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Preface

Imagine all the people
Sharing all the world . . .

John Lennon

Imagine building mathematical models that make it possible to manage our world
better, imagine solving great problems, imagine new problems never before thought
of, imagine combining music, art, poetry, literature, architecture, theatre, and cin-
ema with mathematics. Imagine the unpredictable and sometimes counterintuitive
applications of mathematics in all areas of human endeavour.

Imagination and mathematics, imagination and culture, culture and mathematics.
For some years now, the world of mathematics has penetrated deeply into human
culture, perhaps more deeply than ever before, even more than in the Renaissance.
In theatre, stories of mathematicians are staged; in cinema, Oscars are won by
films about mathematicians; all over the world museums and science centres
dedicated to mathematics are multiplying. Journals have been founded to explore
the relationships between mathematics and contemporary art and architecture.
Exhibitions are mounted to present mathematics, art and mathematics, and images
related to the world of mathematics.

The volumes in the series Imagine Math are intended to help readers grasp
how much that is interesting and new is happening in the relationships between
mathematics, imagination, and culture.

This eighth volume of Imagine Math is different from all the previous ones,
including those of the Mathematics and Culture series. The reason is very clear:
in the last two years the world changed, and we still do not know what the world
of tomorrow will look like. Difficult to make predictions. It is difficult to say if
and when we will begin to meet and talk to each other again, exchanging ideas and
opinions in person. This volume is different because it is not the Proceedings of
a conference in Venice since the editions of 2020 and 2021 did not take place. It
probably would not be held anymore for many reasons. Years go by not just for
people.

This volume has a subtitle Dreaming Venice. Venice, the dream city of dreams,
that miraculous image of a city on water that resisted for hundreds of years, has
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become in the last two years a truly an unreachable dream as Shakespeare said (The
Tempest):

We are such stuff as dreams are made on,
and our little life is rounded with a sleep.

We dreamed of Venice, and not being able to meet in person, we created a new
volume in which Venice is present but as a desired dream. Without Venice, this
series of meetings that began in 1987 would have made no sense.

Many things tie this book to the previous ones. Once again, this volume too
starts like Imagine Math 7, with a homage to the Italian artist Mimmo Paladino who
created exclusively for the Venice Conference and the Imagine Math 8 volume a new
series of ten original and unique works of art dedicated to Piero della Francesca.

A memory of Napoleon could not be missing not only for the anniversary of
his death on May 5, 1821, but above all because it is Napoleon, passionate of
mathematics, who actually gave life to the Istituto Veneto di Scienze, Lettere ed Arti
(location of the Venice Conference) as the Emeritus Chancellor Fraschini explains.

An intervention on the protection system of Venice, a very fragile city, could not
be missing either, a system that seems to be working well.

Many artists, art historians, designers, and musicians are involved in the new
book, among others Linda D. Henderson and Marco Pierini, Claudio Ambrosini,
and Davide Amodio. Space also for comics and mathematics in a Disney key. Many
applications, from Origami to mathematical models for world hunger. Particular
attention to classical and modern architecture, with Tullia Iori.

As usual the topics are treated in a way that is rigorous but captivating, detailed,
and full of evocations. This is an all-embracing look at the world of mathematics
and culture.

Rome, Italy Michele Emmer
June 16, 2021
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8 Works by Mimmo Paladino

Michele Emmer

In the frescoes of the Basilica of San Francesco in Arezzo there
are many beautiful conceptions and attitudes worthy to be
extolled; above all other consideration about brilliance and
art . . . This is done with very great thought, for Piero gives us to
know in this darkness how important it is to copy things as they
are and to ever take them from the true model; which he did so
well that he enabled the moderns to attain, by following him, to
that supreme perfection wherein art is seen in our own time.
Giorgio Vasari, Le vite [1].

Sulla Mathematica, an exhibition with Italian artist Mimmo Paladino’ works opened
in March 2019 in Palazzo Loredan in Venice, location of the Istituto Veneto di
Scienze, Lettere ed Arti IVSLA, on the occasion of the International Conference on
Mathematics and Culture “Imagine Math 7” [2, 3].

Three months later, on June 15th 2019, a large exhibition of the works of the
artist Mimmo Paladino was organized in Arezzo by the title Paladino. La regola di
Piero (Piero’s Rule)”. The Curator Luigi Maria Di Corato wrote in the catalogue:
[4].

“The symbolic work of the exhibition is Suonno (d’après Piero della Francesca)
(1983). The scene (Fig. 1) attracted the attention of Paladino who decided to
transcribe it in his pictorial language, also stated by the artist’s choice of a
Neapolitan title (suonno means dream). In the painting Paladino does not insist on
the announcing angel, but on the figure of the valet sitting on the emperor’s bed. He
surrounds the head of the sleeping man, who has lost the features of Costantine to
acquire those of the typical archetypal characters of the artist. As in Piero’s works
the story is structured in two moments, divided by a vertical element: next to the
main scene, a second moment takes shape, as in a following frame of the same

M. Emmer
Università Roma Sapienza, Rome, Italy

IVSLA, Venice, Italy
e-mail: michele.emmer@uniroma1.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Emmer, M. Abate (eds.), Imagine Math 8,
https://doi.org/10.1007/978-3-030-92690-8_1
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4 M. Emmer

Fig. 1 Piero della Francesca,
Il sogno di Costantino, Storie
della vera Croce, Affresco
Basilica San Francesco,
Arezzo (1458–1466) Su
concessione del Ministero dei
beni e attività Culturali,
Direzione Regionale musei
della Toscana

movie. Here the servant seems to have gotten up to start an incomprehensible gesture
dialogue with the emperor.” (Fig. 2).

In 1948 Luciano Emmer decided to make a documentary series on art and one
was dedicated to Piero’s frescoes in Arezzo, by the title L’invenzione della croce
(The invention of the cross) (Fig. 3) [5]. I remember well the scene of Constantine’s
dream in the film, filmed with the technique he had invented to never show the
location of the figure but always remain inside the work to tell the story from within
the universe invented by the artist, telling the story with images commented almost
only with music.

That scene came back to me when I wrote an article on Piero and mathematics
in the Notices of the AMS [6] on the book by J. V. Field Piero della Francesca. A
Mathematician’s Art [7].

“Piero della Francesca (c. 1429–1492) was the painter who ‘set forth the math-
ematical principles of perspective in fairly complete form . . .Piero was the painter
mathematician and the scientific artist par excellence, and his contemporaries so
regarded him. He was the best geometer of his time.” So wrote Morris Kline in his
monumental work Mathematical Thought from Ancient to Modern Times [8].
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Fig. 2 M. Paladino, Suonno
(d’après Piero della
Francesca), oil on canvas,
dim 220 × 205 (1983)

Fig. 3 Frame from the movie
Invenzione della Croce,
(1948) by L. Emmer, ©
Cineteca Nazionale, Bologna
& M. Emmer

Field concurs with this opinion, observing that [9] “the assertion that Piero’s
pictures are mathematical is usually so vague that it is understandable that some art
historians have preferred largely to ignore it.”

In the catalogue of the Arezzo exhibition the curator added [10]: “Piero sees
mathematics as a sort of religion and by following this he exceeds the limit of two
dimensional space creating both a conceptual representation of the world, parallel to
reality, with practically infinite potentials, and coding his experiments so that they
can be shared and become common art language.

Paladino finds new sources of inspiration in numbers and in the continuous search
for space. Two elements that give shape to a language made of iconic signs, which
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often become part of the work or turn into work themselves as, for example, in the
Great Geometries.”

As Paladino recently claims: “Piero della Francesca for me is un unlimited source
of discoveries. His ability to create shapes from light, space from mathematics, color
from gray, his almost heraldic iconicity, are a constant point of reference, almost a
rule, that’s why I decided to narrate it in Arezzo.”

Piero and Paladino’s works have several contact points. Both seek an art that
is strongly anti-expressionistic, so that the emotional sphere of both artists and the
character represented is deliberately tamed thanks to a rigorous process that tends
to mediate to slow down feelings, in search of that harmony that develops from
silence, between correspondences and counterpoints. “Hence, it is no coincidence
that Piero’s Rule takes shape in Arezzo: an exhibition in six locations, a tribute to
confirm how much the painter and the mathematician of Sansepolcro was decisive
for Paladino, not only on an aesthetic level, but also on a methodological and
theoretical level.

Paladino decided to made a series of paintings for the volume Imagine Math
8, a sort of addition to the art works shown in Arezzo, sending 8 works by the
general title Il Principio della prospettiva for the proceedings of the imaginary
Venice conference. My best thanks to him for his kindness.
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Mimmo Paladino

Il Principio Della Prospettiva

M. Paladino, Senza titolo, codice MP P20039 (2020) tecnica mista su tela, 120.00 × 100 cm.
Incorniciata misura 104 × 124 cm
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M. Paladino, Senza titolo, codice MP P20040 (2020) tecnica mista su tela, 120.00 × 100 cm.
Incorniciata misura 104 × 124 cm
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M. Paladino, Senza titolo, codice MP P20041 (2020) tecnica mista su tela, 120.00 × 100 cm.
Incorniciata misura 104 × 124 cm
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M. Paladino, Senza titolo, codice MP P21003 (2021) acrilico e matita su tela, 120.00 × 100.00 cm
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M. Paladino, Senza titolo, codice MP P21007 (2021) acrilico e matita su tela, 120.00 × 100.00 cm
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M. Paladino, Senza titolo, codice MP P21005 (2021) acrilico e matita su tela, 120.00 × 100.00 cm
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M. Paladino, Senza titolo, codice MP P21006 (2021) acrilico e matita su tela, 120.00 × 100 cm
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M. Paladino, Senza titolo, codice MP P21007 (2021) acrilico e matita su tela, 120.00 × 100.00 cm
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Dreaming Venice

Michele Emmer

These two little squares linked
by this hidden lane called the “Narrow
Passage of Nostalgia” were the fabled
center at which two secret worlds melted
into one another: one came from the
disciplines of the Talmud, the other 
from Judeo-Greek-Oriental esoteric
philosophical disciplines.
This maze of staircases, lanes, yards,
and little square was known as
the “Serraglio of Beautiful Ideas”.

Hugo Pratt, Favola di Venezia, 1977

The Mathematics and Culture conference was conceived in Venice, not by chance. It
was 1997 and it was a dramatic time for my family. We lived in Turin and our dream,
both Valeria’s and mine, was to return to Venice, to our small house. We knew that
we had little hope but it was the dream we had, as anybody would be entitled to
having, just through a little imagination. We decided in 1987 that we wanted to live
in Venice. I accepted the position they offered me at the University of Ca′ Foscari.
We thought that in a few years’ time all the family would be there. Things went
differently and after seven years I went back to teach at Sapienza in Rome, at the
Faculty of Architecture. In 1996 came the disease, with the consequent transfer to

A different version was published in the book E. Loew ed., Math at the Time of Corona by the title
Soap Bubbles Vanitas Venice, Springer, 2021 [1]
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Turin. But the dream remained and so we invented a conference that would be held
always and only in Venice, at the Santa Margherita auditorium of the University of
Ca′ Foscari.

It is worth noting that words like dream, creativity, imagination often appear
when mathematicians think about their activity.

We are such stuff as dreams are made on,
and our little life is rounded with a sleep.

William Shakespeare, The Tempest, 1610

Mathematicians’ relationship with dreams has an interesting story. Many papers
have been published on mathematics and dreams. In november 2019 a conference on
Auto/biographie: prémonitions, rêves, cauchemars took place at the Cyprus Univer-
sity in Nicosia organized by the Département d’Etudes Françaises et Européennes
and by the journal Mediapolis published by the Presses Universitaires de Louvain.
The session En deça et au-delà des humanités was dedicated to mathematicians and
dreams with talks by Alessio Porretta What do mathematicians say (or don’t say)
about dreams? and M. E. Rêve, Images Bulles [2].

In addition to our personal dreams and desires, there were other reasons, which
also were very personal. Venice has always been a reference point for us, we went
there often, every year, and our great friends live in Venice, Lili Sene and Silvano
Gosparini at the Centro Internazionale della Grafica. We met them through a book
whose review we had written in the Italian newspaper L’Unità. It was about the
Teriaca, a sort of universal medicine produced during the golden years of the
Serenissima Venetian Republic, in the city on the lagoon, and only in very few
places authorized by the Venetian authorities.

Lili and Silvano’s atelier, Venezia Viva, was where an important part of the
Mathematics and Culture books, catalogues and brochures were to be developed,
mostly by hand, and published, only for conference participants. My transfer to the
University of Ca ‘Foscari in 1991 allowed me to realize my first dream: a book
entirely dedicated to the city of Venice, a city that is not only romantic, aquatic,
unique, unimaginable but also geometric, magically structured, designed as it was
built over the centuries.

My book’s title was La Venezia perfetta (The Perfect Venice) [3]. A revised
and reduced version of the book was published in English with the title Venetian
Geometry, or the Perfect Venice in one of the three volumes dedicated to the city
by Alain Vircondelet Venice Art and Architecture published in 2006 by Flammarion
[4]. A second edition of my book with a new cover and introduction was published
in 2019 [5].

Venice survived precisely because of its fragility, a bet against nature and the
history of humanity. Its architectural inlays similar to glass and lace seem to have to
disappear with every gust of wind or high water but instead have r esisted through
the centuries. It was the right place, dreamed, hoped for to start dreaming in a
different way, outside the rigid academic structures (which also rage in Venice).
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There was another precise reason to have chosen Venice. Being a city without
cars, you know exactly how long it takes to get to from one place to another. Being
a small city, it can be covered from one end to the other in an hour. You can take,
if you wish, the gondola ferry to cross the Grand Canal or the vaporetto through
the Giudecca Canal, or to Lido, to reach the open sea. A mysterious city, sometimes
shrouded in the splendid light that could only be painted by Canaletto. A mysterious
city, sometimes immersed in fog, or caligo in venetian dialect, with the sound of
rising and falling water.

Venice’s mysterious character is accentuated by the fact that, if you are unfamil-
iar with the town, with its sestieri (the six districts) and calli (narrow streets), it is
practically impossible to find a given location—even if you know the address. Each
sestiere has its numbering system and even among Venetians, few know the names
of the calli and the campi (public squares), except for the most famous ones or those
near their own homes.

Some years earalier, in the eighties, I had started making the film series Art and
Mathematics on the links between mathematics and art, with many of the films
shot in Venice. I asked myself about the existence of objects, places or artwork
of mathematical, geometrical and architectonic interest in Venice. The answer was
resounding yes, on two different levels: as the city-theatre par excellence, it suffices
to walk about Venice for architectural structures with geometric and mathematical
forms of certain consequence to meet the eye. Obviously, though, this is true
of practically every other city in Italy. However, there are elements specific to
Venice that are of particular interest for mathematics as well as for architecture.
Consequent with the fact that some of these architectonic-geometric works were
erected by the major artists of various periods, it is clearly far from misguided
to choose Venice as a privileged place to understand the relationship between art,
architecture, mathematics and, more generally, culture. Thus, one acquires a point
of view somewhere between the mathematical and the architectural, searching out
hidden places and seeing the most famous places of the city in a new light.

This peculiar perspective has many surprises in store. Anyone who frequents
Venice very soon realizes that the shortest distance between two points is not always,
almost never, the straight line joining them. The shortest route through Venice
is always tortuous, labyrinthine. “There exists no natural labyrinthine structure in
which the work of man has been progressively overlaid in such a determined manner
as to morph into a kind of initiatory reading” wrote the composer Giuseppe Sinopoli.
For Sinopoli “the manifestation of the sacred in Venice is wrapped in a paramount
symbol that represents it, that determines it, fixes it and holds it fast: the natural
double spiral of the Grand Canal around the city coils itself.” [6].

I was professor at the Ca ‘Foscari University in Venice for 7 years. I had my
studio in the Ca′ Dolfin palace, famous for the 10 canvases by Gianbattista Tiepolo
which are currently at the Metropolitan Museum in New York, the Hermitage
in St. Petersburg and the Kunsthistorisches Museum in Vienna. The mathematics
department, which no longer exists, was located on the so-called Canal Piccolo
which joins the Grand Canal right where the two spirals of the Grand Canal invert
their direction (Fig. 1).
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Fig. 1 Jacopo de’ Barbari, Map of Venice, a. 1500

In my book on Venice I talked about the labyrinthine structure of the city, its
topology (years later at the 2008 Venice Biennale of Art there was the exhibition
Topological Gardens [7] by the US artist Bruce Naumann, who had studied
mathematics for three years), of the forms found in churches, palaces, squares:
helices, symmetries, geometric decorations, crossing of spirals as in glass works
called reticello. The famous starshaped solid, officially invented by Kepler in 1619
in the volume Harmonices Mundi, an important shape in mathematics, had been
made in mosaic many years earlier on the floor of the Basilica of San Marco based
on drawings by the artist Paolo Uccello (Fig. 2).

Since 2013 I have been an elected a member of the Instituto Veneto di Scienze,
Lettere e Arti (IVSLA) founded in Venice by Napoleon. Since then I organized my
yearly conferences on Mathematics and Culture at the Institute which is housed in
Palazzo Franchetti on the Canal Grande, one of the most famous Venetian palaces,
unique for its history and its architectural features (Fig. 3).

In March 2019 I organized the last Imagine Math, Mathematics and Culture
conference (the first was in 1997) at IVSLA and at the same time in the other
building of the Institute, Palazzo Loredan in Campo Santo Stefano, two hundred
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Fig. 2 P. Uccello, drawing, Starshaped Dodecahedron, mosaic, San Marco

Fig. 3 Palazzo Franchetti, IVSLA, Venice, April 2020, photo © C. Morucchio
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Fig. 4 M. Paladino, Without
title, sketch for the
conference Mathematics and
culture, 2018, work on paper,
mixed media, mm.
1000 × 800. Private
collection by permission

meters from Palazzo Franchetti, I organized a exhibition of the famous Italian artist
Mimmo Paladino, with the ten posters he created just for the conference [8]. One
became the cover of Imagine Math 7 published in October 2020 [9] (Fig. 4).

On March 16, 2019, a large exhibition on soap bubbles in art and science opened
in Palazzo dei Priori, home of the National Gallery of Umbria in Perugia, Italy.
Marco Pierini, the director of the Galleria Nazionale dell’Umbria, curator together
with myself of the exhibition, wrote in the Introduction to the catalogue [10]:

The exhibition Soap Bubbles. Forms of Utopia Between Vanitas, Art and Science
was initially intended to be a kind of mise en scène of the volume Bolle di sapone.
Tra arte e matematica [11], physically bringing together the images accompanying
the text. However, as organization and research efforts progressed, variations,
additions, and deviations to the framework were implemented, modifying the
guidelines and rendering the initial catalogue, which was already abundantly vast
and well structured, even richer. The plunge into the iconographic universe of soap
bubbles was, in fact, full of surprises and continuous discoveries, to the extent that
the team involved in the project was genuinely surprised that a thematic exhibition
on the subject had not yet been created. While the presence of soap bubbles seems
like it would be a unique and sporadic occurrence in the panorama of art history, they
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actually appear with an unexpected frequency and an uninterrupted continuity. The
fragile sphere of soap film was introduced into art at the end of the sixteenth century
by Hendrick Goltzius). It has arrived to the present without ever losing popularity,
having been adapted to the changing times and iconographic needs.

“Pierini ends his introduction reaching the twenty-first century:
As part of an unremitting tradition, the intriguing and silent bubble has managed

to arrive at the other end of the twentieth century through the works of the young
Max Beckmann and Cagnaccio di San Pietro. It was at the centre of Man Ray’s
and Naum Gabo’s experimental research, and was appeared at the end of the avant-
garde period in the works of Joseph Cornell and Enrico Prampolini. A fascination
with bubbles has pervaded even the second half of the twentieth century and the
beginning of the twenty-first (Giulio Paolini, Mariko Mori, Jiri Georg Dokoupil).
They are now not only depicted but even physically part of the work, like in Nothing
(1999), Pipilotti Rist’s soap bubble-making device.

A significant part of the exhibition was devoted to links with science, in
particular physics, chemistry, biology and of course mathematics. Many references
to contemporary architecture and even cinema were present, since the beginning of
the history of cinema, with the screening at the exhibition of some silent films of
the early twentieth century. The exhibition touched on all these aspects, without
exhausting the topic, as it would have been absolutely impossible, due to the
extraordinary history of soap bubbles between art and science” [12] (Fig. 5).

The subject of soap bubbles has interested me since I graduated in mathematics
in 1970 at the University of Rome presenting a thesis on the works of Renato
Caccioppoli. Some of his ideas were later used by the famous Italian mathematician
Ennio De Giorgi to introduce the Theory of Perimeters, one of the ways to solve
problems of calculus of variations related to minimal surfaces. I started my activity
at the University of Ferrara as an assistant to Mario Miranda, one of De Giorgi’s
main collaborators.

Since soap films and soap bubbles are not only models for 3D minimal surfaces
and surfaces with assigned mean curvature but are also very beautiful and colorful
objects, I immediately became interested in images of soap bubbles in art, starting in
the meantime my personal small collection of paintings and objects. Very important
was the influence of my father who since 1938 started and invented a new way of
making art documentaries on art, among the most famous ones the one on Giotto
[13], Leonardo da Vinci [14], which won a Golden Lion at the Venice International
Film Festival in 1952, Goya, best art film festival in Berlin, 1951 [15] and Picasso
[16], a film made with the Catalan artist in 1953.

I had a large collection of art books at home and I was lucky enough to meet
many artists personally. At the beginning of the eighties I started the series of my
films on Mathematics and art, they would be 20 at the end, and one of the themes
was precisely soap bubbles. The film was made in part at Princeton University’s
Math Department with Fred Almgren and Jean Taylor [17]. Jean had just proved the
correctness of Plateau’s observations on the singularities of soap films [18]. Jean
and Fred had published an article about their research in the Scientific American in
1976, [19] which included beautiful color images of soapy structures.
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Fig. 5 A. Romako, (copy from) Zwei mit Seifenblasen spielende Kinder, oil on canvas, end XIX
Century, private collection by permission

In Art history, the theme of soap bubbles becomes a sub-genre of the more
general theme of the Vanitas, Vanitas Vanitatum et Omnia Vanitas as written in
Ecclesiastes 1: 2. In Goltzius’ most famous and widespread work of 1594 Quis
evadet? (who escapes) appear as symbols of Vanitas bubbles, smoke, dried flowers,
a skull. In preparing the exhibition a work by Agostino Carracci was identified.
With the same title and practically identical to that of Goltzius, the exact date is not
known (Fig. 6).

At the exhibition in Perugia I did not want the Vanitas theme to be the prevalent
one, and therefore there was only one painting explicitly dedicated to Vanitas, a still
life with bubbles and skull. I wanted the playful, fun aspect to be prevalent, present
since the beginning of the spread of soap bubbles in art. And the other scientific and
artistic aspects. The exhibition was titled Soap Bubbles. Forms of utopia between
Vanitas, Art and Science. The word Vanitas could not be missing in the title of the
exhibition to give a correct location in the history of art.

Almost two years have passed since then. I worked on the publication of the
volumes Imagine Math 7 and 8. This last volume is not connected to any conference
in Venice, since nothing could be organized due to the Covid-19 virus. And
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Fig. 6 A. Carracci, Quis
evadet, bulino, around 1590,
Reggio Emilia, Italy,
Biblioteca Panizzi, Gabinetto
delle stampe “A. Davoli”. By
permission

streaming was unthinkable. The venue, Venice, is an essential part of the conference.
Streaming meant destroying the idea.

In Italy we were in lockdown for three months. It was not possible to move, to
see anyone, not even children and grandchildren who live far away. Writing, even
more than using the computer as a video phone, was an essential way to survive and
to try to maintain a delicate mental balance. And writing, loneliness led to reflect.
To reflect on life, on work, on loved ones, on those who died in this period.

So the Vanitas I wanted to remove from the soap bubbles exhibition resumed
its role. Soap bubbles, the fragility of life, and therefore of art, of everyone’s role,
everyone’s work and research. Is it all Vanitas, do we just try to forget, trying to build
our own space like a soap bubble destined to burst? Research on minimal surfaces,
on the problem of Plateau, on those fragile forms which become the symbol of
the uselessness of life? And does research in this field, and in that of the history
of art, have a meaning? Are not our efforts useless, irrelevant when only health
research, biology, vaccinations seem to have a real importance and all the rest are
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Fig. 7 Canal Grande near Rialto, Venice. April 2020. Photo C. Morucchio © by permission

vain chimeras as Mathilde Wesendonck wrote for the lieder of Richard Wagner?
[20] (Fig. 7)

Sag, welch wunderbare Träume
Halten meinen Sinn umfangen,
Daß sie nicht wie leere Schäume
Sind in ödes Nichts vergangen?
(What wondrous dreams are these/Holding my 
mind in thrall,/That they, like insubstantial 
foam,/ Don’t barren emptiness recall?)

Telles, les demeures disposées des deux côtés du chenal faisaient penser à
des sites de la nature, mais d’une nature qui aurait créé ses œuvres avec une
imagination humaine.
(The mansions arranged along either bank of the canal made one think of objects of nature,
but of a nature which seemed to have created its works with a human imagination)

Marcel Proust, La recherche, Albertine disparue, 1925

And the town, that town that was for hundreds of years the ideal scenario for
many events of human civilization, that Venice celebrated, told, saw, revised, re-
worked, decadent, (leaving apart the Death in Venice by Thomas Mann), geometric,
fragile, she too was a looming symbol of Vanitas. Decadent (leaving aside the Death
in Venice by Thomas Mann), geometric, fragile, she too was a looming symbol of
Vanitas (Fig. 8). As demonstrated once again by the tragic high water that flooded
the city on November 12, 2019, lower only than the devastating one of 1966 (Fig. 9).
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Fig. 8 Piazza San Marco, Venice, April 2020. Photo C: Morucchio © by permission

Today, october 3rd, 2020, when I am writing these words, the system MOSE
(Modulo sperimentale elettromeccanico, a system of mobile) of protection of the
town from high tides started working for the first time. And the water did not invaded
the town! (Fig. 10).

In Venice where you could not go due to the virus, Venice where the quarantine
was invented in response to the plague. The term originates from the isolation for an
indefinite number of days which was imposed on the crews of ships as a preventive
measure against the diseases that raged in the fourteenth century, including the
plague. A document of 1377 states that before entering Ragusa, today’s Dubrovnik
in Croatia, it was necessary to spend 30 days (about thirty) in an isolated place,
usually the nearby islands off the coast, waiting for any symptoms of plague to
appear. In 1448 the Venetian Senate extended the period of isolation up to 40 days
giving rise to the term quarantine (originally, Venetian word for forty). Venice
was the first to issue provisions to stem the spread of the plague, appointing three
guardians of public health in the early years of the Black Plague (1347). The first
hospital was founded by Venice in 1403, on a small island adjacent to the town.
[based on Wikipedia].

Those scenographic geometries have become empty, fascinating and tragic. The
empty, deserted city. And that exhibition of bubbles, in which the reference to
Vanitas was just an expedient to stay in the wake of the great exhibitions of the
year, seems to have taken place years ago, far in time, in another era.

Years ago Peter Greenaway came to one of the Mathematics and Culture
conferences. He had to arrive in Venice on March 24, 1999 from Amsterdam where
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Fig. 9 Acqua alta (High tide) in Venice, November 2019. Photo C. Morucchio © by permission

Fig. 10 MOSE Project, Venezia, © by permission. October 3, 2020. At 9:52 all MOSE 78 gates
isolated the lagoon from the sea. In the town, the tide level settled at around 70 centimeters, while
the gates blocked the sea at 125 centimeters. To the left the open sea, to the right the lagoon



Dreaming Venice 31

he lived. That day the air space of northern Italy was closed because of the bombing
of the former Yugoslavia. I don’t know how Greenaway found the phone number
of the Santa Margherita auditorium where the conference was being held. He told
me he would try everything to get to Venice but he didn’t know when the plane
would leave. He was supposed to come and talk on his film Drowing by numbers,
[22] which was to be shown with his presence. Hours passed by and the situation
remained unchanged. The meeting in a strange atmosphere continued (the bombing
planes departed from the Aviano air base, not far from Venice).

Finally in the evening the airspace was reopened, Greenaway who was supposed
to return to Amsterdam the next morning said he wanted to come: “I do not want
the war to stop me”. But he asked to be sure that when he arrive he would had found
someone in the hall to listen to him. I asked the audience if they wanted to stay until
his arrival which was scheduled for 11 pm and the transfer to the auditorium around
midnight. Everyone said they would stay. Including the technical staff. Greenaway
spoke at length of his numerical link with cinema. He wrote a long article on the
Proceedings of the conference with the title Come costruire un film, [23] article
republished in English [24] with the title Some organizing Principles.

A few years later, in 2006, an exhibition of Greenaway’s watercolours was
organized at the Venezia Viva gallery. It was curated by Luca Massimo Barbero
with the title 92 Drawings of Water, a title drawn by hand by the film maker with
a catalog created by Lili and Silvano [25] (Fig. 11). It was organized with the help
of Domenico De Gaetano who had founded the Volumina publishing house with
Greenaway to create large-format art books with famous directors and musicians
including Greenaway himself. One of the volumes was Tulse Luper in Venice
published in 2004 [26]. Years earlier Greenaway had organized a major exhibition
on the theme of water, a journey through water entitled Watching Water at Palazzo
Fortuny in Venice with Luca Massimo Barbero curator. From 2020 Domenico
De Gaetano became director of the Cinema Museum in Turin, the city to which
Greenaway dedicated the other art book created with Volumina in 2002, Tulse Luper
in Turin [27]. Greenaway invented the character of Tulse Luper, a sort of alter ego,
and made him the protagonist of the film The Tulse Luper Suitcases in three parts
[28] during the years 2003/04.

Did it make sense to keep trying to write, to bring to terms books that will only
be virtual, as virtual as the town of Venice observed only by drones? I don’t have
an answer to these questions, everyone will have their own. But I continued to write
and will continue to write, as I am doing even now. Because writing testifies, tells,
remains, the memory, the memory. And the very title of the Springer series that I
invented is obviously taken from John Lennon’s Imagine, which imagines a better
future.
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Fig. 11 P. Greenaway, 92 Drawings of Water, catalogue, Centro internazionale della Grafica
Venezia, drawing n. 10 [21]. Private collection by permission

True, everything is Vanitas, but fortunately we never think about it for too long.

Imagine all the people
Living life in peace
You, you may say I'm a dreamer
But I'm not the only one
I hope someday you will join us
And the world will be as one.
…..

John Lennon, Imagine, 1964. 

PS: To have a look at the exhibition in Perugia: https://youtu.be/fFHh9hi5fwM.
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The Napoleonic Fresco in Palazzo
Loredan, Thinking of the Bicentennial

Sandro G. Franchini

Sometimes we invoke fate when trying to identify some logic in facts that might
seem related to each other despite the obvious randomness of their occurrence. And
what happened in Palazzo Loredan, the headquarter of the Istituto Veneto di Scienze,
Lettere ed Arti a Venezia (the Venetian Institute of Sciences, Letters and Arts) in the
spring of 2009 could indeed seem a trick of fate (Fig.1).

We had almost reached the end of several major restoration and adaptation
works, lasting about 3 years. The last finishing touches remained, and a scrupulous
painter had diligently cleaned and repainted the rooms on the mezzanine, when,
by scratching and scraping a wall of the corridor leading to the chancellor’s office,
traces of paintings emerged, from under who knows how many layers of old paint,
which at first sight were indecipherable: a line, a pale green leaf, a star, but then also
a hand, the fold of a dress. Specialists were immediately called in and, proceeding
with great caution in testing the surface here and there for samples, they brought
out faces, hands, and figures that were at first barely discernible in the scattered
tesserae that gradually reappeared. Immediately, memories emerged of old stories
of frescoes in honour of Napoleon (in a corridor?) that Austria had destroyed as
soon as it regained possession of the city: stories which we had read, but which had
seemed distant, with no relationship to the present (Fig. 2).

A large allegorical scene full of characters unfolds on the wall: Napoleon returns
victorious from Austerlitz and lays down his sword, greeted by the dignitaries

These notes refer in particular to the studies by Giuseppe Gullino on the Loredan family and on the
history of the Institute; by Gian Domenico Romanelli on Palazzo Loredan; by Giuseppe Pavanello
on the work of Giovanni Carlo Bevilacqua; and by Alberto Craievich on the decorations of Palazzo
Loredan.
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Fig. 1 Palazzo Loredan, Campo santo Stefano, Venice. The manneristic-style facade, given to
Giovanni Grapiglia (1572–1621) photo Beppe Raso, with kind permission

Fig. 2 Giovanni Carlo Bevilacqua, Allegoria Napoleonica, affresco (1808/09), photo Beppe Raso,
with kind permission of the Istituto Veneto di Scienze, Lettere ed Arti, Venezia



The Napoleonic Fresco in Palazzo Loredan, Thinking of the Bicentennial 37

of his court and by cheering crowds, crowned by Fame, with Glory and Peace
at his side, in the act of receiving from France and Italy the crowns that he left
behind before leaving for war. The fact that Palazzo Loredan once had frescoes
dedicated to Napoleon’s exploits was known to scholars thanks to the testimony
of their author, Giovanni Carlo Bevilacqua (1775–1849). In his autobiography, he
recalled the commission he had received from the military governor of Venice to
decorate his residence in Palazzo Loredan with scenes and allegories appropriate to
the position of the master of the house. However, it was also widely believed that
they had been destroyed. Instead, it was with great excitement that we watched the
images being slowly recovered; these testified to events and people that those rooms
had once witnessed, starting with general Louis Baraguay d’Hilliers (1764–1813),
recognisable by the prominence given to him in the composition and by his thick
brown hair, portrayed in the act of holding the reins of the Emperor’s horse.

With the fall of the Serenissima, the already precarious economic conditions of
the San Vidal branch of the Loredan family led to the sale of the palace to a building
contractor, Giacomo Berti, who in turn sold it to the Austrian government around
1805, so that the building became State property.

With the victory in Austerlitz on 2 December 1805 and the subsequent peace
of Pressburg, Venice and Veneto were added to the Kingdom of Italy, and in 1808
general Baraguay d’Hilliers was appointed military governor of the city. D’Hilliers
actually knew Venice well, as he was in command of the troops that, sailing from
Marghera and landing at the Zattere, had occupied the city in the days immediately
following that fateful 12 May 1797. During the brief period in which he remained in
Venice, before leaving to join Bonaparte, who was engaged in the final stages of the
Italian Campaign, d’Hilliers lodged with the Pisani family in their palace in Santo
Stefano; he must have liked the area if, just over 10 years later, he decided to return
there and settle in Palazzo Loredan.

Once he had taken possession of the new residence, the general called in one
of the greatest artists in Venice at the time to give it an air of military grandeur,
decorating what were then the private apartments and the reception hall with two
large celebratory scenes and allegorical friezes, among which the five-pointed
star with the imperial “N” stamped on it stood out. Bevilacqua’s testimony is
fundamental and also very clear, as he refers to the two scenes (one is lost) that
he painted on that occasion:

I was called to paint in the Loredan Palace in S. Stefano, which was to be the lodging of
general Barague-d’Illiers, the first French Governor in Venice, a very courteous, humane,
and gentle person. In the reception chamber, I painted two side paintings in fresco; in the
first one, Napoleon, in the act of leaving for a military expedition, delivers to France and
Italy the crowns of the Empire and the Kingdom for safekeeping. Mars, who stands at his
side, urges him on, and points at the awaiting army. In the other, he returns victorious,
accompanied by Victory, and Fame, flying through the air, announces his triumph. In the
middle of the ceiling, the god Mars. General Barague-d’Illiers was always behind me, and
with the kindest of manners he pointed out to me the features of Napoleon’s face, whom I
had not yet seen, his decorations, and the clothes he was wearing. This work, which cost
me time, study, and effort, was destroyed with a hammer by order of the Germans (!) when
they regained possession of Venice in 1814.
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Scholars of Bevilacqua’s work were familiar with this writing, just as they were
familiar with the two sketches, preserved in the Museo Correr, which the artist
had used, with some modifications, to gain the preliminary approval of the client
and for the subsequent execution of the paintings. But it was precisely some of
Bevilacqua’s own statements that put us off track when the question arose as to
where they might have been painted. First, the first and most important error: they
had not been destroyed by hammering, or at least not all of them. But it was also
the mention of a reception chamber that confused our understanding, suggesting a
room on the piano nobile rather than a room on the mezzanine floor. It was only
after this fortuitous discovery that it became clear that the distribution of the rooms
in that part of the palace had undergone various changes and that what is now a wide
corridor was, instead, part of a large hall at the time.

Bevilacqua’s account is a vivid and lively testimony of the progress of the work
and of the assiduous presence of d’Hilliers, who also succeeded in having the
initial project modified by having himself portrayed on the right side, full-length
and recognisable from his facial features, while Napoleon’s features remained less
precise. The fresco should, therefore, be dated after 1808 and not later than 1809,
when Baraguay d’Hilliers was forced to leave Venice again, this time forever: first
to deal with some anti-French uprisings by the population of Veneto, and then to
join the troops commanded by Viceroy Eugene of Beauharnais who rushed to Friuli
to oppose the Austrian attempt to regain its lost territories: finally, he honourably
commanded a division in the victory of Raab, in Hungary. In 1811, he was appointed
governor of Catalonia, having played an important role in the conquest of Spain. He
then participated in the disastrous Russian Campaign, where he fell prisoner and
drew the anger of Napoleon. He died in Berlin in January 1813, aged forty-eight, by
which time even the star of his Emperor had begun to wane.

With the return of the Austrians to Venice in 1813, Palazzo Loredan was used as
the seat of the city’s military command, as is clearly indicated by the still legible
inscription on the lintel of the entrance portal, K.K. STADT UND FESTUNGS
COMMANDO, which reminded some of the ancient town of Kakania described by
Musil. Thus, Palazzo Loredan, in addition to the Venetian Pantheon in the entrance
hall, can be considered the place where the symbols of almost the entire history of
Venice are represented: the aristocratic Republic, with the Loredan heraldic roses;
the Napoleonic period with the frescoes by Bevilacqua; the Austrian domination
with the fearsome inscription; up to our century, well represented by the Istituto
Veneto.

But what is most interesting to note here is the coincidental presence of the only
surviving evidence of the Napoleonic domination in a Venetian building right where
the Istituto Veneto, which owes its origin to Napoleon, is today, and which in 1893
moved to its new residence in Campo Santo Stefano. As has recently been recalled,
Napoleon established the Istituto di Scienze, Lettere e Arti, from which our own
Istituto Veneto derives, with a decree issued from the Tuileries on 25 December
1810. It was a strange date to found a scientific institution, but in reality, Napoleon
was not celebrating Christmas, but rather his election as a member of the Institut
National de France, which took place on 5th Nivôse of year VI, which actually
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corresponded to the 25th of December. In using that date, Napoleon wished to
signify that it was not so much the Emperor of France who gave life to the Italian
National Institute, but the member of the Institut, who had been elected for his
studies in the fields of physics, mathematics, and ballistics.

Perhaps, it is worth recalling here the letter written by Bonaparte to President
Camus the day after his election as a member of the Institut:

Citizen President,
I am honoured by the vote of the distinguished members of the Institute. I feel that well

before I become their equal, I will be for a long time their pupil.
If there was a more expressive manner to let them know the esteem in which I hold them,

I would use it.
True victories, the only ones that give one no regrets, are those made over ignorance.

The most honourable occupation, the most useful for all peoples, is to contribute to the
aggrandisement of human ideas. The true power of the French Republic must from now on
consist in not allowing there to be a single new idea which does not belong to it.

Bonaparte

The Istituto Veneto can thus commemorate not only the bicentenary of the death
of a dethroned Emperor (Napoleon died on 5 May 1821) but also the bicentenary of
the death of its own founder and of an associate, whose legacy of ideas, as far as we
are concerned, is still alive, always capable of renewal, animated by the same values
that originally inspired it.

The discovery of the Napoleonic fresco? Well, maybe, after all, it was just fate!1

1 The original article was published in Italian, S. G. Franchini L’affresco napoleonico a palazzo
Loredan con un pensiero al bicentenario, La Polifora, n. 11, 25 May 2021, IVSLA, Venice.



MOSE: The Defence System
to Safeguard Venice and Its Lagoon

Giovanni Zarotti

1 Introduction

All environments are a constant repetition of processes where nothing is static,
nothing is definitive, where there is no long-lasting equilibrium.

The Venice lagoon is the living proof of this. In it, numerous factors interact, each
linked to the other by intimate relationships of cause and effect—highly particular
chemical, biological, physical and morphological processes; natural phenomena
typical of alluvial areas (such as subsidence) and general dynamics even on
a planetary scale (eustatism, for example), further complicated by the massive
presence of man with his economic and social activities (see Fig. 1).

Today the lagoon is thus the result of the combined action of all these elements
and dynamics and its conservation has always required constant action to regulate
and safeguard this huge area. But a system modified by man also demands constant
and patient work to maintain the result achieved or cope with new emergencies.

Safeguarding and management of the ecosystem are essential to maintaining
and defending a precious and unrepeatable asset, admits unexpected difficulties,
expected or unhoped for successes and inevitable errors.
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Fig. 1 Landscape of the Venice lagoon. In the foreground, a salt marsh; Venice and the mainland
on the background (ph. G. Marcoaldi © Ministero delle Infrastrutture e della Mobilità Sostenibili—
Provveditorato Interregionale per le Opere Pubbliche per il Veneto—Trentino Alto Adige—Friuli
Venezia Giulia, già Magistrato alle Acque di Venezia—concessionario Consorzio Venezia Nuova)

2 The Venice Lagoon

Covering 550 km2, the Venice lagoon is one of the Mediterranean’s largest and most
important wetlands. It is separated from the Adriatic Sea by a narrow strip of barrier
islands, the littoral, that runs for about 60 km, interrupted by the lagoon inlets of
Lido (800 m wide), Malamocco (400 m wide) and Chioggia (380 m wide). The tide
flows in and out of the inlets twice a day, reaching two high points and two low
points (see Fig. 2).

Inside the lagoon basin are Venice, Chioggia and more than 50 islands, among
which are Murano, Burano and Torcello; comprises also a series of morphological
structures typical of the lagoon environment (salt marshes, mud flats, channels, tidal
creeks, shallows, etc.), which perform fundamental hydrodynamic and ecological
functions and guarantee the biodiversity of the ecosystem.

The lagoon area also includes important manufacturing sites, economic activities
and infrastructure such as the industrial zone of Porto Marghera, the airport and
commercial and tourist ports (see Fig. 3).

Over the last few centuries, a series of natural phenomena and factors due to
man’s interventions have profoundly altered the Venice lagoon environment. Over
the course of time, eustasy and subsidence have drastically modified the relationship
between land and water with a loss of land level of about 25 cm just in the last 100
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Fig. 2 The Venice lagoon. Location of the inlets (© Ministero delle Infrastrutture e della Mobilità
Sostenibili—Provveditorato Interregionale per le Opere Pubbliche per il Veneto—Trentino Alto
Adige—Friuli Venezia Giulia, già Magistrato alle Acque di Venezia—concessionario Consorzio
Venezia Nuova)

years. Although just a few centimetres, this is actually quite a lot for a city that rests
on the surface of the water.

The lagoon is an unstable place, incessantly contended between the land and the
sea. Its survival is thus under perennial threat. With immense work, Venetians have
delivered the lagoon from the dominion of the rivers and defended it from the sea.
For centuries, they have sought and found, lost then re-conquered an “impossible”
equilibrium. With unflagging and complex tenacity, they have “artificially” main-
tained a natural place.

The interventions for the deviation of the rivers from the lagoon (from the
fourteenth to the nineteenth centuries), carried out in order to confront the problem
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Fig. 3 The industrial zone of Porto Marghera (© Ministero delle Infrastrutture e della Mobilità
Sostenibili—Provveditorato Interregionale per le Opere Pubbliche per il Veneto—Trentino Alto
Adige—Friuli Venezia Giulia, già Magistrato alle Acque di Venezia—concessionario Consorzio
Venezia Nuova)
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of sedimentation, almost completely eliminated the re-nourishment of sand and
sediments from the hinterland. The construction of the outer breakwaters at the
inlets, which occurred between 1800 and 1900 with the aim of ensuring the passage
of modern ships, also reduced the quantity of sediments brought in by the sea.
Over the course of the twentieth century, the creation of the petrochemical centre
of Porto Marghera and the excavation of deep navigation canals provoked the
emission of a sizeable quantity of pollutants and profound modifications to the
lagoon hydrodynamic.

At the end of the twentieth century, the lagoon system therefore had to face a
multiplicity of problems with ancient origins or recent causes: the increase in high
tides level, causing Venice, Chioggia and other towns and villages in the lagoon to
be completely flooded ever more frequently; erosion of the littorals, with the gradual
disappearance of the beaches, essential to protect build-up areas on the coast from
sea storm; environmental deterioration due to a worsening of water and sediment
quality and loss of the typical habitats of the ecosystem, such as salt marches and
shallows.

As time goes by, the city is flooded ever more frequently and with ever greater
intensity. The relative level of the land dropped by 23 cm with respect to the sea (see
Fig. 4).

Fig. 4 Venice. High water: Piazza San Marco flooded (© Ministero delle Infrastrutture e della Mo-
bilità Sostenibili—Provveditorato Interregionale per le Opere Pubbliche per il Veneto—Trentino
Alto Adige—Friuli Venezia Giulia, già Magistrato alle Acque di Venezia—concessionario Con-
sorzio Venezia Nuova)
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3 A Wounded Lagoon

On 4 November 1966, Venice was struck by the most violent and dramatic flood
ever seen. The water reached the level of 194 cm and Venice was invaded by more
than a metre of water. It seemed that the city and other historic towns and villages
in the lagoon and along the coast were about to be swept away.

After that dramatic event, the Italian State undertook to save Venice and its
lagoon. Through the Special Law for Venice, it defined the areas and methods of
action, together with the implementing bodies: regarding the activities carried out
by the Italian State, given the complexity of the problem, planning and coordination
were essential to ensure coherent and systemic action.

This was entrusted to the Consorzio Venezia Nuova, a consortium of Italian
construction and engineering companies acting on behalf of the State (Ministero
delle Infrastrutture e della Mobilità Sostenibili and its decentralized technical body,
the Provveditorato Interregionale per le Opere Pubbliche per il Veneto, Trentino
Alto Adige, Friuli Venezia Giulia). Consorzio Venezia Nuova has implemented an
integrated plan of interventions combining defence from floods and environmental
measures (see Fig. 5).

Fig. 5 The General Plan of interventions carried out by the Italian State through Consorzio
Venezia Nuova (© Ministero delle Infrastrutture e della Mobilità Sostenibili—Provveditorato
Interregionale per le Opere Pubbliche per il Veneto—Trentino Alto Adige—Friuli Venezia Giulia,
già Magistrato alle Acque di Venezia—concessionario Consorzio Venezia Nuova)
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4 A Long Story

MOSE took shape after being loomed over by a number of consultations and
controversies. The proposal to provide a safe measure from flooding dates back to
the 1970s. In 1973, a Special Law was enacted, under which six project proposals
were accepted after invitations from Consiglio Nazionale delle Ricerche (CNR) and
later taken up by the Ministry of Public Works in 1980.

The feasibility study for the proposals was completed in 1981 under a project
named Progettone, which proposed the setting up of fixed barriers at the inlets,
including mobile defence structures.

The second Special Law of Venice to provide criteria and strategies took shape
under a committee known as the Comitatone, which enabled the Ministry of Public
Works to grant a single concession for the companies agreed upon by private
negotiation.

In 1982, Consorzio Venezia Nuova was entrusted by the Water Authority to
design and implement the measures to safeguard the city, which was presented
in 1989 under a project named Riequilibrio E Ambiente (REA), which translates
as Rebalancing and the Environment. It provided an abstract design of the mobile
barriers at the lagoon inlets and was finally approved in 1994 by the Higher Council
of Public Works.

The first environmental impact study was accepted in 1998 and was improved
in 2002. Construction work of MOSE began simultaneously in 2003. The project is
expected to be fully completed by the end of 2021.

5 Defence from Floods: Mobile Barriers at the Lagoon Inlets

The programme of work has no equal anywhere in the world for the size of the
area concerned, nature of the problems to be tackled and extent and characteristics
of the measures implemented: from defence from sea storms and flooding to
environmental protection of the ecosystem. The decision to construct the mobile
flood barriers was made after collaboration between all levels of government and
consideration of various other coastal defence measures.1

MOSE is an integrated plan of interventions implemented across the entire
lagoon area to provide a response to the crisis elements, in respect of the identity
and capacity for adaptation of the environment (see Fig. 6).

The MOSE barriers are the central element in this great defence and environ-
mental rebalancing system. The solution adopted is based on design constraints
associated with precise legislative and governmental strategies.

1 https://www.mosevenezia.eu/lagoon/?lang=en

https://www.mosevenezia.eu/lagoon/?lang=en
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Fig. 6 Valle Zappa fish farm (ph. G. Marcoaldi © Ministero delle Infrastrutture e della Mobilità
Sostenibili—Provveditorato Interregionale per le Opere Pubbliche per il Veneto—Trentino Alto
Adige—Friuli Venezia Giulia, già Magistrato alle Acque di Venezia—concessionario Consorzio
Venezia Nuova)

The flood defence system could not significantly modify flushing between the
sea and lagoon, create any visual impact or interfere with the landscape and local
economic activities.

The response led to identification of a solution allowing Venice and other urban
areas in the lagoon to be protected from all floods, including devastating events, in
respect of the hydrological and morphological balance of the ecosystem.

To define the solution, the various alternatives examined concerned both the
concept of defence and analysis of systems to regulate tides at the inlets.

The project is also the outcome of an exchange of views with other organizations,
authorities and institutions which has become an integral part of the solution
adopted, making it a marine and environmental engineering project of absolute
excellence.

MOSE is an acronym and stands for “Modulo Sperimentale Elettromeccanico”
(Experimental Electromechanical Module). The name aptly alludes to the story of
MOSEs parting the Red Sea. The project is an integrated system consisting of four
mobile barriers closing off three inlets in the Venice lagoon: Lido, Malamocco
and Chioggia. The barriers themselves are made up of 78 flap gates that are
installed at the bottom of the inlets to separate the lagoon from the sea when
raised. The barrier at the Malamocco inlet even has a lock system installed to allow
merchant and industrial ships to cross while the MOSE system is in operation to
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Fig. 7 Chioggia inlet. The mobile gates in operation (ph. DronExplore © Ministero delle Infras-
trutture e della Mobilità Sostenibili—Provveditorato Interregionale per le Opere Pubbliche per
il Veneto—Trentino Alto Adige—Friuli Venezia Giulia, già Magistrato alle Acque di Venezia—
concessionario Consorzio Venezia Nuova)

reduce interference on port activities. Together with other measures, such as coastal
reinforcement, the raising of quaysides and the paving and improvement of the
lagoon, once raised, the barriers are able to withstand three metres of high tide (see
Fig. 7).

The role of the MOSE is twofold: to prevent a flood incident that will disturb
everyday life and put people to risk and to protect the city’s infrastructure (including
its iconic buildings) which gradually erodes during consecutive flood incidents.

The MOSE system in its entirety is an innovation response to the threat of
coastal flooding and erosion, both from a construction and coordination standpoint.
The hydrological and geophysical profile of the Venice lagoon needed to be fully
considered when designing the barriers and their final locations.

MOSE project also employs other smaller scale measures to optimize the overall
goal of flood risk reduction in the lagoon. These local defences consist of raising
quaysides, roads, walkways and installing smaller gates in the urban canals in the
lagoon settlements, for example “Baby MOSE” gates in the small city of Chioggia.
This holistic and comprehensive approach to encouraging protection for the entire
lagoon, aside from that which is provided by MOSE, is also innovative.
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6 How Do the Barriers Work

At the heart of MOSE are rows of gates. When inactive, the gates are full of water
and lie completely invisible in special foundation structures in the bed of the inlet
channels. When a high tide which could potentially cause flooding is forecast, the
barriers enter into operation to temporarily prevent the tide from flowing into the
lagoon. They remain in operation only for the duration of the high tide event. The
floodgates at each inlet will function independently depending on the force of the
tide expected (see Fig. 8).

When the tide drops and the sea and lagoon return to the same level, the gates
are filled with water again and return to the housing structures.

Each inlet is equipped with a system to allow vessels to pass through even when
the barriers are raised.

Both the coastal defences and mobile barriers are dimensioned to protect the area
even if floods intensify as a result of the predicted rise in sea level. This makes the
Venice lagoon one of the first areas in the world equipping itself to face the possible
effects of climate change.

Thanks to the system’s flexibility, the barriers can be used in different ways
depending on the characteristics of the tidal event.

The gates are watertight box-shaped structures installed in special foundation
structures which form the base in the seabed. The gates are made from sheet steel
from 8 mm to 13 mm thick. They are internally reinforced by longitudinal and
transverse steel structural elements.

Fig. 8 The MOSE system. Cross-section of a gate and its constituent elements (© Ministero
delle Infrastrutture e della Mobilità Sostenibili—Provveditorato Interregionale per le Opere
Pubbliche per il Veneto—Trentino Alto Adige—Friuli Venezia Giulia, già Magistrato alle Acque
di Venezia—concessionario Consorzio Venezia Nuova)
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Fig. 9 The North Lido barrier in operation (ph. DronExplore © Ministero delle Infrastrut-
ture e della Mobilità Sostenibili—Provveditorato Interregionale per le Opere Pubbliche per il
Veneto—Trentino Alto Adige—Friuli Venezia Giulia, già Magistrato alle Acque di Venezia—
concessionario Consorzio Venezia Nuova)

Each gate is equipped with pipes for the introduction and expulsion of the
compressed air, instruments to detect the angle of inclination, anti-corrosion anodes
and other elements necessary for correct functioning. The gates are connected to the
foundation structures by means of hinges which also allow them to move. The inner
and outer surfaces of the gates are treated with special biocide-free anti-corrosion
and anti-fouling paints (see Fig. 9).

7 Recent Times

The city of Venice frequently experiences floods which have recently been ex-
acerbated due to climate change. In particular, on 12 November 2019, Venice
experienced its highest floods in 53 years: the high tide that hit the city late at
night reached 1.87 m in height, just shy of the record 1.94 m measured in 1966.
The water level caused severe damage to infrastructure. Saint Mark’s Basilica was
severely damaged and many buildings were affected. The city was flooded several
more times over the following days.

The Italian Government came under pressure to put MOSE into operation for the
safeguarding of Venice, although the project is not expected to be fully functional
until the end of 2023.
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On the occasion of the recent high waters, the gates were put into operation. On
3 October 2020, MOSE was activated for the first time in the occurrence of a high
tide event, preventing some of the low-lying parts of the city (in particular Piazza
San Marco) from being flooded. The 78 mobile barriers of the MOSE project were
activated after forecasts that the tide would reach up to 135 cm. Without the barrier,
a tide at that level would have flooded half of the city. According to officials, if the
system had not been activated, Venice would have been flooded for several hours.
Nevertheless, the barriers operated properly and the city remained dry. They have
been shown to be effective in preventing high tide. MOSE has already saved twenty
times Venice from flooding.

8 Since 2006 a Comparison with Other Countries Involved
in Coastal Defence

With the MOSE system, Italy has been listed among the member countries of
the international network of operators of mobile barriers: I-Storm “International
Network for Storm Surge Barrier Management”. The I-Storm is a network involving
England, Italy, Netherlands, Russia, Germany and the USA (Louisiana—New
Orleans) and whose fundamental objective is to share information, experiences and
good practices (both in the exercise of construction) between the managers of the
barriers associated.2

Every year it organized a general meeting during which the representatives of
the barriers meet to discuss issues of mutual interest, in which they are purchased
and exchanged data and information that become common heritage and shared. So
this is an example of dialogue between different countries united by the problem of
the defence of the territory from the water, as well as an important tool to increase
knowledge and skills.

On many occasions the Provveditorato Interregionale per le OO.PP. and the
Consorzio Venezia Nuova have been invited to discuss the possibility of adopting the
protective measures implemented in Venice. World shows a great interest not only
for the mobile barriers, but also for the multidisciplinary model and the procedures
implemented by the Consorzio Venezia Nuova, on behalf of the Italian State, through
the extensive plan of interventions that affected the entire lagoon of Venice.

MOSE allows living standards to be improved in general and the areas of the city
most threatened by the water to be re-valued. Management of the MOSE barrier
is flexible, thanks to their modularity, the efficiency of the decision-making system
and the speed at which the gates can be moved. The system will also be effective in
the event of a significant rise in sea level over the next decades.

It is not easy to construct such large-scale defences in fragile environments, but
sometimes this approach is necessary to provide significant long-term protection.

2 https://www.i-storm.org/

https://www.i-storm.org/
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Venice represents an especially vulnerable coastal city with globally significant
heritage sites and a very active tourism industry. The implementation of local
defences diversifies the resilience of the settlements in the lagoon and increases
the rate of success for the MOSE project.3

3 https://coastal-management.eu/

https://coastal-management.eu/


Part III
Art and Mathematics



The Rise of Abstractionism: Art
and Mathematics

Marco Andreatta

1 “Breaking the Ties with the Concrete and Tangible”

In the second half of the nineteenth century, many spectres were haunting Europe.
Besides the spectre of communism, celebrated by the German philosophers K. Marx
and F. Engels, there was the one of non-Euclidean geometry. It was first glimpsed
by the Russian mathematician N.I. Lobačevskij and the Hungarian J. Bolyai who
are considered the pioneers of the field, under the influential supervision of the
Princeps mathematicorum F. Gauss. These two anarchists of the philosophy of
geometry were actually preceded by earlier visionaries, the most significant was
probably the Italian Jesuit priest Girolamo Saccheri, who wrote the book “Euclides
ab omni naevo vindicatus” (Euclid Freed of Every Flaw (1733)) which languished
in obscurity until it was rediscovered by Eugenio Beltrami.

The Manifesto of a new science of the space, which includes non-Euclidean
geometry as well, is the celebrated lecture of Bernhard Riemann (1826–1866)
in 1856, published posthumously in 1867, titled Über die Hypothesen, welche
der Geometrie zu Grunde liegen (On the Hypotheses which lie at the Bases of
Geometry). Together with the Manifesto of the Communist Party (1848, Marx and
Engel), the Origin of Species (1859, C. Darwin) and the Interpretation of Dreams
(1899, S. Freud), it is one of the most influential papers in all fields of human cultural
activities.

Riemann concludes the lecture as follows: The question of the validity of the
hypotheses of geometry is bound up with the question of the ground of the metric
relations of space. In this last question, which we may still regard as belonging to
the doctrine of space, is found the application of the remark made above; that in
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a discrete manifoldness, the ground of its metric relations is given in the notion of
it, while in a continuous manifoldness, this ground must come from outside. Either
therefore the reality which underlies space must form a discrete manifoldness, or we
must seek the ground of its metric relations outside it, in binding forces which
act upon it. . . . This leads us into the domain of another science, of physics, into
which the object of this work does not allow us to go today.

The lecture can be considered as a starting point for a more abstract study of
geometry; it is full of philosophical, in a broader sense, implications. First of all, the
observation, originally attributed to Leibniz, that geometry is a science of the space,
rather than a science of objects contained in it. The objects are described by their
reciprocal distance, their measures and shapes, using the metric relations defined
on the space. Space can be of higher dimension and not necessarily Euclidian but
possibly curved by the choice of a non-flat Riemann metric.

Alexander Grothendieck in Recoltes et semailles remarks the following: He
[Riemann] observed that the ultimate structure of the space is probably discrete;
the continuous representation that we do could be an ultra simplification of a more
complex reality. That is, for human mind continuous is easier to understand rather
than discrete; as a consequence the first is used as an approximation to understand
the second. This was an incredibly sharp observation for a mathematician, in a
period in which the Euclidian model of the space was not questioned.

The sentences that conclude the lecture are really astonishing, and one could see
an anticipation of Einstein’s idea of General Relativity, a geometric theory of the
universe which aims to determine the metric relations from the law of gravitation,
i.e. the physical mass of the bodies.

The impact that these ideas had on many cultural activities in subsequent years
up to nowadays is evident, in particular on visual art. It is more subtle to sort out
the full reciprocal interplay between art and mathematics, i.e. to see the influence
of art in the developing of mathematical ideas. Which is however extremely useful,
as David Mumford suggested [6]: The saga of mathematics is unknown outside a
narrow coterie; the high points of art are basic ingredients of a liberal education.
Can we use our knowledge of the latter to open up the former? (Notice that the title
of this section has been taken from Mumford’s presentation.)

As an example I like to consider the English painter William Turner (1775–1851).
Generally regarded as a precursor of abstract painting, he was a master of the use of
light as the ground for the representation of space. Under the influence of the theory
of colors of I. Newton and W. Goethe, in his painting, the role of light in determining
the colors and the structure of the space is, in my opinion, the analogous of the role
of the binding forces in Riemann. Who, by the way, gave the first example of higher
dimensional manifold using the space of colors.

The two paintings in Fig. 1 give an idea of what I mean.
The concept of the space as a discrete structure was developed later by visual arts,

mainly by the artistic movements Impressionism and Pointillism. The two paintings
in Fig. 2 are examples of these techniques.
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Fig. 1 William Turner, Venice, la foce del Canal Grande, 1840; Yale Center for British Art. Light
and colour, Goethe’s Theory, 1843; Tate Gallery

Fig. 2 Paul Signac, Femmes au Puits, 1892; Musée d’Orsay. Theo van Rysselberrghe, Sailboats
and Estuary, 1892; Musée d’Orsay

2 Italian Mathematicians Contribute to Construct
a European Culture

The work of Riemann gave a dramatic impulse to science, and very soon many
mathematicians began to study and develop his ideas. Among them, for the purpose
of this short essay, I like to point out two Italians, namely Felice Casorati (1835–
1890) and Eugenio Beltrami (1835–1900). They were born in 1835, the first in Pavia
and the second in Cremona, subjects of the Lombardo-Veneto Kingdom, a crown
land of the Austrian Empire. In 1853, they were students at the University of Pavia,
where their long-lasting friendship very likely started.
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Casorati, from a middle-class family, graduated in 1856 in engineering and very
soon, under the guidance of F. Brioschi, became professor of Algebra and Analytic
Geometry in Pavia. Beltrami’s life was much more adventurous and troubled, at least
in the first part. His father, as well as his grandfather, was a painter; his participation
to the Risorgimento uprisings against Austrian Army forced him to leave Italy. The
young Eugenio followed the patriotic ideas of his father and as a student of Collegio
Ghisleri in Pavia promoted some protests against the Rector, a pro Empire priest.
He was removed from the College and, because of lack of money, he could not
complete the studies and never got the “Laurea”. After working for some years
at the Lombardo-Veneto railway system, when Lombardia becomes a land of the
kingdom of Italy he was nominated professor of Algebra and Analytic Geometry in
Bologna and subsequently of Geodesic in Pisa by the vice minister of education, the
mathematician F. Brioschi. In the end of his life, he was politically influent: he was
Presidente of the Accademia dei Lincei and Senatore of the Italian Kingdom.

2.1 Felice Casorati

Casorati met Riemann in 1858 in Gottingen, during a famous scientific trip with
Betti and Brioschi, and he was so struck by his ideas that he dedicated most of
his mathematical activities to disclose them to the mathematical community. In
particular, in a famous book in 1868, [4], and later in a paper of 1887, he carefully
described the concept of a Riemann surface (Casorati called it “Riemanniana”).
This is a very abstract concept which relates a geometric object as a surface with
a function of a complex variable. It is a perfect interplay between geometry and
analysis, between space and metaphysics. In short, to construct a Riemann surface,
you take some planes, cut them transversally along prescribed segments (Riemann
called these cuts Querschnitte), put them one over the other and glue together
edges of the cuts in different planes, following a precise mathematical procedure
determined by the chosen function, in order to obtain a connected surface without
border.

The instructions given by Riemann and later by Casorati represent first sketches
of abstract art. They aim to translate mind games into geometric objects; a main
difficulty is that some of these Riemann surfaces cannot be constructed in the normal
three-dimensional space, unless one introduces branch or singular points.

The instructions and a first drawing of a Riemann surface can be seen in Fig. 3;
they are taken from the books by Casorati and a similar one by Carl Neumann. In
Fig. 4, one can find a Riemann surface printed in a Fab Lab with a 3D printer.

There is (at least) another famous Felice Casorati (1883–1963), a painter who
was the nephew of the mathematician. Referring to his uncle, he said: “My ancestors
could explain the scientific order of my paintings, the rationality which pushes me
towards an extreme precision, as it is for philosophers, mathematicians and some
musicians”. His painting Gli scolari (1927–1928) is represented in Fig. 5. I saw it
in an exhibition at MART in Rovereto titled “Realismo Magico” (Magic Realism),
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Fig. 3 Felice Casorati, Teorica delle Funzioni di Variabili Complesse, Pavia: Fusi 1868 and Carl
Neumann, Vorlesungen über Riemann’s Theorie der Abelschen Integralen. Leipzig: Teubner 1865

Fig. 4 3D printing of a Riemann surface

the name of a style used by some painters at the beginning of the last century to
perform a realistic view of the modern world while also adding magical elements. I
was impressed by the description given by one of the curators, Valerio Terraroli, who
pointed out “the peculiar geometry of the floor, given through an unusual perspective
which suggests a sort of unfolding”. To me, this was a clear indication that both
Casorati, the mathematician and the painter, were fascinated by the magic realism
of the unfolding planes of Riemann surfaces.

Lucio Fontana (1899–1968) was a painter and sculptor who performed mas-
terfully the Riemann technique of Querschnitte, although he probably never knew
about Riemann. He was a founder of the artistic movement Spatialism and produced
a series of monocrome paintings with transversal cuts denominated Spatial Concepts
or Attentes. He described them as the “Art for the Space Age”, where “the figures
seem to leave the plane and enter into the space”; this seems to be a good
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Fig. 5 Felice Casorati, Gli
scolari, 1927; courtesy Museo
di Arte Moderna di Palermo
“Empedocle Restivo”

interpretation of Riemann’s and Casorati’s instructions. Figure 6 represents two of
Fontana’s spatial concepts.

Lucio Fontana realized also many paintings with a finite number of holes,
possibly of different size but with a precise spatial order (for instance, displaced
along a line) (see Fig. 7). This is an alternative way of describing a Riemann surface
used by mathematicians, i.e. assigning a finite number of points on a plane, each
with a fixed multiplicity, displayed along a curve.

I like to point out a more recent drawing by the New York visual artist Lun-Yi
London Tsai. He is a mathematically trained artist able to talk with mathematicians
and to visualize their scientific achievements. Figure 8 is a drawing he created in
a dialogue with the mathematician Sandor Kovacs, and it represents a bunch of
Riemann surfaces parametrized by another Riemann surface. It can be used to
introduce a conjecture in Algebraic Geometry stated by the Russian mathematician
Igor Shafarevich (1923–2017), solved and generalized in higher dimension by
several mathematicians, including S. Kovacs.

2.2 Eugenio Beltrami

Eugenio Beltrami met Riemann in Pisa, a university frequently visited by the
German mathematician in the last years of his life. Besides direct conversations,
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Fig. 6 Lucio Fontana, Concetto Spaziale-Attesa, 1966, courtesy Tornabuoni Art

Beltrami was a careful reader of Riemann’s papers, in particular, of the fundamental
lecture on geometry; together with Casorati, he ran several seminars on these
subjects. In his two most famous papers, Saggio di Interpretazione della Geometria
non-Euclidea e Spazi di Curvatura Costanti, both published in 1868, [2], he provided
the first explicit model of non-Euclidian geometry. This is a surface of constant
negative curvature, which he called the pseudosphere, on which all postulates of
Euclidean geometry hold except the fifth: given a line (geodesic) on the surface and
a point not on the line, there are infinitely many lines passing through that point and
parallel to the first line. This example was a sort of holy grail which philosophers
and mathematicians had been searching for hundred years; its discovery changed
the way of looking at space. Beltrami gave much credit to Riemann, saying that
he hoped le mie ricerche possano aiutare l’intelligenza di alcune parti di questo
profondo lavoro (my researches can improve the understanding of some part of
(Riemann) work). For those who can read Italian, Beltrami’s papers are of great
interest, a popularization of them can be read in my book [1].

Between 1869 and 1872, Beltrami, whose father was a miniaturist under the
guidance of Francesco Hayez, constructed some paper models of his Pseudosphere,
the ones in Fig. 9 are displayed at the Department of Mathematics in Pavia. The first
is made of 124 pieces and was used by Casorati during the opening Lecture of the
Academy year 1873–74 in Pavia.

The paper models represent a piece of the Pseudosphere, since no surface of
constant negative curvature can be “embedded” in the Euclidian space, as stated by
a famous theorem of Hilbert some years later. Beltrami constructed three different
mathematical models of hyperbolic geometry; they are complete models (not a
piece), and he moreover showed how to transform one into another. Two of them
were later reintroduced by F. Klein and H. Poincaré, without mentioning the
birthright of Beltrami.
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Fig. 7 Lucio Fontana, Concetto Spaziale-Buchi, 1968

Klein, who called the models hyperbolic geometry, was very fond of concrete
models. Probably motivated by the activities of humanist colleagues who were
collecting plaster copies of exemplary statues, as a professor at the Munich
Institute of Technology between 1875 and 1880, he collaborated with his colleague
Alexander Brill to create plaster models of mathematical surfaces; they were sold by
Brill’s brother Ludwig. Klein popularized a veritable zoo of models when he toured
the United States in 1893, and after his visit, many American universities bought
Brill’s product. In 1922, Klein proudly claimed “Today, no German university
any longer lacks such a collection”. The qualities of seriality and eeriness made
the plaster casts attractive to artists like Marcel Duchamp, Picasso, De Chirico,
Carlo Carrà and Man Ray. He used the German adjective Anschaulich, intuitive,
to describe his approach to mathematics and supported the spatial Anschauung for
mathematical pedagogy. Figure 10 represents two of these surfaces reproduced by
the Italian mathematician Luigi Campedelli for the Museo Nazionale di Scienza e
Tecnologia, Leonardo da Vinci, Milano.

Nowadays, with a 3D printer, it is very easy to reproduce these surfaces; one
can also buy them directly on the web, see, for instance, https://oliverlabs.net/
math-objects/ or http://www.3dprintmath.com/, where one can buy the model of
the Pseudosphere in Fig. 11.

https://oliverlabs.net/math-objects/
https://oliverlabs.net/math-objects/
http://www.3dprintmath.com/
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Fig. 8 Lun-Yi London Tsai, Shafarevich’s Conjecture, 2007, https://www.londontsai.com/
drawing

Fig. 9 Eugenio Beltrami, Pseudosphere models, 1869–1872; Department of Mathematics-Pavia

A nice hyperbolic model can be admired in the Seville city park denominated
Metropol Parasole (Fig. 12, left); it resembles the shape of a mushroom or of a coral
(Fig. 12, right).

One of Beltrami’s models consists of a disc in the plane, and the lines are
semicircles perpendicular to the border; this is the same model developed later
by Klein. The Dutch graphic artist M. Cornelius Escher was fascinated by it.
He was first attracted by the tessellation of the hyperbolic disk made by the
mathematician H. Coxeter (Fig. 13). Out of Coxeter’s drawn, Escher produced four
famous engravings, titled “Circle Limits” and printed out of wooden blocks.

https://www.londontsai.com/drawing
https://www.londontsai.com/drawing
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Fig. 10 Clebsch surface and Kummer surface by Campedelli, 1951; Museo Nazionale Scienza e
Tecnologia, Leonardo da Vinci, Milano

Fig. 11 Henry Segerman, Tilings and curvature

The tiling proposed by Coxeter consists of hexagonal tiles, each subdivided in
twelve black and white triangles; such tiling is possible also in the Euclidean space.
In the hyperbolic disc, thanks to the negative curvature of the space, more tilings are
allowed; in particular, one can think at a heptagonal one. Physicists Alicia J. Kollár
et al. in [5], starting from a heptagonal tiling of the hyperbolic disc, constructed
a finite section of it in the Euclidian plane consisting of one central heptagon and
two shells of neighbouring tiles. They fabricated it in a 200 nm niobium film using
photolithography, see Fig. 14. The length of the sides of the heptagon is kept equal,
thanks to their curved shape, a very clever solution.
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Fig. 12 Seville city park denominated Metropol Parasole, 2009. A coral

Fig. 13 H. Coxeter’s tessellation of the hyperbolic disk

The funny thing is that this is not simply art; it has been proposed as a part
of a future superconducting circuit, to perform quantum computation and quantum
simulation.
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Fig. 14 Alicia J. Kollár et oth., The heptagon-kagome device, 2019; taken from [5]

Engineers and physicists, with the theoretical assistance of mathematicians, are
trying to construct graphene’s tissues shaped as a Pseudosphere. Graphene is an
allotrope of carbon; it is one atom thick, and hence it is the closest in nature to a
two-dimensional object. This is very much in the spirit of a later paper by Beltrami,
[3], in which he proves that the Theory of Elasticity can be better performed on his
Pseudosphere, a first taste that curved spaces are more suitable for science and art.

3 From Edgard Degas to Shigefumi Mori

The French writer and philosopher Paul Valéry (1871–1945) was first interested
in Edgard Degas (1834–1917) to complete his “collection of brains”, because he
admired his mathematical intelligence. During their long-lasting attendance (almost
20 years), Valéry wrote the book “Degas Danse Dessin” (1938). Describing Degas’s
work, he wrote: There is a huge difference between seeing something without the
pencil in your hand and seeing it while drawing it. Or rather you are seeing two quite
different things. Even the most familiar object becomes something else entirely,
when you apply yourself to drawing it: you become aware that you did not know
it-that you had never truly seen it. . . It dawns on me that I did not know what I knew:
my best friend nose.

I find it very pertinent to the work of mathematicians: although we are not artists,
when we draw a diagram, even digitally, very often we see a different thing, maybe
something we had never truly seen before.

In November 2019, the Fields medalist Shigefumi Mori gave a “Lezione
Leonardesca” in Milano. During the lecture, he made a parallelism between the
study of geometry and the art of painting. He started showing a drawing, Fig. 15, of
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Fig. 15 Paul Klee, Steerable
Grandfather (1930), Zentrum
Paul Klee

Paul Klee (1879–1940), in the meantime quoting the artist: “Art does not reproduce
what one can see but makes seeable what one cannot see”.

S. Mori is a leading figure of the geometry movement whose Manifesto is called
“Minimal Model Program”. This is a scientific programme which aims to classify
algebraic varieties, living in a projective space, of any dimension. To reach the
classification, one needs to define a number of models and a precise procedure to
connect any variety to one of these models. Working in projective spaces and in
higher dimension is a very abstract matter which deals with making seeable what
cannot be seen. This has many roots in the work of the Italian painters of the Early
Renaissance which invented projective geometry in order to make seeable in the
plane models living in the space.

In the lecture, he explained that Geometers study figures via invariants, which
correspond to the object used in Cubism painting. The use of invariants is similar to
abstract paintings. An invariant is defined for each figure; unlike an artistic objects
an invariant needs objectivity and reproductivity. He himself created and contributed
to describe many invariants associated with projective varieties. Among others, the
Cone of Curves, made by all the curves which lie on a variety, was a key tool in his
theory, as he explained in the lecture, see Fig. 16.
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Fig. 16 Shigefumi Mori, Lezione Leonardesca, 2019; Milano. From Paul Signac1892, Wikimedia
Commons

The second picture in Fig. 16 is an attempt to describe a “cone of points”
associated with the Pointillism painting of Paul Signac, an artistic analogue of the
geometric “cone of curves” studied by Mori and his school.
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Aestheticizing an Einsteinian World:
The Idea of Space-Time in Russian
Literary Theory and in Art Criticism

Clemena Antonova

When, in 1920, Russia’s most celebrated living poet, Vladimir Mayakovsky,
expressed his intention of sending Einstein “a salutary radio: to the science of
the future from the art of the future,” [1] he played on ideas that had fascinated
his entire generation, both in Russia and in Western Europe. Indeed, in Russia, as
elsewhere, Einstein’s relativity theory was actively debated among the scientific
community. Scientific texts were being translated almost immediately after coming
out in their original language, as, for instance, in the respected publications Novye
idei v matematike (New Ideas in Mathematics) [2] and Novye idei v fizike (New
Ideas in Physics) [3]. The intense interest in relativity theory spilled over into
fields outside the realm of the hard sciences and it carried along artists, poets, and
philosophers [4].

The period in the immediate aftermath of the October Revolution (1917)
accelerated, in many ways, these developments. The cult of science was, of course,
very consistent with a Marxist ideology. The victorious Marxist Revolution fed into
the belief of the actual realization, largely through science, of utopian projects,
many of which predated the Revolution itself. Thus, what had drawn Mayakovsky’s
attention to relativity theory was the relevance of “reverse time” to the avant-garde
dream of human immortality, itself the heir of the occultist-mystical and uniquely
Russian tradition of Cosmism. Another Russian Futurist poet, Velimir Khlebnikov,
who had training in mathematics, used the most recent scientific ideas, especially
connected to modern notions of time, in the most unexpected ways, in his own work.
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For Khlebnikov, Einstein was an “artist who works with ideas” [5] and these ideas
were naturally suitable to avant-garde artistic experiments.

In this chapter, I will draw attention to what I will call an “aesthetization of
an Einsteinian world” in the work of two Russian thinkers, Mikhail Bakhtin (1895–
1975) and Pavel Florensky (1882–1937). Under “Einsteinian world,” an expression I
borrow from Bakhtin, I will understand the uniquely modern intuition that all objects
of experience exist in a unity of space-time characteristics. The “aesthetization” of
this intuition, typical of modern man and postulated by relativity theory, refers to
its application to the field of the arts, i.e., the aesthetical worlds, created by the
arts. In the two cases here, it was the notion of the unity of space-time that lay
in the background of Bakhtin’s concept of the chronotope (literally, space-time)
in literature and Florensky’s “reverse perspective” and “reverse time” in the art
of the icon. The chronotope has become a hugely popular term in literary theory.
Florensky’s terms are much less known. In fact, the Russian writer’s specific use
of “reverse time” has hardly received any attention, while “reverse perspective” has
been much misunderstood. Here, I will discuss Florensky’s concepts by drawing on
some of my own research over a number of years.

Ultimately, what interests me in Bakhtin’s chronotope and Florensky’s “reverse
perspective” and “reverse time” is the idea that we have conceptual tools applied
to the analysis of literature and visual art, which do not just borrow modern
scientific terminology in a loose metaphorical fashion. In fact, it is the theory of
relativity, which made possible these notions. The two Russian thinkers’ ideas on
the relationship between space and time in literature and in the art of the icon
respectively could have been advanced only after Einstein’s ideas became widely
known. In other words, there is a much closer link between the scientific idea and
its “aesthetization” than in the common instances of borrowing terminology from
one field of knowledge and applying it to another without any intrinsic connection
between the two.

1 The Chronotope in Literary Theory and Beyond: Bakhtin

One of the most interesting and influential examples of the application of Einstein’s
scientific ideas to an aesthetic context is surely Mikhail Bakhtin’s literary theory.
The expression “Einsteinian world” appears several times in Bakhtin’s writings,
as, for instance, when he describes how in Dostoevsky’s novels “a world of
multiple systems is revealed with not one but several reference points (as in an
Einsteinian world)” (Bakhtin in a notebook, cited in [6]). In this chapter, I will
be concerned with Bakhtin’s notion of the chronotope, which he introduced first
in 1937–1938 in his essay “Forms of Time and of the Chronotope in the Novel”
[7]. This is how the Russian author defines the “chronotope”: “We will give the
name chronotope (literally ‘time space’) to the intrinsic connectedness of temporal
and spatial relationships that are artistically expressed in literature” [7, p. 84]. He
acknowledged that the term derives from Einstein, but he says that “the special
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meaning it has in relativity theory is not important for our purposes,” as it is
borrowed by literary criticism “almost as a metaphor (almost but not entirely)” (my
italics). Bakhtin emphasized that the main importance of Einstein and his use of
space-time terminology is, for aesthetics, the notion of “the inseparability of space
and time (time as the fourth dimension of space)” [7, p. 84].

The term “chronotope” is, in fact, the Greek rendition of the expression “space-
time coordinates” (RaumZeit-Koordinaten in German), which Einstein himself had
used in 1912 in a manuscript for a paper on the special theory of relativity. Einstein’s
term was popularized in Russia through the translation of Ernst Cassirer’s book on
relativity [8]. Bakhtin very likely heard the term “chronotope” in a lecture by the
Russian physiologist A.A. Ukhtomsky, who used it in a behavioral sense [see 6, p.
411ff]. Bakhtin borrowed it from there to use as a tool of literary criticism. The
chronotope is meant to describe the mutual interdependence of artistic time and
space in the work of art. As Tzvetan Todorov mentions, Bakhtin’s works are about
the relation between text and world, where the text puts forward a model of a world,
the constitutive elements of which are time and space [9]. Thus, each literary genre
that Bakhtin analyzes, from the classical Greek novel to Rabelais and Dostoevsky,
represents a specific spatio-temporal configuration, i.e., a specific chronotope. In
this sense, a genre becomes a synonym of a chronotope.

Let us consider for a moment Bakhtin’s obviously vague “almost as a metaphor
(almost but not entirely),” as it seems important. It was common, especially among
poets, artists, and philosophers in Russia, at the beginning of the twentieth century
to use scientific terminology in a non-scientific, metaphorical sense. Elsewhere, I
drew attention to the metaphor of non-Euclidean geometry in Russian critiques
of the pictorial space of the icon [10]. The situation here seems rather different.
In fact, it would not be an exaggeration to say that Bakhtin’s concept was made
possible by Einstein’s relativity theory and it could not have been proposed without
it. In this sense, this is not a case of just borrowing terminology, which happens to
illustrate well a certain idea. With Bakhtin, the very idea depends on the thoroughly
modern scientific notion of the inseparability of time and space. In other words,
the chronotope is the artistic, literary equivalent of an Einsteinian world, which is
fundamentally different from the older Newtonian universe. This is why, I believe,
Bakhtin’s “almost but not entirely” is significant, as it implies a much closer
connection, indeed dependence, of the literary term “chronotope” and the scientific
theory of relativity.

Anyone familiar with Bakhtin’s work would notice that the Russian author
applies the chronotope (time-space) to his analyses of literary works, predating
Einstein’s relativity theory and the modern idea of the unity of time-space. I still
remember my excitement when I discovered, in my last year of secondary school,
Bakhtin’s literary criticism on Dostoevsky. His work also considers Rabelais, the
novel as a literary genre, the epic, ancient forms of the novelistic traditions, etc. In
other words, he uses the chronotope, a concept predicated upon twentieth-century
science, to describe pre-twentieth-century literary genres. This approach can be
problematic. At the same time, what it exemplifies is an analysis of the literature
of the past, done from an explicitly modern position. The question is not just what
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Dostoevsky’s novels meant to his contemporaries, but what they mean to modern
man, who lives in an Einsteinian world.

Now, while Bakhtin employs the chronotope exclusively as a category of literary
criticism and states that he will not be applying it to other spheres of culture, his
descriptions of it often carry more general overtones as in: “In the literary artistic
chronotope, spatial and temporal indications are fused into one carefully thought-
out, concrete whole. Time, as it were, thickens, takes on flesh, becomes artistically
visible; likewise, space becomes charged and responsive to movements of time, plot
and history” [7, p. 84; my italics].

Put in those terms, the category of the chronotope could be stretched out to cover
a larger field and it could be applicable to other arts. Somewhat surprisingly, there
have been few attempts to use the term as a tool of analysis in the spheres of painting
and sculpture. Deborah Haynes’s Bakhtin and the Visual Arts stands largely on
its own as a systematic attempt to assess the relevance of Bakhtin’s ideas in the
field of painting and sculpture. Haynes, however, concentrates mainly on Bakhtin’s
theory of creativity and related issues and mentions only in passing the concept
of the chronotope [11]. In an article, Jay Ladin has raised the possibility of the
usefulness of the chronotope in the analyses of other arts outside literature. The
author believes that “the formal language of the chronotope could be significantly
enriched by surveying the existing criticism of other media for insights regarding
the construction of space and time” [12, p. 228]. Ladin pays particular attention
to the relevance of the chronotope as a critical tool in the sphere of film, while
Laurin Porter applies it to theater studies [13]. Ladin’s thesis is that as the relations
between chronotopes are graphically demonstrable they would yield much easier to
identification in non-verbal media. Thus, the application of the chronotope to the
visual arts could be rewarding at least on two grounds. Firstly, the chronotope as “a
powerful but underdeveloped critical tool” [12, p. 230] might be further elaborated
by such an application, addressing its natural propensity for visualization. Secondly,
the chronotope might help to illustrate a fundamental aspect of the visual arts.

The possibility of understanding the chronotope as a more general aesthetic
category comes across in Bakhtin’s analyses of literary works. In any literary
structure, the workings of time determine the functional type of space. For example,
in The Work of Francois Rabelais and Folk Culture in the Middle Ages and the
Renaissance (1965), the Russian critic discusses the chronotope particularly in
relation to images in Rabelais. Ideas of time and space are closely fused in the
interpretation of the grotesque human body. The body’s spatial positionings build an
image of the defeat of time and death [14]. Thus, when Joseph Frank, for instance,
suggested that “spatial form” was a central category of literary modernism [15], he
referred, however implicitly, to a major theme in Bakhtin’s writings. It seems to me
that the field was left open to see the visual arts in terms of the chronotope and so
explore their usually neglected temporal aspect in its interconnectedness with the
more obvious spatial dimension.
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2 The Icon as a Chronotope: Florensky

Visual art is usually taken to be a matter of the manipulation of material in space. It
seems evident, on an intuitive level, that it has “no natural temporal dimension” [16]
and is “a medium, which, by definition, lacks the dimension of time” [17]. Already,
in the eighteenth century, Lessing in his Laocoön popularized the traditional division
of the arts into arts of time and those of space. In the 1920s, Paul Klee, in his
Creative Credo, had the following to say: “In Lessing’s Laokoon, on which we
squandered study time when we were young, much fuss is made about the difference
between temporal and spatial art. Yet, looking into the matter more closely, we find
that this is but a scholastic delusion. For space, too, is a temporal concept” [18]. So,
what had happened between Lessing’s treatise, which defended a widely accepted,
even self-evident, position, and Klee’s? Even without understanding thoroughly
Einstein’s relativity theory, by the 1920s, the implications of that theory had become
widely known. Indeed, no idea was better known than the notion that any object
of experience presents a unity of space and time and, therefore, space, including
pictorial space, is a “temporal concept.”

It would, therefore, be quite legitimate to bring together the two notions of
“reverse perspective” and “reverse time” by the Russian polymath Pavel Florensky
and suggest that, even though they were developed at a slightly different time in
different texts, they were, in fact, conceived as part of an organic unity. Florensky,
who was initially trained in mathematics and physics before becoming a priest
and a theologian, is mostly known for his essay “Reverse Perspective” (written
in 1919). At the same time, his idea of “reverse time” at the beginning of his
Iconostasis (1922) has attracted much less attention. Neither the author himself nor
Florensky scholars have drawn an explicit connection between these two notions.
What I will suggest here is that “reverse time” and “reverse perspective” should be
viewed together as the artistic space-time coordinates of the art of the icon. In other
words, the icon, defined by “reverse time” (its temporal dimension) and “reverse
perspective” (its spatial dimension), represents a specific chronotope.

It may appear fanciful to apply Bakhtin’s term, first advanced in the 1930s,
to ideas that Florensky had addressed a decade earlier. However, while there is
certainly no question of an influence by Bakhtin on Florensky, an influence the other
way is perfectly conceivable. Indeed, the contemporary Russian scholar V.F. Egorov
has claimed that Bakhtin’s literary theory and especially his concepts of dialogism,
the chronotope, etc. owe a debt to Florensky [19]. I will suggest that this influence—
direct or indirect—was along the lines of an aesthetization of the Einsteinian world
in the sense suggested here; i.e., the modern scientific notion of the unity of space
and time underlining the literary chronotope, as Bakhtin explicitly acknowledged, is
implied in Florensky’s earlier interpretation of the spatial and temporal dimensions
of the icon. The connection is most obviously suggested by the terminology and
the idea of reversal. Here, I will summarize, firstly, Florensky’s definition—rather,
definitions—of “reverse perspective” and, then, of “reverse time” before giving one
possible interpretation of the temporal dimension of “reverse perspective.”
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Let us consider, firstly, Florensky’s understanding of “reverse perspective,” i.e.,
the principle of the construction of pictorial space in the icon. I have written on this,
in greater detail, elsewhere [20], so I will only briefly summarize here. In his essay
“Reverse Perspective,” the Russian thinker switched among several definitions of
the term. In fact, I have identified six different, some of them contradictory, views.

Firstly, Florensky borrows Oskar Wulff’s understanding, proposed in an article,
in German, of 1907 [21]. According to Wulff, space in the icon is constructed from
an inner point of view, i.e., that of the central figure of representation. From this
inner perspective, space functions according to the laws of natural vision. As a
result, objects and the parts of the objects, which are further away in the distance,
are smaller in size, when seen from an inner view, but larger in size in relation to
someone with a viewpoint, which is external to the painting. Thus, for instance, in
Fig. 1, the side of the coffin of the saint, which is further away, is longer than the
side, nearer to the beholder.

At times, however, Florensky follows another very different definition, very
likely also via Wulff—space in icons is constructed in such a way as to adjust,
usually by a process of elongation, the proportions of figures, depicted above eye
level and make them look “right” to the viewer. A third definition comes up with
the notion of hierarchical size, i.e., the size of the depicted figures depends on
their hierarchical importance. Significantly, this idea was first advanced by Karl
Doehlemann in opposition to Wulff’s theory [22]. In Florensky’s essay, we also
come across the argument that space in the icon is more faithful to human vision
than linear space—clearly, a notion, which is far away from the hierarchical size
thesis. To complicate matters further, Florensky also suggested that the pictorial
space of the icon is curved in a manner similar to that of non-Euclidean geometry.
In simple words, imagine objects and lines as if drawn on a concave surface, as
the building on your left in Fig. 2 (compare to the reconstruction of the same
building as it would appear under normal circumstances, Fig. 3) (see [10]). Finally,
Florensky tells us that space in the icon is constructed according to the principle
of supplementary planes, i.e., icons frequently show aspects of an object, which
cannot be seen simultaneously from a fixed position. For instance, the depiction of
the coffin of St. Nicholas in Fig. 1 can be only explained as the result of synthesizing
several points of view into the image.

In short, Florensky has left a significant amount of confusion about what “reverse
perspective” means exactly. Scholars, working on the topic, very rarely notice the
fundamental contradictions in Florensky’s theory. Further, “reverse perspective”
(any of the six definitions above) has never been considered in its relationship with
“reverse time,” a notion that Florensky proposed a few years later in another text,
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Fig. 1 The Death of St. Nicholas, Russian, Mstera School, late nineteenth c., 31.5 × 27.0 cm,
Temple Gallery, London

Iconostasis (1922). There are two sources of Florensky’s notion of “reverse time”—
one is Einstein’s and Minkowski’s scientific theories and the other is psychology
(see [23]).

Studies in psychology, going back to the nineteenth century, describe time
in dreams as “reversing” both the direction and the speed of time of woken
consciousness. In other words, dream time unfolds from the future to the past, while
the events in a dream, lasting a few seconds or minutes, would take a much longer
period, sometimes years, in everyday life. For example, imagine that you dream of
a succession of events that lead to you taking part in the Battle of Stalingrad, during
which you get shot at. The cause of the dream could be the ringing of your alarm
clock (the shot in your dream), what psychologists call an external stimulus. The
dream, recounting events over a long period of time, has occurred during a split
second. Once awake, your consciousness rearranges the events of the dream in the
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Fig. 2 Mary Receiving the Purple, Kariye Camii, Constantinople, c.1304, inner narthex, bay 3,
wall lunette; permission by Dumbarton Oaks Library

Fig. 3 Reconstruction of the building to the viewer’s left in Fig. 2; my drawing

order we are used to, i.e., from the past to the future. So, the shot/the ringing of the
alarm clock, rather than being a cause and a beginning, is a denouement. Florensky
borrowed this notion of dream time and claimed that it also described pictorial time
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in the icon. What was important to him was to distinguish between two systems,
adhering to different laws, i.e., our world with its linear time and the reverse time of
the icon.

I will finish by giving an example, from my own work, of a possible interpretation
of the temporal dimension of the construction of pictorial space in the icon. In Space,
Time, and Presence in the Icon: Seeing the World with the Eyes of God (2010)
I offered the following hypothesis: If we understand “reverse perspective” along
the lines of “supplementary planes” (Florensky’s sixth definition, see above), this
principle of the construction of space can be interpreted as the visual analogue of
the Christian dogma of divine timeless eternity. To a being that exists outside time
and space and is, therefore, viewpointless, objects in our world would appear from
all points of view simultaneously. So “God’s eye” would “see” things very much as
in Fig. 1, where side views and frontal views have been added on the same picture
plane (admittedly, not all sides of the object have been depicted, but several, which
cannot be seen at the same time from a fixed position, have). In other words, we have
an example of a Bakhtinian chronotope, which has been visualized and depends on
the modern intuition that any configuration in space implies a temporal dimension.

3 Conclusion

In this chapter, I looked, firstly, at Mikhail Bakhtin’s “chronotope,” a concept of
literary theory, with attention to its potential application to the study of the visual
arts. Secondly, I considered Pavel Florensky’s “reverse perspective” and “reverse
time,” two notions, meant to describe the art of the icon. My suggestion was that,
even though they were advanced in different texts with no explicit connection, these
two concepts should be brought together to constitute a Bakhtinian chronotope.
Both Bakhtin’s and Florensky’s writings on this topic are a reaction to Einstein’s
relativity theory and the idea of space-time unity that it implies. They demonstrate
the profound impact of a scientific worldview in the field of literary theory and art
criticism.
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Cagli, Olson, Coxeter

Michele Emmer

In 1923 the mathematician Harold Scott MacDonald (Donald) Coxeter started his
work on more than three-dimensional geometry. Coxeter writes in the preface to
the book Regular Polytopes, published in 1948, [1] “the book grew out of an essay
on Dimensional Analogy begun in February 1923. It is thus the fulfillment of 24
years’ work”, with an explicit reference to Edwin Abbott Abbott’s book Flatland:
A Romance of Many Dimensions [2] published without the author’s name in 1884.

In chapter VII of his book Ordinary Polytopes in Higher Space Coxeter wrote:
[3] “Polytope is the general terms of the sequence point, segment, polygon,
polyhedron . . .A Polytope is a geometrical figure bounded by portions of lines,
planes or hyperplanes: e. g. in two dimensions it is a polygon, in three a polyhedron.
The word polytope seems to have been coined by Hoppe in 1882, and introduced
into English by Mrs. Stott about twenty years later. Many simple properties of
polytopes may be inferred by pure analogy: e. g. 2 points bound a segment, 4
segments bound a square, 6 squares a cube, 8 cubes a hyper-cube and so on.” He
added: “Only one or two people have ever attained the ability to visualize hyper-
solids as simply and naturally as we ordinary mortals visualize solids; but a certain
facility in that direction may be acquired by contemplating the analogy between one
and two dimensions, then two and three, and so (by a kind of extrapolation) three and
four.” Coxeter recalls that when we try to understand the idea of a four-dimensional
Euclidean space we are helped by imagining the efforts that a hypothetical two-
dimensional being would make to visualize the three-dimensional world, exactly
what happens in Flatland.

And pointed out that: “Little, if anything, is gained by representing the fourth
Euclidean dimension as time. In fact, this idea, so attractively developed by H. G.
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Wells in The Time Machine, [4] has led such authors as J. W. Dunne (An Experiment
with Time [5]) into a serious misconception of the theory of Relativity. Minkowski’s
geometry of space-time is not Euclidean, and consequently has no connection with
the present investigation.”

An even more effective way, again based on analogy, was suggested by Poincaré
in 1891 [6]:

“In the same way that we draw the perspective of a three-dimensional figure
on a plane, so we can draw that of a four-dimensional figure on a canvas of three
(or two) dimensions. To a geometer this is but child’s play. We can even draw
several perspectives of the same figure from several different points of view. We
can easily represent to ourselves these perspectives, since they are of only three
dimensions. Imagine that the different perspectives of one and the same object occur
in succession . . . There is nothing, then, to prevent us from imagining that these
operations are combined according to any law we choose—for instance, by forming
a group with the same structure as that of the movements of an invariable four-
dimensional solid. In this there is nothing that we cannot represent to ourselves,
and, moreover, these sensations are those which a being would experience who has
a retina of two dimensions, and who may be displaced in space of four dimensions.
In this sense we may say that we can represent to ourselves the fourth dimension.”

The one who first studied and determined the six regular solids of four-
dimensional space was Ludwig Schläfli. Using the Coxeter nomenclature they are
regular simplex {3, 3, 3}, hypercube {4, 3, 3}, 16-cell {3, 3, 4}, 24-cell {3, 4, 3},
120- cell {5, 3, 3}, 600-cell {3, 3, 5}. Schläfli’s work was not at all appreciated and
almost all of his works were not accepted for publication. Only six years after his
death, in 1901, the Theorie der vielfachen Kontinuität was published, [7] in which
Schläfli dealt with n-dimensional geometry and in particular with four-dimensional
solids (which he called Polyschem). Some excerpts from this work was published
in English and French in 1855 and 1858 but went completely unnoticed, probably
due to the fact that, as Coxeter observed, “their dry-sounding titles tended to hide
the geometrical treasures that they contain, like the art of van Gogh” [8].

Coxeter wrote: [9] “The discoverers and earlier rediscoverers of the regular
polytopes (Schläfli, Stringham, Forchhammer, Rudel and Hoppe) all observed
that the total number of even-dimensional elements and the total number of odd-
dimensional elements are either equal (as in the case of polygon) or differ by 2 (as
in the case of convex polyhedron)”.

Many looked for a general formula valid in every dimension. It was Poincaré in
1893 who wrote on the subject a short note which he expanded six years later. In
1893 Poincarè published the first work dedicated to Topology (or analysis situs) and
Coxeter recalls that we are exactly in the field of topology with these types of results
[9]:

“It must be emphasized that the theorem 9-11is a theorem of topology, which
is more general than the ordinary geometry in that it is not concerned with
measurement, nor even straightness.” Theorem 9–11 is the proof of Euler’s formula
for Polytopes in all dimensions. (9 is the chapter of Coxeter’s book, 1 indicates
the paragraph). The lack of attention to Schläfli’s works was the reason why
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Fig. 1 W. I. Stringham, Regular Figures in n-Dimensional Space, 1880 [10]

many believe that Washington Irving Stringham was the first to determine the
regular figures of four-dimensional space in his article Regular Figures in n-
Dimensional Space, [10] published nearly thirty years after Schläfli’s work. The
figure of the hypersolids in four dimensions created by Stringham identifies the
three-dimensional elements that make up the hypersolids and approaches them in a
more or less random way. It was difficult to have a precise idea of their structure,
however Stringham’s work achieved indisputable success (Fig. 1).

It is no coincidence that the art historian Linda D. Henderson, in her extensive
essay dedicated to the influences on art of ideas inspired by the fourth dimension and
non-Euclidean geometry, despite having also thoroughly studied the mathematical
aspects of the issues dealt with, as shown by extensive specialized bibliography, do
not cite Schläfli’s work. Speaking of Stringham, Henderson notes that the impact
of the article was remarkable, so much so that there are numerous references to it
in the writings of mathematicians and non-mathematicians of the early twentieth
century [11]. Between 1900 and 1910 the different notions on the fourth dimension,
developed in the previous century, spread more and more, even outside the scholars’
circle. This phenomenon became more widespread in the United States, where a
large number of popular magazines provided ample space to discuss the novelty,
and in Russia. Interest peaked in 1909, when Scientific American sponsored “the
best explanation of four-dimensional geometry”, receiving 245 contributions from
around the world. As Henderson pointed out, the fourth dimension was interpreted
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by all participants as a purely spatial phenomenon; time was never mentioned as a
fourth dimension.

Linda Henderson makes it clear that, in the literature on the fourth dimension
in the late nineteenth and early twentieth centuries, between the two possible
interpretations of the fourth dimension, time was always the least important. In a
more philosophical and mystical view of the fourth dimension, the role of time was
to visualize a higher dimensional space, but time itself was not interpreted as a fourth
dimension. Rather, it was the geometry of higher-dimensional spaces, along with
non-Euclidean geometries, that fascinated the public in the early twentieth century.

An important role in the popularization of the fourth dimension was played by
Abbott’s volume, which was immediately a great success; a second edition was
published in 1884 and it had nine reprints up to 1915. Mathematicians and writers
alike cited Flatland on several occasions. Among others, Charles Howard Hinton,
a great enthusiast of the philosophy of the fourth dimension, who published several
books dedicated to it between 1880 and 1904. In 1907, he published An Episode
of Flatland, [12] a sort of reworking of Abbott’s novella: this was not the only
attempt at such rewriting, although no imitator has achieved Abbott’s inventiveness
or humour.

There was already some confusion between four-dimensional Euclidean space
and space-time with time as fourth dimension in Abbott’s book, even if the theory
of relativity obviously did not exist in 1884. Surely, the encounter between the
Sphere and the Square in Flatland will contribute a lot to the misunderstanding: the
encounter is described by Arthur Eddington in the book Space, Time and Gravitation
(1920) [13], a classic in the popularization of the theory of relativity, as the best
popular exposition of the fourth dimension. Eddington was thinking about the four-
dimensional space of space-time, and wondered to what extent the world imagined
by Abbott agreed with the space-time of relativity. There are three points in the
narrative that Eddington was highlighting. First of all, the fact that when a four-
dimensional body moves, its three-dimensional section can vary; in this way it
is possible for a rigid body to alter its shape and dimensions. Moreover, a four-
dimensional body can enter a completely enclosed three-dimensional room, just as
a three-dimensional being can place a pencil anywhere within a two-dimensional
square without intersecting its sides. This is how the Sphere behaves when it visits
Flatland; the Square naturally fails to see the visitor. Finally, it becomes possible to
see the inside of a solid in three dimensions just as a three-dimensional being can
see the inside of a square by looking at it from a point outside the plane on which it
lies.

The mathematician Jouffret wrote the two volumes Traité élémentaire de
géométrie à quatre dimensions in 1903 [14] and Mélanges de géométrie à quatre
dimensions in 1906 [15]. The method used by Jouffret to visualize objects in
four dimensions was a kind of descriptive geometry in which these objects were
projected onto the two-dimensional plane, i.e. the paper on which they were drawn.
In many cases, the objects were rotated in order to obtain additional images that
gave more information about their dimensions.
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Of course, it should be immediately stated that in no way is a direct cause-and-
effect relationship suggested between n-dimensional geometry and the development
of the art of Picasso and Braque. The main sources of Cubism are to be found in art
itself, first of all, in African art and in the paintings by Cézanne.

There is another mathematician who played a role in the development of some
Cubists, and particularly in that of Cubism theorists Gleizes and Metzinger. It is
Metzinger himself who explains the role of Maurice Princet, who worked in an
insurance company. He conceived mathematics as an artist might, and he evoked
n-dimensional space as a scholar of aesthetics would. He wanted to push painters
towards the new ideas about space opened up by Victor Schlegel. Schlegel was
one of the mathematicians who had contributed most to the emergence of n-
dimensional geometry at the end of the nineteenth century, and who had produced
three-dimensional models of hypersolids in four dimensions. Coxeter mentions him
in his book: [1] “The theory of regular honeycombs in hyperbolic space but I have
resisted the temptation to add a fifteenth chapter on that subject.”

In the final version of Les peintres cubistes Apollinaire writes [16]:
“Les nouveaux peintres ne se sont proposé d’être des géomètres. Mais on peut

dire que la géométrie est aux arts plastiques ce que la grammaire est à l’art de
l’écrivain. Or, aujourd’hui, les savants ne s’en tiennent plus aux trois dimensions
de la géométrie euclidienne. Les peintres ont été amenés tout naturellement et,
pour ainsi dire, par intuition, à se préoccuper de nouvelles mesures possibles de
l’étendue que dans le langage des ateliers modernes on désignait toutes ensemble
et brièvement par le terme de quatrième dimension . . .Elle est l’espace même,
la dimension de l’infini ; c’est elle qui doue de plasticité les objets.” (“The new
painters do not claim to be scholars of geometry. But it is safe to say that geometry
is to visual arts as grammar is to the art of writing. Nowadays, scholars are no
longer limited to Euclid’s three dimensions. Painters have very naturally, one might
say instinctively, explored the new possibilities of space which, in the language of
modern art, are referred to as the fourth dimension. The fourth dimension is space
itself, the dimension of infinity; the fourth dimension gives objects plasticity.”)”

Henderson remarks that, apart from specific applications, the fourth dimension
played an important role in the development of an idealism suited to Cubist
philosophy.

Umberto Boccioni in 1913 discussed in detail the role of the fourth dimension
in Futurist art. In 1914 he collected his observations in Pittura scultura futuriste
(Dinamismo Plastico) (Futurist painting and sculpture: plastic dynamism): [17]
“Dynamism is a lyrical conception of shapes interpreted as part of the infinite man-
ifestation of the relationship between their absolute and relative motion, between
environment and object, until they form the appearance of a whole: environment
+object... Between rotation and revolution, in short, is life itself, captured in the
shape that life creates in its infinite succession... We come to this succession...
through an intuitive search for a unique shape that gives continuity in space... to
dynamic continuity as a unique shape. And it is not by chance that I say shape
and not line, because dynamic shape is a kind of fourth dimension in painting and
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sculpture, which cannot live perfectly without the complete affirmation of the three
dimensions that determine volume.”

Boccioni recalls that the Cubists claimed to fully understand the idea of the fourth
dimension:

“I remember having read that Cubism with his breaking up of the object and
unfolding of the parts of the object on the flat surface of the picture approached
the fourth dimension . . . If with artistic intuition it is ever possible to approach the
concept of the fourth dimension, it is we Futurists who are getting there first. In fact,
with the unique form that gives continuity in space we create a form that is the sum
of the potential unfolding of the three kwon dimensions. Therefore, we cannot make
a measured and finite fourth dimension, but rather a continuous projection of forces
and forms intuited in their infinite unfolding.”

Boccioni was interested in the passage of a higher-dimensional form through our
three-dimensional space, in obtaining a continuous shape via this passage, as in his
famous 1913 sculpture Unique Forms in the Continuity of Space (Fig. 2).

In 1917, in La peinture d’avant-garde [18] Gino Severini clarified how the
links between Futurist art and geometry were to be understood, and looked at
Poincaré: [19] “L’espace ordinaire se base en général sur la convention inamovible
des 3 dimensions; les peintres, dont les aspirations sont illimitées, ont toujours
trouvé trop étroite cette convention. C’est-à-dire qu’aux 3 dimensions ordinaires, ils
tâchent d’ajouter une 4e dimension qui les résume et qui est différemment exprimée,
mais que constitue le but de l’art des toutes les époques. Boccioni, en définissant
ce qu’il appelle le “dynamisme”, fait allusion à une sorte de 4e dimension, qui
serait “la forme unique donnant continuité dans l’espace”, . . . Il s’agit de trouver
une définition le plus possible simple et vraie, au point de vue artistique. C’est
pourquoi, j’ai cherché dans la géométrie qualitative (Analysis Situs de Poincaré)
la démonstration plus évident de cette 4e dimension, en sachant d’avance, que
la science géométrique ne pourrait que soutenir des convention déjà établies par
l’intuition artistique de nous tous. Si j’aime chercher souvent un appui sur les vérités
de la science, c’est que je vois là un excellent moyen de contrôle et d’ailleurs aucun
de nous saurait négliger les notions que la science met à notre portée pour intensifier
notre sens du réel.”

Given the difficulty of drawing three- and two-dimensional projections, not all
hypersolids have been equally successful in literature and art. The most successful
is definitely the hypercube, also called tesseract.

Among the images of the hypercube, the Divine Cube of the Fourth Dimensions
of Flatland’s Square, Henry Parker Manning’s 1914 images (Fig. 3) became well-
known even outside the circle of mathematicians. They represent two of the possible
projections of the hypercube in three-dimensional space.

Manning’s images are what Theo Van Doesburg uses in his four-dimensional
architectural projects. The magazine De Stijl, founded by Theo Van Doesburg and
Piet Mondrian in 1917, reprinted in 1923 an article by mathematician Henri Poncaré
entitled Pourquoi l’espace a trois dimensions? [20] with the sentence De Beteekenis
der 4e Dimensie voor de Nieuwe Beelding (“The significance of the 4th dimension
for the New Design-Plasticism”, the latter being the artistic movement to which
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Fig. 2 U. Boccioni, Forme uniche della continuità nello spazio, 1913. Museo del Novecento,
Milano © Comune di Milano—tutti i diritti di legge riservati

Fig. 3 H. P. Manning, Hypercube, 1914
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Fig. 4 T. M. Villarreal, drawing, based on T. van Doesburg, Une nouvelle dimension pènètre notre
conscience scientifique et plastique, 1927 [21]

Mondrian and Van Doesburg had given rise) inserted as a preface. In 1927 Van
Doesburg published in De Stijl a drawing of the four dimensional cube with the
phrase Une nouvelle dimension pènètre notre conscience scientifique et plastique
(“A new dimension penetrates our scientific and plastic understanding”) (Fig. 4)
[21].

Between the 1930s and the 1960s, with a few exceptions, interest in the geometry
of the fourth dimension declined, both in the mathematical and artistic fields. One of
those exceptions is Salvador Dalí, whose painting Crucifixion (Corpus Hypercubus)
is from 1954.

A few years earlier, both Poincaré’s research on topology and Riemann’s
research on non-Euclidean geometry, and the publication in 1947 of Coxeter’s book
on polytopes had aroused the interest of an Italian painter living in the USA and of
a North American poet. They will create a kind of synthesis between Euclidean and
non-Euclidean geometry, multi-dimensional space and topology.
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This poem was written by US poet Charles Olson in November 1946 [22].
Corrado Cagli was an Italian artist who was interested in the topological surface
of Moebius’s strip, so much so that in 1946 he produced a drawing dedicated to the
surface (Fig. 5) and a painting entitled A Moebius (Fig. 6). He was also a friend of
Charles Olson’s. Cagli’s interest in the Moebius strip, in non-Euclidean geometry,
and the fourth dimension of space began in the pre-war years, as early as 1939,
when he arrived in the USA fleeing the Italian racial laws. He had always been in
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Fig. 5 C. Cagli, Anello di
Moebius, 1946, 51 × 33 cm,
India ink on paper, private
collection—courtesy
Archivio Corrado Cagli,
Rome

contact with other Italian and French artists and, when he held his first exhibition in
the USA, he became part of the American cultural environment.

He enlists as a volunteer in the war, participates in the Normandy landings, and
follows the front through Europe until he assists at the liberation of the Büchenwald
camp on 16 April 1945. He will bring back a series of drawings based on what he
saw in the concentration camp. Works of great realism and impact (Fig. 7).

The war had interrupted his relationship with Olson. On his return from the war,
contact between the artist and the poet resumed. The publication of Coxeter’s book
comes at the right time. Although non-Euclidean geometries, the fourth dimension,
topology and the Moebius strip are not entirely related topics, they are certainly
linked to a concept that interests any artist: the idea of space. Cagli always cultivated
a parallel interest in abstract and geometric forms in addition to his interest in
figurative art. This led him to learn about and read books on mathematics, becoming
interested in Riemann’s geometry and in topology. In 1947, with Coxeter’s book,
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Fig. 6 C. Cagli, A Moebius, 1947, 50 × 80 cm, oil on canvas, private collection—courtesy
Archivio Corrado Cagli, Roma

he discovered four-dimensional shapes. He was fascinated by them as he was
fascinated by the Moebius strip, invented (or discovered) by German astronomer
August Ferdinand Möbius in 1848.

In Cagli’s mind, topology, the Moebius strip, the four dimensions, and the new
non-Euclidean geometries became the elements of a renewed interest in geometries
and mathematical surfaces. In particular, Cagli suggests that Olson read Coxeter’s
book. They discuss the Moebius strip and Olson asks Cagli to contribute with his
drawings to a small book in which he will include some of his poems. These include
the final version of The Moebius Strip. This short book is published in 1948 under
the title Y & X. It includes five poems by Olson and five drawings by Cagli (Fig. 8)
[23]. In 1948 Cagli returned to Italy.

Carlotta Castellani wrote in Corrado Cagli e Charles Olson: la ricerca di nuovi
linguaggi tra esoterismo e geometria non euclidea (“Corrado Cagli and Charles
Olson: the search for new languages between esotericism and non-Euclidean
geometry”): [24].

“In order to express a multidimensional reality of complex simultaneity through
his compositions, Olson undertakes a radical revolution in his writing, disrupting
the composition of verse and the organization of language.”

The first attempt to make his poetry into a spatial field is found in The
Moebius Strip written in November 1946 but published as an introduction to Cagli’s
catalogue on the occasion of his exhibition at the Knoedler Gallery in New York in
March 1947, and inspired by Cagli’s drawing of the same title. Olson translates the
distortions in place when projecting language onto a hypothetical Moebius strip:
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Fig. 7 C. Cagli, Bambino nel campo di concentramento, drawing, Büchenvald, April 1945,
courtesy Archivio Corrado Cagli

‘The distortions + movements are intended to force language to do a like job in its
dimensions as a painter would operating on a strip’”.

Frank Moore recalls Cagli’s constant interest in this geometric form: ‘Cagli was
obsessed with the enigmatic shape which had only one side and one edge and
yet occupied physical space. He wanted to make painting on it . . . Cagli made
drawings for Olson’s words, Olson wrote words for Cagli’s drawings. The poem
about Moebius strip was one.’

The equivalence between Olson’s poem and Cagli’s drawing is acknowledged by
the painter himself, who states, referring to Olson’s poem: [22] “It seems to me that
there is something very mysterious going on if, in the field of dimensions, drawings
turn out to be poems and poems blow back sudden changes to the source of the
drawings.”

Starting from the assumption that it is almost impossible for anyone—scientist or
artist—to visualize the fourth dimension, Olson perfectly described Cagli’s way of
proceeding by taking up Poincaré and Coxeter’s analogy and reminding us that once
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Fig. 8 Cover of the volume
Y&X drawings by Corrado
Cagli/poems by Charles
Olson—courtesy Archivio
Corrado Cagli, Roma

we understand the analogy between one-dimensionality and two-dimensionality,
between two-dimensionality and three-dimensionality, it is possible to contemplate
the analogy between three-dimensionality and four-dimensionality. The resulting
image seems to describe a field of opposing forces in continuous tension, something
similar to what Charles Olson was trying to convey through words. That these
reflections were at the heart of the Italian painter’s activity is also indicated by
the works presented the following year in his personal exhibition in Rome, at the
Galleria del Secolo (Fig. 9).

As Cagli recounted in his introduction, May 1949: “By drawings of the fourth
dimension I mean those, including mine, which obey the spirit and optical taste of
the projective that Donchian employed to represent fourth dimensional solids”, [25]
for the creation of these works the artist had been inspired by the four-dimensional
solids of the self-taught mathematician Paul Samuel Donchian, which he had been
able to see in Hartford, Connecticut.”

The exhibition will move to the USA in December 1949 at the Watkins Gallery
of the American University in Washington under the title of Drawings in the 4th
Dimension, with a lecture by Charles Olson and a note by Cagli [26] “When I speak
of drawings in the 4th dimensions I am referring to those of my own which obey
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Fig. 9 C. Cagli, Catalogue
of the exhibition, Galleria del
Secolo, Roma, (1949),
courtesy Archivio Corrado
Cagli, Roma

the optic spirit and taste, which the mathematician Donchian has expressed in his
projections of solids in the 4th dimension. To be elementary that which appears as
a cube in three-dimensional space, will in the space of four dimensions, take the
form of a hypercube. Since the antithetic space significance of these two solids is
understood it becomes possible to see them as measures of two different pictorial
system-the cube as the rule and the measure of all paintings in three dimensions, the
hypercube as the rule and the measure of paintings in the 4th dimension . . .

On a page of two dimensions, a drawing in the 4th only takes an allusive, not
representational force, and I strongly suspect that we will not be able to adventure
into the slightly explored field of the n-dimensions until we are prepared to give up
both the frame and canvas . . .

I have, within the limits of my research, made some experiments with the Moebus
(!) strip and it offers a pure shape and a continuous surface no less suggestive that
the circle, no less impressive that the sphere.”

The exhibition featured Eleven Hypercube Drawings, among others. There
should have been some of Donchian’s models in the exhibition, and on this subject
Davide Colombo writes in his extensive essay Non-Euclidean Geometry and the
Fourth Dimension in the Intellectual Exchange between Charles Olson and Corrado
Cagli [27]. “In a letter dated December 8 1949, Cagli complains about the decision
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to exhibit Donchian’s models of four-dimensional solids because they are too
theoretical and programmatic, citing some provocation and risk of confusion... The
doubt arises that Cagli’s reluctance may be due to the risk that his drawings will be
judged as a direct transposition of Donchian’s models, thus denying their autonomy
and artistic value. In the end, as Olson later recalled, the Donchian solids were not
exhibited because they were not in good condition.” The exhibition was then taken
to Black Mountain College, where Olson had been invited by Josef Albers. Olson
would be head of the famous College Olson from 1951 to 1956.

Colombo adds: [28] “Neither Olson nor Cagli had specific mathematical and
geometrical training: they rely on intuition for their perception and understanding
of mathematical concepts, although this does not negate the careful study of math-
ematical principles. In Cagli’s case, these are also influenced by some explanations
on non-Euclidean geometry given by his brothers-in-law Oscar Zarinski (husband
of his sister Iole) professor of mathematics at Harvard, and Abraham Seidenberg
(husband of his sister Ebe), professor of mathematics at Berkeley University and
then at Harvard, and by other mathematicians he met, as he remembers in a letter
of May 12, 1946. But it was the encounter with Donchian’s models that provided
Cagli with the inspiration to radically evolve his research.”

Donchian is mentioned by Coxeter in Regular Polytopes [29]. He also writes a
brief biography of him and recalls that section 13.2 Orthogonal projection onto a
hyperplane [30] of his book is directly inspired by Donchian’s models, two of which
were photographed and included in Coxeter’s book. Tables IV on page 160 and
Table VIII on page 273 show the {3, 3, 5} and the {5, 3, 3} polytopes, respectively.
(Fig. 10).

“Paul S. Donchian was an American of Armenian descent. His great-grandfather
was a jeweler at the court of the Sultan of Turkey, and many of his ancestors were
oriental jewelers and handcraftsmen. He was born in Hartford, Connecticut, in 1895.
His mathematical training ended with high school geometry and algebra, but he
was also interested in scientific subjects . . . He made a thorough analysis of the
geometry of hyper-space. His aim was to reduce the subject to its simplest terms, so
that anyone like himself with only elementary mathematical training could follow
every step . . . Their constructions required all the patience and delicate craftmanship
that could be provided by his oriental background . . .To quote Donchian’s own
words: ‘The models are fortunately fool-proof, because if a mistake is made it is
immediately apparent and further work is impossible.’ In 1934 the models were
exhibited at the Century of Progress Exposition in Chicago and at the Annual Exhibit
of the American Association for the Advancement of Science in Pittsburgh. He died
in 1967.”

Coxeter met Donchian in Chicago at the show and photographed the models
he would publish in his book. Together they will write a July 1935 article An n-
Dimensional Extension of Pythagoras’ Theorem [31].

Returning to Olson and Cagli, “Just as the scientist had restored through an
open form of sculpture the idea of the fourth dimension, in the same way the artist
sought to achieve this representation by analogy in the two-dimensional space of the
canvas.” [32].
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Fig. 10 {5, 3, 3} Model of P. S. Donchian, photo by H.S.M. Coxeter, [1], p. 272

In 1946, the American poet formulated his first ideas about the possible
application of the new mathematical theories to poetry. The geometric model offered
the possibility of inserting an object belonging to a Euclidean space into a non-
Euclidean space. Castellani adds that “It is difficult to understand exactly what the
application of these geometric rules means in terms of language.” [32].

Olson recognized in his friend Cagli’s art the most advanced experimentation
with the fourth dimension. In the letter written by Cagli to Olson on December
9, 1946, there are some important considerations about the poem on Moebius and
about their common purpose: [33].

“Upon a Moebius strip. I think you are going strong. The all business is
wonderful. The poem is up to your best poems, isn’t it? And brings me a new wind
of inspiration, it seems to me that there is something very mysterious going on there
if, in the field of dimensions, drawings turn out to be poems and poems blow back
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sudden changes to the source of the drawings. (...)any time you show me another
poem another door is opened and it looks the way it should look: as the initial point,
the beginning, the primordial way of thinking and feeling. (that would be in terms of
the tarots: the Bagatto) [24]. And I feel very strong about us now, as we have found
together a mine of gold.”

Colombo notes: [34] “The great novelty that projective geometry and, in general,
modern physics and science can offer to Cagli and to art is the possibility of a type of
abstract thinking that sees the world as a whole and, at the same time, makes sense
of the structure and function of the world as a whole; projective geometry gives the
possibility of imagining a completely new space and world, that is, of finding new
(and better) solutions at the level of art and thought and at the level of morality.”

In his 1949 lecture at the Watkins Gallery, Olson traces an intense and fruitful
intellectual and human history. The idea is to explain the new concept of space,
on which Cagli and he are working, which leads to a new art and a redefinition
of man, to realize a morally new humanity [35]. “What I want to do tonight, to
justify my appearing before you, is to illuminate for you in what a new conception
of space (which is, I think, what Cagli & I keep working towards) leads toward a
new art & thus toward a redefinition of man, accomplish, in the moral sense of a
new humanitas.”

Mark Byers also talks about this redefinition of Man in Charles Olson and
American Modernism [36]. “While Coxeter noted the psychological value of the
models (since they offered at least a metaphorical visualization of the fourth
dimension) Olson thought much more of them. ‘What is involved here, he suggests,
is something which both science and art have long been capable of, the act of taking
a point of vantage from which reality can be freshly seen.”

Colombo adds at the end of his article: [37] “Cagli’s own research method
responds well to a trend that gradually emerged during the 1950s and which saw
science not only as a kaleidoscope of new images and aesthetic suggestions that
risk becoming mere decorative motifs if not supported by reasoning and solid
foundations, but as the bearer of an experimental and operational methodology and
approach, of a more open vision.”

Corrado Cagli died in Rome on March 28, 1976. In 1978 I visited an exhibition of
his work at the Ca′ d’Oro gallery in Rome and was struck by an untitled painting that
was accompanied in the catalogue by Charles Olson’s poem on the Moebius strip.
(Fig. 11) I wrote about the Moebius strip and about some of the artists who had been
interested in that form, first of all Max Bill and Maurits Cornelis Escher; the article
was published in 1981 [38] in the magazine Leonardo, then printed by Elsevier. It
was edited by Frank Malina, a North American kinetic artist who had moved to
Paris from the USA after leaving his job as a rocket engineer. I mentioned it again
in 1983 at a conference at the School of Epistemics of the University of Edinburgh
in November 1981, where Frank Malina was one of the speakers; however, he died
the day before the conference opened [39].

At that time I started to work on my film on the Moebius surface, [40] in which
Max Bill and the works of Escher were involved, so I phoned Cagli’s atelier and
made an appointment to go and film the painting I had seen. The atelier was in
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Fig. 11 C. Cagli, Without
title, oil on canvas, (1947)
Collection Ebe Cagli
Seidenberg. Frame from the
movie Moebius Strip [40]

Rome, in Via della Fonte di Fauno 12 (near the Circus Maximus) and is now the
headquarters of the Cagli Foundation. I remember the day very well, it was March
16, 1978. When I entered the atelier, I was informed that Aldo Moro, president of
the Democrazia Cristiana (Christian Democrats), several times minister and prime
minister of the Italian government, had been kidnapped by the Red Brigades. He
was killed on May 9, 1978. One of the great tragedies of the Italian Republic.
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A Fault in the Order: Thoughts
on Frayed Strings

Emanuela Fiorelli

Has your heart ever “skipped a beat” over something you’ve seen, read, or even just
imagined? I said “something” not “someone” ... I’m not talking about sentimental
issues, but something that excites you at the cerebral level. Sometimes, when I
read, see, or imagine, I suddenly perceive that my horizon, just at that moment, is
widening; I can almost focus on and give a name to the beach where my waves have
always crashed. This may happen while I’m reading a scientific text or while I’m
watching a documentary on nature or architecture or a film; it may happen while I’m
weaving my threads into plexiglass boxes, or while I’m cooking ... this “skipping a
beat” is unpredictable, but one thing I know for sure: I experienced it while reading
the poems of Claudio Zanini and listening to the philosophical reflections of Lucio
Saviani.

When you meet exceptional people you remember exactly the situation that
brought you together. I never met Claudio Zanini in person because of the distancing
requirements caused by Covid-19, but I had read his poems “Anxious geometries”
in the booklet “Opera prima” published by a well-known literary magazine to which
I have subscribed for years. I was immediately struck by the parallels between
my artwork and his poems. The booklet sat on my bedside table for years until I
decided to contact its author. Immediately we clicked, and the video “I’m Staying
Home” was born from our cooperation during the lockdown, in which I read the
poems that Claudio wrote while thinking about my works of art resulted in a lovely
interweaving of words and images. Recently, as we read each other’s bios, we
discovered that there was a time when we were close by without knowing it. Michele
Emmer had invited us to the same “Mathematics and Culture” conference back in
2013. So, who was it that spun this web?
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I met Lucio Saviani in 2006 while he was presenting the catalogue of the “Bodily
silence” exhibition, featuring the works of Paolo Radi. I wanted to meet him because
it was the first time I could follow a philosophical conversation without noticing
what the ceiling looked like. Philosopher Lucio Saviani is one of the greatest experts
of hermeneutics in Italy. It is a pleasure to listen to him during his lectures, not only
for his fascinating voice, but especially for his ability to unravel what are otherwise
very complicated concepts. And here is the affinity with my works, in which the
intricate labyrinth is both the space in which to get lost and the way out. It was
therefore natural that I asked him to write some philosophical thoughts related to
my works and, in this period, to the lockdown.

The result is the combination of words and images created for this book and
I thank Michele Emmer for making it possible. When, 15 years ago (September 1,
2006), I decided to write to him at his university mailbox, I did not expect—although
I hoped very much—that he would answer me, nor that, together with his beautiful
wife, Marcela, he would soon come to see me in my atelier. I had just started my
journey as an artist but he wasn’t interested in my resume ... he wanted to see my
works in real life! He had sensed that they displayed a strong correspondence with
the language of mathematics, and perhaps he saw potential developments that even
I had not yet imagined. Had his heart skipped a beat too? Maybe it had, because
in 2007, on the occasion of my solo exhibition at Galleria Marchetti, he honored
me with a piece in the “Emanuela Fiorelli/Caosmo” catalogue (Fig. 1). A year later,
he invited me to the “Mathematics and Culture 2008” conference and later to the
“Mathematics and Culture 2013” conference. Recently we met on the occasion
of the presentation of the performance “From 1848 to infinity” at the Museum of
San Salvatore in Lauro in Rome, in which dancer Katia di Rienzo moved inside
my sculpture, made of aluminium and elastic cords, displacing and dilating both
real space and the virtual space created and projected by videomaker Massimo
Cappellani. This was a lovely weave too!

Using strings, I connect different people, things, surfaces, and spaces. They start
with a knot and end with a knot, and between one and the other there is polarized,
intimate, poetic, vibrant space ... our life? But this is threatened by something that
undermines their continuity, that takes them to different, unexpected planes and
confounds their direction ... maybe Covid-19? I thought to publish here both the real,
existing, tangible works, and their computer retouched, virtual images, threatened
by the things we see only in their consequences. Lucio Saviani and Claudio Zanini
were inspired by them for their poetic and philosophical compositions and I thank
them sincerely for having joined this project. Again a huge thank you to Michele
Emmer who made the publication possible.

Fig. 1 Emanuela Fiorelli,
self portrait
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1 Poems for Collapse from COVID

Works by Emanuela Fiorelli (Figs. 2–13)
Poems by Claudio Zanini

Fig. 2 Emanuela Fiorelli, 25 m—50 × 50 × 14 cm plexiglass, elastic thread, vinyl, 2015

Un rovinar ddi frammenti

Un rovinar di frammen�
come se dita staccate 
in rallentata presa 
giù dal baratro incavato
si schiantassero sul fondo.

Sebbene resistano
ancora in sospensione
i fianchi for� nel volo
e impavidi oppongano 
inconsapevole diniego,

è il centro che crolla,
franando rapido collassa
lasciando ammutolite ceneri 
nel totale e repen�no 
annientamento d’ogni senso.

A Ruin of Fragments

A ruin of fragments
as though detached fingers
slowly grasping
down from the sunken abyss
smashed on the bo�om.

Although the strong flanks
s�ll suspended
hold up in flight
and fearlessly oppose
unwi�ng denial,

it is the centre that crumbles,
quickly sliding, it collapses
leaving silenced ashes 
in the total and sudden
annihila�on of all senses.
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Fig. 3 Emanuela Fiorelli, Legami di sangue, 100 × 70 × 11 cotton thread, tarlatan, and fabric
dyeing, 2008

Separazione

Divora, il vuoto della faglia
in profonda frattura verticale
l’arcana macchina del volo

sospesa nell’incurvata onda,
ne soffoca il respiro,

ne succhia avida lo spazio
ne viola l’ordine connesso.

Franti i legami d’annodati fili
scissa l’ordita trama

s’incunea prepotente il vuoto
allontanando mutilati i nodi

l’uno dall’altro respinti
nell’inarrestabile deriva.

Tuttavia, ancora palpitava
l’arcana macchina sospesa
d’un tremore commovente
e breve, prima di morire.
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Fig. 4 Emanuela Fiorelli, Legami di sangue, Covid effect

Separation

The emptiness of the fault-line
devours in profound vertical fracture

the arcane machinery of flight;
suspended in the curve of a wave

it suffocates its breath,
greedily sucks up its space

violates its connected order.

Having torn the ties of knotted threads
Having rent the woven cloth

Emptiness wedges itself with power
distancing the mutilated knots,

rejected by one another
in the unstoppable drift.

However, the arcane machinery
still throbbed, suspended
in a moving, brief tremor,

before perishing.
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AA quando il crollo

A quando il crollo della tensione 
nella composta macchina del 
volo?  
A quando l’afflosciarsi inevitabile 
del sistema d’alta precisione 
in esemplare crescita costante? 

L’inaspe�ato irrisorio peso  
ma infine squilibrante, ora 
travolge la mirabile stru�ura 
e apre inaspe�ata la fra�ura 
che inghio�e e rilascia deiezione
in silenzia� pallidi detri�. 

Chi ignorava smemorato  
nell’animo confuso che 
vaghe sono le certezze, ora sa:   
in ciascuna parte dello spazio 
dominante è il vuoto che spaura.

Fig. 5 Emanuela Fiorelli, Sculptor box 2, cm 100 × 30 × 30, plexiglass, elastic thread, 2017
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Fig. 6 Emanuela Fiorelli, Sculptor box 2, Covid effect

When the Collapse

When will the tension
of the poised flying machine crumble?

When, the inevitable collapse
of the high-precision system,

exemplary in its constant growth?

The unexpected negligible, but
ultimately unbalancing, weight now

overwhelms the impressive structure,
and unexpectedly opens the fracture
that swallows and releases ejection

in silenced pale detritus.

Those who forgetfully overlooked,
in the confused soul, that

certainties are vague, now know:
in each portion of space,

the frightening emptiness prevails.
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Fig. 7 Emanuela Fiorelli, site specific installation, elastic cord—400 × 150 × 100 cm, 2011

La ferita verticale

Preme la ferita verticale,
divaricando penetra
la macchina del volo.

Recide i magri filamenti
ne sventra l’ordita trama
degli elastici segmenti.

Sembrava mormorasse
quasi un alito sommesso

la macchina sospesa
un impercettibile vibrare
un sottilissimo stormire.

Ora tace nel cavo della faglia
spazio attonito e silente
vuoto collasso verticale.
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Fig. 8 Emanuela Fiorelli, side specific installation-Covid effect

The Vertical Wound

The vertical wound presses,
spreads, penetrates
the flying machine.

It severs the scant threads,
guts the woven cloth

of the elastic segments.

The suspended machine
seemed to be murmuring

almost a quiet breath,
an imperceptible vibration,

the faintest of rustles.

Now it is silent in the hollow of the fault-line
an astonished and silent space,

a vertical empty collapse.
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Lo scarto trascurabile

Era, all’inizio,
impercettibile anomalia,

lo scarto trascurabile
entro l’equilibrato assetto
del segmento pencolante.

Non era ancora
baratro sfondato senz’appiglio,

né la scivolosa china
precipitosa verso il ciglio.

Non era ancora fatale sbando.

Volge ora, tuttavia
nell’asimmetrico traslare

inarrestabile torsione
entro gorgo che l’annienta
nell’inesplicabile sparire.

Fig. 9 Emanuela Fiorelli, 1 + 1 = 1, 30 × 30 × 18 cm, plexiglass, elastic thread, 2018
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Fig. 10 Emanuela Fiorelli, 1 + 1 = 1 Covid effect

The Negligible Reject

At first, it was
an imperceptible anomaly
the negligible difference

within the balanced structure
of the loose segment.

It still was not
a broken, gripless chasm,

nor the slippery slope
rushing towards the edge.

It still was not fatal disorder.

However, it turns now,
in an asymmetrical movement,

an unstoppable twist
inside an annihilating whirlpool,
an inexplicable disappearance.
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In torsione vorticosa

In torsione vorticosa, frulla
la geometria, esplode e sborda
nel suo disperdersi centrifugo,

collassa l’equilibrio
nell’insostenibile espansione.

Tende ad avvitarsi in sé, spaura
quale grumo nero perturbante
magmatica matassa oscura.

Fig. 11 Emanuela Fiorelli, Basic box 8, plexiglass, elastic thread, 40 × 60 × 14, 2020
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In a Twisted Cyclone

In a twisted cyclone, it spins
geometry, explodes and overflows

in its centrifugal scattering,
collapses the balance

in its unsustainable expansion.
It tends to coil itself, frightening

like a perturbing black clot,
a magmatic dark tangle

Fig. 12 Emanuela Fiorelli, Basic box 8, Covid effect



114 E. Fiorelli

Fig. 13 Emanuela Fiorelli, Dilatato, 94 × 94 × 11 cm—cotton thread, tarlatan, 2016
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2 A Thread for Two

Work by Emanuela Fiorelli (Figs. 14–22)
Philosophical Contribution by Lucio Saviani

Fig. 14 Emanuela Fiorelli, Coincidente, 70 × 90 × 11, cotton thread, tarlatan, 2015

1
It is displacement, dilation, duplication. It is suspended time. Like swinging
suspended from a branch, or like a spider from its thread, which that one time was
the same, by the terrible will of the gods.

Solitude, isolation, confinement. Speaking to yourself as if you were speaking to
another. Call yourself by your first name and make yourself into a second person
singular.

It is Arachne, and it is Minerva.
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Fig. 15 Emanuela Fiorelli, s.t. 50 × 50 × 14, plexiglass, elastic thread, vinyl, 2016

2
One weaves order, rule, distance. The other bursts and overflows, frays, dilates,
deforms. One demands and arranges concordant harmony, the other foreshadows
and warns of disorder, and the bewilderment that arises and overflows from it.

Fig. 16 Emanuela Fiorelli, s.t., Covid effect
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Fig. 17 Emanuela Fiorelli, Affetto ottico 39.5 × 34 × 19 cm, plexiglass, elastic thread, 2006

3
What is that superhuman, or too human, superb delirium? What threads is its mind
weaving? Or will it not be some sort of agreement, between the spider artist and
the loom goddess, a secret pact in their minds, as secret as the confrontation will be
public? Minerva acknowledges defeat, but then punishes her rival. She is attracted
to her opposite but does not accept what she cannot separate herself from.

Fig. 18 Emanuela Fiorelli, Affetto ottico-Covid effect
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Fig. 19 Emanuela Fiorelli, Archi box 1, 40 × 60 × 14 cm, plexiglass, elastic thread, vinyl, 2017

4
Facing each other, the two works challenge each other in an unprecedented public
confrontation. A motionless duel, made up of spikes, crossings, threads, deceptions,
hooks, and counterpoints. Was Arachne’s hand taken by such sudden disproportion,
or was Minerva simply summoned by her rival and turned into her own double?



A Fault in the Order: Thoughts on Frayed Strings 119

Fig. 20 Emanuela Fiorelli, Archi box 1, 40 × 60 × 14 cm, plexiglass, elastic thread, vinyl, 2017



120 E. Fiorelli

5

On this side of the line it is a work of 

exactitude, ingenuity, balance, clarity, and

proportion. An enraptured gaze and an

expert manoeuvre, the work of the hand

and a suspended mind, free hand, and

logical speech.

Beyond the line it is toil–faithful to

disorder, sensitive to the unexpected, to

the coming disruption, to invisible nature.

Continuous beginning, and a challenge to

the established order, it reveals its

clandestine causality.   

Fig. 21 Emanuela Fiorelli, Basic box 6, lateral vision, 60 × 60 × 14 cm, plexiglass, elastic thread,
2019

Fig. 22 Emanuela Fiorelli, Basic box 6, Covid effect



The Multivalent Fourth Dimension
and the Impact of Claude Bragdon’s
A Primer of Higher Space on Twentieth
and Twenty-First Century Art

Linda Dalrymple Henderson

After German Expressionist painter Max Beckmann fled Germany to escape the
Nazis in 1937, he gave a lecture in London in 1938, titled “On My Painting.”
This was an important first appearance of Beckmann outside Nazi Germany, and he
sought from the start to emphasize that his paintings did not engage national politics.
“. . . I would like to emphasize that I have never been politically active in any way,”
Beckmann declared at the start [1]. The international concept on which he drew
to characterize his painting, instead, was the “fourth dimension:” “To transform
height, width, and depth into two dimensions is for me an experience full of magic
in which I glimpse for a moment that fourth dimension which my whole being is
seeking.” [2] A few paragraphs earlier, he had noted his focus on imagination, space,
and transcendence: “My dream is the imagination of space—to change the optical
impression of the world of objects by a transcendental arithmetic progression of the
inner being.” “I am seeking the bridge that leads from the visible to the invisible . .
. ,” he asserted [3].

Although Beckmann’s expressive figurative paintings remained rooted in the
visual world, transcending the visible had been a central goal of many earlier
twentieth-century painters, including the French Cubists and abstract painters such
as František Kupka, Kazimir Malevich, and, as we shall see, Hilma af Klint [4]. For
these artists, a possible higher dimension of space functioned as a sign of a truer
reality, liberating them from allegiance to the visible world. In declaring his interest
in the fourth dimension, Beckmann clearly sought to align himself with modern
European painting. Yet, in 1938 his allusion also risked misunderstanding, because
of the almost overnight rise to prominence of Einstein and Relativity Theory in
late 1919. That had occurred in the wake of critical proof of one of Einstein’s
postulates by an eclipse expedition that year. Since that point, the general public
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had heard increasingly of a fourth dimension defined not as space but as time in
a four-dimensional “space-time continuum.” [5] This potential confusion would
persist through much of the twentieth century and into the twenty-first: was the
term “fourth dimension” referring to the earlier concept of space or to Relativity
Theory’s time?

It has been 50 years since the first scholarly historical study of the “fourth
dimension” and art began, in sources such as my own 1971 essay, “A New Facet of
Cubism: ‘The Fourth Dimension’ and ‘Non-Euclidean Geometry’ Reinterpreted.”
[6] My graduate student research had been triggered by my adviser Robert L.
Herbert’s curiosity about articles from the 1940s and 1950s propounding a supposed
connection between Cubism and Relativity or Picasso and Einstein. This “Cubism-
Relativity myth,” as I subsequently termed it, was widely cited in literature until
scholarship beginning in the 1970s began to counter that error; unfortunately, one
still finds such ideas in survey textbooks, for example [7]. Surveying the topic in
popular journals and books from the 1880s to ca. 1920, however, establishes imme-
diately that the focus of the international fascination with the “Fourth Dimension”
(as it was often written), was on a spatial realm that suggested a truer, invisible
reality [8].

Of the books, I encountered in 1970 as I began my research, one of the most
useful was Claude Bragdon’s A Primer of Higher Space (The Fourth Dimension)
of 1913 (Figs. 1, 2, 4, and 9). Bragdon (1866–1946), an architect and designer in
Rochester, New York, had gathered everything he could find on the popular fourth
dimension, including from Europe, and published the book through his own Manas
Press [9]. In the Primer Bragdon created a compendium of 30 beautiful, hand-
drawn plates setting forth ways of understanding a higher spatial dimension (e.g.,
Fig. 1), preceded by an introductory text that argued for the “reasonableness of
the higher space hypothesis” and linked it to the idealist philosophical tradition,
among other touchstones [10]. At that moment in 1970, however, I could never
have imagined what a widespread cultural impact the Primer had had and would
continue to have beyond the twentieth century. My 1975 dissertation and 1983 book
The Fourth Dimension and Non-Euclidean Geometry in Modern Art established
Bragdon’s impact in New York on figures such as painter Francis Picabia (and,
undoubtedly, the latter’s friend Marcel Duchamp), the inventor of the “Clavilux”
Thomas Wilfred, and designers Norman Bel Geddes and Buckminster Fuller [11].
Most importantly, as summarized below, it proposed Bragdon’s importance for the
Russian mystic philosopher P. D. Ouspensky and the Russian Suprematist painter
Malevich [12].

Bragdon’s national and international impact, however, was much broader than
this, as I have since discovered. His effect upon a number of prominent artists
establishes his centrality to the history of art and the fourth dimension in the
twentieth century and beyond. With its unprecedented, boldly designed plates, Brag-
don’s 1913 Primer of Higher Space initially introduced the idea to a wide public,
spreading it internationally [13]. In subsequent decades, the Primer would serve as
a conceptual anchor for the spatial fourth dimension in culture—to be rediscovered
periodically and stimulate artists to explore what seemed an increasingly historical
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Fig. 1 Claude Bragdon, A Primer of Higher Space (The Fourth Dimension) (Rochester, NY: The
Manas Press, 1913), pl. 1



124 L. D. Henderson

Fig. 2 Bragdon, A Primer of Higher Space, pl. 19
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idea. With the emergence of computer graphics and string theory in physics in the
1970s and 1980s, however, a gradual cultural revival of higher spatial dimensions
commenced and interest in Bragdon’s book began to grow [14]. The Primer was
first reprinted in 1972 in Tucson, Arizona, in an unauthorized edition that did not
acknowledge Bragdon’s Manas Press as the publisher [15]. Gradually, more reprint
editions have become available, culminating in the artist Tauba Auerbach’s homages
to Bragdon in the 2016 Diagonal Press editions of A Primer of Higher Space and
his 1915 Projective Ornament discussed below.

Bragdon was a member of the Theosophical Society, so prominent in this
period, and his collecting of international information for the book as well as
its international impact owed a debt to the Society [16]. Following upon the
first figure to develop the philosophical implications of the fourth dimension, the
Englishman Charles Howard Hinton in the 1880s, Theosophist C. W. Leadbeater
had embraced the fourth dimension to argue both for the experience of clairvoyance
and for the Theosophical doctrine of the “astral plane” as interpenetrating other
levels of existence [17]. Bragdon was an active distributor of his Manas Press
publications, and in addition to major bookstores and individuals, he sent his books
to Theosophical Society offices in Europe as well as to individual Theosophists such
as Leadbeater and Rudolf Steiner [18]. Although a specific Bragdon connection to
Beckmann is not known, the German painter, too, was involved in Theosophy and
might well have encountered Bragdon’s books in that context. However, as we shall
see, Bragdon’s impact is quite certain now for numerous additional artists, including
Johannes Itten (and his friend Wassily Kandinsky) at the German Bauhaus, Swedish
abstract pioneer Hilma af Klint in Stockholm, artists Peter Forakis and Robert
Smithson in 1960s New York, and, most recently, contemporary New York artist
Tauba Auerbach.

As Bragdon’s involvement with Theosophy demonstrates, the geometrical fourth
dimension had acquired a variety of associations, becoming a truly multivalent
term. Beyond its roots in the development of geometries of higher dimensions in
the 1870s, the “fourth dimension” was soon linked to idealist philosophy (Plato’s
world of ideas and Kant “thing-in-itself”), the magical spiritualism of German
astronomer J. C. F. Zöllner, the Christian conception of Heaven, the evolution of
consciousness, the Romantic pursuit of infinity, and science fiction [19]. As noted
above, the most radical change in understanding of the term occurred around 1920
with the redefinition of the fourth dimension as time in the four-dimensional space-
continuum of Einstein’s General Theory of Relativity. Hermann Minkowski had
proposed that structure for Einstein’s theory in 1908, but, significantly, laypersons
did not hear of that redefinition until after November 1919. Indeed, early popular
explications of Relativity Theory drew heavily on the spatial fourth dimension to
elucidate the concept of dimensionality [20].

After 1920 and for much of the twentieth century, any scientific associations
of the term “fourth dimension” were with Relativity Theory and space-time. Yet
in the late nineteenth and early twentieth century, the fourth dimension of space
was indeed associated with other aspects of science—specifically the X-ray [21].
Wilhelm Roentgen’s discovery of X-rays in 1895 had established the limited nature



126 L. D. Henderson

of human vision, which perceives only the narrow band of visible light in the much
vaster spectrum of electromagnetic waves. More than I realized in the 1970s, the
discovery of the X-ray provided critical support for continued cultural interest in
a fourth spatial dimension, since after that point no one could deny the possible
existence of a higher dimension simply because it could not be seen. Bragdon
illustrated the X-ray/fourth dimension link in his 1913 Primer of Higher Space,
suggesting that four-dimensional vision could explain clairvoyance, allowing an
individual’s vision to penetrate three-dimensional objects just like an X-ray (Fig. 2).

Examining plates from the daybook of German Bauhaus teacher Johannes Itten
in 1920 (Fig. 3), it is clear that Itten had a copy of Bragdon’s Primer of Higher
Space in hand by that year. In contrast to Berlin, whose resident Einstein was
the talk of the city, Weimar offered Itten, a member of the mystical Mazdaznan
sect, a remote place to explore Bragdon’s plates, including his illustration of X-ray
clairvoyance (Fig. 2). In several drawings, Itten responded to aspects of Bragdon’s
book, including the planes produced as cross-sections of three-dimensional cubes
intersecting a plane (Fig. 3, center; Fig. 4) [22]. The plane within the cube at
the center of Fig. 3 derives directly from Bragdon’s parable Man the Square, first
published in 1912 and reprinted in the Primer [23]. In that tale a “Christos” cube
unfolds down into the plane to illustrate the unity of individual squares who focus
on their differences only because they are skewed in their relation to the plane (as
in Fig. 4). Bragdon’s Man the Square source image, labeled “THE ARCHETYPAL
WORLD [The Cube] AND THE PHENOMENAL WORLD [The Square],” along
with the Primer’s introductory text, made clear the effectiveness of dimensional
difference as a means to contemplate spiritual or idealist philosophical concerns. In
the context of the enthusiasm for Einstein and a temporal fourth dimension during
the 1920s, most often expressed by incorporating time in kinetic art, Bragdon’s
Primer now took on a new role as a record of the pre-World War I era and its
utopian visions of higher realities, helping to preserve the spatial fourth dimension
[24].

Given their similar worldviews, it is highly likely that Itten would have shared
his copy of the Primer with fellow faculty member Wassily Kandinsky [25]. The
Russian-born Kandinsky, working in Munich before World War I, had been deeply
interested in Theosophy and especially the Christian-oriented Theosophist (later
Anthroposophist) Rudolf Steiner, to whom Bragdon had sent book copies [26]. In
the prewar period, Kandinsky had studiously avoided any reference to the fourth
dimension in his writings, including On the Spiritual in Art (1911), since he had
roundly rejected French Cubism with its pursuit of a geometrical fourth dimension
[27]. Kandinsky’s developing abstraction of the prewar period had been highly
organic and used hidden images of the Apocalypse to help sensitize viewers and
prepare them for a future spiritual epoch. He hoped to transform individuals by his
paintings’ creation of vibrations in the souls of his viewers [28]. After returning
to Russia during the World War I, he had encountered the new geometric style
of Malevich and the Russian avant-garde (e.g., Fig. 5). By the time he joined the
Bauhaus faculty in early 1922, he had embraced geometric forms while maintaining
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Fig. 3 Johannes Itten, “Tempelherrenhaus” Tagebuch, 1920, p. 131. Ink on paper. Kunstmuseum,
Bern, Johannes Itten-Stiftung, Bern, Gift of Anneliese Itten, Zurich

his idealistic goal of communicating meaning to a viewer through form and color
[29].

Kandinsky’s attitude toward the “fourth dimension” changed during the 1920s as
well. When the young Hungarian artist László Moholy-Nagy replaced Itten in 1923,
the new world of space-time arrived at the Bauhaus, with Moholy championing
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Fig. 4 Bragdon, A Primer of Higher Space, pl. 30
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Fig. 5 Kazimir Malevich’s Multicolored Suprematist Works at the “0.10” Exhibition, St. Peters-
burg, December 1915

kinetic art as the appropriate expression of a new temporal fourth dimension [30].
This is the context in which we can better understand Kandinsky’s positive 1930
reference to the fourth dimension in a letter to art historian Will Grohmann. There
he wrote, “The circle . . . is the synthesis of the greatest oppositions. It combines
the concentric and the excentric in a single form, and in equilibrium. Of the
three primary forms [triangle, square, circle], it points most clearly to the fourth
dimension.” [31] It may well have been Bragdon’s discussion of the concept’s
philosophical dimensions—so sympathetic to Kandinsky’s own views—that helped
transform his thinking on the subject in the face of Relativity Theory and space-
time. His 1930 comment to Grohmann suggests that Kandinsky had come to see the
earlier spatial fourth dimension as the sign of transcendent meaning it represented
for so many artists, including Malevich and the remarkable Swedish painter Hilma
af Klint (Fig. 6).

As noted earlier, in the 1970s, I suggested a connection to Bragdon’s illustrations,
such as Fig. 4, for Malevich, the Russian creator of “Suprematism,” first shown
in December 1915 (Fig. 5) [32]. Malevich use of subtitles such as “Color Masses
in the Second Dimension” and “Color Masses in the Fourth Dimension” for his
paintings documents the centrality of the spatial fourth dimension to his style.
Russian mystical philosopher P. D. Ouspensky, author of The Fourth Dimension
(1909) and Tertium Organum (1911) and advocate of four-dimensional “cosmic
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Fig. 6 Hilma af Klint, The
Swan, No. 9, Group IX, The
SUW/UW Series, Oil on
canvas. 1915. By courtesy of
the Hilma af Klint
Foundation, Stockholm

consciousness,” was a crucial source for the Russian avant-garde, including Male-
vich. Ouspensky extensively summarized Hinton’s writings, which had initially set
forth the analogy of three-dimensional objects passing through a plane as a means
to reason about higher dimensions [33]. Malevich could certainly have derived the
idea of geometric forms that appear to leave traces in a plane or float in multicolored
spatial configurations simply from his reading of Ouspensky/Hinton. However,
Ouspensky later recorded that Bragdon’s Man the Square had reached him in St.
Petersburg several years earlier, and it is possible that members of the avant-garde
also saw Bragdon’s powerfully geometric plates [34]. Ouspensky had also been
associated with Theosophy, and, once again, that network may have played a role
in getting the book to St. Petersburg. Bragdon would later assist in the English
translation and publication of Tertium Organum—first by his Manas Press in 1920
and then by Alfred A. Knopf in 1922. By the 1960s, Ouspensky’s book would play
a role similar to that of the Primer in reigniting artistic interest in the spatial fourth
dimension, as discussed below.

It is appropriate to consider Hilma af Klint (Fig. 6) in proximity to both
Kandinsky and Malevich, since, beginning with her first major retrospective in
2013, she has been discussed widely as a pioneer of abstract painting missing
from the history of art. Critics have been mystified as to how af Klint could have
developed her abstract style, working largely in isolation in Stockholm and never
having traveled to Paris or encountered avant-garde art theory. Yet, af Klint actually
serves as an effective demonstration of the way in which circulating journals and
books spread new ideas from science and occultism, such as the fourth dimension,
X-rays, spiritualism and Theosophy (she was involved in both), and the ideas of the
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Swedish mystic Emanuel Swedenborg [35]. The latter had been a key inspiration
for the French Symbolists’ and avant-garde painters’ interest in “correspondences”
between a higher, true reality and its signs or shadows in our world. These were
ideas being discussed in various international capitals, but af Klint did not need
to travel to find them. As noted earlier, in the textual introduction to Bragdon’s
Primer, in addition to the fourth dimension, she would have encountered idealist
philosophy, Swedenborg, and the idea of a “movable threshold of sensibility” of
highly influential German writer Carl du Prel, whom both af Klint and Kandinsky
read [36]. Af Klint also shared with Kandinsky a deep interest in the ideas of Steiner.
(Af Klint, Bragdon, Kandinsky, and Steiner were of the same generation—all born
in the 1860s.) Af Klint attended Steiner’s Stockholm lectures in April 1912, and he
may have introduced her to Bragdon’s publications in that context, in addition to
Bragdon’s having sent copies to international Theosophical Society offices. In his
lectures beginning in 1905, Steiner had regularly invoked Hinton and his method
for acquiring knowledge of four-dimensional space via the study of blocks of
multicolored cubes as a model for Theosophists working to gain knowledge of the
astral world. [37]

The af Klint paintings that have been celebrated for their early abstract language
are from her series of “Paintings for the Temple,” which commenced in 1906,
when she believed she had received a commission from one of the “High Masters”
of her spiritualist circle [38]. “The Ten Largest” of these paintings (1907) are
wall-sized paintings on paper that strongly reflect the Swedish decorative arts and
motifs derived from nature [39]. When af Klint resumed work on the Temple
paintings in 1912, after a four-year hiatus, her style began to evolve toward the
geometric form language she would adopt wholeheartedly in 1915 (Fig. 6). A key
stimulus for her new language was undoubtedly Bragdon’s Primer, which offered
a model of beautifully drawn plates using isometrically projected cubes and bold
visual contrasts between black and white [40]. Af Klint was deeply committed to
overcoming the duality between matter/spirit and male/female, and the concept of
a spatial fourth dimension itself—with its association with the astral plane where
dualities could be transcended—would have had a particular appeal. Thus, in the
course of her series The Swan, the paintings progress from the juxtaposition of
a female swan above (symbolized by blue) and a male swan below (symbolized
by yellow) to her restatement of the theme in her tumbling isometric, color-coded
cubes that unite on a circular plane suggestive of ether vibrations, another of her,
Bragdon’s, and Kandinsky’s interests [41].

With the popularization of Einstein and space-time, starting in 1920, Steiner
began to receive questions about this change in his lectures discussing the fourth
dimension [42]. The same was true for Bragdon, who, in publications of the 1920s,
had to acknowledge Einstein and slightly adjust his discussions of the spatial fourth
dimension, to which he remained true nonetheless [43]. Artists who had been deeply
engaged with the spatial fourth dimension, such as Duchamp, felt this challenge
especially keenly. Four-dimensional space had been a central theme in his project
The Bride Stripped Bare by her Bachelors, Even (1915–23), for which he had made
hundreds of notes beginning in 1912. It is little wonder that, while he published a
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major group of notes in his Green Box of 1934, he did not release his notes relating
to the fourth dimension until 1967, when he could observe the topic coming back
into culture [44].

At the same time in the 1960s that Duchamp sensed a renewal of interest in
the spatial fourth dimension, driven in part by Martin Gardner’s “Mathematical
Games” columns in Scientific American, space-time rhetoric in the art world reached
a high point in Robert Delevoy’s book Dimensions of the Twentieth Century of
1965. Delevoy presents a history of the century’s art in which any remnant of a
spatial fourth dimension is eradicated, and all is transformed into the “space-time
dimension” or the “movement dimension.” [45] Delevoy was echoing Moholy-
Nagy’s highly influential book Vision in Motion (1947), which also focused on
space-time, but also argued for the societal need to incorporate the new integrated
relationship of space and time into one’s thinking as well as into art [46]. Given the
dominance of this language, for artists in this period to discover the earlier, largely
forgotten spatial fourth dimension was like encountering some kind of ancient
wisdom.

That happened for sculptor Peter Forakis in 1957 when he found in a book sale at
the California School of Fine Arts copies of Bragdon’s The Frozen Fountain (1932)
and Ouspensky’s Tertium Organum [47]. If Ouspensky’s Tertium Organum offered
a method for pursuing higher consciousness, it was Bragdon’s visual language in the
Frozen Fountain, echoing the Primer of Higher Space (Fig. 7), that was critical for
Forakis’s subsequent development as a sculptor. In Hyper-Cube of 1967 (Fig. 8),

Fig. 7 Claude Bragdon, The Frozen Fountain (New York: Alfred A. Knopf, 1932), Fig. 66
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Fig. 8 Peter Forakis, Hyper-Cube, 1967. Aluminum, 35–7/8 × 36–7/16 × 36–1/8 in. overall.
Walker Art Center Minneapolis, donation of Virginia Dwan, 1985

he responded directly to Bragdon’s isometric projection of the four-dimensional
hypercube in The Frozen Fountain [ 48]. Here Forakis physically modeled the three-
dimensional “shadow” of the hypercube, incorporating the four interconnecting
pairs of bounding cubes that make up Bragdon’s figure and that he illustrates to
its right. At the cooperative Park Place Gallery operated by Forakis and nine other
artist friends between 1963 and 1967 in New York, the spatial fourth dimension
became a central theme. The 10 artists approached the multivalent fourth dimension
in different ways, ranging from Forakis’s geometry and Dean Fleming’s pursuit of
higher, four-dimensional consciousness to Mark di Suvero’s adulation of Einstein
and space-time [49]. Not surprisingly, Park Place audiences were often confused by
their discussions of the “4D,” as they termed it, since the public was still largely
unaware of the spatial fourth dimension so central to the group.

In 1962 Robert Smithson, a friend of the Park Place artists, had strongly critiqued
a “Fourth Dimension” he associated Einsteinian space-time and kinetic art [50]. By
1965, however, Smithson had discovered a completely different fourth dimension—
involving geometry and space—which now seemed fresh, iconoclastic, and relevant
to contemporary art. Crucial sources for Smithson’s discovery were Martin Gard-
ner’s Scientific American columns as well as his 1964 book The Ambidextrous
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Universe, which centered on the issue of mirror symmetry or chirality. That theme,
embodied in left- and right-handed spiral growth in plants and in crystals, had
been discussed widely in the early twentieth century to argue for the existence of a
higher dimensional space. Rotation in a fourth dimension would be necessary, for
example, to turn a right hand into a left hand. Bragdon had treated mirror symmetry
in the Primer of Higher Space (Fig. 9), and Gardner in his Ambidextrous Universe
chapter on “The Fourth Dimension” adapted Bragdon’s symmetrical crystals at the
base of Fig. 9. Smithson actually cut that illustration out of his copy of Gardner’s
book and used it as the basic schema for his Enantiomorphic Chambers of 1965
(Fig. 10; now lost) [51]. Composed of two 34-inch-square mirror images, with blue
steel frames holding fluorescent green panels, these structures also contain mirrors
within, with which Smithson consciously subverted the normal process of vision
and its association with three-dimensional space and perspective.

Smithson also employed complex mirror reflections in his various Mirror Vortex
sculptures in 1965 [52]. And in his subsequent works juxtaposing mirrors and
rocks in the later 1960s, such as his 1969 Chalk-Mirror Displacement (Art Institute
of Chicago), the artist provided further cogent demonstrations of the theme of
right- and left-handed symmetry and its dimensional overtones. Finally, Smithson’s
devotion to the spiral at various scales is embodied in his 1970 earthwork Spiral
Jetty and his related film that traverses the scale of spirals from salt crystal growth
to spiral nebulae. The notations in his notebook “The Metamorphosis of the Spiral,”
discovered after his death, make clear that for Smithson the spiral carried strong
higher dimensional associations, which Bragdon had also emphasized in the Primer
of Higher Space [53].

Bragdon’s most enthusiastic and discerning advocate at present is the artist and
designer Tauba Auerbach, whose commitment to making his ideas and images better
known resulted in the Diagonal Press editions of the Primer and his 1915 Projective
Ornament in 2016. Auerbach had responded forcefully to Bragdon’s books upon
discovering them in 2011:

I was preoccupied with the notion of higher spatial dimensions and had read, watched,
listened to, ingested, and generally exposed myself to whatever I thought might bring me
into closer contact with the dimensions(s) running perpendicular to these three. Other texts,
drawings, and videos on the matter had long ago won my mind, but Bragdon’s book won my
heart. He writes about geometry in terms of humanity and spirit, and we share in speculating
about a connection between consciousness and higher space [54].

In the last decade, Auerbach has developed an art practice devoted to exploring
dimensionality and “incorporating another dimension into my spatial sense.” [55]
Like Bragdon in his advocacy of four-dimensional“projective ornament,” the artist
is deeply interested in ornament, which “evoke[s] essential natural structures—the
wave, the vortex, the helix; and gestures—oscillation and spin; and . . . exist[s] at
every scale, even deeply inside of us.” [56] Auerbach has extended Bragdon’s study
of higher dimensional ornament in a book titled A Partial Taxonomy of Periodic
Linear Ornament—Both Established and Original—Arranged by Shape, Symmetry,
Dimension, Projection and Interation [57]. Figure 11, a “square wave extruded
twice, once into the third dimension and again into the fourth,” is grounded in
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Fig. 9 Bragdon, A Primer of Higher Space, pl. 8
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Fig. 10 Robert Smithson, Enantiomorphic Chambers, 1965. Painted steel and mirrors,
24 × 30 × 31 in. Now lost. © Holt/Smithson Foundation / Licensed by VAGA at Artists Rights
Society (ARS), NY

Fig. 11 Tauba Auerbach, “Square wave extruded twice, once into the third dimension and again
into the fourth” from back cover of Bragdon, A Primer of Higher Space (1916 Diagonal Press ed.).
Photo: Steven Probert
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Fig. 12 Tauba Auerbach, The New Ambidextrous Universe III, 2014. Aluminum and plywood,
98 × 46 × 1–1/2 in. San Francisco Museum of Modern Art, gift of David Schrader. © Tauba
Auerbach. Photo: Paul Knight

Bragdon’s isometric projection of the four-dimensional hypercube but developed
here as a continuous wave. As A Partial Taxonomy explains, “a helix drawn in two
dimensions looks like a wave,” and thus “all of the ornaments in this book can be
seen as flattened, elaborate helixes, if you allow for their varied pitches.” [58]

Auerbach’s commitment to the helix/spiral and symmetry, essential aspects of
Bragdon’s Primer (Fig. 9), led to the discovery of Martin Gardner’s The New
Ambidextrous Universe of 1990, which is now subtitled “Symmetry and Asymmetry
from Mirror Reflections to Superstrings.” [59] In response, Auerbach made a
series of wooden sculptures titled The New Ambidextrous Universe in 2013–14
(Fig. 12). The sculptures were generated by programming an irregularly drawn line
into a waterjet and then slicing a plywood sheet into narrow, irregularly curved
strips. Reassembling the strips in reverse order produced an object that is a kind
of mirror reversal of itself, as if it had been turned through a fourth dimension.
Just as for Smithson in the 1960s, Auerbach 50 years later found in Gardner’s
book stimulation to explore a theme that had first been widely promulgated by
Bragdon. In Auerbach’s case, with the emergence and development of string
theory and new cosmologies involving higher dimensions and symmetry, the artist’s
explorations parallel scientific developments in contrast to Smithson’s “counter-
discourse” versus the temporal fourth dimension of Einstein [60].

Claude Bragdon was the first advocate of the spatial fourth dimension to give
striking geometrical form to ideas circulating about the highly popular concept
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during its heyday from the 1880s to ca. 1920. His Primer of Higher Space stood
in stark contrast to a design world still filled with the organic, curvilinear form
languages descended from Art Nouveau. Bragdon’s volume was prescient: painting
would move toward geometry in the wake of Cubism, and by the 1920s geometry
and modernism were practically synonymous in both painting and architecture.
In architecture, however, it was not the four-dimensional geometrical “projective
ornament” Bragdon had proposed, but the stripped-down pure geometry that would
come to be known as the International Style. That shift would sideline Bragdon‘s
architecture career, although happily his work is now being reevaluated. But his
Primer, more than he could have imagined, would assure the currency of his ideas on
the fourth dimension and contribute significantly to its continued relevance nearly
100 and 10 years later.
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“Where Natural Law Holds No Sway”:
Geometrical Optics and Divine Light
in Dante, Michelangelo, and Raphael

Martin Kemp

The revolution of optics in Renaissance art, which set geometrical and physical
reality as the goal for the learned artist, brought in its train a severe difficulty. If
all the visual resources of pigmentary tone and colour were wholly devoted to the
portrayal of naturalistic light and space, what was left for the evocation of divine
light [1].1 How, for instance, was the Transfiguration of Christ to be rendered?

The face of Christ did shine as the sun, and his raiment was white as the light. And, behold,
there appeared unto them Moses and Elias talking with him. Then answered Peter, and said
unto Jesus, Lord, it is good for us to be here ... While he yet spake, behold, a bright cloud
overshadowed them: and behold a voice out of the cloud, which said, this is my beloved
Son, in whom I am well pleased; hear ye him.2 ([2], Matthew 17:2–5).

In Early Christian, Byzantine, and mediaeval art, the passage of light could be
described in literal terms as visible rays, and actual gold was used to designate the
ineffable radiance of heavenly realms and divine apparitions. The Sanai mosaic is a
splendid early example (Fig. 1).

During the course of the fifteenth century, above all in Renaissance Florence,
the recourse to actual gold was progressively excluded from the tool-kit of painters
who aspired to create a new kind of naturalism founded upon the geometry of light.
Alberti’s pioneering little book On Painting set the tone.

1 This is the central question in [1].
2 Mark, 9:3 adds, “And his raiment became shining, exceeding white as snow; so as no fuller on
earth can white them” [2].
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Fig. 1 The Transfiguration of Christ, mosaic, sixth century, Church of The Monastery of Saint
Catherine, Sinai © St. Catherine’s Monastery at Mt Sinai, by kind permission

There are some who make excessive use of gold, because they think it lends a certain
majesty to painting. I would not praise them at all. Even if I wanted to paint Virgil’s Dido
with her quiver of gold, her hair tied up in gold, her gown fastened with a golden clasp,
driving her chariot with golden reins, and everything else resplendent with gold, I would
try to represent with colour rather than with gold this wealth of rays that strike the eyes of
spectators from all angles [3].

A writer has no such problem. A poet can write effectively of the gleam of gold,
of the passage of a light ray, or of the kind of blinding effluence that typically
accompanies miracles, and we can envisage them in our mind’s eye. Virgil and
Dante are not limited by the painter’s material pigments.

1 Dante and the Limits of Optics

The greatest master of divine light in poetry was Dante. His canticle Paradiso, the
third great book of his Divina Commedia from the early fourteenth century, contains
dazzling accounts of divine radiance that lies beyond the normal range of our sense
of sight. Yet, Dante expressed a keen adherence to optical science, perspectiva. His
understanding of optics was superior to Alberti’s and only surpassed in the arts by
Leonardo’s accounts of how light could be seen and should be rendered.

The clearest testimony of Dante’s engagement with optical science occurs in the
commentaries he provided on the poems in his Convivio (Banquet), written shortly
after 1300. He was well aware of the highly developed science of light in mediaeval
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philosophy, which was founded upon ancient authors, most notably Euclid and
Ptolemy. He also drew extensively upon sophisticated Islamic optics, exemplified
by Ibn al-Haytham (Alhazen) and transmitted by theologians such as Roger Bacon
and John Pecham [4, 5]. Dante was by no means aspiring to be an authority on
perspectiva as such, but he was sufficiently well informed to exploit the prestigious
science to full effect in the service of his majestic narrative.

Of the sciences of observable nature, geometrical optics was the most perfect in
Dante’s eyes, while at the same time testifying to its own finite limits.

As Euclid says, the point is the beginning of this [geometry], and, as he says, the circle is its
most perfect figure, which must therefore be adopted as its end. As between its beginning
and end, geometry moves between the point and the circle and these two are inimical to
certainty; for the point in itself cannot be measured because of its indivisibility, and it
is impossible to square the circle perfectly because of its curvature, and so it cannot be
measured precisely. Geometry is furthermore the most inviolate [most white] in that it is
without the stain of error and is most certain both in itself and in its handmaid, which is
called perspettiva ([6], Convivio, II, xii, 26–27).

Even something as perfect and rational as Euclidian geometry has ineffable
unknowns at its heart.

In the Convivio he was much concerned with the geometrical working of the eye,
describing its internal structure in a way that simplifies the complex accounts in the
standard literature.

The passage that the visible ‘form’ makes through this medium [air] is completed in the
water within the pupil of the eye, because that water has a boundary—almost like a mirror,
which is glass backed by lead—so that it cannot pass any further but is arrested there like
a ball that is stopped when it strikes something, so that the ‘form’, which cannot be seen
in the transparent medium, now appears lucid and defined. This is why an image is seen in
leaded glass, and not in any other glass. The visual spirit, which passes from the pupil to the
front of the brain where is the sensitive power, and where it is represented without passage
of time, and thus we see it ([6], Convivio, III, ix, 7–9).

The “form” that comprises the image passes through the air in an immaterial
manner.

Lacking any sense of the lens (crystalline humour) as a focusing device, the
philosophers needed to explain how the eye could sort out the diverse bombardment
of the eye by a multitude of rays at varied angles. They generally adopted the
solution proposed by al-Haytham:

Only one among all the points confronting the eye, which have simultaneously arrived at
that point on the surface of the eye, will have travelled along the perpendicular to that
point on the eye’s surface, while the forms of all the other points reach that point along
the eye’s surface along inclined lines ... Only the form of a single point among all of them
will rectilinearly pass through the transparency of the eye’s coats, namely the point at the
extremity of the perpendicular drawn to that point on the eye’s surface ([7], De Aspectibus
I, 6, 20).

With characteristic ingenuity, Dante identifies the key perpendicular ray (Al-
berti’s “Prince of rays”) with the direct course of the arrow that Cupid fires into
the lovers’ eyes and thence into their heart.
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It should be known that although many things can enter the eye at the same time, it is true
that whatever enters along a straight line into the centre of the pupil is truly seen and is the
only one that imprints itself upon the imagination. This is because the nerve along which
the visual spirit runs is orientated to this part. And therefore one eye cannot really look into
another eye unless it is seen by it, just as the one who aims their sight receives the form
in the pupil along a straight line, so along that same line its own form departs into the one
it aims at; and many times along the extension of this line is discharged the bow of him
[Cupid] against whom all weapons are feeble ([6], Convivio, II, ix, 4–5).

Alongside such optical felicities, Dante’s Convivio also introduces us to what
becomes a dominant visual theme in Paradiso, namely the overwhelming of our eyes
by light of such brilliance that it becomes unseeable. The ineffable visual delights
of his beloved lady, Beatrice, act in a similar manner.

In her countenance appear such things
As exhibit a part of the joy of Paradise.
I mean in her eyes and in her sweet smile,
For here Love bears them as if to his lair.
They overwhelm our intellect,
As a ray of sunlight does weak vision ([6], Convivio III, canzone 2).

In his commentary, he explains that

Here we must understand that in a certain way these things dazzle our intellect, in as much
as certain things are affirmed to exist which our intellect cannot observe, that is to say God,
eternity, and primal matter, things which most certainly are known to exist and are with full
faith believed to exist. But given the nature of their essence we cannot understand them ([6],
Convivio, III, xv, 8).

The mediaeval texts all stress that certain visual phenomena lie outside the reach
of our “weak vision” This is true above all of extreme brightness, which causes pain
in the eye, an observation that provided one of the main arguments for the theory
that the eye operates though intromission of light rays into the eye rather than the
extramission of “seeing rays” from the eye.

Repeatedly in Paradiso, as the poet journeys miraculously with Beatrice through
the heavenly spheres towards the ultimate bliss, his sight is repeatedly dazzled and
fails over greater or lesser periods of time. This is foreshadowed more than once in
Purgatorio:

... I felt weighing on my forehead
A splendour much greater than before
...
So that I raised my hand to the top
Of my eyes and made myself a shield from the sun’s rays,
To scrape away the visual superfluity.
As when from water, or from a mirror,
A ray of light jumps to the opposite part.
Rising in a manner equivalent
To that of its descent, just as the line
Of a falling stone deviates at equal angles;
As is demonstrated by experience and mathematics;
So it seemed that the light which struck me
Was reflected from in front of me;
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And therefore my sight was quick fly from it ([6], Purgatorio, XV, 10–24).

The terrestrial law of reflection is cited but has no explanatory value outside the
earthly context, and he cannot ward off the blinding rays by shading his eyes.

Near the beginning of Paradiso, he draws picturesquely upon the legend of
the eagle in the mediaeval bestiary. Alone of creatures, the eagle could stare
unwaveringly at the radiant sun.

Beatrice had to her left flank
Turned round to look at the sun:
An eagle never looked at it more steadily.
And as the second ray always issues
And rebounds from where their first ray struck,
just like a pilgrim who wishes to return,
So from her action, infused into my eyes
By my imagination, my action was enabled,
And I fixed my eyes on the sun
other than as we can do. ([6], Paradiso, I, 46–54)

While the celestial voyagers are in the heaven of the moon, discussing the moon’s
mottled appearance, Beatrice insists that Dante’s learned optics simply does not
apply in heaven. She dismisses the value of earth-bound “experiment [esperienza]
... which is the only source for the streams of your learned disciplines [arti] ([6],
Paradiso, II, 94–6).3

In Canto XXX, he presents an ecstatic account of celestial light in the vision of
the sempiternal rose, the vast luminous flower of petal thrones that accommodate
the spirits of the blessed. It is literally like nothing on earth, but Dante has been
miraculously granted the privilege to surpass his normal sensory limits.

O splendour of God, through which I saw
The exalted triumph of the true kingdom,
Grant me the power to say how I saw it!
The light up there renders visible
The creator of that creature
Who only finds peace in seeing him.
...
So, rising above the light and all around it,
I saw it mirrored in more than a thousand tiers
the numbers of us who had returned on high.
And if the lowest tier encloses
So great a light, what is the full size
of this rose extending to its furthest petals?
My sight in breadth and height
Was not confounded, but took in
The full extent and nature of the jubilation.
Nearness and distance add nothing, take away nothing,
because where God governs without an intermediary
natural law holds no sway ([6], Paradiso, XXX, 25–133).

3 See [1], p. 40.
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As Dante moves towards the climactic end of Paradiso, experiencing an elusive
image of the Trinity, all his faculties are finally overwhelmed. Characteristically
his analogy is scientific. In his futile quest for ultimate understanding, he compares
himself to

. . . a geometer who sets himself
To measure the area of a circle, and, pondering,
Is unable to think of the rule he lacks ([6], Paradiso, XXXIII, 115–45).

2 Michelangelo and Raphael: Painted Light

A series of Renaissance painters invented various solutions for characterising light
in paintings that was other than strictly naturalistic ([1], Chap. 4). It was a Dantesque
non-naturalism that endowed the spiritual lights with properties that could be
identified as exceptional either in source or in action or both. Here we will look
at just two artists who operated in very different ways, Michelangelo and Raphael.

Light for Michelangelo was not for the most part a separate agent but a servant
of sculptural form. Its independent performance in real life - in outdoor scenes,
townscapes, interiors, and portraits - was not his concern. Yet, he achieved two
masterpieces of divine light in narrative contexts. The first and most obvious is
the Separation of Light from Darkness in the first compartment of the vault in the
Sistine Chapel. Here, inspired by Genesis, God performs a separation that is both in
his mind and a plastic manipulation of light as a tangible substance.

God said, Let there be light: and there was light. And God saw the light, that it was good:
and God divided the light from the darkness. And God called the light Day, and the darkness
he called Night ([2], Genesis 1–5).

As if to stress that the light he is creating above his silhouetted head is a
spiritual concept rather than a naturalistic phenomenon, God’s body is illuminated
independently from below to display the expressive motions of his head, body, and
loosely draped limbs. It is noticeable in the next compartment in the ceiling that the
newly created sun and moon do not obviously radiate on the two hefty figures of
God flying across and into the vacant space (Fig. 2).

The other great manifestation of light in Michelangelo’s paintings also has a
narrative trigger.

On one of the side walls of the Capella Paolina, he shows the dramatic moment
when the sudden apparition of Christ with a great ray of light blasts Saul from his
horse.

And Saul, yet breathing out threatenings and slaughter against the disciples of the Lord ...
came near Damascus: and suddenly there shined round about him a light from heaven: And
he fell to the earth, and heard a voice saying unto him, Saul, Saul, why persecutest thou me?
And he said, Who art thou, Lord? And the Lord said, I am Jesus whom thou persecutest ...
And the men which journeyed with him, stood speechless, hearing a voice, but seeing no
man. And Saul arose from the earth, and when his eyes were opened, he saw no man: but
they led him by the hand, and brought him into Damascus ([2], Acts, 9:1–8).

http://dx.doi.org/10.1007/978-3-030-92690-8_4
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Fig. 2 Michelangelo, The Separation of Light from Darkness c. 1511–2, fresco, Rome, Vatican,
Sistine Chapel. Foto ©Governatorato SCV—Direzione dei musei, Tutti i diritti riservati

Michelangelo’s telling of the story is truly Dantesque. Not only has the surge
of golden light blinded Saul, but it also refuses to be obstructed physically by St.
Paul’s raised hand and it penetrates his closed eyelids. It is just as Dante narrated: “I
raised my hand to the top of my eyes and made myself a shield from the sun’s rays,
to scrape away the visual superfluity” - all in vain. Michelangelo was noted as an
interpreter of Dante and would have well understood that for divine light “natural
law holds no sway” (Fig. 3).
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Fig. 3 Michelangelo, The Conversion of St. Paul, 1536–41, Rome, Vatican, Pauline Chapel. Foto
©Governatorato SCV—Direzione dei musei, Tutti i diritti riservati

The pairing of Raphael and Dante is more unexpected. But the links are strong.
Raphael’s father, Giovanni Santi, an accomplished painter in Urbino, was also an
author, composing a substantial Cronaca rimata (Rhyming Chronicle) in honour of
Duke Federico da Montefeltro [8]. A contemporary referred improbably to Giovanni
as a second Dante. Giovanni died when his son was 11, but there is little doubt that a
seed had been sown. In Rome, Raphael drafted some love poems on his own account
(see [9], p. 249). Dante was conspicuously present in Raphael’s Parnassus (amongst
the poets) and in the Disputa (amongst the theologians) in the Stanza della Segnatura
in the Vatican. Dante is the only person to be honoured by two appearances.

Raphael, who was the supreme master of all-round naturalism in the early
sixteenth century, was also the great innovator in the portrayal of divine light. He de-
veloped a hugely effective way of transmuting cloud putto-heads into an amorphous
celestial glare that emulates the unseeable dazzle that Dante so brilliantly evokes
([1], pp. 114–120). We will see a later example of this.



“Where Natural Law Holds No Sway”: Geometrical Optics and Divine Light. . . 151

Fig. 4 Raphael, The Liberation of St Peter from Prison, fresco, 1514, Rome, Vatican, Stanza
d’Eliordoro, Foto © Governatorato SCV—Direzione dei musei, Tutti i diritti riservati

Here I am going to look at three narratives that present him with an opportunity
to juxtapose natural optics and divine radiance. The most varied and brilliant is the
Liberation of St. Peter in the Stanza del Eliodoro. Raphael responds very directly to
the Biblical account (Fig. 4).

Peter was sleeping between two soldiers, bound with two chains: and the keepers before the
door kept the prison. And, behold, the angel of the Lord came upon him, and a light shined
in the prison: and he smote Peter on the side, and raised him up, saying, Arise up quickly.
And his chains fell off from his hands. And the angel said unto him, Gird yourself and bind
on thy sandals. And so he did. And he saith unto him, Cast thy garment about thee, and
follow me. And he went out, and followed him; and wist not that it was true which was
done by the angel; but thought he saw a vision ([2], Acts 12:6–9).

To the left, Raphael masterfully describes three different sources of light: a
cloudy moon, the first glimmers of sunlight on the distant horizon, and a blazing
taper that plays games of reflection on the soldiers’ armour. The uppermost soldier
has seemingly been struck by a pulse of divine light that has escaped from the central
compartment. The severe prison cell above the actual window is a wondrous theatre
of light. The glare of the angel’s aura, set off by the dark bars of the grill, somehow
transcends the limits of material pigments. The light is not seen by the three other
protagonists. This is also true of the slumped soldiers to the right, while Peter,
although led to safety by the angel, appears bewildered by a visual experience that
lies outside his understanding—in keeping with the Biblical account and consistent
with Dante’s frequent bewilderment in Paradiso.
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The glare of cloud putto-heads, already exploited by Raphael on large scales in
frescoes and altarpieces, is most brilliantly realised in a notably small picture, The
Vision of Ezekiel. God is transported into our view with the angel the three animals
(eagle, lion, and ox) associated with the four Evangelists. The main protagonists,
with two smaller angels, are strongly modelled by directional light and silhouetted
against a spaceless radiance that again seems to transcend the brightest pigmentary
white. In the leafy background to the left a divergent shaft of celestial light strikes
a tiny ecstatic figure, presumably Ezekiel. Yet, we see the apparition as close to
us not to him. Or do we? The underside of the cloud platform which bears the
group aloft is actually behind the large tree in the distance. We may recall that the
rules of perspectival scale do not pertain in the zones of miraculous vision in the
Divina commedia. Raphael’s ravishing naturalism is in subtle dialogue with spatial
ambiguities that emerge when we look hard (Fig. 5).

The final example takes us back to our first Biblical episode, the Transfiguration.
Raphael’s last painting before his early death in 1520 was undertaken in implicit
competition with Michelangelo, who was assisting Sebastiano del Piombo with a
matching altarpiece of the Raising of Lazarus for the same patron, Giuliano de’
Medici [10]. Raphael has amplified the basic narrative with the dramatic tale of
what transpired when Christ was absent on the mountain. The remaining disciples
failed to cure a mad boy who had been brought to them by his distraught father. In
the lower half of the picture, the confused figures mill turbulently in the foreground,
systematically illuminated by a rather lurid natural light from the upper left. Above,
unseen by the disciples, Christ rises in an explosion of brilliant light. The flanking
prophets, Elias and Moses, are already spirits and can bear the blinding radiance,
while the three earthly disciples, Peter, James, and John, are forced to the ground
and unavailingly endeavour to fend off the unbearable light. There can be no more
potent juxtaposition of the logical optics of the terrestrial zone and the transcendent
illogicality of any aerial realm that Christ graces with his presence (Fig. 6).

From these Raphaelesque foundations arose the great Parma domes by Correggio
of the airborne Vision of Ezekiel and the heavenly Assumption of the Virgin, and
later the rapturous dome and vault illusions of Baroque Rome. By the seventeenth
century, Dante’s writing was more distantly involved with what the painters were
doing. The violation of optical law had become so deeply entrenched in the
depiction of heavenly visions that Dante was no longer directly needed.

What we see in Dante and those painters who are in conscious and unconscious
dialogue with him is a high regard for optical truth coupled with an acute awareness
that something lies beyond the scope of rational analysis. To pick up the title of
this volume, mathematics reveals the divine structure of natural law. Imagination
stretches out to what is unknown (and perhaps unknowable).
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Fig. 5 The Vision of Ezekiel, c. 1517, oil on panel, 40 cm × 30 cm (16 in. × 12 in.), Florence,
Palazzo Pitti. Foto©Gabinetto Fotografico, Gallerie degli Uffizi, Firenze, by kind permission
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Fig. 6 Raphael, The Transfiguration of Christ, oil on panel, 410 cm × 279 cm (160 in. × 110 in.),
Rome, Vatican, Foto © Governatorato SCV—Direzione dei musei, Tutti i diritti riservati
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On the Classification and Recording
of Colours According to the Methods
of the Painter Adolfo Ferraris: A Brief
Note

Marco Pierini

Little or nothing is known about the painter Adolfo Ferraris. Despite being
systematically ignored by all the repertoires and utterly forgotten by art critics
and art historians, Ferraris now comes across as a personality deserving of some
consideration, if not for the results of his art—which to a great extent are unknown
to us—at least for his substantial, original theoretical output [1, 2].

Between 1921 and 1934, in Alessandria (where according to the records in
our possession he was a resident), Ferraris brought out a series of books and
pamphlets in which he reported on his experiments and illustrated his artistic
theories, publications that now constitute our main source of information about him
and his work. We learn, for example, that the Società Promotrice delle Belle Arti
(Fine Arts Promotion Society) in Turin refused some of his paintings in May 1920,
while the Albertina Academy in the same city hosted an experiment in “paint and
colour transmission by wire” on 4 March 1921.

His work La classificazione dei colori e delle tinte, written in 1920 and published
in the following year, furnishes the foundation for all subsequent speculations.
Unlike all previous systems devised for classifying colours—from Newton’s circle
to Runge’s sphere and the solids of modern colorimetry employed by Munsell and
by Ostwald—the method expounded by Ferraris does not use a geometric model,
but one that is purely mathematical. In fact, the treatise states that it sets out to
classify colours precisely by reducing them to numerical expressions, since: “if
we say that white is the lightest colour, and give it the number zero (0), and
that black is the darkest colour, and give it the number (1000), we have stated
two mathematical truths [3]”. At the end of a complex sequence of formulae and
numerical expressions, Ferraris then created a “mathematical-coloured framework”
in which, when analysed for their tonality, their intensity, and their reciprocal
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relationships, colours are allotted a position in a strict systemic structure. So
if we mix black with white, we can achieve a thousand different degrees of
intensity, all of which can be quantified with a number, each one approximating
to zero as it approximates to white and, naturally, vice-versa. While the degree of
intensity “marks the limit of darkness and lightness in relation to black and white”,
the tonality is the other crucial parameter identified by Ferraris to indicate “the
exact point between the warmest tonality—Neapolitan yellow—and the coldest—
Prussian blue [4]”.

Ferraris identified eight basic colours, giving each a letter related to its name
in Italian: white (bianco: B), black (nero: N), yellow (giallo: G), red (rosso: R),
green (verde: V), blue (azzurro: A), brown (terra d’ombra: O), and siena (terra di
Siena: S). Combinations between these colours generate derived colours, each one
identified with a symbol (e.g. Bs stands for bianco scagliola, or scagliola white, Nfu
for nero fumo, or sooty black, and Gcr for giallo cromo, or chrome yellow). Once
this code had been established, all that remained was to express each blend (M for
miscela) of several shades in formulae: “If we use lime white Bc (bianco di calce),
with yellow soil Gt (terra gialla) and plumbago black Np (Nero Piombaggine), we
get a blend or a shade that can also be called plaster shade, or rapid-dry cement
shade. We can use the symbol M. Bc+Gt+Np = M for this blend” (Fig. 1).

Every shade would contribute naturally as a percentage to achieving the desired
blend and its weight in the compound was indicated by a numerical value that may
refer both to grams and (as in the case of preparing a cocktail) to the parts employed.
The resulting formulae could be breathtakingly articulated, also looking graphically
very impressive, as in the examples reproduced here, which stand respectively for
the “fresh, non-glossy ivory shade” (tinta avorio a fresco, non lucida) and its glossy
version (Fig. 2).

Fig. 1 Formula of a white colour that turns into “stucco” (from La classificazione dei colori e
delle tinte col metodo di Ferraris Adolfo pittore, p. 13)

Fig. 2 Fresh, non-glossy ivory shade and its glossy version (from La classificazione dei colori e
delle tinte col metodo di Ferraris Adolfo pittore, p. 75)
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A practical application of this classification of colours in the field of art—but
Ferraris also believed that his efforts could be extended to apply to industry, to
trade, to craftsmanship, and even to gardening—mentioned briefly at the end of the
book, was later developed in a pamphlet published in 1924 with the title Resoconto
su alcuni esperimenti fatti riguardanti la Pittura artistica radioelettrica. Ferraris
created an ingenious method for recording painting that set out to isolate every
single dot of each work—“the modern painters of Divisionism who used patches,
like Segantini and Pellizza, [5]”—using a system of coordinates more reminiscent
of the game of battleships than of a pair of Cartesian axes, and to identify the shade
to use for that single dot. A painting can be replicated anywhere and at any time,
using “a box of empty dots” (which we can imagine as tiny upturned cones) destined
to act as recipients for the colours, with the aid of a matrix that Ferraris called a
compositoio [6] with the twin effect of preserving the work thus made and recorded
for eternity and being able to set up exhibitions all over the place simultaneously.
“For example: the recording of a painting is transmitted by radiotelephony from
Rome to London, to Paris and to New York; the receivers in those cities take the
recording they have received, then deposit the dots in the compositoio exactly as
stipulated in the recording. The result will be four works painted identically in the
four cities thus named” [7].

From the description provided by the painter, the system would appear to be very
sophisticated, since it would take no less than 8720 dots, each measuring only 2.5
millimetres in diameter, to paint a work on the small scale of 15 × 27 centimetres.
Here is an example of the recording of a painting made by Ferraris: Line 78 = 4 Rm
9 A 3 R [...]

This explains that the line in question comprises four dots of red lead, nine of
dark blue, three of vermilion [...] [8], and so on until the surface of the painting has
been completed (Fig. 3).

Fig. 3 Adolfo Ferraris, Landscape (from Resoconto su alcuni esperimenti fatti riguardanti la
Pittura artistica radioelettrica, p. 20)
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Recording a painting and the subsequent possibility to replicate it on the basis
of user instructions constitute an extremely innovative idea that would seem to be
following in the footsteps of the research being undertaken at the same time by
Duchamp (who sent his sister Suzanne, who was in Buenos Aires, the instructions
for making the Unhappy Readymade in 1919) and Moholy-Nagy, the first to
provide indications for making a work by telephone, in 1922, thus pre-empting
the celebrated Art by telephone exhibition set up in the Chicago Museum of
Contemporary Art in 1969.

Radioelectric painting also appears to contain another innovative element, the
intention—which may not have developed fully consciously—to eliminate what
Pierre Restany, when discussing Duchamp’s ready-made, called the taboo of
everything handmade [9]. Ferraris’s object was not an industrial product, despite
the fact that its creation was totally mechanised: the person executing a radioelectric
painting merely followed a set of instructions, without interfering in any way in
the process of creating the work of art. Lastly, the possibility to replicate the work
anywhere and at any time would appear greatly to exceed the modern concept of the
multiple and to promote an inexhaustible technical reproducibility of the original
(or, even better, of a work whose matrix is the numerical recording in itself). Ferraris
actually showed scanty interest in the object and was concerned above all—adopting
a clearly idealistic approach—in laying claim to the importance of conceiving a
painting and then later recording it, rather than of the painting itself. Recording
a painting also enabled its image to be maintained durably stable, since it would
always be possible to tackle any ageing, fading colours, or defects continuously with
subsequent restoration or by redoing the entire painting—something that anyone
could do, since the operation would be completely mechanical—safeguarding both
the work’s aesthetics and its commercial value, as Ferraris was at pains to point out.

Radioelectric painting also touched on an issue that was much frequented in
the environs of the twentieth-century avant-gardes: that of the relationship between
colour and sound [10]. In fact, in the second part of the pamphlet entitled Breve
descrizione metafisica della pittura sinfonica, Ferraris established a relationship
of correspondence between musical notes and colours arranged according to his
method. The note so annotated beneath the pentagram was thus the equivalent of
black (N), la the equivalent of light green (V′), ti that of a darker green (Vc), and
so on through the whole pentagram. He then developed this equivalence further to
express the duration of each note in terms of the amount of colour: “sixty-four dots
of the same colour can be done with a whole note. If the note ti on the third line is
a whole note, it calls for 64 white dots on the painting [...] if the same ti is a half
note, it calls for 32 white dots. If the same note is a quarter note, it calls for 16 white
dots [...]” [11]. In this way, Ferraris believed he could translate pieces of music into
colours and create music from paintings. And even, at the same time, see a painting
and listen to the music derived from the recording made from it. This is how he
described his ingenious system:

“The painting is placed on a prepared frame that can be raised and lowered
with a crank as the need arises. A canvas is stretched in front of the painting to
cover it. In front of this arrangement, the concert will play the music obtained
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from the recording and all the notes issuing from the concert will be uncovered
on the painting as they are played, by using the crank to raise the painting and
another scroll feature that will shuttle back and forth as the need arises. In this
way, the aspettatore (sic: a neologism that seems to intend to combine the words
meaning ‘watcher’ and ‘listener’) has the twin sensation of hearing and seeing
at the same time” [12]. Nevertheless, however unique the system invented by the
painter, Ferraris’s synaesthesia does yet seem to be very artificial: the relationship
between notes and colours does not in fact have any scientific (or maybe it
would be better to say parascientific) basis, as in the case, for example, of Enrico
Prampolini’s chromophony [13], nor does it have any emotional basis—still with a
symbolist matrix—as in the case of Alexander Scriabin’s table of musical chromatic
equivalences and, in part, of the considerations of Wassily Kandinsky.

Radioelectric painting underwent a further stage of evolution in 1934 with
the invention of cyclozonic painting, a more refined recording system capable of
defining the confines of minute fields of paint—including fields with very irregular
shapes—and even individual brushstrokes or touches. The handful of pages of the
pamphlet devoted to this innovation mention a Universal and analytical dictionary
of shades, of which no trace has been found but which, reading between the lines,
seems to have been a repertoire—“the greatest book in the world ( . . . ) of 1056
shade samples”—compiled in the wake of the previous volume about colours.

It would be easy to deduce that Ferraris’s lively imagination and a certain
degree of harmony between his theories and some research developed in the latest
contemporary artistic fields might be met by a taste and a stylistic intention in line
with the avant-garde character of his thinking. Yet on the contrary, what little we
know indicates that the painter’s output never ventured away from an academic
conformity that was already then so outdated as to look almost the result of the
honest dabblings of an amateur.

It could be argued that the elementary landscapes reproduced in his pamphlets
are the consequence of the need for him to limit the difficulties encountered during
recording—and so of reproduction—of the painting during the experimental phase,
but if the oval with San Rocco on the façade of the church dedicated to him in
Alessandria is the one that Ferraris proudly claimed as his own work in his report of
cyclozonic painting [14]. Then the modesty and backwardness of his art can hardly
fail to stand revealed with striking clarity. Once again in this case, however, the
painter did not miss the opportunity to surprise us with his originality and inventive
manner: this is no ordinary mural, in fact, but an elastic portable fresco [15]
(Fig. 4).
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Fig. 4 Adolfo Ferraris, St.
Rocco. Alessandria, Chiesa di
San Rocco
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Colored Figurative Tilings in Pre-Incan
Textiles

Anthony Phillips

1 Introduction and Preliminaries

Pre-Columbian Peruvian weavers are renowned for the skill with which, over
some two millennia, they produced textiles of a complexity that has never been
duplicated, including techniques found in no other cultures [9]. The visual content
of their textiles also has unique formal aspects. Until very recent times and the
work of artists like Koloman Moser [21] and Maurits Escher [12], theirs were the
only cultures that systematically decorated with what John Osborn [15] has called
figurative tilings: “A figurative tile, as I use the term, is a zoomorphic outline devised
in such a way that multiple copies will interlock to tile the plane.”

I am using the term “tiling” in a non-standard way: Osborn clearly has bounded
tiles in mind, whereas in the Peruvian examples considered here each “tile” is
(potentially) infinitely long; it is actually a frieze with zoomorphic elements. The
decoration of these textiles will be analyzed as two-color two-dimensional patterns,
using terminology from [23], but with the motifs, or units, taken as copies of the
frieze in order to follow what I believe to be the thinking process of the ancient
Peruvians. One of our patterns (Sect. 5) is in fact generated by a finite tile; but as a
two-color pattern, its natural units are friezes composed of repetitions of that tile. A
more complete discussion is in that section.

Here, I use this perspective to analyze five textiles, including one which was
published [8] in 1924 but which to my knowledge has never been explained. All five
of these textiles are of a special construction (terms explained below): bands about
10 cm wide with warp-faced plain-weave borders enclose a central area decorated
with interlocked snakes or birds, the pattern woven with complementary warps [10]
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of 3 or 4 colors. Characteristic is that the white-colored warps are cotton and much
thinner than those of the other colors [9, p. 153], leading to a distinctive texture in
the white areas. A similar class of textiles is described in [7], analysis of item 127.
Two of this family of textiles appear, about 80 cm long, as the hem decoration on
tunics in the Ethnological Museum, Berlin [2, p. 151]. All of them are attributed to
the central coast of Peru, and the Late Intermediate period, roughly 1000–1500.

My thanks to Ann Rowe, George Hart, Philip Palmedo, and Cecilia Toro; their
comments on a draft of this work led to significant improvements.

Warp-Faced Plain Weave; Complementary Warps Weaving begins with the warps
(shown horizontal in these diagrams) strung on the loom. There may be one (Fig. 1),
two (Fig. 2), or several yarns in each warp location. Then, the wefts are woven in,
one by one, perpendicularly to the warps. Warp-faced plain weave is illustrated in
Fig. 1. In plain weave, “[e]ach weft passes alternately over and under successive
warp units, and each reverses the procedure of the one before it” [10]. The weave
is warp-faced if the warps are so thick and tightly packed that they completely hide
the wefts.

a. b.

Fig. 1 Warp-faced weave. (a) Expanded view. (b) In warp-faced weave, the warps are thicker than
the wefts and packed together: the wefts disappear. White wefts and two different shades of warp
are used for legibility

a. b.

Fig. 2 In 3/1 alternate-pair complementary-warp weave, the warps appear in 3-span floats aligned
in alternate pairs [17, p. 70]; diagram adapted from [4], as it appears in the solid brown areas of
Textile 1 (Fig. 3). (a) Expanded view of weaving, with wefts white for legibility. The top four
warps represent the brown and pink yarns in two adjacent warp locations. For this pair, brown goes
over 3 under 1, while pink goes under 3 over 1. Subsequent pairs of locations are treated the same,
except each time the sequence of overs and unders is staggered by two steps, giving the “alternate
alignment.” (b) In the textile, the warps are compressed together; then, the brown warps slide over
and hide the pink, except where the pink surfaces; the wefts are completely hidden
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Table 1 The criteria that define the symmetry types of the textiles in this study. Note that Pattern
B and Pattern D have the same symmetry type

Pattern A B C D

A reflection preserves or exchanges colors. No No No No

A 180◦ rotation preserves colors. No Yes No Yes

A 180◦ rotation exchanges colors. Yes Yes No Yes

A glide reflection preserves colors. No No Yes No

A glide reflection exchanges colors. No No Yes No

Symmetry type p2′ p′
b2 p′

b1g p′
b2

In weaving with complementary warps, the loom is strung with two or more
different-colored yarns in each warp location. Then, at each undercrossing, the
weaver runs the weft under one of the warps and over the others, which form floats
on the back, while the chosen warp contributes to the design. This is how d’Harcourt
[8, p. 17 §2], describes the process. In fact, the way warps appear on the surface is
quite rigidly organized in all these examples, in part so as to keep the floats on the
surface short (length ≤ 3). The speckled texture apparent in “solid color” areas is
the result of 3/1 alternate-pair complementary warp weave ([18], Chapter 7, note
3), sometimes called “pebble weave” [4, p. 22]; see Fig. 2.

Symmetry The decoration in each of these four bands determines a 2-colored tiling
of the entire plane. For a planar tiling, a symmetry is a rigid motion of the plane
(translation, rotation, reflection, or glide reflection), which places the pattern back
in congruence with itself. When the tiling is 2-colored, we can ask if a symmetry
preserves or exchanges the colors. All the possible two-colored planar tilings have
been categorized: Washburn and Crowe [23] give flow charts for identifying the
symmetry type of any particular example; for the textiles in this study, the charts
can be compressed into Table 1.

Notation I will use capital letters A, B, . . . for colored patterns, and the corre-
sponding lowercase a, b, . . . for the underlying monochrome pattern. A combinato-
rially different colored pattern based on a would be A′, etc.

All textiles are shown with warps horizontal on the page. Photo credits: except
for Figs. 10, 17, 21a, b, and 23b, these are my photographs of items I have collected.

2 Pattern A

In Textile 1 (Fig. 3), the central panel is 3-color complementary-warp weave:
the yarns are dark brown, (thin) white, and pink. Pink is used for edging and as
complementary to the main color in the 3/1 alternate-pair sections. Plate V (p. 92)
in [17] shows a textile (Textile Museum 91.593) containing a band very closely
related to this one, only with snake heads instead of birds.
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Fig. 3 Textile 1. Detail of a band of width 11 cm (the total length of fragment: 76 cm)

Fig. 4 Pattern A. Left: the planar tiling extrapolated from Textile 1; right: that image rotated 180◦.
The images are the same, with colors exchanged. Symmetry type p2′ (Table 1)

The top edge of the patterned band can be seen to match the bottom edge after
a translation of about one-fourth of a repeat. Stacking shifted copies of that pattern
leads to a tiling of the plane (Fig. 4).

3 Pattern B

The pattern in this strip (Fig. 5) seems at first glance to be loosely nested gray and
crimson copies of the ornithomorphic tile in Fig. 6.

Closer examination shows that the background cream-colored space separating
the gray and crimson tiles shares their shape exactly and that what we see is an exact
figurative tiling with three different colors. There can be no symmetry involving all
three colors since cream appears twice as often as either of the others; this type of
pattern is discussed in [23, p. 65]. Symmetry is analyzed in Fig. 7. Figure 8 shows
how a period-3 coloring would eliminate the background/foreground effect and
manifest the equivalence of the tiles. For a period-2 coloring of Pattern b, woven
in a different technique, see Fig. 21b in Sect. 6.

Figure 9 shows another instance of Pattern B, woven with 4-color complementary
warps: dark blue, yellow, (thin) white, and red for edging. Where the thin white
warps are on the surface, their color blends with the brown of the weft to give a
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Fig. 5 Textile 2. One end of a band, 7.5×23 cm

...

...

Fig. 6 The infinite ornithomorphic tile suggested by Textile 2

Fig. 7 Pattern B, the planar tiling extrapolated from Textile 2. If we consider it as a 2-color tiling
(crimson, gray) with cream-colored background, then a 180◦ rotation about the center of the upper
rectangle reverses colors, while a 180◦ rotation about the center of the lower rectangle preserves
them. Symmetry type p′

b2 (Table 1)
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Fig. 8 A period-3 coloring of the pattern would bring out the equivalence of the tiles

Fig. 9 One end of a band fragment 14 cm wide

kind of tan. The symmetries involve the dark blue and tan areas, with the yellow as
background.

4 Pattern C

Textile 3 (Fig. 10) is clearly a slice of something, but of what? A clue comes from
another textile: the pattern (disregarding colors) in Fig. 11 stacks copies of the
pattern in Textile 3 except, as detailed in Fig. 12, that the top copy (yellow circles)
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Fig. 10 Textile 3. Band, 9×38 cm, from the central coast of Peru, area of Lima, town of Huacho.
Musée du Quai Branly—Jacques Chirac, Paris, Inventory No. 71.1964.86.166. Originally in the
collection of Raoul d’Harcourt, illustrated in [8], Plate 33b and in [9], plate 19. Image ©RMN-
Grand Palais/Art Resource, NY

Fig. 11 Central band (width 4.5 cm) from a complete textile, 27.5×31 cm, sewn together from
various elements. In this band, the white warps have the same thickness as the others

has been altered to allow the particular coloring planned for this exemplar. Undoing
that alteration results in part of a complete planar tiling, Pattern c; from there we
can deduce the tiling (Pattern C) of Textile 3: see Fig. 13. Symmetry is analyzed in
Fig. 14.

We will probably never know why an inscrutable decoration like that of Textile 3
appealed to those who wore it. Perhaps they were familiar with the whole intricate
design (Pattern C) of which it is a section? Since, to my knowledge, there are no
surviving examples of that whole design (except a monochrome version in double
cloth, see Fig. 22), one can only speculate. In fact, inconsistent implementations of
the pattern do exist: besides the item shown in Fig. 11, there is an example in the
Museum of Fine Arts, Boston (Fig. 15) and another (Fig. 16) of a band much like
Textile 3; neither of those patterns can be extended to the plane.

The band in Fig. 16, while similar in many respects to Textile 3, does not have
a coherent decoration. It contains 5 repeats (2 shown here) of a motif, each glide-
reflected from the previous; the motif itself corresponds to 1 1

2 repeats of the motif
of Textile 3, so the copies of the motif do not match where they meet.
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Fig. 12 One copy of the
repeated motif in Textile 3
and a detail from Fig. 11. The
white rectangles enclose areas
where the patterns on the two
textiles match, disregarding
colors and details of
bordering. The yellow circles
show where the third vertical
repeat in the Fig. 11 pattern
does not match the first two

5 Pattern D

Pattern D (Fig. 17) is one of two different two-colored figurative tilings, in bands
of the type described in Sect. 1, both derived from a standard planar tiling (Pattern
d, see Fig. 18) of type p2 etc. by grouping copies of the motif into infinite tiles;
the other is Pattern D′ (Fig. 19). The Peruvian way of analyzing Pattern D would
seem to be as a union of bicolored tiles, of type Fig. 18a: (black, yellow) and (gray,
yellow). In those terms, the symmetry type is p′

b2 (Table 1), the same as Pattern B.
In Textile 5, the tiles are colored blue, yellow, and white, with yellow serving as

a background. The color symmetry occurs between groups of three: three blue tiles
interchanging with three white tiles. In those terms, the symmetry type is also p′

b2.

6 Patterns a, b, c, and d Woven in Other Techniques

Techniques for a weaver are like media for a painter: each has its own potential
and limitations. So far we have examined single-faced textiles woven warp-faced
with multicolor warp substitution. But the planar patterns underlying our examples
also came to be implemented in plain weave with fine white supplementary warps,
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. . .. . .

Fig. 13 Top: Pattern C, with one of the repeats of Textile 3 superimposed on the image. Symmetry
type p′

b1g (Table 1); see Fig. 14. Bottom: one copy of the infinite tile in Pattern C, with both of its
borders

in double cloth, in brocading, and in double-faced tapestry weave (kilim). The first
two of those techniques involve just one color and a background, while for the last
two the decorative or the weft colors may be chosen locally during the weaving and
may not show the consistency built into warp-patterned schemes, where colors are
fixed when the loom is strung.
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Fig. 14 Symmetries in Pattern C: reflection in the dashed white line and horizontal translation by
half a repeat brings the pattern in congruence with itself with colors matching. Reflection in the
dotted white line and horizontal translation by half a repeat takes one white rectangle to the other:
the glide-reflected pattern is congruent with itself, but blue and tan are interchanged

Fig. 15 Another non-systematic extension of the design of Textile 3. Coloring scheme of a band
(width 5.5 cm) in a textile in the Museum of Fine Arts, Boston (Arthur Mason Knapp Fund
1942.440), Plate 34 in [20]. (a) Detail showing where modification of the design has destroyed
vertical periodicity and allowed a coloring different from (b), the coloring scheme of Pattern C
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Fig. 16 Detail of a band of width 14 cm; entire fragment 96 cm long. Central portion executed
with 4-color complementary warps: black, yellow, (fine) white, with red and black edging

Fig. 17 Textile 4. Pattern D. Fragment of band 17×59 cm, Museum of Fine Arts, Boston 42.452,
listed as item 230 in [20]

a.

b.

Fig. 18 (a) Tile from Textile 4; (b) tile from Textile 5 (Fig. 19), as subsets of Pattern d
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Fig. 19 Textile 5. Pattern D′. Detail of a complete band, width 13 cm, woven with dark blue,
yellow, and (thin) white warps; edging in pink and dark blue, length 126 cm. Band has a 9-cm wide
fringe

Fig. 20 A double cloth fragment, 13×18 cm, shows the Greek key frieze along with its adaptation
as an interlocked snake motif

6.1 Pattern a

Pattern a most likely evolved from the “Greek key” or “running dog” frieze pattern
ubiquitous in textile decoration. The ancient Peruvians, besides using the Greek
key itself, tweaked it into naturalistic forms in many different ways; so Pattern a
has many cousins even though its precise geometry, as far as I know, only occurs
in bands of our type. One close relative is the interlocked snake motif, which was
already at least 1000 years old when our textiles were woven (see [6], Fig. 4a).
In Fig. 20, a fragment of double cloth exhibits the Greek key motif along with an
elementary version of the interlocked snakes. Double-weaving [4, p. 7], [9, p. 44]
uses two complete plain woven sets of warp and weft, almost always cream and
brown cotton; they trade places on the surface to create the pattern.
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Fig. 21 (a) Fragment, 16×23.5 cm, single-faced supplementary weft patterning or embroidery,
AMNH Catalog No. 41.2/8989. (b) Pattern B′. Double-faced tapestry weave with paired warps,
tubular edging, 14×12 cm. (The red flecks point to the design’s origin in a complementary-
warp implementation). AMNH Catalog No. SAT/84. Both images courtesy of the Division of
Anthropology, American Museum of Natural History

6.2 Pattern b

Pattern b is a distant and considerably more elaborate cousin of the double “Greek
key” pattern exhibited, for example, in Fig. 21a. I know of just one non-warp-
faced example, a tapestry-woven triangular corner piece (Fig. 21b). We can call
this Pattern B′, a two-color implementation (gray, yellow), with red outlining.

6.3 Pattern c

Pattern c occurs in a double cloth fragment, Fig. 22. A textile of almost identical
fabrication (a 1-pixel difference in the birds’ beaks), item 138–752 in the Museu
Etnològic, Barcelona, is illustrated as No. 48 in [19, p. 107].

6.4 Pattern d

Figure 23 shows two examples of Pattern d itself: one (a) in blue cotton plain weave
with fine white supplementary warps. See [7, p. 171] for detailed diagrams of this
particular structure. A complete panel (25.8×44.5 cm) with a more finely woven,
smaller scale version of this same decoration, RPB1611 in the Rietberg Museum,
Zürich, is shown as item 140 in [5]. The other example (b) is double-woven.
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Fig. 22 Pattern c in a double cloth fragment, 20×33 cm. Along the bottom, a selvedge, there is a
couple of weaving errors. I have picked out one of the Pattern-c tiles in yellow

Fig. 23 Pattern d. (a) Fragment of a textile of width 23 cm, blue cotton plain weave with fine white
supplementary warps. (b) Double cloth fragment, 21×28 cm, The Textile Museum, Washington,
D.C., 1961.30.128, Burton I. Jones

In both the textiles of Fig. 24, the colors are pink, brown, and various shades of
yellow. The coloring of the birds’ eyes strongly suggests that the grouping is as in
Fig. 18a, with tiles colored (dark brown, yellow) and (pink, yellow) alternately. In
Fig. 25, the inconsistent color of the birds’ eyes suggests a hybrid coloring between
Fig. 18a and b; there does not seem to be any global color symmetry.

Figure 26 compares two textiles of essentially identical construction: dark brown
plain weave with brocaded double-birds in white, orange, and taupe. But the
organization is different. The one on the left shows Pattern D, colored alternately
(orange, white) and (taupe, white), whereas the Museo Amano example shows
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Fig. 24 Pattern D. (a) A complete textile, dark brown open plain weave with tapestry inserts. (b)
Schematic coloring scheme for a complete square (32×32 cm) of essentially identical construction,
item V 9.600 in the Roemer- and Pelizaeus-Museum [3, p. 67]. The photograph of another example
of this pattern and construction, from Lauri in the Chancay Valley (Museo Amano, Lima), appears
as [22], Fig. 26

Fig. 25 Schematic coloring scheme for the tapestry woven fragment AS. 1838 [13]
(17.2×52.3 cm) in the Textile Museum of the Fondazione Ratti, Como

Fig. 26 Left: Pattern D in a brocaded fragment (one selvedge), 16×37 cm. Right: Pattern D′′.
Schematic coloring scheme (detail) of a brocaded textile in the Museo Amano, Lima, No. 128 in
[1]

Pattern D′′: the tiles are of type Fig. 18b, like Textile 5, except that the coloring
is periodic of order 3: taupe, orange, white.

The brocaded example from the Museo Amano shown in Fig. 26 is unique in the
set of textiles we have examined in that there are three colors used equivalently. The
relevant 3-colored symmetry class pgg[3] is illustrated in [11], Figure 8.2.3.
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Fig. 27 A non-Peruvian
coloring of Pattern d

One general feature of all the Peruvian colored tilings based on Pattern d is
that copies of the double-bird motif are grouped into linear friezes. The Peruvian
weavers and brocaders do not seem to have entertained the possibility of a coloring
motif by motif. In particular, I do not expect that the coloring that might seem most
natural to a modern eye, namely the essentially unique 3-coloring in which same-
colored motifs do not share an edge (Fig. 27), will ever be found in a textile from
this period. See [14, p. 964] for more general remarks on n-colorings in traditional
art, n > 2.

7 Conclusion

It is commonly understood, and I have remarked on it elsewhere [16], that we
know almost nothing about the intellectual life of the Peruvian cultures that
preceded the Inca. These textiles give a hint of how much we are missing. Patterns
like these are not found by chance: they must have taken a large, sustained,
essentially mathematical program to develop. Additionally, the possibility that
a small generating section (as in Textiles 1 and especially 4) could be both a
decorative band on a garment and a token of a much larger complex pattern suggests
that the general population understood and appreciated the decorative potential of
intricate geometrical symmetry. The mathematical genius of these peoples found its
expression in these wonderful works of art.
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The Artistic (and Practical) Utility
of Hyperspace

Tony Robbin

I have felt and given evidence of the practical utility of handling space of four
dimensions as if it were conceivable space. -James Joseph Sylvester, 30 December
1869.

The best way to show how four-dimensional geometry has enriched my artwork
is to show how my artwork has enriched four-dimensional geometry. Of course, I
had teachers.

1 Hypercubes Tessellated

In the summer of 1979, when I was 35, I traveled to Brown University to meet
Tom Banchoff, chair of the mathematics department, and to see his computer
representation of a hypercube rotating in four-dimensional space. Banchoff was
generous with his time, and with time on his million-dollar VAX computer.
Subsequent visits, handwritten letters, which I have cherished and kept, proofs of my
conjectures, invitations to conferences, and authentication of my computer programs
and of the mathematical content of my work—all this followed.

Do you know the plane if you only know a square? Wouldn’t it be better to
contemplate a whole page of squares fitted together, a tessellation of squares?
Likewise, do you know space if you only know a cube? Soon after I visited Banchoff
for the first time and learned to replicate his program for the rotating hypercube
(at Pratt Institute with Herb Tesser and his million-dollar VAX), I programed 9
Tessellated Hypercubes, linked here—tonyrobbin.net/quasi/TessHyperCubes.mp4,
and see drawing at the end of this section. One hypercube above, one below, to
the left, to the right, in front of and in back of, and also one fore and one aft in the
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fourth dimension were place around a central hypercube. To my knowledge, this was
the first time a program was written (and a resulting video was made) that showed
tessellated hypercubes rotating in real time about four mutually perpendicular axes
taken two at a time. My program also showed the rotations in both isometric
and perspective projection, and with the option of viewing in anaglyphic (red and
blue) stereo. Further, the hypercubic rotations also included body-centered rotations
such as the pitch, roll, and yaw that a pilot would have to control. Seeing the
tessellated hypercubes gives a more vivid understanding of 4space than seeing just
one hypercube.

Squares are tessellated if their boundary edges are edges in precisely two squares;
cubes are tessellated if their boundary squares are squares in precisely two cubes;
and hypercubes are tessellated if their boundary cells are cells in two and only
two hypercubes. Said this way, the tessellation rule is clear, but I found it hard
to visualize what Donald Coxeter called a “honeycomb” of hypercubes. With an
introduction from Linda Henderson, I wrote to Coxeter, and received back one page
of diagram and text that made the problem clear, and I quickly wrote the code. (I
have cherished that handwritten correspondence too.) I published pictures of the
9 tessellated hypercubes in my 1992 book Fourfield: Computers, Art & the 4th
Dimension and even included 3D glasses and a print of the tessellation in 3D.

Tony Robbin, 9 Tessellated
Hypercubes, c. 1983. Plotter
drawing on paper. Collection
the artist
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2 Planar Rotations

When I visited Banchoff at Brown that first time, I traded a drawing for a print
of his pioneering film The Hypercube: Projections and Slicing, 1978 (https://www.
youtube.com/watch?v=90olwwLdEYg). Leaving the slicings aside for the moment,
consider the four-dimensional rotations and resulting changes in the projections of
the hypercube. A paper square can rotate around a pin stuck into it. A cardboard box
of safety matches can rotate around a bamboo skewer shoved through it (an axel).
But a hypercube can rotate around a plane. This is a special kind of rotation that
can only happen in four or more dimensions; it is a rotation that requires the extra
degrees of freedom that 4space can offer. This higher-dimensional rotation is called
planar rotation, and without planar rotation one does not really have 4D art.

These planar rotations are best understood by looking at the matrix algebra, see
Appendix 1.

George Gamow’s One, Two, Infinity was one of the trove of books given to me by
John McIlroy when he retired from the math department of Trenton State College
where I briefly taught in the 1970s; McIlroy lit a fuse when he challenged me: “Read
these books and they will change the way you see!” In that book, Gamow made the
odd claim that the Lorentz transformations of special relativity were planar rotations
in the fourth dimension. And eventually I did see that the 4x4 matrix of Minkowski’s
spacetime metric has the form of a planar rotation: push on one thing and another
thing changes: make lengths shrink in one of three spatial dimensions and time has
to run slower, i.e. the interval between “clicks” has to expand. Two things change
but the rest do not. That is, we see a spaceship traveling close to speed of light
snubbed in length in the direction it is going, and we also notice its clocks running
slow. But the height and width of the spaceship remain the same as it always was.
The rubbery, reciprocal nature of spacetime has this formal association with planar
rotations in 4space.

All the mathematics of 4D rotation, including those in Banchoff’s film and
my programs too, are planar rotations about the origin—about the center of the
hypercube, or the center of the central hypercube in a tessellation. But for my
artworks, I wanted to rotate about a plane that is a face of one of the cells of the
hypercube. I thought I knew what that would look like, but I went to Brown to
ask Banchoff to confirm my understanding on his computer, which he was able to
quickly do. It looks different than rotations about the origin.

My works from the 1980s, especially Fourfield, Lobofour, and the light pieces
use two-dimensional elements (lines painted on a canvas or fixed shadows from
colored lights) and three-dimensional elements (thin steel rods welded to become
three-dimensional line drawings) that work together to give the visual information
of planar rotation. The fixed two-dimensional elements do not change as you walk
around, but the three-dimensional elements do parallax. (Some things change, and
some do not.) In the light pieces, red and blue colored light reflect white on the
wall, but where the red light is blocked a blue line of light appears, and where blue
is blocked a red line appears. These colored lines can be combined by red and blue

https://www.youtube.com/watch?v=90olwwLdEYg
https://www.youtube.com/watch?v=90olwwLdEYg
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3D glasses to make an illusion of three-dimensional elements rotating through the
steel rod structures for a convincing display of four-dimensional planar rotation.

The wall becomes a face of the hypercube, and the floor becomes the zw
plane. Walking on the floor while wearing the 3D glasses you are causing a four-
dimensional, planar rotation—you are walking in the fourth dimension.

Tony Robbin, 1987–3, 1987. Welded steel, acrylic plates, and colored lights. 84 × 84 × 8 inches.
Collection the artist

3 Slices Vs. Projections

Banchoff’s 1978 film distinguishes between slices and projections of the hypercube.
My 2006 book Shadows of Reality, the Fourth Dimension in Relativity, Cubism, and
Modern Thought reviews the art and math history of the first few decades of the
twentieth century (making some new discoveries) and reaches this conclusion: the
projection model of the fourth dimension does all the work and the slicing model
gets all the credit.

Shadows discusses the flatland model where three-dimensional objects pass
through a two-dimensional world in analogy to four-dimensional objects that pass
through our three-dimensional world. This model, popularized by Edwin Abbott
Abbott’s 1884 book Flatland, dominated popular thought until well into the twenti-
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eth century. As Henderson has amply demonstrated in many papers and books, the
whole of European culture was fascinated by a hidden reality: atomic structure, what
was revealed by the new X-rays, radio waves penetrating everywhere, and things,
from atoms to ghosts, that are hidden in the fourth dimension. The flatland or slicing
model explained this world beyond.

But soon after the turn of the twentieth century, papers by Washington Irving
Stringham (1847–1909) and Victor Schlegel (1843–1905), and especially books by
Esprit Jouffret (1837–1904)—among others—were passing beyond mathematical
circles to enter the general culture as well as artworld. These math papers and books
examined the projection model, based on projective geometry, which is intuitively
understood as shadows from a higher dimension. My book Shadows shows that it is
this projection model that Pablo Picasso (1881–1973) used to further his creation of
Cubism (perhaps it should be called Hypercubism). Picasso used four-dimensional
geometry to free himself from the tyranny of the surface, the skin, to show the
psychological reality within. Shadows then shows that it is the projection model
that is the basis of Hermann Minkowski’s (1864–1909) spacetime formalism of
Special Relativity. Shadows continues by discussing such challenging contemporary
physics topics as Twistors, Entanglement, Category Theory, and Quasicrystals.
Each of these topics owes far more to the projection model of 4space than to a
flatland model; indeed, the flatland model of higher dimensions plunges one into
hopeless confusion when thinking about these topics. Shadows also rediscovers the
remarkable polymath T. P. Hall.1 I was motivated to explore the implications of the
distinction between slices and projection by Banchoff’s pioneering 1978 film.

The relentless assault on commonsense reality provided by new technologies in
the early twentieth century needed the artist to make the new reality, and the fourth
dimension, comprehensible and stable. Heavier-than-air ships could not possibly fly,
just think about it! said the famous mathematician Simon Newcomb (1835–1909).
But what a mistake it was to ever adopt the more reasonable space+time slicing
model of four-dimensional reality over projective spacetime, the less reasonable,
more accurate, more giving model of another fungible geometric dimension fully
inserted into our familiar width, length, and height. Projective geometry is essential
to a vision of an invisible, fecund, immaterial primal extra-dimensional soup that
makes reality.

1 My hero, the great polymath Thomas Proctor Hall (1858–1931) studied projective models of
four-dimensional geometry to master his image of reality: as a physician, that X-ray could not only
diagnose, they could cure; as a mathematician, that dynamic, telescoping, and hinged glass-tube
models of hypercubes could show how planar rotation works 75 years before it was seen on the
computer screen; and a science fiction writer, that stories of trans-material essential beings could
teach us about the divine. He was, by turns, chemist, physicist, mathematician, physician, and
writer. His life should be better known, but I think there are some secrets that cancelled his fame.
I still want to write his biography.
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4 Fat Topology

In 2014, I deconstructed a painting from 2006 for the online journal Symmetry in an
article called “Topology and the Visualization of Space” https://www.mdpi.com/
2073-8994/7/1/32. The journal’s special issue “Diagrams, Topology, Categories,
and Logic” was guest-edited by topologist Louis Kauffman. I met Kauffman years
before when I took a booth at an AAAS meeting to show my quasicrystal sculpture.
We had dinner and had a conversation that changed my life. He subsequently
invited me to a small conference at the University of Minnesota’s Superconducting
Computer Center where I met Scott Carter, Jeff Weeks, Charles Gunn, and other
topologists. This is some of what I learned from Carter: to braid one-dimensional
threads you need access to three-dimensional space to pass the threads over and
under each other, and to braid sheets, not ribbons but infinite sheets, you also need
to have access to two more dimensions than the two-dimensional sheets themselves.

As a semi-pro four-dimensional geometer, unstructured, curving, and braided
infinite sheets made me nervous. After renewing my friendship with Carter through
invitations to speak at his University beginning in 1998, I took the flat patterns of
my previous paintings and swooped them, curved them, interlaced them, and braided
them. Like before, each patterned sheet was color-coded with a single color, and like
before each sheet was defined by a different geometric pattern. But unlike before,
each pattern had a thickness and was defined by three-dimensional polyhedra rather
two-dimensional shapes. Fat sheets, fatter and fatter: not planes but hyperplanes,
maybe even one could think of them as braided spaces.2

Almost 50 years ago, I read the following passage from Albert Einstein’s fifth
appendix (1952) to his popular 1916 book Relativity: The Special and the General
Theory.

When a smaller box s is situated, relatively at rest, inside the hollow space of the larger box
S, then the hollow space of s is a part of the hollow space of S, and the same “space,” which
contains both of them, belongs to each of the boxes. When s is in motion with respect to
S, however, the concept is less simple. One is then inclined to think that s encloses always
the same space, but a variable part of the space S. It then becomes necessary to apportion to
each box its particular space, not thought of as bounded, and to assume that these two spaces
are in motion with respect to each other. Before one has become aware of this complication,
space appears as an unbounded medium or container in which material objects swim around.
But it must now be remembered that there is an infinite number of spaces, which are in
motion with respect to each other. [Dover edition of The Principle of Relativity, pp. 138-9,
emphasis added].

2 How lucky to have discovered the programming language Formian just at this time. Developed
by Hoshyar Nooshin at the University of Sussex at Guildford for the civil engineering department,
Formian is a language of pattern generation, in an arbitrary number of dimensions, with many
procedures to curve surfaces and lattices. I was invited to Guilford for a two-week seminar to learn
this software and was presented with several versions of the language.

https://www.mdpi.com/2073-8994/7/1/32
https://www.mdpi.com/2073-8994/7/1/32
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In my paintings from 1998 onward, braided lattices represent the multiple
unbound spaces that Einstein wrote about, and that had a special resonance for me
given the way I grew to see the world. Many spaces in the same space.

Tony Robbin, 2006–6, 2006. Acrylic on canvas. 56 × 70 inches. Collection the artist

5 Quasicrystals

Reality is in higher dimensions; our experience is but a projection of that higher-
dimensional reality. Such a statement smacks of religion or at least Platonism. But
if the statement can be divorced from those associations, a new understanding of
modern physics and the richness of projective geometry can be had.

For those interested in four-dimensional geometry, especially my friends Koji
Miyazaki and Haresh Lalvani, quasicrystals had an odd familiarity. I went to
Philadelphia to visit Paul Steinhardt to learn more. Steinhardt received me cordially,
gave me the thorough papers he had written with his collaborators, and answered my
letters as he coached me in learning to code the deBruijn algorithm for quasicrystals
(Nicolaas Govert deBruijn,1918–2012). Later I met deBruijn himself, was a guest in
his home, and we stayed up late talking quasicrystals. Steinhardt sought to discover
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foolproof local matching rules that obviated Roger Penrose’s conjecture that, since
no local matching rules existed, real, physical quasicrystals must self-assemble
according to some quantum-like method.

Soon after I managed to write my Pascal programs for quasicrystals imple-
menting the deBruijn algorithm, I visited George Francis at the University of
Illinois/Champaign-Urbana. Francis threw me, without warning, into his honors
class in mathematics, and I started talking about quasicrystals. There followed
decades of collaboration, in which Francis and his students translated my archaic
Pascal to Python and expanded my code to include features I wanted but did not
have. Francis put the enhanced program in the “Cube,” a virtual environment where
one could wander at will through a quasicrystal, peering at its components, and
gaining an intuitive feel for the structures otherwise unobtainable.

The Robbin/Francis program can be linked here: http://new.math.uiuc.edu/Tavares/htr4.html

Originally, I wanted to make quasicrystal architecture and sculpture, and did
make large pieces for the Danish Technical University and the Jacksonville Library
system, as well as for a number of temporary exhibitions. But then, I started thinking
more and more about Penrose’s conjecture of an application to quantum physics.

Altogether, I spent 35 years studying and programming the deBruijn algorithm
for quasicrystals, and recently I have concluded that the algorithm is a geometric
model of quantum non-locality. I had been discussing what is known as quantum
information theory with Padmanabhan K. Aravind because Aravind was investigat-
ing the use of figures from projective geometry to model the fundamental quantum
paradox of entangled particles. The deBruijn algorithm is also based on projection:
a regular six-dimensional cubic lattice is projected to 3space in just the right way

http://new.math.uiuc.edu/Tavares/htr4.html
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to induce a foolproof potentially infinite quasicrystal. In fact, the algorithm bounces
back and forth between these two states: the six-dimensional before, and the three-
dimensional after. If the algorithm represents a physical system, then it passes back
and forth through what should be a one-way, entropy gate. But this is precisely
the quantum paradox of entangled particles: impossible, spacelike separations of
information are overcome!

I wrote this all up: https://www.researchgate.net/publication/343099608_The_
deBruijn_Algorithm_for_Quasicrysals_as_a_Model_for_Quantum_non-Locality
but the problem with making my argument convincing is that one has to get into the
difficult nitty-gritty of the algorithm, to get your hands dirty as the mathematicians
say. It is challenging to understand just how and why the algorithm works.

6 Something from Nothing

The conversation with Kauffman that changed my life was on the topic of how
do you get from pure abstraction to physical reality: what John Wheeler called
“pre-geometry,” and Roger Penrose investigated with spin networks, and Carter,
Kauffman, and Masahico Saito called Topological Lattice Field Theory. In analogy
to the origin of life, where organic compounds spontaneously arise from inorganic
ones fitted into a clay template, the origin of physical existence spontaneously arises
from something that is nothing-at-all, and from that nothing-at-all to geometry, and
from geometry to spacetime, and from spacetime to everything.

That physics could ask these metaphysical questions, that famous mathemati-
cians begged for these questions to be answered and were working on it, and that
I could have a considered opinion—all of this ennobled me. Going toe to toe with
Kauffman at dinner at the AAAS meeting in Boston (must have been the one in
1988) gave me the impetus to study and speculate further.

For years and years, I had the notion, intuitive and vague, that four-dimensional
space must be curved. Now, almost every mathematician will tell you that this
is nonsense: four-dimensional and non-Euclidian are two separate geometries that
have nothing to do with one another. And a mathematician might also suggest that
an artist’s fantasies could not possibly be connected to real thought. But as I later
read in Felix Klein’s (1849–1925) Development of Mathematics in the 19th Century,
1926 (who had a similar problem with his fellow mathematicians), if you happen
to be in space, then infinity to the left and infinity to the right are the same point
at infinity because in projective geometry there is only one point at infinity. And as
Coxeter concludes: “Thus, if metrical ideas are left out of consideration, elliptical
geometry is the same as real projective geometry” (1942, p.15).

There must be some set of logical relationships in the universe or else the universe
would not be as consistent as it is. John Wheeler calls that set of logical relationships
a “pre-geometry.” Penrose’s “spin-networks” defines that set as tri-valent diagrams
of spins of would-be particles, diagrams that assemble to look like space. Penrose’s
spin networks are like an immaterial version of a mycelium underground that from

https://www.researchgate.net/publication/343099608_The_deBruijn_Algorithm_for_Quasicrysals_as_a_Model_for_Quantum_non-Locality
https://www.researchgate.net/publication/343099608_The_deBruijn_Algorithm_for_Quasicrysals_as_a_Model_for_Quantum_non-Locality
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place to place erupts in a fruiting mushroom. As John Baez writes in an important
paper for the arXiv, that concept was powerful to those working on quantum loop
theory because of loop theory’s “insistence of a back-ground free approach.” In
other words, spin networks do not happen in space, they make space.

Carter, Kauffman, and Saito were influenced by spin networks when they
collaborated on “Topological Lattice Field Theory.” I spent a fair amount of time
working to understand the theory for my book Shadows. Starting from a simple
diagram of associations and noting that the associations change if the diagram is
rotated or looked at from a different location, the authors build a multidimensional
topological structure on which a universe could be built. “Pancher moves [extended]
to 4 manifolds” is an argument made with diagrams that climbs the dimension ladder
from two dimensions to four, and from logical associations to quantum gravity.

My thoughts about something from nothing center on the role of projective
geometry in describing, no in making, reality. I learned this from Penrose’s writings,
and a couple of conversations with him: a light ray is more like a projective point
than a line in space. A projective point is what an artist would call the completely
foreshortened edge. If I am reading Penrose correctly, the Minkowski metric for
spacetime (and special relativity) is the inevitable consequence of space being
projective. And as I have argued, it is something like the N/2 projection of the
deBruijn algorithm that permits the paradoxical logic of the quantum world. Say
that it is the nature of physical space to be projective and all else fall out.

7 Shape Shifting in the 1970s

An artist’s life experiences influence that artist’s esthetics; sometimes art history
forgets this. (Could it possibly be the same for a mathematician, even a little?)
I grew up in Japan, Kansas City, Missouri, Okinawa, Teheran, and spent time in
Frankfurt, and Andover before settling in New York. In each place, I was expected
to be a different person: a juvenile delinquent, an athlete, a scholar, a hippie, an
artist. When I was a professor at Trenton State College, I marveled that many of
my students never went anywhere: maybe to the mall in New Brunswick, never to
Manhattan. But the world came to them via the movies and television, and they
had somewhat of the fluid identity that I needed in order to be welcome in the
various societies I grew up in. Just after graduate school at Yale, I met Robert Jay
Lifton, who interviewed young Japanese men after the war. He was astonished:
where they once worshiped the Emperor, they now embraced Christianity; where
they once hated their enemy America, they now loved Americans; where they once
cherished their agricultural heritage, they now favored capitalism. Lifton coined the
term “proteanism” to describe those young Japanese men, and suggested that their
behaviors were admirably adaptive, and further, that identity could be far more fluid
than we had been led to believe.

Linda Ronstadt sang country-rock in a boy scout shirt and hot pants, sang Gilbert
& Sullivan in a bonnet, 50s torch songs in an evening gown, country-western in
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jeans, and Mariachi with flowers piled on top of her head. Lee Breur presented
Sophocles as an African-American gospel service, and Dante’s Divine Comedy
with Bunraku puppets and Motown music. The Beatles started out as a Mod band
from Liverpool playing American Rhythm & Blues, then they transitioned to music
influenced by Indian Raga, to the goof of St. Pepper’s Lonely Hearts Club Band,
and finally to avant garde electronic music.

Thomas Berger’s novel of 1964 Little Big Man, later a popular film directed by
Arthur Penn and starring Dustin Hoffman, 1970, tells the story of a protean man who
changes back and forth from White to Native American, usually to avoid threats
to his life. At times, he is also a farmer, a gunslinger, a merchant, and a drunk.
Hoffman truly inhabits the different identities with differences of costume, speech,
and body language. The Dave Brubeck Quartet’s biggest hit, and the bestselling
jazz single ever, is Take Five. The title is not a command to take a short break, but
rather is a reference to the non-Western 5/4 time that the quartet heard during a State
Department sponsored tour of Turkey in 1958. Paul Desmond, writing for the group,
made the most of the quirky rhythm, quirky to Western ears.

I use projective geometry to depict this protean worldview: many spaces in the
same space.

And in these worried times, cross-cultural fertilization shapeshifting with its try-
on identities is sometimes denigrated as imperialist cultural appropriation. But there
is another way to look at it, a way of looking that we need now more than ever:
see the commonality of sapiens as exemplified by the universality of pattern. We
need to see common biology, not cultural differences. Mathematics is the same for
everyone, too.

Finally, in a paraphrase of an adage of mathematical Chaos Theory: a bat shits in
WuHan and 900,000 Americans die. The whole world is focused on every point on
earth; every point of earth is projected on the whole world.

Tony Robbin, Gilboa 2020, during Covid lockdown.
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Appendix 1

To rotate a point in the xy plane around the origin by an arbitrary angle (a), and
“multiplying on the left.”

cos(a) − sin(a)

sin(a) + cos(a)
× x

y
= x ′

y ′

If plane xy is in 3-space, then
cos(a) − sin(a) 0
sin(a) + cos(a) 0
0 0 1

×
x

y

z

=
x ′
y ′
z

And this allows for two more rotations:

cos(a) 0 − sin(a)

0 1 0
sin(a) 0 cos(a)

×
x

y

z

=
x ′
y

z′
and

1 0 0
0 cos(a) − sin(a)

0 sin(a) cos(a)

×
x

y

z

=
x

y ′
z′

Rotation in x, z rotation in y, z

If plane xy is located in 4-space, then

cos(a) − sin(a) 0 0
sin(a) cos(a) 0 0

0 0 1 0
0 0 0 1

×
x

y

z

w

=
x ′
y ′
z

w

And this allows for a total of 6 rotations: xy, xz, xw, yz, yw, zw
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From Vision to Perception: Chardin’s
Eighteenth Century Cultural
and Scientific Approach to Painting
(and Soap Bubbles)

Carla Scagliosi

M. Chardin est de nos jours le Peintre, qui peut-être était le plus
doué du talent de la couleur; ce sentiment en lui était exquis et
ne s’est jamais affaibli. Il semblait qu’il avait les yeux disposés
comme le prisme, pour composer les différents tons de tous les
objets et les passages imperceptibles de la lumière à l’ombre:
personne n’a mieux connu la magie du clair obscur.

Antoine Renou, Éloge funèbre de J.-B.-S. Chardin (1779) [1]

Among Chardin’s oeuvre, Soap Bubbles has always been one of the most admired
and commented paintings. This has occurred not only because it was the first (or
one of the first) genre scenes that the artist realized,1 but because its composition
and theme, as well as the artist’s role in the cultural context of eighteenth-century
French painting, have favoured various and sometimes opposite interpretations.

As for many other Chardin’s paintings, Soap Bubbles was replicated various
times by the artist2; in his 1933 catalogue raisonné Wildenstein includes a dozen
works featuring this subject ([4], pp. 166–167).

I am very grateful to Prof. Michele Emmer for having involved me in this publication and
introduced me, few years ago, to the fascinating and inspiring world of soap bubbles. I thank
him for his esteem and friendship, and for our precious talks and sharing of ideas.
1 See, among the others, [2], p. 8.
2 For this aspect, see in particular [3].
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The three known versions3 (Figs. 1, 2 and 3), are dated by most scholars between
1733 and 17344; they are later versions of a first painting that Chardin realized
around 1733 and then exhibited in the Salon of 1739.

Differing in shape, dimensions and for some detail (like the presence of the
honeysuckle leaves),5 the paintings present a pyramidal composition given by the
figure of the youth leaning from the sill and the plane of the parapet with its large
stones. The colours are a harmonious composition of grey, brown and green, where
some white spot (the soapy water in the glass, the shirt of the youth coming out from
his waistcoat and detachable sleeves) and little touches of red and blue emerge. The
richness and the thickness of the impasto, which is peculiar of Chardin’s painting,
gives an illusionistic three-dimensional shape to the figures and the objects and
renders all the different textures and materials present in the picture. It is a plain
and not overloaded composition, which leads the beholder’s eyes to the main focus:
the bubble.

Light is what orchestrates the whole scene and renders it coherent: light and
shadows endow space, objects and figures with depth and solidity. The light comes
from the left and illuminates the face and the arm of the young man leaning forward,
projecting his shadow on the large blocks of the side wall. Light is reflected twice
in the bubble, enhancing its spheric and three-dimensional shape while penetrating
its iridescent film. “In the Soap Bubble the transparent, slightly distended globe at
the tip of the young man’s blowpipe seems almost to swell and tremble before our
eyes” ([9], p. 50). Chardin used white and ochre brushstrokes to render the bubble’s
transparency and red and blue hints to enhance its variable shades.

The youth is not depicted with his cheeks swollen, though he is blowing air
through the straw. He seems very concentrated in what he is doing, that is to control
his action in order to reach the maximum bubble expansion without letting it burst.
The little boy with the plumed cap in the background, his hands levering on the sill,
is trying to lift himself up so as to have a better view. Being his eyes the only thing
we can see of his face, our attention is focused on them, which in turn are fixed on
the magic arising of the bubble.

As in all Chardin’s genre paintings, action has been frozen: it is the very moment
of a pause or stasis, a suspension of movements and gestures: “Like the toddler from
behind the sill, we watch with bated breath the bubble straining at the end of its
straw, at that precise, wobbly instant before it either bursts or breaks free and floats

3 Now in the National Gallery of Art in Washington (Fig. 1), the Metropolitan Museum of Art in
New York (Fig. 2) and the Los Angeles County Museum of Art (Fig. 3).
4 Recently J. Patrice Marandel has asserted that “it is hardly imaginable that the artist would
execute three versions of the same painting in a single year” and assumed that the one in Los
Angeles could be later than the one exhibited at the Salon of 1739. In [5], p. 71.
5 For deeper analysis, comparison, history of the three known paintings, see, among the vast
scholarship, [2]; [6]; [7], pp. 205–210; [8], pp. 208–210.
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Fig. 1 Jean Siméon Chardin, Soap Bubbles, 1733–1734, oil on canvas, Washington, National
Gallery of Art, 1942.5.1

away. Chardin’s brush has arrested on the canvas a moment of maximum instability
and tension, evoking from viewers the wordless absorption of the painted figures”.6

This feeling of silence and suspension, which is Chardin’s signature style, is
shared both by his still lifes and genre scenes. Chardin, in fact, treated genre scenes

6 [10], p. 222. For a deeper analysis on the matter of absorption in Chardin’s painting see [9].
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Fig. 2 J. S. Chardin, Soap Bubbles, 1733–1734, oil on canvas, New York, Metropolitan Museum
of Art, 49.24

as if he were painting still lifes, with the same obsessive attention to the palpable
rendering of materials, light and composition. Thus, the solemnity which emerges
from these artworks contributes to the sense of mystery that only he was able to
translate into images.

In the traditional iconography, soap bubbles are intended as a symbol of life
transience and vanity of the human things. Bubbles can be the symbol of whatever
passes and fades away, “anything that is attractive but evanescent” ([10], p. 219),
so they can also be associated with childhood and youth, as well as with the
fleeting nature of love. Both references could be found in emblems,7 still in fashion

7 See, for instance, the book of amorous emblems Ambacht van Cupido by Daniël Heinsius (1613),
in which the many “occupations of Cupid” can be read as allegorical interpretations of love
features. See also [3, 11, 12].
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Fig. 3 J. S. Chardin, Soap Bubbles, after 1739, oil on canvas, Los Angeles County Museum of
Art, M.79.251

in Europe during the eighteenth century, and in contemporary works of art such
as those of Lancret or Boucher, in which soap bubbles appeared as a frivolous
amusement in line with the “lightness” of rococo painting.8 “Soap Bubbles was both
an admonitory image, for the youth is wasting his time, and a vanity, reminding
us of the transience of human life and endeavour”.9 According to Conisbee, this
message was reinforced by the pendants of Soap Bubbles, that are either scenes
with similar games in which young people indulge (The Game of Knucklebones or
The House of Cards, Fig. 4) or, conversely, examples of good behaviour (The Little
Schoolmistress, Fig. 5).

8 See for instance Nicolas Lancret, L’Air, 1730–1732, now in Waddesdon Rothschild Collections,
UK; Jean Daullé, La Souffleuse de savon and Le petit souflleur des bouteilles de savon, both
engravings from paintings by F. Boucher (1758), Stockholm, Staten Kunstmuseum.
9 [2], p. 20. For an analysis on the interpretation of moral or allegorical meanings in Soap Bubbles,
its pairs and the engravings taken from Chardin’s paintings, see also [3]; [6], p. 225; [13], p. 123;
[14], p. 126; [10], p. 222; [11], p. 165.
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Fig. 4 J. S. Chardin, The House of Cards, probably 1737, oil on canvas, Washington, National
Gallery of Art, 1937.1.90

The Homo Bulla iconography and its symbolism appeared in the second half of
the sixteenth century and then spread widely in Northern Europe. It derived from
the adagio by Erasmus of Rotterdam Homo bulla est, which the scholar took from
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Fig. 5 J. S. Chardin, The Little Schoolmistress, after 1740, oil on canvas, Washington, National
Gallery of Art, 1937.1.91

Latin sources and that was figuratively translated into the image of a putto blowing
soap bubbles, symbolizing the transience and vanity of life.10

The boy blowing bubbles iconography became very popular in seventeenth-
century Dutch painting, especially among the fijnschilders, the “fine painters” of
the Leiden School. Artists like Gerrit Dou and his pupil Frans van Mieris (Fig.
6) influenced generations of artists that gave their own version of the theme, from
Dou’s pupils such as Pieter Cornelisz. van Slingelandt and Domenicus van Tol to
Mieris’ son Willem, to Caspar Netscher11 (Fig. 7). These painters disguised the
vanitas iconography in a genre scene, depicting children leaning at the window and
intent in playing with soap bubbles.12

10 Erasmus of Rotterdam, Adagia (Venice, 1508). See [15], pp. 42–44, and p. 62, note 5. See also
[12].
11 Among the others, Chardin must had seen Willem van Mieris’ Soap Bubbles now at the Louvre,
Paris (1710–1720, oil on panel, INV 1550) and a copy of Frans van Mieris’ A Boy Blowing Bubbles
(Fig. 6), but with the attribution to Caspar Netscher, that was in Joseph Aved’s collection ([16], p.
38).
12 [15], pp. 42–50 and [17], pp. 146–150.
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Fig. 6 Frans van Mieris, A
Boy Blowing Bubbles, 1663,
oil on panel, Mauritshuis, The
Hague, 106

In the first half of the century, the Flemish and Dutch Golden Age masters
were very requested in France, especially from the 1730s, and many well-known
collections and art dealers owned paintings and engravings that Chardin could have
known.13 The painter Jacques-André Aved, who was Chardin’s close friend, was
also an art dealer in Dutch and Flemish paintings and “traveled to the Lowlands
regularly to procure ‘old paintings’ for himself and others”.14

Chardin had already measured himself with Netherlandish still life painters
like Willem Kalf or Jan Weenix, and could count on many sources of inspiration

13 There was no difference, for eighteenth-century French critics and art amateurs, about Flemish
and Dutch schools.
14 [16], p. 37. Radisich’s research on Chardin’s cultural milieu and the relationships between his
paintings and his contemporaries’ reception of them, proves that he was an artist deeply rooted
in his time. Moving from the previous scholarship ([11, 18], etc.), an accurate survey of the
seventeenth century Dutch sources in Chardin’s paintings gives new light to the artist’s use of
pastiche. This was a very fashionable eighteenth century term to define a modern painter’s version,
endowed with “goût moderne” and innuendo, of subjects and themes derived from the old masters,
conducted in a witty and imaginative way, proof of the artist’s genius and uniqueness.
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Fig. 7 Caspar Netscher, Boy
Blowing Soap Bubbles, 1670
c., oil on wood, Mauritshuis,
The Hague, L120

among the paintings and prints of artists that were well represented in collections or
publications. Chardin decided then to follow the art market demand and realized
genre paintings with everyday life scenes, in the fashion of Dutch seventeenth-
century masters, investing “these modest scenes [ . . . ] with some moral or didactic
message” ([2], pp. 9–10). Eighteenth-century intellectuals discussing art compared
Chardin to Rembrandt and called him “the French Teniers” ([6], p. 224) to remark
the affinities with artists such as David Teniers, Gerard Ter Boch, Pieter de Hooch,
etc. ([14], pp. 118–119).

Like those of the Dutch painters, Chardin’s pictures are characterized by a
solemn silence given by the suspension of time and action; all attention is focused
on the inanimate still life elements he depicted so mimetically. Even human figures,
in their freezing actions, are silent and poetic, thus generating a sense of wonder. It
is not only a question of themes or compositions: as we will see, the main affinities
with Dutch art lay on a similar scientific approach to painting, considered as a means
of knowledge of the physical world.
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Fig. 8 J. S. Chardin, The Washerwoman, 1733, oil on canvas, Stockholm, Nationalmuseum, NM
780

In the same years of Soap Bubbles, or maybe earlier,15 the artist realized another
representation of a child blowing bubbles in The Washerwoman (Fig. 8), painted as
a pair for Woman Drawing Water at the Cistern.16 As for Soap Bubbles, both these
pictures show their debts with Dutch Golden Age painting for their iconography
and composition.17 In a humble interior, a woman is depicted while she is doing
laundry. She has stopped her activity for a moment to look at her right, maybe
taking a pause or because something caught her attention. Besides her, other isolated
and silent figures are represented: a crouching cat, a sitting child blowing bubbles,
another woman seen from the back, whose silhouette is enclosed in an adjacent
space invaded by light, seen from a half-open door. She is immersed in a light that

15 If these were Chardin’s first attempts in genre painting. See note 1.
16 Both in Stockholm, Nationalmuseum NM 780 and NM 781. Another version of The Washer-
woman is now at The State Hermitage Museum in St. Petersburg, ¦À-1185.
17 See, among the others, [16], p. 40.
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is palpable and enveloping thanks to Chardin’s extraordinary pictorial rendering of
the atmospheric particles.

The little child is painted in the foreground, sitting next to the large tub and is
characterized by the same attitude of his older counterpart in Soap Bubbles: both
figures are represented as absorbed while they are watching the bubble expanding
from the straw they are holding.

The bubble is rendered by white, ochre and red brushstrokes. Chardin has
succeeded in representing the thickness of the bubble at its bottom, giving it an
oblong shape that recalls the presence of a drop, thus producing the effect that the
bubble is going to burst within a short time. The artist faithfully reproduces the
colours identified by Newton in his Observations, in which he stated that, at its
thickest point, the bubble appears to be white ([19], p. 195).

Chardin’s painting can be associated to the experimental practice of eighteenth-
century “natural science” and the theories about optics and human perception.

Moving from the premises of Francis Bacon’s empiricism, sixteenth- and
eighteenth-century “natural philosophers” thought that mere speculation was not
sufficient to gain knowledge. Natural mechanisms and phenomena had to be inves-
tigated through experience, by the means of experimentations that have to prove the
veracity of the scientific assumptions based on abstract theories. Experiments and
demonstrations had therefore a main and active role in knowledge, conceived as the
final stage of a process that had to be verified and validated in its progress.

Isaac Newton can be considered as one of the founders of modern sciences and
his studies on light and colours became very popular in the eighteenth century. He
began his research on optics at the end of the 1660s and during the 1670s; the results
of his experiments and observations were finally published in 1704 in his Opticks,
or, a Treatise of the Reflections, Refractions, Inflections and Colours of Light [20].

Newton’s theories were translated into French in 1720, commented and spread by
popular scientific writings, such as those of Algarotti18 and Voltaire.19 Experimental
demonstrations, conferences, public lectures, scientific theatrical performances
contributed to their dissemination, not only among the intellectuals who animated
the cultural debates, but also among lay people. In line with Enlightenment spirit
and beliefs, in fact, science, culture and knowledge in general had to be universally
accessible and shared. Performances, demonstrations and experiments were carried
out with an everyday language and very simple equipment, allowing the non-
specialistic public to understand their scientific contents and to repeat them at home,
thus experiencing a direct and active learning.20

18 Francesco Algarotti, Il Newtonianismo per le Dame, ovvero dialoghi sopra la luce e i colori
(Naples, 1737).
19 Voltaire, Éléments de la philosophie de Newton mis à la portée de tout le monde (Amsterdam,
1738).
20 As Hosseini remarks, it i’s interesting to notice that both words “experience” and “experiment”
are translated into French as expérience, in [21], p. 19; see also [22], p. 82.
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After using prisms, mirrors and lenses, Newton began to study light and colours
phenomena by the means of soap bubbles. Unlike the prism, through which it
is possible to observe the phenomenon of light refraction, he discovered that the
iridescence of soap bubbles depends on the so-called interference. It “occurs when
the thickness of the film is comparable to the wave-length of visible light. It is caused
by the fact that, in soapy liquid, the different colours that make up sunlight move at
different speeds”.21 The light falling on the bubble is reflected from two contiguous
surfaces, the outer surface and the inner surface of the soap film: they are not totally
mirror-like, so some light penetrates them, thus creating this particular physical
phenomenon. As subjected to the force of gravity, which pulls the liquid downwards,
the thickness of the soap film is not constant, but it gets thinner and thinner on top
till the bubble bursts. In this time interval and in relation with these changings, the
full range of colours appears onto the sphere superficies, in a succession of bands
expanding and moving downward that create the peculiar iridescence of the bubbles:
“Newton showed that the different thickness of soap film reflect different colours.
Soap film appears white at its thickest, black at its thinnest, and as it becomes thinner
it shows a series of hues” ([19], p. 195). In some conditions, the colour that will be
visible on the soap bubble outer surface will be a mixture of red and blue, as Newton
wrote in his Observations [20], pp. 20–27.

The artist’s way of depicting soap bubbles (Figs. 9 and 10) follows Newton’s
theories: the hues of red and blue, the white brushstrokes at the maximus thickness,
the two reflections of the light source on the spheric shape, all are pictorial
translations of optical observations. Also, the glass with the soapy liquid on the
sill is painted with blue touches on the bottom and hints of red among the shades,
while its rim is enlightened by two white strokes that follow the direction of the
light ray. As already noticed, the same attention is given to the bubble painted in
The Washerwoman, with its white drop of liquid at the bottom.

In his essay on Chardin [25], Baxandall puts in relation Newton’s research with
John Locke’s theories about perception and education, accurately illustrating the
connections that can be found between the two intellectuals, the role they had in
the scientific and cultural debate of the time and the characteristics of Chardin’s
painting that can derive from his embedding in this culture.

Newton’s studies on light and optics, in fact, were part of a wider field of research
that concerned perception in general and visual perception, sight in particular. He
understood that the individual plays an active role in the process of perception,
discovering that “colours [ . . . ] are a sensory product of the mind and do not exist in
the object we see, nor in the light, which nevertheless allows us to appreciate them
and which is the immediate object of vision” ([25], p. 116).

In the same years in which Newton was studying optics, the contributions of
Philippe de La Hire22 were published; the French mathematician (and painter!)

21 [23], p. 17. See also [24], pp. 106–112.
22 Dissertation sur les différents accident de la vue (1685) and Traité de la Pratique de la Peinture
(posthumously published). See [25], pp. 130–132.
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Fig. 9 Detail of Fig. 2

Fig. 10 Detail of Fig. 8



210 C. Scagliosi

discovered that the colour of an object changes in relation to the different light
conditions or to its distance from the eye.

In accordance with Newton’s and La Hire’s studies on vision, perception
intended as a process of knowledge became a main interest also for John Locke;
in his writings,23 he investigated the interrelation of the senses and the ability of
the human mind to collect experiences, turn them into comprehension and then
into knowledge. Locke considered “the subject of perception, rather than the object
perceived, as the central element of the question. [ . . . ] Man is not born already
endowed with the ability to visually perceive intrinsic and primary details such as
figure or form, i.e. with the knowledge to see, for instance, a sphere. It is through
experience and the comparison of different sensations, in fact, that we learn to
associate specific sensory perceptions with specific qualities of the substance” ([25],
pp. 116–117). The eye perceptions of colours, shadows, shapes, must be intertwined
with the other senses, first of all touch, to experience textures, materials, tactile
sensations and to associate them to the visual stimuli. Chardin knew it well, as
his painted objects, spaces and figures have those tactile features that make them
appear absolutely real. His technique and style, gained by a strenuous workmanship,
aim at reaching the most palpable and believable representation of reality. Renou’s
comparison of the artist’s eye to a prism24 proves that his contemporaries had
understood the extraordinary relevance of his scientific, optical and perceptive
approach to painting.

The connections between Newtonian theories and Chardin’s painting are evident
in Soap Bubbles.25 Chardin starts from a double layer priming, obtained by a
red-ocher layer and a light grey-brown one, which together produce “an optical
gray, the purpose of which is to give vibrancy and depth to the painting” ([26],
p. 23). The same careful workmanship is displayed for the colour mixtures used
for rendering flesh, objects and garments, the wall and ledge stones. Chardin’s
colours are always made up of pigments combination, and what is interesting from
the optical point of view is that this gives vibrant chromatic effects and tones that
interrelate and contribute in creating a homogeneously lightened, believable scene.
The quick and large brushworks make “these images appear to be observed from
the corner of our eye. [ . . . ] With the image almost complete the artist scumbled
light green—or rather a mixture of yellow, black and white pigments—over the
background, blending it with the still-wet outlines of the primary forms to create a
fuzzy atmospheric effect [ . . . ] [and] a very believable atmospheric space with light
naturalistically modeling the forms” ([26], p. 24).

Chardin’s paintings seem to be pervaded by air: “By depicting natural blurring,
the diminution of details and the dissolution of strong contours, Chardin succeeds

23 John Locke, An Essay Concerning Human Understanding (London, 1690) and Some Thoughts
Concerning Education (London, 1693).
24 “It seemed that his eyes were set like a prism”, see [1].
25 It is maybe not by coincidence that Chardin exhibited his Soap Bubbles in the Salon of 1739,
only a year after Voltaire’s book on Newtonian optics.
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in capturing the natural perception of distant objects in his paintings. Due to the
air atmosphere between the viewed object and the viewing subject, details become
indistinct, colours diminish and the overall appearance becomes blurred” ([27], p.
203).

These features bring to mind two mechanisms of visual perception related to
focusing: “adjustment”, which allows to focus on foreground objects placed at
different distances, and “optical sharpness”, that “concerns the different gradations
of the sensitive response at different points on the retina and determines the degree
of sharpness within the visual field” ([25], p. 121). This is the reason why the
peripheral vision is not as sharp as the central one, and sharpness cannot embrace
the whole field of view, but just some selected elements.

Chardin’s painted images, which seem to be “observed from the corner of our
eye” ([26], p. 24), are built up by using sharpness and blurring, applying the
distorting effects of human peripheral vision and focusing on light and its capability
to give a credible setting to space and things, being the fundamental medium by
which the visible is given. “Chardin’s still life paintings seem hazy with few selected
items in focus, mimicking the way the eye comfortably scans a tabletop with objects
on it; the eye moves easily over those objects familiar to it and rests only on certain
objects of interest” ([18], pp. 90–91).

Just as Chardin observed the objects of his representation from various distances
so to render them in an overall view on the canvas and strip them of their excessively
vivid details, the observer is required to have a similar approach. When in front of
the painting, he cannot place himself in a fixed and privileged point of view, but
has to “adjust” his vision moving closer and further, as he does while perceiving
reality. “Through his movements in front of the picture, he imitates with his body
the moving eye, which regulates the visual acuity through pupil and accommodation
movements and reacts to proximity and distance” ([28], pp. 542–543).

The painting thus acquires the same value as a scientific experiment, since it
becomes the means of recognizing and understanding the mechanisms of optical
perception. In this sense, Hosseini finds an epistemic value in Chardin’s painting,
because images in general can be considered as a form of scientific dissemination
that is accessible to all and immediately understandable ([21], p. 20). The experience
of observing a painting that has been composed following the rules of perception
involves the same physiological mechanisms used for deciphering reality, activating
then a real process of knowledge in the beholder. Furthermore, in Soap Bubbles, the
study of perception and colours through physical experimentation is also the subject
of the painting and, while painting, Chardin too is experiencing human perception
and knowledge.

Painting, scientific experimentation and playing have in common the element of
curiosity, which must arouse questions and a thirst for knowledge. This is why, in
Lockean theories on education, the component of play, fun and involvement became
fundamental to the learning process and the education of children.

If we focus on the representation of the two characters in Soap Bubbles, we can
notice that the boy is more sharply depicted, and this is not only because he is on the
foreground or because Chardin is applying optical theories to the composition. Jasin
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considers the blurred features of the younger kid to be a reference to the Lockean
definition of the child as a tabula rasa ([18], p. 100), an empty page that must
be filled with life and experience. What Chardin depicts in his many scenes with
children and adolescents, then, can be defined as the process of Bildung intended
“as the production of the self” ([29], p. 258). In Soap Bubbles, the little kid is
not on focus, yet, but he will.26 Watching the elder boy blowing bubbles with an
absorption similar to that of his companion, he is learning how to blow bubbles
and the characteristics of the bubble itself. As soon as he learns how to do it, he
is going to have an active part in the process, as the second straw in the glass
seems to suggest. Parallel to the diagonal line of the one held by the youth, this
straw is an element that Chardin includes to refer to the dimension of time. Its
presence opens up to a series of thoughts about what will happen, in a succession
of “narrative moments or ideas. Liquid is transformed into bubble; bubble is blown;
child observes; child will pick up second straw and emulate what he has observed
and experienced”.27 Moreover, the suspended time of painting is endowed with a
pedagogical value, since it allows to freeze what is mutable in nature, thus enabling
to perceive it better and better comprehend it.28

In line with the Lockean interpretation of Soap Bubbles, its pendants can be then
read in a different way. The House of Cards (Fig. 4), as well as for The Game of
Knucklebones, can be considered as a visual explanation of Locke’s theories about
learning through play. The boy playing with cards is experimenting gravity and
balance; as Terpak states, “the youthful natural philosophers of Chardin’s [ . . . ]
paintings reveal the fascination with science that pervaded everyday life in 18th
century France and England. They also subtly advance the Enlightenment idea that
nature can be fully discovered by those willing to investigate her secrets” ([19], p.
196). A Lockean interpretation can be applied also to The Little Schoolmistress (Fig.
5). In this case, the pair can be read as the transposition in pictures of Locke’s idea
that the child is learning both by studying and playing. Another element conveys to
this reading: the little kids that Chardin painted in the two scenes are so similar that
they can even be the same child.

26 See [29], p. 256: “This fetus-like figure, this Lockean tabula rasa, occupies the zero-point of
knowledge preceding the maturation of meaning. Meanwhile the adolescent, crossing over the
threshold, enters into that broad foreground space into which an ever-greater number of adult
viewers will constantly arrive (following after the adolescent, as it were, yet always arriving before
him) to inscribe their own, proliferating readings”. See also [30], p. 153.
27 [18], p. 102. See also [22], p. 82 for a different interpretation.
28 Newton himself had to cover the bubble with a clear glass dome to protect it from air moving
and colour mixing, and to let it last longer so to better observe it (see [20], p. 20). See also [22],
p. 82.



From Vision to Perception: Chardin’s Eighteenth Century Cultural. . . 213

1 Conclusion: From the Objective Sharp Vision to a Human
Perceptive Experience

“Trompe l’oeil, with its supernatural form of vision, can take still life from
mundane reality to hyper-reality, creating flawless, polished, pure and spectacular
representations of objects. This phenomenon is at work in the studied formality of
the [ . . . ] paintings from the seventeenth century Dutch Republic” ([18], p. 90).

What fascinates most in Dutch Golden Age painting is that illusionism reaches
its highest level. The trompe l’oeil is the final result of a painting conceived through
the seventeenth-century scientific approach and optical theories, in which a great
impulse was given by Kepler’s research.29 The scientist perfected the knowledge of
eye physiology and sight mechanisms, and consequently improved the studies on
the functioning of lenses, promoting their use in empirical science. He associated
the term pictura to the inverted image which forms on the retina, comparing the
eye to a perfect camera obscura in which light projects the “representation” of the
outside world. In this perspective, seeing means producing images (ut pictura, ita
visio) ([15], p. 41).

The Dutch painters conducted their optical and perspective studies by the
means of squared frames, mirrors, lenses and devices such as the optical cameras,
peepshows, perspective boxes, and so on. The depicted image, so sharply clear
and deceiving in its mimetic aspects, was the result of the idea that a faithful
image of the world allows us to know it. Therefore, applying the laws that
govern our mechanical way of seeing to painting, amplifying and enhancing the
power of vision by the means of lenses, Dutch artists obtained an illusionistic
objectiveness (Fig. 11). They reached amazing results in depicting textures and
materials, reflections and effects of light on various surfaces, microscopic details
and scientific reproductions of nature (from botanical or enthomographic drawings
to topographical or chorographic representations) ([15], pp. 41–42). In Dutch
painting, the protagonist is not the individual, but the eye: “The strength of his
method lies in the deanthropomorphising of vision. [ . . . ] It is a dead eye, and
the model of vision, or if you will of painting, that is proposed to us, is a passive
model”.30 The process of vision goes from the outside to the inside, to the object to
the subject, through a mechanical process which is passive and does not imply any
active involvement.

Eighteenth-century studies discovered and demonstrated that the act of merely
seeing is not sufficient to gain an experience (and therefore a knowledge) of
the perceptible world. To reach knowledge, it is necessary to elaborate on the
notions that arrive from all the senses. These data coming from the outside through
perception must be collected, related to each other and connected with our previous

29 Ad Vitellionem paralipomena quibus astronomiae pars optica traditor (1604, in particular in
chap. 5, De modo visionis) and Dioptrice (1611).
30 [31], p. 55. See pp. 44–141 for a deeper analysis.
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Fig. 11 Willem Claesz. Heda, Still life with a Gilded Beer Tankard, 1634, oil on panel,
Amsterdam, Rijksmuseum, SK-A-137

experiences, to be recognized, elaborated and treasured. Therefore, we do not simply
see the world, but we perceive it, and we can even perceive it differently according
to the physical, physiological or even psychological conditions in which we are at
that moment. Perception is an act that involves the individual as a whole and, as
such, implies a certain level of subjectivity. It is no more a matter of objects and
objectivity, of universal and abstract laws that mechanistically govern a pure trans-
ferring of data from the outside to the inside. On the contrary, eighteenth-century
science recognized the active role of the individual in the process of perception: this
goes from inside to outside, from the subject to the object. The object is invested
with qualities and features by the “perceiving agent,” as he activates perception
mechanisms and the consequent “recognition” (or comprehension) of reality. If the
world is subjectively perceived and not objectively given, what can be represented
is not so much the object in its tangible and external materiality, but rather the
perception of the objects and the qualities our experience attributes to them (Fig. 12).

In eighteenth-century painting, vision becomes an experience that, although com-
mon to men in their being rational and “sensorial” beings, presumes an individual,
personal component. This individual vision of the world, which substitutes what
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Fig. 12 J. S. Chardin, Still Life with a White Mug, c. 1764, oil on panel, Washington, National
Gallery of Art, 1972.9.6

is seen with what is known,31 what is objective with what is perceived, will lay
the foundations for the artists’ claim for subjectivity in nineteenth century, finally
derogating from universal laws in favour of a personal interpretation of the world
and, consequently, of art.32
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Part IV
Architecture and Mathematics



Andrea Palladio and Zaha Hadid

Michele Emmer and Fulvio Wirz

1 Palladio, Villa Malcontenta

We motored out to tea at Malcontenta, by the new road over the lagoons beside the railway.
Nine years ago Landsberg found Malcontenta, though celebrated in every book on Palladio,
at the point of ruin, doorless and windowless, a granary of indeterminate farm-produce. He
has made it a habitable dwelling. The proportions of the great hall and staterooms are a
mathematical paean. Another man would have filled them with so-called Italian furniture,
antique-dealers’ rubbish, gilt. Landsberg has had the furniture made of plain wood in the
local village. Nothing is ‘period’ except the candles, which are necessary in the absence of
electricity.

R. Byron, The Road to Oxiana, [1] (Byron, 1937)

Robert Byron was an English travel books writer who died in 1941 during World
War II, while serving as a correspondent for a London newspaper on a ship from
Scotland to West Africa that was torpedoed by a Nazi U-boat.

Byron is refering to the famous villa La Malcontenta, one of the most famous
villas created by Andrea Palladio (Andrea di Pietro, son of Pietro della Gondola,
born in Padua on November 8th 1508, called Palladio). The villa is located on the
banks of the river Brenta, it is not very far away from the lagoon and the center of
Venice (Fig. 1).

If you can build near the river, it will be very comfortable and beautiful; because with little
expense at any time it will be possible to transfer with the boats any kind of goods from
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Fig. 1 Andrea Palladio, Villa La Malcontenta, 1556–1559 (© photo Matthias Schaller, courtesy
Villa La Malcontenta S. r. l.)

the town, and the villa will serve for the uses of the house and the animals, as well as
to bring very fresh summer, and it will have a beautiful view, and with great utility and
ornamentation it will be possible to water the possessions, the Gardens, and the Bruoli
(vegetable gardens), which are the soul and pleasure of the Villa” wrote Palladio in the
book II of the Quattro libri dell’architettura (Four Books of Architecture) in chapter XIV
Dei Disegni delle Case di Villa di alcuni Nobili Veneziani (The draughts of Several Country-
houses built by noble Venetians) [2, 3].

And so he describes the villa: (Palladio, Andrea & Leoni, Giacomo, 1715)

Near the Gamberare (a small village) on the Brenta, is the following building, which is
the house of the magnificent Lords Nicolò e Luigi de’ Foscari. The house is raised eleven
feet from the level of the ground, and below are the kitchen, pantries, and the like places.
Everything is arch’d as well above as below. The arches of the great chambers are made after
our first manner. Those of the squares are arch’d like a cupola. On the closets are mezanini.
The hall is arch’d half round grinded: its imposts as high from the floor as the breadth of the
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hall, which is excellently painted by Messer Battista Venetiano Messer Battista Franco, one
of the best draughts men of our time, did also begin to paint one of the great chambers, but
he dy’d before he could finish his work. The portico is of the Ionic order. The cornice goes
around the whole house, and makes a pediment above the portico, as well as on the opposite
part. Under the eves of the roof there is a second cornice, which passes above the pediments.
The upper rooms are like Mezaninos, because of the little height they have, which is about
eight foot (Fig. 2).

Nicolò Foscari, who was also the owner of the famous Ca ‘Foscari palace on the
Canal Grande, now home of the University by the same name, wanted a villa to be

Fig. 2 A. Palladio, I quattro libri dell’architettura, chapter XIV Dei Disegni delle Case di Villa di
alcuni Nobili Veneziani, table 34. [4]
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built along the river Brenta in an isolated place, not a farm-villa but a real residence
that was easily reachable by boat from Venice. It is believed that the project was
entrusted to Palladio between 1556 and 1559. The building was certainly completed
also in internal decorations in 1566 when Giorgio Vasari visited the villa.

The nickname of Malcontenta (never satisfied) came later, perhaps because of a
noblewoman, Elisabetta Dolfin, of the important Dolfin family. Cardinal Giovanni
Dolfin bought the Ca ‘Dolfin palace in Venice in 1621 where until a few years ago
the mathematics department of the Ca’ Foscari University was located. And the
young Elisabetta, a widow, married Nicolò Foscari, who, given the rumours about
his wife’s infidelity, closed her up, although she declared herself innocent, in the
villa on the Brenta until her death.

Palladio decided to direct the main façade of the villa towards the north, towards
the river, transforming the south façade into a sort of wall of light, with large
windows that let in natural light.

Among the sources of inspiration of Palladio Il tempio ch’è sotto Trevi (The
temple under Trevi), as he calls it in the book IV of I quattro libri di architettura
(The four books of architecture), the temple of the sources of Clitunno which is
located in Umbria, just near Trevi [4]. Chapter XXV of the fourth book describes
the temple of which Palladio made four tables, including one dedicated to the half
of the façade. More interesting is the design that the architect does not include in
the fourth book in which the façade is complete. The resemblance to the north face
of the Malcontenta is undoubtedly significant.

Probably the temple was originally a shrine dedicated to the river god Clitumnus
that was described by Pliny the Younger in his book [5]: “Adiacet templum priscum
et religiosum. Stat Clitumnus ipse amictus ornatusque praetexta; praesens numen
atque etiam fatidicum indicant sorties. (Next to it [to the river] stands an ancient and
venerable temple in which is placed the river-god Clitumnus clothed in the usual
state robe; and indeed the prophetic oracles here testify the immediate presence of
that divinity”.

Considered one of the most interesting early medieval monuments in Umbria,
it is among the seven jewels of art and Lombard architecture in Italy included in
the list of UNESCO World Heritage sites. Recent studies have allowed to limit the
chronology of the building to the Lombard period, with an oscillation between the
beginning of the seventh and the full eighth century (Fig. 3).

In the monograph Palladio: tutte le opere (Palladio: all the works) Paolo Marton,
Manfred Wundram and Thomas Pape observe [6]: “If we look at the design of
Palladio we see that the temple rests on a mighty basement interrupted in the middle
by a portal; on this rises a portico surmounted by a pediment framed with shelves:
In the Malcontenta on the façade facing the river, we find, even if in a slightly varied
form, those same elements, ie the very tall basement, the columned portico and the
framed pediment from shelves. “And they add “Palladio’s choice of harmonies that
follow mathematical rules is again evident: from the basic unit of measurement the
volumes increase progressively, in proportion to the previous ones.”

And it is the mathematical rules, the classical proportions that Palladio uses
reinventing them continuing to fascinate architects all over the world for hundreds
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Fig. 3 A. Palladio, Prospetto e spaccato prospettico del tempietto del Clitunno presso Spoleto,
drawing, Museo Civico Palazzo Chiericati, Vicenza. Photo credit: DeA Picture Library, licensed to
Alinari
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of years, including one of the most important architects of recent years, who has
made fluid architecture and new digital technologies his credo: Zaha Hadid.

2 Venezia, Mostra Internazionale Di Architettura, 2008

The 2008 Biennial had as general title Architecture Beyond Building and was
organized as always in different sections; one of these, with its own catalogue was
called Experimental Architecture. Zaha Hadid Architects participated. This is what
Patrik Schumacher, co-founder of the Zaha Hadid Atelier, wrote in the catalogue on
the relationship between innovation and tradition in contemporary architecture [7]:

Architecture is often associated with longevity, primordial archetypes or eternal values; this
is the vision that you have outside of the discipline. Inside originality is the fundamental
criterion of self-evaluation in the architectural field ... which implies the necessity of a
permanent adaptable innovation ... The experimentation must not be arbitrary; it only makes
sense if framed within a paradigm that is a guide to a collective research effort.

Zaha Hadid Architects also participated in the section Eventi speciali e collaterali
(special and side events) with the project Andrea Palladio and Contemporary
Architects: Zaha Hadid and Patrik Schumacher [8]. This was a very appropriate
theme in the city of Venice where Andrea Palladio realized so many important
works. One theme in particular concerned Hadid and Schumacher: that of the villa,
which although built for obvious reasons on the mainland, was an important part of
the lagoon town. Schumacher wrote a few years earlier on the theme of the Villas of
Palladio in the volume Digital Hadid. Landscape in Motion [9]:

The Analogy of building and organism is as old as the self-conscious discipline of
architecture itself. Traditionally, the analogy focused on key ordering principles like
symmetry and proportion. These principles were seen as integrating the various parts into
a whole by means of setting those parts into definitive relations: In this conception, the
organism is approximating an ideal type which implies strict rules of arrangement and
proportion for all parts. It also assumes a state of completeness and perfection. The organism
is a closed form: nothing can be added or subtracted: The Palladian Villa is perhaps the best
example of this idea of the organism as an ideal of perfect order.

Our projects remain incomplete compositions, our concept of organic integration
does not rely on such fixed ideal types. Neither does it presuppose any proportional
system, nor does it privilege symmetry. Instead, integration is achieved via various
modes of spatial interlocking, by formulating soft transitions at the boundaries
between parts and the means of morphological affiliation.”

The 2008 Biennale was an opportunity for a direct confrontation with the Villa
par excellence of Palladio, La Malcontenta. Giulia Foscari, curator of the exhibition
of Zaha Hadid Architects, which took place right in Malcontenta’s rooms, wrote in
the Biennale catalogue: [10]

Palladio’s architecture is the built manifestation of Palladian utopia, consisting in the
synthesis of all humanistic values through the definition of the exact role and relationship
of each component of the architectural composition, from the organism as a whole to each
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individual environment. The proportions of each room are determined by a series of specific
“harmonic” relations deriving from the Euclidean mathematics practiced in the 16th century
... The Malcontenta represents the ideal context for this investigation, as it was conceived
and built by Palladio as a manifesto that demonstrated to the Serenissima Republic of Venice
the perfection of its architectural theories ... The frequency curves generated by the system
of harmonic proportions of the villa are subjected, through mathematical algorithms, to a
progressive transformation aimed at defining an elementary genotypic form that contains in
its DNA the whole set of Palladian rules. The result of this experimentation consists in the
generation, through a series of respectful variations of the classical Palladian proportions,
of multiple complex environments. The natural equilibrium of Malcontenta is shaken by
the dynamic component introduced by Zaha Hadid and Patrik Schumacher, who have long
rejected Euclidean mathematics, at the basis of Palladian theories of proportions—which
could only lead to the definition of a single singular relational system, ‘perfect’—to explore
the potential of advanced digital techniques.

This explanation is not entirely convincing, because visiting the exhibition one
had the distinct impression that experimenting with the application of mathematical
algorithms to the perfect Palladian proportions wanted rather to claim for the digital
experimentation a sort of nobility of origin, to continue in the wake of an idea of
architecture that certainly always refers to originality without forgetting its history.
And therefore not a dynamic shake-up of the harmony of the Villa but rather
a reinterpretation in the light of new technologies and topological interpretation
of architectural fluidity, of which Zaha Hadid has often spoken, of Palladio’s
innovative architectural ideas which in turn are rooted in classical architectural
culture. So the place could only be within one of the highest expressions of the
mathematical harmonies of the buildings of Palladio. It should also be noted that
Zaha Hadid received a degree in mathematics from the American University of
Beirut before moving to London.

This is the way in which the project was described by its creators, in which some
words take on a somewhat different meaning, especially in the conclusions [11]:

The Aura installation for the 2008 Venice Biennale represents a dialogue between the
fluid contemporary language of the Zaha Hadid studio and the mathematical principles of
harmonious architectural composition of Andrea Palladio. The work focuses on the piano
nobile of Palladio’s Villa Foscari La Malcontenta, which encapsulates his theory of perfect
form. Accordingly, the proportions of the sequence of spaces provided the starting point for
Zaha Hadid and Patrik Schumacher’s study.

The frequency curves generated by the harmonic proportional system of the villa were
progressively transformed, through mathematical algorithms, to define an elementary form
that contains in its DNA the full set of Palladian rules. As a result of this experimentation,
multiple complex spatial environments were generated based on lawful variations of
Palladio’s classical proportions. The natural equilibrium Palladio achieved in the design
of La Malcontenta is thus shaken by a dynamic component introduced and made possible
by advanced digital design technologies.

With a mathematical integrity rooted in Palladian algorithms, the graceful curves of
Aura reflect the structure of this ethereal space in a contemporary formal language and ma-
terials. Demonstrating the generative potential of Palladio’s proportional system, a second
installation was developed for the adjacent symmetrical room. The two installations—Aura
L and Aura S—were presented together, both generated by a contemporary translation of
Palladio’s harmonic system—at five centuries’ remove.
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Fig. 4 Harmonic Projects for the Aura Project (2008) Courtesy of Zaha Hadid Architects

Mathematical integrity is the key to reading through the algorithmic generation of
the intervention of Hadid and Schumacher. A mathematical procedure, the algorithm
is applies to the initial data which are the mathematical harmonies of the Villa
Palladiana. An algorithmic procedure. Precisely mathematical, allowing to reach
at new geometric proportions that start from the initial Palladian data.

The malleability of the digital process is wisely used not only in reinterpreting the
Palladian proportional system but also in the subtle interplay of transition and con-
trast between the perfectly circular envelope of the front elevation and the sinusoidal
articulation of the longitudinal profile. The experience of circumnavigating the work
thus becomes itself the transient manifestation of the evolution from the geometric
perfection of classicism to the apparently chaotic complexity, but in reality perfectly
controlled by complex algorithms, typical of computational design.

And the experimentation carried out by the two architects, the various steps that
are taken to reach an aesthetically interesting result, are just harmonic experiments,
as they are called. Which will lead to new forms with their own harmony (Fig. 4).

A few years later, again in Venice, Hadid and Schumacher were asked to organize
an anthological exhibition of paintings, projects, objects that had been recently
conceived and partly realized until 2016. The best place was Venice again, as part of
the Biennale di Architettura (Architecture Biennal). In one of the Venetian historical
buildings of relevant architectural interest.

From 27 May to 27 November 2016 at Palazzo Franchetti in Venice there was a
large exhibition dedicated to Zaha Hadid Architects. Hadid designed the exhibition
by choosing works, paintings and projects to be included in the exhibition’s
itinerary. She died on March 31, 2016.

In the introduction to the exhibition, Schumacher stressed that the publication
of the book Digital Hadid in 2004 remained an important milestone in his attempt
to reflect on the genealogy of the digitally generated style he called Parametricism
at the Venice Biennale of Architecture in 2008. He felt the need to give a name
to the new language or style of architecture that had been formed by the strong
convergence of an entire generation of young architects since the nineties [12]
(Fig. 5):

My 2004 thesis focused on the pre-digital desire for complexity and fluidity as a motivating
force for the introduction of certain digital tools drawn into architecture from the realms of
computer graphics, movie animation and scientific simulation . . . These tools are the ever
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Fig. 5 Zaha Hadid Architects, ProjectAura, Client: Venice Biennale, Fondazione La Malcon-
tenta. 2008. Photographs by Luke Hayes at La Villa Malcontenta

expanding set of algorithms that shape, discipline, and rationalize our design in unexpected
and sometimes even counter-intuitive ways. These tools have become truly generative and
intelligent, augmenting our design capacity in profound ways.

Schumacher wrote always in 2004 [13]:

There is an unmistakable new style manifesto within avant-garde architecture today. Its most
striking characteristic is its complex and dynamic curve—linearity. Beyond this obvious
surface feature, one can identify a series of new concepts and methods that are so different
from the repertoire of both traditional and modern architecture that one might speak of the
emergence of a new paradigm for architecture.
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Schumacher reports some of the answers that Zaha Hadid gave about the role
of design media in general and digital media in particular in an interview with
the Chairman of the Architectural Association of Schools of Architecture Mohsen
Mostafavi [14].

It recalls and praises the practice of design, of the importance even in the digital
age, of using design as an expressive method and to formulate one’s ideas:

I still think that even in our later projects, where the computer was already involved, the
2-dimensional plan drawings are still seminal. I still think the plan is critical. The computer
shows what you might see from various selected viewpoints. But I think this doesn’t give
you enough transparency, it’s much too opaque. Also, I think it is much nicer on the
screen that when it is printed onto paper, because the screen gives you luminosity and
the paper does not, unless you do it through a painting. Further, I think if you compare
computer renderings with rendering by hand, I must say that you can improvise much
more with hand drawing and painting . . . Only 1920s Modernism really discovered the
full power and potential of drawing as a highly economic trial-error mechanism and an
effortless plane of invention—in fact inspired by the compositional liberation achieved by
abstract art in the first decade of the twentieth century. Drawings accelerate the evolution
of architecture. Modern architecture depends upon the revolution within the visual arts
that finally shook off the burden of representation. Modern architecture was able to build
upon the legacy of modern abstract art as the conquest of a previously unimaginable realm
of constructive freedom . . . Abstraction meant the possibility and challenge of creation.
Through figures such as Malevich and vanguard groups such as De Stijl movement, this
exhilarating historical moment was captured and exploited for the world of experimental
architecture.

Schumacher comments: “Abstraction implies the avoidance of familiar ready-
made typologies. Instead of taking for granted things like houses, rooms, windows,
roofs . . .Hadid reconstitutes the functions of territorialisation, enclosure and inter-
facing by means of boundaries, fields, planes, volumes, cuts, ribbons . . .One of
Hadid’s most audacious moves was to translate the dynamism and fluidity of her
calligraphic hand directly into equally fluid tectonic systems. Another incredible
move was from isometric and perspective projection to literal distortions of space
and from the exploded axonometry to the literal explosion of space into fragments,
from the superimposition of various fisheye perspectives to the literal bending and
meltdown of space. All these moves initially appear as plenty illogical, akin to the
operation of the surrealists.” (Figs. 6 and 7).

Those words of Schumacher became at the 2008 Biennial the project of
experimental architectures, where a large part had the paintings which Zaha Hadid
created, paintings of architecture as utopias, before starting to realize her ideas
as finished architectures, including the project of the link between contemporary
architecture and Palladio within the Malcontenta. Another project was always
presented at the Venice Biennal. A project which linked the forms of the Villa of
Palladio mediated by mathematical algorithms to the other projects that Zaha Hadid
and Patrik Schumacher presented in the usual rooms of the Biennale at the Arsenale,
inside the city of Venice: the Lotus Project [15].

“Instead of representing a system already domesticated through internal rules,
the Lotus room seduces through the folds of undulating rhythm, its exclusions, its
reconfigurability and its ability to remain outside of categories.
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Fig. 6 Zaha Hadid Architects, ProjectAura, Client Venice Biennale, Fondazione La Malcontenta.
2008. Photographs by Luke Hayes at La Villa Malcontenta

Fig. 7 Zaha Hadid Architects, ProjectAura, Client Venice Biennale, Fondazione La Malcontenta.
2008. Photographs by Luke Hayes at La Villa Malcontenta
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3 Conclusions

There was no doubt that it was necessary to modify formal language in order to use
geometric instruments that were up to graphic and pictorial intuitions: [16]

Computer technology, i. e. the new digital design tools, have had an important and
increasing influence on the work of Zaha Hadid Architects over the last years. This concerns
primarily the handling of increasingly complex geometries within the designs. However, the
desire for such tools to be imported from the animation industry originated in the fact that
the tendency towards complexity and fluidity was already manifest in the work before those
tools were available.

All this leads to a new conception of space. Schumacher clarifies: [17]

These techniques lead to a new concept of space which suggests a new orientation,
navigation and inhabitation of space . . . The significance and the ambition of these projects
is that they might be seen as manifestos of a new type of space. As such, their defining
context is the historical progression of such manifestos rather than their concrete spatial
and institutional location . . . including the legacy of modern architecture and abstract arts
as the conquest of a previously unimaginable realm of constructive freedom.

Schumacher concludes: [18]

All compositions are seen as tasks for creative organic interarticulation. A refined organic
architecture resists easy decomposition, a measure of its complexity.

The comparison with Palladio was inevitable and it was fruitful. The revolutions
even in architecture must have a solid foundation from which to start. As the
mathematicians of the second half of the nineteenth century have taught, in
particular Henri Poincaré, there is no geometry which is better than another, there
are only different geometries. Some, like the Euclidean, seem more useful than
others. But geometry, the idea of space, architecture, even the so called classic
continue to offer benchmarks and challenges even to digital fluid architecture, an
architecture that would seem indeed far from the Palladian ideals.

Addendum

An homage to Zaha Hadid was held at the Imagine Math 6: Mathematics and
Culture conference in Venice in March 2017, in the place of the exhibition of the
previous year. The two presentations by Gianluca Racanà, Zaha Hadid Architects,
and Michele Emmer, are published in a special session of the Proceedings of the
Venice conference, M. Emmer and M. Abate, eds., Imagine Math 6, Springer Nature
verlag, Switzerland, 2018.
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Sergio Musmeci and the Calculation
of the Form

Tullia Iori

Sergio Musmeci was one of the four heroes of the twentieth-century Italian School
of Engineering, along with Pier Luigi Nervi, Riccardo Morandi, and Silvano Zorzi.
Musmeci was an eccentric and countercultural engineer, the most visionary of the
four.

Today, Musmeci is most famous for being the designer of the Basento River
Bridge in Potenza (1967–1975), probably the most beautiful bridge in the world.

The bridge is an equicompressed nameless form. Musmeci designed it in
accordance with his theory: when an engineer designs, the form must be the
only unknown. The shape that responds perfectly to given constraints and loads,
according to Musmeci, can be calculated mathematically.

The bridge over the Basento is the last masterpiece of the Italian School of
Engineering; it is the final moment of its glorious adventure [1], reaching its apex
during the economic miracle. In those years, Morandi and Zorzi, together with all
the best engineers, designed the Highway of the Sun; Nervi built his famous works
for the Rome Olympics in 1960 and for the celebrations of the Unification of Italy
in 1961 [2]. At that time, Musmeci was still too young.

His most productive years coincided with those of the crisis, which began slowly
in 1963 and in the following years worsened without end. He designed many works,
but few of his projects were built. Others remained on paper: missed chances,
testifying to Musmeci’s relentless design curiosity.

Musmeci died young, at only 55. At that moment, everyone felt to have lost a
genius who could have given so much more to Italian engineering.
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1 The First Experiences

Musmeci was born in 1926 in Rome. In November 1948, he graduated in civil
engineering from the University of Rome La Sapienza. He then enrolled in a
master’s program in aeronautical engineering to postpone his mandatory military
service. At the time, this was a typical trick among very good students. In January
1953, he graduated from the master’s program and then served in the Army Air
Corps. During his military service, he married Zenaide Zanini, who later became
his partner in the design studio.

In the meantime, he served his apprenticeship in the technical office of the
company Nervi & Bartoli, owned by Pier Luigi Nervi. Thus, he became Nervi’s
favorite. In 1954, he founded a design studio together with Antonio, Nervi’s eldest
son, who graduated in architecture in 1950. That studio did not last long. Soon
Antonio no longer had time for his friend Sergio because he had to help his father,
who had begun to build the works for the 1960 Rome Olympics.

At the same time, Musmeci embarked on an academic career. In 1954, he began
as voluntary assistant at the School of Architecture at the University of Rome
La Sapienza (Architecture, not Engineering; Nervi also taught all his life at the
School of Architecture). He later became a tenured assistant and was appointed
to teach Rational Mechanics course. Beginning in 1969, he taught Bridges and
Large Structures course, delivered to lucky students who were allowed to choose
the course in their elective exam package [3].

Early in his design career, Musmeci was above all a beloved design accomplice.
He was able to solve complex structural problems, helping the greatest Italian
architects of his time. Just to mention the most famous ones, he collaborated
with mutual satisfaction with Adalberto Libera, Eugenio Montuori and Leo Calini,
Giuseppe Vaccaro, Francesco Palpacelli, and Carlo Mollino.

In some cases, those architects left Musmeci complete autonomy and entrusted
him with part of the project, asking to design the form from scratch. In other cases,
the project was already defined and the architect called for Musmeci’s help to solve
problems of stability.

The first fun exercises were two roofs, which were never built. In 1954, together
with Vaccaro, Musmeci designed the roof of a rural market in Puglia, composing
some parabolic vaults. Through a few analytical calculations, he demonstrated with
satisfaction that his geometric composition was perfectly funicular to the loads.
The architectural form, therefore, responded perfectly to the static functionality.
Musmeci exercised his mathematical expertise in another project in 1955: the
roof of the Araldo movie theater in Rome, which completed a block of houses
designed by Carlo Ammannati. The plan of the cinema was almond-shaped; in
the roof, Musmeci weaved a large number of polygonal arches. He established
that the number of crossings between the arches should be minimal along the axis
of symmetry; the golden number was used to establish the position of the pillars
in the plan; the vertical height of the crossing points between the arches was the
unknown; it was determined mathematically with a system of equations, introducing
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Fig. 1 (left) Rural Market in Tressanti, S. Musmeci, G. Vaccaro, 1954. Courtesy Private Archive
G. Vaccaro, Roma (SIXXIdata); (right) The roof of the Araldo movie theater in Rome, S. Musmeci,
C. Ammannati, 1955. Courtesy MAXXI Architecture Archive (SIXXIdata)

Fig. 2 Palazzo della Regione in Trento, 1956–1962, S. Musmeci, A. Libera. Courtesy MAXXI
Architecture Archive (SIXXIdata)

the new condition that all the thrusts of the arches should be equal; maximum static
efficiency had been achieved. The result of this apparently overly mathematical way
of designing is incredibly beautiful: the roof resembles a modern Gothic vault (Fig.
1).

In the project for the Palazzo della Regione in Trento (1956–1962), on the other
hand, Libera decided to span a large central beam against two enormous pillars,
visible at the level of the square. That beam supported the cantilevered office floors,
symmetrically on both sides.

Musmeci drew with maniacal care the voids and the solids of that beam and the
reinforcement bars accordingly; however, in the end, the concrete casting concealed
the beautiful web of rods. Disappointed, Musmeci understood that evidently the
shape of the beam did not correspond to the natural flow of the internal forces;
therefore, his careful design work had become invisible (Fig. 2).

Musmeci’s most independent research began thanks to Annibale Vitellozzi, who
in the mid-1950s was the consultant to the Italian National Olympic Committee
(CONI). Since the 17th Olympics—to be held in 1960—were assigned to Rome,
Vitellozzi had many works to do. He involved Musmeci in several projects; the
most important was the roofing of the restaurant of the Swimming Stadium in the
sports area called Foro Italico in Rome (1958). Musmeci designed a corrugated
roof: he repeatedly folded the ceiling, obtaining resistance through the form. A
folded sheet of paper resists much better than the same sheet left flat; the natural
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Fig. 3 The roofing of the Restaurant for the Swimming Stadium, 1958, S. Musmeci, A. Vitellozzi.
Courtesy Coni Archive (SIXXIdata)

pattern of internal forces guided Musmeci in establishing the shape. Thus, he varied
the amplitude of the corrugation in tune with the variation of stresses: the greater
the stress at a point, the greater the amplitude of the fold. He designed a didactic
structure: even a non-expert user could understand the behavior of that structure;
the stress of the members and the consequent static solution were clear to everyone
(Fig. 3).

In the roof, the result of the calculations is no longer transferred to invisible
quantities (the reinforcements inside the concrete casting) but to quantities evident
in the form: “the degree of explicitness of the nature of the structure has definitely
increased,” commented Musmeci.

“Giving visible form to the bending moments”: Musmeci did many tests to
achieve this goal. In previous years, he experimented with his folding solution
in smaller works: the roof of the Raffo industrial plant in Pietrasanta, Tuscany,
designed with Calini and Montuori (1956); the roof of the San Pietro Cinema in
Montecchio Maggiore, near Vicenza, designed with Sergio Ortolani (1957); and the
roof of the gymnasium in Frosinone, together with Uga de Plaisant (1958). The
walkways and the covering of the foyer of the Regio Theatre in Turin (1966), the
last in order of time, designed for Carlo Mollino, are the most famous (Fig. 4).
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Fig. 4 (left) The roof of the San Pietro Cinema in Montecchio Maggiore, Vicenza, 1957, S.
Musmeci, S. Ortolani (SIXXIdata); (right) The foyer of the Regio Theatre in Turin, 1966, S.
Musmeci, C. Mollino. Photo Alessia Sisti (SIXXIdata)

2 Networks of Beams

At the end of the 1950s, Musmeci, boosted by these early successes, attempted the
synthesis of form and structure by other means.

In the design of his folded surfaces, he noticed that the reinforcement was
concentrated almost all along the edges; so he decided to simplify the structure,
keeping only the edges, which were the only ones really useful. What remained was
a network of beams.

Musmeci conceived many projects according to this criterion. In 1960, he
designed with Calini and Montuori the roof of the Auditorium of the Bhabha Atomic
Research Centre, in India. The roof is a shallow pyramid on a hexagonal plan; the
six inclined pitches of the roof are generated by a triangular mesh of ribs (Fig. 5).

Musmeci told an anecdote about the project. He was able to estimate the behavior
of that roof with a few calculations made by hand, introducing some simplifications.
He submitted his report, not feeling that more complete and lengthy calculations
needed to be added.

The Indian evaluating committee had never seen a structure so conceived. So they
asked for a comprehensive calculation that took into account all the elements of the
structure. Musmeci reluctantly set up the new calculation; he obtained a system
of 122 equations, impossible to solve by hand. The commission then asked for a
scale model; load testing on the model was very expensive. In the end, the scale
model perfectly confirmed Musmeci’s initial intuitions, based on his simplified
calculations. This experience was very fruitful for the engineer: it proved to him
the value of intuition in structural design.

In the same year, Musmeci designed the breathtaking roof of the San Carlo
Church in the Villaggio del Sole district in Vicenza (1960–1962), whose general
project had been elaborated by Ortolani.

The roof of the church is a kind of inverted funnel. On the outside it appears
perfectly smooth; on the inside, however, three different families of logarithmic
spirals, crystallized in the concrete, move toward the center, rising like a whirlwind.
The spirals embrace the community of worshippers, favoring the participation of
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Fig. 5 The roofing of the Auditorium of the Bhabha Atomic Research Centre, India, 1960, S.
Musmeci, L. Calini, E. Montuori. Courtesy MAXXI Architecture Archive, Montuori Archive
(SIXXIdata)

the assembly around the altar; the center of the spirals, at the top, coincides in plan
with the position of the altar. The shape of the structure is adapted to the liturgical
requirement.

At each point three spirals intersect, with angles whose tangents are equal to
4, −1, 1/4. The mesh of the spirals is triangular. Pure mathematics: and the effect
is spectacular. The stress on the spiral ribs changes gradually from the center to
the edge: at the center, the behavior is that of a membrane; then it transforms and
gradually bending takes over; on the edges, the ribs behave like cantilever beams.
These variations in behavior are reflected in the gradual increase in the thickness of
the ribs: small in the center and much larger on the perimeter. The construction site
was quite complicated, creating very stormy relations between the designers and the
construction company (Figs. 6 and 7).

The Marian Temple overlooking Trieste (1963–1967), designed together with
Antonio Guacci, also belongs to the triangle phase. In the church, the usual elements
of architecture—the pillars, the beams, the roof—disappeared. The exterior facades,
the roof slabs, and the interior walls have been transformed into ribs, whose
triangular meshes are closed by panels. The striking texture is entirely in reinforced
concrete. For verifications to the stress of the bora wind, a model is tested at Ismes,
the Experimental Institute for Materials and Structures of Bergamo (Fig. 8).
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Fig. 6 The roofing of the San Carlo Church, Villaggio del Sole, Vicenza, S. Musmeci, S. Ortolani,
1960–1962. Photo Sergio Poretti (SIXXIdata)

Fig. 7 The roofing of the San Carlo Church, Villaggio del Sole, Vicenza, S. Musmeci, S. Ortolani,
1960–1962: (left) Calculation report, 1960. Courtesy MAXXI Architecture Archive; (right) The
construction site, 1961, Vajenti Photo (SIXXIdata)
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Fig. 8 The roofing of the Marian Temple, Trieste, 1963–1967, S. Musmeci, A. Guacci. Photo
Sergio Poretti (SIXXIdata)

Musmeci returned to studying spatial networks of rods even in the last part of
his life. But at this stage, the composition of triangles was very difficult to compute.
In 1956, Turner, Clough, Martin, and Topp published the famous paper on the finite
element method. Between 1954 and 1957, John Argiris systematized tensor notation
and applied it to the mechanics of structures. Olgierd Zienkiewicz’s textbook did
not appear until 1967. To easily compute his reticular textures, Musmeci should
have used finite element meshes. He was, however, ahead of the research that later
became the future of automatic computation of structures.

3 Equicompressed Minimal Surfaces

Musmeci continued to work on beam networks for a long time. In 1964, he
participated in the competition of ideas for the bridge over the Lao River for the
Salerno-Reggio Calabria Highway. His project did not win but was later awarded
by Inarch, the Italian Institute of Architecture.

The general shape of the bridge is a double-curved surface, uniformly com-
pressed. The shape was suggested by a soap film model, which materialized
the uniformly compressed members. Perfectly flexible wires, subjected to simple
normal stress, located the edges of the membrane. The soap film placed tension on
the wires determining their geometry. The resulting surface was uniformly stretched.
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Fig. 9 Bridge over the Lao River for the Salerno-Reggio Calabria Highway, 1964, S. Musmeci:
(left) the soap film; (right) the triangular mesh. Courtesy MAXXI Architecture Archive (SIXXI-
data)

Musmeci showed that the surface described the minimum area compatible with the
fixed contour, achieving the condition of maximum material economy (Fig. 9).

Soap bubbles are minimal surfaces: the bubble finds the state of minimum energy
and assumes the shape that minimizes its area. In architecture, minimum area means,
with the same thickness, minimum volume and therefore minimum weight and
minimum consumption of material [4].

In the project submitted to the competition, a spatial reticular structure approxi-
mated the shape identified thanks to the soap bubble. Musmeci designed a network
of linear elements, with constant section, uniformly compressed, in a triangular
mesh.

In that project, Musmeci investigated the minimal surfaces with wisdom, because
he had already elaborated several projects with this technique. Musmeci’s research,
in fact, had changed again, remaining on the frontier between mathematics,
geometry, and theory of structures.

After the folded slabs and the networks of discontinuous beams, he returned to
continuous surfaces, where the loads flowed more naturally and softly.

The genesis of that new experimentation can be traced back to the project for the
bridge over the Astico river in Chiuppano, near Vicenza, whose tender was closed
in August 1956. Musmeci designed the bridge following a rudimentary process of
optimization; the two-dimensional curve of the arch was schematized with ropes
loaded by uniformly distributed weights obtaining a uniformly compressed shape.
Then in 1958 Musmeci drew his first minimal surface, on the occasion of the
competition for the bridge over the Tiber at Tor di Quinto district in Rome, together
with his colleague Ugo Luccichenti (Fig. 10).

In the calculation report attached to the drawings for the competition, Musmeci
wrote: “Once shape and external forces are assigned, the equations of equilibrium
allow to calculate the stresses in the membrane. But those equations can also be
used to determine the shape once certain conditions are imposed on the stresses.”
In this particular case, Musmeci imposed the condition that the stress regime be
hydrostatic.
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Fig. 10 Bridge over the Tiber at Tor di Quinto district in Rome, 1958, S. Musmeci, U. Luccichenti.
Courtesy MAXXI Architecture Archive (SIXXIdata)

Fig. 11 The New General Market in Rome, project, S. Musmeci. Courtesy MAXXI Architecture
Archive (SIXXIdata)

In the calculation reports of all his works, whether actually built or never built,
Musmeci never addressed the specific static problem. Normally an engineer’s goal
is to solve a structure, simplifying so as to quickly apply to the data of the single
project, in a given site, with certain specific dimensions. On the contrary, Musmeci
always looked for a general mathematical equation, the closed-form solution, in
order to be able to apply it in a thousand other occasions, simply by varying the
parameters appropriately. In most cases, however, he never used his beautiful closed-
form equation again.

When the project for the bridge over the Tiber was ready, none of his colleagues
had understood Musmeci’s hypotheses and calculations. The last night before the
deadline for the submission, Luccichenti, who was a very witty man, improvised a
poem to the bridge designed by his friend. He wrote in rhymes that he would never
cross the bridge: “Who says it won’t fall? You don’t fool me. I don’t move from the
mouth.”

Musmeci also created minimal surfaces for the competition project for the New
General Market in Rome on Via Prenestina (1957) (Fig. 11) and for the competition
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for the monument to the Mille, in Marsala (1960). Both equicompressed and
unreleased surfaces, however, remained only drawings [5].

But that was the road that gave Musmeci international fame.

4 Equi-Stressed Surfaces

In Musmeci’s research, there was also room for two prototypes and a project
based on equi-stressed surfaces, which certainly felt the influence of contemporary
international experimentation.

These works are also related to the initial projects by Musmeci, in which
he sought geometric forms uniformly stressed by compression. In these, on the
contrary, the prevailing tension is traction.

In 1964–1965, Musmeci designed the chapel of the Pontifical Sanctuary of
Pompeii, now called La Vela: two conical surfaces and a hypar were juxtaposed
to create a soaring roof, whose highest point again coincides with the plan position
of the altar (the chapel has some formal analogies with the chapel of St. Vincent de
Paul in Coyoacán, Mexico City, designed by Felix Candela in 1959) [6] (Fig. 12).

The Sant’Alberto Church at Sarteano (1969–1972) near Siena is more interesting
from the point of view of the original formal conception. Musmeci intervened on a
project already approved, drawn up by the architect Giancarlo Petrangeli.

The roof is wrapped in a helix around a vertical cylindrical element, which acts as
a bell tower. A system of radial cables is anchored, on one side, at different heights to

Fig. 12 The chapel La Vela in the Pontifical Sanctuary of Pompeii, 1964–1965, S. Musmeci.
Courtesy MAXXI Architecture Archive (SIXXIdata)
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Fig. 13 The Sant’Alberto Church at Sarteano, Siena, 1969–1972, S. Musmeci, G. Petrangeli: (left)
Inside view; (right) The plan. Courtesy MAXXI Architecture Archive (SIXXIdata)

the cylinder and, on the other side, to the perimeter walls, which follow an irregular
geometry. Each cable has a different length and different anchorage height, but the
geometry of the cables is identical. From a static point of view, the roof behaves like
a suspended shell of reinforced concrete, prestressed by the load-bearing cables.
Musmeci was maybe indirectly inspired by some Eero Saarinen’s works (David S.
Ingalls Rink, 1953–1958; Dulles Airport in Washington, 1958–1962) (Fig. 13).

Then, on May 28, 1969, the Azienda Nazionale Autonoma delle Strade and the
Italian State Railways announced a Competition of ideas for a stable connection
between Sicily and the Continent. Connecting Messina to Reggio Calabria was
an old dream, the dream of every engineer. About 150 competitors from all over
the world took part in the competition, but only 85 presented solutions respecting
the rules of the call. Of those, more than half proposed the solution of a bridge,
suspended or cable-stayed, with one or more spans; the others preferred the tunnel
or various solutions, including dams, floating islands, and some crazy geometry.
On November 25, 1970, the Judging Committee, composed of foreign and Italian
experts, awarded 6 first prizes and 6 second prizes ex aequo to the best solutions
for each proposed type. Greatest attention was inevitably paid to the most daring
project: the suspension bridge that with a single gigantic span crosses in a single
hop the three kilometers of water of the Strait. The winner for this solution was
Musmeci himself; Nervi was only second (Fig. 14).

The structure proposed by Musmeci was a tensile structure, like those designed
in those years by Frei Otto (Fig. 15) [7]. Musmeci’s project was a mixture of a
suspension bridge and a cable-stayed bridge. According to Musmeci, founding piers
in the Strait was impossible. So he designed a suspension bridge with a span of 2
kilometers, which in turn was cable-stayed to 600 meters high and 3 kilometers
apart antennas.

Then he invented another trick: in addition to the main suspension cable, he
placed a second cable, in the opposite position, under the bridge. That cable looks
like an arch but is made of steel strands. A spider web of well-stretched strands
connected the main suspension cable and that second one, called stabilizing cable
according to the typical terminology of tensile structures. The spider web wraps and
tightens the two decks, the one for the cars and the one for the train, which travel at
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Fig. 14 Suspension/Cable-stayed Bridge over the Messina Strait, 1969, S. Musmeci. Courtesy
MAXXI Architecture Archive (SIXXIdata)

Fig. 15 Frei Otto, German Pavilion, Montreal, 1967, a detail (SIXXIdata)

different heights. The decks are aerodynamic: they are fusiform like the wings of an
airplane, so the wind slips better and the bridge sways less.

That adventure was a story without a happy ending.

5 The Nameless Shape Bridge

Meanwhile, in 1967, Aldo Livadiotti involved Musmeci in the project for a bridge
at the gates of Potenza. The bridge had to cross the Basento River and connect the
city with the state road Basentana. The client was the Consortium for the industrial
nucleus of Potenza, chaired by Gino Viggiani. In fact, the bridge was meant to
encourage the industrial development of the area. The Cassa per il Mezzogiorno,
which was responsible for promoting the South of Italy through various types of
economic investments, financed the work [8].
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Fig. 16 Bridge over the Basento river in Potenza, 1967–1975, S. Musmeci: partial cross section.
Courtesy MAXXI Architecture Archive (SIXXIdata)

Fig. 17 Bridge over the Basento river in Potenza, 1967–1975, S. Musmeci: Calculating the form
of the shell. Courtesy MAXXI Architecture Archive (SIXXIdata)

Musmeci radically changed the very simple first project by Livadiotti and created
a nameless form. The project was based on this theory: Knowing the constraints and
loads, then the unknown is the form.

The designer must calculate the shape of the bridge. How do you calculate a
shape? Musmeci introduced an additional condition: the shape must be minimal,
that is, as light as possible; more, the material must be equally stressed; that is, it
must be equicompressed.

The shape of the structure was deduced from its static regime. Musmeci
developed a mathematical theory for this, with relative closed formulas (Figs. 16
and 17).
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In the technical report dated January 30, 1968, attached to the preliminary design,
Musmeci made explicit reference to the methods used by Frei Otto to calculate the
tensile structure that covered the German pavilion at the Montreal Expo 67.

The bridge is composed of four lowered arches with spacing of about 70 meters
and free span of about 60 meters. A double-curved shell generates the arches; in
each arch, the shell bends upward, creating four pairs of apophyses. Toward the
foundation, the shell bends creating four supports, which behave as virtual hinges
(or elastic joints). The deck consists of a hollow beam of lenticular shape. The shell
and the deck are made of reinforced concrete; the deck is transversally prestressed at
the apophyses. The shell is not isotropically stressed: longitudinal equicompression
reaches values 12 times higher than transversal equicompression.

On July 26, 1968, the Cassa per il Mezzogiorno approved the project, but
Musmeci was asked, in addition to more complete analytical calculations, to verify
the shape on scale models.

The first model was a simple soap film, stretched between iron wires and cotton
threads. In November 1968, Musmeci created a model with a stretched rubber
membrane; under inverted loads, it ensured an equicompressed shape. The rubber
model was accurately measured and became the basis for building another model,
at a scale of 1:100, out of transparent acrylic material (perspex) (Fig. 18).

In April 1969, that perspex model was subjected to loads in the laboratory of the
Faculty of Engineering in Rome, under the direction of Musmeci himself, measuring
the deformations with electrical strain gauges. The result was that the stress values
in the shell were about half of those indicated by the analytical calculation.

Then, a much larger model, in microbeton, on a scale of 1:10, limited to two
spans of the bridge, was commissioned to Ismes in Bergamo.

In February 1970, the Ismes technicians carried out the first test, but it was not
positive: the model required important modifications in the drawing of the shell, in
particular on the central part of the arch, to increase the two curvatures; in July, they
tested the second correct model. Thanks to the results obtained, Musmeci further
improved the project and made important variations to the model: for example, he
interrupted the continuity of the deck by inserting Gerber joints and beams. He also

Fig. 18 Bridge over the Basento river in Potenza, 1967–1975, S. Musmeci: Soap film model and
rubber model. Courtesy MAXXI Architecture Archive (SIXXIdata)
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Fig. 19 Bridge over the Basento river in Potenza, 1967–1975, S. Musmeci: Microbeton model,
1:10, 1970–1971. Courtesy ISMES Archive (SIXXIdata)

Fig. 20 Bridge over the Basento river in Potenza, 1967–1975, S. Musmeci: the complex construc-
tion site. Courtesy Edilstrade Archive (SIXXIdata)

thickened all the edges of the shell. Between March 29 and 31, 1971, the new revised
model was brought to failure; the test was interrupted because the foundation block
broke before the shell. The many tests cost a total of 24 million liras (Fig. 19).

The final form is difficult to draw as well as to describe in words. In order to
follow the dream of the perfect form, Musmeci eliminated all conditioning: above
all, he disregarded construction problems.

On July 1, 1970, the Edilstrade Company of Forlì, directed by Gilberto Flamigni,
won the private bidding for the construction of the work. Thirty companies were
invited to bid, including Condotte and Salini, which were much more experienced
but would probably have modified the project, simplifying it. Musmeci was
appointed director of works and the construction site began in September. Mr.
Buattini, an elderly worker expert in the construction of wooden boats, was called
to design the complex formwork, based on a plaster model provided by Ismes.
The formwork, supported on tubular scaffolding, changed for each span, with no
possibility of reuse. Musmeci thanked Buattini warmly in many articles (Fig. 20).
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After the consolidation of the concrete castings, when the wooden formworks
were lowered, the shell made very dangerous movements. At that time, Edilstrade
consolidated the foundations with inclined steel micropiles, 14 centimeters in
diameter, in order to absorb the thrust. The engineer Arrigo Carè, a great designer of
bridges, was entrusted with the testing; on May 22, 1975, load tests were carried out
on the span above the railway; on September 25, 1981, at the end of all contracted
works, Carè issued the test certificate. In 1989, Edilstrade was still waiting for the
last payments.

In the transition from design to construction, the form was not distorted, as
could be expected (especially after the many recommendations of the Ismes). On
the contrary, the form became even more mysterious. Today, looking at it, on the
one hand the shell seems very light, like a fabric hanging from the deck, descending
to the ground; on the other, it looks like a wrinkled rhinoceros, or an extinct
pachyderm. The fabric petrified in the concrete appears powerful and robust. The
indelible traces left by the wooden formwork on the shell reveal the fatigue and
difficulty of construction. In this contradiction, beauty lives on; the bridge is a
unique sculpture, visited every year by hundreds of engineering and architecture
students from all over the world (Fig. 21).

Fig. 21 Bridge over the Basento river in Potenza, 1967–1975, S. Musmeci: The indelible traces
left by the wooden formwork on the shell. Courtesy MAXXI Architecture Archive (SIXXIdata)
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The visitor can walk inside the bridge, over the shell, under the deck: this is a
very rare case. Children ride bicycles or skateboard. It is forbidden: but if you don’t
try it, you can’t feel the bridge.

The bridge over the Basento River, the highest point of the Italian School of
Engineering, coincides with the definitive decline of that School. It is its swan song:
when the bridge was completed, the Italian School of Engineering had already lost
its way, disappearing along with Pasolini’s fireflies [9].

That work by Musmeci is visionary; it anticipates by decades the engineering
of form finding and the parametric engineering of this millennium. Musmeci
anticipated our time. Today engineering, like architecture, has lost its strictly
functional role; it must rather astonish and it must attract attention, with new and
complex forms. In this millennium, pop structures have taken over. Bridges can be
repeated identically anywhere, in Buenos Aires, in Dublin, or in Cosenza, like the
ones designed by Santiago Calatrava. They are both repeatable and stunning, like
the Pop Art masterpieces.

The previous generation engineers were faithful to the strict principles of
maximum economy, assimilated directly from Gothic construction sites. Today’s
designers follow new principles, much closer to the astonishing and limitless cost
of Baroque construction. Musmeci was the transitional element in this process
of transformation. With his exceptional mathematical ability and his pursuit of
optimized but uneconomical forms, he symbolizes the transition to the baroque
engineering, dedicated to wonder, of the new millennium [10].

After the bridge in Potenza, Musmeci continued to search for minimal forms.
But Italy no longer had much to offer him. By the end of the 1970s, the economic
crisis, which had begun in the mid-1960s, became very harsh.

On March 5, 1981, Musmeci died, taking with him many good structural ideas
and his personal vision of the future of engineering. Musmeci had a dream. He
saw the birth of the computer, but he could use the machine only once for small
verification calculations. He understood that the computer was the future. He wrote
in a manuscript: “When the computer becomes powerful enough and when we really
understand how to use it, it will help us not only to verify structures, but to design
them.” Musmeci dreamed of the powerful computers of today’s times, which make
it possible to correct form, to optimize structures. Today, computers help when we
have to take really important decisions, at the design stage and not just verification
step. Perhaps, Musmeci lived too far in advance: if he were reborn today, the Italian
School of Structural Engineering would be reborn with him [11].
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Twenty Years of Il Giardino di Archimede

Enrico Giusti

I cannot remember precisely how and when I got myself involved in the exhibition
first, and later in the museum of mathematics. It may have been in the early 1990s
when Franco Conti, then professor at the Scuola Normale Superiore in Pisa, and I
began to investigate the possibility of a non-formal approach to mathematics that
was both rigorous and interesting for the public, in general, especially for students.

We started from the observation of the marginal role reserved for mathematics in
the various science museums, and from reflections on the reasons for this situation.
We agreed on the belief that its systematic nature could not depend on occasional
reasons, but must have causes inherent in the nature of mathematics and its modes
of diffusion, and in the differences between mathematics and other sciences.

A first difference immediately catches the eye: unlike the experimental sciences,
mathematics has no objects to describe or phenomena to show. Rather, and better,
its objects are not immediately perceivable as such and require different supports
from which they do not emerge without an action aimed at the purpose.

To clarify this point, let us ask ourselves: how is it possible to describe a parabola
to an audience non particularly trained in mathematics? One answer may be the
use of explanatory panels, perhaps made more attractive by good graphics and
captivating explanations that describe their genesis and main properties. But when
you try to imagine a museum in which this solution is applied systematically,
it turns out that what you are thinking of is essentially a book applied to the
walls. Nor does the situation much improve with the presence of models that are
sometimes esthetically valuable, but which do not change the general approach.
The mathematics they include does not appear to the visitor: it is buried within the
objects and never comes to the surface. It is “dead” mathematics.
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Fig. 1 A proof of Pythagoras’ theorem

What we wanted instead was a “living” mathematics; a mathematics caught in the
moment it displays its power, determining the behavior of the machines we operate
and the phenomena we observe.

The following example can help us understand the difference between living and
dead mathematics. It concerns one of the oldest theorems, one that most people are
familiar with: good old Pythagoras’ theorem.

Several science museums exhibit a “hydraulic” proof of this theorem. The
squares of the legs are filled with water, while the one of the hypotenuse is empty.
When turning the figure, the square of the hypotenuse goes down and the ones of
the legs go up. The water flows through tubes until the square of the hypotenuse is
filled and the squares of the legs are empty, which shows that their sum is equal to
the first.

Another very simple proof involves a large square, the side of which is equal to
the sum of the two legs (Fig. 1).

The relevant right triangle is in one corner, and identical ones are placed on the
other corners. The area that remains is the square of the hypotenuse, so the large
square is equal to the square of the hypotenuse plus four triangles. Let us now move
the triangles in order to form two rectangles; what remain are the two squares of
the legs, so in this configuration the large square (which was equal to the square of
the hypotenuse plus four triangles) is now equal to the same four triangles plus the
squares of the legs. Q.E.D.

The first proof, which is based on filling either the squares of the legs or
the square of the hypotenuse, is a perfect example of dead mathematics. In fact,
mathematics was sometimes used while proving the theorem, but there is no trace of
this proof in the experiment. This hydraulic test is based on a number of assumptions
that have nothing to do with mathematics: that the containers are actually square;
that their thickness is uniform; that there are no hidden parts where the water could
go; that the vessels are in fact precisely filled. Even if these assumptions are all
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reasonable and natural, we can only trust in a visual impression, since there is
no logical reasoning that can assure us that this is in fact the case and that the
appearance of areas being the same is not a trick. Moreover, even if the object on
display actually shows that the square of the hypotenuse is equal to the sum of the
squares of the two legs, nothing proves that a different right-angled triangle would
possess the same property. In essence, the hydraulic device gives a verification
without mathematics.

The second proof is completely different, because it speaks not to the eye but
to the mind. It is not even important that the four triangles are absolutely identical,
that their sides be perfectly straight or that their right angle be exactly right. As with
the figures we draw in geometry, we just need the objects to be reasonably precise,
so that they can guide reasoning while avoiding glaring errors. Once we assume
that they are indeed right-angled identical triangles, then the quadrilateral of the
first figure is a square, just like those of the second figure, whose sum is equal to
the first. What is more, although the specific object by necessity only describes
a particular case, it is easy to understand that the same reasoning will be valid
for any right-angled triangle. All this is possible because it is in fact a reasoning,
and not an empirical verification with no mathematical content. In brief, while the
hydraulic device displays dead mathematics, the second proof shows mathematics
in its making—living, active mathematics.

Live mathematics has another characteristic that distinguishes it from its dead
counterpart: it can be read on more than one level. The lowest level consists in the
visual verification that the uncovered parts of the large square are, on the one hand,
the square of the hypotenuse, and on the other, the squares of the legs of our right-
angled triangle.

A level immediately above would prove, for example, that the first quadrilateral
is in fact a square, that is that its angles are right angles.

A third level of interpretation may consist of the remark that the proof of the last
assertion depends on the fact that the sum of the angles of a triangle is equal to two
right angles. This theorem can only work if the parallel postulate is assumed: in fact,
it is equivalent to this postulate. Consequently, Pythagoras’ theorem is a theorem
within Euclidean geometry and it does not hold in non-Euclidean geometries.

After a short discussion, our approach immediately turned in another direction:
the mathematics of the museum should not be superimposed on the objects on
display, but should emerge from these very same objects. In some sense, the
description of the mathematical objects would have been all the more effective
the more it became useless, as the properties that characterized them would
spontaneously emerge from the physical objects and phenomena that the visitor
would observe.

To remain in the example of the parabola, its generation would have been
observed by illuminating a wall with a flashlight or thanks to the surface of the water
in a conical container; its focal properties would materialize in burning mirrors and
mirages, its applications would have involved the motion of projectiles and the shape
of suspension bridges.
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This approach immediately seemed to us the most suitable, but it was immedi-
ately evident that it required relatively large spaces: the parabola alone would have
needed about ten stations! A space that no science museum could offer. If this is the
reason for the secondary role of mathematics in science museums, the answer could
only be one: a museum dedicated solely to mathematics. Starting from these ideas
Conti organized in 1992 a conference at the Scuola Normale in Pisa, on the theme
“Experiences, ideas and proposals for a museum of mathematics.” The conference
was widely attended and allowed the participants to have a clear view of the Italian
situation.

At that time, Conti had already begun to build in his garage a series of
instruments, that would be the initial nucleus of the “Oltre il compasso” (Beyond
compasses) exhibition. More complex objects were entrusted to artisans whom he
trusted; still others to technicians working in the workshop of the Scuola Normale.
I contributed to the exposition by writing the texts and finding the images for the
panels, designed by Salvatore Di Pasquale at the Department of Constructions of
the University of Florence.

The exhibition was shown for the first time at Palazzo Lanfranchi, Pisa, from 8 to
31 May, 1992. It was a great success. During the subsequent years it was exhibited
in more than 30 cities within and without Italy. In particular, the exhibition was
hosted at Palais de la Découverte in Paris for almost a whole year and had more
than 500,000 visitors.

In the meantime, Franco Conti and I were looking for a location where the
exhibition could find a permanent settlement, being the first nucleus of the projected
mathematical museum. For the first time we were to experience the difficulties and
subtleties necessary in dealing with political authorities. In particular, we learned
that when a politician says “yes” he means “maybe,” and when he says “maybe”
that means “no.”

The city of choice for the museum was obviously Pisa, since the exhibition was
planned and realized at the Scuola Normale Superiore, where Conti was a professor.
We went therefore to see the mayor of Pisa, to whom we illustrated the project, its
novelty (at that time, there was in the whole world no museum completely dedicated
to mathematics) and its impact on the mathematical education and culture. The
reception was almost enthusiastic, and we were promised of a building where the
museum could be hosted. A few months later we learned that the same building had
already been destined for other activities.

A second possibility, which was proposed shortly after, had not better luck. It
was a building close to the Certosa di Calci, a few kilometers away from Pisa.
The Certosa already hosted the Museum of Natural History of the University of
Pisa, and the eventuality of a synergy between the two museums seemed promising.
On the other hand, the cost of the necessary restauration of the building appeared
immediately exorbitant, and even that possibility vanished into thin air.

Several years passed thus since the first exhibition, without any advance toward
the establishment of the museum. Then one day I was visiting my parents in my
hometown Priverno, a city south of Rome, when I met Mario Renzi, a longtime
friend who was then mayor of the city. Together we visited the newly restored



Twenty Years of Il Giardino di Archimede 259

“Castello di San Martino,” a magnificent Renaissance villa that originally belonged
to Cardinal Tolomeo Gallio, secretary of the Pope Gregorio XIII. To my question
“what will you do here?” he answered in rather general terms of art exhibitions and
conference site, but it was clear to me that he had no definite plans for the use of the
villa. So when I proposed a mathematical museum he became very interested, even
more so when the exhibition “Oltre il compasso” was hosted in May 1996 at the old
infirmary of the Abbey of Fossanova.

The bureaucracy took its time, but in July 1999, a Consortium was founded
between the City of Priverno, the Scuola Normale Superiore and the Universities
of Florence, Pisa, and Siena, with the purpose of “constituting and managing a
Museum for mathematics.” In September of the same year, the museum opened
in Priverno. “Il giardino di Archimede” (Archimedes’ garden) was born.

For the occasion, a new exhibition was built, centered on Pythagoras’ Theorem.
It was by far smaller than the previous one, but much simpler to manage. Moreover,
it was easily duplicated in reduced form, and could be used outside the museum, in
schools and other facilities. This was the first nucleus of what later developed into a
budget of laboratories, offered both within the museum and outside it.

In spite of its location in a small town of about 10,000 inhabitants, the museum
had a success beyond expectation, receiving annually not less than 8000 visitors.

Meanwhile, the offer of the museum grew of two more exhibitions, this time of
historical character. In the year 2000, the Italian Ministry of Education sponsored a
series of events under the general title of “1000 anni di scienza in Italia” (A thousand
years of science in Italy). The giardino di Archimede’s project was among those
funded, and with the help of Luigi Pepe we created the exhibition “La Matematica
in Italia: 1800–1950,” an excursus on mathematics and mathematicians from the
Napoleonic era to the years after the second world war. The second exhibition:
“Un ponte sul Mediterraneo. Leonardo Pisano, la scienza araba e la rinascita della
matematica in Occidente” (A bridge over the Mediterranean. Leonardo Pisano, Arab
science and the rebirth of mathematics in the West) was the celebration of the
800th anniversary of the publication of Leonardo Fibonacci’s Liber Abbaci. The
catalog released on that occasion is still cited as one of the main reference works on
Fibonacci and his legacy.

In the meantime, things were moving.
The original idea, which Conti and I shared, was for a “diffuse museum,” a

series of small museums in different locations, an alternative to a large concentrated
museum, which would have required a large financial and personnel commitment.
In principle, the museum could have been the result of a confederation of previous
experiences and exhibitions carried out in different cities by different subjects. We
made some timid advances in this direction but we immediately realized that this
could not work: the diffuse museum could only be a filiation of Archimedes’ garden.

An important step was an occasional encounter with Pietro Zecca, a mathemati-
cian who at that time was a member of the Council of the Province of Florence.
Talking of the museum and why it was situated so far from Florence, I complained
of the fact that it was extremely difficult to obtain a definite commitment from a
politician. His answer was immediate:
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Come with me—he said—I am in the Council, and they can’t make fun of me.
They must say yes or no.

A few days later, we met the Vice President of the Province; with him we visited
a school building in the western outskirts of Florence, a part of which—about 1000
square meters—was currently unoccupied by the school and could be used for the
museum. Within a few months the project was approved by the Provincial Council
and a sum of 700 million liras was allocated for the necessary works.

The works took some time, but in 2004, the Giardino opened its headquarters in
Florence. Alas, Franco Conti was unable to see the new museum, since he had died
the previous year.

The opening of the Florence branch was quite a fortunate event, since the
relations with Priverno were rapidly deteriorating. The municipal elections of 2004
brought about a change in the administration, and the new mayor did not reconfirm
the director of the museum, on the basis that “he was a political opponent.” The
agreement between the Municipality and the Consortium provided that the director
was appointed by the Municipality “on the proposal of the Consortium.” None of
the alternative proposals managed to win the approval of the municipality, and after
a grueling back and forth the mayor appointed a trusted director of him, presumably
a political ally. The rupture that followed led to the withdrawal of the Giardino di
Archimede. In 2005, a different set-up took the place of the previous one, with a
completely different philosophy. Above all, once the new museum was built, there
was no maintenance program, so that in less than a decade the new installations
practically fell apart.

With the opening of the Florence branch, which soon became the only seat of the
museum, we experienced a period of relative tranquility and ordinary management.
Despite being located on the outskirts of the city, and therefore outside the main
tourist flow, the number of visitors to the museum was constantly increasing, from
around 10,000 when it opened to 15,000 in the following years. The visitors were
mostly students with their professors, coming not only from Florence and Italy,
but also, and significantly, from other countries. We have managed to establish a
stable relationship with some of these, and some schools have sent their pupils to
visit each year. The 2008 financial crisis resulted in a steep drop in visitors, but we
slowly recovered.

In 2009, we produced another exhibition, whose title “Helping the nature” came
from Galileo’s remark that the machines could never deceive the nature, but rather
help it producing wonderful effects (Fig. 2). The exhibition consisted of a series of
simple devices, the operation of which was explained using Galileo’s own words,
taken from his book “On Mechanics.”

The following years passed without important novelties and everything seemed
to be heading toward a substantial routine, when events apparently far from the
reality of the museum came to disturb normal activity, putting the very survival of
the Giardino di Archimede at risk.

The relations between the Giardino di Archimede and the Province of Florence
were regulated by an agreement, which provided among other things for the free
concession of the premises. The agreement had a duration of six years, and was
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Fig. 2 The law of the lever: a
mobile with polyhedra

automatically renewed unless canceled by one of the parties. The first deadline in
2010 passed without problems, and the agreement was renewed until 2016.

In the meantime, in 2014, a law was approved which established among other
things the “Metropolitan cities,” including that of Florence, which replaced the
province. The new law slashed the budget of the metropolitan city drastically, and
the following year we were asked more or less covertly to pay a rent, estimated at
around 100,000 euros per year, practically our entire annual budget. That this was
impossible was clear to everyone; in fact, the request was only the first move by the
Metropolitan city to regain possession of the premises.

When the agreement with the Province—now Metropolitan city—of Florence
expired in 2016, it was renewed for a single year, with the possibility of an extension
for no more than a second year. The decision, which was quite similar to a death
sentence, was motivated by “the intention of the Metropolitan city to study for the
Museum, as you often suggested, a more suitable and easily accessible location
within the city center, as part of an overall project for the creation of a museum
dedicated to Science and Technology, in order to attract a greater number of visitors,
in addition to school visits” (my translation).

Needless to say, the museum dedicated to Science and Technology never saw the
light.

The new expiration date was set for March 9, 2017, and then at our request it was
extended by one year.

In the meantime, another exhibition saw the light, “Armi di istruzione di massa,”
that is “Weapons of mass instruction,” whose subtitle was “mathematical games,
puzzles and pastimes.” The idea was that every game or puzzle should introduce an
important mathematical concept or tool: proofs by contradiction and by induction,
binary notation, metrics, and the like. At the same time, the didactic offer was
enriched with various new laboratories (in addition to those already proposed
under the title “All’inizio del conto,” and dedicated to calculations and numbers
in ancient civilizations) and with the “Mathematical walks in Florence” in which,



262 E. Giusti

under the guidance of Giuseppe Conti, the mathematics underlying many Florentine
monuments was brought to light.

In March 2018, the new concession expired, this time without the possibility of
renewing it. No solution was in sight and we were granted an extension of a few
months, until the end of July. In September, we were offered a space of about 300
square meters (about a third of what we had) on the top floor of a school building.
Regardless of its size, the space was absolutely unsuitable for a museum: there was
neither a separate entrance nor a fire exit, and several rooms on the same floor were
occupied by the school and other institutions. We and the administration both knew
all too well that the Giardino di Archimede would never be housed there; however,
we were forced to accept it under penalty of the immediate closure of the museum.
As some works were needed, which involved, among other things, the completion
of an auditorium attached to the school, we were allowed to continue our activity in
the previous building until the end of 2019.

The year which followed was entirely dedicated to the research of a new location.
One after another, several possibilities seemed on the verge of materializing, and
then vanished into thin air. The most promising of these was the possibility of
occupying a building owned by the University and located on the hill of Arcetri,
a stone’s throw from the ancient physics department and not far from the villa “Il
gioiello” which once belonged to Galileo. The available area, it is true, did not
exceed 300 square meters, by far insufficient, but the building had a large terrace
which if covered would have added at least another 200 square meters. It was
always a much smaller space than that occupied by the museum, but sufficient to
continue the activities, even if on a smaller scale. Obviously the building would
need some major works, which would have involved considerable costs, which
the museum could not afford on its own. Thus, the problem of finding ad hoc
financing arose, and various possibilities were being studied when queries addressed
to the Municipality revealed that, since the hill of Arcetri is subject to landscape
constraints, the Municipality would never have given permission to close the terrace.
Other possible solutions—in Pisa I visited an entire completely empty building in
the city center—lasted even less.

At the beginning of 2020, the convention was not confirmed, and we were
declared “non-contractual occupants,” just a small step before eviction. Short of a
miracle, the fate of the Giardino di Archimede seemed sealed, and we were prepared
to close all activities.

But sometimes miracles do happen. A few years earlier I had been asked to
organize a three-day event for high school students, focusing on mathematics. The
event was sponsored by a banking foundation in the nearby city of Pistoia. Under the
impulse of Ezio Menchi, a professor of physics, the Foundation “Cassa di Risparmio
di Pistoia and Pescia” had created a project for the enhancement of scientific
culture in schools, which included, among other things, study stages for selected
groups of students. The event I had organized was one of them. Subsequently, the
project was enriched, including a competition among the schools of the province
for the realization of original scientific projects, and later on with the creation of an
Academy for the most scientifically active young people.
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For the management of the project the Foundation had appointed a Scientific
Committee, of which I had been called to be a member since its inception in 2017.
One day, during a break in a committee meeting, speaking with Ezio Menchi and
Giovanni Palchetti, then Vice President of the Foundation, I happened to ask—
mainly to keep the conversation alive—if they were not interested in a possible
transfer of the Giardino di Archimede to Pistoia. To my surprise, the response
was almost enthusiastic, and in a subsequent meeting with the President of the
Foundation, a path began to be outlined that could lead to a positive conclusion.

Of course, there was still a long way to go, also because the approach adopted by
the Foundation was very different from that experienced years ago in relations with
local administrations. In that case, the concession of the premises for the museum
was based exclusively on personal relationships (with me in Priverno, with Zecca in
Florence). No one had asked me to document my skills, nor to see a project for the
museum; least of all an economic plan that would guarantee the sustainability of the
initiative. Here the first request was a visit to the museum and an examination of the
economic and management situation (personnel costs, economic accounts of recent
years, balance sheet). Only after these investigations were successfully concluded
could a possible location for the museum be thought of.

Another striking difference between the local administrators and the Foundation
was that the latter wanted us, while the former tolerated us. An obvious symptom of
this situation is that when we said that an efficient museum needed at least a surface
of 1000 square meters, the response of the local administrators was systematically:
“can’t you do with less, say with 300?” while that of the Foundation was: “no, 1000
are too few for a satisfactory setting up; at least 1300 are needed.”

In July 2020, the Florentine headquarters of the museum was cleared and all the
material was transported to Pistoia, where it was stored waiting to be placed in the
new premises. In the meantime, some possible locations have been identified, and
the Foundation has commissioned Cesare Mari, an architect specializing in museum
design, to develop an exhibition plan. The works for the adaptation of the premises
should begin shortly, and we hope to be able to open the museum again to the public
as soon as the health situation allows.

What lessons can be learned from the events of the Giardino di Archimede? The
differences in behaviour between public administrators and politicians on the one
side, and private Foundations on the other are striking. But I can be wrong; perhaps
not all politicians are alike. Maybe I came across the wrong ones. Maybe there are
those who simply say yes or no, and when they say it they mean it. Maybe the fact
that I have never met any does not mean anything. Maybe. But I confess that I feel
much better now.
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Design and Mathematics



The Multifaceted Abraham Sharp

George W. Hart

1 Introduction

Abraham Sharp (1653–1742) was a mathematician and scientific instrument maker
who worked for several years as assistant to England’s first royal astronomer, John
Flamsteed, receiving great praise for the high quality of his workmanship. But
equally noteworthy are the accomplishments that went into his remarkable 1717
book, Geometry Improv’d [1]. Figure 1 shows the title page. It is actually two
independent books packaged under one cover. We will ignore the first 64 pages,
which concern trigonometry tables, and focus on Part 2 of the book, A Concise
TREATISE of POLYEDRA or SOLID BODIES of many BASES. Sharp presented
12 original “solid bodies” and detailed a unique method by which they could be
constructed. These range in complexity from 18 to 120 faces and include examples
that were later rediscovered. Although Sharp’s polyhedra are significant for being
new to the geometry literature, they have been almost entirely ignored for three
centuries by the mathematics community. Geometry Improv’d is unusual in many
ways and I maintain that the only way to make sense of its contents, its style of
presentation, and its poor reception is to think of Abraham Sharp as an artist.

There has never been another mathematics text that compares to the obsessive
labor of love in which Sharp meticulously presents his 12 original polyhedra.
What stands out most saliently is how he gives all the necessary dimensions both
as exact formulas (with “surds,” i.e., irrationals expressed by radical signs) and
as overly precise numerical values. His decimal numbers are painstakingly hand-
calculated with 16–30 digits of precision, sometimes via intermediate terms up to
50 digits long. The book often presents multiple detailed constructions starting
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Fig. 1 Title page of
Geometry Improv’d

variously from a cube, a rectangular parallelepiped of specified proportions, a
sphere, and/or a previously prepared simpler body (dodecahedron, icosahedron, or
rhombic triacontahedron) to attain the same intricate result. Furthermore, redundant
alternate ways to locate the same point are often included, e.g., the distance to
measure in from a corner and the distance to measure out from a center are
sometimes both stated.

Figure 2 shows a typical section of Sharp’s text. A scanned copy of the full book
is available online [1]. The concise treatise of polyhedra is packed into only 32
pages, but one immediately gets the impression that Sharp may have put years of
passionate work into the calculations alone. He also made wooden models that must
have required a great deal of time. Although they reify his methods and validate
some of his numbers, they are not mentioned in the book.

Sharp made three large copperplate engravings, “neatly engraved by his own
hands” [2], which illustrate Geometry Improv’d. These are works of art in their own
right and, like the text, they are overwhelming in their density of information. Figure
3 shows his Plate 1, illustrating just the simpler forms from the book. This one page
includes 18 examples of how to start with a solid block (a cube or a parallelepiped)
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Fig. 2 Sharp’s text showing exact values and decimal approximations (up to 28 digits) of
dimensions, surface area, and volume of one of his original solids

and mark the surface to construct slicing planes that pass at appropriate angles
through the interior. After cutting off all the exterior material (beyond the slicing
planes) the shape remaining at the center of the block is the desired polyhedron.

In Fig. 3, Sharp’s Plate I, Fig. 16, parts 1 and 2 show two views of the “very
elegant” rhombic triacontahedron, which comprises 30 congruent golden rhombi.
His Fig. 17 indicates where the surface of a cube is intersected by the 24 slicing
planes needed to release the polyhedron from the interior of the cube. (Each of the
24 slices produces one face, plus six faces arise as the central uncut portions of
the cube’s original square faces, to make the total of 30 rhombic faces.) He notes
that it is “so commodiously cut from a Cube as to exclude all other Methods.”
This “subtractive” method is a very different way to make polyhedra than the
tape-together-paper-faces technique which is now standard for introducing students
to new 3D forms. It evokes Michelangelo working with his chisel more than
the Euclidean construction of Platonic solids in The Elements. Figure 4 is my
reconstruction—a rhombic triacontahedron cut from a solid block of wood by
following Sharp’s diagrams and using his calculations.
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Fig. 3 Plate I of Geometry Improv’d

Sharp’s unusual methods and laborious presentation undoubtedly contributed to
his 12 original polyhedra being long ignored. It is quite an ordeal to carefully read
his book and make sense of his geometric intentions. From the dearth of citations to
his work in the mathematics literature, I have come to doubt that anyone in the past
300 years other than Sharp and me has ever thoroughly read it all.
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Fig. 4 Wood rhombic
triacontahedron, sliced by the
author

At least two of Sharp’s forms were later rediscovered by others: He describes a
body with 24 kite-shaped faces that is now called the “deltoidal icositetrahedron.”
It is an example of a “Catalan Solid,” named after the 1863 paper in which
Eugène Catalan described it, the dual to the rhombicuboctahedron, 150 years after
Sharp did [3]. And Sharp’s body with 60 isosceles triangular faces is exactly what
Buckminster Fuller called a “Class II geodesic sphere,” an elevated dodecahedron
with all vertices the same distance from the center, so that it is inscribable in a
sphere.

While the book is certainly troublesome to read, I believe Geometry Improv’d
has been ignored mostly because Sharp does not discuss the original construction
ideas underlying the novel forms. This is not the type of math book that aims to
communicate insightful understanding of any underlying structure, nor to explain
the relationships between the new discoveries and previous work, nor to teach
general methods that might be used in solving future problems. While ostensibly
aimed toward a mathematics audience and claiming that the calculations provide
“Exercise and Improvement of the Doctrine of Surds,” the book does not present
the style of organized thought that a mathematician looks for. It is filled mainly with
the tedious minutiae of how to reproduce particular examples. The results can only
be appreciated after following the laborious steps and attempting to re-imagine the
designer’s creative process. Sharp also did not explain why one should follow his
rules other than to claim that the results will be “Elegant and Beautiful.”

The remainder of this chapter is organized as follows: First some background
is presented about Abraham Sharp and his unusual book, to place it in historical
context. Then the wooden models he created are described, along with the little
I have been able to find out about what happened to them after his death. Next,
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I consider in detail just one of Sharp’s 12 original forms, one so notable that I
informally call it “the Sharpohedron.” My intention is to explain some of what is
left out from the book: the mathematical thinking that enriches our understanding of
the form and allows us to interpret it in a wider context of geometric knowledge. No
doubt some of these broader ideas inspired Sharp’s creative process, but we can only
speculate. The concluding section is a more subjective exploration of how Sharp’s
approach to his work has an organic coherence when he is viewed as an artist.

2 Abraham Sharp’s Life and Work

Twelve (I presume) New Geometrical Bodies are herein to be exhibited to publick Notice,
some of which may possibly be as Elegant and Beautiful (if truly form’d according to the
Rules herein prescrib’d) as any of that Nature hitherto known.

With these words from Geometry Improv’d, Abraham Sharp introduced his 12
novel polyhedra. That apostrophe-D participle form was common and X Improv’d
was a meme of sorts in the bookstalls of its time. An online search turns up scores
of similar British book titles from the late 1600s and early 1700s: Trigonometry
Improv’d, Surveying Improv’d, Farriery Improv’d, Hocus-Pocus Improv’d, etc. The
Enlightenment was underway and a reading audience sought new knowledge.

The Platonic solids were well known from Euclid’s Elements, and an assortment
of other symmetric polyhedra had sporadically appeared in print. As prelude to his
12 original bodies, Sharp first describes how to cut out from blocks seven solids
that had been previously described in the mathematics literature: the tetrahedron,
octahedron, dodecahedron, icosahedron, rhombic dodecahedron (called simply “the
Body of Twelve Rhombs”), the rhombic triacontahedron mentioned above (called
“the Body of Thirty Rhombs”), and the snub cube (discussed below).1

Though these seven polyhedra existed in the literature of the time, Sharp’s
method of cutting them from solid blocks is entirely original. I know of no other
mathematics reference, before or since, that presents polyhedra by his technique
of calculated slicing. The closest analog is in the ornamental woodworking tradi-
tion. For example, the nineteenth-century Holtzapffel reference volumes give the
compound miter angles to cut simple polyhedra from blocks and describe turning
simple polyhedra on a lathe in a spherical chuck, starting from a solid wood or ivory
sphere2 [5]. From the way Sharp describes first marking the surface of the block to
identify the cutting plane and then making cuts along the lines, one assumes this is to

1 The rhombic dodecahedron, rhombic triacontahedron, and Archimedean solids were described
in Kepler’s 1619 Harmonices Mundi [4], which Sharp could have encountered in his astronomical
work, but he does not specify any sources other than Euclid.
2 Sharp also begins with a sphere in some of his instructions, and as a scientific instrument maker
was an expert using and making lathes, but nothing in his book discusses using a lathe to make
polyhedra.
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be done with a hand-saw. But physical processes and materials are never mentioned,
only the abstract geometrical steps.

It is not known how Sharp came to be in a position to make scientific instruments
or precision polyhedra. He was born in Little Horton, near Bradford, in Yorkshire,
but much of his life is undocumented, starting with his year of birth. A valuable
early reference, the entry on Sharp in Charles Hutton’s 1795 Philosophical and
Mathematical Dictionary, says “he was born about the year 1651” [2]. But in 1889,
almost 150 years after Sharp’s death, when a trove of his correspondence was
discovered, William Cudworth wrote the only book-length biography of Sharp and
claimed he was born in 1653 ([6], p. 200). Recent scholarship is more cautious; e.g.,
the Oxford Dictionary of National Biography only states his documented baptism
year of 1653 [7].

Sharp learned his Latin and mathematics at a local grammar school in Bradford,
before being apprenticed to a wool merchant in York at the age of 16. But that did
not work out. Cudworth states that Sharp “did not take kindly to the yardstick and
counter” and that his interests “unfitted him for dealing in dimity and calicoes.”
He abandoned his apprenticeship and fled to Liverpool where “he opened a day
school and taught writing and accounts” and met the astronomer John Flamsteed.
Before long he was working for Flamsteed and in that capacity he created one of
the most celebrated astronomical instruments of its time, the Mural Arc at the Royal
Observatory, Greenwich [8].

Flamsteed later wrote: “The making of this [instrument] was principally the work
of Abraham Sharp, my most trusty assistant, a man enriched with gifts and resources
of every kind to render him competent to complete a work so intricate and difficult”
[6]. Elsewhere, he calls Sharp “a man much experienced in mechanics, and equally
skilled in mathematics.” Hutton gushed: “Indeed few or none of the mathematical
instrument-makers could exceed him in exactly graduating or neatly engraving any
mathematical or astronomical instrument, as may be seen in [the Mural Arc], or in
his sextant, quadrants and dials of various kinds; also in his curious armillary sphere,
. . . , his double sector, with many other instruments, all contrived, graduated, and
finished, in a most elegant manner by himself.” How exactly Sharp went from the
wool counter to world-class expertise in instrument making and the art of engraving
is a mystery. Much of his knowledge appears to have been self-taught.

After completing the Mural Arc in 1690, Sharp left Flamsteed’s employ. His
occupations are not certain for a few years, but likely included teaching and work
as an instrument maker. Then Sharp’s eldest brother died in 1693 and he moved
to the family estate at Little Horton in 1694 to manage it for his widowed sister-
in-law. When his nephew died in 1704, Abraham Sharp became heir to the estate
and apparently enjoyed the gentlemanly leisure to work on whatever pet projects he
wished. He spent the rest of his life as a wealthy recluse at Little Horton, unmarried,
traveling hardly at all and receiving very few visitors, but connected to the scholarly
scientific world by correspondence.

An undated portrait of Abraham Sharp (by an anonymous painter) on display
at Bolling Hall, Bradford, shows him in gentleman’s clothing, holding some of his
instruments [9]. In 1744, 2 years after his death, this portrait was the model for a



274 G.W. Hart

Fig. 5 Engraved portrait of
Abraham Sharp by George
Vertue

printed engraving of Sharp by the prolific engraver George Vertue [10]. See Fig. 5. In
this posthumous engraving, a frame-within-a-frame motif places Sharp in a separate
realm from his earthly instruments and a rectangular panel is portrayed that includes
a geometrical figure (discussed below). A detailed study of this portrait [11] notes
that Vertue sold themed collections of engravings, e.g., of poets or royal houses,
and this portrait of Sharp “represents perhaps the earliest attempt by members of
the popular culture to ‘possess’ collections of intelligent and powerful people by
buying posters.”

As a gentleman of leisure, Sharp continued to make instruments and chose
to occupy himself at length with meticulous calculations. He carried out his
computational work for no fee, simply for his own entertainment. Sharp volunteered
as an astronomical computer for Flamsteed, calculating predicted positions for
the planets, the moon, and Jupiter’s satellites, plus tables of data that eventually
appeared in Flamsteed’s posthumous Historia Coelestis Britannica. In 1699, he
worked out “for his own amusement” (using 150 terms of an infinite series for the
arctangent function) the decimal value of π to 71 digits, doubling the world record of
the time. He did this in two different ways so he could check for correctness. He also
produced a table of 60-digit logarithms, published in 1705 by Henry Sherwin. These
are impressively difficult accomplishments, but in addition, at some time in this
period he also produced the original polyhedral designs, 20-plus digit calculations,
detailed engravings, and wood models of Geometry Improv’d.
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What motivated Sharp in his polyhedra project? He suggested no practical
application for his 12 new bodies.3 He received no payment for his book from the
publisher, only a dozen printed copies. He did not even seek authorial fame, mod-
estly publishing under the pseudonym “A. S. Philomath.” He certainly understood
that 20 digits of accuracy gave far more precision than any physical construction
could ever require.4 And yet he put an enormous amount of time and work into
this project. Sharp gives no indication of intent other than a desire for beauty and
elegance. His 12 solid bodies and their peculiar presentation are a gift to the world
from an obsessive, passionate creator. For me, they are art.

Apparently, the world was not ready for this type of art, as Geometry Improv’d
has been little noticed in the ensuing three centuries. Some copies must have sold
as there was both a 1717 and a 1718 printing, but I conjecture that the demand
was mostly for the practical tables in the first half of the book. There are almost
no citations of the geometry portion of the book, and it had zero impact on the
subsequent development of polyhedra theory.5 But I do not think that would have
bothered him. Sharp was a truly modest and generous man, known for his peculiar
habit of donating to the poor. He would walk through town every week with his
hands behind his back holding a pile of coins. People in need could come up behind
him and pluck money from his hands without having to reveal themselves. I see a
parallel in his artistic generosity: we all are invited to follow in his footsteps and
pick out what we wish from what his book offers.

3 It is not that Sharp was a “pure” mathematician who eschewed all applications. He was very
applied in his instrument making and seems enthusiastic in describing how the faces of a snub
cube could be used as the planes for a set of sundials. Nowadays, a utilitarian might propose using
new polyhedra for dice.
4 Starting with a block the size of the Earth, 20 decimal places gives a resolution smaller than an
atom. I have spot-checked a few dozen of Sharp’s calculations and found he is usually correct
to as many digits as he lists, though he is occasionally incorrect in the least significant three to
five digits. For example, one of the distances to mark off when constructing the icosahedron is
(1/2)Sqrt[15]-Sqrt[12], which he gives as 0.2044408655348311488923, but the correct value is
0.2044408655348311490622.
5 I learned of the book from the epigraph and a footnote in the Polyhedra chapter by Coxeter
in [13]. But even Coxeter does not delve into the technical details, merely commenting how
Sharp’s figure with 90 faces “somewhat resembles” a later polyhedron discovery, the rhombic
enneacontahedron. (I have checked that it is topologically equivalent, but geometrically distinct.)
The only other reference I know in the mathematics literature is in a discussion of Descartes’
understanding of polyhedra [14], where the modern editor cites Geometry Improv’d as a general
indication of the contemporary state of the art. In the world of fine art, Raphaël Zarka references
Sharp in a sculpture series consisting of wood beams marked with burned lines [15]. An interesting
paper from the Oxford Master’s program in Literature and Arts takes an interdisciplinary look at
Vertue’s work and is the only printed reference I know that specifically discusses any of Sharp’s
individual polyhedra, the “Solid of Eighteen Bases” [11].
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3 Sharp’s Boxwood Polyhedra Models

Sharp’s presentation in Geometry Improv’d is purely geometric. We are instructed
to cut off prisms, pyramids, or segments from a cube, but never to saw a chunk from
a block of wood or other concrete material. There is no mention at all of physical
cutting tools such as saws. In this purely abstract realm, the book makes no mention
that Sharp actually made wooden models. When I first read it 25 years ago, I wrote
a web page emphasizing how his thinking was like that of an artist [16]. But I did
not know then that he had also made wooden models of his 12 solid bodies, or I
might have been tempted to also describe him more specifically as something of a
sculptor. I was surprised years later to happen upon Hutton’s summary of Sharp’s
life and to read: “ . . . the models of these polyhedra he cut out in boxwood with
amazing neatness and accuracy” [2].

For Sharp to make accurate wood models of his polyhedra was an impressive
accomplishment. His more complex bodies have 60, 80, 84, 90, and 120 faces, as
can be seen in his Plate II, Fig. 6. It is one thing to calculate precise dimensions
on paper, but quite another to be true to them in the physical world. Why did he
not mention that accomplishment in his book? This might be another example of his
modesty, or perhaps Sharp wanted to position his discoveries in a lofty mathematical
realm and not debase them with Earthly matters? I wish he had written at least a little
about the woodworking process so we would have more specific information about
his methods. I have reproduced all 12 of his original polyhedra by 3D printing, in
which the machine is responsible for the fabrication accuracy. But I have made only
a few from solid wood blocks by his slicing method, which demands considerable
time and care to obtain an exact result.

If Sharp had written about the making of his wooden polyhedra, perhaps they
might have been recognized as an important part of his work and so better preserved.
I have contacted many museums and historical societies trying to track them down,
but with little success so far, mainly finding tantalizing records in a few old
collections, since dispersed. His 12 original bodies are not conserved in any major
museum as they deserve, but I still hold some hope that they may be sitting as
under-appreciated curios on a dusty shelf in some British manor house, waiting for
an informed viewer to recognize them.

The earliest evidence I have found of the wood polyhedra is in a letter from
Sharp to Flamsteed, dated February 2, 1701-2 [17]. Their correspondence generally
concerns astronomical matters, but in this letter Sharp mentions: “I have some time
agoe made 12 new Geometricall Bodys, . . . some of these you may possibly have
seen or heard of per Mr Kirk when he was at London about 2 years agoe, whither
at his desire I sent 3 of them to him.” On February 6, Flamsteed, who was a Fellow
of the Royal Society, responded “I heard your bodyes were before the society but
saw them not.” It is unclear if Flamsteed is saying the polyhedra were physically
displayed at a Royal Society meeting, or if someone gave a presentation talking
about them, or what precisely. I have not been able to locate any more concrete
information, but this suggests that additional documentation about the wood models



The Multifaceted Abraham Sharp 277

Fig. 6 Plate II of Geometry Improv’d

may be preserved somewhere in the minutes of a Royal Society meeting or in notes
or letters of someone who attended.

As to the three models that Sharp says he gave “Mr Kirk,” they seem to have
left more of a trail. This was Thomas Kirke, FRS (1650–1706), who is occasionally
mentioned in Sharp’s letters and Cudworth’s biography. Seven years after Kirke’s
death, a 1713 catalog of the Musaeum Thoresbyanum lists material both from Sharp
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and from Kirke ([18], pp. 489 and 498). This museum was a substantial “cabinet
of curiosities” rich with relics and marvels assembled by the celebrated antiquarian
Ralph Thoresby, who was also known to Sharp. Three of the museum catalog entries
are intriguing, though frustrating:

• A Body of thirty Rhombs composed by the late ingenious Virtuoso Tho. Kirk Esq; F.R.S.
• Other larger Mathematical Bodies.
• Some Mathematical Bodies by the curious Pen of the incomparable Mr. Sharp.

Was the listed rhombic triacontahedron truly by Kirk, or was it perhaps received
via Kirk and actually one of the models that Sharp mentions he gave to Kirk?
What were the other large bodies and were they by Sharp? And should we interpret
“bodies by Sharp’s pen” to mean drawings or are they wood models that he first
designed? We can only speculate about these questions as Thoresby’s collection
was dispersed at auction after his death. The 1764 London sales catalog lists many
antiquarian items, but no geometrical bodies [12]. I have found no record of what
might have happened to them.

Cudworth’s biography contains a three-page inventory of Sharp’s Instruments
that was “probably made after his death.” It includes telescopes, quadrants, microm-
eters, sectors, a microscope, sundials, a large burning glass, a fine large lodestone, a
quantity of boxwood, and much else that one might interpret in the act of gauging a
man’s life by what remains after his death. One specific entry is very encouraging:
“Curious Set of Solid Bodies No 24.” I expect that these include the 12 original
boxwood polyhedra mentioned by Hutton. Unfortunately, these 24 curious models,
along with almost everything else Sharp made or owned, are not to be found.
Investigating in the 1880s, Cudworth reported that “Many of the instruments with
historic associations have been utterly lost, and the materials of others have had
narrow escapes of being put to debased uses. A few only are known to be in safe
keeping.”

Before Cudworth, the Reverend N.S. Heineken had made a search in the 1840s
for any “Relics of the Mechanical Productions of Abraham Sharp” [19]. He tells
the sad tale of what happened to many of Sharp’s hand-written papers after his
death: “many years since, when they had been neglected by the owner of the house
and left in a closet, the cook was in the habit of supplying herself from the ample
store for the purpose of lighting fires and singeing fowls!” It is painful to imagine
Sharp’s many pages of hand calculations and geometric diagrams being reduced to
ashes in this way. More positively, Heineken is able to report on the location of a
few instruments and states: “some geometrical solids, turned in the first-mentioned
lathe, now belong to my friend J. Waterhouse, Esq., of Well Head near Halifax.”
I have found that some items from Waterhouse’s collection were passed on to the
Halifax Literary and Philosophical Society Museum, and from there some went on
to other area museums, but I have found no record of the polyhedra John Waterhouse
once held.
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Fig. 7 Three wood polyhedra made by Abraham Sharp: rhombicuboctahedron, icosidodecahe-
dron, and snub cube. Image courtesy of Bradford Museums and Galleries

Among all those dead ends, I can report one positive result. Three of Abraham
Sharp’s wooden models are preserved in the collection of Bolling Hall of the
Bradford Museums and Galleries. The only record of their provenance is that they
came to the museum in 1916, with the donor recorded as F.S. Bardsley-Powell. This
is Sir Francis Sharp Powell, a descendant of the Sharp family, baronet, and member
of parliament [20]. He died in 1911, so the donation most likely came from his wife,
Lady Powell. The Powells resided in the Little Horton Hall where Abraham Sharp
had lived and worked most of his life, so it seems likely these three wooden models
simply sat there for 200 years. Might there be others? The building was demolished
in the 1960s.

Figure 7 shows the three wooden solid bodies made by Sharp, held in the Bolling
Hall museum: a rhombicuboctahedron, an icosidodecahedron, and a snub cube. All
three are Archimedean solids that appear in the literature predating him, so these
are not any of his 12 original forms. The first two are not mentioned in Geometry
Improv’d, but could have been included among the simple introductory examples.
The first is easy to cut from a cube and the second is trivial to cut after first following
Sharp’s instructions to make a dodecahedron or icosahedron, so I can see that he
might have felt no need to include them in his text.
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The third body in Fig. 7 is a snub cube—a lovely, chiral, tricky-to-cut form. It is
discussed in detail in the book, though not named as such, being described simply
as “another Geometrical Solid, comprehended under six equal Squares and thirty-
two equal equilateral Triangles.” In Fig. 3, Sharp’s drawing is his Fig. 19. Some of
the 32 slicing planes for cutting it from a solid cube are indicated in his Fig. 18.
This polyhedron had appeared in Albrecht Dürer’s Underweysung der Messung in
1525 [21], but that is not where Sharp learned of it. In the only morsel of human
interest in the entire book, Sharp writes: “The Notion hereof was imparted by a
Friend, who understood so much of it as enabled him to draw the several Parts upon
Paper or Past-board, and fold them up into a due Form: At his Request I undertook
to give a more full and exact Account of all its Parts and Dimensions, and to lay
down a regular and certain Method of forming or cutting it.” This is notable because
calculating the reference points for the slices requires formulating and solving a
cubic equation, confirming that Sharp was a creative and able geometer. For a
modern derivation, see Lines [22]. Sharp’s wormholed model in the Bolling Hall
museum may be the oldest snub cube extant.

Guided by Sharp’s meticulously calculated dimensions, I have sawn a solid snub
cube using a version of Sharp’s slicing method. I wonder if I am the first in 300 years
to try this. My result is shown in Fig. 8. It is a very curious and pleasing object to
hold. I tend to continually turn in my hand as if it were necessary to repeatedly
verify that one square and four equilateral triangles meet at each vertex. To guide
the 32 cuts, instead of marking the cube’s surface, I made a custom miter box.
Figure 9 shows the laser-cut plywood parts I prepared; note the slots at the proper
angles to hold the saw. Figure 10 shows the assembled box, the cut-off corners,
the Japanese pull-saw I used, and the resulting sliced body. The block was rotated
after each cut to bring the proper region to the saw slots. The initial cuts removed
large corners; later cuts removed smaller remaining bumps. Note that my slicing
planes were not precise to 20 decimal places and small errors resulted in faces that
are visibly off from equilateral triangles and squares. This was easily adjusted by
sanding the surface to produce the final result of Fig. 8. I wonder whether Sharp’s
instrument-making expertise guided him to be more accurate and not require such
sanding.

Sharp did not use a custom miter box in this way. His method was to draw all
the lines on the surface of the block and cut at the lines. Typical woodworking
techniques to remove material up to a marked line include sawing, planing,
chiseling, whittling with a small knife, and sanding. (A lathe with a spherical chuck
might also be used, if starting from a sphere.) Careful examination of Sharp’s
existing models might indicate his exact cutting methods. A complication is that
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Fig. 8 Wood snub cube,
made by the author

each cut removes portions of the marked lines that will be needed to guide future
cuts. Sharp is specific about how to deal with this: “Always observing to draw all
the Lines upon the Cube or Parallelepipedon before any Segment is cut off; and new
Lines must be drawn upon the Plane made by every Section, from the Termination
of the Lines which are cut off on every side.”

We can be confident that Sharp used this method of redrawing the lines after
each cut because he gives a warning that could only come from experience. After
explaining where to draw new lines in his simplest example, the tetrahedron, he
adds: “But the Neglect hereof, where there are more Bases, will involve the Work in
an inextricable Confusion; so that ‘tis of absolute Necessity it should be observed in
cutting of all the other Bodies, where the Lines and Sections will be more numerous:
Wherefore this caution is to be taken along through the whole.” It was to avoid the
drawing, the redrawing, and the possible confusion that I devised the custom miter-
box method.

It is hard to know how Sharp’s models would have been perceived in his time:
perhaps as elegant educational models, artisanal curios to display, or finely crafted
exemplars of a strange mathematical realm. These are the sorts of categorization
that would have put them at home in an eighteenth-century cabinet of curiosities.
Certainly, they would not have been considered fine art or sculpture in any modern
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Fig. 9 Laser-cut parts to make miter box to guide slicing

sense, as this was long before the idea of non-representational sculpture. Yet, I am
certain Sharp enjoyed the process of creating them in the same way any sculptor
must enjoy bringing his or her imaginings to reality. Only a creative passion could
lead someone (especially a gentleman of leisure) to invest such focused labor into
a block of wood. One can hope that however his models were dispersed, the new
owners recognized some of this artistry and kept them safe somewhere. Thus, it
could happen, over time, that more will come to light.
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Fig. 10 Wood snub cube sliced by the author (before sanding), with custom miter box, saw, and
parts removed from the solid cube

4 The “Sharpohedron”

I have studied and reproduced all of the polyhedra in Geometry Improv’d. With
some straightforward graphics programming, a patient coder can translate Sharp’s
descriptions into computer images or 3D-printed models that are faithful to his
geometry. Even though Sharp does not describe his creative intentions, his numbers
are so precise that one can test any hypothesis and know for certain whether or not
one is thinking of exactly the same shape that he had in mind.

Analyzing all 12 of Sharp’s original forms is beyond the scope of this chapter,
but to do some honor to his vision, we must at least take up one example and see
what it is about. Sharp’s first and simplest body has 18 faces. In the 300 years since
Geometry Improv’d appeared, it has not been rediscovered, reproduced, analyzed,
or even mentioned once in the mathematics literature. Yet, I find it so worthy that
I have dubbed it the “Sharpohedron.” Of course, with random slices anyone can
create an infinite variety of polyhedra, so why would any particular one be worthy
of a name? Indeed, why does “the Mona Lisa” or any human creation warrant a
name? Let me try to explain what makes this polyhedron notable and suggest some
reasons why, after he imagined it, Sharp might have decided to physically build it
and then write about it in such detail for us.

Figure 11 shows four versions of the Sharpohedron. The first I made from a solid
block of basswood following Sharp’s precise marking-and-slicing method. The
second is made with scissors and paper, by cutting and taping together polygons,
following the template of Fig. 12. (The tape is hidden on the inside.) The third is
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Fig. 11 Four versions of Sharpohedron: solid wood, paper, assembled wood, and 3D printed

made by cutting out 18 individual faces from plywood, beveling the edges to mate
at the proper dihedral angles, and gluing them together. This technique allows for
a larger, lighter, hollow wooden model. It is akin to the paper version but stronger,
and enriched by the luster and feel of wood. The last is made of ABS plastic by 3D
printing [23]. I recommend the reader make some kind of physical model to aid in
following the analysis below. The fastest method is to tape together a paper model
using the template or data in Fig. 12.

With a model in hand, one naturally turns it about to see it from all angles,
explores it tactilely to feel its geometry, passes it from hand to hand while trying
to understand its structure, and eventually explores the different ways in which
it rests on a flat surface. I imagine that Sharp went through such an appreciation
process and expected that his followers might come to know each of his 12 original
solids from a similar experience with models. A fair test of successful understanding
is whether one can close one’s eyes and form a mental image clear enough for
answering questions like “how many vertices does it have?”

One natural reference point for understanding the Sharpohedron is the regular
tetrahedron. As Sharp notes, it “bears some Resemblance to a Pyramid.”6 Like a
tetrahedron, the Sharpohedron has four “corners,” but these are rounder peaks, less

6 A few comments on symmetry are appropriate here, as it is central to any modern treatment of
polyhedra. The Sharpohedron has “tetrahedral symmetry with reflections,” i.e., what is now called
orbifold type *332. This means that it has four axes of threefold rotational symmetry, three axes
of twofold rotational symmetry, and six mirror planes. Sharp worked long before the nineteenth-
century development of group theory formalized symmetry, so he would not see it in these terms,
but he certainly had an adequate intuitive notion. All 12 of the bodies he created have some sort
of polyhedral point group symmetry, with the Sharpohedron standing alone as his only one in the
*332 class. (His later ones fall into four other groups: octahedral or icosahedral rotations, with or
without reflections.) In his instructions, Sharp typically details a half-dozen cutting planes and then
says “and more like these,” relying on the reader’s intuitive understanding of the correct symmetry
for each example. When coding up his slicing process, I found it convenient to specify just one
cutting plane, and then generate the others algorithmically by applying the appropriate group of
symmetry transformations. If Sharp had formalized an analogous notion, his book could have been
even shorter.
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Fig. 12 Net and construction data for Sharpohedron (face angles and edge lengths to fit in unit
cube). Print net on cardstock, cut outer lines, crease inner lines, and tape together. The dihedral
angles are 48.2◦ (long edges) and 27.3◦ (short edges)

penetrating. While the tetrahedron has three sharply knife-like edges incident to
each vertex, here we find that six edges with flatter dihedral angles meet at each
peak. The overall form is less of a caltrop and more of an overstuffed tetrahedral
pillow, rounded as if it is trying its best to impersonate a sphere. In fact one can
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imagine a perfect sphere inside it that would be tangent to all 18 faces. The technical
term is that the polyhedron is “circumscribable about a sphere.”

Examining the individual faces, one finds two types: six congruent rhombi
and 12 congruent kite-shaped quadrilaterals. Kite-shaped faces on polyhedra were
extremely rare in the literature before Sharp7 and might be viewed as implying a
kind of experimental artistic daring. Seven of Sharp’s new solid bodies involve kites,
so he needed a term for them. Because a kite can be assembled by joining half of
two different rhombi, he calls them “double Semi-rhombs,” then shortens the term to
“Semi-rhombs.” It is evident that the kites of the Sharpohedron are arranged in four
groups of three, with each group positioned like a face of an imagined tetrahedron.
The groups are separated from each other by the six rhombi, which are stretched
out along the edges of the imagined tetrahedron. Depending on how we turn it,
the Sharpohedron may present us with one of its four six-sided peaks or with a
Mercedes-like insignia of three kites.

Examination shows that the Sharpohedron’s kites and rhombi are not indepen-
dent shapes. A deeper structure relates them. They share their common long edge
length, and the acute angle of the rhombus face is equal to the acute angle of the
kite face, so six equal face angles meet at each peak. Also, the short diagonal of
the rhombus shape exactly equals the short diagonal of the kite. If we view the kite
as “a double semi-rhomb,” one of the two rhombus shapes that it derives from is
the one we see sitting next to it. Thus, each peak is a regular hexagonal pyramid.
The overall polyhedron has a threefold rotational axis through each vertex, but if
you hold it in your hands so just one peak peeks through, what you see has twice as
much symmetry: a sixfold rotational axis.

When it is time to place the Sharpohedron down on the table, we discover that
it sits in a peculiar manner. With a kite face down, a peak is not quite vertical. This
uncooperative personality insists on leaning a bit to the side. Or it can be placed
rhombus-down to show a totally different character: Now we feel some tension in
the fact that if the lower rhombus points North/South, there is a parallel one on top,
but facing East/West. Turning it 45 degrees, so those rhombi point to the NE, SW,
NW, and SE, one may suddenly have an aha! experience of how the form fits snugly
into a cubical volume. Of course, if you personally sliced it from a wooden cube
that will be no shock, but it may be a surprise for those who first understand it as
a pillowy tetrahedron. The experience of sliding it in and out of a snug five-sided
cubical box is particularly pleasing.

From Sharp’s slicing construction, it is natural to see the Sharpohedron as a
special case among a continuum of related forms. First, observe in Fig. 13 how one
can truncate the vertices of a cube to produce new solids. There is a continuous range
of depths possible and particularly interesting forms arise if one stops either (a) at
the depth that leaves regular octagons, giving the Archimedean truncated cube, or

7 I am aware of only one previously published polyhedron with kite-shaped faces, which is found
among Wentzel Jamnitzer’s 1658 imaginings [24]. In later centuries they became commonplace
with the Catalan solids.
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Fig. 13 Truncating the vertices of a cube to varying depths

Fig. 14 Cube shaded to indicate one slanted piece (of 12) to remove to make a Sharpohedron

(b) at the cube edges’ midpoints, giving the cuboctahedron. Or instead of truncating
vertices, a related edge-truncation operation produces the 12 slanted squares of the
rhombicuboctahedron (Fig. 7, left). The Sharpohedron construction can be seen as
a variation on these familiar cutting processes.

In the text supporting Sharp’s Fig. 1 (our Fig. 3), he instructs us to construct
the midpoints of the cube’s edges and then cut along a plane that goes through one
vertex and two midpoints, to remove a corner pyramid like the one shaded in Fig. 14.
This is done 12 times, once for each cube edge, to produce the 12 kite faces. The six
rhombi remain as the central portion of each original cube face, so 12 cuts suffice to
make an 18-sided body. (We have seen this before, as it is also how six of the faces
of the rhombic triacontahedron arose.) Figure 15 shows one of the marked cube
faces; the shaded portions are removed by four cuts, leaving the central rhombus.
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Fig. 15 One face of cube marked to indicate cuts

Fig. 16 Adjusting the depth of the slanted cut through a vertex, varying from a cube to a
Sharpohedron to a tetrahedron

A very natural generalization of this process is to imagine varying the angle of the
cut by constructing two points an arbitrary fraction of the way along the cube edge,
instead of exactly half way. Varying the cut depth produces a family of related forms
with different kite and rhombus shapes, shown in Fig. 16. From this continuum, the
one Sharp presented is special not just because the slice goes to the edge midpoints.
It is also the only one that is circumscribable about a sphere and that creates six
equal face angles and six equal dihedral angles at the points. It makes the two circled
intersection points in Fig. 15 lie exactly at the one-third and two-third point of the
diagonal they lie on, it makes the area of the remaining rhombus exactly one-third
the area of the square, and it makes the area of each kite exactly one-fifth the area of
the cube face. There is no way to know which properties of this body Sharp found
most interesting, but he did specifically state the circumscribability, the rhombus
diagonal (Sqrt[2]/3 for a unit-edge cube), and these surface areas.
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Fig. 17 Starting with a truncated tetrahedron, elevating first the hexagons, then the triangles, to
create Sharpohedron

Truncation is just one process for creating new polyhedra from old. Another
familiar method is “elevation,” i.e., erecting pyramids on the faces of a given
polyhedron.8 Again there is a continuum of possible forms, as we are free to choose
the height of the pyramids. Polyhedral elevation has been familiar since 1509 in
the images by Leonardo da Vinci for Luca Pacioli’s De Divina Proportione, in
which they elevated polyhedra to a height that created pyramids of equilateral
triangles over each face, but there is no record of what Sharp knew. The rhombic
dodecahedron can be derived by elevating either the cube or the octahedron; the
rhombic triacontahedron can be derived by elevating either the dodecahedron or
the icosahedron. In each case, the elevation height is chosen so that pairs of
adjacent isosceles triangles become co-planar and merge across an edge to become
rhombi. Sharp discusses these relationships without specific mention of elevation
or pyramids, so it is not clear if he thought of elevation as a formalized conceptual
process. One of his later bodies (consisting of 24 isosceles triangles) is an elevated
cube, which he describes as being “compounded of six square Pyramids . . . and a
Cube.” See his Fig. 24, parts 1 and 2, in Fig. 3. Another (consisting of 60 isosceles
triangles) can be derived by elevating the dodecahedron and yet another (consisting
of 80 triangles) can be derived by elevating the pentagons of an icosidodecahedron.
See his Figs. 34 and 38 in Fig. 6. In these three cases, the elevation height puts all
vertices on a common circumsphere. But Sharp gives us just the results so we do
not know how he came to think of them.

With this background, we note that the Sharpohedron can be simply derived by
elevating the Archimedean truncated tetrahedron. Figure 17 illustrates the process.
The truncated tetrahedron comprises four regular hexagons and four equilateral
triangles. We can first elevate the hexagons into pyramids of a height where three
of their isosceles triangles merge with neighbors to become the rhombi, and then
elevate the triangles until their isosceles triangles merge with the remaining faces of
the hexagonal pyramids to become kites. This is another elegant way to understand
the Sharpohedron. If you pick up your model and visualize just the short diagonals
of the faces, you can see the truncated tetrahedron hiding within it. This construction
explains why the overall shape has threefold rotational symmetry, yet the peaks
are regular six-sided pyramids. We can also understand why there are 18 faces:

8 Some people have misunderstood the term “stellation” and used it for this, but I prefer to use
“stellation” as Kepler originally defined it—for a process of extending the face planes [4].
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because the truncated tetrahedron has 18 edges. Once elevation is understood, it
seems natural to apply it to familiar Archimedean solids, but there is no way to
know whether Sharp thought along these lines. He only tells us the final shape.

A different way to specify a polyhedron is to list a finite set of infinite bounding
planes, with the understanding that we are interested in the region of 3D space that
is interior to all the planes. For example, we can give equations for six planes (x = 1,
x = −1, y = 1, y = −1, z = 1, z = −1) to specify the cube that lies interior to them.9

Abraham Sharp appears to be thinking very much along these lines when he defines
cut planes and discards all the exterior regions. For construction purposes, he is very
specific in locating points on the surface of the starting block that delimit how the
plane intersects the surface, but he also understands more abstractly that any way of
characterizing planes determines a unique result. For example, he explains how the
rhombic dodecahedron is “apparently deriv’d either from the Cube or Octahedron,
by fixing Planes upon every Edge perpendicular to that Axis which passeth from
the Center of the Body through the middle of each Edge . . . .” He similarly finds the
face planes of a rhombic triacontahedron as planes through the edge midpoints of a
dodecahedron or icosahedron.

With this type of characterization in mind, one might ask what happens with
other “natural” sets of planes, for example ones derived from the edge midpoints
of other simple polyhedra. (Given a point, a uniquely defined plane to choose, as
Sharp notes, is the one that passes through the point and is orthogonal to the line that
connects the point to the center of the body.) Once this process is familiar, it turns
out that the Sharpohedron can be beautifully and elegantly derived as what is inside
the planes defined by the edge midpoints of a truncated tetrahedron. This is my best
guess as to how Sharp derived it, simply applying an operation he understood on
Platonic solids to the simplest Archimedean solid, but there is no way to know for
sure. The conjecture is supported by the fact that Geometry Improv’d also includes
a body with 36 faces, which can be derived analogously from the edge midpoints
of a truncated octahedron. See Fig. 30, parts 1 and 2, in Fig. 3. However, others of
his 12 original bodies have separate derivations. Sharp’s second body, one with 24
faces, can be derived by applying this process not to the edge midpoints, but to the
24 vertices of a rhombicuboctahedron. Here, Sharp appears to be anticipating the
idea behind the Catalan solids, which arise if one defines a plane for each vertex of
an Archimedean solid. But he was not consistent in this method; some of his other
bodies are approximate Catalan solids with slightly different dimensions.

So there are a number of possible routes by which Sharp might have ar-
rived at his 18-sided body (just as networks of interrelationships arise in any
interesting mathematical domain). And there is a variety of distinctive geometric
and personality characteristics that could have bolstered his assessment of the
Sharpohedron’s beauty and elegance. We will never know for sure how Sharp felt

9 In the twentieth-century formalization of this idea as “Nef polyhedra,” one constructs the
intersection of a finite set of “half-spaces” defined by the planes. This method can only produce
convex polyhedra, but it is suitable because all of Sharp’s examples are convex.
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about his 12 “children” that he presented in Geometry Improv’d, but there is strong
evidence that the Sharpohedron was particularly important to him. An indication
of its significance can be found in Vertue’s posthumous engraving of Sharp. The
geometric figure that appears on the panel within the picture is a portrait of the
Sharpohedron, centered on a group of three kite faces and perhaps slightly atilt, as it
tends to be. It is unclear how Vertue knew of the Sharpohedron, but for some reason
he chose this particular example to embody Sharp’s mathematical work in the 1744
portrait [10]. This was just 2 years after Sharp’s death, so he would have been able
to learn from those who knew Sharp which form was most significant.

5 Conclusion: Sharp the Artist

Abraham Sharp’s self-taught geometric genius appears to have come out of
nowhere, gone in its own direction, and disappeared, not to be pursued for
300 years. Although biographies label him as a mathematician (or more precisely
“an ingenious mathematician, mechanist, and astronomer,” per Hutton), I categorize
him first as an under-appreciated artist. Yes, he certainly had the technical skills for
calculation and could apply mathematics to solve difficult problems, but there was
much more to his creative compulsion. Mathematics was just one of the abilities,
along with mechanical skill, craftsmanship, perseverance, and imagination, that he
applied toward his artistic aims.

Of course, the term “art” has had differing meanings and associations over the
centuries and one cannot claim that Sharp himself saw his polyhedra project as fine
art in any modern sense. But certainly he gave us what modern definitions call for:
artifacts that express the creator’s imagination, conceptual ideas, or technical skill,
intended to be appreciated primarily for their beauty or emotional power. The beauty
Sharp saw in his creations undoubtedly included both a visual layer, as one might
enjoy the gleaming craftsmanship of a brass scientific instrument, and a deeper
mathematical layer, as when one understands how the relationships of truncation,
elevation, and other geometric transformations provide a mental graph connecting
different structures.

While it is always risky to guess at someone’s intentions, especially one living in
times so different from ours, we do have Sharp’s statements that he was interested
in creating attractive new works for viewers to appreciate. At the point in Geometry
Improv’d where he introduces his novel polyhedra, he says: “as an Addition to the
Geometrical Store, I shall subjoin Twelve more; none of which (I presume) have yet
been expos’d to publick View, and some of them perhaps being more beautiful and
elegant than any of the former.” He wants to share his creations, and his exacting
calculations might be seen as the extreme perfectionism of an artist who wishes his
work to be “just so.”

Mathematicians have ignored Geometry Improv’d precisely because it is more art
than math. They look to books for logical development and conceptual understand-
ing, not for lists of idiosyncratic instructions. Lacking a definition-theorem-proof



292 G.W. Hart

arrangement, Sharp’s writing does not immediately show a casual reader that he
indeed thinks like a mathematician. The underlying structures and relationships that
connect his creations to each other and to the existing body of geometric knowledge
are not spelled out. A leap of faith is required to invest the time needed to dive in
and appreciate his unique contributions.

Sharp worked meticulously and at length both on the calculations and on the
woodworking that resulted in his physical models. He saw the visual and conceptual
value in his geometric creations and freely presented them to the world, for us
to appreciate both in print and as concrete objects. The very human pleasure of
visualization must have underlain all this. Both as an instrument maker and as a
polyhedron slicer, Sharp would begin with a concept in his mind’s eye, one that
he felt was worthy of physical existence, and take whatever steps were required to
bring it to reality. This is the creative drive which is the engine inside any artist.

The individual character of a work may place it somewhere along a continuum
between mathematical creation and fine art. Many beautiful mathematical structures
seem to have a certain inevitability and it happens that different mathematicians
formulate them independently. (This is why some feel mathematics is discovered in
a Platonic realm rather than invented.) At the other extreme, unequivocal works of
fine art typically show the hand of one particular artist. We feel that if Beethoven
had never lived, no one else would ever have produced any particular piano sonata
of his. Within this spectrum, where can we place Sharp’s polyhedra? I see the fact
that no one else came up with his Mona Lisa, the Sharpohedron, in over 300 years
as a testament to Sharp’s personal artistry, but it is the presentation in Geometry
Improv’d that is absolutely unique. The hand of the artist is evident throughout the
book in every square inch of the densely packed engravings and in every 20-digit
measurement.

By thinking of Sharp as an artist and his polyhedra project as art, we can
make some sense of the enormous number of digits he presents. The unnecessary
over-precision of the dimensions might incorrectly suggest (to a reader unfamiliar
with his instrument-making fame) that this was the writing of a very abstract
mathematician, one out of touch with the practicalities of real-world fabrication.
No metalsmith could work to even four digits of precision, so why waste time doing
20-digit calculations and why waste space in the book printing such exact values?
One might propose that he was merely showing off his mastery of calculation, of
trigonometry, and of logarithms, but that does not accord with his modest nature. I
have come to view his over-precision as a form of artistic style. The digits are a kind
of decoration he adopted, a brush stroke of sorts, akin to Van Gogh’s swirls, Seurat’s
dots, or Beethoven’s tremolos. Sharp is decorating his document with digits in an
expression of personal taste, thereby creating a unique impression on the reader.

I see an (admittedly anachronistic) analogy in all this to Sol Lewitt’s twentieth-
century conceptual artwork. Lewitt emphasized the role of the artist as a thinker
rather than craftsperson and gave constructive instructions for wall drawings to be
painstakingly executed by assistants, allowing for them to be reproduced over time
in different locations. He thereby separated the essence of a visual artwork from its
repeatable process, just as a composer’s musical score provides a representation that
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is of a distinct nature from its many possible performances. In an analogous manner,
Sharp’s presentation is very much an instruction sheet that merely commands us
in how to proceed mechanically. Lewitt was happy for different practitioners to
adapt his wall drawing instructions to their own particular rooms, wall sizes, wall
materials, etc. Similarly, I believe Sharp would be pleased to see his creations
rediscovered and newly instantiated not just in boxwood, but in 3D printing,
computer graphics, and any other medium yet to be invented.

It took some decades for Lewitt’s notion of conceptual art to be broadly
understood by the public, but now one finds giant wall drawings of his at large
museums all over the world. Similarly, many works of Beethoven and other
innovative artists were not immediately popular, but came to be understood over
time. Perhaps after 300 years, the moment has come for a wider appreciation of
Abraham Sharp’s remarkable artistry. It would be wonderful to see the polyhedra
of this multifaceted genius wrought large. A wider recognition of his uniquely
mathematical artwork would certainly be deserv’d.
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Learning by Metadesigning

Giordano Bruno, Massimo Ciafrei, Claudia Iannilli, Giacomo Fabbri,
and Marzia Lupi

Encomium of Metadesign

1 Introduction by Giordano Bruno

My interest and work in the Design area started many years ago. I consider myself a
mathematician adopted by Design since I am a Professor in Mathematical subjects
at ISIA Roma Design (Istituto Superiore per le Industrie Artistiche) for almost
40 years. I have discovered that Mathematics and Design could share many shining
facets in Geometry, Topology, Combinatorics, etc.. In Mathematics of Complexity,
such as the theory of complex systems and the uncertain logic, we find even more
fertile ground.

This paper came to life to celebrate my friend and colleague Michele Emmer
75th birthday.

With my colleague Massimo Ciafrei, ISIA’s Professor of Metadesign, we will
present here a selection of students’ projects originated from the strong interdis-
ciplinarity that intertwined our subjects. As we already made in 2017, in Imagine
Math 6 [1].

Professor Claudia Iannilli, and Doctors in System Design Marzia Lupi and
Giacomo Fabbri, have provided their wise and useful help.

I proposed “Encomium of Metadesign” as the title for the essay. There are two
main reasons.

First, I believe that metadesign is the more fruitful cultural area to develop a
project like the space to experience complexity.

It promotes the interweaving of ideas, notations, links, analogies, transpositions,
building bridges with other matters. Mathematics, in particular, could supply a
whole common language, general and coherent. This concept is central in the
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metaprojects we are going to present; they are carriers of fascinating open thoughts.
A gallery of concepts and terms which belongs to systemics: incompleteness,
chance, uncertainty and many more that will be readers’ pleasure to explore. These
projects have a peculiarity that every project, in my opinion [2], should have: to be
systetics (Systetics is the concept that I coined, merging Systemics, Esthetics and
Ethics).

Second, I think that the whole of Michele Emmer’s work has been an elegant
and refined metaproject. Able of place in touch and comparison mathematics and
the culture, expressed in every form. He held innovative and original seminars at
ISIA Roma Design about the relationship between Mathematics, Art and Design for
more than 30 years.

The conferences he organized in Venice, named “Matematica e cultura”, and the
related proceedings, allowed many people and young students to be part of a very
systetic event. A magnificent and sparkling blend of ideas that join several subjects,
highlighting the cultural, aesthetic and ethic features they share. Therefore, owing
him an encomium is dutiful for the whole of us.

I want to thank him for all that I learned from him: he has allowed me to travel
with my mind and my esprit in the endless space of beauty.

2 The Projects

2.1 Raphaël

A becoming project
Designer: Barbara Muratori
A huge wall. Movable, soft, fluid and shining. This image is the lead concept of

Raphaël. A surface with no defined dimension made up of small modules that let
the light filter and sparkle, the air to flow and the time to show off. The modules’
shape allows them, once fixed, to move and readjust. The entropy of the system will
increase with time. Every touch, every blow of air will change the configuration.
Copper is primary for his aesthetic features: his shininess, his oxidation, his warm
colour. Raphaël is a pondered non finito: human interactions will modify its copper
surface. Every module will be characterized distinctively by oxidation formed
through years. The history of the object and its life will be readable out of its surface
imperfection (Fig. 1).

2.2 Paròla

Intimate union
Designer: Chiara Simpson
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Fig. 1 Raphaël by Barbara Muratori

Paròla is an intimate union of parts, spaces and ideas. Paròla, which means word,
is a complex of phonemes through which man expresses a notion in the context of a
sentence.

We may consider the term as an abstract engine since it consists of a specific
quantity of parts that, all together, if well arranged, produce a meaning.

The project Paròla takes form in a series of circular, transparent crowns with
a scalar centre. Some rays, traced from the central point towards the perimeter of
the object, emphasize the conceptual growth of the figure. Some letters have been
arranged on the rays, to outline the connections between the crowns. The letters
make sense when read from the outside to the inside of the object.

By using Paròla, the user has the possibility to construct the visualization of
a word with a concrete sense or even of a pseudo-word, which is a meaningless
ensemble of letters; enabling the user to work, touch and see something that usually
vibrates in the air and has no dimension (Fig. 2).

2.3 Ápeiron - ἄπειρoν

Permutation e indeterminacy
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Fig. 2 Paròla by Chiara
Simpson

Designers: Alessandro Olinteo, Enrico Sciardi
Ápeiron is an ancient Greek term meaning “anything with a not clear definition,

with no shape or precise determination”. A primordial disposition of reality in
which objects are indistinct and share a condition of uncertainty and undefinedness.
Ápeiron is the Anaximander concept of indeterminacy. The first principle of
everything, the primordial state of elements: ἀρχή, the Arche. It is the specular
peculiarity of sensible world definiteness. Unlimited in both his acceptions. Positive
as infinite endlessness that transcends every limit and moves towards perfection.
Negative as a substance without boundary and therefore without shape.

The project takes life from the will to replicate the movement in the space to
capture his trail (Fig. 3).

The final object is the natural outcome of research and investigation of its shapes
and components. Although it is limited in parts number, still capable of endless
permutations, formalizations and paths definition (Fig. 4).
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Fig. 3 Ápeiron by Alessandro Olinteo, Enrico Sciardi

Fig. 4 Ápeiron by Alessandro Olinteo, Enrico Sciardi

2.4 Koi

Just a gesture
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Designers: Biagio De Vecchi, Marco Di Donè, Noah Gabriel Zandonà
Koi springs from the will to build a spontaneous relation between elements of

a system in water. The project has clear analogies with the Japanese iconographic
imagery of waterlilies and their unusual behaviour on the water’s surface. Despite
the appearances, the way it groups is not accidental; it has an impressive systemic
print that reveals their natural laws.

Koi system’s primary components are constructed from geometric and regular
shapes by processes of cut and removal. Every module’s face is divided into a grid,
defining three typologies of sign and asportation. Each injured face is marked with
colour to underline its cut, its lack of matter. The Koi family comes to life when
thrown in the water following their buoyancy and their magnetic field generated by
an internal magnet (Fig. 5).

2.5 Caustics

Searching relationship
Designers: Alessio D’Angeli, Giulia Celeste Lanzafame, Marco Porpora
The analysis was oriented, since its origin, towards caustics behaviour focusing

on the relation between water and other materials. The aim was to explore and
comprehend how water, interacting with substances and light, creates moods and
atmospheres with unexpected, elegant and unique results.

Applying an empirical and graphic approach, from an extensive iconographic
investigation, we inferred a geometric system that emules what is usually seen in
nature.

This transposition underlined the huge utilization possibilities brought from real
elements to visual communication.

We did not aim to define use in a finite product. We strived, instead, to define a
methodology to research and experience nearby the design project (Fig. 6).

2.6 Tangle

Line, knot, link
Designer: Giorgia Grippa
Tangle is a research stemmed from three key elements: a polypropylene sheet,

the cutting process and the creation of a modular system.
The final shape in his planar version is deliberately simple. Inside an equilateral

triangle, a broken line wraps a triangular hole. A single gesture could reveal the
module in his tridimensionality in space as a ribbon, like a helix. The module locks
in a three-dimensional conformation, connecting it on itself using a little cut as a
slot, gains tension becoming an essential curve in space. Every module could be
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Fig. 5 Koi by Biagio De Vecchi, Marco Di Donè, Noah Gabriel Zandonà

either a graph’s node or part of an edge forming an unlimited gallery of possible
aggregations of topological links (Fig. 7).

2.7 Mutaforma

The instability of the balanced poles
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Fig. 6 Caustics by Alessio D’Angeli, Giulia Celeste Lanzafame, Marco Porpora

Fig. 7 Tangle by Giorgia Grippa

Designer: Angela D’Alonzo
Mutaforma is an unstable body, poised, in extreme precariousness. The max-

imum degree of expressiveness is given by the casual event, that is the need to
contrast the generative rules, through a dynamism of opposing forces.

A metal wire becomes the shape of a body. The rationality of thought is expressed
through generative rules to achieve a situation of balance, harmony and coherence.

The need for a demolition of rigour through the destruction of a metal wire that
gives birth of an evanescent reality and leads to a world of abstract forms (Fig. 8).

2.8 / Dis-còrde /

Flight casuality
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Fig. 8 Mutaforma by Angela
D’Alonzo

Designers: Giorgia Bortone, Giorgia Malizia
The interest in movement generated by the interaction between parts linked by

a cause–effect relationship arises from the observation of nature. From this concept
comes the desire to investigate flight with its causes, its effects and its evolution.

/ Dis-còrde / is a system capable of making a helical element fly through the
thrust given by the release of tension of two rubber bands wrapped around an axis.
The movement will change according to the charge given to the bands.

Through photography it was also possible to study the signs that the propeller
creates when moving in the air (Fig. 9).
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Fig. 9 / Dis-còrde / by Giorgia Bortone, Giorgia Malizia

2.9 Tensioni

Taut forms in space
Designers: Elena Berardi, Lidia Catena
The area in which the research is developed concerns the behaviour of matter

subjected to tension. The aim is to explore the possible configurations generated
in three-dimensional space through the relationship between solids and voids. With
Tensioni, which means tensions, we investigated how static structures that expand
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Fig. 10 Tensioni by Elena Berardi, Lidia Catena

and articulate in several directions can offer a variety of visual effects. Another
starting point for analysis is provided by the suggestions observed by inserting a
dynamic component, that is, allowing the material to flex in space and then return
to the initial configuration (Fig. 10).
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A Little Homage to Roger Penrose

Michele Emmer

Sir Roger Penrose was awarded the 2020 Physics Nobel Prize at the age of 90
(he was born on August 8, 1931) for his research on the black holes of the
universe, which he had initiated many decades earlier. He worked for many years
with Stephen Hawking, who died in 2018. In Hawking’s life film The Theory of
Everything [1] for which Eddie Redmayne received the Oscar for Best Actor, Roger
Penrose appeared briefly, played by actor Christian McKay. Penrose’s insights and
creativity span many fields. Among his many interests are Escher’s works and quasi
crystals. Penrose is a kind, helpful person who from the first moment fascinated not
only me but all my physics students who spent unforgettable days with him during
the Escher conference I organized in Rome in 1985 [2].

1 M. C. Escher and Penrose

The meeting between Penrose and Escher was inevitable. It took place at the world
congress of mathematics in Amsterdam in 1954. At the time, Penrose was a student
of mathematics. The conference was the site of the first major exhibition dedicated
to the Dutch graphic designer. In the film Escher: Geometries and Impossible
Worlds [3] shot in Rome, Penrose recalls:

I was told that Escher’s prints and drawings would be of particular interest to mathemati-
cians. It was known that I was interested in mathematical curiosities, especially geometric
ones. In fact, when I went to see it, I found it particularly fascinating. When I returned to
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Fig. 1 Penrose’ impossible triangle and staircases

England I began to wonder if I would be able to do something geometrically bizarre too,
but not quite the same kind of things I had seen at the Escher exhibition.

So I started making drawings that were somewhat impossible. I gradually
simplified them until I drew the triangle, which is a kind of thing, how could I
say, an impossible object [today it is known as the Penrose triangle] (Fig. 1). What
is the idea? It is that in the triangle every part of the figure could exist as a three-
dimensional object, but the whole configuration is something that could not exist in
space. I showed the drawing to my father Lionel (psychiatrist and geneticist) and
he drew a number of impossible figures and came to draw the stairs that always go
down in an impossible way. Sometime later we sent an article containing a number
of drawings to the British Journal of Psychology [4], the Penrose triangle and scales
have become a classic not only in visual perception theory but also in psychology].
When it was published we sent a copy to Escher, and he incorporated the designs
into some of his works.

Penrose later confirmed in his work Escher and the Visual Representation of
Mathematical Ideas [5, 6] that Escher had created his engraving Belvedere in the
same period but in a completely independent way. In the section of his first book,
dedicated to impossible objects, Escher recalls how it was the Penrose drawings that
inspired his works Ascending and descending and Waterfall [7].

It is worth remembering that neither Penrose nor Escher were the first to use
impossible objects graphically, especially the triangle. Aside from situations due
to more or less conscious errors on the part of artists, it seems that the first was
the Swedish artist Oscar Reutersvärd since 1934. Neither Escher nor Penrose were
aware of his work.

I met Penrose while shooting the Escher film. If I remember correctly it was the
Toronto-based English mathematician Harold Scott MacDonald (Donald) Coxeter
who sent me his contact details. Coxeter also participated in the film. Penrose agreed
to come to Rome for the shoot. I think it was 1980 or 1981. For simplicity, his two
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interventions, one for the film on Escher of about 13 min and another on aperiodic
symmetries of about 5 min, were made in my living room and in my library studio
respectively. Penrose had brought with him the original models of the triangle and
stairs. The film was shot on 16 mm with live sound. The details of the two objects
were filmed separately and then inserted during the assembly phase. I cut only my
questions and a couple of hesitations from the shoot.

2 Penrose and Quasi-Crystals

One of the things that always fascinated Escher were the symmetries of the plane
coverings, the so-called tessellations [8], motifs that fill the entire plane in a
symmetrical and endlessly repetitive way. Fish, birds, there are many periodic
drawings invented by Escher. Only after his death in 1972 were Escher’s notebooks
with more than a hundred watercolors and periodic drawings found by a collector
who had purchased the material left by the artist. The drawings and watercolors
of the notebooks were sold one by one by the collector but fortunately, before
the destruction of the notebooks, Doris Schattschneider was allowed to have them
reproduced along with many other preparatory drawings in the book M. C. Escher:
Vision of Symmetry [9]. Most of the symmetries present in many works by the Dutch
graphic artist are called crystallographic because they are typical of crystals. These
symmetries are all periodic. Crystals in nature have the same symmetry properties
as those found in the decorations of flat surfaces. For this reason their group of
symmetries is called crystallographic; crystals cannot have a symmetry which is
not compatible with the structure of these groups. So, for example there can be no
pentagonal symmetry. A floor cannot be covered by pentagonal tiles, as there would
remain gaps, or it would not be possible to avoid overlaps. Classical crystallography
is based on the so called crystallographic restriction, which requires that there are
only symmetries of the permitted type.

Can crystalline forms be in the form of an icosahedron and have pentagonal
symmetry? Until 1984, the answer was very simple: no, it is not possible. Indeed,
the negative response to the question was and is one of the foundations of classical
crystallography. In 1984, a new event disrupted some deeply held beliefs: the
discovery of a Platonic form where no one thought one could be found: 1984 marks
the year of the discovery of quasicrystals.

Roger Penrose wrote:

Mathematical objects are just concepts; they are the mental idealizations that mathe-
maticians make, often stimulated by the appearance and seeming order of aspects of
the world around us, but mental idealizations nevertheless. Can they be other than mere
arbitrary constructions of the human mind? At the same time there often does appear to
be some profound reality about these mathematical concepts, going quite beyond mental
deliberations of any particular mathematicians. It is as though human thought is, instead,
being guided towards some eternal external truth – a truth which has a reality of its own,
and which is revealed only partially to any one of us.
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One of the most interesting examples of how mathematics is unreasonably
tied to physical reality regards some mathematical results by Roger Penrose. In
November 1984 a scientific paper was published by the title Metallic Phase with
Long-Range Orientational Order and No Translational Symmetry [10]. The authors
were the physicists Dany Schechtman, Ilan Blech, Denis Gratias and John Cahn.
The publication of this work gave rise to a huge debate among mathematicians,
physicists, chemists and crystallographers. The reason is that the paper put under
discussion one of the bases of classical crystallography. If a homogeneous material
is in the crystalline state it cannot occur, as already mentioned, in the icosahedral
form. Although the icosahedral packing is the energetically most favorable way to
put together a large number of polyhedra, no crystal can have the symmetry of the
icosahedron because a structure based only on icosahedra cannot fill all the space;
the reason is that between the symmetries of the icosahedron there is the pentagonal
one, and with a pentagon the plane cannot be tessellated without leaving gaps. With
an icosahedral symmetry it is impossible to have extensive structures, the disorder
that would be created to fill the gaps between the polyhedra would destroy the
structure itself.

Moreover, in crystals the presence of a long-range order is synonymous with
periodicity, and each periodic structure has an elementary cell that if indefinitely
repeated by translations can generate the all structure. In the work published in 1984
even the title was in contradiction with the basic ideas of crystallography: long-range
order and no translational symmetry, two properties that seemed in stark contrast
to each other. In this sort of quasi crystals, investigated with electron microscopy
or techniques of diffraction, a large scale accommodation of pentagonal symmetry
was observed, and there was no elementary cell infinitely repeated by translations
to form the final structure. In short, as Marjorie Senechal and Jean Taylor, both
mathematicians, wrote “The impossible occurred “.

Since 1984, scientists have tried to change their models to take account of these
results. In fact they had already been discussing for a long time, in theory, if there
could be a new area of crystallography in which it was possible to obtain the
pentagonal and icosahedral symmetry. This question was often asked in the late
seventies and early eighties of the last century. Roger Penrose had discovered in
those years a number of tessellations of the plane which had symmetries that were
not permitted in classical crystallography and that were not globally periodic, in
the sense that there were regions that clearly repeated themselves here and there
in the structure but without a global periodicity. The tessellations discovered by
Penrose had a new property, quasi periodicity. The name quasicrystals came from
the contraction of quasiperiodic crystals [11]. When asked if his results could be
the basis for an entirely new area of crystallography, usually Penrose replied: “In
principle, yes; but how could Nature be doing this?” Penrose also made a children’s
version of some of these tessellations; he changed the two geometric figures that
were used to generate the non periodic tessellations, named for their shape Kite and
Dart, into two types of birds. Unfortunately, apart from a few prototypes, the toy
version of the tessellation found by Penrose was never built on a large scale: it was
considered too complicated.
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Fig. 2 Frames from the movie M. C. Escher © M. Emmer

In the film Symmetry and tessellation [12], Penrose illustrated this sort of mosaic-
puzzle with the two types of birds The sequence ended with the composition in
animation of the original tessellation. The animation was made in a animation studio
with a vertical camera perpendicular to the table with the objects. In the animation
you always start from the end and taking one piece at the time you reach the starting
point. Than the film is printed in the opposite direction (Fig. 2).

The pieces used, Kite and Dart, are generated by a rhombus whose angles are
respectively 72◦ and 108◦; they are quadrilaterals with angles multiple of 36◦ and
sides of length 1 and ϕ, where ϕ = (1 + v5)/2 is the golden mean. The irrationality
of ϕ is the key to the construction. The fact that the ratio is an irrational number
is the fundamental principle that made the tessellation aperiodic. The proportion is
rational in a regular tessellation.

The unreasonable thing is that if the diffraction pattern generated by the
distribution of points at the vertices of rhombs in Penrose’s tessellation is generated
with a computer, it is possible to obtain the same symmetry of the diffraction images
obtained with the quasicrystals! This is a striking example of how mathematical
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research which is a priori useless, or completely internal to mathematics, became a
key point for research in physics and crystallography.

On October 5, 2011 Dan Schechtman was awarded the Nobel Prize in Chemistry
for the discovery of quasicrystals. This how the discovery is introduced in the official
web site for the Nobel Prize, the article is entitled A remarkable Mosaic of Atoms
[13].

In quasicrystals, we find the fascinating mosaics of the Arabic world reproduced at the
level of atoms: regular patterns that never repeat themselves. However, the configuration
found in quasicrystals was considered impossible, and Dan Shechtman had to fight a fierce
battle against established science. The Nobel Prize in Chemistry 2011 has fundamentally
altered how chemists conceive of solid matter. On the morning of 8 April 1982, an image
counter to the laws of nature appeared in Dan Shechtman’s electron microscope. In all
solid matter, atoms were believed to be packed inside crystals in symmetrical patterns that
were repeated periodically over and over again. For scientists, this repetition was required
in order to obtain a crystal. Shechtman’s image, however, showed that the atoms in his
crystal were packed in a pattern that could not be repeated. Such a pattern was considered
just as impossible as creating a football using only six-cornered polygons, when a sphere
needs both five- and six-cornered polygons. His discovery was extremely controversial. In
the course of defending his findings, he was asked to leave his research group. However,
his battle eventually forced scientists to reconsider their conception of the very nature of
matter. (Fig. 3)

To illustrate the story of the discovery the Nobel prize’s site included five tables
that make up a kind of comic book that tells the whole story of quasi-crystals. After
the result of Shechtman different types of quasi-crystals have been made in the
laboratory, such as alloys of nickel-chromium, vanadium-nickel-silicon, and quasi-
crystals have been discovered also in nature. In 2009 a mineral in the Khatyrka

Fig. 3 A Penrose tiling
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river in the South East of Russia was discovered. It has been called Icosahedrite,
Al63Cu24Fe13, (aluminum, copper, iron and other materials).

The specific atomic structure of quasi-crystals makes the corresponding materials
robust materials, with a good capacity of conduction and therefore efficient for the
transmission of heat and electricity, able to well absorb deformations compared
to the crystalline materials. These properties have opened up many prospects for
applications.

A few years ago a new surprise, quasiperiodic structures were discovered in some
Arab mosaics. They are dated from the tenth to the fifteenth century AD. Examples
are found in the Darb-i Imam Mosque (1453) in Isfahan, Iran. In an article of
2007 [14], Lu and Steinhardt thoroughly studied the structures of the decorations
found in different buildings of the Islamic world of the past looking for patterns
that might be non-periodic, in short, Penrose type. They found plenty of examples
on the walls of many mosques in different regions of the world. They managed to
reconstruct the way in which craftsmen and artists of that time arrived to assemble
the decorative motifs that cover the walls in order to maintain the complicated non
periodic symmetry of quasicrystals. This was the case obviously for a relatively
small surface. In short, the Penrose tiling, the almost symmetrical structure of quasi-
crystals, was known hundreds of years ago! Both contemporary Arab and western
architecture have incorporated Penrose patterns in recent years in some of their new
building.

Roger Penrose attended the Escher conference in 1985 both as a member of the
scientific committee and as editor of the Proceedings. In his article Penrose talks
about impossible objects, almost periodic coverings and obviously cites the article
by Schechtman and others on quasi crystals that had been published in 1984. He also
talks about the origin of Escher’s last work, made a few months before his death.
In particular the watercolor entitled Ghosts inspired by the drawing Penrose sent
him. It is the only example of a non-isohedral tiling of the plane by Escher. Penrose
explains: “The single shape, out of which the entire pattern is constructed and which
covers the whole plane without gaps or overlaps, is placed in more than one distinct
way in relation to the pattern as a whole. That is to say, not all occurrences of the
shape are on an equal footing: one can find two instances of it such that there is no
Euclidean symmetry, taking the pattern into itself, which carries the one instance
of the shape into the other. Moreover, there is no alternative way of tiling the plane
with this particular shape. It will tile only non-isohedrally.”
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Identity and Difference: How Topology
Helps to Understand Quantum
Indiscernibility

Amaury Mouchet

Soy esos otros,
también. La eternidad está en las cosas
del tiempo, que son formas presurosas. (I am those others too.
The eternity is in the things of time, which are precipitate forms
(trad. AM).)

Jorge Luis Borges. Al hijo (1967) in El otro, el mismo.

1 Introduction

This contribution, to be published in Imagine Math 8 to celebrate Michele Emmer’s
75th birthday, can be seen as the second part of my previous considerations on the
relationships between topology and physics [17]. Nevertheless, the present work can
be read independently. The following mainly focusses on the connection between
topology and quantum statistics. I will try to explain to the non-specialist how
Feynman’s interpretation of quantum processes through interference of classical
paths (path integrals formulation) makes the dichotomy between bosons and
fermions quite natural in three spatial dimensions. In (effective) two dimensions,
the recent experimental evidence of intermediate statistics (anyons) [3] comforts
that topology (of the braids) provides a fertile soil for our understanding of quantum
particles.
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2 Old Puzzles

Among the most common primary concepts that are jeopardised by quantum
physics, the related notions of identity, individuality or discernability are not the
least.1 The question of identifying a material object, even if it is immediately
accessible to the common sense, has always raised many philosophical issues once
we consider it as the set of its replaceable constituents. Heraclite’s thoughts on
the dynamical changes and, in particular, the paradox of talking about the “same
river” while “waters flows” [12, chap. 5, § 2] has never ceased to nurture Western
philosophy (and Borges in particular). Another variation on these questions goes
back to an even more remote era when some Greek founding myths were forged: is
it justified to talk about the ship of Theseus after some or even all of her original
parts have been replaced? However, one can nevertheless suspect that all these issues
can be reduced to a matter of semantics (what is meant by “same”), keeping in mind
the danger of the inevitable tautology that plagues ontology while trying to explain
what “existence” signifies.

An attempt to give some empirical flesh to the question of indiscernibility can be
found in the writings of Leibniz who reports an observational test of the principle
of the identity of the indiscernibles which is now attached to his name2 [19]:

PHILALETHES. A relative idea of the greatest importance is that of identity or of diversity.
We never find, nor can we conceive it ‘possible, that two things of the same kind should
exist in the same place at the same time[. That is why, when] we demand, whether any thing
be the same or no, it refers always to something that existed such a time in such a place;
from whence it follows, that one thing cannot have two beginnings of existence, nor two
things one beginning. . . in time and place’.

THEOPHILUS. In addition to the difference of time or of place there must always be
an internal principle of distinction: although there can be many things of the same kind,
it is still the case that none of them is ever exactly alike. Thus, although time and place
(i.e., the relations to what lies outside) do distinguish for us things which we could not
easily tell apart by reference to themselves alone, things are nevertheless distinguishable in
themselves. [. . . ]

If two individuals were perfectly similar and equal and, in short, indistinguishable in
themselves, there would be no principle of individuation. I would even venture to say that
in such a case there would be no individual distinctness, no separate individuals. That is why
the notion of atoms is chimerical and arises only from men’s incomplete conceptions. For if
there were atoms, i.e., perfectly hard and perfectly unalterable bodies which were incapable
of internal change and could differ from one another only in size and in shape, it is obvious
that since they could have the same size and shape they would then be indistinguishable
in themselves and discernible only by means of external denominations with no internal
foundation; which is contrary to the greatest principles of reason. In fact, however, every
body is changeable and indeed is actually changing all the time, so that it differs in itself
from every other. I remember a great princess, of lofty intelligence, saying one day while
walking in her garden that she did not believe there were two leaves perfectly alike. A clever
gentleman who was walking with her believed that it would be easy to find some, but search

1 See, for instance, the contributions in [5].
2 plato.stanford.edu/entries/identity-indiscernible.
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Fig. 1 On the left: The Herrenhäusen Gardens around 1708 (Wikipedia from Gottfried-Wilhelm-
Leibniz-Bibliothek, Kartensammlung C Mappe 18 Nr. 178 b). On the right: Leibniz with Duchess
Sophie, Carl August von Alvensleben and two ladies-in-waiting in the Herrenhäusen Gardens
(wikipedia from a biography of Leibniz by Johann August Eberhard published in 1795)

as he might he became convinced by his own eyes that a difference could always be found.
One can see from these considerations, which have until now been overlooked, how far
people have strayed in philosophy from the most natural notions, and at what a distance
from the great principles of true metaphysics they have come to be. [13]

We learn from a letter written by Leibniz to Sophie, Electress of Hanover (dated
October, 31st, 1705), that the challenge took place in the Herrenhäusen gardens
of Hanover between princess Sophie and M. Carl August von Alvensleben, the
“clever gentleman”. Sure the conclusion of the “experiment” would have been less
straightforward if instead of leaves, the bet had concerned bees or ants (since clones
are ubiquitous in one hive or in one anthill). However, in the same letter, maybe
remembering the geometric patterns of the garden itself (Fig. 1), Leibniz writes

There are actual varieties everywhere and never a perfect uniformity in anything, nor two
pieces of matter completely similar to each other, in the great as in the small. [. . . ] Therefore
there is always actual division and variation in the masses of existing bodies, however, small
we go. Perfect uniformity and continuity exist only in ideal or abstract things, as are time,
space, and lines, and other mathematical beings in which the divisions are not conceived as
all done, but as indeterminate and still feasible in an infinity of ways. [14, § 68. pp. 327–328,
notes 669, 670]

Retrospectively, and somehow ironically, the above argument where perspires
Leibniz’ aversion against atomism was founded. The existence of atoms does not
only undermine the principle the identity of the indiscernibles but the refutation
is much stronger than Leibniz could have thought: even the difference in position
between atoms—a classical notion, on which, as Leibniz explains it, one may always
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rely to make a distinction between similar material objects—becomes irrelevant at
the quantum level as long as it is not measured.

3 Quantum Abandon of Individuality

After a long maturation, mainly done in the first quarter of twentieth century
[20, 21], starting with Planck’s 1900 work on the blackbody radiation that can be
seen as the foundation stone of quantum physics, our concept of indistinguishability
of quantum particles proceeds from the quantum theory of fields. Quantum particles,
whether considered as elementary or composite, appear as elementary excitations
with respect to a ground reference state (the vacuum of the considered particles)
that are characterised by a handful of well-determined values which are the only
observable quantities that can be attributed simultaneously to each of them: the
mass, the electric charge, the spin and few other “flavours”. For instance, an
electron is the particle whose mass is 9.109 · · · × 10−31 kg, whose charge is e =
−1.602 · · ·× 1019 C, whose spin is 1/2, etc. Other individual observable quantities,
even though they remain reasonably stable because of some conservation laws, for
instance, the linear momentum, may be affected by an individual measurement
of a non-compatible quantity (the two observables do not commute in some
precise algebraic sense) including, notably, the position of the particle. In fact,
the orthodox interpretation leads to quantum properties that cannot be attributed
simultaneously without raising contradictions with observations. According to the
famous Heisenberg’s inequalities, after an arbitrarily precise measurement of its
momentum, it is not that we do not know the position of the particle, it is just that
it does not have a precise position at all. In other words, a measurement (say, the
component Jz of the angular momentum along one direction z) does not affect the
value of the previously measured non-compatible quantity (say the component Jx

of the angular momentum along an orthogonal direction x), it completely erases its
existence: once Jz is measured, one cannot attribute an even unknown value of Jx

to the particle anymore. Therefore any quantum particle cannot have any history
nor accidental properties nor contingent secondary qualities that would still allow to
individualise it, including its position.3

These completely counter-intuitive properties reflect all the more the strangeness
of the quantum world that the number of particles is itself a quantity that maybe

3 Some experiments have succeeded the technical challenge of keeping for several weeks one
particle sufficiently localised away from the others. However, on the other hand, the correlations
of entangled pairs over long distances show that the individuality cannot be based on spatial
separation. Connected to the subject of the present text, the quantum contribution to the Western
philosophical analytic-reductionnist/holistic-emergentist dialectics concerning the relationships
between the part and the whole is fascinating [16, for instance].
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incompatible with other observables.4 There are quantum pure states (that is on
which we have the maximal possible amount of information we can conceivably
get) where the number of its constituents cannot be attributed.

Even in the cases where the number N of the particles can be attributed and
maintained constant because the available energy is not sufficient to create or destroy
some of them, the particles of the same species (electrons, neutral alkaline atoms,
etc.) still cannot be numbered, even in principle, for such a numbering is nothing
but the attribution of a discriminative quantity (essentially based on a position in
a given configuration). The consequences are considerable if one wants to study
the statistical properties of a set of a such identical particles. We all know that
the odds (and the gains) to win at a trifecta horse race are significantly different
if we decide to take into account or not the finishing order of the top three horses.
In statistical physics, it is energy (not money) that is distributed according to the
odds of the configurations and the distinguishability of the particles has observable
consequences even at the macroscopical level. The organisation of nucleons in
the nuclei, of the electrons on the atoms which explain the chemical Mendeleiev
classification as well as the stability of matter, could not be explained if the
particles were distinguishable. The conducting properties of materials, notably the
superconducting ones, their thermal response, the superfluidity, the behaviour of
photons in a laser beam, or the existence of states of matter like a Bose-Einstein
condensate are emergent properties coming out from purely collective effect of some
set of particles where only the number of its constituent has a physical meaning.

In fact, all quantum particles we know up to now fall into two families according
to their collective behaviour. The fermions, whose spin is half an integer, design
particles that cannot share two identical states (the Pauli exclusion principle)
whereas the bosons, of integer spin, can condensate into the same individual state.
All the particles that constitute ordinary matter that we consider to be fundamental
are fermions (mainly quarks, electrons). An assemblage of an odd number of
fermions remains a fermion whereas any particle made of an even number of
fermions (a Cooper pair of electrons, a Helium 4 atom, for instance) follows a
bosonic statistics.

One remarkable thing is that this dichotomy can be understood with some
topological arguments and the following tries to give some hints about how this
works. As a bonus, I will try to explain that for models in condensed matter where
we can consider that the dynamics lies in a layer whose effective dimension is D =
2, the same topological arguments offer more possibilities. In two dimensions, one
may consider some identical particles whose statistical behaviour is characterised
by a continuous parameter θ that allows to interpolate continuously between bosons

4 Some other interpretations try to fix what happens to be, as a last resort, a question of
interpretation of quantum probabilities: alike what occurs in the classical world, do the latter reflect
a lack of information or not? But as far as I know, these de Broglie-Bohmian points of view[4, for
a particularly interesting plea] concern a fixed number of particles only (generally one) and do not
venture in the quantum field arena where even elementary particles can be created or annihilated.
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(say for θ = 0) to fermions (say for θ = π). These existence of these anyons (any-
ons)—the word was coined by Frank Wilczek [22]—has been proposed theoretically
by Jon Magne Leinaas and Jan Myrheim [15] forty-five years ago but it is only last
year that they received a first experimental confirmation [3].

4 Superpositions, Interferences and Phases

To understand better, the reason why we must give up the systematic attribution
of some properties to quantum objects is that their pure states are described in
terms of a (linear) superposition of states having definite properties. There is an
experimentally accessible manifestation of these superpositions: the interferences
they can produce. Think of the most important Young experiment on light diffracted
by two holes on an opaque screen that produces an interference pattern. Keeping a
pure wave interpretation, the interference pattern is due to the superposition of two
waves, each one being diffracted by one hole (the other being closed). But once the
two holes are opened it is meaningless to say that the resulting wave has passed
though one hole rather than the other. Rather than getting a fuzzy or an unknown
path, we actually completely loose the possibility of attribution of a path. These
Young-like configurations, as well as others interference experiments, have been
set up for individual quantum particles (photons but also electrons, atoms and even
organic molecule made of hundreds of atoms). One crucial quantity that is measured
in all these interference experiments is the relative phase ϕ between the states being
superposed, that is essentially an angle given by the time delay between two periodic
oscillations expressed in unit of their common period (like an angle defined modulo
one turn, only a delay modulo a period unit can be measured, see Fig. 2).

These relative phases have been identified by Chen Ning Yang as one of the three
melodies of theoretical physics in the twentieth century [23] and Dirac, looking back
on the development of quantum physics that he contributed to shape, writes

The question arises whether the noncommutation is really the main new idea of quantum
mechanics. Previously I always thought it was but recently I have begun to doubt it and
to think that maybe from the physical point of view, the noncommutation is not the
only important idea and there is perhaps some deeper idea, some deeper change in our
ordinary concepts which is brought by quantum mechanics. [. . . ] [Following Heisenberg
and Schrödinger], the probabilities which we have in atomic theory appear as the square of
the modulus of some [complex] number which is a fundamental quantity. [. . . ] I believe that
this concept of probability amplitude is perhaps the most fundamental concept of quantum
theory.

[. . . ] The immediate effect of the existence of these probability amplitudes is to give
rise to interference phenomena. If some process can take place in various ways, by various
channels, as people say, what we must do is to calculate the probability amplitude for each
of these channels. Then add all the probability amplitudes, and only after we have done this
addition do we form the square of the modulus and get the total result for the probability
of this process taking place. You see that the result is quite different from what we should
have if we had taken the square of the modulus of the individual terms referring to various
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Fig. 2 The resulting superposition of two waves with the same amplitude and frequency 1/T

is governed by their relative phase ϕ. When there is no dephasing (upper case with ϕ = 0), two
maxima (or minima) of the superposed waves coincide and they add constructively into a wave of
maximal amplitude. Conversely, when the two waves have opposed phase (lower case with ϕ is
half a turn), each “bump” is compensated by a “hollow”; the two cancel one with the other and the
resulting amplitude is almost zero. The relative phase is very much like an angle defined modulo
one turn (or 360◦), if the horizontal axis stands for the time, and �t the time delay between two
maxima, then ϕ = (�t/T ) 360◦ and one cannot distinguish between two delays differing by an
integer multiple of T . To follow Dirac’s argument in mathematical terms, the square modulus of
the sum of two complex numbers z1 = |z1|eiϕ1 and z2 = |z2|eiϕ2 differs from |z1|2+|z2|2 because
of the relative phase ϕ = ϕ1 − ϕ2: |z1 + z2|2 = |z1|2 + |z2|2 + 2|z1||z2| cos ϕ. The last term in the
right-hand side is precisely the interference term

channels. It is this difference which gives rise to the phenomenon of interference, which is
all pervading in the atomic world [. . . ].
So if one asks what is the main feature of quantum mechanics, I feel inclined now to say
that it is not noncommutative algebra. It is the existence of probability amplitudes which
underlie all atomic processes. Now a probability amplitude is related to experiment but only
partially. The square of its modulus is something that we can observe. That is the probability
which the experimental people get. But besides that there is a phase, a number of modulus
unity which can modify without affecting the square of the modulus. And this phase is all
important because it is the source of all interference phenomena but its physical significance
is obscure. So the real genius of Heisenberg and Schrödinger, you might say, was to discover
the existence of probability amplitudes containing this phase quantity which is very well
hidden in nature and it is because it was so well hidden that people had not thought of
quantum mechanics much earlier. [8, pp. 154–158]
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5 Feynman’s Paths

Half a century after Dirac showed the equivalence of Schrodinger’s “wave mechan-
ics” and the Heisenberg’s “matrix mechanics” in a unified formalism, Feynman
proposed in his thesis of 1942 [11] a third way of computing quantum predictions.
Also equivalent to the first ones, Feynman’s formalism, at the price of introducing
a subtly new mathematical concept of functional integration, gives to the quantum
interferences the first role:5 the probability amplitude Zi→f for a system to evolves
from an initial state i to a final state f are explicitly written as the result of the
interference between all the possible histories the system may follow between the
two states: up to a normalisation factor we can write6

Zi→f =
∑

all possible histories h
connecting i to f

|zh| eiϕh (1)

Each virtual history h is weighted by a complex number zh whose phase is ϕh. Only
for a subset of histories that interfere constructively, we can think of a quasi-classical
evolution—but still fuzzy at Planck’s constant scales. Most of virtual histories, even
when they have the same amplitude |zh|, have a phase that differ too much from
the average of the classical bunch and their contribution is mostly destroyed by
their neighbours (Fig. 3). One possible history of one particle is just given by one
continuous path made of all possible positions in ordinary space (its trajectory) and
the constructive interference occurs precisely when it satisfies Newton’s (or Euler-
Lagrange’s, or Hamilton’s) classical equations.

However, as soon as two or more particles evolve, even if non-interacting, the
appropriate place to describe histories is not the ordinary space anymore but a more
abstract space, the configuration space (the same space on which the Schrödinger
wavefunctions are defined). To simplify the discussion, we will assume that the
initial state has been prepared with a determined number N of particles of the same
species and this number will be maintained all along the evolution. In that case,7

5 The Dirac’s quotation given at the end of Sect. 4 is the transcription of a conference he gave in
April 1970 for a general audience. Though he talks about the recent development in quantum
electrodynamics, and though he defends the idea that this concept of probability amplitude is
perhaps the most fundamental concept of quantum theory, surprisingly enough, Dirac does not
mention Feynman at all in his text. The only very vague allusion I could find lies, perhaps, in the
sentence immediately following the quotation above: If you go over the present day theory to see
what people are doing you find that they are retaining this idea of probability amplitude [8, p. 158].
6 The writing is simplified (it hides that the sum covers an infinite functional continuum) but
captures the spirit of the famous Feynman path integrals.
7 When particles can be created or annihilated, one cannot avoid working with fields whose
configuration space is infinitely dimensional. This is almost unavoidable when dealing with
quantum electrodynamics since photons are massless particles and thus can have an arbitrary
low individual energy; therefore are cheap to create and easy to absorb. It requires a tremendous
experimental skill to preserve a fixed number of photons for a while (in a superconducting cavity,
for instance).
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i

f
Fig. 3 For one particle starting at initial position i, its probability amplitude to find it in
the final position f is given by the sum (1) over all histories, i.e., all the continuous (non-
necessarily differentiable) possible trajectories connecting i to f . Only a bunch of trajectories
in a neighbourhood—whose size is governed by Planck’s constant—of the classical Newtonian
trajectory (here the black parabola for a particle in a uniform constant force field) will contribute
with a constructive interference (the phases are proportional to the classical action which is
stationary). Any other bunch of trajectories far from the classical one (say around the blue lower
trajectory) will bring a negligible contribution because their phases ϕh vary extremely rapidly and
provoque a destructive interference

the configuration space has ND dimensions where D is the dimension of ordinary
space (most of the time, obviously, it is 3 but in some condensed matter models,
we shall see that D can be lowered to 2 or even 1). To try to visualise the evolution
of such a system, one may come back to the ordinary D-dimensional space where
inevitably each particle can be individualised by a numbering that is continuously
followed as they evolve from a given initial state to a given final state. But as we
explained in the previous section, such a numbering has no physical basis at the
quantum level and any continuous permutation among them not only can but must
be considered among the Feynman’s histories. It is also crucial to keep in mind in
the following that the inevitable interactions between particles (the photon being
aside, see the last footnote) exclude the histories where two of them overlap (for
the corresponding energy of such a configuration diverges which make the phase
oscillating infinitely quickly which destroy the superposition).

6 Where the Topological Properties Come From

It is to Dirac [6] that we owe the first identification of a quantum property of
topological origin, namely a universal constraint on the electric charges if there
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would exist magnetic monopole.8 By Feynman’s own admission, Dirac [7] was also
an inspiring source for the implementation of the ideas of the sum over histories
briefly sketched in the previous section. Indeed, the sum over histories in (1)
probes directly the topology of the space where the histories take place, namely the
configuration space. In particular, since the histories are necessarily continuous they
can be classified according to the so-called first homotopy group of the configuration
space, each homotopy class being made of all the histories that can be continuously
deformed one into another.

For one particle in ordinary space, most often, the homotopy properties are trivial
in the sense that only one class generally exists. Like in Fig. 3, all the paths can
be continuously deformed one into another.9 But as soon as at least two identical
particles are involved more than one homotopy class should be considered.

Whenever several homotopy classes are present, some new possibilities are
offered in the Feynman’s approach [18, and its references for a rigorous justifi-
cation]. Because of the well-behaved composition law of histories together with
some conservation of probabilities, one can attribute to each class c a phase χc that
depends only on c and not on any specific choice of one of its member. This is why
they are called topological phases and then (1) can be extended to

Zi→f =
∑

all homotopy classes c
of histories connecting i to f

eiχc
∑

all histories h in c

|zh| eiϕh (2)

Of course when only one class is present or if we take χc = 0 for all classes one
recovers (1) but it happens that other choices are actually realised.

7 Permutations and Braids

Consider, for instance, N = 3 identical particles. Figure 4 provides two examples
of histories represented in ordinary space with the time being given by the vertical
axis.

As explained above, because the particles cannot overlap, we can follow each
individual trajectory by a thread that allows to keep their individualisation (by a
numbering or, more visually, a colour). In the two examples drawn, the two histories
differ by a permutation of particles: in the final states the end position of the “green”
thread has been exchanged with the end position of the “red” one. And precisely
because of this permutation, one cannot deform one history into another without

8 Monopoles would come with a violation of the Maxwell equation divB = 0.
9 One can manufacture on purpose some holes in space by creating zones that are forbidden to the
paths by a magnetic field. This is the celebrated geometry proposed by Ehrenberg-Siday-Aharonov-
Bohm [1, 2, 9] where quantum topological phases are involved even for just one particle.
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time time

i i

f
       f

a) b)

Fig. 4 Representation of two Feynman histories (or paths in the configuration space) for N = 3
particles. Time axis is chosen to be vertical while ordinary D-dimensional space is perpendicular
to it. Since on these examples, the red and green threads do not connect the same initial and final
points, these histories cannot be continuously deformed one into the other and therefore paths (a)
and (b) belongs to two different homotopy classes

1 2 3

time

Fig. 5 In these graphical representations of a path for N = 2 particles, the time axis is plotted
vertically while the ordinary space is perpendicular. When D = 3, moving in the third spatial
dimension can be thought as changing the darkness of the threads. Because no particle can be at
the same place at the same time, in D = 2 the threads cannot cross. In D = 3, one can always
continuously separate them in the third dimension without any cut: in step 1 a darkening of a
portion of one thread (here the green one) and a lightening of a portion of the other (the red one).
Then, a crossing of these two portions in the two other dimensions is possible and, eventually, in
step 3 one can restore the initial value of the third spatial coordinate

cutting two threads before gluing the pieces appropriately which would break the
continuity. The representation chosen here can involve two spatial dimensions only
(the horizontal plane). When D = 3 one can imagine that the motion in the third
spatial dimension is represented by a change of darkness in the colour of the thread.
With this image in mind, one can understand that when D = 3 one can have the
thread crosses one with another even though two particles still cannot be at the
same place at the same moment (Fig. 5). This latter constraint forbids two threads
to cross at some point where their darkness is the same (all the three coordinates
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would coincide) but one can always bypass this restriction by changing the the
darkness of one thread at a point of crossing (that is moving it in the third spatial
dimension) then cross the threads at this point and restore the original darkness after
this operation. In summary, for D = 3, when using the graphical representation of
an history given in Fig. 4 or 6, the thread can be crossed but not in D = 2. This
latter statement makes all the topological difference between D = 2 and D = 3.
In the latter case, on can see that each homotopy class is in fact an ordinary
permutation, whereas the structure of the classes in D = 2 is much richer. By
concatenating the threads in order to represent the composition of two evolutions,
we introduce naturally an algebraic internal law that makes the set of classes a group
(the so-called fundamental homotopy group of the configuration space). Then, by
a straightforward generalisation to N identical particles, in D = 3 the topological
group is simply the permutation group of N elements whereas in D = 2, the group
is called the braid group of N strands. Moreover, it can be shown that the topological
phases must naturally compose accordingly: if c · c′ stands for the class obtained by
concatenating the N threads in c with the N threads in c′, then, it can be shown that
we must have

eiχc·c′ = eiχceiχc′ (3)

For D = 3, the latter relation leaves us with a simple alternative since the (2p+1)th

iteration of a transposition of two threads, p being an integer, leaves us with the

Fig. 6 In D = 3, the
crossing of two threads being
possible, one can always
entangle a succession of an
arbitrary number of
exchanges of two particles,
leaving us with two
homotopy classes only (the
identity and the
transposition). In D = 2, the
braid such obtained is always
different from the previous
ones and the homotopy
classes can be labeled by a
unbounded integer

time
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transposition itself, that is ei(2p+1)χc = eiχc whose solution can only be

eiχc = 1 or eiχc = −1 (4)

for all the classes c associated with a transposition of two identical particles. The
first choice corresponds to bosons and the second to the fermions. For D = 2,
if c is a bread with two threads associated with a transposition one can iterate the
concatenation of the same bread made of two threads an arbitrary number of times
and the result is always a different braid because of the interdiction of crossing
the threads (Fig. 6). The algebraic constraints on the bread group are much less
restrictive than for the permutation group and, in particular, we can take consistently

eiχc = eiθ (5)

where θ is an angle that characterises the species of the identical particles under
consideration: it continuously interpolates between the bosons (θ = 0) and the
fermions (θ = π). This is precisely this quantity that characterises an anyon. This
phase being relative to some terms in a quantum amplitude of probability, they have
observational consequences through interferences.

This is the way we can connect the statistical physical properties of N iden-
tical quantum particles (the bosonic, fermionic or even anyonic character under
permutations) and some topological properties (the first homotopy group of their
configuration space).
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Physics in a Small Bedroom

Denis Weaire, Stefan Hutzler, Ali Irannezhad, and Kym Cox

1 Physics Teaching and Research in the Time of the Covid
Pandemic

In 2020 the corona virus sent universities and schools into prolonged hibernation,
forcing us to ask: how are we to adapt to our confinement? Available space for study
might be restricted to a small bedroom. How were we to use it?

An obvious response has been to use remote teaching and learning, with online
lectures and assignments. So far so good, and it will be very interesting to see what
lasting effect this has on traditional teaching methods. One of us (DW) once wrote a
humorous piece, “Rough World” [1], about the horrors of university life, including
the torture of the ill-prepared lecturer confronted by a smart student . . . We have not
always been honest with ourselves about the quality of our lecturing: we could well
have adopted a better mix of online and personal teaching, long ago.

But in physics we insist on hands-on experimental work. In Trinity College
Dublin this is imposed even on the theoretical physicists. Simulated experiments
on a screen are hardly an adequate substitute for the real thing. So what could we
do in such remote confinement?

Some of the best experiments in teaching and research are very simple and safe.
They can be done at home, with materials that are readily at hand. Mostly they relate
to classical mechanics or elementary properties of materials.

Many have argued that classical physics is the best training for rigorous thought.
Even apparently trivial everyday phenomena can throw up teasing challenges to
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analysis. See, for example, the excellent work of Eric Mazur at Harvard [2]. Indeed,
“Rough World” centred on a very elementary question that cropped up in a lecture:
What happens if you modify the traditional “ladder-against-a-frictionless-wall”
problem by allowing friction on the wall? [1]. This could indeed be a candidate
for analysis in the bedroom.

What other experiments suggest themselves for this restricted space? Let us start
with one that we have recently published in the American Journal of Physics: it
made it on to the cover of the May 2020 issue [3].

2 Toying with Hard Spheres

Take any convenient number of ball bearings or similar hard spheres. (In what
follows, you will find that it matters whether the number of spheres is odd or even,
inviting thoughts and analysis on symmetry properties.) Place them in a tube with
stoppers at both ends, lay it horizontally, and agitate slightly to encourage the system
to come into equilibrium. (Immersion of the balls in oil will help.)

If sufficiently compressed by adjusting the stoppers, the chain of hard spheres
buckles in a zig-zag pattern, as in Fig. 1. (Study problem: is this “Euler buckling”?)
But the buckling is not uniform, as is evident from Fig. 1, and there are alternative
sphere arrangements for higher values of compression. The phenomenon of local-
ized buckling calls to mind the subject of “kinks” and “solitons” found in many
nonlinear systems, so thoughts about nonlinearity in general are provoked.

The great John von Neumann said long ago that the computer (which he helped
to invent) would release mathematics from the narrow confines of linear problems.
So why not try to replicate your results by computer simulation?

There are much more sophisticated laboratory systems that are analogous to the
humble set-up described above; they often demand the kind of expensive apparatus
(e.g., for ion trapping) which we were determined to avoid. There are lots of possible
variations without undue complication, for example, using soft bubbles instead of
hard spheres.

Another hard-sphere experiment is associated with Isaac Newton, some of whose
greatest achievements were made in seclusion: “All this was in the two plague years
of 1665–1666. For in those days I was in the prime of my age for invention and
minded Mathematicks and Philosophy more then than at any time since.” (quoted in
[5])

Newton’s Cradle (Fig. 2), which appears to have been discussed first in 1662
by the mathematicians/natural philosophers John Wallis, Christiaan Huygens and
Christopher Wren (the latter being also the architect of St. Paul’s Cathedral
in London), is a popular executive desk ornament, illustrating the principles of
classical Newtonian mechanics. It is not hard to understand its obvious properties,
but physicists always like to look more closely. John Hinch (one of many leading
mathematicians who have followed in Newton’s footsteps at Trinity College Cam-
bridge) did so [6]. So have we [7], looking ever more closely: the experiment and
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Fig. 1 One of the authors (AI) performing experiments in his bedroom in Tehran, Iran, during a
Covid lock-down. His apparatus consists of a cylinder containing metal spheres. Pushing in the
sides of the cylinder induces buckling of the initially linear chain. The effect becomes more and
more localized as the compression is increased. In a variation of the experiment we study the
position of the localisation peak as the cylinder is tilted, in order to determine the so-called Peierls-
Nabarro potential [4]. This potential, originating in the theory of crystal dislocations, can tell us
how the localized buckling moves when we tilt the apparatus

its theoretical counterpart continue to be fascinating, with a never-ending pursuit of
variations and complications [8].

We recently spotted an attractive large scale Newton’s Cradle in a local hospital,
Fig. 2. Alas, its spheres were bolted together, so both art and science must have been
frustrated by other considerations.
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Fig. 2 In the standard textbook description of Newton’s Cradle there is always only one sphere in
motion. However, careful observation of the experiment shows that, already after the first impact
of a displaced sphere on one side, the entire chain begins to break up, with all spheres in motion.
Theory and computer simulations confirm this, and attribute it to the finite elastic modulus of
the spheres [7]. The photograph shows the stainless-steel sculpture For every action . . . (2005)
by Fiona Mulholland permanently sited at Beacon Court South Quarter, Sandyford, Co Dublin.
(Photo reproduced with kind permission by the artist)
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3 Playing with Soft Bubbles

Soap bubbles can provide another homely source of inspiration, as they have done
for centuries, in art, for which the definitive review is that of Emmer [9], and science,
whose elementary aspects were described by Isenberg [10].

Staring into a foam with the naked eye, or with the help of a magnifying glass,
will reveal local order amongst the randomness. Three soap films always meet in a
line under an angle of 120◦, and four such lines meet under the tetrahedral angle of
109.4◦. The lines are called Plateau borders in honour of the Belgian scientist Joseph
Plateau who was the first to describe them. His experiments were undertaken after
he became blind (rashly staring at the sun, in the interests of science), so some of
them may well have been performed in a domestic environment, with the help of his
wife [11].

Rather than scooping up bubbles from the kitchen sink one may prefer to blow
air through a straw into some soapy water. Blowing carefully (or using an aquarium
pump borrowed from your fish) results in the generation of bubbles of equal size.
These crystallize spontaneously to form a hexagonal pattern (triangular lattice) on
top of the soap solution, with some defects, such as dislocations, amongst them
(Fig. 3).

Fig. 3 Example of a (mostly) single layer of bubbles on top of a surfactant solution. The slight
variation in size of the bubbles prevents the perfect crystallization seen in Bragg rafts of identical
bubbles. ©Kym Cox
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In 1947 Nobel Laureate William Bragg and John F. Nye studied such a 2d bubble
raft as a source of inspiration for the study of crystalline defects [12]. Why did
such prominent physicists experiment on such simple classical physics, working in
the Cavendish Laboratory? Probable answer: there was no plague at the time but a
World War must have left even Cambridge University impoverished.

Three-dimensional structures formed by monodisperse bubbles can provide more
entertainment and questions for physics. Photographer and co-author Kym Cox
recently brought them to great prominence via the New Scientist (Aug. 24, 2019)
and even The New York Times (April 9, 2019). Figure 4 shows a particularly amusing
example of her work. It was one of us (SH) who taught her the tricks of making such
foams in her own kitchen.

In turn, she surprised and challenged us by a further simplification of the
experiment which was perfected by our Dublin research group: letting bubbles of
equal size flow out of a cylinder is sufficient for generating a variety of regular
bubble chains of various degrees of complexity, such as the one shown in Fig. 5.

Fig. 4 “Columnar crystal”
made of soap bubbles
[13, 14], as observed by artist
and photographer Kym Cox
https://www.kymcox.
com/©Kym Cox

https://www.kymcox.com/
https://www.kymcox.com/
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Fig. 5 Photograph of a freely
hanging chain of soap
bubbles (left, ©Kym Cox),
recreated using computer
simulations (right)[15]

The figure also shows our response: a computer simulation, which reproduces the
key features of the structure.

4 Colours Brighten up a Dull Day

When soap films are viewed under appropriate optical conditions they display a
rich spectacle of colours which fascinated both Robert Hooke and Isaac Newton.
Figure 6 shows a sequence of four photographs of the interference patterns produced
in a crystalline foam similar to the one shown in Fig. 4. As time progresses, the
films thin as liquid drain away, leading to ever-changing interference patterns.
Eventually, black spots appear on the film when viewed from reflection, as was
already described by Hooke and Newton. This is due to destructive interference
which occurs when the local film thickness is much less than the wave-length of
light. (The phase shift of π due to reflection from the film is responsible for this.)
Soap films may be as thin as 5 nm, making nanoscale effects visible to the naked
eye!
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Fig. 6 Four photographs in a time sequence (top left to bottom right) of draining soap films in a
“crystalline foam”, formed by soap bubbles, confined in a cylinder (©Kym Cox). The interference
colours are indicative of the local thickness of the soap films. Since the foam structure is periodic
in space [14], also the interference patterns show this repetition, with minor random fluctuations
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Fig. 7 Interference colours in a free-standing vertical film in photography (left, ©Kym Cox) and
a computer simulation (final year TCD undergraduate project by Thomas Greg Corcoran, 2006)

The simple interference pattern of a single vertical wedge shaped soap film
is readily computed and displayed using, for example, the Mathematica software.
Figure 7 shows the result, together with a corresponding photograph of a real soap
film.

Newton’s experiments on the refraction of light, producing the colours of the
rainbow by a prism, were either accomplished in his Cambridge college rooms or
at his home in Woolthorpe Manor, using the light from his window. In our own
College, Humphrey Lloyd performed another ground-breaking experiment on light
in a similar way, demonstrating conical refraction [16]. Purpose-built and properly
furnished physics laboratories are a relatively modern innovation, dating from the
second half of the nineteenth century.

Nowadays, laser pointers are ideal for optics demonstrations, and the ever present
smart phone offers apps for all kinds of data taking and analysis to conduct physics
at home.

On a more philosophical level, we may recall that artists have often painted
bubbles to symbolize youthful joy, but also fragility and mortality [9], and many
poets have done the same. In a further bedroom-type experiment we have measured
the lifetime of thousands of soap films [17, 18]. The time variation of failure rates
offers interpretations for those of technical devices and also human mortality.

We should not leave this wonderland of films and bubbles without reference to
Cyril Stanley Smith [19]. Despite the great sophistications of many of his ideas, he
rejoiced in the beauty of simple bubble structures and their significance. He directly
encouraged one of us (DW) to find time to play with them.
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5 Putting a Spin on the Lock-in

Finally we have cause to again bring in the prolific mathematician Leonhard Euler.
Among his many accomplishments he established the theory of rotating bodies, such
as the spinning top. Accordingly, his name is honoured in the Euler disk, although
there is no evidence that he originated it. It is a flat disk, preferably a heavy one,
although a large coin will do for a start. Search the house. When spun on a firm flat
surface it gradually subsides, as its energy is dissipated, but not in the manner of
most things. Instead of a dignified gradual exponential approach to equilibrium, it
heads dramatically towards a crisis, emitting a sound of ever increasing frequency.
It suddenly settles—not with a whimper but a bang. (In mathematical terms this is
an “essential singularity”.) Can you find a way to measure that intriguing sound?
Again, your smartphone might be very valuable.

As for its explanation, enter Keith Moffatt, yet another Trinity Cambridge don
(this kind of thing must be infectious . . . ). He has written with erudition on the
subject [20]. A previous paper by Moffatt led one of the present authors (DW),
while still an undergraduate, to throw eggs out of his second-storey student room on
to an adjacent lawn. Moffatt claimed that they would not break, and he was (mostly)
right!

Just one warning: if you do find a really heavy Euler disk (a manhole cover?),
please try not to wake the neighbours!

6 Return to the Lab

At the time of writing we look forward to a return to our schools and laboratories.
Truly remarkable (and very expensive) equipment awaits us. It is a pity that it
consists largely of large grey boxes! We might bring back to the teaching and
research laboratory an admiration of phenomena that have striking immediate visual
or aural impact, and can be brought to your local Science Gallery, bridging science
and art. They may look trivial but can still be challenging, teaching us to speculate
and analyse until we get to the heart of the matter. And then, as so often in physics,
we are tempted to go deeper still!

Note of Precaution Of course, safety is a paramount consideration. We trust that
none of our suggestions will pose any significant hazards within the domestic
environment, but caution is advised in every case.

Kym Cox is an artist and professional photographer. For a selection of her work see
https://www.kymcox.com/.
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Part VIII
Mathematics and Applications



The Train of Artificial Intelligence

Maurizio Falcone

1 AI Is Everywhere

In the last decade, there has been a macroscopic increase in the number of activities
in the area of machine learning and Artificial Intelligence (AI) to the point that their
algorithms are often cited in newspaper articles and TV shows as a possible solution
to many practical problems in everyday life. AI appears to offer easy solutions
to many complicated problems like finding an object in a video sequence or in a
large archive of pictures, recognizing the pattern in a huge data base, analyzing
the trends of consumers, exploiting their selections on WEB pages, or optimizing
the configuration of a network. Behind the success of these techniques, there are
several mathematical hidden tools. Even more, the understanding of these methods
is far from being complete, and AI has become a very active research topic for many
scientists working in different areas. As a result, many universities have started new
programs in Artificial Intelligence and Data Science attracting a huge number of
students, see, e.g., [1–3].

AI is at the intersection of computer science, mathematics, robotics, statistics,
and scientific computing. Its success is due to the mixing of different ingredients.
The first is the huge computing power now available on main frames, workstations,
and also personal computers that has drastically reduced the CPU time necessary
to obtain accurate results to some complex problems. The second ingredient is
the intense improvement of numerical methods used to deal with huge amounts
of processed data. Classical methods, when available, suffer from the so-called
“curse of dimensionality”, so they have to be adapted to deal with high-dimensional
problems. It is interesting to note that many of the mathematical problems and

M. Falcone (�)
Dipartimento di Matematica, SAPIENZA - Università di Roma, Rome, Italy
e-mail: falcone@mat.uniroma1.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Emmer, M. Abate (eds.), Imagine Math 8,
https://doi.org/10.1007/978-3-030-92690-8_23

347

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92690-8_23&domain=pdf
mailto:falcone@mat.uniroma1.it
https://doi.org/10.1007/978-3-030-92690-8_23


348 M. Falcone

techniques are not new and usually involve numerical linear algebra, probability,
and optimization. However, they have recently attracted new attention, since
developing new and more efficient solutions for high-dimensional problems became
a challenging research topic.

This explains why Artificial Intelligence has entered a new era, with a remarkable
impact on technology and economy. This progress has been tied to the recent
success of machine learning where few rigorous mathematical principles explain
how and why methods work (or do not work). Topics include curses and blessings
of dimensionality, randomized algorithms, linear and nonlinear dimension reduction
methods, graphs and clustering, community detection, sparsity and massive data,
diffusion maps and intrinsic geometry of high-dimensional data, as well as convex
and non-convex optimization. Some of these techniques are also used to prove
new results in mathematics. AI is thus closing the circle, since it is applying
a lot of mathematics to mimic the human behavior and to simulate the brain
functioning at a high level finally reaching the capabilities of proof typically owned
by mathematicians. So far AI is producing new mathematical tools starting from a
small number of premises and hypotheses. However, its evolution is very fast, and
we do not really know what will come next. Perhaps we are going to reach a new
world where the robots will not be distinguishable from humans as in the robot cycle
of Asimov’s novels [4] or in the “Blade runner” movie [5] by R. Scott (1982).

2 AI Origins and Developments

The idea to formalize the human reasoning is very old and dates back to the
Ancient Greece and to the foundations of logic reasoning (that is not always
aligned to the human behavior). The interested reader can easily find the history
of Artificial Intelligence [6], but let us sketch some recent steps to better understand
the modern evolution. The “Church-Turing thesis” implied that a mechanical device,
by shuffling symbols as simple as 0 and 1, could imitate any conceivable process
of mathematical deduction. The key insight was the Turing machine—a simple
theoretical construct that captured the essence of abstract symbol manipulation.
This invention inspired a handful of scientists to begin discussing the possibility
of “thinking machines.”

Game theory, which would prove invaluable in the progress of AI, was introduced
in 1944 with a celebrated book [7] by mathematician John von Neumann [8] and
economist Oskar Morgenstern.

In 1950, Alan Turing published a seminal article in which he speculated about
the possibility of creating machines that think. However, he noted that “thinking” is
difficult to define and devised his famous Turing Test. If a machine could carry on a
conversation (over a teleprinter) that was indistinguishable from a conversation with
a human being, then it was reasonable to say that the machine was “thinking.” This
simplified version of the problem allowed Turing to argue that a “thinking machine”
was at least plausible and the article answered all the most common objections to
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the proposition. The Turing Test was the first serious proposal in the philosophy
of Artificial Intelligence. In 1950, Claude Shannon published a detailed analysis of
chess playing, and in the same year Isaac Asimov published his “Three Laws of
Robotics” [9].

An important step came in 1955 when Allen Newell and Herbert A. Simon
created the program “Logic Theorist” and showed that the program would even-
tually prove 38 of the first 52 theorems in Russell and Whitehead’s “Principia
Mathematica” [10] and find new and more elegant proofs for some of them. This
proved that a machine could have the properties of a real mind and answered some
of the philosophical objections against thinking machines. Just one year later, the
famous Dartmouth Workshop was organized by Marvin Minsky, John McCarthy,
and two senior scientists: Claude Shannon and Nathan Rochester of IBM. The goal
of the workshop was “to show that every aspect of learning or any other feature of
intelligence can be so precisely described that a machine can be made to simulate it.”
This can also be used as the definition of Artificial Intelligence and clearly indicates
the relevance of learning skills as a part of it. All the most influential scientists
working at research programs for AI took part in the workshop, and this was where
John McCarthy proposed the name “Artificial Intelligence” for this research area.
For this reason, 1956 is considered the birth year for AI.

In 1959, John McCarthy (the inventor of the LISP programming language [11])
and Marvin Minsky founded the MIT AI Lab.

The programs developed in the years after the Dartmouth Workshop were, to
most people, simply “astonishing”: computers started to solve algebra problems,
prove theorems in geometry, and learn to speak English. Few at that time would
have believed that such “intelligent” behavior by machines was possible at all.
Researchers expressed an intense optimism in private and in print, predicting that a
fully intelligent machine would be built in less than 20 years. Government agencies
like DARPA in the USA poured money into the new field expecting a very rapid
and successful evolution. However, this vision was too optimistic, since in the
early seventies, the capabilities of AI programs were very limited to solving “toy
problems.”

One of the major obstacles was associated with the computer architectures of
that time. This explains why the history of AI is intertwined with the evolution of
hardware and software. In the 60s, there was not enough memory or processing
speed to accomplish anything truly useful. For example, Ross Quillian’s successful
work on natural language was demonstrated with a vocabulary of only twenty words,
because that was all that would fit in memory. We should mention that the celebrated
ENIAC (Electronic Numerical Integrator and Calculator) [12], which is considered
to be the first general purpose computer, was built in 1943 by J. Mauchly e J. Eckert
occupying a surface of 180 square meters for a weight of 30 tons. ENIAC was the
first electronic computer without mechanical parts, since its circuits exploited the
thermionic valve invented in 1906. It used the decimal system and its memory could
contain about 20 numbers with 10 digits. In fact, the “computer” used by Turing
[13] at Bletchley Park in 1939 to decrypt Enigma [14, 15] was based on a series of
electromechanical devices. Note that its name, the Bombe [16], was following the
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name of its Polish ancestor (bomba kryptologiczna). ENIAC was rather complicated
to program via punched cards and very expensive in terms of energy consumption
requiring 1500 kw of power to operate. The first time it was switched on at the
Moore School of Electrical Engineering, University of Pennsylvania, it caused a
blackout of the west areas of the city. After WWII, the computing facilities were
improved but still very limited when compared to our personal computers. As of
2011, practical computer vision applications require 10,000 to 1,000,000 MIPS
(Millions of Instructions Per Second). By comparison, the fastest supercomputer
in 1976, Cray-1 (retailing at 5 million to 8 million), was only capable of around
80 to 130 MIPS, and a typical desktop computer at that time achieved less than 1
MIPS. Another important limitation was due to the fact that many problems can only
be solved in exponential time (exponential in the size of outputs) and this would
require an enormous amount of CPU time, too much to solve real problems. The
basic knowledge necessary to make decisions and to find commonsense solutions
requires a lot of information since the program needs to have some idea of what
it might be looking at or what it is talking about. No one in 1970 could build a
database so large and no one knew how a program might learn so much information.
Moreover, some tasks that we usually accomplish very easily become very difficult
for an “intelligent machine.” Proving theorems and solving geometry problems are
comparatively easy for computers, but a supposedly simple task like recognizing a
face or crossing a room without bumping into anything is extremely difficult. This
helps explain why research into vision and robotics had made so little progress by
the middle 1970s (and these fields have a lot of intersections with AI). All the above
difficulties and limitations convinced many research funding agencies that investing
in AI was not very useful, so they started to cut off their fundings by the early
70s. However, the new boom arrived in the 80s with the development of “expert
systems.” An expert system is a program that answers questions or solves problems
about a specific domain of knowledge, using logical rules that are derived from the
knowledge of experts. Expert systems restricted themselves to a small domain of
specific knowledge (thus avoiding the commonsense knowledge problem) and their
simple design made it relatively easy for programs to be built and then modified
once they were in place. All in all, the programs proved to be useful: something that
AI had not been able to achieve up to that point. In those same years, the Japanese
government aggressively funded AI with its fifth generation computer project.

The enthusiasm for expert systems did not last for many years, and in 1987
there was the sudden collapse of the market for specialized AI hardware. Desktop
computers from Apple and IBM had been steadily gaining speed and power, and in
1987 they became more powerful than the more expensive LISP machines made by
Symbolics and other companies. There was no longer a good reason to buy them. At
the end of the 80s, there was another breakdown of AI fundings as DARPA decided
that AI was not “the next wave” and directed funds toward projects that seemed
more likely to produce immediate results. Over 300 AI companies were shutdown,
gone bankrupt, or been acquired by the end of 1993, effectively ending the first
commercial wave of AI
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Starting from the middle 90s, the field of AI knew a resurrection finally achieving
some of its oldest goals. It began to be used successfully throughout the technology
industry, although somewhat behind the scenes. Part of this success was due to
increasing computer power, while part was achieved by focusing on specific isolated
problems and pursuing them with the highest standards of scientific accountability.
Within the computer science community, there was little agreement on the reasons
for AI’s failure to fulfill the dream of human-level intelligence that had captured
the imagination of the world in the 1960s. Together, all these factors helped to
fragment AI into competing subfields focused on particular problems or approaches,
sometimes even under new names that disguised the role of “Artificial Intelligence.”
In the late 1980s, several researchers advocated a completely new approach to Arti-
ficial Intelligence, based on robotics. They believed that, to show real intelligence,
a machine needs to have a body—it needs to perceive, move, survive, and deal with
the world. They argued that these sensorimotor skills are essential to higher level
skills like commonsense reasoning and that abstract reasoning was actually the least
interesting or important human skill. They advocated building intelligence “from the
bottom up.” However, some new events brought AI to the attention of the public. On
May 11, 1997, Deep Blue became the first computer chess playing system to beat
a reigning world chess champion, Garry Kasparov [17]. The supercomputer was a
specialized version of a framework produced by IBM and was capable of processing
twice as many moves per second as it had during the first match (which Deep Blue
had lost), reportedly 200,000,000 moves per second. The event was broadcast live
over the Internet and received over 74 million hits and showed an incredible skill in
abstract reasoning.

The same happened for 1997 First official RoboCup football (soccer) match
featuring table-top matches with 40 teams of interacting robots and over 5000
spectators. In 2004, NASA’s robotic exploration rovers Spirit and Opportunity
autonomously navigated the surface of Mars. In 2005, a Stanford robot won
the DARPA Grand Challenge by driving autonomously for 131 miles along an
unrehearsed desert trail. Two years later, a team from Carnegie Mellon University
won the DARPA Urban Challenge by autonomously navigating 55 miles in an urban
environment while adhering to traffic hazards and all traffic laws. In February 2011,
in a Jeopardy! quiz show exhibition match, IBM’s question answering system,
Watson, defeated the two greatest Jeopardy! champions, Brad Rutter and Ken
Jennings, by a significant margin.

These successes were not due to some revolutionary new paradigm, but mostly
on the tedious application of engineering skills and on the tremendous increase in
the speed and capacity of computers by the 90s. In fact, Deep Blue’s computer was
10 million times faster than the Ferranti Mark 1 that Christopher Strachey taught
to play chess in 1951. This dramatic increase is measured by Moore’s law, which
predicts that the speed and memory capacity of computers double every two years,
as a result of metal-oxide-semiconductor (MOS) transistor counts doubling every
two years. The fundamental problem of “raw computer power” was slowly being
overcome.
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Algorithms originally developed by AI researchers began to appear as parts of
larger systems. AI had solved a lot of very difficult problems and their solutions
finally proved to be useful throughout the technology industry, such as data
mining, industrial robotics, logistics, speech recognition, banking software, medical
diagnosis, and Google’s search engine.

The field of AI received little or no credit for these successes in the 1990s and
early 2000s. Many of AI’s greatest innovations have been reduced to the status of
just another item in the tool chest of computer science. Nick Bostrom explains “A
lot of cutting edge AI has filtered into general applications, often without being
called AI because once something becomes useful enough and common enough it’s
not labeled AI anymore.” In 1968, Arthur C. Clarke and Stanley Kubrick imagined
that, by the year 2001, a machine would exist with an intelligence that matched
or exceeded the capability of human beings [18]. The character they created, HAL
9000, was based on a belief shared by many leading AI researchers that such a
machine would exist by the year 2001. It is interesting to note that in the movie,
the onboard computer is the only one knowing the final destination of the mission
(Jupiter) and does not reveal it to the crew. This conflict with the first rule of robots
(“A robot may not injure a human being or, through inaction, allow a human being to
come to harm.”) creates a contradiction that blows up in the famous scene [19] where
the pilot, after a rough discussion with HAL, finally decides to shut the computer
down.

In the first decades of the twenty-first century, the access to large amounts of
data (known as “big data”), cheaper and faster computers, and advanced machine
learning techniques were successfully applied to many problems throughout econ-
omy. Indeed, McKinsey Global Institute estimated in their famous 2011 report [20]
that “by 2009, nearly all sectors in the USA economy had at least an average of
200 terabytes of stored data.” Note that the access to big data archives finally gave
the opportunity to train a machine and to develop its new skills simply by a trial-
and-error procedure, and we will examine one of this techniques in the following
section. By 2016, the market for AI-related products, hardware, and software
reached more than 8 billion dollars. The applications of big data began to reach into
other fields as well, such as training models in ecology and for various applications
in economics. Advances in deep learning (particularly deep Convolutional Neural
Networks (CNNs) and recurrent neural networks) have driven progress and research
in image and video processing, text analysis, and even speech recognition.

3 Machine Learning and Training

As we said, machine learning indicates the research area dedicated to the devel-
opment of new automatic skills. These skills are typically used to solve problems
related to recognition and classification. The machine learns first by a training
process on a large number of known examples (the training set) and then applies this
“knowledge” to analyze and classify a new set of object. If the training is supervised
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by a human, the rate of success increases as the number of processed data increases.
Then, a machine learning system is “trained” rather than explicitly “programmed.”
It is presented with many examples relevant to an activity and finds a statistical
structure in these examples which ultimately allows the system to work out rules to
automate the activity. To this end, three elements are needed:

1. Examples of data: for example, if the activity is object recognition, they could be
images containing data objects

2. Examples of expected output: for example, a “label,” indicating the class of
belonging of the recognized object, and its position in the image

3. A measurement system to be able to determine the distance between the current
output of the algorithm and the expected output, by adjusting the functioning of
the algorithm. This adaptation step is the artificial learning process.

Deep learning (DL) is a subfield of machine learning, in which data is repre-
sented through learning at successive levels (layers), which refers to the adjective
“deep.” The number of levels that contribute to a model is called the depth of
the model. Typically, these layered representations are learned through models
called neural networks (NNs). DL models high-level abstractions in data by using
a deep graph with many processing layers (this will be clarified later in this
section). Deep neural networks (DNNs) are able to realistically generate much more
complex models as compared to their shallow counterparts. However, deep learning
has problems of its own. State-of-the-art deep neural network architectures can
sometimes even rival human accuracy in fields like computer vision, specifically
on things like the MNIST database [21], and traffic sign recognition. Language
processing engines powered by smart search engines can easily beat humans at
answering general trivia questions (such as IBM Watson), and recent developments
in deep learning have produced astounding results in competing with humans in Go.
Faster R-CNN Inception-v2 is a particular network that performs object detection.
As the name suggests, it is faster than its predecessors R-CNN and Fast R-CNN. It
can be divided into three main subnets (Fig. 1):

1. Feature Network: a CNN for extracting a map of the image features.
2. Region Proposal Network (RPN): it selects bounding boxes from the image,

called regions of interest (Region of Interests, RoI), which have a high probability
of containing any object.

Fig. 1 Faster R-CNN Inception-v2 architecture
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3. Detection Network: the detection network, sometimes also called the R-CNN
network, takes the results of the Feature Network and the RPN and generates the
final class and the delimiting rectangle (bounding box).

A CNN is a deep learning algorithm that takes an input image, assigns values
(learnable weights) to the various parts, that is, to the various objects that compose
it, and recognizes them, differentiating them from each other. The architecture
of a CNN is similar to that of the connectivity model of neurons in the human
brain. Individual neurons respond to stimuli only in a narrow region of the visual
field, known as the receptive field. These fields overlap to cover the entire visual
area. CNN differs from non-convolution neural networks, as the use of convolution
allows to successfully capture the spatial and temporal dependencies in an image,
by applying filters on each pixel that also involve neighboring pixels. A CNN
architecture can be formed by the succession of various levels that we briefly
describe below.

Input Level It represents the set of numbers which, for the computer, is the image
to be analyzed. Its size is usually N × M × 3, where N indicates the width in pixels
of the image, M is its height, and 3 is the number of colors in the RGB format.

Convolution Level, Conv It forms the main layer of the network. Its goal is to
identify with high precision features, such as curves, angles, circumferences, or
squares, depicted in the image. In a network, there are usually several levels of
convolution, and each of them focuses on the search for one of these characteristics
in the initial image. Higher is their number, the greater is the complexity of the
object they can detect.

Every feature is represented by an array, called a filter (filter, kernel, or weights).

Level Rectified Linear Units, ReLU When passing through another level of
convolution, the output of the first level becomes the input of the second. Typically
a ReLU level follows a convolution level, so the output of the convolution level
becomes the input of the ReLU level. It represents a nonlinear level, the purpose of
which is that of introducing nonlinearity to a system that is essentially computing
linear operations during convolution levels.

Pool Level This level is performed periodically for the sole purpose of reducing the
number of trainable parameters. Pooling is performed independently on each depth
dimension, and therefore the depth remains unchanged.

Full Connection Level, FC Usually, this is the last level of a CNN. This level
takes the output from the previous level, which should represent the activation maps
of the high-level features, and determines which ones are most related to a particular
class. Moreover, it calculates the products between the weights of the previous level
to obtain, for each class, the probability that the object belongs to that class.
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4 Looking for a Clapperboard via AI

The clapperboard (ciak in Italian) is a device used in the production of films and
videos to aid in the synchronization of images and sounds and to mark the various
scenes and shots in a unique way. It is composed of a tablet, on which all the data of
the scene being shot are shown, and of a movable rod (clachette). The clapperboard
is placed in the frame a few moments before the action, and the bar is beaten by a
machinist, producing the characteristic “clapperboard” sound. The data written on
the tablet will later be used by the editor to accurately identify the shot, and in fact,
several shots are often made for the same scene.

The information transmitted on the clapperboard (Fig. 2) may differ, but the more
common are:

• production: the name or title of the film
• roll: the number of the roll on which you are turning, sometimes preceded by a

letter that identifies the camera
• scene: a reference to the scene, often represented by a number; sometimes, it is

followed by a letter that identifies the shot (slate)
• take: the number of the current take of the shot
• director: the name of the director of the production
• camera: the name of the director of photography or production
• date: the month, day, and year in which you are shooting

Fig. 2 Some frames containing a clapperboard
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• Day/Night, Int/Ext, and MOS (shooting without audio recording) are other
details to further classify a scene, but they are not always present.

One of the tasks within the CIAK project, developed in collaboration with the Italian
company Digital Video, was the detection of the clapperboard in the video shot
and the recognition of the superimposed text, to allow meta-dating, as well as an
automatic identification of the shot (see the report [22]). The problem can be divided
into the following subproblems:

1. Recognition of the clapperboard in each of the frames that make up the video
2. Choice of the “best” clapper among those previously identified and rotation to

align it horizontally
3. Recognition of the text on the chosen clapperboard

In the proposed solution, the recognition of the clapperboard in a sequence of frames
is carried out using an algorithm based on convolution neural networks. For this
purpose, a new initialized network was built using the pretrained model Faster R-
CNN Inception-v2. Each frame that makes up the video is processed to identify
those that contain the clapperboard; the number of such frames depends on their
frequency and on the duration of the shot of the clapperboard, varying from a few
tens to a few hundred frames. Usually, the take appears for a few seconds at the
beginning of the shot, so it is not necessary to process all the frames of the shot and
just stop after the “disappearance” of the take identified, i.e., after a certain number
of frames does not contain any take.

On the other hand, among all those that contain it, the least blurred one is chosen
and preprocessed for the next phase, that is, it is rotated so as to align the text
horizontally. To do this, use the horizontal lines on the clapper itself. These lines are
identified through the Randomized Hough Transform [23] and also used to subdivide
the fields of the clapperboard, so that, during the localization phase and the text
recognition, each information can be associated correctly. Also, the localization of
the words, carried out through Tesseract [24] (a public domain Optical Character
Recognition application), is more accurate when the text is less sparse.

Object detection is a general term that groups the artificial vision techniques to
locate and identify objects in images, producing in output a label that identifies the
class to which the object belongs and its position within the image. Modern object
detectors (see [25]) rely largely on the use of CNN. For the take detection in this
work, a new network has been built, initializing it using the pretrained model Faster
R-CNN Inception-v2 (see [26]). One hundred images containing the clapperboard
and the relative coordinates inside the image were fed to the network, and 80 of these
were used to extract the clapper’s characteristics and define the net weights. The
remaining 20, instead, were used to validate the model by adjusting the net weights
by minimizing the loss function. Let us try to give an idea of the training for the
CNN. The first step is based on a Region Proposal Network (RPN) to locate the areas
containing the information we are looking for. For the training of the RPN, first, a
number of boundary regions are generated by a mechanism called anchor boxes.
After obtaining a series of feature maps from the last convolution level, a “spatially
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Fig. 3 Anchor boxes in 3
different ratios (1 : 1, 1 : 2,
2 : 1) and 3 different scales,
for a total of 9

sliding window” is performed on these feature maps. Each window constitutes an
anchor, each of which is typically 3 × 3 in size. A set of anchor boxes is generated
for each anchor, usually 9 boxes with the same center, but with 3 different aspect
ratios and 3 different scales, as shown in Fig. 3.

These are typically rectangular regions (boxes), and for every box, we are going
to compute the value IoU indicating how much these boxes intersect with the real
boxes (ground truth box, GTbox)

IoU = area(AnchorBox) ∩ area(GTBox)

area(AnchorBox) ∪ area(GTBox)
.

This value will be used to compute distances in the network and to adjust the weights
during the training.

The detection network generates the class to which the object belongs and the
rectangle that delimits it. Normally, it is composed of 4 fully connected layers. The
Faster R-CNN network differs from its predecessors R-CNN and Fast R-CNN by
the addition of the previously described RPN.

R-CNN 2000 regions (region proposals), are scaled to quadrangular regions and
fed into a CNN giving in output a vector of features of size 4096 for each proposal.
It will be used to calculate the probability of the presence of the object within the
region. In addition to predict the presence of an object within region proposals,
the algorithm also produces four values, the offset values, which are needed to
increase the accuracy of the bounding box. For example, given a region proposal, the
algorithm predicted the presence of a person, but his face within the region proposal
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could be halved. Therefore, the offset values help to adjust the bounding box of the
region proposal.

Faster R-CNN Instead of using the selective search algorithm on the feature map
to identify region proposals, a separate network is used, namely the RPN described
above. After obtaining an image characteristics map, using it to obtain proposed
regions with the RPN, and extracting the characteristics of each proposed region,
this data is finally used for classification. R-CNN attempts to mimic the final stages
of CNN classification, where a fully connected (FC) layer is used to generate a score
for each possible class of objects. R-CNN has two different objectives: to classify
proposals into one of the classes and to better adjust the selection rectangle for the
proposal, based on the expected class.

The last feature characterizing the Faster R-CNN Inception-v2 is the Inception
model. Before their more popular release, CNNs were developed in depth. With the
introduction of the Inception model, new techniques have been adopted to increase
the performance of CNN, both in terms of speed and accuracy. Its constant evolution
has led to the creation of several versions of the network.

The first version (see [27]) starts from the following premises:

• The salient parts in the image may have extremely large variations.
• Due to this huge variation in the position of information, choosing the right filter

size for the convolution operation becomes difficult; in fact, a greater nucleus is
preferred for information that is more globally distributed and a smaller one for
the information that is distributed locally.

• Very deep networks are prone to overfitting and are difficult to update weights
across the entire network.

• To have large convolution operations is computationally expensive.

The Inception network applies filters with multiple dimensions to the same level,
making it more “wide” than “deep.” As stated earlier, deep neural networks are
costly from a computational point of view, and to make operations cheaper, the
authors limit the number of input channels by adding convolutions progressively.

Inception-v2 and Inception-v3 were presented in the same article [28]. The
authors have proposed a number of updates that have increased accuracy and
reduced computational complexity.

To implement the clapperboard recognition model, we used Tensorflow (see
[29]), an open-source software library originally developed by researchers and
engineers working on the Google Brain team within the Machine Intelligence
research organization of Google, for the purpose of conducting machine learning
and deep neural network research, but the system is general enough to be applicable
to a variety of other sectors.

TensorFlow provides also API (Application Programming Interface) for
numerical computation, using data flow graphs, where the nodes in the graph
represent mathematical operations and its arcs represent multidimensional data
arrays, called tensors. A tensor is hence the unity data center in TensorFlow.
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Any TensorFlow program can be divided into two sections: creation of the
computational graph, that is, a series of TensorFlow operations arranged in a
graph of nodes, and execution of the graph itself. To actually evaluate the nodes,
we need to run the computational graph within a session, which encapsulates the
control and state of the TensorFlow . Each graph contains variable data, used to
store and update the parameters of a training model.

To judge the performance of the model, evaluation metrics are calculated. The
following quantities are defined:

• TP (true positive), indicating the number of clapperboard frames correctly
detected;

• TN (true negative), indicating the number of non -clapperboard frames correctly
detected

• FP (false positive), indicating the number of non-clapperboard frames recognized
as clapperboards

• FN (false negative), indicating the number of clapperboard frames not recognized
clapperboards

According to the metric used by TensorFlow, a detection is considered TP if the
Intersection over Union (IoU), defined as

IoU = area(GTBox ∩ PredictedBox)

area(GTBox ∪ PredictedBox)
,

is above a certain threshold.
We have considered two parameters to measure the accuracy of the method:
Precision: it describes the skill of a classifier not to label a negative instance as

positive (FP). It is defined as

precision = T P

T P + FP
.

Recall: it describes the skill of a classifier to find all positive instances (TP). It is
defined as

recall = T P

T P + FN
.

The training process has been stopped after 2000 iterations and has lasted three
hours, twenty-one minutes, and ten seconds. Figures 4 and 5 show the graphs of
the precision and recall metrics, respectively, obtained by considering as TP the
detections such that IoU > 0.75. As can be seen from the figures, it is not true that
as the iterations increase, the metrics of the model improve. At the 2000th iteration,
we have got the following values:

precision = 0.808 and recall = 0.74.
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Actually, the maximum values were obtained at the 1400th iteration with a value of
0.819 for the precision and at the 1480th iteration with a value of 0.777 for the recall.
Finally, Figs. 6 and 7 show the performances for the object location and recognition
phase, respectively. The performances are measured in terms of some network loss
functions that we want to minimize. The values obtained at the 2000th iteration are
0.040 and 0.083, although the minimums were obtained at the 148th iteration with
a value 0.037 for the location and at the 1920th iteration with a value 0.071 for the
recall object recognition.

4.1 Experiments

To verify the performance of the method, tests were carried out using a video
provided by the company 64BIZ and 15 videos from YouTube, containing cuts of
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footage showing the clapperboard, but the quality of the latter is typically lower than
video produced on movie sets.

The search for frames containing the clapperboard is stopped if at least 5 frames
that do not contain it follow the last clapper. Only the boxes that have a probability
greater than 90% to contain a clapperboard are selected and are saved in memory
together with the value of the variance of the Laplacian operator (the variation
of the Laplacian is typically used to detect the blur in the image). At the end of
the search, all the boxes are sorted by their variance of the Laplacian. The first
of them is selected, and its edges are detected through a particular technique (the
Canny Edge Detection algorithm [30]), with the parameters and the lines of the
image obtained through the Randomized Hough Transform. The lines that, after
rotating the clapperboard, turn out to be horizontal are used to divide it into sub-
regions corresponding to the different information areas in the clapperboard. If two
horizontal lines have a normalized distance to the total height of the box less than
0.2, they are considered as a single line with a thickness of more pixels. Each
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Table 1 Results for the tests

Frames CPU GPU Word L-Word R-Word Tot. GPU

126 1.23 s/f 0.13 s/f 20 7.45 s 5.74 s 42 s

9 1.44 s/f 0.17 s/f 19 4.07 s 5.36 s 19 s

12 1.51 s/f 0.15 s/f 17 2.71 s 4.89 s 18 s

15 1.48 s/f 0.15 s/f 12 2.70 s 3.82 s 17 s

22 1.37 s/f 0.13 s/f 10 3.23 s 2.99 s 17 s

29 1.31 s/f 0.13 s/f 25 4.34 s 7.39 s 25 s

31 1.32 s/f 0.33 s/f 10 2.04 s 3.03 s 18 s

63 1.24 s/f 0.33 s/f 18 2.48 s 4.99 s 21 s

75 1.28 s/f 0.13 s/f 24 3.63 s 7.11 s 31 s

75 1.27 s/f 0.13 s/f 15 1.84 s 4.13 s 25 s

100 1.24 s/f 0.21 s/f 12 3.82 s 3.41 s 30 s

100 1.25 s/f 0.21 s/f 21 5.67 s 5.98 s 34 s

120 1.23 s/f 0.21 s/f 20 5.26 s 5.71 s 38 s

140 1.27 s/f 0.22 s/f 22 3.95 s 6.25 s 37 s

180 1.26 s/f 0.17 s/f 9 3.69 s 5.44 s 42 s

290 1.23 s/f 0.16 s/f 8 3.31 s 2.37 s 57 s

87 1.31 s/f 0.18 s/f 16.4 3.77 s 4.91 s 29 s

clapperboard fragment obtained is inserted in a black frame of suitable size, since
the word locator network requires the image size to be multiples of 32.

Text recognition is performed on each box obtained with Tesseract, to
which three configuration parameters are passed: the language, the OCR (Optical
Character Recognition) engine, and the segmentation mode of the pages.

The tests have been performed on Windows 10 Pro 64-bit machines using two
different processors: a CPU Intel Core i5-7500, 3.40 GHz, 8.00 GB RAM and a
GPU NVIDIA GeForce GTX 1050 Ti, to compare the performances: the GPU is
faster by a factor 7 (Table 1). The methods were implemented in Python, an object-
oriented language, using TensorFlow v. 1.5 on the CPU and TensorFlow
v. 2.1 for the GPU.

Table 1 shows the results. Every row corresponds to a single test, but the last row
contains the averages. From left to right, its columns correspond to:

• Frames: the number of analyzed tests, that is, the number of frames containing
the clapperboard plus (at most) 5 frames (to recognize that the clapperboard has
disappeared)

• CPU: the time used to search the clapperboard (in seconds per frame)
• GPU: the time used to search the clapperboard (in seconds per frame)
• Word: the number of detected words
• L-Word: the total time used to localize the words on the clapboard
• R-Word: the total time used to recognize the words on the clapboard
• Total GPU: the total run time
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Some results are illustrated in Figs. 8, 9, 10, and 11, showing how the system has
located and extracted the information from the frames.

Figure 8 shows that the clapperboard has been correctly divided into 4 parts, and
however the word locator has cut some letters, resulting in misrecognition of the
words “ARRESTI” (“\RRESTI”) and “Martinelli” (“Martinalli”).

Fig. 8 Test 1

Fig. 9 Test 2
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Fig. 10 Test 3

In Fig. 9, we note that the take has not been divided into all its parts, but the text
was recognized almost correctly (the locator did not find “Edwards,” the manager’s
surname).

We note that the numeric characters have not been localized, since the method
is not well trained for identifying single numeric characters; in fact, in Fig. 10, we
note that the scene number (1301) has been located, and the numbers concerning
the fields “TAKE” and “ROLL” have not been located and the recognition has
interpreted a “3” as a “5.” In general, the method is very accurate in locating the
clapperboard but is often wrong in the character detection that is a more difficult
task, in particular when the character is isolated.

The frames selected from all those identified by the clapperboard recognizer in
Tests 1, 2, and 3 actually constitute the best choices. However, in Fig. 11, we note
that the selected take is not complete, and this implies the wrong or the absence of
localization and recognition of the cut text. This is due to the fact that sometimes
the video shot does not start with the take already framed, since this enters the
frame slowly. The risk is to choose the less blurred take even if it is one of those
in which the clapperboard is still not entirely framed. After beating the bar, on the
other hand, the take is quickly released from the frame, and therefore the relative
takes are generally blurred, and there is no risk that one of them will be selected.
This problem can be avoided by also taking into account the dimensions of the
various boxes when selecting the best take.
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Fig. 11 Test 4

5 Conclusions

AI has made many steps forward thanks to the hardware and software advances and
is now able to give practical answers to a number of problems where it can even
outperform humans. However, it still may fail on rather simple tasks where human
behavior is much more complex. Rules and skills may depend on many senses
and feelings and cannot be reduced to simple logical rules, so they are difficult
to describe. In the movie [5], as a tool for identifying replicants, Blade Runners
have a mental test consisting of a series of emotion evoking questions to help
distinguish a replicant from a human. The mixture of rationality and emotions was
very clear to R. Bellman, one of the fathers of modern control theory that describes
the optimal behavior of a dynamical system, when in 1957 he wrote the dedication
of his famous book “Dynamic Programming” [31] to his wife Betty Jo: “To Betty-Jo
whose decision processes defy analysis.”

Despite all the efforts of AI, after more than 50 years, there is still a long way
to go.
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Origami and Fractal Solutions
of Differential Systems

Paolo Marcellini and Emanuele Paolini

1 A Mathematical Origami from the Analytic Point of View

We consider an open set 	 ⊂ R
2 which represents a sheet of paper, usually a

rectangle in R
2. The origami is a folded paper and lives in the three dimensional

space R3. We identify the origami with the image of a map u : 	 ⊂ R
2 → R

3.
A sheet of paper is rigid in tangential directions. Indeed, it cannot be stretched,

compressed, or sheared. If a sheet of paper is constrained on a plane, it would only
be possible to achieve rigid motions, i.e., rotations and translations of the whole
sheet. Since origami is a folded paper, the map u cannot be everywhere smooth; it
is only piecewise smooth. Folding creates discontinuities in the gradient. Since we
do not allow to cut the sheet of paper, u is however a continuous map. The singular
set 
u ⊂ 	, which is the set of discontinuities of the gradient Du, is called crease
pattern in the origami context. Usually (but not necessarily in the general three-
dimensional case), this set is composed of straight segments. Of special interest is
the case of the so-called flat origami, which is a map u whose image is contained
in a plane, and which, up to a change of coordinates, can be represented as a map
u : 	 ⊂ R

2 → R
2.

In collaboration with Bernard Dacorogna, we investigated this analytic approach
to origami in a series of papers [7–13] and [24]; we refer to these references for
further details, proofs, and descriptions of related aspects about origami from a
mathematical point of view. In particular, the article [11] in the Notices of the
American Mathematical Society contains a less technical description of our analytic
approach.
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We also mention some other mathematical approaches to origami, not necessarily
of analytic nature: we quote the recent article by Abate [1] and, for instance, Alperin
[2], Arkin-Bender-Demaine [3], Bern-Hayes [4], Haga [14], Heller [15], Huffman
[16], Hull [17], Kawahata-Nishikawa [18], Kawasaki [19], Kilian et al. [20], Lang
[21–23], and Robertson [25].

2 The Fractal Nature of the Solutions of the Dirichlet
Problem

In the general three-dimensional case, with u : 	 ⊂ R
2 → R

3 being piecewise
smooth in 	, the tangential rigidity can be expressed by requiring that the gradient
Du(x, y) of the map u is an orthogonal 3 × 2 matrix. That is, in any subdomain
where u is smooth, the matrix product satisfies the condition

Dut (x, y) · Du (x, y) = I

where I is the identity matrix. In the special two-dimensional case, with u : 	 ⊂
R

2 → R
2, under the notation

u (x, y) =
(

u1 (x, y)

u2 (x, y)

)

the same condition Dut (x) · Du (x) = I equivalently gives |Du|2 = 2 |det Du| =
2 and also det Du = ±1. On the regions where the gradient is continuous, the
determinant det Du must be constant and hence has a fixed sign. If we consider a
subdomain of 	 where det Du = 1, the equation |Du|2 = 2 det Du can be easily
transformed into the system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u1
x − u2

y = 0
u1

y + u2
x = 0∣∣Du1 (x, y)

∣∣ = 1∣∣Du2 (x, y)
∣∣ = 1

where the nonlinear nature of the differential equations is apparent.
The study of this kind of systems of partial differential equations is motivated

by the study of elasticity and rigidity properties of materials. If we assume, as it is
natural, that the elastic energy vanishes for rigid deformations, then any map with
orthogonal gradient must be a minimum for the elastic energy. It is hence interesting
to investigate when such maps exist.

In particular, tension and compression of a material are achieved by constraining
the boundary of such material in a given position. This is why we are interested in
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solving the Dirichlet problem:

⎧
⎪⎪⎨

⎪⎪⎩

Du =
(

u1
x u1

y

u2
x u2

y

)
orthogonal matrix a.e. in 	

u (x, y) = ϕ(x, y) on the boundary ∂	

(1)

It is not difficult to convince oneself that if ϕ is a dilation problem (1) has no
solution. On the other hand, when ϕ is a strict contraction, there are general abstract
results [5, 6] which guarantee the existence of infinitely many solutions.

In the particular case when ϕ is constant, we are able to find explicit solutions
to this problem. From the point of view of origami, we are looking for a crease
pattern on a square sheet of paper (for example) such that the whole boundary of
the square is sent on a single point. The set of points where the map assumes a
fixed value cannot have interior; otherwise, the gradient would be zero and hence
not orthogonal. On the other hand, in a region where the gradient is constant and
orthogonal, the map is locally invertible, and hence there cannot be two points with
the same value.

This forces the crease pattern to accumulate and become dense while approach-
ing the boundary of the domain and explains the fractal nature of the solutions of
our differential problems.

More precisely, by denoting by τ and ν, respectively, the tangent and normal
unit vectors on ∂	, up to a sign, we have

(
Du1, τ

) = (
Du2, ν

)
and

(
Du2, τ

) =(
Du1, ν

)
. Since u1 (x, y) = u2 (x, y) = 0 on ∂	, we also obtain Du1 = Du2 = 0,

which contradicts the fact that
∣∣Du1

∣∣ = ∣∣Du2
∣∣ = 1. Thus, any solution to the

differential problem (1), with ϕ = 0, is Lipschitz-continuous but not of class C1

near the boundary; therefore, it assumes in a fractal way the homogenous boundary
datum ϕ = 0. The map u will be explicitly defined at every (x, y) ∈ 	, and it will be
piecewise-affine, with infinitely many pieces, in accord with its fractal nature near
the boundary of 	.

3 A Strategy to Solve the Differential Problem

As usual we denote by O (n) the set of n-dimensional orthogonal matrices; this in
particular O (2) is the set of 2 × 2 orthogonal matrices. Under this notation, the
Dirichlet problem (1) with ϕ = 0 becomes

{
Du (x, y) ∈ O (2) a.e. (x, y) ∈ 	

u (x, y) = 0 (x, y) ∈ ∂	
(2)

with 	 rectangle in R
2. As we already pointed out in the previous section, only

a fractal construction can ensure the boundary condition u = 0. When 	 is a
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rectangle, we can divide it into infinitely many homothetic rectangles which are
smaller and smaller while we approach to the boundary of 	. Then, it is enough to
consider a base map u0 defined on one of these tiles. This map will be translated,
rotated, and rescaled to fit any other rectangles. To assure that the gluing of the
rectangles gives a continuous map, we need the base map to have prescribed
recursive boundary conditions. That is, we require that on the right-hand side of
the base rectangle (say a square of side 1), the map is defined so that it reproduces
twice the values of the left-hand side, rescaled by half; i.e.,

u0(1, y) = u0(0, 2y) for y∈ [0, 1/2]
u0(1, y) = u0(0, 2y − 1) for y∈ [1/2, 1]

while on the upper and lower sides we only need periodic boundary conditions
u0(x, 0) = u0(x, 1) for x ∈ [0, 1]. If the map assumes at least once the value 0
on every rectangle in the net, then by its Lipschitz continuity (every rigid map is
1-Lipschitz continuous) it can be extended to the boundary ∂	 with the 0 value.

4 The Dirichlet Problem with Non-homogeneous Boundary
Condition

In this section, we propose some new ideas to solve the Dirichlet problem (2) when
the homogeneous boundary condition u (x, y) = 0 on ∂	 is replaced by a non-
homogeneous one. From the applicative point of view, the ϕ = 0 boundary datum
is not really applicable because we are usually interested in finding solutions when
a small compression is applied to the boundary of our body. The problem of finding
explicit solutions becomes more difficult, and for simplicity we only consider a
linear datum such as

ϕ(x, y) = (1 − 2λ)(x, y) ∀(x, y) ∈ ∂	 (3)

with 	 = [0, 1]2 and 0 < λ < 1. When λ = 0, the only solution is the identity
u(x, y) = (x, y), while for λ = 1 the only solution is u(x, y) = (−x,−y).

We build a solution to the Dirichlet problem with a recursive construction, as
explained in the previous section.

In particular, we start by defining the mesh of the cells as in Fig. 1. Note that we
approach the boundary recursively by splitting each cell into two cells of half the
size.

In Fig. 2, we represent the singular set of the map, i.e., the discontinuity set of
the gradient. In fact, our solution is Lipschitz-continuous: only the gradient can have
discontinuities.
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Fig. 1 The scheme of the cells that approach the boundary in a fractal way. The green cells are
described in Fig. 3, while all other cells are obtained by a rotation of the construction with the
singular set and the solution described in Figs. 4 and 6

We describe the construction of the solution in each cell. We start by the diagonal
cells, see Fig. 3, where we emphasize the discontinuity lines of the gradient of the
solution.

The main construction is described in Fig. 4 where we have inserted the analytic
expression of the solution in each subcell. We also inserted the Cartesian equation
of the discontinuity lines. Note that the solution matches continuously on each
discontinuity line of the gradient. We invite the reader to check this property.

In Fig. 5, we give the values of the gradient on a base cell. Note that the map
has only diagonal gradient matrices. In this figure, we use precisely six different
gradient matrices.

Finally, a similar detailed analytical description is proposed in Fig. 6 where we
show four adjacent cells around a point in the diagonal of the square.
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Fig. 2 The singular set, i.e., the discontinuity lines of the gradient. In the picture in the left-hand
side, the singular set is superimposed to the grid of the cells, while the picture on the right-hand
side shows the singular set alone. Each different value of the gradient of the solution corresponds
to each color in the picture. The identity gradient matrix I = [

1 0
0 1

]
is identified with white color,

while the yellow color denotes the gradient matrix −I

Fig. 3 A detail of each green square in Fig. 1. The set of discontinuity lines of the gradient of the
map is represented here. Some analytic details are shown in Fig. 6
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Fig. 4 This is the main construction of the solution in a basic cell. Recall that our solution is a
map R

2 → R
2. We wrote the analytic expression of the two components of the solution on each

subregion where the gradient is constant. The solution matches continuously on the discontinuity
lines of the gradient

Up to now, we have a map u whose gradient is orthogonal. To check that this
map solves the boundary datum (3), we consider again Fig. 4 (similarly, we could
consider Fig. 6). In this basic cell, the map assumes the same values of the boundary
datum (3) on the four vertices of the unit square. From a basic cell to another basic
cell, the map is rescaled, rotated, and translated so that this property is preserved on
all the vertices of the grid in Fig. 1.

Since the cells have diameter which goes to zero as we approach the boundary
∂	, and since the map is Lipschitz-continuous, we can extend it to the boundary so
that the map assumes exactly the linear datum (1 − 2λ)(x, y).
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Fig. 5 The gradient of the
solution on two contiguous
basic cells. Note that the map
only uses diagonal unitary
matrices. This depends on the
fact that the discontinuity
lines of the gradient are either
parallel to the coordinate axes
or rotated by ±45◦. In this
picture, six different gradient
matrices can be seen

In conclusion, our map u solves the Dirichlet problem

{
Du(x, y) ∈ {± [

1 0
0 ±1

]
,± [

0 1
1 0

]} ⊂ O(2) a.e. (x, y) ∈ [0, 1]2

u(x, y) = (1 − 2λ)(x, y) for all (x, y) ∈ ∂[0, 1]2

the map being orthogonal almost everywhere on [0, 1]2 and assuming only six
gradient values.
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Fig. 6 We represent here the analytic expression of the vector-valued solution, up to an additive
constant and a rescaling, specifically around a corner cell (as in Fig. 3). Of course also here the
solution matches continuously on each discontinuity line of the gradient. The difference of the
values of the solution at the vertex points (2, 2) and (0, 0) is equal to 2–4λ; i.e., it is the same
value computed similarly for the boundary value (1 − 2λ)(x, y). The same is true for the other two
vertices (2, 0) and (0, 2)

When λ varies in (0, 1), the singular set of the solution that we have built varies
in consequence. In Fig. 7, we present two singular sets: the first one with a small
value of λ and the second one with a value of λ close to 1.
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Fig. 7 Two singular sets of the solution in dependence on λ: on the left-hand side λ = 1
10 on the

right-hand side λ = 7
10 . Again, the gradient matrix of the solution is equal to the identity matrix I

in the white regions, while it is equal to −I in the yellow regions
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The Tangled Allure of Recursion

Gian Marco Todesco

One of the oldest algorithms we know, which is still in use, allows computing the
greatest common divisor (GCD) of two numbers; it is attributed to Euclid, who
describes it in his “Elements” (c. 300 BC). It can be expressed in this way:

• If the two numbers are equal, then their GCD is the shared value.
• If the numbers are different, then their GCD is equal to the GCD of the smallest

number and their difference.

A noticeable feature of this method is its apparent circularity: to calculate the
GCD of two numbers, you must calculate the GCD of two other numbers.

The procedure works (and is very effective) because the numbers shrink at each
step while remaining positive, so sooner or later, they will become equal, and the
procedure will eventually terminate.

The algorithm (at least in its definition) uses recursion, an extraordinary and
effective conceptual tool used in mathematics, computer science, and logic. It is a
difficult concept to master, and it continues to fascinate and torment generations of
students. The following few pages are meant to be a sort of exploratory walk into the
recursion world, with particular attention to its applications in the field of graphics.

Recursion is a form of self-reference that is central in human thought when
reflecting on its mental mechanisms. It is not surprising that recursion catches the
imagination and is often used playfully. For example, a search of “recursion” on
Google returns the initial suggestion “Did you mean: ‘recursion’”: winking at the
most attentive readers.

Other playful uses of recursion are recursive acronyms. They are acronyms
whose first word is the acronym itself. The most notable example is Richard
Stallman’s GNU project. GNU is a free software operating system, and the acronym
means “GNU is Not Unix” (Unix is a different operating system).
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A book that torments and delights the reader with recursion is Gödel, Escher,
Bach: an Eternal Golden Braid (1979), by Douglas Hofstadter [1]. The book
contains the first example I have met of a recursive acronym and one of the best.
Achilles, a character in the book, asks a Genie for a special wish: he wants one
hundred desires instead of only three. This kind of wish is a “meta-wish”, and the
Genie cannot grant it alone. It intends to help Achilles, so it forwards the wish to
its meta-Genie that in turn has to ask its meta-meta-Genie, and so on. Each Genie
refers to the whole infinite sequence of all the other Genies as GOD. The name is
a recursive acronym meaning “GOD Over Djinn.” Expanding the first word of the
sentence, one gets “GOD Over Djinn Over Djinn” and so on, generating a new Djinn
at each step. A very effective name for the infinite sequence of Djins!

Another extraordinary creation in the book is the concept of “quine program” or
simply “quine.” The name is a homage to the philosopher and logician Willard Van
Orman Quine (1908–2000). For Hofstadter, a “quine” is a program that outputs its
source code when run. The program must not have access to its code, but it has to
“compute” it by itself.

Creating such a program is a fun challenge that requires a fair amount of
programming skills. Such a program could be considered a metaphor for living
creatures that can reproduce themselves together with the code (DNA) that describes
them.

1 Tower of Hanoi

Besides the playful aspects, recursion proves to be a potent and effective tool.
Recursive algorithms are often more compact and concise than the non-recursive
equivalent, and sometimes the recursive approach can solve problems that seemed
too hard with other methods. The GCD and even the factorial (i.e., the product of
the first consecutive integers: a typical example in the introductive courses about
recursion), while defined with recursion, are usually computed differently, in a
more effective way. For many other problems, the recursive solution is almost not
avoidable.

A classic example of this kind of problem is the “Tower of Hanoi” puzzle. The
puzzle, also known as “Tower of Brahma” or “Lucas’ Tower,” was invented in the
nineteenth century by the French mathematician Édouard Lucas. It features several
disks of different radiuses stacked on one of three posts. The game’s goal is to move
the stack to another post by following two rules: one can move only one disk at a
time and not put a larger disk on top of a smaller one. The game does not seem too
complex. Indeed, the solution with 3–4 disks can be found quite easily by trial and
error. If we consider a higher number of disks, then the number of possible disk
arrangements grows dramatically. Even the number of moves needed by a perfect
player to solve the puzzle becomes quickly very large. Four disks require 15 moves
(see Fig. 1), while 20 disks require more than one million.
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Fig. 1 The shortest solution (15 steps) for the Tower of Hanoi puzzle with 4 disks

When trying to solve the puzzle, there are (almost) always three legal moves
at each step. One option “goes back,” undoing the previous move, and can be
discarded. The other two options require a nontrivial choice. Random choices make
us wander in a labyrinth of different states from which it is difficult to escape. The
correct solution requires many moves, but suboptimal solutions can require many,
many more. Figure 2 shows an alternative solution for four disks. This alternative
has no useless cycle: it visits each configuration of disks only once, but it requires
53 moves.

Writing a program that finds the shortest solution is not a trivial task, and the
recursive approach is very convenient. To tackle the problem recursively, we must
define a straightforward case when the recursion stops (this is crucial to avoid a
never-ending program). For the Hanoi Tower, the easy case is when we have just
one disk. In this case, the solution is obvious, and it requires just one move.

To solve the general case (N disks, with N larger than one), we must pretend
that we know how to solve the simpler configuration with one less disk. With this
knowledge (that we assume to have), we move N-1 disks from the first post to the
third one: the largest disk on the bottom cannot interfere because the rules allow
moving any other disk on top of the largest one as we wish. At this point, we are
halfway: we transfer the largest disk from the first post to the second one, which
is empty. Finally, we use the N-1 disks solution again and move the stack from
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Fig. 2 A nonoptimal solution (53 steps). The solution, although inefficient, contains no repetitions

the third post to the second, on top of the largest disk. This action completes the
challenge.

During the actual solution, the N-1 subproblems are solved using the N-2 solution
and so on, until we must solve the problem with N = 1 that we solve directly, without
the recursion.

2 Anagrams

The Hanoi Towers Problem seems (and probably is) meant for recursion, but the
recursion is very useful even in more common problems. For example, we can use
the recursion effectively to generate all the anagrams of a word. To make things easy,
we assume that the word contains all different letters. Moreover, we do not check
the generated anagrams in the dictionary, i.e., we accept meaningless anagrams.

In the novel “Il Pendolo di Foucault” by Umberto Eco [2], Jacopo Belbo, one
of the main characters, owns a personal computer that he loves very much, named
Abulafia. He found on the computer manual a small program (written in the BASIC
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Fig. 3 A Python program that generates all the anagrams of the word “image”

programming language) that can generate all the permutations of four letters. He
realizes that he can use the program to generate all the God name permutations (the
God name he means is IHVH; Apparently, Belbo does not note or does not care that
the pair of H’s will generate many duplicates).

The novel contains a factual listing of the program (15 lines). Inserting a
computer program source code in a fictional book is an intriguing idea. There is
a nice contrast between Belbo with his computer program and Diotallevi, Belbo’s
friend who studies the Kabbalah. He cannot understand the logic of the program and
finds it “kabbalistic.”

From a programming point of view, the code is not too lousy. It even uses a nice
trick to place the last letter, but it has some serious flaws. The worst one is that it can
work only with four-letter words. It can generate all the anagrams of “math,” but to
generate all the anagrams of “image,” we should completely rewrite the program.

Writing a program that generates all the permutations of any number of letters is
not so easy if we want to start from scratch without using any predefined function
(today, many programming languages have predefined library functions to generate
the permutations). If we are going to try, then recursion is a perfect approach.

The seed of recursion (the “straightforward case”) is when we consider a word
with a single letter. In this case, there is only one anagram: the letter itself.

Let us consider a word with more than one letter. We can take out the first letter
and generate all the anagrams of the rest (the rest has one less character, and we
pretend to know how to solve this easier problem). Then, we insert the first letter of
the original word in each possible position into each generated anagram.

This procedure will generate all the anagrams of a word, regardless of the number
of letters. Figure 3 shows a program (written in the Python programming language)
that produces all the anagrams of “image” recursively (One of the anagrams is,
with some punctuation added: “A gem: I!”. It is a decent anagram that is referring
enthusiastically and recursively to itself!).
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3 Visual Recursion

The world of images, from paintings to computer graphics, is very suitable for the
recursive approach.

The basic idea is to create an image that contains one or more replicas of itself,
possibly with some changes. In Western art, this technique is called Mise en abyme.
It is also known as the Droste effect. This last name comes from a Dutch brand
of cocoa (see Fig. 4). The image contains a smaller replica that includes an even
smaller one and so on. That implies an infinite sequence.

The Dutch artist Maurits Cornelis Escher used this technique with a fascinating
twist. In its Print Gallery (1956) [3], he creates a stunning vortex that merges the
larger image seamlessly with its smaller replica.

Bart de Smit of Leiden University led a group that analyzed the image thoroughly
from a mathematical point of view [4, 5]. Today, the effect is readily available in
many image editing software. The image in Fig. 5 has been created with GIMP
(GNU Image Manipulation Program) [6] and the MathMap plugin [7].

Fig. 4 The original 1904
Droste cacao tin, designed by
Jan Misset (1861–1931)
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Fig. 5 The “Droste Effect”
in action

Recursive drawings can be fascinating even when made of simple graphics
primitives: e.g., simple straight segments. The dragon curve (Heighway dragon) is a
remarkable geometric object with many interesting properties [8]. It can be defined
with the following recursive procedure: start with a simple segment connecting two
points. Then replace the segment with two shorter segments of equal length, meeting
at a right angle. The old segment must be the hypotenuse of an isosceles right
triangle, while the two new segments must be the catheti. At each recursive step,
apply this procedure to each segment. The new segments must lie alternatively on
the left and the right of the old segments.

Figure 6 shows the first steps. Figure 7 is the result after 20 iterations.
The dragon curve is the limit approached as the above steps are repeated

indefinitely.
The curve contains infinite replicas of itself, rotated 45◦ respect to each other,

and with a scale factor of
√

2.
It is possible to create a model of the dragon curve by folding a strip of paper. We

cut a long and narrow strip of thin cardboard, e.g., a strip one cm wide and 20 cm
long. We fold the strip in half, bringing the right edge to the left edge. Then we
repeat the folding four times, always folding in the same direction. We then unfold
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Fig. 6 First steps of the generation of the Heighway Dragon Curve

Fig. 7 Level-20 Dragon Curve
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the strip carefully so that each fold is at a right angle. To build a larger model is
better to fold different strips and tape them together.

It is easy to draw the curve with coding. Figure 8 shows an example that runs in
Google Chrome, the Internet Browser. Run the browser and then open the console:
activate the Chrome Menu in the upper-right-hand corner of the browser window
and select More Tools > Developer Tools. You can also use the shortcut Option

(on macOS), or Shift + CTRL + J (on Windows/Linux). Copy very carefully
the text in Fig. 8 into the console.

Press return and the browser will show the 13th iteration of the dragon curve.
Write dragon(7) and then press return to generate the 7th iteration and so on.
At the limit, the curve fills a whole region in the plane: it touches every point

included in its boundary. A bizarre behavior for a one-dimensional entity such as a
curve!

It is possible to put two identical curves next to each other: they will share part of
their boundary with a perfect match. The dragon curve can even tessellate the whole
plane (see Fig. 9).

The first curve that passes through every point of a 2-dimensional region was
discovered in 1890 by Italian mathematician Giuseppe Peano. The Peano curve, as
the dragon curve and most of the many other space-filling curves, is defined with a
recursive process: the actual curve is the limit of an infinite sequence of increasingly
detailed curves.

In Fig. 10, there are the first steps of another example, created by David Hilbert
in 1891.

This last curve is well suited for creative use: the image sequence shows that the
more refined the grid, the darker the image. We can modulate the darkness locally,
just changing the depth of the recursion depending on the position [9]. Figure 11
shows the result of this experiment.

Fig. 8 A JavaScript code to draw the Dragon Curve in an Internet Browser



388 G.M. Todesco

Fig. 9 Many copies of the Dragon Curve can tessellate the whole plane

Fig. 10 The first steps of the Hilbert Curve
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Fig. 11 Hilbert curve with a recursion level depending on the point. The whole drawing is made
of a single stroke with same color and thickness

4 Sierpiński Triangle

The Sierpiński triangle is a well-known geometric pattern closely related to
recursion.

It comes out in different contexts and, as we will see, shows many deep
interconnections among various fields. As in the previous examples, we can generate
it with a simple recursive procedure. We start with a triangle (any triangle works
well, but we usually select an equilateral triangle). We replace the triangle with
three smaller congruent copies, touching at the vertices and arranged in the outline
of the original triangle. We repeat the process for each triangle infinitely.

Figure 12 shows the process. The bottom triangle has eight steps of recursion and
contains 6561 tiny triangles.
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Fig. 12 The first steps of the Sierpiński triangle

The pattern is beautiful, and it has been used in art long before its mathematical
formalization. For example, there is a level-4 triangle on the floor of the basilica of
San Clemente in Rome, dating late 11th century [10, 11].

One interesting geometrical feature of the Sierpiński triangle (in common with
very many other similar shapes) is its behavior when we change the size. If we
double the size of the first triangle, we obtain three copies of the original pattern, so
the area must be three times larger. This outcome is unusual. We intuitively expect
that the effect of a scale transformation depends on the dimension of the shape: if
we draw a circle twice the size, then the length of the circumference should double
as well (21 = 2), but the area should be four times larger (22 = 4). According to
this reasoning, we should conclude that the dimension of the Sierpiński triangle is
between one and two: the shape is more than a unidimensional curve but less than
a plane figure. We can say that it has a “fractal dimension” close to 1.585 (21.585 is
close to 3).

To emphasize that the Sierpiński triangle is halfway between one- and bi-
dimensional, we will show how to describe it as a curve. The procedure is similar
to the one we have already used in the previous paragraphs (the curve is not a plane
filler in this case).

Figure 13 shows the first steps. At each stage, each segment is substituted by
three smaller pieces forming 120◦ angles among them. After eleven steps, the result
is indistinguishable from that of the first procedure (the one with triangles).
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Fig. 13 The Sierpiński triangle as a curve

We inadvertently touched the Sierpiński triangle in a previous paragraph when
we played with the Hanoi Tower. The set of all the possible states of a Hanoi puzzle
with N disks makes a graph with the arcs representing the allowed moves. The
graphs are usually depicted with a diagram, with circles for the vertices and lines
for the arcs. The positioning of the circles is not determined by the graph and follows
aesthetic criteria. In this case, there is a very natural arrangement. In the game, the
smaller disk can always move on each post, and therefore the whole graph must
be made of tiny triangles connected by the vertices. The other connections (legal
moves) assemble these triangles in a predetermined shape. Figure 14 shows the
graph of the puzzle with four disks: it is a Sierpiński triangle!

The link between the Sierpiński triangle and the Hanoi Tower is surprising, but
there are many other unexpected connections. An example is Pascal’s Triangle,
which is made of rows of integer numbers. The first row contains only the number
1. Each number in the following rows is the sum of the two other numbers above
it in the previous row (treating missing numbers as zero). Let us draw the Pascal’s
Triangle using different colors for odd and even numbers: odd numbers form the
Sierpiński pattern again!

An even stranger connection comes from the Chaos Game invented by Michael
Barnsley in 1988 [12]. The game is an algorithm that generates patterns with a
random walk. The algorithm depends on some parameters and can create different
shapes (in 2D, 3D, and even in higher dimensions). Let us start with the simplest
one. We start with a triangle (as in the previous example, we will consider an
equilateral triangle, but any triangle will work as well). Then we take a random
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Fig. 14 The complete graph of moves for the Tower of Hanoi puzzle with 4 disks

point somewhere in the plane. It could be the center of the triangle, but the initial
position is not very important.

At each step, we select one of the three triangle vertices at random and move the
point halfway toward the chosen vertex. Because of the random choices at each step,
it is impossible to predict where the point will be after a given number of iterations,
but apparently, some spots are more likely than others. If we draw many points, a
pattern slowly emerges. Figure 15 shows the first 10,000 points: they look like the
Sierpiński triangle!

A connection between our fractal set and the Chaos Game is easy to spot. Each
game’s move is a scale transformation with the center at the chosen vertex and a
scale factor equal to ½. It transforms the whole Sierpiński triangle into one of its
three smaller replicas. Therefore if a point belongs to the fractal set, then it will
remain on the set forever. Because of the shrink, points outside of the set become
closer and closer to the set at each iteration.
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Fig. 15 The Chaos Game.
100,000 points. The first 10
are highlighted

Fig. 16 The Chaos Game
with 5 vertices. 5,000,000
points

Playing the Chaos Game with different parameters is also enjoyable. We can
change the number of vertices (and their placement), the scale factor (we used
½), and add constraints on the random choice of the vertex (e.g., avoid choosing
the same vertex twice in a row). Different parameters will create different patterns
(albeit not always fractal).

A remarkable but straightforward variation shown in Fig. 16 uses a regular
pentagon instead of a triangle (and no other changes).
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5 Natural Shapes

Michael Barnsley extended the Chaos Game using a slightly more complex set of
rules. The original Chaos Game uses three scale transformations selected at random
at each step (the scale factor is 0.5 and the scale centers are the three vertices of
the triangle). Barnsley decided to use a more general type of transformation: the
affine transformation. An affine transformation can include a rotation, a translation,
a nonuniform scaling, and any combination. It preserves lines and parallelism, but
not necessarily angles and distances.

One of Barnsley’s best known (and beautiful) models, the Barnsley fern, uses
four carefully crafted affine transformations selected at random with different
weights at each step. The idea is very similar to the original Chaos Game. We start
with a point (in a random position); at each stage, we select one of the four affine
transformations and use it to move the point to a new position. The selection is made
at random but with given probabilities for the four different outcomes.

We draw a dot at each point position. Figure 17 shows the result with three
million points. In Fig. 18, you can also see the effects of the four transformations on
a given quadrilateral.

Fig. 17 The Barnsley Fern
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Fig. 18 The four transformations used to create the Barnsley fern

Barnsley selected the four transformations’ parameters and weights carefully so
that the generated pattern resembles a leaf of an actual plant: the Black Spleenwort.
It is interesting that a simple algorithm can obtain such a faithful representation of
a natural object. With Barnsley’s words: “[ . . . ] provide models for certain plants,
leaves, and ferns, by virtue of the self-similarity which often occurs in branching
structures in nature” [13].

Fractals and self-similar, recursive patterns are indeed excellent models for
natural shapes.

Even with a deterministic algorithm (one without the random choices of
the Chaos Game), we can create forms with some sort of organic features
(see Fig. 19).
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Fig. 19 A deterministic recursive tree (no random parameters); 18 levels of recursion

6 3D

Most of the self-similar shapes we have presented have a natural extension in 3D
geometry. For instance, you can build a Sierpiński tetrahedron using the same
logic of the Sierpiński triangle. The 3D models maintain the charm of their flat
counterpart. Building self-similar 3D models with a computer program, glue and
paper, or a 3D printer is a rewarding activity.

The Menger Sponge is a particularly tempting model. It starts with a simple cube.
We divide the cube into 27 smaller cubes arranged as in the Rubik’s cube. We then
remove the inner cube in the center and the six cubes in the middle of the original
cube faces. The twenty remaining cubes make a level-1 Menger sponge. We repeat
the process on the remaining cubes to create the next-level sponge. Figure 20 shows
a level-5 Menger Sponge.

The Menger Sponge is a three-dimensional generalization of the Cantor set:
a fascinating uni-dimensional pattern presented by Georg Cantor in 1883 but
discovered in 1874 by Henry John Stephen Smith. The pattern starts with a segment.
At each step, we delete the middle third of every remaining segment. The process
must continue ad infinitum. It leaves a set of points aligned along the initial segment
with a lot of interesting properties.

We can extend the process to any dimension. In two dimensions, the pattern
is called the Sierpiński carpet. We start with a square, divide it into nine smaller
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Fig. 20 A level-5 Menger Sponge

congruent squares arranged in a 3 × 3 grid and remove the central square. Then
repeat for each remaining square ad infinitum.

The straightforward geometry of the cube makes it easy to build the Menger
Sponge (at least for the first few recursive levels). You can even use Origami to
construct small cubes and assemble the sponge.

The problem with 3D self-similar shapes is the tremendous growth of the
number of elements depending on the recursion level. For the Menger Sponge, each
successive level of recursion requires twenty times more elemental cubes. A simple
level-2 Sponge is made of 400 cubes.

Creating a paper model of a level-3 (or the astounding level-4) Menger Sponge
is a formidable task better suited for teamwork. In 2014, the MegaMenger project,
conceived by Matt Parker and Laura Taalman, coordinated many worldwide groups
to create a level-4 Menger Sponge [14]. The groups eventually built twenty level-3
Menger Sponges, made out of over a million folded business cards.

In 2016 MUSE, the Science Museum in Trento, Italy, launched MUSEMenger: a
project for the wider public to assemble a large level-3 Menger Sponge. The project
lasted 155 days and attracted more than 5000 people.

In November 2016, Serena Cicalò created a stunning level-4 Menger Sponge on
her own, achieving an extraordinary result. She used an improved folding technique,
quicker to use and capable to support much greater weight. In 15 months, she
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assembled more than 21 km of paper strips, 1.2 cm wide, to build a model slightly
larger than one meter wide and weighing 25 kg [15, 16].

Even with computer graphics, creating shapes with such a large number of
elements can be problematic. The problems begin gradually. The 8000 cubes that
make a level-3 Sponge are manageable: it is possible (and easy) to create an
interactive model that runs on a regular Internet browser in real time. Level-4
requires 160,000 cubes, thus almost two million triangles: the animation becomes
slow and jerky. The next level is out of reach with this technique.

We, therefore, must use a different approach to get to higher levels. The crucial
point is noticing that, while the number of faces to draw is exceptionally large, the
number of distinct planes to which these faces belong is much smaller. The idea is
to draw all the faces belonging to the same plane at once.

Let us consider one of the distinct planes. We create an image representing the
section of the Menger Sponge relative to that plane. We leave the parts of the image
not covered by Sponge faces as transparent. Then we draw a single square face,
large as the whole cube, using that image as a texture.

Finally, we repeat this operation for each distinct plane, and we obtain a lovely
model using relatively few faces.

Unfortunately, the section images are not identical. Some (at least the first and
the last along each cube axis) are just the Sierpinski carpet. The level-1 sponge
(4 slices along each axis) requires only that image. Level-2 requires two different
slices, and the number doubles for each subsequent level. Figure 21 shows the 16
sections required for a level-4 Sponge; the next level requires 32 different sections.
The number is not so small, but that sponge has 244 slices along each axis and 3.2
million elemental cubes! (see Fig. 20 again).

With higher levels, the number of different images becomes problematic. More-
over, the required resolution of each image must be more significant because of the
ever more minute details.

To climb to even higher levels, we need a mixed approach: we create a level-5
(or level-6) sponge using the section strategy, and then we assemble 400 (or 8000)
copies of this model.

Writing a computer program that visualizes a level-7 Menger Sponge spinning
in real-time on the computer screen is a rewarding achievement.

Another challenge is trying to get not-orthogonal sections. This task requires a
different and more technical strategy (programming the GPU); the results are lovely
images. Figure 22 shows a cross-section passing for the sponge center forming 45◦
angles with the cube axes.
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Fig. 21 The 16 different sections for a level-4 Menger Sponge

7 Alexander’s Horned Sphere

The last model that we meet in our walk in the world of recursion is another weird
shape.

It is a paradoxical figure discovered in 1924 by J. W. Alexander to disprove a
very reasonable and intuitive assumption [17].

Let us consider a solid sphere. A loop outside the sphere can be shrunk into a
point without touching it. The torus has different properties. A loop linked to the
torus cannot be shrunk into a point without passing through the torus.
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Fig. 22 A level-5 Menger Sponge cut with a non-orthogonal plane

That is a very well-known topological property of the ball and the torus (more
precisely, it is a property of the space outside these shapes).

It is clear that the geometrical properties of the solids do not matter: the cube
behaves like the ball, and a cup of coffee (with a handle) acts like the torus.

The very reasonable assumption is that the space outside any shape topologically
equivalent to the ball is like the space outside the ball: any loop can shrink into a
point without touching the surface.

In two dimensions, this is a fact: it is the Jordan–Schonflies theorem. In 1921,
Alexander declared it was able to extend this result to the three-dimensional case.
Before publishing a paper, he found an error in his demonstration. Eventually, he
discovered a counterexample, showing the claim is false indeed! The weird, discov-
ered shape is called the Alexander Horned Sphere. It is topologically equivalent to a
ball, but the outside is not equivalent to the ball outside: it contains loops that cannot
shrink into points without touching the shape.

To build the Horned Sphere, we must follow a recursive procedure.
We start with a torus with a small missing section. It is topologically equivalent

to a sphere; geometrically, it reminds the letter C.
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Fig. 23 First steps in building the Alexander’s Horned Sphere

We take two smaller copies and glue them to the opposite end of the C. We
arrange the position to chain the two smaller toruses together.

Then we repeat the process on the smaller C’s and so on, ad infinitum.
At each stage, we get a better approximation of the final shape.
Alexander’s horned sphere is the union of all the infinite stages.
It is possible to demonstrate that the resulting weird solid is still equivalent to

a ball, like all the successive approximations. On the other hand, the space outside
is so deeply tangled and knotted that it is pretty different from the space outside
the ball. A loop around the first C is hopelessly linked and cannot shrink to a point
without crossing the surface.

The scheme invented by Alexander and described in the previous paragraphs
features many “corners” and creases. Still, they can be rounded to obtain a smooth
surface without affecting the topological properties.

I have created a small animation that visualizes the growth of the horns up to a
certain recursion level [18]. Figures 23 and 24 show the first steps.

The model is lovely even beyond its mathematical meaning.
It seems a couple of hands that want to hug. In the beginning, there are only two,

but after a while, there are many, many more.
This image acquired new meanings in these extraordinary and complicated

pandemic years.
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Fig. 24 The Alexander’s Horned Sphere at level-8 of recursion
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Desert Locusts: Can Mathematical
Models Help to Control Them?

Marcela Villarreal

The ravages created by desert locusts (Schistocerca gregaria) on livelihoods and
food security have been known and feared for thousands of years. They are known
to have been present during the times of the Egyptian pharaohs, around 3200 B.C.,
and they are identified as a plague in the Bible as well as in the Torah. By some
accounts, they are the world’s most devastating pest. Locusts are also interesting
from a biological point of view, as they can undergo surprising transformations that
enable them to unleash their destructive potential.

Desert locusts are usually present in their solitary form in deserts between
Mauritania and India. With rains and the consequent development of vegetation,
they can rapidly reproduce and within a few generations (one or two months)
transform into their gregarious form, forming small groups or bands of wingless
hoppers and small groups or swarms of winged adults. Widespread rains in adjacent
areas can cause further reproduction and swarm formation, creating an upsurge and
eventually a full-blown plague if conditions remain favorable for breeding.

During this process, locusts’ behavior fundamentally changes from solitary
to gregarious: “Instead of repelling one another, they become attracted to one
another” [1]. They have a remarkable ability to change dramatically in response to
environmental conditions, phenotypic plasticity. Their physiology suffers important
transformations, including color (from light green to yellow-brown), brain, and
increased body size, as well as ability to eat.

With specific climatic conditions, they are able to multiply 20-fold in three
months and reach densities of 80 million per square kilometer (Figs. 1 and 2). One
swarm in a 1954 plague in Kenya is estimated to have contained ten billion locusts,
and it was one of only fifty swarms in the country at that time.
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Fig. 1 © FAO, photo Sven
Torfinn, https://doi.org/
10.4060/cb3673en

Fig. 2 © FAO, photo Sven
Torfinn, https://doi.org/
10.4060/cb3673en

In their gregarious form, locusts can eat about the equivalent of their body weight
(2 g) per day. FAO calculates that a swarm of just 1 km2 can consume as much food
as would be eaten by 35,000 people (or six elephants) in a single day [2]. One
million locusts can eat about one tonne of food each day, and the largest swarms

http://dx.doi.org/10.4060/cb3673en
http://dx.doi.org/10.4060/cb3673en
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can consume over 100,000 tonnes each day, or enough to feed tens of thousands
of people for 1 year. In extreme conditions, desert locusts’ voracity can result in
cannibalism when other food sources become unavailable.

Locusts have a highly developed migratory capacity, with the ability to travel
up to 150 km per day (they are carried by winds), easily going across borders and
even continents. In 1988, swarms originating in North Africa crossed the Atlantic
Ocean and made it successfully to the Caribbean and South America. They routinely
traverse the Red Sea—a distance of 186 miles [1].

Containing locust ravages cannot be done without international action, and is
best done through the multilateral system. Indeed, the UN has set up a monitoring
and control system including an early warning mechanism that relies to some extent
on mathematical models.

1 From Outbreaks to Plagues

Locust invasions differ in intensity, extension, and duration, resulting in a variety of
impacts. Outbreaks can evolve into upsurges and into full-blown plagues. According
to FAO [2], while outbreaks usually occur with an area of about 5000 km2, upsurges
affect entire regions and plagues develop when two or more regions are infested.

Outbreaks are frequent and only a few lead to upsurges. Similarly, few upsurges
lead to plagues. Plagues are defined as periods of one or more years during which
there are widespread and heavy locust infestations, the majority of which occur
as bands or swarms. The last major plague was in 1987–1989 and the last major
upsurge in 2003–2005. In the 1900s there were six major plagues, one of which
lasted almost 13 years. The area in which plagues occur covers about 29 million sq.
km and can extend across 65 countries in Africa, the Middle-East, and Southwest
Asia. This area is extensively cultivated and populated by more than one billion
people.

2 Impacts

Locusts are ravenous eaters. Their passage leaves devastation in agricultural fields
as well as in most vegetation creating massive loss not only to crop and fodder
production, but also to grazing land, affecting livestock too. All types of crops can be
severely damaged, including annual rain-fed crops, perennial crops, tree cultivation,
and irrigated crops which are even more sensitive since they are exposed throughout
the year, with crop losses occurring in just a few hours [3]. Under certain conditions,
locust invasions can result in local desertification and rural outmigration. Locust
crises have been associated with several famine episodes such as those of Ethiopia
and Sudan in the 1950s.



408 M. Villarreal

In most of the affected countries, the agriculture sector is the backbone of the
economy. For example, in Kenya the agricultural sector accounts for 33% of GDP,
employs 40% of total population and 70% of rural population. Rural areas, which
are the most affected by the pest, concentrate poverty with 80% of the extremely
poor [4].

According to FAO, in the 2003–2005 Sahel upsurge, crop loss ranged from 80
to 100 percent in Burkina Faso, Mali, and Mauritania. Nearly 8.4 million people
across six countries (Burkina Faso, Chad, Mali, Mauritania, Niger, and Senegal)
were affected, with many households requiring food aid (FAO, 2006). The crop
damage was estimated at USD 2.5 billion. The most affected were subsistence
farmers. Spillover effects include a significant reduction in children’s schooling,
especially that of girls. Other documented effects include the destruction of one
million vine plants in Libya in 1941, 55,000 tons of cereals in 1954 in Sudan, and
16,000 tons of millet in 1951 in Senegal. The invasion of 1987–1989 left losses of
60% of grazing land and crops in Mauritania, 50% of grazing land in Niger, and
close to 100% of market gardening crops in Mali [3].

Desert locusts pose threats to the food chain, food security, livelihoods, and
national economies. Many of the affected countries are under a situation of
protracted crisis and have undergone successive years of drought followed by heavy
rains and floods. Desert locusts are currently considered a potential threat to the
livelihoods of one-tenth of the world’s population [5].

Making matters worse, many of the countries hit by the worst infestations
are already hobbling from protracted crises—recovering from recessions, fighting
natural disasters, racked by conflict, and now suffering the consequences of the
coronavirus pandemic.

3 Current Situation

At the beginning of 2020, after several seasons of heavy rains and exceptionally
wet cyclones, the conditions were ripe for one of the worst desert locust crises in
decades. The combination of heat and humidity, made more frequent by climate
change, allowed for soaring reproduction rates in breeding areas. Thus, the Horn
of Africa became the hotspot of the worst desert locust crisis in over 25 years,
and the most serious in 70 years for Kenya and Uganda [6]. Within the first
few months of the year, huge swarms of desert locusts began to ravage multiple
countries across the Greater Horn of Africa, the Arabian Peninsula, and Southwest
Asia. As swarms spread across these regions, the situation quickly spiraled into an
unprecedented threat to the food security and livelihoods of affected communities—
raising the risk of further suffering, displacement, and potential conflict on top
of that already imposed by extended droughts, floods, and geopolitical fragility.
Locusts are worsening the conditions for more than 42 million people already facing
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acute food insecurity [6]. The current situation is set to become a regional plague,
as several regions are now being affected simultaneously.

During the current invasion, locusts have swarmed in large numbers in dozens
of countries, including Kenya, Ethiopia, Uganda, Somalia, Eritrea, India, Pakistan,
Iran, Yemen, Oman, and Saudi Arabia. The situation remains alarming, particularly
in Ethiopia, Kenya, and Somalia, where widespread breeding is in progress and
new swarms are forming, representing an unprecedented threat to food security and
livelihoods at the beginning of the cropping season. Desert locust swarms formed in
the spring-breeding areas of Southwest Asia and are moving across India, Pakistan,
and the Islamic Republic of Iran. In India, swarms that arrived in Rajasthan in May
2020 continued to move and have reached several central states in the country—this
has not occurred since 1961 [6].

The situation in Yemen is particularly worrisome, with the protracted crisis
creating conditions of extreme fragility for most of the population. In 2019, 24.9 m
(83% of the population) were food insecure, out of which 15.9 m were in situation
of crisis, emergency, or famine [7]. This situation is expected to become even worse,
with the potential development of locust swarms. Hopper bands are reported to be
forming on the southern coast, but the conflict situation makes it extremely difficult
to obtain data for the rest of the country.

4 Controls/Programmes

Responding to a progressive weakening of national capacities and regional locust
control organizations at the time of the 1987–1989 invasion [3], the Food and
Agriculture Organization of the United Nations (FAO) launched the Emergency Pre-
vention System for Transboundary Animal and Plant Pests and Diseases (EMPRES)
in 1994, with a special focus on the desert locust. The EMPRES programme aims to
reinforce locust control capacities in the countries with outbreak areas as well as to
strengthen regional and international cooperation on this problem. The programme
relies on donor funding and expertise at FAO.

An FAO Commission for Controlling the Desert Locust in the Western Region
(CLCPRO) together with three regional locust commissions were set up for regional
coordination. After a decade of strengthening national capacities and regional
coordination, a major desert locust threat in the Sahel in 2012 was controlled.

FAO’s Desert Locust Information Service (DLIS) monitors the locust situation
and provides early warning to countries and donors on an ongoing basis. The
locust situation is monitored 24/7, producing forecasts, early warnings and alerts
on the timing, scale, and location of invasions and breeding. EMPRES and the
commissions strengthen national capacities in early warning, early reaction, and
contingency planning (Figs. 3, 4 and 5).
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Fig. 3 (a, b) Monitoring and predicting the direction and size of locust swarm displacements.
http://www.fao.org/ag/locusts/common/ecg/1146/en/UpsurgeMaps.pdf

Using data provided by all affected countries, as well as weather and habitat
data, satellite imagery, and model inputs, FAO provides forecasts up to six weeks in
advance and issues warnings on an ad hoc basis. Locust situations and forecasts on
breeding and migration are provided to each country. Furthermore, FAO undertakes
field assessment missions, coordinates survey, and control operations as well as
emergency assistance during locust upsurges and plagues.

With support from donors, FAO has treated 2 m ha with biopesticides throughout
the 2020–2021 invasion.

http://www.fao.org/ag/locusts/common/ecg/1146/en/UpsurgeMaps.pdf
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Fig. 4 (a, b) Monitoring hoppers, adults, groups, band and swarms of locusts to determine levels
of risk in a territory (significant threat to crops in red, threat to crops in orange, potential threats
to crops in yellow and no threats to crops in green) to alert early warning systems. http://www.fao.
org/ag/locusts/common/ecg/1146/en/UpsurgeMaps.pdf

5 Models and Data

Mathematical models have been developed to model different aspects of desert
locust dynamics, from demographics to the prediction of breeding grounds. Given
the central importance of climatic conditions for desert locusts’ breeding and
reproduction, temperature and humidity predictions are key variables. Likewise,
given that locusts rely on wind for their transportation, wind velocity, direction,

http://www.fao.org/ag/locusts/common/ecg/1146/en/UpsurgeMaps.pdf
http://www.fao.org/ag/locusts/common/ecg/1146/en/UpsurgeMaps.pdf
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Fig. 5 http://www.fao.org/ag/locusts/common/ecg/1146/en/UpsurgeMaps.pdf

and temperature are also key variables in prediction models. This section illustrates
some of these models.

Akimenko et al. [8] study the conditions and particularities of bidirectional phase
transitions between solitarious and gregarious phases of Schistocerca gregaria using
a nonlinear age-structured competitive model with time delays of locust population
dynamics. The model uses a variable time of egg incubation that describes the phase
polyphenism and behavior of desert locusts. The model is based on the competitive
system of linear transport equations with nonlinear density-dependent fertility rates
and variable time delay in boundary conditions. The model is able to adequately
describe the dynamics of the density of two subpopulations or two phases of locust’s
polyphenism—solitarious and gregarious. Analyzing the asymptotical stability of
trivial and nontrivial equilibriums of the autonomous systems, the conditions and
particularities of bidirectional phase transitions between solitarious and gregarious
are derived. The model proves useful to predict outbreak dynamics, as corroborated
by documented outbreaks.

Kimathi et al. [9] developed a model to predict locusts’ breeding grounds. The
model relies on the facts that locusts’ behavior, physiology, and ecology, including
breeding, depend very much on climatic conditions and that females lay eggs at 10–
15 cms below ground level, preferring loose/sandy soils. It uses an ecological niche

http://www.fao.org/ag/locusts/common/ecg/1146/en/UpsurgeMaps.pdf
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model that applies machine learning algorithms that correlate a set of environmental
conditions to records of the species’ presence and absence, in order to predict
suitable habitats. In particular, the ecological niche maximum entropy (MaxEnt)
genetic algorithm predicts suitability using presence-only data. Relying on geo-
referenced data from FAO, in addition to weather sources, it uses moisture, surface
air temperature, soil quality down to −15 cm, rainfall and prevalence of vegetation
(as proxy for locust presence). The application of the model produced accurate
predictions of breeding grounds in Saudi Arabia and Morocco. It showed that
temperature and soil moisture have the strongest predictive power. The model shows
that the onset of greening is a key variable for the start of operations, preparedness,
prioritization, and early warning alerts.

Wilson et al. [10] use a Cox Proportional Hazard Model to demonstrate that lo-
custs in their gregarious phase are more protected than solitary ones to parasites and
pathogens through “density-dependent prophylaxis,” as crowding induces higher
levels of investment in disease-resistance mechanisms. The model included mean
body weight as a covariant and concluded that infected gregaria locusts survived
significantly longer than solitaria locusts. The study showed that desert locusts
reared under crowded conditions are significantly more resistant than solitary
locusts to the entomopathogenic fungus Metarhizium anisopliae var. acridum, a
key natural disease of acridids and an important agent in locust and grasshopper
biocontrol. These results have implications for understanding the development and
biocontrol of locust plagues (Fig. 6).

FAO operates one of the oldest, largest, and best-known migratory pest monitor-
ing systems in the world. Within this system, remote sensing plays an important role
in detecting rainfall and green vegetation.

The incorporation of geographic information systems into the desert locust
early warning system at the FAO in the mid-1990s and at the national locust
centers a few years later has had a great impact on data management and analysis
[11]. GIS technology allows for the integration of data from a wide variety of
sources, consisting of different formats, scales, and resolutions, on one platform
and displayed as a series of layers on a single map. Vector data such as past and

Fig. 6 Source: Wilson et al.
(2002) [10]
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present field observations on ecological conditions and locust infestations, survey
and control results can be combined with raster data such as daily, decadal, or
monthly satellite-derived rainfall estimates, periodical vegetation imagery, and six-
month seasonal predictions of rainfall and temperature anomalies. This allows
users at the national locust centers and the FAO to visualize the past and present
situations as a means to assess current infestations and predict changes in population
numbers and spatial distribution. FAO uses The Desert Locust Egg and Hopper
Development Model that uses 30-year surface air temperature averages at the
nearest meteorological station (up to about 250 km) to estimate the developmental
rates of locust eggs and hoppers. In addition, The Desert Locust Trajectory Model
estimates adult and swarm migration trajectories forward and backward in time (up
to 10 days) using temperature, pressure, and wind direction and speed data at 16
atmospheric levels every 6 h [11]. Furthermore, FAO made a massive investment in
georeferencing historical data, so that the entire data set from the late 1920s can be
accessed using GIS.

Pekel et al. [12] developed an innovative multi-temporal and multi-spectral image
analysis method adapted to the detection of vegetation in arid and semiarid areas
using satellite imagery. This kind of imagery is widely used in desert locusts
and other pest monitoring, as it can provide a continuous overview of ecological
conditions (i.e., vegetation and soil moisture) suitable at the continental scale and in
near real time. Widely used vegetation indices such as the Normalized Difference
Vegetation Index (NDVI), on which most remote sensing techniques to monitor
green vegetation, do not always provide reliable estimates for sparsely vegetated
areas. The analysis method uses a transformation of the color space that decouples
chromaticity and luminescence. A complete automatic processing chain combining
the daily satellite observations was designed to provide user-friendly vegetation
dynamic maps at 250 m resolution over the entire locust area every 10 days.
This product informs users about the location of green vegetation and its temporal
evolution. The methodology provides vegetation dynamic maps to the Desert Locust
Information Service at FAO.

More recently, FAO is using trajectory and dispersal models to guide its field
operations as well as its country advice and early warning systems [13]. The
National Oceanic and Atmospheric Administration (NOAA) modified its Hybrid
Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model, developed
by NOAA’s Air Resources Laboratory, one of the most widely used models
for atmospheric trajectory and dispersion calculations, to predict future locust
displacements. HYSPLIT is a complete system to compute simple air parcel
trajectories, as well as complex transport, dispersion, chemical transformation, and
deposition simulations. In the case of locusts, it inputs observational data from the
field, taking the point where swarms are observed, back-computes trajectories (7
days), inputs data on wind, temperature, and precipitation (e.g., Fig. 7) to determine
the origin of air masses and forward-track them for 14 days [14]. The model is
usually used for tracking and forecasting the release of radioactive material, wildfire
smoke, windblown dust, pollutants from various stationary and mobile emission
sources, allergens, and volcanic ash. Its calculation method is a hybrid between
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Fig. 7 a–c)Examples of monitoring of variables used in HYSPLIT (height, wind, temperature and
precipitation). https://www.cpc.ncep.noaa.gov/products/international/africa/africa.shtml

https://www.cpc.ncep.noaa.gov/products/international/africa/africa.shtml
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Fig. 7 (continued)

the Lagrangian approach for diffusion and trajectory calculations and the Eulerian
methodology’s fixed three-dimensional grid as a frame of reference to calculate
concentrations [15].

6 Conclusions

Desert locusts have ravaged peoples’ livelihoods, generating hunger and even
famine for thousands of years. The threat they pose is now being compounded
with the effects of climate change, which may create the conditions for increased
frequency, intensity, and duration of swarm formation. Early warning and control
programmes, such as those led by the FAO require significant donor funding and
long-term commitment. In spite of international efforts and local ingenuity, such
as an initiative to capture locusts at night time, when they pose on vegetation, in
order to convert them into high-protein animal feed, the sheer magnitude of the
infestations dwarf the ability of these interventions to effectively control them.

Several mathematical models have demonstrated predictive power regarding
desert locust swarm formation and are currently used in control programmes.
Technology has improved the quality of imagery data over the past decades,
contributing significantly to monitoring and prediction. However, the weaknesses
of the system for early warning and early control continue to center around national
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capacities, availability of broadband for Internet services, and availability of long-
term donor funding. In addition, efforts to control transboundary pests such as
the desert locust, will be hampered by the situation of protracted conflict in some
affected countries, limiting the possibility not only of curbing the spread within the
country, but also of providing data to feed into trajectory models at a regional scale.
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Part IX
Literature and Mathematics



Soul Searchin’

Marco Abate

It’s late, I’m drinking a bloody Mary and I’m listening to Solomon Burke. I have a
paper to write, places to go, theorems to prove. The paper is, as the hour but more,
late. I cannot go to the places I would like to (or even have to) go. The theorems are
on strike, they refuse to prove themselves. Do not believe mathematicians saying
they are working; they are not. They are waiting for theorems kind enough to prove
themselves. If not a theorem, at least a proposition. In nights like this one, even a
lemma would be welcome. Not a corollary, no, a corollary would not be welcome,
not ever. Corollaries ambush you behind the corner, after you’ve been distracted by
a beautiful theorem passing by winking at you. You turn your head expecting—or
at least hoping—that it will slowly stop, that it will wait a little meditating about
the meaning of the universe, and that then it will quietly turn around, with a gentle
smile, a welcoming gesture and it will be yours forever and ever—but it won’t.
No slow stopping, no turning around, no smiles or gestures, welcoming or else; it
won’t be yours. And you get stuck with that obnoxious corollary, completely useless
without the theorem, but still nagging at your elbow, not even clean enough to be
sold out as a conjecture. A useless little brat. A pitiful reminder of the theorem that
could—should!—have been mine and it didn’t, and won’t ever be because I’m not
good enough, I cannot be good enough, only dirty corollaries are what I deserve,
I’m not a real mathematician, not even an applied one, I must leave right now, in
shame, I will go and live in a shanty town, surviving collecting garbage from waste
dumps, with dirty corollaries as only company, to constantly remind me that I am a
failure, no shining theorems for me, ever.
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Darn, I forgot. I cannot leave. We are in lockdown. The only place I can go to
is the kitchen, to fill up this bloody Mary sorely needing filling up. Done. I prepare
bloody killing bloody Marys, if you don’t mind me saying so. The right amount
of vodka. And the right amount is a lot: this is a true theorem, Banach docet. Not
a dirty corollary. A true bright theorem in its shining armor. A sip—even better
two, perchance three—and its light will dispel the darkness in my mind where all
those propositions and lemmas are trying to hide, are trying to hide themselves
and the true path to the true theorem, the greatest theorem, the theorem to end all
theorems. . . and. It. Will. Be. Mine! Another sip and I’m sure I will start glimpsing
it! Another sip and now that I think about it, really think about it—ah, bloody
Marys really help you think, yes they do—you know, this dirty corollary is not
that dirty after all. A little cleansing here, a bit of scraping there and it might pass
for a half-decent conjecture. Why bother to chase ungrateful theorems when you
can sell your colleagues a nice enticing conjecture, promising a garden of delights
that nobody will enter, but it won’t be your fault, you just suggested the way and
were so generous to leave it to others to follow, it will be their fault if the conjecture
will remain unproved and undeflowered! And yet I have the feeling that something
is off. . . another sip of bloody Mary will surely clear my mind. . . Mmm. . .

What? What did you say? That I got carried away? That I promised to write
something meaningful? Or at least more meaningful? And that the Solomon Burke
album has ended? Decisions are called for. We must decide. Uplifting music: Sergio
Cammariere. I do not need a waiter to uplift my glass to toast my deciding strength,
but it helps anyways. Lift the music and lift the glass, let’s have a musical toast
to meaningful mathematics, to sound mathematics! Or at least to mathematics
sounding sound! Or to. . . Whatever, let’s start.

1 The Algebraic Playground

Everything will take place in a big large wonderfully smooth complex manifold
called M for “mom”. Inside it (her?) lies a slightly mischievous possibly singular
subvariety called S for—you guessed it—“son”. It (he?) might possibly be singular,
but he promised his mom to stay reduced, connected (he’ll try to be irreducible too,
but no promises on that count) and, of course, pure (dimensional).
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Our S comes with a whole box full of toys that he mischievously drops on the
floor. And, lo and behold, this is the pattern the toys drew on the floor:

IS

ι0
↪−→ OM

d−→ ΩM

↙ π ↙ D ↙ π2
⏐�π1

O −→ IS/I2
S

ι1
↪−→←−

ρ̃

OM/I2
S

θ−→←−
ρ

OM/IS −→ O

�⏐τ∗
⏐�dI ↙ d2

ΩM ⊗OS
OS

↓
ΩS

↓
O

(Ok, ok, the arrow with a D attached to it should be more slanted toward the left,
because it goes from OM to IS/I2

S , but even my LATEX-pertise has its limits. . . ).
What are all these horrible typographical misfits, I hear you muttering. They are not
horrible, the son answers, they actually were showcased in a real art show a few
years ago. . . Hush son, says the mom, let me explain to our honored guests.

Of course, OM is the sheaf of germs of holomorphic functions on myself. Very
important, the origin of the world. Instead, IS is the sheaf of ideals of my son
(full of ideals, my son, at least one at each point, I’m very proud of him), ideals
of germs of holomorphic functions vanishing on him, and you have no idea how
much scrubbing and cleaning is needed to keep those germs vanishing, we don’t
want any dirty subvariety, oh no. ΩM is the sheaf of holomorphic differentials that
are wonderful things when you have them, but for the life of me don’t ask what
they are. ΩS is my son’s sheaf of holomorphic differentials. Since he is so singular
sometimes, the mad French mathematician told me that I should never mention it
in his presence; it is defined by the diagram, so he said to me. I’m only a standard
smooth mom, if the mad French mathematician says so it is so.

And then there are all those funny little letters. . . ι0 and ι1 are just inclusions:
yes, son, send your ideals into me and call me Giocasta I’ll be your victim. And then
those annoying three little pigs. . . I mean, pi’s: π , π1 and π2 are just projections,
sort of canonical if you are of the religious type. θ too is a projection, but it lives at
a lower level, and the pigs didn’t want it to mix with them. And look to that forlorn
arrow with no name, almost at the base of the social echelon: it is a projection too,
but of such a lower class that the pi’s didn’t want it to be named. And the mad
French mathematician, nodding madly, confirmed that there is no need to name it;
it is defined by the diagram. Yes, sir.

The d’s. . . The first d is the usual d , sending f into df . Ok, it is not much
as explanations go, but that’s something you already know, don’t you? Derivatives
and such. To explain d2 and dI let me tell you that I don’t like that much those
pi’s, always bringing mud, bricks and wolves into the house. . . never mind that, but
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anyway the fact is that sometimes I like to trick them a bit, and I’ve devised a little
notation of my own, writing [f ]j instead of πj (f ) just to confuse them. Neat, don’t
you think? Where f is a little germ of mine, of course, but a very clean one, I assure
you, not even a snooze will come out of it. Well, having said that, d2 is defined as
follows:

d2[f ]2 = df ⊗ [1]1,

and dI = d2 ◦ ι1, of course. A little thought will show, honored guests, that the
definition is well-posed. In case of doubt, my son will be glad to explain everything
up to the last little microlocal detail. His father was an analytic space, you know.

The capital D. . . well, let’s say that it is a derivation and leave it at that. It is
not always there, you know; it’d have to be dashed, but there is no way to find a
decent dashed oblique arrow these days. Same thing for those radical arrows going
contrarily-wise, ρ, ρ̃ and τ � (why wasting such a good-looking star when there is
no τ around is beyond me): they’re not always there, thanks God in this country we
are still writing left-to-right-top-to-bottom, but when they are around they’ll make
themselves noticed, no doubt, those rascals.

I think that’s all. . . You asking. . . ? Yes of course, the diagram is commutative
with exact rows and columns, I like to keep my home tidy and clean, thank you very
much. Oh well, except the first row, yes you’re right, but tell me where should I
put that ΩM , just tell me, what a poor smooth manifold has to do? And now, if you
excuse me, I’m beginning to have a tiny little headache, I’ve better go to rest. Where
did I leave that covering, it was right here last time I checked. . . (fade)

Disclaimer

No definition has been harmed in the preparation of this paper. The co-authors
of [1] strongly deny any responsibility for this rant and sternly advise young
mathematicians to never drink and write.
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Geometric Metaphors and Linguistic
Genealogy

Francesca M. Dovetto

1 Similarities and Differences Among Languages

In placing the study of linguistic change as one of their central interests, the
nineteenth-century linguists mostly addressed the question of the difference be-
tween languages from a historical perspective, feeding nationalist ideals and was
attentive to identifying elements and particulars of the differentiation between
languages. In opposition to this viewpoint, some models with a different orientation
were proposed. For example, the philosophy of mixture proposed by William
Dwight Whitney was an original attempt to overturn the dominant linguistic
perspective, as it levered on elements of sharing and mixing among populations
and languages rather than on differentiation. It was probably inspired by continuist
models that started to appear, with prudence, in the scientific debate of the different
models for representing the genealogy of languages ([1]; cf. [2]).

At the same time, research about universal traits in the relationships of similarity
and difference among languages led to models that existed in nature: natural forms
and types could be adapted to assimilating languages and their mutations over time.
These images worked long in the history of linguistics, some of them are still very
well-known and alive, others less so. Of these two, the first has given impetus to
the genealogical representation of languages through the image of the tree trunk
from which branches, twigs, and leaves split off; the other, more problematic image,
imagines the life of languages as the rippled surface of a pond, in this way, yielding
a decidedly more complex and realistic vision of mutations.
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Fig. 1 The Schmidt Wellentheorie [4], p. 10

2 Trees and Waves in the Representation of the Relationships
Between Languages: From the Discrete to the Continuous

Timewise, the first image that we encounter in the history of the classification
of language is, without doubt, the best-known and most widespread, that is, the
metaphor of the genealogical tree (Stammbaumtheorie), which is the base for the
famous genealogical classification of the Indo-European languages proposed by
August Schleicher [3], in imitation of the Darwinian model of the origins and
transformations of the species. This was immediately followed by the other, just
as well-known metaphoric image, contrasting the former, the image of ripples on
the surface of a pond (Wellentheorie, see Fig. 1), used contemporaneously but
independently by Johannes Schmidt [5] and by Hugo Schuchardt [6].1

Of the two models, it is certainly the latter that produced the more metaphorical
variants, as Schmidt associated two other images to it, that of the inclined plane
(geneigte Ebene) and that of the stairway (Treppe), and Schuchardt extended it to
images of the fan (Fächer), of the cone (Kegel) and of the rainbow (Regenbogen).

According to Schmidt, in representations of the kinship relations between lan-
guages, the image of the plane (Ebene) corresponds to an inclined surface, crossed

1 Schuchardt had already presented this theory in the third volume of Vokalismus [7], p. 34,
stressing the independence of his formulation in the preface to the publication of the report for
conferring a teaching position made in Leipzig in 1900 [1870]: 4. On this cf. Dovetto [8], pp.
40–41; more recently cf. also Tani [9] and Venier ([10], pp. 56–58, 60.
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by lines that track and represent the linguistic varieties present in the dominion.
Originally, there would be no clear linguistic borders inside this ideal geographical
space. When one of the linguistic varieties of the dominion acquires dominance
over the others for political, religious, social, or other reasons, this causes the
disappearance of the immediately contiguous varieties. Therefore, distinct linguistic
borders begin to appear at this point. According to Schmidt, a step (eine Stufe)
appears and later the image of the inclined plane transforms into a stairway
(eine Treppe). The sharing of a certain number of phenomena determined by
phonetic mutation breaks the original continuity and, with the disappearance of
the intermediate varieties, the languages, corresponding to the steps of a stairway,
acquire finally identities and distinct borders. Like the image of the inclined plane,
the image of the stairway also implies a well-defined, directionally predetermined
hierarchy: in fact, its constant incline runs from Sanskrit to Celtic, following to an
uninterrupted succession of mutations.

Therefore, in the representation proposed by Schmidt, inside the inclined plane a
series of reciprocally intersecting isoglosses represent, metaphorically, the kinship
relations among the Indo-European languages. Every language or dialect constitutes
a ring of conjunction with the contiguous languages, in such a way that no language
is isolated from the others.2

As further specification of the same image, Schmidt uses another metaphor, that
of the chain: das organische mittelglid, where the term Glied (in Schmidt’s script
glid) may indicate the link of a chain or even the element of a generation chain
(Geschlechterfolge).3 However, as it is composed of links, the image of the chain
evoked by Schmidt through reference to intersecting circles also takes us back to
discreteness, suggesting, though in a hazy way compared to the stairway metaphor,
the existence of “qualitative leaps” in differentiating of languages over time and, as
a consequence, in constituting their respective, single individual histories.

At the same time, the monodimensional model of the family tree, which projects
the languages along the dimension of time, opens toward the horizontal dimension,
represented by the geometric figures—rings in Schmidt, triangles, and quadrilaterals
in other contemporary representations4—that reproduce the areas occupied by the

2 “Verständlich wird er [der ganze charakter des slawolettischen] nur, wenn wir anerkennen, dass
das slawolettische weder vom arischen noch vom deutschen losgerissen werden kann, sondern die
organische vermittelung beider ist” [5], pp. 17–18. Eìlsewhere we find: “dass unser sprachgebiet
keinen kreis bildet, sondern höchstens einen kreissector [ . . . ], tut nichts zur sache” (ivi: 27,
[emphasis added).
3 All the successive representations of the Wellentheorie recur to the image of the chain (e.g., [4],
p. 10 and [11], p. 67).
4 Schleicher’s image of the genealogical tree is reproduced (see Fig. 2) in the unpublished notes
of the glottologist Giacomo Lignana who, trained in the German school, imported principles and
linguistic research methods (Sprachwissenschaft) into Italy and was the first Italian professor of
this science. In Lignana’s image the lines/branches of the tree tend to join with other branches.
In a space like a tress of hair the branches intertwine and touch, tracing out a set of geometric
figures, among which there is demarcation but not detachment. This is both a singular and an
original representation of Schleicher’s discrete model, probably due to suggestions deriving from
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Fig. 2 The Schleicher Stammbaumtheorie according to Lignana

different historical languages and the reciprocal intersections metaphorically on the
plane.

With the inclusion of the spatial dimension, the monodimensional model be-
comes bidimensional.

In the same year that Schmidt outlined the famous image of waves, Schuchardt
also used the same metaphor to represent the kinship relations among languages.
In this case, however, the result is diametrically different and the very same image
suggests continuities rather than differences among languages.

As Schuchardt also asserts, in its unity a language can be compared to a
peaceful pond put into movement by the formation of ripples that cross over each

reading Schmidt (cf. [12]). Against Schuchardt’s radical observation, according to which uniting
the branches of the Stammbaum would have it cease to exist (“Wir verbinden die Äste und Zweige
des Stammbaums durch zahllose horizontale Linien, und er hört auf eine Stammbaum zu sein,”
Schuchardt [6], Lignana observed that: “sarebbe molto facile, anche scostandosi in qualche punto,
concentrare le linee dello schema di Schleicher” ([13], p. 19, emphasis added).
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other according to their energies. Within this model, no language is isolated, no
linguistic border is well-defined. In this case, the differentiation among languages
is transformed from an amount measured with relative certainty to a variable of
continuous transformation.

Between the two analogous images of the lives and the differentiation among
languages, both inspired by the rippled surface of a pond, it is the second,
Schuchardt’s proposal, that decisively counters the metaphor of the tree, a metaphor
pre-imprinted with discreteness, with the image of the continuum, calling to mind
models of liquids.

To represent the relationships among languages in space and time, Schuchardt
also proposes some other images besides the image of ripples in a pond. These are
the images of a fan, a cone, and a rainbow, all useful metaphors for showing the
complexity and the dynamic intertwining of transformations and contaminations,
both historical and geographical, of languages. In addition to the temporal dimen-
sion, all these models include the spatial, mentioned in Schmidt but irrenounceable,
according to Schuchardt, in their representations of relationships among languages
and dialects. The models are seen as bidimensional.

The metaphor of the cone (Kegel; see Fig. 3) projected onto the lives of languages
is particularly complex: the height of the cone represents evolution over time, the
different strata into which the figure is sectionable represent the spatial relationships,
while the continuity of the surface of the solid represents the continuity of the
transitions from one language/dialect to another [14], p. 191.

In this context the transformation of the plane geometric image (the surface of
the pond or the fan) into a solid is also of particular interest: then, the different
strata or sections of the uninterrupted conic surface correspond to planar images of
concentric circles.

Fig. 3 The metaphor of the cone (Kegel)
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Among the various metaphoric representations that Schuchardt used to illustrate
his model, clearly projected towards the continuum, this is the only image that
proposes the figure of a solid, thereby—as Schuchardt writes—giving substance to
the image of the fan (Fächer), of languages that descend from a common ancestor.5

In this case, the bidimensional model also gains the third dimension of depth, the
very essence of the notion of languages being related to nearness/distances over time
and space.6

The transitions of languages, projected onto the solid form of the cone and
which Schuchardt recognizes as being of varied evidence and depth, are, therefore,
compared to waterfalls (Wasserfälle) or to other steep climbs (Steilen). In this
way, the image of the solid immediately reconverts to the aquatic metaphor, where
fluidity represents the distinctive trait and the guarantee of the indemonstrability of
the existence of precise borders between languages: there is mixing (Mischung)
everywhere, between languages, between adjacent dialects, between related lan-
guages, and also between languages without any spatial or temporal connection.7

Schuchardt comments harshly against the pyramidal system of the genealogical
tree, which is completely unrealistic in the case of kinship among languages (wie
es sich nirgends findet): to us (linguists), this is not allowed (dies ist uns nicht
vergönnt).8 Even the present, in fact, cannot be disjoined from the past (Heutiges
mit Vergangenem vermengt werden).

In the end, Schuchardt [6] compares the image of the genealogical tree with yet
another image, also in this case a fluid one with nuanced borders. This is the image
of the chromatic continuum (Färbungen) or of the rainbow (Regenbogen). As is clear
from the colors (die Farben des Regenbogens) that imperceptibly merge into each
other (unmerklich ineinander überfliessend) this image is also, basically, a liquid
metaphor. With this image, the scholar represents the simultaneous emergence of
dialectic coloration9 in the same area, at the same time confirming the intrinsic
mixing (Mischung) that allows all language change. This is the same metaphor
that the philologist and linguist Gaston Paris [15] recurs to, in the same period,
to represent the subject of structural dialectology: a vast tapestry, where “les coleurs
variées se fondent sur tous les points en nuances insensiblement dégradées.” The
scholars of Linguistic science would soon have to face such complexity in their
study matter and rethink their own methods and working tools.

5 “Nur müssen wir uns das Flachbild verkörperlichen, nämlich den ausgespreizten Fächer als Kegel
denken mit einer Grundfläche gekreuzter Linien” ([14], p. 191).
6 “[ . . . ] das heisst je entfernter die Glieder voneinander in Zeit und Raum sind, desto entfernter
auch ihrem innern Wesen nach” ([14], p. 191).
7 “Mischung durchsetzt überhaupt alle Sprachentwicklung; sie tritt ein zwischen Einzelsprachen,
zwischen nahen Mundarten, zwischen verwandten und selbst zwischen ganz unverwandten
Sprachen” ([14], p. 193).
8 “Wir würden eine Pyramidalisystem von Sprachen erhalten, wie es sich nirgends findet. Darwin
konnte sich in seinem Falle durch die Theorie vom Kampfe um’s dasein und dem Aussterben der
Zwischenformen retten. Dies ist uns nicht vergönnt” (Schuchartd [7], p. 79).
9 “das Entstehen dialektischer Färbungen in den einzelnen Gegenden als gleichzeitige” [6], p. 21.
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3 Stairways, Chains, and Ropes: From the Continuous
to the Discrete

As it is clear, these are all cases of metaphoric images that mirror generalizations
and that themselves constitute indicators of co-occurrence, which perhaps deserves
more attention in the history of linguistics.

On the other hand, while it is true that the very possibility of a taxonomy is
guaranteed by the fact of being projected onto a continuous object, at the same
time the taxonomy, in identifying discrete recurrent elements, induces the belief
that these same artificial elements are aligned to the subject matter by the observer
and are not intrinsic to the object itself (languages).

In any case, the wave model should be recognized for the merit of having
introduced, even with some uncertainties, the continuum into what, up to then, had
been considered the reign of the discrete. In fact, Schmidt still adhered to the latter
when he imagined waves that transmute into steps. Besides, in Schmidt’s model, the
step has very little in common with the stairway of continuity used in taxonomies
of the realm of nature, as it is rather a step that marks, above all, discontinuity in the
classification of languages and that seeks to mark specific identities.

The image of the chain, also implicitly invoked by Schmidt (see Fig. 4) in
reference to intersecting on interlinking circles, takes us to discreteness, which
uniquely distinguishes itself from analogous taxonomic representations of nature,
where instead the chain constitutes a particular variant of the stairway, which it

Fig. 4 The Schmidt image of chain [11], p. 67
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Fig. 5 The Schmidt ropes according to Lignana

would correct of the possibility of recurring to discreteness (the steps of the stairway
could, in fact, suggest the existence of “qualitative leaps”).

Actually, in its applications to the realm of nature the chain served to support
the idea that there was no fracture between the elements, which would, instead, all
be connected, “ring to ring.” In turn, the chain as a variant of the stairway had a
particular variant, the rope, in which every link connected to two others.

Curiously, in the unpublished notes that the glottologist Giacomo Lignana
dedicated to the representation of the kinship relations among the Indo-European
languages, we find exactly this image of circles/intersections of rings. However, in
his papers, Lignana does not draw a chain of links, following a (proto)continuist
model, but some ropes (two; see Fig. 5), that reinforce the historically and
linguistically determined identities and differentiation among languages: Slavic-
Lithuanian link to German on the one hand and to Arians and Armenians on the
other; instead, Italic acts as the link between Greek and Celtic ([12], p. 35; cf. also
[8], pp. 40–45, in partic. 44–45).10

10 Cf. also what Lignana wrote to Pietro Merlo in 1884, in which, among other things, his use
of the metaphorical model of the chain clearly emerges: “due punti di più stretta affinità ariana
sono certi, cioè l’Indo-Iranico e l’Italo-Celtico. E quando i due anelli estremi della catena sono
saldi, il resto più e meno si può determinare” [16], p. 184). In the image that Lignana traces (cf.
[12]), the only model we have that is contemporary to Schmidt’s, the apex of the inclined plane is
represented by the vocalism of the Arian, believed older, with respect to the unity of the European
languages, at the time defended by Lottner and by Fick and represented by the weakening of a to e,
while Arian would have conserved the a. Clearly this reflects the period in which Schmidt wrote,
when the precise, and in fact opposite, direction of the mutation was still unknown. However, for
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The chain of the continuity of nature is broken at birth, though, as Schuchardt
remarks, where there is no separation of the child from the mother, there can be
neither brothers nor sisters.11
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A Mathematical Physicist in Hell

Galileo on the Geometry of Dante’s Inferno

Jean-Marc Lévy-Leblond

A modest contribution to the celebrations of the 700th
anniversary of Dante’s passing.

Among the earliest publications of Galileo are his Two Lessons on the Shape,
Location, and Size of Dante’s Inferno, hereafter abbreviated as Lessons on Hell
[1]. This work is little known except to experts, and is often considered at best as
an exercise in mathematical expertise as well as a work of circumstance intended
to make its author known. The relegation to the background of these Lessons on
Hell was, moreover, very early. Galileo seems to have been reluctant to mention it
afterwards and to communicate this text [2]. Viviani, his pupil and first biographer,
does not even mention it. However, far from being a negligible and lateral element of
Galileo’s work, the Lessons on Hell contain elements that prefigure several essential
themes in Galileo’s major contributions to mechanics. This text announces, in a
sometimes paradoxical way, one of the “new sciences”, which Galileo will make
public at the end of his life, more than forty years after the Lessons on Hell, and
which constitute his essential contribution to modern physics [3].

The young Galileo, after beginning his medical studies in Pisa in 1580, discov-
ered mathematics in 1583 (he was not yet 20 years old), abandoned the university
where this discipline was not held in high esteem, and devoted himself to the
personal study of the ancient mathematicians, Euclid and Archimedes in the first
place [4]. He quickly acquired a considerable mastery of the subject, which enabled
him to teach it on occasion to earn a living. As early as 1586, Galileo circulated a
small pamphlet, La bilancetta, of typical Archimedean inspiration, on a weighing
instrument capable of measuring the densities of objects and therefore the quality
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of alloys—in the tradition of the famous anecdote about Archimedes detecting the
fraud of the jeweller who had manufactured Hieron’s crown. At the same time,
he wrote some theorems, again in a very Archimedean style, on the centres of
gravity of solids of revolution. Noticed by leading scholars such as Guidobaldo
del Monte, he was invited in 1587 by the Florentine Academy to shed light on the
controversy that had for decades opposed two interpretations of Dante’s Inferno. In
1506 the Florentine Antonio Manetti had published a description of the geography
and geometry of Dante’s Hell as it had been described by Dante, nonobstanding
his rather obscure poetical description [5]. To be given particular attention was the
evaluation of the reliability of the figurative representations given by Botticelli in
the nineties of the fifteenth century in a luxurious illustrated edition which followed
the first sketches of Giuliano da Sangallo [6] (Fig. 1).

The illustrations were drawn based on measurements established through com-
plicated calculations taken from references in Dante’s text and which, for the
intellectual circles of an era for which The Divine Comedy was a fundamental
reference point, needed to be accurately established. But in 1544 Alessandro
Velutello from Lucca, Florence’s rival city, published a severe critique of Manetti’s
work and proposed a very different description of Hell [7]. Galileo was called on the
resolve the debated question which he did, predictably, in favour of the Florentine,
Manetti. This work of literary exegesis allowed the young and ambitious Galileo
to have his mathematical talents recognised as well as his pedagogical qualities,

Fig. 1 Dante’s Inferno according to Botticelli [https://upload.wikimedia.org/wikipedia/commons/
3/3e/Sandro_Botticelli_-_La_Carte_de_l%27Enfer.jpg]

https://upload.wikimedia.org/wikipedia/commons/3/3e/Sandro_Botticelli_-_La_Carte_de_l%27Enfer.jpg
https://upload.wikimedia.org/wikipedia/commons/3/3e/Sandro_Botticelli_-_La_Carte_de_l%27Enfer.jpg
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and constituted a fruitful promotional operation. As his reputation grew, in 1589
he finally obtained a chair of mathematics at the University of Pisa, a position that
inaugurated Galileo’s institutional career.

But what is the place of these Lessons in Galileo’s work, or rather, in the general
project he developed in his youth?

1 The Pure Tuscan Language1

Of course, it was by no means the case, neither at the beginning of the sixteenth
century for Manetti or Vellutello, nor at the end of that same century for Galileo,
that the description of Dante was to be taken seriously from a theological point of
view. Quite simply, the importance of the Divine Comedy in Tuscan culture made it
obvious that it had to be understood in all its aspects—including topographical—in
order to make it easier to read. Indeed, the geography of Hell and its iconography
are a classic theme of Dantesque exegesis, already in the sixteenth century [5, 7–9]
up to recent times [10–13]. Beyond the demonstration of his personal mathematical
skills, Galileo’s Lessons had a higher cultural ambition. His training among the
Pisan elite had given him an excellent literary, artistic, and musical education (his
father, Vincenzo Galilei, was one of the first musicians of his time, a friend of
Monteverdi’s, and his brother was also an instrumentalist and composer). Galileo
was also deeply involved in the literary and artistic debates of his time: in the
years following his Lessons on Hell, he took part in the fierce controversies
between the supporters of Ariosto and those of Tasso, as well as in the very
fashionable discussions on the comparative merits of painting and sculpture [14, 15].
But cultivated Tuscans, such as those who formed the Florentine Academy, were
obviously far from all possessing the scientific knowledge, especially mathematical,
of the young Galileo. If the new science was born, as Galileo offers the emblematic
example, from the depths of the culture of his time, the bearers of this culture were
far from recognising and assimilating this new twig. And in fact, the following
centuries would see the gradual divorce between science and culture of which our
time is a victim [16]. Perhaps aware of this risk, Galileo wanted, in any case, to
show in his Lessons on Hell that mathematical physics is not simply a source of
technically efficient calculations but can make its contribution to the noblest cultural
debates, and thus acquire an intellectual status comparable to that of the classical
humanities—without, however, pretending to replace them, contrarily to a recent
claim [17, 18].

It is in this context that one must understand Galileo’s use of the Italian language,
and not Latin, for most of his major works—as is the case for the Dialogo [19] and
the Discorsi [3], not to mention the Saggiatore [20]. The importance of this decision
has often and rightly been stressed. But it should not be reduced to a purely political

1 All of the section titles are taken fom Galileo’s Lessons, hence the italics.



438 J. Lévy-Leblond

choice, as is usually argued, by which Galileo would target a readership broader
than that of scholars alone in order to gain wider support in his intellectual battles.
In truth, Galileo in no way considered Italian (which, at the time, was in fact Tuscan)
to be the vulgar language, which it would be necessary, willy-nilly, to use in order
to be heard by all. For him, it was the very language of the high culture of his
time, the one that both demanded and allowed the greatest clarity and subtlety of
expression. And it is Latin, on the contrary, that he considers without complacency
as a technical jargon, no doubt among people in the trade, but unsuitable for an
intellectual discussion of the meaning and value of ideas. The Lessons on Hell
are in this respect perfectly revealing and inaugural. Forced to use, in his scientific
explanations, certain scholarly terms (geometric in particular), Galileo justifies this
and even apologises to the members of the Florentine Academy:

. . . let us hope that your ears, accustomed to hearing this place always resound with the
chosen and distinguished words that the pure Tuscan language offers us, may forgive us
when at times they feel offended by some word or term peculiar to the field we are dealing
with, and taken from the Greek or Latin language, since the subject we are dealing with
obliges us to do so.

It becomes clearer then that, even in his great scientific works, Galileo’s decision
to write in Italian is much more than a tactical manoeuvre of “communication”,
as we would say today, it expresses the firm will to inscribe his work within the
culture of his society and his time. Galileo is not an isolated case here. Contrary to
a widespread but simplistic conception, the Scientific Revolution of the seventeenth
century is in no way linked to the existence in Europe of a single language of
scientific communication, supposedly Latin. On the contrary, this period coincided
with the development, within the most demanding intellectual activities, of national
languages, henceforth considered as vectors of modern culture. Already in Italy,
Guidobaldo del Monte, mentioned above, had in 1585, barely two years before the
Lessons on Hell, published a work on mechanics in both Latin and Tuscan. During
the first half of the seventeenth century, which saw the completion of the Scientific
Revolution, Descartes for French, Harvey for English, and up to Leeuwenhoek
for Dutch, offer compelling examples of the scientific legitimation of national
languages [21].

2 The Intervals Between the Skies

There is no question of making these modest Lessons on Hell the prolegomena of
all Galileo’s future work. It is not the future astronomer and cosmologist, the author
of the Dialogues on the two great systems of the world [19], that we can glimpse
in these Lessons. On the contrary, they open with an apology of archaic cosmology,
praising the results obtained in the measurement of the “intervals between the skies”
and their movements, which clearly refers to the ancient and medieval representation
of a universe composed of several geocentric celestial spheres. Galileo was far from
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being the militant Copernican he would become. From his pulpit in Pisa, he taught
the Ptolemaic system of spheres without reservation. It was only in 1597, ten years
after the Lessons on Hell, that he privately (in a letter to Kepler) stated his adherence
to the Copernican system, and much later still, after 1610, that he began to defend
it publicly, in particular in his famous 1615 Letter to Christina of Lorraine [22].
Galileo will no doubt have to distance himself from a somewhat naïve epistemology
which led him to write, at the beginning of the Lessons, that the celestial survey he
celebrates, however, “difficult and admirable” it may be, concerns “things which,
totally or in large part, fall within the realm of senses”. It is by abandoning the
common illusion of a world immediately given to observation that Galileo will
be able to find a new vision of the cosmos: whether through instrumentation (the
telescope) or theorisation (mathematics), science only understands the world in a
mediate way.

However, at this beginning of the Lessons, let us note a typical example of one
of Galileo’s constant rhetorical resources, which he made great use of in his major
works—that is irony. It is in this vein that he takes the liberty of explaining the
difficulty of assessing the dimensions of Hell, since “that place where it is so easy to
get down and yet so difficult to get out” is “buried in the bowels of the Earth, hidden
from all our senses”—unlike the “skies” which “fall under the senses”— and that
“the difficulty of such a description is considerably increased by the absence of any
study from other people”.

3 For a Few Reasons of Our Own

Galileo’s Lessons on Hell are above all an exercise in geometry. It is in order to
describe and evaluate the underlying spatial structures in Dante’s work that he first
sets about. The mathematisation of physics, of which Galileo is rightly considered
to be one of the initiators, takes place with him under the aegis of geometry, in a
directly Archimedean filiation. Nothing yet, in Galileo’s case, of the algebraisation
that Descartes, so soon after him, would begin to implement. And in Galileo’s
very famous quotation that the great book of Nature “is written in mathematical
language” [20], we must be careful not to forget what follows, namely that “the
characters [in which this book is written] are triangles, circles, and other geometrical
figures”, that is by no means the literal formulae of modern algebra and analysis. In
any case, Galileo, from his youth, was an accomplished geometrician, as the Lessons
show from the outset.

Carefully choosing and commenting on the appropriate verses of The Divine
Comedy, Galileo begins by confirming Manetti’s description: Hell is an approx-
imately conical cavity whose apex is at the centre of the Earth, and whose axis
pierces the surface of the Earth in Jerusalem (of all places . . . ). The base of the
infernal cone, on the surface of the Earth, is a circle with a diameter equal to the
radius of the globe; in cross-section, the chord corresponding to a diameter of this
circle is, therefore, the base of an equilateral triangle having the centre of the Earth
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Fig. 2 Sketchy cross-section
of Dante’s Inferno according
to Manetti [5]

as its vertex, which means that the angle at the vertex of the cone is 60◦. And this
is where Galileo applies his mathematical knowledge, first of all to invalidate an
erroneous opinion:

If we want to know [the] greatness [of Hell] in relation to the whole aggregate of water
and earth, we must not follow the opinion of those who wrote about Hell, believing that it
occupied the sixth part of the aggregate.

Indeed, on a central section of the Earth passing through the axis of the cone, the
infernal sector occupies one-sixth of the area of the disc—temporarily neglecting
the vault of Hell (Fig. 2).

Some people, profane in three-dimensional geometry, might therefore think that
the same proportion applies to the volumes. But Galileo continues:

If we do our calculations according to what Archimedes demonstrates in his books On the
Sphere and the Cylinder, we will find that the space of Hell occupies a little less than the
fourteenth part of the [volume] of the aggregate. I say this even if this space were to reach
the surface of the Earth, which it does not; for its mouth remains covered by a very large
earthen vault, at the top of which is Jerusalem, and whose thickness is the eighth part of the
half-diameter.
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Archimedes treatises [23] were then part of the most erudite mathematics, which
the previous commentators of Dante, pure literary scholars, certainly did not master.
Galileo’s contribution calls for very particular expertise, which he can legitimately
boast of. This is undoubtedly how his claim to enlighten the controversy “for a
few reasons of our own” should be understood. It is not without interest to verify
Galileo’s estimates using both Archimedean formulations and algebraic expressions
that are now commonplace (although at university level—see Appendix 1). It should
be noted however that if the vault of Hell is re-established, with its thickness of one-
eighth of the earth’s radius, the total volume of Hell is considerably reduced, since
it is now only slightly less than 1/22 of the Earth’s volume (instead of 1/14).

4 A Line That Leads Naturally Towards the Centre

Galileo, in his commentary, does not only claim to be a mathematician, but also
calls upon his expertise as a novice physicist. It is in this capacity that he is going
to deliver a severe criticism of Vellutello’s comments. The latter, in fact, conceived
the successive tiers of the Inferno as portions of a cylinder with walls parallel to
their common axis, like the tiers of an ancient amphitheatre. Galileo contests this
interpretation, arguing that such walls are by no means vertical, since they should
then be generated by rays drawn from the centre of the Earth, since at two distant
points the directions of the verticals are not parallel, but convergent. Thus, according
to Galileo, the cliffs bordering the cylindrical steps of Velutello would in fact be
oblique in relation to the local vertical(s); the outer edges of these steps would be
markedly overhanging, and therefore absolutely unstable:

If [Vellutello] supposes that the gulch rises between equidistant banks, we will have upper
parts without supports to hold them, and therefore, inevitably, they will collapse. We know
in fact that the heavy bodies follow a line that leads them directly towards the centre, and if
on this line they find nothing to stop and support them, they continue to descend and fall.

In Manetti’s architecture, on the other hand, the walls of the tiers are truncated
cones, segments of nested cones with the centre of the Earth as their apex, so that
these walls, oblique to the axis of Hell, are directed towards the geometric centre of
the globe, considered by Galileo to determine the direction of the earth’s attraction.
The edition of the Crusca, which comes very shortly after Galileo’s Lessons, offers
a representation that is undoubtedly based on these Lessons, or at least confirmed
by them, which is perfectly clear in this respect. Galileo’s endorsement of this point
of view seems at first glance to be based on a convincing physical reasoning which
reinforces the scientific relevance of his discourse (Fig. 3).

On reflection, however, the physicist today is obliged to distance himself from
Galileo’s argumentation. First of all, Vellutello’s Inferno is very small: both its
depth and its maximum diameter are no more than a tenth of the values taken by
these dimensions in Manetti’s version (its bottom is about a tenth of the Earth’s
radius from the surface, far from the centre of the Earth), and its volume is therefore
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Fig. 3 Dante’s Inferno as shown in the edition la Crusca (1595)

a thousand times smaller. Under these conditions, the variation in the direction
of gravity from one point to another of Hell would be small, a few degrees at
most, and could be practically assimilated to the direction of the axis of Hell. It is
therefore a reasonable approximation to consider the tiers as portions of cylinders,
with parallel walls, as Vellutello proposes. But if one wants to be more precise,
which is necessary since Hell, according to Manetti supported by Galileo, has
dimensions of the order of the earth’s radius, Galileo’s reasoning comes up against
a serious modern objection. Indeed, the verticals (meaning: the directions of the
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force of gravity) at each point are directed towards the centre of the terrestrial
globe only if the latter is a complete sphere, uniformly full. However, as soon as
the globe is partially emptied by removing the vast conical space required by Hell,
the inner gravity field of this incomplete sphere is affected and the directions of
the local verticals are disturbed. Galileo certainly could not grasp this point and
even less had the means to evaluate the necessary modifications, which can only be
calculated using Newtonian gravitation theory. It is then somewhat ironic to note
that, according to this theory, the situation is rather similar to the one described
by Vellutello! Indeed, the attraction due to the hollowed part being removed, the
force of gravity at any place on the edges of Hell would be directed not towards
the geometrical centre of the sphere, but towards a point situated lower on the
axis of the infernal cone. Thus, the vertical walls of the tiers should not be cone
trunks with the centre of the Earth as a common vertex, but much more tightened
cone trunks, akin to cylindrical segments. Seen from the centre of the Earth, the
walls of the tiers would therefore appear to be more or less steeply overhanging.
In fact, the calculation according to the Newtonian theory of gravitation shows that
in Manetti’s Hell, the direction of gravity would in fact be almost parallel to the
axis of Hell everywhere (Appendix 2). Thus, and very curiously, from the point of
view of modern physics, the situation would finally be intermediate between the one
described by Manetti, and the one proposed by Velutello and retoqued by Galileo.
Galileo’s criticism, in that case, is therefore much less devastating than he thought
and then a first reading would lead one to believe.

The nodal point of the argument developed above consists of distinguishing the
geometrical centre of the globe from the attractive gravitational centre. From an
Aristotelian perspective, where geocentrism is absolute and where the centre of
the Earth is the intrinsic centre of the Universe, the natural place of gravity, this
distinction is obviously unthinkable. Galileo, in his Lessons on Hell, misses the
point, but one can legitimately wonder whether a later reflection on the situation
was not one of the sources of his remarkable anti-Aristotelian discussion of the
first Day of the Dialogue. Here we think of the passage where, long before the
development of Newtonian theory, the spherical shape of the Earth (and other stars)
is explained, not by the attractive power of the centre of the Earth considered as an
intrinsic property of a single privileged point in the universe, but as the result of the
mutual forces of attraction between the parts of the globe:

. . . the parts of the Earth move not because they tend towards the centre of the world, but
in order to reunite with their whole, and that is why they have a natural inclination towards
the centre of the globe, by virtue of which they conspire to form and preserve this globe.

In any case, there is no doubt that the Galileo of 1632, if he had taken up the
question of the verticality of the tiers of the Inferno, would have understood that on
and in an Earth deprived of a large volume, falling bodies would not follow “a line
that leads them directly to the centre” of the globe.
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5 In Search of the Size of a Giant

Finally, Galileo summons the theory of proportions to clarify certain aspects of
Dante’s description. First of all, he tackles the question of assessing the depth of
the icy well where Lucifer is sunk up to the waist at the bottom of Hell, his navel
coinciding exactly with the centre of the world. Galileo begins by evaluating the
size of the “giants” described by Dante as having a face as high as the famous
enormous terracotta pigna (pine cone) that decorates a Vatican courtyard (where it
is still visible today, with its three metres and a few feet high). Considering that the
ratio of head to body is the same in giants as in humans (i.e. 1 to 8), Galileo, by a
simple rule of three, attributes to the former a height of about 25 m. As for Lucifer,
he is so tall, according to Dante, that the ratio between the length of one of his arms
and the size of a giant is greater than the ratio between the size of a giant and that
of a human. Hence, by two new rules of three, the length of Lucifer’s arm, is about
340 m at least, and the height of Lucifer himself, not far from 1200 m.

But the problem is that Galileo here thinks like a pure geometrician, interested
only in the shapes of objects and beings, and not at all in their physical constitution.
Now, the resistance of materials follows laws of scale which are not those of simple
geometric proportions. This is a phenomenon that is empirically well known in craft
practice: if, starting from an object of modest dimensions—i.e. boat, framework,
cart—one increases all the dimensions in the same ratio to make a similar but larger
object, one realises that its fragility increases rapidly with the enlargement factor.
The first to have drawn the attention of physicists to this crucial point, laying the
foundations of the modern theory of the resistance of materials, was none other than
Galileo himself! This is the essential result of one of the two “new sciences” he
develops in the Discorsi [3]. The very beginning of the work forcefully announces
this conception:

SALVIATI: ( . . . ) Do not therefore believe any longer, Lord Sagredo, ( . . . ) that machines
and constructions made of the same materials, scrupulously reproducing the same propor-
tions between their parts, must be equally or, better said, proportionally capable of resisting
or yielding to shocks coming from outside, because it can be geometrically demonstrated
that the largest are always less resistant than the smallest; so that ultimately all machines
and constructions, whether artificial or natural, have a necessary and prescribed limit which
neither art nor nature can exceed, - it being understood, of course, that proportions and
materials always remain the same.

Galileo applied these ideas to the case of living beings, clearly demonstrating
that spatial homothety does not respect physical constraints, and that a large animal
needs limbs thicker in relation to its size than a small one in order to support its
weight (compare, for example an elephant, a dog, and a mouse):

( . . . ) it would be impossible, whether in the case of men, horses or other animals, to make
skeletons capable of lasting and regularly fulfilling their functions, at the same time as
these animals would grow immensely in height – unless ( . . . ) their bones were deformed
by enlarging them excessively, which would result in making them monstrous in form and
appearance.
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Echoing perhaps and in any case rectifying his considerations in the Lessons on
Hell, he further considers in the Discorsi the case of the giants:

( . . . ) if one wished to keep in a particularly large giant the same proportion as the limbs
have in an ordinary man, one would have to either find a much harder and more resistant
material to constitute its bones, or admit that its strength would be proportionally much
lower than that of men of mediocre size; otherwise, to increase its height without measure,
one would see it bend under its own weight and collapse.

Thus, Lucifer could not have the proportions of a human being, with dimensions
simply multiplied by a single scale factor. Either he must be singularly dispropor-
tionate, with limbs of monstrous relative thickness, or he must be very fragile. The
latter conclusion, moreover, could be defended since Lucifer is apparently immobile
and in a zone of practically zero gravity, thus hardly risking a fatal fall. Give or take
a few decades, this is the thesis that Galileo could have defended . . .

In the Lessons, Galileo again uses the reasoning of geometric proportionality to
develop an argument that is even more crucial than that of Lucifer’s size, since it
concerns the resistance of the earth’s cap serving as the vault of Hell. He writes:

[According to some], it does not seem possible that the vault covering Hell, as thin as it
must be with a Hell so high, can hold without collapsing and fall to the bottom of the
infernal abyss, ( . . . ) if it is not thicker than one-eighth of half a diameter ( . . . ). One can
easily answer that this size is quite sufficient: indeed, if one considers a small vault, made
according to this reasoning, which would have an arch of 30 fathoms, it would be about 4
fathoms thick ( . . . ); [but if] one had even one fathom, or ½, instead of 4, it could already
be maintained.

The comparison used by Galileo between the skullcap of Hell and a masonry
vault undoubtedly refers to the relationship between the structure of Dante’s Inferno
and the architecture of the famous dome of the Duomo of Florence designed by
Brunelleschi, which played an emblematic role in the Italian Renaissance [24];
incidentally, let us note that Manetti, whose views Galileo defended in his Lessons
on Hell, was also Brunelleschi’s biographer. But if the analogy between the cupolas
of Hell and the Duomo had a deep cultural meaning, its scientific value is nil, for
the same reasons that Galileo develops in the Discorsi: a vault as gigantic as that
of the Inferno, if it had the same geometric proportions as a small masonry vault,
would certainly not have the same solidity. In the light of modern conceptions about
gravity and the resistance of materials, the cover of Hell would inevitably collapse,
according to the very arguments that Galileo initiated. Indeed, the resistance of a
vault, like that of a beam or a bone, grows like the area of its section, whereas its
weight varies like its volume. If all dimensions are multiplied by the same scale
factor, 10, for example the weight will be multiplied by 1000 but the resistance
to collapse by only 100; it will be proportionally 10 times more fragile. There
is therefore necessarily a limit to the strength of a structure obtained by simply
changing the scale from a smaller solid structure. And in the case of the vault of
Hell compared to the small masonry vault envisaged by Galileo Galilei, where the
scale factor is several hundred thousand, this limit is more than obviously exceeded
and by a great deal.
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We touch here on a crucial point concerning the Lessons and their role in the
development of Galileo’s thought. It is indeed very likely that he quickly understood
his error of reasoning, resulting from a purely geometrical conception that does not
take into account the laws of scale concerning the physical properties of matter. And
it is the realisation of this misunderstanding that would have been at the origin of
his work on the resistance of materials, which the Discorsi exposes. This thesis,
put forward by Mark Peterson, is based on serious arguments [25]. The fact that
Galileo soon realised the fallacious nature of the changes of scale implemented in
his Lessons on Hell would explain in particular the discretion, even reticence, which
he showed almost immediately with regard to this work, as we have pointed out. He
certainly devoted intense reflection to these issues in the 1590s and 1600s. One can
even speculate that Galileo, understanding his error, suffered a real psychological
shock, which is echoed in the Discorsi, when immediately after Salviati’s founding
statement recalled above, his interlocutor reacts with a surprising emotionality:

SAGREDO: Already my head is spinning, and my mind, like a cloud suddenly torn apart
by lightning, fills for a moment with an unusual light that from afar lets me glimpse strange
and disordered ideas, only to fade and hide them immediately. For it seems to me that one
should conclude from your words that it is impossible to execute two constructions, at once
similar and unequal, with the same material, and whose resistance would be proportionally
identical.

These lines constitute an explicit refutation of the argument in the Lessons
assimilating the dome of Hell to an enlarged small masonry vault. There is every
reason to believe that Galileo quickly understood his error. In fact, although the
Discorsi were not published until 1638, the material was already ready before 1610,
when Galileo devoted himself to astronomical observations and published his first
major work, the Sidereus Nuncius. Thus, in a letter of 1609 to Antonio de Medici, he
sets out what is, almost 30 years ahead of time, an explicit summary of the Discorsi,
at least of their first Day:

I have recently managed to obtain all the results, with their demonstrations, concerning the
strengths and resistances of pieces of wood of various lengths, sizes and shapes ( . . . ), a
science which is absolutely necessary for making machines and all kinds of constructions,
and which has never before been treated by anyone. (quoted in [25], note 15).

It is, therefore, possible to consider the Lessons on Hell as the crucible in which
Galileo’s fundamental work in the Discorsi was initiated.

Another physical difficulty in Dante’s description can be highlighted, linked as
the previous one to the break-in symmetry that the infernal cavity would impose on
the distribution of the land masses. Galileo, if he had, a few decades later, raised
the question of the physical coherence of the Dantean model, would not have failed
to perceive the problem. The problem is that an Earth largely hollowed out by the
conical Hell would see its centre of inertia shifted: it would no longer coincide with
the geometrical centre of the globe, but would find itself offset on the axis of the
cone, in the opposite direction to that of Jerusalem. A quick calculation shows that
this shift would be of the order of 3% of the Earth’s radius, i.e. about 200 km. The
Earth would rotate on itself around this centre of inertia; the distribution of masses
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would no longer be isotropic (spherically symmetrical), but axially symmetrical, so
it would behave like a top. Since its axis of symmetry (passing through Jerusalem)
would not coincide with the axis of the poles, the diurnal rotational movement of
the Earth on itself would be considerably disturbed by a simultaneous precession
of the hyerosolomitan axis, which is contrary to the most banal observation. Thus,
mechanics alone would suffice to invalidate the idea of an infernal cavity within
the Earth. But, of course, placing the apex of Hell, Lucifer’s home, at the centre
of the Earth, only makes sense if this place is also the centre of the world, which
supposes the validity of geocentrism (which, let us recall, the young Galileo did
not yet reject). In the system of the Copernican world, it would be more natural to
transport Hell into the Sun—which would ensure the functioning of its furnaces.
Such a theory was seriously put forward in 1727 by Tobias Swinden [26].

6 By Inviting Him to Press the Pace

Remains an enigma in the Galilean commentary on Dante’s Inferno. Indeed, it
is strange that there is hardly any mention of the temporality of the journey of
Dante and Virgil. However, given the distances so precisely established by Galileo,
it is clear that the poet and his guide had to cover thousands of kilometres—
on foot, and even at the cost of quite arduous steps and climbs. But the entire
journey of the two men into Hell lasts less than three days—from the night of
Maundy Thursday 7 April 1300 to the evening of Holy Saturday! Let us note that
in Vellutello’s little Hell, where the distances amount to hundreds of kilometres
rather than thousands, the difficulty would be (a little) less serious . . . The paradox
is all the greater as we still find in Galileo’s text an allusion to the time of the
journey, precisely used as an argument against Vellutello’s geometry. Virgil, having
brought Dante to the first circle, urges him: “Let us go on, for a long road pushes
us on”. Galileo concludes that the distance they still have to travel is much longer
than that already covered, and that therefore Hell is certainly much deeper than a
tenth of the earth’s radius proposed by Vellutello. How then can we understand why
Galileo, being so precise in his numerical measurements of distances, did not make
a quantitative estimate of travel times? This is all the more strange since Galileo
was already concerned with the movement of bodies at the time. It is most likely
that he did make these calculations, and having realised that they were incompatible
with a realistic interpretation of Dantean narrative, he decided to ignore them—
without, however, being able to prevent himself from using them to cast a qualitative
argument, highly dubious in any case, against Vellutello. No doubt we must resign
ourselves, with Galileo, to admitting that Dante’s description, while it allows for a
coherent geographical interpretation of Hell, leaves the chronology of the journey
to the poetic license.
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7 . . . to Give Others the Opportunity to Interfere so Much
More . . .

Of course, there can be no question of making the Lessons on Hell the key to
the whole of Galileo’s work. For example, some have tried to see in the passage
where the monster Geryon carries the poet and his guide into the air, without
them perceiving the movement other than by the caress of the air as it passes, a
premonition of the principle of relativity, from which Galileo could have drawn
inspiration [27]. A similar idea was put forward by Primo Levi in one of his
very last texts, where he interprets this same passage as a foreboding of the
sensation of weightlessness experienced by astronauts in inertial orbits [28]. But
these suggestions do not really stand up to scrutiny, either of the text of Dante’s
poem or of its possible scientific significance.

Perhaps more interesting from a literary point of view is the visit that the young
Milton says he paid in 1638 to the old Galileo, who was then confined to his forced
residence in Arcetri—an encounter that is not attested to, but immortalised by a
statuary group representing the poet leaning on the physicist’s shoulder, which
can be seen on the ground floor of the physics department of the University “La
Sapienza” in Rome. In any case, in his great poem Paradise Lost, Milton explicitly
mentions Galileo on several occasions. One can only dream of the dialogue the two
men may have had on Dante’s work, a hypothetical source of Milton’s vision of
Hell [29, 30].

We would be remiss if we did not mention an interesting recent work, of an
inspiration very close to that of Galileo’s Lessons on Hell, in which a subtle modern
geometrical interpretation of Dante’s rather obscure description of Paradise, and
more generally of his entire spatial universe, is proposed. The physicist Mark A.
Peterson, already mentioned, shows that it is quite coherent to understand the
Dantean universe as intrinsically curved and closed, presenting the topology of
a three-dimensional sphere, which is unrepresentable within an infinite and flat
Euclidean three-dimensional space [31]. We would like to know how Galileo could
have felt about this analysis!

***

These hasty comments on a little-known episode in the history of the beginnings
of modern science allow to renew somewhat the old debate on the criteria of
scientificity that we apply to such and such a statement in order to award or deny it
the label “quality science”. Neither the logic of the argumentation—contradictory,
according to the orthodox methodological rules—nor the rigour of the calculations
or the accuracy of the observational facts is lacking in Galileo’s Lessons on Hell,
nor in the serious infernal studies of natural theology or in the (more or less
funny . . . ) hoaxes of modern physics on the same subject [32]. Where we see that
what characterises the admissibility of a statement in the scientific corpus is less
an assessment of its validity than a judgement on its relevance. It is, moreover,
easy to crosscheck this thesis, since many of the assertions of science as it is
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made—the majority, no doubt—prove to be erroneous without disqualifying the
research that produced them, as long as their interest is recognised by the scholarly
community. From this point of view, the classical opposition between an internalist
history of science, favouring the intrinsic dynamics of disciplinary work, and an
externalist history, emphasising the effects of their social environment, loses much
of its vigour. Indeed the question of the recognised relevance of such or such a
research programme precisely allows us to establish a link between the conceptual
organisation of a field of research and its cultural, ideological, economic or political
determinations.

Thus, the classical question of the validation or refutation of scientific ideas gives
way to considerations on their qualification or disqualification. In fact, many works
are abandoned without ever falling under explicit and redhibitory criticism; more
often than not, it is insidiously that the paths of research take a different direction,
leaving half-explored land lying fallow by the side of the abandoned road. If few
scientific works reach the Paradise of definitive recognition, few too are condemned
to the Hell of absolute oblivion or rejection. Most of them end up in Purgatory—just
like Galileo’s Lessons from Hell.

Annex 1 The Volume of Hell

According to Dante read by Galileo Galilei, Hell is a conical abyss whose apex is at
the centre of the Earth, the half-angle at the apex being equal to θ = 30◦, bounded
by a spherical cap and covered by a vault whose thickness O is equal to 1/8 of the
Earth’s radius (Fig. 4).

If Hell “reached the surface of the Earth”, and the volume of the vault covering
it is not taken into account, the volume of the cavity (delimited in section by the
OAJBO line) would be:

V ′ = 2

3
πR3 (1 − cos θ) , (1)

compared to the total volume of the Earth:

VTerrc = 4

3
πR3

that is, in proportion:

V ′

VTerrc
= 1

2
(1 − cos θ) ;
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Fig. 4 Earth and Hell (section). The disc with centre O (and radius OA’ = R), and the curved
triangle OAB (with half-angle 30◦ at its apex O) respectively represent the spherical Earth and the
conical Hell in a sectional view. The arcs AHB and A’JB’ delimit the vault covering Hell, with
a width HJ = d = R/8. KM and LN show the section of a cylinder circumscribed to the Earth
sphere. The area of the cap with section A’JB’ is equal to the area of the cylinder with height HJ
(Archimedes)

numerically,

V ′

VTerrc
=

(
2 − √

3
)

4
= 1

14, 92
. . . ,

a little less than the fourteenth part, as Galileo wrote.
But taking into account the vault, the height of Hell is reduced by a factor of 7/8,

and its volume by a factor of (7/8)3, hence now:

VEnfer

VTerrc
= 2 − √

3

4

(
7

8

)3

= 1

22, 3
. . .

Galileo certainly did not have the modern notations, let alone the resources
of integral calculus on which the above expressions are based. But Archimedes’
results, in his Treatise on the Sphere and the Cylinder (Archimedes c. 250 BC),
allowed him to reach the same conclusions without difficulty.
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Annex 2 Gravity in Hell

When the terrestrial globe is emptied to make room for Hell in the mode proposed
by Dante and commented on by Galileo, the distribution of masses loses its spherical
symmetry. Now it is this symmetry, as Newton later showed, that causes the
attractive forces exerted on any object by the different parts of the Earth to combine
into a total force directed towards the centre of the Earth and of an intensity equal
to that which would be exerted by a mass located at that point equal to the sum
of the masses of the parts of the Earth closer to the centre than the object under
consideration. This result depends crucially on the fact that the gravitational force
between two masses varies as the inverse of the square of their distance, which
obviously put it beyond Galileo’s reach. In the case of a hollowed-out sphere, the
calculation of the gravitational force at any point is far from immediate, even for
a hollow of elementary geometric form such as the infernal cone, and fairly heavy
numerical calculations are required. However, a simple model will provide us with
an interesting exact result, which confirms our conclusions on the perturbation of
the verticals.

Let us suppose a Hell no longer conical, but spherical. In all the interior space
of the infernal sphere as well as on its edges, the force of gravity would then be
uniform, having in any point the direction of the line joining the centres of Hell
and Earth and the same value (this is a small theorem of the Newtonian theory of
gravitation which can be demonstrated quite simply).

Thus, in this spherical model of Hell, whatever its size, it is paradoxically the
design of Vellutello (cylindrical steps with parallel edges), which would prevail over
that of Manetti (steps in truncated cones)!

In the Dantesque case of a conical Hell, the situation is certainly more compli-
cated. The numerical resolution of the equations which determine the potential and
the gravitational field, in this case, confirms, however, that the direction of gravity
within the Hell and up to its edges varies very little. Figure 5c shows the result of
such a calculation.
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Fig. 5 Gravity in Hell. The arrows show the direction and magnitude of the gravity field; (a) in a
filled Earth; (b) in an Earth hollowed with a spherical Hell; (c) in an Earth hollowed with a conical
Hell. For the two shapes of Hell, one sees that the field shows a constant direction—exactly for
(b), approximately for (c) [Calculations and figures by Jean-Paul Marmorat.]

References 3

1. Due Lezioni all’Academia Fiorentina circa la figura, sito e la grandezza dell’Inferno di Dante,
1588.https://www.liberliber.it/mediateca/libri/g/galilei/due_lezioni_all_accademia. A French
version, translated by Lucette Degryse: Galilée, Leçons sur l’Enfer de Dante, Fayard, 2008,

3 All the works by Galileo are available on line on the site of the Museo Galileo di Firenze: https://
galileoteca.museogalileo.it/indice.html.

https://www.liberliber.it/mediateca/libri/g/galilei/due_lezioni_all_accademia
https://galileoteca.museogalileo.it/indice.html
https://galileoteca.museogalileo.it/indice.html


A Mathematical Physicist in Hell 453

contains an interesting introduction by the translator, as well as a postface by the present author,
containing some technical details omitted here. An English translation by Mark A. Peterson is
available at https://www.mtholyoke.edu/courses/mpeterso/galileo/inferno.html.

2. In a letter of 1604 (sixteen years after the publication of the Lessons), a certain Luigi Alamanni
complained that he had not been able to obtain communication from the author.

3. Galileo Galilei, Discorsi e dimostrazione matematiche intorno a due nove scienze attenanti
alla mecanica & i movimenti locali, 1638. English translation by Stillman Drake, Two New
Sciences, University of Wiconsin Press, (1974). https://www.complete-review.com/quarterly/
vol3/issue3/galileo.htm

4. See the excellent biography by Ludovico Geymonat, Galileo Galilei, Einaudi, 1957. English
translation: L. Geymonat, Galileo Galilei, McGraw Hill, (1965)

5. Benivieni, G.: Dialogo di Antonio Manetti cittadino Fiorentino circa al sito, forma, & misure
dello Inferno di Dante Alighieri poeta excellentissimo, Florence: Filippo Giunta, ca. (1506)

6. Many illustrations of Dante’s Inferno by Sandro Botticelli are freely available on line: http://
www.worldofdante.org/gallery_botticelli.html

7. La comedia di Dante Aligieri con la nova espositione di Alessandro Vellutello. Francesco
Marcolini, Venise (1544)

8. Pierfrancesco Giambullari, De’l sito, forma, & misure, dello Inferno di Dante. Neri Dortelata,
Florence (1544)

9. Dante con l’espositione di M. Bernardino Daniello. Pietro da Fino, Venise (1568)
10. Agnelli, G.: Topo-cronografia del Viaggio dantesco. Hoepli, Milano (1891)
11. Orlando, S.: Geografia dell’Oltretomba dantesco. in Coll., Guida alla Commedia, Milano

(1993)
12. Kleiner, J.: Mismapping the Underworld: Daring and Error in Dante’s “Comedy”. Stanford

University Press (1994)
13. Angelini, A., Magnaghi-Delfino, P., Norando, T: “Galilei’s Location, Shape and Size of

Dante’s Inferno: An Artistic and Educational Project”. In Proceedings of the 13th Conference
on Applied Mathematics, Bratislava (2014). https://www.academia.edu/14169791/

14. Panofsky, E.: Galileo as a Critic of the Arts. Springer (1954)
15. Raffin, F.: “Vision métaphorique et conception mathématique de la nature: Galilée, lecteur du

Tasse”. Chroniques italiennes. 29(1) (1992)
16. Lévy-Leblond, J.-M.: Science in Want of Culture. Futuribles. (2004)
17. Grünbein, D.: Galilei vermißt Dantes Hölle und bleibt an den Maßen hängen, 1996, pp. 89–

104. See a critical comment in [18] (Orthofer 2002).
18. Orthofer, M.A.: “Galileo in Hell”. Complete Rev. III(3) (2002)
19. Galileo Galilei, Dialogo sopra i due massimi sistemi del mondo, 1632; English translation by

Stillman Drake, Dialogue concerning the Two Chief System. University of California Press,
1967.

20. Galileo Galilei, Il Saggiatore, 1623. Abridged English translation by Stillman Drake and C. D.
O’Malley, The Assayer In: The Controversy on the Comets of 1618. University of Pennsylvania
Press (1960)

21. Lévy-Leblond, J.-M.: “La langue tire la science”. In: La pierre de touche (La science à
l’épreuve), pp. 228–251. Gallimard (“Folio-Essais”) (1996)

22. Galileo Galilei: Lettera alla granduchessa Cristina di Lorena. English translation by Stillman
Drake in Discoveries and Opinions of Galileo. Doubleday Anchor Books (1957). On line http:/
/inters.org/galilei-madame-christina-Lorraine

23. Heath, E.: The Works of Archimedes. Dover (2003)
24. Toussaint, S.: De l’Enfer de Dante à la coupole. Dante, Brunelleschi and Ficin. L’Erma (1997)
25. Peterson, M.A.: “Galileo’s discovery of scaling laws”. Am. J. Phys. 70, 575 (2002)., or

<arXiv:physics/0110031, v3, 5 Feb 2002>
26. Swinden, T.: An Enquiry Into the Nature and Place of Hell, 1727. Reprinted by Gale Ecco

(2010)
27. Ricci, L.: “Dante’s insight into Galilean Invariance”. Nature. 434, 717 (2005)
28. Levi, P.: “Weightless”. Granta. 21 (1987)

https://www.mtholyoke.edu/courses/mpeterso/galileo/inferno.html
https://www.complete-review.com/quarterly/vol3/issue3/galileo.htm
http://www.worldofdante.org/gallery_botticelli.html
https://www.academia.edu/14169791/
http://inters.org/galilei-madame-christina-Lorraine


454 J. Lévy-Leblond

29. Steggle, M.: “Paradise Lost and the Acoustics of Hell”. Early Mod. Lit. Stud. 7(1), 1–17 (2001)
30. Henderson, H.: “A dialogue in paradise: John Milton’s visit with Galileo”. Phys. Teach. 39,

179–183 (2001)
31. Mark, A.: Peterson, “Dante and the 3-Sphere”. Am. J. Phys. 47, 1031–1035 (1980)
32. Lévy-Leblond, J.-M.: “Science de l’enfer et envers de la science”, pp. 70–93. Seuil, La vitesse

de l’ombre (2006)



Don’t Tell Me the Cybersecurity Moon Is
Shining. . .

Cybersecurity Show and Tell

Luca Viganò

1 Show, Don’t Tell!

In May 1886, the Russian playwright and short-story writer Anton Chekhov wrote a
letter to his brother Alexander, who too had literary ambitions, providing him with
the following advice:

In descriptions of Nature one must seize on small details, grouping them so that when the
reader closes his eyes he gets a picture. For instance, you’ll have a moonlit night if you
write that on the mill dam a piece of glass from a broken bottle glittered like a bright little
star, and that the black shadow of a dog or a wolf rolled past like a ball. [1]

This is often misquoted as

Don’t tell me the moon is shining; show me the glint of light on broken glass.

but the misquote is understandable: it is crisper and, essentially, preserves the
intended meaning. It is a concise injunction that has become the literary command-
ment for any writer: show, don’t tell!

The distinction between telling and showing was popularized by the literary
scholar Percy Lubbock in his 1921 book “The Craft of Fiction” [2]. Show, don’t tell
is a writing technique in which story and characters are related to the reader through
action, words, dialogues, thoughts, senses, and feelings rather than through the
author’s exposition and description. In a nutshell, telling states, showing illustrates.

Several other literary scholars and writers have since then discussed the show,
don’t tell style of writing, including Ernest Hemingway and Stephen King, two of
the style’s most prominent proponents. For instance, in his memoir “On Writing: A
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Memoir of the Craft,” Stephen King writes:

Description is what makes the reader a sensory participant in the story. [. . . ] Description
begins with visualization of what it is you want the reader to experience. It ends with your
translating what you see in your mind into words on the page. It’s far from easy. [. . . ] Thin
description leaves the reader feeling bewildered and nearsighted. Overdescription buries
him or her in details and images. The trick is to find a happy medium. [3, pp. 173–174]

Show, don’t tell applies also to all forms of fiction (including poetry, scriptwrit-
ing, and playwriting) and to non-fiction (including speech writing and blogging).
Does it apply also to scientific writing? Of course, it does. In fact, even though I am
not aware of any explicit theoretical (or practical, for that matter) investigation of
the use of show, don’t tell in scientific writing, the show, don’t tell spirit lies at the
heart of many successful scientific communication and storytelling approaches, such
as those discussed in John Brockman’s “The Third Culture: Beyond the Scientific
Revolution” [4].1 Storytelling has been used widely, and very successfully, as a
pedagogical device in textbooks and science outreach endeavors, e.g., [5–9] to
name a few. Rina Zazkis and Peter Liljedahl, in particular, have been instrumental
in promoting storytelling in the mathematics classroom. They begin their book
“Teaching Mathematics as Storytelling” by writing:

We like to tell stories. We tell stories about mathematics, about mathematicians, and about
doing mathematics. We do this firstly because we enjoy it. We do it secondly because the
students like it. And we do it thirdly because we believe that it is an effective instructional
tool in the teaching of mathematics. We are not alone in this. There is ample literature
to support the enjoyment of storytelling on the part of both the story teller and the story
listener. There is also an abundance of anecdotal data that suggest “telling a story creates
more vivid, powerful and memorable images in a listener’s mind than does any other means
of delivery of the same material” [10, p. xvii]. Aside from the educational value, however,
there is also beauty. There is beauty in a story well told, and there is beauty of a story that
can move a listener to think, to imagine, and to learn. [11, p. ix]

I find this remark about beauty particularly fascinating, especially since my
colleague Giampaolo Bella and I have been reflecting about beauty in security [12],
which has led us to work with Karen Renaud and Diego Sempreboni to investigate
the beautification of security ceremonies (i.e., protocols that are executed by
machines and human users) [13]. We are currently working on a deeper analysis
of the role that beauty plays in security, but I am digressing from the main topic of
this paper, so let me return to Zazkis and Liljedahl, who, a few lines after the quote
above, discuss the purpose of telling stories in the classroom:

We tell stories in the mathematics classroom to achieve an environment of imagination,
emotion, and thinking. We tell stories in the mathematics classroom to make mathematics
more enjoyable and more memorable. We tell stories in the mathematics classroom to
engage students in a mathematical activity, to make them think and explore, and to help
them understand concepts and ideas. [11, p. ix]

1 See also Edge.org, the website of the Edge Foundation, Inc., which was launched in 1996 as the
online version of “The Reality Club” to display the activities of “The Third Culture.”
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They quote Egan:

Telling a story is a way of establishing meaning. [14, p. 37]

and then talk about the power of images:

One result of the development of language was the discovery that words can be used to
evoke images in the minds of their hearers, and that these images can have as powerful
emotional effects as reality might, and in some cases even more. [11, p. 15]

In fact, when Egan, Haven, Zazkis, and Liljedahl, as well as many others,
speak of telling, and then, more concretely, of storytelling, they invoke images and
imagery. One would be tempted to cite the old adage “A picture is worth a thousand
words.”2 So, if storytelling is powerful, and images and pictures even more so, why
not combine them? Why not tell and show? Or, better, show and tell?

2 Show and Tell

Dan Roam has written a number of books, including “The Back of the Napkin” [15]
and “Show and Tell” [16], in which he has been proposing visual thinking and
storytelling for problem solving.3 Roam is also an engaging speaker and some of
his presentations are available online. In particular, when he presented “The Back
of the Napkin” at Google [18], he said:

Any problem can be clarified significantly, if not outright solved, through the use of a
picture.

Drawing on his collaborations with visual scientists and neurobiologists, he added:

If we can take the time to use these simple pictures to help us figure out what we’re talking
about, we now have this incredibly powerful tool to use to share with other people when we
meet them, and the beauty of it is that they’re not going to forget what we told them. [. . . ]
When we draw in front of someone at the same time that we’re talking, [. . . ] we are actually
activating processing centers in the brain that are really, really excited. Our brain wants to
get information visually as well as verbally [. . . ] when we draw the picture at the same time
that we’re talking, they get it and it’s like manna for the person’s brain. This is the way the

2 In 1921, the advertising trade journal “Printer’s Ink” published an article by Frederick R. Barnard
titled “One Look is Worth a Thousand Words” in which Barnard claims that the phrase has Japanese
origin. But in 1927, “Printer’s Ink” published an advert by Barnard with the phrase “One Picture
Worth Ten Thousand Words,” where it is labeled a Chinese proverb. The Japanese and Chinese
attributions were meant to give it more credibility, a sense of gravitas and a touch of mystery and
philosophy, so much so that the proverb is nowadays commonly, and wrongly, attributed to the
Chinese philosopher and politician Confucius.
3 “Show and tell” is also the name of a common classroom activity in elementary schools,
especially in English-speaking countries, in which a child brings an item from home and explains
to the class why he/she chose that item and other relevant information. This activity is useful also
for adults [17], but it is quite different from the show and tell that Roam champions and the one
that I discuss here.
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brain wants to process information. [. . . ] The picture is something that is archival and can
be taken along, and we essentially guarantee that the person we gave it to, that we drew this
picture for, really does understand what we were talking about [. . . ] almost invariably we
can guarantee that they understood it in exactly the way we meant because we created the
picture with them.

In this talk, and in his books, Roam proposes to draw pictures in real time when
presenting an idea, when addressing a problem and pitching its possible solution.
This is one of the possible ways in which one can realize show and tell. In this
chapter, I will mainly explore another way, namely the use of existing artworks
(films, in particular, but not only). The idea is that while show, don’t tell is the
commandment for fiction, in the case of non-fiction, show and tell is often the best
approach when one wants to present, teach, or explain complicated ideas such as
those underlying notions and results in mathematics and science, or in cryptography
and cybersecurity, which is my own discipline.

In my paper “Explaining Cybersecurity with Films and the Arts” in “Imagine
Math 7” [19], I discussed how, in the context of research in Explainable Security
(XSec) [20], popular movies and other artworks can be used to explain a number of
basic and advanced cybersecurity notions, ranging from security properties (such as
anonymity, pseudonymity, and authentication) to the algorithms, protocols, and sys-
tems that have been developed to achieve such properties, and to the vulnerabilities
and attacks that they suffer from. As this paper is a natural continuation of [19], let
me repeat some text that I wrote there and then expand on it:

In [20], we discussed the “Six Ws” of XSec (Who? What? Where? When? Why? and How?,
as summarized in Fig. 1) and argued that XSec has unique and complex characteristics:
XSec involves several different stakeholders (i.e., system’s developers, analysts, users and
attackers) and is multi-faceted by nature, as it requires reasoning about system model, threat
model and properties of security, privacy and trust as well as concrete attacks, vulnerabilities
and countermeasures.

This paper, like [19], is mainly about the “Who?” and the “How?”. As pointed out
in [20], the recipients of the explanations might be so varied, ranging from experts to
laypersons, that they require quite radically different explanations, formulated using
different languages. Experts typically only accept detailed technical explanations,
whereas laypersons are often scared off by explanations of cybersecurity (say, how
to interact with a system or an app) that are detailed but too technical. Such an
explanation might even repulse the laypersons and make them lose all trust in
the explanation and, ultimately, in the cybersecurity of the system that is being
explained. This repulsion and lack of trust might lead to users interacting with
systems in ways that, unbeknownst to the users and possibly even to the developers
and administrators of the systems, are vulnerable to attacks (to the systems and to
the users themselves). In practice, however, laypersons are rarely given explanations
that are tailored to their needs and their ability to understand.

As discussed in [19], clear and simple explanations with popular films and the
arts allow experts to target the laypersons, reducing the mental and temporal effort
required of them and increasing their understanding and ultimately their willingness
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Fig. 1 The Six Ws of Explainable Security (from [20])

to engage with cybersecurity systems. In other words, with reference to the research
roadmap for XSec that was laid out in [20], this chapter and [19] focus on:

• Who? The experts (the system developers but possibly also independent third
parties) provide explanations to the laypersons.

• How? Using popular films and the arts. (It would also be interesting to consider
“inventing” new artworks, possibly in real time, like Roam’s drawings, and I will
return to this in the concluding remarks.)

The other “Ws” should, of course, be considered too:

• What? Everything that pertains to cybersecurity, such as properties, algorithms
and protocols, threats, vulnerabilities, and attacks. Paraphrasing Roam’s assertion
quoted above, the problem that we want to tackle, and in some cases hopefully
outright solve, is the clarification of cybersecurity notions through the use of
static or moving pictures (i.e., films) and other artworks.

• Where? These explanations could actually be anywhere, either co-located with
the system or detached from it.

• When? As these explanations mainly target the system users, the explanations
will be given when (or after) the system is deployed, but it will also be useful
for the system developers to start working on the explanations at system design
time (unless the explanation is provided by a third party, independent of the
developers). Such explanations are also an effective instructional tool in the
teaching of mathematics, as advocated by Zazkis and Liljedahl [11] and as I
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have been doing for 20 odd years, using films and artworks during lectures and
in public engagement talks on cybersecurity.

• Why? To increase the laypersons’ understanding, confidence, trust (and more) in
cybersecurity.

There is also a second “Why?”, namely why use popular films and artworks
to explain cybersecurity? Because the added power of telling (i.e., explaining
notions in a technical way) and showing (via visual storytelling or other forms of
storytelling) can help experts to convey the intuition in addition to the technical
definition.

I have given some examples in [19] considering security properties such as
authentication, anonymity, unobservability, and untraceability, and some algorithms
and mechanisms to achieve them (or to attack them). Let me give here another
example about anonymous communication or, more specifically, unobservability of
message exchanges and untraceability of messages.

Example 1 Assume that Alice wants to send a message to Bob, but she does not
want the attacker Charlie to trace the communication, i.e., Alice (and possibly Bob
too) does not want Charlie to observe that Alice sends the message and that the
message is received by Bob. The point here is not to keep the contents of the
message confidential (that can be achieved by encryption, if needed) but rather that
the communication Alice—Bob is confidential, i.e., that Charlie is not able to trace
the message and observe that the communication is taking place. There might be
plenty of reasons to keep a communication confidential. For instance, Alice might
be an employee of Charlie’s company and would not want Charlie to know that she
has applied for a job at Bob’s company, or Charlie might be a crime lord, Alice a
snitch, and Bob the Police. In such cases and many others, it is therefore in Charlie’s
interest to monitor the network over which messages are sent and received (say it
is the Internet) and trace messages as they move from one machine to the other
in the network, from sender to receiver. And it is in Alice’s interest (and possibly
Bob’s too) to find a security solution to impede Charlie to carry out such tracing,
even when it is assumed that Charlie is able to monitor the whole network, as
is typically assumed in security analysis, where one considers the most powerful
attacker possible, e.g., one who is able to monitor the whole Internet. If the adopted
security solution is able to withstand the attacks of such most powerful attacker, then
it will for sure be able to withstand also the attacks of a real, and thus less powerful,
attacker.

Some security solutions for anonymous communication over a network (and
unobservability and untraceability of messages) have been implemented, such as
Mix Networks [21] and Onion Routing [22], but they are among the security
solutions that are most difficult to explain from a technical point of view. Similarly,
one can give a natural language definition of untraceability,

Untraceability of an object during a process under observation of an attacker is the property
that the attacker cannot follow the trace of the object as it moves from one participant or
location to another. [23]
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and then refine this initial definition by providing a more formal one, a mathematical
one, but I am fairly certain that some readers have already found the natural language
definition to be quite difficult to digest, and they would find the technical definition
and the solutions even more impenetrable.

The intuition behind the property and the solution is, however, quite simple. So,
rather than telling you that the Mix Network moon is shining, let me first show you
the glint of light on untraceable communications. Once you get the intuition, the
technical explanation will hopefully be much more understandable (if you are, say,
a cybersecurity student learning how Mix Networks work) or maybe not needed at
all (if you are a layperson interested in understanding why you should trust Mix
Networks but not so much in their inner workings). In fact, I will not tell you the
technical explanation in this chapter, but only show how and why it works.

Consider the network delimited by the dotted line in Fig. 2, where the squares

represent machines that distribute messages in the network, and meet Alice and

Bob . I do not show the attacker Charlie explicitly, but you can picture him at
bird’s-eye view, observing the whole network. If Charlie is able to ensure Alice’s
message is the only one in the network, as in Fig. 3, then tracing the communication
is a trivial task. It is as if the police were chasing a car on a highway, and that car is
the only one on that highway.

In fact, to show this, consider the photo in Fig. 4. On June 17, 1994, former
NFL player O.J. Simpson was formally charged with the murders of his ex-wife,
Nicole Brown Simpson, and her friend Ron Goldman. Instead of turning himself in,
Simpson drove off into a white 1993 Ford Bronco SUV and became a fugitive of
the law. The low-speed car chase that ensued was watched live by an estimated 95

Fig. 2 Alice, Bob, and the
network

Fig. 3 Alice sends a message
to Bob. . . , but it is the only
message in the network and
thus can be easily traced
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Fig. 4 The police chasing
O.J. Simpson’s white Ford
Bronco (it was impossible to
trace the author of this photo
even though many
newspapers online have used
it)

Fig. 5 Some more agents,
some more messages

million people and indeed the police closed the highways so that they could easily
follow the car for about 60 miles until Simpson’s home.

The car chase would have been more challenging had there been other cars on
the highway (instead of having been forced to pull over as shown in the photo). So,
let us add some more agents who send and receive messages alongside Alice and
Bob (the machines in the network are also allowed to send messages), as shown in
Fig. 5. Charlie’s task is now more complex, but still feasible: if he wishes to find
out who Alice is communicating with, Charlie just needs to follow the messages
that are sent by Alice to the first machines in the network, then follow the messages
that are sent by these machines, and so on, until he has identified all possible traces
from Alice to the possible recipients. Basically, this means dispatching one police
car for every suspect car. A powerful attacker would certainly have enough police
cars at his disposal. Hence, to achieve untraceability, we need suspect cars, lots of
suspect cars. That is, we need many more agents sending and receiving many more
messages as shown in Fig. 6. Charlie would now need to follow all of the messages,
and the more there are, the harder Charlie’s task as Alice’s message could be any
one of the messages that are circulating in the network. In technical terms, this
set of messages is called the anonymity set: Alice’s communication with Bob is
anonymous as Alice’s message is not identifiable within the set of messages. Of
course, the larger the set, the higher the level of anonymity.

I have already discussed anonymity sets in [19] using the “I’m Spartacus!”
scene in Stanley Kubrick’s “Spartacus” [24] and the climatic museum scene in
“The Thomas Crown Affair” [25] (and more). As I observed in [19], the main idea
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Fig. 6 Toward untraceability

underlying the way in which Mix Networks realize untraceability of messages is
that there are plenty of messages circulating in a network and that such messages all
look alike (in the sense that they are all plausible messages). But Mix Networks do
more than that. The machines in the network are called “Mixes” since they receive
a batch of messages in input, mix them, and then output them in different order,
so that an attacker who is observing the input and output of each Mix, but cannot
open the Mixes to look at the inner working, cannot associate output messages with
input messages. There is no first-in/first-out or last-in/last-out association (nor any
other association such as first-in/last-out). The first message that is output by a Mix
could correspond to any of the messages that the Mix received in input. Moreover,
Mixes also ensure that there is always enough traffic in the network by sending
“dummy messages” (i.e., fake messages that are then discarded) and they require
that all messages have the same size.

How can we “show” that? For instance, by using a scene from the movie “Baby
Driver” [26]. The movie begins with a bank heist and the ensuing car chase: three
bank robbers are escaping in a red sedan car (a 2006 Subaru WRX STI in San
Remo Red) chased by several police cars and a helicopter. Baby, the robbers’
getaway driver, has a brilliant idea: he enters a highway by going the wrong way
into oncoming traffic4 and then performs a u-turn to merge into normal traffic when
he spots two other similar red sedan cars proceeding side by side. Aerial shot from
the helicopter: three red cars side by side, with Baby’s car in the middle. But when
the cars enter a short tunnel, Baby performs a mix: he drives in front of the car on
his left and breaks suddenly, forcing that car to take Baby’s place in the middle of
three to avoid a collision, so that, when they exit the tunnel, the helicopter continues
to chase the car in the middle and Baby’s car can safely escape by taking the next
exit. Traffic, an anonymity set consisting of similar, if not identical, cars and a mix
changing the order of the “messages”: Baby gets away using a small Mix Network.

�

This lengthy example has hopefully demonstrated that even challenging concepts
such as untraceability and Mix Networks can benefit from the show and tell
treatment. I urge you to watch the movie scenes that I have referenced above (and the
ones I will mention below) as doing so will bear witness to the fact that the synergy

4 This is an homage to another great car chase, the one in “To Live and Die in L.A.” [27].
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between showing and telling adds another dimension to what is told, a sensory one
based on visual storytelling.5

As discussed in [19] and above, a clear and simple explanation, with something
that they are already familiar with, such as a non-security-related movie or novel,
will help make laypersons less irritated, stressed, and annoyed, and thus more
receptive. Different from [19], in the remainder of this chapter, I take a more
systematic approach, mapping different approaches to cybersecurity show and tell.

Zazkis and Liljedahl consider stories that frame or provide the background for a
mathematical activity, and they distinguish between stories that introduce and stories
that accompany and intertwine with mathematical activity. In particular, they discuss
the following categories of stories for the teaching of mathematics:

• Stories that set a frame or a background, i.e., stories in which hero(in)es have
to overcome obstacles to reach their goal (e.g., Oedipus solving the riddle of the
Sphinx), stories of secret codes (e.g., stories in which decoding a message can
save lives, or point to a treasure, win a princess’ heart, or ensure fame and glory),
and stories of treaties or contracts (e.g., the “contract” that Multiplication and
Division shall be performed before Addition and Subtraction, but in the order in
which they appear in any calculation).

• Stories that accompany the content (e.g., derived from the history of mathematics
and the lives of mathematicians) and stories that intertwine with the content
in which mathematical content emerges through the story, at times leaving the
story behind and at times staying with the story. Zazkis and Liljedahl point
out that the latter are harder to find, but still they are able to provide some

5 This is reminiscent of the way in which a musical score adds an emotional layer to the images of a
film, thus contributing in a fundamental way to the storytelling. This has been explained brilliantly
by Stewart Copeland in the second episode, aptly titled “Telling Tales,” of the documentary [28],
in which Copeland discusses music in films with composer Danny Elfman:

Copeland: Why do the directors need this? They’re telling a perfectly good story, with a
perfectly terrifying antagonist, a handsome protagonist, a beautiful love interest. Why do they
need music?

Elfman: Because music does something they learned very early on, that the pictures couldn’t
do.

Copeland: Take the decidedly lukewarm chills of early horror movies, for example.
Elfman: In the very first Frankenstein and the first Dracula, no music. All music was, in the first

films, was opening and closing, like a play, and then they figured out a few years later, 1933
and 1935, “Why don’t we take it up a level?” If you put this dramatic music, it really raises the
stakes.

Copeland: As shown in in the pioneering movie King Kong.
Elfman: And if you put something heartbreaking when, you know, your hero or heroine is going

to die, it really raises the stakes. [. . . ] It goes straight to the heart.

In addition to “Frankenstein” [29], “Dracula,” [30] and “King Kong” [31], Copeland and Elfman
then also discuss on how Bernard Herrmann’s score punctuates and amplifies Alfred Hitchcock’s
images in the movie “Vertigo.”
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interesting examples (e.g., using true and apocryphal stories about the Syracusan
mathematician Archimedes).6

• Stories that introduce, i.e., stories that serve well to introduce concepts, ideas,
or a mathematical activity (e.g., introducing exponential growth through the
classical story of grains of rice and the chessboard).

• Stories that explain, e.g., riddles such as the “missing dollar” or “If a hen-and-a-
half lays an egg-and-a-half in a day-and-a-half, how many days does it take one
hen to lay one egg?” Zaskis and Liljedahl support this kind of stories by writing:

Mathematics is often perceived by learners as a collection of facts and skills; facts and
skills that are sometimes seen as counterintuitive. When this happens a common reaction
is to seek refuge in the meaningless memorization of rules. Experienced teachers can
easily point to such places, places in which encounters with mathematics are most
puzzling and rules are most prevalent. Instead of reciting rules, however, we suggest
explaining these rules with stories. [11, p. 51]

which reinforces the point that I tried to make above when discussing the benefits
of explaining cybersecurity through artworks and to which I will return below.

• Stories that ask a question and encourage the students to engage with the story
to arrive at the answer.

• Stories that tell a joke, since humor can enhance both the telling and the hearing
of a story, and thereby indirectly influence learning. Two notable examples about
arithmetic and logic are “Mathematics is made of 50 percent formulas, 50 percent
proofs, and 50 percent imagination.” and “Hofstadter’s Law: It always takes
longer than you expect, even when you take into account Hofstadter’s Law.” [37,
p. 152]

Zazkis and Liljedahl then also discuss how teachers can create a story and
they provide a “planning framework” demonstrating how instruction of specific
mathematical topics or concepts can be planned and implemented.

3 Cybersecurity Show and Tell

So, what about cybersecurity? Without limiting the discussion to teaching, but
considering all kinds of learning experiences, including scientific communications
and public engagement or outreach activities, we can first of all divide the use of
artworks to explain cybersecurity into two broad categories:

• Using existing artworks
• Using new artworks that have been created on purpose

6 I have also some experience with this: in the early Noughties, I wrote a play about the
French mathematician Évariste Galois, who was killed in a duel at age 20 in 1832 [33–35]. The
Teatro Stabile di Genova, which produced the play, had the brilliant idea to schedule morning
performances for middle and high school students, and I have been told by many of them that they
had never thought that mathematics could be thrilling and moving.
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My work so far has focused on the first category, but together with colleagues
in computer science and psychology and with artists and curators we have begun
tackling also the second category, so let me focus on the first and conclude by
providing a few more details about the second. The existing artworks can be divided
into the following 4 sub-categories, for which I provide lists of examples that are by
no means exhaustive:

• Artworks about hackers, codebreakers, and cybersecurity experts
• Artworks about detectives or spies who use or are confronted with cybersecurity

problems and solutions
• Artworks about ordinary people confronted with cybersecurity or artworks with

references to cybersecurity
• Artworks that are not explicitly about cybersecurity but can be used to explain

cybersecurity notions

3.1 “Yes, I Am a Criminal. My Crime Is that of Curiosity. I Am
a Hacker, and This Is My Manifesto.” [38]

This category includes artworks about hackers, codebreakers, and cybersecurity
experts, who make for very interesting hero(ine) or anti-hero(in)es. In May 2021, a
search on the Internet Movie Database (www.imdb.com) with the keyword “hacker”
returned 558 titles of films and TV series, many of which were adapted from
novels. Notable examples range from faithful or apocryphal biographies of famous
codebreakers and cryptologists like Alan Turing [39, 40] and John Nash [41] or less
famous or even made-up ones [42, 43], to stories of bad “black-hat” hackers who
carry out cyberattacks or of good “white-hat” hackers who save the day such as in
the film “Hackers” [38] quoted in the title of this category7 as well as in [45–56].
Some are quite realistic in their depiction of cybersecurity, few are real, most are

7 That quote was inspired by the article “The Conscience of a Hacker” written by the real-life
hacker “The Mentor” shortly after his arrest [44]. The article ends with the following words:

This is our world now. . . the world of the electron and the switch, the beauty of the baud.
We make use of a service already existing without paying for what could be dirt-cheap
if it wasn’t run by profiteering gluttons, and you call us criminals. We explore. . . and you
call us criminals. We seek after knowledge. . . and you call us criminals. We exist without
skin color, without nationality, without religious bias. . . and you call us criminals. You build
atomic bombs, you wage wars, you murder, cheat, and lie to us and try to make us believe
it’s for our own good, yet we’re the criminals.
Yes, I am a criminal. My crime is that of curiosity. My crime is that of judging people
by what they say and think, not what they look like. My crime is that of outsmarting you,
something that you will never forgive me for.
I am a hacker, and this is my manifesto. You may stop this individual, but you can’t stop us
all. . . after all, we’re all alike.

www.imdb.com
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inventive, giving black/white-hat hackers and codebreakers almost superhero-like
abilities, but all of them make for a good show companion, as a speaker can discuss
how faithfully or not cybersecurity has been portrayed. In fact, bad portrayals can
be particularly useful to discuss misconceptions and correct possible prejudices.

In addition to films and TV series, there are also a few plays about cybersecurity,
such as “Teh Internet Is Serious Business” (sic!), which provides a fictional account
of the hacktivism of the collectives Anonymous and LulzSec and in which coding
is ingeniously and amusingly symbolized by means of interpretive dance [57],
as well as “Hackers” [58] and “The Nether” [59]. There are also many novels,
such as, to name just the works of some of the most influential authors, the
“Sprawl trilogy” [60] by William Gibson, the cyberpunk writer who coined the
word “cyberspace” in the short story “Burning Chrome,” Neal Stephenson’s “Snow
Crash” [61] and “Cryptonomicon” [62], Dan Brown’s “Digital Fortress” [63], as
well as Stieg Larson’s “Millennium” trilogy [64] (and the film adaptations that
have been filmed in Sweden and the USA [65–68]), and the sequel by David
Lagercrantz [69] (which too has been filmed [70]). Showing with plays and novels
might be less immediate and thus more challenging, but that does not mean that it
will be less effective.

3.2 “I Have Said Enough to Convince You that Ciphers of This
Nature Are Readily Soluble.” [71]

This category includes artworks about detectives or spies who use or are confronted
with cybersecurity problems and solutions. This category is closely connected to the
previous one, and in many cases there are some overlaps, e.g., serial killers writing
in code such as the “Zodiac Killer” [72], criminal masterminds using steganography
to hide their messages [73], or the mathematics prodigy who helps his FBI-agent
brother solve crimes in the TV series “NUM3ERS” [74].

As pointed out by John F. Dooley, codes and ciphers have a long history in fiction.
In addition to his publications [75, 76], Dooley has been collecting a list of pieces
of fiction (short stories, novels, chapters in novels, etc.) that contain cryptographic
riddles of one sort or another as part of the story line.8 In fact, several fictional
detectives have had to solve cryptographic riddles, starting with the short story “The
Gold Bug” by Edgar Allan Poe [71], who is generally considered the inventor of the
detective fiction genre, but who also had a keen interest in cryptography and in 1841
wrote an essay about secret writing [78]. The most famous private detective of all,
Arthur Conan Doyle’s Sherlock Holmes, also had to solve several cryptographic
riddles, in particular in “The Adventure of the Dancing Men” and “The Valley of
Fear” [79, 80], and so had his doubly fictional sister Enola in Nancy Springer’s
“The Enola Holmes Mysteries” series [81] (all of these have also received film

8 See also the collection of stories of code and ciphers edited by Raymond T. Bond [77].
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and TV adaptations, e.g., [82–84]). Dilettante detectives have also been tackling
cryptographic riddles, e.g., Lord Peter Wimsey in [85], the historian and amateur
cryptologist Benjamin Franklin Gates [86, 87], and Robert Langdon, the Harvard
professor of history of art and religious symbology9 created by Dan Brown [89–
92].

Also these professional and dilettante detectives are typically given abilities that
border on the fantastic as they “see” the solutions of the cryptographic riddles in
a matter of minutes, if not seconds. They picture them in their head before anyone
can and often when nobody else does. This is “showing” in a way that is exclusive
rather than inclusive. Similar to the characters of the first category, this facility for
cryptography and cybersecurity creates a clear distinction from ordinary people and
turns them into true hero(in)es and anti-hero(in)es. Portrayals of spies and secret
agents (such as Jason Bourne, the former CIA agent who is the hero of a series of
novels, written by Robert Ludlum [93] and then inherited by Eric Van Lustbader
and then by Brian Freeman, and of the subsequent film adaptations directed by
Doug Liman, Paul Greengrass and Tony Gilroy) are instead sometimes slightly more
realistic, at least in terms of their cryptographic and cybersecurity abilities although
maybe not so much in terms of their physical powers, but still almost inevitably
go beyond portraying them as simply experts in their field. This is, however, quite
understandable, as the story would then otherwise risk being quite dull. Still, using
such characters and their stories for showing can be very effective also thanks to
their worldwide popularity.

3.3 “I’m in a Secret Club.” [94]

This category includes artworks about ordinary people confronted with cyberse-
curity and artworks with references to cybersecurity. There are less examples in
this category than the previous two, but still several interesting ones, such as:
two U.S. Marines in World War II assigned to protect Navajo Marines as their
native language was used as an unbreakable radio code [95], a businessman whose
identity is stolen after he gets a nice call confirming his name and other identifying
information [96], an FBI agent undergoing facial transplant surgery to assume the
identity of the criminal mastermind who murdered his only son [97],10 a security
specialist forced into robbing a bank to protect his family [99], a computer geek
inadvertently downloads critical government secrets into his brain and is then

9 There is no such thing as a professor of symbology in real life, but it is tightly connected
to the actual discipline of semiotics, which in turn has been investigated also in the context of
cryptography [88].
10 “Con Air,” “National Treasure,” “Windtalkers,” “Face/Off”, . . . , Nicolas Cage has starred in
so many cybersecurity-related movies that he would deserve a dedicated paper, perhaps titled
“Explaining Cybersecurity with Nicolas Cage” or even better “Nicolas Cage is the Center of
the Cybersecurity Universe.” In fact, since writing the first draft of this chapter, I have published
precisely such a paper [98].
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recruited by CIA and NSA to help thwart assassins and international terrorists [100]
(the latter two partially belong also in the first category). There are also several
animated movies in which cybersecurity features prominently, which suggests that
kids, even small children such as those watching “Peppa Pig,” are probably much
less scared by it than adults; for example, multi-factor authentication through
biometrics11 is used both in “Incredibles 2” [102] and “Monsters vs. Aliens” [103],
a guessing/dictionary attack against a password is attempted by Winnie the Pooh’s
friend Tigger in [104] by singing the “Password Song” with lyrics consisting of
every word that Tigger knows, Peppa Pig and their friends use one-time passwords
in an episode titled “The Secret Club” [94].

Codes and ciphers (such as the hash function SHA-256, cryptocurrencies, and
several different ciphers) feature also in animated series for more adult viewers, in
particular in Matt Groening’s “The Simpsons” [105] and “Futurama” [106]; many
of these examples are discussed by Simon Singh in his book [107] in which he
unravels the mathematical secrets of these two series up until 2013.

But it is not just films, TV series and novels. Although examples are more
difficult to find, there are also some songs that relate to cybersecurity, such as the
song “Secret” by The Pierces [108],

Got a secret
Can you keep it?
Swear, this one you’ll save
Better lock it in your pocket
Takin’ this one to the grave
If I show you, then I know you
Won’t tell what I said
’Cause two can keep a secret
If one of them is dead . . .

which references Benjamin Franklyn’s famous saying “Three may keep a secret
if two of them are dead” (which, I believe, in turn references the line “Two may
keep counsel when the third’s away,” which is uttered by the villainous Aaron
before murdering a nurse to preserve his secret, in William Shakespeare’s “Titus
Andronicus,” Act IV, Scene 2):

11 Multi-factor authentication (MFA) is an authentication solution that aims to augment the security
of the basic username–password authentication by exploiting two or more authentication factors.
In [101], MFA is for instance defined as:

a procedure based on the use of two or more of the following elements—categorised
as knowledge, ownership and inherence: (i) something only the user knows, e.g., static
password, code, personal identification number; (ii) something only the user possesses, e.g.,
token, smart card, mobile phone; (iii) something the user is, e.g. a biometric characteristic,
such as a fingerprint. In addition, the elements selected must be mutually independent [. . . ]
at least one of the elements should be non-reusable and non-replicable.

The underlying idea is that the more factors are used during the authentication process, the more
confidence a service has that the user is correctly identified.
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This category requires substantial work of the presenter to make the connections
between show and tell, but, trust me, it can be lots of fun, especially if one shows
excerpts of the animated films.

3.4 “I’m Spartacus!” [24]

This category includes artworks that are not explicitly about cybersecurity but can
be used to explain cybersecurity notions. This is, in my view, the most interesting
category. I have already mentioned above how “Baby Driver” [26], “Spartacus” [24],
and “The Thomas Crown Affair” [25] as well as Alan Moore’s graphic novel “V for
Vendetta” [109, 110] can be used for explaining anonymity and untraceability. Other
popular films and artworks can be used as metaphors for cybersecurity, and in [19]
I discussed how a man-in-the-middle attack can be explained by analogy with the
carte blanche issued to Milady De Winter by Cardinal Richelieu in “The Three
Musketeers” by Alexandre Dumas père [111].

Let me give here some more examples by considering authentication and multi-
factor authentication (cf. Footnote 11). Questions of authentication and identity
occur extensively in the mythology and fairy-tale literature of most cultures, from
Greece to India to China. In some cases, authentication occurs by means of
passwords, such as the “Open Sesame” that opens the mouth of a cave in which Ali
Baba and the forty thieves have hidden their treasure in the story “Ali Baba and the
Forty Thieves,” which first appeared in Antoine Galland’s version of “One Thousand
and One Nights.” In most cases, however, authentication occurs by biometric traits
and also by some form of multi-factor authentication, even in a pre-technology
world. For instance, when the hero is (or proves to be or reveals to be) the only
one able to do something or to have something:

• When the disguised Odysseus returns home to Ithaca after 20 long years, his
faithful dog Argos recognizes him by his smell and his old wet-nurse Eurycleia
by a scar he received during a boar hunt, and he finally proves his identity to his
wife Penelope by being the only one able to string Odysseus’ rigid bow and shoot
an arrow through twelve axe shafts. Similar stories exist in Hindu mythology.

• Thor is the only one able to lift and wield the Mjo. llnir hammer in Norse
mythology (as well as in Marvel Comics and in Marvel Cinematic Universe).

• Arthur is the only one able to pull out the sword Excalibur from a stone, thereby
proving to be the rightful king of Britain.

Similarly, mythologies and fairy tales also contain examples of masquerading
attacks, in which the attacker poses as an authorized user. In the Internet, this would
occur by the attacker using stolen logon ids or passwords, in mythology it occurs by
the attacker magically or divinely shape-shifting into somebody or something else
(e.g., in the “Epic of Gilgamesh,” in the “Iliad,” or in Ovid’s “Metamorphoses”),
whereas in fairy tales it often occurs via simpler means, e.g., the wolf pretends to be
mother goat by eating honey to soften his voice and by smearing flour over his feet to
turn them white in “The Wolf and the Seven Young Goats,” a story published by the



Don’t Tell Me the Cybersecurity Moon Is Shining. . . 471

Brothers Grimm in the first edition of “Kinder- und Hausmärchen” in 1812 [112].
Similar tales have been told in other parts of Europe and in the Middle East.

Finally, there are also examples of cases in which authentication fails not because
the attacker is actively trying to deceive his victims, but rather because the victims
(consciously or not) want to be deceived, as in the story of Martin Guerre, a French
peasant who, in the 1540s, was at the center of a famous case of imposture: several
years after Martin Guerre had left his wife and village, a man claiming to be him
appeared in the village and lived with Guerre’s wife and son for three years, before
eventually being accused of the impersonation. The case of Martin Guerre has been
popularized in literature [113, 114], film [115, 116], musical [117], as well as in
plays and operas, and has also been the subject of scholar investigations [118].
Many of these works portray how, for different reasons, some people, including
his wife, authenticated the stranger to be Martin Guerre even though they suspected
him to be an impostor or even knew him to be one. A similar case happened in Italy
in the late 1920s: the Bruneri-Canella case concerned an amnesiac patient of the
Mental Hospital of Collegno,12 who was identified first by the Canella family as the
professor Giulio Canella, who had gone missing in action during World War I, and
then by the Bruneri family as the fugitive petty criminal Mario Bruneri. After several
inquiries and trials, the court found that he was indeed Bruneri, but the Canella
family kept claiming he was Giulio Canella and he lived with Canella’s wife, Giulia
Canella, in exile in Brazil until his death in 1941. Also in this case, there were people
who wanted to (wrongly) authenticate the amnesiac: some newspapers stated that
actually Giulia Canella herself was ultimately convinced that the amnesiac was not
her husband, but she had to keep pretending otherwise to avoid a major scandal.
And this case too inspired literature [119], plays [120], and films [121, 122], which
can be used to explain authentication and related attacks.

Such “popular” explanations are not meant to replace the mathematical defini-
tions and explanations, nor the facts and skills mentioned in the above quote of
Zazkis and Liljedahl. Although finding such popular artwork examples is challeng-
ing, the synergy of telling and showing via these examples, which laypersons will
likely be already familiar with, can help go beyond the mere facts and skills by
making them more intuitive, more accessible, more interesting, and more rewarding.

4 Conclusions

Films have been used to explain and teach different disciplines such as philoso-
phy [123–125], history [126], social sciences [127], management and organizational
behavior [128, 129], international relations and politics [130, 131], and mental
health [132]. In addition to my own research, initial investigations have also been

12 Collegno is a small town in the North-West of Italy and the case is known in Italy more
colloquially as the “Smemorato di Collegno,” i.e., the amnesiac of Collegno.
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carried out for cybersecurity in [133], but more work is needed to explore the full
potential of popular films and artworks for cybersecurity.

I have described four categories of such artworks and provided some examples
for each of them. I have been collecting a database that includes many more
examples and has benefited not only from the help of colleagues and friends (such
as Diego Sempreboni, Sally Marlow, and Gabriele Costa) but also from the lists
in [76, 77] as well the entries in the Internet Movie Database IMDB. I am keen
to include examples from less considered artworks such as plays and music and
to investigate the use of new artworks that have been created on purpose or that
are created live during a presentation. The collaboration that I have initiated with
artists and curators (such as Hannah Redler Hawes and Alistair Gentry) will be very
fruitful to that end.
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Part X
Music and Mathematics



Sounds, Numbers and Other Fancies

Claudio Ambrosini

Where did the idea of a deep connection between music and mathematics come
from? Is it due to the famous portrait of Pythagoras measuring the intervals with his
monochord? Or to the fact that throughout the Middle Ages music was grouped into
the quadrivium (alongside arithmetic, astronomy and geometry) as opposed to the
trivium, where those subjects connected with human expression (grammar, logic and
rhetoric) resided? It must be recognized that some issues, such as the different scales
developed from Pythagoras onwards (Pythagorean, natural, mesotonic, temperate
and others), actually require precise calculations to define their intervals. Even the
development of the musical notation itself, from neumes to pentagram, is somehow
connected with mathematics: being based on two axes—it is actually a Cartesian
coordinate system some nine centuries before Descartes!

Since then, music has gone through a continuous process of innovation and
refinement, but probably no other period has been as rich, and variously connected
with science, as the twentieth century. Apart from Electronic and Computer Music,
many new directions have been tried; from the Futurist Art of Noise to Musique
Concrète, the rigid grids of post-Webernian Structuralism to open Randomness
(John Cage), Stochastics (Iannis Xenakis) to the harmonic content of Spectralism
(Grisey, Murail), the latter approach in a way recalling the investigations of
Pythagoras.

Although as a composer trying to pursue his own path I am not following any
of these trends, in my catalogue there are quite a few titles with scientific allusions:
Tecniche per la misurazione dell’infinito (Techniques for Measuring Infinity, for
three pianos, 2014), Classifying the Thousand Shortest Sounds in the World (for solo
flute, 2012), Etymon n.6 (Fearful Symmetry) (for any group of instruments, 2018),
Three Holograms (for guitar, 1978), Orienteering (for one or more electronically
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revealed pianos, 2019), Big Bang Circus, an opera conceived as the history of the
universe acted out in a strange, surreal circus. A couple of these works even have a
humorously “negative” title, as A Sound a Day Keeps Time Away (1977), or Tic-tac
(ossia come ammazzare il Tempo) (Tic-Tac or How to Kill Time, 2013).

In this chapter, I will focus on pieces based on my researches; specifically, those
carried out concerning the nature of sound, of perception, the possibilities offered
by new instrumental techniques and the problems connected with the notation of
“liquid”, continuously evolving rhythms. I am not a mathematician in the strict
sense, but I think that composing can be both the expression of one’s imagination
and at the same time an opportunity for knowledge and discovery.1

1 Invisible Polyphony

As an introduction I would like to recall a passage from Lucretius’s poem De Rerum
Natura, where the author describes our astonishment as the air in a dimly lit room,
apparently empty, is crossed by a beam of sunlight suddenly revealing a myriad of
dust particles, tiny floating elements—an unknown world. Something like this may
be found in works I wrote starting from the idea of a “double” sound, which may
surprisingly reveal other sounds.

Nell’orecchio di Van Gogh, una pulce (In Van Gogh’s Ear, a Flea) is a piece
for grand piano, upright piano—with mute pedal—and ensemble, written in 1983.
Like several other works I composed in the early 1980s, it focuses on the idea of
“musical perspective”. In particular, the perspective cone created by the piano as a
front, leading role and the rest of the ensemble pouring a sort of tinged light on it,
as if it were a character on a stage.

The title refers to the well-known story of Van Gogh’s cutting off his left ear.
In my somewhat surreal report of this dramatic mutilation, special sounds called
difference tones (also called Tartini tone after his discovery in 1713) are introduced.
A difference tone is a frequency audible as a third tone when two other notes are
played loudly and steadily. With certain intervals, this resultant frequency can be
consonant and in harmonic relationship with the two main notes. For instance,
playing a perfect fifth with pure tones: E (660 Hz) over middle A (440 Hz) will
produce an audible difference frequency of 220 Hz, that is the A one octave below
the middle one.

Using these combination tones in several ways I found that it was possible to
develop a special form of polyphony, in which more notes than the number of
musicians actually playing are heard: something like an acoustic mirage.

At a certain point of Nell’orecchio di Van Gogh, una pulce an instrument begins
to play solo; when a second one enters 3 notes instead of 2 are heard. Then the

1 To define this attitude towards the nature of sounds and musical instruments I coined the term
Acuology, synthesis of acoustics and (sound) ecology [1].
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process is continued introducing a third instrument (now producing 4 pitches).
Progressively more notes are heard, often mixed in cluster-like groups. It is an
invisible, or only partially visible, polyphony since fewer notes than are actually
perceived appear in the score, as Luigi Nono commented on first hearing this piece.2

One last detail should be pointed out: difference notes are also called subjective
tones, both because their listening depends on various subjective factors and because
they produce a real, sometimes annoying tingling in the ear. Hence the Van Gogh
reference in the title.

2 Natural Counterpoint

Ziggurat, a piece for ensemble written in 1975, produces another type of polyphony,
or counterpoint, this time both audible and visible, but not controllable. The score is
designed for instruments such as percussion, keyboards, plucked strings and others
that, after the attack, unless stopped, continue their decay until the vibrations are
naturally extinguished (Fig. 1).

All notes of each instrument must be played from lowest to highest, waiting for
the extinction of each note before playing the next semitone. The instrument that
has the widest range is the “leader” and starts first, from its lowest note. All other
instruments enter one by one when their own lowest note is in unison with the note
reached at that moment by the leader. To finish: each instrument stops playing after
reaching its highest note.

Though the performers are allowed to choose dynamics, articulations, and the
use of plectrums or other objects to modify the sound colour, the result is an
unpredictable and almost uncontrollable counterpoint, produced by the natural
durations of the notes and nicely animated by the “characters” of the instruments
themselves: the slow and majestic progress of the piano, the petulant hurry of the
harpsichord, the soft, floating “drops” of the vibraphone, the icy shimmer of the
bell tree . . . A theatre of sounds, all acting in their natural habitat. What makes the
difference, from a scientific point of view, is of course the material that the single
instrument is made of and how long it can vibrate. This depends on further factors,
such as the particular range, within the extension of an instrument, to which the
single note belongs, the resultant length and thickness of the strings, for a piano or
a harp, of the metal bars for a vibraphone and so on. All rather difficult to calculate
or control.

2 “ . . . in the wake of the alchemists of Rudolf II’s Prague: the invisible acoustics or sounds that
you hear but don’t see the composition mechanics”. Luigi Nono in [2].
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Fig. 1 Claudio Ambrosini,
Ziggurat (1975), general plan
showing the instruments’
ranges, whose overlapping
recalls a pyramid (from the
author’s autograph score). ©
C. Ambrosini, 1975

3 Ghost Notes

Canzone molle (Supple Song, for guitar, written approx. 1973) contains a special
kind of “double” sounds, which at the beginning of the seventies, not managing to
find a scientific or at least official definition in guitar method books, I chose to call
suono fantasma (“ghost” sounds), or “non-identical twin notes”, and nowadays are
called bi-tones. These dual sounds are produced by the simultaneous vibration of
both parts of a string—from the stopped fret to the bridge and from the same fret
back to the nut—that has just been plucked or tapped upon. The two pitches do not
have the same intensity, the main note being (much) louder. While the main notes
ascend as usual from the nut to the end of the fretboard, the “ghost” notes descend
(logarithmically), and vice versa.

Figure 2 shows the first page of the piece and my attempts to notate these softer,
mirroring sounds.

In another guitar piece, Entartete Musik (Degenerate Music, 2017), the careful
choice of the notes made it possible to have a glissando almost perfectly mirrored
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Fig. 2 Claudio Ambrosini, Canzone molle, for guitar (undated, early 1970s). The tiny white notes
in brackets, written above the staves (in the measures 2, 3, 5, 8), show the mirror behaviour of the
ghost notes with respect to the main ones below them (from the author’s autograph score). © C.
Ambrosini

by its “ghost”. A bit like a person walking from left to right and his shadow from
right to left (Fig. 3).

A piece for solo cello written in 2004 bears a title that intentionally recalls
Antonin Artaud’s Le theatre et son double: Il suono e il suo doppio (Sound and
Its Double). Among the several moments in which different kinds of double sounds
are produced, there is a sort of “anti-cadenza”: rather soft and slow, instead of loud
and virtuosic. But the difficulty is still high: the cellist must visibly raise the left
hand and keep it away from the fingerboard, while the right hand holds the bow
on the strings. Then the cellist, while playing on an open string, must be able to
simultaneously produce its normal pitch together with some of its harmonics, just
by precisely controlling the bow. In other words, both the fundamental vibration of
the string and some of its partials must be excited. Here again one sees a single
action, one bow playing on a single string, but two and sometimes more sounds
being heard.
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Fig. 3 Claudio Ambrosini,
Entartete Musik (2017). The
two glissandos move in
opposite directions, using
nearly the same notes, only a
semitone apart (from the
author’s autograph score). ©
C. Ambrosini, 2017

4 Converging and Diverging Forms

Canons are a form of imitation used in music since the Middle Ages. An instrument,
the “leader”, starts playing and one or more “followers” join afterwards in turn, all
playing the same (sometimes transposed) part but each with a certain delay, which
is maintained throughout the piece so that the temporal distance of each participant
at the end is the same as at the beginning. Frère Jacques and Row, Row, Row Your
Boat are popular canons.

In the early 1980s, I conceived a new type of canon called a Convergent Canon,
and its opposite a Divergent Canon. Based on the idea that each instrument imitates,
as usual, the notes of the leader and enters after a delay, but this time plays at a
slightly faster tempo (and even faster must be the tempo of the subsequent entry,
and so on) so that all instruments ultimately converge on the same final note.

This idea is somewhat related to Ziggurat as in both cases a dense counterpoint is
produced, each time different and unpredictable. The difference is that in Ziggurat
the durations are “objective”—as they are determined by the very nature of the
instruments—while in the Convergent Canon they depend on the performance
speed gradient, or the increasing metronomic tempo subjectively chosen by each
subsequent follower.

I dare not think how such processes could be transformed into mathematical
calculations. Perhaps a possible analogy could be with an unusual funnel, somehow
scaled as an inverted ziggurat. The upper diameter could represent the starting
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Fig. 4 Claudio Ambrosini, Dai Filò di Zanzotto, for four female voices and piano, p. 23 (2003). A
very short converging canon for two sopranos, mezzo and alto, who enter in sequence to sing “De
fien ‘pena segà dal faldin”(“Of hay freshly cut by the scythe”. Andrea Zanzotto, Filò, Mondadori
Editore, Milano, 1988) and then meet on the last syllable “din” (from the author’s autograph score).
© C. Ambrosini, 2003

tempo, set by the leader instrument as the “liquid”—that is the music—starts to
flow. The speed of the performance then increases step by step as the funnel narrows,
until finally everything is reunited in the uniformity represented by the cylindrical
neck—the general unison note—with which it ends.

Beyond calculations, the need to notate this process in a score presents some
difficulties. Dai Filò di Zanzotto, for female voice quartet and piano, written in 2003
and inspired by the poems of Andrea Zanzotto, shows a simple intuitive rendering
in order to have the four voices enter one after the other, sing the same part but
each at a slightly faster tempo and then converge all together on the “meeting” note,
corresponding in this case to the syllable “din” (Fig. 4).

Perhaps Il satellite sereno (The Serene Satellite, 1989), a piece for ensemble
conceived as an “answer” to Bruno Maderna’s Serenata per un satellite, presents a
slightly more effective graphic solution, though this remains only an approximate
rendering, since it is impossible to fix on paper what actually happens in each
performance, how instruments mix when playing each at a subjective speed (Figs.
5, 6 and 7).
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Fig. 5 Claudio Ambrosini, Il satellite sereno (for instruments, fixed media and live electronics,
1989), p. 40. The upper part of the page is a graphic explanation, showing when all other
instruments must enter after the oboe—the leader in this case—has started. The lower part of
the page is the actual beginning of the convergent canon. The marimba, which will be the last to
enter, is still silent. (from the author’s autograph score). © C. Ambrosini, 1989
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Fig. 6 Claudio Ambrosini, Il satellite sereno, p. 41. The marimba now enters playing the same
notes as the leader (the oboe, see p. 40, Fig. 5) while the other instruments keep moving forward,
each at its own progressively faster tempo. The three wavy vertical lines on the left are a signal to
make it clear that the synchrony on this page is only indicative (from the author’s autograph score).
© C. Ambrosini, 1989

Another example, in this case of an expanding and contracting form, could
be Pandora librante, a lyric-symphonic ballet for soprano, mezzo and orchestra,
written in 1997.

It was inspired by Italo Calvino’s Six Memos for the Next Millennium, a series
of lectures on the following topics: lightness, quickness, exactitude, visibility and
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Fig. 7 Claudio Ambrosini, Il satellite sereno, p. 43. Here the vertical distance among the
instruments is minimal, to show that the delay between them is very small and that they are in a
moment converging on the trilled note of the second half of the page (from the author’s autograph
score). © C. Ambrosini, 1989
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multiplicity (and consistency).3 Calvino related them to literature but, after having
read the book, I thought that these subjects could perfectly be applied to dance as
well: should not dancers be light, quick, precise, visible, versatile and consistent?

Sketching the ballet I decided that the five large symphonic episodes (one for
each topic) should not be separated by short silences, as usual, but by four short
songs for the two female singers and just a handful of instruments. Or, in other
words, I decided to alternate five large instrumental “frescoes” with four vocal
“miniatures”.4 This generated the following expanding and contracting shape,
something like a breathing form:

FRESCO 1 FRESCO 2 FRESCO 3 FRESCO 4 FRESCO 5

miniature1 miniature 2 miniature 3 Miniature 4

The repeated alternation of orchestra and chamber group—some 60 musicians
and (maximum) 6—produces an effect that has to do not only with form but also
with acoustics and perception.

Simplifying, adjectives normally related to a full orchestra could generally be:
dense, powerful, colourful, massive, aggressive etc.; while to a small group like
a string quartet they could be: clear, transparent, soloistic, light, attractive etc.
Therefore, from the point of view of three-dimensionality, the full orchestral sound
could also be considered perspectively extroverted, protruding, convex; and the
chamber group sounds delicate, introverted and concave.5

What happens in this continuous alternation of thicker and thinner polyphonies
is something like watching a large tapestry from a distance and then approaching
for a close look at the single threads. On stage the space occupied by an orchestra
or a chamber group is completely different: the sound reaches the audience from all
directions when the former plays; from a few isolated points, or from a concentrated
area, when the latter does.

In Pandora librante6 after being reached, and sometimes overwhelmed by the
sound of the orchestra, the audience subconsciously tends to pay a different, closer

3 Calvino died before he wrote the sixth chapter, so his Memos are actually five.
4 The first miniature actually sets to music Lucretius’ verses quoted above, in the song Il sole,
la polvere (The Sun, the Dust, for soprano, mezzo and 6 instruments). I have also recently
composed a large piece, called De Rerum Natura, for three percussionists and electronically
revealed environment (2019–2020).
5 I have already covered this concept in: Escher-Like Perspectives and Music Composition (2002),
in [3].
6 Pandora librante. It is not easy to translate the title of this ballet conceived, besides the connection
with Six Memos for the Next Millennium, also as a tribute to Calvino’s literary output. It should not
be difficult to recognize some of his famous books in the titles of the five orchestral episodes:

– Andante leggero, quasi inesistente (Light, Almost Nonexistent Andante)
– Prestissimo dimezzato (Cloven Prestissimo)
– Misurato kaosmicomico (Kaosmicomical Misurato)
– Notturno, dei sentieri (Paths, Nocturne)
– Ostinato rampante (Rampant Ostinato)



492 C. Ambrosini

attention every time the small group begins to sing and play, transforming the ear
into a sort of acoustic zoom.

5 Space Translation

The relationship between music and space is another aspect of the connection
between music and mathematics.

In Venice, my hometown, there are several places that have been important
for both architectural and musical experiments. One could be the “stereophony
prototype” developed in St Mark’s (and other churches) during the Renaissance
by using the cori spezzati, or cori battenti technique, that is spatially separate vocal
and instrumental groups performing from the left and right sides of the basilica.
Another example could be the church of San Francesco della Vigna. In order to
get a more “harmonically proportioned” building, it was partly designed adhering
to proportions connected with the number three—thereby reflecting the Trinity—
and natural musical intervals, such as the octave, the perfect fifth and fourth. For
example, the best ratio between width and length of the nave would be: 9 to 27,
which corresponds to the ratio between octave (9:18, or 1:2) and fifth (18:27, or 2:3).

In 1976, while I was a student of Electronic Music Composition at the Venice
Conservatory, I thought to try to translate the whole classroom where our lessons
were held, into music, according to an arbitrary but as coherent as possible code
and, above all, fully derived from the architectural features of the space itself. Since
the room (aula, in Italian) bore the number 104, the piece would be titled Aula 104.

As soon as I set to work on this idea, I was surprised by the encouraging
dimensions of the classroom. It was a trapezoidal space with square or rectangular
walls, and it was characterized, among other things, also by a curious comb filtering
of the sound.7

Its measurements were as follows:

– Right wall: m. 6.28 × 3 (or 3.14 × 6)
– Wall with window: m. 3.14 × 3.14
– Left wall: m. 7.20 × 3.14
– Wall with door: m. 3.14 × 3.14
– Ceiling and floor: m. 7.20 × 6.28 × 3 (again 3.14 × 6).

The recurring presence of π added an unexpected reference to circularity, which
could be connected with other acoustic features, such as the concentric waves of
sound propagation.

So “Pandora librante” is a word pun as well: it could be translated as Soaring Pandora, but in
Italian the word librante—actually a neologism—recalls both the verb librarsi (to soar) and the
word libro: book.
7 A comb filter is an electronic audio device that produces a series of regularly spaced notches
within the shape of a sound wave, recalling a comb. In certain conditions (and spatial proportions)
something similar can be produced by architecture as well.
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Apart from the shape and size, it was built with different materials: herringbone
parquet floor, two walls covered by plaster only, two walls and ceiling covered with
irregularly perforated insulation panels, a door, a window. I thought that the function
expressed by these materials (absorption, filtering, reflection etc.) could be recalled
by the use of the electronic equipment of the studio, employing generators, filters,
modulators, reverbs, faders etc.

It would take too long to go into detail but, just to give an idea, the 1920 slats of
the herringbone parquet have been “transposed” using triangular electronic waves
variously filtered (to match the various shades of the wood) and then mixed down
into the multi-layered sound which represented the Floor Episode. Ultimately, the
six components of the room’s architecture corresponded to six musical episodes,
whose duration was proportional to their physical area. The corners, as elements
connecting two different walls, have also been taken into consideration, and several
other aspects such as the white colour of the walls, which could be connected with
White Noise.8

The whole translation aimed at giving life to an “objective”, lifeless representa-
tion of the environment, which was then to be contrasted by a “human presence”,
represented by some subjective, emotional solos, which I played on a crumhorn. I
thought that the choice of such an ancient instrument could represent the opposite
dimension, the totally contrasting compositional and sound element to balance the
whole project. And it would also work as a symbol of the wonderful Renaissance
palace that houses the Conservatory in Venice.

In 1976, I tended to consider Aula 104 mainly as a school essay, but in 2017 I
had the great pleasure of seeing it included in the selection of works from the 1970s
presented by the Boston MIT publication Leonardo Music Journal Audio Series
n.27 (Fig. 8).

Finally, one more experiment: the use of some mathematical symbols to indicate
the function that a certain instrument may have within an orchestration.

I consider the score not only as a “grid” for reading, synchronizing and
controlling all the sound elements of a piece, but also as a laboratory in which
each instrument has one or more functions: as mentioned above for Aula 104, it
may work as amplifier, equalizer, reverb and more. Graphically highlighting this
functional approach might be particularly useful with the large score pages of some
productions (Fig. 9).

Therefore, line by line and page by page the composer can indicate, underlining,
or circling, or adding himself the most suitable symbol, which is the momentary
predominant function(s), making the study of large scores easier for conductors or
musicologists. Pieces like Proverbs of Hell are dense, complex works, which may
have some 50 staves on each page.

8 White Noise, which draws its name from White Light, is produced by the random sum of
theoretically all audio frequencies at equal intensity. The sound is very similar to that of a large
waterfall.
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Fig. 8 Claudio Ambrosini, Aula 104 (Classroom 104, for fixed media: crumhorns, wooden
recorders and electronics (1976). The table of vertical tiny circles on the left is a “translation”
of the perforated insulation panel holes. It worked as a “tablature” for the fingerings to be used by
the recorder and crumhorn players. (detail from the author’s autograph score). © C. Ambrosini,
1976
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Fig. 9 Claudio Ambrosini, Proverbs of Hell, cantata for soprano, alto, tenor, bass, piano,
percussion, mixed choir and large orchestra (1990–1991), text by William Blake. String section,
page 36. The symbols to the left of each staff aim to intuitively confirm (besides the notes written
in those measures) what the composer’s intention is at that particular moment: %, <, ≤, =, ≈, �=,
≥, >, (), &, $,! etc. (from the author’s autograph score). © C. Ambrosini, 1991

6 Time

Time is a composer’s worst enemy and, as I said before, I have even written a couple
of surreal pieces suggesting how to kill it! “Time is unredeemable” T. S. Eliot wrote.
Time keeps running inexorably, second by second and what a composer absolutely
needs is to manage to catch it, and tame it. It is amazing how much a music fragment
can change if one of its notes lasts a fourth, or a sixth, or an eighth of a second. Or if
a pause lasts a third instead of a fourth of a second. Minimal yet audible differences.
So, it is crucial for a composer to be able to accurately transform the music heard in
the mind into precise symbols on the score.

And this is perhaps another thing that musicians and mathematicians have in
common: the need to write, to fix solutions and results on paper. And there is
probably as much satisfaction in seeing a complex sound event forever “caught” in a
score as it is for mathematicians to see their hypotheses and conjectures transformed
into successful calculations, theorems, proofs, formulas and discoveries. How
delighted I was when, in Einstein’s notebook, I saw the pages full of math symbols
and operations preceding his universally known formula. Totally incomprehensible
for me, but “music” for a mathematician’s eye.

Well, it seems to be true that music and mathematics are connected and that
composing is also a more or less conscious computation. Completely unconscious
at times, since I could not really tell where ideas come from. Anyway—sounds and
numbers: how well they can dance together!
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A detailed list (by date) of the works discussed in the paper:
Canzone molle, for guitar (undated, early 1970s).
Ziggurat, for freely decaying instruments’ ensemble (1975).
Aula 104, for fixed media (crumhorns, recorders and electronics, 1976).
A Sound a Day Keeps Time Away, a calendar to compose (for any instrument) (1977).
Three Holograms, for guitar (1978).
Nell’orecchio di Van Gogh, una pulce, for grand piano, upright piano (one pianist) and 7

instruments (1983).
Il satellite sereno, for 7 instruments, fixed media and live electronics (1989).
Proverbs of Hell, cantata for soprano, alto, tenor, bass, piano, percussion, mixed choir and large

orchestra, text by William Blake (1990–1991).
Pandora librante, lyric-symphonic ballet for soprano, mezzo and orchestra (1997).
Il sole, la polvere, for soprano, mezzo and 6 instruments (1997).
Big Bang Circus (Piccola storia dell’universo), circus-opera for soprano, mezzo, tenor, bass,

actor and 16 instruments (2002).
Dai Filò di Zanzotto, for female voice quartet and piano (2003).
Il suono e il suo doppio, for solo cello (2004).
Classifying the Thousand Shortest Sounds in the World, for solo flute (2012).
Tic-tac (ossia come ammazzare il Tempo), for a metronome and a percussionist (2013).
Tecniche per la misurazione dell’infinito, for three pianos (2014).
Entartete Musik, for guitar (2017).
Etymon n.6 (Fearful Symmetry), for any group of instruments (2018).
Orienteering, for one or more electronically revealed pianos (2019).
De Rerum Natura, for three percussionists and electronically revealed environment (2019–

2020).
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Euler and Music
Musing Euler’s Identity

Davide Amodio

1 Introduction

We would like to explain the reasons that led us to this project and, through it,
how the functioning of music can interact with mathematics. It has always seemed
reductive to us to act only in the context of our discipline. Already from the entry
of music into the Quadrivium1 it was understood that music could be studied and
understood as a branch of mathematics. Through an interdisciplinary approach each
study deepens further, naturally with the help and collaboration of experts in the
various fields of study. Today, specialization takes us further and further away from
this fertile and creative vision. Today it would be unusual for a mathematician like
Euler to write a treatise on music from a mathematical point of view and, at the
same time, to give indications to musicians on how to compose, how to tune the

Musica est exercitium arithmeticae occultum nescientis se numerare animi (Music is an occult
calculation of the soul that does not know how to number, Leibniz [9]. The passage quoted is
contained in a letter to Christian Goldbach dated April 17, 1712. For details on the relationship
between Leibniz and music, cf. Sguben [13], pp. 83–88.)

Supplementary Information The online version contains supplementary material available at
[https://doi.org/10.1007/978-3-030-92690-8_32].
1 Quadrivium, in Latin literally four ways, in medieval times, indicated, together with the Trivium,
the scholastic training of the liberal arts, preparatory to the teaching of theology and philosophy.
It included four disciplines attributed to the mathematical sphere: 1. arithmetic 2. geometry 3.
astronomy 4. music. This subdivision is due to Marziano Capella, a late Latin philosopher (4th–5th
century AD) who took care, among other things, of dividing all human knowledge into categories.
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Fig. 1 Euler, watercolor by
Edoardo Amodio

instruments and, above all, to establish which are the intervals that produce pleasure
for listeners (Fig. 1).

In a scene from the film Il Giovane Favoloso2 about Leopardi’s life, the poet
sits on the hill and recites the famous poem L’Infinito, as if he was receiving his
inspiration right at that moment. For obvious screenwriting needs, the hard work
of poetic composition does not appear in the film. The inspiration aspect certainly
exists and is important, but it is only a small part of any artistic endeavour. The
construction of an organism, be it musical, poetic, or pictorial, requires coherence,
balance, inertia, proportions, and many other things. As far as the musical field is
concerned, we can observe that the methods and procedures used by the composers
adhere to the needs and reflect the taste of their times. The word composition
itself comes from the Latin cum ponere, to put together. Throughout the eighteenth
century and a good part of the nineteenth century, composing meant putting together
“building blocks” (Satzmodelle) that had different origins and provenance, united by
the fact that they were free from authorial constraints and, therefore, in the public
domain.3 But also in other times4 something similar happened: for the inauguration

2 Film of Mario Martone, 2014.
3 See Giorgio Sanguinetti, Preface to the Italian edition of: La Musica nello stile Galante, R. O.
Gjerdingen [12], p.11.
4 The 25 March 1436 consecration of the Florence Cathedral, on the occasion of the completion of
the dome built under the instructions of Filippo Brunelleschi.
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of the Dome of Santa Maria del Fiore in Florence, by Filippo Brunelleschi, we
saw the close collaboration between Brunelleschi himself and the music composer
Guillaume Dufay, who knew how to interact so well with the architect that he was
able to harmonize the geometric proportions of the Dome with the isorhythmic
motet he composed for the occasion: Nuper Rosarum Flores. Motet that contained
both elements of the ancient Gregorian repertoire, as well as new elements of
counterpoint techniques, which Dufay later continued to develop. The composer
has always used schemes, building blocks, and relationships with realities that do
not necessarily belong to the musical field, creating organism made up of elements
which can be found in different spheres of knowledge.

Parallel to the craft of composing, the practice of tuning and the pleasure of
listening have always accompanied musicians of all times. These two aspect are
closely intertwined. There is a problem with acoustic physics, the nature of sound,
and its resulting harmonics. To simplify, we will say that an interval obtained
with the sum of fifths is greater than the same interval obtained with the sum of
octaves. This has forced musicians, over the centuries, to continually find solutions
that harmonize the notes with each other in a continuous and coherent way. This
represented, and still represents, the real problem not just in tuning the instruments
but also in the art of intoning and that of playing different instruments, for example,
keyboards and string instruments. Between the end of the sixteenth century and the
beginning of the eighteenth century, numerous illustrious mathematicians devoted
themselves to these problems, writing entire treatises on these subjects. We can
think, for example, of Kepler,5 Mersenne,6 Descartes,7 Kircher,8 the multifaceted
character of Caramuel,9 and Euler.10

2 Euler and Music

Leonhard Euler was born in Basel on April 15th, 1707, and died in Petersburg on
September 18th, 1783. He completed his studies in his hometown, soon combining
his humanistic training with scientific training, by attending the private lessons with
Johann I Bernoulli. In 1727 he was invited to join the newly formed Petersburg
Academy of Sciences, thanks to the intercession of Bernoulli’s sons, Nikolaus II

5 I. Harmonices Mundi Libri V, Lincii Austriae, sumptibus Godofredi Tampachii excudebat
Ioannes Plancvs, 1619.
6 Harmonie universelle, contenant la théorie et la pratique de la musique. Par F. Marin Mersenne
[2], pp. 1636–1637.
7 Abrégé de musique, par Monsieur Descartes, 1668.
8 Musurgia universalis sive Ars magna consoni et dissoni in X. libros digesta. Par Athanasius
Kircher [4], 1650.
9 Caramuel Lobkovwitz [5], Juan 1606-1682, Primus calamus secundam partem metametricae
exhibens.
10 De Piero [8].
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and Daniel, who had reached the capital in 1725. In 1741 he accepted the invitation
of Frederick II, recently crowned King of Prussia, to go to Berlin to collaborate
in the foundation of the Academy of Sciences. Unfortunately though the second
war with Silesia, which lasted until 1745, was an obstacle to this project, which
eventually took place only in 1746. In 1762 the accession to the throne by Catherine
II also favoured the return of Euler to Russia, which happened only in 1766, with
the definitive return of the Swiss mathetatician to Petersburg, the city where he
remained until his death.

Although he avoided the worldly events that were organized, at least during the
peaceful times, at the court of Frederick the Great, he certainly had contacts with
Carl Philipp Emanuel Bach, then court harpsichordist, and with Johann Joachim
Quantz, great flutist and theorist, who in those years was the king’s teacher and a
central figure in court music genre. Even in Petersburg, the enlightened government
of Catherine II made the court employ some of the most famous composers of the
time, from Baldassare Galuppi known as Buranello, “Master of the Ducal Chapel
of San Marco” in Venice, who stayed there from 1765 to 1768, to the musicians
belonging to the Neapolitan school: Tommaso Traetta who after Galuppi, stayed
from 1768 to 1774, and Giovanni Paisiello, who remained from 1776 to 1783,
having staged in the previous year his famous Il Barbiere di Siviglia, taken from
the play by Beaumarchais. Also, in this case, Euler must certainly have known these
personalities and it is unlikely that he did not feel the need to engage with them.
He also had some correspondence with two of the greatest composers who at the
time also dedicated themselves to music theory, namely Jean-Philippe Rameau and
Giuseppe Tartini. However, the impression one gets from reading Tentamen novae
theoriae musicae is that of a treatise written by a scientist who elaborates his own
theoretical system aimed at justifying the pleasure of listening to music; but who, at
the same time, while quoting an essay by the famous theorist and composer Johann
Mattheson, does not seem too interested in arguing with the so-called “practical
musicians” or performer-musicians, whom in this view were not equipped enough
to understtand or appeciate his theories.

3 Euler Seen by an Eighteenth-Century Musician

Francesco Galeazzi (Turin 1758-Rome 1819), violinist, conductor, and musicolo-
gist, as well as a true lover of mathematics, knew Euler’s treatise well; he preferred
it above all the others mentioned so far. In his brilliant book on the art of playing the
violin11 and composing music, he quotes a paragraph from Euler’s treatise, but not
before having expressed his opinion on many others:

11 Galeazzi Francesco [10], p. XXV. Euler’s quote refers to Tentamen . . . (op. Cit.) Chap. II
paragraph 4.



Euler and MusicMusing Euler’s Identity 501

Sembrerà certamente strano, che dopo tanti egregj, e sublimi trattati di Contrappunto, voglia
anch’io correre coraggiosamente una sì battuta, ma sempre difficile carriera. S’abbonda è
vero di ottimi, e di assaissimi libri di questa Scienza: ma dicamisi di grazia, dopo che un
Principiante, Suonatore o Cantante che egli sia, avrà avuta la pazienza di leggere il Zarlino,
il Gaffurio, il Doni, il Fux, l’Artusi, il Penna, il Tevo, il Mersenno12, il Tartini, il Rameau,
ed infiniti altri egregi Autori, cosa mai ha egli imparato? Al più al più qualche ben leggera
cognizione Teorica, senza affatto sapere, come adattarla alla Pratica: la maggior parte di
questi eccellenti libri riechieggo delle cognizioni matematiche pur troppo poco familiari a
molti Professori di Musica ( . . . ).

It will certainly seem strange that after so many excellent and sublime treatises
on counterpoint, I too wish to bravely undertaken such an endeavor, which always
remains an arduous one, despite being a path tried by many. It is true that there
are plenty of excellent books on this Science: but please tell me, after a Beginner,
Player or Singer may he be has had the patience to read Zarlino, Gaffurio, Doni,
Fux , the Artusi, the Penna, the Tevo, the Mersenno, the Tartini, the Rameau, and
countless other distinguished authors, what has he ever learned? At the most some
very superficial Theoretical knowledge, without knowing at all, how to adapt it into
Practice: most of these excellent books reflect some mathematical knowledge which
is regrettably too unfamiliar to many Music Professors13 ( . . . ).

It is strange that Galeazzi complains about the need to know mathematics very
well for the previous treatises and has no difficulty in reading and studying Euler’s
one which, on the other hand, is a treatise that requires in-depth knowledge in the
field of mathematics and music. Here is a quotation from him:

( . . . ) ho inteso più volte co’ miei orecchi vilipendere, e disprezzare le stupende compo-
sizioni di Haydn, di Paisiello, di Cimarosa ec. Ma che perciò? Toglie forse questo uno zero
all’illustre merito di questi inimitabili genj? Odasi il grande Eulero e colla di lui scorta
si disprezzino questi Aristarchi, e solo si badi all’osservanza dei precetti dell’arte, da cui
sicuramente tutto l’esito dipende di ogni buona Musical composizione:

(Quote by Galeazzi from the Euler Treaty). Ma è necessario che il musicista si comporti
come l’architetto che non curandosi dei giudizi stravaganti dei più sugli edifici, edifica
l’abitazione secondo leggi certe e fondate nella stessa natura; che anche se non piacciono a
chi ignora queste cose, tuttavia, purché siano apprezzate dai competenti, è contento. Infatti,
come nella musica, così anche nell’architettura il gusto delle diverse genti è tanto diverso
che le cose che ad alcuni piacciono, altri le respingono. Perciò come in tutte le altre cose,
così anche nella musica è necessario seguire quelli il cui gusto è perfetto e il cui giudizio
sulle cose percepite dal senso è libero da ogni pregiudizio. Sono di tal sorta coloro che
non solo ricevettero dalla natura un udito acuto e puro, ma anche coloro che percepiscono
esattamente le cose che sono rappresentate nell’organo dell’udito e, esaminandole tra sé, ne
riportano un giudizio completo.14

( . . . ) I have often heard with my ears someone vilifying and despising the
wonderful compositions of Haydn, Paisiello, Cimarosa and so on. But so what?
Does this take any credit away from the illustrious merit of these inimitable

12 Here he means F. Marin Mersenne [2].
13 Galeazzi [10], p.VI (translation by the author).
14 See note 12.
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geniuses? Hear the great Euler and despise these Aristarchs, and only pay attention
to the observance of the precepts of art, on which surely the whole outcome of any
good musical composition depends upon.

(Quote by Galeazzi from the Euler Treaty). But it is necessary for the musician
to behave like the architect who, ignoring the extravagant judgments of many on
the buildings, builds the house according to settled laws which are governed by the
principles of nature; and he shall be satisfied, regardless of those who are ignorant
of these things and don’t like his creations, as long as they are appreciated by the
competent ones. In fact, just as in music, in architecture too the taste of different
people may vary so greatly that the things that are liked by some, are rejected
by others. Similarly in music too it is necessary to follow those whose taste is
perfect and whose judgment on the things perceived by the senses is free from any
prejudice. Falling under this category are not only those who are born with acute
and pure hearing capabilities, but also those who have the ability to perceive sounds
exactly as they are detected by the hearing organ and, by examining them, can make
a complete judgment on them.

4 Musing the Euler Equation: From Equation
to Counterpoint

Before describing in detail my research on the interconnections between Euler’s
identity and my own musical composition, I should like to give some information
on those musical features which, though may be less apparent, music possesses in its
own nature, both as an artistic-aesthetic language and a geometric-sound proportion.

The musical scale, as can be seen in Fig. 2, is a succession of ascending and
descending notes like the steps that allow to go up and down. However, this is not
the case, even if it is called a scale and all the notes seem the same. All major
and minor scales have established distances which consist of five tones and two
semitones. However, here we are not dealing with the distances between one note
and another, (also because the same tones, that is the second interval, actually have
different magnitudes from note to note), but we are in fact investigating the latent
functions, that each note has and which all notes can take from time to time within a
given scale. The notes, therefore, look more like atoms than steps; the degrees of the
scale (in music they are so called) have not only different functions but properties
that can vary, up to the opposite degree, depending on the given harmonic context.
The names of the degrees of the scale, listed in order from first to seventh, are: the
tonic, the supertonic, the mediant, the subdominant, the dominant,15 the submediant

15 Schönberg writes about the dominant term: To tell the truth, the expression dominant for the
fifth degree is not entirely correct, because this name suggests that this agreement “dominates” one
or more others. ( . . . ) The name of “dominant” is usually justified by the affirmation that the first
degree is introduced by the fifth, so that would be a consequence of this. ( . . . ) to follow means
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Fig. 2 The musical scale of
C major

and the leading tone. The first degree of the scale is called tonic because it gives its
name to the scale, it defines the tonality but, above all, it is the starting and ending
note and, therefore, it is a static, resting note. Let us consider, for example, of the
first and eleventh syllables of a hendecasyllable in Italian poetry, syllables are never
stressed (except rarely for the first one). The second note, the supertonic, would
seem transient and of little interest, but actually thanks to its latent function it can
easily become a secondary dominant (dominant of the dominant) and thus acquire a
quality of strong tension, so long as it announces (as Schönberg states in his treatise
on Harmony) the next tonic. So below the third (the mediant) establishes whether
the scale is major or minor. The first, third and fifth are the minimum and necessary
number of notes to establish a chord.

These are the basic functions but, as mentioned earlier, there can be numerous
latent functions that are set in motion by the harmonic context. The most striking
one is the transformation of the first degree of the scale into the fifth degree of its
fourth. In this process the static tonic becomes the dominant note, which represents
the movement and attraction of tensions, and thus resulting in the relaxation of the
new tonic. The third degree note, which defines whether the scale is major or minor,
can turn into a dominant chord of the sixth degree, which is nothing else than relative
minor of the tonic.

All these tensions and release, which come into being as a result of small
transformations, are just a layer under the surface of the musical discourse. In
fact in musical language there are many other components that come into play
both upstream in the composer’s mind and downstream in the performance by the
musician who is familiar with all these components.

These properties, which we have only touched here, are employed in the tonal
language and can be found across the centuries, particularly in the classical era.
However, even in other musical styles, the music discourse always follows norm
and rules that establish a precise relation between the different parts of a complex
organism and that realize the same potential, latent or manifest modalities, of which
we spoke earlier. The notes are grouped into coherent systems which, in turn, are
interconnected within simple or complex structures. In this way, it is possible to
interact with the “sound matter,” adapting existing ideas and norms which do not
even belong to the musical discourse/grammar (Fig. 3).

to obey but also to align, to come later: and if the tonic “follows” the dominant it is like when a
king lets himself be preceded by his vassal, the master of ceremony and the quartermaster, so that
they make the necessary preparations for the entry of the king who follows them: but the vassal is
there for the king, and not vice versa. (Schönberg [11], pages 41–42, (translation from Italian by
the author).
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Fig. 3 A. Schönberg,
example from preparatory
series for the violin concerto,
with relative connections
(Example by the Author)

The groups of notes, about which we spoke earlier, are called figuration and
are the construction material that rests on some pre-constituted bricks or in a
contemporary style with the author or by the author himself. The figurations are
small or medium groups of notes which, being recognizable, weave the musical
discourse and can be changed, producing both the development of the discourse
and variety and richness in the musical organism. The possible development of a
musical figure can take place in many ways. In this case too, the important thing
is to understand that the figures are not mere notes having a predetermined order,
but have their own internal structure, more or less simple, and have precise and
variable functions. Just as the poet does not limit himself to following the grammar
but also builds the sentences according to the rules of metric, seeking linguistic
homogeneity and fluidity in his discourse, so the music composer chooses the notes
bearing in mind the musical structures and functions combined with a sense fluidity
that enables him to be both inventive and creative, and, above all, coherent. Poetic
language is, in fact, much closer to music than to the language from which it
comes.16 The poetic technique that has been used in Italy for centuries, in addition
to the metric and rhythmic properties of each poetic form, involved the use of
symmetries, anagrams and transformations of groups of letters to change meanings
while maintaining the same sounds. Just to quote an example: . . . . . . a l’ultimo
lavoro/fammi del tuo valor (to the last job / tell me about your value)17: here we have
an anagram. The intent is to express different meanings by employing homogenous
sounds; in the first canto of the Paradise we find symmetries from the first verse:
La gLOria di cOLui che tutto move: here we have the syllable LO of gloria with

16 Euler wrote: It is also absolutely necessary that a musical work resembles a prayer or a poem.
As, in fact, in these it is not enough to join elegant words and phrases, but there must also be an
orderly arrangement of the same things, and an appropriate distribution of the topics; so also in
music there must be a similar principle. In fact, it is not very nice to have several consonances
placed in series, even if individually they are quite pleasant, but it is necessary that the order be
distinguished in these, just as if they were to express some prayer. In this problem it is especially
useful to pay attention to the degree of ease or difficulty with which the order is perceived; and
depending on how the established object requires, the joy and sadness will have to be changed, or
now this, now that, will have to be increased or decreased. L. Euler, op. cit. p.87, (translation by
the author).
17 Dante: Paradiso Canto 1 versi 13/14.
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OL of colui (The glory of Him who moves everything); than again the vowels O-U
of cOlUi mirror the opposite vowels U-O of tUttO. Furthermore, in the first verse
there are two letter “e” while in the second verse there are seven ‘e’. Examples like
these can be found from Petrarch to Pascoli, passing through Tasso or Leopardi . . .
all the lines are rich in homophonies, echolalia, contrasts, symmetries and many
other para-textual elements. Leaving poetry aside, which is in any case a privileged
meeting point for music and mathematics (see D. Amodio [14]), let us now look
more closely at the mathematical and musical systems and explore the connections
they share.

Notes are written on one or more staves, which function in a similar way to
the Cartesian plane. Notes are graphically represented by points; their pitch and
duration are determined respectively by their position in the stave and their shape;
the order in which they are executed follow the reading from left to right; however
what is most important here is their relationship with the vertical dimension which
establishes their harmonic context. The vertical function is to be considered as a
third dimension with respect to pitch and duration. On many istances the horizontal
function by changing its nature becomes the same as the vertical one. The direction
of the notes, taken as a group and not individually, can be reversed or mirrored or,
again, transposed in height, up or down. These movements therefore are functional
to the representation of what Euler’s equation expresses.

5 Euler’s Equation

The Euler equation has not only a scientific value but also an esthetic and cultural
one in a broad sense. In music, on the other hand, there are also very short and
effective themes, motifs, melodies that not only have an esthetic and cultural value,
but also a broad scientific value; we could call them musical formulas, which have
a very high communicative impact. For example, the two notes (the first repeated
three times and the second long ad libitum) at the beginning of Beethoven’s Fifth
Symphony convey in a few seconds the substance, style, and overall language of the
whole symphony, but also of the author himself and his time (Figs. 4 and 5).

Let us now consider Euler’s equation.
From a mathematical point of view, the elements that appear in Euler’s identity

are 5: e, π, i, −1, 0.
The first thing we notice is that many of the fundamental entities of mathematics

appear, one after the other, as in review: the Neperus constant (e ~ 2.7182818
. . . ), the value of π (~ 3.14159265 . . . ), the imaginary unit i (square root of −1),

Fig. 4 Euler’s Identity as we know it at the present moment
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Fig. 5 Beethoven V Symphony First Edition, from Petrucci website

the number 1 and the number 0. Even from the historical point of view, these
mathematical concepts emerged across different cultures and developed over the
centuries making the history of mathematics: the golden period of Greek geometry
(constant π), the influences of Indian mathematics, which first introduced the
concept of zero, the Italian Renaissance debate between Tartaglia and Cardano on
the resolution of the third degree equations (imaginary unit i), the birth of logarithms
in the time of Napier (constant e) and finally the number 1, omnipresent in all
cultures and in all times.

• 1: it is the neutral element of the product in real numbers; its opposite −1 is a
negative integer.

• i: the characterization of i,18 called imaginary unit, is given by the fact that its
square is equal to −1. Thanks to the properties of ordering on real numbers,
it can be proved that there are no real numbers with negative squares; for this
reason, i is called imaginary, while the term unit recalls the fact that its module
is 1 (or, if you prefer, that its fourth power coincides with 1). Since i2 + 1 = 0,
the imaginary unit is an algebraic number, that is the root of a polynomial with
integer coefficients. An interesting curiosity in the history of mathematics is the
fact that already in the mid-1500s Cardano and Tartaglia had the concept of
imaginary unit (seen as a number whose square was equal to −1, or rather as
a number whose square added to 1 gave 0). Let us recall that in those times
in Italy the so-called “syncopated” notation expressed through symbols was not
yet in use in the writing of equations, but on the contrary was used the notation
known as “rhetoric”, in which the equations were described by sentences written
in plain language.

• e: The Napier number19 (in Europe also known as Euler’s number) is introduced,
in a rather cryptic way, in 1618 in a series of logarithmic tables calculated by
the English mathematician and physicist John Napier. Its importance from the
point of view of abstract mathematics is due to the fact that the derivative of the

18 The first use of the symbol i to denote the imaginary unit is in a text of 1777, which Euler
addressed to the Academy of Sciences of St. Petersburg and which was published posthumously in
1794 in one of the volumes of the Institutionum calculi integralis.
19 Euler has been the first to use the letter e to denote Napier’s number in a short treatise, Meditatio
in Experimenta explosion tormentorum nuper istituta (Reflection on experiments recently carried
out on shooting with cannons) he wrote towards the end of 1727 or the beginning of 1728 (when
he was 21 years old).
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exponential function with base e coincides with itself; this uniquely identifies
it within the set of real numbers. The limit of the sequence as n approaches
+ ∞ is the way in which it is usually introduced in study courses (both high
school and university courses). Since this sequence is increasing and is bounded
above by 3, its limit exists and is finite; an approximate value is given by 2.7182.
The major flaw of this definition is the fact that convergence is extremely slow:
it is necessary to get to n = 135 to find only 2 decimal digits, to n ≈ 1400
to find 3 and to n ≈ 14,000 to find 4. A different viewpoint that allows a
quicker convergence is obtained via power series. Indeed, we can see e as the
sum of the power series

∑+∞
n=0

1
n! whose rate of convergence is much faster

than the one given by the above-mentioned limit (n = 6 gives 3 decimal digits,
n = 10 gives 7 digits and n = 15 so much as 13 digits!). This formula can be
generalized by setting ez = ∑+∞

n=0
zn

n! , which defines the exponential of base e
as a holomorphic function defined on the complex plane. Since i2 = − 1 we

can then write eiz = ∑+∞
m=0(−1)m z2m

(2m)! + i
∑+∞

m=0(−1)m z2m+1

(2m+1)! . We then set

cos z = ∑+∞
m=0(−1)m z2m

(2m)! and sin z = ∑+∞
m=0(−1)m z2m

(2m)! , thus obtaining

eiz = cos z + i sin z.

• π:20 A qualitative study of the sine function (defined via power series as
described above) proves that it assumes positive values on reals in the range
between 0 and 3, while sin4 < 0; this allows us to define π as the first positive
zero of the sine function. The calculation of the values of the sine and cosine
function is simplified thanks to the fact that for real positive x, the power
series that defines them is alternating and that the Lagrange remainder allows
a very accurate estimate of the error. Though this definition is not the one more
commonly adopted (which sees π as half the length of a circumference of radius
1), nonetheless it is the correct one from the foundational point of view. The
fact that the cosine function is the derivative of the sine allows us to prove that
sin(x + π) = − sin x and cos(x + π) = − cos x for every real x (and therefore
also on the complex field); this implies that cos π = −1, sin π = 0 and that the
period of the sine function (and also of the cosine) is 2π. By setting z = π in the
above-displayed formula we obtain therefore eiπ = cos π = − 1, that is, Euler’s
identity.21

20 Euler popularized this symbol by using it in the Introductio in Analysin Infinitorum of 1748
(previously he often used the letter p).
21 Many thanks to Chiara de Fabritiis for the pleasant explanatory conversations.
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6 The Number of Napier as a Musical Theme and Sine
and Cosine as a Mutation of a Musical Canon

For what has been said so far, the five symbols represent an extended mathematical
world: how might we represent it musically? The first correspondence we can
establish is based on Napier’s number. The simplest way to musically represent
an irrational number that contains numerical sequences seemed like this: composing
groups of noteswhich share a system of internal relationship that imitates the system
of the number e (Fig. 6).

As can be seen in Fig. 5, we start from an octave interval, which Euler in his
treatise on music represents with the number 2. The successive pairs of notes are
the result of two contrasting forces that generate a sequence of chromatic ascents
and descents, with ever smaller intervals. The sequence represents the number
e, intended as a limit, obtained in twelve subdivisions. The intervals inside the
curly brackets symbolize Napier’s number. By adding the last couple of notes that
share the same sound (therefore the symbol of the number 1) we arrive at silence
(the number zero). The sequence of notes inside the brackets as seen in Fig. 7
was eventually elaborated through a series of changes produced by the imaginary
number and pi within a circle.

The indications given by the sine and the cosine shorten the theme, raising the
pitch of the notes, until arriving, in the first quarter of a circle, at a single note, at

Fig. 6 Euler’s equation realized in musical notes

Fig. 7 Euler’s theme transposed a fourth above with shortening



Euler and MusicMusing Euler’s Identity 509

Fig. 8 Napier’s number realized in a linear way

Fig. 9 Number of Napier made in polyphony (in two dimensions)

the end of a succession of five rises of fourth interval. In the second quarter of the
circle, proceeding counterclockwise, from a single note the theme is lengthening and
decreasing in pitch until it reaches the same original length but with the arrangement
of the notes in reverse order. In the third quarter of a circle we see the same
mechanism found in the first one but with the difference that the theme is lowered by
a fourth with each passage. Finally, in the last quarter of the circle, the theme goes up
by fourths and regains its original height and length. The number e was considered
in a linear, polyphonic way and, moreover, as part of a canon counterpoint (Figs.
8). Given below are the exemplary (Figs. 9, 10, 11). This work is still being studied
and perfected. In conclusion, music and mathematics share elective affinities that
reveal deep connections both in form and substance. The author’s intervention of
the transposition of Euler’s identity into music reveals a range of choices which are
not always definitive; in fact there could be many other possible solutions. However,
an attempt has been made to express a coherence, as close as possible to Euler’s
identity, by establishing multiple connections between numbers and notes, as well
as between the symbolic meaning of the number itself and the corresponding sonic
meaning that is represented in the musical figuration.
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Fig. 10 Two-dimensional Napier number in response form

Fig. 11 Preparatory sketch on the movement of the Euler theme with the movement of the sine
and cosine

Acknowledgement Co-editor and Supervisor of the English translation Marianna Biadene.
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The Shapes of Violin

Francesco Ciccone

1 From Fidula to Violin

Ed al principio sonar la ribeca
mi dilettai perch’avea fantasia

cantar di Troia e d’Ettorre e d’Achille
non una volta già, ma mille e mille1

Luigi Pulci, Morgante (cantare decimottavo)

In the world of classical Greece, the system of sounds and rhythms (always
ordered by numbers) was conceived as an exemplification of cosmic harmony:
music—from Greek μoυσ ικη̂, the art of muses or of combining sounds—was a
common practice for those who wanted to pursue beauty and truth.

Although the legend concerning the acoustic experiments of the Pythagoreans on
the sound emitted by a taut string is not very reliable (the Greeks tended to backdate
all acquired knowledge to Pythagoras), it is a fact that the chordophones—whose
first archaeological evidence dates back to the early Bronze Age in Western Asia—
developed along the arc of the classical world, often associated with ode and epic,
calm and spiritual elevation, the Apollonian side of Greek dichotomous culture [5];
the monochord, a very ancient instrument consisting of a fixed bridge and a mobile
bridge, was used for the experimental verification of the laws of harmony (whose
fundamental intervals are expressed by rational relationships) and as harmonic base
for singers up to Late Middle Ages, so much so that it was included in important

1 And at first I enjoyed playing my “ribeca” (rebec) / Because I really wanted / To sing about Troy,
Hector and Achilles / And not once, but thousand and thousand times (translation by Maria Teresa
Lambiase).
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dissertations, such as Musica Enchiriadis by Odo from Cluny and Micrologus de
disciplina artis musicae by Guido Monaco.

In an Arabic treatise of tenth century, compiled by Al-Farabi (described by the
Dominican friar Hyeronimus of Moravia as “one of the five highest authorities in
the field of music”), we find for the first time the use of bow as means to spread more
widely the sound of the vibrating string; one of the oldest iconographic attestations
of this practice dates back to the first decades of the second millennium, in a nativity
scene in the crypt of Sant’Urbano alla Caffarella (Rome), while written documents
refer to the bowed instrument through different words, dependent on geographical
areas:

• fidula in the Latin world (from fides, fidis: chord; still today fiddle is used in
English to designate the violin with traditional performance practice);

• giga in Germanic countries (note that geige is a current German term for the
violin);

• crwht or rotta in the Celtic area (from which a famous dance of the late Middle
Ages will originate).

In the thirteenth century the aforementioned Hyeronimus da Moravia wrote a
treatise on theoretical music which also deals with organology[8], classifying the
strings in the two great families of viella and rebeca (or rubeba) (Figs. 1 and 15):
the first instrument (vielle in English) has between 4 and 5 strings at a distance of the
fourth or fifth (the two fundamental intervals of the medieval period) and is mostly
used in order to accompany the singing of minstrels and troubadours or support the
performances of actors-celebrants in the sacred representations of the para-liturgical
functions; the latter instrument (rebec), which has between 2 and 3 strings tuned
for fifths, has a more acute register and a purely melodic performance practice.
However, the naive mixture of sacred and profane elements in many spheres of
late medieval culture suggests that there wasn’t a clear distinction between their
functions.

As for the construction, the professional figure of the luthier is not documented
until the end of the thirteenth century: the player was, in most cases, the creator
of his own instruments, inventing and modeling the technical and timbral charac-
teristics to his own playing skills (see [10]); it follows that the types of wood used
were mainly of local origin and the decorations drew inspiration from surrounding
architectural elements (rosettes, scrolls of capitals, painting of stone floor). Dante
Alighieri (Purgatory, Canto IV) mentions the figure of Belacqua, his Florentine
contemporary and probably instruments-maker.2

Very few instruments from the late medieval era have survived intact up to
the present: for example, the so-called violet of Santa Caterina de ’Vigri (see
[15]), preserved in Bologna in the Corpus Domini church or the carved citole of
British Museum, transformed in the seventeenth century into a bowed instrument.

2 “Faciebat citharas et alia instrumenta musica, unde com magna cura sculpebat et incidebat colla
et capita cithararum” [11].
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Fig. 1 Rebec’s
player—Santiago’s
Cathedral; courtesy of
Vincenzo Cipriani

Therefore, modern medieval lutherie is mainly based on the description of these
instruments from ancient sources, literary or iconographic ones [7], setting the
reconstruction on the proportions between instrument, hands, and faces present in
the various contexts.

However, for our purposes we can classify the evolutions of ancient models,
trying to understand the shape of modern instruments (Fig. 2), reasoning about
differences of various nature:

• FUNCTIONAL EVOLUTIONS—the shape is modeled according to the executive
needs; for example, the evolution of the instrument’s function itself, from
accompaniment to melodic, causes a more arched bridge and grooves are created
(the so-called C-bouts), so that the bow can “cut” the sound box;

• STRUCTURAL EVOLUTIONS—the instrument is meant to stand the test of time;
the case takes on a curvature that is not zero as it must counteract the pressure
of the strings on the table, thus avoiding basing internal frames that stop the
vibration of the wood;

• ACOUSTIC EVOLUTIONS—the need to perform music in increasingly spacious
places leads to an optimization of the holes present on the string instruments (the
f-holes), up to the current form;
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Fig. 2 Depiction of the parts of the violin

• AESTHETIC EVOLUTIONS—the sixteenth century luthiers, children of the Re-
naissance culture centered on the diffusion of beauty, try to shape their aesthetic
taste to the functionality of the instrument; this is particularly evident in the wood
decorations (carvings, tessellations, engravings) or in the figures present at the
end of the anklet (wooden sculptures, scrolls of the hedgehog, inlays).

2 Echoes from Ancient World

Geometry has two great treasures; one is the Theorem of Pythagoras;
the other, the division of a line into extreme and mean ratio.

The first we may compare to a measure of gold;
the second we may name a precious jewel.

Johannes Kepler

The luthier Simone Ferdinando Sacconi, exegete and great scholar of Antonio
Stradivari’s work, asserts that the construction of the shape of the violin is based
on several golden proportions [13]; before going into this dispute, we will shortly
retrace the history of this golden ratio, a true “muse” of thinkers of all disciplines,
more than any other number in the history of maths.
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Quantitatively, the golden ratio is given by the irrational number

ϕ = 1 + √
5

2
(1)

Although the name golden section is a very late attribution (it appears for the first
time in 1835 [12]), on a historical plan this number is linked to a geometric problem
present in Euclid’s Elements (second century BC):

Proposition 2.1 (Elements, II.11) To divide a given finite line into two segments,
so that the rectangle contained by the whole line and one segment may be equal to
the square on the other segment.

This proposition is demonstrated using two previous propositions (I.43 and II.6)
and brought back to an area equivalence problem (Fig. 3).

In the sixth book, after having developed the theory of proportions, ϕ appears
like a definition:

Definition 2.1 (Elements, VI.3) A line (segment) is said to result in extreme and
mean ratio (Fig. 4) when it is like the total line with respect to the major segment,
so the greater than the minor.

In this way, the definition satisfies problem II.11, since (AB)(BC) = (AC)2.
A first interesting property is the following: copying the segment CB to AC

(construction with compass), we obtain a new subdivision in the extreme and mean
ratio of the latter! By setting the point obtained in centering the compass in A with

Fig. 3 Constructive scheme
of the Proposition 2.1



518 F. Ciccone

Fig. 4 Extreme and mean
ratio

A C B

the opening BC equal to D, we actually obtain

AB

AC
= AC

BC
⇒ AB − AC

AC
= AC − BC

BC
⇒ CB

AC
= AD

CB
⇒ AC

DC
= DC

AD

The construction can be repeated an arbitrary number of times.
If we want to give an algebraic connotation to the Euclidean definition (consid-

ering the AC segment as unitary and setting AB = x and CB = x − 1), we have
x
1 = 1

x−1 , that is

x2 − x − 1 = 0 (2)

By solving the second degree equation, we obtain the two solutions

x1 = 1 + √
5

2
= ϕ (golden ratio); x2 = 1 − √

5

2
= − 1

ϕ
(

1

ϕ
is golden section)

These values are also obtainable through geometric constructions: always taking
the Elements as a reference point, a constructive method for a particular triangle is
suggested:

Theorem 2.1 (Elements, IV.10) To construct an isosceles triangle having each
base angle double the vertical angle.

In this way, we obtain a triangle with angles 2π/5, 2π/5 and π/5. Furthermore,
in the triangle ABD (Fig. 5), if AB = AD = 1, then BD = AC = CD = 1/ϕ,
or rather the side of the regular decagon is the golden section of the circumscribed
circumference’s radius and its interior angles has width α = 4π/5, that is the double
of the angle to the base recalled in 2.1.

From the decagon you can easily build the pentagon, joining the vertices
alternately; in the Elements, however, a different path is followed: bisecting the
angles of the base side, we obtain five arcs on the circumference that subtend the
same angle of amplitude 2π/5 (therefore equal to each other), and the subtended
chords are equal (i.e., the sides of the regular pentagon). This construction leads
to the graphic realization of the pentagram (Fig. 6), the five-pointed star obtained
through the diagonals of the pentagon, which generates another regular pentagon
within it, from which a new pentagram can be created . . .

The pentagram was well known within Pythagorean circles of Magna Graecia in
the sixth century BC: Lucian of Samosata quotes that this figure, a triangle with a
triple intersection, was used as a symbol by their sect; some others argue that it could
have offered itself a visual basis for the discovery of the incommensurability of
two quantities through the process of antiferesis, or subsequent subtractions: AC −
AB = CH , AB − CH = GH, . . .
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Fig. 5 Constructive scheme
of the isosceles triangle
required by Theorem 2.1

Fig. 6 A pentagram

The iterative process and the reference to ϕ are analyzed in Elements, XIII.8,
where it is demonstrated that in a regular pentagon the diagonals are cut in extreme
and medium ratio and the longer segments of this subdivision have length equal to
the side of the pentagon.

The golden rectangle (i.e., the rectangle that has sides in the same proportion as
AB and AC of Fig. 4) has exerted fascination on the history of arts and architecture,
to the point that many scholars and enthusiasts have identified references to ϕ

in every area of human knowledge, sometimes “hazarding” hypotheses linked to
periods in which there was no certain attestation of a conscious use (for a detailed
analysis of the question see [6]).
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Fig. 7 Back’s shape, during
the splice; courtesy of luthier
Federico Mari

The discourse is quite different with regards to violin making, which sees
its golden century flourishing soon after in times following the publication of
the treatise by the Franciscan friar Luca Pacioli, De divina proportione (Venice,
1509): because of this book, probably inspired by a previous work by Piero Della
Francesca, the knowledge of ϕ spreads among painters, sculptors, and architects,
who see a real possibility of connecting mathematics to physical universe that
surrounded them, in the perspective of Renaissance Neoplatonism. The formal
perfection and the acoustic performance achieved by the instruments of the Cre-
mona’s school has meant that, for a long time, subsequent later luthiers limited
themselves to copy the sinuosities and trends of the various Amati, Guarneri,
Stradivari, Guadagnini, Maggini (Fig. 7). . . Reading the heterogeneous literature
on this subject, there are many allusions to the value of the golden ratio in the
construction of the violin, an essential practice both for the acoustic rendering and
for the aesthetic balance; despite this, no documents have been found that testify
the actual use of ϕ in the original project, and often the attributions are based
only on a posteriori measurements and approximations of ratios that approach the
value of ϕ � 1, 6180339887 . . . although ϕ, due to its irrational nature, cannot
be expressed as a rational relationship! However, ϕ can be approximated, with
increasing precision, by taking the ratio between consecutive terms of the Fibonacci
sequence.

Definition 2.2 The recursive sequence {Fn}, called the Fibonacci numbers, is
defined as

F0 = 0, F1 = 1, Fn = Fn−2 + Fn−1

It is known that limn→∞( Fn

Fn−1
) = ϕ (for the proof, see [3]).
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Among the most followed golden suppositions, we are going to mention the
following:

1. the ratio of violin height to lower maximum width would be a good approxima-
tion of ϕ;

2. some portions of the form would be obtained from golden ratios with a lower and
higher maximum width;

3. in Stradivari violins, the tracing of the ff would be obtained by means of a golden
rectangle having a base coinciding with the lower maximum width.

Concerning point (1), as previously mentioned, there is no standard measure for
violins, even if the oscillations are minimal; considering that the height h is around
356 mm, and the lower maximum width b around 208 mm, we have that the ratio
h/b � 1, 711 is not a very good approximation; even worse if we consider the unit
of measurement used in Stradivari’s time, the Cremonese arm (about 48.36 cm),
divided into 12 ounces. Comparing the forms of Stradivari, we usually have h = 9
ounces and b = 5 ounces, with a ratio of h/b = 1.8. As for the other points, since we
have not received tables of the original projects but only wooden artifacts, they are
almost always with hindsight measurements, which do not prove a real construction
of the number ϕ but, in the limit, various approximations of what it was presumably
an aesthetic canon that was inspired by painting, architecture, philosophy.

For the sake of completeness, we report the geometric design made by the
luthier Sacconi, in which the stradivarian form G is recreated starting from the
maximum lower width (5 ounces) and applying subsequent constructions with ruler
and compass (Fig. 8).

3 The Elegance of Scroll

Quando ammiriamo lo svolgersi del viluppo del riccio, così proporzionato, forte ed agile insieme nello slancio,
aggraziato e morbido nella sua plasticità, sempre diverso nelle misure e sempre uguale nei rapporti, rimasto unico e

inconfondibile fra le migliaia scolpiti dagli altri maestri liutai, ricordiamo ch’esso è stato disegnato con l’applicazione
di due regole geometriche quali la spirale di Archimede, per lo sviluppo iniziale della chiocciola, e del Vignola per

il suo completamento fino al dorso del riccio. [13]3

Simone Ferdinando Sacconi

Our purpose is to describe the plane curves that are recalled, on a historical level,
in the design of the terminal part of the pegbox (the end of the fingerboard where
the pegs are recessed, by which the strings are tensioned); in modern violins it often
has the shape of a spiral, the so-called scroll.

3 When we admire the development of the scroll, so proportionate, strong and agile at the same time
in its momentum, graceful and soft in its plasticity, always different in size and always the same
in relationships, remained unique and unmistakable among the thousands sculpted by the other
master luthiers, we remember that it was designed with the application of two geometric rules such
as the spiral of Archimedes, for the initial development of the scroll, and spiral of Vignola for its
completion up to the back.
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Fig. 8 Geometric constructions obtained from an original Antonio Stradivari’s violin form, by
Simone Ferdinando Sacconi; courtesy of Eric Blot Edizioni

One of the primitive concepts of our spatial intuition is that of line, or plane
curve; different approaches have been undertaken, throughout history, to be able to
describe this entity: from geometric places to the aggregation of small corpuscles,
from the dynamic definition of a point moving in a plane to the intuitive definition
of a line that can be drawn with a stroke of pen or pencil.

The most suitable idea for the different purposes of modern science is the one
describing a curve as an image of an application, a dynamic idea of a point that
moves continuously (or differentially) in the plane or in space (see [1]).

A spiral is a curve that winds around a certain central point, progressively moving
toward or away from it, depending on the orientation in which the curve is traversed.



The Shapes of Violin 523

Fig. 9 Archimedean method
of construction of the
rectification of the
circumference

Definition 3.1 Assigned a, b ∈ R, the Archimedean spiral is a curve having
parametric equations

{
x = at cos t

y = bt sin t

This curve can also be described in polar coordinates (r, θ), through the equation
r = a + bθ (in this case b > 0).

In Archimedean spiral, the arms are placed at an equal distance, equal to 2πb

(if θ is measured in radians). Archimedes introduced his spiral to solve one of the
classical problems of ancient times, namely the rectification of the circumference
through a constructive process (Fig. 9):

• An Archimedes spiral with initial point O is constructed in the Cartesian plane.
• After a rotation of 2π it meets the y-axis at the point A.
• A circle of radius OA is constructed.
• We draw the tangent to the spiral at the point A. It intersects the abscissa axis at

the B point.
• The length of the circle with radius OA is equal to the length of the segment AB.

This geometric construction does not solve the original problem, as the starting
spiral itself cannot be constructed with ruler and compass. However, the method
cited by Sacconi in the initial quotation refers to the approximate construction, on
the Cartesian plane, of this curve (Fig. 10):

• The Cartesian axes and the two bisectors of the quadrants are traced.
• Concentric circles are drawn with the origin of the axes in the center.
• The circumferences meet the straight lines in numerous points: starting from the

origin, we move each time by π/4 and we radially move away on the outermost
circumference, finding the points through which the approximate Archimedes
spiral passes ( indicated in the figure with A, B, C, D, E, F, G, H).

We also report the construction method (evoked by Sacconi in the initial
quotation) by Jacopo Barozzi da Vignola, architect of the seventeenth century,
applied to the volute’s construction of the Ionic capitals (Fig. 11).

Let us now analyze another type of spiral, more present in nature than the
Archimedean one:
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Fig. 10 Constructive Method
of the approximate
Archimedean spiral; courtesy
of Antonietta Zanatta

Fig. 11 Constructive method
applied to the volute of the
Ionic capitals; opus by Jacopo
Barozzi da Vignola
(1507–1563)
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Definition 3.2 Assigned a, b ∈ R, with a > 0, b < 0, the Logarithmic spiral is a
plane curve σ : R → R

2 given by σ(t) = (aebt cos t, aebt sin t).
Recalling that r2 = x2 + y2, we see that this curve satisfies r = aebθ in a polar

coordinate system (r, θ).

The name is due to the fact that, applying the natural logarithm to the polar form,
we obtain ln r = ln a + bθ , which allows us to express the radius as a function of
the argument: moreover, for θ = 0, we get the point (a, 0); limθ→∞r(θ) = ∞ and
when θ → −∞ the spiral approaches the origin O , winding up. Also, t coincides
with the θ argument of σ(t), modulo multiples of 2π , which makes it surjective
and periodic of period 2π . The logarithmic spiral was first described by Descartes
in a letter sent to Marsenne on 12 September 1638 and subsequently studied by
Evangelista Torricelli (De infinitis spiralibus, 1645) and by Jacques Bernoulli, who
found many properties and defined it Spira mirabilis, because moving away or
approaching the origin even if its dimensions increase or decrease, it is always
similar to itself. Moreover, starting from any point of the spiral and making complete
turns, the vector radius varies according to a geometric progression of ratio e2bt—
hence the alternative name of Proportional spiral, sometimes attributed to the curve.
In other texts it is found as Equiangular spiral, since in all points of the spiral the
angle formed by the vector radius and the tangent line is constant.

4 Straightedge and Compass Construction

Qual è ’l geometra che tutto s’affige
per misurar lo cerchio, e non ritrova,

pensando, quel principio ond’elli indige,
tal era io a quella vista nova. . . 4

Dante Alighieri, Paradiso, XXXIII, 133–136

The classical instruments of Greek geometry are still used today by luthiers to
trace the nodal points on the soundboards (see [14]). In this section, we will try
to introduce, from the algebraic point of view, which points in a real plane are
obtainable with straightedge and compass. The possible operations, once assigned a
set of P points, are:

1. draw the segment joining two points of P;
2. draw the line through arbitrary two points of P;
3. draw a circle having as center a point of P and as radius a segment identified by

two points of P.

4 As the geometrician, who endeavors / To square the circle, and discovers not, / By taking thought,
the principle he wants, / Even such was I at that new apparition. . . (translation by Henry Wadsworth
Longfellow).
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Definition 4.1 A point is said to be constructible in one step starting from P if it is
given by the intersection of any two straight lines, of a circle with a straight line, of
two circles, all figures obtained through the possible operations listed above.

A point is constructible in a finite succession of steps starting from P, if it can
be obtained iterating this construction finitely many times adding to P the points
constructed in the previous steps.

A straightedge and compass construction is a finite succession of basic opera-
tions.

Some simple synthetic examples of this procedure are the construction of the
midpoint of a segment, the construction of a line perpendicular (or parallel) to
a given line and passing through a point P (the Italian Lorenzo Mascheroni will
demonstrate in the eighteenth century that all constructions with ruler and compass
can actually be performed with only the compass, if we consider a straight line as a
“assigned” once two of its points are assigned).

By introducing a Euclidean metric, we can associate each segment with the
number that expresses its length.

Definition 4.2 A real number α is said to be constructible if with straightedge and
compass it is possible to construct a segment of length |α|. A point is constructible
if its coordinates are constructible as well with respect to a fixed system of Cartesian
axes.

It can be proved that both Z and Q are contained in the set of numbers that can be
constructed starting from only two points (the extremes of the unit of measurement);
called C the set of such constructible points, it is shown that C is a field.

Let now F be any sub-field of the real numbers.
The plane of F is defined as the subset F2 ⊆ R

2.
We define line of F any line joining two points of the plane, with equation ax +

by + c = 0, (a, b, c ∈ F). We define circumference of F any circumference that has
its center at a point of F and has a radius belonging to F, with equation x2 + y2 +
ax + by + c = 0 (considering a, b, c ∈ F).

Given a constructible α number, it is possible to construct the number
√

α.
As a matter of fact, draw the perpendicular for the point 1 and calling P the

intersection point with the circumference. By Euclid’s Theorem, the y coordinate of
the point P is the required root; in fact 1 : x = x : α ⇒ x = √

α.
It is concluded that all the points of the real plane constructible in one step

starting from the plane of F are the points having coordinates in the form F(α), with
α ∈ R, α2 ∈ F. Analyzing the shape of the equations of line and circumference in
the plane F2, and making them intersect algebraically through a system, we note
that the solution equations have a degree that is a power of 2.

Proposition 4.1 A real number c is constructible if and only if there are a finite
number of real numbers α1, α2 . . . αn such that

α1
2 ∈ Q, αi

2 ∈ Q(α1, α2, . . . , αi−1)

so that c ∈ Q(α1, α2, . . . , αi−1).
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We can restrict ourselves to Q because all constructible numbers contain this
field. Considering the field F1 = F(α), with α ∈ Q, α2 ∈ F, the points of the
plane that can be constructed in a step starting from F1 are all and only those with
coordinates belonging to F1(β), with β ∈ Q, β2 ∈ F1. A point γ is therefore
constructible starting from the plane of a field F if and only if there is a finite
succession of subfields

F0 = F ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fn

such that Fi = Fi−1(αi) e αi ∈ Q, αi
2 ∈ Fi−1.

Corollary 4.1 The number ϕ is constructible (although there are no attestations of
its real constructions in the luthier’s craft).

(Compare the constructive process described in the 2.1 Theorem or see the second
degree polynomial (2).)

As far as the creation of arching is concerned, the methods are the most varied:
the boards that constitute table and back, before being excavated, have a uniform
thickness and can be approximated with a portion of the plan; after an initial
roughing with planer, the so-called sixth line is traced, or rather the longitudinal
profile that coincides with the centerline and which will have to contrast, over the
years, the tensions caused by the neck, bridge, soundpost, strings; the difference in
the woods used (in almost all cases maple for the back, fir for the table) means that
the support that this curve assumes is slightly different between the upper sixth and
the lower sixth. We then proceed with the “purfling’s insertion”5 (Figs. 12 and 13)
(i.e., the decoration of the external edges, using strips of wood inserted in previously
dug grooves) and the “gorge”6 (channel dug deeper that follows the edge of the
shape of the instrument); the gorge must be connected with the rest of the arching,
which will result in a transition from a concave area to a convex area.

From this moment, to create the curvatures mechanically, different methods are
followed (Fig. 14): some luthiers draw an orthogonal grid, over the table, reporting
with a pencil the final height that must be reached by that portion of the top and
that will be checked periodically with a caliber; others trace level curves, to be
connected continuously; still others make use of models for the cross sections, the
so-called fifths of curvature. A Swedish luthier, Bjorn Zethelius, uses a completely
different procedure from that of the fifths: taking a catenary line as a reference
line, he prepares to excavate the two boards from the inside, establishing maximum
depth, obviously different between bottom and top. Following the longitudinal and
transverse axis and two geometrically established diagonals, he thus excavates the
interiors of the two tables, verifying the various concavities with a chain. Let us
explore the characteristics of this particular curve:

5 Filettatura, in Italian.
6 Sguscia, in Italian.
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Fig. 12 Excavation of the
purfling’s channel; courtesy
of luthier Federico Mari

Fig. 13 Purfling’s detail;
courtesy of luthier Federico
Mari

Fig. 14 Intermediate phase
of the internal sculpture of the
bottom; courtesy of luthier
Federico Mari
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Definition 4.3 The catenary is the curve that a homogeneous, flexible, and inex-
tensible thread, subject only to its own weight, forms when its ends are fixed. One
possible parameterization is σ : R → R

2 is given by σ(t) = (t, cosh t).

The first to deal with the catenary was Galileo Galilei, in 1638, mistakenly
thinking that the shape of an “ideal” rope (perfectly flexible, inextensible, without
thickness and with uniform density) hung by its ends and under the force of
gravity were a parabola. Joachim Jungius later proved that the parabola was not
the resolution curve.

The catenary is one of the few curves for which we can express the parame-
terization with respect to the arc length through elementary functions. Since the
catenary has the property of having a uniform distribution of its total weight
in each of its points, it has often been used to create artifacts and architectural
structures and this could be the reason for its use in some descriptive methods
of historical lutherie. Finally, the American violin-maker Michael Darnton, after
having carried out studies on various ancient instruments (especially by Amati)
with Moiré photogrammetry, supported the thesis that the external surfaces strictly
followed the support of cycloid curves:

Definition 4.4 The cycloid is the curve σ(t) : R → R
2 with parameterization

σ(t) = (t − sin t, 1 − cos t).

The cycloid arc is the curve that allows a mechanical particle to go frictionlessly
from a point A to a point B, not directly situated below A, under the influence
of a uniform gravitational field in the shortest possible time and is a solution to
the brachistocrone problem (i.e., “shortest time curve”). This curve is regular (its
tangent vector σ ′(t) = [1 − cos t, sin t] never vanishes) and its support is given by
the path followed by a point of a circumference that rolls without crawling on a
straight line; this mechanical correspondence probably allowed the construction of
wooden models with whom it is possible to compare the progress of the excavation
during the sculpture of the table (Fig. 15).

5 Acoustic Surfaces

All religions, arts, and sciences are branches of the same tree.
All these aspirations are directed toward ennobling man’s life,

lifting it from the sphere of mere physical existence and leading the individual toward freedom.
Albert Einstein

Analyzing qualitatively the surface of the violin, we note that it is an oriented
surface, connected by arcs; the back is simply connected while the table is not,
since the closed curves enclosing the f-holes cannot be deformed to a single point.
By assimilating the table to a two-dimensional surface, we now ask ourselves what
the proportionality factors are between the measures of a standard violin and those of
its reduced; furthermore, there are scaled versions to allow children to approach the
instrument in the various stages of physical development. Historically, the popular
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Fig. 15 Rebec and
organistrum—San Miguel de
Estella’s church (Navarra,
Spain); courtesy of Vincenzo
Cipriani

formats for violins (and cellos) are identified in the following ratios

4/4 (standard violin) 7/8 (so-called women′s violin) 3/4 2/4 1/4

However, these ratios seem to have no apparent connection with the linear or
surface dimensions of the resonance box; in reality, the method used alludes to the
reduction in scale factors; for example, the 1/4 violin is the one that has the length of
the resonance box reduced by a quarter compared to the standard one; considering
as standard the Berthier violin, made in 1716 by Antonio Stradivari (case length
equal to 356 mm), we obtain that the 1/4 violin has length 356 ∗ (3/4) = 267 mm
(length which probably corresponds to another Stradivarian violin, the Aiglon of
1734).

By calculating the difference in surface area S1 and S 1
4

between the two models
(standard and 1/4 reduction), we obtain the proportional value that varies in the
other violin reductions .

Sn+2
8

= S 1
4

+ n

6
(S1 − S 1

4
) , n = 0, 1, . . . , 6

This method, apparently anti-intuitive, is the one used to obtain the measures of the
violin in scale; what happens, instead, with the other members of the string family?
The rational harmonic relationships, already known in the time of the Greeks,
relate the length of a string (with the same tension and thickness) with the sound
it produces; some of the fundamental intervals (called perfect, in musical language)
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have the following relationships:

2 : 1 Octave 3 : 2 Fifth 4 : 3 Fourth

The three lowest-pitched instruments (viola, cello and double bass) should maintain
the same scale ratios as the violin, in proportion to the lowering of the frequency of
the tessitura.

Placing l as the length of the violin, the following situation would arise:

– the viola (tuned a fifth below the violin) should be 3
2 l long;

– the cello (tuned one octave below the viola) 3l;
– the double bass (tuned a sixth under the cello) about 5l.

Obviously, these instruments would not have characteristics compatible with the
physical structure of man. To remedy this, the luthiers create some tricks to increase
the inertia of the case, including the variation of the thicknesses, the addition of the
strings’ dimensions, the deformation of the sides; despite the compromises adopted
have led to well-balanced dimensions and frequencies, the three instruments are
not exact copies of the violin [4], as each of them has a particular timbre that
characterizes it and distinguishes it from the others, making it unique from an artistic
and musical point of view.

Stringed instruments produce a sound through bow or by pizzicato; from the
strings, the vibration is transmitted first to the bridge and then to the soundboard;
from this, finally, to the back by means of the soundpost (a small fir cylinder placed
inside the case).

The vibrating ends of the string are the bridge and the upper nut; in the case of
the violin, the 4 strings are G3, D4, A4, E5, with respective frequencies 197, 298,
440, 660 Hz (this agrees with the rational ratio 3:2 relating to the fifth interval).

When a string is put into vibration, its motion is described by the so-called
normal modes of resonance, while the configurations of the vibrations consist of
the nodes (the fixed points of the string) and the antinodes (the points of maximum
oscillation) [2].

Like the strings, also the resonance box has specific resonance frequencies (the
resonant vibration modes), due to the mixture of mechanical properties of the wood
of the case and those of the air enclosed in it.

Summarizing the body, in addition to “amplifying” the resonance of the strings,
has its own resonance which helps to determine the timbre of an instrument; this
is also one of the reasons why there are no universal thicknesses and standard
curvatures for violins, as each wood has certain physical characteristics (elasticity,
cut, seasoning, density) which can be combined in various ways ([9]). Wood is, in
fact, a “living” material, subject to changes over time.
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Fig. 16 Vielle and Rebec,
opus of luthier Vincenzo
Cipriani; courtesy of Selene
Chiozzi

6 Conclusions

La matematica è la più umanistica delle scienze esatte.7

Luigi Amerio

The etymological root of the term mathematics is closely linked to the concept
of learning (from μα̂θημα = science, knowledge, what you learn through the
technique).

Sometimes music is able to transport us to unexpected worlds, making the
physical aspects of sound intersect with the temporal dimensions of memory
(Fig. 16); when progresses improve your musical technique, the same enchantment
may disappear, for the more you understand something, the less you will be able to
observe it with the typical astonishment of a child; the same sensations can be found
in mathematics when it is considered as a creation of the human mind.

But, just as “poetry” finds its fulfillment in “doing”, in the same way mathematics
and music manage to give unexpected worlds that reveal themselves as the level of
knowledge and awareness of their own limits increases. Finding an answer makes
us happy, but just as the journey gives us more joy than the destination, sometimes
the questions are the real fulcrum of knowledge.

Iconographic References

Figure 11: website http://www.faredecorazione.it;

7 Mathematics is the most humanistic of the exact sciences.

http://www.faredecorazione.it
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Part XI
Women and Mathematics



Women, Academia, Math: An Ephemeral
Golden Braid

Chiara de Fabritiis

1 Introduction

The relation among women, academia, and mathematics is a long-term romance
which, as many love affairs, had its ups and downs (unfortunately, till nowadays
more downs than ups, as we shall see).

The aim of this work is to investigate the figures of the presence of female
mathematicians in Italian academia, to give an interpretation of their trends, and
to suggest possible good practices and affirmative actions, with a special focus on
young people, to reduce the gender inequality in this area. In particular, we will
report on a new tendency in recruitment that arose in recent years, the so-called
Glass Door phenomenon, i.e., the obstacles women face in entering the first levels
of the academic career: while the recruiting of “ricercatori” was almost gender-
balanced till 2010, in the last decade the presence of women dropped down also in
this role, as it was turned to a temporary one.

One may ask why a paper dealing with such an issue appears as a chapter of
a book whose title is “Imagine Math”: both as a mathematician and a woman,
I see gender issues as central ones in the transformations Italian society has to
undergo in order to reach a better exploitation of its human potential; this is the
reason why the mathematics I imagine for future generations is a gender-balanced
one. I must confess this is not an original opinion: the fourth and fifth goals of the
UN Sustainable Development Agenda are “Quality Education” (Ensure inclusive
and equitable quality education and promote lifelong learning opportunities for all)
and “Gender Balance” (Achieve gender equality and empower women and girls),
respectively.
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It is a pleasure to thank dott.ssa A. Franzellitti and the staff of Ufficio Statistico
of the Italian Ministry for University for their valuable help in the search for some
of the data.

2 Two Faces of an Old Problem: The Leaky Pipeline
and the Glass Ceiling

The global underrepresentation of women in academic jobs a well-known phe-
nomenon that the many modifications which took place in the structure of our
society in last times scarcely mitigated, in particular in STEM (Science, Technology,
Engineering, Mathematics) areas. This paragraph is devoted to a concise analysis
of two aspects of an important issue in female academic careers: the decreasing
presence of women holding positions at the highest levels of the job ladder. This
phenomenon is chiefly due to two concurrent causes: the Leaky Pipeline and the
Glass Ceiling. The first expression deals with the fact that women are more likely
to leave their academic employments for different sorts of professions (in Italy
mainly school teaching) or for staying at home, while the second one concerns the
difficulties women experience in reaching the highest levels of the job ladder. For
a generalist approach to the reduced participation of women to academia, see, e.g.,
the She-Figures report 2018 [1], while an investigation more focused on early stages
of the career is contained in the publications of the Garcia Project [2] (in particular,
the leaky pipeline is discussed in [3–6]) and [7]; a useful source of references for
the Glass Ceiling effect is [8].

The percentage of women and men at the different levels of academic career
shows that moving from Ph.D. students to full professors a part of the female
population “disappears.” This evidence is clearly visible in the graph in the
following page which displays the percentage of women (orange) and men (green)
at the different levels of POST-DOC (assegnista di ricerca), RTD-A (temporary
research assistant), RTD-B (tenured temporary research assistant), RTI (permanent
research assistant), PA (associate professor), PO (full professor) for mathematicians
in the year 2016 (dotted lines) and 2021 (continuous lines). The scissors-shaped
curve marks the “evaporation” of a part of the female scholars as the level of the job
increases (Fig. 1).

The surveys carried out in Italy for the Garcia project showed once more that

“the uncertainties connected to these job positions, the lack of long-term perspectives [ . . . ]
seem foster the decision to leave research”; moreover “men and women do not hold the
pressure put by the greedy institution between personal and working lives the same way.
From this sight, parenthood seems to hold a major role.”1

1 Garcia working paper n. 5, p. 6.
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Fig. 1 Percentage of men (green) and women (orange) in academic positions in mathematics from
post-doc to full professor; 2016 (dotted lines) and 2021 (continuous lines); elaboration on data
taken from the database of the Italian Ministry for University

Another motivation for the small fraction of female full professors is the so called
vertical segregation, that is the fact that women experience a greater difficulty than
men when applying or competing for the highest level positions (a stunning evidence
is given by the fraction of women rectors in Italy which in 2021 was equal to
6/84 = 7%); this fact is called the Glass Ceiling phenomenon, where the expression
refers to an invisible ceiling which prevents women to go beyond a given level.

In particular, the Glass Ceiling Index (GCI) is a relative index that compares the
proportion of women in academia with the proportion of women in top academic
positions (full professor level). If the GCI is equal to 1, then the fraction of women
in all grades is equal to the fraction of women in the highest level while a GCI
greater than 1 denotes a Glass Ceiling phenomenon.

The table in the following page contains the trend for GCI in all mathematics
disciplines in the last ten years: the first line displays the percentage of women in
academia, that is the quotient of the number of women in all grades (W) and the
total number of academics (T), the second one displays the percentage of women in
top positions, that is the quotient of the number of female full professors (Wf) and
the total number of full professors (Tf). Comparing the GCI for the mathematical
area with the general GCI for Italy shows that our field is not an exception to the
harder times women experience in STEM, since the global GCI was 1.73 in 2013
and 1.68 in 2016.

An optimistic interpretation of the trend of GCI for mathematical disciplines
would underline the fast decrease of this indicator in the last 5 years, implying that
it should reach 1 around 2032 (estimate obtained with a linear regression method).
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2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

W/T 36.1 36.4 36.6 36.8 36.2 36 35.5 35.3 34.7 34.2 

Wf/Tf 16.9 16.6 16.6 17.1 17.3 18.3 19.2 19.3 19.8 20.1 

GCI 2.14 2.2 2.21 2.14 2.09 1.97 1.85 1.83 1.75 1.66 

GCIm 0.77 0.76 0.76 0.76 0.77 0.78 0.8 0.8 0.81 0.83 

GCI/GCIm 2.78 2.88 2.91 2.8 2.72 2.52 2.32 2.29 2.15 2 

Fig. 2 Percentage of women in all grades (W/T) and women full professor (Wf/Tf), Glass Ceiling
Index (GCI), male Glass Ceiling Index (GCIm), and ratio between GCI and GCIm; figures obtained
from data taken from the database of Italian Ministry for University

Unfortunately, this hopeful analysis is spoiled by the content of the next paragraph,
where a new obstacle in the direction of gender balance (the Glass Door) is outlined.

A more revealing indicator for the measurement of the obstacles women find in
reaching full professorship is the ratio between GCI (which is computed for the
female population) and the same index computed for male population (GCIm); this
number evaluates the difference in the arduousness in becoming a full professor for
women and men: even though this quantity has been rapidly decreasing in the last
decade, still in 2020 the hardship women undergo for this goal is twice as big as
men do (Fig. 2).

Again, linear regression optimistically predicts parity in this parameter around
2031; nonetheless, we must be aware that this index gives a necessary condition for
gender equality which is not sufficient at all. Indeed, a trivial algebraic manipulation
shows that GCI is equal to 1 if GCIm is equal to 1 and this is equivalent to the fact
that percentage of women at all levels is equal to the percentage of women who
are full professors: so a hypothetical academic system in which women hold 1% of
the positions of assistant professors, 1% of the positions of associate professors and
1% of the positions of full professors would result in a GCI equal to 1, while being
strongly gender unbalanced.

The reasons of the difficulties women experience have been widely investigated
and cannot be explained only on a lower tendency to apply for higher rank or on a
smaller scientific productivity, as shown in [8], where a detailed study on the cohort
of scholars who already obtained Abilitazione Scientifica Nazionale is performed.
Authors use years of seniority, macrodisciplinary area, university of affiliation
and a parameter that measures individual scientific productivity (standardized h-
index, standardized number of citations, standardized number of publications and
an overall measure of productivity) as control variables of five different statistical
models. In all cases, no matter how scientific productivity is measured, they find
that the probability of career advancement for women is significantly lower than
for men. In particular, on average female assistant professors have a probability to
advance to associate professor which is 8% lower than their male colleagues; this
percentage increases to 17% when they consider associate professors looking for a
promotion to full professorship.
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3 A New Problem: The Glass Door

While the Leaky Pipeline and the Glass Ceiling phenomena have always been
a problem in Italian mathematical academia, the access to the lowest degrees of
temporary (Ph.D. and post-doc) or permanent (ricercatore/ricercatrice, i.e., research
assistant) positions has been almost equal for both men and women for a long time
(see [9] for a detailed analysis of the data).

Nonetheless, the modifications of the recruitement rules due to Legge 230/05
and Legge 240/10, which abrogated the permanent position of “ricercatore a tempo
indeterminato” and introduced the temporary positions of “ricercatore a tempo
determinato di tipo A/B,” caused a new phenomenon, which in analogy with the
“Glass Ceiling” has been designated as the “Glass Door.”

This expression means that access to academic positions is harder for women
than for men; this difficulty is measured by an indicator, called Glass Door Index
(GDI), which was introduced by Picardi in [10] (see also [11, 12]); GDI is given by
the quotient of the percentage of women who work in positions equal or below
the first step of academic ladder (that is, post-doc and assistant professor, both
temporary or permanent) by the percentage of women who work in positions at
the first step of academic ladder (that is, assistant professor, both temporary or
permanent). Unfortunately, the computation of this number is more complicated
than one could expect, since some of the data are not easily accessible: while the
database of the Italian Ministry of University for the academic staff displays many
different parameters (level, sex, year, scientific discipline, generic area of research)
which allow a simple selection, the database for post-doc positions is very rigid (in
particular, there is no sorting for sex) and it contains only current post-docs (Fig. 3).

The GDI for 2011, 2016, and 2021 are easily computed from the numbers in the
table and are equal to 0.96, 0.89, and 0.91, respectively.

Since a GDI smaller than 1 denotes that there is no bottleneck for women in the
transition from post-docs to more “stable” positions (“personale strutturato” in the

2011 

total 

2011 

females 

2011 

ratio 

2016 

total 

2016 

females 

2016 

ratio 

2021 

total 

2021 

females 

2021 

ratio 

RTI 887 407 46% 560 283 50% 294 154 52% 

RTDA 1 0 0% 87 29 33% 141 46 33% 

RTDB 142 5 36% 79 28 35% 200 54 27% 

RTD(A+B) 15 5 33% 161 54 34% 341 100 29% 

Total 902 412 46% 721 337 47% 635 254 40% 

Post-doc 291 108 37% 278 90 32% 354 106 30% 

Fig. 3 Figures of “Ricercatori a tempo indeterminato” RTI (total and females), “Ricercatori a
tempo determinato di tipo A/B” (total and females), post-docs in mathematics in 2011, 2016, 2021;
data come from the databases of Italian Ministry for University. (2The figures of 2011 and 2016
RTDB include also a different temporary position, namely ricercatore a tempo determinato L.
230/05, legge Moratti.)
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jargon of Italian bureaucracy), these results would give a favorable account on the
situation. Nonetheless, the use of raw data introduces a distortion that increases with
time and must be taken into account: while in 2011 RTI where the almost totality
of assistant professors, in 2021 people covering this role were recruited more than
10 years ago and we are comparing their cohort with present post-docs which will
never become RTI, since enrollment in this position was canceled by Law 240/10.

In my opinion, a more significant index for 2016 and 2021 (the number of RTD is
too small to make this computation meaningful for 2011) is therefore given by using
only RTD-A and RTD-B as “stable” positions and comparing them with post-docs;
with this restriction we find that the modified Glass Door Index (GDIm) is equal to
0.98 for 2016 and to 1.01 for 2021, thus showing a trend which is closer to reality:
in recent years the obstruction to female entrance in academic staff has the same
strength at post-doc and at assistant professor level.

The figures contained in the above table allow a more detailed analysis of
the modifications at the first level of recruitement in academia. In particular, two
important trends can be underlined: the first is the fact that the fraction of women
who are now “ricercatrici a tempo determinato” is much smaller than the fraction of
women who were “ricercatrici a tempo indeterminato” ten years ago (29% vs. 46%);
the second is that the portion of women in RTD-B positions, who are tenured and
in 3 years become associate professor permanent jobs, is smaller than the portion
of women in RTD-A positions, who are truly temporary (winners are appointed for
3 years which can be extended for 2 more years, then the contract is over).

So, formally, in Italy, there is no rule which prevents women from entering
academy, but an invisible door (a glass one, indeed) keeps them off and this happens
at the very beginning of the career. Unexpectedly, this happens also in fields like
mathematics which till some years ago were more open to female participation.

As already noticed in the previous paragraph, the reduction of the rate of female
mathematicians at the lowest level of the academic career creates a deceptive effect
on the trend of the GCI: paradoxically, since the portion of females at the first step
of the ladder diminishes, the Glass Ceiling phenomenon is less evident.

Moreover, notice that the fact that the percentage of women in RTI positions is
increasing also points in the direction of an analogous of the Glass Ceiling phe-
nomenon at the level of associate professor: since 2010 none entered this particular
post of employment anymore, the only variations are due to retirements (which
statistically affect men and women in comparable proportion) and promotions to
associate professor level (which are more frequent for men than for women).

4 Good Practices and Affirmative Actions for the General
Public

In the last years, many strategies of very dissimilar nature have been suggested
in order to eliminate, or at least reduce, gender gap in academia in general and in
STEM disciplines in particular. They include the creation of a process that estimates
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gender equality in universities by measuring several parameters (just to give an
example, these evaluation systems can range from the adoption of a Gender Equality
Plan to the implementation of a systematized policy on the model of English Athena
Swan Awards); the introduction of some kind of quotas in the recruitment process,
or at least a sort of reward in FFO (Fondo di Finanziamento Ordinario, the amount
of money the Ministry annually gives to state universities) for public universities
which decrease gender inequality; the computation of 18 months of career break for
each maternity leave; the development of a mentoring scheme for female M.Sc. and
Ph.D. students and Post-docs.

In this paragraph, I am going to speak of a different kind of actions that can
be undertaken in order to increase the participation of women to academic staff by
means of good practices whose goal is the popularization to a wider public of the
perception of the existence of women doing research in mathematics.

In the last decades of the twentieth century, in Italy a large majority of high school
professors in mathematics and physics were women, but most of their students had a
very low awareness of the existence of female professional mathematicians. Asking
young people for a list of women in mathematics would probably come out with
a couple of lines (usually featuring Ipatia and Maria Gaetana Agnesi), and only a
few ones who were most interested in mathematics could be able to add one among
Sophie Germain, Sofja Kovalevskaja and Emmy Noether.

The increased attention to gender inequality which developed during the last
years, brought to a different perception of the presence of women in the history
of mathematics (and science in general); thanks to an impressing commitment of
intergovernmental organizations, learning societies, activists for women’s rights,
scholars and experts in women’s studies, authors, screenwriters, directors and
producers, names like Ada Lovelace, Katherine Johnson, Maryam Myrzakhani, are
now a common heritage for most learned people.

The tools which can be used to give to the general public, and to girls and female
teenagers in particular, an opportunity to become more familiar with the idea of
women working in mathematical research are of a very different nature: events
organized for special days, films, plays, articles on newspapers and magazines,
science girl camps and many other such initiatives, all help to spread the familiarity
with women in mathematics.

The introduction of days dedicated to women in several fields of science followed
different paths: in 2009 with a pledge on a British civil action site, Pledgebank, the
blogger, journalist, and social software consultant Suw Charman-Anderson founded
Ada Lovelace Day (which is held on the second Tuesday of October) in order to
celebrate the achievements of women in STEM (science, technology, economy, and
mathematics); the 2020 edition saw more than 60 events taking place worldwide.

In 2015, the United Nations General Assembly declared February 11th the
International Day of Women and Girls in Science; the strength and commitment
of UNESCO and UN-Women, which organize the day in collaboration with many
institutions and civil society partners, quickly made this date an important pivot for
the promotion of women in science.
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Nevertheless, the most specific initiative concerning women in mathematics is
almost a new-born, since it was established at the World Meeting for Women in
Mathematics-(WM)ˆ2-on July 31th, 2018. On that occasion, the Women’s Commit-
tee of the Iranian Mathematical Society proposed that May 12th, the birthday of
Maryam Mirzakhani, the first woman to receive a Fields Medal, would be used for
celebrating women in mathematics. In its first edition, in 2019, more than 100 events
took place in 36 countries, (see [13] for a report on the organization, an account on
the happenings in each continent and planning for future years).

In 2020, the website of the initiative, funded by the International Mathematical
Union Committee for Women in Mathematics, European Women in Mathematics
and the Association for Women in Mathematics, was turned perennial and adapted
to annual events, so that it could support the celebrations taking place each year.
Even if the COVID-19 pandemic made the organization of in-presence conferences,
exhibitions, and film projections very complicated or even impossible, more than
150 events were planned worldwide (in over 100 countries) and the participation
of a large audience was possible thanks to the fact that more than one-third of the
events were online ones (see the report available at [14]).

One of the key points of the success of May 12th, 2020, is “Secrets of the Surface:
the Mathematical Vision of Maryam Mirzakhani”, a documentary film by George
Csicsery about the life and work of the Iranian Fields Medalist.

In 2020 Zala films, the production society, decided to support the May 12th
initiative: between April 1st and May 19th, both individual and institutions were
allowed to access the film freely just by filling a form on the May 12th website:
they received more than 20,000 requests. Zala films also offers a very stimulating
discussion guide for educators in order to support them in presenting the film to
students involved in a women and gender study curriculum; in my opinion it could
also be used fruitfully for senior students of Italian high schools (in particular the
ones attending liceo scientifico) (Fig. 4).

(WM)ˆ2 was also the occasion for the premiere of the first edition of “Journey of
Women in Mathematics,” a 20 minutes film created by the IMU Committee for
Women in Mathematics, filmed and edited by Micro-Documentaries, funded by
a grant of the Simons Foundation. In the first part, three women mathematicians
(Neela Nataraj from India, Aminatou Pecha from Cameroon, and Carolina Araujo
from Brasil) are featured at their home institutions, while the second part, shot at
(WM)ˆ2, shows the atmosphere of the event and contains six interviews of women
from Latin America; the film is freely available at the IMU website ([15]).

Of course, there are many other films that showed a wider audience the
work of women in mathematics: just to make an example, Hidden Figures, the
biography of three Afro-American female mathematicians (Katherine Johnson,
Dorothy Vaughan, and Mary Jackson), who worked at NASA during the Space
Race, grossed $236 million worldwide and received three nominations at the 89th
Academy Awards; in its first screening on Italian TV (Rai1) in 2019 it reached over
4.3 million single spectators.
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Fig. 4 Essay Questions page from Secrets of the Surface Discussion Guide-Courtesy of Zala films

A different strategy to ease the approach of girls and young women to STEM in
general and maths in particular is the creation of science girl camps in which groups
of children or teenagers get in touch with scientific subjects suitable for their age
(the groups can consist of girls only or of some boys joined with a majority of girls)
(Fig. 5).

In June 2020, the Italian Ministry for Equal Opportunities opened a call for
the organization of summer camps addressed to groups of pupils aged 3–18
with the purpose of overcoming some of the by-products of the pandemic: 3
million euros were made available for schools, universities, municipalities, non-
profit associations with a strong background in education with the aim to run at
least 2 weeks of activities focused on STEM disciplines. Events with a longer
tradition like “Pinkcamp” at Università dell’Aquila (which was established in 2018)
or new-comers such as “STEM in Ancona!” (a pun with the double sense of
“Stem” which means “Let’s remain!” in the local dialect) offered several scores
of secondary schools students the possibility to improve their knowledge of STEM
subjects (mathematics, chemistry, physics, and computer science) and to realize that
“women” and “science” can be an impressive and sound couple.



546 C. de Fabritiis

Fig. 5 Flyer of STEM in Ancona activity
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Women in Charge of Mathematics

Elisabetta Strickland

In 1937 a collection of biographical essays was published by Eric Temple Bell, a
Scottish born mathematician and science fiction writer. It covered the lives of about
40 mathematicians, from ancient times to the beginning of the twentieth century.
The book inspired many boys to become mathematicians, but we believe it did
not inspire many girls, as the only woman mentioned was Sofia Kovalevskaya,
the brilliant Russian mathematician and the first woman to obtain a doctorate in
mathematics.

Things did not change a lot after about almost 70 years, as Ioan James, a
British mathematician working in topology, published in 2003 a collection of
biographies about “Remarkable mathematicians: from Euler to von Neumann,”
where, in addition to Kovalevskaya, were mentioned Sophie Germain (see Fig. 1),
the outstanding French mathematician, and Emmy Noether, known as “the mother
of modern algebra”.

A strong change took place in 2014, when Maryam Mirzakhani, a mathematician
born in Iran, full professor at Stanford University, was awarded the Fields Medal,
the most coveted prize in mathematics, for her research [1].

This award is as important for mathematics as the Nobel Prize is for other
sciences and Mirzakhani was the first woman to win the Medal in its 80-years
history. Born in Tehran on May 12th, 1977, she was the first girl to compete for Iran
in the International Mathematical Olympiad and she won gold medals in Hong Kong
in 1994 and in Toronto in 1995. This was a remarkable achievement. Mirzakhani
specialized in the geometry and dynamics of complex curved surfaces. She died in
2017 from breast cancer at the age of just 40.
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Fig. 1 The stamp issued by
the French post in honor of
the mathematician Sophie
Germain in 2016. https://i.
ebayimg.com/images/g/
4j4AAOSwbb5eOaCb/s-
l1600.jpg

Mirzakhani, when she received the award in Seoul (see Fig. 2), said that she
hoped that her work would inspire more women in mathematics and for sure her
example has been a strong one.

After that exploit, Karen Uhlenbeck (see Fig. 3), the American mathematician
known for her pioneering work in geometry, analysis, and mathematical physics,
in 2019 was the first woman in the 16-year history of the Abel Prize, named in
commemoration of the outstanding Norwegian mathematician Niels Henrick Abel,
to receive it.

Uhlenbeck in 1990 presented a plenary lecture at the International Congress of
Mathematicians, the ICM, the largest and most important gathering of mathemati-
cians in the world; she was the second woman to give a plenary lecture, the first
being Emmy Noether in 1932. This indicates how difficult it has been for women to
reach the pinnacle in a male-dominated field.

At the World Meeting for Women in Mathematics in Rio de Janeiro in 2018,
Mirzakhani’s birth date, May 12th, was chosen for the celebration of women in
mathematics. The aim was to inspire to follow careers in math and to encourage an
open and inclusive environment for all. Many events took place in the last 2 years
throughout the world as part of the celebrations.

All these events not only support those who participate in them directly but
also help influence the mathematics culture more generally, so that young women
entering the field today encounter an environment that is more nurturing than that
of the past.

Currently, there is an international dialogue around the lack of representation
of women at the highest levels: across academia, government and industry. These

https://i.ebayimg.com/images/g/4j4AAOSwbb5eOaCb/s-l1600.jpg
https://i.ebayimg.com/images/g/4j4AAOSwbb5eOaCb/s-l1600.jpg
https://i.ebayimg.com/images/g/4j4AAOSwbb5eOaCb/s-l1600.jpg
https://i.ebayimg.com/images/g/4j4AAOSwbb5eOaCb/s-l1600.jpg
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Fig. 2 Maryam Mirzakhani, first and only woman Fields Medalist, at the ICM 2014 in Seoul,
together with the other Fields Medal winners: Arthur Avila, Manjul Bhargava and Martin Hairer
and Ingrid Daubechies, President of IMU (2010–2014). https://kongres-magazine.eu/wp-content/
uploads/2014/10/SEOUL-ICM-2014_0813-348.jpg

Fig. 3 Karen Ulhenbeck, American mathematician, first woman Abel Prize Winner in 2019.
https://www.europeanwomeninmaths.org/marini-uhlenbeck/

https://kongres-magazine.eu/wp-content/uploads/2014/10/SEOUL-ICM-2014_0813-348.jpg
https://kongres-magazine.eu/wp-content/uploads/2014/10/SEOUL-ICM-2014_0813-348.jpg
https://www.europeanwomeninmaths.org/marini-uhlenbeck/
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institutions need to continue to review their organizational cultures and adjust their
internal promotional practices, otherwise increases to the numbers of women who
move through the career pipeline will still fail to affect the representation of women
at the top.

This is the reason why all associations of women in math, national and
international, have to work in continuing to foster and maintain the pool of female
mathematicians: this is a key piece in bringing about these long-term goals.

Moreover, in this era of big data and fast-paced technological changes, both
of which require mathematical expertise, we cannot afford to leave so much of
the population behind. The deficit of women in STEM (Science, Technology,
Engineering, Mathematics) and particularly women in math, is not just a women’s
issue [2].

We know very well that these fields have remained predominantly male with
historically low participation among women since their origins and we also know
that scholars and policymakers have been exploring the various reasons for the
continued existence of the gender disparity in STEM fields and studies suggest
that many factors contribute to the attitude toward the achievement of young
people in mathematics and in general in science, including encouragement from
parents, interactions with teachers, curriculum content, high school achievement in
mathematics and resources available at home.

Research findings are mixed concerning when boys’ and girls’ attitudes about
mathematics diverge. Few differences are found in girls’ and boys’ attitude toward
mathematics in the years of early secondary school. Student’s aspirations to pursue
careers in mathematics influence both the courses they choose to take in this area
and the level of effort they put forth in these courses.

Apparently, girls begin to lose self-confidence in middle school because they
believe that men possess more intelligence in technological fields, while boys are
more likely to gain skills because they are culturally and socially encouraged to
work in scientific areas, but research shows that girls can develop these same skills
if they have the same form of training.

At the post-secondary level, women are less likely than men to earn a degree in
mathematics.

This of course is a problem, as it has been estimated that doubling women’s high
skills would largely benefit the economy.

The differences in salary among graduates are related to the differences in
occupations entered by women and men; women are less likely than men to be
employed in scientific occupations and so there remains a wage gap between men
and women in comparable positions [3].

UNESCO, among other agencies, has been outspoken about the underrepre-
sentation of women in mathematics globally, even if it is not possible to use the
same indicators to determine the situation in every country. The significant statistic
might be the percentage of women teaching at the university level, or the proportion
of women at research institutes and academies of sciences, or the percentage of
women who publish, or the proportion of women who go abroad for post-graduate
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study and conferences, or the percentage of women awarded grants by national and
international funding agencies.

This is just to say that indices have different meanings in different countries and
the prestige of various positions and honors can vary considerably, but in any case,
the main fact is that the underrepresentation of women in careers in mathematics is
worldwide.

Luckily changes in society and the ubiquity of computers in everyday life
are pushing women toward a deeper understanding of scientific matters at large,
inducing a breaking down of gender distinctions in information technology. Both
genders have acquired skills, competencies and confidence in using a variety of tech-
nological, mobile and application tools for personal, educational and professional
use, but the gap still remains when it comes to enrollment of girls in mathematics
and computer science classes: as a matter of fact for higher educational programs in
information and communications technology, women make up only 3% of graduates
globally.

Stereotypes about what someone in these fields should look and act like may
cause established members of such areas to overlook individuals who are highly
competent. The stereotypical mathematician is usually thought to be male and
perceived incongruity between gender and a particular role or occupation can result
in negative evaluation.

In addition, negative stereotypes about women’s quantitative abilities may lead
people to devalue their work or discourage these women from continuing in
mathematics.

There have been several controversial statements about innate ability and success
in mathematics. A notable example is given by Lawrence Summers, former
president of Harvard University, who, in a 2005 speech, suggested that “the under-
representation of women in science and engineering could be due to a different
availability of aptitude at the high-end positions”. Summers after this statement had
to step down as president [4].

Fortunately, although women entering traditionally male professions face nega-
tive stereotypes suggesting that they are not “real” women, these stereotypes do not
seem to deter women to the same degree that similar stereotypes may deter men
from pursuing nontraditional professions. There are historical evidence that women
flock to male-identified occupations once opportunities are available.

On the other hand, examples of occupations changing from predominantly
female to predominantly male are very rare in human history.

Women in mathematics in addition are more likely than established men to help
career women who display sufficient qualifications.

A very good example is offered by the reaction of the members of the European
Women in Mathematics association (EWM) (see Fig. 4) during the Covid-19
pandemic. The virus and the full and partial lockdowns that swept across Europe
and the world caused an impact on research and training in academia which was
disastrous: conferences were canceled and collaborations stood still.

Time slated for research splintered among the competing demands of home-
schooling, eldercare, and quarantines. Networking and mentorship stalled, common
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Fig. 4 General Assembly in
2018 at Graz, Austria, of the
European Women in
Mathematics (EWM).
Courtesy of European Women
in Mathematics. Permission
granted by the Organizer of
the 2018 General Assembly,
Karin Baur

but often unaddressed mental health issues mushroomed, at a time when getting
help was harder than ever.

But the crisis was not experienced equally, untenured faculty lost more. Women
lost more and caregivers lost more. The more vulnerable the population, the greater
the disadvantage. Therefore a Working Group on the Corona Crisis was formed
(https://www.womeninmathematics.org) in order to choose how to respond and
to support current employees in temporary positions and future job applicants in
mathematics in light of the crisis. The main concern was that we could lose talented
women mathematicians during and following the crisis, that women could choose
to leave their profession or reduce their hours, that women in temporary positions
could choose security and settle for lesser positions, that young women may opt not
to pursue careers in science.

As we know, the COVID-19 pandemic has exacerbated existing gender inequities
in mathematics and of course in other sciences. And gender-blind measures do not
correct gender inequity. It appeared to the members of the Working Group that to

https://www.womeninmathematics.org
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those who say we should relax and trust the system, it should be answered that the
system has not produced a gender-balance representation to date and it would be
naïve to expect an automatic correction in the face of enormous burdens.

Therefore the women involved in this project advocated proactive measures
in order to encourage universities, government and funding agencies to invest in
extending the contracts of researchers in temporary positions to offset the loss of
productivity during the crisis, to encourage universities and funding agencies to
award release from teaching or teaching reductions to untenured mathematicians
who lost significant research time to digital teaching and caregivers responsibilities,
of course giving particular consideration to women.

In addition, evaluators of hiring, tenure, prize, grant, and other committees
should be reminded that the crisis has impacted individual differently and that
more flexibility in deadlines and meeting times should be advocated, especially for
women with dependent children.

These proactive measures have been listed in a letter that was sent to all
authorities in institutions and academia all over Europe, after being signed by a very
long list of members of EWM and others (https://www.europeanwomeninmaths.org/
signatories-ewm-open-letter/).

This meant that women in established positions could do something important for
other women in untenured positions, for the very simple reason that Europe needs
more women in the sciences and the only solution is to shape smart policy to recruit
and retain a diverse group of talented young scientists.

This example gives also a clear idea of how important is that women can reach
leading roles in the world of mathematics, in order to promote gender-balanced
policies.

Actually, one of the proposed methods for alleviating stereotype threat is through
introducing role models. One study found that women who took a math test that was
administered by a female experimenter had a better performance when compared to
women whose test was administered by a male experimenter. Additionally, these
researchers found that it was not the physical presence of the female experimenter
but rather learning about her apparent competence in math that buffered participants
against stereotype threat.

Female mathematicians who read about a successful woman, even though these
successes were not directly related to performance in math, perform better on a
math test. Both female and male role models can be effective in recruiting women
to STEM fields, but female role models are more effective at promoting the retention
of women in these fields. And of course female teachers can also act as role models
for young girls, as reports have shown that the presence of female teachers positively
influences girls’ perceptions of STEM and increases their interest in STEM careers
[5].

So at this point, we would like to give a look to what has been achieved by
women in top positions in mathematics who therefore became role models, often
overcoming institutionalized infrastructures, behaviors and beliefs, so that women
could continue advancing.

https://www.europeanwomeninmaths.org/signatories-ewm-open-letter/
https://www.europeanwomeninmaths.org/signatories-ewm-open-letter/
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We are going to focus on this aspect because the role-model intervention has
a positive and significant effect on mathematics enjoyment, importance attached to
math, expectations of success in math and women’s aspirations in this field and help
to reduce gender stereotypes.

Removing the barriers that prevent women from accessing the sector of mathe-
matics and in general science, research and technology sectors will be the key to
changing the current academic orientation, which is essential for fighting new forms
of gender inequalities [6].

A good way of overcoming stereotype barriers is through the intervention of
female role models, who can increase the sense of belonging to mathematics and
reinforce the idea that hard work is the way to succeed [7].

Indeed, not only do role models help broaden the perspectives of who can
work in mathematics, they also expand perceptions of researchers of their own
potential. Therefore women are more motivated (in terms of expectation of success,
enjoyment, and importance) to engage in subjects like math, after interacting with
female role models. Being exposed to the professional and personal experiences of
actual female role models with a successful professional trajectory in mathematics
is the optimal way to encourage women to pursue emerging high-growth roles,
requiring math skills.

Last but not least, an increase in women’s presence within professions in math
and in general in the STEM area is particularly important so as to enable women
to seize the new opportunities offered by digital transformation. If women continue
to be underrepresented in STEM fields, they may fall further behind in the labor
market: the World Economic Forum (WEF) suggests that there is an urgent need to
increase the supply and visibility of women with technical skills to close the gender
gap in the professions of the future.

In this regard, it has been estimated [8] that, globally, between 40 million and
160 million women may need to undergo a transition between occupations by 2030,
often into higher-skilled roles. To make these transitions, women will need new
skills. In particular, they will need to overcome their low participation in STEM
fields compared to men, as an important barrier that, if not broken, will make it
harder for women to make transitions.

We are going to consider two main structures in the world of mathematics, the
International Mathematical Union and the European Mathematical Society, where
women in charge, meaning that they were elected Presidents, appeared only recently.

The International Mathematical Union is an international non-governmental and
non-profit scientific organization. IMU’s objectives are to promote international
cooperation in mathematics, to support and assist the International Congress of
Mathematicians (ICM) and other scientific meetings or conferences, to encourage
and support other international activities considered likely to contribute to the
development of mathematical science in any of its aspects, pure, applied, or
educational. The IMU was officially founded in September 1920 in Strasbourg.

Shortly before the ICM, the General Assembly takes place, which is a gathering
of a kind of parliament of mathematics. Usually, when the Program Committee
is established, the Adhering Organizations of the IMU and mathematical societies
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Fig. 5 Ingrid Daubechies, Belgian physicist and mathematician, first woman President of the
International Mathematical Union (IMU). https://www.europeanwomeninmaths.org/wp-content/
uploads/2018/08/087916_daubechies007-high-rez-1170x750.jpg

worldwide are invited to nominate plenary and sectional speakers and nominations
should be made to the Chair of the Program Committee within the month of
November of the year before the one in which the ICM takes place. The next one is
going to be held in Saint Petersburg, Russia, between 6 and 14 July 2022. Moreover,
the IMU grants a number of prestigious prizes and awards every 4 years at the ICM.
The IMU members worldwide are 88. All this gives a clear idea of the importance
of this organization and its enormous prestige.

There is nothing in mathematics comparable with the honor of being invited as
speaker at the ICM and of course the Fields Medals which are awarded each time
are the most coveted prizes.

Among the Presidents of IMU, which were 18 since its foundation, only one has
been a woman, Ingrid Daubechies, a mathematician and physicist, who served from
2010 to 2014 (see Fig. 5). Just recently women appeared among the Vice-Presidents:
Christiane Rousseau, Alicia Dickenstein, and Nalini Joshi, in chronological order
since 2010. So if we are speaking of role models, Ingrid Daubechies is a very good
one: taking care of the most important duties in mathematics is quite challenging.

At this point, we would like to say something about her, in order to understand
how she reached this prominent position. She was born in 1954 at Houthalen, in
Belgium. She is best known for her work with wavelets in image compression.

Her study of the mathematical methods that enhance image-compression tech-
nology gave her an international reputation, which made her member of the National

https://www.europeanwomeninmaths.org/wp-content/uploads/2018/08/087916_daubechies007-high-rez-1170x750.jpg
https://www.europeanwomeninmaths.org/wp-content/uploads/2018/08/087916_daubechies007-high-rez-1170x750.jpg
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Academy of Engineering in the US, the National Academy of Sciences and the
American Academy of Arts and Sciences. She is also a 1992 MacArthur Fellow.

The name Daubechies is widely associated with the orthogonal Daubechies
wavelet and the biorthogonal CDF (Cohen-Daubechies-Feauveau) wavelet. A
wavelet from this family of wavelets is now used in the JPEG 2000 standard.

Her research involves the use of automatic methods from both mathematics,
technology and biology to extract information from samples like bones and teeth.
She also developed sophisticated image processing techniques used to find out the
authenticity and age of some world’s famous works of art including paintings by
Vincent van Gogh and Rembrandt.

What took Ingrid Daubechies to the Chair as President of IMU? It is quite a
fascinating story and it is worthwhile to say something about it.

She is the daughter of Marcel Daubechies, a civil mining engineer, and Simonne
Duran, a criminologist. She remembers that when she was a little girl and could not
sleep, she did not count numbers, as you would expect by a child, but started to
multiply numbers by two from memory, so she already familiarized herself with the
properties of exponential growth.

After finishing the Lyceum in Hasselt, she entered the Vrije Universiteit Brussels
at 17 and there completed her undergraduate studies in physics in 1975. She
obtained her Ph.D. in theoretical physics in 1980 at Free University Brussels, after
a collaboration with Alex Grossmann in quantum mechanics. She continued her
career until 1985 in Brussels, first as assistant professor, then as associate professor.

After she went as a guest-researcher at the Courant Institute of Mathematical
Sciences in New York and there she made her best-known discovery: based on
quadrature mirror filter-technology, she constructed compactly supported conti-
nuous wavelets that would require only a finite amount of processing, in this way
enabling wavelet theory to enter the realm of digital signal processing (see Fig. 6).

In July 1987, Daubechies joined the Murray Hill AT&T Bell Laboratories’ New
Jersey facility, where in 1988 she published the result of her research on orthonormal
bases of compactly supported wavelets [9]. From 1991 to 1994, she taught as a
professor at Rutgers University in the Mathematics Department. In 1994 she moved
to Princeton University, where in 2004 she became the first female full professor of
mathematics at Princeton.

After moving to Duke University in 2011 at the Department of Mathematics and
Electrical and Computer Engineering, she founded together with Heekyoung Hahn
the Duke Summer Workshop in Mathematics (SWIM) for female rising high school
seniors. Moreover, she has been on the board of directors of Enhancing Diversity
in Graduate Education (EDGE), a program that helps women entering in graduate
studies in the mathematical sciences.

At this point, it is clear why she became the first woman to be President of the
International Mathematical Union (2011–2014).

It was under her direction that for the first time a Fields Medal was awarded to a
woman, Maryam Mirzakhani, in 2014 at the ICM in Seoul, South Korea. Of course,
the procedure to award the Medal officially does not take under consideration the
gender of the winners, but it is a fact that she brought good luck to this enormous
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Fig. 6 Daubechies wavelets, mathematical methods used in image-compression technology.
https://en.wikipedia.org/wiki/Daubechies_wavelet

achievement, which was extremely important to promote mathematics among young
female researchers.

Among the long list of prizes that Daubechies received during her career, we
would like to mention for its gender significance the 2019 L’Oréal-UNESCO Inter-
national Award For Women in Science: since 1998, the award annually recognizes
five outstanding women in chemistry, physics, materials science, mathematics and
computer science worldwide.

Daubechies was chosen for North America, along with Najat Aoun Saliba (Africa
and Arab States), Maki Kawai (Asia Pacific), Karen Hallberg (Latin America) and
Claire Voisin (Europe).

One could think that so much work could have prevented her from having a
family, but not in her case: she has been married since 1985 to mathematician Robert
Calderbank, and they have two children, Michael and Carolyn. So she represents a
successful example of work-life balance.

Another achievement of a similar kind was the one of Marta Sanz-Solé, who
became the first and up to now only woman president of the European Mathematical
Society (EMS), from 2011 to 2014 (see Fig. 7).

The EMS is a European organization dedicated to the development of mathe-
matics in Europe. Its members are different mathematical societies in Europe,
academic institutions, and individual mathematicians. The current president is

https://en.wikipedia.org/wiki/Daubechies_wavelet
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Fig. 7 Marta Sanz-Solé, Catalan mathematician, first and only woman President of the European
Mathematical Society (2001–2020). https://www.ara.cat/2016/07/07/videos/avancaments/Marta-
Sanz-Sole-mentalitat-que-Trobem_1609069082_30008435_1132x636.jpg

Volker Mehrmann, professor at the Institute for Mathematics at the Technical
University of Berlin. Before him eight Presidents took care of the EMS, the first
one was Friedrich Hirzebruch in 1990.

The precursor to the EMS, the European Mathematical Council, was founded
in 1978 at the International Congress of Mathematicians in Helsinki. The informal
federation of mathematical societies was chaired by Sir Michael Atiyah. The EMS
as we know it now was founded in 1990 in Madralin, near Warsaw, Poland, and
the first European Congress of Mathematics (ECM) was held at the Sorbonne and
Panthéon-Sorbonne universities in Paris in 1992.

The Society seeks to serve all kinds of mathematicians in university, research
institute, and other forms of higher education. Its aims are to promote mathematical
research, both pure and applied, assist and advise on problems of mathematical
education, concern itself with the broader relations of mathematics to society,
foster interaction between mathematicians of different countries, establish a sense of
identity amongst European mathematicians, represent the mathematical community
in supra-national institutions. The EMS is itself an Affiliate of the International
Mathematical Union.

The governing body of the EMS is its Council, which comprises delegates
representing all of the societies which are themselves members of the EMS, along
with delegates representing the institutional and individual EMS members. The
Council meets every 2 years and appoints the President and Executive Committee,
who are responsible for the running of the society.

Besides the Executive Committee, the EMS has standing committees on: Applied
Mathematics, Developing Countries, Mathematical Education, ERCOM (Directors

https://www.ara.cat/2016/07/07/videos/avancaments/Marta-Sanz-Sole-mentalitat-que-Trobem_1609069082_30008435_1132x636.jpg
https://www.ara.cat/2016/07/07/videos/avancaments/Marta-Sanz-Sole-mentalitat-que-Trobem_1609069082_30008435_1132x636.jpg
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of European Research Centers in the Mathematical Sciences), Ethics, European
Solidarity, Meetings, Publications and Electronic Dissemination, Raising Public
Awareness of Mathematics, Women in Mathematics. The EMS is headquartered
at the University of Helsinki.

One of the important issues of the Society is the organization of the European
Congress of Mathematics (ECM), which is held every 4 years, at which ten EMS
Prizes are awarded to “recognize excellent contributions in Mathematics by young
researchers not older than 35 years”.

In addition, since 2000, the Felix Klein Prize has been awarded to “a young
scientist or a small group of young scientists (normally under the age of 38) for
using sophisticated methods to give an outstanding solution which meets with the
complete satisfaction of industry, to a concrete and difficult industrial problem,” and
since 2012 the Otto Neugenbauer Prize has been awarded to researchers “for highly
original and influential work in the field of history of mathematics.”

We have pointed out these prizes because in many cases (Maxim Kontsevich
1992, Richard Borcherds 1992, Timothy Gowers 1996, Grigori Perelman (declined)
1996, Wendelin Werner 2000, Elon Lindenstrauss 2004, Andrei Okounkov 2004,
Stanislav Smirnov 2004, Artur Avila 2008, Cédric Villani 2008, Alessio Figalli
2012, Peter Scholze 2016) the winners later have been awarded the Fields Medal
at the ICM, so the EMS prizes represent a springboard for reaching the coveted
prize.

We described the EMS in order to make clear how important it was for a
woman to become its President and the significance that this represented for all
the community of women in mathematics.

Marta Sanz-Solé, born in January 1952 in Sabadell, Barcelona, is a Catalan
mathematician specialized in probability theory. She obtained her Ph.D. in 1978
from the University of Barcelona under the supervision of David Nualart.

Currently she is professor at the University of Barcelona and head of a research
group on stochastic processes. She was Dean of the Faculty of Mathematics at UB
from 1993 to 1996 and Vice-President of the Division of Experimental Sciences and
Mathematics from 2000 to 2003.

In May 2015 she was appointed chair of the scientific Committee of the Graduate
School of Mathematics and from May 2018 until October 2019, she held the position
of Director.

Her research interests are in stochastic analysis, in particular stochastic differen-
tial and partial differential equations.

Sanz-Solé served in the Executive Committee of the European Mathematical
Society in 1997–2004. She was elected President in 2010 and, as we already pointed
out, held the post from January 2011 to December 2014. She is a member of several
international committees overseeing the mathematical sciences, such as the Board
of Directors of the Institut Henri Poincaré in Paris and the Scientific Committee of
CIRM (Centre des Rencontres Mathématiques, Luminy, France) and in June 2015
she was appointed member of the Abel Committee for the Abel Prize 2016, 2017.

For her scientific contributions and relevant international positions and service,
she was awarded the Real Sociedad Matematica Espanola Medal in 2017. In 2019
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Fig. 8 Ingrid Daubechies and Martha Sanz-Solé pictured at the ICM in Hyderabad, India, in 2010.
https://owpdb.mfo.de/detail?photo_id=13137

she became numerary member of the Royal Academy of Sciences and Arts of
Barcelona.

During her term as President of EMS, two women were awarded the EMS prizes
in Krakow, 2012, Sophie Morel and Corinna Ulcigrai. Even if the choice is up to
the panel which has the responsibility of choosing the winners, having a woman as
President probably inspires to be for a change more gender oriented (see Fig. 8).

It is quite obvious from our excursus through the lives of these two women that in
order to reach a really relevant position that allows to be in charge of mathematics,
a broad experience in research and responsibilities in mathematics is absolutely
necessary, but of course all this comes together with an attitude toward taking care
in a positive and effective way of the goals at stake.

https://owpdb.mfo.de/detail?photo_id=13137
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2012–2021: A Comics&Science
Experience

Roberto Natalini and Andrea Plazzi

It possibly began on November 1, 2012. Time: Noon. Place: the luxurious and much
sought-after by speakers Palazzo Ducale’s main hall in Lucca (Italy). The panel’s
title reads “What we talk about when we talk about comics and science.”

The host event was the Lucca Comics&Games festival, on its way to become the
largest convention of its kind in the Western World: roughly half a million people
gathering in five days to celebrate their love for comics, manga, sci-fi, TV series,
movies, role-playing games, boardgames, videogames, any kind of games. In short:
a massive crowd—the like of which is rarely to be seen in public places for less than
national strikes, crucial political rallies or important sport events—looking for any
conceivable form of entertainment, and laying their claim to the redemption of the
so-called “nerd culture” as—above all—a passionate attitude.

And this is the key to why the year before, we had started musing over a crucial
consideration: Where if not among the hundreds of thousands attending Lucca
Comics and Games were we going to find people willing to devote themselves to
something—anything—with that kind of attention, concentration, enthusiasm for
discovery, imagination and improvisation bordering obsession?

So, we actually did not do much more than giving a—not very inventive but clear
and effective—name to what was already there.

Let’s start from the very beginning, when humans used to express themselves by
gestures and inarticulate ramblings. Some time after that, they began to keep score
of the animals they killed, the passing days and seasons, carving notches on wooden
blocks or ordering pebbles and stones (Greek: khalix; Latin: calculus) in lines. That
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was probably when modeling—the assumption that “signs” can tell us meaningful
things about the actual objects they stand for—and Visual Arts began traveling down
the same path.

Very soon we realized how things had not changed that much: when we asked
cartoonist Giuseppe Palumbo to tell a story about Archimedes, the very first image
he turned out was the Greek genius focused on tracing geometric figures on his
native Siracusa’s shores. Which coincidentally just fits with Henry Poincaré’s
famous statement of 2000 years later, about how “la géométrie est l’art de bien
raisonner sur des figures mal faites” (“Geometry is the art of correct reasoning from
incorrectly drawn figures”).

In simpler words: Science and the signs we need to “tell science” have always
been there. An old and ever-present concept.

Andrea has a mathematical background and has been stricken on his way to
comics, sometimes a comics character himself. Roberto is a professional applied
mathematician who, in order to properly do his job, discovered how sorely he
needed to communicate to a larger audience what his work is.

Back in 2012, we started the Comics&Science (C&S) section of the Lucca
Comics and Games cultural program, with a small number of simple, targeted
events (panels, book presentations): the results were encouraging, and we persuaded
ourselves we had to be up to the “comics” part.

Leo Ortolani—“Leo,” for all his fans—was and still is one of Italy’s most popular
cartoonists, with a streak of trademark irreverent humor, since the early 1990s.
Moreover, he is a trained geologist who never forgot his training, and lovingly
targeting science with his scorching jokes is something coming easy to him, with
wildly funny outcomes.

For C&S he fine-tuned one of his many brilliant storytelling devices, giving
birth to “MISTERIUS, the show with no idea of what it’s babbling about, just like
you,” a laughable avatar of all those pseudo-scientific TV formats trying to captivate
audiences with Holy Grail stories, chemtrails and how the Pyramids were built by
the aliens, all in one.

Leo knows well how not to pull punches (see Fig. 1): His MISTERIUS comic
book for C&S is a phantasmagorical explosion of unlikely characters more or less
taken from real life, ineptly grappling with science. On the “more” side, we find
the french mathematician—and celebrated Fields medalist—Cédric Villani, who
in November 2013 felt the thrill of walking down the never-so-crowded Lucca
medieval streets and alleys being recognized as an Ortolani character meeting his
creator.

C&S’ cornerstone is an easy one to state, and somewhat more difficult to
implement: talking about science at a state-of-the-art level with comics by the best
cartoonists around, plus editorials and pieces delivered in a layman language and,
at the same time, always—always—as scientifically accurate as possible. Stories
reaching out to their audience for what they are, nothing more and not the slightest
bit less: engaging, entertaining comics aspiring to be artistically relevant.
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Fig. 1 Leo Ortolani’s take on Mathematics (from “MISTERIUS—Speciale Scienza!”;
Comics&Science, October 2013)

C&S is not interested in indulging in detailed, meticulous descriptions of
scientific facts, history or ideas: The kind of more literal, specifically educational
approach TV shows and so many popular science books are best suited for.

This is how what we aim at, and what we think of what we do, is described in
official press releases:

Comics&Science’s goal is to promote the link between Science and Entertainment, strongly
believing that both are crucial formative factors for all citizens’ development. The “Comics”
tag in its name clearly refers to our medium of choice, fully embraced by production and
publishing choices only slightly revising the typical, classical comic book format, well-
known and deeply loved worldwide by generations.

But what did we actually do? What do we feel proud of?
Feedbacks, to start with: both from “hardcore,” “pure” comics fans and from new

readers we look for in different, more strictly scientific venues.
As in research centers like Geneva-based CERN (no introduction needed), which

affably welcomed quite a peculiar Comic&Science delegation: a minivan fully
packed of cartoonists which sparkled several projects.

Like Oramai by cartoonist Tuono Pettinato (2014; the same year he was awarded
the “Premio Gran Guinigi,” Italy’s main recognition in the comics field), a story
about time’s paradoxes and ultimate nature, stemmed from discussions around
today’s theoretical physics more abstract and philosophical aspects.

We also had the pleasure to see a reader “crossing the line” becoming a valued
addition to our roster: Francesco Artibani made the history of Disney comics in the
last 25 years, and his name is well recognized wherever Disney comics are printed.
He is also a C&S fan and helped in taking aboard Silver (Guido Silvestri’s nom
de plume; see Fig. 2), one of the living “gods of Italian comics.” So we had the
additional pleasure to discover how Silver is a passionate fan, devouring popular
science book after popular science book. His main concern was—and still his—
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Fig. 2 Silver’s trademark character “Lupo Alberto,” as a testimonial for what drives science and
knowledge: passion and curiosity (from “Materia oscura;” Comics&Science 001/2016, April 2016)

how in recent years the “social” dimension of communication is giving “hoax” a
new meaning, making “fake news” and “information disorder” key words when
crucial topics like vaccines and GMOs are concerned.

Having Italian CNR—Consiglio Nazionale delle Ricerche (“National Research
Council of Italy”) as a publisher might come in handy, especially if you are Director
one of its historical institutes (IAC—Istituto per le Applicazioni del Calcolo,
“Institute for Applied Computing”), which is what Roberto happens to be. CNR
promotes and carries out research projects in 27 main research areas, with almost
100 institutes operating as part of each one of them. Nature magazine recognized
the Council as one of the top 10 innovation centers in the world, so it is no surprise
when something happening inside its revered halls gets some attention.

It is what happened with the Pisa-based CNR-IIT—Istituto di Informatica e
Telematica (“Information technology and data communication Institute”), a name
which in Italy spells “In-ter-net:” CNR-IIT is the Italian arm of ICANN, operating
the DNS—Domain Name System when the “.it” domain names are concerned, and
it was CNR-IIT to bring the Internet to Italy back in 1986–1987, making the first
connection possible.

So, in 2016–2017 it was CNR-IIT’s choice to have special, exclusive C&S
productions as part of the many events celebrating the 30th anniversary of the Italian
Internet, starting with an “Internet Issue” featuring—again—the comic genius of
Leo Ortolani, teaming up with Federico Bertolucci, an Italian superstar in his own
field, with five nominations to the Eisner Awards (the “Nobel Prize of cartoonists”)
under his belt and, in 2019, the Italian “Romics d’oro,” awarded each year in Rome.

It was the beginning of a long continuing streak of C&S-inspired productions:
two more comic books, a card game, and a series of educational comics and
illustrations in digital form followed, while a videogame is entering its beta testing
phase at the time of writing.
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A very typical feature of scientific research, as opposite to the prevailing
competition in other sectors, is its openness to collaboration and partnerships. So,
joining forces with “sister” institutions has always been the rule for CNR and
C&S since the start. Institutions like Universities, research centers or the Pisa-
based “Museo degli Strumenti per il Calcolo,” a very peculiar museum built around
the mission of bringing computer science and its “key players”—computers—at
a general public level, beyond the skin-deep, if not shallow “pseudo-knowledge”
coming from being passive users of modern technology.

It all started from the question, “How is it possible for machines to do
calculations?” A very simple but far from trivial one, like its many possible answers.
Some of them are even surrounded by modern myths, if not legends, which is what
comics writer Alfredo Castelli thrives on. Castelli is one of the venerable fathers
of contemporary Italian comics and jumped aboard the C&S boat with Il segreto
di Babbage (“Babbage’s secret”), joined by the rising star of young artist Gabriele
Peddes.

Then it came the aforementioned Archimede Infinito 2.0 by Giuseppe Palumbo
(see Fig. 3), recounting one of the most incredible, far-out, 100%-true stories ever
to be told, a milestone event in science, history, and archeology. An epic ride
across centuries, from Third Century B.C. to 1998 when, during one of the harshest
auctions ever, a still-today unknown US millionaire won over the greek Government
for the possession of the invaluable Archimedes’ “Codex C,” and to an accelerator
in Harvard, where high-energy X-ray fluorescence techniques were developed in
order to recover the secrets still encoded in the parchment. While we cannot be but
partial, we found this issue a very well done—if not spectacular—embodiment of
the “C&S principles.”

It is 2018 when Educazione subatomica (“Subatomic Education”) hits the stands.
Zerocalcare (Michele Rech) is possibly the only cartoonist attaining an actual
“stardom status” in Italy, a sought-after public figure, looked at for opinions
and viewpoints about controversial political and social issues. Following his own
curiosity over the mysteries of quantum physics, he spent a day at the premises of the
ELETTRA and FERMI accelerators, in the Trieste area (Northeastern Italy), which
are among the most powerful tools at our disposal when it comes to investigate
matter at the micro- and nano-scale. Totally captured by the environment and by
“the Sspirit of Research” (see Fig. 4), Zerocalcare delivered a compelling and deeply
personal account of what reasearch is for hard-working active researchers, and how
they should be—and often are not—considered and perceived by the general public
taking advantage of their discoveries. A heartfelt and inspired report mixing the
highest C&S standard and the trademark Zerocalcare style together, with humor,
brilliant jokes and darker musings about how blind humans can be.

We said “no literal or educational approach to Science.”
Licia Troisi is a writer of fantasy novels selling million of copies worldwide. She

has also got a PhD in astrophysics and that is where her brilliant “fantasy metaphor”
for a star’s life cycle comes from (and if you are wondering what a “fantasy
metaphor” actually is you will have to read it): La fanciulla e il drago (“The Dragon
and the Maiden”) does not call for any specific scientific knowledge, only the will
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Fig. 3 A Comics&Science issue devoted to Giuseppe Palumbo re-telling the story of Achimedes’
“Codex C” (from “Archimede Infinito 2.0;” Comics&Science 002/2017, October 2017)

of plunging into the spectacular images summoned by Licia Troisi and visually
rendered by the extremely talented Carmine Di Giandomenico (a comics superstar
on his own, working for global powerhorses like Marvel and DC comics), artist
Alessandro Micelli and the out-of-scale coloring by Leo Colapietro (see Fig. 5).

In 2019 the Periodic Table of Elements turned 150 and C&S celebrated the
anniversary joining forces (remember? Openness and collaboration) with CNR-
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Fig. 4 Zerocalcare’s moving rendition of the Spirit of Research (from “Educazione subatomica;”
Comics&Science 002/2018, October 2018)
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Fig. 5 A spectacular two-pager from Licia Troisi’s story: layouts by Carmine Di Gian-
domenico, art by Alessandro Micelli, colors by Leo Colapietro (from “La fanciulla e il drago;”
Comics&Science 001/2019, April 2019)

ICCOM—Istituto di Chimica dei Composti Organo-metallici (“Chemical Institute
for Organ-metallic Compounds”) and the Società Italiana di Chimica (“Italian
Society for Chemistry”). The outcome was a story by writer Giovanni Eccher and
artist Sergio Ponchione, where very peculiar young people are supposed to learn
how to use their very peculiar abilities by enrolling in a very peculiar school. Which
might be ringing some bell to comics fans (see Fig. 6).

One should not look for any thin blue line connecting these C&S dots: each
and every one of these works of art springs from talented and creative cartoonists,
who could not differ more one from another, getting in touch and mingling
with researchers who, in turn, are actively working in any possible venue of
contemporary Science.

What makes C&S an actual, coherent line of books, is its approach to any given
topic: 20 to 24 pages of pure and simple comics, followed by roughly the same
amount of editorials, articles and pieces covering that topic. A very simple, down-
to-earth answer to the “popularization paradox:” The more scientific content is
simplified for the sake of comprehension, the more it becomes something else, and
we fail to communicate.

It must not be necessarily so.
With this in mind, we recently produced very different projects.
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Fig. 6 The “Reaction chamber” devised by Giovanni Eccher and Sergio Ponchione for “gifted
elements” (from “L’Accademia del Professor M per elementi dotati;” Comics&Science 002/2019,
October 2019)
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To start with, we tried our hand at Artificial Intelligence, a fascinating and crucial
issue, already permeating every aspect of modern Science. Blossomed as a distinct
discipline from Alan Turing’s researches during the Fifties, AI has progressed
by bumps and jumps, with years of stagnation often following (and followed by)
important breakthroughs. All the while movies and Science Fiction have been giving
voice to great hopes and not lesser fears, with fascinating tales not always so far from
reality.

Today’s AI is part of our everyday lives: we find it in cell phones, computers,
biomedical imaging’s analysis and in natural language recognition. Something
almost unthinkable until not so many years ago. What happened? How did we get
where we stand now? And most of all: what looms at the horizon? Again, AI’s path
is paved with fears and hopes: complex and crucial themes for science and society
at large. Strictly cooperating with AIxIA—Associazione Italiana per l’Intelligenza
Artificiale (“Italian Association for Artificial Intelligence”), we targeted these topics
with the help of Diego Cajelli and Andrea Scoppetta. Cajelli is and experienced
comics writer, routinely handling important Italian comics properties like most
Bonelli characters (Bonelli is by far Italy’s leading comics publisher) and the
iconic “Diabolik” series. He also teaches “Crossmedial Storytelling” at the Sacro
Cuore University in Milan. Scoppetta is a cartoonist, illustrator and animator
who contributed to world-renowed productions by Disney/Pixar and Dreamworks.
N3well’s visit is their C&S take on AI and the very classic, evergreen theme of the
“thinking machine” (see Figs. 7 and 8): N3well is a robot and much, much more, as
readers will discover following him looking for his origins. Something normal for
human beings and downright surprising for an artificial mind. With a heartfelt tip of
the hat to Isaac Asimov’s centenary.

From today to a remote past as a way to “Imagine Math”: Leonardo “Pisano”
(“from Pisa”), better known under his Filius Bonaccii, or Fibonacci, family name,
was allegedly born in 1170. In 2020, 850 years after, C&S joined the town of Pisa
and honorable institutions like the local University, “Scuola Normale Superiore”
and—again—“Museo degli strumenti per il calcolo” in a series of events celebrating
the anniversary. Fibonacci’s Liber Abbaci (1208) brought the Indo-Arabic positional
notation for numbers to Europe, a durable legacy which still today—every day—
tells how much Mathematics, technology and Science as a whole owe him. First of
all, his book was intended to be of help to merchants and businessmen, illustrating
practical problems and how to solve them using the “new numbers” and the “new
ways” of handling them (which today we call algorithms). So, illustrator and
cartoonist Claudia Flandoli concocted Il libro di Leonardo (“Leonardo’s Book;”
see Fig. 9), a brilliant rendition of Leonardo’s early years as a young man returning
to his native town, telling his friend Sara—and all of Western World and us with
her—how everybody’s lives are going to be changed forever by what he learned
from “the Arabic scholars.”

One specific C&S aspect might turn out to be even more relevant than its comic
books’ success. We call it “fertility.” Since its inception, C&S inspired—we like
to say “catalyzed”—many other different, often fully spontaneous and independent
projects in its own vein. As an example, we recall here only four of them.
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Fig. 7 Diego Cajelli (story) and Andrea Scoppetta (art) and their difficult child (from “N3well;”
Comics&Science 001/2020, April 2020)
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Fig. 8 How N3well became all too human (ibid.)
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Fig. 9 How young Fibonacci became acquainted with rabbits, as told by Claudia Flandoli (from
“Il libro di Leonardo;” Comics&Science 002/2020, October 2020)

– “Archimedia:” A two-page short story in comics form for Archimede, a historical
Italian journal devoted to Mathematics and mainly aimed to teachers.

– Two series of book mass-marketed through the national network of newsstands:
I manga delle Scienze (“Science Manga”) and I grandi della Scienza a fumetti
(“Great Scientist in comics”).

– The series of Disney tales “Topolino Comic & Science” (almost a namesake),
which Roberto Natalini, Alberto Saracco, world-renowned theoretical physicist
Carlo Rovelli, Fields medalist Alessio Figalli and other researchers (all die-hard
Disney fans) personally contributed to, both as advisors and writers, suggesting
themes and topics.

These positive feedbacks have been very encouraging, taking us—almost by the
hand, in a way—to a single story we were eager to tell, after years of it lingering
in our minds and conversations: the life and works of Italian mathematician and
physicist Vito Volterra.

One of the founding fathers of Functional Analysis, Volterra pioneered more
than one crucial field of research, from Integral and Integro-Differential Equation to
Bio-Mathematics (population dynamics, predator-prey models), bringing his new,
visionary approach to both fundamental and applied scientific research, which—
way back in 1923—led him to found what today is CNR—Consiglio Nazionale
delle Ricerche, a model ante litteram for many European research institutions and
agencies to come.

He was also passionately politically engaged, “Senatore del Regno per meriti
scientifici” (Senator of the then-Kingdom of Italy for scientific distinction) from
the age of 40, strenuously opposing the rising fascist regime, which succeeded in
marginalizing and then expelling him from his academic positions, upon his refusal
of taking a “solemn fidelity oath” (1931).
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In a joint venture with Italian major publisher Feltrinelli Editore, C&S editorial
board edited and produced a graphic novel, a biographical comic in book form
telling the story and the political hardships of this illustrious the Twentieth Century
Italian mathematician.

Cartoonists Alessandro Bilotta (writer) and Dario Grillotti (artist), both ac-
claimed professionals in their own field, joined forces giving birth to a compelling
tale of knowledge, Science and civil passion as ways to improve our lives, making
them better and worth living.

It is quite obvious how the main reason for C&S to work out so well is that
something was “in the air,” in some sense, while kind of an astonishment for the
unreasonable effectiveness of the very basic idea of using comics in order to boost
interest for science, still stands.

What we see, from this viewpoint, is that comics, like mathematics, are not
simply a language—a “structured” way to tell or explain things in a very specific
way—but a way to look at the world, telling its stories with a concise, terse
approach.

Archimedes used to carve his diagrams in sand and—we like to think—would
subscribe to that (Fig. 10).

Fig. 10 (from “Archimede Infinito” a short story by Giuseppe Palumbo; Archimede 1/2016,
March 2016)



Is Math Useful?

Alberto Saracco

Introduction

“Is math useful?” might sound as a trick question. And it is. Of course math is
useful, we live in a data-filled world and every aspect of life is totally entwined with
math applications, both trivial and subtle applications, of both basic and advanced
math. But we need to ask once again that question, in order to truly understand
what is math useful for and what being useful means. Moreover, is it knowledge
of math useful for a class of specialists, or for political leaders or for all people at
large? Being more on a concrete level, why does math need to have a central role
in education? Each section will be titled by a question. And each section will not
give an answer, but—at least I hope—provide some food for thought to the reader,
in order to try to come up with his or her own answers.

I feel that these kind of questions are at home in a book devoted to the interplays
between mathematics and culture: what is the space we should give to math in
culture and what is math’s role in becoming a complete citizen?

1 Is Math Useful?

The mass of mathematical truth is obvious and imposing; its practical applications, the
bridges and steam-engines and dynamos, obtrude themselves on the dullest imagination.
The public does not need to be convinced that there is something in mathematics. All this
is in its way very comforting to mathematicians, but it is hardly possible for a genuine
mathematician to be content with it.

A mathematician’s Apology [9] §2—G. H. Hardy
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Fig. 1 Math describes reality, according to young Roby Vic, a Disney version of the ESA
astronaut Roberto Vittori in the story 3 gradini per le stelle—Paperino Paperotto, Roby Vic e i
conti. . . alla rovescia (3 steps to the stars—Donald Duckling, Roby Vic and the countdowns) [20]
©Disney

[. . . ] the most ‘useful’ subjects are quite commonly just those which it is most useless for
most of us to learn. It is useful to have an adequate supply of physiologists and engineers;
but physiology and engineering are not useful studies for ordinary men[. . . ]

A mathematician’s Apology [9] §20—G. H. Hardy

The English mathematician Hardy dealt very well with the subject of this paper,
and I will often cite his famous Apology,1 written over 70 years ago. Since we are
dwarves sitting on the shoulders of giants, I hope I will be able to see a little further
and give some new ideas on the subject.

More precisely I would like to deal with the problem posed by the above two
quotes: no one is usually fool enough to deny the usefulness of mathematics to our
society, but the usefulness to a society is not at all the same as the usefulness to an
individual. Is math useful to me? will be our second to last section.

Before getting there, tough, we have a long way. We first have to understand what
is the usefulness of math and how math is (and can be) used.

2 How Is Math Used in War Time?

Ten, twenty, thirty, forty, fifty or more
The bloody Red Baron was running up the score
Eighty men died trying to end that spree
Of the bloody Red Baron of Germany

Snoopy vs the Red Baron (1966)—The Royal Guardsmen2

1 For an interpretation of Hardy’s Apology we refer the reader to [2].
2 Usually the books of the series Imagine Math are the proceedings of the meeting on mathematics
and culture held in Venice. This year, due to the pandemic of Sars-Cov2, the meeting has not taken
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Fig. 2 Snoopy vs the Red Baron (Peanuts comic book, photos courtesy of Milena Crovini and
Andrea Cittadini Bellini)

Math has always been considered a strong ally in war time. Archimedes used
math (and physics) to construct parabolic glasses in order to set on fire Roman ships.
Math has been used to compute the line of firing of cannons: modern ballistics
was born due to an English mathematician, Robins, who in 1742 wrote New
Principles of Gunnery, a treaty which was used till World War II. Mathematicians
have always been considered precious for war and enrolled for their logical and
computing abilities. The English mathematician Littlewood, close friend, and fellow
mathematician of the already cited Hardy served in the Royal Garrison Artillery
during World War I.

Up to World War I, though, the math used in war time was quite elementary:
basic geometry and physics.

During World War II math played a fundamental role and many different areas
of mathematics turned out to be useful for winning the war. Everyone knows the
story of how Alan Turing cracked Enigma, the Nazi cryptography tool, and heavily
contributed to lead the Allies to a victory. Both cryptography and decryptography
are based on deep math.

Moreover there is some statistics in figuring out the number of tanks produced by
the Nazi: the problem of estimating the maximum of a discrete uniform distribution
from sampling without replacement. In simple terms, suppose there exists an
unknown number of items which are sequentially numbered from 1 to N. A random
sample of these items is taken and their sequence numbers observed; the problem is
to estimate N from these observed numbers. This problem is called the German tank
problem, since it was of uttermost importance to the Allies: they wanted to estimate
the number of German tanks just by knowing the serial numbers of the few tanks
captured.

place. Anyhow you may think of me beginning my lecture playing with planes while the song
Snoopy vs the Red Baron is being played. I suggest you to listen to this song while beginning to
read this chapter, to put yourself in the right mood.
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Fig. 3 Area of damage of
damaged airplanes returned to
base during WWII (image
from Wikipedia).
Where do the airplanes need
to be reinforced?

But probably the nicest use of math in WWII is that Wald did to evaluate where
planes would need additional armor against enemy’s shootings. Data of damaged
airplanes was collected by US military, leading to the picture of Fig. 3. The US
military concluded that the area in need of ticker armor where the ones with the
most shoots. Wald concluded the opposite: the areas in need for additional armor
were precisely the one with least red dots, since the sample was made up just of
planes who survived the enemy’s fire. The planes which were shot elsewhere did
not made their way back home: they simply crushed down, as if they were shot by
the bloody Red Baron. So the parts to reinforce were exactly those which when shot
did not allow the plane to come back and its damage to enter the stats.

Math is no doubt useful in war time, both for computational purposes (and in this
I put also physics and computer science) and for the mathematical-logical thinking.

What Is Math Useful For?
I have no doubt that the reader, when reading the title of this chapter,
immediately thought that math is useful and did not think about math in war
time, which—depending on how you put it—may be described as useful or
bloody dangerous. So, why did I choose such a subject to begin my chapter?
I will let Hardy answer:

I once said that ‘a science is said to be useful if its development tends to accentuate
the existing inequalities in the distribution of wealth, or more directly promotes the
destruction of human life’

A mathematician’s Apology [9] 21—G. H. Hardy

This extremely pessimistic phrase was spoken by Hardy in 1915, when
times were dark and there was little space for hope and for the future of
humankind. Nevertheless, way too often the usefulness of something has

(continued)
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indeed had the effect to accentuate inequalities or favor wars, as Hardy stated.
Hence, I feel that we should start discussing usefulness of math by starting
from its darkest sides, not hiding them under the carpet, but being well
conscious of their existence.

It is also worth noticing that, usually, when a war time example of usefulness of
math is made, it is usually a situation in which the good Allies used math to win
against the Nazi.

It is as if, when talking about the applications of math to the real world, we try
to hide the darker sides of math’s applications, and—if ever we talk about math and
war—cite only occasion in which math has been used to make the Allies won WWII
vs the Nazi, i.e., show war-time-math as the hero in a classic war movie.

Of course, reality is much more various than a movie, and in war math helped
killing people as much as saving them.

We must deal with this whenever we try to answer the question whether math is
useful or not: math is a tool, and like most tools it can be used in a wise or a wicked
way.

3 How Can Pure Math be Useful?

There are uncountable3 applications of math in every day’s life. While most of the
applications known to the wide public rely on basic math, or on math born explicitly
for applications, I would like to give some example of pure math which later on
turned into applied math. As the online comics Abstruse Goose puts it, all math is
eventually applied math (see Fig. 4).

If you feel a geek online comics is not a good enough reference,4 I will go with
Galileo:

[Nature’s book] is written in mathematical language, and its characters are triangles, circles
and other geometrical figures.5

Il Saggiatore—Galileo Galilei

Our limits in applying mathematics in describing the world are just those of our
knowledge (deep and true knowledge) of it.6 We may think of our knowledge as a

3 Obviously this is an hyperbole, since everything in the real world is not only countable, but finite!
4 And you would be wrong. Comics are totally part of culture and they also had a good place in
this series of books, see, e.g., [1, 14].
5 [Il libro della natura] è scritto in lingua matematica, e i caratteri son triangoli, cerchi, ed altre
figure geometriche, in the original.
6 Is it “the world” or “math”? I will leave the answer to the reader.



588 A. Saracco

Fig. 4 All math is applied math. . . eventually—Personal reinterpretation of the web-comics
Abstruse Goose Impure Math drawn by Sofia Saracco [3]

box of tools. As soon as we have a tool in it, we may find some uses for the tool.
When we do not have the tool (or we even ignore its existence), we cannot find
uses for the tool. And mathematical tools, being completely general and abstract,
have a wide range of possible applications. What is really needed is to create the
mathematical tools (doing mathematical research, both pure and applied) and handle
them to people who may need them.

Thus, in this section I go with some example of pure math applications to the real
world.

3.1 Number Theory and Cryptography

The Abstruse Goose comics (Fig. 4) gets it right: no matter how pure and far from
applications a part of mathematics may be, once it is in our tool box it is only a
matter of time since it will find some applications.7

7 Again an hyperbole: some theorems are just too weird to find an application. . . or are they just
too weird for now? Maybe just because we do not understand that result well enough?
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Fig. 5 Caesar’s
cryptographic method: just
replace a letter with the one
three places after in
alphabetical order (image
from Wikipedia)

3.1.1 Number Theory

So it is just appropriate to begin with an example about number theory, the field of
research of Hardy, who was absolutely proud of doing research in a pure area of
math, with no applications whatsoever.

Hardy in his A mathematician’s apology [9] makes quite a point of personal pride
in number theory being a completely pure (and useless) branch of mathematics. And
he was quite right! Number theory deals with the distribution and the properties of
prime numbers and so it is a subject of great charm, ancient (the proof that there are
infinite prime numbers and Eratosthenes’ sieve date back to Ancient Greece) and full
of elementary problems (e.g., Goldbach’s conjecture), which are easy to state and
extremely difficult to solve. These characteristics lead to a heap of amateurs trying
to solve very difficult conjectures in this field across centuries.8 Few succeeded,
most did not, and a lot of apparently simple conjectures are still unsolved.

So Number Theory always had a great appeal, both to professional mathemati-
cians, amateurs and the wide audience. But no one ever questioned its being a totally
pure and abstract area of mathematics, whose interest belonged all to the world of
pure ideas and not to our material world.

At least that was so until computer age begun and some old Number Theory
theorems by Fermat become useful for cryptography.

3.1.2 Cryptography

Also Cryptography is an ancient subject. Sending secret messages has always been
of crucial importance in war time (as we already stated in Sect. 2) and the first use of
Cryptography dates back to Julius Caesar, who sent messages replacing each letter
with the one 3 places after that in alphabetical order (see Fig. 5).

To read the original message, one should just reverse the arrows and replace each
letter with the one 3 places before in alphabetical order.

This method of cryptography has several problems, of course.

8 And this often lead to frustration professional number theorist who continue to receive “proofs”
from amateurs, see, e.g., the nice Dialogue on Prime Numbers written by Zaccagnini [21].
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Fig. 6 The cryptogram in Poe’s novel The Gold-Bug [13]

First of all, if one knows how to encrypt a message, also knows how to decrypt the
message. Secondly, the possible shifts are just one less than the number of characters
in your alphabet (not counting the 0-shift which does not encrypt): not too many to
check fast by hand. Moreover, even if not a simple shift is used to encrypt but rather
any permutation, if the message is long enough, a simple statistical analysis of most
frequently occurring characters may yield to an easy decryption (as it is done in E.
A. Poe’s The Gold-Bug, see Fig. 6). Finally, both the receiver and the sender must
know the crypting and decrypting keys in order to have a crypted communication
between them. And how do they exchange the keys?

With the computer era, decrypting messages has become easier and easier. The
faster the computers, the better encryption methods had to be.

The breaking of the Nazi encrypting machine Enigma by a huge group lead by
Alan Turing was a key turning point of WWII.

3.1.3 Number Theory and Cryptography

Number theory was used to solve one of the biggest problem in cryptography.
Namely, number theory allows for a method in which the encryption key is public
but the decryption key is private, thus allowing anyone to send messages to the
receiver (e.g., your password to a website or the PIN of your credit card to your
bank) without having to worry about a third party decrypting the message.

This has been a major breakthrough in cryptography and its applications are
amusing.

From the theoretical point of view, the RSA method is really simple. One needs
to find two distinct prime numbers, p and q and computes n = pq and m = (p −
1)(q − 1). Then a number a such that (a,m) = 1 is chosen and the number b such
that ab ≡ 1 (mod m) is computed.

The pair (n, a) is the public key and is known to everyone. The number b is the
private key and it is secret. The message is translated into a number x < n and the
sender sends the encrypted message y < n, where y ≡ xa (mod n). The receiver
computes

yb ≡ (xa)b = xab ≡ x (mod n)
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thanks to Euler Theorem, thus getting to know the original message.
The operations of taking a power up to a congruence class is not much time

consuming and can be easily done by a computer. Finding out from n its prime
factors p, q is completely a different task, in term of computation time.

Indeed, nowadays all the factorization algorithms are too slow. To be more
precise, all known algorithms to factor a number n in primes have a computational
complexity (and hence time needed) growing exponentially with n, hence, for n big
enough, the computation time to factor n is way too large. Obviously there is no
guarantee the currently known algorithms are the best possible algorithms.9 Only
15 years ago a new algorithm for finding out whether a number n is prime or not,
whose complexity grows polynomially with n, was discovered. A new factorization
algorithm may be found, and this could change drastically the size of n needed for
a secure encrypting, or maybe even make RSA obsolete and useless.

Of course, even just considering the algorithms known nowadays, the greater the
computational power of computers, the bigger the two primes p and q need to be.
Nowadays the RSA key is 128 bits long (or 256 bits for TopSecret tasks).

3.2 Radon-Nikodym Antitransformation and Computed Axial
Tomography

Looking inside a body may be a difficult task. Our body is not transparent and
cutting a person in order to see what is on the inside may not always be a good
idea. Radiography, using X-rays, helped in seeing bones, since the rest of the body
is transparent to X-rays, but they are not a good means to inspect soft parts of our
bodies.

Medicine was in search for a tool we were apparently lacking: a way to see inside
our bodies without tearing them apart. The tool was only apparently lacking. Indeed
math has invented ways to transform local information into global ones and vice
versa: transformation and antitransformation. There are several of them, and they
answer to different needs, but actually what a transformation does is taking as an
input a function or a series of numbers, and giving back another function or a series
of numbers; the antitrasformation goes the opposite direction and is an inverse to
the transformation. Usually these tools work computing integrals.

Sending rays through your body and see how much they were absorbed was not a
new idea (indeed it was used with X-rays and radiography), but it is just in the early
Seventies that a physicist (Allan Cormack) and an engineer (Godfrey Housefield)
had the idea of using Radon-Nikodim transformation and its inverse in order to
compute from the information of rays absorbed in the various direction a 3D model
of the inside of a body. This application of math eventually led to the Nobel Prize

9 Should the 1 million dollar conjecture P=NP be proved to be true, there is a polynomial time
algorithm to factor numbers in primes.
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for Medicine (in 1979) for the two and gave a huge tool of diagnosis to hospitals all
around the world.

When Radon-Nikodim transformation was developed in 1917, it was a com-
pletely pure and “useless” tool of high mathematics. Of course, computers were
far from being invented, at that time, and practical applications of the Radon anti-
transformation were unforeseeable. But, as we said, all mathematics is eventually
applied mathematics. And you never know when something you know may actually
turn useful. In any case, it is better to know more than less.

4 Why Politicians Should Know Math?

All of the above is a bunch of examples showing what is math useful to us as a
species, as a community. But of course, we may ask ourselves if math knowledge
should not be simply limited to mathematicians, engineers, and other people who
may use it in their work for the benefit of the community at large. After all, we do
not need people to know exactly how a bridge is constructed, how a TV works, or
how to repair a broken engine. For that, we use people who know how to do it. Why
should math be different?

I will address this question in the following sections. First, let us consider why
politicians should know math.

Our modern world is a world filled with data and numbers. Decisions must be
made based on those numbers and those data. But interpreting data is far from
obvious, as the “survivor’s bias” example should have already clarified. An inability
to correctly interpret data may turn into a disaster. Indeed statistics is quite difficult.

4.1 Education System in the US, Covid-19 Death Toll and
Simpson’s Paradox

For many years, Wisconsin’s students performed consistently better than Texas’
students in standardized tests (see Fig. 7).

One could conclude that Wisconsin’s education system is way better than Texas’,
and a politician willing to improve Texas’ education system may be tempted to copy
the one of Wisconsin. But is that a good idea?

Knowing the mean performance of a huge number of students for a long time may
sound as pretty solid evidence towards this claim. But statistics is full of surprises.

Namely, if we divide the data of the students of the two States among different
ethnic group (and we know that ethnic group correlates with wealth which correlates
with education level), a surprise pops out: white Texas students outperform white
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Fig. 7 Data of Texas and
Wisconsin overall results in
standardized tests (source
MinutePhysics [11])

Wisconsin students, black Texas students outperform black Wisconsin students and
Hispanic Texas students outperform Hispanic Wisconsin students (see Fig. 8).

So it actually looks that, when seen broken by race, data suggest that Texas’
education system is better than Winsconsin’s. How can data tell two different things?
First of all, one of the problem is that the mean of some data is not the same as the
mean of the means: it depends on how many data are there in every subgroup in
which data have been divided. Wisconsin’s population is much whiter than Texas’:
thus the overall mean of Wisconsin is much more tilted towards the white mean
(which is the ethnic group performing better in the test) than it is the mean of Texas.

A similar situation happened when comparing the death toll in Italy and China
at the beginning of the Covid-19 pandemic. Indeed, the overall fatality rate of the
disease in Italy was bigger than the overall fatality rate of the virus in China, but—
when people infected with Sars-CoV2 were split in age groups—in every single age
group the fatality rate was greater in China than in Italy (see Fig. 9).

In this case the problem is that in Italy there were much more old people sick
with Covid-19 than there were in China. And Covid-19 has a higher fatality rate in
older patients. So, this explains the apparent discrepancy of the data.

This phenomenon, where there is a positive correlation overall, while—when
data is divided in groups—there is a negative correlation, is called Simpson’s
paradox. Simpson’s paradox is one of the things a politician should be aware of,
before taking action according to data.

But actually the problem is deeper than that. Indeed, is Wisconsin’s school
system better or worse than Texas’? Is this second way to see data the correct one?
If we say that ethnicity correlates with wealth (or with parents’ education level) and
this last thing correlates with results in tests, why are we using ethnic group and not
wealth (or parents’ education level) directly in order to interpret our data? A third
look at data may be needed.
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Fig. 8 Data of Texas and Wisconsin results in standardized tests, divided by race (source
minutephysics [11])

Fig. 9 Data of Italy and China fatality rates of Covid-19 cases (image from [6])

The point is: if you believe data are objective and need not to be interpreted
and analyzed with a close look, you are likely to be fooled by data. If you know
how statistics (and math) works, you are more likely not to get fooled and to take a
second (or even a third) look at data before taking action (and possibly going in the
wrong direction).

This is why politicians should have a good base in math and know how to analyze
data. Before making decisions, the least you must have is correct data and info, and
possibly understand correctly what they mean.
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5 How Do Politicians Use Math?

You might say that politicians do not really have to know and understand math, in
order not to fall into such errors, but just to have good advisors who do know math.
And indeed they have. Plenty of them. And here we get to the problem.

First, as we have seen, data and numbers are far from being objective: data must
be interpreted and investigated in order to understand what they say, but they are
also easily bent to furnish support to almost any political view. So, sadly, way too
often the scientific advisors of politicians try to cherry pick data or to present data
in such a way to give a scientific-looking aspect to the political ideas they want to
communicate. This when data are not right-away invented. But cheating too much
is not even needed: the same data, presented with different words, from a different
point of view, can lead to very different conclusions. And we must bear in mind that
politicians often have a very skilled advisory group whose only purpose is to find
the best way to present data.

Another new interesting tool of math (or computer science) often used by politi-
cians is given by big data: sentiment analysis and trending topics are fundamental
in political communication. In our modern world we have an incredible amount
of data about almost everyone: use of credit cards, posts, or comments on social
networks, our GPS position in real time, the shopping habits (both online and in
physical stores), internet usage. . . The math of big data can extract patterns out of
all this huge amount of data. And this is how your phone can suggest you the fastest
path to go back home or where to buy the book you really want to read or the item
you really needed. This can be useful, but of course all this information can be (and
is!) used to make enormous profits.

Politicians are informed real time about the hottest arguments of discussion
(trending topics) and on what most people think about the argument (sentiment
analysis), and so they are ready to band-wagon on the hottest topic with the coolest
opinion. It almost does not matter whether the opinions expressed are coherent with
one another or not: what is really important is to say something on the trending
topic of the day, with their opinion being shared and viewed by the highest possible
number of people. In time of election, people will recognize your name, and you will
have bigger chances of being voted, hence more votes. This is the core of marketing,
applied to politics. Not so great if you think politics should be about solving the
community’s problems, but that is how it is. And there is a lot of math in that.

5.1 Paradoxes of Elections

So, we have decided that politicians’ biggest task is getting elected (even if they
are really interested in doing their work for the benefit of the community: in order
to do that, they need to be elected). Alas, the outcome of elections is far from
being determined from what voters think, and the electoral system is crucial for the
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result. This is exactly the reason why politicians spend so much time discussing the
electoral system. This subsection is mainly based on my paper [18], on mathematical
paradoxes of elections. I refer the reader to that paper for greater details.

Unluckily, no electoral system is perfect. In 1951, the economist Kenneth Arrow
[5] considered a very general definition of electoral system as a function (which he
calls social choice function) from the individual preferences among the alternatives
of the electors to a single preference of the social group, where a preference is a
total ordering of the alternatives. Arrow introduces three desirable properties of the
social choice function:

A1 (sovereignity of electors) The function is surjective, i.e., if the electors agree
on the desired outcome, they can vote (choose their individual preferences) in
order to have that outcome;

A2 (positive correlation) If in a certain situation the social choice function says x

is better than y, in any other situation in which the only change in any elector’s
preference is that their ranking of x gets higher, then x is still better than y;

A3 (Invariance under irrelevant alternatives) The relative position of x and y

according to the social choice function depends only on the relative positions
of x and y for each elector and not on the opinion on a third alternative z.

Arrow then proves that if there are at least three alternatives, the only social choice
functions satisfying the above three axioms are dictatorships: the social choice
function is simply a projection on one on the factors, or differently said the “will”
of the people is the “will” of a single individual, the dictator (see Fig. 10).

Fig. 10 The only election satisfying Arrow’s axioms is a dictatorship:
US: “If you vote YES, my proposals will be accepted. If you vote NO. . . ”
GG: “they will be rejected?”
US: “No, they will be accepted, and your vote will be kept in an appropriate dossier”
©Disney [12]
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This theorem actually means that, if more than two alternatives are allowed, our
electoral system must not satisfy one of the above properties if we do not want
to have a dictator. Electoral systems usually do not satisfy the axiom A3 and the
outcome of election can be modified by the presence or absence of otherwise totally
irrelevant political forces.

Politicians (or their advisors) know well this fact, and this explains all the fight
on whether some little meaningless party should be allowed or not to participate in
an election.

The Theorem of Arrow is based on Condorcet paradoxes, i.e., situations where
you have 3 alternatives A-B-C and A wins vs B, B wins vs C, and C wins vs A, in a
rock-paper-scissor way.

The Theorem of Arrow may suggest that a system with only two alternatives to
choose from is the best one. The most useful electoral system to force politicians
to gather in only two major party, thus having a system with only two alternatives
and a way out of Arrow’s paradox, is a one-district one-seat system, where the party
who gets the most votes in the district takes the seat, and all other votes for the other
parties are meaningless.

Unluckily the system one-district one-seat has one big weakness: the outcome
of the election strongly depends on the shape of the districts and a party which has
the power to decide the shape of the districts may win the election in a 1 vs 1 race
with as little as slightly more than 25% of the votes. This is due to the fact that
the party can lose 0–100% in slightly less than half the districts and win by barely
one vote over 50% in the remaining (slightly more than half) districts, thus winning
the election. Of course it is impossible to have complete information about votes,
but big data analysis gives parties quite a good level of knowledge about voting
intentions, thus allowing an easy win even if the electorate strongly favors the other
party.

This art of carefully shaping the districts in order to win is called gerrymandering
in honor to the salamander-shaped district designed by Governor Elbridge Gerry to
win an election (see Fig. 11), but is still well used nowadays in the US, by both
parties and districts of really weird shapes are not at all uncommon. Mathematical
research on the subject of gerrymandering is very active, to limit gerrymandering,
both by finding the objective subdivision on districts or by giving measures to find
out whether there has been some gerrymandering going on in order to cheat or if
the subdivision is fair. The two main approaches to the problem are an analytical
approach using isoperimetric-like techniques and a discrete geometry approach,
using weighted graphs. I proposed an approach of this second kind [17].

All this is why it is usually forbidden to change the rules of an election (or the
shape of districts) too near to the upcoming election. But of course, regulations do
not completely stop politicians to use math for their own benefit.
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Fig. 11 The satirical panel,
with the salamander-shaped
district, published on the
Boston Centinel to mock
Governor Gerry in 1812.
Image of public domain, from
Wikipedia

6 Is Math Useful to Me?

Let us now address the main point of this paper: how is math useful to me? Why
should I learn math? Can’t just a few people be knowledgeable of math for the
whole society’s benefit?

I once heard that when a kid learns to read by itself, it does no longer have to
depend on others to read and can find out what is written around without having to
trust others to read correctly to them. Math is a powerful tool to read the world, and
knowing math gives you the power to independently analyze the complexity of the
world, without blindly trusting others to do that for you.

Be aware! I am not saying you should not trust others or the scientific community,
not at all! What I am saying is that, being able to do the math by yourself or—even
better—to mathematize a problem and to take a look at it through the magnifying
glass of math is always a good idea, not only to find out a correct answer yourself,
but mainly to find out who is trying to trick you and who you should trust.

So a first answer is that the more you know, the less you are likely to be fooled by
people who want to gain something by fooling you, by politicians or lobbies who
want to push their own ideas, or simply by arguments which may look plausible
until inspected closely. Knowing math, or even better being able to reason with a
math-oriented mind, is fundamental for every single individual.

Of course the problem is that it is not enough being able to reason correctly and
foresee what is coming, if the majority of the population does not share this ability
and is easily fooled into non rational behaviors. This is always true, but even more
in a period where acting fast and correctly is the key to avoiding a disaster.

In October 2020, at a EU meeting, the German Chancellor Angela Merkel said
“Once we got to this point, closures are the only possible choice: we should have
acted earlier, but people would have hardly understood. They need to see hospitals’
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beds full. . . ”.10 Angela Merkel has a Ph.D. in physical chemistry and knew pretty
well what was going on. She even gave, some month before, a very nice explanation
of the meaning of the index Rt in an epidemics. But that was not enough. She was
knowledgeable, she was powerful, but still she could not act without her citizens
being fully aware of what was going on. She was in the sad situation where she
could foresee hospitals’ beds getting full and death tolls raising to very high levels
without being able to act tempestively.

The consequences of a low mathematical literacy of the vast majority of the
population are terrible: more deaths, more pressure on the health system, more
economical consequences. . . In order to avoid this in the future (the damages of the
present situation cannot be undone, alas), a wide-spread math literacy is needed.
Math allows you to see that an exponential growth of an epidemics means the
hospitals’ beds will be full and to act timely, in order not to have them full.

Without people clearly understanding that, the action needed to solve the problem
is also the action that will make people shout “Nothing happened! There was nothing
to be worried about! We should have not done this”.

So, not only math gives you instruments to understand, analyze the world and not
getting fooled, but a wide-spread knowledge of mathematics will turn into a huge
benefit for the whole society.

7 Is Math Usefulness Relevant to Learners?

I hope we have cleared that math is useful to everyone and to the population
at large. Given that, the fact that something is useful to someone, it does not
straightforwardly imply that someone will be interested in learning it, much more
so when you are dealing with children or kids or young adults. Showing the utility
of something may make want some students to learn something, but most of them
will be simply bored as hell.

I will just quote Paul Lockhart, who makes his Salviati go right to the point11

It may be true that you have to be able to read in order to fill out forms at the DMV, but
that is not why we teach children to read. We teach them to read for the higher purpose of
allowing them access to beautiful and meaningful ideas. Not only would it be cruel to teach
reading in such a way— to force third graders to fill out purchase orders and tax forms— it
would not work! We learn things because they interest us now, not because they might
be useful later.

A Mathematician’s Lament [10]—P. Lockhart

10 Translated in English by the author.
11 The emphasis is mine.
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We learn because we are interested, because we are amused by something, not
because we have to or because it will do us some good or it will make us a better
person!

Luckily math is filled with interesting ideas and theories! We must never forget
this, and when trying to appeal a young learner usefulness should not be our guide
through mathematics. Math was not born because it was useful, but because it is
amusing. Math is filled with interesting problems, which can be given to kids and
adult of different ages and knowledge, in order to hook them into mathematics.

For the sake of completeness, I will just present an example, but many more can
be found in the very indicated reading of Lockhart’s pamphlet [10].

Second Degree Polynomials Usually, when studying second degree polynomials,
students are presented with a huge nomenclature (pure polynomial, spurious
polynomial. . . ) and a vast casuistry to solve particular polynomial equations, then
they are given a lot of exercises to practice the method that was given. After that,
they are given the general formula

ax2 + bx + c = 0 ⇔ x = −b ± √
b2 − 4ac

2a

(possibly also with a second variant in case b happens to be even) and then a new
round of dumb exercises, each one equal to the previous. Totally boring.

I mean, I know that during the history of math all these different kinds of
equations were solved (and given funny names), but math is not about zoology or
funny names: math is about the struggle to find a path that lead to the solution of
problems. Not necessarily the smartest and shortest path. Not immediately, anyhow.

A possible different teaching sequence would be to start from problems: give the
students some problems, which once mathematized turn out into solving a second
degree polynomial. Some of the problems should be easily solvable (i.e., lead to
an equation of the form x2 = d or x2 + bx = 0), some should lead to a complete
equation with no vanishing terms. The students will find by themselves how to solve
the simpler ones, and maybe will even give a try to the more difficult ones. Guided
by the teacher, working in groups, they may rediscover themselves the formula
(maybe by completing the square) and teach it to other groups. A discovery made
by themselves, while trying to solve a problem and effectively experiencing the
hardness of the problem and the sense of joy that comes with the solution, will leave
the students something more than just a formula to blindly apply. Most of all, it will
leave them with the sense of doing math.

And after the group work, a good recap by the teacher would be nice, so to put
all the ideas (which came from the students) in order. Doing like that, probably a lot
more of them will remember the formula, but most important will know how to find
it again if needed.
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So. . . Is Math Usefulness Relevant to Learners?
In my opinion it is very little relevant for their decision to willingly learn
maths, and both teachers and popularizers of mathematics should not focus
too much on applications and usefulness of mathematics, since applications
and usefulness are often not immediate, but rather on the joy and the
challenges of doing mathematics.

8 Is Math Popularization Useful?: A Math Popularizer’s
Apology

To end this chapter, I would like to give an apology to the activity of math
popularization. Hardy had quite harsh words for this activity, and I feel most of
my colleagues agree with him: any amount of time spent in popularizing math is
time stolen from doing actual math, and probably, if you do that, it is just because
you are not good enough to do actual math.

If then I find myself writing, not mathematics, but ‘about’ mathematics, it is a confession
of weakness, for which I may rightly be scorned or pitied by younger and more vigorous
mathematicians. I write about mathematics because, like any other mathematician who has
passed sixty, I have no longer the freshness of mind, the energy, or the patience to carry on
effectively with my proper job.

A Mathematician’s Apology [9] §1—G. H. Hardy

I am sorry for my colleagues, but if this vision of popularization or communi-
cation of mathematics was ok in the Forties of the last century, it is no longer so
nowadays. For a better and longer essay on this subject, I refer the reader to the
article by Silvia Benvenuti and Roberto Natalini [7].

There are several top mathematicians deeply involved in communication of math
(just think at the Fields medalists Cedric Villani and Alessio Figalli, to name two).
Moreover, in the 2011 European’s Charter of Researchers [8] it is clearly written
that scientists should be directly involved in communicating their own researches to
the wide public in order to favor the creation of a scientific mind.

Researchers should ensure that their research activities are made known to society at large
in such a way that they can be understood by non-specialists, thereby improving the public’s
understanding of science. Direct engagement with the public will help researchers to better
understand public interest in priorities for science and technology and also the public’s
concerns.

European’s Charter of Researchers [8]

The reason for that is precisely what we tried to outline and suggest in this
chapter: a scientific-leaned mind is needed for the well-being of the society at large,
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Fig. 12 A comic by Saturday
Morning Breakfast Cereal
[19] getting right to the point
of how math is perceived

and—given how modern democracies work—it is a need of the whole society and
not just for a few enlightened who are part of the governing class.

The idea many researchers have of themselves and of research is that they are
needed by society (which is true) and they have no urge to explain to society why
they are needed (and this is false). This idea that what matters for research is getting
it done and not being presented to society at large is deeply fixed into researchers’
minds, but it is false, in the sense that the society must be aware of the fact that
investing (money, time, and effort) in research, both applied and pure, is what we
need to do. And this is even more true when we talk of an inherently abstract subject
as mathematics, whose practical implications are neither immediate nor evident.

I perfectly know the feeling of frustration when you are telling someone you are
a mathematician, or you teach math and the response you get is that shown in the
comic by SMBC (see Fig. 12).

You usually get on the defensive and have trouble to communicate the beauty
of mathematics, or even—if you are tired—do not get at all into the subject. Or
sometimes, people just say that they understand math is useful, but not for them /
they do not get it / they are not a math person (chose one or more).

Communicating to the society is tough. And society at large are not people who
willingly go to an event of science (or math) popularization, or not just them: society
at large, like it or not, is mainly composed by people who have a problematic
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Fig. 13 The first video of the YouTube project Of math and mice—the mathematics of Disney
comics [15], devoted to popularizing math using Disney comics, translation in English of the
corresponding Italian project Un matematico prestato alla Disney [16], both available on my
YouTube channel Alberto Saracco. The comics in the picture is ©Disney

relationship with mathematics, and they will not come to an event where you talk
math to them.

Part of the problem is that nobody has the faintest idea what it is that mathematicians do.

A Mathematician’s Lament [10]—P. Lockhart

Doing mathematics is an activity quite similar to that of an artist or a writer: there
is a lot of technique involved, but also a lot of artistic out-of-the-box thinking and
imagination. People are scared by technique (the only thing about math they know)
and are not willing to know more about math.

It is up to you as a mathematician to get people to know what mathematicians
do. They will not come to you. You have to go to them, by using their passions to
talk about math. It is a while, since I started doing that with comics, using Disney
comics to talk about math (see [14], but also my YouTube playlists on the subject
[15, 16], see Fig. 13).

I noticed that when I put Disney comics or characters in the title of one of my
talks, the audience is thrice as big as it usually is. And often many of the people in
the audience were not interested at all about math at the beginning of the talk, but
exited the talk with better feelings about the subject.

We need these kind of things in order to get math near to people who would not
approach math. And, as I said, it is of fundamental importance. If we want society to
grow and fully use math, it is up to us. As Francesca Arici, member of the Raising
Public Awareness European Commettee, said



604 A. Saracco

Don’t be afraid to use metaphors and don’t be afraid to lie a little bit: the objective is to
communicate math and not to make people see we can do math and prove theorems in a
rigorous way.

F. Arici [4]
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