇ (e(t)) = ėT (t)Pe(t) + eT (t)Pė(t) (45)
= ((A − GC)e(t) + υ(t) − Rξ(x, t))T Pe(t) + eT (t)P((A − GC)e(t) + υ(t) − Rξ(x, t))

= −eT (t)Qe(t) + 2eT (t)Pv(t) − 2eT (t)PRξ(x, t)

= −eT (t)Qe(t) + 2eT (t)Pv(t) − 2eT (t)CT FT ξ(x, t)

Let us consider the two following cases:

First case

If FCe(t) 
= 0, by replacing the expression of ξ(t) by Eq. (41), the derivative of the
Lyapunov function becomes :

V̇ (e(t)) = eT (t)Qe(t) − 2eT (t)ρ
CT FT FCe(t)

‖FCe(t)‖ − 2eTCT FT ξ(x, t) (46)

= −eT Qe(t) − 2ρ‖FCe(t)‖ − 2eT (t)CT FT ξ(x, t)

Using the fact that the unknown function υ(x, t) is bounded by a positive scalar ρ,
the derivative of the Lyapunov function can be increased as follows:
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V̇ (e(t)) ≤ −eT (t)Qe(t) − 2ρ‖FCe(t)‖ + 2ρ‖FCe(t)‖ (47)

≤ −eT Qe(t) < 0

Second case If FCe(t) = 0, by replacing the expression of ξ(t) by Eq. (41), the
derivative of the Lyapunov function becomes :

V̇ (e(t)) = −eT (t)Qe(t) < 0 (48)

Thus, in both cases, we have shown that the derivative of the Lyapunov function
is negative which shows that the state estimation error converges asymptotically to
zero. To guarantee the asymptotic convergence of the observer, we must verify that:

• the pair (A,C) is observable,
• there exists a pair of Lyapunov matrices (P, Q) and a matrix F respecting the
constraints (39).

5 Sliding Mode Observer Using a Canonical Form

Edward and Spurgeon [45, 46] have presented a method for designing a sliding
mode observer, based on the structure of the Walcott and Zak observer [39], while
avoiding the major drawback of the Walcott and Zak observer mentioned above. For
this purpose, let us consider again the dynamical system presented previously:

{
ẋ(t) = Ax(t) + Bu(t) + Rξ(x, u, t)
y(t) = Cx(t)

(49)

where A ∈ R
n×n , B ∈ R

n×m ,C ∈ R
p×n and D ∈ n × q with p ≥ q.We suppose that

the matrices A, B and R are of full rank and the function ξ : R+ × R
n × R

m → R
q

is unknown bounded function such that :

‖ξ(x, u, t)‖ ≤ ρ (50)

Before proceeding to the estimation of the state and output vector of the system (49),
we will proceed to two coordinates changes of the state vectors.
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5.1 Simplified Output Equation

Suppose that the system described above is observable. It is quite natural to perform a
change of coordinates so that the outputs of the system appear directly as components
of the state vector. Without loss of generality, the output matrix can be written as
[39]:

C = [
C1 C2

]
(51)

where C1 ∈ Rp × (n − p), C2 ∈ Rp×p and det (C2) 
= 0.
Let us then perform the following change of coordinates:

x̃(t) = T̃ x(t) (52)

where T̃ is a non-singular matrix definite as:

T̃ =
[
Inp 0
C1 C2

]
(53)

In this new coordinate system, we can easily verify that the new output matrix is
written :

C̃ = CT̃−1 = [0 Ip] (54)

Other matrices are transformed as follows:

Ã = T̃ AT̃−1 =
[
Ã11 Ã12

Ã21 Ã22

]
, B̃ = T̃ B =

[
B̃1

B̃2

]
, and R̃ = T̃ R =

[
R̃1

R̃2

]
(55)

The system (49) can then be written as :

{ ˜̇x(t) = Ãx(t) + B̃u(t) + R̃ξ(x, u, t)
y(t) = C̃ x̃(t) = x̃2(t)

(56)

The change of coordinates allows to express directly the output vector as a function
of a part of the state vector.

Then, the constraints (39) and the Lyapunov matrices (P, Q) can be expressed
as:

( Ã − G̃C̃)T P̃ + P̃( Ã − G̃C̃) = −Q̃ (57)

−C̃T F̃T = P̃ R̃

⎧⎨
⎩

P̃ = (T̃−1)T PT̃−1

Q̃ = (T̃−1)T QT̃−1

G̃ = T̃−1G
(58)
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5.2 Decoupling of the Unknown Function

We can now use a result established by Walcott and Zak regarding the design of a
robust observer with respect to the presence of unknown inputs or model uncertain-
ties.

Let the linear model ( Ã, B̃, R̃, C̃) be defined by the state Eq. (56) where Ã is
a stable matrix, and let ( Ā, B̄, R̄, C̄) be related to ( Ã, B̃, R̃, C̃) by the following
coordinate transformation:

x̄(t) = T̄ x̃(t) (59)

Matrices ( Ā, B̄, R̄, C̄) are expressed as:

⎧⎪⎪⎨
⎪⎪⎩

Ā = T̄ ÃT̄−1 =
[
Ā11 Ā12

Ā21 Ā22

]
, B̄ = T̄ B̃ =

[
B̄1

B̄2

]

R̄ = T̄ R̄ =
[
R̄1

R̄2

]
, C̄ = C̄ T̄−1 = [

0 Ip
] (60)

The constraints (57) and the matrices (P̃, Q̃) become:

( Ā − ḠC̄)T P̄ + P̄( Ā − ḠC̄) = −Q̄ (61)

C̄T F̄T = P̄ R̄

⎧⎨
⎩

P̄ = (T̄−1)T P̃ T̄−1

Q̄ = (T̄−1)T Q̃T̄−1

Ḡ = T̄−1G̃
(62)

First Proposition:
Let consider the linear model ( Ã, B̃, R̃, C̃) defined by the state equation (56) for
which there exists a pair of matrices (P̃, F) defined by constraints (39) and (58),
then there exists a nonsingular transformation T̄ such that the new coordinates of
matrices ( Ā, B̄, R̄, C̄), (P̄, F) have the following properties:

1. Ā =
[
Ā11 Ā12

Ā21 Ā22

]
where Ā11 ∈ R

(n−p)×(n−p) is a stable matrix

2. R̄ =
[

0
P∗
22F

T

]
where P22 ∈ R

p×p

3. C̄ = [
0 Ip

]
4. The Lyapunov matrix has a block-diagonal structure P̄ =

[
P̄1 0
0 P̄2

]
with P̄1 ∈

R
(n−p)×(n−p) and P̄2 ∈ R

p×p

Proof let the pair (P̃, F) associated with the linear model ( Ã, B̃, R̃, C̃) and let the
Lyapunov matrix P̃ written in the following form:
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P̃ =
[
P̄11 P̄12
P̄21 P̄22

]
where

{
P̄11 ∈ R

(n−p)×(n−p)

P̄12 ∈ R
(n − p) × p and P̄22 ∈ R

p × p
(63)

The coordinate change uses the following transformation matrix T̄ :

T̄ =
[
P̃11 P̃12
0 Ip

]
(64)

which is nonsingular, the matrix P̃11 being a positive definite symmetric matrix
P̃11 = P̃T

11 > 0. In the new coordinates, we obtain: C̄ = C̃ T̄−1 = [
0 Ip

]
. Thus,

property 3 is satisfied. From Eq. (58) we obtain: R̃ = P̃−1C̃−1FT . If we note:

P̃−1 =
[
P∗
11 P∗

12
P∗
21 P∗

22

]
(65)

we obtain

R̄ = T̄ R̃ =
[
P̃11 P̃12
0 Ip

] [
P̃∗
11 P̃∗

12

P̃∗
21 P̃∗

22

] [
0
Ip

]
FT =

[
0

P̃∗
22F

T

]
=

[
0
R̄2

]
(66)

Thus, the second property explaining the decoupling of unknown inputs (uncertain
function) is proved. If there exists a Lyapunov matrix P̃ that satisfies the constraints
(58), then the matrix P̄ = (T̄−1)T P̃ T̄−1 represents the Lyapunov matrix for the
state matrix Ā0 = Ā − ḠC̄ and satisfies the constraint C̄T FT = P̄ R̄. Using a direct
calculation, one can easily find :

P̄ =
[

P̃−1
11 0

−P̃T
12 P̃

−1
11 Ip

] [
P̃11 P̃12
P̃T
12 P̃22

] [
P̃−1
11 −P̃−1

11 P̃12
0 Ip

]
=

[
P̃−1
11 0
0 P̄2

]
(67)

where P̄2 = −P̃T
12 P̃

−1
11 P̃12. Thus, thematrix P̄ has the block-diagonal structure shown

in property 4. Finally, replacing the matrix P̄ (67) in the constraint (61), we obtain:

[
Ā011 Ā012

Ā021 Ā022

]T [
P̄1 0
0 P̄2

]
+

[
P̄1 0
0 P̄2

]
=

[
Ā011 Ā012

Ā021 Ā022

]
(68)

Then
{
ĀT
011 P̄1 + P̄1 Ā011 < 0

ĀT
022 P̄2 + P̄2 Ā022 < 0

(69)

with

Ā0 =
[
Ā011 Ā012

Ā021 Ā022

]
. (70)
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Ā011 = Ā11 − ḠC̄011 = Ā11, because (ḠC̄)11 = 0 ∀G ∈ R
n×p because C̄ = [

0 Ip
]

and therefore the matrix Ā11 is stable. Thus property 1 is proved.

6 Sliding Mode Observer

The implementation of control laws based on the nonlinear model of the system,
requires the knowledge of the complete state vector of the system at each instant.
However, in most cases, only one part of the state is accessible using of sensors.

To reconstitute the complete system state, the idea is based on the use of a software
sensor, called observer.

An observer is a dynamic system which from the system input u(t) (the control),
the measured output y(t), as well as a priori knowledge of the model, will provide
an estimated output state x̂(t) which should tend towards the real state x(t).

One of the best known classes of robust observers is the sliding mode observers
[47].

6.1 Design of Sliding Mode Observer

The principle of sliding mode observers consists in remaining the system dynamics
with order n using discontinuous functions, to converge to a variety s of dimension
(n − p) called sliding surface (p is the dimension of the measurement vector) [47].

The attractiveness of this surface is ensured by sliding conditions. If these con-
ditions are verified, the system converges towards the sliding surface and y moves
according to a (n − p) order dynamics.

In the case of sliding mode observers, the dynamics concerned are those of the
observation errors e(t) = x(t) − x̂(t).

From their initial values e(0) , these errors converge to the equilibrium values in
two steps:

• The first step, the observation error trajectory evolves towards the sliding sur-
face on which the errors between the observer output and the real system output
(measurements) ey = y − ŷ are equal to zero. This step, which is generally very
dynamic, is called the attainment mode.

• In the second step, the observation error trajectory remains on the sliding surface
with imposed dynamics, to cancel all the observation errors. This last mode is
called sliding mode.

Consider the following n-order nonlinear state system :

{
ẋ(t) = f (x, u)

y(t) = h(x)
(71)
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Non-linear system

∫
f(x̂, u)

K sign()

h(x̂)x̂˙̂x+

-

+

-

yu

Fig. 2 Block diagram of a sliding mode observer

where x ∈ R
n is the state vector, u ∈ R

m is the vector of known inputs or control,
y ∈ R

p represents the output vector.
Functions f and h are vector systems assumed to be continuously differentiable

on x .
The input u is locally bounded and measurable.
The sliding mode observer is defined with the following structure [48]:

{ ˆ̇x = f (x̂, u) − K sign(ŷ − y)
ŷ = h(x̂)

(72)

with K is the gain matrix of (n − p) dimension.
The obtained observer is a copy of the systemmodel plus a correction term which

establishes the convergence of x̂ to x (Fig. 2).
The sliding surface in this case is given by:
s(x) = y − ŷ.
The correction term used is proportional to the discontinuous signum function

applied to the output error that is defined by [48]:

sign(x) =
⎧⎨
⎩
1 i f x > 0
0 i f x = 0
−1 i f x < 0

(73)

The sliding mode observer must respect two conditions in order to guarantee that
the estimated state converge to the real state:
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• The first condition concerns the reaching mode and guarantees the attractiveness
of the sliding surface S = 0 with p dimension. The sliding surface is attractive if
the Lyapunov function V (x) = ST × S verifies the condition: V̇ (x) < 0 if S 
= 0

• The second one, concerns the sliding mode. During this step, the corrective gain
matrix satisfies the following invariance condition:

{
Ṡ = 0
S = 0

(74)

The system dynamics are reduced and the n-order system becomes an equiva-
lent (n − p) order system. These criteria allow the synthesis of the sliding mode
observer and determine its operation [49].

6.2 Sliding Mode Observer of Linear Systems

Considering the following linear system:

{
ẋ = Ax(t) + Bu(t)
y = Cx(t)

(75)

where x ∈ R
n is the state vector, u ∈ R

m is the vector inputs, y ∈ R
p denotes the

output vector.
Matrices A, B and C have appropriate dimensions.
The pair (A,C) is assumed to be observable.
The reconstruction of the state variables is based on the measured outputs. A

change of coordinates can be performed so that the outputs appear directly as com-
ponents of the state vector.

Recalling Eq. (51), a non-singular transformation matrix T allows to rewrite
respectively the output, state and control matrices as follows:

Ã = T AT−1 =
[
A11 A12

A21 A22

]
(76)

B̃ = T B =
[
B1

B2

]
(77)

The linear system presented in Eq. (75) can thus be in the following form:

{
ẋ1(t) = A11x1(t) + A12y(t) + B1u(t)
ẏ = A21x1(t) + A22y(t) + B2u(t)

(78)
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T x(t) =
[
x1(t)
y(t)

]
(79)

with x1(t) ∈ R
n−p The proposed sliding mode observer for this type of system is

expressed as:

{ ˙̂x1(t) = A11 x̂1(t) + A12 ŷ(t) + B1u(t) + LKsign(ŷi (t) − yi (t))˙̂y = A21 x̂1(t) + A22 ŷ(t) + B2u(t) − Ksign(ŷi (t) − yi (t))
(80)

with L ∈ R
(n−p)×p is the observer gain, K > 0 and ŷi (t) and yi (t) are the vector

components of ŷ(t) and y(t), respectively.
The state and output estimation errors are given by :

{
e1(t) = x̂1(t) − x1(t)
ey(t) = ŷ(t) + y(t)

(81)

From Eqs. (78), (80) and (81), the dynamics of the estimation errors will be written
as:

{
ė1(t) = A11e1(t) + A12ey(t) + LKsign(ŷi (t) − yi (t))
ėy(t) = A21e1(t) + A22ey(t) − Ksign(ŷi (t) − yi (t))

(82)

The pair (A11, A21) is observable because the pair (A,C) is observable. Therefore,
the gain L can be chosen such that the eigenvalues of the matrix A11 + L A21 are in
the left half-plane plane of the complex plane.

6.3 Triangular Sliding Mode Observer

The triangular sliding mode observer has the following form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ1
ẋ2
.

.

.

ẋn−1

ẋn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2 + g1(x1, u)

x3 + g2(x1, x2, u)

.

.

.

xn + gn−1(x1, x2, . . . , u)

fn(x) + gn(x, u)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

y = x1

(83)

where gi and fn for i = 1, 2, . . . , n are the analytic functions, x = [x1x2 . . . xn]T ∈
R

n is the system state, u ∈ R
m is the input vector and y ∈ R is the output.
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The proposed observer structure is as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

˙̂x1˙̂x2
.

.

.
˙̂xn−1˙̂xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x̂2 + g1(x1, u) + λ1sign1(x1 − x̂1)
x̂3 + g2(x1, x̄2, u) + λ2sign2(x̄2 − x̂2)

.

.

.

x̂n + gn−1(x1, x̄2, . . . , x̄n−1, u) + λn−1signn−1(x̄n−1 − x̂n−1)

fn(x1, x̄2, . . . , x̄n) + gn(x1, x̄2, . . . , x̄n, u)λnsignn(x̄n − x̂n)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

ŷ = x̂1

(84)

where x̄i = x̂i + λi−1signmoy,i−1(x̄i−1 − x̂i−1) with signmoy,i−1 denoting the func-
tion signi−1 filtered by a low pass filter. signi (.) is equal to zero if there exists
j ∈ {1, . . . , i − 1} such that x̄ j − x̂ j 
= 0 (by definition x̄1 = x1), if not signi (.) is
taken equal to the classical function sign(.). According to these propositions, we
impose that the corrector term is “active” only if the condition x̄ j − x̂ j = 0 for
j = 1, 2, . . . , i − 1 is verified.

There exists a choice of λ j such that the observer state x̂ converges in a finite time
to the state x of the system.

Let us consider the dynamics of the observer error e = x − x̂ and proceed step
by step. For e1 = x1 − x̂1, we obtain: ė1 = e2 − λ1sign(e1) with e2 = x2 − x̂2.

If λ1 > |e2|max for t > t1, then the sliding surface e1 = 0 is reached after a finite
time t1 which means that ė1 = 0.

There is a continuous function noted signeq defined by: e2 − λ1signeq(e1) = 0,
involving x̄2 = x2 on the sliding surface, since signeq = signmoy , then:

ė1 = x2 − (x̂2 + λ1signeq(x1 − x̄1)) = x2 − x̄2 = 0 (85)

Once x2 is known, we will move on to the dynamics of e2.
After, t1,weobtain x̄2 = x2 which implies that: g1(x1, x2) − g2(x1, x̄2) = 0.Then,

ė2 = e3 − λ2sign(e2). Following the same reasoning, if λ2 > |e3|max for t > t2, we
will obtain after a finite time t2 > t1, the convergence to the surface e1 = e2 = 0. The
dynamics of the remaining observer error on the sliding surface is given by ė2 = 0.
Then, x3 = x̄3 because: ė2 = x3 − (x̂3 + λ2signeq(x2 − x̄2) = x3 − x̄3 = 0.

By reiterating (n − 1) times this process, we obtain after tn−1 convergence of
all the observer errors on the sliding surface e1 = e2 = · · · = 0 and consequently x̄
tends towards x , in a finite time tn−1 all the state is known and the observer error is
zero.
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7 Conclusion

Preliminaries on unknown input observers are presented in this chapter. The evolution
of discontinuous observers, as well as the methods by which they are constructed, are
also discussed. The sliding mode observers are the focus of the chapter’s concluding
sections.
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Observers with Unknown Inputs
of Linear Systems

Dorsaf Etlili, Omar Naifar, and Ayachi Errachdi

Abstract This chapter introduces the concepts of observability and observer for
linear systems, as well as the concept of slidingmode. It is demonstrated how to build
an observer for a linear dynamical system with unknown inputs. The determination
of the observer’s gain in order to ensure convergence leads to the solution of an LMI
issue (bilinear matrix inequalities). The technique based on a change of variables
is used to resolve these LMI restrictions, allowing the matrices characterizing the
observer to be determined.

1 Introduction

The complete or partial knowledge of the state of the considered system is an impor-
tant requirement in the fields of control, diagnosis and monitoring of systems. This
requirement is difficult to satisfy in most cases. This is due, on the one hand, to
the fact that the state variables do not always have a physical meaning and their
direct measurement is impossible to achieve. On the other hand, the sensors needed
to measure the state variables are unavailable or of insufficient accuracy. Moreover,
from an economic point of view, it is desirable to install a minimum of sensors in
order to reduce the costs of instrumentation and maintenance.

The measurements made at the output of the system do not give complete infor-
mation on the internal states of this system. It is therefore essential to reconstruct the
unmeasured state variables. The idea used for several years, is the replacement of
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hardware sensors by software sensors or by state observers, which allow to recon-
struct the internal information (states, unknown inputs) of the system from the system
model, the known inputs and the measured outputs.

A physical system is often subject to disturbances, such as measurement noise,
measurement uncertainties, system faults and external disturbances. These noises
have an adverse effect on the normal behavior of the process, and their estimation
can be used to design a control system capable of minimizing these effects. These
disturbances are called unknown inputs when they appear as additional inputs to the
process, and their presence can make the estimation of system states difficult.

Several works have been devoted to the synthesis of observers for linear systems
with unknown inputs [1–7] The first results on linear state estimation date back to the
1970’s. They can be grouped into two categories. The first category assumes a priori
knowledge of information about these non-measurable inputs; in particular, Johnson
[1] proposes a polynomial approach and Meditch [8] suggests to approximate the
unknown inputs by the response of a known dynamical system. The second category
proceeds either by estimating the unknown input [7] or by its complete elimination
from the system equations [9].

Reduced order observers have been considered by several authors during the
last years [10, 11]. However, Yang and Wilde [10] demonstrated that the full order
unknown input observer can have a faster convergence speed than the reduced order
observer.

The use of observers with unknown inputs for fault diagnosis and process moni-
toring systems has also attracted much attention [9, 11, 12]. In this chapter, we
present some basic notions of observability and observers as well as some methods
for reconstructing the states and unknown input of linear systems in the presence of
unknown input.

2 Observability

In the literature, it is shown that an observer exists if and only if the state realization of
the system in question is observable. Indeed, the observability of a system expresses
the possibility of reconstructing the state from the sole knowledge of the input and
output signals.

3 Observability of Linear Systems

The observability criteria of a linear system are described in many references [13,
14]. Let us consider the continuous linear time-invariant dynamical system:
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{
ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
(1)

where t ≥ 0; x(t) ∈ R
n; u(t) ∈ R

m ; y(t) ∈ R
p, are the state vector, the input and

the output of the system (1), respectively. A, B, C are the matrices of the system of
appropriate dimensions, and the initial conditions are defined byx(t0) = x0: Let us
recall some definitions and results on observability.

Definition 1 (Borne [14]) The system (1) is said to be observable if there exists a
time t f ≥ t0 such that the knowledge of the input u(t) and the output y(t) on the
interval t ∈[

t0t f
]
is sufficient to determine the initial condition x0 in a unique way.

For linear systems, the information produced at the output is the superposition of
that generated by the input and that generated by the initial condition. If we assume
the free regime (u = 0) then we can adopt the following definition.

Definition 2 (Borne [14]) The system (1) is observable if and only if, in the free
regime (u(t) = 0; ∀t≥ t0), the observation of a uniformly zero output y(t) t ∈ [

t0 t f
]

is possible only for an initial state x(t0) zero.

Remarks 1 When all state variables are observable, then the system is said to be
completely observable, otherwise it is said to be partially observable.

The observability condition is a necessary and sufficient condition to be able to
estimate the state of the system from the information collected on the inputs and
outputs. Note that the knowledge of x0 and the state model of the system is sufficient
to reconstruct the state x(t) at any time t ≥ t0. The observability property of a linear
time invariant system is a structural property and depends only on the matrices A
and C of the model. The most used criterion to check this property is the Kalman
rank criterion formulated by the observability matrix below.

The system described by (1) is completely observable if and only if rank (O) = n
such that (O) is the observability matrix defined by:

O =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C

CA

.

.

.

CAn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)
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4 Synthesis of Observers for Linear Systems Without
Unknown Inputs

A solution to the problem of state estimation of linear systems has been proposed by
Luenberger [15] in the deterministic framework and by Kalman [16] in the stochastic
framework. Sliding mode observers are also used for linear systems even if they are
themselves of nonlinear structure.

4.1 Luenberger Observer

The theory of observation is essentially based on pole placement techniques. Let x
∧
(t)

be the estimate of x(t); and y
∧
(t) the estimate of y(t).

The observer proposed by Luenberger for the system (1) is described by the
following equations:

{ ˙̂x(t) = Ax̂(t) + Bu(t) + K (y(t) − ŷ(t)); x̂(t0) = x̂0
ŷ(t) = Cx̂(t)

(3)

where K∈Rn∗p is the gain of the observer (3). The block diagram of the observer is
illustrated by Fig. 1. The estimation error is given by

e(t) = x(t) − x̂(t)

The dynamics of this error is governed by the following equation:

ė(t) = (A − KC)e(t); e(t0) = e0 = x0 − x̂0

If the gain is chosen such that the matrix (A−KC) is Hurwitz, i.e., has strictly
negative eigenvalues, then the estimation error converges asymptotically to zero.
As the observer replaces the sensor, we must therefore ensure a convergence of the
estimation error to zero very fast, at least ten times faster than the dynamics of the
system. If the couple (A, C) is observable, then it is possible to determine the gain
K to have a convergence dynamics chosen beforehand. The problem of constructing
the observer is therefore equivalent to solving a pole placement problem. We choose
a desired dynamics (choice of the desired eigenvalues of (A−KC), then using the
pole placement principle, we determine the gain K.
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Fig. 1 Block diagram of the Luenberger observer

4.2 Sliding Mode Observer

Techniques based on the theory of variable structures, ensuring the robustness of the
controller or the observer, are currently the subject of several research works. One of
the best known classes of robust observers is that of sliding mode observers [17–20].

In [18], the principle of sliding mode observers consists in constraining, by means
of discontinuous functions, the dynamics of a system of order n to converge to a
sliding surface S of dimension (n−p) (p being the dimension of the measurement
vector y). The attractiveness of this surface is ensured by conditions called sliding
conditions. If these conditions are satisfied, the system converges towards the sliding
surface and evolves there according to a dynamics of order (n-p). In the case of sliding
mode observers, the dynamics concerned are those of the observation errors e(t) =
x(t) − x̂(t). From their initial values e0, these errors converge to the equilibrium
values in two steps:

In the first stage, the trajectory of the observation errors evolves towards the sliding
surface on which the errors between the observer output and the real system output
(the measurements) ey = y − ŷ are zero. This stage is called the attainment mode.

In the second phase, the trajectory of the observation errors slides on the sliding
surface with imposed dynamics so as to cancel all observation errors. This last mode
is called sliding mode.

Consider a nonlinear state system of order n:
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{
ẋ(t) = f (x(t), u(t))

y(t) = Cx(t)
(4)

where: x(t) ∈ R
n; u(t) ∈ R

m; y(t) ∈ R
p, f represent the state vector, the input

or control vector, the output vector, the sufficiently differentiable vector field,
respectively.

The different steps for the synthesis of the sliding mode observer are identified
in [17]. The first order sliding mode observer allowing to reconstruct the estimated
state vector x̂(t) is defined by the structure (5)

{ ˙̂x(t) = f (x̂(t), u(t)) + λsign(y − ŷ)

ŷ(t) = Cx̂(t)
(5)

where the input u is locally bounded and measurable.
Sign: Represents the usual sign function.
λ: is the observation gain matrix of dimension (n–p). The correction term used is

proportional to the discontinuous function sign applied to the output error.
For the estimated state to converge to the true state, the sliding mode observer

must satisfy two conditions:
Thefirst condition concerns themodeof reaching andguarantees the attractiveness

of the sliding surface S = 0 of dimension p.
The sliding surface is attractive if the Lyapunov function V (t) = ST S satisfies

the condition: V̇ (t) ≺ 0.
The second one concerns the sliding mode, during this step, the corrective gain

matrix acts so as to satisfy the following invariance condition:

{
S = 0

Ṡ = 0

During this mode, the dynamics of the system are reduced and the system of order
n becomes an equivalent system of order (n–p). These criteria allow the synthesis of
the sliding mode observer and determine its operation.

Phenomenon of reluctance

In practice, the discontinuous term on the right-hand side of the equation can excite
unmodelled high-frequency dynamics that lead to the appearance of what is known
as “reticence” or “chattering”, which is characterized by strong oscillations around
the surface.
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5 Synthesis of Observers for Linear Systems
with Unknown Inputs

5.1 Utkin Sliding Mode Observer with Unknown Input

Let us consider the continuous linear system time invariant with delay on the
measurement {

ẋ(t) = Ax(t) + Bu(t) + Rw(t)

y(t) = Cx(t)
(6)

x(t) ∈ R
n; u(t) ∈ R

m; y(t) ∈ R
p, w(t) ∈ R

q Are the state vectors, the vector of
known inputs, the vector of measurable outputs, the vector of unknown inputs of
the system (6), respectively. A∈ R

n∗n;B ∈ R
n∗m;C ∈ R

p∗n, R ∈ R
n∗q are the state

matrix, the matrix of known inputs, the influence matrix of unknown inputs and the
output matrix of the system (6), respectively. It is assumed that R is of full column
rank and the pair (A; C) is observable. The reconstruction of the state variables is
based on the measured outputs; a coordinate change can be performed to obtain the
regular form [21].

By respecting these conditions a non-singular transformation matrix allows to
rewrite respectively the output, state and control matrices in the new coordinates.

Ã = T1AT
−1
1 =

(
A11 A12

A21 A22

)
, B̃ = T1B =

[
B1

B2

]
, C̃ = CT−1

1 , R̃ = T1R =
[
R1

R2

]

où

T1 =
[
Q

C

]
[
x̃1(t)

y(t)

]
= T1x(t), x̃1(t) ∈ R

(n−p), R =
[
R1

R2

]

where Ip is the identity matrix of dimension p.
Q = [

0 In−p

]
the system (6) in the new coordinates is written as follows

{ ˙̃x1(t) = A11 x̃1(t) + A12y(t) + B1u(t) + R1w(t)

ẏ(t) = A21 x̃1(t) + A22y(t) + B2u(t) + R2w(t)
(7)

We note that CR = R2: so CR �= 0 and there exists the pseudo-inverse matrix
R+
2 of the matrix R2 such that R2R

+
2 = Im1 , m1 = rang(CR) = rang(R).

The following transformation is applied to the model given in (7)
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[
x1(t)

y(t)

]
=

[
In−p −R1R

+
2

0 Ip

][
x̃1(t)

y(t)

]

with

T2 =
[
In−p −R1R

+
2

0 Ip

]
, A = T2 ÃT

−1
2 =

[
A11 A12

A21 A22

]
, B = T2 B̃ =

[
B1

B2

]

C = C̃T−2
2 , R = T2 R̃ =

[
R1

R2

]

Where

R1 = 0

−R1R
+
2 is the pseudo-inverse of −R1R2 and x1(1) ∈ Rn−p.

The system (7) in the new coordinates is given by (8)

{ ˙̃x1(t) = A11x1(t) + A12y(t) + B1u(t)

ẏ(t) = A21x1(t) + A22y(t) + B2u(t) + R2w(t)
(8)

The pair (A11;A21) is observable because the pair (A; C) is observable [22], the
gain L is chosen such that the eigenvalues of the matrix A11 − L A21 are in the left
half plane of the complex plane.

5.2 Structure of the Utkin Sliding Mode Observer
with Unknown Input

The sliding mode observer structure considered for this system is:

{ ˙̂x1(t) = A11 x̂1(t) + A12 ŷ(t) + B1u(t) + Lv(t)

˙̂y(t) = A21 x̂1(t) + A22 ŷ(t) + B2u(t) + Iv(t)
(9)

where ŷ(t) and x̂1(t) are the estimates of y(t) and x1(t) respectively, L is the observer
gain and v(t) is the discontinuous function given by:

v(t) = Msign(ŷ(t) − y(t))

With M > 0. The state and output estimation errors

{
e1(t) = x̂1(t) − x1(t)

ey(t) = ŷ(t) − y(t)
(10)
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Subtracting (8) from (9), the dynamics of the estimation errors are written as
follows: {

ė1(t) = A11e1(t) + A12ey(t) + Lv(t)

ėy(t) = A21e1(t) + A22ey(t) − v(t) + R2w(t)
(11)

We perform the following change of variable

[
ẽ1(t)

ey

]
=

[
In−p −L
0 Ip

][
e1(t)

ey

]

The dynamics of the estimation errors will be written as follows:

{ ˙̃e1(t) = Ã11ẽ1(t) + Ã12ey(t) + LR2w(t)

ėy(t) = Ã21ẽ1(t) + Ã22ey(t) − v(t) + R2w(t)
(12)

ẽ1(t) = ẽ1(t) + Ley(t) and Ã11 = A11 − L A21.
Ã12 = A12 − L A22 + Ã11L and Ã22 = A22 − A21L .

Utkin [21] has shown using the theory of singular perturbations, for a large enough
gain M the sliding regime can be established on the error (12). So after a finite time
the error e(t) and its derivative will be zero and we have from Eq. (12).

˙̃e1(t) = Ã11e1(t)

The gain M is chosen such that Ã11 is stable and thus the system of Eqs. (12)
converges asymptotically to zero, and ẽ1(t) → 0 when t → ∞.

The equivalent control method is used to obtain the estimated unknown input. It
is assumed that the error of the system (12) is in the slip along ey = 0: thus ˙̃e1 = 0
and ˙̃ey = 0. The solution of the system of Eq. (12) for w(t) gives us the following
estimate of w(t):

ŵ ≈
(
(I + Ã21 Ã

−1
11 L̃)R̃2

)+
veq (13)

where veq is the equivalent command.
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6 Luenberger Observer with Unknown Input

In this section, we present the synthesis of large gain type observers for the class of
uniformly observable nonlinear systems to which we have added unknown inputs.
The proposed observers jointly estimate the entire state of the system as well as
all unknown inputs under sufficient conditions that will be given. Their synthesis
neither assumes nor adopts any mathematical model for the unknown inputs. We
simply assume that the first derivative with respect to time of each of the unknown
inputs is bounded.

Before presenting the class of nonlinear systems thatwill be the object of our study,
we propose to recall the necessary and sufficient conditions for the synthesis of an
observer with unknown inputs for linear systems. This will allow us to better under-
stand the sufficient conditions that we will adopt for the synthesis of the proposed
observers.

Note the necessary and sufficient conditions that will be recalled for linear systems
concern the synthesis of an observer allowing the estimation of states (via a full or
reduced order observer) without any knowledge about the unknown inputs. These
conditions can be relaxed if certain assumptions about these inputs, such as the
boundedness of their derivatives with respect to time, are adopted. We will come
back to this point later in this part.

• Reminders on observers with unknown input synthesis for linear systems:

We consider the following linear time invariant system:

∑ {
ẋ = Ax + Bu + Gv

y = Cx
(14)

where state x(t) ∈ R
n , known input u(t) ∈ R

μ, unknown input v(t) ∈ R
m , output

y ∈ R
p, A, B, G, and C are known constant matrices of appropriate dimensions, and

matrix G is assumed to be full rank in columns, i.e.

Rang(G) = m (15)

Without detracting from generality, we assume that the matrix C has the following
structure:

C = [
Ip 0 ... 0

]
(16)

In the same way, we will pose

G =
(
G1

G2

)
(17)
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where G1 ∈ R
p∗m and G2 ∈ R

(n−p)×m. Note that with this notation, we have

G1 = CG (18)

An observer with unknown inputs exists for this system if and only if the following
two rank conditions are satisfied: [3–5].

Rang(CG) = m (19)

Rang

(
s In − A G

C 0

)
= n + m, ,∀s ∈ C,�e(s) ≥ 0 (20)

We propose in the following to give some developments to show how these condi-
tions are obtained. These developments will be mainly used to bring some comple-
ments on the synthesis of the observer when the number of unknown inputs is equal
to the number of outputs.

The results we will present are described in [4] [3]. We will repeat them with
more details here in the case where the matrix C has the particular structure (but not
restrictive) (16).

The objective is to synthesize an observer that is written in the following form:

∑ {
ż = Nz + Ly + Du

x̂ = z − Ey
(21)

where the observer state z ∈ Rn , x
∧ ∈ R

n is the estimated state of the system x,
N ∈ R

n×n , L ∈ R
n×p, D ∈ R

n×μ, and E ∈ R
n×p are matrices that must be chosen

so that the observation error e = x
∧ − x converges asymptotically to 0.

To do this, let’s pose

P = In + EC (22)

The observation error is then written

e = x̂ − x

= z − Ey − x

= z − (In + EC)x

= z − Px

It follows that
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ė = ż − Pẋ

= Nz + Ly + Du − PAx − PBu − PGv

= N (e + Px) + LCx − PAx − (PB − D)u − PGv

= Ne + (N P − PA + LC)x − (PB − D)u − PGv

(23)

If the matrices N, L, D and E are chosen so that the following conditions are
satisfied

N is Hurwitz matrix (24)

PG = (In + EC)G = 0 (25)

D = PB = (In + EC)B (26)

LC − PA = −N P (27)

Then Eq. (23) becomes

ė = Ne (28)

And the observation error converges asymptotically to 0.
It is now necessary to study under which conditions the choice of matrices N, L

and E verifying (24), (25) and (27) is possible. Note that the matrix D is determined
from E by the relation (26).

Equation (27) can be rewritten as follows

0 = N P + LC − PA

= N (In + EC) + LC − PA ⇒
N = PA − LC − NEC

= PA − (L + NE)C

= PA − KC

(29)

K = L + NE (30)

With
If we replace N by its expression (29) in Eq. (30), we obtain

K = L + (PA − KC)E

Or in an equivalent way
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L = K − (PA − KC)E

= K (Ip + CE) − PAE
(31)

The dynamics of the observer (21) then becomes:

ż = (PA − KC)z + Ly + Du (32)

where thematrices P (or equivalently thematrix E), K, L andD are given byEqs. (25),
(30), (31) and (26). The problem of synthesizing the observer consists in finding a
matrix E satisfying (25) and a vector K so that the matrix PA–KC is a Hurwitz
matrix. This is a similar problem to that of the synthesis of classical observers. The
eigenvalues of the matrix PA–KC can be chosen arbitrarily if and only if the pair
(PA, C) is observable. Otherwise, a vector K such that the observation error (28)
converges asymptotically to 0, exists if and only if the pair (PA, C) is detectable.

We will now discuss the conditions under which the matrix E (or equivalently the
matrix P) exists.

Taking into account the particular structures considered for the C and G matrices
(Eqs. (16) and (17)), Eq. (25) becomes

EG1 = −G (33)

The solution of Eq. (33) depends on the rank of the matrix G1 = CG. Note that
since C is of rank plain with RankC = p and RankG = m, we have RankG1 =
min(p,m). There are two cases to consider:

1. Rank(G1) = p ≺ m
2. Rank(G1) = m ≤ p

Case 1: Rank(G1) = p ≺ m.
In this case, there is no solution for the matrix E. Indeed, the equality (33) cannot

take place since on the one hand we have:

Rank(EG1) ≤ Rank(G1) ≺ m

And on the other hand, we have

Rank(−G) = Rank(G) = m

Since two equal matrices have trivially the same rank, the equation in E (33) does
not admit any solution.

Case 2: Rank(G1) = m ≤ p.
The general solution of (33) is

E = −GG+
1 + Y (Ip − G1G

+
1 ) (34)
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where G+
1 is the left inverse of G1 and Y ∈ R

n×p is an arbitrary matrix. The matrix
P can then be expressed as follows:

P = In + EC

= In − GG+
1 C + Y (IP − GG+

1 )C

= In + YC − GG+
1 C − YCGG+

1 C

= In + YC − (In + YC)GG+
1 C

= (In + YC)(In − GG+
1 C)

(35)

Note that the maximum rank of the matrix,n − m, is obtained when the matrix
(In + YC) is non-singular [3].

We can now summarize the results obtained by the following theorem [3]:

Theorem 1 An observer of type (32) exists for the system (14) if and only if :

(1) Rank(CG) = Rank(G1) = m

(2) Rank

[
s In − PA

C

]
= n,∀s ∈ �e(s) ≥ 0

We now give a second theorem which shows that the results of Theorem (14)
correspond to the conditions generally adopted for the synthesis of the observer (32)
[3]:

Theorem 2 It is assumed that Rank(CG) = Rank(G1) = m and that Rank(P) =
n − m. Then the following four conditions are equivalent:

(1) The pair (PA,C) is detectable (observable);

(2) Rank

[
sP − PA

C

]
= n,∀s ∈ C; �e(s) ≥ 0, (∀s ∈ C);

(3) Rank

[
s In − PA

C

]
= n,∀s ∈ C; �e(s) ≥ 0;

4) Rank

[
s In − A G

C 0

]
= n + m,∀s ∈ C,�e(s) ≥ 0, (∀s ∈ C);

We will now take a closer look at the case m = p, i.e. when the number of outputs
is equal to the number of unknown inputs. This case has been discussed in [4] and
addressed in [3]. In this case we will give very simple conditions for the synthesis of
the observer and we will give more details on the choice of the poles of the observer,
when it exists.

Special case: Rank(G1) = m and p = m.
We will look directly for the matrices N, L and E satisfying the conditions (24),

(25) and (27).
Note that by multiplying each of the members of equality (27) on the right by G,

and taking into account equality (25), we obtain

LCG = PAG
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or equivalently, taking into account the structures of C and G,

LG1 = PAG (36)

Which then becomes the new equation fixing the choice of L.
As m = p and the matrix G1 is square and is invertible. From (33) and (36), we

obtain:

E = −GG−1
1

L = PAGG−1
1

It remains now to study the choice of the matrix N. By noticing that:

LC − PA = PAGG−1
1 C − PA

= PA(GG−1
1 C − In)

= −PA(EC + In)

(37)

= −PAP (38)

Equation (27) becomes

PAP = N P (39)

Given the particular structures of C and G, the matrix

P = In − GG−1
1 C

Has the following topology

P =
[
Im 0
0 In−m

]
−

[
Im 0

G2G
−1
1 0

]

=
[

0 0
−G2G

−1
1 In−m

]

Now considering the following partitions of A and N:

A =
[
A11 A12

A21 A22

]
; N =

[
N11 N12

N21 N22

]

where A11, N11 ∈ R
m×m , A12, N12 ∈ R

m×(n−m), A21, N21 ∈ R
(n−m)×m and

A22, N22 ∈ R
(n−m)×(n−m), we obtain
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PAP =
[

0 0
−(A22 − G2G

−1
1 A12)G2G

−1
1 A22 − G2G

−1
1 A12

]

N P =
[−N12G2G

−1
1 N12

−N22G2G
−1
1 N22

]

Equality (39) thus becomes imposes the following relations:

N12 = 0

N22 = A22 − G2G
−1
1 A12

(40)

We note that the matrix N12 and N22 are imposed by the relations (40). It follows
that a necessary condition for the matrix N to be Hurwitz is that the matrix A22 −
G2G

−1
1 A12 is also Hurwitz. Thus, observer synthesis is only possible if this matrix is

Hurwitz. In this case, only m poles of the observer can be chosen arbitrarily through
the choice of the matrix N11 (we can take N21 = 0). The other poles of the observer
are equal to the eigenvalues of the matrix A22 − G2G

−1
1 A12.

In what follows we will consider a class of nonlinear systems and we will propose
some sufficient conditions that allow either to simply estimate all the states of the
system without any knowledge about the unknown inputs, or to jointly estimate all
the states of the system and all the unknown inputs under the additional assumption
that the first derivative with respect to time of each unknown input is bounded.

• Class of non-linear systems considered:

Let be the following class of multi-input/multi-output nonlinear systems:

{
ẋ = f (u, x) + G(u, s)v

y = Cx = x1
(41)

where the state of the systemx ∈ R
n , x1 ∈ R

p is the output of the system, X ∈ R
n−p

is the part of x containing all unmeasured states; the known input u(t) ∈ U the
set of absolutely continuous functions ‘with bounded derivatives from R

+ into U a

compact ofRv;v ∈ R
m is the unknown input withm ≤ p; f (u, x) =

(
f 1(u, x)
fX (u, x)

)
∈

R
n, f 1(u, x) ∈ R

p, fX (u, x) ∈ R
n−pandG(u, s) =

(
G1(u, s)
GX (u, s)

)
is a matrix of

dimension n × m where G1(u, s)andGX (u, s) are respectively of dimension p ×
mand(n − p) × m matrices; s(t) is a known bounded signal whose first derivative
with respect to time is also bounded; finallyC = [

Ip 0p×(n−p)

]
.

• Observer synthesis procedure:

For observer synthesis, we adopt the following assumptions:
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(H1) The matrix G1(u, s(t)) is full rank in columns for all u ∈ U and for all
t ≥ 0.

(H2)The derivative with respect to time of the unknown input v(t) is a completely
unknown function,ε(t), which is uniformly bounded, i.e., sup

t≥0
‖ε(t)‖ ≤ βε where

βε > 0 is a strictly positive unknown real.

7 Conclusion

In this chapter, the notion of observability and observer for linear systems is
presented, also the notion of sliding mode is introduced. how to design an observer
for a linear dynamical system under the influence of unknown inputs is shown. The
determination of the gain of the observer to guarantee its convergence leads to the
resolution of a problem of the LMI type (bilinear matrix inequalities). The resolution
of these LMI constraints is performed by the method based on a change of variables
and which allows to determine the matrices describing the observer.
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Luenberger Observer of Impulsive
Systems: A Survey

Boulbaba Ghanmi

Abstract In this chapter, some results on the state estimation of impulsive systems
have been conducted. This problem is rarely tackled for this class of systems by
researchers and they have designed an observer in the case of autonomous impulsive
linear systems. Indeed, only E. A. Medina considered in [1], and [2] an observer
in the case of autonomous impulsive linear systems, under the condition of strong
observability.

1 Introduction

Hybrid systems, in particular, impulsive systems, have been the object of some atten-
tion in the scientific community for some years [3–5], During the last decades, an
important part of the research activities in automation has been focused on the prob-
lem of state observation of nonlinear dynamical systems. This is motivated by the
fact that state estimation is an important or even indispensable step in the synthesis
of control laws, for the diagnosis or the supervision of industrial systems. Recently,
other applications such as synchronization and decryption in communication sys-
tems have become one of the most dynamic research areas. In this context, we have
conducted research on the state estimation of impulsive systems. This problem is
rarely tackled for this class of systems. Indeed, only E. A. Medina considered in
[1, 2] an observer in the case of autonomous impulsive linear systems, under the
condition of strong observability, which we do not do in [6].
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2 Observability—Observers

As for ordinary differential systems, observability and state reconstruction are two
central notions in control theory.

2.1 Observability Criteria

The observability of a process is a very important concept. Indeed, in order to recon-
struct the state of a system, it is necessary to know, a priori, if the state variables
are observed or not. In particular, from an automatic point of view, the problem of
observability consists in deciding if the state variables intervening in a model can be
determined according to the inputs and outputs supposed to be perfectly known. We
will now explain the conditions of observability in the general case of ordinary differ-
ential systems, which will be used in the construction of observers in the impulsive
case later on. Let the system described by

{
ẋ = f(x, u),
y = h(x),

(1)

with x ∈ R
n is the state vector, u ∈ R

m is the input vector, y ∈ R
p is the output

vector, f : Rn × R
m → R

n.

Definition 1 The system (1) is said to be observable on the interval [t0, t f ], if any
initial condition x(t0) = x0 is uniquely determined by the input u(t) and output y(t)
corresponding to the system for t ∈ [t0, t f ].

To define better this notion of observability, it is first necessary to define the notion
of indiscernibility.

Definition 2 (Indiscernibility) Two distinct initial states x0 and x0 are said to be
indistinguishable if, for any input function u(t) and for all t ≥ t0 ≥ 0, the resulting
outputs h(x(t, x0, t0)) and h(x(t, x0, t0)) are equal.

This means that from two different initial conditions, the output of the system is
the same in both cases, and this is for the same applied command. Thus

Definition 3 (Observability) The system (1) is said to be observable if it does not
have any pair of distinct indistinguishable initial states.

There exists a very simple algebraic characterization of observability in the case of
linear autonomous systems {

ẋ(t) = Ax+Bu,
y(t) = Cx

(2)

where A, B and C are matrices of dimensions n × n, n × m, p × n respectively. In
the literature, there is no such simple and strong criterion as the rank condition or
the Kalman observability criterion stated in the following theorem.
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Theorem 1 The system (2) is observable if and only if the observability matrix

O =

⎡
⎢⎢⎢⎣

C
CA
...

CAn−1

⎤
⎥⎥⎥⎦

has rank n. We then say that the pair (A,C) is observable.

The linear time-varying systems

{
ẋ(t) = A(t)x+B(t)u,
y(t) = C(t)x.

(3)

with bounded matrices A(t), B(t), and C(t) also benefit from a quite convenient
criterion to check.

Theorem 2 The system (3) is said to be completely uniformly observable if there
exist α > 0 and t0 > 0 such that for all t ≥ 0, we have

�(t, t + t0) =
∫ t+t0

t
XT (s, t)CT (s)C(s)X (s, t)ds ≥ α.I

where X (t, t0) is the resolvent verifying (3).

The matrix �(t, t + t0) is called the observability Grammien of the system (3).
Complete observabilitymeans that the system is observable at every instant.When the
model considered is non-linear, the task becomes more difficult. Indeed, in general,
the observability of this type of system is not sufficient to synthesize an observer
in the following. To overcome this difficulty, we will use particular structures such
as the nonlinear affine systems in the control, mono output given by the following
equation

� :

⎧⎪⎨
⎪⎩
ẋ(t) = f (x(t)) +

m∑
i=1

ui (t)gi (t)

y(t) = h(x(t))

with x ∈ � ⊂ R
n , u ∈ U ⊂ R

m , y ∈ Rwhere� is an open, relatively compact phys-
ical domain in which the state of the system evolves and we are interested in the
observability problem. U is the set of admissible values of the input. Otherwise, U is
the set of measurable and bounded inputs u(t). In this paragraph, we seek to prove a
canonical normal form of observability by means of changes of bases. To do so, let
us first consider the function
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φ : Rn −→ R
n

x �−→

⎛
⎜⎜⎜⎝

h(x)
L f h(x)

...

Ln−1
f h(x)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
z1
z2
...

zn

⎞
⎟⎟⎟⎠ = z

where Lk
f , k = 1, . . . , n − 1 denotes the successive Lie derivatives with respect to

the vector field f :

L f (h) =
n∑

i=1

fi (x)
∂h

∂xi
(x),

which transforms the system � into

(�)

{
ż(t) = Az + ϕ(z) + uϕ̃(z)
y = Cz

with

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · · · · 0
... 0 1 0 · · · ...
...

... 0
. . . 0

...
...

. . .
. . .

. . .
. . .

. . .

0 · · · · · · · · · · · · 1
0 · · · · · · · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, C = (
1 0 · · · 0) ,

ϕ(z) =

⎛
⎜⎜⎜⎝

0
.
.
.

0
ϕn(z)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0
.
.
.

0
Ln−1

f h(φ−1(z))

⎞
⎟⎟⎟⎠ , ϕ̃(z) =

⎛
⎜⎜⎜⎝

ϕ̃1(z)
ϕ̃2(z)

.

.

.

ϕ̃n(z)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Lgh(φ−1(z))
LgL f h(φ−1(z))

.

.

.

LgL
n−1
f h(φ−1(z))

⎞
⎟⎟⎟⎠ .

In the following, we will present a very practical result, due to Gauthier and
Bornard [7], which consists in giving a necessary and sufficient condition for the
uniform local observability of the system �.

Theorem 3 ([7]) Suppose that the chosen function φ is a diffeomorphism from �

onto φ(�), that the functions φ, ϕ, ϕ̃ can be extended from � on R
n by globally

Lipchitzian functions (respectively to any norm)(or functions of class C∞) and that
the system (�) is complete for all admissible (measurable bounded) input functions
with values in U , then the system (�) is uniformly locally observable if and only if
the function ϕ̃ is of the form :
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ̃1(z) = ϕ̃1(z1)
ϕ̃2(z) = ϕ̃2(z1, z2)

...

ϕ̃n(z) = ϕ̃n(z1, . . . , zn)

By analogy, the notion of observability is generalized to the case of impulsive sys-
tems, in the sense of Definition 1. Recently, for this class of systems, few criteria
are provided in the general case, except some results for the linear time-varying and
time-invariant case. For a detailed study of this concept in the impulsive case, the
interested reader is referred to the works [1, 8–11]. For example, the result is due
to Medina. Medina and Lawrence [1, 9], consists in characterizing geometrically
reachable and unobservable sets in terms of invariant subspaces and in providing
algorithms for their construction. With the same geometrical approach in 2005, Xie
and Wang [10] provided criteria for controllability and observability. In 2002, Guan
et al. [8] established a necessary and sufficient condition of observability of the
non-autonomous linear system described by

ẋ(t) = A(t)x(t) + B(t)u(t), t ∈ [tk−1, tk),
�x(tk) = Dkx(t

−
k ), k ∈ N

y(t) = C(t)x(t) + D(t)u(t), t ∈ [tk−1, tk),
(4)

where A(t), B(t),C(t), D(t) are continuous matrices of appropriate dimensions and
∀k ≥ 1, Dk = dk .I , dk ∈ R. The result is stated in the following theorem

Theorem 4 ([8]) Suppose that ∀ k ≥ 1, 1 + dk ≥ 0. Then the system (4) is observ-
able on the interval [t0, t f ], (t f ∈ (tk, tk+1]) if and only if the matrix

M(t0, t f ) := M(t0, t0, t1) +
k−1∑
i=1

i∏
j=1

(I + Dj )M(t0, ti , ti+1)

+
k∏
j=1

(I + Dj )M(t0, tk, t f )

is invertible, where

M(t0, ti , ti+1) :=
ti+1∫
ti

X T (s, t0)C
T (s)C(s)X (s, t0)ds,

i = 0, . . . , k − 1

M(t0, tk, t f ) :=
t f∫

tk

XT (s, t0)C
T (s)C(s)X (s, t0)ds
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From this theorem, a criterion ofKalman type in the case of an autonomous system
is given in the next corollary

Corollary 1 ([8]) Under the same conditions of Theorem 4 with A(t) = A and
C(t) = C constant matrices, the system (4) is observable if and only if the rank
condition is verified.

2.2 Definition and Role of an Observer

In the field of command, diagnosis, and monitoring, full or partial knowledge of
the state at any given time is necessary to achieve such objectives. In practice, this
requirement is difficult to meet, as an online measurement of these variables is often
very expensive and sometimes impossible. Therefore, as soon as a control strategy
requires the use of unmeasured state variables, it is essential to build an observer. The
latter is an auxiliary dynamic system whose inputs consist of the input vector u(t)
and the output vector y(t) of a system. The role of the observer or state estimator
is to give an estimate x̂(t) of the state vector x(t).The state reconstructor must have
certain properties. In particular, the estimation error denoted e = x − x̂ must tend
to 0 as time tends to infinity, otherwise, lim

t→+∞ ‖e(t)‖ = 0. Generally, it is desired

that, if the observer is initialized to the same initial conditions as the system to be
observed (x̂(0) = x(0)) then for any t ≥ 0, x̂(t) = x(t). Finally, the synthesis of an
observer thus remains a difficult issue although very important in practice.

3 The Conception of Observers for Impulsive Systems

3.1 Different Types of Continuous Observers: State of the Art

Initially, the systems addressed were linear systems, for which the Kalman and Luen-
berger observers gave good results. The Kalman filter is used in the case of stochas-
tic systems by minimizing the covariance matrix of the estimation error, and the
Luenberger observer has been used for deterministic linear systems. In the case of
nonlinear systems, state observation is a bit trickier and there is currently no uni-
versal method for the synthesis of observers.The possible approaches are either an
extension of linear algorithms or specific nonlinear algorithms. In the first case, the
extension is based on a linearization of the model around an operating point. For the
case of specific nonlinear algorithms, the numerous researches carried out on this
subject (see [12, 13]) have given birth to many observation algorithms.

1. Non-linear transformation methods: This technique uses a change of coordinates
to transform a non-linear system into a linear system. Once such a transformation
is done, the use of a Luenberger type observer will suffice to estimate the state of
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the transformed system, and thus the state of the original system using the inverse
coordinate change.

2. Extended observers: In this case, the calculation of the gain of the observer is
done from the linearized model around an operating point. This is for example
the case of the extended Kalman filter and the extended Luenberger observer.

3. High gain observers: This type of observer is generally used for Lipschitzian
systems. Its name is due to the fact that the gain of the chosen observer is large
enough to compensate for the non-linearity of the system.

4. Generalized Luenberger Observers (GLO): This is a new type of observer that
has been recently proposed for the class of autonomous systems. This new design
consists of adding to the Luenberger observer a second gain inside the nonlinear
part of the system.

5. Observers based on the contraction theory: This type of observer, as its name indi-
cates, is based on the contraction theory used as a tool for convergence analysis.
This technique leads to new synthesis conditions different from those provided
by the previous techniques.

3.2 Luenberger-Type Observer of Impulsive Systems

Theobjective of this section is to extend the results of the construction of observers for
usual systems, to a more general class, which is none other than impulsive systems.
These observers are based on the outputs available in continuous time. Let us consider
in this section the following system:

ẋ(t) = Ax(t) + Bu(t), t ∈ [tk−1, tk),
�x(tk) = Dkx(t

−
k ),

y(t) = Cx(t), t ∈ t �= tk,
(5)

where x ∈ R
n is the state, u ∈ R

m is the control, y ∈ R
p is the output, and the

matrices A, B, Dk , and C have appropriate dimensions such that ‖Dk‖ ≤ d,∀k ≥ 1.
We assume that the sequence of impulses t0, t1, ... is increasing and that there exists
a constant τ > 0 such that tk+1 − tk > τ . Furthermore, we assume that the pairs
(A, B) and (AT ,CT ) verify the Kalman condition already stated in Theorem 2.4. In
this section, we are interested in the construction of a Luenberger-type exponential
observer, which we denote x̂ , i.e., a dynamical system is driven by the observations
y and state x̂ such that x(t) − x̂(t) tends to 0 when t tends to infinity. The idea is to
copy the dynamics of the observed system and to add a term taking into account the
difference between the prediction and the reality. We first establish a key lemma that
will be useful in the construction of the observer.

Lemma 1 [14] Assume that the pair (A,C) is observable. Then, for all λ > 0, there
exists a gain matrix L such that the exponential of the matrix Ã = A − LC verifies
the inequality
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‖et Ã‖ ≤ μe−λt ∀t ≥ 0 (6)

with μe− λτ
2 d ≤ 1.

Remark 1 [14] It should be noted that it is the choice of the eigenvalues λi that
conditions the stability and convergence performances of the observer, which we
construct in the following paragraph.

In this sense and analogously to the continuous observer, we consider a Luenberger
observer of the following form:

˙̂x(t) = Ax̂(t) + Bu(t) + LC(x(t) − x̂(t)), t ∈ [tk−1, tk),
x̂(tk) = Dk x̂(t

−
k ).

(7)

Thus the error equation is :

ė(t) = (A − LC)e(t), t ∈ [tk−1, tk),
�e(tk) = Dke(t

−
k ).

(8)

Theorem 5 [14] Suppose the pair (A,C) is observable and there exist constants
d > 0, τ > 0 such that ‖Dk‖ ≤ d, tk−1 − tk > τ , ∀k ≥ 1. Then, one can choose the
gain matrix L such that the system (8) is globally exponentially stable. Moreover, the
speed of convergence can be arbitrarily large depending on the choice of the matrix
L.

3.2.1 Stabilization and Separation Principle

The origin of the term “Separation Principle” comes from the study of the stability of
autonomous linear systems commanded by estimating state feedback. Let a process
be modeled in the state formalism by ordinary differential equations. Let be a state
feedback control that stabilizes the considered process. Because of technical reasons,
costs,..., the knowledge of thewhole state is not available. Therefore, it is not possible
to compute this stabilizing command law. A way out lies in the construction of an
estimate of the state variables. The fundamental question is: does the command cal-
culated from the estimates still stabilize the looped system? For non-linear systems,
this is generally not the case.

Stabilization: Consider the impulsive linear system

ẋ(t) = Ax(t) + Bu(t), t �= tk,
x(tk) = Dkx(t

−
k ), k ∈ N,

Y (t) = Cx(t) + Du(t), t ∈ [tk−1, tk),
(9)

The objective of this section is to construct a linear control law u = Kx that expo-
nentially stabilizes the closed-loop system
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{
ẋ = (A − BK )x
x(tk) = Dkx(t

−
k )

(10)

Theorem 6 [14] If we assume that the pair (A, B) is controllable and there exists
a constant d > 0 such that ‖Dk‖ ≤ d, ∀k ≥ 1, then we can choose a gain matrix K
such that the closed-loop system (10) is globally exponentially stable. Moreover, the
speed of convergence can be arbitrarily large as one wants, depending on the choice
of matrix K.

Separation principle: We have seen previously that it is possible, under certain
natural assumptions, to construct a stabilization law and an observer for the system
(5), in this section we will show a separation principle. Let K be a gain matrix such
that the system (10) is exponentially stable and L a gain matrix chosen such that
the system (7) is an exponential observer of (5). We consider the following system
obtained by joining the system (10) and (5).

⎧⎪⎪⎨
⎪⎪⎩

ẋ = Ax − BK x̂
˙̂x = Ax̂ − BK x̂ − L(Cx̂ − y)
x(tk) = Dkx(t

−
k )

x̂(tk) = Dk x̂(t
−
k )

In order to show that the origin (0, 0) of this system is exponentially stable, we can
rewrite it by considering e = x̂ − x :

⎧⎪⎪⎨
⎪⎪⎩

ẋ = (A − BK )x − BKe
ė = (A − LC)e
x(tk) = Dkx(t

−
k )

ê(tk) = Dkê(t
−
k )

(11)

Theorem 7 [14] Assume that the pairs (A, B) and (A,C) are controllable and
observable respectively and that there exists a constant d > 0 such that ‖Dk‖ ≤ d,
∀k ≥ 1. Thus, one can choose the gain matrices K and L such that the system (11) is
exponentially stable.

3.2.2 Luenberger-Type Observer for a Class of Perturbed Systems

In this section, we propose to study a family of autonomous systems which is a
linear impulsive autonomous system perturbed by a continuous or piecewise contin-
uous or piecewise continuous time-varying matrix. We claim, in fact, to construct a
Luenberger observer for the system described by
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ẋ(t) = Ax(t) + Bu(t) + P(t)x(t), t ∈ [tk−1, tk),
�x(tk) = Dkx(t

−
k ) + Jkx(t

−
k ),

x(t+0 ) = x0, t0 ≥ 0,
(12)

with A ∈ R
n×n , B ∈ R

n×n , P(t) ∈ R
n×n is a matrix that can be continuous or piece-

wise continuous for all t ≥ t0 and Jk ∈ R
n×n is a constant matrix. Moreover, we

have
(H1) for rank k and time t large enough, ‖P(t)‖ < ξ, ‖Jk‖ < ξ.
(H2) 0 < τ1 ≤ tk − tk−1 ≤ τ2, ∀k ≥ 1.
Then let the next observer be.

˙̂x(t) = Ax̂(t) + Bu(t) + P(t)x̂(t) + LC(x(t) − x̂(t)), t ∈ [tk−1, tk),
�x̂(tk) = Dk x̂(t

−
k ) + Jk x̂(t

−
k ),

(13)

In fact, this observer realizes a compromise between the information on the state
provided by the measurements (more or less tainted by errors) and the prediction of
the state provided by the system (13). Thus the dynamics of the error is given by

ė(t) = (A − LC)e(t) + P(t)e(t), t ∈ [tk−1, tk),
�e(tk) = Dke(t

−
k ) + Jke(t

−
k ),

Theorem 8 [14] Assume that the system (12) is observable and that properties (H1)

and (H2) are verified. Let the matrix L be chosen such that the inequalities of Lemma
3.1 are verified. Then the system (13) is an exponential observer for the perturbed
linear system (12).

3.3 Observers for Nonlinear Impulsive Systems

3.3.1 Extended Kalman Filter for a Class of Nonlinear Impulsive
Systems Linear Systems

In this section, we focus on the case of autonomous nonlinear systems, which have
already been treated by Gauthier and Kupka, but with impulses made at times (tk)k≥1

in three different ways. Assume that (H1) The system � is globally in the normal
form (�).

(H2) The functions ϕ and gi , 1 ≤ i ≤ n are globally Lipschitzian respectively at
xi = (x0, . . . , xi ).

This is a nonlinear system to which we add a quantity of matter p > 0 at (tk)k≥1

reset times. We are interested precisely in the first instance in the system described
by
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ẋ(t) = Ax(t) + b(x, u), t ∈ [tk−1, tk),
x(t+k ) = x(t−k ) + p,
y(t) = Cx(t), t ∈ [tk−1, tk),

(14)

with A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · · · · 0
... 0 1 0 · · · ...
...

... 0
. . . 0

...
...

. . .
. . .

. . .
. . .

. . .

0 · · · · · · · · · · · · 1
0 · · · · · · · · · · · · ϕ(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, b(x, u) = u

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

g1(x1)
g1(x1, x2)

...

...

gn−1(x1, . . . , xn−1)

gn(xn)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, C =

(
1 0 · · · 0) and p ∈ R

+.

Let now, Q ∈ R
n×n be a symmetric positive definite matrix, r, θ positive reals. So lets

construct the matrices �θ = diag(1, 1
θ
, ..., ( 1

θ
)n−1) and Qθ = θ2(�θ)

−1Q(�θ)
−1.

Let the extended Kalman filter be given by

ż(t) = Az(t) + b(z, u) − S−1(t)CTr−1(Cz − y(t)), t ∈ [tk−1, tk),
z(t+k ) = z(t−k ) + p,
dS(t)
dt = −AT S − SA + CTr−1C − SQθS.

(15)

Denote ε(t) = z(t) − x(t). The error system is continuous and given by :

ε̇(t) = Aε(t) + (b(ε + z, u) − b(z, u)) − S−1(t)CT r−1(Cz − y(t)), t ∈ [tk−1, tk),
ε(tk) = ε(t−k ).

(16)

Theorem 9 [14] Under assumptions (H1) and (H2), for some real θ > 1 and for
all t0 > 0, the extended Kalman filter (15), verifies ∀t ≥ t0

θ

‖ε(t)‖ ≤ θn−1k(t0)‖ε( t0
θ

)‖e−(θω(t0)−μ(t0))(t− t0
θ )

for continuous functions k(t0), ω(t0), μ(t0).

If we place in a more general case of systems that are described by

ẋ(t) = Ax(t) + b(x, u), t ∈ [tk−1, tk),
�x(tk) = s(x(t−k )),

y(t) = Cx(t) t ∈ [tk−1, tk),
(17)

where the matrices A, C, and the function b are defined as before (in the first case), as
well as the function s(.) is assumed globally Lipchitzian of Lipchitz constant equal
to λ. Let then be the following extended Kalman filter
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˙̂x(t) = Ax̂(t) + b(x̂, u) − S−1(t)CTr−1(Cx̂ − y(t)), t ∈ [tk−1, tk),
�x̂(tk) = s(x̂(t−k )),
dS(t)
dt = −AT S − SA + CTr−1C − SQθS.

(18)

Write ε(t) = x(t) − x̂(t). This gives the following error equation

ε̇(t) = Aε(t) + (b(ε + x̂, u) − b(x̂, u)) + S−1(t)CT r−1(Cx̂ − y(t)), t ∈ [tk−1, tk),
�ε(tk) = s(x̂(tk) + ε(tk)) − s(x̂(tk)

(19)

Theorem 10 [14] By assumptions (H1) and (H2), for some real θ > 1 and for all
t0 > 0, the extended Kalman filter (18) is an exponential observer for the system
(17). Moreover, it verifies ∀ t ≥ t0

‖ε( t
θ
)‖ ≤ β(t0)

α(t0)

√ ∏
t0<tk<t

(1 + λ)2‖ε( t
θ
)‖ exp −1

2

(
Qmα(t0)− β(t0)

α(t0)
L
θ

)
(t − t0), ∀ t ≥ t0.

Now consider the system described by

ẋ(t) = Ax(t) + b(x, u), t ∈ [tk−1, tk),
�x(t+k ) = pkx(t

−
k ),

y(t) = Cx(t) t ∈ [tk−1, tk),
(20)

where the matrices A, C and the function b are denoted as before (in the first case),
as well as p ≥ pk ≥ 0. The extended Kalman filter is the following

˙̂x(t) = Ax̂(t) + b(x̂, u) − S−1(t)CTr−1(Cx̂ − y(t)), t ∈ [tk−1, tk),
�x̂(t+k ) = x̂(t−k ) + pk x̂(t

−
k ),

dS(t)
dt = −AT S − SA + CTr−1C − SQθS.

(21)

Write ε(t) = x̂(t) − x(t). This gives the following error equation

ε̇(t) = Aε(t) + (b(ε + x̂, u) − b(x̂, u)) + S−1(t)CT r−1(Cx̂ − y(t)), t ∈ [tk−1, tk),
�ε(t+k ) = ε̂(t−k ) + pk ε̂(t

−
k )

(22)

Corollary 2 [14] By assumptions (H1) and (H2), for some real θ > 1 and for all
t0 > 0, the extended Kalman filter (21) is an exponential observer for the system
(20). Moreover, it verifies ∀ t ≥ t0

‖ε( t
θ
)‖ ≤

√
β(t0)

α(t0)

∏
t0<tk<t

(1 + p)‖ε( t
θ
)‖ exp −1

2

(
Qmα(t0)− β(t0)

α(t0)
L
θ

)
(t − t0), ∀ t ≥ t0.
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3.3.2 Another Type of Observer for a Class of Nonlinear Impulsive
Systems

In this section, we will give other observers for the same classes of systems studied
in the previous section. First, we focus on the system described by

ẋ(t) = Ax(t) + b(x, u), t ∈ [tk−1, tk),
x(t+k ) = x(t−k ) + p,
y(t) = Cx(t), t ∈ [tk−1, tk),

(23)

with A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · · · · 0
... 0 1 0 · · · ...
...

... 0
. . . 0

...
...

. . .
. . .

. . .
. . .

. . .

0 · · · · · · · · · · · · 1
0 · · · · · · · · · · · · ϕ(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, b(x, u) = u

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

g1(x1)
g1(x1, x2)

...

...

gn−1(x1, . . . , xn−1)

gn(xn)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, C =

(
1 0 · · · 0) and p ∈ R

+. Suppose further that assumptions (H1), (H2) are satis-
fied,
(H1) The system is globally in normal form (�).
(H2) The functions ϕ and gi , 1 ≤ i ≤ n are globally Lipschitzian respectively at
xi = (x0, ..., xi ).

Let St (θ) ∈ �+: be the cone of positive definite symmetric matrices, such that

Ṡt (θ) = −θSt (θ) − A′St (θ) − St (θ)A + C ′C

and let S∞(θ) = lim
t→∞ St (θ). Let then be the dynamic system given by

ż(t) = Az(t) + b(z, u) − S∞(θ)−1(t)C ′r−1(Cz − y(t)), t ∈ [tk−1, tk),
z(t+k ) = z(t−k ) + p,
0 = −θS∞(θ) − A′S∞(θ) − S∞(θ)A + C ′C.

(24)

Write ε(t) = z(t) − x(t). The error system is continuous and is given by:

ε̇(t) = Aε(t) + (b(ε + z, u) − b(z, u)) + S∞(θ)−1(t)CT r−1(Cz − y(t)), t ∈ [tk−1, tk),
ε(t+k ) = ε(t−k ).

(25)

Theorem 11 [14] Under assumptions (H1) and (H2), for uniformly bounded inputs
u by u0, t0 > 0, system (24) is an exponential observer for system (23), and for θ
sufficiently large, we have ∀t ≥ t0
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‖ε(t)‖ ≤
√

λmax(S∞(θ))

λmin(S∞(θ))
‖ε(t0)‖e− 1

2 (θ−2kn
√
C1S)(t−t0)

Now let’s place ourselves in a more general case of systems that are described by

ẋ(t) = Ax(t) + b(x, u), t ∈ [tk−1, tk),
�x(tk) = s(x(t−k )),

y(t) = Cx(t) t ∈ [tk−1, tk),
(26)

where the matrices A, C, and the function b are defined as before (in the first case), as
well as the function s(t) is assumed globally Lipchitzian of Lipchitz constant equal
to λ > 0. Let then be the following extended Kalman filter

ż(t) = Az(t) + b(z, u) − S∞(θ)−1(t)C ′(Cz − y(t)), t ∈ [tk−1, tk),
�z(tk) = s(z(t−k )),
dS(t)
dt = −AT S − SA + CTr−1C − SQθS.

(27)

Write ε(t) = x(t) − z(t). This gives the following error equation

ε̇(t) = Aε(t) + (b(ε + z, u) − b(z, u)) + S−1(t)CT r−1(Cz − y(t)), t ∈ [tk−1, tk),
�ε(tk) = s(z(tk) + ε(tk)) − s(z(tk)

(28)

Theorem 12 [14] Under assumptions (H1) and (H2), for uniformly bounded inputs
u by u0, t0 > 0, system (27) is an exponential observer for system (26), and for θ
sufficiently large, we have ∀t ≥ t0

‖ε(t)‖ ≤ λmax(S∞(θ))

λmin(S∞(θ))

∏
t0<tk<t

(1 + λ)‖ε(t0)‖e
−

(
θ−2kn

√
C1 S

2

)
(t−t0)

, ∀t ≥ t0

As in the previous section, we can consider a special case of systems described
by

ẋ(t) = Ax(t) + b(x, u), t ∈ [tk−1, tk),
x(t+k ) = x(t−k ) + px(t−k ),

y(t) = Cx(t), t ∈ [tk−1, tk),
(29)

where the matrices A, C , and the function b are denoted as before, as well as p ≥ 0.
Let the following observer be

ż(t) = Az(t) + b(z, u) − S∞(θ)−1(t)C ′(Cz − y(t)), t ∈ [tk−1, tk),
z(t+k ) = z(t−k ) + pz(t−k ),

0 = −θS∞(θ) − A′S∞(θ) − S∞(θ)A + C ′C.

(30)

Note by ε(t) = x(t) − z(t). This gives the following error system:
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ε̇(t) = Aε(t) + (b(ε + z, u) − b(z, u)) + S−1(t)CT r−1(Cz − y(t)), t ∈ [tk−1, tk),
ε(t+k ) = ε(t−k ) + pε(t−k ).

(31)

Corollary 3 [14] Under assumptions (H1) and (H2), for uniformly bounded inputs
u by u0, t0 > 0, system (30) is an exponential observer for system (29), and for θ
sufficiently large, we have ∀t ≥ t0

‖ε(t)‖ ≤
√

λmax(S∞(θ))

λmin(S∞(θ))

∏
t0<tk<t

(1 + p)‖ε(t0)‖e− 1
2 (θ−2kn

√
C1S)(t−t0)
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Compensator Design Via the Separation
Principle for a Class of Nonlinear
Uncertain Evolution Equations
on a Hilbert Space

Hanen Damak

Abstract The compensator design via the separation principle for evolution equa-
tions in Hilbert spaces has been the subject of several studies. Under uniformly Lip-
schitz continuous perturbation, we propose a non-linear time-varying Luenberger
observer to estimate the system states and we prove that the Luenberger observer
based on linear controller stabilizes the system. These results are applied to partial
differential equations.

Keywords Compensator design · Luenberger observer · Hilbert spaces ·
Uncertain evolution equations · Stabilization
2000 Mathematics Subject Classification 93C10 · 93C25 · 93B15

1 Introduction

The feedback compensator design of partial differential equations has been attract-
ing a lot of attention (see [3–5, 8, 9, 24]) over the past few decades. For linear
systems this problem is completely solved (see [4, 9]), but if the system contains
some non-linearities as perturbation or disturbances, the problem in observer design
still remains a difficult task. The theory of compensator design is a straightforward
extension of the finite dimensional theory and has been used as a starting point in
many control designs for distributed parameter systems, see [17, 19, 21, 25]. Alter-
native direct state-space finite-dimensional compensator designs can be found in [3,
7]. For extensions to systems with unbounded input and output operators (see [5,
8]), and for a comparison of various finite-dimensional control designs, see [6]. In
recent years, non-autonomous differential equations on infinite-dimensional spaces
have been studied by many researchers, see [8–10, 12–15] for more details. The
authors in [24] give an observer-based output feedback design for linear parabolic

H. Damak (B)
Department of Mathematics, Faculty of Sciences of Sfax, University of Sfax, Road of Soukra
BP:1171, 3000 Sfax, Tunisia

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
O. Naifar and A. Ben Makhlouf (eds.), Advances in Observer Design and Observation
for Nonlinear Systems, Studies in Systems, Decision and Control 410,
https://doi.org/10.1007/978-3-030-92731-8_6

87

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92731-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-92731-8_6


88 H. Damak

partial differential equation (PDE) with local piecewise control and pointwise obser-
vation in space. In [14], we showed that we can find an exponentially stabilizing
compensator for a class of semilinear evolution equations if and only if the nominal
system is exponentially stabilizable and detectable. However, the problem of stabi-
lization of the infinite-dimension time-varying control systems in Hilbert spaces has
been presented in [10, 12, 15]. In finite dimensions one simple way of designing a
compensator is to first construct a state feedback stabilizer and an observer for the
system and then to combine the two to design a compensator using a feedback of the
observer instead of the state. This is the so-called separation principle, see [1, 2, 11,
16, 18, 20, 22].

The main contribution of this chapter is the study of the problem of feedback sta-
bilization for a class of nonlinear uncertain evolution equations via a state controller.
More specifically, we design a non-linear observer to estimate the system states. Fur-
thermore, we prove a compensator design, that is, we use the measurements (partial
information) to estimate the full state (the construction of an observer) and to apply
state feedback on the estimated state.

The organization of the rest of this chapter is given as follows. The system descrip-
tion, notations and some preliminary results are presented in Sect. 2. The required
assumptions and the statement of the main results are provided in Secti. 3. In Sect. 4,
an example of application of the result is given. Finally, our conclusion is presented
in Sect. 5.

2 Preliminaries

Notations.R+ denotes the set of all non-negative real numbers, H denotes a Hilbert
space with the norm ‖.‖ and the inner product 〈..〉. Also,
• L(X) (respectively, L(X,Y )) denotes the space of all linear bounded operators S
mapping X into X (respectively, X into Y ) endowed with the norm

‖S‖ = sup{‖Sx‖ : x ∈ X, ‖x‖ ≤ 1}.

• The domain and the adjoint of an operator A are denoted by D(A) and A∗ respec-
tively. I as the identity operator.

• C([0,∞), H) denotes the space of all continuous functions from [0,∞) to H.

• 1[ϑ,ζ] =
{
1, si ϑ ≤ x ≤ ζ
0, elsewhere.

Consider the infinite-dimensional controlled system of the form:

⎧⎨
⎩
ẋ(t) = Ax(t) + Bu(t) + F(t, x), t ≥ 0,

y = Cx,
(1)
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where x ∈ H is the system state, u ∈ U is the control input, y ∈ Y is the mea-
sured output. H, U and Y are assumed to be Hilbert spaces. Further, the operator
A : D(A) ⊂ H → H is the generator of a C0−semigroup over H with a domain of
definition D(A), B ∈ L(U, H) ,C ∈ L(H,Y ) and F : R+ × H −→ H is a nonlin-
ear function and F(t, 0) = 0.

Given an initial condition
x(t0) = x0 ∈ H.

Let x(t) = x(t, t0, x0, u) denote the state of system (1) at moment t ≥ t0 ≥ 0 asso-
ciated with an initial condition x0 ∈ X at t = t0 and input u ∈ U.

We consider mild solutions of (1), i.e. solutions of the integral equation

x(t) = T (t − t0)x0 +
t∫

t0

T (t − s)[Bu(s) + F(s, x(s))]ds, (2)

belonging to the class C([t0, t0 + δ], H) for certain δ > 0. Here {T (t), t ≥ 0} is a
C0− semigroup on a Hilbert space H with an infinitesimal generator A : D(A) ⊂
H → H, Ax = lim

t−→0+

T (t)x − x

t
, whose domain of definition D(A) consists of

those x ∈ H, for which this limits exists.
We will use the following assumption concerning nonlinearity F.

(H1) The function F : R+ × H −→ H is continuous and there exists K (.) ∈ L1

(0,∞), such that

‖F(t, x) − F(t, y)‖ ≤ K (t)‖x − y‖

holds for all x, y ∈ H.

The corresponding system without perturbations, called the nominal system, is
described by

ẋ(t) = Ax(t), x(0) = x0, t ≥ 0. (3)

Next, we recall the definition of the generator of an exponentially stable semi-group
as well as that of the exponential stabilizability and detectability, see Curtain and
Zwart [9] for details.

Definition 1 The operator A generates an exponentially stable semigroup T (t) if
the initial value problem (3) has a unique solution x(t) = T (t)x0, and

‖T (t)‖ ≤ Me−αt , for all t ≥ 0,

with some positive numbers M and α.
The α is called the decay rate.
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If T (t) is exponentially stable, then the solution to the abstract Cauchy problem (3)
tends to zero exponentially as t −→ ∞.

An important criterion for exponential stability is the following.

Lemma 1 The C0−semigroup T (t) on H is exponentially stable if and only if for
every x ∈ H, there exists a positive constant γx , such that

∞∫
0

‖T (t)x‖2dt ≤ γx .

Definition 2 The pair {A, B} is said to be exponentially stabilizable if there exists
a feedback operator D ∈ L(H,U ), such that the operator A + BD generates an
exponentially stable semigroup TBD.

Definition 3 The pair {A,C} is said to be exponentially detectable if there exists an
output injection operator L ∈ L(Y,U ), such that the operator A + LC generates an
exponentially stable semigroup TLC .

To study stability properties of (1) with respect to external inputs, we use the notion
of stabilizability.

Definition 4 System (1) is stabilizable if there exists a continuous feedback con-
trol u : X → U, such that system (1) with u(t) = u(x(t)) satisfies the following
properties:

(i) For any initial condition x0 ∈ H, there exists a unique mild solution x(t) defined
on R+.

(ii) There exist positive scalars ω, k, such that the solution of the system (1) satisfies

‖x(t)‖ ≤ k‖x0‖e−ω(t−t0), ∀t ≥ t0 ≥ 0.

When (i) and (i i) are satisfied for (1), we say that (1) with u(t) = u(x(t)) is
globally uniformly exponentially stable.

Remark 1 We deal with the stabilizability of (1) whose the origin is an equilibrium
point. In the case of infinite-dimensional space, the stabilizability is studied by [12]
of a class of time-varying control systems having a time-varying linear part.

In what follows, we shall that V : X → R+ is a Lyapunov function.

Definition 5 The Lie derivative of V corresponding to the input u is defined by

V̇ (x) = lim sup
t→0+

1

t
(V (x(t, x, u) − V (x)).

Recall that a self-adjoint operator P ∈ L(H) is called positive if 〈Px, x〉 > 0 holds
for all x ∈ H\{0}. A positive operator P ∈ L(H) is called coercive if there exists
k > 0, such that 〈Px, x〉 ≥ k‖x‖2, ∀x ∈ D(P).
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Proposition 1 (See [9]) Suppose that A is the infinitesimal generator of the
C0−semigroup T (t) on the Hilbert space H. Then, T (t) is exponentially stable
if and only if there exists a coercive positive self-adjoint operator P ∈ L(H), such
that

〈Ax, Px〉 + 〈Px, Ax〉 = −〈x, x〉, ∀x ∈ D(A). (4)

Equation (4) is called a Lyapunov equation.

3 Main Results

3.1 Stabilization

We consider the non-linear system (1) satisfying the following assumptions.

(H2) The pair {A, B} is exponentially stabilizable, there exists a constant operator
D ∈ L(X,U ), such that a sufficient condition specially related to operator
AD = A + BD is presented in Curtain and Zwart [9] as the following: there
exists a coercive positive self-adjoint operator P1

μI ≤ P1 ≤ ‖P1‖I,

where μ > 0, which satisfies

A∗
DP1 + P1AD = −I. (5)

We start with the following result which assures the global existence and unique-
ness of mild solutions of (1).

Lemma 2 Suppose (H1)holds. Then, the system (1)possesses auniquemild solution
x ∈ C([0,∞), H) for any x0 ∈ H.

Proof The mild solution of (1) exists and is unique, according to a existence and
uniqueness theorem in [23]). Using the fact that u(t) = Dx(t), we have

‖x(t)‖ ≤ M‖x0‖ + M

⎛
⎝

t∫
t0

‖B‖‖D‖‖x‖ + K (t)‖x‖
⎞
⎠ ds. (6)

By applying Gronwall inequality (see [26], Lemma 2.7, p42) to inequality (6), any
solution of this equation is uniformly bounded

‖x(t)‖ ≤ M‖x0‖eM‖B‖‖D‖δ+MδM1 ,



92 H. Damak

where M = sup{‖T (t − s)‖ : 0 ≤ t0 ≤ s ≤ t ≤ t + δ} and M1 = sup
t∈[t0,t0+δ]

‖K (t)‖.
Then, using Theorem 1.4 in [23], we have t0 + δ = ∞, and so the corresponding
x ∈ C([0,∞), H) is a mild solution of (1). The proof is completed. �

Next, sufficient conditions are presented to guarantee the stabilizability of a perturbed
control system using Lyapunov direct method.

Theorem 1 If assumptions (H1) and (H2) are fulfilled, then the system (1) in closed-
loop with the linear feedback u(t) = Dx is globally uniformly exponentially stable.

Proof Let x(t) be the solution of system (1). We consider the Lyapunov function:

V (x) = 〈P1x, x〉.

The Lie derivative of V in t along the solution of the system (1) in the closed-loop
with the controller u(t) = Dx leads to

V̇ (x) = 〈P1 ẋ, x〉 + 〈P1x, ẋ〉
= 〈P1[(A + BD)x + F(t, x)], x〉 + 〈P1x, [(A + BD)x + F(t, x)]〉.

Using (H2) with the help of Cauchy-Schwartz inequality, we obtain

V̇ (x) ≤ −〈x, x〉 + 2‖P1‖‖F(t, x)‖‖x‖.

It follows from assumption (H1) that

V̇ (x) ≤ −〈x, x〉 + 2‖P1‖K (t)‖x‖2. (7)

It is well known that
μ‖x‖2 ≤ V (x) ≤ ‖P1‖‖x‖2. (8)

Using (8), Eq. (7) will be:

V̇ (x) ≤ − 1

‖P1‖V (x) + 2‖P1‖K (t)

μ
V (x).

Then,

V (x(t)) ≤ V (x(t0))e
− 1

‖P1‖ (t−t0)e
2‖P1‖

μ

∞∫
0
K (s)ds

.

Using (H1), we have

‖x(t)‖ ≤
√

‖P1‖
μ

‖x0‖e− 1
2‖P1‖ (t−t0)e

‖P1‖
μ

∞∫
0
K (s)ds

.
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Consequently, the system (1) in closed-loop with the linear feedback u(t) = Dx is
globally uniformly exponentially stable. This finishes the proof. �

3.2 Luenberger Observer

In this subsection,we use themeasurements to estimate the full state (the construction
of a Luenberger observer) and to apply state feedback on the estimated state. The
Luenberger observer is a dynamical system that is expected to reconstruct the states
of the system. Our objective is to design a state reconstructor for the system (1), such
that the global exponential stability of the resulting error system can be guaranteed.

We shall introduce the following assumptions:

(H3) The pair {A,C} is exponentially detectable, there exists a constant operator
L ∈ L(Y, H), such that a sufficient condition specially related to operator AL =
A + LC is presented in Curtain and Zwart [9] as the following: there exists a
coercive positive self-adjoint operator P2

ν I ≤ P2 ≤ ‖P2‖I,

where ν > 0, which satisfies

A∗
L P2 + P2AL = −I. (9)

To design a Luenberger observer, we shall consider the system:

⎧⎨
⎩

˙̂x(t) = Ax̂(t) + Bu(t) + F(t, x̂) + L(ŷ(t) − y(t)), t ≥ 0,

ŷ(t) = Cx̂(t),
(10)

where x̂ is the Luenberger observer with output injection L ∈ L(Y, Z).
Define estimation error e as e = x̂ − x, which is governed by

ė(t) = ˙̂x(t) − ẋ(t) = (A + LC)e(t) + F(t, x̂) − F(t, x), (11)

where e0 = x̂0 − x0.
The following Lemma provides sufficient conditions for the global solution of (11).

Lemma 3 Under assumption (H1), the system (11) possesses a uniquemild solution
e ∈ C([0,∞), H) for any e0 ∈ H.

Proof It is known from Pazy [23] that for every initial state e0 ∈ H, system (11) has
a unique mild solution given by



94 H. Damak

e(t) = TLC (t − t0)e0 +
t∫

t0

TLC (t − s)[F(s, x̂(s)) − F(s, x(s))]ds, t0 ≤ t ≤ t0 + δ, δ > 0,

where TLC is the C0−semigroup of AL .

From the above equation, we get

‖e(t)‖ ≤ M‖e0‖ + M

⎛
⎝

t∫
t0

K (s)e(s)ds

⎞
⎠ , (12)

where M = sup{‖T (t − s)‖ : 0 ≤ t0 ≤ s ≤ t ≤ t + δ} on an arbitrary time inter-
val [t0, t0 + δ]. By applying Gronwall inequality (see [26], Lemma 2.7, p. 42) to
inequality (12), any solution of this equation is uniformly bounded

‖e(t)‖ ≤ M‖e0‖eMδM1 ,

where M1 = sup
t∈[t0,t0+δ]

‖K (t)‖. Then, using Theorem 1.4 in [23], we have t0 + δ =
∞, and so the system (11) has a unique mild solution e which exists for all t ≥ t0.
The proof is completed. �

By arguing in exactly the same way as in Theorem 1, we prove that the output
injection L can be chosen in such away that system (10) is an exponential Luenberger
observer for system (1).

Theorem 2 Under assumptions (H1) and (H3), the system (10) is an exponential
Luenberger observer for the system (1).

Proof Let e(t) be the solution of system (11). We consider the Lyapunov function
candidate:

Z(e) = 〈P2e, e〉.

The Lie derivative of Z along any trajectory of the error Eq. (11) is given by

Ż(e) = 〈P2ė, e〉 + 〈P2e, ė〉
= 〈P2[(A + LC)e + F(t, x̂) − F(t, x)], e〉
+ 〈P2e[(A + LC)e + F(t, x̂) − F(t, x)]〉.

Using (H3) with the help of Cauchy-Schwartz inequality, we have

Ż(e) ≤ −〈e, e〉 + 2‖P2‖‖F(t, x̂) − F(t, x)‖‖e‖

It follows from assumption (H1) that

Ż(e) ≤ − 1

‖P2‖ Z(e) + 2‖P2‖2K (t)Z(e).
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Then,

Z(e(t)) ≤ Z(e(t0))e
− 1

‖P2‖ (t−t0)e
2‖P2‖2

∞∫
0
K (s)ds

.

By taking into account assumption (H3), the above expression yields

‖e(t)‖ ≤
√‖P2‖

ν
‖e0‖e

−
1

2‖P2‖ (t − t0)
e
‖P2‖2

∞∫
0
K (s)ds

.

Thus, the system (11) is globally uniformly exponentially stable. Consequently, the
system (10) is a global uniform exponential Luenberger observer for the system (1).
This finishes The proof. �

3.3 Compensator Design

Here, we investigate the compensator design problem of (1). We consider the sys-
tem (1) controlled by the linear feedback control u(t) = Dx̂(t) estimated by the
Luenberger observer (10).

Theorem 3 Consider the non-linear system (1) and suppose that assumptions (H1),

(H2) and (H3) hold. If D ∈ L(H,U ) and L ∈ L(Y,U ) are such that A + BD and
A + LC generate exponentially stable semigroups, then the controller u = Dx̂,
where x̂ is the Luenberger observerwith output injection L , stabilizes the closed-loop
system. The stabilizing compensator is given by

⎧⎨
⎩

˙̂x = (A + LC)x̂ + Bu(t) + F(t, x̂) − Ly(t)

u(t) = Dx̂(t)
(13)

Proof Under assumptions (H2) and (H3), there exist operators D and L , such
that TBD(t) and TLC(t) are exponentially stable. Combining the abstract differential
equations,we see that the closed-loop system is given by the dynamics of the extended

state xe =
(
x̂
e

)
,

( ˙̂x
ė

)
(t) =

(
A + BD LC

0 A + LC

)
×

(
x̂
e

)
(t) +

(
F(t, x̂)

F(t, x̂) − F(t, x̂ − e)

)
, t ≥ 0. (14)

Consider the following Lyapunov function:

Y (xe) = μV (x̂) + Z(e),
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where V (x̂) = 〈P1 x̂, x̂〉, Z(e) = 〈P2e, e〉 and μ > 0 is a Lyapunov parameter to be
determined. Then, the Lie derivative of Y along the trajectories of system (14) is
given by

Ẏ (xe) = αV̇ (x̂) + Ż(e)

= α(〈P1 ˙̂x, x̂〉 + 〈P1 x̂, ˙̂x〉) + 〈P2ė, e〉 + 〈P2e, ė〉
= α(〈P1[Ax̂ + BDx̂ + F(t, x̂) + LCe], x̂〉 + 〈P1 x̂, Ax̂ + BDx̂ + F(t, x̂) + LCe〉
+ 〈P2[(A + LC)e + F(t, x̂) − F(t, x)], e〉 + 〈P2e, (A + LC)e + F(t, x̂) − F(t, x)〉

Using (H2) and (H3), with the help of Cauchy-Schwartz inequality, we obtain

Ẏ (xe) ≤ α(−〈x̂, x̂〉 + 2‖P1‖‖F(t, x̂)‖‖x̂‖
+ 2‖P1‖‖LCe‖‖x̂‖) − 〈e, e〉 + 2‖P2‖‖F(t, x̂) − F(t, x)‖‖e‖.

It follows that,

Ẏ (xe) ≤ α

(
− 1

‖P1‖V (x̂) + 2‖P1‖K (t)‖x̂‖2 + 2‖P1‖‖LCe‖‖x̂‖
)

− 1

‖P2‖ Z(e) + 2‖P2‖K (t)‖e(t)‖2.

Let ε > 0. Using Young’s inequality

2‖x̂‖‖e‖ ≤ 1

ε
‖x̂‖2 + ε‖e‖2,

we can continue the above estimates as

Ẏ (xe) ≤
(

− 1

‖P1‖ + 2‖P1‖K (t)

μ
+ ‖P1‖‖LC‖

με

)
αV (x̂)

+
(

− 1

‖P2‖ + 2‖P2‖K (t)

ν
+ αε‖P1‖‖LC‖

ν

)
Z(e).

Choose ε > 0, such that 1
‖P1‖ − ‖P1‖‖LC‖

με
> 0.

Let,

ε = 2‖P1‖2‖LC‖
μ

·

Also, choose for this value of ε the scalar α, such that 1
‖P2‖ − αε‖P1‖‖LC‖

ν
> 0. Then,

let
α = μν

4‖P1‖3‖P2‖‖LC‖2 ·

We get,
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Ẏ (xe) ≤
(

− α

2‖P1‖ + 2α‖P1‖K (t)

μ

)
V (x̂) +

(
− 1

2‖P2‖ + 2‖P2‖K (t)

ν

)
Z(e).

Thus,
Ẏ (xe) ≤ −λ1Y (x

e) + λ2K (t)Y (xe),

with

λ1 = min

(
1

2‖P1‖ ,
1

2‖P2‖
)
,

and

λ2 = max

(
2‖P1‖

μ
,
2‖P2‖

ν

)
.

Then, one have the following estimate

Y (xe(t)) ≤ Y (xe0)e
−λ1(t−t0)e

λ2

∞∫
0
K (s)ds

,

where xe0 = (x̂0, e0).
Hence,

‖x̂(t)‖ ≤
√

1

α

[
max(

√
α‖P1‖,

√‖P2‖)(‖x̂0‖ + ‖e0‖)e− λ1
2 (t−t0)e

λ2
2

∞∫
0
K (s)ds

]
.

Consequently, the cascade system (14) is globally uniformly exponentially stable.
This ends the proof. �

4 Example

We Consider the controlled metal bar equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂x(ζ, t)

∂t
= ∂2x(ζ, t)

∂2ζ
+ b(ζ)u(t) + sin(x(ζ, t))

1 + t2
,

∂x

∂ζ
(0, t) = 0 = ∂x

∂ζ
(1, t), x(ζ, 0) = x0(ζ), t ≥ 0,

y(t) =
1∫

0

c(ζ)x(ζ, t)dζ,

(15)
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where x(ζ, t) represents the temperature at position ζ at time t ≥ 0 and x0 repre-
sents the initial temperature profile, u(t) the addition of heat along the bar and b, c
represents the shaping functions around the control ζ0 and the sensing point ζ1,
respectively

b(ζ) = 1

2δ
1[ζ0−δ,ζ0+δ]

and

c(ζ) = 1

2κ
1[ζ1−κ,ζ1+κ],

with [ζ0 − δ, ζ0 + δ] ∩ [ζ1 − κ, ζ1 + κ] = ∅.
Notice that b and c in this example are both elements in L2(0, 1) for a fixed small,

non-negative constants δ and κ.
The partial differential equation is equivalent to system (1) where H = L2(0, 1),

U = C, Y = C, A = ∂2

∂2ζ
, with

D(A) = {h ∈ L2(0, 1), h, ∂h
∂ζ

are absolutely continuous, ∂2h
∂ζ2

∈
L2(0, 1) and dh

dζ
(0) = 0 = dh

dζ
(1)},

The input operator
Bu = b(ζ)u,

B ∈ L(C, H), and has norm 1√
2δ

·
Besides, the measured output operator

Cx =
∫ 1

0
c(ζ)x(ζ, t)dζ,

where C ∈ L(H,C), and has norm 1√
2κ
, and

F(t, x) = sin(x(ζ, t))

1 + t2
·

A has the eigenvalues 0,−n2π2, n ≥ 1 and the corresponding orthogonal eigenvec-
tors are

υn =
{
1 i f n = 0,√
2 cos(nπζ) i f n ≥ 1.

It follows that, A is the infinitesimal generator of the C0−semigroup (see Curtain
and Zwart [9] for details).

We can take as a stabilizing feedback u(t) = Dx with

Dx = −3〈x, υ0〉 = −3〈x, 1〉,
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where 〈, 〉 is the inner product on L2(0, 1).
It is easy to verify that A + BD has the eigenvalues −3, −(nπ)2, n ≥ 1. Then,

the pair {A, B} is exponentially stabilizable.
In addition, the stabilizing output injection is given by

Ly = −3yυ0 = −3y.1.

The system A + LC has the eigenvalues −3, −(nπ)2, n ≥ 1. Then, the pair {A,C}
is exponentially detectable.

On the other hand, the assumption (H1) is satisfied with K (t) = 1
1+t2 which is

non-negative continuous and integrable on R+.
Thus, all assumptions of Theorem 3 are satisfied. We conclude that a stabilizing

compensator is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ x̂(ζ, t)

∂t
= ∂2 x̂(ζ, t)

∂ζ2
− 3

2κ

ζ1+κ∫
ζ1−κ

x̂(ζ, t)dζ + 1

2δ
1[ζ0−δ,ζ0+δ](ζ)u(t) + sin(x̂(ζ, t))

1 + t2
+ 3y(t),

∂ x̂

∂ζ
(0, t) = 0 = ∂ x̂

∂ζ
(1, t), x̂(ζ, 0) = x̂0(ζ), t ≥ 0,

u(t) = −3

1∫
0

x̂(ζ, t)dζ.

(16)

5 Conclusion

We have presented the problems of state observation and state trajectory control
via output feedback for a class of non-linear system. It is shown that the system
can be stabilizable by means of an estimated state feedback given by a designated
Luenberger observer. Furthermore, a compensator design of a class of nonlinear
uncertain evolution equations on a Hilbert space has been considered. An example
has been introduced to show the applicability of our theoretical results.
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Observer Desing for Non Linear
Takagi-Sugeno Fuzzy Systems.
Application to Fault Tolerant Control

Atef Khedher, Ilyes Elleuch, and Kamal Ben Othman

Abstract The problem of fuzzy fault tolerant control design for systems described
by Takagi-Sugeno models is studied in this chapter. The fault tolerant control design
require the state and fault estimation. In order to make this estimation, a proportional
integral observer is conceived. The proposed method shows that it is possible to con-
ceive simultaneously the proportional integral observer and the fuzzy fault tolerant
control. The cases of system affected by actuator and/or sensor faults are considered.
In order to conceive the fault tolerant control strategy for the case of sensor faults, a
mathematical transformation is used allowing conceiving an augmented system, in
which the initial sensor fault appears as an actuator fault. The fault tolerant control
and the proportional integral observer are both conceived considering the augmented
state. The noise effect on the state and fault estimation is alsominimized in this study,
which provides some robustness properties to the proposed control and observer. The
fault tolerant control and proportional integral observer design is formulated in term
of linear matrix inequalities (LMI).

Keywords Fuzzy fault tolerant control · Proportional integral observer · Actuator
faults · Faults estimation · Takagi-Sugeno fuzzy systems · Sensor faults · State
estimation · Linear matrix inequalities

1 Introduction

Fuzzy systems have been studied for many years since their first definition by Zadeh
in 1965 [47]. They are considered in the context of control [5], identification [40],
state estimation [3] and diagnosis [37]. Many complex process can be modeled using
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fuzzy sets concept [17]. Among the different kinds of fuzzy systems, Takagi-Sugeno
models have been considered as a good framework of non linear systems modeling
[4, 13, 18, 27, 28, 37, 48]. They are used as a tool of modeling of non linear systems
since their simplicity of manipulation and their particular expression [42, 43].

In many cases, processes can be affected by disturbances due to the noises. More-
over, It is possible that system sensors and/or actuators can be corrupted by faults or
failures. In certain cases, it is impossible to repair the fault affecting the system for
many reasons, such that the constraint of time, or the conditions of production, etc...
In that cases, it is possible to use control strategy able to minimize their effects. This
control strategy is named fault tolerant control (FTC).

A control loop is considered as a fault tolerant if there exist adaptation strategies
of the initial control law included in the closed-loop that introduce redundancy in
actuators [45]. The idea of fault Tolerant Control can be considered as a new idea in
the literature [8]. It allows to have a control low that fulfills its objectives when fault
appears [28].

There exist two main kinds of fault tolerant control strategies: the active and the
passive ones. The passive techniques are control laws that take into account all the
possible faults since the system design. This kind of control techniques is described
in [8, 11, 32, 33, 39]. The active fault tolerant control strategies allows adapting the
control law using the information provided by the FDI block [7, 8, 28, 45]. So the
design of an active fault tolerant control require the existence of a FDI block in the
process. Active fault tolerant control has been the subject of many researches, in the
last years [19, 24, 26, 30, 44].

In the context of Takagi-Sugeno systems, Many works have interested in the
design of different fault tolerant control lows [1, 15, 24, 44]. In [44] a fault tolerant
control low is conceived in the case of system affected by sensor fault. A predictive
fault tolerant Control is conceived for LPV systems based on model reference in
[1]. In [24], authors used an unknown observer to conceive the fault tolerant control.
State and fault estimation was applied to the fault tolerant control in [16, 34, 36, 41].

In this chapter, an active FTC strategy is proposed. The proposed FTC is designed
on the base of Takagi-Sugeno fuzzy concept and it is implemented as a state feedback
controller. This FTC depends on the state estimation error and the fault estimate. In
this conditions, the state and fault estimation becomes a necessity, so a proportional
integral observer is conceived in order to estimate simultaneously the system state
and the fault.

The main goal of this chapter is to propose simultaneously a fuzzy fault tolerant
control and a proportional integral observer(PIO). The proposed control is conceived
in the case of systems affected by actuator fault firstly. In second case system affected
by sensor fault are considered. Finally, the case where systems are affected by sensor
and actuator faults is studied. In the cas where system is affected by sensor fault, a
mathematical transformation [13, 18, 27] based on the definition of an augmented
stated is used. Considering this augmented state, the sensor fault appears as an actu-
ator fault. The FTC and the PIO are conceived on the base of the augmented system.

The chapter is organized as follows. Section 2 recalls the principle of Takagi-
Sugeno multiple models. Section 3 presents the principle of the proportional inte-
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gral observer design for Takagi-Sugeno models allowing state and fault estimation.
Section 4 summarizes the principle of the simultaneous proportional integral observer
and fault tolerant control design based on the separation principle. Section 5 describes
the design of the fuzzy fault tolerant control and the proportional integral observer
in the case of system affected by actuator faults. The design of the FTC and the PIO
is adapted to system affected by sensor faults in Sect. 6. Section 7 studied the case
of system affected, simultaneously, by sensor and actuator faults. An example of
simulation showing the robustness of the proposed method is is given in Sect. 8.

2 Takagi-Sugeno Fuzzy Systems

Takagi-Sugeno fuzzy systems are an appropriate tool which permits to model large
class of complex and non linear systems with a mathematical model which can
be used for analysis [10, 12], control [6, 31] and observer design [9, 18, 27, 35].
This approach is based on a decomposition of the system operating space into a
finite number of operating zones. Hence, a simple linear model describes the system
dynamic behavior inside each operating zone. The contribution of each sub-model
in the global model is quantified using a non linear weighting function which can
have various structures. The sub-models are associated in the state equation using a
common state vector. Thismodel has been proposed, in a fuzzymodeling framework,
by Takagi and Sugeno [42] and in amultiplemodelmodeling framework by Johansen
and Foss [22].

Takagi-Sugeno fuzzy systems is based on the assumption that each nonlinear
dynamic system can be simply, described the fuzzy fusion of many linear models.
where each linear model represents the local system behavior around an operating
point. A Takagi-Sugeno model is described by fuzzy IF-THEN rules which represent
local linear Inputs/Outputs relations of the non-linear system. It has a rule base of
M rules, each having p antecedents, where the i th rule is expressed as follows:

Ri : IF ξ1 is Fi
1 and ... and ξp is Fi

p

THEN :
{

ẋ(t) = Ai x(t) + Bi u(t)
y = Ci x(t)

(1)

where: i ∈ {1, ..., M} , Fi
j ( j ∈ {1, ..., p}) are fuzzy sets and ξ = [ξ1, ξ2, ..., ξp] is a

known vector of premise variables [29] which may depend on the state, the input or
the output. Variables ξ is called decision variable.

The global Takagi-Sugeno fuzzy model is given by the aggregation of the sub-
models using the weighting functions as follows:

{
ẋ(t) = ∑�

i=1 μi (ξ(t)) (Ai x(t) + Bi u(t))
y(t) = ∑�

i=1 μi (ξ(t))Ci x(t)
(2)
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where x(t) ∈ R
n is the state vector, u(t) ∈ R

r is the control vector, y(t) ∈ R
m is the

vector of measures and Ai , Bi and Ci are known constant matrices with appropriate
dimensions.

The weighting functions μi (ξ(t)) assure a progressive passage between the local
models and verifies the following convex proprieties:

∑�
i=1 μi (ξ(t)) = 1, ∀t and

0 ≤ μi (ξ(t)) ≤ 1, ∀i = 1...�, ∀t
If, in the equation of the output, it is supposed that C1 = C2 = ... = C� = C , the

output of the multiple model (2) is reduced to : y(t) = Cx(t) and the multiple model
state equation becomes:

{
ẋ(t) = ∑�

i=1 μi (ξ(t))(Ai x(t) + Bi u(t))
y(t) = Cx(t)

(3)

3 Observers Design for Non Linear Takagi-Sugeno Fuzzy
Systems

3.1 Introduction

Takagi-Sugenomodels are considered inmanyworks [4, 23, 40, 48], in the context of
state estimation in spite of parameter uncertainties of unknown inputs. Let us present
briefly some works in this context. In [4], a Singulary perturbed Takagi-Sugeno
models is presented. For this system, activation function depend on unmeasurable
variableswhich can be system state for example. In [40], authors propose an apporach
based on an online identification using amodel of Takagi-Sugeno-Kang applied to
crane systems. The problem of sensor networks for nonfragile distributed filters and
its application to Takag-Sugenomodels was studied in [48]. In [13], authors proposed
a new form of observer able to estimate fault and system state for uncertain systems
modeld by Taagi-Sugeno models based on the sliding mode principle. State and
fault estimation for non linear systems described by Takag-Sugeno fuzzy models are
consided in [27, 37].

State and fault estimation can be made generally using proportional integral
observers. This observer contains two terms called proportional and integral terms.
The proportional term is used to estimate system state and the integral term allows
estimating the faults which are considered as unknown inputs [13, 18, 27, 37]. In
practice, proportional integral observer is characterized by two gains (proportional
and integral) [13, 18, 27, 37]. Works presented in [13, 18, 27, 37] present the design
of this kind of observer with many academic and real applications for state and fault
estimation.

State and fault estimation is studied also in nuerous works in many different
contexts. Multi agent systems are considered for state and fault estimation in [20,
25, 46]. In [21], authors propose to make the aymptotic fault and state estimation
and fault tolerant control design for the case of non linear systems. In [38], authors
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assume that the activation function verifies Lipschitz condition. Several works are
interested in Discrete Takagi-Sugeno models [2, 14, 49].

3.2 Proportional Integral Observer Design

The main goal of this section is to recall the principle of the proportional integral
observer design for the state and fault estimation in the case of Takagi Sugenomodels.

Consider the Takagi-Sugeno fuzzy system affected by an actuator fault and a
measurement noise given by the following equation:

{
ẋ(t) = ∑�

i=1 μi (ξ(t))(Ai x(t) + Bi u(t) + Ei fa(t))

y(t) = Cx(t) + Dw(t)
(4)

where x(t) ∈ R
n is the system state, y(t) ∈ R

m is the measured output, u(t) ∈ R
r

is the input, fa(t) is the actuator fault which is assumed to be bounded. and w(t) is
the measurement noise. Ai , Bi and C are known constant matrices with appropriate
dimensions. Ei and D are respectively the fault and noise distributionmatrices which
are assumed to be known. The scalar M represents the number of the local models.
μi (ξ(t)) are the activation functions.

The considered proportional integral observer is presented as follows:

⎧⎪⎪⎨
⎪⎪⎩

˙̂x(t) = ∑�
i=1 μi (ξ(t))(Ai x̂(t) + Bi u(t) + Ei f̂a(t) + Ki ỹ(t))

˙̂fa(t) = ∑�
i=1 μi (ξ(t))Li ỹ(t)

ŷ(t) = Cx̂(t)

(5)

where x̂(t) ∈ R
n is the estimated system state, f̂a(t) represents the estimated fault,

ŷ(t) ∈ R
m is the estimated output, ỹ(t) = y(t) − ŷ(t), Ki are the local proportional

observer gains and Li are the local integral gains to be computed.
The state estimation error x̃(t) and the fault estimation error f̃a(t) are defined as

following:

x̃(t) = x(t) − x̂(t) (6)

f̃a(t) = fa(t) − f̂a(t) (7)

The dynamics of the state estimation error is given by the computation of ˙̃x(t):

˙̃x(t) = ẋ(t) − ˙̂x(t)

=
�∑

i=1

μi (ξ(t))(Ai − Ki C)x̃(t) + Ei f̃a(t) + Ki Dw(t)) (8)
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The dynamics of the fault estimation error is given by the expression of ˙̃fa(t):

˙̃fa(t) = ḟa(t) − ˙̂fa(t)

= ḟa(t) −
�∑

i=1

μi (ξ(t))(Li C x̃(t) − Li Dw(t)) (9)

The following matrices can be introduced:

ϕa =
[

x̃(t)
f̃a(t)

]
and εa =

[
w(t)
ḟa(t)

]
(10)

Using theses matrices, the Eqs. (8) and (9) can be reformulated as follows:

ϕ̇a = Amaϕa + Bmaεa (11)

with:

Ama =
�∑

i=1

μi (ξ(t))Aai and Bma =
�∑

i=1

μi (ξ(t))Bai (12)

where:

Aai =
[

Ai − Ki C Ei

−Li C 0

]
and Bai =

[−Ki D 0
−Li D I

]
(13)

The matrix I is the identity matrix with appropriate dimensions.
To analyze the convergence of the generalized estimation error ϕa(t), the Lya-

punov functionVa(t) = ϕa(t)T Pϕa(t) is considered,where P is a symmetric definite
positive matrix.

The problem of state and fault estimation is based on the computation of the gains
Ki and Li of the observer to ensure an asymptotic convergence of ϕa(t) toward zero
if εa(t) = 0 and bounded error in the case where εa(t) �= 0, i.e.:

lim
t→∞ ϕa(t) = 0 for εa(t) = 0

‖ϕa(t)‖Qϕ
≤ λ‖εa(t)‖Qε

for εa(t) �= 0 and e(0) = 0
(14)

where λ > 0 is the attenuation level.
To satisfy the constraints (14), it is sufficient to find a Lyapunov function Va(t)

verifying:
V̇a(t) + ϕT

a Qϕϕa − λ2εT
a Qεεa < 0 (15)

Qϕ and Qε are two positive definite matrices.
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In order to simplify the notations, the time index (t) will be omitted henceforth.
Inequality (15) can also be written as follows:

ψT
a Ωaψa < 0 (16)

with:

ψa =
[

ϕa

εa

]
and Ωa =

[
AT

ma P + P Ama + Qϕ P Bma

BT
ma P −λ2Qε

]
(17)

Inequality (16) has a quadratic form, it holds iff Ωa < 0.
The matrices Ama and Bma can be written as :

Ama = Ãma − K̃maC̃ and Bma = Ĩ − K̃ma D̃ (18)

where:

Ãma =
�∑

i=1

μi (ξ(t)) Ãmai , K̃ma =
�∑

i=1

μi (ξ(t))K̃mai (19)

with:

K̃mai =
[

Ki

Li

]
, Ãmai =

[
Ai Ei

0 0

]
, Ĩ =

[
0 0
0 I

]

C̃ = [
C 0

]
, and D̃ = [

D 0
]
,

With the changes of variables Gma = P K̃ma and λ̄ = λ2, the matrix Ωa can be
put as following:

Ωa =
[

ϑa −Gma D̃ + P Ĩ
Ĩ T P − D̃T GT

ma −λ̄Qε

]
(20)

where ϑa = P Ãma + ÃT
ma P − GmaC̃ − C̃T GT

ma + Qϕ.
As Ωa = ∑�

i=1 μi (ξ(t))Ωai , the negativity of Ω is assured if, for i = 1...�:

Ωai < 0 (21)

with:

Ωai =
[

ϑai −Gai D̃ + P Ĩ
Ĩ T P − D̃T GT

ai −λ̄Qε

]
(22)

where: ϑai = P Ãmai + ÃT
mai P − Gai C̃ − C̃T GT

ai + Qϕ and Gai = P K̃mai .
The resolution of the LMI’s (21) leads to the determination of the matrices P and

Gai and the scalar λ̄. The gain matrices are then deduced by the equation K̃mai =
P−1Gai .
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The observer design is summarized by the following theorem:

Theorem 1 The system (11) describing the time evolution of the state estimation
error x̃ and the fault estimation error f̃a is stable and the L2–gain of the transfer
from εa(t) to ϕa(t) is bounded, if there exists a symmetric, positive definite matrix
P, gain matrices Gai , i ∈ {1...�} and a positive scalar λ̄ such that the following LMI
are verified: [

ϑai −Gai D̃ + P Ĩ
Ĩ T P − D̃T GT

ai−λ̄Qε

]
< 0 i ∈ {1...�} (23)

where: ϑai = P Ãmai + ÃT
mai P − Gai C̃ − C̃T GT

ai + Qϕ. The observer gains (pro-
portional and integral gains) are computed using K̃mai = P−1Gai and the attenua-

tion level is given by λ =
√

λ̄. �

4 Observer and Fault Tolerant Control Design Using
Separation Principle

The objective of this section is to recall the method of simultaneous proportional
integral observer and the fault tolerant control using the separation principle in the
context of non linear systems described by Takagi-Sugeno models.

A non linear system described by Takagi-Sugeno model can be expressed as
follow :

ẋ(t) =
�∑

i=1

μi (u(t))Ai x(t) + Bu(t) (24a)

y(t) = Cx(t) (24b)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rr is the input vector, y(t) ∈ Rm the out-
put vector and Ai , Bi and Ci are known constant matrices with appropriate dimen-
sions. The scalar M represents the number of local models.

Consider the following nonlinear Takagi-Sugenomodel affected by actuator faults
and measurement noise:

ẋ f (t) =
�∑

i=1

μi (u(t))Ai x f (t) + Bu f (t) + E fa(t) (25a)

y f (t) = Cx f (t) + Dw(t) (25b)

where x f (t) ∈ Rn is the state vector, u f (t) ∈ Rr is the input vector, y f (t) ∈ Rm the
output vector. fa(t) represents the fault which is assumed to be bounded and w(t) is
the measurement noise. E and D are respectively the fault and the noise distribution
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matrices which are assumed to be known. The scalar M represents the number of
local models.

The structure of the proportional integral observer is chosen as follows:

˙̂x f (t) =
�∑

i=1

μi (u(t))(Ai x̂ f (t) + Ki (y f (t) − ŷ f (t))) + Bu f (t) + E f̂a(t) (26a)

˙̂fa(t) =
�∑

i=1

μi (u(t))(Li (y f (t) − ŷ f (t))) (26b)

ŷ f (t) = Cx̂ f (t) (26c)

where x̂ f (t) is the estimated system state, f̂a(t) represents the estimated fault, ŷ f (t)
is the estimated output, Ki are the local model proportional observer gains and Li

are the local model integral gains to be computed.
The fault tolerant control u f (t) is described by the following expression :

u f (t) = −S f̂ a(t) + M(x(t) − x̂ f (t)) + u(t) (27)

where S and M are two constant matrices with appropriate dimensions. The objective
is to find the matrices S and M which permit to the state x f to converge to x .

Let us define x̃(t) the error between the states x(t) and x f (t), x̃ f (t) the estimation
error of the state x f and f̃a(t) the fault estimation error :

x̃(t) = x(t) − x f (t) (28)

x̃ f (t) = f (t) − x̂ f (t) (29)

f̃a(t) = fa(t) − f̂a(t) (30)

Using the control strategy described by the Eq. (27), the dynamics of the errors
defined in (28), (29) and (30) can be written as follow :

˙̃x(t) = (

�∑
i=1

μi (u(t))Ai − B M)x̃(t) + BS f̂a(t)

−B Mx̃ f (t) − E fa(t) (31)

Choosing S verifying E = BS, the dynamics of x̃(t) becomes :

˙̃x(t) = (

�∑
i=1

μi (u(t))Ai − B M)x̃(t) − E f̃a(t)) − B Mx̃ f (t) (32)
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The dynamic of x̃ f (t) can be written :

˙̃x f (t) = (

�∑
i=1

μi (u(t))(Ai − Ki C)x̃ f (t) − Ki Dw(t)) + E f̃a(t) (33)

The dynamic of the fault error estimation can be written :

˙̃fa(t) = ḟa(t) −
�∑

i=1

μi (u(t))(Li C x̃ f + Li Dw(t)) (34)

In order to simplify the notations, the time index (t) will be omitted henceforth.
The Eqs. (32), (33) and (34) can be rewritten :

ϕ̇ = Amϕ + Bmψ (35)

with :

ϕ =
[

x̃ T x̃ T
f f̃ T

a

]T
and ψ = [

wT ḟ T
a

]T
(36)

and :

Am =
�∑

i=1

μi (u(t))Ami and Bm =
�∑

i=1

μi (u(t))Bmi (37)

where :

Ami =
⎡
⎣ Ai − B M 0 −E

0 Ai − Ki C E
0 −Li C 0

⎤
⎦ (38)

and

Bmi =
⎡
⎣ 0 0

−Ki D 0
−Li D I

⎤
⎦ (39)

Considering the Lyapunov V (t) = ϕT (t)Pϕ(t) where P denotes a positive definite
matrix, the errors converge to zero if V̇ < 0. V̇ < 0 if AT

mi P + P Ami < 0, ∀i ∈
{1, ..., �}.

The matrices Ami and Bmi can be rewritten :

Ami =
[

Ai − B M E1

0 Ãi − K̃i C̃

]
(40)
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and

Bmi =
[

0
Ĩ − K̃i D̃

]
(41)

with :

Ãi =
[

Ai E
0 0

]
, K̃i =

[
Ki

Li

]
, Ĩ =

[
0 0
0 I

]

C̃ = [
C 0

]
, D̃ = [

D 0
]

and E1 = [−B M −E
]

Assuming that P has the block diagonal form P = diag(P1, P2), and using the
separation principle, ϕ converges to zero iff there exist matrices P1 > 0 and P2 > 0
such that following inequalities are satisfied:

(Ai − B M)T P1 + P1(Ai − B M) < 0 (42)

( Ãi − K̃i C̃)T P2 + P2( Ãi − K̃i C̃) < 0 (43)

By multiplying (42) from left and right by P−1
1 one obtain :

P−1
1 (Ai − B M)T + (Ai − B M)P−1

1 < 0 (44)

Substituing W = P−1
1 , the Eq. (44) becomes:

W (Ai − B M)T + (Ai − B M)W < 0 (45)

ϕ converge to zero if there exist two definites and posistives mtrices W and P2

satisfaying (43) and (45)
The inegalities (43) and (45) are not linears, substituing X = MW , and Yi =

P2 K̃i , their become:

W AT + AW − X T BT − B X < 0 (46)

ÃT P2 + P2 Ã − Y C̃ − C̃T Y T < 0 (47)

The resolution of the linear matrices inegalities (LMI) (46) and (47) permits to find
the matrices W , P2, X and Yi .

The matrices M and K̃ are computed using the following equations:

M = X W −1 (48)

K̃i = P−1
2 Yi (49)
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5 Fuzzy Fault Tolerant Control Design for System
with Actuator Fault

A non linear system described by Takagi-Sugeno fuzzy structure can be expressed
as follows:

⎧⎨
⎩

ẋ(t) =
�∑

i=1
μi (u(t))Ai x(t) + Bu(t)

y(t) = Cx(t)
(50)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

q is the system input vector, y(t) ∈ R
m

is the measured output vector and Ai , B and C are the system matrices wich are
known and constant with appropriate dimensions. The scalar r is the number of local
models.

A nonlinear Takagi-Sugeno model affected by actuator faults and measurement
noise is given by the following state equation:

⎧⎨
⎩

ẋ f (t) =
�∑

i=1
μi (u f (t))Ai x f (t) + Bu f (t) + E fa(t)

y f (t) = Cx f (t) + Dw(t)
(51)

where x f (t) ∈ R
n is the faulty state vector, u f (t) ∈ R

q is the fault tolerant control
which will be conceived, y f (t) ∈ R

m is the faulty output vector. fa(t) represents the
actuator fault which is assumed to be bounded and w(t) is the measurement noise.
E and D are respectively the faults and the noise distribution matrices which are
assumed to be known.

To estimate simultaneously the state x f and the actuator fault fa , a proportional
integral observer is used, it is given by the following equations:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

˙̂x f (t) =
�∑

i=1
μi (u f (t))(Ai x̂ f (t) + Bu f (t) + Ki (y f (t) − ŷ f (t))) + E f̂a(t)

˙̂fa(t) =
�∑

i=1
μi (u f (t))Li (y f (t) − ŷ f (t))

ŷ f (t) = Cx̂ f (t)
(52)

where x̂ f (t) is the estimated system state, f̂a(t) is the estimated fault, ŷ f (t) is the
estimated output, Ki are the proportional gains of the local observers and Li are their
integral gains to be computed.

The fuzzy fault tolerant control is conceived on the base of the following strategy.

u f (t) = u(t) − S f̂a(t) +
�∑

i=1

μi (u(t))Gi (x(t) − x̂ f (t)) (53)

where S and Gi are constant matrices with appropriate dimensions.
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Let us define x̃(t) the error between the states x(t) and x f (t), x̃ f (t) the estimation
error of the state x f (t) and f̃a(t) the fault estimation error, these errors are given by
:

x̃(t) = x(t) − x f (t)
x̃ f (t) = x f (t) − x̂ f (t)
f̃a(t) = fa(t) − f̂a(t)

(54)

The matrix S is chosen verifying E = BS. The dynamics of x̃(t) is given by:

˙̃x(t) = ẋ(t) − ẋ f (t)

=
�∑

i=1
μi (u(t))

�∑
j=1

μ j (u(t))((Ai − BG j )x̃(t)

−BG j x̃ f ) − E f̃a(t) + δ1(t)

(55)

with :

δ1(t) =
�∑

i=1

(μi (u f (t)) − μi (u(t)))Aai x̃ f (t) − Daw(t)

The dynamic of x̃ f (t) is given by:

˙̃x f (t) = ẋ f (t) − ˙̂x f (t)

=
�∑

i=1
μi (u(t))(Ai − Ki C)x̃ f (t) + E f̃ (t) + δ2(t)

(56)

with :

δ2(t) =
�∑

i=1

(μi (u f (t)) − μi (u(t)))(Ai − Ki C)x̃ f (t) + Dw(t)

The dynamic of the fault error estimation is:

˙̃f (t) = ḟ (t) − ˙̂f (t)

= −
�∑

i=1
μi (u(t))Li C x̃ f (t) + δ3(t)

(57)

with :

δ3(t) =
�∑

i=1

(μi (u f (t)) − μi (u(t)))Li C x̃ f (t) + Dw(t) + ḟ (t)
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The Eqs. (55), (56) and (57) can be rewritten:

ϕ̇(t) = Amϕ(t) + ε(t) (58)

with :

ϕ(t) =
⎡
⎣ x̃(t)

x̃ f (t)
f̃ (t)

⎤
⎦ and ε(t) =

⎡
⎣ δ1(t)

δ2(t)
δ3(t)

⎤
⎦

and Am = −
�∑

i=1

μi (u(t))
�∑

j=1

μ j (u(t))Ami j

where

Ami j =
⎡
⎣ Ai − BG j −BG j B

0 Ai − Ki C B
0 Li C 0

⎤
⎦

Considering theLyapunov functionV (t) = ϕ(t)T Pϕ(t), the generalized error vector
ϕ(t) converges to zero if V̇ (t) < 0 =⇒ AT

mi j P + P Ami j < 0 ∀i, j ∈ {1...�}.
The problem of robust state and faults estimation and of the fault tolerant control

design is reduced to find the gains Ki and Li of the proportional integral observer
and the matrices Gi to ensure an asymptotic convergence of the generalized error
vector ϕ(t) toward zero if ε(t) = 0 and to ensure a bounded error in the case where
ε(t) �= 0, i.e.:

lim
t→∞ ϕ(t) = 0 for ε(t) = 0

‖ϕ(t)‖Qϕ
≤ λ ‖ε(t)‖Qε

for ε(t) �= 0
(59)

where λ > 0 is the attenuation level. To satisfy theses constraints (59), it is sufficient
to find a Lyapunov function V (t) such that:

V̇ (t) + ϕ(t)T Qϕϕ(t) − λ2ε(t)T Qεε(t) < 0 (60)

where Qϕ and Qε are two positive definite matrices.
The inequality (60) can be written:

[
ϕ(t)
ε(t)

]T

Φ

[
ϕ(t)
ε(t)

]
< 0 (61)

where:

Φ =
[

AT
m P + P Am + Qϕ P

P −λ2Qε

]
(62)
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Choosing Qϕ = Qε = I and assume that the Lyapunov matrix P has the form:
diag(I, P2, P3), the matrix Φ is written as following:

Φ =
�∑

i=1

μi (u(t))
�∑

i=1

μ j (u(t))Φi j (63)

where:

Φi j =

⎡
⎢⎢⎢⎢⎢⎢⎣

Φ11i j −BG j B I 0 0
−GT

j BT Φ22i Φ23i 0 P2 0
BT Φ32i I3 0 0 P3

I 0 0 λ1 I01 0 0
0 P2 0 0 λ2 I02 0
0 0 P3 0 0 λ3 I03

⎤
⎥⎥⎥⎥⎥⎥⎦

(64)

with:

Φ11i j = Ai − BG j + AT
i − GT

j BT + I1
Φ22i = P2 Ai − P2Ki C + AT

i P2 − CT K T
i P2 + I2

Φ23i = P2B + CT LT
i P3

Φ32i = ΦT
23i

Φ < 0 if Φi j < 0∀i, j ∈ {1...�}, the inequalities Φi j < 0 are bilinear with regard to
the variables Ki , Li , P2 and P3, they can be linearised using the changes of variables
: U2i = P2Ki and U3i = P3Li . The observer gains are computed after that using the
equations:

Ki = P−1
2 U2i

Li = P−1
3 U3i

(65)

To summarize, we propose the following theorem describing the design of the
observer and the fuzzy fault tolerant control:

Theorem 2 The system (58) describing the evolution of the errors x̃(t), x̃ f (t) and
f̃ (t) is stable if there exist symmetric definite positive matrices P2 and P3 and matri-
ces U3i , U2i and G j , i, j ∈ {1...�} so that the LMI Φi j < 0 are verified ∀i, j ∈ {1...�}
where :

Φi j =

⎡
⎢⎢⎢⎢⎢⎢⎣

Φ11i j −BG j B I 0 0
−GT

j BT Φ22i Φ23i 0 P2 0
BT Φ32i I3 0 0 P3

I 0 0 λ1 I01 0 0
0 P2 0 0 λ2 I02 0
0 0 P3 0 0 λ3 I03

⎤
⎥⎥⎥⎥⎥⎥⎦

(66)
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and:

Φ11i j = Ai − BG j + AT
i − GT

j BT
a + I1

Φ22i = P2 Ai − P2U2i + AT
i P2 − CT

a U T
2i + I2

Φ23i = P2B + CT U T
3i

Φ32i = ΦT
23i

(67)

The observer gains are obtained by: Li = P−1
3 U3i and Ki = P−1

2 U2i

The main advantage of the proposed method is to conceive simultaneously and sep-
arately the fuzzy fault tolerant control and the proportional integral observer.

6 Fuzzy Fault Tolerant Control Design for System
with Sensor Faults

Consider the non linear system described by Takagi-Sugeno structure given by the
Eq. (50):

A nonlinear Takagi-Sugeno model affected by sensor faults and measurement
noise is gven by:

⎧⎨
⎩

ẋ f (t) =
�∑

i=1
μi (u f (t))Ai x f (t) + Bu f (t)

y f (t) = Cx f (t) + F fs(t) + Dw(t)
(68)

where x f (t) ∈ R
n is the faulty state vector, u f (t) ∈ R

q is the fault tolerant control
which will be conceived, y f (t) ∈ R

m is the faulty output vector. fs(t) represents the
sensor faults which is assumed to be bounded and w(t) is the measurement noise.
F and D are respectively the faults and the noise distribution matrices which are
assumed to be constant and known.

The following states [13, 18, 27] are defined:

ż(t) =
�∑

i=1
μi (u(t))(− Āz(t) + ĀCx(t))

ż f (t) =
�∑

i=1
μi (u f (t))(− Āz(t) + ĀCx f (t) + ĀF fs(t) + ĀDw(t))

(69)

where − Ā is a stable matrix with appropriate dimension.
Let us define the two following augmented states: x(t) = [

x(t)T z(t)T
]T

and

x f (t) = [
xT

f (t) zT
f (t)

]T
, given by:
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⎧⎨
⎩
ẋ(t) =

�∑
i=1

μi (u(t))Aai x(t) + Bau(t)

y(t) = Cax(t)
(70)

and
⎧⎨
⎩
ẋ f (t) =

�∑
i=1

μi (u f (t))Aai x f (t) + Bau f (t) + Fa fs(t) + Daw(t)

y f (t) = Cax f (t)
(71)

with:

Aai =
[

Ai 0
− ĀC − Ā

]
, Fa =

[
0

ĀF

]
, Da =

[
0

ĀD

]

Ba =
[

B
0

]
and Ca = [

0 I
]

A proportional integral observer able to estimate the augmented state x f (t) and the
sensor fault fs given by the following equations is used:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

˙̂x f (t) =
�∑

i=1
μi (u f (t))(Aai x̂ f (t) + Ki ỹ f (t)) + Fa f̂ (t) + Bau f (t)

˙̂f (t) =
�∑

i=1
μi (u f (t))Li ỹ f (t)

ŷ f (t) = Ca x̂ f (t)

(72)

where x̂ f (t) is the estimated system state, f̂s(t) represents the estimated sensor fault,
ŷ f (t) is the estimated output, Ki are the proportional gains of the local observers
and Li are their integral gains to be computed and ỹ f (t) = y f (t) − ŷ f (t).

The fuzzy fault tolerant control is conceived on the base of the following strategy.

u f (t) = u(t) − S f̂s(t) +
�∑

i=1

μi (u(t))Gi (x(t) − x̂ f (t)) (73)

where S and Gi are constant matrices with appropriate dimensions. Let us define
x̃(t) the error between the states x(t) and x f (t) , x̃ f (t) the estimation error of the
faulty state x f (t) and f̃ (t) the sensor fault estimation error. These errors are written
as following:

x̃(t) = x(t) − x f (t)
x̃ f (t) = x f (t) − x̂ f (t)
f̃ (t) = f (t) − f̂ (t)

(74)
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The matrix S is chosen verifying Fa = Ba S. The dynamics of x̃(t) is given by:

˙̃x(t) = ẋ(t) − ẋ f (t)

=
�∑

i=1
μi (u(t))

�∑
j=1

μ j (u(t))(Aai − BaG j )x̃(t) − Fa f̃ (t) − BaG x̃ f (t) + Δ1(t)

(75)
with :

Δ1(t) =
�∑

i=1

(μi (u f (t)) − μi u(t))Aai x̃ f (t) − Daw(t)

The dynamic of x̃ f (t) is written as:

˙̃x f (t) = ẋ f (t) − ˙̂x f (t)

=
�∑

i=1
μi (u(t))(Aai − Ki Ca)x̃ f (t) + Ea f̃ (t) + Δ2(t)

(76)

with :

Δ2(t) =
�∑

i=1

μi ((u f (t)) − μi u(t))(Aai − Ki Ca)x̃ f (t) + Daw(t)

The dynamic of the sensor fault estimation error is:

˙̃f (t) = ḟ (t) − ˙̂f (t)

= −
�∑

i=1
μi (u(t))Li Ca x̃ f (t) + Δ3(t)

(77)

with :

Δ3(t) =
�∑

i=1

μi (u f (t) − μi u(t))Li Ca x̃ f (t) + Daw(t) + ḟ (t)

The equations (75), (76) and (77) can be rewritten in the following generalized form:

ϕ̇(t) = Amϕ(t) + ε(t) (78)

with :
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ϕ(t) =
⎡
⎣ x̃(t)
x̃ f (t)
f̃ (t)

⎤
⎦ and ε(t) =

⎡
⎣Δ1(t)

Δ2(t)
Δ3(t)

⎤
⎦

and Am =
�∑

i=1

μi (u(t))
�∑

j=1

μ j (u(t))Ami j

where

Ami j =
⎡
⎣ Aai − BaG j −BaG j Ba

0 Aai − Ki Ca Ba

0 Li Ca 0

⎤
⎦

Considering the Lyapunov function V (t) = ϕ(t)T Pϕ(t), the generalized error vec-
tor ϕ(t) converges to zero if V̇ (t) < 0 =⇒ AT

mi j P + P Ami j < 0∀i, j ∈ {1...�}. The
problem of robust state and faults estimation and of the fault tolerant control design is
reduced to find the gains Ki and Li of the observer and the matrices G j to ensure an
asymptotic convergence of the generalized error vector ϕ(t) toward zero if ε(t) = 0
and to ensure a bounded error if ε(t) �= 0, i.e.:

lim
t→∞ ϕ(t) = 0 forε(t) = 0

‖ϕ(t)‖Qϕ
≤ λ ‖ε(t)‖Qε

forε(t) �= 0
(79)

where λ > 0 is the attenuation level. To satisfy the constraints (79), it is sufficient to
find a Lyapunov function V (t) such that:

V̇ (t) + ϕ(t)T Qϕϕ(t) − λ2ε(t)T Qεε(t) < 0 (80)

where Qϕ and Qε are two positive definite matrices.
The inequality (80) can be written as:

[
ϕ(t)
ε(t)

]T

Φ

[
ϕ(t)
ε(t)

]
< 0 (81)

where:

Φ =
[

AT
m P + P Am + Qϕ P

P −λ2Qε

]
(82)

Choosing Qϕ = Qε = I and assume that the Lyapunov matrix P has the form:
diag(I, P2, P3), the matrix Φ is written :

Φ =
�∑

i=1

μi (u(t))
�∑

j=1

μ j (u(t))Φi j (83)
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where:

Φi j =

⎡
⎢⎢⎢⎢⎢⎢⎣

Φ11i j −BaG j Ba I 0 0
−GT

j BT
a Φ22i Φ23i 0 P2 0

BT
a Φ32i I3 0 0 P3

I 0 0 λ1 I01 0 0
0 P2 0 0 λ2 I02 0
0 0 P3 0 0 λ3 I03

⎤
⎥⎥⎥⎥⎥⎥⎦

(84)

with:

Φ11i j = Aai − BaG j + AT
ai − GT

j BT
a + I1

Φ22i = P2 Aai − P2Ki Ca + AT
ai P2 − CT

a K T
i P2 + I2

Φ23i = P2Ba + CT
a LT

i P3

Φ32i = ΦT
23i

Φ < 0 if Φi j < 0∀i, j ∈ {1...�}, the inequalities Φi j < 0 are bilinear, they can be
linearised using the changes of variables :U2i = P2Ki andU3i = P3Li . The observer
gains are then computed using the equations:

Ki = P−1
2 U2i

Li = P−1
3 U3i

(85)

To summarize, we propose the following theorem:

Theorem 3 The system (78) describing the evolution of the errors x̃(t), x̃ f (t) and
f̃ (t) is stable if there exist symmetric definite positive matrices P2 and P3 and matri-
ces U3i , U2i and G j , i, j ∈ {1...�} so that the LMI Φi < 0 are verified ∀i ∈ {1...�}
where :

Φi j =

⎡
⎢⎢⎢⎢⎢⎢⎣

Φ11i j −BaG j Ba I 0 0
−GT

j BT
a Φ22i Φ23i 0 P2 0

BT
a Φ32i I3 0 0 P3

I 0 0 λ1 I01 0 0
0 P2 0 0 λ2 I02 0
0 0 P3 0 0 λ3 I03

⎤
⎥⎥⎥⎥⎥⎥⎦

(86)

and:

Φ11i j = Aai − BaG j + AT
ai − GT

j BT
a + I1

Φ22i = P2 Aai − P2U2i + AT
ai P2 − CT

a U T
2i + I2

Φ23i = P2Ba + CT
a U T

3i
Φ32i = ΦT

23i

(87)

The observer gains are obtained by: Li = P−1
3 U3i and Ki = P−1

2 U2i
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The advantage of this method is to conceive simultaneously the proportional
integral observer and the fuzzy fault tolerant control. A mathematical transformation
based on the use of the new states z and z f permits to conceive augmented states
in where the initial sensor fault appears as an actuator fault. The fuzzy fault tolerant
control is conceived with regard to the augmented states x(t) and x f (t)

7 Fuzzy Fault Tolerant Control Design for System
with Actuator and Sensor Faults

Consider the non linear system described by Takagi-Sugeno structure given by the
Eq. (50). A nonlinear Takagi-Sugeno model affected by actuator and sensor faults
and measurement noise is given by the following equation:

⎧⎨
⎩

ẋ f (t) =
�∑

i=1
μi (u f (t))Ai x f (t) + Bu f (t) + E fa(t)

y f (t) = Cx f (t) + F fs(t) + Dw(t)
(88)

where x f (t) ∈ R
n is the faulty state vector, u f (t) ∈ R

q is the fuzzy fault tolerant
control which will be conceived, y f (t) ∈ R

m is the faulty output vector. fa(t) and
fs(t) are respectively the actuator and the sensor faults which are assumed to be
bounded and w(t) is the measurement noise. E, F and D are respectively the faults
and the noise distribution matrices which are assumed to be known.

Using the states z and z f defined in (69), the two augmented states x(t) =[
x(t)T z(t)T

]T
and x f (t) = [

xT
f (t) zT

f (t)
]T
, can be written:

⎧⎨
⎩
ẋ(t) =

�∑
i=1

μi (u(t))Aai x(t) + Bau(t)

y(t) = Cax(t)
(89)

and
⎧⎨
⎩
ẋ f (t) =

�∑
i=1

μi (u f (t))Aai x f (t) + Bau f (t) + Ea f (t) + Daw(t)

y f (t) = Cax f (t)
(90)

with:

Aai =
[

Ai 0
− ĀC − Ā

]
, Ea =

[
E 0
0 ĀF

]
, f =

[
fa

fs

]
,

Ba =
[

B
0

]
, Da =

[
0

ĀD

]
and Ca = [

0 I
]
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In order to estimate the augmented state x f and the generalized fault f , a proportional
integral observer given by the following equations is used:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

˙̂x f (t) =
�∑

i=1
μi (u f (t))(Aai x̂ f (t) + Ki ỹ f (t)) + Bau f (t) + Ea f̂ (t)

˙̂f (t) =
�∑

i=1
μi (u f (t))Li ỹ f (t)

ŷ f (t) = Ca x̂ f (t)

(91)

where x̂ f (t) is the estimated faulty state, f̂ (t) represents the estimated generalized
fault, ŷ f (t) is the estimated system output, Ki are the proportional gains of the local
observers and Li are their integral gains to be computed and ỹ f (t) = y f (t) − ŷ f (t).

The fault tolerant control is conceived on the base of the strategy described by the
following expression.

u f (t) = u(t) − S f̂ (t) +
�∑

i=1

μi (u(t))Gi (x(t) − x̂ f (t)) (92)

where S and Gi are constant matrices with appropriate dimensions.
The following errors are used :

x̃(t) = x(t) − x f (t)
x̃ f (t) = x f (t) − x̂ f (t)
f̃ (t) = f (t) − f̂ (t)

(93)

The matrix S is chosen verifying Ea = Ba S. The dynamics of x̃(t) is given by:

˙̃x(t) = ẋ(t) − ˙̂x f (t)

=
�∑

i=1
μi (u(t))

�∑
j=1

μ j (u(t))((Aai − BaG j )x̃(t) − BaG j x̃ f (t)) − Ea f̃ (t) + Δ1(t)

(94)
with:

Δ1(t) =
�∑

i=1

(μi (u f (t)) − μi (u(t)))Aai x̃ f (t) − Daw(t)

The dynamic of x̃ f (t) can be written:

˙̃x f (t) = ẋ f (t) − ẋ f (t)

=
�∑

i=1
μi (u(t))(Aai − Ki Ca)x̃ f (t) + Ea f̃ (t) + Δ2(t)

(95)

with :



Observer Desing for Non Linear Takagi-Sugeno Fuzzy Systems … 123

Δ2(t) =
�∑

i=1

(μi (u f (t)) − μi (u(t)))(Aai − Ki Ca)x̃ f (t) + Daw(t)

The dynamic of the fault error estimation is:

˙̃f (t) = ḟ (t) − ˙̂f (t)

= −
�∑

i=1
μi (u(t))Li Ca x̃ f (t) + Δ3(t)

(96)

with :

Δ3(t) =
�∑

i=1

(μi (u f (t)) − μi (u(t)))Li Ca x̃ f (t) + Daw(t) + ḟ (t)

The Eqs. (94), (95) and (96) can be rewritten:

ϕ̇(t) = Amϕ(t) + ε(t) (97)

with :

ϕ(t) =
⎡
⎣ x̃(t)
x̃ f (t)
f̃ (t)

⎤
⎦ and ε(t) =

⎡
⎣Δ1(t)

Δ2(t)
Δ3(t)

⎤
⎦

and Am = −
�∑

i=1

μi (u(t))
�∑

j=1

μ j (u(t))Ami j

where

Ami j =
⎡
⎣ Aai − BaG j −BaG j Ba

0 Aai − Ki Ca Ba

0 Li Ca 0

⎤
⎦

Considering theLyapunov functionV (t) = ϕ(t)T Pϕ(t), the generalized error vector
ϕ(t) converges to zero if V̇ (t) < 0 =⇒ AT

mi j P + P Ami j < 0∀i, j ∈ {1...�}.
The problem of robust state and faults estimation and of the fault tolerant control

design is reduced to find the gains Ki and Li of the observer and the matrices G j to
ensure an asymptotic convergence of the generalized error vector ϕ(t) toward zero
if ε(t) = 0 and to ensure a bounded error in the case where ε(t) �= 0, i.e.:

lim
t→∞ ϕ(t) = 0 for ε(t) = 0

‖ϕ(t)‖Qϕ
≤ λ ‖ε(t)‖Qε

for ε(t) �= 0
(98)
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where λ > 0 is the attenuation level. The constraints (98), are satisfied if we to find
a Lyapunov function V (t) such that:

V̇ (t) + ϕ(t)T Qϕϕ(t) − λ2ε(t)T Qεε(t) < 0 (99)

where Qϕ and Qε are two positive definite matrices.
The inequality (99) can be written:

[
ϕ(t)
ε(t)

]T

Φ

[
ϕ(t)
ε(t)

]
< 0 (100)

where:

Φ =
[

AT
m P + P Am + Qϕ P

P −λ2Qε

]
(101)

Choosing Qϕ = Qε = I and assume that the Lyapunov matrix P has the form:
diag(I, P2, P3), the matrix Φ is written :

Φ =
�∑

i=1

μi (u(t))
�∑

i=1

μi (u(t))Φi j (102)

where:

Φi j =

⎡
⎢⎢⎢⎢⎢⎢⎣

Φ11i j −BaG j Ba I 0 0
−GT

j BT
a Φ22i Φ23i 0 P2 0

BT
a Φ32i I3 0 0 P3

I 0 0 λ1 I01 0 0
0 P2 0 0 λ2 I02 0
0 0 P3 0 0 λ3 I03

⎤
⎥⎥⎥⎥⎥⎥⎦

(103)

with:

Φ11i j = Aai − BaG j + AT
ai − GT

j BT
a + I1

Φ22i = P2 Aai − P2Ki Ca + AT
ai P2 − CT

a K T
i P2 + I2

Φ23i = P2Ba + CT
a LT

i P3

Φ32i = ΦT
23i

Φ < 0 if Φi j < 0∀i, j ∈ {1...�}, the inequalities Φi < 0 are bilinear, they can be
linearised using the changes of variables :U2i = P2Ki andU3i = P3Li . The observer
gains are then computed using the equations:

Ki = P−1
2 U2i

Li = P−1
3 U3i

(104)
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To summarize, we propose the following theorem:

Theorem 4 The system (97) describing the evolution of the errors x̃(t), x̃ f (t) and
f̃ (t) is stable if there exist symmetric definite positive matrices P2 and P3 and matri-
ces U3i , U2i and G j , i, j ∈ {1...�} so that the LMI Φi j < 0 are verified ∀i, j ∈ {1...�}
where :

Φi j =

⎡
⎢⎢⎢⎢⎢⎢⎣

Φ11i j −BaG j Ba I 0 0
−GT

j BT
a Φ22i Φ23i 0 P2 0

BT
a Φ32i I3 0 0 P3

I 0 0 λ1 I01 0 0
0 P2 0 0 λ2 I02 0
0 0 P3 0 0 λ3 I03

⎤
⎥⎥⎥⎥⎥⎥⎦

(105)

and:

Φ11i j = Aai − BaG j + AT
ai − GT

j BT
a + I1

Φ22i = P2 Aai − P2U2i + AT
ai P2 − CT

a U T
2i + I2

Φ23i = P2Ba + CT
a U T

3i
Φ32i = ΦT

23i

(106)

The observer gains are obtained by: Li = P−1
3 U3i and Ki = P−1

2 U2i

8 Example of Simulation

The main objective of this part is to show the robustness of the proposed methods
by its application to a hydraulic process made up of three tanks [3]. The system
is supposed affected simultaneously by sensor and actuator faults. The considered
system for this application is described and modeled in [3]. The non linear model is
given by the Eq. (107) [3]. where:

– Q1(t) and a2(t) are the flow rates.
– ρ is the tanks section.
– Sn is the cylindrical pipes sections.
– αl , α2 and α3 are constants.
– Q f/ f i(t), ie1.....3 denote the additional mass flows.
– x1, x2 and x3 are the water level with x1 > x3 > x2.

⎧⎪⎪⎨
⎪⎪⎩

ρ dx1(t)
dt = −α1Sn(2g(x1(t) − x3(t)))1/2 + Q1(t) + Q f1ū(t)

ρ dx2(t)
dt = −α3Sn(2g(x3(t) − x2(t)))1/2 − α2Sn(2gx2(t))1/2 + Q2(t) + Q f2ū(t)

ρ dx3(t)
dt = −α1Sn(2g(x1(t) − x3(t)))1/2 − α3Sn(2g(x3(t) − x2(t)))1/2 + Q f3ū(t)

(107)
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Fig. 1 Three tanks system

The process is given in Fig. 1. More details about the used process can be found in
[3].

The multiple model, based on the Takagi-Sugeno framework, is used for the
simulation. This model is given in Eq. 108, with ξ(t) = u(t).

ẋ(t) =
�∑

i=1
μi (ξ(t))(Ai x(t) + Bi u(t) + Fū(t) + di ) (108a)

y(t) = Cx(t) + Dw(t) (108b)

The matrices Ai , Bi and di are calculated by linearizing the initial system (107)
around four points chosen in the operation range of the system. Four local models
have been selected in an heuristicway. That number guarantees a good approximation
of the state of the real system by the multiple model [3]. The following numerical
values were obtained:

A1 =
⎡
⎣−0.0109 0 0.0109

0 −0.0206 0.0106
0.0109 0.0106 −0.0215

⎤
⎦ , d1 = 10−3 ∗

⎡
⎣−2.86

−0.38
0.11

⎤
⎦

A2 =
⎡
⎣−0.0110 0 0.0110

0 −0.0205 0.0104
0.0110 0.0104 −0.0215

⎤
⎦ , d2 = 10−3 ∗

⎡
⎣−2.86

−0.34
0.038

⎤
⎦

A3 =
⎡
⎣−0.0084 0 0.0084

0 −0.0206 0.0095
0.0084 0.0095 −0.0180

⎤
⎦ , d3 = 10−3 ∗

⎡
⎣ −3.7

−0.14
0.69

⎤
⎦

A4 =
⎡
⎣−0.0085 0 0.0085

0 −0.0205 0.0095
0.0085 0.0095 −0.0180

⎤
⎦ , d4 = 10−3 ∗

⎡
⎣−3.67

−0.18
0.62

⎤
⎦

Bi = 1

A
∗

⎡
⎣ 1 0
0 1
0 0

⎤
⎦ and C =

⎡
⎣ 1 1 1
1 0 0
0 1 0

⎤
⎦
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Fig. 2 Activation functions

Fig. 3 System input
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The activation functions μi (u(t)) are shown in the Fig. 2.
The system input u(t) is chosen with two components u(t) = [

u1(t) u2(t)
]T

where u1 is a signal varying between 0 and 0.5 and u2(t) = 0.3 + 0.1 ∗ sin(πt). The
system input is shown in Fig. 3

The actuator fault fa(t) = [
fa1(t) fa2(t)

]T
is defined as:

fa1 =
{
0.4 ∗ sin(πt), 150s < t < 750s
0, Otherwise

and fa2 =
⎧⎨
⎩
0.3, 200s < t < 700s
0.5, 700s < t < 1000s
0, Otherwise

The sensor fault fs(t) is: fs(t) = [
fs1(t) fs2(t)

]T
with:

fs1 =

⎧⎪⎨
⎪⎩
0.4 ∗ sin(πt), 100s < t < 300s and 550s < t < 750s

0.5, 300s < t < 550s

0, Otherwise
and

fs2 =

⎧⎪⎨
⎪⎩
0.5, 100s < t < 200s and 700s < t < 800s

0.5 + sin(1.2 ∗ πt), 200s < t < 700s

0, Otherwise

Matrix Ā is chosen as: Ā = 10 ∗ I .
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Fig. 4 Actuator faults and
their estimation
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Fig. 5 Sensor faults and
their estimation
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Figure 4 visualizes the two actuator faults and their estimations. In Fig. 5 the two
sensor faults and their estimations are represented. The state error estimation is
visualized in Fig. 6.

Figures (4) and (5) show that the proposed proportional observer allows estimating
well the actuator and the sensor faults even in the case of time-varying faults. Figure
(6) shows also that this proposed observer allows estimating well the faulty system
state. The effect of the measurement noise is minimized using a L2 approach.

The obtained results show the effectiveness of the proposed proportional integral
observer. Figures 4, 5, 6 show the effectiveness of the proposed proportional integral
observer to estimate state and faults estimationwith high performances. The proposed
observer gives a good estimation even in the case of time-varying faults and in a very
short time.

Figure 7 shows the error between the initial state x which is taken as a refer-
ence and the faulty system state x f . The fuzzy fault tolerant control is presented in
Fig. 8. Figure 7 shows that the error between the state x and the faulty state x f

converges to zero. In other words, this result means that the proposed fault tolerant
control take action rapidly on the faulty system state x f to make its behavior similar
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Fig. 6 State estimation error
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Fig. 7 Error between x and
x f
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to the behavior of the system without fault described by the state x . The proposed
fuzzy fault tolerant control is shown in Eq. 53. This figure shows that the fault toler-
ant control changes in real time to take into account the sensor and actuators faults
variations

9 Conclusion

This chapter presents a method of a fuzzy fault tolerant control design based on the
principle of Takagi-Sugeno systems. The proposed fault tolerant control depends on
the state estimation error and the fault estimation. To make this estimation, a propor-
tional integral observer allowing estimating simultaneously the system state and the
fault is used. To consider the case where the system is affected by sensor faults, a
mathematical transformation is used to conceive an augmented system in which the
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Fig. 8 Fuzzy fault tolerant
control
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initial sensor fault appear as an actuator fault. The proposed fuzzy fault tolerant con-
trol and the proportional integral observer are conceived by considering the obtained
augmented system. Three cases are studied respectively. Firstly, systems affected by
actuator fault are considered, then the system affected by sensor fault are treated.
Finally, the case where the system is affected simultaneously by sensor and actuator
faults is studied. The proposed method shows that the computation of the observer
gains and the control matrices are made simultaneously. This computation is based
on the resolution of linear matrix inequalities. It also shown that the proposedmethod
allows estimating well the time-varying faults. The noise effect on the estimation or
the control design is reduced using a L2 approach.
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On Observer Design of Systems Based
on Renewable Energy

Omar Naifar and Ghada Boukettaya

Abstract This chapter is devoted to the comparative study between two observation
techniques namely: the adaptive observer and the interconnected observer applied
to a wind energy conversion system (WECS) based induction machine (IM). It has
been found that the introduced interconnected observer exhibits higher performance
than the traditional adaptive one. Whereas, in the second part of this chapter, an
adaptive interconnected observer is applied for both IM and PMSM based WECS.
Such observer is robust and it compensates the effects of parametric variations.

Keywords Adaptive observer · Interconnected observer · Adaptive interconnected
observer · WECS

1 Introduction

The use of wind energy (WE) has grown swiftly in North America, Europe and Asia.
The Global Wind Energy Council (GWEC) mentioned that the total capacity of WE,
established in 2012, surpassed 44 GW worldwide [1]. By 2020, the objective is to
have 20% of its claimed electricity supplied by wind energy [2].

There are two basic techniques to synthesize observers which are used for sensor-
less control. The first technique is the free-model technique which we can cite as the
heuristic technique like artificial intelligence [3–5] and the technique based on the
machine geometry [6–8]. The second technique is based on the IM dynamic model.
It uses automated tools to synthesize linear or nonlinear observers. In the literature,
there are several kinds of such observers such as the extended Kalman filter [6, 9],
the high gain interconnected observer [10–12] and the adaptive observers [13, 14].
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The work presented in this chapter was inspired by the method used in Refs. [15,
16] to compare an interconnectedhigh-gainobserver and an adaptive observer applied
to IM. The speed observer based on the speed adaptation law was first proposed.
Next, a speed observer based on the interconnected observer theory was described.
Then, the two observers were compared, to test their robustness against parameter
variations. Some simulation results were provided to demonstrate the effectiveness
of the interconnected observer in sensorless control for the wind energy conversion
system especially under inductive parameter variations.

Such observers are very sensitive to parametric variations especially the stator
resistance. It is mentioned that the value of stator resistance is required for stator
flux estimation. Its variation due to frequency or temperature affects the scheme
performance. To overcome this problem, we have proposed in the fourth part of
this chapter a stator resistance estimator. This estimator is included to compensate
for the effects of the stator resistance variations. A stability-analysis method of the
suggested observer was introduced and discussed.

In the fifth part of this chapter paper, an online estimator is included to compensate
the effects of parametric variations for PMSM. The design of the proposed observer
provides an extended model of the machine so that PMSM parameters behave as
state variables, since the mechanical speed is not a state variable in the electric state
model, it is considered as a parameter. For the proof of the observer, the stability-
analysis method in the sense of Lyapunov was introduced and discussed. Simulation
results were presented in order to validate and show the performance of the proposed
observer.

The proposed observer used for both IM and PMSM is named as an adaptive
interconnected observer because of the speed adaptation law and the interconnection
form between each observer. The advantages of this approach are defined as follows:

• Considering a state variable as an adjustable parameter in the state matrix and so
the possibility to use linear observations techniques on nonlinear systems.

• The possibility to extend the nonlinear system in a form so that parameters act as
state variables with slight variation. This approach allows parametric estimation
of the system.

2 Modeling

2.1 Induction Machine Model in the Stationary Reference
Frame (α, β)

The electrical state model of the induction motor in the stationary reference frame
(α, β) is presented by the system (1) [17]:

{
ẋαβ = f

(
xαβ

) + Buαβ

yαβ = Cxαβ

(1)
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where: x
αβ

= [isαisβφrαφrβ]T is the state vector, yαβ =
[
isα
isβ

]
is the output vector

and uαβ =
[
usα
usβ

]
is the control vector.

f
(
xαβ

) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−γ1isα + γ2

τr
φrα + γ2 p�φrβ

−γ1isβ − γ2 p�φrα + γ2

τr
φrβ

Lm

τr
isα − 1

τr
φrα − p�φrβ

Lm

τr
isβ − 1

τr
φrβ + p�φrα

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is the state matrix,B =

⎛
⎜⎜⎝
m1 0
0 m1

0 0
0 0

⎞
⎟⎟⎠

is the input matrix, and C =
(
1 0 0 0
0 1 0 0

)
is the output matrix. The parameters

σ, τr , γ1 and γ2 are defined by:

σ = 1 − (
L2
m

/
Ls Lr

)
, τr = Lr

Rr
, γ1 =

L2
m

L2
r
Rr + Rs

σ Ls
,m1 = 1

σ Ls
and γ 2 = Lm

/
Lr Lsσ .

Ls : stator inductance, (Rr ,Rs):rotor and stator resistances, σ : leakage coefficient,
τr :rotor time constant,.Lr .: rotor inductance, Lm : mutual inductance, p: number of
pole pairs, J : rotor moment of inertia and � is the speed of the machine.

The IM physical operation domain D1 in the reference frame (α, β) is defined as
follows:

D1 = { X ∈ R
5||isα | ≤ imax

sα ,
∣∣isβ ∣∣ ≤ imax

sβ , |�| ≤ �max , |φrα | ≤ φmax
rα ,

∣∣φrβ ∣∣ ≤ φmax
rβ } (2)

with X
αβ

= [
isαisβ�φrαφrβ

]T
and imax

sα ,imax
sβ ,�max ,φmax

rα and φmax
rβ are the actual

maximum values for currents, speed and flux.

2.2 Induction Machine Model in the Park Frame

According to [18], the rotation matrix N defined in (3) allows expressing model (1)
in the Park frame, we have:

[
xd
xq

]
= N (ρ)T

[
xα

xβ

]
(3)
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with N (ρ) =
(
cos(ρ) − sin(ρ)

sin(ρ) cos(ρ)

)
and ρ =

(
φrα

φrβ

)
is the angular position of the

rotating.
Then, the induction machine state model in the Park frame is represented by:

⎧⎨
⎩

d

dt
xdq = f (xdq) + Budq

ydq = Cxdq

(4)

where: xdq = [isd isqφrdφrq ]T is the state vector, f (xdq) =⎡
⎢⎢⎢⎣

−γ1isd + γ2
τr

φrd + ωs isq + p�γ2φrq

−γ1isq + γ2
τr

φrq − ωs isd − p�γ2φrd
Lm
τr
isd − 1

τr
φrd − (p� − ωs)φrq

Lm
τr
isq − 1

τr
φrq + (p� − ωs)φrd

⎤
⎥⎥⎥⎦, ydq =

[
isd
isq

]
is the output vector

and udq =
[
usd
usq

]
is the control vector.

The IM physical operation domain D2 is defined as follows:

D2 = {
X1 ∈ R

5||isd |< isd max,|isq
∣∣< imax

sq

∣∣�∣∣< �max,
∣∣φrd

∣∣< φmax
rd ,

∣∣φrd | < φmax
rd

}
(5)

with Xdq = [
isd isq�φrdφrq

]T
and imax

sd ,imax
sq ,�max ,φmax

rd and φmax
rd are the actual

maximum values for currents, speed and flux.
We can assume a perfect orientation of the frame dq, the axis d coincides with the

rotor flux vector, therefore, the quadrature component of flux as well as its derivative
will be cancelled (φrq = 0 ⇒ φ̇rq = 0). The nonlinear model of the induction
machine in the Park frame with flux orientation is presented as follow:

⎧⎨
⎩

d

dt
x

′
dq = f (x

′
dq) + B

′
udq

y
′
dq = C

′
x

′
dq

(6)

where: x
′
dq = [isd isqφrd ]T is the state vector, f (x

′
dq) =⎡

⎢⎢⎢⎢⎣

−γ1isd + γ2

τr
φrd + ωs isq

−γ1isq − ωs isd − p�γ2φrd

Lm

τr
isq + (p� − ωs)φrd

⎤
⎥⎥⎥⎥⎦, y

′
dq =

[
isd
isq

]
is the output vector and udq =

[
usd
usq

]
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is the control vector. B
′ =

⎛
⎜⎜⎝

m1 0

0 m1

0 0

⎞
⎟⎟⎠ is the input matrix, and C

′ =
(
1
0
0
1
0
0

)
is the

output matrix.

2.3 Permanent Magnet Synchronous Machine Model

The mathematical model of the PMSM in a synchronous rotating frame is described
by [19]:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

did
dt

= −RsL
−1
s id + p�iq + L−1

s vd

diq
dt

= −RsL
−1
s iq − p�id − pφ f L

−1
s � + L−1

s vq

d�

dt
= 1

J
(Tw − pφ f iq − fv�)

(7)

with: Rs is the stator resistance, Ls is the stator inductance, φ f is the permanent
magnet flux linkage, id , iq is the stator currents, � is the rotor mechanical speed, p
is the number of pare pole, fv is the viscous friction coefficient, J is the moment of
inertia and Tw is the wind torque.

The PMSM physical operation domain D is defined as follows:

D3 =
{
X2 ∈ R

5||id
∣∣< imax

d ,
∣∣iq ∣∣< imax

q

∣∣�∣∣< �max,
∣∣Rs

∣∣< Rmax
s ,

∣∣L−1
s | < L−1

s max
3

}

(8)

with X = [
id iq�RsL−1

s

]T
and imax

d ,imax
q ,�max ,Rmax

s and L−1max
s are the actual

maximum values for currents, speed stator resistance and stator inductance.

2.4 Wind Turbine Modeling

We adopt a horizontal axis wind turbine with three blades in length R and generally
driving a generator through a G gain speed multiplier.

The mechanical rotation speed is determined from the fundamental relation of the
dynamics as:

J
d�

dt
= Tw − Tem − f � (9)
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where � is the machine speed, Tem is the electromagnetic torque, Tw is the wind
torque and f is the friction coefficient.

In the case of induction machine, Tem is defined by:

Tem = p
Lm

Lr

(
isqφrd − isdφrq

)
(10)

In the case permanent magnet synchronous machine, Tem is defined by:

Tem = pφ f iq (11)

The mechanical torque of the wind turbine Tw may be defined [20, 21]:

Tw = 1

2
ρπ

R3υ2

λ
Cp(λ, β) (12)

The power coefficient Cp is the aerodynamic efficiency of the wind turbine. It
depends on the characteristic of the turbine [22]: the speed ratio λ and the angle of
orientation of the blades β are defined as follows:

Cp(λ, β) = 0.53

[
151

λi
− 0.58β − 0.002β2.14 − 13.2

]
exp

(−18.4

λi

)
(13)

with

λi =
(

1

λ − 0.02β
− 0.003

β3 + 1

)−1

(14)

λ = R�t

υ
(15)

3 A Comparative Study Between a High Gain
Interconnected Observer and An Adaptive Observer

In this section, a comparison study is carried out between two observation approaches
dedicated to speed control strategies of induction machine (IM) under parametric
variations, such that: (i) the adaptive observer approach which is based on the speed
adaptation law and (ii) the interconnected observer that offers robustness and stability
of the system with reduced CPU time. The comparison study is achieved consid-
ering four performance criteria: the stability, the robustness to the variations of the
machine inductances, the robustness to the variations of the machine resistances, and
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the feasibility of the torque estimation. It has been found that the introduced inter-
connected observer exhibits higher performance than the traditional adaptive one, to
the above-cited comparison criteria.

3.1 Adaptive Observer

The goal of the adaptive observer is to jointly estimate the state and the unknown
parameters of the parametric systemmodel. Parametric adaptation law is used by the
adaptive observer which is derived from a Lyapunov function integrating the output
error. This technique can be applied to classes of linear or non-linear systems. The
adaptive observer is widely used to estimate the mechanical speed for the control of
electrical machines. For the design of the adaptive observer, we use the induction
machine model as it is presented in Eq. (1).

In the referential (α, β), the adaptive observer is presented by Eq. (16) [16]:

{
x̂ = A(�̂)x̂ + L(ŷ − y) + Bu

ŷ = Cx̂
(16)

where x̂ ,ŷ and �̂ are respectively the estimation of x, y and �, L =

⎛
⎜⎜⎝
l11 l12
l21 l22
l31 l32
l41 l42

⎞
⎟⎟⎠ is the

gain matrix.

Remark 1 The proposed observer in this section is the Full order Luenberger
observer, but it is named as an adaptive observer because of the speed adaptation law.
The advantage of this approach (considering the speed as a parameter in the state
matrix) allows using linear observations techniques on nonlinear systems.

The estimation error vector e is defined by:

e = x̂ − x = [eisαeisβeφrαeφrβ]T (17)

The dynamics of the estimation error under parametric variation is given by this
system:

⎧⎨
⎩
ė =

(
A
(
�̂
)

+ LC
)
e + (�A(�) + δA(�))x̂

ε = Ce
(18)

where: ε is the output term, �A(�) = A
(
�̂
)

− A(�) and δA(�) is the uncertain

term of A(�).To ensure the observer convergence, it is required that system (18) is
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stable. The Lyapunov function is chosen in the following form:

Va = ϒ + λ(��)2 (19)

where ϒ = eT Pe,�� = �̂ − �, P is a matrix such as PT = P > 0, and λ is a
positive weighting coefficient.

To ensure the convergence of the observer, it is required that the derivative of Va

must be negative and definite. Thus we have:

V̇a = σ1 + σ2 < 0 (20)

Where: σ1 = eT
{
(A(�̂) + LC)T P + P(A(�̂) + LC)

}
e + 2eT PδA(�)x̂

and σ2 = 2eT P�A(�)x̂ + 2λ�� d
dt �̂.

The observer (16) is stable if it satisfies conditions (21) and (22):

σ1 < 0 (21)

and

σ2 = 0 (22)

To prove of condition (19), it is required that (A
(
�̂
)

+ LC) is stable, then ∀Q =
QT > 0, ∃P = PT > 0 such as

(
A
(
�̂
)

+ LC
)T

P + P
(
A
(
�̂
)

+ LC
)

= −Q.

According to [16], the parameters of the L matrix gains are given as follows:

l11 = l22 < 0, l12 = l21 = 0 and

{
l31 = l42 = − Lm

τr

l32 = l41 = 0
(23)

Assumption (24) is justified by the fact that �̂ is a regularly persistent input for
system (16) and the machine state and parameters are bounded:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

‖P‖ ≤ ξ1∥∥∥�

x
∥∥∥ ≤ ξ2

‖δA(�)‖ ≤ ζ3

λmin(P)‖e‖2 ≤ ϒ ≤ λmax (P)‖e‖2
(24)

where ξ1,ξ2,ζ3,λmin(P) and λmax (P) are real positive numbers with λmin(.), λmin(.)

present respectively the minimum and the maximum eigenvalues.
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Equation (21) becames:

−η1ϒ + η2
√

ϒ

≤ −η1ϒ + η2
ϒ√
ϒ

≤ −η1ϒ + η2ϒ
1√

λmin (P)e

≤ −η1ϒ

(
1 − η2

η1
√

λmin(P)e

)
(25)

where η1 = λmin(Q)

λmax (P)
, η2 = 2ξ1ξ2ξ3√

λmin(P)
.

If the machine parameters are known, in this case η2 = 0.In order to check the
condition (21), we just choose η1 > 0.If the machine parameters are variable, then
in this case η2 
= 0. For σ1 defined negative, it is required that the error estimate is
always greater than η2

εη1
√

λmin(P)
with ε ∈ ]0, 1[.

Then, Eq. (23) is developed as:

σ1 < −(1 − ε)η1ϒ (26)

According to [23], the speed adaptation law is developed from (22) and it is
presented by:

d
dt �̂ = ς1

1
2λ p

(
eisβφ̂rα − eisαφ̂rβ

)
−ς2

1

2λ
p
(
eφrβφ̂rα − eφrαφ̂rβ

)
(27)

where ς1 and ς2 are two positive constants. Knowing that the established observer
output is Ce = [

eisα, eisβ
]
, the second term of Eq. (27) is unknown and thus consid-

ered as being a disturbance. To cancel the effect of this disturbance, a Proportional
Integral regulator is used, as shown in Fig. 1.

-+

Induction 
machine

( )1
1

2 is r is r
ˆ ˆp e eβ α α βς φ φ

λ
−PI ++ 1

s

∧
Ω

( )2
1

2 r r r r
ˆp ˆe eφ β α φ α βς φ φ

λ
− −

rφ

ŝi

Adaptive 
observer

rφ̂su

si

Fig. 1 Block diagram of the designed adaptive observer
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3.2 Interconnected Observer

It is well known that there are no systematic methods for the design of observers for a
given non-linear system. However, several observation methods which are available
depending on specific characteristics of the system have been studied. In particular,
the nonlinear system considered can be seen as an interconnection between several
subsystems, where each subsystem satisfying certain conditions, an observer can
be synthesized. The idea of the interconnected observer is to design an observer
for the whole nonlinear system from the synthesis of separate observers for each
subsystem with the hypothesis that the statements of other subsystems are available
for each observer. Certain assumptions are then used to prove the convergence of all
observers.

3.2.1 Observer Design

The induction machine model (1) can be decomposed into two affine-state intercon-
nected subsystems as follows:

{
ẋ1 = A1(x2)x1 + g(u, x2, x1)

y1 = C1x1
(28)

{
ẋ2 = A2(x1)x2 + ϕ(u, y)

y2 = C2x2
(29)

where: x1 = [isα�]T is the state vector of the first subsystem; x2 = [isβφrαφrβ]T is the
state vector of the second subsystem;A1(x2) =

(
0 γ2 pφrβ

0 0

)
is the statematrix of the

first subsystem; A2(x1) =
⎛
⎜⎝

−γ1 −γ2 p�
γ2
τr

0 −1
τr

−p�

0 p� −1
τr

⎞
⎟⎠ is the state matrix of the second

subsystem; C1 = (
1 0

)
and C2 = (

1 0 0
)
are the vector outputs;g(u, x2, x1) =(

−γ1isα + γ2
τr

φrα + m1usα
−m

(
φrαisβ − φrβ isα

) − c� + 1
J Tw

)
andϕ(u, y) =

⎛
⎜⎝
m1usβ
Lm
τr
isα

Lm
τr
isβ

⎞
⎟⎠ is an input–output

injection term.
The interconnected observer is based on the interconnection between several

observers; it requires some properties, especially the property of input persistence
(See [10] for more information).

Assumption 1 x2 and x1 are respectively inputs for subsystems (28) and (29).

Assumption 2
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1. A1(x2) is globally lipschitz with respect to x2
2. g(u, x2, x1) is globally lipschitz with respect to x2 uniformly with respect to the

pair (u, x1).
3. A2(x1) is globally lipschitz with respect to x1

A high gain observer for the system of Eqs. (28) and (29) given respectively by
system (30) and (31):

{
x̂1 = A1

(
x̂2
)
x̂1 + g

(
u, x̂2, x̂1

) + M1
(
x̂2, θ1

)(
y1 − ŷ1

)
ŷ1 = C1 x̂1

(30)

{
x̂2 = A2

(
x̂1
)
x̂2 + ϕ(u, y) + M2

(
θ2, x̂1

)(
y2 − ŷ2

)
ŷ2 = C2 x̂2

(31)

where x̂1 = [îsα�̂]T is the estimated vector of x1 and x̂2 = [îsβφ̂rαφ̂rβ]T is the

estimated vector of x2; A1
(
x̂2
) =

(
0 γ2 pφ̂rβ

0 0

)
is the estimated matrix of A1(x2);

A2
(
x̂1
) =

⎛
⎜⎝

−γ1 −γ2 p�̂
γ2
τr

0 −1
τr

−p�̂

0 p�̂ −1
τr

⎞
⎟⎠ is the estimated matrix of A2(x1) and g

(
u, x̂2, x̂1

)

is the estimation term of g(u, x2, x1).
The designed observer gain M1

(
θ1, x̂2

)
of system (28) is chosen as M1

(
θ1, x̂2

) =
�−1(x̂2)S

−1
1 CT

1 .

Where: �
(
x̂2
) =

(
1 0
0 γ2 pφ̂rβ

)
and S1 is the solution of the differential equation

defined by [10]:

Ṡ1(θ1) = −θ1S1(θ1) − AT
0 S1(θ1) − S1(θ1)A0 + CT

1 C1 (32)

with θ1 is a positive constant and A0 =
(
0 1
0 0

)
.

M2
(
θ2, x̂1

) = S−1
2 CT

2 is the second observer gain obtained by solving the
following equation [10]:

Ṡ2(θ2, x̂1) = −θ2S2(θ2, x̂1) − AT
2 S2(θ2, x̂1) − S2(θ2, x̂1)A2 + CT

2 C2 (33)

with θ2 is a positive constant.
Figure 2 represents the architecture of the adopted interconnected observer applied

to an induction machine.
To prove the convergence of the estimation error of the interconnected observers,

we present in the following the stability analysis based on Lyapunov theory.
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Interconnected Observer

First high gain 
observer

Second high gain 
observer

Transformation 

Fig. 2 Architecture of the IM interconnected observer

3.2.2 Stability Study of the Interconnected Observer Under Parametric
Variation

Consider the estimation errors defined by:

e1 = x1 − x̂1ande2 = x2 − x̂2 (34)

The dynamics error e1 is defined by:

ė1 = [A1
(
x̂2
) − �−1

(
x̂2
)
S−1
1 CT

1 C1]e1 + g(u, x2, x1) − g
(
u, x̂2, x̂1

)
+ [

A1(x2) − A1
(
x̂2
)]
x1 (35)

The dynamics error e2 is defined by:

ė2 = A2(x1)x2 − A2
(
x̂1
)
x̂2 − S−1

2 (θ2, x̂1)C
T
2 C2e2 (36)

Now consider the Eqs. (35) and (36) with uncertainties on the IM parameters:

ė1 = [A1
(
x̂2
) − �−1

(
x̂2
)
S−1
1 CT

1 C1]e1 + g(u, x2, x1) − g
(
u, x̂2, x̂1

) + δg(u, x2, x1)
+[

A1(x2) − A1
(
x̂2
) + δA1(x2)

]
x1

(37)

and

ė2 = [A2(x1) + δA2(x1)]x2 + δϕ(u, y) − A2
(
x̂1
)
x̂2 − S−1

2 (θ2, x̂1)C
T
2 C2e2 (38)

where: δg(u, x2, x1),δA1(x2), δϕ(u, y) and δA2(x1) are respectively the uncertain
terms of g(u, x2, x1),A1(x2), ϕ(u, y) and A2(x1).

Remark 3 According to Lemma 1, it is clear that w = x̂2 and S(t) = S1 for
subsystem (30), and for subsystem (31)w = x̂1 and S(t) = S2.
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Theorem 1 Consider the interconnected IMmodel presented by Eqs. (28) and (29),
system (30)–(31) is a high gain interconnected observer for system (28)–(29).

Proof Considering the following coordinate change ε1 = �
(
x̂2
)
e1.

To check convergence, consider the following Lyapunov equation:

Vi = V1 + V2 (39)

where V1 = εT1 S1ε1 and V2 = eT2 S2e2.
By calculating the derivative of Vi along the trajectories ε1 and e2, V̇i is presented

as:

V̇i = −εT1
[
CT
1 C1 + θ1S1

]
ε1 − eT2

[
CT
2 C2 + θ2S2

]
e2

+2εT1 S1�
(
x̂2
)[g(u, x2, x1) − g

(
u, x̂2, x̂1

) + δg(u, x2, x1)]
+2εT1 S1�

(
x̂2
)[
A1(x2) − A1

(
x̂2
) + δA1(x2)

]
x1 + 2εT1 S1�̇

(
x̂2
)
�−1

(
x̂2
)
ε1

+2eT2 S2
[
A2(x1) − A2

(
x̂1
) + δA2(x1)

]
x2 + 2eT2 S2δϕ(u, y)

(40)

According to Lemma 1 and taking into account the initial conditions of the IM
drive and the observer in the physical operation domain D1, the following inequalities
hold:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖S1‖ < k1∥∥A1(x2) − A1
(
x̂2
)∥∥ < k2‖e2‖

‖x1‖ < k3
‖x2‖ < k4∥∥A2(x1) − A2

(
x̂1
)∥∥ < k5‖e1‖∥∥g1(u, x2, x1) − g1
(
u, x̂2, x̂1

)∥∥ < k6‖e2‖
‖S2‖ < k7∥∥�(

x̂2
)∥∥ < ρ1∥∥∥�(

x̂2
)−1

∥∥∥ < ρ2∥∥�̇(
x̂2
)
�−1

(
x̂2
)∥∥ < ρ3

‖δA1(x2)‖ ≤ α2

‖δA2(x1)‖ ≤ α3

‖δϕ(u, y)‖ ≤ α4

(41)

where ki , i ∈ {1, . . . . . . , 7} and ρ j , j ∈ {1, 2, 3} are positive constants. The
computation of ki , i ∈ {1, . . . . . . , 7} are detailed in Annex.

Including the standards, Eq. (40) can be written as follows:

V̇i ≤ −θ1ε
T
1 S1ε1 − θ2e

T
2 S2e2 + 2k1k6ρ1‖ε1‖‖e2‖ + 2k1k3ρ1k2‖e2‖‖ε1‖
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+ 2k1ρ3‖ε1‖‖ε1‖ + 2k7k4k5ρ2‖e2‖‖ε1‖ + 2k1ρ1α1‖ε1‖
+ 2k3k1ρ1α2‖ε1‖ + 2(k7α3k4 + k7α4)‖e2‖ (42)

Since x̂2 and x̂1 are the inputs for subsystems (28) and (29) respectively. So from
Lemma 1 ∃ real numbers λmin(S1) > 0,λmax(S1) > 0,λmin(S2) > 0,λmax(S2) > 0
such that:

{
λmin(S1)‖ε1‖2 ≤ V1 ≤ λmax (S1)‖ε1‖2
λmin(S2)‖e2‖2 ≤ V2 ≤ λmax (S2)‖e2‖2 (43)

Using the inequalities (43) and by the fact that ε1 = �
(
x̂2
)
e1,it can be deduced

that:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

‖e1‖ ≤ ρ2
1√

λmin(S1)

√
V1

‖e2‖ ≤ 1√
λmin(S2)

√
V2

‖ε1‖ ≤ 1√
λmin(S1)

√
V1

(44)

The derivative of Vi satisfy the following condition:

V̇i ≤ −(θ1 − 2k1ρ3

λmin(S1)
)V1 − θ2V2 +

(
2k1k6ρ1+2k1k3ρ1k2+2k7k4k5ρ2√

λmin(S1)λmin(S2)

)√
V1

√
V2

+(2k1ρ1α1 + 2k3k1ρ1α2)

√
V1√

λmin(S1)
+ 2k7α3k4

√
V2√

λmin(S2)

(45)

On the other hand, Eq. (46) is checked:

√
V1

√
V2 ≤ 1

2
(V1 + V2) (46)

By substituting (46) into (45),the result will be:

V̇i ≤ −λ1Vi + λ2ψ
√
Vi (47)

where λ1 = min(θ1 − λ
2 − 2k1ρ3

λmin(S1)
, θ2 − λ

2 ) with λ = 2k1k6ρ1+2k1k3ρ1k2+2k7k4k5ρ2√
λmin(S1)λmin(S2)

,λ2 =
max( 2k1ρ1α1+2k3k1ρ1α2√

λmin(S1)
, 2(k7α3k4+k7α4)√

λmin(S2)
) andψ > 0 such that

√
V1+√

V2 < ψ
√
V1 + V2.

Since Vi = V1 + V2 and taking into account (44) we can write:

ρ2λmin(S1)‖e1‖2 + λmin(S2)‖e2‖2 ≤ Vi ≤ ρ2λmax(S1)‖e1‖2 + λmax(S2)‖e2‖2 (48)

β‖e‖2 ≤ Vi ≤ α2‖e‖2 (49)
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where α and β are two positives constants.
Then, Eq. (47) can be written as:

V̇i ≤ −(1 − ε)λ1Vi − ελ1Vi + λ
′
2ψ‖e‖∀0 < ε < 1 (50)

with λ
′
2 = αλ2. On the other hand, based on Eq. (49) we can write:

−ελ1Vi ≤ −ελ1β‖e‖2 (51)

By substituting (51) into (50), the result will be:

V̇i ≤ −(1 − ε)λ1Vi − ελ
′
1‖e‖2 + λ

′
2ψ‖e‖ (52)

with λ
′
1 = βλ1.

Then, Eq. (51) can be written as:

V̇i ≤ −(1 − ε)λ1Vi + ‖e‖(−ελ
′
1‖e‖ + λ

′
2ψ) (53)

V̇i ≤ −(1 − ε)λ1Vi ∀e ≥ λ′
2ψ

ελ′
1

(54)

If the machine parameters are known, in this case λ2 = 0.So, one just chooses θ1
and θ2 such that λ1 > 0. If the machine parameters are variable, in this case λ2 
= 0.
For V̇ defined negative, it is required that the error estimate ‖e‖ is always greater
than λ′

2ψ

ελ′
1
. The stability of the error estimation which convergence is arbitrarily set

by θ1 and θ2 provided that it is always greater than λ2ψ

ελ′
1

3.3 Simulations Results and Discussions

The developed observation techniques were applied and tested on a wind energy
conversion system using an induction machine. The characteristics of the associated
turbine and machine are respectively given in Tables 1 and 2, see Annex.

The suggested presentation of the interconnected observer allows the development
of the first observer gain by the fact that state variables do not exist in the computation
differential equation loop. This approach guarantees a fast time calculation. As for
the adaptive observer, it needs an important calculation time due to the adaptation
law. Practically, for that case, an interconnected observer is more efficient than an
adaptive observer.

The wind profile used in the simulation is presented as follows Fig. 3.
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Fig. 3 Wind speed profile

3.3.1 Simulation Results Without Parametric Variation

Figure 4a, b, c and d show the evolution of the mechanical speed and stator flux
associated to the WECS with adaptive observer without considering any parametric
variation.

Figure 5a, b, c and d show the evolution ofmechanical speed and stator flux associ-
ated to the WECS with interconnected observer without considering any parametric
variation.

Figures 3 and 4 have shown that the estimated and measured mechanical vari-
ables of each observer have the same shape with similar amplitude. The estimated
magnitudes correctly follow their actual states. In an ideal case, one finds that both
methods are relatively accurate.
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Fig. 4 Adaptive observer simulation results in nominal case: a: Evolution of the real and estimated
speed, b: Evolution of the speed error, c: Evolution of the real and estimated flux, d: Evolution of
the flux error
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Fig. 5 Interconnected observer simulation results in nominal case: a: Evolution of the real and
estimated speed, b: Evolution of the speed error, c: Evolution of the real and estimated flux, d:
Evolution of the flux error

3.3.2 Simulation Results with Parametric Variation—20% on Lr , Ls

and Lm

Considering the inductance variation at around −20%, Fig. 6a, b, c and d show the
evolution of the mechanical speed and stator flux associated with the WECS with
the adaptive observer.

Figure 7a, b, c and d show the evolution of the mechanical speed and stator
flux associated with the WECS with interconnected observers considering the same
variations of the IM inductances.
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Fig. 6 Adaptive observer simulation results with parametric variation −20% on Lr , Ls and Lm a:
Evolution of the real and estimated speed, b: Evolution of the speed error, c: Evolution of the real
and estimated flux, d: Evolution of the flux error
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Fig. 7 Interconnected observer simulation results with parametric variation -20% on Lr , Ls and
Lm a: Evolution of the real and estimated speed, b: Evolution of the speed error, c: Evolution of the
real and estimated flux, d: Evolution of the flux error

Following a variation of−20% on inductive parameters, Figs. 5b and 6b show that
the interconnected observer presents slight robustness for speed estimation compared
to the adaptive observer. While Figs. 5c and 6c prove that interconnected observer is
more robust than the adaptive observer. For an eventual control without a mechanical
sensor, the estimation of speed and flux are crucial. The adaptive observer presents a
major drawback due to the large estimation error of flux under an inductive parametric
variation. This implies that the interconnected observer is relatively more robust than
the other.

3.3.3 Simulation Results with Parametric Variation + 50% on Rs

and Rr

Considering the resistances variation sat around 50%, Fig. 8a, b, c and d show the
evolution of the mechanical speed and stator flux associated with the WECS with
an adaptive observer Fig. 9a, b, c and d show the evolution of the mechanical speed
and stator flux associated with the WECS with an interconnected observer with the
same resistances variations.

For a variation of + 50% on the stator and rotor resistances, Figs. 8 and 9 show
that both observers present the same degree of robustness.

3.3.4 Wind Torque Simulation Results Using Interconnected Observer

Figure 10 indicate that the interconnected observer estimated wind torque correctly
follows its actual state. An advantage of the interconnected observer compared to
the adaptive one is that the former allows a direct estimation of the vector state as
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Fig. 8 Adaptive observer simulation results with parametric variation + 50% on Rs and Rra:
Evolution of the real and estimated speed, b: Evolution of the speed error, c: Evolution of the real
and estimated flux, d: Evolution of the flux error
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Fig. 9 Interconnected observer simulation results with parametric variation + 50% on Rs and Rr
a: Evolution of the real and estimated speed, b: Evolution of the speed error, c: Evolution of the
real and estimated flux, d: Evolution of the flux error

well as the mechanical magnitudes. The estimated mechanical magnitudes lead to an
estimate of the wind torque. While, for the adaptive observer, the mechanical speed
is not a state variable in the electric state model. It is considered a parameter. The
wind torque cannot be estimated except by an extended Luenberger observer with a
stationary assumption of this torque.
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Fig. 10 Interconnected observer simulation results: a:Evolution of the real and estimated wind
torque with −20% on Lr , Ls and Lm , b: Evolution of the wind torque error with −20% on Lr , Ls
and Lm , c: Evolution of the real and estimated wind torque with + 50% on Rs and Rr , d: Evolution
of the wind torque error with + 50% on Rs and Rr

4 Adaptive Interconnected Observer Design for IM

4.1 Observer Design

For the synthesis of the observer, we use the following interconnected form which
is an extended representation of the model (4):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d
dt

(
isd
Rs

)
=

(
−a −isd

/
σ Ls

0 0

)(
isd
Rs

)
+

(
p�γ2φrq + γ2

τr
φrd + ωs isq + m1usd

0

)

isd = (
1 0

)( isd
Rs

)

(55)
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d
dt

⎛
⎝ isq

φrd

φrq

⎞
⎠ =

⎛
⎜⎝

−a −γ2 p�
γ2
τr

0 −1
τr

−p�

0 p� −1
τr

⎞
⎟⎠
⎛
⎝ isq

φrd

φrq

⎞
⎠ +

⎛
⎜⎝

− Rs
σ Ls

isq − ωs isd + m1usq
Lm
τr
isd + ωsφrq

Lm
τr
isq − ωsφrd

⎞
⎟⎠

isq = (
1 0 0

)⎛⎝ isq
φrd

φrq

⎞
⎠

(56)

where a =
L2m
L2r

Rr

σ Ls
.
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Remark4 The interconnected representation extends the actual systemand it is clear
from Eq. (55) that the parameter now acts as a state variable and so the possibility
to estimate it through the software sensor. In addition, the variable is considered as
a parameter for the two subsystems, its computation was detailed in the stability
analysis of the global observer.

The system of Eqs. (55) and (56) can be presented as:

{ •
x1 = A1(y)x1 + g1(u, x2,�)

y1 = C1x1
(57)

{ •
x2 = A2(�)x2 + g2(u, x1, x2)

y2 = C2x2
(58)

with:

– For the first subsystem:

x1 = [isd Rs]T is the state vector,A1(y) =
(

−a −isd
/
σ Ls

0 0

)
is the

state matrix, C1 = (
1 0

)
is the output vector and g1(u, x2, x1) =(

p�γ2φrq + γ2
τr

φrd + ωs isq + m1usd
0

)
.

– For the second subsystem:

x2 = [isqφrdφrq ]T is the state vector, A2(�) =
⎛
⎜⎝

−a −γ2 p�
γ2
τr

0 −1
τr

−p�

0 p� −1
τr

⎞
⎟⎠ is the state

matrix,
C2 =

(
1 0 0

)
is the output vector and g2(u, x1, x2) =⎛

⎜⎝
− Rs

σ Ls
isq − ωs isd + m1usq
Lm
τr
isd + ωsφrq

Lm
τr
isq − ωsφrd

⎞
⎟⎠.

The two subsystems (57) and (58) are written as affine states, to establish their
associated observer.

Assumption 5 State variables of the first subsystem are considered as known inputs
for the second subsystem and vice versa.

Assumption 6 It is clear that:

(a) g1(u, x2,�) is globally Lipschitz with respect to x2 uniform to the couple
(u, x1).
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(b) g2(u, x1, x2) is globally Lipschitz with respect to x1 uniform to the couple
(u, x2).

Given these Assumptions, a high gain observer for the system of Eqs. (57) and
(58) given respectively by system (59) and (60):

{ ˙̂x1 = A1(y)x̂1 + g1
(
u, x̂2, �̂

)
+ M1(θ1)(y1 − ŷ1)

ŷ1 = C1 x̂1
(59)

{ ˙̂x2 = A2

(
�̂
)
x̂2 + g2

(
u, x̂1, x̂2

) + M2(�̂, θ2)(y2 − ŷ2)

ŷ2 = C2 x̂2
(60)

with.

– For the first observer:

M1(θ1, y) = S−1
1 CT

1 is the observer gain where S1 is a defined positive symmetric
matrix solution of the differential equation defined by[10]:

•
S1(θ1, y) = −θ1S1(θ1, y) − AT

1 S1(θ1, y) − S1(θ1, y)A1 + CT
1 C1 (61)

– For the second observer:

M2(�̂, θ2) = S−1
2 CT

2 is the gain of the observer where S2 is a defined positive
symmetric matrix solution of the differential equation defined by [10]:

•
S2(�̂, θ2) = −θ2S2(�̂, θ2) − AT

2 S2(�̂, θ2) − S2(�̂, θ2)A2 + CT
2 C2 (62)

where θ1 and θ2 are positive constants.
The figure below presents the block diagram of the adaptive interconnected

observer. The adaptation law is determined from the stability analysis of the high
gains interconnected observer Fig. 11.

4.2 Stability Analysis

To prove the stability of the hybrid observer, consider the estimation error defined
by:

e1 = x1 − x̂1; e2 = x2 − x̂2 (63)

The estimation error dynamics e1 is defined by:
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IM state model 

First high gain observer

Second high gain observer

Adaptation law

Fig. 11 Block diagram of the adaptive interconnected observer

•
e1 = [A1(y) − S−1

1 CT
1 C1]e1 + g1(u, x2,�) − g1

(
u, x̂2, �̂

)
(64)

The dynamics of the estimation error e2 is defined by:

•
e2 = [A2

(
�̂
)

− S−1
2 CT

2 C2]e2 + g2(u, x2, �) − g1
(
u, x̂1, �̂

)
+

[
A2(�) − A2

(
�̂
)]

x2 (65)

Now consider the Eqs. (64) and (65) with uncertainties on the parameters:

•
e1 = [A1(y) − S−1

1 CT
1 C1]e1 + �g1 + δg1 + δA1(y)e1 (66)

•
e2 = [A2

(
�̂
)

− S−1
2 CT

2 C2]e2 + �g2 + �A2x2 + δg2 + δA2x2 (67)

where �g1 = g1(u, x2,�) − g1
(
u, x̂2, �̂

)
,�g2 = g2(u, x1, x2) −

g2
(
u, x̂1, x̂2

)
,�A2 = A2(�) − A2(�̂)δg1(u, x2,�), and δg2(u, x2,�),δA1(x1) and

δA2(�) are respectively the uncertain terms of g1(u, x2,�),g2(u, x1, x2),A1(y) and
A2(�).

The machine parameters are known with some precision and they are bounded.
Taking the initial conditions of the IM drive and the observer in the physical oper-
ation domain D2 and by the fact that the uncertainties are bounded, the following
inequalities hold:
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

‖δg1(u, x2,�)‖ < ρ1

‖δg2(u, x2, x1)‖ < ρ2

‖δA2(�)‖ < ρ3

‖δA1(y)‖ < ρ4

‖x1‖ < k4
‖x2‖ < k5

(68)

with ρi , i ∈ {1, .., 4}, k4 and k5 are positive constants, its computation is detailed in
Annex.

To check convergence, consider the following Lyapunov equation:

V = V1 + V2 + λ(��)2 (69)

where: V1 = eT1 S1e1, V2 = eT2 S2e2, �� = � − �̂ and λ is a positive constant.
Calculating the derivative of V along trajectories of e1 and e2 we obtain:

•
V = eT1 [(A1(y) − S−1

1 CT
1 C1

)T
S1 + S1

(
A1(y) − S−1

1 CT
1 C1

) + •
S1]e1

+2eT1 S1[�g1 + δg1] + 2eT1 S1δA1e1

+eT2

[(
A2

(
�̂
)

− S−1
2 CT

2 C2

)T
S2 + S2

(
A2

(
�̂
)

− S−1
2 CT

2 C2

)
+ •

S2

]
e2

+2eT2 S2[�A2 + δA2]x2 + 2eT2 S2[�g2 + δg2] + 2λ��
d

dt
�̂

(70)

The function
•
V is decomposed in two functions σ1 and σ2 with σ1 defined by:

σ1 = eT1 [(A1(y) − S−1
1 CT

1 C1
)T

S1 + S1
(
A1(y) − S−1

1 CT
1 C1

) + •
S1]e1

+eT2

[(
A2

(
�̂
)

− S−1
2 CT

2 C2

)T
S2 + S2

(
A2

(
�̂
)

− S−1
2 CT

2 C2

)
+ •

S2

]
e2

+2eT1 S1[�g1 + δg1] + 2eT2 S2[�g2 + δg2] + 2eT1 S1δA1e1 + 2eT2 S2δA2(�)x2
(71)

and σ2 is defined by:

σ2 = 2eT2 S2�A2x2 + 2λ��
d

dt
�̂ (72)

The observer stability is proven if the derivative of the Lyapunov equation is
negative. If we consider σ1 < 0 and σ2 = 0, the stability condition of the observer is
proved.

Introducing standards for the function σ1, we can write:
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σ1 ≤ −(θ1 − 2ρ4)e
T
1 S1e1 − θ2e

T
2 S2e2

+2‖e1‖‖S1‖‖�g1 + δg1‖ + 2‖e2‖‖S2‖‖�g2 + δg2‖
+2‖e2‖‖S2‖‖δA2(�)‖‖x2‖

(73)

It is well known that: ∀a, b ∈ Ra + b ≤ a + b, so:

σ1 ≤ −(θ1 − 2ρ4)e
T
1 S1e1 − θ2e

T
2 S2e2

+2‖e1‖‖S1‖‖�g1‖ + 2‖e1‖‖S1‖‖δg1‖
+2‖e2‖‖S2‖‖�g2‖ + 2‖e2‖‖S2‖‖δg2‖
+2‖e2‖‖S2‖‖δA2(�)‖‖x2‖

(74)

Knowing that g1,g2 and A1 are globally Lipschitz, one can write:

{
‖�g1‖ ≤ k1‖e2‖
‖�g2‖ ≤ k2‖e1‖ (75)

where k1 and k2 are positive constants, its computation is detailed in Annex.
Assume that the known inputs of each observer are regularly persistent. According

to the Lemma 1, there exist real numbers λmin(S1) > 0,λmax(S1) > 0,λmin(S2) >

0,λmax(S2) > 0,υ1 > 0 and υ2 > 0 such that:

⎧⎪⎪⎨
⎪⎪⎩

‖S1‖ ≤ υ1

‖S2‖ ≤ υ2

λmin(S1)‖e1‖2 ≤ V1 ≤ λmax (S1)‖e1‖2
λmin(S2)‖e2‖2 ≤ V2 ≤ λmax(S2)‖e2‖2

(76)

The condition on the function σ1 becomes:

σ1 ≤ −(θ1 − 2ρ4)V1 − θ2V2 + δ
√
V1

√
V2 + μ1‖e1‖ + μ2‖e2‖ (77)

where δ = 2k1υ1+2k2υ2√
λmin(S1)

√
λmin(S2)

, μ1 = 2υ1ρ1 and μ2 = 2υ2(ρ2 + ρ3k5).
On the other hand, taking into account Eq. (46), the condition on the function σ1

defined on (77) becomes:

σ1 ≤ −
(

θ1 − 2ρ4 − δ

2

)
V1 −

(
θ2 − δ

2

)
V2 + μ1‖e1‖ + μ2‖e2‖ (78)

σ1 ≤ −
(

θ1 − 2ρ4 − δ

2

)
V1 −

(
θ2 − δ

2

)
V2 + μ1√

λmin(S1)

√
V1 + μ2√

λmin(S2)

√
V2

(79)

We suppose thatλ1 = min(θ1−2ρ4− δ
2 , θ2− δ

2 ) andλ2 = max( μ1√
λmin(S1)

,
μ2√

λmin(S2)
).
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Then,

σ1 ≤ −λ1(V1 + V2) + λ2(
√
V1 + √

V2) (80)

That, if we consider the function H = V1 + V2, we can write:

σ1 ≤ −λ1H + λ2

√
H (81)

Taking into account (76) we can write:

λmin(S1)‖e1‖2 + λmin(S2)‖e2‖2 ≤ H ≤ λmax(S1)‖e1‖2 + λmax(S2)‖e2‖2 (82)

β‖e‖2 ≤ H ≤ α2‖e‖2 (83)

where α and β are two positives constants.
Then, Eq. (81) can be written as:

σ1 ≤ −(1 − ε)λ1H − ελ1Hi + λ
′
2‖e‖∀0 < ε < 1 (84)

with λ
′
2 = αλ2. On the other hand, based on Eq. (49), we can write:

−ελ1H ≤ −ελ1β‖e‖2 (85)

By substituting (85) into (84), the result will be:

σ1 ≤ −(1 − ε)λ1H − ελ
′
1‖e‖2 + λ

′
2‖e‖ (86)

with λ
′
1 = βλ1.

Then, Eq. (56) can be written as:

σ1 ≤ −(1 − ε)λ1H + ‖e‖(−ελ
′
1‖e‖ + λ

′
2) (87)

σ1 ≤ −(1 − ε)λ1H ∀e ≥ λ
′
2

ελ
′
1

(88)

If the machine parameters are known, in this case λ2 = 0. To check the first
condition, we just choose θ1 and θ2 such that λ1 > 0. If the machine parameters are
variables, in this case λ2 
= 0. For σ1 defined negative, it is required that the error
estimate ‖e‖ is always greater than λ′

2
ελ′

1
The stability of the error estimation which

convergence is arbitrarily set by θ1 and.
Considering the validation of the first condition, to ensure the observer stability,

we have to admit that σ2 is equal to zero , then we obtain:
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d�̂

dt
= − p

λ
eT2 S2A0x2 (90)

with: A0 =
⎛
⎝ 0 −γ2 0
0 0 −1
0 1 0

⎞
⎠

The adaptation law�̂ is defined by:

d�̂

dt
= − p

λ
[eisq

(
aφrd − S12φrq

) + eφrd
(
bφrd − S22φrq

) + eφrq
(
cφrd − S23φrq

)]
(91)

where a = −γ2S11 + S13, b = −γ2S12 + S23 and c = −γ2S13 + S33 with S11, S12,

S13, S22, S23 and S33 are the terms of the matrix S2 such that S2 =
⎛
⎝ S11 S12 S13
S12 S22 S23
S13 S23 S33

⎞
⎠.

Knowing that eφrd = φrd − φ̂rd Eq. (40) becomes:

d�̂

dt
= f1(x, x̂) + f2(φ, φ̂) (92)

where

f1(x, x̂) = − p

λ
eisq

(
aφ̂rd − S12φ̂rq

)

and

f2(φ, φ̂) = − p

λ
[eisq (aeφrd − S12eφrq ) + eφrd

(
bφrd − S22φrq

) + eφrq
(
cφrd − S23φrq

)]

4.3 Wind Torque Observer

Thewind torque Tw is estimated by an extended Luenberger observer. This determin-
istic approach is used to estimate variables or parameters of the machine as a separate
part of its state variables. The estimate can then be extended to the wind torque or
some electrical parameters assuming a very low variation of these quantities. It is
assumed that:

d

dt
Tw = 0 (93)
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One constructs the increased estimatedmechanicalmagnitude statemodel defined
by:

{
d
dt Xe = AeXe + BeT̂em

�̂ = CeXe
(94)

with Xe =
[

�

Tw

]
, Ae =

[− fv
J

1
J

0 0

]
, Be =

[− 1
J
0

]
and Ce = [

1 0
]
.

The induction machine electromagnetic torque is calculated from the estimated
electrical magnitude such that:

T̂em = p
Lm

Lr
(îsq φ̂rd − îsd φ̂rq) (95)

The equations system (94) is a linear state model to which we can associate the
extended Luenberger observer as follows:

d

dt
X̂e = Ae X̂e + BeT̂em + L(�̂ − �est ) (96)

where X̂e =
[

�est

T̂w

]
, G is the observer gain defined by L =

[
l1
l2

]
.

Figure 12 illustrate the block diagram of the developed extended Luenberger
observer.

The stability of the observer will be ensured by an appropriate choice of the gain
L so that (Ae − LCe) is stable, see Annex Fig. 13.

Adaptive Interconnected

Observer 

Extended Luenberger

Observer

G

Fig. 12 Block diagram of the extended Luenberger observer
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Fig. 13 Evolution of the IM stator resistance and the adaptive interconnected estimated stator
resistance with +50% variation Rr on and Rs

Fig. 14 Evolution of the
induction machine speed and
the adaptive interconnected
observer estimated speed
with +50% variation on Rr
and Rs
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4.4 Simulation Results

The characteristics of the associated turbine and machine are respectively given in
Tables 1 and 2. In this study, the variation is tested with different parameters: namely
the resistances (Rr and Rs) and the inductances (Lr and Lm). The wind profile used
in the simulation is presented in Fig. 2.

4.4.1 Simulation Results with +50% Variation on Rr and Rs

Despite the parametric variation +50% on Rr and Rs , the proposed observer
converges and gives desirable results. It is clear from Figs. 14, 15, 16 and 17 that
the estimated states follow their actual variables with an average of a relative speed
error around 0.2% Fig. 18.

4.4.2 Simulation Results with + 50% Variation on Rs and −20% on Lr

and Lm

Figure 20 it is clear fromFigs 19 and21 that the estimated andmeasurablemagnitudes
have similar shapes and amplitudes.A variation of about -20%on the inductances and
+50% on the stator resistance maintains the performance of the observer. Besides,
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Fig. 15 Evolution of the adaptive interconnected observer speed relative error with+50%variation
on Rr and Rs
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Fig. 16 Evolution of the induction machine Flux and the adaptive interconnected observer
estimated Flux with +50% variation on Rr and Rs
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Fig. 17 Evolution of the adaptive interconnected observer Flux relative error with +50% variation
on Rr and Rs
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Fig. 18 Evolution of the IM stator resistance and the adaptive interconnected estimated stator
resistance with +50% variation on Rs and –20% on Lr and Lm

Fig. 22 show an average flux relative error of around 0.1%. As a consequence,
the speed estimation keeps its performance with an average speed relative error of
around 0.5%. The advantage of the stator resistance estimation has become obvious.
Figure 22 has shown the evolution of the estimated induction machine wind torque
compared to the real one. According to Fig. 23, it can be deduced that the extended
Luenberger observer converge and gives a desirable result.

Fig. 19 Evolution of the
induction machine speed and
the adaptive interconnected
observer estimated speed
with +50% variation on Rs
and –20% on Lr and Lm
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Fig. 20 Evolution of the
adaptive interconnected
observer speed relative error
with +50% variation on Rs
and –20% on Lr and Lm
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Fig. 21 Evolution of the
induction machine Flux and
the adaptive interconnected
observer estimated Flux with
+50% variation on Rs and
–20% on Lr and Lm
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Fig. 22 Evolution of the adaptive interconnected observer Flux relative error with +50% variation
on Rs and –20% on Lr and Lm
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Fig. 23 Evolution of the estimated induction machine wind torque and the actual wind torque

5 Adaptive Interconnected Observer Design for PMSM

5.1 Observer Design

For the synthesis of the observer, we use the following interconnected form which
is an extended representation of the model (7):
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⎧⎪⎪⎨
⎪⎪⎩

d
dt

(
id
L−1
s

)
=

(
0 −Rsid
0 0

)(
id
L−1
s

)
+

(
p�iq
0

)
+

(
L−1
s vd

0

)

id = (
1 0

)( id
L−1
s

) (97)

⎧⎪⎪⎨
⎪⎪⎩

d
dt

(
iq
Rs

)
=

(
0 −L−1

s iq
0 0

)(
iq
Rs

)
+

(−p�id
0

)
+

(−pφ f L−1
s � + L−1

s vq

0

)

iq = (
1 0

)( iq
Rs

)

(98)

The variable � is considered as a parameter for the two subsystems, Its computa-
tion will be detailed in the stability analysis of the observer. The system of Eqs. (97)
and (98) can be presented as:

{ •
x1 = A1(x2, y)x1 + g1(�, y) + �1(x1, u)

y1 = C1x1
(99)

{ •
x2 = A2(x1, y)x2 + g2(�, y) + �2(x1,�, u)

y2 = C2x2
(100)

with:

For the first subsystem:

x1 = [id L−1
s ]T is the state vector,A1(x2, y) =

(
0 −Rsid
0 0

)
is the state matrix,

C1 = (
1 0

)
is the output vector, y is the output term,g1(�, y) =

(
p�iq
0

)
and

�1(x1, u) =
(
L−1
s vd

0

)
.

For the second subsystem:

x2 = [iq Rs]T is the state vector, A2(x1, y) =
(
0 −L−1

s iq
0 0

)
is the state matrix,

C2 = (
1 0

)
is the output vector, y2 is the output term,g2(�, y) =

(−p�id
0

)
and

�2(x1,�, u) =
(−pφ f L−1

s � + L−1
s vq

0

)
.

The two subsystems (50) and (51) are written as affine state presentation.

Assumption 7: State variables of the first subsystem are considered as known inputs
for the second subsystem and vice versa.
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Assumption 8: We have as an assumption the following four points:

(a) A1(x2, y) is globally Lipschitz with respect to x2 and uniformly with respect
to y.

(b) A2(x1, y) is globally Lipschitz with respect to x1 and uniformly with respect
to y.

(c) �1(x1, u) is globally Lipschitz with respect to x1.
(d) �2(x1,�, u) is globallyLipschitzwith respect to x1 and uniformlywith respect

to (�, u).

Given these remarks, we associate with the systems (99) and (100) respectively
the high gains observers (101) and (102):

{ ˙̂x1 = A1(x̂2, y)x̂1 + g1(�̂, y) + �1(x̂1, u) + S−1
1 (θ1, x̂2)CT

1 (y1 − ŷ1)
ŷ1 = C1 x̂1

(101)

{ ˙̂x2 = A2
(
x̂1, y

)
x̂2 + g2(�̂, y) + �2(x̂1, �̂, u) + S−1

2 (θ2, x̂1)CT
2 (y2 − ŷ2)

ŷ2 = C2 x̂2
(102)

with.

– For the first observer:

x̂1 is the estimated vector of x1,A1(x̂2, y) is the estimated matrix of
A1(x2, y),g1(�̂, y) is the estimated vector of g1(�, y), �1(x̂1, u) is the estimated
vector of �1(x1, u) and S−1

1 (θ1, x̂2)CT
1 is the observer gain where S1 is a defined

positive symmetric matrix solution of the differential equation defined by [10]:

•
S1(θ1, x̂2) = −θ1S1(θ1, x̂2) − AT

1 S1(θ1, x̂2) − S1(θ1, x̂2)A1 + CT
1 C1 (103)

with θ1 is a positive constant.

– For the second observer:

x̂2 is the estimated vector of x2,A2(x̂1, y) is the estimated matrix of
A2(x1, y),g2(�̂, y) is the estimated vector of g2(�, y),�2(x̂1, �̂, u) is the estimated
vector of �2(x1,�, u) and S−1

2 (θ2, x̂1)CT
2 is the observer gain where S2 is a defined

positive symmetric matrix solution of the differential equation defined by[10]:

•
S2(θ2, x̂1) = −θ2S2(θ2, x̂1) − AT

2 S2(θ2, x̂1) − S2(θ2, x̂1)A2 + CT
2 C2 (104)

with θ2 is a positive constant.
The figure below presents the block diagram of the adaptive interconnected

observer. The adaptation law is determined from the stability analysis of the high
gains interconnected observer Fig. 24.
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PMSM state model 

First high gain observer

Second high gain observer

Adaptation law

Fig. 24 Block diagram of the adaptive interconnected observer for. PMSM

The terms eid and eiq in Fig. 1 correspond to the current errors with eid = id − îd
and eiq = iq − îq . îd ,îq , R̂s , L̂−1

s and �̂ are respectively the estimated magnitude of
id ,iq , Rs , L−1

s and �.

5.2 Stability Analysis

To prove the stability of the hybrid observer, consider the estimation error defined
by:

e1 = x1 − x̂1; e2 = x2 − x̂2 (105)

The dynamics of the estimation error e1 and e2 are defined by:

•
e1 = [A1(x̂2, y) − S−1

1 CT
1 C1]e1 + �A1x1 + �g1 + ��1 (106)

•
e2 = [A2

(
x̂1, y

) − S−1
2 CT

2 C2]e2 + �A2x2 + �g2 + ��2 (107)

where �A1 = A1(x2, y) − A1(x̂2, y),�g1 = g1(�, y) − g1(�̂, y), ��1 =
�1(x1, u) − �1(x̂1, u),�A2 = A2(x1, y) − A2

(
x̂1, y

)
,�g2 = g2(�, y) − g2(�̂, y)

and ��2 = �2(x1,�, u) − �2(x̂1, �̂, u).

Theorem 2 Let’s consider the PMSM dynamic model represented by Eq. (99) and
(100). System (101) and (102) is an adaptive interconnected observer for system
(99) and (100)with stability of estimation error dynamics. The speed adaptation law
which guarantees the observer stability is derived as:
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d�̂

dt
= 1

λ
[pid

(
eiq S

′
11 + eRs S

′
12

)
− piq(eid S11 + eLs−1 S12)] (108)

with λ > 0 and S11,S12,S
′
11,S

′
12 are the terms of the matrix S1 and S2 such as S1 =(

S11 S12
S12 S22

)
and S2 =

(
S

′
11 S

′
12

S
′
12 S

′
22

)
. eRs = Rs − R̂s is the stator resistance estimation

error and eLs = L−1
s − L̂−1

s is the inductance estimation error.

Proof To check convergence, let’s consider the following Lyapunov equation:

V = V1 + V2 + λ(��)2 (109)

where: V1 = eT1 S1e1, V2 = eT2 S2e2, �� = � − �̂ and λ is a positive constant.

By calculating the derivative of V along trajectories of e1 and e2 we obtain:

•
V = eT1 [(A1(x̂2, y) − S−1

1 CT
1 C1

)T
S1 + S1

(
A1(x̂2, y) − S−1

1 CT
1 C1

) + •
S1]e1

+2eT1 S1�A1x1 + 2eT1 S1��1

+eT2

[(
A2

(
x̂1, y

) − S−1
2 CT

2 C2
)T

S2 + S2
(
A2

(
x̂1, y

) − S−1
2 CT

2 C2
) + •

S2

]
e2

+2eT2 S2�A2x2 + 2eT2 S2��2

+2eT1 S1�g1 + 2eT2 S2�g2 + 2λ��
d

dt
�̂

(110)

One decomposes the function
•
V in two functions σ1 and σ2 with σ1 defined by:

σ1 = eT1 [(A1(x̂2, y) − S−1
1 CT

1 C1
)T

S1 + S1
(
A1(x̂2, y) − S−1

1 CT
1 C1

) + •
S1]e1

+2eT1 S1�A1x1 + 2eT1 S1��1

+eT2

[(
A2

(
x̂1, y

) − S−1
2 CT

2 C2
)T

S2 + S2
(
A2

(
x̂1, y

) − S−1
2 CT

2 C2
) + •

S2

]
e2

+2eT2 S2�A2x2 + 2eT2 S2��2

(111)

σ2 isdefined by:

σ2 = 2eT1 S�g1 + 2eT2 S2�g2 + 2λ��
d

dt
�̂ (112)
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The stability of the observer is proved if the derivative of the Lyapunov equation
is negative. If we consider σ1 < 0 and σ2 = 0, the stability condition of the observer
is proved.

Introducing standards for function σ1, we can write:

σ1 ≤ −θ1e
T
1 S1e1 − θ2e

T
2 S2e2

+2‖e1‖‖S1‖‖�A1‖‖x1‖
+2‖e1‖‖S1‖‖��1‖
+2‖e2‖‖S2‖‖�A2‖‖x2‖
+2‖e2‖‖S2‖‖��2‖

(113)

Knowing that g1,g2 and A1 are globally Lipschitz functions, we can write:

⎧⎪⎪⎨
⎪⎪⎩

‖�A1‖ ≤ ρ1‖e2‖
‖�A2‖ ≤ ρ2‖e1‖
‖��1‖ ≤ ρ3‖e1‖
‖��2‖ ≤ ρ4‖e1‖

(114)

where ρi , i ∈ {1, . . . . . . , 4} are positive constants. The way to comput ρ j , j ∈
{1, . . . . . . , 4} is presented in Annex).

According to Lemma 1 and taking the initial conditions of the PMSM drive and
the observer in the physical operation domain D3, the following inequalities hold:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

‖S1‖ < k1
‖S2‖ < k2
‖x1‖ < k3
‖x2‖ < k4

(115)

where ki , i ∈ {1, . . . . . . , 4} are positive constants. The way to comput ρ j , j ∈
{1, . . . . . . , 4} is presented in Annex.

Assume that the known inputs of each observer are regularly persistent. According
to Lemma 1, there exist real numbers λmin(S1) > 0,λmax(S1) > 0,λmin(S2) >

0,λmax(S2) > 0, such that:0

{
λmin(S1)‖e1‖2 ≤ V1 ≤ λmax (S1)‖e1‖2
λmin(S2)‖e2‖2 ≤ V2 ≤ λmax (S2)‖e2‖2 (116)

The condition on the function σ1σ1 σ1 becomes:

σ1 ≤ −(θ1 − τ)V1 − θ2V2 + δ
√
V1

√
V2 (117)
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where τ = 2k1ρ3

λmin(S1)
and δ = 2k1k3ρ1+2k4k2ρ2+2k2ρ4√

λmin(S1)
√

λmin(S2)
.

Considering Eq. (46), the condition on the function σ1 defined on (117) becomes:

σ1 ≤ −
(

θ1 − τ − δ

2

)
V1 −

(
θ2 − δ

2

)
V2 (118)

or

σ1 ≤ −ξ(V1 + V2) ≤ −ξV (119)

with ξ = min(θ1 − τ − δ
2 , θ2 − δ

2 ).

The condition on σ1 is verified if we choose θ1 and θ2 such that ξ > 0.
Considering the validation of the first condition, to ensure the observer stability,

we must admit that σ2 is equal to zero , then we obtain:

d�̂

dt
= 1

λ

[
eT2 S2

(
pid
0

)
− eT1 S1

(
piq
0

)]
(120)

The adaptation law �̂ is defined by:

d�̂

dt
= 1

λ
[pid

(
eiq S

′
11 + eRs S

′
12

)
− piq(eid S11 + eLs−1 S12)] (121)

with S11,S12,S
′
11,S

′
12 are the terms of the matrix S1 and S2 such as S1 =

(
S11 S12
S12 S22

)

and S2 =
(
S

′
11 S

′
12

S
′
12 S

′
22

)
.

Another formulation of Eq. (69), we have:

d�̂

dt
= f1(x, x̂) + f2(Rs, R̂s, L

−1
s , L̂−1

s ) (122)

where f1(x, x̂) = 1
λ

[
eiq S

′
11 pid − eid S11 piq

]
and f2(Rs, R̂s, L−1

s , L̂−1
s ) =

− p
λ

[
eRs S

′
12 pid − eLs−1 S12 piq

]
.

If Eq. (122) is checked, the derivative of V becomes:

V̇ ≤ 0 (123)

So, System (101) and (102) is an adaptive interconnected observer for system (99)
and (100) with the stability of estimation error dynamics and Eq. (121) is a speed
adapted law that guarantees the observer stability.
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5.3 Simulation Results

To investigate the mathematical study and, hence, to illustrate the performance of the
suggested observer, Table 1 gives the PMSM nominal parameters which are used in
the simulation. The simulation results have been carried out using Matlab/Simulink
Software. The developed study is applied and tested to a wind energy conversion
system (WECS) using a PMSM. Characteristics of the associated turbine are given
in Table 3 (Annex). The wind profile used in the simulation is presented in Fig. 3.

Figures 25, 27 and 29 have shown that estimated and measured variables have
the same shape with similar amplitude. The estimated magnitudes correctly follow
their actual states very well. Figures 26, 28 and 30 have presented that the observer
converges after an average of 1 s. The stability of the estimation error dynamics is
clearly shown in Figures 26b, 28b and 30b. It can be deduced that the observer gives
a desirable result. The stability analysis of the suggested observer was so proved by
simulation results.
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Fig. 25 Speed tracking: a real and estimated speed, b: speed error
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Fig. 26 Zoom of speed tracking: a real and estimated speed, b: speed error
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Fig. 27 Stator resistance estimation: a real and estimated stator resistance, b: stator resistance error
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Fig. 28 Zoom of Stator resistance estimation: a real and estimated stator resistance, b: stator
resistance error
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Fig. 29 Inductance estimation: a: real and estimated inductance, b: inductance error
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Fig. 30 Zoom of inductance estimation: a: real and estimated inductance, b: inductance error

6 Conclusion

In WECS, observers have become an interesting alternative to improve control of
wind generators due to measurement errors that affect the system control quality and
overall reliability. We have presented in these chapter three observations technique
based on WECS namely: the adaptive observer, the interconnected observer and
the adaptive interconnected observer. A comparative study is carried out between
the suggested adaptive observer and the interconnected observer applied to IM based
WECS.We have drawn that the interconnected observer ismore robust than the adap-
tive one especially in the case of inductive parameters variation. On the other hand, it
is to be noted that the value of stator resistance is required for stator flux estimation.
Its variation due to frequency or temperature affects the scheme performance. To
overcome this problem, a robust adaptive interconnected high gain observer with an
online estimation of stator resistance applied toWECS using IM has been developed
in the next part of this chapter. The stability and robustness study of the suggested
observer have been described. According to simulation results, it can be deduced
that stator resistance variation has been compensated by the new stator resistance
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estimator. Furthermore, it can be noted that, despite the parametric variation, the
estimated magnitudes converge and give desirable results. The robustness of the
adaptive high gain interconnected observer was thus validated. The final part of this
chapter is concentrated on observer design for WECS based PMSM. The PMSM
parameters are required for an eventual control. Its variation due to frequency or
temperature affects the scheme performance. To overcome this problem, an adaptive
interconnected high gain observer with online parametric estimation has been devel-
oped. The stability study of the suggested observer has been described. According
to simulation results, it can be deduced that the observer converges and gives desir-
able results. The performance of the suggested adaptive interconnected observer for
WECS based PMSM was thus validated.
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On Observers-Based Controller Design
for Induction Machine

Omar Naifar and Ghada Boukettaya

Abstract This chapter is devoted to the stability investigation of a controlled IM
using both adaptive and interconnected observers. The introduced robust control is
validated by using the Lyapunov approach. The global stability analysis of the closed-
loop system is proven under parametric variations. Finally, simulations results are
given to show the performance of the suggested observer’s based controller design
for the induction machine.

Keywords Robust control design · Adaptive observer based controller schema ·
Interconnected observer based controller schema

1 Introduction

Thanks to the technology developments and the recent advances in control theory, it is
possible to implement new controllers to a large number of Alternative Current (AC)
machines. These controllers aremore robust to uncertainties, andmore efficient under
a wide range of operating conditions in very useful applications. One of the most
attractive applications of electrical machines is for transport: vehicle traction that is
currently in important development. The control of AC machines is a challenging
problem that has attracted attention thanks to its several applications. For instance,
the control problem of the induction motor has recently attracted attention due to its
complexity: the induction motor is a nonlinear multi-variable system.

For economic reasons, for operating safety or to a degraded but functional solution
to applications in case of failure of these sensors, the control without mechanical
sensor requires the attention of many manufacturers. Therefore, it has become a
centre of research interest in recent years. In this view, themain objective of this study
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is to synthesize nonlinear control laws without mechanical sensors for asynchronous
machines. Initially, much attention is given to observers (soft sensor) to compensate
for the absence of the mechanical sensor giving the speed information and the torque
load using the unique measurement of currents. Then sophisticated control laws
(non-linear control) are developed and associated with the observers to carry out the
command without the mechanical sensor of the asynchronous machine.

Trouble for the sensorless speed control is evidence of the global stability of the
closed-loop system (Control + Observer). In literature, little efforts have offered
an inclusive demonstration of this method, except [1–4]. In fact, the work of [1]
presents a global tracking control for speed-sensorless induction motors. Authors in
[1] have developed a new second-order control for speed sensorless induction motor
which guarantee the global stability of the closed-loop system (control + observer).
Actually, they have designed an open-loop control which is extended to a closed-
loop solution integrating states estimation. M. Feemster et al. have presented in [2]
a sensorless control algorithm that achieves semi-global exponential rotor velocity
tracking for the full-order nonlinear dynamic model of an induction motor actuating
a mechanical subsystem.

Changes in his thesis [3] have described three observation strategies. The first
one has named: cascade observer interconnected to an estimator. The second one has
named: high gain observer interconnected to an estimator. The third one is named:
high gain interconnected observer. Each of the above-cited observers is validated
by the vector control and the sliding mode control. Rigorous mathematical stability
analysis for the closed-loop system is presented. D. Traoré et al. in [4] have extended
the results of [3]. In fact, the proposed sensorless control was the adaptive intercon-
nected observer-based backstepping control. The architecture of the observer in [4]
is like that used in [3]. While-that the proposed control is the backstepping control.

2 Control Based on the Lyapunov Approach

In this section, a novel control method for IM has been established. The main idea
of this technic is to make stable the controlled closed loop system. This technique
compared with traditional IM control uses a simple computation by the fact that a
global asymptotic stability is obtained. The goal of this control method is based on
a suitable choice of the voltage control values that warranty a global stability of the
closed loop system. The IM mechanical variables flawlessly track their references
through two PI controllers. The associate PI gains are computed by pole placement
mode. Robustness study against parametric variation is established.

To fix the control voltage U = (usd , usq)T , a likely method is to create a (PI)
controllers respectively for flux and speed, the regulators output provides the currents
reference I ∗ = (i∗sd , i∗sq)T . The global stability analysis in the sense of Lyapunov lets
us to define the control law. The Fig. 1 shows the overall structure of the novel control
method based on the Lyapunov theory.
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Observer ,s si iα β

su α
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Fig. 1 General structure of the observer based controller for induction

We consider no variation on the inductionmachine parameters.We can name it the
nominal case. For the stability analysis, we have defined below the Flux regulator
synthesis and the speed regulator synthesis. A change of variable is made on the
equations of both regulators to facilitate the determination of its gains and to easily
analyze the stability in the sense of Lyapunov. A suitable choice of the control voltage
confirms the asymptotic convergence of the system. To compensate nonlinearities, a
possible method is to achieve a fast current loop (PI controller) [5], which will aim
to force the current isd and isq to their reference values i∗sd and i∗sq . In this study, we
suppose that the induction machine operates as a motor. For the control need, we
use the induction machine model as it is presented in [5]. Then, the equations of the
machine after the first loop are:

[
�̇

φ̇rd

]
=

[
mφrd i∗sq − Tl

J − c�
Lm
τr
i∗sd − 1

τr
φrd

]
(1)

where m = pLm/J Lr and c = f/J .
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Flux regulator Synthesis:

Suppose that the current error
(
�isd = i∗sd − isd

)
equals to zero. Then, one can write

the output of the flux regulator as follow

i∗sd = K Iφrd
t∫
0

(
φ∗
rd − φrd

)
(τ )dτ + K Pφrd

(
φ∗
rd − φrd

) + i∗sd (2)

where K Iφrd and K Pφrd are respectively the integral constant and the proportional
constant of the flux (PI) regulator.

Using Eq. (1), we have

i∗sd = K Iφrd
t∫
0

(
φ∗
rd − φrd

)
(τ )dτ + K Pφrd

(
φ∗
rd − φrd

) + τr

Lm
φ̇∗
rd + 1

Lm
φ∗
rd (3)

On the other hand, the flow tracking error is given by

�φ = φ∗
rd − φrd (4)

The dynamic of the flux error is presented as follow

�̇φ = φ̇∗
rd − φ̇rd = φ̇∗

rd − Lm

τr
i∗sd + 1

τr
φrd (5)

Replacing i∗sd by its expression, we have:

�̇φ = 1

τr

(−1 − LmK Pφrd
)
�φ − LmK Iφrd

τr

t∫
0
�φ(τ)dτ (6)

Consider the following coordinates change:

�φ =
(

t∫
0
�φ(τ)dτ,�φ

)T

(7)

The dynamics of the flux error (5) in the new coordinates is given by:

�̇φ = Aφ�φ (8)

where Aφ =
(

0 1
β1φ β2φ

)
with β1φ = − LmK Iφrd

τr
and β2φ = 1

τr

(−1 − LmK Pφrd
)
.

The gains K Iφrd and K Pφrd are determined in such ways that the matrix Aφ is
stable. See Annex.
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Speed regulator Synthesis:

Once the machine is fluxed
(
φrd = φ∗

rd = constant
)
, the equation of the electrome-

chanical torque becomeCem = KT i∗sq with KT is an electromagnetic torque constant

defined by p Lm
Lr

φrd . Suppose that the current error
(
�isq = i∗sq − isq

)
equals to zero.

Then, one can write the output of the flux regulator as follow:

i∗sq = 1

KT

[
K I�

t∫
0

(
�∗ − �

)
(τ )dτ + K P�

(
�∗ − �

)] + i∗sq

i∗sq = 1

KT

[
K I�

t∫
0

(
�∗ − �

)
(τ )dτ + K P�

(
�∗ − �

)] + 1

mφrd

[
�̇∗ + c� + Tl

J

]

(9)

where K I� and K P� are respectively the integral constant and the proportional
constant of the speed (PI) regulator.

On the other hand, the speed tracking error is given by

�� = � − �∗ (10)

The dynamic of the flux error is presented as follow

�̇� = �̇ − �̇∗ = mφrd i
∗
sq − Tl

J
− c� − �̇∗ (11)

Replacing i∗sq by its expression, we have:

�̇� = −K P�

J
�� − K I�

J

t∫
0

��(τ)dτ (12)

Consider the following coordinates change:

�� =
⎛
⎝

t∫
0

��(τ)dτ,��

⎞
⎠

T

(13)

The dynamics of the speed error (11) in the new coordinates is given by:

�̇� = A��� (14)

where A� =
(

0 1
β1� β2�

)
with β1� = − K I�

J and β2� = − K P�

J .
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The gains K I� and K P� are determined in such ways that the matrix A� is stable.
See Annex.

The dynamic currents errors are defined by:

�̇isd =
·
i∗sd − ·

isd =
·
i∗sd −δ1 − 1

σ Ls
usd (15)

�̇isq =
·
i∗sq − ·

isq =
·
i∗sq −δ2 − 1

σ Ls
usq (16)

where: �isd = i∗sd − isd;�isq = i∗sq − isq; δ1 = −γ1isd + γ2
τr

φrd + p�isq + Lm
τr

i2sq
φrd

;
and δ2 = −γ1isq − p�isd − p�γ2φrd − Lm

τr

isd isq
φrd

.

2.1 Stability Study in Case of Rated Operation

Since Aφ and A� are two stable matrixes, so ∀Qφ > 0 and Q� > 0 ∃Pφ = PT
φ > 0

and P� = PT
� > 0 defined as:

Pφ Aφ + AT
φ Pφ = −Qφ and P�A� + AT

�P� = −Q� (17)

To check the convergence of the proposed control technique, we check the conver-
gence of different dynamics associated respectively with flux, speed and currents
errors. So we consider the following Lyapunov function:

Vc = �T
φ Pφ�φ + �T

�P��� + 1

2
(�2

isd + �2
isq ) (18)

By calculating the derivative of Vc we obtain:

V̇c = �T
φ

(
Pφ Aφ + AT

φ Pφ

)
�φ + �T

�

(
P�A� + AT

�P�

)
�� + �isd �̇isd + �isq �̇isq

(19)

Equation (19) becomes:

V̇c = −�T
φ Qφ�φ − �T

�Q��� + �isd

(
Kisd�isd +

·
i̇∗sd −δ1 − 1

σ Ls
usd

)

+ �isq

(
Kisq�isq +

·
i̇∗sq −δ2 − 1

σ Ls
usq

)
− Kisd�

2
isd − Kisq�

2
isq (20)

where Kisd , Kisq are two positive constants.
Now, considering that inequality (21), (22), (23) and (24) are verified:
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λmin(Pφ)
∥∥�φ

∥∥2 ≤ �T
φ Pφ�φ ≤ λmax (Pφ)

∥∥�φ

∥∥2
(21)

λmin(Qφ)
∥∥�φ

∥∥2 ≤ �T
φ Qφ�φ ≤ λmax (Qφ)

∥∥�φ

∥∥2
(22)

λmin(P�)‖��‖2 ≤ �T
�P��� ≤ λmax (P�)‖��‖2 (23)

λmin(Q�)‖��‖2 ≤ �T
�Q��� ≤ λmax (Q�)‖��‖2 (24)

According to Eq. (20), the control voltages usd and usq are chosen as:

usd = σ Ls

(
Kisd�isd +

·
i∗sd −δ1

)
(25)

usq = σ Ls

(
Kisq�isq +

·
i∗sq −δ2

)
(26)

So, considering boundaries defined from (21) to (24) and using the fixed control
voltages defined in (25) and (26), the inequality of the Lyapunov function derivative
of the system (20) becomes:

V̇c ≤ −ηφ�T
φ Pφ�φ − η��T

�P��� − 2Kisd

(
1

2
�2

isd

)
− 2Kisq

(
1

2
�2

isq

)
(27)

where ηφ = λmin(Qφ)

λmax (Pφ)
and η� = λmin(Q�)

λmax (P�)
.

We set θ = min(ηφ, η�, 2Kisd , 2Kisq ), we obtain:

V̇c ≤ −θVc (29)

The errors converge exponentially. So the choice of the control U = (usd , usq)T

confirms the stability of the controlled closed loop system.

2.2 Stability Study in Case of Uncertain Parameters

In this section, we consider a variation in the induction machine parameters. Gener-
ally, the rated operation is an ideal case and to confirm the robustness of the proposed
control strategies, it must be proved and tested in the case of uncertain parameters.
For the stability analysis, we have defined the uncertainty terms on both flux and
speed regulators. Some conditions are presented with the same control law which
leads to the asymptotic convergence of the system.
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The dynamic of the flux, speed and currents error under uncertain parameters
became:

�̇φ = (Aφ + δφ)�φ (30)

�̇� = (A� + δ�)�� (31)

�̇isd = ·
isd

∗ − ·
isd =

·
i∗sd −δ1 − �δ1 − 1

σ Ls
usd − �U usd (32)

�̇isq = ·
isq

∗ − ·
isq =

·
i∗sq −δ2 − �δ2 − 1

σ Ls
usq − �U usq (33)

where δφ , δ�,�δ1,�δ2 and�U are respectively the uncertain term associated to Aφ ,
A�, δ1, δ2 and 1

σ Ls
.The uncertain terms

∣∣δφ

∣∣, |δ�|,|�δ1|, |�δ2| and |�U | are assumed
to be bounded respectively by the positive constant α1, α2, v1, v2 and ñ.

Including standards, Eq. (27) becomes:

V̇c ≤ −�T
φ Qφ�φ − �T

�Q��� + 2
∥∥�φ

∥∥∥∥Pφ

∥∥∣∣δφ

∣∣ + 2‖��‖‖P�‖|δ�|
+�isd

(
Kisd�isd +

·
i∗sd −δ1 − �δ1 − 1

σ Ls
usd − �U usd

)

+�isq

(
Kisq�isq + ·

i∗sq −δ2 − �δ2 − 1
σ Ls

usq − �U usq

)
− Kisd�

2
isd

− Kisq�
2
isq

(34)

One notes that h1 = �T
φ Pφ�φ , h2 = �T

�P��� and h = h1 + h2, one chooses the
control voltage define in (25) and (26):

V̇c ≤ −ηφh1 − η�h2 + 2α1λmax (Pφ)
∥∥�φ

∥∥ + 2α2λmax (P�)‖��‖
+ ‖�isd‖(−�δ1 − �Uusd) + ∥∥�isq

∥∥(−�δ2 − �Uusq
)

− Kisd�
2
isd − Kisq�

2
isq (35)

or

V̇c ≤ −ηφh1 − η�h2 + 2α1λmax (Pφ)√
λmin(Pφ)

√
h1 + 2α2λmax (P�)√

λmin(P�)

√
h2 + ∥∥�isd

∥∥(−�δ1 − �Uusd )

+
∥∥∥�isq

∥∥∥(−�δ2 − �Uusq
) − Kisd�

2
isd

− Kisq�
2
isq

(36)

One notes that ς = min(ηφ, η�), μ = max

(
2α1λmax (Pφ)√

λmin(Pφ)
, 2α2λmax (P�)√

λmin(P�)

)
, inequality

(36) become:
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V̇c ≤ −ςh + μγ
√
h + ∥∥�isd

∥∥(−�δ1 − �Uusd)

+ ∥∥�isq

∥∥(−�δ2 − �Uusq
) − Kisd�

2
isd − Kisq�

2
isq (37)

γ is defined as:
√
h1 + √

h2 ≤ γ
√
h.

We can write another formulation of Eq. (37) defined by:

V̇c ≤ −(1 − ϒ)ςh + �isd (−�δ1 − �U usd)
+�isq

(−�δ2 − �U usq
) − Kisd�

2
isd

− Kisq�
2
isq

∀� ≥ μγ

ϒς
; 0 < ϒ < 1

(38)

where � = �φ + �� is the vector of flux and speed errors.
By choosing �usdmax + υ1 > 0 and �usqmax + υ2 > 0, the Lyapunov function

derivative V̇c become negative. So the stability of the controlled closed loop system
is verified.

3 Adaptive Observer–Controller Scheme Stability Analysis

The main goal is to achieve control without a mechanical sensor for the IM. Speed
and flux are not measured, so the outputs of the speed and flux regulator will be
presented as follow:

i∗sq
(
�̂, φ̂rd

)
= 1

KT

⎡
⎣K I�

t∫
0

(
�∗ − �̂

)
(τ )dτ + K P�

(
�∗ − �̂

)⎤
⎦

+ 1

mφ̂rd

[
�̇∗ + c�̂ + Tl

∧

J

]
(39)

i∗sd
(
φ̂rd

)
= K Iφrd

t∫
0

(
φ∗
rd − φ̂rd

)
(τ )dτ + K Pφrd

(
φ∗
rd − φ̂rd

)
+ τr

Lm
φ̇∗
rd + 1

Lm
φ∗
rd

(40)

where �
∧

and φ̂rd are the estimated value of the speed and flux given by the adaptive
observer.

The dynamic tracking errors flux (8) and speed (13) become:

{
�̇φ = Aφ�φ + Bφχφ(εφ)

�̇� = A��� + B�χ�(ε�)
(41)

where
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εφ = φrd − φ̂rd ,

χφ

(
εφ

) = − Lm

τr

⎡
⎣K Pφrdεφ + K Iφrd

t∫
0

εφ(τ )dτ

⎤
⎦, χ�(ε�)

= χ1(ε�) + χ2
(
εφ

) + χ3
(
ε�, εφ

)
,

χ1(ε�) = K I�
J

t∫
0
ε�(τ)dτ +

[
K P�

J
− c

]
ε�,

χ2
(
εφ

) = εφ

φ̂rd

[
�∗ + c�̂ + T̂l

J

]
− K P�

J

(
εφ

φ̂rd

)
�� − K I�

J

(
εφ

φ̂rd

) t∫
0

��(τ)dτ,

Bφ = B� =
[
0
1

]
,

χ3
(
ε�, εφ

) = εφ

φ̂rd

[
K P�

J
ε� + K I�

J

t∫
0
ε�(τ)dτ

]
,

Theorem 1 Consider the induction machine model as in [5]. If the speed and flux
regulators use the estimated variables given by the adaptive observer defined as in
[5], then the errors of flux and speed asymptotically converge to zero.

Proof The control voltage usd and usq in this case are chosen as:

usd = σ Ls

(
Kisdεisd +

·
i∗sd

(
φ̂rd

)
− δ1

)
(42)

usq = σ Ls

(
Kisqεisq +

·
i∗sq

(
�
∧

, φ̂rd

)
− δ2

)
(43)

with εisd = i∗sd
(
φ̂rd

)
− isd; εisq = i∗sq

(
�
∧

, φ̂rd

)
− isq .

Consider the following Lyapunov function:

Vac = Va + Vc = ϒ + λ(��)2 + �T
φ Pφ�φ + �T

�P��� + 1

2
(ε2isd + ε2isq) (44)

Admitting the equation of the adaptation law as in [ 4]. From inequality (14) in
[6], we have

V̇a = σ1 < −δ0‖e‖2; ∀‖e‖ ≥ η2

εη1
√

λmin(P)
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with: δ0 = −(1 − ε)η1.
The derivative of Vac is given by:

V̇ac ≤ −δ0‖e‖2 + �T
φ

(
Pφ Aφ + AT

φ Pφ

)
�φ + �T

�

(
P�A� + AT

�P�

)
��

+2�T
φ PφBφχφ(eφ) + 2�T

�P�B�χ�(e�) + εisd

(
Kisdεisd +

·
i∗sd −δ1 − 1

σ Ls
usd

)

+εisq

(
Kisqεisq +

·
i∗sq −δ2 − 1

σ Ls
usq

)
− Kisdε

2
isd − Kisqε

2
isq

(45)

Replacing the control voltages by its value, Eq. (45) became:

V̇ac ≤ −δ0‖e‖2 − ηφ

∥∥�φ

∥∥2 − η�‖��‖2 + 2l1
∥∥�φ

∥∥‖e‖ + 2l2‖��‖‖e‖
− Kisdε

2
isd − Kisqε

2
isq (46)

where
∥∥χφ(εφ)

∥∥ ≤ l1‖e‖ and ‖χ�(ε�)‖ ≤ l2‖e‖; l1 > 0, l2 > 0.
Considering the following inequalities:

‖e‖∥∥�φ

∥∥ ≤ ζ1

2

∥∥�φ

∥∥2 + 1

2ζ1
‖e‖2; ‖e‖‖��‖ ≤ ζ2

2
‖��‖2 + 1

2ζ2
‖e‖2∀ζ1, ζ2 ∈ ]0, 1[

(47)

We obtains:

V̇ac ≤ −δ0‖e‖2 − ηφ

∥∥�φ

∥∥2 − η�‖��‖2 + l1ζ1
∥∥�φ

∥∥2 + l2ζ2‖��‖2

− Kisdε
2
isd − Kisqε

2
isq + l1

ζ1
‖e‖2 + l2

ζ2
‖e‖2 (48)

Grouping the various terms, we obtain:

V̇ac ≤ −
(

δ0 − l1
ζ1

− l2
ζ2

)
‖e‖2 − (ηφ − l1ζ1)

∥∥�φ

∥∥2 − (η� − l2ζ2)‖��‖2

− 2Kisd

(
1

2
ε2isd

)
− 2Kisq

(
1

2
ε2isq

)
(49)

We define v = min(σ1, σ2, σ3, 2Kisq , 2Kisd) where σ1 = δ0 − l1
ζ1

− l2
ζ2
, σ2 =

ηφ − l1ζ1, σ3 = η� − l2ζ2.
The derivative of Voc becomes:

V̇oc ≤ −vVoc (50)

By choosing ηφ , η� and δ0 such that σ1, σ2 and σ3 are greater than zero. Then,
flux and speed errors converge asymptotically to zero.
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4 Interconnected Observer–Controller Scheme Stability
Analysis

In this part, we have proposed the interconnected observer for the proof of the global
stability of the output feedback system.

The dynamic error of the closed loop system including the interconnected observer
is given by:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�̇φ = Aφ�φ + Bφχφ(εφ)

�̇� = A��� + B�χ�(ε�)

ė1 = [A1
(
x̂2

) − �−1(x̂2)S−1
1 CT

1 C1]e1 + g1(u, x2, x1) − g1
(
u, x̂2, x̂1

) + δg1(u, x2, x1)
+[

A1(x2) − A1
(
x̂2

) + δA1(x2)
]
x1

ė2 = [A2(x1) + δA2(x1)]x2 − A2
(
x̂1

)
x̂2 − S−1

2 (θ2, x̂1)C
T
2 C2e2

(51)

Theorem 2 Consider the induction machine model (1) in [6]. If the speed and flux
regulators use the estimated variables given by the interconnected observer (18)–(19)
in [6], then the errors of flux and speed asymptotically converge to zero.

Proof The control voltage usd and usq in this case are chosen as:

usd = σ Ls

(
Kisdεisd +

·
i∗sd

(
φ̂rd

)
− δ1

)
(52)

usq = σ Ls

(
Kisqεisq +

·
i∗sq

(
�
∧

, φ̂rd

)
− δ2

)
(53)

with εisd = i∗sd
(
φ̂rd

)
− isd; εisq = i∗sq

(
�
∧

, φ̂rd

)
− isq .

Consider the following Lyapunov function:

Vic = Vi + Vc = V1 + V2 + �T
φ Pφ�φ + �T

�P��� + 1

2
(ε2isd + ε2isq) (54)

Admitting the Eq. (39) in [ 4], we have V̇i ≤ −(1 − ε)λ1V ≤ −δ0V ; ∀‖e‖ ≥ λ′
2ψ

ελ′
1

with: δ0 = (1 − ε)λ1.
The derivative of Vic is given by:

V̇ic ≤ −δ0‖e‖2 + �T
φ

(
Pφ Aφ + AT

φ Pφ

)
�φ + �T

�

(
P�A� + AT

�P�

)
��

+2�T
φ PφBφχφ(eφ) + 2�T

�P�B�χ�(e�) + εisd

(
Kisdεisd + ·

i∗sd −δ1 − 1
σ Ls

usd

)

+εisq

(
Kisqεisq + ·

i∗sq −δ2 − 1
σ Ls

usq

)
− Kisdε

2
isd − Kisqε

2
isq

(55)
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Replacing the control voltages by its value, Eq. (55) became:

V̇ic ≤ −δ0‖e‖2 − ηφ

∥∥�φ

∥∥2 − η�‖��‖2 + 2l1
∥∥�φ

∥∥‖e‖ + 2l2‖��‖‖e‖
− Kisdε

2
isd − Kisqε

2
isq (56)

where
∥∥χφ(εφ)

∥∥ ≤ l1‖e‖ and ‖χ�(ε�)‖ ≤ l2‖e‖; l1 > 0, l2 > 0.
Considering the following inequalities:

‖e‖∥∥�φ

∥∥ ≤ ζ1

2

∥∥�φ

∥∥2 + 1

2ζ1
‖e‖2; ‖e‖‖��‖ ≤ ζ2

2
‖��‖2 + 1

2ζ2
‖e‖2∀ζ1, ζ2 ∈ ]0, 1[

(57)

We obtains:

V̇ic ≤ −δ0‖e‖2 − ηφ

∥∥�φ

∥∥2 − η�‖��‖2 + l1ζ1
∥∥�φ

∥∥2 + l2ζ2‖��‖2

− Kisdε
2
isd − Kisqε

2
isq + l1

ζ1
‖e‖2 + l2

ζ2
‖e‖2 (58)

Grouping the various terms, we obtain:

V̇ic ≤ −
(

δ0 − l1
ζ1

− l2
ζ2

)
‖e‖2 − (ηφ − l1ζ1)

∥∥�φ

∥∥2 − (η� − l2ζ2)‖��‖2

− 2Kisd

(
1

2
ε2isd

)
− 2Kisq

(
1

2
ε2isq

)
(59)

We define v = min(σ1, σ2, σ3, 2Kisq , 2Kisd) where σ1 = δ0 − l1
ζ1

− l2
ζ2
, σ2 =

ηφ − l1ζ1, σ3 = η� − l2ζ2.
The derivative of Vic becomes:

V̇ic ≤ −vVoc (60)

By choosing ηφ , η� and δ0 such that σ1, σ2 and σ3 are greater than zero. Then,
flux and speed errors converge asymptotically to zero.

5 Simulations Results

These strategies are tested to an induction machine with (see the parameter of the
induction machine in Annex) a profile of 7 s.



190 O. Naifar and G. Boukettaya

5.1 Simulations Results Using the Adaptive Observer

Fig. 2 gives the simulation results of the sensorless control for induction machine
with nominal parameters: the observer and the controller are designed by using the
same parameters that the IMmodel parameters. Figure 2a shows the estimated speed
and the measured one. The speed error is displayed in Fig. 2b. It is to be noted that
the estimated speed tracks the actual speed very well.

Now, to illustrate the robustness of the sensorless control scheme, the influence
of parameter deviations is investigated. Parameter deviations are intentionally intro-
duced in the observer–controller scheme. First, Fig. 3 is shown the responses for a
50% increase of the stator and rotor resistance. Secondly, Fig. 4 has presented the
robustness to the inductances variations.
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Fig. 2 Speed tracking nominal case: a: real and estimated speed, b speed error
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Fig. 3 Speed tracking robustness with respect to+ 50% on Rs and Rr : a: real and estimated speed,
b speed error
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Fig. 4 Speed tracking robustness with respect to + 20% on Lm , Lr and Ls : a: real and estimated
speed, b speed error
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Fig. 5 Speed tracking nominal case: a: real and estimated speed, b speed error

5.2 Simulations Results Using the Interconnected Observer

The simulation results of the sensorless control for induction machine with nominal
parameters are given in Fig. 5. In this case, both observer and controller are tested
by using the nominal parameters. Figure 5a, show the estimated magnitudes and
the measured ones. The speed error is shown in Fig. 5b, It is remarkable that the
estimated speed tracks its actual values very well.

To show the robustness of the suggested sensorless control scheme using the
interconnected observer, the impact of parameter deviations is investigated. Param-
eters variations are included in the observer–controller scheme. First, the response
for a 50% increase of the stator and rotor resistance is shown in Fig. 6. Secondly,
the robustness to the inductances variations is presented in Fig. 7. According to the
error Figs. 6b, 7b, the observer gives desirable results and thus it performs well. The
robustness of the suggested sensorless control was so validated.
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Fig. 6 Speed tracking robustness with respect to+ 50% on Rs and Rr : a: real and estimated speed,
b speed error
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Fig. 7 Speed tracking robustness with respect to −20% on Lm , Lr and Ls : a: real and estimated
speed, b speed error

6 Conclusion

This chapter is concentrated on sensorless control schema for IM combining a robust
control with an observer and an interconnected observer. In fact, the proposed control
was validated under parametric uncertainties and it performs well. Finally, the global
stability of both controller and observer is guaranteed by Lyapunov stability analysis.
Simulation results confirm the effectiveness of the proposed methodologies.
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