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Abstract. We introduce the online bottleneck semi-matching (OBSM)
problem, which is to assign a sequence of requests to a given set of m
servers, such that the maximum cost is minimized. We present a lower
bound m+ 1 and an online algorithm with competitive ratio 2m− 1 for
the OBSM problem on a line, where the distance between every pair of
adjacent servers is the same. When m = 2, we present an optimal online
algorithm with competitive ratio 3 for the OBSM problem. When m = 3,
we present two optimal online algorithms with competitive ratio at most
3 +

√
2 for the OBSM problem on a line, which matches the previous

best lower bound proposed about thirty years ago.

Keywords: Online bottleneck matching · Online algorithm · Capacity
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1 Introduction

We are given a metric space (X, d), where X is a (possibly infinite) set of points
and d(·, ·) is a distance function. Let S = {s1, s2, . . . , sm} ⊆ X be a set of
servers and R = {r1, r2, . . . , rn} ⊆ X be a set of requests arriving one-by-one
in an online fashion. When a request rj ∈ R arrives, it must be immediately
and irrevocably matched to some previously unmatched server si. The cost of
matching rj to si is d(rj , si). The classical Online Minimum Matching (OMM)
[10] is to find a matching M such that the total cost of matching all requests is
minimized. The Online Bottleneck Matching (OBM) [10] is to find a matching
M such that the maximum cost of matching all requests is minimized.

We use competitive ratio to evaluate the performance of an online algorithm
A. For an input instance I, let CA(I) (CA for short) and COPT (I) (COPT for
short) be the costs of the feasible solution obtained by an online algorithm A and
an optimal offline algorithm, respectively. An online algorithm A is ρ-competitive
(or the competitive ratio of A is at most ρ) if CA ≤ ρCOPT for any input
instance I.

Kalyanasundaram and Pruhs [10] introduced the OMM problem and proved
that the Permutation algorithm is (2n−1)-competitive and optimal. Bansal et
al. [5] presented an O(log2 n)-competitive randomized algorithm for the OMM
problem. Kalyanasundaram and Pruhs [11] proposed an interesting question
whether one can design an optimal online algorithm for the OMM problem on
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a line. Gupta and Lewi [7] gave an O(log n)-competitive randomized algorithm
for the OMM problem on a line. Fuchs et al. [6] showed that no online algorithm
can achieve a competitive ratio strictly less than 9.001 for the OMM problem
on a line. Antoniadis et al. [4] designed a deterministic online algorithm with
competitive ratio O(nlog(3+ε)−1/ε) for any ε > 0 for the OMM problem on a line.
Nayyar and Raghvendra [13] proved that the competitive ratio of the determinis-
tic online algorithm proposed in [15] is O(log2 n), which is improved to O(log n)
[16], for the OMM problem on a line. Recently, Peserico and Scquizzato [14]
proved that the competitive ratio of any randomized online algorithm for the
OMM problem on a line exceeds

√
log2(n + 1)/15.

Kalyanasundaram and Pruhs [10] introduced the OBM problem and proved
that the Permutation algorithm is (2n − 1)-competitive. Idury and Schaffer
[8] gave a lower bound approximately 1.44n for the OBM problem on a line.
Anthony and Cheung [2,3] used resource augmentation analysis to examine the
performance of several classic online algorithms for the OBM problem and its
variant where a specified number of requests can be reject or skip.

A generalized version of the OMM problem, which is called online b-matching
[10], online transportation [10], the fire station problem [12], the school assign-
ment problem [12], or online facility assignment [1], is also considered, where
each server can be matched multiple times. Recently, Itoh et al. [9] presented
several lower bounds on the competitive ratio for this problem with different
number of servers.

In this paper, we consider a variant of the OBM problem, called online bottle-
neck semi-matching (OBSM), where each server can be matched multiple times
and obtain several interesting results. The remainder of the paper is organized
as follows. We first introduce the problem definition and theoretical results in
Sect. 2. We provide several lower and upper bounds for the OBSM problem with
arbitrary number of servers in Sect. 3. We then present several optimal online
algorithms for the OBSM problem with 2 or 3 servers in Sect. 4 and Sect. 5,
respectively. Finally, we conclude the paper with future research directions in
Sect. 6.

2 Preliminaries

We are given a metric space (X, d) and a set S = {s1, s2, . . . , sm} ⊆ X of servers,
where X is a (possibly infinite) set of points and d(·, ·) is a distance function. Let
R = {r1, r2, . . . , rn} ⊆ X be a set of requests arriving one-by-one in an online
fashion, where 2 ≤ m ≤ n. Each server si ∈ S is characterized by the capacity
ci ∈ N that satisfies

m∑

i=1

ci = n.

It means that the server si can be matched with exact ci requests.
When a request rj ∈ R arrives, an online algorithm A must immediately and

irrevocably assign a server si = π(rj) ∈ S which is matched less than ci times to
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service that request. The cost of matching rj to π(rj) is d(rj , π(rj)). After all the
requests are matched, we obtain a semi-matching M where each vertex rj ∈ R
is matched exactly once. The online bottleneck semi-matching (OBSM) problem
is to find an assignment π : R �→ S such that |{rj |π(rj) = si}| = ci and the
maximum cost maxj d(rj , π(rj)) of matching all requests is minimized. Clearly,
the OBSM problem is a generalized version of the OBM problem considered in
[2,10]. A most related problem is the online minimum semi-matching (OMSM)
problem, which is to find an assignment π : R �→ S such that |{rj |π(rj) =
si}| = ci and the maximum cost

∑n
j=1 d(rj , π(rj)) of matching all requests is

minimized.
It is widely acknowledged that the line is the most interesting metric space

for the related online matching problems [4,14]. If X is a line, without loss of
generality, assume that the servers are placed in an increasing order of their
indices, i.e.,

0 = p(s1) < p(s2) < . . . < p(sm),

where p(si) is the position of server si on the line, for i = 1, 2, . . . , m. Let p(r) be
the position of request r. The distance between a, b ∈ S ∪ R can be described as
d(a, b) = |p(a) − p(b)|. Moreover, for i = 1, 2, . . . ,m − 1, let di = p(si+1) − p(si)
be the distance between two adjacent servers.

3 Online Bottleneck Semi-matching with Arbitrary
Number of Servers

In this section, we consider the OBSM problem with arbitrary number of servers.
If each server si ∈ S is replaced by ci servers with capacity 1, the OBSM problem
is exactly the OBM problem considered in [2]. Therefore, following from Theorem
3 and Theorem 4 in [2], we have

Theorem 1. The competitive ratio of the permutation algorithm is at most
(2n − 1) for the OBSM problem.

Kalyanasundaram and Pruhs [10] conjectured that the competitive ratio of
the permutation algorithm is (2m − 1) for the OMSM problem. However, this
conjecture is still open. Similarly, it is interesting to design an online algorithm
for the OBSM problem whose competitive ratio is a function of m. We obtain
several related results for the OBSM problem in this section.

Theorem 2. The competitive ratio of any deterministic online algorithm for
the OBSM problem on a line is at least

2 +
1

2
1

m−1 − 1
.

Proof. Similarly to the construction in [8].
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Theorem 3. The competitive ratio of any deterministic online algorithm is at
least m + 1 for the OBSM problem on a line, even if di = 1 for every i =
1, 2, . . . ,m − 1.

Proof. Let A be any deterministic online algorithm, and π be the correspond-
ing assignment. Our adversary first gives ci − 1 requests at p(si) for each
i = 1, 2, · · · ,m. If A matches some request r with a server not at p(r), then
the adversary gives m more requests with one at each position of the server si.
An optimal offline assignment π∗ matches every request r with the server at
the same position p (r). Therefore, CA > 0 and COPT = 0, implying that the
competitive ratio of A is infinity.

Suppose that A matches each request r with a server at p(r). For convenience,
let r1, r2, . . . , rm be the last m requests and x = 1

m . The adversary gives the
requests ri at p (si+1) − x for i = 1, 2, . . . ,m − 1 one by one (see Fig. 1).

Fig. 1. The m − 1 requests.

If A matches each request ri with server si+1 for 1, 2, . . . ,m−1. The adversary
gives the last request rm at p(sm)+1−x. Clearly, we have COPT = 1−x = 1− 1

m ,
and

CA ≥ d(rm, s1) = m − 1 + 1 − x = m − 1
m

≥ (m + 1)COPT .

Otherwise, the adversary gives the last request rm at p(s1) − x. Clearly, we
have COPT = x = 1

m . We distinguish the follow three cases.

Case 1. A matches request r1 with server s1. Clearly, we have

CA ≥ d(rm, π(rm)) ≥ 1 + x = 1 +
1
m

≥ (m + 1)COPT .

Case 2. A matches request r1 with server s2. Let k ∈ {2, . . . , m − 1} be the
minimum index such that A does not match request rk with server sk+1. If A
matches request rk with server sl with l ≤ k, by the minimality of k, rk must
be matched with s1, implying that

CA ≥ d(rk, s1) ≥ 2 − x ≥ 1 +
1
m

≥ (m + 1)COPT .

If A matches rk with a server su with u ≥ k + 2, we have

CA ≥ d(rk, su) ≥ 1 + x = 1 +
1
m

≥ (m + 1)COPT .
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Case 3. A matches request r1 with a server sk (k ≥ 3). Clearly, we have

CA ≥ d(r1, sk) ≥ 1 + x = 1 +
1
m

≥ (m + 1)COPT .

Therefore, the theorem holds.

As mentioned in [2,10], greedy assigns the nearest available server to each
request as it arrives. It is proved that the greedy algorithm performs exponen-
tially poorly for the OMM problem [10] and the OBM problem [2]. However,
greedy performs well for the OBSM problem on a line with di = 1.

Theorem 4. The competitive ratio of greedy is at most 2m−1 for the OBSM
problem on a line with di = 1 for every i = 1, 2, . . . ,m − 1.

Proof. Without loss of generality, assume that

p(si) = i − 1, for i = 1, 2, . . . ,m.

Let I1 = (−∞, 1
2 ], Im = (m − 1 − 1

2 ,+∞), and Ii = (i − 1 − 1
2 , i − 1 + 1

2 ] for
i = 2, 3, . . . ,m − 1. Let

Ri = {ri ∈ R|p(ri) ∈ Ii}.

be the set of requests whose positions lie in Ii for i = 1, 2, . . . ,m.
Clearly, if |Ri| = ci for every i, greedy produces an optimal solution. Else,

we have

COPT ≥ 1
2
.

Let r ∈ R be the request attaching the maximum in the feasible solution pro-
duced by greedy, which implies that CA = d(r, π(r)). We distinguish the fol-
lowing three cases.

Case 1. p(r) ∈ R1.
If p(r) ∈ (−∞,− 1

2 ], we have COPT ≥ d(r, s1) = |p(r)|, and

CA ≤ |p(r)| + d(s1, sm) = |p(r)| + m − 1 ≤ |p(r)|(1 +
m − 1
|p(r)| ) ≤ (2m − 1)COPT .

If p(r) ∈ (− 1
2 , 1

2 ], we have

CA ≤ d(r, sm) ≤ m − 1 +
1
2

= (2m − 1) · 1
2

≤ (2m − 1)COPT .

Case 2. p(r) ∈ Ri with i ∈ {2, 3, . . . ,m − 1}.
Clearly, we have

CA ≤ d(r, sm) ≤ m − 1 ≤ (2m − 1)COPT .
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Case 3. p(r) ∈ Rm.
If p(r) ∈ (m − 1 − 1

2 ,m − 1 + 1
2 ], we have

CA ≤ d(r, s1) ≤ m − 1 +
1
2

= (2m − 1) · 1
2

≤ (2m − 1)COPT .

If p(r) ∈ (m − 1 + 1
2 ,+∞), we have COPT ≥ d(r, sm) = p(r) − (m − 1) ≥ 1

2 and

CA ≤ d(r, s1) ≤ p(r) = p(r) − (m − 1) + (m − 1)
≤ d(r, sm) + (2m − 2)COPT ≤ (2m − 1)COPT .

Therefore, we have CA ≤ (2m − 1)COPT in any case.

4 Online Bottleneck Semi-matching with Two Servers

When m = 2, it is proved that the permutation algorithm is an optimal online
algorithm with competitive ratio 3 for the OMM problem [10] and the OBM
problem [2]. Recently, Itoh et al. [9] proved that greedy algorithm is an optimal
online algorithm with competitive ratio 3 for the OMSM problem.

By Theorem 2, the lower bound for the OBSM problem is 3 when m = 2.
Recall that greedy assigns the nearest available server to each request as it
arrives. We obtain

Theorem 5. The competitive ratio of the greedy algorithm is 3.

Proof. Let R be a minimal instance with the least number of requests whose
competitive ratio is maximized. For j = 1, 2, . . . , n, if rj is matched with the
server in the offline optimal solution π∗ and the feasible solution π produced by
the greedy algorithm. Without loss of generality, assume that π(rj) = π∗(rj) =
s1. If CA = d(rj , s1), we have COPT = CA, implying that the greedy algorithm
produces an optimal solution. Else, we construct a new instance R′ = R \ {rj}
with c′

1 = c1 − 1. It is easy to verify that CA(R′) = CA(R) and COPT (R′) =
COPT (R), which contradicts the minimality of R. Therefore, we have

π(rj) 
= π∗(rj), for each j = 1, 2, . . . , n. (1)

Let rj1 be the request attaching the maximum in the feasible solution pro-
duced by the greedy algorithm, which means CA = d(rj1 , π(rj1)). Without loss
of generality, assume that π(rj1) = s1, which means that

CA = d(rj1 , s1) ≥ d(rj1 , s2), and π∗(rj1) = s2.

Let rj2 be the request attaching the maximum in the optimal solution, which
means COPT = d(rj2 , π

∗(rj2)). We distinguish the following two cases.

Case 1. π∗(rj2) = s1 = π(rj1).
By (1), we have j1 
= j2 and π∗(rj1) = π(rj2) = s2. If j1 < j2, by the choice of
greedy, we have d(rj1 , s1) ≤ d(rj1 , s2). Therefore,
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CA = d(rj1 , s1) ≤ d(rj1 , s2) = d(rj1 , π
∗(rj1)) ≤ COPT .

If j1 > j2, by the choice of greedy, we have d(rj2 , s2) ≤ d(rj2 , s1). Therefore,

CA = d(rj1 , s1) ≤ d(rj1 , s2) + d(s1, s2)
≤ d(rj1 , s2) + d(s1, rj2) + d(rj2 , s2)
≤ d(rj1 , π

∗(rj1)) + 2d(rj2 , s1)
= d(rj1 , π

∗(rj1)) + 2d(rj2 , π
∗(rj2))

≤ 3COPT .

Case 2. π∗(rj2) = s2.
Clearly, we have COPT = d(rj2 , s2) ≤ d(rj2 , s1). Since c1 + c2 = n, there is a
request rj with j < j1 satisfying that π∗(rj) = s1 and π(rj) = s2. By the choice
of greedy, we have d(rj , s2) ≤ d(rj , s1) = d(rj , π

∗(rj)) ≤ COPT . Therefore,

CA = d(rj1 , s1) ≤ d(rj1 , s2) + d(s2, s1)
≤ d(rj1 , π

∗(rj1)) + d(s2, rj) + d(rj , s1)
≤ COPT + 2d(rj , s1)
≤ 3COPT .

Thus, CA ≤ 3COPT in any case.

5 Online Bottleneck Semi-matching on a Line with Three
Servers

When m = 3 and X is a line, Kalyanasundaram and Pruhs [10] claimed that the
optimal competitive ratio for the OMM problem on a line is 3.6494359. Recently,
Itoh et al. [9] gave a lower bound 1+

√
6 on the competitive ratio for the OMSM

problem on a line with d1 = d2 = 1. However, the optimal competitive ratio is
not given. Idury and Schaffer [8] gave a lower bound 3 +

√
2 on the competitive

ratio for the OBM problem on a line. In this section, we consider the OBSM
problem on a line with m = 3. Without loss of generality, assume that

p(s1) = 0, p(s2) = 1, and p(s3) = 1 + α ≥ 2.

When α ≤ √
2, we design an optimal online algorithm with a competitive ratio of

3 + α. When α >
√

2, we design an optimal online algorithm with a competitive
ratio of 3 + 2

α . Clearly, the upper bound on the competitive ratio for the OBM
problem on a line is 3 +

√
2, which matches the lower bound given in [8].

Theorem 6. When 1 ≤ α ≤ √
2, the competitive ratio of any online algorithm

A for the OBSM problem on a line is at least 3 + α.

Proof. Let c1 = c2 = c3 = 1. The first request r1 arrives at p(r1) = p(s2)− 1
2+α .

We distinguish the following three cases.
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Case 1. r1 is matched with s1.
The last two requests r2 and r3 arrive at p(r2) = p(s1)− 1

2+α and p(r3) = p(s3),
respectively. Therefore, COPT = 1

2+α and

CA ≥ d(r2, s2) = 1 +
1

2 + α
≥ (3 + α)COPT .

Case 2. r1 is matched with s2.
The second request r2 arrives at p(r2) = p(s2) + α

2 . If r2 is matched with s1,
the last request r3 arrives at p(r3) = p(s1) − α

2 . Since 1
2+α ≤ 1

2 ≤ α
2 , we have

COPT = α
2 and CA = d(r3, s3) = 1 + α + α

2 , then

CA ≥ d(r3, s3) = 1 + α +
α

2
≥ (3 +

2
α

)COPT ≥ (3 + α)COPT ,

as α ≤ √
2.

If r2 is matched with s3, the last request r3 arrives at p(r3) = p(s3) + 1+α
2+α .

Since α ≤ √
2, we have 1+α

2+α ≥ α
2 , which implies that COPT = d(r3, s3) = 1+α

2+α ,
and

CA = d(r3, s1) = 1 + α +
1 + α

2 + α
≥ (3 + α)COPT .

Case 3. r1 is matched with s3.
The last two requests r2 and r3 arrive at p(r2) = p(s1) and p(r3) = p(s3),
respectively. Clearly, COPT = 1

2+α , and

CA ≥ d(r1, s3) =
1

2 + α
+ α =

α2 + 2α + 1
2 + α

≥ (3 + α)COPT ,

as α ≥ 1.
Therefore, the theorem holds.

For convenience, let

I1 = (−∞, p(s2) − 1
2 + α

),

I2 = [p(s2) − 1
2 + α

, p(s2) +
α2 + α − 1

2 + α
],

and I3 = (p(s2) +
α2 + α − 1

2 + α
,+∞).

Three intervals are depicted in Fig. 2. For each server si, we say that si is available
if it is matched less than ci times. Otherwise, we say that si is full.



Online Bottleneck Semi-matching 453

Fig. 2. Three intervals in Algorithm A1

Algorithm A1:
When a new request rj arrives, we distinguish the following three cases.

Case 1. p(rj) ∈ I1. Match rj with the first available server in the sequence
(s1, s2, s3).

Case 2. p(rj) ∈ I2. Match rj with the first available server in the sequence
(s2, s1, s3).

Case 3. p(rj) ∈ I3. Match rj with the first available server in the sequence
(s3, s2, s1).

Theorem 7. When 1 ≤ α ≤ √
2, the competitive ratio of Algorithm A1 for

the OBSM problem on a line is at most 3 + α.

Proof. We omitted the proof due to space constraints.

Theorem 8. When α >
√

2, the competitive ratio of any online algorithm A
for the OBSM problem on a line is at least 3 + 2

α .

Proof. Let c1 = c2 = c3 = 1. The first request arrives at p(r1) = p(s2) − 1
2+α .

We distinguish the following three cases.

Case 1. r1 is matched with s1.
The last two requests arrive at p(r2) = p(s1) − 1

2+α and p(r3) = p(s3), respec-
tively. Therefore, COPT = 1

2+α and

CA ≥ d(r2, s2) = 1 +
1

2 + α
≥ (3 + α)COPT ≥ (3 +

2
α

)COPT ,

where the last inequality follows from the assumption α >
√

2.

Case 2. r1 is matched with s2.
The second request arrives at p(r2) = p(s2) + α

2 . If r2 is matched with s1, the
last request r3 arrives at p(r3) = p(s1) − α

2 . Therefore, COPT = α
2 and

CA = d(r3, s3) = 1 + α +
α

2
≥ (3 +

2
α

)COPT .

If r2 is matched with s3, the last request r3 arrives at p(r3) = p(s3) + α
2 . There-

fore, COPT = α
2 , and

CA = d(r3, s1) = 1 + α +
α

2
≥ (3 +

2
α

)COPT .
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Case 3. r1 is matched with s3.
The last two requests arrive at p(r2) = p(s1) and p(r3) = p(s3). Therefore,
COPT = 1

2+α , and

CA = d(r1, s3) ≥ 1
2 + α

+ α ≥ (α2 + 2α + 1)COPT ≥ (3 +
2
α

)COPT .

as α >
√

2.
Therefore, the theorem holds.

Algorithm A2:
When a new request rj arrives, we distinguish the following three cases.

Case 1. p(rj) ∈ (−∞, p(s2) − α
2+2α ). Match rj with the first available server in

the sequence (s1, s2, s3).

Case 2. p(rj) ∈ [p(s2)− α
2+2α , p(s2)+ α

2 ]. Match rj with the first available server
in the sequence (s2, s1, s3).

Case 3. p(rj) ∈ (p(s2) + α
2 ,+∞). Match rj with the first available server in the

sequence (s3, s2, s1) (Fig. 3).

Theorem 9. When α >
√

2, the competitive ratio of Algorithm A2 for the
OBSM problem on a line is at most 3 + 2

α .

Proof. We omitted the proof due to space constraints.

Fig. 3. Three intervals in algorithm A2

6 Conclusion

We propose an online algorithm for the OBSM problem on a line with compet-
itive ratio 2m − 1, where the distance between every pair of adjacent servers is
the same. It is interesting to design an online algorithm with competitive ratio
dependent of m for a general metric space. We conjecture that permutation
[2,10] achievers a (2m − 1) competitive ratio for the OBSM problem and the
OMSM problem.

When the number of servers is three, we design two optimal online algorithms
for the OBSM problem on a line, whose competitive ratio is dependent on the
ratio of two distances between two adjacent servers. In addition, we close the gap
for the OBM problem with three servers, which has been open about thirty years.
Although Kalyanasundaram and Pruhs [10] claimed the optimal competitive
ratio of the OMM problem with three servers is 3.6494359, it is interesting to
design several optimal online algorithms with competitive ratio dependent on
the ratio of two distances between two adjacent servers, as in Sect. 5.
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