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Abstract. Motivated by applications in communication networks of
the diameter-constrained minimum spanning tree problem, we consider
the delay-constrained minimum shortest path tree (DcMSPT) problem.
Specifically, given a weighted graph G = (V,E;w, c) and a constant d0,
where length function w : E → R+ and cost function c : E → R+, we
are asked to find a minimum cost shortest path tree among all shortest
path trees (in G) whose delays are no more than d0, where the delay of
a shortest path tree is the maximum distance (depending on w(·)) from
its source to every other leaves in that tree, and the cost of a shortest
path tree is the sum of costs of all edges (depending on c(·)) in that tree.
Particularly, when a constant d0 is exactly the radius of G, we refer to
this version of the DcMSPT problem as the minimum radius minimum
shortest path tree (MRMSPT) problem. Similarly, the maximum delay
minimum shortest path tree (MDMSPT) problem is asked to find a min-
imum cost shortest path tree among all shortest path trees (in G) whose
delays are exactly the diameter of G.

We obtain the following two main results. (1) We design an exact
algorithm in time O(n3) to solve the DcMSPT problem, and we provide
the similar algorithm to solve the MRMSPT problem; (2) We present an
exact algorithm in time O(n3) to solve the MDMSPT problem.
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1 Introduction and Problem Description

Many graph optimization problems are motivated from applications in our real-
ity life, for example, the minimum spanning tree problem, the shortest path
problem and the minimum Steiner tree problem [17]. In addition, there exist
several optimization problems which can be regarded as combinations of some
classic graph optimization problems, for example, the single-source shortest path
tree problem, briefly as the shortest path tree (SPT) problem, which was first
raised in 1957 by Dantzig [6], can be regarded as a combination of the shortest
path problem [7] and the minimum arborescence problem [5,9]. In the past five
decades, these problems mentioned-above have been deeply studied in the liter-
ature and have many wide applications in our reality life, and there exist many
polynomial-time exact or approximation algorithms to solve these problems [17].

Spanning trees related problems in weighted graphs have been well studied in
theory and widely applied in our reality life [4,17]. So has the diameter problem
in which the diameter is originally measured in terms of the number of edges,
instead of the total weight of a spanning tree [1,13,17]. In recent decades, the
diameter of a weighted graph G = (V,E;w), however, is defined as the longest
of the shortest paths among all pairs of distinct vertices in G, i.e., diam(G) =
max{∑

e∈Pst
w(e) | Pst is a shortest path connecting every pair s, t of distinct

vertices in G}. In particular, since the path to connect every pair of distinct
vertices in a weighted tree T = (V,E;w) is unique, the diameter of T is the
maximum weight of a path connecting any two leaves of T . What motivates this
investigation is that we want to find a communication network among n vertices,
where the communication delay is measured in terms of the total weight of a
shortest path between them. A desirable communication network is naturally
one tree that has a minimum diameter. Different from studying the minimum
spanning tree problem, Ho et al. [13] in 1991 considered the minimum diameter
spanning tree (MDST) problem which is formally defined as follows.

Problem 1 (the MDST problem [13]). Given a weighted graph G = (V,E;w)
with length function w : E → R+, it is asked to find a spanning tree T of G
such that the objective is to minimize max{∑

e∈P w(e) | P is a path connecting
any two leaves in T}, i.e., T has a minimum diameter among all spanning trees
of G.

Meanwhile, Ho et al. [13] indeed considered the minimum diameter minimum
spanning tree (MDMST) problem which is formally defined as follows.

Problem 2 (the MDMST problem [13]). Given a weighted graph G = (V,E;w)
with length function w : E → R+, it is asked to find a spanning tree T = (V,ET )
of G, the objective is to minimize the total weight

∑
e∈ET

w(e) among the all
spanning trees that have their diameter values as diam(G) of that graph G, i.e.,
the all spanning trees considered in this problem have the diameter diam(G) of
that graph G.

Ho et al. [13] in 1991 design an exact algorithm in time O(n3) to find a
minimum diameter spanning tree (MDST) of a special graph, called an Euclidean
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graph, induced by a set of n points in the Euclidean plane, also referred to as
a geometric MDST problem. On the other hand, they proved that the MDMST
problem is NP-complete, using a reduction from the 3SAT problem [10]. Hassin
and Tamir [12] in 1995 observed an important fact that the MDST problem is
identical to the well studied absolute 1-center problem introduced in 1964 by
Hakimi [11], imply that the existing algorithms [8,11], which solves the absolute
1-center problem, also solves the MDST problem on a general graph in time
O(mn + n2 log n).

At present, we may firmly believe that it would be better to describe the min-
imum diameter minimum spanning tree (MDMST) problem using the following
definition, which involves two different functions.

Problem 3 (the MDMST problem). Given a weighted graph G = (V,E;w, c)
with length function w : E → R+ and cost function c : E → R+, it is asked
to find a spanning tree T = (V,ET ) of G, the objective is to minimize the
total cost

∑
e∈ET

c(e) among the all spanning trees that have their diameter
values as diam(G) of that graph G, where the distance between any two vertices
depends on computing of length function w(·) and the diameter of G is defined
as mentioned-above.

A similar problem, which is called as the diameter-constrained minimum
spanning tree (DcMST) problem [10], is formally defined as follows.

Problem 4 (the DcMST problem). Given a weighted connected graph G = (V,E;
w) and a positive integer d, where w : E → R+, it is asked to seek a spanning
tree T on G of minimum weight among all the spanning trees in which no path
in T between any two vertices (actually, two leaves) contains more than d edges.

The DcMST problem is sometimes called as the bounded diameter mini-
mum spanning tree problem [14,19,20], and it was shown to be NP-complete by
Garey and Johnson [10]. In the DcMST problem, the measure of the diameter
is in terms of the maximum number of edges in any path of the spanning tree.
It is easy to see that the DcMST problem may roughly be treated as a gener-
alization of the MDMST problem (i.e., Problem 2), where no path in spanning
tree between any two leaves contains more than d edges for the DcMST prob-
lem and the diameter is exactly the longest of a shortest weighted path between
any two leaves in spanning tree for the MDMST problem. The DcMST prob-
lem arises in various contexts in communication network design, and it has also
been given some applications in the area of information retrieval in [2,3]. For the
DcMST problem, Kortsarz and Peleg [16] in 1999 showed that, unless P = NP,
no polynomial-time approximation algorithm can be guaranteed to find a solu-
tion whose weight is within log(n) of the optimum. Although Ho et al. [13] in
1991 proved that the MDMST problem is NP-complete, using a reduction from
the 3SAT problem [10], Seo et al. [18] in 2009 showed that the MDMST problem
specialized to Euclidean graphs remains NP-complete, using a reduction from
the PARTITION problem [10].
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In a centralized communication network in which there is a vertex as source,
Ho et al. [13] in 1991 defined the minimum radius spanning tree (MRST) problem
in a similar manner using the radius instead of the diameter of that weighted
graph, the objective is to minimize the maximum communication delay from
a source vertex to other vertices in that weighted graph. The minimum radius
minimum spanning tree (MRMST) problem is similarly defined as the MDMST
problem. The same authors [13] in 1991 proved that the MRMST problem is
NP-complete.

We have known the fact that, given a weighted connected graph G = (V,E;w)
with length function w : E → R+, messages are transmitted along a shortest
path from vertex to other vertex in G, and shortest path trees will play an
important role in such a transmitting system in G. Then we have the following
two facts. (1) When messages are transmitted from a source vertex to any other
vertices by using shortest path trees, we may consider the delay of messages
along a shortest path tree from its source vertex to any other vertices not beyond
the expected time d0, particularly not beyond the radius of that graph G; (2)
When we implement this mechanism in (1), we should consider minimum cost
to construct such a communication network from the original weighted graph G.

Motivated by the problems and related mechanisms mentioned-above to
transmit messages in communication networks, we should consider the following
problem and its related variations.

Problem 5 (the DcMSPT problem). Given a weighted graph G = (V,E;w, c) and
a constant d0, where length function w : E → R+ and cost function c : E → R+,
it is asked to find a minimum cost shortest path tree among all shortest path
trees (in G) whose delays are no more than d0, where the delay of a shortest
path tree is the maximum distance (depending on w(·)) from its source to every
other leaves in that tree, and the cost of a shortest path tree is the sum of costs
of all edges (depending on c(·)) in that tree.

For convenience, we refer to Problem 5 as the delay-constrained minimum
shortest path tree (DcMSPT) problem. Particularly, when a constant d0 is
exactly the radius of a weighted graph G, we refer to this version of the DcM-
SPT problem as the minimum radius minimum shortest path tree (MRMSPT)
problem. Similarly, the maximum delay minimum shortest path tree (MDMSPT)
problem is asked to find a minimum cost shortest path tree among all shortest
path trees (in G) whose delays are exactly the diameter of G.

So far as what we have known, although the DcMSPT problem and its related
variations have many important applications implied in our reality life, where
messages are transmitted along shortest paths from a source vertex to every
other vertices, these optimization problems have not been studied deeply both
in theory and in practice, and there are no exact or approximation algorithms
in polynomial time to solve them. For the DcMST problem (i.e., Problem 4),
Kortsarz and Peleg [16] in 1999 showed that, unless P = NP, no polynomial-time
approximation algorithm can be guaranteed to find a solution whose weight is
within log(n) of the optimum. However, we hope to design some exact algorithms
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in polynomial time to optimally solve the DcMSPT problem and its related
variations, respectively.

This paper is organized as follows. In Sect. 2, we present some terminolo-
gies for easily describing our algorithms and provide key lemmas to ensure the
correctness of algorithms. In Sect. 3, we design an exact algorithm to solve the
DcMSPT problem, and the similar algorithm solves the MRMSPT problem,
where this algorithm runs in time O(n3); In Sect. 4, we present an exact algo-
rithm to solve the MDMSPT problem, where that algorithm runs in time O(n3);
In Sect. 5, we provide our conclusion and further work.

2 Terminologies and Key Lemmas

In this section, we present some notations and terminologies to solve the delay-
constrained minimum shortest path tree (DcMSPT) problem and its related
variations, respectively, and other terminologies and notations not defined can
be found in those references [1,15,17].

Given a weighted graph G = (V,E;w, c) with length function w : E → R+

and cost function c : E → R+, for any two vertices s, t ∈ V , the distance between
s and t, denoted by distG(s, t), is the minimum length of a path connecting s and
t if such a path exists, and otherwise distG(s, t) = +∞. Concretely, distG(s, t) =
min{∑

e∈Pst
w(e) | Pst is a path connecting s and t in G}. And if this path

Pst satisfies
∑

e∈Pst
w(e) = distG(s, t), Pst is called as a shortest s-t path or a

shortest path connecting s and t. For each vertex s ∈ V , we define the eccentricity
of s, denoted by eG(s), is the maximum of all distances from s to other vertices
in G, i.e., eG(s, V ) = max{distG(s, t) | t ∈ V }. In addition, the diameter of a
weighted graph G, denoted by diam(G), is the maximum of all distances between
pairs of vertices in G, i.e., diam(G) = max{distG(s, t) | s, t ∈ V }, and the radius
of a weighted graph G, denoted by rad(G), is the minimum of eccentricities of
vertices in G, i.e., rad(G) = min{eG(s) | s ∈ V }, meanwhile we refer to this
vertex s as a center of G if this vertex s satisfies eG(s) = rad(G). Furthermore,
if T = (V,ET ;w, c) is a spanning tree of a weighted graph G = (V,E;w, c), then
the diameter of T is the maximum length of a shortest path connecting any two
leaves in T , i.e., diam(T ) = max{distT (s, t) | s and t are two leaves of T}, and
meanwhile the cost of T is defined as c(T ) =

∑
e∈ET

c(e).
Dantzig [6,17] in 1957 observed the following. Let D = (V,A;w) be a

weighted digraph with a fixed source vertex s ∈ V , where length function
w : E → R+. An arborescence T = (V ′, A′) rooted at s is called a single source
shortest path tree (rooted at s) if V ′ is the set of vertices in D reachable from s
and A′ ⊆ A, such that for each vertex t ∈ V ′, the s-t path in T is a shortest s-t
path in D, depending on computing of length function w(·). In particular, we
call T = (V,A′) as a spanning shortest path tree rooted at s, briefly T = (V,A′)
as a shortest path tree of D if no ambiguity.

With the similar arguments, we define a shortest path tree in a weighted
graph as follows. Let G = (V,E;w) be a weighted graph with a fixed source
vertex s ∈ V , where length function w : E → R+. A spanning tree T = (V,E′)
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is called a single source shortest path tree with the source vertex s of G, if
distT (s, t) = distG(s, t) holds for every other vertex t ∈ V , i.e., the s-t path in
T is a shortest s-t path in G, depending on computing of length function w(·).
Briefly, we refer to such a tree T = (V,E′) as a shortest path tree with the source
vertex s of G, simply as a shortest path tree of G if no ambiguity.

Now, we address the minimum shortest path tree (MSPT) problem as follows.

Problem 6 (the MSPT problem). Given a weighted graph G = (V,E;w, c) with a
fixed source s, where length function w : E → R+ and cost function c : E → R+,
it is asked to find a shortest path tree T = (V,ET ;w, c) rooted at s, the objective
is to minimize the cost

∑
e∈ET

c(e) among all shortest path trees T = (V,ET ;w)
rooted at s, where the distance from s to every other vertex t in G depends on
computing of length function w(·).

We call a shortest path tree T as to be a minimum cost shortest path tree T
in G if the cost of T attains the minimum value among all shortest path trees
of G, where distance depends on computing of length function w(·). We present
some remarks to the MSPT problem. For an instance of the MSPT problem,
a weighted graph G = (V,E;w, c) generally involves two different functions,
saying w(·) and c(·), which are with no relationships. We have known the fact
that the MSPT problem originally appeared in the literature [1,6,17], where the
two functions w(·) and c(·) are essentially the same function.

The strategy to solve the MSPT problem (i.e., Problem 6) is executed as
follows. (1) Given a weighted graph G = (V,E;w, c) equipped with a source
vertex s for the MSPT problem, depending on computing of length function
w(·) in G, we can modify the Dijkstra algorithm [7] to construct an auxiliary
acyclic digraph Ds = (V,As;w, c) that consists of the union of all shortest s-t
paths in G for every other vertex t in V \ {s}. (2) Depending on computing of
cost function c(·) in Ds, construct a minimum-cost arborescence at a root s in
Ds = (V,As;w, c). In fact, we can construct a minimum-cost arborescence at a
root s choosing a minimum-cost arc to enter every other vertex in the acyclic
digraph Ds = (V,As;w, c), without executing an algorithm to solve the minimum
arborescence problem specialized to weighted graphs. For convenience, we still
denoted such an algorithm in (1) as the Dijkstra algorithm-modified.

Using the Dijkstra algorithm-modified and the strategy mentioned-above, we
can obtain the following lemma.

Lemma 1. There exists a polynomial-time exact algorithm, denoted by the
MSPT algorithm, to optimally solve the MSPT problem, and it runs in time
O(n2), where n is the order of weighted graph G.

3 An Exact Algorithm to Solve the DcMSPT Problem

In this section, we consider the delay-constrained minimum shortest path tree
(RcMSPT) problem. Modifying the strategy to solve the MSPT problem (see the
Problem 6), we execute the strategy to solve the DcMSPT problem as follows.
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(1) For each vertex v in a weighted graph G = (V,E;w, c), depending on com-
puting of length function w(·), use the Dijkstra algorithm-modified [7] to
construct an auxiliary acyclic digraph Dv = (V,Av;w, c) that consists of the
union of all shortest paths in G to connect this vertex v to all other vertices
vi in V \{v}, and in addition, if distDv

(v, vi) ≤ d0 holds for each vertex vi in
V , depending on cost function c(·), we construct a minimum-cost shortest
path tree Tv at the source v in the digraph Dv, otherwise we ignore this
vertex v.

(2) Choose a minimum-cost shortest path tree from all shortest path trees con-
structed in (1).

We describe our algorithm to solve the DcMSPT problem as follows.

Algorithm 1: DcMSPT
Input: a weighted graph G = (V,E;w, c) and a constant d0;
Output: a delay-constrained minimum cost shortest path tree, rooted at a

source v∗ ∈ V .
Begin
Step 1. For each vertex s ∈ V , do

(1.1) Depending on computing of length function w(·), execute the
Dijkstra algorithm-modified [7] to construct an auxiliary acyclic digraph
Ds = (V,As;w, c), where As consists of arcs (x, y) ∈ A that lies on a shortest
(s, vi)-path from s to every other vertex vi ∈ V . For convenience, we may
assume that all vertices in Ds = (V,As) are topologically sorted in the order
vj1 , vj2 , . . ., vjn , where vj1 = s.

(1.2) If (eDs
(s) ≤ r0) then

(1.2.1) For each vertex vjt ∈ V , t = 2, 3, . . . , n, depending on
computing of cost function c(·), choose a minimum cost arc eit = (vit , vjt)
in Ds to enter the vertex vjt , where vit ∈ {vj1 , vj2 , . . . , vjn} (for two distinct
integers t, t′ ∈ {2, 3, . . . , n}, we may have the same vertex vit = vit′ ).

(1.2.2) Construct a shortest path tree Ts = (V,ATs
) with the edge

set ATs
= {ei2 , ei3 , . . . , ein}.

Step 2. Choose a minimum-cost shortest path tree Tv∗ = (V,ATv∗ ) from all
shortest path trees constructed at Step (1.2.2), i.e., satisfying c(ATv∗ ) =
min{c(ATs

) | Ts = (V,ATs
) is a shortest path tree in G, having eTs

(s) ≤ r0}.
Step 3. Output the minimum-cost shortest path tree Tv∗ = (V,ATv∗ ) obtained

at Step 2.
End

We can use the DcMSPT algorithm to obtain the following result to optimally
solve the DcMSPT problem.

Theorem 1. The DcMSPT algorithm (i.e., Algorithm 1) is an exact algorithm
to solve the DcMSPT problem, and it runs in time O(n3), where n is the order
of weighted graph G.
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Proof. We may assume, without loss of generality, that this weighted graph
G = (V,E;w, c) is connected. For each vertex s ∈ V , we shall prove that either
Ts = (V,ATs

) produced at Step 1 of Algorithm 1 is a minimum-cost shortest path
tree at the source vertex s to satisfy eTs

(v) = eG(s) ≤ r0 or this graph G contains
no such shortest path trees. For the former, Ts = (V,ATs

) is a feasible solution
to an instance G = (V,E;w, c) of the DcMSPT problem, and for the latter, there
is no feasible solution at the source vertex s to the instance G = (V,E;w, c) of
the DcMSPT problem.

Given a fixed source vertex s, since this vertex s is the fixed vertex in G
such that each vertex vr is reachable from s, Step 1.1 at Algorithm 1 executes
the Dijkstra algorithm-modified [7] to construct the auxiliary acyclic digraph
Ds = (V,As) to keep dDs

(s, vr) = dG(s, vr) for every other vertex vr ∈ V , then
this subgraph Ds = (V,As) of G contains all shortest path trees at the source
vertex s in Ds plus some other edges in G, satisfying dTs

(s, vr) = dDs
(s, vr) =

dG(s, vr). In the view of the choices of arcs at Step 1.2, when eDs
(s) ≤ r0, we can

indeed prove by induction that the subgraph Ts = (V,ATs
) produced at Step 1.2

is a shortest path tree at the source vertex s in Ds, indeed also in G, satisfying
dTs

(s, vr) = dDs
(s, vr) = dG(s, vr) and distTs

(s, vr) ≤ r0 for every other vertex
vr ∈ V . Thus, this shows that Ts = (V,ATs

) produced at Step 1 of Algorithm 1
is a feasible solution to the instance G = (V,E;w, c).

Using greedy technique at Step 1.2 of Algorithm 1 to choose some suitable
edges from Ds to be added into Ts, we can indeed prove by induction that Ts =
(V,ATs

) is a minimum-cost shortest path tree among all shortest path trees in G
at the source vertex s, where ATs

= {ei2 , ei3 , . . . , ein} and c(Ts) =
∑n

k=2 w(eik).
Now, we may assume that T ∗

s∗ = (V,AT∗
s∗ ) is a minimum-cost shortest path

tree for an instance G = (V,E;w, c) of the the DcMSPT problem, where some
vertex s∗ ∈ V satisfies rad(T ∗

s∗) ≤ r0. Since the minimum value outputted
at Step 2 is attained by executing the DcMSPT algorithm, enumerating the
all minimum-cost shortest path trees at all distinct source vertices in V , we
can obtain a minimum-cost shortest path tree Ts∗ = (V,ATs∗ ) at the source
vertex s∗ ∈ V to satisfy w(T ∗

s∗) = w(Ts∗) where rad(T ∗
s∗) ≤ r0, implying that

Ts∗ = (V,ATs∗ ) is a minimum-cost shortest path tree and rad(T ∗
s∗) ≤ r0 for an

instance G = (V,E;w, c) of the the RMSPT problem.
The complexity of the DcMSPT algorithm (i.e., Algorithm 1) can be deter-

mined as follows. (1) For each vertex s ∈ V , the Dijkstra algorithm-modified [7]
implies that Step 1.1 needs time O(n2) to compute the auxiliary acyclic digraph
Ds = (V,As), and for eDs

(s) ≤ r0, Step 1.2 needs time O(|E|) to find such a
minimum-cost arborescence Ts at the source vertex s in Ds, showing that the
running time at Step 1 is in total O(n3); (2) Step 2 needs at most time O(n).
Hence, the running time of the RMSPT algorithm is in total O(n3).

This establishes the theorem.
Given a weighted graph G = (V,E;w, c), when we add a step that compute

the radius rad(G) of G as the first step in the DcMSPT algorithm, and denoting
d0 = rad(G), we can provide an algorithm to solve the MRMSPT problem. We
only present the following conclusion, no description of the MRMSPT algorithm
in details to to save a room.
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Corollary 1. The MRMSPT algorithm is an exact algorithm to solve the MRM-
SPT problem, and it runs in time O(n3), where n is the order of weighted
graph G.

4 An Exact Algorithm to Solve the MDMSPT Problem

In this section, we consider the maximum delay minimum shortest path tree
(MDMSPT) problem, where maximum delay is exactly the diameter of a
weighted graph G = (V,E;w, c).

Using the Dijkstra algorithm [7] for many times and modifying the strategy
to solve the DcMSPT problem (seeing the DcMSPT algorithm), we can design
our algorithm to solve the MDMSPT problem as follows.

Algorithm 2: MDMSPT
Input: a weighted graph G = (V,E;w, c);
Output: a maximum delay minimum shortest path tree, rooted at a source
v∗ ∈ V .

Begin
Step 1. For each vertex x ∈ V , do

(1.1) Depending on computing of length function w(·), use the Dijk-
stra algorithm [7] to compute the eccentricity of x, i.e., eG(x, V ) =
max{distG(x, y) | y ∈ V }.

Step 2. Compute the diameter of G as maximum of the eccentricities of all
vertices in G, i.e., diam(G) = max{eG(x, V ) | x ∈ V }, and denote the set
Vdiam = {x ∈ V | eG(x, V ) = diam(G)}.

Step 3. For each vertex s ∈ Vdiam, do
(3.1) Depending on computing of length function w(·), execute the

Dijkstra algorithm-modified [7] to construct an auxiliary acyclic digraph
Ds = (V,As;w, c), where As consists of arcs (x, y) ∈ A that lies on a short-
est (s, vi)-path from s to all other vertices vi ∈ V . For convenience, we may
assume that all vertices in Ds = (V,As) are topologically sorted in the order
vj1 , vj2 , . . ., vjn , where vj1 = s.

(3.2) For each vertex vjt ∈ V , t = 2, 3, . . . , n, depending on computing
of cost function c(·), choose a minimum cost arc eit = (vit , vjt) in Ds to
enter the vertex vjt , where vit ∈ {vj1 , vj2 , . . . , vjn} (for two distinct integers
t, t′ ∈ {2, 3, . . . , n}, we may have the same vertex vit = vit′ ).

(3.3) Construct a shortest path tree Ts = (V,ATs
) with the edge set

ATs
= {ei2 , ei3 , . . . , ein}.

Step 4. Choose a minimum-cost shortest path tree Tv∗ = (V,ATv∗ ) from all
shortest path trees constructed at Step (1.2.2), i.e., satisfying c(ATv∗ ) =
min{c(ATs

) | Ts = (V,ATs
) is a shortest path tree in G, having eTs

(s) ≤ r0}.
Step 5. Output the minimum-cost shortest path tree Tv∗ = (V,ATv∗ ) obtained

at Step 4.
End
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Using the MDMSPT algorithm, we can obtain the following result, whose
correct proof is similar to the arguments in the proof of Theorem 1, and we omit
the details.

Theorem 2. The MDMSPT algorithm (i.e., Algorithm 2) is a polynomial-time
exact algorithm to solve the MDMSPT problem, and its complexity is O(n3),
where n is the order of weighted graph G.

5 Conclusion and Further Research

In this paper, we consider the delay-constrained minimum shortest path tree
(DcMSPT) problem and its related variations, respectively, then we obtain two
main results

(1) We design an exact algorithm to solve the DcMSPT problem, we provide
the similar algorithm to solve the MRMSPT problem, and both algorithms
run in time O(n3).

(2) We present an exact algorithm to solve the MDMSPT problem, and this
algorithm runs in time O(n3).

A challenging task for further research is to design other exact algorithms in
lower running times to solve the DcMSPT problem and its related variations.
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