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Abstract. In this paper, we consider the minimum partial dominating
set problem in unit disk graphs (MinPDS-UD). Given a set of points
V on the plane with |V | = n, two points in V are adjacent in the unit
disk graph if their Euclidean distance is no larger than one unit length.
A point dominates itself and all its neighboring points. For an integer
k ≤ n, the goal of MinPDS-UD is to find a minimum subset of points
D ⊆ V such that at least k points are dominated by D. We present the
first parallel algorithm for MinPDS-UD. It runs in O(log n) rounds on
O(n) machines, and achieves a constant approximation ratio.

Keywords: Partial dominating set · Unit disk graph · Parallel
algorithm · Approximation ratio

1 Introduction

For a graph G = (V,E) with vertex set V and edge set E, a vertex v is dominated
by a vertex set D ⊆ V if either v ∈ D or v has a neighbor in D. A dominating
set (DS) of G is a subset D ⊆ V which dominates every vertex of G. The
minimum dominating set problem (MinDS) is to compute a dominating set of
the smallest size. It is widely used in many fields such as wireless networks [23].
MinDS is a well-known NP-hard problem [11] and there are extensive studies on
its approximation algorithms [7]. This paper considers the partial version which
requires D to dominate at least k vertices instead of all vertices. This is called
the minimum partial dominating set problem (MinPDS).

A unit disk graph is a graph in which every vertex corresponds to a point on
the plane and there is an edge between two vertices of the graph if the Euclidean
distance between the two corresponding points is no greater than one unit. It is
a widely adopted topology in a homogeneous wireless sensor network [23]. This
paper studies the MinPDS problem on a unit disk graph (MinPDS-UD).

MinPDS is a special case of the minimum partial set cover problem (MinPSC).
Given a ground set U with n elements, a collection S of subsets of U and an
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integer k ≤ n, the goal of MinPSC is to find a minimum size sub-collection of S
that covers at least k elements of U . The minimum set cover problem (MinSC)
is a special case of MinPSC with k = n. A MinPDS instance can be viewed as a
MinPSC instance by setting U = V and S = {Sv : v ∈ V }, where Sv is the set of
neighbors of v including v itself. There are a lot of studies on parallel algorithms
for MinSC [2,18,21]. For the partial version MinPSC, Ran et al. [21] presented a
parallel algorithm with approximation ratio at most f

1−2ε in O( 1ε log mn
ε ) rounds,

where f is the maximum number of sets containing a common element, 0 < ε < 1
2

is a constant, and m is the number of the sets. This is the only paper we know
on parallel algorithm for the partial cover problem with a theoretical guarantee
of performance. Note that f may be as big as Θ(n), which is very large. The
question is, using the speciality of the dominating set problem and the geometric
structure of a unit disk graph can we design a parallel algorithm for MinPDS-UD
with a constant approximation ratio?

1.1 Related Works

For MinDS, Bar-Yehuda and Moran proved that MinDS on general graphs is
polynomially equivalent to MinSC [1]. Thus no polynomial time algorithm can
achieve an approximation ratio within (1 − ε) log n for any real number ε >
0 unless P = NP [6,8], where n is the number of vertices. Clark et al. [4]
proved that MinDS is NP-hard even on unit disk graphs. Extensive studies on
approximation algorithms for MinDS can be found in the monograph [7]. In
particular, MinDS-UD has much better approximation due to the geometric
structure of unit disk graphs. Hunt et al. [15] presented a PTAS for MinDS-UD
using partition and shifting technique, the running time is nO( 1

ε2
). Nieberg and

Hurink [20] presented a PTAS for MinDS-UD without requiring a geometric
representation of the unit disk graph, the running time is nO( 1

ε log 1
ε ). For the

partial verstion, Joachim et al. [17] presented an exact algorithm for MinPDS-
UD whose running time is O(n(16 + ε)k).

As will be seen from Sect. 3, the MinDS-UD problem is related with the
minimum unit disk cover problem (MinUDC), the goal of which is to find the
minimum number unit disks (that is, disks of the same size) to cover all points.
The continuous version of MinUDC (in which unit disks can be placed anywhere
on the plane) is NP-hard [9] and has been known to admit PTAS [13,14]. The
discrete version of MinUDC is much more tricky. Das et al. [5] presented an
18-approximation algorithm for the discrete MinUDC problem. The ratio was
improved to (9 + ε) by Raslimisnata et al. [22]. For the weighted version of
MinUDC, constant approximation ratio is known [3] based on LP rounding,
and Li and Jin [19] found a PTAS using a complicated guessing and dynamic
programming technique.

Most of the above algorithms are sequential, which have very high running
time, especially for the LP-based methods and dynamic programming methods.
Although divide and conquer technique has some parallel mechanism, the above
algorithms using this technique run in time at least nO( 1

ε log 1
ε ), and thus are not

parallel algorithms in the real sense.
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There are a lot of studies on parallel algorithms for MinSC. Khuller et al. [18]
presented a parallel (f + ε)-approximation algorithm in O(f log n log 1

ε ) rounds,
where f is the maximum number of sets containing a common element. For
the MinPSC problem, Gandhi et al. [10] designed a parallel algorithm with
approximation ratio f

1−ε in (1 + f log 1
ε )(1 + log n) rounds. Since f might be

as large as Θ(n), the number of rounds is not log-polynomial in the input size.
Recently, Ran et al. [21] improved the result to approximation ratio at most

f
1−2ε in O( 1ε log mn

ε ) rounds. As we have noted before, these ratios for the general
problem might be too large for a geometric setting. This motivates us to find a
better parallel algorithm for MinPDS-UD.

1.2 Our Contributions

In this paper, we design a parallel algorithm for MinPDS-UD. Although MinPDS
is a special case of MinPSC, compared with [21], which has approximation ratio

f
1−2ε for MinPSC in O(1ε log mn

ε ) rounds, special structure indeed brings new
benefit : a constant approximation ratio can be achieved in O(log n) rounds for
MinDS-UD, where n is the number of vertices of the unit-disk graph. This is the
first parallel constant approximation algorithm for MinPDS-UD.

In Sect. 2, we present an algorithm for MinPDS-UD by utilizing a relation
between maximal independent set and dominating set, obtaining approximation
ratio at most 80 in O(log n) rounds on O(n) machines. Then in Sect. 3, we
propose another algorithm by exploring a relation between unit disk cover and
dominating set, improving the ratio to 14 in O(log n) rounds on O(n) machines.
A big challenge brought by the “partial” consideration is to determine which
points are to be dominated. We employ a greedy idea in a parallelized manner.

2 A Constant Approximation Algorithm for MinPDS-UD

In this section, we make use of maximal independent set to design a parallel
algorithm for MinPDS-UD. An independent set (IS) in a graph is a set of mutu-
ally nonadjacent vertices. A maximal independent set (MIS) is an IS such that
adding any vertex is no longer independent. Note that an MIS is also a DS.

A unit disk graph G can also be viewed as an intersection graph of unit
disks, that is, every vertex corresponds to a point on the plane and a disk of
diameter 1 centered at this point. Two vertices are adjacent in G if and only if
their corresponding unit disks have nonempty intersection. From such a point of
view, a DS of a unit disk graph G is a set of unit disks D such that every other
unit disk of V (G) \ D has a nonempty intersection with some unit disk in D,
and an IS of G is a set of disjoint unit disks.

For a MinPDS-UD instance on unit disk graph G with a geometric rep-
resentation on the plane, suppose the n points are contained in a square Q.
Partition Q into blocks of side-length 2 × 2, yielding a partition P . If block
b in P contains no point, then b is called an empty block. Otherwise, b is
called a nonempty block. Let block(P ) be the set of all nonempty blocks in
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partition P , i.e. block(P ) = {b : there exists at least one point in b, b ∈ P}.
For a b ∈ block(P ), denote by VP (b) the set of points contained in b with
respect to partition P , sort all nonempty blocks as b1, b2, · · · , bq such that
|VP (b1)| ≥ |VP (b2)| ≥ · · · ≥ |VP (bq)|. Since |V | = n and q ≤ n, there exists
an index nP such that

nP∑

i=1

|VP (bi)| ≥ k and
nP −1∑

i=1

|VP (bi)| < k. (1)

The algorithm is described in Algorithm 1. It returns the better one between
two solutions AP1 and AP2 with respect to two partition P1 and P2. Assume,
without loss of generality, that both P1 and P2 contain all points. For each
partition P , sort all nonempty blocks b in decreasing order of |VP (b)| and find the
index nP satisfying inequality (1). Our next step is to find, for each b ∈ block(P ),
a dominating set dominating all the points in b. Note that a point p in b might
be dominated by a vertex v whose center is outside of b. Since two vertices are
adjacent if and only if their corresponding points have distance no larger than 1,
such a v must have its center in the extended block b′ of b, which is obtained from
b through extending its four boundaries by 1 (see Fig. 1). Compute a maximal
independent set I(b) in b′ to serve as a DS of b, using a parallel algorithm for MIS
such as the one described in [12]. By the choice of nP ,

⋃
b∈block(P ) I(b) covers at

least k points.

Algorithm 1. Algorithm for MinPDS-UD by MIS
Input: A geometric representation of a unit disk graph G.
Output: A set A of vertices dominating at least k vertices of G.

1: P1 ← a partition of the area containing all points into blocks of side-length 2 × 2
2: P2 ← a shifting of P1 to north-east by 1 unit up and 1 unit right
3: j ← 0
4: for j = 1 to 2 do
5: Sort blocks in block(Pj) as b1, . . . , bq such that |VPj (b1)| ≥ · · · ≥ |VPj (bq)|.
6: nPj ← arg minj′{j′ : | ⋃j′

i=1 VPj (bi)| ≥ k}
7: for any bi with i ≤ nPj in parallel do
8: I(bi) ← a maximal independent set in b′

i

9: end for
10: APj ← ⋃nPj

i=1 I(bi)
11: end for
12: if |AP1 | ≤ |AP2 | then
13: A ← AP1

14: else
15: A ← AP2

16: end if
17: return A

The next lemma evaluates the size of an MIS in an extended block (Fig. 1).
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block b

b

1

Fig. 1. Block b and its extended block b′.

P1

P2

1
1

Fig. 2. Partition P1 and partition P2.

Lemma 1. The size of a maximal independent set I(b) computed in line 8 of
Algorithm 1 is at most 32.

Proof. Let b′ be the extended block of b and b′′ be the block extending the
boundaries of b by 3

2 (see Fig. 3). Since every unit disk in I(b) has its center
located in b′, it must be completely contained in b′′. Combining this observation
with the fact that an independent set corresponds to a set of mutually disjoint
unit disks, so |I(b)| is upper bound by � (2+3)2

π/4 � ≤ 32.

Next we estimate the approximation ratio of Algorithm 1.

Theorem 1. Algorithm 1 achieves approximation ratio at most 80 and runs in
O(log n) rounds on O(n) machines.
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block b

b

1

b

1
2

Fig. 3. Extending the boundaries of the block by 1 and 3
2

Proof. Let OPT be an optimal solution and opt be the value of the OPT . For a
partition P , denote by noP

the number of blocks in block(P ) intersecting the unit
disks in OPT . For a block b ∈ block(P ), denote OPTP (b) = {d ∈ OPT : d ∩ b 	=
∅} the set of unit disks of OPT intersecting b. Then

noP
≤

∑

b∈block(P )

|OPTP (b)|. (2)

Denote by HP and YP the set of unit disks in OPT that intersect two horizon-
tal strips and two vertical strips of P , respectively. Note that if a disk intersects
more than two blocks in P , it must belong to both HP and YP . Furthermore, a
unit disk can intersect at most four blocks of P . Therefore,

∑

b∈block(P )

|OPTP (b)| ≤ opt + |HP | + 2|YP |. (3)

Note that a unit disk cannot belong to both HP1 and HP2 . Therefore, HP1 ∩
HP2 = ∅ and thus

|HP1 | + |HP2 | ≤ opt. (4)

Similarly

|YP1 | + |YP2 | ≤ opt. (5)

By the greedy method in line 6 of Algorithm 1, we have

nP ≤ noP
. (6)

Combining Lemma 1 with inequalities (2), (3) and (6), for any partition Pj ,

|AP | ≤ 32nP ≤ 32noP
≤ 32(opt + |HP | + 2|YP |). (7)
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Combining inequalities (4), (5) and (7),

|AP1 | + |AP2 | ≤ 32(2opt + |HP1 | + 2|YP1 | + |HP2 | + 2|YP2 |) ≤ 160opt.

Since Algorithm 1 chooses the minimum of |AP1 | and |AP2 |, we have |A| ≤ 80opt.
Next we estimate the number of rounds and the number of machines needed

by Algorithm 1. Line 5 and 6 can be done in O(log n) rounds on O(n) machine by
a parallel sorting method a parallel selecting method in [16], Using the algorithm
in [12] to compute an MIS in parallel needs O(log n) rounds on O(n) machines.
The other operations can be done in O(1) rounds on O(n) machines. So the
adaptive complexity follows.

3 An Improved Approximation Algorithm
for MinPDS-UD

In this section, we propose another parallel algorithm for MinPDS-UD, which
improves the approximation ratio as well as the adaptive complexity.

The algorithm makes use of a relation between MinPDS-UD and a restricted
version of the partial unit disk cover problem. Given a set V of n points and a
set D of disks of the same size on the plane, the goal of the Minimum Partial
Unit Disk Cover problem (MinPUDC) is to find a minimum number of disks to
cover at least k points. The meaning of “restricted” is that the centers of those
disks in D coincide with the points in V. In fact, for a MinPDS-UD instance on
unit disk graph G, let the points corresponding to the vertices of G to be the
points to be covered, as well as the centers of disks of diameter 2. Note that a
disk of diameter 2 centered at point u covers point v if and only if the Euclidean
distance between u and v is at most 1, that is, v is dominated by u in G. Hence
we may focus on such a restricted MinPUDC problem. It should be emphasized
that in the following, a unit disk refers to a disk of diameter 2, not 1.

The algorithm is described in Algorithm 2. It differs from Algorithm 1 in
three aspects. First, instead of taking the better one between two solutions,
it only computes a solution for one partition. Second, the size of each block is√

2
2 ×

√
2
2 (not 2×2). Third, a DS in block b ∈ block(P ) is no longer approximated

by an MIS, but is computed by selecting an arbitrary point in b; denote the unit
disk (of diameter 2) centered at this point as D(b). The other steps are the same
as Algorithm 1. Note that D(b) covers all the points in block b (see Fig. 4 for an
illustration). By the choice of nP in line 3 of Algorithm 2,

⋃nP

i=1 D(b) covers at
least k points.

Lemma 2. Every D(b) can intersect at most 14 blocks.

Proof. Note that a disk of diameter 2 is completely contained in a square of
side-length 2

√
2 × 2

√
2, and thus it can intersect at most 4 × 4 = 16 blocks.

To further reduce the number, we divide block b into four cells of side-length√
2
4 ×

√
2
4 , and denote them as e1, . . . , e4 (see Fig. 5 for an illustration). Without

loss of generality, we assume that the selected point v is located in cell e1 (see
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√
2
2

Fig. 4. A disk centered in a
√
2
2

×
√
2
2

block can cover this block.

Algorithm 2. Algorithm for restricted MinPUDC
Input : Area Q containing all points in V .
Output : A disks set A, which covers at least k points of V .

1: P ← a partition of Q into blocks of side-length
√

2
2

×
√
2
2

2: Sort nonempty blocks as b1, · · · , bq such that |VP (b1)| ≥ |VP (b2)| ≥ · · · ≥ |VP (bq)|.
3: nP ← arg minj′{j′ :

⋃j′
i=1 |VP (bi)| ≥ k}

4: for any block bi with i ≤ nP in parallel do
5: D(bi) ← the disk centered at an arbitrarily selected point in bi
6: end for
7: return A ← ⋃nP

i=1 D(bi)

Fig. 6). The following two facts can be observed. First, D(b) does not interest
b11. Otherwise, the radius of the disk is larger than 1 since the distance between
any point in b11 and v is larger than 1, contradicting the fact that the diameter
of a disk is 2. Second, D(b) does not simultaneously interest both b14 and b41,
since the distance between any point in b41 and any point in b14 is larger than
2. It follows that D(b) can intersect at most 14 blocks.

block b

e1 e2

e3 e4

Fig. 5. Divide a block into four cells

Next we evaluate |A| in Algorithm 2.

Theorem 2. The approximation ratio of Algorithm 2 is at most 14 and Algo-
rithm 2 runs O(log n) rounds on O(n) machines.
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b11 b12 b13 b14

b21 b22 b23 b24

b31 b32
b

b34

b41 b42 b43 b44

Fig. 6. D(b) can intersect at most 14 blocks

Proof. Since we only selects one point in each of the nP nonempty blocks,

|A| = nP . (8)

Using the same notation nOP
as in the proof of Lemma 1, we also have inequality

(6). Combining this with Lemma 2, we have

nP ≤ nOP
≤ 14opt. (9)

Combining (8) and (9), approximation ratio 14 is proved.
Since line 2 and line 3 of Algorithm 2 can be done in O(log n) rounds on O(n)

machines (see [16]), and line 5 can be done in constant time on each machine,
the adaptive complexity follows.

4 Conclusion

This paper presented two parallel approximation algorithms for MinPDS-UD.
The first one makes use of a relation between a maximal independent set and
a dominating set, achieving approximation ratio 80 in O(log n) rounds on O(n)
machines. The second one transforms the MinPDS-UD problem into a restricted
partial unit disk cover problem, achieving approximation ratio 14 in O(log n)
rounds on O(n) machines. These are the first parallel algorithms for MinPDS-
UD achieving constant approximation ratio in log-polynomial rounds.

The first method is much more complicated, while its approximation ratio is
worse. The reason might be: using inequality (2) to bridge the computed solution
and an optimal solution might be too loose, it is tight only when every block
intersects very few disks from the optimal solution, but the estimation for the
number of vertices in an MIS only depends on the size of the block. In fact,
the larger the block size is, the looser inequality (2) will be, and the larger the
number of disks in a MIS will be. We believe that the first method might yield a
better solution if a more delicate relation between MIS and PDS can be found.
One difficulty lies in the fact that in a partial cover problem, one does not know
which points should be covered.
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Note that our method in Sect. 3 can be applied to the minimum partial con-
tinuous unit disk cover problem, the goal of which is to find the minimum number
of disks with diameter 2, that can be located anywhere on the plane, to cover at
least k points. Similar method yields a parallel algorithm with approximation
ratio at most 9 in O(log n) rounds on O(n) machines.

Note that our method can only be used for the cardinality case. New tech-
niques have to be further explored for the weighted version.
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16. JáJá J.: An Introduction to Parallel Algorithms. Addison Wesley Longman Pub-
lishing Co., Inc. 350 Bridge Pkwy suite 208 Redwood City, CA, United State (1992)

https://doi.org/10.1007/978-1-4614-5242-3


Parallel Algorithm for Minimum Partial Dominating Set in Unit Disk Graph 537

17. Joachim, K., Daniel, M., Peter, R.: Partial vs. complete domination: t-dominating
set. In: International Conference on Current Trends in Theory and Practice of
Computer Science, vol. 4362(1), pp. 367–376 (2007)

18. Khuller, S., Vishkin, U., Young, N.: A primal-dual parallel approximation technique
applied to weighted set and vertex covers. J. Algorithms 17(2), 280–289 (1994)

19. Li, J., Jin, Y.: A PTAS for the weighted unit disk cover problem. In: Halldórsson,
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