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Abstract. In this paper, we introduce a variant of the minimum diam-
eter color spanning set (MDCSS) problem. Let P be a set of n points
of m colors in R

d. For a given k, our objective is to find a set with k
points of different colors that admits the minimum possible diameter.
Such a set is called a k-rainbow set. This problem has applications in
database queries, mostly composed by weighted points (i.e., a positive
value is assigned to each point as its weight), and seeking a maximum
weight k-rainbow set. We first assume the points have equal weight and
design an FPT algorithm, which we generalize to the weighted version.
We also solve the decision and the enumeration version of the problem
by introducing a reduction to all maximal independent sets of a bipar-
tite graph. We also introduce a 1.154-approximation algorithm for this
problem and a 2.236-approximation for the enumeration version, and we
perform some experimental studies on a real data-set, as well as providing
several analyses of the data-set based on the outputs of our algorithm.
Our exact algorithms and the approximation algorithm for the enumer-
ation problem have a complexity being near-linear to n in R

2.

Keywords: Minimum diameter color spanning set · FPT algorithms ·
Colored points

1 Introduction

Let P = {p1, . . . , pn} be a set of n points in R
d, the diameter of P is defined as

diameter(P ) = max
pi,pj∈P

d(pi, pj), and can be computed in O(dn2) time [26]. In R
2,

computing the diameter takes O(n log n) time [28]. Now, suppose each pi ∈ P
is assigned a color. The objective of the minimum diameter color spanning set
(MDCSS) problem is to find a subset P ∗ ⊆ P that contains one point from each
color, and P ∗ has the smallest possible diameter among all choices of P ∗, where
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Fig. 1. (a) The diameter of a set P of points in R
2. (b) For a set P with m = 3 colors,

the rainbow set P ∗ = {p2, p7, p10}.

the diameter is the maximum distance between any two points in P ∗. P ∗ is
called the color spanning set or the rainbow set; see Fig. 1.

The MDCSS problem can be considered as a database query; consider a spa-
tial database where each tuple is associated with a keyword or, equivalently, a
color code in our setting. The m-closest keywords query is the problem of finding
the m tuples that match all the keywords chosen by the customer [29]. In our
problem, the closeness is measured by the diameter. Now suppose a customer
aims at finding some closest keywords of the desired number and his/her maxi-
mum willingness. The motivation behind this study is efficiently answering such
queries. We note that such queries are introduced in the database literature as
reverse top-k queries [13], without theoretic analysis, but have recently received
considerable attention from the database community.

Related Work. Fleischer and Xu [12] showed that for a large number of col-
ors, the MDCSS problem is NP-hard even in two dimensions but is solvable in
polynomial-time for a small number of colors. The fixed-parameter tractability
of MDCSS is posed as an open problem in [12], in which they assume that the
dimension d is fixed. Recently, Pruente [27] answered this question by proving
that MDCSS is W[1]-hard by using a complicated reduction from multi-colored
clique graph problems [11], where the dimension d is not fixed. Also, the author
shows that the problem does not admit an FPTAS in arbitrarily high dimen-
sional spaces. In the same paper, some algorithms with quadratic dependencies
to n are also supporting the result.

Kazemi et al. presented a PTAS in high dimensional space for the MDCSS
problem and proved that assuming the Exponential Time Hypothesis (ETH),
there is no (1+ε)-approximation algorithm with running time 2o(ε(1−d)/2)poly(n)
to solve the MDCSS problem [17].

Instead of considering a discrete set for the possible locations of a color
code, a continuous region of possible locations may determine a color code.
Finding a point in each region such that the chosen set admits the smallest
diameter is also extensively studied in this model. This formulation is introduced
and extensively studied by Löffler and van Kreveld [22] for disks and squares,
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Fig. 2. Problem definition and optimal solutions, with k-rainbow sets for k = 2, 3, 4, 5.

and several improvements have been made recently to the complexity of their
algorithms by Keikha et al. [19].

Regardless of whether the associated set of each color code is a continuous
or a discrete set, the maximum diameter color spanning set problem is to locate
a set of points, where the diameter has the largest possible size. This problem
usually takes polynomial time as it is involved with the points in convex position.
We refer the interested reader to [2,7,15,29] for other related studies on MDCSS.

Our problem is closely related to outlier detection problems, except that their
input is a set of monochromatic points: for a given k < n, exclude n − k points
(referred to as outliers) from P , such that the remaining points have the smallest
possible diameter. In R

2, the best-known algorithm for this problem, developed
by Eppstein et al., runs in O(n log n + k2n log2 k) time [9]. There also exists a
lower bound Ω(n log n) for this problem even for one outlier since the diameter
picks the outlier as a vertex [3]. This implies that any fixed-parameter algorithm
for computing a k-rainbow set is no better than Ω(n log n) in R

2.
We finally note that to the best of our knowledge, no study has been con-

ducted on our problem or the weighted version of the MDCSS problem.

Contribution. In the following, we formally define our problems: Let P =
{p1, . . . , pn} be a set of n points of m colors in R

d, let t be the maximum
frequency of any color in P , and let 1 < k < m be a positive integer.

Definition 1. Minimum Diameter k-Colored Spanning Set (MDkCSS).
The objective of the MDkCSS problem is to find a subset P ∗ ⊆ P of size k of
distinct colors, such that P ∗ has the smallest possible diameter among all possible
choices. Formally diameter(P ∗) = min

P∈D(P )
diameter(P ), where D(P ) denote the

collection of all k-subsets1 of P of distinct colors.

We call P ∗ a k-rainbow set of P ; see Fig. 2 for an illustration. The main
application of this problem is in the case where the points have a predefined
weight assigned, and the optimal k-rainbow set has the maximum total weight.
1 i.e., subsets of size k.
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Definition 2. Maximum Weight Minimum Diameter k-Colored Span-
ning Set (MWMDkCSS). We define a maximum weight k-rainbow set P ∗ as a
k-subset of distinct colors that minimizes diameter(P ∗)

weight(P ∗) , where weight(P ∗) is the
total sum of the weights of the points in P ∗.

Results. In this paper, we first focus on the case where all the points have the
same weight and then we discuss to what extent our results can be generalized
to the weighted version under some restrictions. In particular:

– For the first time, we introduce a relation between the MDCSS problem and
higher-order Voronoi diagrams. We first provide a fixed-parameter tractable
(FPT) algorithm that has near-linear dependency on n in R

2 (Theorem 1),
which is helpful to improve the existing quadratic FPT algorithm (for small
k and t) for the MDCSS problem [27].

– We show that MDkCSS is fixed-parameter tractable in R
d for any fixed d

(Sect. 3.1). We then show our FPT algorithm gives an approximation for the
MWMDkCSS problem (Sect. 3.2).

– We have implemented our exact algorithm on a real data-set to consider the
efficiency of our technique in practice, and we give several analyses on the
studied data-set (Sect. 4).

– We then discuss the decision and the enumeration version of the MDkCSS
problem for a given value q, and introduce an O(n(tk)2((tk)2.5 + α)) time
algorithm, where α is the maximum number of the k-rainbow sets of size at
most q. We hope these problems are of independent interest in data mining
and database inquiries. To solve these problems, we introduce a reduction to
all maximal independent sets of a bipartite graph (Sect. 5).

– We introduce a 2.236-approximation with running time O(mn log mn) for the
enumeration version of MDkCSS, and a 1.154-approximation for the MDkCSS
problem in R

2 with running time O(m3n) (Sect. 6).

Our FPT algorithm is efficient when the parameters t and k are small, which
is the common assumption of any FPT algorithm. Note that parametrizing a
problem by the number of colors is common in computational geometry. We also
remark that in the MDCSS problem if the number of the existing colors in P is
a small k (possibly constant), we still do not have any exact algorithm with a
running time better than

(
n
k

)
. In R

2, our FPT algorithm is near-linear to n.

2 Preliminaries

Maximum Independent Set (MIS). A maximum independent set of a graph
G = (V,E) is a subset X ⊆ V with maximum size, in which there is no edge e ∈ E
between any a, b ∈ X. This problem is NP-hard, fixed-parameter intractable, and
also hard to approximate [8]. The best algorithm for computing all maximum
independent sets of a bipartite graph takes O(s2.5 + α) time [16], where s and α
are the number of vertices and the total size of the output, respectively.
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k-Order Voronoi Diagram. The Voronoi diagram of order k of P is the
partitioning of the plane into a set of Voronoi cells, such that each Voronoi cell
c is associated with a set X ⊆ P of k points, and for each point p in the cell
c, the k nearest neighbors of p are exactly the elements of X. We denote this
diagram by Vk. Such diagrams can be computed in O(k2n + n log n) time and
have at most O(nk) cells [20].

Fixed-Parameter Tractable (FPT). In fixed-parameter tractability, we pro-
vide some algorithms which no longer are exponential on the input size but on
some other parameter related to the problem. These parameters are called the
fixed parameter of the problem. Formally, for a given problem Υ , we characterize
the input size, n, and some parameter k, and say Υ is fixed-parameter tractable
if Υ can be solved by an algorithm that runs in O(�(k) · nc) time, where � is
a computable function depending on k, and c is any constant independent of
k. Also, it is already known that parameterized complexity can be extended to
achieve approximation algorithms for hard problems [24]. We use the same idea
to achieve an FPT approximation algorithm for MWMDkCSS in Sect. 3.2.

Minimum Color Spanning Circle. For a set of n colored points of m colors,
the smallest color spanning circle is a circle of the smallest radius that is covering
m distinct colors [1]. In R

2, the smallest color spanning circle of m colors can
be computed in O(nm log n) time by computing the upper envelope of some
Voronoi surfaces [1,14]. This problem becomes NP-hard in R

d, where d is in the
input, but admits a (1 + ε)-approximation in O(dn�1/ε�+1) time [18].

We first note that MDCSS problem is para-NP-hard2 for the parameter t
since the proof in [12] shows NP-hardness for t bounded by three. It can easily be
extended to also show NP-hardness if at most 5 colored points are co-located (if
we do a reduction by MAX-E3SAT(5) [10]). Hence, the problem may get easier
if the number of colors is large, i.e., more than n

3 .

3 MDkCSS is in FPT in Any Fixed Dimension

In the following, we assume that the points of P are in general position, that
means no four points are co-circular. Recall that a k-rainbow set P ∗ is a set of
points of k distinct colors, where P ∗ has the smallest possible diameter among all
choices. In [12] it is posed as an open question which value of k is the threshold
between easy and hard. We partially answer that question, as we do not need
to cover all, but only k colors that their instances realize the smallest possible
diameter. Our algorithm has a near-linear dependency on the number of points,
where its hardness depends on k (and t, but we discussed above that t is not
a parameter to determine the hardness). Consequently, we answer the posed

2 A problem is para-NP-hard if it is NP-hard already for a constant value of the param-
eter.
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Fig. 3. Illustration of Lemma 1, the case where D∗ has two points on its boundary. On
a set P of colored points with t = 2, the optimal solution with k = 2 is associated with
a cell c (shown in gray) of Vt(k−1)+1, and uses a pair of red and blue points (connected
by a dashed line segment). Observe that D∗ cannot contain more than 3 points of P ,
otherwise, there must be two points of different colors strictly within D∗, such that
they realize a smaller diameter than the diameter of D∗. (Color figure online)

question in [12] partially as follows: for any constant number of colors which we
need to span, the MDCSS problem in R

2 can be answered in near-linear time.
In the following, we will show that any set of k colored points of smallest

diameter is a subset of the points which are associated to a Voronoi cell of a
Voronoi diagram (of P ) of order t(k − 1) + 1, or 3t(k − 1) + 1.

Lemma 1. Let P be a set of n colored points, and let P ∗ be a k-rainbow set of
P . Then P ∗ is a subset of the points which are corresponding to a Voronoi cell
of a Voronoi diagram either of order t(k − 1) + 1, or 3t(k − 1) + 1.

Proof. Let c(P ) denote a subset of points of P that are associated with only one
cell c of a Voronoi diagram Vt(k−1)+1, or V3t(k−1)+1. Recall that for each Voronoi
cell c, there exists a disk D having its center within c, where D contains no other
point of P − c(P ). The set P ∗ also realizes a disk D∗ such that either two or
three points of P ∗ are located on its boundary.

Suppose by contradiction that the lemma is false, and P ∗ of k colors is
not associated with one cell of a Voronoi diagram of order t(k − 1) + 1, or
3t(k − 1) + 1.

By definition, in Vt(k−1)+1, the points of each cell of the diagram have the
same t(k−1)+1 nearest neighbors. Observe that in the case where there are two
points on the boundary of D∗, D∗ cannot contain more than t(k−1)+1 points. If
not, there always exist at least another set P ′ of k points from k distinct colors,
which they all are entirely located within D∗, and the diameter of P ′ is strictly
smaller than the diameter of D∗ (i.e., P ∗). This gives a contradiction. It follows
that D∗ cannot contain more than t(k − 1) + 1 points and P ∗ is contained in
some Voronoi cell of a Voronoi diagram of order t(k − 1) + 1. See Fig. 3 for an
illustration.

In the case where D∗ has three points on its boundary, we partition D∗ into
three sectors by connecting the center of D∗ to the points of P ∗ on its boundary.
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Algorithm 1. Exact Algorithm
Input: P = {P1, . . . , Pn}, and k > 0
Output: k-rainbow set of P
1: d∗ = ∞
2: Compute V3t(k−1)+1 (or Vt(k−1)+1 if V3t(k−1)+1 does not exist)
3: for each cell c in V3t(k−1)+1 do
4: Pc= the associated points of P to c
5: for any k-subset Pc of c do
6: if there are k distinct colors in Pc then
7: dc=the diameter of Pc

8: end if
9: if d∗ > dc then

10: d∗ = dc, P
∗
c = Pc

11: end if
12: end for
13: end for
14: return d∗ and P ∗

c

Then each sector cannot contain more than t(k −1) points since otherwise there
would be k points from distinct colors in that sector so that the determined
diameter by those points is strictly smaller than the diameter of P ∗. Hence, D∗

is contained in the associated points of a Voronoi cell of V3t(k−1)+1. ��

3.1 Algorithm

Observe that we only need to consider V3t(k−1)+1 as the associated points in
its cells strictly cover all possibilities in Vt(k−1)+1. From Lemma 1, the smallest
diameter among each subset of k points of distinct colors that is associated
to a Voronoi cell of V3t(k−1)+1 determines an optimal solution. We design our
algorithm based on this fact.

In the algorithm, we first make the Voronoi diagram of order 3t(k−1)+1, of
all the n points of P , without considering their colors in the construction. In each
step of the algorithm, we consider the associated points of each cell of V3t(k−1)+1

independently. Let d∗ denote the diameter of the k-rainbow set P ∗, and let Pc

denote the associated points of a cell c. We use a brute force idea on Pc to find
a subset P ∗

c ⊆ Pc of k distinct colors with the smallest possible diameter, and
remember the P ∗

c with the smallest d∗
c among all the cells of V3t(k−1)+1.

In Lemma 1 we observed that each set Pc has a reasonable size with only
a linear dependency to k and t, which means our algorithm has exponential
dependence only in k and t. Since the complexity of the number of the cells of
a Voronoi diagram of order tk is O(ntk), our method gives an FPT algorithm
with k and t as the parameters; see Algorithm 1.

Running Time Analysis. We will now elaborate on the complexity of the
algorithm for a cell of V3t(k−1)+1. To analyse the running time of considering



594 V. Keikha et al.

all k-subsets of 3tk − 3t + 1 points, we use the Stirling’s formula:
(
3tk−3t+1

k

)
=

2log(3tk−3t+1)!−log k!−log(3tk−3t−k+1)!. Then we have log(3tk − 3t + 1)! − log k! −
log(3tk − 3t − k + 1)! = 3tk ln(3tk − 3t + 1)− (3tk − 3t + 1) +O(ln(3tk − 3t + 1))
−k ln k + k − O(ln k) − (3tk − 3t + 1) ln(3tk − 3t − k + 1) +(3tk − 3t − k + 1) −
O(ln(3tk − 3t − k + 1)) ∈ O(tk).

Hence, considering all possible k-rainbow sets of one cell of V3t(k−1)+1 takes
O(2O(tk)) time.

For each cell c of V3t(k−1)+1, we can find a solution to the MDkCSS prob-
lem by finding a k-rainbow set with the smallest possible diameter among the
corresponding points of c in O(k log k2O(tk)) time, in which, in O(k) time we
determine whether the selected set contains k distinct colors, and O(k log k)
time is required to find the diameter of this k-subset.

To generalize our FPT to a higher dimension d, we first need to construct
the k-order Voronoi diagram in that dimension. Recall that a k-order Voronoi
diagram in R

d can be constructed in O(n�d/2�k�d/2	+1) time [6].

Theorem 1. Let P be a set of n colored points in R
d. MDkCSS can be solved

in O(n(2O(tk) + log n) + n�d/2�k�d/2	+1) time.

Proof. A Voronoi diagram of order O(tk) can be computed in O((tk)2n+n log n)
time and has at most O(ntk) cells. A k-order Voronoi diagram in the dimension
d can be constructed in O(n�d/2�k�d/2	+1) time, so by repeating the algorithm of
Sect. 3.1 for all the cells of the Voronoi diagram V3t(k−1)+1 in R

d, the algorithm
takes O(n2O(tk)+n log n) time. Hence, the problem can be solved in O(n(2O(tk)+
log n) + n�d/2�k�d/2	+1) time. ��
Corollary 1. MDkCSS is in FPT in R

d for any fixed d, with k and t as the
parameters.

3.2 Maximum Weight k-rainbow Set

For any point pi ∈ P , let wi denote the weight of pi. W.l.o.g, we assume wi > 0,
i = 1, . . . , n. It is easy to observe that the problem at which a k-rainbow set P ∗

(for general values of k) minimizes diameter(P ∗)
weight(P ∗) , where weight(P ∗) =

∑
pi∈P ∗ wi

is NP-hard with the same reduction in [12] for the MDCSS, by using an extra
assumption of assigning the same weight to all the points in P . We discuss
that Algorithm 1 is applicable on particular cases of this problem, at which the
ratio of the weights of any two points in P is at most ω. This is a reasonable
assumption since in any environment, the input data are usually relevant and
are not that much different in the sense of measurement precisions. Also, we can
measure the ratio of the weights in polynomial time. Then Algorithm1 gives
a ω-approximation for the MWMDkCSS problem, as in the worst case the two
points of large weight that are far apart from each other, and have to be in an
optimal solution, will not land in the same cell. So we may not consider solutions
containing both these points. But the ratio of the weight of a point in the reported
and the optimal solution is at most within a factor ω. Assuming all the elements
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k=3100
k=3200

k=3300
k=3000

Fig. 4. Illustration of the output of Algorithm 1 on the data-set [5,21], and the ranges
at which the optimal solutions for k = 3000, 3100, 3200, 3300 appear.

of P ∗ lands at different cells and summing up the weights of such points gives
the approximation factor at most ω. Note that an arbitrary k-rainbow set has
the same approximation ratio only for the total sum of the weights of the points.
But such a set cannot guarantee to have the minimum possible diameter among
all choices for approximating diameter(P ∗)

weight(P ∗) within a factor ω.

Theorem 2. If the ratio of the weights of any two points in P is at most ω,
Algorithm1 gives an FPT ω-approximation for MWMDkCSS in R

d for any fixed
d, with k and t as the parameters.

4 Experimental Studies

We discussed an application for our problem in the Introduction. In this section,
we discuss another application along with our experimental tests to evaluate the
performance of Algorithm 1 in practice. We do our computational tests on a real
data-set in R

2.
Our data-set characterizes the locations and times of check-ins of the

Brightkite social network, which has a reasonable size and several users with differ-
ent check-ins each, so that we can model each user as a color code. This network has
58,228 users and 4,491,143 check-ins of these users ranging in the period of April
2008 to October 2010. This data-set is contained in the SNAP network [5,21].

We assign a color to each user, and of course we need the users with at
least one check-in (to denote the frequency at least one for each color). This
number equals 51,685 in this data-set. The total number of colors (m) is also
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Table 1. Experimental results of Algorithm 1 on the Brightkite data-set [5,21].

Input size k # cells of Vt(k−1)+1 Alg 1 Time (s) BF Time (s)

4,491,143 3000 10272 2.3867 0.1191e+2

3100 13070 2.8967 0.1259e+2

3200 14221 3.9683 0.1436e+2

3300 19744 4.1662 0.1696e+2

51,685, and n equals 4,491,143, that is the total number of the check-ins. Each
user had at most 325,821 check-ins which means t = 325,821. For a given k, our
objective is to find k customers whose target check-ins are as close as possible.
One may use this information to locate a facility for at least k customers in the
neighbourhood of their check-in places. Our experiments have shown that for
k ≤ 2876, the solution to the MDkCSS was zero in this data-set, which means
this number of customers have at least one common check-in station. In our
experiments, we set k = 3000, 3100, 3200, 3300; see Fig. 4.

We have implemented our algorithm in C++ with Visual Studio 2013. The
algorithm is performed on a Core (TM) i9CPU and 8 GB RAM computer with
Windows 10 operating system. In some of the computations of the Voronoi
diagrams, we have used CGAL-5.1. The reported running time in Table 1 is
the elapsed time of searching for a solution on Vt(k−1)+1, since the condition
3t(k − 1) + 1 ≤ n did not hold, and there is no solution on V3t(k−1)+1.

In each test, we have verified the output of our algorithm with the brute force
algorithm which is trying all k-subsets, as this problem is not considered so far,
and the brute force is the only existing current algorithm. We have reported the
running times in Table 1. The last column contains the running time of the brute
force algorithm which is comparable to the running time of our algorithm in the
previous column.

We observe that our algorithm has a reasonable performance in the reported
experimental studies in this paper. In our experiments, computing a Voronoi
diagram of a high order was the time-consuming part, and was taking at least
67.46% of the reported elapsed times. Based on this, we conclude the other com-
putations were relatively quick; that is because the dependency of the algorithm
to the number of points is near-linear in R

2. The results of the implementation
are summarized in Table 1.

5 Enumerating All MDkCSS of Diameter at Most q

In this section, we study the following problems: given a set P of colored points
and a positive value q, determine whether there is any k-rainbow set in P of
diameter at most q, and report all k-rainbow sets of P of diameter at most q.

Let c be any cell of V3t(k−1)+1 that has at most O(tk) points, and let X ⊆ P
denote the associated points of P to c. For any pair pi, pj ∈ X of distinct
colors, let z = d(pi, pj) denote their Euclidean distance. Our first objective is to
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Fig. 5. Illustration of the graph G in Lemma 2.

determine whether there is any set of k points of distinct colors in X, where the
pairwise distances between the points are at most z ≤ q. Consider two circles
Ci and Cj of radius z, one is centered at pi and the other at pj . Let X ′ denote
the set of points in Ci ∩ Cj ∩ P . Construct a graph G on X ′ by connecting any
pair of points with a distance at most z, and let G denote the complement of G.
Observe that the vertices of X ′ which are lying on exactly one side of the line
through pipj are at a distance less than z. Consequently, in G, the connected
pair of vertices lie on opposite sides of the line through pipj .

Lemma 2. G is a bipartite graph.

Proof. The vertices of the graph which lie on only one side of the line through
pipj have a smaller distance of z. Consequently, the vertices which are already
connected in G, have a further distance than z, and lie at different sides of the
line through pipj ; see Fig. 5. Hence, the vertices at each side of the line through
pipj in G determine a part in a bipartite graph. ��

Observe that the points forming a clique in G are points such that each pair of
points has a distance smaller than z, and thus, such points form an independent
set in G.

Lemma 3. Any k-rainbow set of diameter at most z is a subset of at least one
maximum independent set in G.

Proof. Suppose, by contradiction, there is a k-rainbow set S of diameter at most
z that is not a subset of any maximum independent set in G. Every independent
set (including the ones in G) has this property that there is no edge between any
pair of the vertices. If S is not a subset of any of the independent sets (including
the maximum ones) in G, there must be an edge between at least one pair of
vertices in S. But this means the distance between those vertices is strictly larger
than z; contradiction. ��

Hence, maximum independent set enumeration algorithm can be used for our
problem but only reports the ones having our cardinality and color constraint.
We check whether there is any maximum independent set X∗ of size at least
k in G, where at least k vertices in X∗ has distinct colors. To treat this, for
each possible maximum independent set we check whether there is any set of k
distinct colors among the reported vertices or not. Using the presented algorithm



598 V. Keikha et al.

Algorithm 2. Enumeration Algorithm
Input: P = {P1, . . . , Pn}, and k, q > 0
Output: all k-rainbow set of P of diameter at most q
1: Compute V3t(k−1)+1 (or Vt(k−1)+1 if V3t(k−1)+1 does not exist)
2: for each cell c in V3t(k−1)+1 do
3: X=the associated points of P to c
4: for each pair pi, pj ∈ X do
5: if they have distinct colors and z = d(pi, pj) ≤ q then
6: G = (X ′, E) = ∅
7: Construct Ci, Cj

8: X ′ = Ci ∩ Cj ∩ P
9: end if

10: for any pair x, y ∈ X ′ do
11: if d(x, y) ≤ z then
12: add xy to E
13: end if
14: end for
15: G = the complement of G
16: report any MIS of G which has k distinct colors
17: end for
18: end for

in [16] and considering the freedom of pi and pj in O(ntk) cells of V3t(k−1)+1, the
enumeration algorithm takes O(ntk) × O(tk)2 × O((tk)2.5 + α) time, where α is
the maximum number of the k-subsets of diameter at most q. This procedure is
outlined in Algorithm2. We note that one may use this algorithm combined with
a binary search to compute the optimal q among O(n2) possible candidates. But
the asymptotic running time would be worse than what we discussed in Sect. 3.1.

Theorem 3. The decision or the enumeration version of MDkCSS can be solved
in O(n(tk)2((tk)2.5 + α)) time, where α is the maximum number of k-subsets of
diameter at most q.

6 Approximation Algorithms

In this section, we discuss several approximation algorithms, mostly by geometric
reductions to other problems. We first reduce MDkCSS to a well-known problem
in trajectory analysis, the discrete popular places problem. Given is a set Π of
polygonal paths with a total of n vertices, that is modelling a set of moving
points (so-called entity) belonging to m distinct entities in the plane, an integer
threshold k > 0 and a real value r > 0. A popular place is a square of side length
r, that is visited by at least k distinct entities [4]. This problem can be solved in
O(mn log mn) time and O(mn) space [4]. In our setting, we assign the points of
the same color to a single entity. The path between them is arbitrary. Hence, a
popular place with a maximum number of entities gives a

√
2-approximation for

the MDCSS problem. Also, any algorithm for squares assuming a threshold k as
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a popular place gives also an approximation for the MDkCSS problem. Reporting
all the popular places for rectangles of threshold k takes O(mn log mn) time and
O(mn) space [4]. Reporting all popular places with at least k entities, where the
popular places modelled by a rectangle of size 1 × 2, reports all k-rainbow sets
of diameter at most γq for a given q > 0, where γ =

√
5 ≈ 2.236.

Theorem 4. For a given q > 0, all the k-rainbow sets of diameter of size at
most

√
5q can be listed in O(mn log mn) time and O(mn) space.

A 1.154-Approximation for MDkCSS. We discuss another simple efficient
approximation algorithm. We start stating our result with the following lemma.

Lemma 4. For any set X of points, the diameter of X is longer than
√

3 times
the radius of the smallest enclosing circle (SEC) of X.

Proof. Consider the configuration at which three points on the boundary of the
SEC form an equilateral triangle, and the side of the triangle determines the
diameter. If one translates any pair of these points on the boundary of the SEC,
to get closer, the size of the diameter would be increased between at least one
pair. The lemma follows. ��

Let rX and dX denote the radius of the SEC and the diameter of X,
respectively. For a set P of points, let X be the set realizing the smallest
color spanning circle with k colors, and let P ∗ denote the set of points real-
izing the k-rainbow set of smallest diameter. Using the fact that the radius
rX is smaller than the radius of the color spanning circle of P ∗, we have
dP ∗ ≤ dX ≤ 2rP ∗ ≤ 2/3

√
3(

√
3rP ∗) ≤ 2/3

√
3dP ∗ . So, the diameter of X approx-

imates the optimal k-rainbow set within a factor 2/3
√

3 ≈ 1.154. An obvious
O(m3n) time algorithm for computing the smallest color spanning circle of at
least k colors considers any pair or triple of points of distinct colors that define
a circle. We then have the following result.

Theorem 5. Let P be a set of n colored points of m colors. In R
2, a 1.154-

approximation for the MDkCSS problem can be computed in O(m3n) time.

7 Discussions and Open Problems

In this paper, we introduced an easy proof that MDCSS problem is in FPT in
R

d for any fixed d, and we discussed several new variants of this problem, FPT,
exact and approximation algorithms along a practical application.

One open question concerns designing efficient algorithms for the general
case of the weighted points, and also for the enumeration problem on particular
sets of points, in which the bipartite graph G has a bounded tree-width and
admits a polynomial time algorithm for computing all MIS’s. The tree-width
O(kt) for G is obvious. Another direction is to find the attributes on the point
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sets in which the maximum colorful independent set (i.e., an independent set of
maximum number of colors) on the bipartite graph G admits a polynomial time
algorithm. This problem was recently shown to be NP-hard, but admits polyno-
mial time algorithms on trees and cluster graphs [23]. Another open question is
the existence of the FPT algorithms for other parameters of a point set in the
MDCSS problem, such as assuming a specific extent measure for the points of
any color code.

The possibility of improving the running time of our algorithms also remained
open. One possible improvement to our results concerns approximating the
MDkCSS in fixed dimensions using LP-formulation. According to Theorem 1.2
in [25], computing a circle of smallest radius that intersects n points can be
reformulated to satisfy only k of n constraints, in O(nkd) time, where d equals
the geometric dimension of the original problem, and this would be performed by
finding the optimal solution to O(kd) independent LP-type problems. When we
are generating an independent LP-type problem from the original problem, we
can rewrite the constraint that counts the number of points to count the num-
ber of points of distinct colors; let xi = 1 if the color ci appears in the solution
space, and xi = 0, otherwise. Then we need to satisfy the constraint

∑m
i=1 xi = k

in any of the independent solution sub-spaces. Thus, we can apply the existing
algorithms for computing the smallest color spanning balls in R

2 [1,14] and in
R

d [18], that intersect k colors in each of the solution spaces of the independent
LP-type problems. This may slightly improve the approximation ratio and the
running time we discussed in Theorem 5.
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