
Chapter 22
Stable Isotopes in Tree Rings of Tropical
Forests

Peter van der Sleen, Pieter A. Zuidema, and Thijs L. Pons

22.1 Introduction

The analysis of growth rings in the stems of trees is a relatively new tool in tropical
forests, as the existence of annual rings in tropical treeswas not commonly recognized
until recently. For a long time, the tropical environment was associated with year-
round favorable growth conditions that were thought to prevent the formation of
distinct annual growth rings. However, most tropical environments are seasonal to
a various extent (Fig. 22.1), and the formation of annual tree rings in deciduous
species growing in tropical climates with a pronounced dry season has been known
for a long time (Coster 1927). Although ring boundaries of trees in the humid tropics
are generally less clear than those in temperate trees, the formation of distinct annual
growth rings has been shown for a large number of tropical tree species (Worbes 2002;
Rozendaal and Zuidema 2011; Zuidema et al. 2012; Brienen et al. 2016; Schöngart
et al. 2017). In addition to drought, other seasonally changing environmental factors,
such as flooding and soil salinity, are known to induce the formation of annual ring
boundaries (Schöngart et al. 2002; Chowdhury et al. 2008).
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Fig. 22.1 a Map of the tropics showing locations of studies on stable isotopes in tropical tree-
rings. Main findings of these studies summarized in Table 22.1. Background map showing tropical
climates according toKöppen classification (map fromBeck et al. 2018), with grey continental areas
belonging to arid (mostly treeless) climate types. b Diagram showing general rainfall seasonality
in the tropics, with a dry month defined as a month with <100 mm average precipitation. Figure
adapted from Kricher (2011). c A few examples of tropical (woody) ecosystems. Clockwise from
top left: evergreen rainforest close to the equator (no dry season) in Brazil, mountain cloud forest
in Bolivia (moderate dry season; but moist year round), deciduous dry forest in Mexico (long dry
season), and savanna vegetation in Tanzania (long dry season)

The “re-discovery” of annual growth-ring formation in tropical trees, and devel-
opments in stable isotope analyses has triggered studies on the variation of the natural
abundance of isotopes in tropical trees, with the number of publications on stable
isotopes in tropical tree rings increasing rapidly in recent years (Fig. 22.1). In this
chapter, we provide an overview of research on stable isotopes in tropical tree rings,
and the insights gained on the functioning of tropical forests and the impacts of
global change. This chapter is a condensed and updated version of our earlier review
(van der Sleen et al. 2017), with a main focus on lowland forests in the wet tropics
between 23.5°N/S (Fig. 22.1).
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22.2 Tropical climate

The tropics are generally warm (mean annual temperature of >24 °C) andwet (except
for dry grasslands and deserts).Most tropical ecosystems are seasonal to some extent,
but in contrast to temperate regions, seasonal weather patterns are primarily driven by
variation in precipitation amount and not temperature fluctuations.Across the tropics,
rainfall seasonality is a result of large-scale atmospheric circulation patterns. At the
equator, heat builds up, causing warm and moisture-laden air to rise. The ascending
air diverges at the top of the troposphere and flows tomore northern and southern lati-
tudes. As the air cools, it loses its moisture as precipitation, becomesmore dense, and
ultimately descends as dry air in the subtropics, from where it returns equatorward
near the surface, giving rise to the trade winds. These circulation patterns, on both the
northern and southern hemisphere, are called the Hadley cells. The great equatorial
convection zone, where the trade wind meet is known as the Intertropical Conver-
gence Zone (ITCZ), and characterized by violent thunderstorms and high quantities
of precipitation. The ITCZmoves north during theNorthern hemisphere summer, and
south during the austral summer, as a consequence of the Earth´s tilt. This seasonal
movement induces wet and dry seasons in most tropical regions (Fig. 22.1). At loca-
tions lacking a true dry season, forests will remain evergreen throughout the year.
At locations with a longer or drier dry season, the number of deciduous species
increases. Further away from the Equator, forests give way to savanna, shrubland
or grassland (Fig. 22.1). Although climate is an important factor determining forest
type, it is also affected by other factors, such as soil characteristics and fire regime.

Another important climatic feature in tropical regions is the El Niño–Southern
Oscillation (ENSO), which are irregular periodic variations in winds and sea surface
temperatures over the tropical eastern PacificOcean.Although the factors responsible
for the occurrence ofENSOevents remain incompletely understood, the phenomenon
occurs when the ITCZmigratesmore southwards than normal. This raises sea surface
temperature and disrupts the normal upwelling pattern along the west coast of South
America. Eventually, this reduces the transport of warm surface water across the
Pacific Ocean toward Asia, and as a result affects weather systems throughout the
tropics and subtropics, causing heavy downpours and flooding in some regions and
severe droughts in others. El Niño occurs every two to seven years and tends to
alternate with another climatic phenomenon with opposite effects. This is called La
Niña, and happens when trade winds gain abnormal strengths, increasing upwelling
along the west Coast of South America and strengthening the flow of warm surface
water westwards across the Pacific.

Local climate conditions, and its variability (including ENSO-driven anomalies),
affect tree physiology and thus tree-ring isotope values. In addition, large-scale circu-
lation patterns affect the δ18O signature of precipitation, which can be recorded in
tree rings (Table 22.1).
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Table 22.1 Summary of the main usage and outcomes of studies measuring stable isotopes in
tropical tree rings. References given in chronological order (detailed version of the table is available,
see Supplementary Table S1)

Stable
isotope

Main usage Main outcome Number of
species*

References

13C Proxy for iWUE iWUE generally
increased over time

21(3) Hietz et al. (2005),
Brienen et al. (2011),
Loader et al. (2011),
Locosselli et al.
(2013), van der Sleen
et al. (2015a),
Rahman et al. (2020)

Identification of annual
rings in ring-less wood

Moderate potential to
identify annual rings
through intra-annual
sampling

12(8) Leavitt and Long
(1991), Ohashi et al.
(2009), Krepkowski
et al. (2013), Schubert
and Timmermann
(2015)

Unravelling
isotope-climate
relationships

Negative correlation
with rainfall

16(0) Gebrekirstos et al.
(2009), Fichtler et al.
(2010), Brienen et al.
(2011), Gebrekirstos
et al. (2011), van der
Sleen et al. (2014),
Schubert and
Timmermann (2015),
Boakye et al. (2019)

Reconstruction of past
climate

Some prospect for
rainfall reconstruction

1(0) Wils et al. (2010),
Mokria et al. (2018)

18O Unravelling
isotope-climate
relationships

Correlations with
rainfall, humidity and
ENSO in shallow
rooting trees

11(0) Anchukaitis et al.
(2008), Anchukaitis
and Evans (2010),
Managave et al.
(2011b), Managave
et al. (2011a), Xu
et al. (2011), Brienen
et al. (2012), Zhu
et al. (2012a), Zhu
et al. (2012b), Sano
et al. (2012), Brienen
et al. (2013), Xu et al.
(2013), Boysen et al.
(2014), van der Sleen
et al. (2015b),
Schollaen et al.
(2015), Xu et al.
(2015), Volland et al.
(2016), Cintra et al.
(2019)

(continued)
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Table 22.1 (continued)

Stable
isotope

Main usage Main outcome Number of
species*

References

Reconstruction of past
climate

Good prospect for
rainfall reconstruction

14(0) Managave et al.
(2011b), Managave
et al. (2011a), Brienen
et al. (2012), Zhu
et al. (2012a), Zhu
et al. (2012b), Sano
et al. (2012), Xu et al.
(2013), van der Sleen
et al. (2015b), Baker
et al. (2015), Xu et al.
(2015), Pumijumnong
et al. (2020)

Identification of annual
rings in ring-less wood

Good potential to
identify annual rings
through intra-annual
sampling

6(6) Evans and Schrag
(2004), Evans (2007),
Anchukaitis et al.
(2008), Managave
et al. (2010), Xu et al.
(2014)

13C and
18O

Identification of annual
rings in ring-less wood

Good potential to
identify annual rings
through intra-annual
sampling

20(17) Verheyden et al.
(2004), Poussart et al.
(2004), Poussart and
Schrag (2005), Pons
and Helle (2011),
Ohashi et al. (2016),
Managave et al.
(2017), Cintra et al.
(2019)

Unravelling
isotope-climate
relationships

Correlations with
rainfall and ENSO

6(0) Cullen and Grierson
(2007), Ballantyne
et al. (2011),
Schollaen et al.
(2013), Colombaroli
et al. (2016),
Managave et al.
(2017)

Identification of drivers
of changes in iWUE
(stomatal conductance
vs. photosynthesis)

Some evidence that
iWUE increased
through decreased gs

4(0) Cullen et al. (2008),
Nock et al. (2011)

15N Effects of increased N
deposition on N cycling

Potential to record
aspects of nitrogen
cycle

9(0) Hietz et al. (2010),
Hietz et al. (2011),
van der Sleen et al.
(2015c)

ENSO, el Niño Southern Oscillation; iWUE, intrinsic water-use efficiency; gs stomatal conductance
* Total number of species and those with non-distinct growth rings between brackets. Some species were
involved in multiple studies, notable Tectona grandis, Cedrela odorata, and Fokienia hodginsii
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22.3 Carbon Stable Isotopes

22.3.1 Carbon Isotope Ecophysiology in the Tropics

The stable carbon isotopic signature in the wood of tropical trees is influenced by
a variety of factors related to rainfall, temperature, light conditions and species’
responses to drought (for the basics of the 13C/12C isotope fractionation in plants see
Chap. 9). The combined effects of these factors determine δ13C values measured in
tropical tree rings. In some cases, contributions of individual environmental factors
are hard to disentangle, as they can covary and exert similar effects on tree-ring δ13C.

Ontogenetic trends in tree-ring δ13C series can be substantial for tropical trees, as
was illustrated forCedrela odorata from Bolivia (Brienen et al. 2017). Juvenile trees
growing under a forest canopy are exposed to reduced irradiance that is associated
with a high ratio of intercellular over atmospheric CO2 concentration (ci/ca), and
young trees possibly also absorb 13C-depleted CO2 near the forest floor (Medina and
Minchin 1980; Medina et al. 1991; Buchmann et al. 1997). Both factors contribute
to low δ13C values in the stem wood of small trees. Sub-canopy trees are exposed to
higher light levels and slightly 13C-enriched CO2 due to high photosynthetic activity
in the canopy, leading to higher δ13C values in their wood. Canopy and emergent
trees are exposed to high light levels and CO2 with an atmospheric δ13C signature
(Buchmann et al. 1997). In addition, ontogenetic trends in tree-ring δ13C may be
driven by increased vapor pressure deficit (VPD) from understory to canopy and
increases in hydraulic resistance with tree height. Therefore, changes in δ13C with
tree size can provide valuable information in an ecological context (e.g. on light
conditions; van der Sleen et al. 2014), but are an important confounding factor in a
dendroclimatological context.

Decreasing water availability, or increasing VPD, results in stomatal closure, and
therefore lowers the Ci/Ca ratio (e.g. Gebrekirstos et al. 2011). As a result, drought
increases tree-ring δ13C values and intrinsic water-use efficiency (iWUE; the ratio
of photosynthetic rate over stomatal conductance; A/gs) (e.g. Lambers et al. 2008;
Cernusak et al. 2009; Craven et al. 2013). The available evidence suggests that the
relationship between water availability and tree-ring δ13C also holds in regions with
humid climatic conditions: δ13C of leaves collected in the rainy season was lower
than in leaves collected in the dry season (French Guyana, Buchmann et al. 1997),
and wood δ13C of trees growing near a creek was lower than that of trees growing
on a comparatively drier ridge (Guyana, Pons et al. 2005).

Changes in light and nutrient conditions can also affect tree-ring δ13C values when
photosynthetic activity increases (A) more that stomatal opening (gs) (e.g. Cernusak
et al. 2009; van der Sleen et al. 2014). Interestingly, average tree-ring δ13C values
and the impact of environmental conditions on δ13C ratios is species specific. Co-
occurring tree species of similar DBH can exhibit large variations in δ13C values,
which has been related to differences in successional status (Bonal et al. 2007), shade
tolerance (Guehl et al. 1998; Bonal et al. 2000), leaf phenology patterns (Bonal et al.
2000), and drought tolerance (Craven et al. 2013).
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22.3.2 Seasonal Variation in Tree-Ring δ13C

Early studies on δ13C in tropical wood showed the presence of intra-annual varia-
tion, similar to what was found for other climatic regions (Leavitt and Long 1991).
Subsequent studies confirmed this seasonality (e.g. Poussart et al. 2004; Verheyden
et al. 2004; Ohashi et al. 2009), suggesting seasonal variation in water availability as
underlying cause. Variation in δ13C within a single growth ring can however, not be
unequivocally understood from current photosynthesis on the basis of the Farquhar
et al. (1989) model. Other processes may interfere with patterns driven by climate
seasonality, such as utilization of stored reserves early in the growing season, poten-
tial fractionation downstream from the carbon fixation in the leaves, and a varying
fraction of C allocated to other processes than diameter increment in the growing
season (Helle and Schleser 2004; Kagawa et al. 2006; Krepkowski et al. 2013; Fu
et al. 2017). Although attempts have been made to identify annual rings in tropical
trees that lack visible increment ring boundaries based on intra-annual δ13C patterns,
δ18O proved to be more useful for that purpose.

22.3.3 Annual and Decadal Variation in Tree-Ring δ13C

Several studies have investigated the inter-annual variation of δ13C and its correlation
with precipitation amount (Table C). Strong negative correlations between tree-ring
δ13C and annual precipitation were found for species from various sites in trop-
ical America, Asia and Africa, whose growing conditions differed widely in annual
precipitation (e.g. Fichtler et al. 2010; Rahman et al. 2020). Such climate sensitivity
was further linked to ENSO variability in some studies (e.g. Brienen et al. 2011). In
semi-arid Ethiopia, Gebrekirstos et al. (2009) also found a strong correlation of δ13C
with precipitation for three Acacia species, but less so in Balanites aegyptiaca. Such
differences may relate to water-use strategies, with drought-tolerant species showing
a lower sensitivity to inter-annual variability in precipitation amount (Gebrekirstos
et al. 2011; Craven et al. 2013).

Other studies combined δ13C sequences with measurements of δ18O. In some of
these, δ13C showed correlation with other precipitation variables than those found
for δ18O (Cullen and Grierson 2007; Schollaen et al. 2013). Nevertheless, δ18O series
generally yielded stronger correlations with precipitation variables than δ13C series
(Poussart and Schrag 2005; Ballantyne et al. 2011: and see discussion in the next
section).

Studies using longer tree-ring sequences have consistently shown a declining δ13C
trend over the last century in tropical trees (Hietz et al. 2005; Brienen et al. 2011;
Loader et al. 2011), also when explicitly correcting for potential ontogenetic effects
(Nock et al. 2011; van der Sleen et al. 2015a). After correcting for decreasing atmo-
spheric δ13C over that period (the Suess effect), a rather constant 13C discrimination
(�13C) generally remains. This leads to the conclusion that Ci/Ca remained constant
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over time and that, as a result of the increasing atmospheric CO2 concentration,
iWUE has increased consistently over time (Silva and Anand 2013, see Chap. 17).
A sustained increase of photosynthesis and/or a higher water-use efficiency under
elevated CO2 are expected to stimulate tree growth if carbon and/or water are limiting
factors (Körner 2009). A few studies also quantified temporal trends in tree growth
using the same tree-ring sequences as used to determine δ13C trends (Nock et al.
2011; van der Sleen et al. 2015a). Interestingly, these studies found no indications
for a growth stimulation over the past century. Stem diameter growth is not neces-
sarily linearly linked to photosynthetic activity, because other aspects of the carbon
balance of trees may have changed as well, such as phenology, leaf turnover, respi-
ration and biomass allocation. However, if it is reasonable to assume that diameter
growth can reflect changes in the total carbon balance of a tree, in particular on
longer time scales, than the available tree-ring studies suggest that photosynthesis
did not increase as a result of rising atmospheric CO2 concentration. This scenario
could arise if tree growth is ultimately limited by nutrient availability in most tropical
regions, or if a CO2-induced stimulation of photosynthesis has been compensated
by an external climate-related stressor, such as increased temperature or decreased
precipitation.

22.4 Oxygen Stable Isotopes

22.4.1 Oxygen Stable Isotope Ecophysiology in the Tropics

Water taken up by trees becomes enriched in 18O in leaves as a result of transpiration.
The strength of this enrichment is mediated by environmental conditions (Barbour
2007; Chap. 10). CO2 taken up by the leaves exchanges its oxygen atoms with that
of leaf water, causing a transfer of the isotopic signature of leaf water to sucrose.
In addition, when cellulose is synthesized from sucrose in the stem, about 42% of
the oxygen atoms are again exchanged with xylem water. This exchange causes the
effect of enriched leaf water to be partly reverted, and results in a strong imprinting
of the isotope signature of source water in the wood of trees. Unfortunately, the
δ18O signature of absorbed source water is commonly unknown, especially over
longer time scales. In addition, it is often unknown from what depth the root systems
of tropical trees take up water, which further complicates the determination of the
δ18O of source water, and thus the interpretation of intra- and inter-annual variation
in δ18O in wood. Shallow-rooting trees, growing in dense canopies where isotopic
enrichment at the soil surface is minimal, likely absorb water that consists mainly
of recent precipitation, and hence tree-rings are imprinted with an 18O signal that is
rather similar to that of rainwater. As rainwater resides only shortly at the soil surface
before percolating down to the groundwater, the δ18O signature of groundwater likely
integrates variation in δ18O in precipitation over several years (Chap. 18). The depth
of water uptake has been estimated bymeasuring natural abundance of 18O in the soil
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profile and in xylem water (Jackson et al. 1995; Hasselquist et al. 2010; Ellsworth
and Sternberg 2015) or by labelling soil water (Stahl et al. 2013). These studies show
that deciduous trees tend to take up water from shallower depths than evergreen trees
and that the depth of water uptake generally increases with tree age and size.

22.4.2 Seasonal Variation in Tree-Ring δ18O

The first δ18O studies on tropical trees quantified radial variation of δ18O in tree
stems to reconstruct annual ring boundaries of tree species without anatomically
distinct rings or to confirm the annual nature of ring formation (Evans and Schrag
2004; Poussart et al. 2004; Verheyden et al. 2004; Poussart and Schrag 2005; Evans
2007). In some of these studies, δ13C was also measured, but δ18O was found to
be generally superior for this purpose. The suitability of δ18O for the identification
of annual rings is based on its seasonal change in precipitation: rainwater δ18O is
low during the rainy season and with heavy precipitation events (Dansgaard 1964;
Villacıs et al. 2008; Kurita et al. 2009). High δ18O values of precipitation during the
dry season can be further amplified in both soil and leaves due to higher evaporation
at low humidity (Jackson et al. 1995; Cintra et al. 2019). This seasonality in δ18Owas
confirmed in tropical trees with distinct annual rings (Poussart et al. 2004; Managave
et al. 2010; Ballantyne et al. 2011;Managave et al. 2011a; Schollaen et al. 2013). The
identification of annual rings in homogeneous (ring-less) wood is most successfully
done when intra-annual variation in source δ18O is large. This is the case in the
western parts of the Amazon basin, where δ18O in precipitation is low in the rainy
season due to rain-out of the heavy isotopes as water vapor travels from the Atlantic
ocean across the basin (Sturm et al. 2007). Evidence for this effect is provided by the
lower intra-annual variation in δ18O in evergreen trees from Guyana (1–4‰; Pons
and Helle 2011) compared to trees sampled near Manaus, Brazil (3–6‰; Ohashi
et al. 2016). A special case are trees in montane forests where the uptake of water
during the rainy season is from precipitation, whereas moisture can also be directly
absorbed from clouds in the dry season. These two water sources differ in δ18O
values, which can result in large seasonal variation of tree-ring δ18O (Anchukaitis
et al. 2008; Anchukaitis and Evans 2010). As the strength of intra-annual variation
in δ18O varies across species (Poussart and Schrag 2005; Anchukaitis et al. 2008)
and climatic conditions, selection of species and sites will determine the ability to
identify annual rings in homogeneous wood.

22.4.3 Annual and Decadal Variation in Tree-Ring δ18O

Because some trees incorporate the δ18O signature of rainwater in stem wood, time
series of tree-ring δ18O can be used to quantify past variability in precipitation.
Tree-ring δ18O has been correlated with basin-wide precipitation in the Amazon
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(Ballantyne et al. 2011; Brienen et al. 2012; Baker et al. 2015, 2016), and regional
precipitation in Thailand (Poussart and Schrag 2005; Pumijumnong et al. 2020),
Costa Rica (Anchukaitis and Evans 2010), India (Managave et al. 2011b), Indonesia
(Schollaen et al. 2013, 2015), Laos and Vietnam (Xu et al. 2011), West Africa (van
der Sleen et al. 2015b), and central Africa (Colombaroli et al. 2016). Particularly
El Niño Southern Oscillation (ENSO) variability is often evident in δ18O sequences
either from positive anomalies (Verheyden et al. 2004; Anchukaitis and Evans 2010;
Zhu et al. 2012a) or negative ones (Evans and Schrag 2004; Brienen et al. 2012). The
analysis of tropical tree-ring δ18O is developing into a powerful tool for reconstructing
the variability of precipitation on regional scales.

Good synchronization of δ18O patterns among individual trees was found for
several species (e.g. Poussart and Schrag 2005; Managave et al. 2011b; Brienen et al.
2012; van der Sleen et al. 2015b), sometimes over large spatial distances (Baker et al.
2015; Schwendenmann et al. 2015; Volland et al. 2016). Synchronous variability in
δ18O can be higher than for ring-width, thus providing an alternative tool for cross
dating (Baker et al. 2015; van der Sleen et al. 2015b; Volland et al. 2016) and iden-
tification of false and missing rings (Boysen et al. 2014). However, δ18O synchro-
nization between individuals may be low for certain species or sites (e.g. Poussart
and Schrag 2005; Baker et al. 2015). For δ18O in Toona ciliata from Thailand, low
δ18O synchronization occurred (van der Sleen 2014), in spite of the ring-width series
showing strong synchronization (Vlam et al. 2014). It is likely that trees that lack a
common signal in tree-ring δ18Ovalues exploit otherwater sources than recent precip-
itation (e.g. ground water). These results suggest that shallow rooting tree species
on well-drained soils have the highest probability to record the δ18O variability of
precipitation and thus have the highest potential as tools for climate reconstructions.

In several studies the two stable isotopes 18O and 13C were combined using a
mechanistic interpretation, the so-called dual isotope approach (see Chap. 16), where
A/gs obtained from �13C and gs derived from �18O could potentially provide an
estimate ofA (Scheidegger et al. 2000). This approachwas used byNock et al. (2011),
who interpreted an increase of �18O over time as an indication of a decreasing gs
in trees from Thailand. The observed decrease of �13C, and thus increasing A/gs,
would then be the result of this decreasing gs and not an increasing A. However, the
underlying assumptions in this approach are that the δ18O signature of source water
is known and that the leaf to air vapor pressure difference (LAVPD) has remained
constant over the period studied. In many tropical regions, this LAVPD may have
increased as a result of global warming and/or decreased precipitation, leading to
increased transpiration and δ18O over time. Even though gs is also partly controlled
by LAVPD, this makes it nonetheless difficult to separate the gs effect from the
LAVPD effect on transpiration.

A long-term increase of δ18O values has been encountered in several studies
conducted on tropical tree species (Poussart and Schrag 2005;Xu et al. 2011; Brienen
et al. 2012; van der Sleen 2014; van der Sleen et al. 2015b; Volland et al. 2016).
Some of these trends could be caused by ontogenetic changes, but a consistent small
trend over the past century was also found in studies that did correct for ontogenetic
trends (van der Sleen 2014; van der Sleen et al. 2015b; Volland et al. 2016). For
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the Amazon region, these results are consistent with similar increases of δ18O in
Andean ice cores (Thompson et al. 2006) and Andean lake sediments (Bird et al.
2011). Thus, the increasing trend in δ18O in tree rings likely reflects a pan-tropical
phenomenon. The cause of this increase is yet unknown, and it is unclear whether it
relates to climate change.

22.5 Nitrogen Stable Isotopes

22.5.1 Nitrogen Stable Isotope Ecophysiology

The value of plant δ15N depends on the δ15N of the N taken up and N losses in
leaves, fruits, etc. Uptake can be in the form of nitrate, ammonium, organic N
compounds or N2 in the case of nitrogen fixation. The δ15N of these sources varies
in a complex manner (except for N2, which is used as standard and is thus 0‰ by
definition; Chap. 12).

Higher soil and foliage δ15N are generally reported for tropical lowland forests,
compared to temperate and boreal forests (Martinelli et al. 1999; Amundson et al.
2003), and tropical montane forest (Brearley 2013). This pattern is considered as
evidence of more N losses and thus a more open N cycle in tropical lowland
forests, because nitrate lost through leaching and/or denitrification is 15N-depleted.
Temperate forests are generally more N-limited, whereas tropical forests tend to be
more P-limited (Vitousek and Howarth 1991), which is consistent with their higher
δ15N. Leguminous trees are abundant in tropical forests, although not all can form
an effective symbiosis with Rhizobia. Yet, facultative leguminous N2-fixers can still
be abundant (Menge and Chazdon 2016) and contribute to N-accumulation also in
late successional stages of tropical forests (Roggy et al. 1999; Pons et al. 2007). This
could be the reason for an alleviation of N-limitation, whereas N2-fixing trees are
virtually lacking in temperate forest (except for early successional stages; Menge
et al. 2009).

22.5.2 Annual and Decadal Variability in Tree-Ring δ15N

So far, only three studies on temporal variation or trends δ15N in tree rings have
been carried out in tropical forests (Hietz et al. 2010, 2011; van der Sleen et al.
2015c). Hietz et al. (2010) using two species in a Brazilian forest, found a gradual
increase of tree-ring δ15N over time after statistical correction for tree age. The
authors suggested that this result could be caused by an increase in tree turnover
and thus gap formation that generates NO3

− losses and thereby increasing δ15N
of the remaining soil N pool. In a subsequent study, Hietz et al. (2011) reported
also an increase in δ15N in three species from a monsoon forest in Thailand. They
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also found a similar increase when comparing 40-year-old herbarium leaves with
recent leaves from the same species and sample location in a Panamanian forest
(BCI). The two forests are intensively monitored and there are no indications that
the level of disturbance has increased over the past century. Such a consistent trend
in δ15N in three widely separated tropical forests may therefore indicate an effect of
increased anthropogenic N-deposition, which causes higher NO3

− losses (and thus
δ15N enrichment of remaining soil nitrogen). However, in the most recent study, van
der Sleen et al. (2015c) sampled annual rings in six species from three sites at different
continents. They corrected for possible tree size effects by comparing wood sampled
at a fixed diameter (20 cm) from different sized trees. Ten-year pooled samples were
also collected between 1955 and 2005 from single trees, which showed increasing
trends of δ15N in Bolivia and Cameroon. Surprisingly, the trends were absent in
the fixed diameter sampling, showing evidence of potential ontogenetic effects. The
discrepancy between the results of Hietz et al. (2011) and van der Sleen et al. (2015c)
may also have been caused by a lower statistical power in the latter. Unfortunately,
the interpretation of temporal changes in δ15N in the few available tropical tree-
ring studies remain strongly hampered by a limited understanding of the factors that
influence soil- and tree δ15N values.

22.6 Conclusion and Perspective

Tropical forests harbor an incredible biodiversity and provide ecosystem services on
which millions of people depend. They are a major component of the global carbon
cycle, storing some 25% of the total terrestrial carbon and accounting for a third of
net primary production (Bonan 2008). Understanding the functioning of these forests
and their responses to global change is therefore an urgent need for ecology, climate
science and conservation. The study of stable isotopes in tropical tree rings offers
unique opportunities to quantify how these trees respond to their environment, and
can fill an important void in many tropical areas where the availability of climate data
is limited or of short duration. In fact, stable isotopes in tree rings are essentially the
only tools available to obtain cost-effective, high-resolution, long-term retrospective
data on tree physiology and the environmental conditions affecting it.

Currently, stable isotopes research in the tropics has mainly focused on (i) quanti-
fying the effects of rising atmosphericCO2 and climate change on tree physiology, (ii)
identifying the drivers of growth variability and reconstruction of past climate, and
(iii) the identification of annual rings in wood lacking anatomically distinct growth
boundaries. The main findings of the available studies are shortly summarized for
each isotope in Table 22.1. The application of stable isotopes continues to expand.
New applications are numerous, and include the potential use of stable isotopes for
timber tracing and to identify illegally logged wood (e.g. Vlam et al. 2018), to bench-
mark the predictions of dynamic global vegetationmodels (e.g. Zuidema et al. 2018),
and for reconstructions of atmospheric CO2 and δ13C values (using trees with a C4
photosynthetic pathway; Ben et al. 2017).
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Although tropical isotope research has centered on three stable isotopes (C, O, and
to a lesser degree N), advances in analytical techniques and reductions in associated
costs continue to broaden these analyses. This not only includes the analyses of other
stable isotopes, but also the analyses of the intramolecular distribution of isotopes. For
example, the position of 18O in the glucosemoiety in cellulose can be used to separate
source water from leaf water enrichment effects (Sternberg 2009; Waterhouse et al.
2013), and the position of 2H was related to the oxygenation/carboxylation ratio
that depends on Ci (Ehlers et al. 2015). These techniques can be used to infer more
details about environmental effects on tropical trees than is possiblewith bulk isotopic
ratios as done so far. Even though stable isotope research in the tropics still faces
methodological and interpretation issues, we anticipate that it will continue to play
a crucial role for our understanding of the functioning of tropical forests and their
resilience to global change.
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