Ding-Zhu Du
Donglei Du
Chenchen Wu
Dachuan Xu (Eds.)

Combinatorial Optimization
and Applications

15th International Conference, COCOA 2021
Tianjin, China, December 17-19, 2021
Proceedings

LN
™M
—
o™
—
v
O
=
—

@ Springer

Lecture Notes in Computer Science

Founding Editors
Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China
Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

13135

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873

More information about this subseries at https://link.springer.com/bookseries/7407

https://springerlink.bibliotecabuap.elogim.com/bookseries/7407

Ding-Zhu Du - Donglei Du - Chenchen Wu -
Dachuan Xu (Eds.)

Combinatorial Optimization
and Applications

15th International Conference, COCOA 2021
Tianjin, China, December 17-19, 2021
Proceedings

@ Springer

Editors

Ding-Zhu Du

University of Texas at Dallas
Richardson, TX, USA

Chenchen Wu
Tianjin University of Technology
Tianjin, China

Donglei Du
University of New Brunswick
Fredericton, NB, Canada

Dachuan Xu
Beijing University of Technology
Beijing, China

ISSN 0302-9743

Lecture Notes in Computer Science
ISBN 978-3-030-92680-9 ISBN 978-3-030-92681-6 (eBook)
https://doi.org/10.1007/978-3-030-92681-6

ISSN 1611-3349 (electronic)

LNCS Sublibrary: SL1 — Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2021

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-7345-2185
https://orcid.org/0000-0002-6742-8816
https://orcid.org/0000-0003-0111-8572
https://doi.org/10.1007/978-3-030-92681-6

Preface

The 15th Annual International Conference on Combinatorial Optimization and Appli-
cations (COCOA 2021) took place in Tianjin, China, during December 17-19, 2021.
COCOA 2021 provided an excellent venue for researchers in the area of combina-
torial optimization and its applications, including algorithm design, theoretical and
experimental analysis, and applied research of general algorithmic interest.

The Program Committee received a total of 122 submissions, among which 55 were
accepted for presentation at the conference. Each contributed paper was subject to a
rigorous peer review process, with reviewers drawn from a large group of members of
the Program Committee.

We would like to express our sincere appreciation to everyone who made COCOA
2021 a success by volunteering their time and effort: the authors, the Program Commit-
tee members, and the reviewers. We thank Springer for accepting the proceedings of
COCOA 2021 for publication in the Lecture Notes in Computer Science (LNCS)
series. Our special thanks also extend to the other chairs and the conference Organizing
Committee members for their excellent work.

October 2021 Ding-Zhu Du
Donglei Du

Chenchen Wu

Dachuan Xu

Organization

General Chair

Ding-Zhu Du University of Texas at Dallas, USA

Program Committee Co-chairs

Donglei Du University of New Brunswick, Canada
Chenchen Wu Tianjin University of Technology, China
Dachuan Xu Beijing University of Technology, China

Local Organizing Chairs

Yongtang Shi Nankai University, China
Xujian Huang Tianjin University of Technology, China

Finance Chairs

Yicheng Xu Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, China
Jun Yue Shandong Normal University, China

Publication Chairs

Lu Han Beijing University of Posts and
Telecommunications, China

Hui Lei Nankai University, China

Web Chairs

Xinxin Zhong Tianjin University of Technology, China

Rui Li Tianjin University of Technology, China

Program Committee

Zhipeng Cai Georgia State University, USA
Vincent Chau Southeast University, China
Xujin Chen Academy of Mathematics and Systems Science,

Chinese Academy of Sciences, China

viii Organization
Yukun Cheng

Bhaskar Dasgupta
Neng Fan

Qilong Feng
Longkun Guo
Michael Khachay
Joong-Lyul Lee
Jianping Li
Minming Li
Guohui Lin

Bin Liu

Xiwen Lu

Kameng Nip
Weitian Tong
Boting Yang
Yitong Yin
Jinjiang Yuan
An Zhang
Peng Zhang
Xiaoyan Zhang
Yong Zhang

Zhao Zhang
Martin Ziegler
Vassilis Zissimopoulos

Additional Reviewers

Sijia Dai
Weiming Feng
Guichen Gao
Jiaming Hu
Lingxiao Huang
Yuping Ke
Daniel Khachay
Ivan Adrian Koswara
Toannis Lamprou
Yongxin Lan

Shi Li

Bingkai Lin

Mingmou Liu

Suzhou University of Science and Technology,
China

University of Illinois at Chicago, USA

University of Arizona, USA

Central South University, China

Fuzhou University, China

Russian Academy of Sciences, Russia

University of North Carolina at Pembroke, USA

Yunnan University, China

City University of Hong Kong, Hong Kong

University of Alberta, Canada

Ocean University of China, China

East China University of Science and Technology,
China

Xiamen University, China

Eastern Michigan University, USA

University of Regina, Canada

Nanjing University, China

Zhengzhou University, China

Hangzhou Dianzi University, China

Shandong University, China

Nanjing Normal University, China

Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, China

Zhejiang Normal University, China

KAIST, South Korea

National and Kapodistrian University of Athens,
Greece

Xiaowei Wu

Katherine Neznakhina Jie Xue
Yuri Ogorodnikov .

Y Y:
Chunying Ren ongjie Tang
John Sigalas Fan Yuan
Xin Sun Chihao Zhang
Xiaoyun Tian Hongxiang Zhang
i Vevralis i g
Chenhao Wang Yan Zhao
Kai Wang Yingchao Zhao
Weiwei Wu Chaodong Zheng

Contents

Routing Among Convex Polygonal Obstacles inthe Plane 1
R. Inkulu and Pawan Kumar

Target Coverage with Minimum Number of Camera Sensors 12
Pei Yao, Longkun Guo, Shuangjuan Li, and Huihong Peng

Two-Stage Submodular Maximization Under Curvature 25
Yanzhi Li, Zhicheng Liu, Chuchu Xu, Ping Li, Hong Chang,
and Xiaoyan Zhang

An Improved Approximation Algorithm for Capacitated Correlation
Clustering Problem 35
Sai Ji, Yukun Cheng, Jingjing Tan, and Zhongrui Zhao

The Selection of COVID-19 Epidemic Prevention and Control Programs
Based on Group Decision Makingcoiiiiiiiinniiiiiinna.. 46
Chunsheng Cui, Baiqiu Li, and Liu Wang

Which Option Is a Better Way to Improve Transfer Learning Performance? 61
Honghui Xu, Zhipeng Cai, and Wei Li

On Maximizing the Difference Between an Approximately Submodular
Function and a Linear Function Subject to a Matroid Constraint 75
Yijing Wang, Yicheng Xu, and Xiaoguang Yang

On Various Open-End Bin Packing Game 86
Ling Gai, Weiwei Zhang, Wenchang Luo, and Yukun Cheng

A Linear-Time Streaming Algorithm for Cardinality-Constrained
Maximizing Monotone Non-submodular Set Functions 96
Min Cui, Donglei Du, Ling Gai, and Ruiqi Yang

Approximation Algorithms for Two Parallel Dedicated Machine
Scheduling with Conflict Constraints oiiiiiiiennn.. 111
An Zhang, Liang Zhang, Yong Chen, Guangting Chen, and Xing Wang

Computing the One-Visibility Cop-Win Strategies for Trees 125
Boting Yang

X Contents

Complexity and Approximation Results on the Shared Transportation
Problem e 140
Tom Davot, Rodolphe Giroudeau, and Jean-Claude Konig

The Complexity of Finding Optimal Subgraphs to Represent Spatial

COITEIAtION . . .\ttt 152
Jessica Enright, Duncan Lee, Kitty Meeks, William Pettersson,
and John Sylvester

New Approximation Algorithms for the Rooted Budgeted Cycle Cover
Problem 167
Jiangkun Li and Peng Zhang

Evolutionary Equilibrium Analysis for Decision on Block Size
in Blockchain Systemsuuu et 180
Jinmian Chen, Yukun Cheng, Zhiqi Xu, and Yan Cao

Efficient Algorithms for Scheduling Parallel Jobs with Interval Constraints
INClOUAS . .. 195
Xuanming Xu and Longkun Guo

Two-Stage Stochastic Max-Weight Independent Set Problems 203
Min Li, Qian Liu, and Yang Zhou

Routing and Scheduling Problems with Two Agents on a Line-Shaped
NetWOrK ..o 214
Hao Yan and Xiwen Lu

The Price of Anarchy of Generic Valid Utility Systems 224
Yin Yang, Qingqin Nong, Suning Gong, Jingwen Du, and Yumei Liang

Single Machine Scheduling with Rejection and Generalized Parameters 234
Xue Yu, Lingfa Lu, and Liqi Zhang

Approximation Algorithm and Hardness Results for Defensive Domination
I Graphs . ..o 247
Michael A. Henning, Arti Pandey, and Vikash Tripathi

An Improved Physical ZKP for Nonogramooiiiina... 262
Suthee Ruangwises

Finding All Leftmost Separators of Size <k ..., 273
Mahdi Belbasi and Martin Fiirer

Contents

Maximize the Probability of Union-Influenced in Social Networks
Guoyao Rao, Yongcai Wang, Wenping Chen, Deying Li, and Weili Wu

A Novel Algorithm for Max Sat Calling MOCE toOrder
Daniel Berend, Shahar Golan, and Yochai Twitto

The Smallest Number of Vertices in a 2-Arc-Strong Digraph Without Pair
of Arc-Disjoint In- and Out-Branchings
Ran Gu, Gregory Gutin, Shasha Li, Yongtang Shi, and Zhenyu Taoqiu

Generalized Self-profit Maximization in Attribute Networks
Liman Du, Wenguo Yang, and Suixiang Gao

Parameterized Complexity Classes Defined by Threshold Circuits: Using
Sorting Networks to Show Collapses with W-hierarchy Classes
Raffael M. Paranhos, Janio Carlos Nascimento Silva,
Uéverton S. Souza, and Luiz Satoru Ochi

Maximization of Monotone Non-submodular Functions with a Knapsack
Constraint over the Integer Latticecooiiiiiiiiiiiiiiiinn...
Jingjing Tan, Fengmin Wang, Xiaoqging Zhang, and Yang Zhou

Sublinear-Time Reductions for Big Data Computing
Xiangyu Gao, Jianzhong Li, and Dongjing Miao

Capacitated Partial Inverse Maximum Spanning Tree Under the Weighted
S 31) s '+ K AP
Xianyue Li, Ruowang Yang, Heping Zhang, and Zhao Zhang

Approximation Algorithms for Some Min-Max and Minimum Stacker
Crane Cover Problems o i
Yuhui Sun, Wei Yu, and Zhaohui Liu

Succinct Data Structures for Series-Parallel, Block-Cactus and 3-Leaf

Power Graphs o
Sankardeep Chakraborty, Seungbum Jo, Kunihiko Sadakane,
and Srinivasa Rao Satti

Streaming Submodular Maximization Under Differential Privacy Noise
Di Xiao, Longkun Guo, Kewen Liao, and Pei Yao

Online Bottleneck Semi-matching i
Man Xiao, Shu Zhao, Weidong Li, and Jinhua Yang

Xi

Xii Contents

Optimal Due Date Assignment Without Restriction and Convex Resource
Allocation in Group Technology Scheduling 456
Ying Chen and Yongxi Cheng

Constrained Stable Marriage with Free Edges or Few Blocking Pairs 468
Yinghui Wen and Jiong Guo

Backgammon Is Hard 484
R. Teal Witter

Two-Facility Location Games with a Minimum Distance Requirement
0N aCiICle L. 497
Xiaoyu Wu, Lili Mei, and Guochuan Zhang

Open Shop Scheduling Problem with a Non-resumable Flexible
Maintenance Period 512
Yuan Yuan, Xin Han, Xinbo Liu, and Yan Lan

Parallel Algorithm for Minimum Partial Dominating Set in Unit Disk Graph ... 527
Weizhi Hong, Zhao Zhang, and Yingli Ran

An Improved Approximation Algorithm for Squared Metric k-Facility
Location 538
Zhen Zhang and Qilong Feng

Parameterized Algorithms for Linear Layouts of Graphs with Respect
to the Vertex Cover Numberuuuuuuiiiiiiiia 553
Yunlong Liu, Yixuan Li, and Jingui Huang

The Fractional k-truncated Metric Dimension of Graphs 568
Eunjeong Yi

On Structural Parameterizations of the Offensive Alliance Problem 579
Ajinkya Gaikwad and Soumen Maity

On the k-colored Rainbow Sets in Fixed Dimensions 587
Vahideh Keikha, Hamidreza Keikha, and Ali Mohades

Cycle-Connected Mixed Graphs and Related Problems 602
Junran Lichen

Directed Width Parameters on Semicomplete Digraphs 615
Frank Gurski, Dominique Komander, Carolin Rehs,
and Sebastian Wiederrecht

Contents

Improved Parameterized Approximation for Balanced k-Median
Zhen Zhang and Qilong Feng

A LP-based Approximation Algorithm for generalized Traveling
Salesperson Path Problem
Jian Sun, Gregory Gutin, and Xiaoyan Zhang

Hardness Results of Connected Power Domination for Bipartite Graphs
and Chordal Graphs i
Pooja Goyal and B. S. Panda

Approximation Algorithm for Min-Max Correlation Clustering Problem
With OULLIETS . .. oo e e
Sai Ji, Min Li, Mei Liang, and Zhenning Zhang

Delay-Constrained Minimum Shortest Path Trees and Related Problems
Junran Lichen, Lijian Cai, Jianping Li, Suding Liu, Pengxiang Pan,
and Wencheng Wang

On the Feedback Number of 3-Uniform Linear Extremal Hypergraphs
Zhongzheng Tang, Yucong Tang, and Zhuo Diao

A Multi-pass Streaming Algorithm for Regularized Submodular
MaxXimiZationt

Qingin Gong, Suixiang Gao, Fengmin Wang, and Ruiqi Yang

Author Index e

®

Check for
updates

Routing Among Convex Polygonal
Obstacles in the Plane

R. Inkulu®™ and Pawan Kumar

Department of Computer Science and Engineering, IIT Guwahati, Guwahati, India
{rinkulu,p.kumar16}@iitg.ac.in

Abstract. Given a set P of h pairwise disjoint convex polygonal obsta-
cles in the plane, defined with n vertices, we preprocess P and compute
one routing table at each vertex in a subset of vertices of P. For routing a
packet from any vertex s € P to any vertex ¢t € P, our scheme computes
a routing path with a multiplicative stretch 1+ ¢ and an additive stretch
2k, by consulting routing tables at only a subset of vertices along that
path. Here, k is the number of obstacles of P the routing path intersects,
and ¢ depends on the geometry of obstacles in P. During the prepro-
cessing phase, we construct routing tables of size O(n + ﬁ—spolylog(%))

in O(n + ’;—Spolylog(%)) time, where € < 1 is an input parameter.

Keywords: Computational geometry - Shortest paths -
Approximation algorithms

1 Introduction

The routing problem is popular in both graph algorithms and computational
geometry. This problem seeks to find a path from the source of a packet to its
destination such that (i) along the path, next hop or the subpath is decided from
the local information stored with the current hop, (ii) distance along the routing
path is upper bounded by a multiplicative factor times the shortest distance
between the source and destination plus possibly with an additive factor, and
(iii) the space occupied by the preprocessed data structures (routing tables) is
small. In the case of graphs, hops are vertices of the graph. And, in the geometric
version of this problem, hops are vertices defining the scene.

Using compact data structures, answering approximate distance queries in a
graph is introduced by Thorup and Zwick in [45,46]. Later, the compact rout-
ing schemes for graphs has been extensively studied [1,4,13,18,20,38-40]. The
routing schemes for special graphs, such as trees [21,41], planar graphs [44], unit
disk graphs [28,48], networks of low doubling dimension [33], and for graphs
embedded in geometric spaces [7,8,11] are also considered. In [38], Peleg and

R. Inkulu—This research is supported in part by SERB MATRICS grant
MTR/2017/000474.
© Springer Nature Switzerland AG 2021

D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 1-11, 2021.
https://doi.org/10.1007/978-3-030-92681-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-92681-6_1

2 R. Inkulu and P. Kumar

Upfal had shown that any routing scheme with constant stretch factor needs to
store £2(n°) bits per node, for some constant ¢ > 0.

The polygonal domain comprises pairwise-disjoint simple polygons (known
as obstacles) in the plane. For convenience, we assume obstacles in the polygonal
domain are placed in a large bounding box. For any polygonal domain P, the free
space F(P) is the closure of the bounding box without the union of the interior
of all the obstacles in P. Any two points p,q € F(P) are visible to each other
if the open line segment joining p and ¢ lies entirely in F(P). A vertex v € P
is said to be a visible vertez to a point ¢ € F(P) whenever v is visible to ¢. For
any obstacle O of a polygonal domain, the boundary of O is denoted by bd(O).
We denote the number of vertices of P with n and the number of obstacles of P
by h.

The shortest distance between two nodes s,t¢ of a graph G is denoted by
dg(s,t). The Euclidean distance between any two points p and ¢ is denoted by
llpg||. The obstacle-avoiding geodesic shortest distance between any two points
p,q € F(Q) amid a set Q of polygonal obstacles is denoted by disto(p, q).

Computing a shortest path between two given points in a polygonal domain
is a fundamental problem in computational geometry. This problem is primar-
ily studied using two approaches. In one approach, by constructing a graph
in F(P), called visibility graph, whose nodes are the vertices of P and edges
are the line segments between mutually visible vertices (refer to Ghosh [22]).
Then, a shortest path of interest is determined in the visibility graph [31,32,47].
In the other approach [24,27,29,30,34], a Dijkstra wavefront is expanded in
F(P), starting from the source until it strikes the destination. Significantly,
using Dijkstra wavefront expansion approach, for computing a shortest path
between two points in F(P), Hershberger and Suri devised an O(nlgn) time
algorithm in [24]. Further, by extending the algorithm by Kapoor [29] (which
also expands Dijkstra wavefront in F(P), Inkulu, Kapoor, and Maheshwari [27]
devised an O(n+h((1gh)° +(Ign)(Igh))) time algorithm. Here, § is a small posi-
tive constant (resulting from the time for triangulating F(P) with the algorithm
in [6]). The shortest path problem in polygonal domains is extensively stud-
ied [3,16,23,25,26,37,42,43]. A survey of shortest path algorithms in geometric
domains can be found in [35].

A closely related problem is computing a spanner. Given a graph G, a sub-
graph H of G is a t-spanner of G for ¢ > 1 whenever for all pairs of vertices
wand w in G, dg(u,w) < dg(u,w) < t-dg(u,w). The geometric spanner is
a spanner of a graph embedded in a geometric domain. For a comprehensive
survey of results on geometric spanners, refer to monograph [36] by Narasimhan
and Smid and the recent article [12] by Bose and Smid. The spanners of points
located in the free space of a polygonal domain are studied in [2,14,17,26].

Consider the set of rays: for 0 < i < &, the ray r; passes through the origin
and makes an angle if with the positive x-axis, with (x + 1)6 = 27. Each pair
of successive rays defines a cone whose apex is at the origin. This collection
of k cones is denoted by C. It is clear that the cones of C partition the plane.
The Yao-graphs [49] and ©@-graphs [17] compute a spanner by including an edge

Routing Among Convex Polygonal Obstacles 3

between each vertex v and a nearest vertex to v in every cone C,,, where C, is a
cone in C translated so that its apex is at v. These graphs differ with respect to
how the nearest neighbor in each cone C, with the apex at v is chosen: in case
of @-graphs, the nearest neighbor to v is the one that is closest to v in C,, (with
ties broken arbitrarily); In the case of Yao-graphs, the nearest neighbor to v is
the one whose projection onto the line that bisects C, is closest to v (with ties
broken arbitrarily). In these graphs, the stretch factor depends on the number
of cones in C. Significantly, both the Yao and ©-graphs are used in designing
routing schemes [8-10].

The routing scheme for a polygonal domain is considered by Banyassady
et al. [5]. When the polygonal domain comprises convex polygonal obstacles, the
result here improves [5] with respect to the size of routing tables as well as the
preprocessing time. When every vertex stores only the edges that incident to
it and stores no routing table, Bose et al. [8] shown that no geometric routing
scheme can achieve a stretch factor o(/n). This lower bound applies regardless
of the amount of information that may be stored in the message.

In the rest of the paper, the polygonal domain comprises convex polygonal
obstacles in a large-sized bounded box.

Our Contributions

By preprocessing the input polygonal domain P in O(n+ i‘—;polylog(%)) time, we
compute one routing table at each of the vertices in a subset of vertices of P, and
all the routing tables’ together are of size O(n + Q—;polylog(%)). Following [26],
we compute a sketch (2 of the input polygonal domain P: each convex polygon
P in P is approximated with another convex polygon @ such that @ C P and
the number of vertices of () depends only on the input parameter e. This is
accomplished by partitioning the boundary of each obstacle of P into patches.
Let C be a set of cones that partition the plane, wherein the apex of each cone in
C is at the origin and the cone angles of all the cones in C are the same. For every
convex polygonal obstacle @ in {2, using the ideas from [17], for every vertex v
of @ and for every cone C' € C, we compute a closest vertex of v in (2 that is
visible to v in cone C,,, where C,, is the cone resulting from translating C' so that
the apex of the translated cone is at v. Further, by using a property from [5], for
every vertex v € {2, we partition the boundaries of obstacles in {2 into a set of
O(% + h) pieces. For each such piece of v and the cone C, that it corresponds to,
we introduce an entry into the routing table at v, which considers F(P) C F(®)
and every routing path must belong to F(P). For any two successive vertices
v’,v"” along the boundary of an obstacle Q € {2, for Q corresponds to an obstacle
P € P, when the section of bd(P) from v and v”" occurs while traversing bd(P) in
clockwise direction, we save the labels of vertices of P that occur between v’ and
v” in the routing table at v’. This helps in routing the packet to a destination
node along a patch of bd(P) whenever the destination node belongs to that
patch.

In the packet routing phase, a packet is routed from any vertex s of P to
any vertex t of P. Our routing scheme computes a routing path from s to ¢

4 R. Inkulu and P. Kumar

incrementally, that is, by computing successive subpaths of a routing path. Let
s belongs to an obstacle P of P. If s ¢ (2, we first route the packet from s to an
endpoint v of patch to which s belongs to, where v is a closest vertex in {2 to s
along the boundary of P. In the other case, v is the same as s. By consulting the
routing table at v, we forward the packet along a path located in F(P) to next
hop v’ € £2. Upon packet reaching v’, our routing scheme checks whether v’ is
equal to t. If it is, the algorithm terminates. Otherwise, our algorithm consults
the routing table at v’ and forwards the packet to the next hop along a geodesic
subpath in F(P). That is, depending on whether the packet belongs to patch S,
where v’ € S. If t € S, then the packet is forwarded along a section of S. If ¢ does
not belong to S, we forward the packet from v’ using an analogous algorithm to
forward the packet from v to v’. We prove that this scheme computes a routing
path with an multiplicative stretch 1 4+ ¢ and an additive stretch 2k¢. That
is, d(s,t) < r(s,t) < (14 €)d(s,t) + 2k, where r(s,t) is the distance along the
routing path between s and ¢, and d(s, t) is the geodesic shortest distance among
obstacles in P between s and t¢. Here, k is the number of obstacles intersected
by the routing path, and ¢ is a parameter that depends on the geometry of
polygonal obstacles in P. Further, our algorithm does O(lg (n + %)) amount of
work at O(1) vertices of each of the k obstacles that the routing path intersects.

The algorithm in [5] computes a routing path with stretch 1+ e with prepro-
cessing time O(n?lgn+2) and it computes routing tables of size O(n(L+h)Ign).
Our algorithm substantially improves the space of the routing tables’ and the
time to compute these tables, when h is small compared to n (which is typically
true). However, in this paper, only the polygonal domain with convex obstacles
is considered; and, unlike the result in [5], the routing path obtained here has
an additive stretch as well.

2 A Few Structures

In the following subsections, we prove a few structures needed to describe our
algorithm. These include a sketch of P, routing tables stored at a select set of
vertices of P, geodesic cones introduced at these vertices, and pieces defined with
respect to vertices and cones of (2.

2.1 Sketch of P

For any obstacle P; € P and any two points p’ and p” on the boundary of
P;, the section of boundary of P; that occurs while traversing from p’ to p”
in counterclockwise order is termed a patch of P;. In specific, we partition the
boundary of each P; € P into a collection of patches I'; such that for any two
points p’, p”’ belonging to any patch « € I}, the angle between the outward (w.r.t.
the centre of P;) normals to respective edges at p’ and p” is upper bounded by
5. The maximum angle between the outward normals to any two edges that
belong to a patch a constructed in our algorithm is the angle subtended by a.. To
facilitate in computing patches of any obstacle P;, we partition the unit circle

Routing Among Convex Polygonal Obstacles 5

S? centered at the origin into a minimum number of segments such that each
circular segment is of length at most 5. For every such segment s of S?, a patch
(corresponding to s) comprises a maximal set of the contiguous sequence of edges
of P; whose outward normals intersect s when each of these normals is translated
to the origin. In particular, for each patch « € I, the first and last vertices of «
that occur while traversing the boundary of P; are chosen to be in the coreset S;
of P;. The coreset S of P is then simply | J; S;. For 1 < i < h, the core-polygon
Q; of P;is CH(S;). Let £2 be the set comprising of core-polygons corresponding
to each of the polygons in P. The set 2 is called a sketch of P.

Proposition 1 (Lemma 1, [26]). Let I; be a partition of the boundary of
a convex polygon P; into a collection of O(%) patches as described above. The
geodesic distance between any two points p,q belonging to any patch o € I, the
geodesic distance between p and q along « is upper bounded by (1 + ¢€)||pql|, for
e <1

Proof: For any two points p and g, respectively located on edges e, and e, of a

patch, the angle between e, and e, is upper bounded by 7— 5. Hence, the geodesic

length of patch between p and ¢ is upper bounded by % < (14 €)lpqll,
2 4

when € < 1. O

The h convex polygons in P (resp. (2) are denoted by Pi,..., P, (resp.
Q®1,...,Qn). The convex polygon in {2 that is a corepolygon of convex poly-
gon P; € P is denoted by @Q;. Analogously, the convex polygon in P from which
the corepolygon Q; € (2 is computed is denoted by P;. For any patch «, the
endpoint that occurs last while traversing « in the counterclockwise direction is
called the owner of «.

2.2 Routing Path and Its Stretch

Every vertex v of P is associated with a unique label ¢(v), a binary number.
And, every obstacle P of P is associated with a unique label ¢(P), which is also
a binary number. We assume the packet needs to be transferred from any vertex,
called a source verter, of P to any other vertex, called a destination vertex, of
P. We denote the source and destination vertices by s and ¢, respectively. The
packet stores the label of the destination, ¢(t), with it. In the preprocessing
phase, with each vertex v € (2, we store a routing table p(v) comprising unique
labels of vertices. The routing tables’ together help in guiding the packet to reach
its destination efficiently. Specifically, at a subset of vertices v along the path
the packet travels, using only p(v) and ¢, the algorithm determines the geodesic
path to reach a specific vertex in (2.

Suppose t belongs to a patch « and the owner of « is t’. Then, our routing
scheme first routes packet to t’, and then the packet gets routed from t’ to
t along a geodesic shortest path on « between ¢’ to ¢. In every iteration of the
algorithm, the packet is routed from one vertex of {2 to another vertex of {2 along
a geodesic path located in F(P), until the packet reaches t’. This is accomplished

6 R. Inkulu and P. Kumar

by consulting routing tables at vertices of {2 that occur along that path. The
piecewise linear s-t path computed by our routing scheme is guaranteed to belong
to F(P), and we call this path the routing path. The distance along the routing
path is the routing distance.

For every two vertices v/,v"” € P, suppose d(v',v") < r(v',v") < §-d(v',v")+
p, for 8, p > 1. Here, r(v',v") is the routing distance between v’ and v” deter-
mined by an algorithm, and d(v’,v"”) is the geodesic shortest distance between
v" and v in P. Then, the routing path computed by that algorithm is said to be
an (d, p)-approximation to the geodesic shortest path. Specifically, 0 is termed
the multiplicative stretch and p is called the additive stretch of the routing path.

2.3 Geodesic Cones

Let 7’ and 7’ be two rays with origin at p. Let o7 and v5 be the unit vectors along
the rays " and r” respectively. A cone Cp(r’,1") is the set of points defined by
rays 7’ and r” such that a point ¢ € Cp(r/, ") if and only if ¢ can be expressed
as a convex combination of vectors v; and vs with positive coefficients. When
the rays v and 7" are evident from the context, we denote the cone with C,.
The counterclockwise angle from the positive x-axis to the line that bisects the
cone angle of C), is termed as the orientation of the cone C,. The angle between
rays r’ and r” is the cone angle of C,,.

We denote the set of cones, each with cone angle € and each with the apex
at the origin, which together partitions the plane by C. We note the number of
cones in C is O(2). Any cone C € C translated so that its apex is at a point
p € R? is denoted by C,,.

Let C € C be a cone with orientation 6 and let C' € C be the cone with
orientation —f. For each cone C € C and a set K of points, the set of cones
resultant from introducing a cone C), for every point p € K is the conic Voronoi
diagram with respect to C' and K. Using the algorithm from [17], for every cone
C € C, a conic Voronoi diagram (CVD) is computed using a plane sweep (refer
to [19]). And, the planar point location data structure is used to locate the region
in that CVD to which a given query point belongs. In specific, we compute a
closest vertex of v in C,, for every vertex v € {2 using the CV D(C, Vy,), where
Vi, is the set of vertices that define 2. Among the points in C,, if more than
one point is close to v, then we arbitrarily pick one of those points.

Further, [17] computes a geodesic spanner by joining each vertex v to a closest
point in each cone C, for every C € C. And, it proves that this construction
indeed yields a spanner with a multiplicative stretch (1 4 €). Our algorithm
implicitly relies on this construction.

2.4 Piece

A piece of C,, is a section of the boundary of an obstacle such that the first edge
of the shortest path from v to any vertex of that section lies in C,. Naturally, a
piece is always with respect to a vertex v and a cone C,,. For any C € C, if B is a
piece of C,,, then is called a piece of v. Among all the vertices of 2 in C,, let

Routing Among Convex Polygonal Obstacles 7

r € {2 be the vertex closest to v. Any packet at v that is destined for any vertex
belonging to a piece of C,, our routing scheme forwards it to r along a geodesic
shortest path in F(P).

The following property from [5] (Lemma 4.2) proves that every piece is con-
tiguous along the boundary of an obstacle.

Proposition 2. Let e = (v,s) be an edge in shortest path tree T' rooted at v.
Also, let S be the set of all vertices belonging to any obstacle QQ € (2 whose
first edge in the shortest path from v is e. Then, all the vertices in S occur
contiguously along the boundary of Q. Furthermore, let f = (v,s") another edge
in T, such that e and [are consecutive edge in T around v. Let S’ be the set
of all vertices belonging to any obstacle Q € {2 whose first edge in the shortest
path from v is either e or f. Then, again all the vertices in S’ occur contiguously
along the boundary of Q.

For any vertex v € {2, from the non-crossing property of shortest paths, there
is at most one section of the boundary of any obstacle that is part of a piece of
more than one cone with apex at v. From this, the following is an immediate
upper bound on the number of pieces.

Lemma 1 (Lemma 5.2, [5]). For any vertex v € {2, the number of pieces of v
is O(L +h).

3 Algorithm

In the preprocessing phase, we compute {2 and build a routing table at each
vertex of (2. In the packet routing phase, a packet located at any given source
vertex s € P is routed to any given destination node t € P along a path located
in F(P).

As described above, we compute a sketch {2 of P that has h convex polygonal
obstacles, defined with O(%) vertices. To find pieces of vertices of (2, for every
vertex v € (2, using the algorithm from [24], we compute the shortest path tree
in F(£2) that contains a shortest path from v to every other vertex of §2. As
described in Subsect. 2.3, using CVDs from [17], we compute a nearest visible
vertex of v in C), for every vertex v € {2 and every C' € C. Further, we build
data structures with the processing algorithm for answering ray-shooting queries
from [15].

By exploiting Proposition 2, for every piece 3 of C,, we could store in p(v)
the label of obstacle P to which g belongs, the endpoints of 3, together with
a nearest visible vertex r € {2 in C, among obstacles in 2. However, since the
routing path must belong to F(P) and since F(P) C F({2), instead of saving
r in p(v), we ray-shoot with ray vr among obstacles of P. Suppose this query
returns a point p located on an obstacle P’ € P. Then the line segment pr
intersects P’ with the other endpoint, say p’ € bd(P’). We note that both p and
p’ belong to the same patch o’. Among the two endpoints of ¢, let v' be the
endpoint that has the shortest geodesic distance along bd(P’) to p’. We save v’

8 R. Inkulu and P. Kumar

and p in p(v), noting the geodesic path in F(P) from v to v’ passes through p
as part of reaching to r. Essentially, packet is transferred from v to p along line
segment vp and then it is transferred from p to v’ along the geodesic shortest
path on o'.

In other words, during the routing phase, if a packet reaches vertex v, our
scheme checks whether (i) v is the destination of the packet (i.e., t = v), (ii)
packet needs be routed to t that is located on patch « to which v belongs, or
(iii) needs to be transferred from v by consulting p(v). For below description,
let v be located on a patch a and let v’ be located on a patch o’. There are
three subcases to (iii): In Subcase (a), the labels of p,v’" and r are stored with
the entry of interest in p(v). In this subcase, the packet is routed to p along a
line segment vp first, and then it is transferred from p to v’ along the geodesic
shortest path on patch o’. In Subcase (b), the labels of p,p’, and r are present
in the entry. Then, we transfer it from v to p’ along «, from p’ to p along the
line segment p’p, and from p to v’ along the geodesic shortest path on o’. In
Subcase (c), only r is present; hence, we directly transfer the packet from v to
r along line segment vr. The Subcase (¢) implies r is visible to v, and r is not
visible from v in subcases (a) and (b).

Theorem 1. Given a polygonal domain P comprising convex polygonal obsta-
3
cles, our algorithm preprocesses P in O(n + %polylog(%)) time and construct

routing tables of size O(n+ Q—fpolylog(%)) so that given any two vertices s,t € P
algorithm outputs a routing path between s and t located in F(P) with a multi-
plicative stretch 14+€ and an additive stretch 2k€, while the routing scheme makes
the routing decisions by searching the routing tables located at O(k) nodes along
the routing path. Here, k is the number of obstacles the routing path intersects,
¢ is the mazximum length of any patch in P, and € < 1 is an input parameter.

Proof: Computing (2 from P takes O(%) time. Using the algorithm from [24],
to compute a SPT, in {2 from any vertex v € {2 takes O(%lg%) time. The
time involved in computing shortest path trees rooted at all the vertices of {2
takes O(};—jlg%). For any cone C € C, for every vertex v of {2, determining
a vertex in {2 that is closest in C, to v takes O(%lg%) time using a plane
sweep, that is, by building a conic Voronoi diagram. Since there are O(%) cones
in C, the total time to compute closest neighbor of every vertex in every cone
together takes O(e% lg %) time. The preprocessing time for ray-shooting query
algorithm from [15] is O(n + h?polylog(h)) and the space of data structures that
it constructs is O(n+h?). Since we invoke O(h) ray-shoot queries for each vertex
v € {2 and cone C € C combination, since {2 has O(%) vertices, and since C has

O(1) cones, it takes O(%2 lgn) time to compute p,p’, v, r. From [5], the size of
routing tables is O((2(1 + h)lg), ie., O((% + h;) lg). And, since each such
closest point may intersect h obstacles, the number of entries in all the routing
tables together is O(gpolylog(%)) for € < 1. Due to Subcases (a) and (b) of
Case (iii), if the path intersects k obstacles and the maximum length of any

patch it intersects is £, then there is an additive factor of 2k/. a

Routing Among Convex Polygonal Obstacles 9

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Abraham, 1., Gavoille, C.: On approximate distance labels and routing schemes
with affine stretch. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 404—415.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24100-0_39
Arikati, S., Chen, D.Z., Chew, L.P., Das, G., Smid, M., Zaroliagis, C.D.: Planar
spanners and approximate shortest path queries among obstacles in the plane.
In: Diaz, J., Serna, M. (eds.) ESA 1996. LNCS, vol. 1136, pp. 514-528. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61680-2_79

Asano, T., Asano, T., Guibas, L.J., Hershberger, J., Imai, H.: Visibility of disjoint
polygons. Algorithmica 1(1), 49-63 (1986). https://doi.org/10.1007/BF01840436
Awerbuch, B., Bar-Noy, A., Linial, N., Peleg, D.: Improved routing strategies with
succinct tables. J. Algorithms 11(3), 307-341 (1990)

Banyassady, B., et al.: Routing in polygonal domains. Comput. Geom. 87, 101593
(2020)

Bar-Yehuda, R., Chazelle, B.: Triangulating disjoint Jordan chains. Int. J. Comput.
Geom. Appl. 4(4), 475-481 (1994)

Bose, P., Fagerberg, R., van Renssen, A., Verdonschot, S.: Optimal local routing on
Delaunay triangulations defined by empty equilateral triangles. STAM J. Comput.
44, 1626-1649 (2015)

Bose, P., Fagerberg, R., van Renssen, A., Verdonschot, S.: Competitive local rout-
ing with constraints. J. Comput. Geom. 8(1), 125-152 (2017)

Bose, P., Korman, M., van Renssen, A., Verdonschot, S.: Routing on the visibility
graph. In: Proceedings of International Symposium on Algorithms and Computa-
tion, pp. 18:1-18:2 (2017)

Bose, P., Korman, M., van Renssen, A., Verdonschot, S.: Constrained routing
between non-visible vertices. Theor. Comput. Sci. 861, 144-154 (2021)

Bose, P., Morin, P.: Competitive online routing in geometric graphs. Theor. Com-
put. Sci. 324(2), 273-288 (2004)

Bose, P., Smid, M.: On plane geometric spanners: a survey and open problems.
Comput. Geom. 46(7), 818-830 (2013)

Chechik, S.: Compact routing schemes with improved stretch. In: Proceedings of
Symposium on Principles of Distributed Computing, pp. 33—41 (2013)

Chen, D.Z.: On the all-pairs Euclidean short path problem. In: Proceedings of
Symposium on Discrete Algorithms, pp. 292-301 (1995)

Chen, D.Z., Wang, H.: Visibility and ray shooting queries in polygonal domains.
Comput. Geom. 48(2), 31-41 (2015)

Chiang, Y.-J., Mitchell, J.S.B.: Two-point Euclidean shortest path queries in the
plane. In: Proceedings of Symposium on Discrete Algorithms, pp. 215-224 (1999)
Clarkson, K.L., Kapoor, S., Vaidya, P.M.: Rectilinear shortest paths through polyg-
onal obstacles in O(n(lgn)?) time. In: Proceedings of Symposium on Computa-
tional Geometry, pp. 251-257 (1987)

Cowen, L.: Compact routing with minimum stretch. J. Algorithms 38, 170-183
(1999)

de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geom-
etry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-77974-2

Eilam, T., Gavoille, C., Peleg, D.: Compact routing schemes with low stretch factor.
J. Algorithms 46(2), 97-114 (2003)

https://doi.org/10.1007/978-3-642-24100-0_39
https://doi.org/10.1007/3-540-61680-2_79
https://doi.org/10.1007/BF01840436
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-77974-2

10

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

R. Inkulu and P. Kumar

Fraigniaud, P., Gavoille, C.: Routing in trees. In: Orejas, F., Spirakis, P.G., van
Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 757-772. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-48224-5_62

Ghosh, S.K.: Visibility Algorithms in the Plane. Cambridge University Press, New
York (2007)

Guibas, L.J., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.E.: Linear-time
algorithms for visibility and shortest path problems inside triangulated simple
polygons. Algorithmica 2, 209-233 (1987). https://doi.org/10.1007/BF01840360
Hershberger, J., Suri, S.: An optimal algorithm for Euclidean shortest paths in the
plane. STAM J. Comput. 28(6), 2215-2256 (1999)

Inkulu, R., Kapoor, S.: Planar rectilinear shortest path computation using corri-
dors. Comput. Geom. 42(9), 873-884 (2009)

Inkulu, R., Kapoor, S.: Approximate Euclidean shortest paths amid polygonal
obstacles. In: Proceedings of Symposium on Algorithms and Computation (2019)
Inkulu, R., Kapoor, S., Maheshwari, S.N.: A near optimal algorithm for finding
Euclidean shortest path in polygonal domain. CoRR 1011.6481 (2010)

Kaplan, H., Mulzer, W., Roditty, L., Seiferth, P.: Routing in unit disk graphs.
Algorithmica 80(3), 830-848 (2018). https://doi.org/10.1007/s00453-017-0308-2
Kapoor, S.: Efficient computation of geodesic shortest paths. In: Proceedings of
Symposium on Theory of Computing, pp. 770-779 (1999)

Kapoor, S., Maheshwari, S.N.: Efficient algorithms for Euclidean shortest path
and visibility problems with polygonal obstacles. In: Proceedings of Symposium
on Computational Geometry, pp. 172-182 (1988)

Kapoor, S., Maheshwari, S.N.: Efficiently constructing the visibility graph of a
simple polygon with obstacles. SIAM J. Comput. 30(3), 847-871 (2000)

Kapoor, S., Maheshwari, S.N., Mitchell, J.S.B.: An efficient algorithm for Euclidean
shortest paths among polygonal obstacles in the plane. Discrete Comput. Geom.
18(4), 377-383 (1997). https://doi.org/10.1007/PL00009323

Konjevod, G., Richa, A.W., Xia, D.: Scale-free compact routing schemes in net-
works of low doubling dimension. ACM Trans. Algorithms 12(3), 1-29 (2016)
Mitchell, J.S.B.: Shortest paths among obstacles in the plane. Int. J. Comput.
Geom. Appl. 6(3), 309-332 (1996)

Mitchell, J.S.B.: Shortest paths and networks. In: Handbook of Discrete and Com-
putational Geometry, pp. 811-848. CRC Press (2017)

Narasimhan, G., Smid, M.H.M.: Geometric Spanner Networks. Cambridge Univer-
sity Press, Cambridge (2007)

Overmars, M.H., Welzl, E.: New methods for computing visibility graphs. In: Pro-
ceedings of the Fourth Annual Symposium on Computational Geometry, pp. 164—
171 (1988)

Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables. J.
ACM 36(3), 510-530 (1989)

Roditty, L., Tov, R.: New routing techniques and their applications. In: Proceedings
of ACM Symposium on Principles of Distributed Computing, pp. 23-32 (2015)
Roditty, L., Tov, R.: Close to linear space routing schemes. Distrib. Comput. 29(1),
65—74 (2015). https://doi.org/10.1007/s00446-015-0256-5

Santoro, N.; Khatib, R.: Labelling and implicit routing in networks. Comput. J.
28(1), 5-8 (1985)

Sharir, M., Schorr, A.: On shortest paths in polyhedral spaces. STAM J. Comput.
15(1), 193-215 (1986)

Storer, J.A., Reif, J.H.: Shortest paths in the plane with polygonal obstacles. J.
ACM 41(5), 982-1012 (1994)

https://doi.org/10.1007/3-540-48224-5_62
https://doi.org/10.1007/BF01840360
https://doi.org/10.1007/s00453-017-0308-2
https://doi.org/10.1007/PL00009323
https://doi.org/10.1007/s00446-015-0256-5

44.

45.

46.
47.

48.

49.

Routing Among Convex Polygonal Obstacles 11

Thorup, M.: Compact oracles for reachability and approximate distances in planar
digraphs. J. ACM 51(6), 993-1024 (2004)

Thorup, M., Zwick, U.: Compact routing schemes. In: Proceedings of Symposium
on Parallel Algorithms and Architectures, pp. 1-10 (2001)

Thorup, M., Zwick, U.: Approximate distance oracles. J. ACM 52(1), 1-24 (2005)
Welzl, E.: Constructing the visibility graph for n-line segments in O(n?) time. Inf.
Process. Lett. 20(4), 167-171 (1985)

Yan, C., Xiang, Y., Dragan, F.F.: Compact and low delay routing labeling scheme
for unit disk graphs. Comput. Geom. 45(7), 305-325 (2012)

Yao, A.C.: On constructing minimum spanning trees in k-dimensional spaces and
related problems. SIAM J. Comput. 11(4), 721-736 (1982)

l‘)

Check for
updates

Target Coverage with Minimum Number
of Camera Sensors

1(=)

Pei Yao'®, Longkun Guo , Shuangjuan Li’®, and Huihong Peng!

! Fuzhou University, Fuzhou, China
lkguo@fzu.edu.cn
2 South China Agricultural University, Guangzhou, China

Abstract. With the development of the smart city, camera sensors
have attracted more and more research interests from both academic
researchers and industrial engineers. Given a set of points of interests
(POI) and a set of cameras, practical applications require to deploy these
cameras with the minimum cost so that these POIs can be fully covered
by these cameras. In this paper, we study a problem called Min-Num
LTC-CS, which is, given a set of POIs located on a line segment and a
set of cameras distributed on the plane, to choose a minimum number of
cameras so that these POIs can be fully covered by the sensing ranges
of these cameras. We first propose a grouping algorithm by grouping
the POls according to whether they can be covered by the same camera
with certain rotation angle and then construct a graph using these POI
groups. We show that there exists a feasible constrained st-flow if and
only if there exists a subset of cameras that can completely cover these
POIs. Then we propose an LP formulation for the constrained flow prob-
lem and prove that any basic solution of the LP formulation is integral,
which consequently leads to an optimal solution to Min-Num LTC-CS by
solving this LP formulation. Lastly, extensive numerical experiments are
conducted to demonstrate the practical performance of our algorithms.

Keywords: Camera sensor network - Constrained flow - Linear
programming - Integer optimal solution

1 Introduction

Wireless sensor network has been attracting lots of research interest from many
researchers, since it has many practical applications, including monitoring the
gas pipeline such that the pipeline leakage can be timely found by these sensors,
and monitoring the border of the country or a building to prevent illegal entrance.

Compared with traditional sensors, camera sensors can obtain more rich dig-
ital information such as the pictures and videos. Different from traditional sen-
sors, camera sensors have some unique coverage characteristics [16]. Based on
computer vision technology, camera sensors can be widely used in lots of applica-
tions, such as coal mine monitoring, urban underground engineering, and online
virtual roaming. However, in some cases the pictures or videos captured by

© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 12-24, 2021.
https://doi.org/10.1007/978-3-030-92681-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_2&domain=pdf
http://orcid.org/0000-0002-6151-3462
http://orcid.org/0000-0003-2891-4253
http://orcid.org/0000-0002-1014-3166
http://orcid.org/0000-0003-3518-6880
https://doi.org/10.1007/978-3-030-92681-6_2

Target Coverage with Minimum Number of Camera Sensors 13

5S4
gL
L

%)

Fig. 1. Coverage angle 6§ and rotation angle « for s;.

cameras are useless if these cameras are deployed with wrong rotation angles.
Therefore, for different coverage requirements, how to choose the rotation angles
of cameras for intrusion detection is a challenging problem. Different from tra-
ditional sensors, once the camera sensor is deployed, its position is fixed and its
covering region can be changed only by rotation. Similar to stationary sensor and
mobile sensor, there are three types of sensor coverage [4]: region coverage [10],
barrier coverage [9], and point coverage [19]. In this paper, we study a special
target problem, called on-a-Line Target Coverage of Camera Sensors (LTC-CS),
which is formally defined as follows:

Definition 1 (On-a-Line Target Coverage of Camera Sensors problems, LTC-
CS). Let II be a set of points of interests (POls) in which each POI p; € II has
a position with (p;, 0). Let I' be a set of camera sensors each of which s; € II
has a position (x;, y;), a sensing radius r, and a coverage angle 6. The Min-Num
LTC-CS problem aims to choose a minimum number of camera sensors from I'
such that each POI in II is covered by the sensing range of at least one camera
sensor.

Figure 1 illustrates an example of coverage angle § and rotation angle ;. As
a generalization of Min-Num LTC-CS, the Min-Sum LTC-CS problem aims to
minimize the sum of the rotation angles of all sensors used for covering all the
POIs. Formally, let v be the sum of the rotation angles, i.e. v = Zsiel“' «; where
I'" C I" where each I is the set of used cameras. Then Min-Sum LTC-CS is to
minimize +.

1.1 Related Work

Coverage using directional wireless network which consists of directional sensors
was firstly discussed by Ma and Liu [13]. When all POIs are distributed on a
plane, the sensor coverage of these POIs can be regarded as a set cover problem,
and Fowler et al. [5] proved that the planar geometric covering problem is an
N P-complete problem by reduction to 3-SAT problem. Cai et al. [2,3] studied
the multiple directional coverages sets problem (MDCS), which is to find K cover
set Dy, -+, Dg C D, where D is a collection of a subset of A and D; has a
nonnegative weight ¢;, such that Zfil t; is maximized and Zfil |sND;|-t; <L
for each s € S and a given positive number L, where S is a collection of sub-
sets of D. The authors proved that the MDCS problem is N P-complete and
proposed some centralized algorithms and distributed algorithms for MDCS.

14 P. Yao et al.

Ai and Abouzeid [1] proposed a maximum coverage with minimum sensors prob-
lem and proved this problem is N P-complete by reduction to the maximum
cover problem. They proposed an integer linear programming formulation and
also presented an approximation centralized greedy algorithm. Other problems
about directional sensors were also studied, such as the k-coverage problem [6,8],
service delay minimization problem [21], rotatable and directional sensor deploy-
ment problem [23].

Camera sensor network, a special directional sensor networks, has also been
extensively studied by lots of researchers. Liu et al. [11] studied the directional
k-coverage problem in a camera sensor network and the aim of the problem is to
cover each point in the given region by at least k different cameras. Wang and
Cao [22] studied full-view coverage in a camera sensor network, where full-view
coverage requires that an object is always covered by at least one camera for
any direction from 0 to 27 and the facing direction of the object is sufficiently
close to the viewing direction of the sensor. Later, Ma et al. [14] studied the
minimum camera barrier coverage problem in a camera sensor network based on
the definition of full-view coverage in [22] and proposed an optimal algorithm
to solve this problem. Jia et al. [7] designed a (1 — 1)-approximation algorithm
and an efficient heuristic algorithm for the maximum full-view target coverage
problem in a camera sensor network.

Recently, Liu and Ouyang [12] derived a k-coverage probabilistic expression
to estimate the minimum number of camera sensors when the k-coverage can
be achieved while all camera sensors are randomly deployed outside the field
of interest. Si et al. [18] proposed a realistic resolution criterion to capture the
intruder’s face for a three-Dimensional (3D) sensing model of a camera sensor
and they are the first to study the barrier coverage of camera sensor network
in 3D setting. Later, Wang et al. [20] studied the fundamental problem of the
placement of unmanned aerial vehicles for achieving 3D directional coverage and
proposed a greedy algorithm to solve the problem with a (1 — 1/e) approxima-
tion ratio. Saeed et al. [17] proposed an autonomous system called Argus which
aims to minimize the number of drones required to cover a set of targets and
proved the problem is N P-hard by reduced it to a polygon illumination problem.
Mao et al. [15] proposed an alternating optimization algorithm with guaranteed
convergence based on block coordinate descent and successive convex approxi-
mation to minimize the maximum computation delay among internet of things
devices.

1.2 Our Results

In this paper, we devise an approach for optimally solving Min-Num LTC-CS in
polynomial time. The contribution of the paper can be summarized as follows:

— Propose a grouping algorithm that clusters the given POIs according to
whether a set of POIs can be covered by a camera sensor.

— Propose an LP formulation for the constrained flow problem for modeling the
placement problem.

Target Coverage with Minimum Number of Camera Sensors 15

- 9, Pt 9 Q
, . o N
\
\
! < S~
* o0 * e * o . .0
P p2Pp3 !
(a) (b) (c) (d)

Fig. 2. An example of a POI groups. In (a), there exist three POIs IT = {p1, p2, ps}.
As a consequence, there can be four POI groups G = {G1, G2, G3, G4}, where G| =
{p1}, G2 ={p1, p2}, Gs = {p2, ps} and G4 = {ps}.

— Prove that any basic solution of the LP formulation can be rounded to an
integral solution.

1.3 Organization

The remainder of the paper is organized as follows: Sect.2 presents a grouping
algorithm and the integer linear program formulations of two problems: Min-
Num LBC-CS; Sect. 3 proposes an LP-rounding algorithms to solve the Min-Num
LBC-CS; Sect. 4 demonstrates experimental results; Sect. 5 lastly concludes this

paper.

2 Integer Linear Programs

In this section, we propose an Integer Linear Programming (ILP) formulation
for Min-Num on-a-Line Target Coverage of Camera Sensor (LTC-CS). First of
all, we propose a grouping algorithm for clustering the set of points of interests
(POIs) into some groups such that each group can be covered by a camera sensor
under a rotation angle. Then, we formulate an ILP based on these groups to solve
Min-Num LTC-CS.

2.1 Camera Sensor Group

For a camera sensor s;, its coverage region can be modeled as a sector such
that s; can cover multiple POIs at the same time. For two POIs p; and p; and
camera sensor s;, we denote Zp;s;p; as a angle. Then, we say a set of POIs
II, can be completely covered by sensor s; if and only if any pair of POIs
pi, pj € I satisfies Zp;s;p; < 6 and |p;s;| < 7, |pjsi| < r, where 0 is the
coverage angle of camera sensor s; and r is the radius of s;. We say such set of
POIs II; is a POI group, whose formal definition is as follows:

Definition 2. (POIs group) Let I = {p1, -+, pm} be a set of POIs, where
each p; € II is with the position (x;, 0) on a line. Let II; be a subset of II. If
11, is exactly a set of target completely covered by one camera sensor, then
we say I is a POI group.

16 P. Yao et al.

Algorithm 1. A grouping algorithm for POIs groups.
Input: A set of camera sensors I' and each camera sensor s; € I" is with the position
(i, yi); the coverage angle 0; the sensing radius r; a set of POIs II, in which each
pj € II has a position (p;, 0).
Output: a set of POIs groups G.
Phase I: For each camera sensor s;, find all POIs that it can cover;
1: Set G :=0, A:={Aq, -+, An} where A; = 0;
2: For i =1 to n do
3: Set v; = x; — /7% —y? and w; = x; + /1% — yZ;
/* The maximum range at which camera sensor s; intersects the line during
rotation. */
4: Set pm = min{p;|vi < p; S wi}, pn = max {p;|vi < p; Swi};

a3 Set A7f = {pma Pm+1, 0y p’ﬂ}v
6: Endfor
Phase II: For each camera sensor s;, group all the POIs that s; can cover

7: For i =1 ton do

8: Select the first element of A; as the first POIs group, i.e. G := {4; [1]};

9: Set G := GU{G}, and let j, :=1, ju, = 2;

10: While j, < |4;| do

11: Find 0pmir := min {p (0, juw), p' (0, ju)};
/* p(0, jw) is the angle at which element A; [j] is exactly deleted from
G and p’ (0, ju) is the angle at which element A; [j,] is exactly added
to G. */

12: If Orin = p (0, juw) # p' (0, ju) then

13: Set juw :=jw + 1, G := G\ {Ai [Juw]}, G :== GU{G};

14: If Orin = p' (0, ju) # p (0, juw) then

15: Set ju :=ju+1, G:=GU{A; [ju]}, G :=GU{G};

16: If p(0, jw) = p' (6, ju) then

17: Set ju := juw + 1, ju = ju + 1, G := G\ {4 [juw]} U {4; [7ul},

G :=GU{G};

18: Endwhile

19: Endfor

20: return G.

For briefness, we use G = {Gy, ---, Gy} to represent all POI groups of

II, where each G; € G is a POI group of II and contains at least one POL.
Obviously, G; € G can be covered by one camera sensor. Figure2 shows an
example of grouping POIs. In the figure, there exist three POIs IT = {p1, p2, ps},
which can produce a family of four POI groups G = {G1, G2, G3, G4}, where
G1 = {p1} (Fig.2(a)), G2 = {p1, p2} is obtained by adding ps to G1 (Fig. 2(b)),
G3 = {pa, p3} is obtained by adding ps to G5 and deleting p; at the same time
(Fig.2(c)), and G4 = {p3} is acquired by deleting po from G5 (Fig.2(d)).

Based on Definition 2, we can propose a grouping algorithm of grouping the
given set of POIs IT into several groups. Two POI groups G; and G; are different
if and only if there exists at least a POI p; that satisfies p; € G;, p; ¢ G, or
pi ¢ Gi, pi € G;. The grouping algorithm runs in two steps as follows:

Target Coverage with Minimum Number of Camera Sensors 17

1. Find a subset of IT denoted as II; which can be covered by camera sensor s;
when s; rotates 360°, i.e. the distance d(s;, p;) < r for Vp; € II;;

2. Find two POIs p; and p;, where p; € II; is the leftmost POI that is covered
by sensor s; and p; € II; is the rightmost POI that can be covered on the
line at the same time by s;, i.e. the angle Zp;s;p; < 6.

For a POI group Gj, let p (6, j.,) and p’ (0, j,,) be the minimum angle at which
element j,, € G; is deleted from G; or added to G, respectively. Then the
detailed algorithm is shown in Algorithm 1.

Lemma 1. Algorithm 1 takes O (nm) time to construct the POI groups G.

Proof. From Step 2 to Step 6, Algorithm 1 needs O (nm) time to compute a set
of POIs A; which is a set of POIs that camera sensor s; may cover. Steps 7-18
take O (nm) times to construct the POI group G.

2.2 Integer Linear Programming Formulation

Let IT be a set of POIs and G = {Gy, -+, G} be a set of POI groups, where G
is formed by grouping all POIs of II. Let x;; represent whether camera sensor
s; cover POI group Gj, then z;; € {0, 1}. Let y; indicate whether POI group
G; is covered, i.e. y; € {0, 1}. Then the ILP formulation of Min-Num can be
described as follows:

min E Tij
i

s.t. inj <1 Vs; € I
J
i <> xi Vg; €6 (1)
Z Yj >1 VGJ eg
j:tEGj
l‘ijE{O,l} VSZ'EF,G]‘EQ
Yj S {0, 1} VGJ S g

where the first constraint means each camera sensor s; can be used at most
once, the second guarantees that the portion of the POI group G; is covered
does not exceed the total portion of all camera sensors covering G, and the
third inequality ensures that each POI must be covered at least one in total.

Moreover, let a;; be the rotation angle of camera sensor s; when s; is used
to cover the POI group G;. Then we can generalize the above ILP to Min-Sum
LTC-CS by setting the objective function as min), ;jc;;, while retaining the
constraints the same as those of the Min-Num version.

18 P. Yao et al.

3 LP-Rounding Algorithm via Transformation
to the Shortest Matching-Path Problem

In this section, we first transform the Min-Num for the on-a-Line Target Cover-
age of Camera Sensor (LTC-CS) problem into a Shortest Matching-Path (SMP)
problem over a weighted graph. Secondly, the Linear Program (LP) of SMP was
given. Thirdly, we prove there exists an integer solution for SMP iff SMP is
feasible.

3.1 The Construction

To solve Min-Num LTC-CS, we will construct a graph based on Algorithm 1. In
the construction, it is important to judge whether two points of interest (POI)
groups are adjacent, where the definition of the adjacent POI groups is as follows:

Definition 3. (The adjacent POI groups). Let G = {G1, -+, G} be a set of
POI groups, where G; € G contains at least one POIL. Letl; and g; be the leftmost
and rightmost POIs of G; € G, respectively. Then for two POI group G;,G; € G
with l; < gj, we say they are adjacent if and only if there exists no targets between
gi and l; orl; < g; holds.

The directed auxiliary graph can be constructed in the following main steps:

1. Vertices: For each POI group, we add a corresponding vertex, and collec-
tively obtain V' as the set of vertices V. = {Gy, -+, G, }, where m is the
number of POI groups.

2. Edges: For two adjacent points G; and G, we add an arc (G;, G;) to the
graph, in which G; is the tail of the arc and G is the head of the arc.

(a) If p1 € G; holds, there exists an arc (s, G;), and if p,, € G;, there exists
an arc (Gj, t), where i, j € [n]" and m is the number of POI groups;

(b) For any two POI groups G; and G, if G; is adjacent to G; then there
exists an arc (G;, G;);

(c) For each POI group G, if a camera sensor s; can completely cover G;
then there exists a flow from s; to Gj.

Figure 3 shows an example executing the above construction in details, in
which I = {s1, sa, s3, 84, s5} and IT = {p1, --- , p1o} (Fig.3(a)). By Algorithm
1, seventeen POI groups are computed as in Fig. 3(b). Then we can construct
the directed graph, as part of the auxiliary graph, for all POI groups as in
Fig.3(c). Finally, we add the points corresponding to the sensors in the graph
as in Fig. 3(d), which corresponds for the counterpart of matching.

Target Coverage with Minimum Number of Camera Sensors 19

The set of POIs s; may cover:
s1:{p1, P2, p3} 20 {pa, s, Po, P}
s3: {p7, Ps, Do Pro}

512 {p2, ps} 551 {Pss Po» D7}
£
Pe) Q, POI groups for each camera sensor:
$:
sut{pi} {p1, p2} {p2} {ps}
IR JRRRRN SRRRERRES AR SRR AR AN JRRRREE JRRRN 2t {pa} {ps, s} {ps} {ps} {ps. pr} {pr}
p1 p2 P3 P+ P5s Pe PT P8 Po P10

s3t {pr} {p7. ps} {ps} {po} {po. Pro} {Pr0}

s1: {p2} {p2, ps} {ps}

54 &7 851 {ps} {ps, pe} {pe} {pe: 7} {pr}

Q The final POI groups

{1} {p1 p2} {p2} {p2. ps} {ps} {pa} {pa, s}
{ps} {ps, pe} {ps} {ps, p7} {p7} {p7, ps} {ps}
{po} {po, P10} {p10}

(a) (b)

@

{p1} {p2} {ps} Apups} Aps,ps} {psspr} Aprops} {po} {p10}
B G G Gy G Gis Gir

2 4 ﬁ s 10 Gig Gy 16
{p1, 2} {p2. w3} {pa} {ps} {pe} {p7} {ps} {p9; P10}
(c)
g ¥

Fig. 3. An example of transformation. (a) The instance contains ten POIs and five
camera sensors; (b) Seventeen groups are generated; (c¢) The corresponding auxiliary
graph with 17 vertices for the groups; (d) is the graph in (c¢) plus another five points
corresponding to the sensors.

20 P. Yao et al.

3.2 Linear Programming for Shortest Matching-Path Problem

Let E; be a set of edges in which each edge is between two POI groups. Let
E5 be a set of edges in which each edge (i, j) € Es represents a flow from a
camera sensor s; to a POI group G;. For Min-Num LTC-CS, the aim is to use
a minimum number of camera sensors to cover all POIs, so the aim of SMP is
to find the path from s to ¢t and minimize the sum of flows. The Integer LP
(ILP) of SMP which is transformed from Min-Num LTC-CS is shown as follows
(ILP(2)):

min E Tij

(i,7)EE>
1 Jj=s
s.t Z Ye — Z Ye =4 —1 J=t

e€stNE;(5) e€d~NE1(4) 0 J# st

Z Ti; <1 vi
J:(1, J)EE2

Z Tij = Z Ye N2 (2)
i:(i, j)EE e€dt (j)NEy
x5 € {0, 1} (i, j) € Bz
Ye € {07 1} e €k

where the first constraint is to ensure a feasible flow over the edges of Fy, the
second guarantees that the total outflows from s; is no more than 1 over the
edges of F since each camera sensor s; can be used for at most once. The third
ensures that the total inflows to j over edges of E5 must be larger than the
total outflows of j in E;. By relaxing 0 < z;; < 1 and y. > 0, we can get
LP(1) a linear programming formulation relaxing ILP (2). As one of the main
results of the paper, we conclude that there is a connection between the above
ILP formulation ILP(2) and its LP relaxation LP(1), as stated in the following
theorem whose proof is omitted due to the length limitation.

Theorem 1. The value of an optimal fractional solution of LP(1) equals to
that of an optimal solution of ILP(2). Moreover, an optimal fractional solution
of LP(1) can be rounded to an integral solution of Min-Num LTC-CS.

Note that when the objective function of the LP is min), x;;c;, the above for-
mulations can be extended to Min-Sum LTC-CS. In addition, the above theorem
can also be extended to Min-Sum LTC-CS.

4 Numerical Experiments

In this section, we will evaluate the practical performance and runtime of the
linear program of the shortest matching-path problem (denoted by ILP-SMP) by

Target Coverage with Minimum Number of Camera Sensors 21

target=70 6=60 R=40 sensor=150 6=60 R=40

12 —e— linear programming —e— linear programming
o graph programming 12|~ graph programming
1 -®- integer programming -@- integer programming
—o— greddy —o— greddy
10
10

Min_Num
@
Min_Num

om0 7P (A0 A0 420 430 80 450 160 410 (280 (290 (280 (10 (280 (290 400 130 120

230 2!
PRt g s gerC et g gt et et I O 0 8 0 0 0 g 0o o
(a) Solution quality against growing (b) Solution quality against increasing
number of sensors . number of targets.

Fig. 4. Solution quality of ILP-LTC-CS, LP-LTC-CS, ILP-SMP and GA in comparison.

comparing with other baselines: the integer linear program of LTC-CS (denoted
by ILP-LTC-CS), the linear program of LTC-CS (denoted by LP-LTC-CS), and
the greedy algorithm (denoted by GA). All experiments are carried out on a
Win 10 platform with Intel Core i5-6200U CPU, 8.0G RAM. All algorithms were
implemented with Java. In our experiments, the radius of the camera sensor is
set as 40 and the angle is set as 60.

4.1 Solution Quality in Comparison

Figure 4 is the experimental results of Min-Num LTC-CS. In Fig. 4a, the number
of POls is fixed at 70 and the number of camera sensors increases from 80 to 170
and are divided into ten groups. It can be seen that the results of ILP-SMP and
ILP-LTC-CS are always the same with the increasing number of sensors. Besides,
the results of GA are larger than ILP-LTC-CS which is at least 2 times and the
results of LP-LTC-CS are less than ILP-LTC-CS. Figure 4b is the comparison of
the results of ILP-LTC-CS, LP-LTC-CS, ILP-SMP, and GA with the increasing
number of target points for Min-Num LTC-CS. In these experiments, the number
of camera sensors is 150 and the number of POIs increases from 30 to 120 with
the step 10. Regardless of the number of POlIs, the results of ILP-SMP and ILP-
LTC-CS are the same. It can be seen that the results of GA are larger than that
of ILP-LTC-CS (at least 2 times), and the results of LP-LTC-CS are smaller
than that of ILP-LTC-CS in all the experimental results.

4.2 Runtime Comparison

Figure5 shows the running time of ILP-LTC-CS, LP-LTC-CS, ILP-SMP, and
GA of Min-Num LTC-CS. In the experiments of Fig. 5a, there are 70 POIs that
need to cover. The figure shows the results of ten groups of experiments, in which

the number of camera sensors increases from 80 to 170. First, the runtime of ILP-
LTC-CS is the largest among that of LP-LTC-CS, ILP-SMP, and GA in each

22

P. Yao et al.

target=70 6=60 R=40

—e— graph programming
o integer programming
—e— linear programming ' 1

—e— greddy N

sensor=150 =60 R=40

—e— linear programming
o graph programming
~e— integer programming
—e— greddy

60

time/s

time/s
@
3

e
.
.

20 °

: 20 o o—0— ¥

o—0
e
—

o o

280 90 100 430 120 130 _1a0 450 160 470
s ’;“so‘ ’; s9F ’:;:‘50‘ ’:;\g,o(’:;\50";?\50(’;“so(’:;‘,u(’:;‘Jor’ﬂ

230 _af =50 ._e0 .10 __g0 __o0) 0 0
xmqe"?a(qe"mqe"?mqe"fa@e"za‘qe"?a(%e‘grqe"§9€‘¢§qe"ﬂ

(a) Runtimes comparison with growing
number of sensors.

(b) Runtimes comparison with growing
number of targets.

Fig. 5. Runtimes comparison of ILP-LTC-CS, LP-LTC-CS, ILP-SMP and GA.

group of experiments. Second, the runtimes of ILP-LTC-CS, LP-LTC-CS, and
ILP-SMP increase with the increasing number of sensors, and the runtime of GA
T is constant as the number of sensors increases. Figure 5b compares the running
time of ILP-LTC-CS, LP-LTC-CS, ILP-SMP, and GA. In all experiments, the
number of camera sensors is 180 and the number of POIs increases from 30 to
120 with a step 10. As for the running time of ILP-LTC-CS, LP-LTC-CS, ILP-
SMP, and GA, ILP-LTC-CS is the highest, and GA is the lowest. When more
POIs need to cover, the runtime of ILP-LTC-CS, LP-LTC-CS, and ILP-SMP
will increase, but the runtime of GA will always be fixed,

5 Conclusion

In this paper, we proposed the linear programmings for the on-a-Line Target
Coverage with Minimized Number of Camera Sensors (Min-Num LTC-CS) and
the on-a-Line Target Coverage with Minimizing the Sum of rotation angles of
Camera Sensors (Min-Sum LTC-CS). It has been proved that the solutions of the
two linear programmings are integer solutions via transformed to the shortest
matching-path problem. We first grouped the given set of Points Of Interest
(POIs) and formulated the linear programmings of Min-Num LTC-CS and Min-
Sum LTC-CS. Then, we constructed a graph based on the grouping of the above
POIs. Finally, we proposed a rounding method to obtain integer solutions of
Min-Num LTC-CS and Min-Sum LTC-CS. Numerical experiments demonstrate
that the experiment results are consistent with the theoretical analysis.

Acknowledgements. The authors are supported by Natural Science Foundation of
China (No. 61772005), Outstanding Youth Innovation Team Project for Universities of
Shandong Province (No. 2020KJN008), Natural Science Foundation of Fujian Province
(No. 2020J01845) and Educational Research Project for Young and Middle-aged Teach-
ers of Fujian Provincial Department of Education (No. JAT190613).

Target Coverage with Minimum Number of Camera Sensors 23

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

Ai, J., Abouzeid, A.A.: Coverage by directional sensors in randomly deployed wire-
less sensor networks. J. Comb. Optim. 11(1), 21-41 (2006). https://doi.org/10.
1007/s10878-006-5975-x

Cai, Y., Lou, W., Li, M., Li, X.Y.: Target-oriented scheduling in directional sensor
networks. In: Infocom IEEE International Conference on Computer Communica-
tions. IEEE (2007)

Cai, Y., Lou, W., Li, M., Li, X.Y.: Energy efficient target-oriented scheduling in
directional sensor networks. IEEE Trans. Comput. 58(9), 1259-1274 (2009)
Cardei, M., Jie, W.: Coverage in wireless sensor networks. In: Handbook of Sensor
Networks, vol. 21, pp. 201-202 (2004)

Fowler, R.J., Paterson, M.S., Tanimoto, S.L.: Optimal packing and covering in the
plane are np-complete. Inf. Process. Lett. 12(3), 133-137 (1981)

Fusco, G., Gupta, H.: Selection and orientation of directional sensors for coverage
maximization. In: 2009 6th Annual IEEE Communications Society Conference on
Sensor, Mesh and Ad Hoc Communications and Networks, pp. 1-9. IEEE (2009)
Jia, J., Dong, C., Hong, Y., Guo, L., Ying, Yu.: Maximizing full-view target cov-
erage in camera sensor networks. Ad Hoc Netw. 94, 101973 (2019)

Kasbekar, G.S., Bejerano, Y., Sarkar, S.: Lifetime and coverage guarantees through
distributed coordinate-free sensor activation. IEEE/ACM Trans. Netw. 19(2), 470
483 (2010)

Kumar, S., Lai, T.H., Arora, A.: Barrier coverage with wireless sensors. In: Pro-
ceedings of the 11th Annual International Conference on Mobile Computing and
Networking, pp. 284-298 (2005)

Li, X., Frey, H., Santoro, N., Stojmenovic, I.: Localized sensor self-deployment with
coverage guarantee. ACM SIGMOBILE Mob. Comput. Commun. Rev. 12(2), 50—
52 (2008)

Liu, L., Ma, H., Zhang, X.: On directional k-coverage analysis of randomly deployed
camera sensor networks. In: 2008 IEEE International Conference on Communica-
tions, pp. 2707-2711. IEEE (2008)

Liu, Z., Ouyang, Z.: k-coverage estimation problem in heterogeneous camera sensor
networks with boundary deployment. IEEE Access 6, 2825-2833 (2017)

Ma, H., Liu, Y.: On coverage problems of directional sensor networks. In: Jia,
X., Wu, J., He, Y. (eds.) MSN 2005. LNCS, vol. 3794, pp. 721-731. Springer,
Heidelberg (2005). https://doi.org/10.1007/11599463_70

Ma, H., Yang, M., Li, D., Hong, Y., Chen, W.: Minimum camera barrier coverage
in wireless camera sensor networks. In: 2012 Proceedings IEEE INFOCOM, pp.
217-225. IEEE (2012)

Mao, S., He, S., Wu, J.: Joint UAV position optimization and resource scheduling
in space-air-ground integrated networks with mixed cloud-edge computing. IEEE
Syst. J. 15(3), 3992-4002 (2021)

Puvvadi, U.L.N., Di Benedetto, K., Patil, A., Kang, K.-D., Park, Y.: Cost-effective
security support in real-time video surveillance. IEEE Trans. Ind. Inform. 11(6),
1457-1465 (2015)

Saeed, A., Abdelkader, A., Khan, M., Neishaboori, A., Harras, K.A., Mohamed, A.:
On realistic target coverage by autonomous drones. ACM Trans. Sens. Networks
15(3), 32:1-32:33 (2019)

Si, P., Chengdong, W., Zhang, Y., Jia, Z., Ji, P., Chu, H.: Barrier coverage for 3D
camera sensor networks. Sensors 17(8), 1771 (2017)

https://doi.org/10.1007/s10878-006-5975-x
https://doi.org/10.1007/s10878-006-5975-x
https://doi.org/10.1007/11599463_70

24

19.

20.

21.

22.

23.

P. Yao et al.

Wang, J., Zhong, N.: Efficient point coverage in wireless sensor networks. J. Comb.
Optim. 11(3), 291-304 (2006). https://doi.org/10.1007/s10878-006-7909-2

Wang, W., et al.: PANDA: placement of unmanned aerial vehicles achieving 3D
directional coverage. In: 2019 IEEE Conference on Computer Communications,
INFOCOM 2019, Paris, France, 29 April-2 May 2019, pp. 1198-1206. IEEE (2019)
Wang, Y., Cao, G.: Minimizing service delay in directional sensor networks. In:
2011 Proceedings of the IEEE INFOCOM, pp. 1790-1798. IEEE (2011)

Wang, Y., Cao, G.: On full-view coverage in camera sensor networks. In: 2011
Proceedings of the IEEE INFOCOM, pp. 1781-1789. IEEE (2011)

Wang, Y.-C., Chen, Y.-F., Tseng, Y.-C.: Using rotatable and directional (R&D)
sensors to achieve temporal coverage of objects and its surveillance application.
IEEE Trans. Mob. Comput. 11(8), 1358-1371 (2011)

https://doi.org/10.1007/s10878-006-7909-z

®

Check for
updates

Two-Stage Submodular Maximization
Under Curvature

Yanzhi Li'@®, Zhicheng Liu?®, Chuchu Xu?®, Ping Li*®, Hong Chang®>®,
and Xiaoyan Zhang3(®)

1 School of Mathematical Sciences, University of Science and Technology of China,

Hefei 230026, Anhui, China
davidlee@mail.ustc.edu.cn
2 College of Taizhou, Nanjing Normal University, Taizhou 225300, China
3 School of Mathematical Science and Institute of Mathematics,
Nanjing Normal University, Jiangsu 210023, China
{changh,zhangxiaoyan}@njnu.edu.cn
4 Huawei Technologies Co. Ltd., Theory Lab, Central Research Institute,
2012 Labs, Hongkong 9990777, China
liping129@huawei.com

Abstract. Submodular function optimization has been widely studied
in machine learning and economics, which is a relatively new research
field in the context of big data and has attracted more attention. In this
paper, we consider a two-stage submodular maximization problem sub-
ject to cardinality and p-matroid constraints, and propose an approx-
imation algorithm with constant approximation ratio depends on the
maximum curvature of the submodular functions involved, which gener-
alizes the previous bound.

Keywords: Two-stage submodular maximization - Submodular term -
Approximation algorithm - Curvature

1 Introduction

We consider a two-stage submodular maximization problem. Given a ground set
V ={1,...,n}, let F = (f1,f2,...,fm) be a set of functions such that each
fi: 2V - R, (j =1,...,m) is a nonnegative monotone submodular function.
For a given nonnegative integer k, the two-stage problem is as follows

m

max F(S) = max 2 Trg%)(fj (1)) (1)

where Z(S) is the family of the common independent sets of p-matroid M =
(S,Z(S)) over the same ground set S C V. Any matriod satisfies three properties:
(i) 0 € Z; (ii) If J* C J € Z(S), then J' € Z(S); and (iii) VA, B € Z(S), if
|A| < |B], then there exists an element u € B \ A such that A+ u € I.

© Springer Nature Switzerland AG 2021

D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 25-34, 2021.
https://doi.org/10.1007/978-3-030-92681-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_3&domain=pdf
http://orcid.org/0000-0001-7425-5784
http://orcid.org/0000-0002-5985-7303
http://orcid.org/0000-0002-2149-5423
http://orcid.org/0000-0001-5164-0241
http://orcid.org/0000-0003-0828-5189
http://orcid.org/0000-0002-2224-1484
https://doi.org/10.1007/978-3-030-92681-6_3

26 Y. Liet al.

A set function f: 2" — R, is normalized if f(()) = 0. It is non-decreasing if
f(S) < f(T),¥S CT C V.1t is submodular if f(S)+ f(T)> f(SNT)+ f(SU
T),VS,TCV.

In terms of relevant work, two-stage submodular maximization problems have
been investigated in the literature. The two-stage submodular maximization
problem subject to uniform and general matroid constraints was first proposed
in [2] with applications in machine learning, in particular, dictionary learning
[6,11], topic modelling [5], and (convolutional) auto encoders [9], among others.
They proposed a continuous optimization method and get an approximation
ratio which asymptotically approaches 1—1/e. For the case where the asymptote
does not work, they design a local search algorithm whose approximation ratio
is close to 1/2. [8] extended the two-stage problem to more general monotone
submodular functions and more general matroid constraints to give a 2(1—e~2)-
approximation algorithm.

Recently, Yang et al. [10] presented a #(1 - e_(p+1))—approximation algo-
rithm for the two-stage problem (1.1). We show that the bound can be general-
ized if we make further assumptions on the total curvature for the submodular
function [1], which is defined as follows

f(V) = f(V\{v})
kr=1-— Hél‘r/l @) .

Curvature is attractive since it is linear time computable with only oracle func-
tion access [3]. Our contribution is to design a (%(1 —e P)+ %(1 - e—(l’+1)))—
approximation algorithm for cardinality and p—matmld constrained two-stage
submodular maximization problem. Note that ~— (1 — e‘p)—i—% (1—e~ P+ >
p+1 (1 —e~®+Y) when ky # 1.

The remainder of our paper is organized as follows. Section 2 present the algo-
rithms along with its analysis for this problems and Sect. 3 gives some concluding
remarks.

(2)

2 Two-Stage Submodular Maximization

We present a replacement greedy algorithm in Sect. 2.1 and analyze its approx-
imation ratio in Sect. 2.2.

2.1 Algorithm for Two-Stage Submodular Maximization

We first consider the problem of maximizing the sum of submodular and modular
functions. Construct the following functions:

T) =Y f(tV\{t}),

teT
gi(T) = fi(T) — &(T).

Note that ¢;(7T") is a monotone nonnegative submodular function, and ¢;(T) is a
modular function.

Two-Stage Submodular Maximization Under Curvature 27

Given a ground set V' = {1,...,n}, the problem is to select a set S C V of
cardinality no more than a given parameter k and 7" € Z(S) to maximize the
following objective function:

Z max (gi(T') +£i(T)).

The main idea of Algorithm 1 is as follows. Our replacement greedy algorithm
works in k£ rounds, and in each round it tries to increase the solution in a specific
greedy way. It starts with an empty set S° =) and checks (in each round)
whether new elements can be added to the set without violating the matroid
constraints or it can be replaced with the elements in the current solution while
increasing the value of the objective function.

Algorithm 1. Replacement Greedy

L S° 0,1 — (V1 < i <m)

2: for 1 <j<kdo

3: " —argmaxiev Yoo, Vi(t, TV)
4: for V1 <i<m do

5: if V,(t*,7/7") > 0 then

6: T) — T!7" U{t"} \ Rep, (t*, TV 71)
7 else

8: T 1/}

9: end if

10: end for

11: end for

12: Return sets S* and TF,T%,--- , T

For convenience, we define the following notations. Let OPT be the optimal
solution. Let AY(z,T7) = g:({z}UT/) — ¢;(T}) denote the marginal contribution
of an element x to the set Tij when we consider function g;, where these marginal
contributions are nonnegative due to the monotonicity of g;. Similarly, we use
Vi(z,y, T!) = gi({z} UT! \ {y}) — g:(T}) to define the gain of removing an
element y and replacing it with x. Here, Vf(m,y,Tij) may not be positive. In
addition, we also denote

aet) = (1-20) 7wy + (1227
Vet = (1- 28 e+ (120 e - i)

Consider the set Tij . When we replace the element of TlJ with x, we will not

violate the p-matroid constraint, i.e., Z(z,T?) = {y € T/ : T?U{z}\{y} € Z(9)}.

28 Y. Liet al.

So, we define the replacement gain of = w.r.t. a set Tij as follows:

max{0, max, ¢z, 74 Vi(z,y,T/)} otherwise.

vl(x’TzJ) = {

Finally, we use Rep;(z, Tij) to denote the element that should be replaced by
z as follows:

0 if T/ U {z} € Z(S),
argmax, .z, 7y Vi(z,y, Tf) otherwise.

Rep; (2, 7)) = {

2.2 Analysis of the Algorithm

In this section, we analyze the approximation ratio of Algorithm 1. Our analysis
relies on the following distorted objective function @. Let k£ denote the cardinality

constraint. For any j = 1,--- .k and any set T; (i = 1,...,m), we define
) m p+1 k—j) p\Fk—i)

®:(57) = 12T (T9 (1_7) 6(T9)) .
=3 ((1-557) wm+ (1-) "

Lemma 1. In each iteration of Algorithm 1,

P;(S7) — ;1 (ST

o k=i . k—j _
) (“Wﬂ?”+%ﬁ<%”:0 wt)+ E (- 5)).

_i<@—ﬁfyﬁm%@HH%F€Y””&W”0

- il (1 - pzl)m (gi(Tf) -(1- pzl)gi(Tfl))

Two-Stage Submodular Maximization Under Curvature

Lemma 2. If we add t/ € V to S7=1, then

(47 i1 -] j—1
>V (0, 177Y) = P Y viTh,
=1 =1 ET*\TJ 1
where S* = arg max max f;(T), T = arg max « fi(A).
sc%usxmleEI(S)f(), T; g AcZ(S)f()

Proof.

m

1 1 Jl
d Vi, T > S\ > ZV b5

=1 teS*\Si—1i=1

> s X VT

1=1teTr\Si—!

|S*\Sj 1|Z Z V(tT] 1)

1= 1tET* T] 1

%zmj S T,

= ET*\T] 1

29

where the first inequality holds because the righthand side is the average incre-
ment of values of optimal elements at step j if we add them instead of ¢/, which
is the maximum one. The second inequality holds because T;*\ S7=1 C T*\T771.

The last inequality follows from |S*\S7~1| < k.

Property 1. ([4]) Let M; = (V,Z;) be a matroid for every j € {1, ..., k}. For any
two independent sets A, B € Z;, there exists a mapping 7; : B\ A — A\ BU{0}

such that

— (A\m;(b)UbeZ; forall be B\ A;
- |7r;1(a)| <1lforallae€ A\ B;
— let Ay = {my(b), ..., m(b)}, (A\ Ap) Ubeni_ T forallbe B\ A

Lemma 3. For j=1,2,...,k, we have

Vi(t?,)7

NE

1

(1- pj;l)k fj (5s(77) = 0+ V(17 1))

g (=) (o) i),

i=1

.
I

>

| =

R‘\H

30 Y. Liet al.

Proof. Based on Property 1, there exist mappings 7, : T;\T/ ™' — Tij_l\ﬂ*u{@}
such that (T}\A.) U{e} € N{_,Z; (t € {1,2,...,k}), where e € TA\T! ™' and
A, = {71—1(6)7 "'77rk(6)}'

>, X vem

=1 tETi* \lefl

) i - <1) pzl)k (6t v\ (B} — (1)
+Z Z (1 - %)k_i (&({t} UTijfl\{yr(t)}) —_ gi(Tijﬂ))

1 k—j m ki
X T () e B () e

Lier\1T7 7! i=1 terr\7/ 1

> Y (i- p?) (A2 177 = AYr(o), {1} U TV \ (1))

=1 tET:\T571
where

Y = (GEB VT = 6@ + L UT (=) - 6(UTIY).
Together with Lemma 2 implies that

3

Vl(t]7TZJ_1)
i=1

m k=i j .
> X (1 - %) (A2, 7Y = A=), { U T\ (D)D)
=lier\T/ !
D (1-2)" (o) - ().
i=1 teTy Tfﬁ1
We know that

1 PN g i
%Z <1 :) Al (T)

Two-Stage Submodular Maximization Under Curvature 31

> % (1 -]92_1)1”' i (gi(Ti*) *pgi(Tf*l)) ;

i=1

where the first inequality holds because of the submodularity of g; and the second
inequality follows from the monotonicity of g;.
We also have

m k—j 4
DY (1—2’21) A (m(t), {t} U T\ {m(8)})

m k—j '
3D (1_1’21> Ay Ay UTI N\)

IN

where the first inequality holds since the range of mapping 7 is a subset of Tij -1
and no two elements in T;‘\Tf ! are mapped to the same y € Tij 71, while the
second inequality follows from the submodularity of g;.

So, we have,

DY (1- p“) (2.7 = Am(e), 4 VTN (=)

: . k
=1 tETi*\Tf_

Hence,

32 Y. Liet al.

Finally, the main result is summarized as follows.

Theorem 1. Algorithm 1 returns a set S* of size k such that

; (gl(Tzk) +£i(Tik)) > <pJ1rl(—(p+1))Zg T*

+(p 1—e?)Z@).

Proof. According to the definition of @, we have

Py(S°) =0,
B(sh) = ((1 N g+ (1 i)“a(n’@))

=> (9:(TF) + 4:(T})) .
=1

Applying Lemma 1 and Lemma 3, we have

B;(57) — b1 (5771)

= ; <Vi(t],Ti]1) + % (1 — %) gi(Tijfl) + % (1 . %) J&(Tijl)>
1 p+1 k—j m) 1 » o)
Finally,
Z (9:(T}) + &:(TF))
=1
S @5 (8) — B (5T
=1
k 1 p+1 k—j m he m
22<k<1k> ngT* (177) ZET*>
! 1=1
1

(o) Sni (o) S

Theorem 2. There exists an algorithm returning a set S¥ of size k such that

F(S*) > (;(1 —e7P) — ky <;(1 —eP) — 1%(1 — e<p+1>)>) OPT.

Two-Stage Submodular Maximization Under Curvature 33

Proof. According to the submodularity of g;, we have,

= ST HEVA{E) = (1 - k) f(D),

teT

So,

m

Sk =3 (9:Th) + 0T
i=1

> (ﬁ(l - e—(p‘*'l))) g;gi(Ti*) + (%(1 _ e—p)> gfi(T)

) Z (f(T]) = £:(T])) + (%(1 - e"’)) S oe(T))

) i=1
e*@“))) Zm:f,i(T:) + <1(1 —eTP) - Z%(l - e*(P“’)) ;éi(ﬂ*)
)

_ —(p+1) P 7(p+1) _ - (T*
- ;MTH((=) - —a- >)(1 k03017

[\
i)

-G
- (e
> (53
=

(1—e*P)—kf< (1—9”’)—7(1 7@“))));]%@:)'

SRR

Hence, we can get,

1 1 1
F(S* z(l—ep —k (1_61’ _1_e(p+1)>)OpT
(55 2 (0= —ks (S0 =) = o)
= (1 _ kf(l —e)+ kif(l _ e—(p+1)> OPT,
p p+1

kY — S5 (TF
where F(S") = l; TglIf(ig(k)(fz(Ti)-

3 Conclusion

Many researchers made substantial contribution in submodular maximization
problem, but there are not much research done on the two-stage submodular
maximization problem. In the present paper, we consider the two-stage submod-
ular maximization problem subject to cardinality and p-matroid constraints, and
we propose a (%(1 —eP)+ %(1 - e*(pﬂ)))—approximation algorithm for
it by replacement greedy method under curvature. In the future, we believe that
there will be more substantial progress in approximation algorithms for the two-

stage submodular maximization problem and the variant of it, and it will be
interesting to further improve the approximation ratios of these problems.

Acknowledgements. The research is supported by NSFC (Nos. 11871280,11971349,
12101314), Qinglan Project, Natural Science Foundation of Jiangsu Province (No.
BK20200723), and Natural Science Foundation for institutions of Higher Learning of
Jiangsu Province (No.20KJB110022).

34

Y. Liet al.

References

10.

11.

. Bai, W., Bilmes J.A.: Greed is still good: maximizing monotone submodu-

lar+Supermodular (BP) functions. In: ICML, pp. 304-313 (2018)

. Balkanski, E., Krause, A., Mirzasoleiman, B., Singer, Y.: Learning sparse combi-

natorial representations via two-stage submodular maximization. In: ICML, pp.
2207-2216 (2016)

. Conforti, M., Cornuejols, G.: Submodular set functions, matroids and the greedy

algorithm: tight worst-case bounds and some generalizations of the Rado-Edmonds
theorem. Discrete Appl. Math. 7(3), 251-274 (1984)

. Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Maximizing nonmonotone

submodular functions under matroid or knapsack constraints. STAM J. Discrete
Math. 23(4), 2053-2078 (2010)

. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning

word vectors for sentiment analysis. In: ACL-HLT,vol. 1, pp. 142-150 (2011)
Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning for sparse
coding. In: ICML, pp. 689-696 (2009)

. Schrijver, A.: Combinatorial optimization-polyhedra and efficiency. Algor. Combin.

24, 1-1881 (2003)

Stan, S., Zadimoghaddam, M., Krause, A., Karbasi, A.: Probabilistic submodular
maximization in sub-linear time. In: ICML, pp. 3241-3250 (2017)

Vincent, P., Larochelle, H., Lajoie, 1., Bengio, Y., Manzagol, P.: Stacked denois-
ing autoencoders: learning useful representations in a deep network with a local
denoising criterion. J. Mach. Learn. Res. 11, 3371-3408 (2010)

Yang, R., Gu, S., Gao, C., Wu, W., Wang, H., Xu, D.: A constrained two-stage
submodular maximization. Theor. Comput. Sci. 853, 57-64 (2021)

Zhou, M., Chen, H., Ren, L., Sapiro, G., Carin, L., Paisley, J.W.: Non-parametric
Bayesian dictionary learning for sparse image representations. In: NIPS, pp. 2295—
2303 (2009)

®

Check for
updates

An Improved Approximation Algorithm
for Capacitated Correlation Clustering Problem

Sai Ji!, Yukun Cheng?>®, Jingjing Tan?, and Zhongrui Zhao*

' Academy of Mathematics and Systems Science, Chinese Academy of Sciences,
Beijing 100190, People’s Republic of China
% Suzhou University of Science and Technology, Suzhou 215009, People’s Republic of China
yvkcheng@amss.ac.cn
3 School of Mathematics and Information Science, Weifang University, Weifang 261061,
People’s Republic of China
4 Department of Operations Research and Information Engineering, Beijing University
of Technology, Beijing 100124, People’s Republic of China

Abstract. Correlation clustering problem is a classical clustering problem and
has many applications in protein interaction networks, cross-lingual link detec-
tion, communication networks, etc. In this paper, we discuss the capacitated cor-
relation clustering problem on labeled complete graphs, in which each edge is
labeled + or — to indicate two endpoints are “similar” or “dissimilar”, respec-
tively. Our objective is to partition the vertex set into several clusters, subject to
an upper bound on cluster size, so as to minimize the number of disagreements.
Here the number of disagreements is defined as the total number of the edges
with positive labels between clusters and the edges with negative labels within
clusters. The main contribution of this work is providing a 5.37-approximation
algorithm for the capacitated correlation clustering problem, improving the cur-
rent best approximation ratio of 6 [21]. In addition, we have conducted a series
of numerical experiments, which effectively demonstrate the effectiveness of our
algorithm.

Keywords: Correlation clustering - Capacitated correlation clustering -
Approximation algorithm + LP-rounding

1 Introduction

Clustering problems arise in many applications such as machine learning, computer
vision, data mining and data compression. These problems have been widely studied
in the literatures [5,9,11,13,19]. Compared with clustering problems, which need to
specify the number of clusters in advance, the correlation clustering problem does not
place this constraint on the clustering task. The correlation clustering problem was first
introduced by Bansal et al. [6], which has applications in protein interaction networks,
cross-lingual link detection, and communication networks, etc. Generally, a correlation
clustering problem is modeled on a labeled complete graph G = (V, E), in which each
edge (u,v) is labeled + or — to indicate the two vertices u and v are “similar” or “dis-
similar”, respectively. The goal is to partition the vertices into several disjoint subsets,

© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 35-45, 2021.
https://doi.org/10.1007/978-3-030-92681-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-92681-6_4

36 S.Jietal.

each being called a cluster, so that the edges within clusters are mostly positive and
the edges between clusters are mostly negative. However the perfect clustering may
not exist because of the similarity assessments between vertices. Thus plenty of work
turned to seek an optimal clustering by considering two kinds of objectives of correla-
tion clustering. One is to maximize the number of agreements, which is defined as the
total number of positive edges within clusters and negative edges between clusters. The
other is to minimize the number of disagreements, that is the number of negative edges
within clusters plus the number of positive edges across clusters.

The correlation clustering problem is proved to be NP-hard [6], meaning that
one cannot obtain an optimal solution in polynomial time under the assumption that
P # N P. Different approximation algorithms have been proposed for the correlation
clustering problem [1,7,18,22,23]. To be specific, for the minimization version, Bansal
et al. [6] provided a first constant-factor approximation algorithm. Charikar et al. [12]
proved that minimizing the number of disagreements is APX-hard. They gave a nature
integer programming and proved that the integrality gap of the LP formulation is 2.
Then, they presented a 4-approximation algorithm based on LP-rounding technique.
They also studied the correlation clustering problem on general graphs and in addi-
tion provided an O(log n)-approximation algorithm. Later, Ailon et al. [3] introduced a
simple randomized 3-approximation algorithm for the optimal problem to minimize the
number of disagreements. Until now, the best deterministic approximation algorithm for
the minimizing disagreements is an LP-rounding algorithm with 2.06-approximation
ratio, which was provided by Chawla et al. [14].

Besides the study on the correlation clustering problems, there are several inter-
esting variants of the correlation clustering problem, including overlapping correlation
clustering [8], correlation clustering in data streams [2], high-order correlation clus-
tering [17], correlation clustering with noisy input [20], correlation clustering problem
with constrained cluster sizes [21], min-max correlation clustering [4], and so on. In
this paper, we would discuss the correlation clustering problem with constrained clus-
ter sizes.

The correlation clustering problem with constrained cluster size was first intro-
duced by Puleo and Milenkovic [21]. In this problem, we are given a complete graph
G = (V,FE) and an integer U. The goal of this problem is to partition the vertices
into several clusters that contain no more than U vertices so as to minimize the num-
ber of disagreements. Referring to other clustering problems [10, 15, 16], there are two
kinds of constraints on cluster size: lower bound constraint and capacity constraint.
Thus the problem introduced by Puleo and Milenkovic [21] is called the capacitated
correlation clustering problem more appropriately. Puleo and Milenkovic [21] intro-
duced a penalty parameter p,, for each vertex v, if vertex v is clustered into a cluster C'
with more than U vertices, then it occurs a penalty cost u, (|C| — U). They provided a
6-approximation algorithm for the weighted capacitated correlation clustering problem
by setting 4, = 1,Vv € V and splitting each cluster which contains more than U
vertices into several clusters that satisfy the size constraint. In this paper, we propose a
5.37-approximation algorithm for the capacitated correlation clustering problem, which
improves the current best approximation ratio. The improvement comes from following
two perspectives of innovations.

Capacitated Correlation Clustering Problem 37

(1) Innovation in Algorithm Design: Different from the previous work [21] by intro-
ducing a penalty cost for each vertex, we first model the capacitated correlation
clustering problem as an integer programming, and then design an algorithm based
on LP-rounding technique to directly output the feasible clusters, each subject to
the upper bound.

(2) Innovation in Theoretically Analysis: Based on our proposed algorithm, we com-
pute the number of disagreements corresponding to a cluster, by distinguishing
three cases. Especially, when analyzing the number disagreements caused by pos-
itive edges across clusters for one of cases, we innovatively expand the scope of
positive edges and skillfully use their corresponding values in the fractional optimal
solution of LP relaxation. Such an operation thus contributes the constant approxi-
mation ratio.

The rest of this paper is organized as follows. In Sect. 2, we provide the definition
of the capacitated correlation clustering problem, formulate its integer programming as
well as the corresponding LP relaxation. The approximation algorithm and the theoreti-
cal analysis are proposed in Sect. 3. Moreover, the numerical experiments are conducted
in Sect. 4 and the conclusions are given in the last section.

2 Preliminaries

In this section, we formulate the capacitated correlation clustering problem as an integer
programming as well as its corresponding relaxation.

Definition 1 (Capacitated Correlation Clustering Problem). Given a labeled com-
plete graph G = (V, E) as well as an integer U. A capacitated correlation clustering
problem is to partition the vertex set V into several clusters, subject to an upper bound
U on each cluster’s size, such that the number of disagreements is minimized.

For each edge (u,v) € E, we introduce a binary decision variable x,,, to indicate
whether two vertices v and v are in a same cluster. To be specific, if 4 and v lie in a same
cluster, then x,,, = 0; otherwise x,, = 1. Then the capacitated correlation clustering
problem can be formulated as follows:

min Z Tyy + Z (1= 2u)

(u,w)EET (u,v)EE~
S.t. Ty + Tow = Tuw, Yu,v,w €V,
Z(l —) < U, YueV, (1)
veV
Tyu = 0, Yu eV,
ZTuw € {0,1}, Yu,v € V.

The value of the objective function is just equal to the number of disagreements, which
contains two parts. The first part is the number of disagreements caused by the posi-
tive edges between clusters and the second part is the number of disagreements coming
from the negative edges whose endpoints lie in the same cluster. There are three types

38 S.Jietal.

of constraints in Programming (1). The first type of constraint ensures that the solution
output by Programming (1) is a feasible clustering of the correlation clustering prob-
lem. Since for any three vertices u, v, w € V, if one cluster contains vertices u, v and
vertices v, w lie in a same cluster, then all of three vertices u, v, w must be in this clus-
ter, showing x,,, = 0. The second type of constraint indicates the solution satisfies the
capacitated constraint and the third type is a natural one. By relaxing the variables, we
obtain the following LP relaxation of (1):

min Z Typ + Z (1 - muv)

(u,v)EET (u,v)EE~
S. bt Tyy + Tow > Tyws Vu,v,w €V,
Z(l — Tyy) < U, Yu €V, 2
veV
Tyy = 0, Yu eV,
Ty € 10,1], Yu,v € V.

3 Algorithm and Analysis
This section is one of crucial parts of this paper, in which we first provide our approxi-

mation Algorithm 1 in Subsect. 3.1 and then present the theoretical analysis for constant
approximation ratio in Subsect. 3.2.

3.1 [Iterative Clustering Algorithm

Algorithm 1. Iterative clustering algorithm

Input: A labeled complete graph G = (V, E), positive integer U, parameter o € (0,1/2)
Output: A partition of vertices
1: Solve (2) to obtain the optimal fractional solution z*

2: LetS: =V

3: while S # 0 do

4: Select a vertex v; from S randomly. Let T, := {u € S : x},,, < a}, and obtain T};, =
{ulv e aumin{U,\Tui \}} c T’Ui,’ SatiSfying m:iuj < ﬂfziuj“ J= {la B |TU1‘ - 1}
L uETy, T,

5. if ﬁﬁ > 5, then

6: Let V; = {vi}

7. else

8: Let V; =Ty,

9: end if

10: Update S : =S5 —-V;
11: end while
12: return the partition of V'

Before providing Algorithm 1, let us introduce a high level description for it. There
are two main phases in this algorithm. In the first phase, we solve Programming (2)

Capacitated Correlation Clustering Problem 39

to obtain the optimal fractional solution z* (Line 1 in Algorithm 1). The value 7},
can be viewed as the distance between vertex v and vertex v. The second phase is an
iterative process, which is the core of our algorithm (Lines 3-11 in Algorithm 1). In
each iteration, a vertex is selected randomly from the un-clustered vertices as a center,
and at most (U — 1) other vertices are also chosen from un-clustered vertices, based on
the distances between them and the current center, to form a new cluster. Such a step
is repeated until all the vertices are clustered, and therefore a feasible clustering for the
capacitated correlation problem is obtained ultimately.

3.2 Theoretical Analysis

Assume that there are k iterations in Algorithm 1, and thus vertex set V' is partitioned
into k clusters, denoted by V7, - -+, Vj. At the end of the i-th iteration, the cluster V;
must be one of three types:

- Type 1: V; :=={uv; };
- Type 2: V; :=T, withT; C T,,;
- Type 3: V; := T, withT}; =T,,.

Some useful properties can be explored based on the construction of V;.
Property 1. Let V; be the i-th cluster output from Algorithm 1. Then we have

) x5, >a >y, foranyv € T, and any u € V;\T} ;

vV

() 1—a}, > 15207, forany q,v € V;.

The first property can be derived from the construction of 77 directly, and the second
one is correct because xy, < xg,,. + Ty, < 2aforany ¢,v € V;.

Let us denote [¢| = {1,2,--- ,4}, for any positive integer 7. Based on the partition,
the number of the disagreements from negative edges is

> l(w,p) € E-,w,p € Vi, 3)
1€ (k]

and the disagreements caused by positive edges is

Z |(q,v) € EY,q € Vi, v € Urepp Ve - “
i€ (k]

Subsequently, we would compute the upper bounds on the number of disagreements by
distinguishing three types of clusters, respectively.

Type 1 of Cluster. Because cluster V; belongs to Type 1 (as shown in Fig. 1), the dis-
agreements generated by V; must be the positive edges between v; and vertices in other
clusters. Therefore, the number of new disagreements contributed by cluster V; of Type
Lis |(vi,v) € ET, v € Uyeppys) Ve and the upper bound on number of disagreements
is shown in Lemma 1.

40 S.Jietal.

Vi v,
te[kI\[i]

Fig. 1. Type 1 of cluster.

Lemma 1. If cluster V; returned by Algorithm 1 is of Type 1, then the number of dis-
agreements from edges (v;,v) € ET v € Utelr)\[7) V+ has an upper bound of

(vi,0) EET WEU i)\ 14 V2 (vi,v)EE™ WETY,

Type 2 of Cluster. AsV; is of Type 2 (as shown in Fig. 2), we have V; =T} C T,,,
indicating |V;| = U and 0 # T,,\T;;, € Uecpp)\q) Ve Different with Type 1, it is
possible that |V;| > 2, and thus there are two kinds of disagreements. One is from the
positive edges (¢,v) € ET with ¢ € V; and v € V\V;, and the other is from the
negative edges (w,p) € E~ with w, p € V;. For each ¢ € V;, we use all positive edges
(g,v) € Et,v € V\V; to upper bound the number of the first kind of disagreements
caused by vertex ¢, and the corresponding upper bound is shown in Lemma 2.

4 V\V;

Fig. 2. Type 2 of cluster.

Lemma 2. Suppose that V; is of Type 2. For each vertex q € V;, the number of dis-
agreements caused by positive edges (q,v) € ET,v € Utelr\[i—1) V4 is upper bounded

by
* 2 *
Z Tqv + 1_O;a Z (1 —2g0).

(g0)EET vEU g\ [i—1] Vi (¢,v)EE~ veEV;

To explore the upper bound of disagreements from negative edges, we can observe
that for any two vertices w,p € V, xjj,,p < « and thus 1 — :c*wp > 1 — 2«, which
indicates |(w,p)| = 1 < (1 —},)/(1 — 2a). Therefore, following lemma can be
derived.

Capacitated Correlation Clustering Problem 41

Lemma 3. IfV; is of Type 2, then for each negative edge (w,p) € E~ withw,p € V;,
the number of disagreement caused by (w, p) can be bounded by (1 — z7,,)/(1 — 2a).

Type 3 of Cluster. AsV; is of Type 3 (as shown in Fig. 3), we have V; = T,,, and |V;| =
negative edges within V; and the positive edges between V; and another cluster. The
disagreement of a negative edge (w,p) € E~, w,p € V; is upper bounded by ﬁz:}p
by Lemma 3. Next, we would analyze the upper bound on the number of disagreements
caused by positive edges (¢,v) € ET for any ¢ € V; and v € Ugep\i) Vi, under two
conditions: z;;_, > 3a/2 and a <z}, < 3a/2, respectively. By applying the similar
proof in [12], we obtain the following lemma.

v; U »

te[kI\[]

Fig. 3. Type 3 of cluster.

Lemma 4. [fV; is of Type 3, then the upper bound on the number of disagreements
caused by the positive edges satisfies:

(1) The number of disagreements from positive edges (q,v) € ET, satisfying ¢ € V;,
v € Upep\[Ve and ., > 3av/2, is upper bounded by 2y, /o

(2) The number of disagreements from positive edges (q,v) € E™T, satisfying q¢ € V;,
v € Upepa\[Ve and o < x5, < 3av/2, is upper bounded by

Q|

[S mt+ > (1—x2u)]-
(eV;

q,w)EEt q€V; (g,v)EE~ ,q
Combining Lemma 1 - Lemma 4, we obtain Theorem 1.
Theorem 1. The number of disagreements returned by Algorithm 1 is bounded by

maX{Z 1+§Z}[Z Trw + Z l—wuv]

(u,v)EET (u,w)EE—

where x* is the optimal fractional solution of (2). By setting oo = @ Algorithm 1
has an approximation ratio of 5.37.

42 S.Jietal.

4 Numerical Experiments

In this section, we would explore the practicality of our proposed algorithm for three
kinds of data. Moreover, we verify the effectiveness of Algorithm 1 through different
values of the total number N of vertices and the upper bound U of cluster size.

4.1 Datasets

We test the performance of the Algorithm 1 by using three data sets. For the first data
set, we use the “Iris” data set, which contains 150 data samples divided into 3 categories
with 50 data in each category, each containing 4 attributes. Where the samples for the
same species are denoted as “+” and between different species as “—” to initialize the
graph.

Secondly, we run Algorithm 1 on the Census1990 data set. It consists of 2,458, 285
data points with 68 attributes. The graph is initialized by using the attribute “age” for
clustering, marking people in the same age group as “+” and those in different age
groups as “—".

Finally, we execute Algorithm 1 with “Heart Disease” data set. This data set is
integer valued from O (no presence) to 4. Experiments with the Cleveland database
have concentrated on simply attempting to distinguish presence (values 1, 2, 3, 4) from
absence (value 0). Thus samples of patients with the same type of heart disease (includ-

@ 9

ing non-presence) are marked as “+” and different as “-”.

4.2 Experimental Setup and Results

Implementation Details. The code is really implemented on Pycharm 2017.3.2 using
Python 3.6. The entire experiment is implemented on a single process with an Intel(R)
Xeon(R) E5-2620 v4 CPU at 2.10 GHz and 256 GB RAM.

Setting the Experiments Parameters. The way we set the hyperparameters is the same
regardless of which dataset is mentioned above. As mentioned before, we construct data
of different sizes to test the performance of Algorithm 1. Let the total number of vertices
of the undirected graph, N, increase gradually from 10 to 100 in steps of 10. Let the
capacity U of each cluster be 15%, 20%, 25%, 30% and 35% of the total number of
vertices respectively. Particularly, if U is a decimal, we shall round U to make sure that
U is an integer. Finally, we set the parameter v = (—5++/33) /2 in all data experiments.

Results. The results of the numerical experiment are shown in Table 1, Table 2 and
Table 3. In these three tables, approy—15y represents the ratio of output from Algo-
rithm 1 to the optimal solution of (2) when U is taken to be 15%. From Tables Table 1,
Table 2 and Table 3, we can observe that the approximation ratio of the instances after
running Algorithm 1 is much better than the one from the theoretical analysis. In the
three data sets experiments, the majority of approximation ratio, overwhelmingly, is
stabilized between 1 and 3.

Table 1. “Iris” data. If U is a decimal, we round U to make sure that U is an integer.

Capacitated Correlation Clustering Problem

N |approy.is% | approy.20% | ApPToy.25% | GPPTOU:30% | GPPTOU:35%
10 |1.0000 1.1644 1.1088 1.7429 1.5849
20 |1.2121 1.2914 1.3329 1.5855 2.0648
30 |1.2373 1.3405 1.4910 1.7638 2.0028
40 |1.3490 1.3211 1.6923 2.1276 1.7020
50 |1.4204 1.6462 2.0924 2.0537 2.0969
60 | 1.5667 1.9695 2.4923 2.0704 1.8284
70 | 1.5898 2.0750 2.6694 1.7248 1.8674
80 |1.7341 2.2943 2.9256 2.0912 1.7977
90 | 1.6923 2.3839 3.1530 1.7315 1.9228
100 | 1.7569 2.3796 2.8714 1.9916 1.9182

43

Table 2. “USCensus1990”data. If U is a decimal, we round U to make sure that U is an integer.

N | approv.15% | approv.20% | approv.2sy | APProv:sey | APPTOU35%
10 |1.0000 1.7111 1.3434 2.0000 1.5333
20 |1.2988 1.7415 1.5400 1.8857 1.3944
30 |1.4966 1.5413 1.4406 1.2400 1.2667
40 |1.3817 1.8711 1.6540 1.7143 1.8667
50 |1.3740 1.6954 2.0748 1.7270 1.8889
60 |1.6924 1.7694 1.4809 1.7188 1.0000
70 |1.8057 2.0932 2.4369 1.1818 1.0000
80 |1.8541 2.3153 2.6482 3.4470 1.8065
90 |1.7774 2.4853 2.0879 1.8000 1.8235
100 | 2.0046 2.8666 2.3304 1.8750 1.9444

Table 3. “Heart Disease”data. If U is a decimal, we round U to make sure that U is an integer.

N | approv.1s% | approv.20% | approv.2sy, | APProvsey | APPTOU35%
10 | 1.0000 1.6000 1.3612 1.2400 1.4000
20 | 1.3561 1.2580 1.1429 1.4857 1.2227
30 |1.3628 1.6538 1.4185 1.4400 1.1636
40 |1.4218 1.6566 1.7910 1.6505 1.1733
50 |1.4339 1.8565 1.9156 1.0000 1.0000
60 |1.6539 2.1737 1.7174 1.1600 1.1500
70 |1.7318 2.2765 2.3931 1.4990 1.1840
80 |1.9869 2.4635 2.0114 1.1692 1.0000
90 |1.8665 2.7867 2.3616 1.2660 1.0000
100 | 2.3083 2.2376 2.2748 1.1636 1.1889

44 S.Jietal.

5 Conclusions

In this article, we study the capacitated correlation clustering problem and give a
5.37-approximation algorithm for this problem. There are two directions for the future
research on correlation clustering problem. From the results of numerical experiments,
we realize that there is plenty of room for the improvement of the approximation ratio.
So one direction is to continue the study this problem and to obtain a better approxima-
tion ratio by innovating the algorithm. The other is to study other variants of the corre-
lation clustering problem, such as capacitated min-max correlation clustering problem
and capacitated correlation clustering problem in data streams.

Acknowledgements. The first author is supported by National Natural Science Foundation of
China (No. 12101594) and the Project funded by China Postdoctoral Science Foundation (No.
2021M693337). The second author is supported by National Nature Science Foundation of China
(No. 11871366), Qing Lan Project for Young Academic Leaders and Qing Lan Project for Key
Teacher. The third author is supported by Natural Science Foundation of Shandong Province (No.
ZR2017LA002). The fourth author is supported by National Natural Science Foundation of China
(No. 12131003) and Beijing Natural Science Foundation Project No. Z200002.

References

1. Ailon, N., Avigdor-Elgrabli, N., Liberty, E., Zuylen, A.V.: Improved approximation algo-
rithms for bipartite correlation clustering. SIAM J. Comput. 41(5), 1110-1121 (2012)

2. Ahn, K.J., Cormode, G., Guha, S., Mcgregor, A., Wirth, A.: Correlation clustering in data
streams. In: Proceedings of the 32nd International Conference on Machine Learning, pp.
2237-2246 (2015)

3. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and
clustering. J. ACM 55(5), 1-27 (2008)

4. Ahmadi, S., Khuller, S., Saha, B.: Min-max correlation clustering via multicut. In: Proceed-
ings of the 20th International Conference on Integer Programming and Combinatorial Opti-
mization, pp. 13-26 (2019)

5. Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J. : Better guarantees for k-means and
Euclidean k-median by primal-dual algorithms. In: Proceedings of the 58th Annual Sympo-
sium on Foundations of Computer Science, pp. 61-72 (2017)

6. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1-3), 89-113
(2004)

7. Bressan, M., Cesa-Bianchi, N., Paudice, A., Vitale, F.: Correlation clustering with adaptive
similarity queries. In: Proceedings of the 32nd Annual Conference on Neural Information
Processing Systems, pp. 12510-12519 (2019)

8. Bonchi, F,, Gionis, A., Ukkonen, A.: Overlapping correlation clustering. Knowl. Inf. Syst.
35(1), 1-32 (2013)

9. Backurs, A., Indyk, P., Onak, K., Schieber, B., Vakilian, A., Wagner, T.: Scalable fair cluster-
ing. In: Proceedings of the 37th International Conference on Machine Learning, pp. 405-413
(2019)

10. Cohen-Addad, V.: Approximation schemes for capacitated clustering in doubling metrics.
In: Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
2241-2259 (2020)

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Capacitated Correlation Clustering Problem 45

. Choo, D., Grunau, C., Portmann, J., Rozhon, V.: k-means++: few more steps yield constant

approximation. In: Proceedings of the 37th International Conference on Machine Learning,
pp- 1909-1917 (2020)

Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. J. Comput.
Syst. Sci. 3(71), 360-383 (2005)

Cohen-Addad, V., Klein, P.N., Mathieu, C.: Local search yields approximation schemes for
k-means and k-median in Euclidean and minor-free metrics. SIAM J. Comput. 48(2), 644—
667 (2019)

Chawla, S., Makarycheyv, K., Schramm, T., Yaroslavtsev, G.: Near optimal LP rounding algo-
rithm for correlation clustering on complete and complete k-partite graphs. In: Proceedings
of the 47th ACM Symposium on Theory of Computing, pp. 219-228 (2015)

Castro, J., Nasini, S., Saldanha-Da-Gama, F.: A cutting-plane approach for large-scale capac-
itated multi-period facility location using a specialized interior-point method. Math. Pro-
gram. 163(1-2), 411-444 (2021)

Filippi, C., Guastaroba, G., Speranza, M.G.: On single-source capacitated facility location
with cost and fairness objectives. Eur. J. Oper. Res. 289(3), 959-974 (2021)

Kim, S., Yoo, C.D., Nowozin, S., Kohli, P.: Image segmentation using higher-order correla-
tion clustering. IEEE Trans. Patt. Anal. Mach. Intell. 36(9), 1761-1774 (2014)

Lange, J.H., Karrenbauer, A., Andres, B.: Partial optimality and fast lower bounds for
weighted correlation clustering. In: Proceedings of the 35th International Conference on
International Conference on Machine Learning, pp. 2892-2901 (2018)

Li, S., Svensson, O.: Approximating k-median via pseudo-approximation. SIAM J. Comput.
45(2), 530-547 (2016)

Mathieu, C., Schudy, W.: Correlation clustering with noisy input. In: Proceedings of the 21th
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 712-728 (2010)

Puleo, G.J., Milenkovic, O.: Correlation clustering with constrained cluster sizes and
extended weights bounds. SIAM J. Optim. 25(3), 1857-1872 (2015)

Thiel, E., Chehreghani, M.H., Dubhashi, D.: A non-convex optimization approach to corre-
lation clustering. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence,
pp- 5159-5166 (2019)

Veldt, N., Wirth, A., Gleich, D.F.: Parameterized correlation clustering in hypergraphs
and bipartite graphs. Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1868-1876 (2020)

)

Check for
updates

The Selection of COVID-19 Epidemic
Prevention and Control Programs Based
on Group Decision Making

(=)

Chunsheng Cui, Baigiu Li"*¥, and Liu Wang

Henan University of Economics and Law, Zhengzhou 450046, Henan, China

Abstract. COVID-19 has been sweeping the world for nearly two years.
As the virus continues to mutate, epidemic prevention and control has
become a long and experienced war. In the face of the sudden spread
of virus strains, how to quickly and effectively formulate prevention and
control plans is the most important to ensure the safety and social stabil-
ity of cities. This paper is based on the characteristics of the persistence
of the epidemic and the rapid transmission of the mutant strain, as well
as the database of epidemic prevention and control plans formed by the
existing prevention and control. Then, epidemic prevention experts select
effective alternatives from the program database and rank their prefer-
ences through the preliminary analysis of the local epidemic situation.
The process of the integration scheme is to minimize the differences to
maximize the needs of the local epidemic, and then obtain the consensus
ranking of the scheme and determine the final prevention and control
scheme. The proposed method of this paper, on the one hand, can opti-
mize the opinions of the epidemic prevention expert group and form a
consensus decision. On the other hand, it can save time and carry out
the work effectively, which is of certain practical significance to the pre-
vention and control work of local outbreaks.

Keywords: Epidemic prevention and control - Group decision
making - Alternative ranking - Consensus reaching

1 Introduction

At the end of 2019, COVID-19 erupted in Wuhan, China, spreading to many
countries and regions around the world [13]. At present, novel coronavirus pro-
duces many mutated strains that have posed a serious threat to world health
safety, such as Alpha, Beta, Gamma, Delta and Lambda, and so on. The trans-
mission rate and carrying capacity of the mutated virus far exceed the original
virus, which increases the difficulty of the epidemic prevention and control work.
Judging from the current international epidemic situation, human beings will
coexist with the novel coronavirus for a long time, and the work of epidemic
prevention and control is becoming the norm. In May 2021, Guangzhou became
the first city in China to fight Delta variant strains and handled the outbreak

© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 46-60, 2021.
https://doi.org/10.1007/978-3-030-92681-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-92681-6_5

The Selection of COVID-19 Epidemic Prevention and Control Programs 47

perfectly within a month. In August of the same year, the epidemic broke out and
spread in Nanjing, Yunnan, Yangzhou, Zhengzhou and other cities. The speed of
transmission was as fast as possible, which once again triggered the new think-
ing of epidemic prevention and control experts and even people in all countries.
Based on this, this paper considers how to quickly and effectively formulate pre-
vention and control solutions to ensure urban safety and social stability in view
of the continuous variation of novel coronaviruses at this stage.

In the face of major issues, group decision making is a crucial step in deter-
mining the final programme. It is to integrate the preferences of multiple decision
makers into group preferences [8,9]. What’s more, it is considered an efficient and
accurate means to make optimal decisions quickly, so many experts in different
fields devote time and energy to study group decision making in depth [18,21].
The first group of experts on group decision making focused on voting [14]. And
the simple majority principle is the most typical and widely used in group deci-
sion making [1,5]. Group decision making is designed to achieve the consensus
of group opinions, so the use of a consensus mechanism in group decision mak-
ing is conducive to the smooth implementation of group programs, but also
conducive to building a more harmonious interpersonal relationship within the
organization [16]. Then, experts studying group decision making try to maxi-
mize consensus to rank alternatives, and many scholars measure the preferences
of experts based on fuzzy quantitative [6,15]. Due to the influence of the objec-
tive factors such as the uncertainty of things themselves and the subjective
factors such as the knowledge structure and judgment level of decision-makers,
the views of decision-makers tend to be greatly different [7]. Cook et al. [4] pro-
posed the Borda-Kendall method to measure consensus for ranking alternatives,
but distance-based approaches sometimes fail to properly reflect consensus in
group decision making. Huo et al. [12] put forward a concept based on premetric
to express different opinions of experts, identify the differences among experts
when ranking the alternatives, negotiate and adjust the preferences of experts
with the largest differences, and finally obtain the ranking of the alternatives
with the smallest differences, which makes up for the deficiency of distance-based
identification method. Next, Hou’s subsequent paper followed a post-consensus
analysis of the methodology to facilitate new insights into the alternatives [17].
Group decision making has been widely used in failure mode and impacts anal-
ysis, supply chain management, water resources management and other fields.
At present, group decision-making has also been studied in emergency decision-
making and disaster management [19,20]. However, there is little research on
how to make decisions on many prevention and control solutions in the face of
the changing COVID-19 situation.

With the rapid development of 2019 novel coronavirus mutation strains, rapid
prevention and control of the new outbreak point is the focus of the current
epidemic prevention and control. Because of the rapid spread of variant strains,
once it is found that the source of infection in the outbreak is variant strains,
the government departments should quickly analyze the situation and organize
experts to put forward prevention and control solutions for the local epidemic.

48 C. Cui et al.

In this context, this paper studies that the expert group selects the alternatives
suitable for this epidemic according to the existing epidemic prevention schemes.
Then, according to the method proposed by Huo et al. [10-12], select the solution
that the expert group considers most to meet the needs of the local epidemic.
Experts express their preferences for a program faster than scoring it, which can
save time, improve efficiency and reduce the spread of population in decision
making on epidemic programs.

The rest of the paper is arranged as follows: The second part introduces
the group decision making methods used in this paper, including the concepts
of preference map, consensus gap, and consensus evaluation sequence and so
on. The third part introduces the general process of group decision making of
epidemic control programs from the perspective of epidemic persistence and
rapid transmission of variant strains. The fourth part applies the decision making
method proposed in the third part to the selection of control schemes for the
spread of mutant strains, taking nucleic acid testing (NAT) as an example. At
the same time, compared with the existing group decision making methods, the
method used in this paper is more suitable for the decision making of epidemic
prevention and control programs. Finally, the fifth part is the conclusions and
prospects of this paper.

2 Theoretical Basis

This paper studies how to rank the epidemic preventive measures based on expert
preferences. This part briefly describes the basic theories and concepts used
[10-12].

Let E = {ei,ea,...,em} be the set of the expert group and A =
{a1,as,...,a,} be the alternatives to be ranked, where 1 < m < +oo and
1 < n < 4+o00. Assuming that expert preferences are considered to allow a paral-
lel sequencing, and the alternatives in a tie are arranged in the same positions,
which are continuous positive integers.

Definition 1 [10]. A sequence (S;)nx1 is called the preference map (PM) of the
alternation set A with respect to the order relation =<, if and only if the following
is true: S; = {|Pi|+ 1,|P;| +2,...,|P;| +|Q:|}, where P; = {aj|la; € A,a; > a;}
and Q; = {ax|ar € A,a; ~ ay}.

Definition 1 is based on the following two definitions:

A sequence (P;),x1 is called the predominance sequence of the alternation
set A with respect to the order relation =, if and only if the following is true:
P, = {aj|aj S A,aj - ai}.

A sequence (Q;)nx1 is called the indifference sequence of the alternation
set A with respect to the order relation =, if and only if the following is true:
Q; ={arlar € A,a; ~ ag}.

The Selection of COVID-19 Epidemic Prevention and Control Programs 49

Definition 2 [10]. Assume that V) = (V) 1, VO = (V@)1 are two

K3 K3
PMs of the experts, then the consensus gap between them is defined as follows:

A(V(l), V(Q)) — 25(‘/(1)’ V(Q))
i=0

= Z max{0, min V;(l) — max V;(Z), min VZ-(Q) — max Vi(l)}.

i=1

The consensus gap index is a premetric, which satisfies only the properties
non-negativity and symmetry, so as to represent the disagreement between the
two preference maps.

Moreover, a dispute matrix that is associated with the expert’s disagreements
on alternatives is defined by DispM = (Sik)nxn, where DispM = (Sik)nxn
represents the total gap of the experts if a; is to be ranked at position k.

)

Definition 3 [10,11]. Assume that V) = (V) 0, v® =), 4,

y(m) = (Vi(m))nxl are the PMs of the experts. The experts are in consensus if,
and only if Vi(Vi(l) N Vi(2) N---N Vi(m) # &). The consensus ranking is (W;),
where

1 2 m k

Wi V1E1§ Vlﬁz; V1Em; M1 Vliki
Wa V- V. v, m Vi
S0 I e I R TS R I L

‘1 ‘2 'm m ’ k

W, Vn() 75) TS) ﬂk:l n()

The consensus gap between each pair of PMs represents differences between
the two experts, and the disagreement matrix represents the disagreement among
all experts.

The disagreement matrix is defined as:

D = (Ak)(me), Where A_]k = A(V(])’ V(k))

Definition 4 [12]. The Consensus Evaluation Sequence (CES) is defined as fol-
lows:
CES = [GCI; MDP, PDisal; MDA, M Displ].

The consensus evaluation sequence (CES) represents the degree of expert
consensus on the ranking of alternatives. It contains the group consensus index
(GCI), the maximum disagreement pairs (MDP), the pairwise disagreement
index (PDisal), the maximum dispute alternatives (MDA) and the maximum
dispute index (MDisal).

(1) GCI indicates the proportion of the number of expert pairs that reach con-
sensus among all possible expert pairs. It is defined as follows:

m—1 m
230 Zj:j-ﬂ,—l Pij
m(m —1)

17 A’L] = 07
0, others.

GCI =

,where p;; = { (1)

50 C. Cui et al.

The range of values of the GCI is [0, 1]. GCI =1 expresses that the experts
reach a complete consensus, and the bigger GCI expresses that the higher
the consensus level of the experts.
(2) PDisal indicates the biggest disagreement among the experts. It is defined
as follows:
PDisal = mjax{ml?x{Aij < k}}. (2)

PDisal = 0 indicates that the experts have a complete consensus on each
choice; otherwise, PDisal represents the largest inconsistency value of the
expert group.
(3) MDP implies the expert pairs with the biggest differences. It is defined as
follows:
MDP = {(j,k)|Ajx, = PDisal,j < k,Aj;i < 0}. (3)

MDP represents the subscript-pair set of expert pairs with that index value,
if PDisal is not 0.

(4) MDispl indicates the most controversial index of experts on alternatives. It
is defined as follows:

M Displ = max mkin{Sik}. (4)
K3

M Displ = 0 shows that the experts have no controversy about the ranking
of each alternative; otherwise, MDispl represents the maximum controversial
value of the experts for the alternatives.
(5) MDA implies the alternative with the biggest disagreement. It is defined as
follows:
MDA = {i|S;x = MDispl, S;r, > 0}. (5)

MDA represents the subscript set of alternatives with that index value, if
MDisal is not 0.

Decision-makers can identify whether the group of experts fully reaches con-
sensus from the CES. Also, decision-makers can get expert pairs who have the
maximum disagreement and the alternatives which have the maximum contro-
versial value, if the group of experts is not in consensus.

3 General Process of Group Decision Making in Epidemic
Prevention and Control Programs

At present, the epidemic is usually caused by the spread of new coronavirus,
showing new characteristics, such as long duration, wide range, strong trans-
mission ability, high viral load of infected patients, the rapid development of
patients and so on. The measures of epidemic prevention and control need to be
formulated and implemented according to the changing situation of the epidemic.
Therefore, the epidemic prevention and control programs require to be developed
rapidly, effective and enforceable. Since the novel coronavirus mutates rapidly,
the control of the epidemic is related to the immediate safety of the people and

The Selection of COVID-19 Epidemic Prevention and Control Programs 51

social stability. When formulating epidemic prevention and control policies, the
government ought to screen out the existing epidemic prevention and control
schemes according to the local epidemic situation, rather than simply copying
the solutions adopted at the last outbreak. Then ask the experts to make group
decisions and choose the best alternative to meet local needs.

The goal of group decision making is to comprehensively consider the opinions
of various experts, integrate individual decision making into group decision mak-
ing, and ultimately reach expert consensus to the maximum extent to determine
the most feasible alternative. Group decision making can adopt the opinions of
experts from various aspects, so as to break the limitations of individual knowl-
edge and thinking, and reduce the error rate in decision making of epidemic
prevention and control.

Based on the selection of epidemic prevention and control plans, this paper
puts forward the following steps:

Stepl: Propose feasible solutions.

Epidemic prevention and control policies involve all aspects, each of which is
an independent decision. The final promulgated prevention and control policies
are the sum of all aspects of decision making. Among them, the control policies,
the nucleic acid testing policies and the traffic control programs are the three
aspects that should be first decided in the early outbreak of the epidemic. After
nearly two years of experience, a database of epidemic prevention and control
plans has been formed. Select a set of options suitable for the local epidemic in
the program library, denoted X;(i = 1,2, ..,n).

Step 2: Select experts and rank the alternatives in preference.

First, identify the experts involved in the decision making of the scheme
according to their professional direction (if necessary, experts with similar or
less divergent preferences are grouped according to their previous ranking pref-
erences). The expert group is denoted as F;(i = 1,2,...,m). Then, based on
the feasible alternatives proposed in step 1, each expert makes a comprehen-
sive ranking according to the feasibility, implementation effectiveness, control
strength and other aspects of the alternatives.

Step 3: Form expert preference maps (PMs) for the ranking of alternatives.

Based on expert ranking, expert preferences are transformed into PMs
according to Definition 1. Define Consensus Evaluation Sequence (CES) and con-
firm acceptable thresholds for the Group Consensus Index (GCI).

Step 4: Build up a dispute matrix, calculate the pairwise disagreement index
(PDisal) and determine whether the experts reach a consensus.

The dispute matrix is constructed according to the PMs. And then obtain
the PDisal. If PDisal = 0 or GCI reaches an acceptable threshold, it indicates
that experts reach a consensus on the ranking of epidemic prevention and control
schemes, which is solved according to Definition 3; otherwise, turn to step 5.

Step 5: Iterate over the preference ranking of experts for alternatives.

Since experts do not reach a consensus on the order of the epidemic preven-
tion and control plan, choose a A;;(i < j and A;; > 0) in descending order
of the dispute index. Through negotiating with experts related to the selected

52 C. Cui et al.

A;;, modify their preferences for the order of alternatives. If the two experts do
not agree to modify their rankings, then move to another pair of experts with
A;; > 0and ¢ < j. If none of these experts are willing to change their rankings,
go to Step 6; otherwise, after obtaining the corrected preference order obtained
by the experts, go to step 3.

Step 6: Build an assignment model to minimize the divergence.

The assignment model is established as follows:

min f= sziksm
ik

s.t. inkzl, k=1,2,...,n,
i=1

k

ap=1 i=12...n,
=1
=01, i k=12 ... n

Sik is obtained by Definition 2, indicating the total consensus gap for experts
if X; is to be ranked at position k. Then solve the assignment model.

Step 7: Analyze the results.

According to the results of the allocation model, the final program ranking
is obtained. Then, analyze the consensus results and determine the selected
epidemic prevention and control solution.

4 The Realization of Group Decision Making for NAT
Solutions in Epidemic Prevention and Control

In view of the new situation of the novel coronavirus epidemic, the mutant strains
suddenly spread in a city, and the epidemic prevention and control center is
expected to make decisions quickly.

Next, the selection of nucleic acid testing scheme is taken as an example to
introduce the application of group decision making method in the formulation
of novel coronavirus prevention and control policies.

Step 1: Propose feasible solutions.

In view of the current situation of COVID-19, epidemic prevention and con-
trol experts have screened six alternative plans based on the existing database
of epidemic prevention and control plans. The above six alternatives are denoted
as {Xl, X27 X3, Xv47 X5, XG}

X7: Organize citizens to carry out six nucleic acid testing on the 1st, 4th, 7th,
10th, 13th, and 16th days after the closure of the area. In nucleic acid sampling,
nucleic acid testing in medium and high-risk areas and the containment area is
performed by one-to-one testing method, and priority is given. Testing of the key
population is adopted 5 individual test samples mixed into one reagent, as well
as the testing of the common population is adopted 10 individual test samples
mixed into one reagent. All work need to be done at off-peak.

The Selection of COVID-19 Epidemic Prevention and Control Programs 53

X5: Organize a round of nucleic acid testing every three days until no new
cases and asymptomatic infections. Nucleic acid testing needs to be done at least
6 times per person. Single sample testing is adopted in key control areas. The
testing of the common population is adopted 10 individual test samples mixed
into one reagent.

X3: Four nucleic acid testings need to be conducted for citizens in high-risk
areas on the 1st, 4th, 7th and 14th days after the closure of the area. Three
nucleic acid testings (each time is separated at least 24h apart) need to be
conducted for citizens in medium risk areas on the 1st, 4th, 7th and 14th days
after the closure of the area. Other people in the city needed to be tested once.
A single check is used for everyone.

Xy4: Four times (on the 1st, 4th, 7th, 14th days of isolation) of one-to-one
nucleic acid testing is organized. The detection objects are confirmed cases,
suspected cases, asymptomatic cases, close contacts and resident population,
migrant workers and foreigners within their scope of activities.

X5: Organize citizens in the closed area to carry out NAT five times, on the
1st, 4th, 7th, 10th, 14th days of quarantine. Organize citizens in the control area
to carry out NAT four times, on the 1st, 4th, 7th and 14th days of quarantine.
Other people in the city do not go out unless necessary and stay at home to
quarantine.

Xg: Organize confirmed cases and close contacts to carry out NAT five times
on the 1st, 4th, 7th, 10th and 14th days of quarantine. At the same time, organize
the second close contacts to carry out NAT three times, on the 1st, 4th and 7th
days of quarantine. Single check is used for everyone.

Step 2: Select experts and rank the alternatives in preference.

Among the 30 experts in the Center for Epidemic Prevention and Control,
select 6 experts in the direction of nucleic acid detection to make decisions on
the nucleic acid testing scheme in the outbreak area. Six experts are denoted as
{X1, Xo, X3, X4, X5, X6}

The group of experts sorts the six alternatives according to their preferences,
and the ranking is allowed parallel. The experts’ preferences are as follows:

Ei: X1~ X X5 X3~ Xy~ Xg,
Ey: X1 = Xo = X5 = X3 = X4~ Xg,
E;: X)~ X3~ Xy Xo = X5~ Xg,
Ey: X5 ~Xo > X3~ Xy = X5 - X,
Es: X1~ X X3~ Xy~ X5 > Xg,
FEg: X1 Xo = Xz~ X5 X4~ Xg.

Step 3: Form expert preference maps (PMs) for the ranking of alternatives.

54 C. Cui et al.

According to Definition 1, the PMs of the experts based on the above experts’
preferences are obtained as follows:

48] V@ 1746 v V) 1 (6)
X, {1,2} {1} {1,2,3} {1,2} {1,2} {1}
X> | {1,2} {2} {4} {1,2} {1,2} {2}
Xs | {4,5,6} {4} {1,2,3} {3,4} {3,4,5} {3,4}
Xa | {4,5,6} |7 | {5,6} || {1,2,3} || {3,4} |’ | {3,4,5} |’ | {5,6}
X5 {3} {3} {5,6} {5} {3,4,5} {3,4}
Xe \{4,5,6} {6} {6,6} {6} {6} {5,6}

Identify 1 as the acceptable GCI threshold.

Step 4: Build up a dispute matrix, calculate the pairwise disagreement index
(PDisal) and determine whether the experts reach a consensus.

According to Definition 2, the disagreement matrix Dy is obtained as follows:

0

Dy = (Aij)exs =

S o N O

OO WO o
TN O
NO O N WN
O oo N OO
SO N UtOo O

The pairwise disagreement index (PDisal) is calculated by formula (2):
PDisal =7+#0
The group consensus index (GCI) is calculated by using formula (1):

7
] = —
GC 5

Obviously, the group of experts is not in consensus. The consensus evaluation
sequence (CES) at this time is:

CES = [GCI = 1—75;MDP ={(2,3)}, PDisal =T,

MDA = {5}, MDispl = 4]

It shows that a pair of experts with the maximum controversy is (Eq, E3),
and the experts have the maximum disagreement on alternative Xs.

Step 5: Iterate over the preference ranking of experts for alternatives.

Iteration 1:

Because expert 2 and expert 3 have the maximum disagreement, we ask
experts 2 and 3 to modify their preferences by negotiating. The changed prefer-
ences by them are as follows:

E21X1>X2}X3NX4>X5NX6,
Fs: X1~ X X3z~ Xy X5~ Xg.

The Selection of COVID-19 Epidemic Prevention and Control Programs 55

Based on Definition 1, the PMs of the experts are as follows:

1748 174 1746 174C0) 1746 V(6
Xy {12} {1} {1,2} {1,2} {1,2} {1}
X | {1,2} {2} {1,2} {1,2} {1,2} {2}

X5 | {4,5,6} {3,4} {3,4} {3,4} {3,4,5} {3,4}
Xs | {4,563 || {5,6} || {3,4} || {3,4} || {3,4,5} |’ | {5,6}

Based on Definition 2, the disagreement matrix D is built as follows:

Dy = (Aij)exs =

S o NN OO
S oo N OO
NO OO NN
OO OO N
SO OO OO
SO NN OO

PDisal is calculated by using formula (2):

PDisal =2 +#0
CGI is calculated by using formula (1):

10 1
CGl=— =<
15 3
Obviously, the group of experts is still not in consensus. The consensus eval-
uation sequence (CES) at this time is:

1
CES = [GCI = 3 MDP = {(1,3),(2.3), (1,4),(3,6), (4,6)}, PDisal =2;
MDA = {5}, MDispI = 4].

We can obtain that there are five pairs of experts that have the maximum
disagreement: E; and E3; Fs and FEs; Fq and E4; E3 and Fg; E4 and Fg.
Meanwhile, the experts have the maximum disagreement on alternative Xs.

Iteration 2:

According to the comprehensive consideration of the parameter values in the
above CES, we randomly selected a pair of experts in the six most controversial
experts in this iteration, and finally we selected experts 1 and 3 for consultation.

The preferences modified after consultation between experts 1 and 3 are as
follows:

Ei: X1~ X - X5 X3~ Xy~ Xg,

FEy: X1 ~Xo>=X3~Xy~X5~ Xg.

56 C. Cui et al.

According to Definition 1, at this time, the PMs of the experts are as follows:

v V@ v v 1746 v
X1 {12} {1} {1,2} {1,2} {1,2} {1}
Xo [{1,2} {2} {1,2} {1,2} {1,2} {2}
X3 {47576} {3a4} {37475a6} {3’4} {374a5} {3’4}
Xa | {4,5,6} |7 | {5,6} |’ | {3,4,5,6} |’ | {3,4} || {3,4,5} |’ | {5,6}
X5 {3} {3,4} {3,4,5,6} {5} {3,4,5} {3,4}
X {47576} {5a6} {37475a6} {6} {6} {5’6}

According to Definition 2, the disagreement matrix D5 is built as follows:

0O 0 0 2 0 O
0O 0 0 0 0 O
0O 0 0 0 0 O
Dy = (Aij)exe = 9 0 0 0 0 2
0O 0 0O 0 0 O
0O 0 0 2 0 O

Then, PDisal is calculated by using formula (2) and CGI is calculated by
using formula (1):
13

PDisal =2 #0,GCI = 5

Now, we can obtain that CES is as follows:

CBS = [GOT = 3 MDP = {(1,3), (2.3), (1,4), (3,6), (4,6)}, PDisal =

MDA = {5}; M Displ = 4].

Based on the Iteration 2, there are two pairs of experts having the maximum
disagreement. They are experts 1 and 4 and experts 4 and 6. And the experts
still have the maximum disagreement on alternative Xs.

Iteration 3: We ask experts 4 and 6 to modify their preferences by negotiating,
but neither of them wants to compromise.

Iteration 4: We ask experts 4 and 6 to modify their preferences by negotiating,
but neither of them wants to modify.

Step 6: Build an assignment model to minimize the divergence.

The expert group has not yet reached a consensus on the sequencing of
alternatives following the iterative consultations. We minimize differences by
constructing an assignment model:

The Selection of COVID-19 Epidemic Prevention and Control Programs

min

s.t.

ink =1, k=1,2,3,4,5,6,

6
> wx =1, i=1,2,3,4,5,6,
1=1

e =0,1, 4,k=1,234,5,6.

57

Solve the model and the final ranking with minimal disagreement is as follows:

X1 = Xo = Xy = X5 = X3 > Xg.

Step 7: Analyze the results.
It shows that the NAT scheme X is most suitable for the local epidemic in
the face of sudden transmission of mutant strains in the city.
Next, the Cook-Seiford method [2,3] is used to solve the decision making
problem of the above epidemic prevention and control, and the results are com-
pared with the results obtained in this paper.
Firstly, the sequential ranking is indicated by the Cook-Seiford Vector (CSV)
based on the initial expert ranking of the alternatives.
CSV is represented by medians for parallel rankings, and ultimately assigns
an ordinary single number to all experts’ ordering for each alternative. For exam-
ple, {1,2} is represented as {1.5}, and {1,2,3} is represented as {2}. Thus,
the original expert preferences for alternatives in the above examples can be

expressed as:

X1
Xo
X3
Xy
X5
Xs

csv csv® csv® csv@w csve) csvie)

1.5

C)’lCi.DC)‘lCﬂ’_A
ot

1 2 1.5 1.5 1
2 4 1.5 1.5 2
4 2 3.5 4 3.5
5571 2 171357 4 || 55
3 5.5) 4 3.5
5.5 5.5 6 6 9.5

Secondly, calculate the Cook-Seiford distance between every two CSVs and
represent the problem as assigned problem:

6
dir, =Y _ ol — ki
i=1

58 C. Cui et al.

The distance matrix is obtained as follows:

2.5 3.5 9.5 155 215 275
6.5 3.5 7.5 115 175 235
16 10 6 4 8 14
19.5 135 95 6.5 6.5 10.5
18 12 6 5 7 12
275 215 155 95 3.5 2.5

(dik)oxe =

Thirdly, minimize the distance among experts:

6
min f= Z Z Tipdig

=1 k=1
6
s.t. Y ww =1, k=1,2,3,4,56,
=1
6
D mik=1, i=1,2,3,4,56,
i=1

9 =0,1, 4, k=1,2,3,4,56.
Finally, the final consensus ranking is as follows:
X1 = X0 X5 - X3 - X4 > Xe.
Comparison with the results obtained in this paper:
X1 - Xo - Xy - X5 - X3~ Xg.

We can obtain two conclusions:

First, it finds that the two methods are controversial about the ranking posi-
tion of alternative X4. The method presented in this paper moves the location of
X, forward after consultation by experts. In the case of an outbreak, the order
in which NAT should be conducted among the local population should be con-
firmed cases, suspected cases, asymptomatic cases, close contacts, the persons
living and active within the scope of the activities of the confirmed cases, the
persons living and active within the scope of the activities of the close contacts,
all personnel in the region around the affected area. X, means that organize
to carry out nucleic acid screening for confirmed patients, close contacts and
personnel within their activities at first. X5 and X3 are the nucleic acid screen-
ing plans for all people around the outbreak of the epidemic. Considering the
limited human and material resources in the early outbreak, it is necessary and
reasonable to give priority to key populations. This just proves that the method
proposed in this paper is helpful for the prevention and control decision.

Second, obviously, Cook-Seiford is a single iterative approach that terminates
at the first decision. This approach is equivalent to having only one vote, with-
out iterations of expert preferences. It is unable to identify disputes and then

The Selection of COVID-19 Epidemic Prevention and Control Programs 59

negotiate with controversial experts to minimize disputes, so it cannot guide the
expert group to adjust their preferences. Due to the rapid changes in the situ-
ation of the novel coronavirus and the uncertainty of the spread of the mutant
virus at present, the error of using the decision method in this paper is smaller
than that of using the existing decision method in the face of sudden epidemics.
Therefore, the method proposed in this paper is feasible and more conducive to
dealing with uncertain outbreaks.

In summary, the method presented in this paper is more suitable for the
decision making of COVID-19 prevention and control schemes.

5 Conclusions

Considering the current international situation of COVID-19, this paper uses the
method of preference ranking in group decision making to formulate prevention
and control programs, minimizing the differences of the expert group to quickly
and effectively formulate prevention and control schemes to ensure citizen safety
and social stability. On the one hand, the application of this method can opti-
mize the opinions of the epidemic prevention expert group and form a consensus
scheme. On the other hand, it can save time in epidemic prevention and control
and carry out epidemic prevention and control quickly and effectively. However,
there are still some problems in the research of this paper. Firstly, the consensus
evaluation sequence index used in this paper still has room for improvement. Sec-
ondly, the decision making method of epidemic prevention and control proposed
in this paper is an empirical decision making based on the existing epidemic
prevention and control scheme database and experts’ preference. How to use
intelligent decision making to determine the prevention and control solution in
the epidemic outbreak area is the direction that needs to be further studied and
improved.

Acknowledgement. This study was supported by 2020 Henan University Philoso-
phy and Social Sciences Applied Research Major Project Plan (NO. 2020-YYZD-02),
Humanities and Social Science Research General Project of Henan Provincial Depart-
ment of Education in 2021 (NO. 2021-ZZJH-020), 2020 Henan Province Philosophy
and Social Science Planning Project (NO. 2020BJJ041), 2021 Key Scientific Research
Projects of Colleges and Universities in Henan Province (NO. 21A520021).

References

1. Busetto, F., Codognato, G., Tonin, S.: Simple majority rule and integer program-
ming. Math. Soc. Sci. 113, 160-163 (2021)

2. Cook, W.D.: Distance-based and ad hoc consensus models in ordinal preference
ranking. Eur. J. Oper. Res. 172(2), 369-385 (2006)

3. Cook, W.D., Seiford, L.M.: Priority ranking and consensus formation. Manag. Sci.
24(16), 1721-1732 (1978)

4. Cook, W.D., Seiford, L.M.: On the Borda-Kendall consensus method for priority
ranking problems. Manag. Sci. 28(6), 621-637 (1982)

60

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

C. Cui et al.

Eraslan, H., Merlo, A.: Majority rule in a stochastic model of bargaining. J. Econ.
Theory 103(1), 31-48 (2002)

Feng, X., Shang, X., Xu, Y., Wang, J.: A method to multi-attribute decision-
making based on interval-valued g-rung dual hesitant linguistic Maclaurin sym-
metric mean operators. Complex Intell. Syst. 6(3), 447-468 (2020)

. Fu, C., Yang, S.L.: The group consensus based evidential reasoning approach for

multiple attributive group decision analysis. Eur. J. Oper. Res. 206(3), 601-608
(2010)

Gehrlein, W.V.: Social choice and individual values. RAIRO - Oper. Res. 15(3),
287-296 (1981)

Gou, X., Xu, Z.: Managing noncooperative behaviors in large-scale group decision-
making with linguistic preference orderings: the application in Internet Venture
Capital. Inf. Fusion 69, 142-155 (2021)

Hou, F.: A consensus gap indicator and its application to group decision making.
Group Decis. Negot. 24(3), 415-428 (2015). https://doi.org/10.1007/s10726-014-
9396-4

Hou, F.: The prametric-based GDM selection procedure under linguistic assess-
ments. In: 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
pp. 1-8. IEEE (2015)

Hou, F., Triantaphyllou, E.: An iterative approach for achieving consensus when
ranking a finite set of alternatives by a group of experts. Eur. J. Oper. Res. 275(2),
570-579 (2019)

Klavinskis, L.S., Liu, M.A., Lu, S.: A timely update of global COVID-19 vaccine
development. Emerg. Microbes Infect. 9(1), 2379-2380 (2020)

Rae, D.W.: Decision-rules and individual values in constitutional choice. Am. Polit.
Sci. Rev. 63(1), 40-56 (1969)

Rani, D., Garg, H.: Complex intuitionistic fuzzy preference relations and their
applications in individual and group decision-making problems. Int. J. Intell. Syst.
36(4), 1800-1830 (2021)

Susskind, L.E., McKearnen, S., Thomas-Lamar, J.: The Consensus Building Hand-
book: A Comprehensive Guide to Reaching Agreement. Sage Publications, London
(1999)

Triantaphyllou, E., Hou, F., Yanase, J.: Analysis of the final ranking decisions
made by experts after a consensus has been reached in group decision making.
Group Decis. Negot. 29(2), 271-291 (2020). https://doi.org/10.1007/s10726-020-
09655-5

Wallenius, J., Dyer, J.S., Fishburn, P.C., Steuer, R.E., Zionts, S., Deb, K.: Multiple
criteria decision making, multiattribute utility theory: recent accomplishments and
what lies ahead. Manag. Sci. 54(7), 1336-1349 (2008)

Wan, Q., Xu, X., Chen, X., Zhuang, J.: A two-stage optimization model for large-
scale group decision-making in disaster management: minimizing group conflict and
maximizing individual satisfaction. Group Decis. Negot. 29(5), 901-921 (2020).
https://doi.org/10.1007/s10726-020-09684-0

Xu, X.H., Du, Z.J., Chen, X.H.: Consensus model for multi-criteria large-group
emergency decision making considering non-cooperative behaviors and minority
opinions. Decis. Support Syst. 79, 150-160 (2015)

Zhan, Q., Fu, C.,; Xue, M.: Distance-based large-scale group decision-making
method with group influence. Int. J. Fuzzy Syst. 23(2), 535-554 (2021). https://
doi.org/10.1007 /s40815-020-00993-9

https://doi.org/10.1007/s10726-014-9396-4
https://doi.org/10.1007/s10726-014-9396-4
https://doi.org/10.1007/s10726-020-09655-5
https://doi.org/10.1007/s10726-020-09655-5
https://doi.org/10.1007/s10726-020-09684-0
https://doi.org/10.1007/s40815-020-00993-9
https://doi.org/10.1007/s40815-020-00993-9

®

Check for
updates

Which Option Is a Better Way
to Improve Transfer Learning
Performance?

Honghui Xu, Zhipeng Cai®™, and Wei Li

Department of Computer Science, Georgia State University,
Atlanta, GA 30302-3965, USA
hxul6@student.gsu.edu, {zcai,wli28}@gsu.edu

Abstract. Transfer learning has been widely applied in Artificial Intel-
ligence of Things (AIoT) to support intelligent services. Typically, col-
lection and collaboration are two mainstreaming methods to improve
transfer learning performance, whose efficiency has been evaluated by
real-data experimental results but lacks validation of theoretical anal-
ysis. In order to provide guidance of implementing transfer learning in
real applications, a theoretical analysis is in desired need to help us fully
understand how to efficiently improve transfer learning performance. To
this end, in this paper, we conduct comprehensive analysis on the meth-
ods of enhancing transfer learning performance. More specifically, we
prove the answers to three critical questions for transfer learning: i) by
comparing collecting instances and collecting attributes, which collection
approach is more efficient? ii) is collaborative transfer learning efficient?
and iii) by comparing collection with collaboration, which one is more
efficient? Our answers and findings can work as fundamental guidance
for developing transfer learning.

Keywords: AloT - Transfer learning - Collaborative transfer learning

1 Introduction

A compound annual growth rate of 47% in network traffic indicates the prolifera-
tion of connected Internet of Things (IoT) devices in recent years [9]. Meanwhile,
known as the next generation IoT, Artificial Intelligence of Things (AIoT) [19]
relies on machine learning (ML) techniques to extract information from data
collected by a number of IoT devices [24] and has been leveraged by real-world
services, such as Facebook, Google, Amazon, and Microsoft, to provide individ-
uals with more efficient services. Transfer learning, which takes an advantage
of learned knowledge from known categories to novel/unknown categories with
limited training instances collected by IoT devices for prediction, is one of the
widely-used machine learning models in AToT [3]. Therefore, improving transfer
learning performance plays a critical role to promote the quality of AloT-based
services, which has attracted lots of research attention.

© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 61-74, 2021.
https://doi.org/10.1007/978-3-030-92681-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-92681-6_6

62 H. Xu et al.

Currently, researchers have realized the performance enhancement of trans-
fer learning through collection and collaboration. On the one hand, the trans-
fer learning performance can be improved by collecting more training instances
[12,18,34] and more attributes since transfer learning’s prediction is based on
shared attributes [11,17,32]. Even though these two collection methods have
been validated by conducting real-data experiments, no study has been carried
out to theoretically investigate which collection option is more efficient. On the
other hand, inspired by the idea of collaborative learning [10,14], collabora-
tive transfer learning models have been proposed to improve transfer learning
performance by sharing data among institutions [4,5,13,20,21,30,35]. Although
these works have demonstrated the efficiency of collaborative transfer learning
through the real-data experimental results [4,20], there lacks theoretically anal-
ysis whether collaboration can indeed bring the performance enhancement for
transfer learning. Therefore, in literature, the challenging question, “how to effi-
ciently improve transfer learning performance”, has not been answered yet. How-
ever, with the wide applications of transfer learning models, a thorough analysis
is urgent to be done before implementing these models so as to provide individ-
uals, institutions, and organizations with theoretical guidance illustrating how
to choose collection or collaboration for enhancing transfer learning performance
efficiently.

To fill this gap, in this paper, a series of theoretical analysis is well imple-
mented: i) first of all, we study how to select a more efficient collection option
from two collection ways (i.e. collecting training instances and collecting more
attributes) for performance enhancement in transfer learning; ii) next, we investi-
gate whether collaborative transfer learning in a two-party collaboration scenario
is worth doing to enhance performance; and iii) finally, we compare collection
and collaboration to analyze which one is more efficient for promoting transfer
learning. In our analysis, the conclusions are obtained through rigorous proof
and can be used as fundamental guidance for applying transfer learning in real
applications. Our multi-fold contributions are addressed as below.

— To the best of our knowledge, this is the first work to perform theoretical
analysis on the methods of improving transfer learning performance.

— We provide a theoretical basis for entities to select a more efficient collection
option from two collection ways to improve transfer learning performance.

— We prove whether the collaboration in a two-party scenario is efficient to
promote transfer learning performance.

— We offer guidance to choose collection or collaboration for performance
improvement in transfer learning.

The remainder of this paper is organized as follows. Related works are briefly
summarized in Sect. 2. After formulating problems in Sect. 3, we detail our anal-
ysis process in Sect. 4, Sect. 5, and Sect. 6. Finally, Sect.7 concludes this paper
and discusses our future work.

Which Option Is a Better Way to Improve Transfer Learning Performance? 63

2 Related Works

Transfer learning [3,31], which refers to domain adaptation or sharing of
knowledge and representations, is a kind of learning model to achieve the
goal of knowledge transfer by transferring information of learned models to
changing or unknown data distributions. Transfer learning approaches can be
broadly classified into four categories: instance-based, feature-based, parameter-
based, and relational-based approaches. i) Instance-based transfer learning
approaches [12,18,34] are mainly based on the instance weighting strategy.
ii) Feature-based approaches [11,17,32] map the original features into a new
feature space, which can be further divided into two subcategories, including
asymmetric and symmetric feature-based transfer learning. The asymmetric
approaches [2,17] transform the features in the source domain to match the fea-
tures in the target domain, while symmetric approaches [28,32] attempt to find a
common feature space and then map the source and target features into the com-
mon feature space. iii) Parameter-based transfer learning approaches [7,16,29]
keep an eye on transferring the shared knowledge at the parameter level. iv)
Relational-based approaches [6,22] focus on transferring the logical relation-
ship learned in the source domain to the target domain. These transfer learning
approaches reduce the effort to collect new labeled training samples and have
been widely applied in different real applications, such as disease prediction [23],
sign language recognition [8], and target online display advertising [26]. However,
no existing work theoretically investigates how to enhance transfer learning per-
formance efficiently.

Collaborative transfer learning was proposed to promote transfer learn-
ing performance by sharing data among institutions [4,5,20,21,30], which is
motivated by the idea of collaborative learning [10,14]. For instance, in the pro-
cess of healthcare and financial marketing analysis, sharing data among insti-
tutions can help enhance the accuracy of medical diagnosis [4] and financial
marketing forecasting [20]. However, these works only validate the efficiency
of collaboration through the real-data experimental results but lack theoretical
analysis.

In a nutshell, the question of how to enhance transfer learning performance
efficiently has not been answered with theoretical analysis. To fill this blank, in
this paper, we will conduct comprehensively and deeply analysis on the methods
of enhancing transfer learning performance, aiming to offer theoretical guidance
for the improvement of transfer learning.

3 Problem Formulation

In this section, we mathematically formulate the problem of transfer learning
based on PAC learning framework [15].

Transfer learning essentially trains a classifier by using the training instances
associated with known labels to predict the testing instances associated with
novel/unknown labels [33]. Inspired by the idea of [25], transfer learning can be
defined to learn a classifier as follows.

64 H. Xu et al.

Definition 1. A classifier consists of two mapping functions, where the first
one is the map from a training instance space X to an attribute space T (i.e.
X — T), and the second one is the map from T to a label space Y (i.e. T — V).

In the learning process of X — 7, we aim to train T binary classifiers using
X, where T' € N¥ is the number of attributes in 7; and in the learning process of
T — Y, we use these T binary classifiers to predict class labels in). Especially,
every instance’s label is represented by a 0-1 binary attribute vector, where a
vector element is set as 1 if and only if the element’s corresponding attribute
exists in this instance. Let Ly_.y denote the training loss (e.g., prediction error)
of the entire process X —). Suppose the upper bound of Ly_,y is 7 € (0,1).
The probability that the training loss does not exceed 7 can be represented as:

P(Lyy<r)=1-7, (1)

where v € (0,1) is the error probability. Different from traditional learning pro-

cesses, transfer learning technically focuses on how to use the training instances

to learn T binary classifiers instead of a classifier for prediction. Thus, consid-

ering the requirement of Ly_,y < 7, the training loss of each binary classifier
T

in the process X — 7, denoted by Lx_.7, should not be larger than 7. The

probability of holding Lx_.7 < % for any a classifier in 7 is represented by:
(L7 < 7) =13, 2)

where ¢ € (0,1) is the error probability. Accordingly, the probability to ensure
Lx_1 < F for T classifiers is (1 — §)T, and the probability to ensure Ly_y < 7
with T' classifiers is BinoCDF(7; T, %) that is the binomial cumulative distribu-
tion probability. On the other hand, according to PAC learning framework [15],
there should be at least N training instances in X’ such that Eq. (1) and Eq. (2)
can be satisfied, in which N can be computed as follows:

T2 2

N = (). 3)

2
NT2 *

From Eq. (3), we have § =

e T
To sum up, with N training instances and T classifiers, the performance of
the transfer learning process X —) can be defined as the total probability
P(N,T) that the training loss does not exceed the upper bound 7, i.e.,

P(N,T) = (1 — Ni)T . BinoCDF(r; T, %) (1=). (4)

Generally speaking, there are two major methods to improve the performance
of transfer learning. i) Collection: collecting more training instances for learning
better binary classifiers and/or collecting more attributes for predicting novel
labels more accurately. ii) Collaboration: collaborative transfer learning aims
to enhance the learning performance by sharing collected training instances and
attributes among participants.

Which Option Is a Better Way to Improve Transfer Learning Performance? 65

To thoroughly understand how to improve transfer learning performance
efficiently, the intent of this paper is to deeply investigate the following three
problems:

— By comparing collecting instances and collecting attributes, which collection
approach is more efficient?

— Is collaborative transfer learning efficient?

— By comparing collection with collaboration, which one is more efficient?

In the following, we elaborate on our theoretical analysis on these three problems
in Sect. 4, Sect. 5, and Sect. 6 in order.

4 Collecting Instances vs. Collecting Attributes

First of all, for presentation simplicity, we let

FOVLT) = (1= —)",)
and -
g(T) = BinoCDF(r; T, T) (6)

Then, we can rewrite P(N,T) as below,
P(N,T) = f(N,T)g(T)(1 = 7). (7)

The benefit of collecting one more instance r, and the benefit of collecting
one more attribute r; can be computed by Eq. (8) and Eq. (9), respectively.

rn, = APN(N,T) = P(N,T) — P(N - 1,T). (8)
re = APp(N,T) = P(N,T) — P(N,T — 1). (9)
The benefit difference k(N,T) is calculated as:

k(N,T)=r, —ry =P(N,T) — P(N,T — 1) — [P(N,T) — P(N — 1,T)]
=P(N —1,T)— P(N,T — 1) (10)
[f(N =1,T)9(T) = f(N,T = 1)g(T =)] (1 —).

We further use Taylor Theorem [27] and Newton’s forward interpolation for-
mula [1] to get a bivar linear function k(N,T) to approximate k(N,T). Mean-
while, to guarantee the existence of gradients in the following calculation process,
we approximate k(N,T) at the point (3,3), i.e

E(N,T) = k(3,3) + (N — 3)Akn(3,3) + (T — 3) Ak (3,3). (11)
From Eq. (10), we have

k(3,3) = [£(2,3)9(3) = f(3,2)9(2)] (1 = 7). (12)

66 H. Xu et al.

According to Eq. (10) and Newton’s forward interpolation formula [1], we can
obtain the calculation of gradients in the following.

k(3,3) — k(2,3)

Aky(3,3) = - = k(3,3) — k(2,3) (13)
=[f(2,3)9(3) = £(3,2)9(2) — f(1,3)9(3) + f(2,2)g(2)|(1 — 7).
Akp(3,3) = w = k(3,3) — k(3,2) (14)

=[£(2,3)9(3) — f(3,2)9(2) — f(2,2)9(2) + f(3,1)g(1)](1 —).
By substituting Eq. (12), Eq. (13), and Eq. (14), we can rewrite k(N,T) as

k(N,T) =[f(2,3)9(3) — £(3,2)9(2)] (1 =)
+ (N =3)[f(2,3)9(3) = f(3,2)9(2) — f(1,3)9(3) + f(2,2)9(2)](1 =)

+ (T = 3)[f(2,3)9(3) - 13,)()—f(2,2)9(2)+f(371)g(1)](1—v2.)
15

If k(N,T) < 0, collecting one more training instance is more efficient for
performance enhancement; otherwise, collecting one more attribute is more effi-
cient. Thus, we can compare I%(N ,T) with 0 to decide which collection option is
more efficient for one party to improve transfer learning performance.

Theorem 1. Suppose that one party has N training instances and T attributes.
Collecting one more training instance is more efficient than collecting one more
attribute to improve transfer learning performance, when any one of the following
two conditions holds:

(i) Condition 1: N, T, and 7 satisfy Eq. (16) and Eq. (17);
(i) Condition 2: N, T, and T satisfy Eq. (18) and Eq. (19

f(2,3)9(3) — £(3,2)9(2) — f(2,2)9(2) + (3, 1)g(1
N G a6) — f6.200) — FLaGE) 220
B f(2,3)9(3) — f(3,2)9(2) 43
f(2,3)9(3) — £(3,2)9(2) — f(1,3)9(3) + £(2,2)9(2)
f(2,3)9(3) = f(3,2)9(2) — f(1,3)9(3) + £(2,2)9(2) > 0. (17)
N o 1y L(2:3)0(3) = F(3.200(2) = F2,2)0(2) + £, ()
f(2,3)9(3) = £(3,2)9(2) — f(1,3)9(3) + £(2,2)9(2) (18)
B f(2,3)9(3) = f(3,2)9(2) 43
f(2,3)9(3) = £(3,2)9(2) — f(1,3)9(3) + £(2,2)9(2)
f(2,3)9(3) — f(3,2)9(2) — f(1,3)9(3) + £(2,2)9(2) <0. (19)
Note that f(2,3) = (1 — 25)3, f(3,2) = (1 — 22)% f(2,2) = (1 — 25)2,
f3,1) = (1 - -25), f(1,3) = (1 - %)3 according to Eq. (5), and g(1) =
BinoCDF(7; 1, %) g(2) = BinoCDF(T?Z, %), 9(3) = BinoCDF(7;3, %) accord-
ing to Eq. (6).

Which Option Is a Better Way to Improve Transfer Learning Performance? 67

Proof. The requirement of collecting one more instance to be more efficient is

k(N,T) < 0. According to Eq. (15), we have

[£(2,3)9(3) = £(3,2)9(2)] (1 =)
+ (N =3)[f(2,3)9(3) — f(3,2)9(2) — f(1,3)9(3) + £(2,2)9(2)](1 =)
+ (T =3)f(2,3)903) = £(3,2)9(2) = £(2,2)9(2) + f(3, 1)g(D](1 =) < (()- |
20
When Eq. (20) holds, there are three cases for consideration:
(i) if £(2,3)9(3) - £(3,2)9(2) — F(1,3)g(3) + F(2,2)9(2) > O (i.e., Ba. (17) is
satisfied), then we can get Eq. (16);
(i) if £(2,3)9(3) — £(3,2)9(2) — £(1,3)9(3) + £(2,2)9(2) < 0 (i.c., Eq. (19) is
satisfied), then Eq. (18) is obtained;
and (iii) if f(2,3)g(3) — £(3,2)9(2) — f(1,3)g9(3) + f(2,2)g(2) = 0, this is mean-
ingless for our investigated problem.
Thus, Theorem 1 is proved.

Theorem 2. Suppose that one party has N training instances and T attributes.
Collecting one more attribute is more efficient than collecting one more training
instance to enhance transfer learning performance, when any one of the following
two conditions holds:

(i) Condition 1: N, T, and T satisfy Eq. (21) and Eq. (22);
(i) Condition 2: N, T, and 7 satisfy Eq. (23) and Eq. (24).

N o (1)L (2:300(3) = F(3.200(2) — F2.2)0(2) + £, ()
f(273)g(3) - f(37)9(2) - f(17 3)9(3) + f(27 2)9 2) (21)
. 7(2.3)0(3) — (3,2)g(2) +3
f(2,3)9(3) = £(3,2)9(2) — f(1,3)9(3) + £(2,2)9(2)
f(2,3)9(3) = f(3,2)9(2) — f(1,3)9(3) + £(2,2)9(2) > 0. (22)
o J23)60) — F(3,2)92) — F(2,2)9(2) + £, V()
N)~ F6.200) — L3+ 2200y
f(2,3)9(3) — £(3,2)9(2) 43
f(Qa 3)9(3) - f(37 2)9(2) - f(]-a 3)9(3) + f(27 2)9(2)
f(2,3)9(3) — f(3,2)9(2) — f(1,3)9(3) + £(2,2)9(2) <0. (24)
Note that f(2,3) = (1 — —25)°, f(3,2) = (1 — 25)2, f(2.2) = (1 — %)%,
f3,1) = (1 - 63%), f(,3) = (1 - ;2)3 according to Eq. (5), and g(1) =
BinoCDF(7;1, %), 9(2) = BinoCDF(T?Q, %), 9(3) = BinoCDF(7;3, %) accord-

ing to Eq. (6).

Proof. Collecting one more attribute is a more efficient option, which is equiva-
lent to k(N,T) > 0. From Eq. (15), we have

68 H. Xu et al.

[£(2,3)9(3) = £(3,2)9(2)] (1 =)
+ (N =3)[f(2,3)9(3) — £(3,2)9(2) — £(1,3)9(3) + £(2,2)9(2)I(1 —)
7= BIIC99(3) = 12050) = F2.2002) + 6091 =) >0
25
There are three cases for solving Eq. (25):
(i) £(2,3)9(3) — £(3,2)9(2) — £(1,3)9(3) + £(2,2)9(2) > 0 (i.e., Ea. (22) is met),
then Eq. (21) is obtained,;
(i) £(2.3)9(3) — (3, 2)9(2) — £(1.3)g(3) + f(2.2)g(2) <0 (i.e.. Eq. (24) is sat-
isfied), then we can gain Eq. (23);
and (i) f(2,3)g9(3) — f(3,2)9(2) — f(1,3)g(3) + f(2,2)g(2) = 0, this is a mean-
ingless case for our investigated problem.
Therefore, Theorem 2 is proved.

5 Whether to Collaboration

Similar to the analysis in Sect.4, we use Taylor Theorem [27] and Newton’s
forward interpolation formula [1] to obtain a bivar linear function P(N,T)
to approximate P(N,T). Additionally, to ensure the existence of gradients for
P(N,T), we approximate P(N,T) at (3,3) as follows,

P(N,T) = P(3,3) + (N — 3)APx(3,3) + (T — 3)APr(3,3). (26)
Based on Eq. (7) and Newton’s forward interpolation formula [1], there exist

P(3,3) — P(2,3)

APy (3,3) = - = P(3,3) — P(2,3) o7
= f(3,3)9(3)(1 =) = £(2,3)9(3)(1 —),
and
APr(3,3) = P(3’3§) — 5(3’2) = P(3,3) — P(3,2) (28)
f3,3)9(3)(1 =) = f(3,2)9(2)(1 =).
With the substitution of Eq. (27)

and Eq. (28), lf’(N7 T) can be rewritten as:
1

P(N,T) =P(3,3) + (N = 3)[f(3,3)9(3)(1 =) — £(2,3)9(3)(L —)]
+ (T =3)[f(3,3)9(3)(1 =) = f(3,2)9(2)(1 = 7)].

In this section, our goal is to understand whether collaborative transfer learn-
ing is efficient for one party in a two-party (including party A and party B) col-
laboration scenario. Without loss of generality, party A has V7 training instances
and T3 attributes, and the party B has N> training instances and T, attributes.
If the party A does not collaborate with party B, according to Eq. (29), party
A can obtain transfer learning performance P(Ny,T}) as below,

P(Ny,Ty) = P(3,3) + (N1 = 3)[£(3,3)9(3)(1 = 7) — f(2.3)9(3)(1 —)]
+ (Ty = 3)[F(3,3)9B3)(1 =) = f(3,2)9(2)(1 = 7)].

)
) (29)

(30)

Which Option Is a Better Way to Improve Transfer Learning Performance? 69

If party A collaborates with party B, according to Eq. (29), party A’s transfer
learning performance P(Ny + No, T1 U T5) becomes

P(Ny + Na, Ty UTy) = P(3,3)
+ (N1 4 N2 = 3)[f(3,3)9(3)(1 —) = f(2,3)9(3)(1 —)]
1—

+ (T UTz = 3)[f(3,3)9B3)(1 =) = f(3,2)9(2)(1 = 7)].
(31)

If 15(N1 + N, 11 UTh) >]5(N1, T1), collaboration is efficient for party A to
improve transfer learning performance; otherwise, collaboration is not efficient
for party A. In order words, we should compare P(Nl, T) with 15(]\71 + N>, T U
T5) in order to judge whether collaboration is efficient for party A to enhance
transfer learning performance.

Theorem 3. In a two-party (party A and party B) collaboration scenario, party
A has Ny training instances and Ty attributes, and party B has Ny train-
ing instances and Ty attributes. Collaboration is more efficient for party A to
improve transfer learning performance, when Ty, No, To, and T satisfy Eq. (32).

R ™

where f(3,3) = (1— -2)3 f(3,2) =(1—-25)2, f(2,3) = (1— = prei 2.)3 according

(
to Eq. (5), and g(2) BmoCDF(T,Q7), g(3) = BinoCDF(T;?), 7-) according
to Eq. (6).

iR

Proof. Collaboration is more efficient for party A, which means]5(N1 + Ny, Th U
T5) > P(N1,Th). By substituting Eq. (30) and Eq. (31), we gain Eq. (33).
P(3,3) + (N1 + N2 = 3)[£(3,3)9(3)(1 —7) — f(2,3)9(3)(1 —)]
+ (M UT: =3)[f(3,3)9(3)(1 —7) = £(3,2)9(2)(1 —)] =
P(3,3) + (N1 = 3)[f(3,3)9B3)(1 =) = £(2,3)9(3)(1 =)]
+ (T =3)[f3,3)9(3)(1 =) — f(3,2)9(2)(1 = 7)].

Since f(3,3) > f(2,3) and ¢(3) > 0, we have [f(3,3)g(3) — f(2,3)g(3)] > 0.
Then, by solving Eq. (33), Eq. (32) is obtained. Thus, Theorem 3 is proved.

(33)

Theorem 4. In a two-party (party A and party B) collaboration scenario, party
A has Nj training instances and Ty attributes, and party B has Ny training
instances and Ty attributes. Collaboration cannot enhance transfer learning per-
formance for party A if Ty, Na, To, and T satisfy Eq. (34).

f(3,3)9(3) = f(3,2)9(2)
f(37 3)9(3) - f(27 3)9(3)7
where f(3,3) = (1— -2)3 f(3,2)=(1- = 2)?, f(2,3) = (1— —25)? according

(-
e e 9
to Eq. (5), and g(2) BmoCDF(T,Q, 7-), 9(3) = BinoCDF(7;3, 7) according
to Eq. (6).

Ny < —(T]_ Uty — TI) (34)

—

70 H. Xu et al.

Proof. The failure of collaboration to improve performance indicates 15(N1 +
Ny, Ty UTy) < P(Ny,Th). Accordingly, Eq. (35) can be gained using Eq. (30)
and Eq. (31).
P(3,3) + (N1 + N2 = 3)[£(3,3)9(3)(1 —v) — f(2,3)9(3)(1 —)]
+ (VT2 =3)[f(3,3)93)(1 =) — f(3,2)9(2)(1 = 7)] <
P(3,3) + (N1 = 3)[f(3,3)9(3)(1 =) — f(2,3)g(3)(1 —)]
+ (T1 = 3)[f(3,3)9(3)(1 =) = f(3,2)9(2)(1 = 7)].

In Eq. (35), [f(3,3)9(3) — f(2,3)g9(3)] > 0 because f(3,3) > f(2,3) and
g(3) > 0. Then, the solution to Eq. (35) is Eq. (34). Thus, Theorem 4 is proved.

(35)

From Theorem 3 and Theorem 4, any party in a two-party collaboration
scenario can make a judgement whether collaboration is an efficient choice.

6 Collection vs. Collaboration

In this section, we further compare the efficiency of collection and collaboration.
Considering a two-party (party A and party B) collaboration scenario, party
A has N; training instances and 73 attributes, and party B has N, training
instances and Ty attributes. Via collaboration, party A can increase transfer
learning performance to]5(N1 + N, 71 UTs). On the other hand, we assume
that party A can increase N7 to Nyr and increase T7 to Tr through collec-
tion. Correspondingly, party A can enhance transfer learning performance to
P(Nyr,Tnr) as shown in Eq. (36).

P(Nnt,Tnr) = P(3,3) + (Nt = 3)[f(3,3)9(3)(1 =) — £(2,3)9(3)(L —)]
+ (T =3)[f(3,3)9(3)(1 =) = £(3,2)9(2)(1 = 7)]. ()
36

If I:’(Nl + No, Ty UTs) > I:’(NNT,TNT), collaboration is more efficient for
party A to improve transfer learning performance; otherwise, collection is more
efficient for party A. Thus, we need to compare p(NNT,TNT) and P(Nl +
N3, T1 UT5) so as to help party A compare the efficiency of collection and
collaboration for performance improvement.

Theorem 5. In a two-party (party A and party B) collaboration scenario, party
A has Ni training instances and Ty attributes, and party B has Ny training
instances and Ty attributes. Assume that party A can increase Ny to Ny and
increase Ty to Tt via collection. Collaboration is more efficient than collection
for party A to enhance transfer learning performance, when N1, No, Nyr, T1,
Ty, TnT, and T satisfy Eq. (37).

Ny + Ny — Nyp > —(Th UTs — Tnr) (37)

)’
o

f3,3)9(3) = £(3,2)9(2)
f(3,3)9(3) — f(2,3)9(3)’
where f(3,3) = (1 — 25)3, f(3,2) = (1 — —22)%, and f(2,3) = (1 —

37—2
e

e 3 ’
according to Eq. (5), and g(2) = BinoCDF(7;2 ,Til), 9(3) = BinoCDF(r;
according to Eq. (6).

,Tl)

Which Option Is a Better Way to Improve Transfer Learning Performance? 71

Proof. If collaboration is more efficient, we have

P(Ny + No, Ty UTs) > P(Nnt, Tnr),

which is can be equivalently expressed by Eq. (38) via substituting Eq. (31) and
Eq. (36).

P(3,3) + (N1 + N2 = 3)[f(3,3)9(3)(1 =) = £(2,3)9(3)(1 =)]
+ (M UT2 =3)[f(3,3)9(3)(1 —7) = £(3,2)9(2)(1 —)] =

P(3,3) + (Nnr = 3)[f(3,3)9B3) (1 =) = £(2,3)9(3)(1 =)]

+ (Tnr = 3)[f(3,3)9B3)(1 =) = £(3,2)9(2)(1 =)]

Since £(3,3) > £(2,3) and g(3) > 0, [£(3,3)9(3) — £(2,3)9(3)] > 0. Then, by
solving Eq. (38), Eq. (37) is obtained. Therefore, Theorem 5 is proved.

(38)

Theorem 6. In a two-party (party A and party B) collaboration scenario, party
A has N; training instances and Ty attributes, and party B has No training
instances and Ty attributes. Assume that party A can increase Ny to Ny7 and
increase Ty to Tt via collection. Collection is more efficient than collaboration
for party A to enhance transfer learning performance, when N1, No, Ny1, T1,
Ty, TnT, and T satisfy Eq. (39).

Ni+ Ny — Nyr < —(Th UTy — Tnr) ;8,2583 : %27;;9(2), (39)

where f(3,3) = (1— -2)3 f(3,2)=(1- e 22, £(2,3) = (1— 222)3 according

(
to Eq. (5), and g(2) BlnoCDF(T,Q, Tl)e 9(3) = BinoCDF(7; 3 7-) according
to Eq. (6).

-

Proof. Similar to the analysis in Theorem 5, T:’(Nl +N,, Th1UT) < P(NNT, TnT)
is the condition of collection to be more efficient. By substituting Eq. (31) and
Eq. (36), we obtain Eq. (40) as follows.

P(3,3) + (N1 + N2 = 3)[f(3,3)9(3)(1 =) = £(2,3)9(3)(1 =)]
+ (M UT2 =3)[f(3,3)9(3)(1 —7) = £(3,2)9(2)(1 —7)] <

P(3,3) + (Nyr = 3)[f(3,3)9(3)(1 —7) — f(2,3)9(3)(1 =)]

+ (T =3)[f(3,3)9(3)(1 =) = £(3,2)9(2)(1 = 7)].

As f(3,3) > f(2,3) and ¢g(3) > 0, [f(3,3)9(3) — f(2,3)g(3)] > 0. Thus, for
Eq. (40), the solution is Eq. (39); that is, Theorem 6 is proved.

(40)

Theorem 5 and Theorem 6 demonstrate the conditions of selecting collabora-
tion or collection as an efficient method for a party to improve transfer learning
performance in a two-party scenario.

72 H. Xu et al.

7 Conclusion and Future Work

In this paper, we comprehensively investigate how to improve transfer learning
performance more efficiently. To the best of our knowledge, this is the first work
to theoretically analyze the methods of improving transfer learning performance.
Specifically, Theorem 1 and Theorem 2 are proposed in Sect.4 to help select a
more efficient collection option from two collection ways for promoting trans-
fer learning performance. Besides, Theorem 3 and Theorem 4 are presented in
Sect. 5 to help judge whether collaboration is more efficient to enhancing trans-
fer learning performance without considering collection. Moreover, Theorem 5
and Theorem 6 are put forward in Sect. 6 to help judge whether collaboration is
still efficient while considering both collection and collaboration. To sum up, our
proposed theorems and conclusions provide the thoroughly theoretical decision-
making guidance for improving transfer learning performance.

In our future work, we will advance our theoretical analysis for transfer learn-
ing performance by taking into account the cost of collection and collaboration.

Acknowledgment. This work was partly supported by the National Science Foun-
dation of U.S. (2118083, 1912753, 1704287, 1741277, 1829674).

References

1. AL-Sammarraie, O.A., Bashir, M.A.: Generalization of Newton’s forward interpo-
lation formula. Int. J. Sci. Res. Publ. (2015)

2. Argyriou, A., Evgeniou, T., Pontil, M.: Convex multi-task feature learning. Mach.
Learn. 73, 243-272 (2008). https://doi.org/10.1007/s10994-007-5040-8

3. Blanke, U., Schiele, B.: Remember and transfer what you have learned-recognizing
composite activities based on activity spotting. In: International Symposium on
Wearable Computers, pp. 1-8. IEEE (2010)

4. Chen, Y., Qin, X., Wang, J., Yu, C., Gao, W.: FedHealth: a federated transfer
learning framework for wearable healthcare. IEEE Intell. Syst. 35(4), 83-93 (2020)

5. Daga, H., Nicholson, P.K., Gavrilovska, A., Lugones, D.: Cartel: a system for col-
laborative transfer learning at the edge. In: Proceedings of the ACM Symposium
on Cloud Computing, pp. 25-37. ACM (2019)

6. Davis, J., Domingos, P.: Deep transfer via second-order Markov logic. In: Pro-
ceedings of the 26th Annual International Conference on Machine Learning, pp.
217-224. ACM (2009)

7. Evgeniou, T., Pontil, M.: Regularized multi-task learning. In: Proceedings of the
Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 109-117. ACM (2004)

8. Farhadi, A., Forsyth, D., White, R.: Transfer learning in sign language. In: 2007
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8. IEEE
(2007)

9. Global Forecast: Cisco visual networking index: global mobile data traffic forecast.
Update 2017-2022 (2019)

10. Hsieh, K., et al.: Gaia: geo-distributed machine learning approaching LAN speeds.
In: 14th USENIX Symposium on Networked Systems Design and Implementation,
pp. 629-647. USENIX (2017)

https://doi.org/10.1007/s10994-007-5040-8

Which Option Is a Better Way to Improve Transfer Learning Performance? 73

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Jebara, T.: Multi-task feature and kernel selection for SVMs. In: Proceedings of
the 21st International Conference on Machine Learning, p. 55. ACM (2004)
Jiang, J., Zhai, C.: Instance weighting for domain adaptation in NLP. In: Proceed-
ings of the 45th Annual Meeting of the Association of Computational Linguistics,
pp. 264-271. ACL (2007)

Ju, C., Gao, D., Mane, R., Tan, B., Liu, Y., Guan, C.: Federated transfer learning
for EEG signal classification. In: 42nd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society, EMBC 2020, Montreal, QC,
Canada, 20-24 July 2020, pp. 3040-3045. IEEE (2020). https://doi.org/10.1109/
EMBC44109.2020.9175344

Kang, Y., et al.: Neurosurgeon: collaborative intelligence between the cloud and
mobile edge. ACM SIGARCH Comput. Archit. News 45, 615-629 (2017)

Kearns, M.J., Vazirani, U.V., Vazirani, U.: An Introduction to Computational
Learning Theory. MIT Press, Cambridge (1994)

Lawrence, N.D., Platt, J.C.: Learning to learn with the informative vector machine.
In: Proceedings of the 21st International Conference on Machine Learning, p. 65.
ACM (2004)

Lee, S.I., Chatalbashev, V., Vickrey, D., Koller, D.: Learning a meta-level prior for
feature relevance from multiple related tasks. In: Proceedings of the 24th Interna-
tional Conference on Machine Learning, pp. 489-496. ACM (2007)

Liao, X., Xue, Y., Carin, L.: Logistic regression with an auxiliary data source.
In: Proceedings of the 22nd International Conference on Machine Learning, pp.
505-512. ACM (2005)

Luo, C., et al.: AIoT bench: towards comprehensive benchmarking mobile and
embedded device intelligence. In: Zheng, C., Zhan, J. (eds.) Bench 2018. LNCS,
vol. 11459, pp. 31-35. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
32813-9.4

Ma, Z., et al.: PMKT: privacy-preserving multi-party knowledge transfer for finan-
cial market forecasting. Future Gener. Comput. Syst. 106, 545-558 (2020)

Ma, Z., et al.: PMKT: privacy-preserving multi-party knowledge transfer for finan-
cial market forecasting. Future Gener. Comput. Syst. 106, 545-558 (2020). https://
doi.org/10.1016/j.future.2020.01.007

Mihalkova, L., Huynh, T., Mooney, R.J.: Mapping and revising Markov logic net-
works for transfer learning. In: AAAI, vol. 7, pp. 608-614. AAAT (2007)

Ogoe, H.A., Visweswaran, S., Lu, X., Gopalakrishnan, V.: Knowledge trans-
fer via classification rules using functional mapping for integrative modeling of
gene expression data. BMC Bioinform. 16, 1-15 (2015). https://doi.org/10.1186/
s12859-015-0643-8

Olmedilla, D.: Applying machine learning to ads integrity at Facebook. In: Pro-
ceedings of the 8th ACM Conference on Web Science, p. 4. ACM (2016)
Palatucci, M., Pomerleau, D., Hinton, G.E., Mitchell, T.M.: Zero-shot learning with
semantic output codes. In: Advances in Neural Information Processing Systems,
pp. 1410-1418. MIT Press (2009)

Perlich, C., Dalessandro, B., Raeder, T., Stitelman, O., Provost, F.: Machine learn-
ing for targeted display advertising: transfer learning in action. Mach. Learn. 95,
103-127 (2014). https://doi.org/10.1007/s10994-013-5375-2

Rababah, A.: Taylor theorem for planar curves. Proc. Am. Math. Soc. 119, 803—
810 (1993)

Raina, R., Battle, A., Lee, H., Packer, B., Ng, A.Y.: Self-taught learning: transfer
learning from unlabeled data. In: Proceedings of the 24th International Conference
on Machine Learning, pp. 759-766. ACM (2007)

https://doi.org/10.1109/EMBC44109.2020.9175344
https://doi.org/10.1109/EMBC44109.2020.9175344
https://doi.org/10.1007/978-3-030-32813-9_4
https://doi.org/10.1007/978-3-030-32813-9_4
https://doi.org/10.1016/j.future.2020.01.007
https://doi.org/10.1016/j.future.2020.01.007
https://doi.org/10.1186/s12859-015-0643-8
https://doi.org/10.1186/s12859-015-0643-8
https://doi.org/10.1007/s10994-013-5375-2

74

29.

30.

31.

32.

33.

34.

35.

H. Xu et al.

Schwaighofer, A., Tresp, V., Yu, K.: Learning gaussian process kernels via hierarchi-
cal Bayes. In: Advances in Neural Information Processing Systems, pp. 1209-1216.
MIT Press (2005)

Sharma, S., Xing, C., Liu, Y., Kang, Y.: Secure and efficient federated transfer
learning. In: 2019 IEEE International Conference on Big Data, pp. 2569-2576.
IEEE (2019)

Torralba, A., Murphy, K.P., Freeman, W.T.: Sharing visual features for multiclass
and multiview object detection. IEEE Trans. Pattern Anal. Mach. Intell. 29, 854~
869 (2007)

Wang, C., Mahadevan, S.: Manifold alignment using procrustes analysis. In: Pro-
ceedings of the 25th International Conference on Machine Learning, pp. 1120-1127.
ACM (2008)

Wang, W., Zheng, V.W., Yu, H., Miao, C.: A survey of zero-shot learning: settings,
methods, and applications. ACM Trans. Intell. Syst. Technol. 10, 1-37 (2019)
Wu, P., Dietterich, T.G.: Improving SVM accuracy by training on auxiliary data
sources. In: Proceedings of the 21st International Conference on Machine Learning,
p. 110. ACM (2004)

Yang, H., He, H., Zhang, W., Cao, X.: FedSteg: a federated transfer learning frame-
work for secure image steganalysis. IEEE Trans. Netw. Sci. Eng. 14, 78-88 (2018)

®

Check for
updates

On Maximizing the Difference Between
an Approximately Submodular Function
and a Linear Function Subject
to a Matroid Constraint

Yijing Wang®, Yicheng Xu?*®) and Xiaoguang Yang'

! Academy of Mathematics and Systems Science, Chinese Academy of Sciences,
Beijing 100190, People’s Republic of China
2 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences,
Shenzhen 518055, People’s Republic of China
yc.xu@siat.ac.cn
3 Guangxi Key Laboratory of Cryptography and Information Security,
Guilin 541004, People’s Republic of China

Abstract. In this paper, we investigate the problem of maximizing the
difference between an approximately submodular function and a non-
negative linear function subject to a matroid constraint. This model has
widespread applications in real life, such as the team formation problem
in labor market and the assortment optimization in sales market. We
provide a bicriteria approximation algorithm with bifactor ratio (ﬁ, 1),
where v € (0, 1] is a parameter to characterize the approximate submodu-
larity. Our result extends Ene’s recent work on maximizing the difference
between a monotone submodular function and a linear function. Also,
a generalized version of the proposed algorithm is capable to deal with
huge volume data set.

Keywords: Approximately submodular - Matroid constraint -
Bicriteria algorithm - Massive data

1 Introduction

The problem of maximizing the difference of a normalized monotone approx-
imately submodular function and a non-negative linear function plays an
important role in team formation problem [12,18] and assortment optimiza-
tion [1,2,5,16]. In the sales market, the sellers wish to attract customers by dis-
playing goods. There is a counter charge for the exhibition, but also, the profit
can be made if the goods are sold. Thus the sellers are aiming to maximize the
profits through the products exhibition. Since the display area is limited, it is of
significance to select which goods to display. This problem can be characterized
as maxscq f(S) —£(S), where G is the ground set of goods, and f, ¢ : 2 — Rxg
represent the benefit and cost functions respectively.

© Springer Nature Switzerland AG 2021

D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 75-85, 2021.
https://doi.org/10.1007/978-3-030-92681-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-92681-6_7

76 Y. Wang et al.

When function f is strictly submodular, it is easy to find the objective func-
tion d(S) := f(S) — £(S) may be negative and non-monotone but submodular.
Maximizing a submodular set function problem is usually NP-hard, and design-
ing approximation algorithms is a common way to solve it. However, the model
that maximizes a potentially negative as well as non-monotone submodular func-
tion may do not get a traditional multiplicative factor approximation, even it is
inapproximable [9,20]. For this case, it is effective and appropriate to design a
bicriteria approximation algorithm [6] provided in Definition 2 to measure the
quality of a solution set.

Sviridenko et al. [22] propose a (1—1/e, 1)-bicriteria approximation algorithm
for the non-negative monotone submodular function minus non-negative linear
function model subject to a matroid constraint. In their work, they first modified
the model maxger f(S) — €(S) to maxgca{f(S) : c¢(S) < B,S € F}, where F
is a family of independent sets, and B is a knapsack constraint which is con-
structed utilizing the value of £(O*). Based on the continuous greedy technique,
they performed a variant greedy algorithm by guessing ¢(O*)’s value approxi-
mately. Unfortunately, guessing the value of £(O*) attracted a amount of time
complexity. Feldman [10] improves the time complexity by introducing a time
weight vector to modify the objective function in the work of Sviridenko et al.
further, and keeps the same approximation ratio as Sviridenko et al.

Different from the methods of Sviridenko et al. and Feldman, Ene [8] pro-
poses a simple but standard greedy algorithm to study the model with a matroid
constraint and obtains the bicriteria approximation ratio (1/2,1). Besides the
matroid constraints, Nikolakaki et al. [19] also investigate the model with car-
dinality constraints under streaming setting, and acquire a ((3 — v/5)/2,1)-
bicriteria approximation algorithm. Without any constraints, they design an
online approximation algorithm with bicriteria ratio (1/2,1).

As approximately submodular functions arise in numerous applications, such
as influence maximization in social networks and interpretation of deep neu-
ral networks as well as high dimensional sparse regression in machine learning,
more and more scholars focus on the research of approximately submodularity
[3,11,13,15]. For the model a non-negative monotone approximately submodular
function minus a non-negative modular function under cardinality constraints,
Harshaw et al. [14] provide a (1—1/e” —¢, 1)-bicriteria approximation algorithm,
where v € (0, 1] is a parameter to characterize the approximately submodularity
and € > 0. Instead of the greedy techniques in the above results, Qian [21] takes
a multi-objective evolutionary method to design algorithm, and gets a bicriteria
ratio (1 — 1/e7,1) for the problem of maximizing the difference of a monotone
v-weakly submodular and a non-negative modular function with a cardinality
constraint.

Based on the above models and results, we extend the submodular func-
tions to approximately submodular one, and study the model with matroid con-
straints. Firstly we provide a simple bicriteria algorithm on a given ground set
with bifactor approximation ratio (y/(1 + «),1), where v € (0,1]. When func-
tion f is submodular, our result coincides with Ene’s recent work [8]. Faced with

Submodular Function and a Linear Function Ve

massive dataset, we improve the bicriteria algorithm to a general one which
is applicable to any form datasets whether they are given finitely or presented
dynamically. The bicriteria ratio is (ﬁ%, 5{;—;‘), where 0 < v < 1 and parameters
0 < a < @ are used to balance the gain and cost.

The remainder of this work is structured as follows. In Sect. 2, we introduce
some preliminaries including the definitions of approximately submodular func-
tion and bicriteria approximation algorithm. We describe a bicriteria algorithm
as well as its corresponding analysis in Sect. 3. In Sect. 4, we give a general and
novel approximation algorithm to deal with online and streaming data. The

conclusion of this work is given in Sect. 5.

2 Preliminaries

The studied problem can be formulated as maxgca{f(S)—¢(S) : S € F}, where
function f is a non-negative normalized monotone approximately submodular
function and £ is a non-negative linear function.

For a ground set G = {ej,ea,...,e,} and a set function defined on G as
g:2% — R, we call function g non-negative if it satisfies g(S) > 0 for any S C G;
g is normalized if it satisfies g(0)) = 0; g is monotone if it satisfies g(S) < ¢g(T)
for any subsets S C T' C G g is linear if it satisfies g(S) = > g g(e); and g is
submodular if it satisfies g(e|S) < g(e|T), for any T C S C G and e € G\ S,
where g(e|S) := g(SU{e}) —g(S) characterizes the marginal gain when adding e
into S. Combining with the propositions of Lehmann et al. [17] and the definition
n [15], the concept of approximately submodular is given as Definition 1.

Definition 1. The approximately submodularity ratio of a non-negative normal-
ized monotone set function g : 2¢ — R is the largest value v € (0,1] such that
for any subsets T C S C G, element e € G\ S, there are vg(elS) < g(e|T). Func-
tion g : 2¢ — R is called ~y-approzimately submodular function or approzimately
submodular function. When v = 1, function g is strictly submodular.

Given the properties of functions f and ¢, it is difficult to get a traditional
multiplicative factor approximation for the studied model. The bicriteria approx-
imation ratio is a natural and feasible way to estimate the performance of a given
algorithm, which is defined as the follows.

Definition 2. An algorithm is called a (o, p)-approxzimation algorithm if it out-
puts a solution S such that f(S)—(S) > o-f(O*)—p-L(O*) formax{f(S)—£(S) :
S C G}, where 0 < 0 <1, p >0 and O* is an optimal solution to the original
problem.

In the model, our goal is to get a subset S subject to the matroid constraint
M = (G, F) to maximize the objective value d(S) := f(S) — ¢(S). By means
of the introduction of Edmonds [7], we explain the definition of matroid M =
(G, F) as follows.

78 Y. Wang et al.

Definition 3. The pair (G,F) is a matroid if the ground set G and its subset
family F satisfies the following requirements simultaneously:

— nonempty:) € F;

— hereditary property: for any subsets T € F, S CT, there is S € F;

— augmentation property: for any subsets S,T € F, if |S| < |T|, then there is
an element e € T\ S, such that SU {e} € F.

If M = (G, F) is a matroid, we call F an independent set family, and subset
S is independent if S € F. In this paper, we assume there are two oracles which
can be considered as two black boxes, where one is used to calculate the function
value of a given subset S, and the other is to judge whether S is independent.
We intend to minimize the number of oracle calls in our algorithm.

3 A Bicriteria Algorithm

In this section, we provide a bicriteria approximation algorithm accompany
with its analysis for the model maxgca{f(S) — 4(S) : S € F}, where f is
~y-approximately submodular and ¢ is non-negative linear. Easy to observe that
the objective d(S) = f(S) — ¢(9) is also approximately submodular but not
necessarily be nonnegative and monotone. Towards this end, we first construct
a intermediary function d(S) := f(S) — (1 +~)¢(S), where v € (0,1] is the sub-
modularity ratio of function f. Then we iteratively select an element e whose
marginal gain is maximal w.r.t. the intermediary function d(S). If element e
brings a non-negative gain to the original target function d(S) on the current
solution S, we choose it, otherwise we give up selecting element e. The detailed
presentation is shown in Algorithm 1.

Algorithm 1. A bicriteria algorithm for f — /¢

1: Input:
Give a ground set G = {e1, eq,...,€en}, a y-approximately submodular function f,
a non-negative linear function ¢, matroid M = (G, F).

2: Output:
A subset S € F.

3: Process:

4: Initially set S:=0, R:=G

5 Fort=1,2,3,...

6: select e; = argmaxcep:sugeyer f(elS) — (1 +7)L(e)
7. if f(ei]S) —L(e;) <O

8 update R := R\ {e;}

9: else

10: update S := S U {e;}

11: remove every element e from R such that SU {e} ¢ F
12: Return S

Before analyzing the performance guarantee of Algorithm 1, we introduce
a lemma with respect to the property of two independent subsets in matroid

Submodular Function and a Linear Function 79

M = (G, F), which is a natural extension of the result provided by Buchbinder
et al. [4].

Lemma 4. Let U and V be two independent subsets in matroid M = (G, F)
such that |U| = |V|. There is a bijection b : U\V — V\U such that V\b(e)U{e} €
F for every element e € U\'V and everye € V\U.

Note that Lemma 4 is applicable to two bases of matroid M = (G,F), of
which the proof is provided in [4]. Based on Lemma 4, we prove that Algorithm
1 outputs a solution set S such that f(S) —£(S) > 1J’Z'y (O*) = £(0*), when the
solution set .S and optimal set O* have the same cardinality. The detail is shown

in the proof to Lemma 5.

Lemma 5. If S satisfies |S| = |0*|, then Algorithm 1 is a (
approzimation, where O* is an optimal solution of the original model.

-

Proof. Assume |S| = |O*| = m. Let S; = {e1,ea,...,e;} represent the solution
after i-th iteration. Denote {01,0z,...,0,5/} as the difference set O = O* \ S,
where the elements are arbitrarily ordered. Denote O; = {01, 09,...,0;} with
i <]O*\ S|

Observe from Lemma 4 that there is a bijection b : O* — S such that
S\ b(o) U {o} is independent for each elements o € O*. The detailed mapping
between S and O* is matched in the following way: b(o) = e for each element o €
O*\\S and b(0) = o for each element 0 € O*NS. Since S = {e1,ea,..., ey}, where
the elements are ordered as they are added into S by the algorithm. Let o; = b(e;)
for all i € [m], and the optimal solution set O* is ordered in 01,02,...,0m.
By the selection rule in Algorithm 1, we know the following inequality holds:
d(e;|Si—1) > d(0;|S;_1), which is explained as follows.

In the bijection, if 0; = e;, the above inequality is nature. If 0; # e;, we know
S\{e;} U{o;} € F by the mapping in Lemma 4. Since S;_1 C S\ {e;}, there is
Si—1 U{o;} € F by the hereditary property. By the selection rule in Algorithm
1, we choose the element e; to add into subset S;_;, whose marginal gain is
maximal in iteration i-th. Then we get element o; is a candidate for e;, and the
inequality d(e;|S;_1) > d(0;]S;_1) holds.

Thus, for any i € [m], it satisfies that

F(SiciU{ei}) = f(Sic1) — (L +v)L(ei)
> f(Si-1U{oi}) = f(Si—1) — (1 +7)l(0s). (1)

Since function f is approximately submodular, then vf(0;|S U O;—1) <
f(0i|Si—1)7 i'e'7

f(Si—1U{oi}) = f(Sim1) 2 vf(SUOi—1 U{o;}) —vf(SUOi—1). (2)

Summing up all indexes ¢ € [m] and combining with Inequality (2), the
left-hand side of Inequality (1) can be restated as:

80 Y. Wang et al.

LHS =" (£(S) = f(Si1) = (1 +9) Y Ue:)

= f(5) = (L +US). 3)

Similarly, based on the monotonicity of function f, the right-hand side of Inequal-
ity (1) can be reformulated as:

RHS =" (£(Si-1U{0i}) = f(Si—1) — (1 +7)t(0:))

>VZ F(SUO) = f(SUO_1)) — (1+7) Zeoz
=7 (f(SUO") = f(5)) = 1 +7)O")
> 7f(O7) = vf(S) = (L +7)¢07). (4)

Rearranging Inequalities (1)—(4), we obtain the final solution set S satisfies

f(8) = (L+)US) = 7f(07) =vf(S) = (1 +7)(O7).

Therefore, when solution set S returned by Algorithm 1 has the same cardi-
nality as an optimal solution, it can do that f(S5) —£(S) > 5 f(O") — £(0"),
completing the proof. O

Therefore, we obtain the following conclusion.

Theorem 6. Algorithm 1 oulputs a solution S with f(S) —£(S) > ﬁf(O*) —
£(0*), where v € (0,1].

Proof. Assume set O* = {01,02,...,0,} is an optimal solution to the problem,
where p = |O*|, and S = {e1, eq,..., €4} is the solution returned by Algorithm
1, where ¢ = |S|. Let O = O* \ S and the set O = {01,02,...,0/5/} is ordered
arbitrarily. Denote S; = {ej1, ea,...,e;} is the subset returned after iteration i-th
and O; = {01,02,...,0;},i < |O*\ S| correspondingly. We expand the analysis
of Theorem 6 from the perspective of the cardinalities of S and O*. There are
three relationships for p and gq.

— Case l: p=gq.
Rely on Lemma 5, we can directly find the quality of solution S such that
f(S) = €(S) = 15 f(O*) = £(0”) in this case, where v € (0, 1].

— Case 2: p > gq.
Utilizing the augmentation property in matroid M = (G, F), we know there
is an element 0 € O = O* \ S satisfying S U {0} € F. As element o is not
chosen by the algorithm, it must guarantee f(0|S) — ¢(0) = d(0]S) < 0, that
is d(S U {o}) < d(S). Repeat this augmentation until we get a set S’ such
that |S’| = |O*|. By the argument process, we know d(S) > d(5’).

Submodular Function and a Linear Function 81

Combing the result of Case 1, it is easy to find the augmentation set S’
satisfies f(S") — £(S") > ﬁ (O*) = £(O*), ie., d(S") = f(S") —£S") >

5 f(0*) — £(O0"). Since d(S5) > d(S'), there is

d(S) = f(S) = €(S) > d(S') = f(S') = &)

v * *
me(O) = £(0).

Thus the output set S guarantees f(S) — €(S) = 5 f(O") = £(O”) when
p =107 >[5] = gq.

— Case 3: p < q.
Denote set S" = {e1,e2,...,e,} C S, which is consists of the first p elements
added into S. Because the elements e,y1,€pt2,...,¢, are added into set S’

sequentially, there are d(S) > d(S”") by the selection rule in Algorithm 1.
Combing the result of Case 1, we obtain f(S") — ¢(S") > ﬁf(O*) — (0",

e, d(S") = f(S') —£(S") > =L f(O*) — £(O*). Since d(S) > d(S’), there is

= 1+~

d(S) = f(S) = £(S) Z d(5") = f(') = &S

Y * *
> ——f(0*) —£(0").
> 12107 = 40")
Thus the output set S guarantees f(S) — ((S) = 175 f(0") = £(O”) when
p=10"[<5 =g¢
Combining the above three cases, we get the solution set S output by Algo-

rithm 1 satisfying f(S) — €(5) = 15 f(O) — £(0). O

4 An Extended Bicriteria Algorithm for Hiigh Volume
Data

As shown in Sect.3, we need to know the complete information of data when
running Algorithm 1. So it does not work for huge volume dataset. Accompanied
by the information age, a huge volume data is being generated every second. It
is necessary to design an effective algorithm that is suitable for massive data.
For massive data sets, we need online or streaming algorithms. Thus we extend
Algorithm 1 to a more general one which is applicable to any volume dataset.

Based on a similar idea, we first construct a intermediary function J(S) =
a- f(S)— p-£(S), where parameters 0 < o < [are used to balance the gain
and cost. With the advent of dataset, we iteratively select the single element
e that takes positive marginal gain to the intermediary function. The detailed
presentation is shown in Algorithm 2.

Theorem 7. Algorithm 2 outputs a solution S with f(S)—£¢(S) > ’GfTo‘f(O*) -
%E(O*), where v € (0,1] and 0 < a < 3.

82 Y. Wang et al.

Algorithm 2. A general bicriteria algorithm for f — ¢
1: Input:
Give a ground set G = {e1,e2,...,en}, a y-approximately submodular function f,
a non-negative linear function ¢, matroid M = (G, F), parameters 0 < a < 3.
2: Output:
A subset S € F.
: Process:
: Initially set S :=0)
For each arriving element e
if SU{e} e Fand a- f(e|S)—B-£(e) >0
set S:=SU{e}
: Return S

Proof. Let p = |O*| and ¢ = |S|. Denote S; = {e1,€ea,...,€;} as the output set
at i-th iteration. Assume that it is ordered as the sequence that the elements are
selected by Algorithm 2. We start with the proof of the upper bound. For each
element e; € S, it holds the following inequality

o - f(€i|S¢_1) - - f(ez) > 0.

Summing up all elements in S, we obtain

> a-flelSic) = Y B-l(e) > 0.

e, €S e, €S

Rearranging the inequality, then we have ¢(5) < % f(9).
For the lower bound, according to the selection rule in Algorithm 2, for each
element o; € O*\ S, since o; is not added into set S;_1, it must perform that

a- f(0i]Si—1) = B £(0;) < 0.
Rewriting the inequality, we obtain
a- f(oi]Si—1) < B £(0:)-
Since f is approximately submodular, then
f(05]Si—1) = v+ f(oi|SUO;_1).

Therefore,
a-y- f(oilSUO;—1) <a- f(0i]Si—1) < B-L(0;).

Summing up all elements o; € O* \ S, we have

Qa-7y- Z f(oi|lSUO;—1) <3+ Z £(0;).

0, €0*\S 0,€0*\S
Rearranging the above inequality yields

a7 (f(SUO0%) = f(S)) <B-LO"\5). (5)

Submodular Function and a Linear Function 83

Since f is monotone, the left-hand side of Inequality (5) can be lower bounded
by LHS > a-v-(f(O*)— f(S)). As function ¢ is non-negative linear, the right-
hand side of Inequality (5) can be upper bounded by RHS < - £(O*). Then
Inequality (5) can be reduced into

1) = 1(07) - 10",

Based on the lower bound of f(S) and the upper bound of £(5), we get

ﬂﬁfaﬁzﬂﬁf%ﬂﬁzﬂf%ﬁ@)
6 -« * i *
> 25 (510 - 2 nom)
_ 6 -« *\ 6 « *
= =507 = o),
completing the proof. |

5 Conclusion

In this work, we consider the maximization of the difference between a nor-
malized non-negative monotone approximately submodular function and a non-
negative linear function subject to a matroid constraint. This model captures
several typical models, for example, the maximization of a submodular func-
tion minus a linear function. As our main contribution, we provide a (ﬁ, 1)-
approximation algorithm, where v € (0,1] is the submodularity parameter of
function f. This result also extends several previous work, for example the Ene’s
recent work [8]. We then modify Algorithm 1 to deal with the huge volume
dataset and obtain a (B_TO‘, ﬁa_,yo‘)-approximation algorithm, where 0 < o < 3
are parameters to balance the gain and cost.

Acknowledgements. This work was supported by the National Key Research and
Development Program of China under Grants 2018 AAA0101000. Yicheng Xu was sup-
ported by Guangxi Key Laboratory of Cryptography and Information Security (No.
GCIS202116).

References

1. Anagnostopoulos, A., Becchetti, L., Castillo, C., Gionis, A., Leonardi, S.: Online
team formation in social networks. In: Proceedings of the 21st International Con-
ference on World Wide Web, pp. 839-848 (2012)

2. Anagnostopoulos, A., Castillo, C., Fazzone, A., Leonardi, S., Terzi, E.: Algorithms
for hiring and outsourcing in the online labor market. In: Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pp. 1109-1118 (2018)

84

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Y. Wang et al.

Bian, A.A., Buhmann, J.M., Krause, A., Tschiatschek, S.: Guarantees for greedy
maximization of non-submodular functions with applications. In: Proceedings of
the 34th International Conference on Machine Learning, pp. 498-507 (2017)
Buchbinder, N., Feldman, M., Garg, M.: Deterministic (1/2 + €)-approximation
for submodular maximization over a matroid. In: Proceedings of the 30th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 241-254 (2019)

Désir, A., Goyal, V., Segev, D., Ye, C.: Constrained assortment optimization under
the Markov chained-based choice model. Manag. Sci. 66(2), 698-721 (2020)

Du, D., Li, Y., Xiu, N., Xu, D.: Simultaneous approximation of multi-criteria sub-
modular functions maximization. J. Oper. Res. Soc. China 2(3), 271-290 (2014)
Edmonds, J.: Submodular functions, matroids, and certain Polyhedra. In: Jiinger,
M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization—Eureka, You
Shrink! LNCS, vol. 2570, pp. 11-26. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36478-1_2

Ene, A.: A note on maximizing the difference between a monotone submodular
function and a linear function. arXiv preprint arXiv: 2002.07782 (2020)

Feige, U.: A threshold of Inn for approximating set cover. J. ACM 45, 634-652
(1998)

Feldman, M.: Guess free maximization of submodular and linear sums. In: Pro-
ceedings of the 16th International Conference Workshop on Algorithms and Data
Structures, pp. 380-394 (2019)

Friedrich, T., Gobel, A., Neumann, F., Quinzan, F., Rothenberger, R.: Greedy
maximization of functions with bounded curvature under partition matroid con-
straints. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence,
pp. 2272-2279 (2019)

Golshan, B., Lappas, T., Terzi, E.: Profit-maximizing cluster hires. In: Proceedings
of the 20th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 1196-1205 (2014)

Gong, S., Nong, Q., Liu, W., Fang, Q.: Parametric monotone function maximiza-
tion with matroid constraints. J. Glob. Optim. 75(3), 833-849 (2019)

Harshaw, C., Feldman, M., Ward, J., Karbasi, A.: Submodular maximization
beyond non-negativity: guarantees, fast algorithms, and applications. In: Proceed-
ings of the 36th International Conference on Machine Learning, pp. 2634—2643
(2019)

Kuhnle, A., Smith, J.D., Crawford, V.G., Thai, M.T.: Fast maximization of non-
submodular, monotonic functions on the integer lattice. In: Proceedings of the 35th
International Conference on Machine Learning, pp. 2791-2800 (2018)

Lappas, T., Liu, K., Terzi, E.: Finding a team of experts in social networks. In:
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 467-476 (2009)

Lehmann, B., Lehmann, D., Nisan, N.: Combinatorial auctions with decreasing
marginal utilities. Games Econ. Behav. 55, 270-296 (2006)

Liu, S., Poon, C.K.: A simple greedy algorithm for the profit-aware social team
formation problem. In: Proceedings of the 11th International Conference on Com-
binatorial Optimization and Applications, pp. 379-393 (2017)

Nikolakaki, S.M., Ene, A., Terzi, E.: An efficient framework for balancing sub-
modularity and cost. In: Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 1256-1266 (2021)

Papadimitriou, C., Yannakakis, M.: Optimization, approximation, and complexity
classes. J. Comput. Syst. Sci. 43, 425-440 (1991)

https://doi.org/10.1007/3-540-36478-1_2
https://doi.org/10.1007/3-540-36478-1_2
http://arxiv.org/abs/2002.07782

21.

22.

Submodular Function and a Linear Function 85

Qian, C.: Multi-objective evolutionary algorithms are still good: maximizing
monotone approximately submodular minus modular functions. arXiv preprint
arXiv: 1910.05492 (2019)

Sviridenko, M., Vondréak, J., Ward, J.: Optimal approximation for submodular
and supermodular optimization with bounded curvature. Math. Oper. Res. 42(4),
1197-1218 (2017)

http://arxiv.org/abs/1910.05492

l‘)

Check for
updates

On Various Open-End Bin Packing Game

Ling Gai'®, Weiwei Zhang?®, Wenchang Luo®®, and Yukun Cheng*®)

1 Glorious Sun School of Business & Management,
Donghua University, Shanghai 200051, China
lgai@dhu.edu.cn
2 School of Management, Shanghai University, Shanghai 201444, China
zthomas@shu.edu.cn
3 School of Mathematics and Statistics, Ningbo University, Ningbo 315211, China
luowenchang@nbu.edu.cn
4 Business School, Suzhou University of Science and Technology,
Suzhou 215009, China
ykcheng@amss.ac.cn

Abstract. In this paper, we introduce various open-end bin packing
problems in a game theoretic setting. The items (as agents) are selfish and
intelligent to minimize the cost they have to pay, by selecting a proper
bin to fit in. For both general open-end bin packing game and minimum
open-end bin packing game, we prove the existence of the pure Nash
Equilibrium and study the Price of Anarchy. We prove the upper bound
to be approximately 2 and show a corresponding tight lower bound for
both models. Furthermore, we study the open-end bin packing game with
conflict and also give the proof for the existence of Nash Equilibrium.
Under multipartite and simple conflict graph, we study the upper bound
of Price of Anarchy separately.

Keywords: Open-end bin packing - Game - Price of anarchy - Conflict

1 Introduction

Open-end bin packing problem was first introduced by Leung et al. [8,9], then its
parameterized online version was studied by Zhang [13]. In this problem, a bin
is allowed to be filled to a level exceeding one, as long as the bin is not full (the
content is strictly less than one) before the last item is packed. A nice example
were presented in [8,9,13] for the problem.

In Hong Kong, passengers use magnetic card to pay for their subway trips.
Generally there is a standard denomination in the card and the fare is deducted
from the card every time the passenger passes the toll gate in the subway station.
The passenger can pass the gate as long as the remaining balance is still positive,
even if it is less than the fare needed. So the passenger can “gain” by taking a
last long trip with the card of small positive balance. We can see that here the
cards correspond to the bins and the fares of each trip correspond to the items.
How to minimize the number of cards for a passenger who makes several trips
corresponds to the open-end bin packing problem.

© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 86-95, 2021.
https://doi.org/10.1007/978-3-030-92681-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_8&domain=pdf
http://orcid.org/0000-0003-0710-8498
http://orcid.org/0000-0003-3461-3510
http://orcid.org/0000-0002-0335-3253
http://orcid.org/0000-0002-3638-3440
https://doi.org/10.1007/978-3-030-92681-6_8

On Various Open-End Bin Packing Game 87

The open-end bin packing problem is shown to be strongly NP-hard and any
on-line algorithm must have an asymptotic worst-case performance ratio at least
two [8,9]. The parameterized version was studied by [13] where the items are
with size less than (or equal to) 1/m and a best possible algorithm was presented.
In 2003 and 2008, the ordered open-end bin packing was studied by [1,12] where
the items are indexed, and the packing of each bin has to follow the index such
that the largest-indexed item is the last item in the bin. Both worst case and
average case were analyzed, approximation algorithms and optimal algorithms
were presented for this problem. After that, several variants of open-end bin
packing problem with different names appeared in literatures [2-5]. They are
the minimum open-end bin packing, the maximum open-end bin packing and
the maximum indexed open-end bin packing. In the minimum version, removing
the smallest item would bring the total size to a value below 1; in the maximum
version, the largest item’s removing could bring the total size back to below 1.
Since the size of the largest item is at least that of the last packed item, we
can see that the maximum open-end bin packing is the general open-end bin
packing model introduced by [8,9,13]; As for the maximum indexed open-end
bin packing, it is another name of the ordered open-end bin packing.

Recent years there is a trend to combine the well-defined combinatorial opti-
mization problem with game issue, like bin packing game [6,11], bin covering
game [10] etc. Taking the bin packing game as an example, different from the
classical case with a central decision maker, the items are rational and eager to
get higher utility by selecting bins. This make the problem more complicated
while more realistic. To our knowledge, there is not game issue consideration on
the various open-end bin packing problems.

In this paper, we aim to study various open-end bin packing problems under
game circumstance. We are curious about the existence of Nash Equilibrium
for these problems, and the performance of the Equilibria. The methodology of
the Price of Anarchy is applied, which compares the output of the worst Nash
Equilibrium with the optimal solution.

2 Definitions and Terminologies

Suppose there is a set of items to be packed into some unit capacity bins. The
items are with size s; € (0,1], « = 1,...,n. Each of the items is owned by a
rational agent. The agent has to pay for his packed item, which is proportional
to the item size. For an item ¢ packed in bin By, let S(Bh) denote the load of bin
Bj,. Then the cost of item 7 is ¢; = Zj:; 5= S(oL The agent could move the
item unilaterally if that could reduce hihs cost. A Nash Equilibrium is reached
if no agent would like to move unilaterally. The Price of Anarchy [7], often
abbreviated as PoA, is a concept in economics and game theory that measures
how the efficiency of a system degrades due to selfish behavior of its agents. Let
G denote a game, N E denote a solution of a Nash Equilibrium, O PT denote the

solution of the corresponding optimization problem. Then PoA(G) = sup NOEP(;;) .

88 L. Gai et al.

Corresponding to the various versions of open-end bin packing problem, the
models studied in this paper are named as general open-end bin packing game,
minimum open-end bin packing game. We also study another model which is
named as open-end bin packing game with conflict. In this problem, items are
conflict to some of the other, which means they could not be packed in a same
bin. We use a conflict graph to denote these relations. The node represents the
items, and if there is an edge between two nodes, they are conflict.

3 General Open-End Bin Packing Game

In the general open-end bin packing game, except at most one bin, the load of
each bin minus the size of the last item is strictly less than 1. First we check the
existence of a Nash Equilibrium in this problem.

3.1 Existence of Nash Equilibrium in the General Open-End Bin
Packing Game

Define the potential function as P =", ., S(By)? < 4¢, where ¢ is the number of
bins used. We can see that this potential function is upper-bounded and its value
strictly increases with the item’s cost reduction unilateral deviation. Specifically,
suppose item ¢ deviates to bin By from bin By, to decrease its cost, then

A=P —P
= S(By + si)* + S(Bj, — 8;)? — S(By)* — S(B,)*
= 25;(S(By) — S(By)) + 257
= 25i(S(Bk) — S(Bn) + si) >0

So, begining with any feasible packing, the maximum of potential function could
be reached after limited steps. Hence the existence of Nash Equilibrium is proved.

3.2 The Upper Bound of Price of Anarchy

Lemma 1. There exists at most one bin with load less than 1.

Proof. Suppose there are two bins By, and By, |Bp| = |Bx| =1, S(Bp) < 1 and
S(Bg) < 1 in a Nash Equilibrium packing. For s; € By, and S(By) < 1, s; can
be packed into bin Bj. This is a contradiction.

Theorem 1. The upper bound of the Price of Anarchy for general open-end bin
packing game is 2.

Proof. The load of each bin in an optimal packing is less than 2, hence 20PT >
> 8. According to lemma 1, " s; > NE — 1. Thus, 20PT > NE — 1.

On Various Open-End Bin Packing Game 89

3.3 The Lower Bound of Price of Anarchy

Given an instance with kn items of size 1 — ¢, kn items of size €, k?n — kn items
of size 2¢, where ¢ = 2%, we can show that the Price of Anarchy of the Nash
Equilibrium is greater than or equal to 2’“%

As shown in Figs. 1 and 2, the items are separated to n groups. Under propor-
tional cost sharing mechanism, there is a Nash Equlibrium packing with 2k — 1
bins used for each group, while an optimal packing only uses k bins. So when k

is large enough, the lower bound of Price of Anarchy is 2.

£ £ £ 2¢ 2¢ 2¢
2¢ 2¢ 2¢

. . .

1-¢ 1-¢ e & o |1 * : ¢ :
. . .

2¢ 2¢ 2¢

2¢ 2¢ 2¢

2¢ 2¢ 2¢

k K-1

Fig. 1. A Nash equlibrium packing for the general open-end bin packing game

1-¢ 1-¢ 1-¢ 1-¢
y y T T
2¢ 2¢ 2¢ L d bd o 2¢
. . . .
. . . .
k-1
. . . .
2¢ 2¢ 2¢ 2¢
2¢ 2¢ 2¢ 2¢
2¢ 2¢ 2¢ 2¢
k

Fig. 2. An optimal packing of the general open-end bin packing problem

4 Minimum Open-End Bin Packing Game

In the definition of minimum open-end bin packing problem, a packing is feasible
only if the load of bins is less than 1 or less than 1 after removing the smallest
item. When we consider the game issue of the problem, we have to notice the
limitations of this definition. If we follow this definition, a trivial case would be
incurred as shown in Figs. 3 and 4. As stated before, the cost that each item has

to share is proportional to its size, ¢; = 2575
S5 €By, 77

90 L. Gai et al.

If the movement of item i from bin B}, to bin By, is prohibited, where 3s; € By,
s; > sj and s; + S(By) > 1 + s, there are some special NE packings where the
load of any bin is below 1. As shown in the following Figs. 5, there is a family of
such NE packings for 2F x e = 1.

So we modified the definition of minimum open-end bin packing game as fol-
lows. We force the smallest item in the bin, which doesn’t satisfy the assumption
of minimum open-end bin packing, to move into other bin, or open a new bin.
To achieve this effect, define ¢(spmin) = 1+ € if S(Bp) — Smin > 1, where spin
is the smallest item in bin By, € > 0. Moreover, if the smallest item s,,,;,, € Bp,
satisfies that S(Bp) — Smin = 1, Smin has the priority to move.

4e

1-11e

Fig. 3. An example of Nash Equlibrium packing under minimum open-end packing
definition

1-11e

4e
3¢
2s

Fig. 4. An optimal packing

. 4

2+1.1 2k-2_1 . e o o

2¢ 1 2k-1g
2¢ 4e
2¢

Fig. 5. A Nash Equlibrium packing with 2% x e =1

On Various Open-End Bin Packing Game 91

4.1 Existence of Nash Equilibrium in Minimum Open-End Bin
Packing Game

Define the potential function as P = Y, ., S(By)? < 4t, where t is the set of
bins. Some movement will force the smallest item in the bin move into other bin,
and therefore there are two different movements— regular movement and forced
movement. During the regular movement, no item will leave the bin. Thus, the
regular movement consists of the movement of item i deviating to bin By from
bin Bh.

A=P - P
= S(By +si)* + S(Bj, — 8;)? — S(By)* — S(B,)*
= 25;(S(By) — S(By)) + 257
= 25i(S(Bk) — S(Bn) + si) >0

During the forced movement, there will be more than one item , which have to
leave the bin. Let a set Synin = S1, S2, S3, ..., Sm, denote the smallest items leaving
the bin one by one. Hence, the forced movement consists of the movement of
item j deviating to bin By from bin Bj; and the movement of item s; € S,,in.
To simplify the proof, the exchange of potential function in former movement
is called §p and the exchange in latter movement is called &;. Obviously, Ag =
25;(S(By) — S(Bn)) +2s;j x sj. And the item i will move into bin B;. If S(B;) >
S(Bk)7 then Al = QSZ(S(B]C) — S(Bh)) + 2Si X §; > 0. VSZ' € Smina

A = ((Bk) + sj — Zsm>)+sz~)2< (Bk) + s5 — Zsm) — S(B:)?

m<i m<1i

= —S8; (25(Bk) -+ 28j -2 Z Sm — 81> =+ 85 (25(31) + Si)

m<1

m<1i

—2&(ﬂ30—ﬁBw—%+§:%>

> 2s; (S(Bn) — S(Bk) — s5)

A=+ Y A
Smin

Z(S(Bk)—S(Bh)><Sj— Z >+28i<3j_ Z)

8;€SminSi i €ESmin8i

>0

92 L. Gai et al.

Therefore, for any type of movement, there is always § > 0. So begining with
any feasible packing, the maximum of potential function could be reached after
limited steps. Hence the existence of Nash Equilibrium is proved.

4.2 The Upper Bound of Price of Anarchy
Lemma 2. There is at most one bin with load less than 1.

Proof. Suppose there are two bins with load less than 1 in a Nash Equilibrium
packing, then S(Bp) > S(Byg). Vs; € Bi, S(Br) + s; > S(By). A contradiction.

Theorem 2. The upper bound of the Price of Anarchy for minimum open-end
bin packing game is 2.

Proof. The load of bins in an optimal packing is less than 2, hence 20pt > 3 s;.
According to lemma 1, > s; > NE — 1. Thus, 20pt > NE — 1.

4.3 The Lower Bound of Price of Anarchy

In the following we show that under the proportional cost sharing mechanism,
the Price of Anarchy of the Nash Equilibrium is greater than or equal to 2.

Proof. Here we are given an instance with kn —n items of size 1 — ¢, kn items of
size €, kn —n items of size 2¢ and kn — n items of size 1 — 2¢, where € = %k The
items are separated into n groups. We can see that for each group items, there
is a Nash Equlibrium packing with 2k — 2 bins used, while an optimal packing
only uses k bins, as showed in Fig. 6 and 7. So the lower bound of PoA is at least
%. When £k is large enough, the lower bound is 2.

Fig. 6. A Nash Equlibrium packing for minimum open-end bin packing game

On Various Open-End Bin Packing Game 93

2e

S PN

K-1

Fig. 7. An optimal packing for minimum open-end bin packing

5 Open-End Bin Packing Game with Conflict

In the open-end bin packing game with conflict, a graph G = (V| E) is given
together to present the conflict between items. If for two items s; and s;, there
is an edge (s;,s;) € E, then s; and s; could not be packed into a same bin.
Define the cost of item s; € Bj equals to 1 + ¢, if there is an item s; € By,
(81‘, Sj) € FE.

5.1 Existence of Nash Equilibrium

A bin is called conflict-free, if for any s;,s; € G, (s;,5;) ¢ E. Otherwise, define
the deconflict move as following: For s;,s; € By and (s;,s;) € E, let s; move
into some bin By, such that Vs; € By, (s;,s;) ¢ E.

From the definition we know that, each deconflict move can reduce at least
one pair of conflict items. Suppose that there are K pairs of conflict items in the
packing, then after at most K times deconflict move, each bin in the packing
is conflict-free. Then define the potential function as P = >, -, S(B)?. Sim-
ilar to the proof in general open-end bin packing game, the existence of Nash
Equilibrium can be proved.

5.2 Open-End Bin Packing Game with a Complete Multipartite
Conflict Graph

We consider the case that the conflict graph is a complete k-partite graph, which
implies that for any two items in two different independent sets respectively, they
cannot be packed into a same bin.

5.3 The Upper Bound of the Price of Anarchy

Lemma 3. There are at most k bins with load less than 1.

94 L. Gai et al.

Proof. For each independent set, it can be treated as an open-end bin packing.
According to lemma 1, there is at most one bin with load less than 1 for each
independent set. Hence, there are at most k& bins with load less than 1.

Theorem 3. The upper bound of the Price of Anarchy for open-end bin packing
game with a complete multipartite conflict graph is 2.

Proof. Similar to the proof of Thoerem 2, 20PT > " s; > (NE — K).

5.4 Open-End Bin Packing with a Simple Conflict Graph

Observation. For any bins By, By in a Nash Equilibrium packing, if S(B,) <
S(By) < 1, then for any s; € By, there exists an item s; € By, (si,s;) € G.

Lemma 4. There are at most § + 1 bins with load less than 1 in a Nash Equi-
librium packing, where § is the maximum degree of the vertices in graph G.

Proof. According to observation 1, for an item ¢ in bin By, there must be at
least one item connecting with item 7 in some other bins of load less than 1.
Since § is the maximum degree of vertices in graph G, there are at most § + 1
bins.

Theorem 4. 20PT > NE —§.

The proof is abbreviated due to similarity.

Remark 1. Note that if the maximum degree of vertices equals the number
of vertices minus 1, then § seems to be invalidate for the estimation of the
upper bound. In fact, according to observation 1, the degree of each item in the
bins with load less than 1 is at least the number of bins with load less than 1.
Therefore, ¢ is the solution of following model:

max y

> fE) >y

=%
N JLiE() >y
Fli) = {O, otherwise. (1)
where §(i) denotes the degree of vertex i.
Remark 2. The Lower Bound of Price of Anarchy for above open-end bin pack-

ing games with conflict can be similarly reached as that of the general open-end
bin packing game.

6

On Various Open-End Bin Packing Game 95

Conclusion

In this paper we consider several versions of open-end bin packing game, the
general open-end bin packing game, the minimum open-end bin packing game
and the open-end bin packing game with conflict. For each of the problem, we
prove the existence of Nash Equilibrium. We also prove the tight bound of Price
of Anarchy. As for the future work, we are considering a dual version of the
open-end bin packing problem. Given the predetermined trips, how to minimize
total fare if the passengers can buy cards with different amount of denomination.
We are also interested in the performance under game situation.

References

10.

11.

12.

13.

Ceselli, A., Righini, G.: An optimization algorithm for the ordered open-end bin-
packing problem. Oper. Res. 56(2), 425-436 (2008)

Epstein, L., Levin, A.: Asymptotic fully polynomial approximation schemes for
variants of open-end bin packing. Inf. Process. Lett. 109, 32-37 (2008)

Epstein, L.: Open-end bin packing: new and old analysis approaches. https://arxiv.
org/abs/2105.05923v1 [cs.DS] (2021)

Epstein, L., Levin, A.: A note on a variant of the online open end bin packing
problem. Oper. Res. Lett. 48, 844-849 (2020)

Balogh, J., Epstein, L., Levin, A.: More on ordered open end bin packing. https://
arxiv.org/abs/2010.07119v1 [cs.DS] (2020)

Gai, L., Wu, C., Xu, C., Zhang. W.: Selfish bin packing under Harmonic mean cost
sharing mechanism. Optim. Lett. 1-12 (2021)

Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. Comput. Sci. Rev. 3(2),
6569 (2009)

Joseph, Y.-T., Leung, M.D., Young, G.H.: A note on an open-end bin packing
problem. J. Sched. Manuscriot, 1996

Leung, J.Y.T., Dror, M., Young, G.H.: A note on an open-end bin packing problem.
J. Sched. 4(4), 201-207 (2001)

Li, W., Fang, Q., Liu, W.: An incentive mechanism for selfish bin covering. In:
Chan, T.-H.H., Li, M., Wang, L. (eds.) COCOA 2016. LNCS, vol. 10043, pp. 641—
654. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48749-6_46
Wang, Z., Han, X., Dosa, G., Tuza, Z.: A general bin packing game: interest taken
into account. Algorithmica 80, 1534-1555 (2018)

Yang, J., Leung, T.Y.T.: The ordered open-end bin-packing problem. Oper. Res.
51(5), 759-770 (2003)

Zhang, G.: Parameterized on-line open-end bin packing. Computing 60, 267273
(1998)

https://arxiv.org/abs/2105.05923v1
https://arxiv.org/abs/2105.05923v1
https://arxiv.org/abs/2010.07119v1
https://arxiv.org/abs/2010.07119v1
https://doi.org/10.1007/978-3-319-48749-6_46

)

Check for
updates

A Linear-Time Streaming Algorithm
for Cardinality-Constrained Maximizing
Monotone Non-submodular Set Functions

Min Cui'®, Donglei Du?®), Ling Gai*®)®, and Ruiqi Yang*

! Department of Operations Research and Information Engineering,
Beijing University of Technology, 100 Pingleyuan, Chaoyang District,
Beijing 100124, People’s Republic of China
B201840005@emails.bjut.edu.cn
2 Faculty of Management, University of New Brunswick,
Fredericton, NB E3B 5A3, Canada
ddu@unb.ca
3 Glorious Sun School of Business and Management, Donghua University,
Shanghai 200051, People’s Republic of China
lgai@dhu.edu.cn
4 School of Mathematical Sciences, University of Chinese Academy Sciences,
Beijing 100049, People’s Republic of China
yangruiqi@ucas.ac.cn

Abstract. Nowadays, massive amounts of data are growing at a rapid
rate every moment. If data can be processed and analyzed promptly as
they arrive, they can bring huge added values to the society. In this paper,
we consider the problem of maximizing a monotone non-submodular
function subject to a cardinality constraint under the streaming set-
ting and present a linear-time single-pass deterministic algorithm for
this problem. We analyze the algorithm using the parameter of the
generic submodularity ratio 7 to achieve an approximation ratio of

[WM — 5} for any € > 0 with the query complexity [n/c] + ¢,
and the memory complexity is O(cklog(k)log(1l/e)), where c is a posi-
tive integer. When v = 1, the algorithm achieves the same ratio for the
submodular version of the problem with the matching query complexity

and memory complexity.

Keywords: Non-submodular * Streaming - Linear-time -
Cardinality-constrained

1 Introduction

The problem of submodular optimization can be regarded as a subset selection
problem, with a growing number of applications, especially in artificial intel-
ligence [31], data mining [17], document summarization [21], boosting infor-
mation spread [22], genomics [34], social network influence [27], recommender

© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 96-110, 2021.
https://doi.org/10.1007/978-3-030-92681-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_9&domain=pdf
http://orcid.org/0000-0002-5237-2012
http://orcid.org/0000-0003-0111-8572
http://orcid.org/0000-0003-0710-8498
http://orcid.org/0000-0002-9100-9291
https://doi.org/10.1007/978-3-030-92681-6_9

Linear-Time Streaming Algorithm for Non-submodular Functions 97

system [30], and securities market analysis [18], to name just a few. A set func-
tion f : 2V — R* is submodular if for any S C T C N and e € N\ T,
f(Su{e}) — f(S) > f(T U{e}) — f(T) holds. The cardinality-constrained sub-
modular maximization problem is to select a subset S of N with cardinality at
most k such that the objective value f(S) is maximized:

gngﬁ{f(s) S| < Kk} (1)

In the current era of digitized information, human activities are carried out
through information technology, generating a humongous stack of data [4]. The
unprecedented growth of text, image and video data requires technologies that
can effectively process them at high speed. Submodular optimization under the
massive data environment [19,26] is a relatively new area to which many stake-
holders have begun to pay close attention. The streaming model [1,24,25,28] is
a popular model for processing massive amounts of data.

When we have to process massive data, computing systems may quickly
become overloaded if these data are stored at once. Streaming models overcome
this difficulty by visiting the elements in a streaming fashion. According to [1], the
performance guarantee of a streaming algorithm is defined by four parameters:
pass time, memory complexity, update time and approximation ratio. Therefore
any streaming algorithm aims to select appropriate elements from a large number
of inputs to make the final output as good as possible. The main goal is to provide
a good trade-off between the space to process the input stream and the accuracy of
the solution. Other relevant parameters include the update time needed to make
the estimate, and the number of passes ideally is equal to 1.

For the maximization of cardinality-constraint monotone submodular func-
tions under the streaming setting, Chakrabarti and Kale et al. [5] provided the
first single-pass streaming 1/4-approximation algorithm with 2n queries, O(k)
memory and 2(nlogk) time complexity. Badanidiyuru et al. [1] introduced a
threshold-based procedure, improving the single-pass algorithm to 1/2 — ¢ in
O(klog(k)/e) with O(nlog(k)/e) queries and time. Kazemi et al. [13] provided
SieveStream+-+ algorithm which is a single pass algorithm that keeps 1/2 — ¢
approximation ration with memory complexity of O(k/e). Lately, Feldman et
al. [11] showed that any single-pass algorithm with approximation guarantee of
1/2 + £ must essentially store all elements of the stream. Kuhnle [15] proposed
the first deterministic streaming algorithms with linear time complexity.

However, submodularity is a demanding attribute in many applications
[14,22] and hence may not be satisfied in practice. Das and Kempe [8] intro-
duced the parameter-submodularity ratio vy %, as a key quantity to capture
how close a general set function is to the submodular function. Sviridenko
et al. [32] used the notion of curvature ¢ (a concept introduced for any non-
decreasing submodular function by Conforti and Cornuéjols [6]) to obtain an
(1 — ¢/e)-approximation algorithm for the monotone non-submodular functions
maximization problem subject to a matroid constraint. Bian et al. [2] com-
bined the curvature ¢ and the submodularity ratio vy, to derive the first tight
constant-factor approximation ratio of (1 —e~7V#¢) with O(nk) oracle queries

98 M. Cui et al.

for the non-submodular cardinality-constraint maximization problem. Kuhnle
et al. [16] adapted the threshold greedy framework to non-submodular func-
tions, achieving an approximation ratio 1 —e™""¥* — ¢ for v no less than vy i
with query complexity O(nlogklog, (¢2/k), where x,e € (0,1) are parameters
of the algorithm. Gong et al. [12] provided a more practical measurement -y
which is called generic submodularity ratio and gave the first (1 — e~ — o(1))
approximation continuous greedy algorithm for multilinear optimization prob-
lem under matroid constraints. Later, Nong et al. [29] used the generic submod-
ularity ratio 7 in the greedy algorithms for maximizing cardinality-constraint
strictly-monotone set function, and provided a (1 — e~ 7)-approximation algo-
rithm. Cui et al. [7] and Liu et al. [23] both adapted the threshold technique
from Fahrbach et al. [10] and the generic submodularity ratio v for maximiz-
ing cardinality-constraint monotone non-submodular set function. Cui et al. [7]
gave an adaptive distributed algorithm that achieved an approximation ratio
1—e™7 —¢e with O(log(n/n)/e?) adaptive rounds and O(nloglog(k) /) oracle
queries in expectation. Liu and Hu [23] developed a 1 — e~ — e-approximation
continuous algorithm with O(n/elog(n/e)) queries.

The research on non-submodular cardinality-constraint maximization prob-
lems in streaming setting started only recently. Elenberg et al. [9] adopted the
high-level idea of Badanidiyuru et al. [1] to give a greedy deterministic stream-
ing algorithm with an approximation ratio (1 —¢)%-(3 —e™7 /2 —2,/2 —77/2)
and O(e~'klogk) memory for maximizing 'y/—weakly submodular functions.
Wang et al. [33] used the weak submodularity ratio from [9] to present four
sieve-streaming algorithms for maximizing cardinality-constraint monotone non-
submodular set function. The best approximation ratio for single-pass algorithm
is min{4$2,1 — 5t} with k& memory where « is a parameter € [0,1]. Li et al. [20]
proposed two algorithms named Sieve-Streaming++ algorithm and Batch-Sieve-

Streaming+-+, and the better approximation ratio is min{ (1;”,1 — 5} with
O(k/e) memory.

Contributions. Our main contributions are summarized as follows:

e We propose the first linear-time single-pass streaming algorithm for max-
imizing a monotone nonsubmodular function with a cardinality constraint
and show that the approximation ratio is ql-mlifm-w) —¢e. When v =1, the
algorithm matches the same ratio for the submodular version of the problem.

e The number of queries of the algorithm is at most [n/c| 4+ ¢ and the mem-
ory complexity of the algorithm is O(cklog(k)log(1/¢)). These ensure that a
feasible solution can be obtained quickly without taking up too much space.

In this paper, we adopt the high-level idea in Kuhnle [15] with the generic
submodularity ratio v [12]. One of our main technologies is set-swapping, which
is similar to but different from the previous swapping technique [3,5]. We only
consider whether to add this newly arrived elements set when the number of
newly arrived elements reaches c¢; we would delete some elements that have

Linear-Time Streaming Algorithm for Non-submodular Functions 99

arrived in order when the number of stored elements reaches the upper bound.
These methods indirectly reduce number of queries. The parameter ¢ is the
number of elements processed by the algorithm at one time when the stream
arrives. While the approximation ratio and the query complexity of the algorithm
are negatively correlated with the value of ¢, the memory complexity is positively
correlated with the value of ¢. In practical applications, we can appropriately
adjust the size of ¢ according to the needs.

Organization. This paper is structured as follows: The first section is an intro-
duction to this work, explaining its motivation, related works and main contri-
butions. Section 2 introduces the basic definitions and notations used throughout
this article, and gives some properties of the definitions. We provide the imple-
mentation details for the deterministic algorithm, and give the approximate ratio
analysis in Sect. 3. Finally, Sect. 4 offers direction of future work.

2 Preliminaries

In this section, we give a detailed description on notations related to this paper.
We use N to denote the ground set and |N| = n. The function f: 2V — R*
is a non-negative monotone non-submodular set function with f() = 0.

Definition 1. Monotone: The set function f is monotone if for any two subset
S CT C N, we have

f(S) < f(T).

For any pair of ST C N, f(SUT) — f(S) denotes the marginal gain of
adding T to S. Specially, for any S C N and any e € N, f(SU{e}) — f(9)
denotes the marginal gain of adding element e to the set S.

Next, we introduce a tool to connect the general function with the submod-
ular function. The generic submodularity ratio v defined below is the parameter
to measure the multiple relationship between the marginal gains of adding a
single element to the set and adding it to the proper subset.

Definition 2. Generic submodularity ratio [12]: Given a ground set N and
an increasing set function f : 2N — RY, the generic submodularity ratio of f is
the largest scalar v such that for any S CT C N and anye € N\ T,

fF(SU{e}) = F(S) Zz v - [f(TU{e}) = F(T)].

Proposition 1 (Property of generic submodularity ratio [12]). For an increas-
ing set function f : 2N — R with generic submodularity ratio v, it holds that

1. v € (0, 1};
2. The function f is submodular if and only if v = 1.

Lemma 1. For a non-negative strictly-monotone set function f : 2V — RT
with generic submodularity ratio vy, it holds that: for any S, T C N,

100 M. Cui et al.

f(S) +f T)Zf(SﬂT)+7f(5UT)
Set T\ S ={T1,Ts,--- ,Tn}, T;NT; =0(i,j € [1,h],i #j)
h

FSUT) = F(8) < = SIA(SUT) - f(5)

Proof. 1. Let X CY,C = {j1,...,51}, C € N\Y, and CNY = . By the generic
submodularity ratio,

FXU{}) = F(X) 2Af Y U{i}) - fY)]
FX UG, g23) = F(XU{G}) 2A[f(Y U {1, 52}) = F(Y U {G1})]
(2)

XU, at) — F(X UG qi-1}) Zv[f(Y U{j1, - 01})
—fY U{ji, . fio1})]

Summing up those inequalities, we get

fXUCO) - f(X) = f(XU{j, -, ai}) = F(X)
> (Y U {0 = f(Y)] 3)
ZAlfYue) - f(Y)

For any S,T C N, we set X = SNT,C = S\T,Y = T. So we have
XUuC=8YuUuC=SUT.

f(S) = f(SNT) > ~[f(SUT) - f(T)]
2. From the setting of S, T, T\ S = U?lej.

FISUT) = f(8) = f(SU(Uj_y 1))~ f

F(SUT) - f@ﬂ+%ﬁ@uﬂhﬂ—fﬁﬂ
L F(SUT) — £(S)]

h
- Z F(SUT))—£(9)]

where the inequality holds from Inequality (3).

Q»—t

In the rest of this paper, the algorithm outputs S as the final solution; O PT
(i.e. f(O) = OPT) and O denote the values of the optimal sets and one of the

optimal sets, respectively.

Linear-Time Streaming Algorithm for Non-submodular Functions 101

3 The Single-Pass Deterministic Algorithm

In this section, we propose a single-pass, deterministic streaming algorithm for
maximizing a monotone non-submodular function subject to a cardinality con-
straint. The parameter c is the number of elements processed by the algorithm
at one time as the streaming arrives, the approximation ratio, query complexity
and memory complexity of the algorithm are all related to this parameter. Our
algorithm is a set swapping algorithm, and uses the order in which elements are
added to A to compare elements, instead of directly comparing with the marginal
benefits of other elements in A; in addition, the algorithm does not query the
function value of each element arriving, but only when ¢ elements arrived. These
indirect, reduced number of comparison methods leads to the algorithm’s linear
time complexity.

For the given ¢, as the streaming data arrive, the algorithm maintains a
dynamic storage set A, whose length is at most 2cr([ky] + 1)[logy(k)]. At the
beginning of the algorithm, A is an empty set. H denotes the collection block
that temporarily stores elements, and the size of H is no more than ¢. When the
size of H is reached c or the streaming ends, the algorithm performs one query
on f(AUH). If the marginal benefit of adding set H to A is no less than 1/(vk)
multiplied by the function value of A, adds H into A; otherwise, discard these
elements, and H restores the newly arriving elements. If the number of elements
in A is no less than 2cr([ky] + 1)[logs(k)], removing cr([ky] + 1)[logs(k)]
elements from A. When the stream ends, the algorithm selects the last arrived
ck elements of A, takes each k elements as a group according to the last arrival
order, and adds them into the ¢ sets. Finally, the algorithm compares the function
values of these ¢ sets and chooses the maximum value as the output.

Theorem 1. Let ¢ > 1, ¢ > 0, and k > 2, for any monotone, non nega-
tive non-submodular function f, the Single-pass Deterministic algorithm is a
4
[m — e|-approzimation algorithm, the query complexity is at most

[n/c] + ¢, and the memory complexity is O(cklog(k)log(1/¢)).

In order to prove the approximate ratio of the algorithm, we give some addi-
tional notations. According to the construction of A, initially Ag = 0. Let A;
(0 < i < n) denote the state of A after the i-th iteration of the for loop. Let
A,, denote the state of A in the end of the for loop. First, we need the following
lemma [15]:

Lemma 2. For z > 1, ifx > (1 + k)log, 2, then (1 +1/k)* > z.
Proof. Tt follows from the inequality: for y > 0, logy > 1 — 1/y.
(1 +]./k)w :2mlog2(1+1/k)

>0r (1= r717m)) (5)

22(1+k)log2 z-ﬁ =z

102 M. Cui et al.

Algorithm 1. Single-pass Deterministic

Input: evaluation oracle f : 2V — RY, constraint k, generic submodularity ratio ~,
and error 0 < & < vk?
Output: the solution S

1: Set r « [log,(1/(g))] + 3
2: Set I «— cr([kvy] + 1)[log, (k)]

3: Initialize A — 0, S — 0, H +— 0

4: for every element e arriving do

5: Set H — H U {e}

6: if | H |= c or all elements arrived then

7 if f(AUH) — f(A) > f(A)/(vk) then
8

: Set A— AUH
9: if | A|> 2l then
10: Set A « { the [elements most recently added to A}
11: Set H «

12: Initialize j « 1

13: while j < cdo

14: Set S; « { the k elements recently added to A}
15: Set A — A\ S;

16: Update S « argmax{f(S), f(S;)}

17: Update j «—j+1

18: return S

Next, we show the change of the value of f(A) between iterations of the for
loop.

Lemma 3. For any i-th iteration (1 < i < n), Lines 7-10 of the Single-pass
Deterministic algorithm has one of the following properties:

1. If there is not delete operation in i-th iteration, f(A;—1) < f(4;);

2. If there is a delete operation in i-th iteration, f(A4;—1) < %f(Ai);
2.1 If i-th iteration is not the first round with deletion, set the last round
recorded with deletion of i-th iteration is the i -th iteration, f(A;) <

f(Aq).

Proof. 1. If the elements are not deleted in i-th iteration, the number of the
elements in A;_; is less than 2cr([ky] + 1)[logy(k)] — ¢. We only consider
whether to add c elements to A;_1. From the monotonicity of the function,
f(Ai1) < f(A).

2. If the elements are deleted in i-th iteration, then at the beginning of i-th
iteration, the number of the elements in A is at least 2¢r([kvy]|+1)[logs (k)] —c¢;
in this round, the algorithm performed two operations in A which are adding
at most ¢ elements recorded as H; and deleting at least er([ky] 4+ 1)[logs (k)]
elements recorded as D;, A; = (4;-1 \ D;) U H;. Consequently, for every D;
(1 <i<n), wecan find 0 <[<1 of the first for loop that D; = A;.

For the relevance of f(A4;) and f(A4;-1):

Linear-Time Streaming Algorithm for Non-submodular Functions 103

From the end of [-th iteration to the beginning of i-th iteration, there have
been cr([kvy] + 1)[logy (k)] — ¢ elements added in the A, which add precisely
the elements in A;_1 \ A;. It holds that

F(Aii \ Di) >7[f(Ai—1) — f(Di)]

1 -
2y (L) TTEDNs 0L f(4) —yp ()

(6)
1

>n (1 4+ — =D TR 1+Dloga(F)] £ 4,) — A
>y (4) F(A) = (A)

>y(K" = 1) - f(4)

where the first inequality holds from the Lemma 1; the second inequality is
obtained by the fact that from the [-th iteration to the (i — 1)-th iteration,
the added value of f(A) in each round of added elements to A is at least
#f(A); the third inequality follows from the fact 7([kvy]| + 1)[logy (k)] —1 >
(r—=1)([kv] + 1)[logy (k)] for any k > 2; and the last inequality are received
by the Lemma 2. Therefore

F(Air) <f(Di) + (A1 \ Di))

vy
—ray + HE=AD) ™)
1 F((Aim1 \ Dy))
)T
From Inequality (3), we get
J((Ai—1 \ Dy) U H;) — f(Ai—1\ Dy)
>y[f(Aim1 U H;) — f(Ai-1)] ®)
Zf(A];—l) > f(Ai—]i\Di)’

where the second inequality is obtained by the condition of the addition in
the round. Finally, applying Inequalities (7) and (8), we obtain

f(A) =f((Ai-1 \ D;) U H;)
2(1+ DSt \ D)

1+
>y (i) 2 1/ (Aia),
MRGE=Y
where the last inequality holds because of » > 3 and k& > 2.
If i-th iteration is not the first round with deletion, the last round recorded
with deletion of i-th iteration is the 7 -th iteration. We discuss the change of
function value that the set from A, to A;:

104 M. Cui et al.

From the end of the 4 -th iteration to the end of the i-th iteration, there have
been cr([vk] + l)logg(k) clements added in the A, which add precisely the
elements in A; \ A;. It is easy to see that D; = A,

fl4;) — f(A;) =f(A;i—1 UH;\ D;) — f(A;)
> [f(Aisy U H;) — f(D)] — f(A;)
v+ k)’””’“ﬂ*”“‘)gz DLF(A) — (v + 1) f(4) (10

(k" = 1) = 1] - f(4)
where the first and the second inequalities are established on the same basis
as the first two inequalities of inequality (7); the third inequality is obtained
by Lemma 2 because f is non-negative function, ¢ < vk?, v(k" —1) —1 >0,
the inequality at least is 0.

Next, we limit the total value of f(A) lost from deleted elements during the
entire algorithm run. Let A* = Up<;<nA; denote all stored elements of A and e;
denote the element received in i-th iteration.

Lemma 4. f(A*) < 7%(1 + ﬁ)f(An)

Proof. Suppose there were m sets deleted from A, recorded as A*\ 4,, = {D;,1 <
J < m} where each D; is deleted on Line 10 of the algorithm, and they are sorted
with the reverse order in which they were deleted such that j; < jo implies D,
was deleted before Dj,. Set Dy = A,,. For any j € [0,m — 1], from A = D,1; to
A = Dj, there are at least cr([kvy]| + 1)[logy (k)] elements added to A for every
number of ¢ elements arrived and deleted exactly once. Moreover, each addition
increases the value of f(A) by at least % except in the deletion case. Hence,

by Lemma 3,

1 _
f(Di—1) =-(1+ %)T([kwrl)ﬂog“’(m Ly f(Dy) (11)
>yk"t - f(Dy)

Therefore, for any 0 < j < m, f(A,) = f(Do) > (vk"~1)7 - f(D;). Then,

FAY) <f(An) + %f(A* \ A)

Riour

S (12)
<= 7 (An)

72;(kr=1)i

1 1 1 1
=i W= U) T,

where the first and second inequalities are received by Lemma 2 and 7 € (0, 1],
while the forth inequality is the summation of the geometric series.

Linear-Time Streaming Algorithm for Non-submodular Functions 105

Then, we bound the value of OPT with the f(A,).
Lemma 5. OPT < 25 (1 +7* + =) f(45)

Proof. O is one of the optimal solutions for the problem. Suppose for each ele-
ment o € O, i(0) is the iteration in the for loop that processes the element o, and

we let i(0) be the first iteration with delete operation after the i(o)-th iteration.
Therefore, we have

where all inequalities hold from the Lemma 3. Then,
f(O) = f(A") <f(OU A") — f(AY)
1
< D AT U{oh) - f(A)

0€O\A*

>

0€O\ A*

D

0€O\A*

1

IA

5 [f(Ai)-1 U H;(0)) — f(Aio)-1)]

2

(13)
Z f(Aiy-1)

3
0€O\ A* v k

f(An)
5 L
0€O\A*
f(An)
,y4

IN

S b

where the first and the forth inequalities are received by the monotonicity of f;
the second inequality is obtained by the Lemma 2; the third inequality holds from
the definition of generic submodularity ratio; the condition of added element in
A in the algorithm makes the fifth inequality true; and the last inequality holds
because of the size of O. Finally, from Lemma 4 and inequality (13), we have

1 1
PT < —(1++? A
0] _72(+7 +yk?‘—1)f(n)

Recall that the final solution of the Single-pass Deterministic algorithm has
the largest function value of each k elements from the ck elements recently added
to An. We record the ck elements which are recently added to A, as A. Then,
we discuss the relationship of the value of A and OPT.

106 M. Cui et al.

Lemma 6.

1 2 3 1 -
OPT§< St et S il)

73 Y3 (vkrt - 1))f<A)

Proof. First, we discuss the relationship of the values of f (21\) and f(Ap).

If | A< ck, f(//l\) = f(4,), the lemma holds.

Suppose | A |> ck. Let A = {D’,Dj,-- D}, | D; |=c(j € [1,k]), in the
order these sets were added to A. Then,

F(A) 29[f(An) — f(An \ A)]

k
=7 [f(An \ A)U{D}, Dy, , D) = f((An \ A) U{D}, Dy, -+, Di_1)]

=1

k n 5) 14
Z72f((An\Aw{Jz}C,DQ, ,Di_1) (14)

& N
A\ A ~
2> MDD _ pan A,
=1
where the first inequality is obtained by the Lemma 1; the condition of added
element in A in the algorithm makes the second inequality true; and the third
inequality is received by the monotonicity of f. Thus

-~

F(An) < F(A\)+ I A 1T

Y Y
Finally, from Lemma 5 and the above inequality, we get
1+y++2+9° 1+ N
OPT <
- (ok Vykrt = 1) 74

Then, we can give the proof of Theorem 1.
Proof. First, we show the approximation ratio: find the relationship between

f(S) and f(g), and bring in Lemma 6 to obtain the approximate ratio.

Whenc:l,S:A\,
1

= f(A) > PT
F8) =14 =z 1+y+~2493 + 14y ©
v3 ¥3(ykT 1)
3 2
> 7 - T opr (15)
L+y+92+77 (1 +7)A+)k +92k771 —9)
3
1
> J - OPT.
1+,y+,y2+,\/3 k?”‘7171

Suppose ¢ > 1, and {Sy,---,S.} is the partition of A. Then

= (16)

Linear-Time Streaming Algorithm for Non-submodular Functions 107

Consequently,

£8) > Lp(A) > | L

- OPT.
A e S DN T |

By the choice of r, f(S) > [0(1%17[% —¢|OPT.

Then, we consider the queries of the algorithm by two parts. The first part
is to obtain the value when every c elements arrive. So the number of queries
in this part is [n/c]; the second part is the number of queries made while
comparing the values of at most ¢ candidate solutions; so, the number of
queries is at most [n/c] + c.

Finally, we show the memory complexity of the algorithm. It depends on the
size of A, S and H. Obviously, the lengths of S and H are at most k and c,
respectively. The length of A could reach 2cr([kvy] + 1)[logy(k)] depending
on the choice of r. Recall that r = [log,(1/(€))] + 3. Therefore, the memory
complexity of algorithm is O(ck log(k)log(1/¢)).

From [15], we know the approximation ratio of the latest deterministic, single-
pass streaming algorithm with linear time complexity for the submodular maxi-
mization subject to a cardinality constraint problem is 1/(4¢) —e. When v =1,
our algorithm has an approximation ratio consistent with the above results,
also has the same query complexity and almost consistent storage memory
complexity.

4 Discussion

In this paper, we propose the first linear-time single-pass deterministic streaming
algorithm for the maximization of a monotone non-submodular function with a
cardinality constraint. The key idea to reducing the time complexity of this
algorithm is to replace the querying function value of each arriving element
with querying the function value of ¢ elements, and to compare the marginal
gain of adding these ¢ elements with the function value of the entire storage
set rather than comparing the function value of each element in the storage set.
Our algorithm, while effective in query and run in a reasonable time on large
instance, may output a less ideal solution. One future work is to improve the
approximation ratio of the algorithm without increasing the time complexity
and memory complexity.

Acknowledgements. The first author is supported by Beijing Natural Science Foun-
dation Project No. Z200002 and National Natural Science Foundation of China (No.
12131003). The second author is supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC) grant 06446, and Natural Science Foundation
of China (Nos. 11771386, 11728104). The third author is supported by National Nat-
ural Science Foundation of China (No. 11201333). The fourth author is supported by
the Fundamental Research Funds for the Central Universities (No. E1IE40108X2) and
National Natural Science Foundation of China (No. 12101587).

108

M. Cui et al.

References

10.

11.

12.

13.

14.

15.

16.

. Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A., Krause, A.: Streaming submod-

ular maximization: massive data summarization on the fly. In: 20th International
Proceedings on SIGKDD, pp. 671-680. ACM, New York, USA (2014)

Bian, A.A., Buhmann, J.M., Krause, A., Tschiatschek, S.: Guarantees for greedy
maximization of non-submodular functions with applications. In: 34th Interna-
tional Proceedings on ICML, pp. 498-507. PMLR, Sydney, NSW, Australia (2017)
Buchbinder, N., Feldman, M., Schwartz, R.: Online submodular maximization with
preemption. ACM Trans. Algorithms 15(3), 1-31 (2019)

Caldarola, E.G., Rinaldi, A.M.: Big data: a survey. In: 4th International Proceed-
ings on DATA, pp. 362-370. SciTePress, Colmar, Alsace, France (2015)
Chakrabarti, A., Kale, S.: Submodular maximization meets streaming: matchings,
matroids, and more. Math. Program. 154, 225-247 (2015)

Conforti, M., Cornuéjols, G.: Submodular set-functions, matroids and the greedy
algorithm - tight worst-case bounds and some generalizations of the rado-edmonds
theorem. Discrete Appl. Math. 7(3), 251-274 (1984)

. Cui, M., Xu, D., Guo, L., Wu, D.: Approximation guarantees for parallelized max-

imization of monotone non-submodular function with a cardinality constraint. In:
Zhang, Z., Li, W., Du, D.-Z. (eds.) AAIM 2020. LNCS, vol. 12290, pp. 195-203.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57602-8_18

Das, A., Kempe, D.: Submodular meets spectral: greedy algorithms for subset selec-
tion, sparse approximation and dictionary selection. In: 28th International Proceed-
ings of ICML, pp. 1057-1064. Omnipress, Bellevue, Washington, USA (2011)
Elenberg, E. R., Dimakis, A. G., Feldman, M., Karbasi, A.: Streaming weak sub-
modularity: interpreting neural networks on the fly. In: 31st International Proceed-
ings on NIPS, pp. 4044-4054. Long Beach, CA, USA (2017)

Fahrbach, M., Mirrokn, V., Zadimoghaddam, M.: Submodular maximization with
nearly optimal approximation, adaptivity and query complexity. In: 30th Interna-
tional Proceedings on SODA, pp. 255-273. SIAM, San Diego, CA, USA (2019)
Feldman, M., Norouzi-Fard, A., Svensson, O., Zenklusen, R.: The one-way com-
munication complexity of submodular maximization with applications to stream-
ing and robustness. In: 52nd International Proceedings on STOC, pp. 1363-1374.
ACM, Chicago, 1L, USA (2020)

Gong, S., Nong, Q., Liu, W., Fang, Q.: Parametric monotone function maximiza-
tion with matroid constraints. J. Glob. Optim. 75(3), 833-849 (2019). https://doi.
org/10.1007/s10898-019-00800-2

Kazemi, E., Mitrovic, M., Zadimoghaddam, M., Lattanzi, S., Karbasi, A.: Sub-
modular streaming in all its glory: tight approximation, minimum memory and
low adaptive complexity. In: 36th International Proceedings of ICML, pp. 3311—
3320. PMLR, Long Beach, California, USA (2019)

Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through
a social network. Theor. Comput. 11(1), 105-147 (2015)

Kuhnle, A.: Quick streaming algorithms for maximization of monotone submodular
functions in linear time. In: 24th International Proceedings on AISTATS, pp. 13—
15. PMLR, Virtual Event (2021)

Kuhnle, A., Smith, J., Crawford, V.G., Thai, M.T.: Fast maximization of non-
submodular, monotonic functions on the integer lattice. In: 35th International
Proceedings of ICML, pp. 2786-2795. PMLR, Stockholm, Sweden (2018)

https://doi.org/10.1007/978-3-030-57602-8_18
https://doi.org/10.1007/s10898-019-00800-2
https://doi.org/10.1007/s10898-019-00800-2

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Linear-Time Streaming Algorithm for Non-submodular Functions 109

Lakkaraju, H., Bach, S.H., Leskovec, J.: Interpretable decision sets: a joint
framework for description and prediction. In: 22nd International Proceedings of
SIGKDD, pp. 1675-1684. ACM, San Francisco, CA, USA (2016)

Larcker, D.F., Watts, E.M.: Where’s the greenium? J. Account. Econ. 69(2),
101312 (2020)

Levin, R., Wajc, D.: Streaming submodular matching meets the primal-dual
method. In: 32nd International Proceedings on SODA, pp. 1914-1933. SIAM, Vir-
tual Conference (2021)

Li, M., Zhou, X., Tan, J., Wang, W.: Non-submodular streaming maximization
with minimum memory and low adaptive complexity. In: Zhang, Z., Li, W., Du,
D.-Z. (eds.) AAIM 2020. LNCS, vol. 12290, pp. 214-224. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-57602-8_20

Lin, H., Bilmes, J. A.: A class of submodular functions for document summariza-
tion. In: 49th International Proceedings on ACL, pp. 510-520. The Association for
Computer Linguistics, Portland, Oregon, USA (2011)

Lin, Y., Chen, W., Lui, J.C.: Boosting information spread: an algorithmic app-
roach. In: 33rd International Proceedings on ICDE, pp. 883-894. IEEE Computer
Society, San Diego, CA, USA (2017)

Liu, B., Hu, M.: Fast algorithms for maximizing monotone nonsubmodular func-
tions. In: Zhang, Z., Li, W., Du, D.-Z. (eds.) AAIM 2020. LNCS, vol. 12290, pp.
204-213. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57602-8_19
McGregor, A.: Graph stream algorithms: a survey. In: 31st International Proceed-
ings of ICML, pp. 9-20. JMLR.org, Beijing, China (2014)

Mirzasoleiman, B., Karbasi, A., Badanidiyuru, A., Krause, A.: Distributed sub-
modular cover: succinctly summarizing massive data. In: 29th International Pro-
ceedings on NIPS, pp. 2881-2889. Montreal, Quebec, Canada (2015)
Mirzasoleiman, B., Karbasi, A., Sarkar, R., Krause, A.: Distributed submodular
maximization: identifying representative elements in massive data. In: 27th Inter-
national Proceedings on NIPS, pp. 2049-2057. Lake Tahoe, Nevada, USA (2013)
Mossel, E., Roch, S.: On the submodularity of influence in social networks. In: 39th
International Proceedings on STOC, pp. 128-134. ACM, San Diego, California,
USA (2007)

Muthukrishnan, S.: Data streams: algorithms and applications. Theoret. Comput.
Sci. 1(2), 117-236 (2005)

Nong, Q., Sun, T., Gong, S., Fang, Q., Du, D., Shao, X.: Maximize a monotone
function with a generic submodularity ratio. In: Du, D.-Z., Li, L., Sun, X., Zhang,
J. (eds.) AAIM 2019. LNCS, vol. 11640, pp. 249-260. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-27195-4_23

Norouzi-Fard, A., Tarnawski, J., Mitrovic, S., Zandieh, A., Mousavifar, A., Svens-
son, O.: Beyond 1/2-Approximation for submodular maximization on massive
data streams. In: 35th International Proceedings of ICML, pp. 3826-3835. PMLR,
Stockholm, Sweden (2018)

Ribeiro, M. T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the
predictions of any classifier. In: 22nd International Proceedings of SIGKDD, pp.
1135-1144. ACM, San Francisco, CA, USA (2016)

Sviridenko, M., Vondrék, J., Ward, J.: Optimal approximation for submodular
and supermodular optimization with bounded curvature. In: 26th International
Proceedings on SODA, pp. 1134-1148. SIAM, San Diego, CA, USA (2015)

https://doi.org/10.1007/978-3-030-57602-8_20
https://doi.org/10.1007/978-3-030-57602-8_19
https://doi.org/10.1007/978-3-030-27195-4_23

110 M. Cui et al.

33. Wang, Y., Xu, D., Wang, Y., Zhang, D.: Non-submodular maximization on massive
data streams. J. Glob. Optim. 76(4), 729-743 (2019). https://doi.org/10.1007/
$10898-019-00840-8

34. Wei, K., Libbrecht, M.W., Bilmes, J.A., Noble, W.S.: Choosing panels of genomics
assays using submodular optimization. Genom. Biol. 17(1), 229 (2016)

https://doi.org/10.1007/s10898-019-00840-8
https://doi.org/10.1007/s10898-019-00840-8

®

Check for
updates

Approximation Algorithms for Two
Parallel Dedicated Machine Scheduling
with Conflict Constraints

An Zhang'®™)| Liang Zhang', Yong Chen!, Guangting Chen?®,
and Xing Wang!

! Department of Mathematics, Hangzhou Dianzi University, Hangzhou 310018, China
{anzhang,liangzhang, chenyong,wx198491}@hdu.edu.cn
2 Taizhou University, Linhai 317000, China
gtchen@hdu.edu.cn

Abstract. We investigate two parallel dedicated machine scheduling
with conflict constraints. The problem of minimizing the makespan has
been shown to be NP-hard in the strong sense under the assumption that
the processing sequence of jobs on one machine is given and fixed a pri-
ori. The problem without any fixed sequence was previously recognized
as weakly NP-hard. In this paper, we first present a %-approximation
algorithm for the problem with a fixed sequence. Then we show that
the tight approximation ratios of the algorithm are % and g for two
subproblems which remain strongly NP-hard. We also send an improved
algorithm with approximation ratio 3 — /2 ~ 1.586 for one subproblem.
Finally, we prove that the problem without any fixed sequence is actually

strongly NP-hard, and design a g-approximation algorithm to solve it.

Keywords: Parallel dedicated machines - Conflict graph -
Approximation algorithm - NP-hard

1 Introduction

In the problem of scheduling with conflict constraints (SWC in short), a set N
of jobs is supposed to be processed by a set of machines subject to a conflict
graph G = (N, E) in which the conflict constraints are specified among jobs
(vertices). Two jobs connected by an edge in the graph are called in conflict in
the sense that they cannot be processed concurrently. The objective is to find a
conflict-free schedule with the minimum makespan. The SWC problem arises in
a more general scheduling model where a set of renewable resources is provided
for processing the jobs along with the set of machines [1]. Specifically, there are
A resources each with a total availability capacity of o units. Each job consumes
at most p (< o) units of each resource at any time of its processing, and the
availability of that amount will be released at the completion of the job. The
general resource constraints can be represented by a conflict hypergraph while
a conflict graph suffices for the special case where resources are non-shareable,

© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 111-124, 2021.
https://doi.org/10.1007/978-3-030-92681-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-92681-6_10

112 A. Zhang et al.

that is, the case of 0 = p = 1. Some applications of this model are mentioned
by Baker and Coffman [2] in balancing the load in a parallel computation, and
by Halldérsson et al. [3] in traffic intersection control, frequency assignment in
cellular networks, and session management in local area networks.

Scheduling jobs of arbitrary processing time on a constant number of parallel
machines is weakly NP-hard even if the conflict graph is empty. Even et al. [4]
proposed a polynomial time algorithm for the two machine case where jobs
have processing time either 1 or 2. The problem with the same settings except
that jobs might have different release time in {0,r} is shown to be NP-hard
in the strong sense even in complements of bipartite graphs [11]. In the same
paper [11], Bendraouche and Boudhar also proved that the two machine SWC
problem is strongly NP-hard in complements of bipartite graphs when all jobs
have processing time in {1,2,3}. Even et al. [4] proved that the two machine
SWC problem with processing time in {1,2,3,4} is APX-hard. Bendraouche et
al. [10] extended a result of [4] by sending a strong NP-hardness proof for all cases
with processing time in {a,2a + b} (b # 0) in complements of bipartite graphs.
Mohabeddine and Boudhar [12] showed that the two machine SWC problem with
arbitrary processing times is polynomial solvable in complements of caterpillars
or cycles, and weakly NP-hard in complements of trees.

Scheduling jobs of unit processing time on m parallel machines are considered
by Baker and Coffman [2] which they called the mutual exclusion scheduling
(MES) problem. As Even et al. observed [4], the MES problem is equivalent
to finding a minimum coloring of the conflict graph in which every color class
contains at most m vertices, known as m bounded coloring. In particular, an
optimal schedule for m = 2 can be obtained from a maximum matching on the
complement of the conflict graph. It has been shown to be strongly NP-hard
in general conflict graphs for m > 3 [2] and in various special conflict graphs,
such as chordal graphs [6], complements of line graphs [7] and complements
of comparability graphs [8] for m > 3, bipartite graphs, cographs and interval
graphs for m > 4 [5], and permutation graphs for m > 6 [8]. Even et al. [4]
further pointed out that the hardness proof given by Petrank [9] on a related
problem can be applied to the MES problem so that the latter turns out to be
APX-hard even for m = 3.

In [1], Garey and Graham analyzed a type of greedy list scheduling algorithm
for the more general scheduling problem in conflict hypergraphs, which implies
an approximation ratio of mT'H The tightness is confirmed by Even et al. [4] in
conflict graphs. The same paper [4] also proposed an improved algorithm with
approximation ratio % for the two machine SWC problem with processing time
in {1,2,3}. The SWC problem with unit processing time can be formulated as
the m-set cover problem for which Fiirer and Yu [13] presented a packing-based
algorithm with approximation ratio H,, — 0.642 -+ 9(%), where H,, = > 1", %
is the harmonic number. The best known approximation results on this problem
are claimed by Yu in his dissertation thesis [14]. For mixed integer programming
formulations and exact solutions of the SWC problem, we refer to a recent paper
given by Ha et al. [15].

Approximation Algorithms for Two Machine SWC Problem 113

Hong and Lin [16] studied a SWC problem where jobs are allocated to
machines in advance so that each machine is dedicated for processing a fixed
set of jobs. They [16] observed that the two machine SWC problem PD2|G =
(N, E)|Cipaz can be regarded as two machine scheduling under multiple resource
constraints, that is, PD2|resAop|Cpmaz, and hence is weakly NP-hard [17].
In [16], Hong and Lin proved that the problem becomes strongly NP-hard
if the sequence of jobs on one machine is given and fixed a priori, and the
problem with fixed sequences on both machines admits a polynomial time
optimal algorithm. As special cases of the SWC problem on parallel dedi-
cated machines, the resource constrained scheduling problems PD2|reslop|Ciaz
and PD2|res211|Cyq, are polynomially solvable [17], and PD2|res222|Caq,
PD2|res311|Char and PD3|res111|Cyq, are weakly NP-hard [17,18]. Kellerer
and Strusevich [18] proved that the problem PDm/|res111|Ciyqy is strongly NP-
hard if the number m of machines is an input. They presented a group technique
algorithm with approximation ratio % — ﬁ for odd m and % — m for even
m, and improved the algorithm to approximation ratio % for m = 3,4, and
finally a PTAS for any constant m. In [17], Kellerer and Strusevich designed
a 2-approximation algorithm and a PTAS for a special case of the problem
PDm|resA11|Cyq, where each job consumes at most one of the A resources.

In this paper, we revisit the SWC problem on two parallel and dedicated
machines [16], that is, PD2|G = (N, E)|Cpay. Our first contribution is a 2-
approximation algorithm for the strong NP-hard case where the processing
sequence on one machine is given and fixed a priori. We also analyze the tight
approximation ratios of this algorithm for two subproblems of the case which
remain strongly NP-hard. An improved algorithm with approximation ratio
(3 — V/2) is further designed for one subproblem. Our next contribution is a
strong NP-hardness proof for the problem without any fixed sequence, which is
previously known weakly NP-hard [16]. This also gives the complexity of the
resource constrained scheduling problem PDm|resA11|Cyq, for any constant
m > 2 and an input number of non-sharable resources each with unit avail-
ability capacity [17]. Finally, we provide a g—approximation algorithm to solve
the SWC problem without any fixed sequence. The next section gives a formal
definition of the problem. Section3 and Sect.4 considers the problem with a
fixed sequence and without any fixed sequences respectively. Some concluding
remarks are made in Sect. 5.

2 Problem Statement

Given two parallel dedicated machines and a set N of jobs which is partitioned
in advance into two disjoint subsets, Ny and N, so that the i-th machine is
dedicated for processing jobs in N;,i = 1,2. Let Ny = {J11,J1,2,- * ,Jin, }
and No = {Ja1,J2,2, + ,Jam, |, & job J1 s € Ny and a job Ja; € Ny are called
in conflict if they are not allowed to be processed concurrently. The conflict
constraints are specified by an undirected bipartite graph G = (N, E), where
the vertex set N = N; U Ny is composed of all the jobs in Ny and Ns, and

114 A. Zhang et al.

an edge connecting two jobs J; , and Ja; indicates that they are conflicting.
Any job must be processed non-preemptively on its machine till completion
and any machine can process at most one job at a time. Let p; ; denote the
processing time of job J; ;, and C; ; be its completion time. Then the makespan
of a schedule is defined by the maximum completion time of all jobs, that is,
Chrnag = MaX;=1 2:j=12,. n;1Ci }- The problem PD2|G = (N, E)|C}yq, asks for
a conflict-free schedule with the minimum makespan.

The problem has been recognized weakly NP-hard [16] since its special cases,
PD2|res222|Chyay and PD2|res311|Chyqy, arve already weakly NP-hard [17]. By
polynomially reducing the 3-partition problem (3PP in short) to the problem
where the processing sequence on one machine is given and fixed a priori, Hong
and Lin [16] proved that the problem in this case becomes NP-hard in the strong
sense. One sees from the reduction that the problem remains strongly NP-hard
even if each job in Ny has no larger processing time than each job in Ns, or
vice versa, each job in Nj has strictly larger processing time than each job in
Ns. In reminder of the paper, we denote the problem with a fixed sequence
by PD2|G = (N, E), seql|Cpaz, and refer to the two cases defined above as
Subproblem 1 and Subproblem 2 of it respectively.

Let T; = 25;1 Dij,i = 1,2 and let C7;, .. denote the optimal makespan, then
the following lower bounds for C7, . trivially hold from the dedicated machine
settings:

C*

max

> max{T1,T>}. (1)

3 The SWC Problem with a Fixed Sequence

This section focuses on the SWC (sub)problem where the processing sequence
of jobs on one machine is given and fixed a priori. Without loss of generality, let
the sequence be fixed to Jy 1, J1,2,- -, J1,n, on the first machine.

3.1 A g-Approximation Algorithm

The schedule output by the algorithm ApPrROX1 for the problem PD2|G =
(N, E), seql|Cipaz is composed of a series of blocks which can be roughly divided
into two types: type-A blocks and type-B blocks. In a type-A block denoted as
[Ay; Ja,], there are a set A, of consecutive jobs from N; and a single job Ja,
from Ns. Jobs in A, are processed one after another without any idle time
in their fixed sequence, starting from the same time when the job Jy; starts
to be processed (see Fig.1 for an illustration), which is called the start time
of the block. When APPROX1 generates a type-A block, it also ensures that
Z.Jl,jeAt P, < P2t < QZ.Il,jeAt p1,j- In a type-B block denoted as [J1 ; Bs],
there are a set B, of jobs from Ny and a single job J; s from N;. Jobs in Bj
are processed one after another without any idle time, starting from the same
time when the job Jp s starts to be processed (see Fig.1 too). When APPROX1
generates a type-B block, it also ensures that ZJg,jeBs D2, < P1s-

Approximation Algorithms for Two Machine SWC Problem 115

type-A block type-B block

A, Jis

J2 B,

Fig. 1. Two types of blocks.

Each round the algorithm strives to find a type-A block, and replaces it with
a type-B block if it fails. The start time of the newly found block is made no
earlier than the completion time of the previous block, that is, the time when all
the jobs in the previous block have been finished. Figure 2 shows an instance from
which one can see how the algorithm APPROX1 outputs a conflict-free schedule
with blocks. A high-level description of APPROX1 is depicted in Fig. 3.

(a) The conflict graph G (with the processing time outside the vertices)

ha| D] s Jia hs |

| Joa Joa| Jae Joa | JonJasr)a

(b) A schedule output by APPROX

Fig. 2. An instance solved by APPROXI.

Let A; (B;), i = 1,2,3 be disjoint subsets of Ny (N3) defined as follows.
For each type-A block [A; J24], Ar C Ay and Ja, € By. For each type-B block
[J1,5; Bs] with p1 4/2 < ZJz.jeBs P2 < pis, Ji,s € A2 and By C By. And for
each type-B block [J; ¢; Bs] with 3 JayeB, P2.j < PLs/2, J1s € Az and By C Bs.
Note U3_;A; = Ni. Let By = Ny \ U3_;B;. Note By consists of the remaining
jobs of B in Step 4 of APPROX1. For simplicity, denote by a; (b;) the total
processing time of jobs in A; (B;). By Step 2 and Step 3 of APPROX1, and the
above definitions, we have

a a
a1 < b < 2ay4, ;szﬁamoﬁ b3<?3;

116 A. Zhang et al.

Algorithm ApPPROXI1:

1. Initially let A = N;, B= N3 and s = 1.

2. If there exists a job J2; € B which does not conflict with a set
of consecutive jobs beginning with Ji s, say Jis, J1,s41, -, J1,s,
and satisfies that Zj/:q P < poi < 22;;8 p1,; (choose one ar-
bitrarily if more than one candidate is found), then let A; =
{J1,6, J1,s41,- -+, J1,s} and generate a type-A block [A¢; Jo¢]. Let
A=A\ A;,B=B\{J2:} and s =s" + 1. Go to Step 4.

3. Find all jobs in B with processing time smaller than p; s and not
conflicting with Ji 5. Denote them by a set B, (Note that B, might
be empty).

3.1 if 2‘12,7»63’; p2,; < p1,s, then let By = BL.
3.2 if ZJz,.jeB; p2,j > Pi,s, then let Bs be a subset of B! such that

P1,s/2 < Zhd&Bs P2 <p1s.
3.3 generate a type-B block [J1,s; Bs]. Let A = A\{J1,s}, B = B\Bs
and s = s+ 1.

4. If s < ni + 1, return Step 2. Otherwise, process the blocks as early
as possible in the fixed sequence given by the jobs from Nj in the
blocks, provided that each block can start after the previous block is
completed. Process all remaining jobs in B (if any) one after another
without any idle time from the completion of the last block.

? We remark that B, exists and can be found in polynomial time in this
case. For example, we can reorder jobs in B, in the nondecreasing
order of their processing time and select jobs sequentially until the
total processing time reaches or exceeds p1,s/2 for the first time.

Fig. 3. A high-level description of the algorithm APPROXI.

Which, together with (1), yields that

b
C;axZT1201+a2+a3251+a2+037 (2)

and
C;aIZT2=b1+b2+b3+b4Zb1+%+b4~ (3)

Lemma 1. C,,,; = b1 + as + ag + by.

Proof. Since ZJl,jeAt p1,; < p2¢ in any type-A block [A¢; o], its completion
time is determined by J>; € B;. And similarly since Zb,jeBs D2,; < p1,s in any
type-B block [Ji s; Bs], its completion time is determined by Ji,, € A U As.
Therefore, we can conclude

Comaz = Y Pat+ D, Prst Y. Par=bi+as+as+bi
J2)t661 Jl,SGAQUA:; J2)tEB4

Approximation Algorithms for Two Machine SWC Problem 117

Lemma 2. For each type-B block [J1 s; Bs] with ZJQJGBS p2; < DP1,s/2, any
job in By that does not conflict with Ji s (if any) must have processing time no
smaller than pi s.

Proof. Suppose not, let J ;, € By be the job with ps j, < p1,s and not conflicting
with Ji 5. Clearly this job has not been assigned yet when APPROX1 starts to
generate this block. If py ;, + ZJQ,,EBS p2,; < p1,s, then Step 3.1 of the algorithm
must assign Jy j into this block. If py ; + ZJg_jeB,g P2,j > Pi,s, then Step 3.2 of
the algorithm must update the block so that p; /2 < ZJz,jeB.; p2,; < p1,s- Both
implies a contradcition. This proves the lemma.

Lemma 3. In an optimal schedule, the total processing overlap time of a job

Ja+ € By and the jobs in Az cannot exceed pé".

Proof. Since the order for processing jobs on the first machine is fixed to
(Ji,1,J1,2, -, J1my), all jobs that overlap with the processing of Jo; must
follow that sequence. In an optimal schedule, let Ji s and Ji o (s > s) be
the first and the last job from Az that overlap with Jo;. If no such job

exists or Z‘;:S p1,; < %%, then we are already done. Due to Ji s, J1,¢ € As

and s’ > s, the algorithm APPROX1 must first generate the type-B block
[J1,5; Bs] with ZJQJEBS p2,; < Pi1,s/2, and then the type-B block [Ji ¢; By]
with ZJg,_,»eBS/ D2,; < P1,s/2, but not necessarily immediately. Since J; ; and
J1,s» overlap with the processing of Js ; in the optimal schedule, none of the jobs
between .J; s and J; o conflict with J ;. Hence, if ijs 1, < pag <2 E;:S P1,js
then APPROX1 must find the job Js+ in Step 2 when J; ; is involved by the algo-
rithm, and thus generate a type-A block so that Ja; is included in B;. It is a
contradiciton since J3; is actually included in B4. Therefore, we suppose in what

’

follows that Z;:S p1j > pae- I p1 s < pay < 2py1, then the similar argument
can lead to a contradiction. By Lemma 2, we are only left with the case when
D2,t > 2P1,s-

Let k be the smallest index such that Z?:s DP1,j = P2t Then k is well-defined

2
. ' k
and s < k < &', since we have p; ; < 22 and Z;:SPIJ > pag 1375 p1j <

2
D2, then we must obtain a contradition by the similar argument as above.

Otherwise, Z?:s P1,j > P2t From the definition of &k, we obtain Zf;sl pi; <
P2t which follows that

2
k k—1 P
2.t
Prk = Zpl,j - Zm,j > 5 (4)
J1=s J]=s

If Ji, € As, then by Lemma 2, pa; > p1 . Together with (4), APPROX1
must find the job J,; in Step 2 when J; 1 is involved by the algorithm, and thus
generate a type-A block so that Js, is included in B; too, contradicting with
the fact that Jy; € By. Therefore, Jy i, ¢ As.

Since J1,¢ € Az, s < k < §'. Note in the optimal schedule, Ji 5 and Jy
are the first and the last job from A3 that overlap with J . This means that

118 A. Zhang et al.

the job Ji ; must be entirely processed within the processing interval of Js ;. By
Jik ¢ Az and (4), the total processing overlap time of Jo; and the jobs in Ajg
is no more than py; —p1x < p2 . This proves the lemma.

Lemma 4. by
C;;mw > ag + ? (5)

Proof. By Lemma 3, the total overlap time of jobs in B4 and A3 does not exceed
%4. Then the total processing time of jobs in A3z that do not overlap with any

job in By must be at least max{as — %, 0}. Thus C},,, > max{as — 3,0} +by >
b
as + 74

Theorem 1. APPROX1 is a %—approm’mation algorithm for PD2|G =
(N, E), seq1|Crnaz.

Proof Let us multiply both sides of inequalities (2), (3), and (5) by 2, 2 and
5, respectively. Then, one can easily verify that the summation of both 51des of
the resulting inequalities is

3 b1 4 2 b4

7C;Lam—gx(5+a2+a3)+5 (b1+ 5 +b4) g (CL3+ 9

11
:1—Ob1+a2+a3+b4zbl+a2+a3+b4:C’mm,

<)

where the last inequality is due to Lemma 1. This proves the theorem.

3.2 Tight Analysis of APPROX1 for Two Subproblems

In the Subproblem 1, each job in N; has no larger processing time than each
job in Ny. Therefore, APPROX1 must always find B; = B, = () when generating
a type-B block [J; s; Bs] in Step 3. Accordingly, we obtain Ay = By = Bz = 0,
implying that az = by = b3 = 0. Thus we rewrite the inequalities (2) and (3),
and Lemma 4 as follows,

b b
Crnag > max{ +az, by +ba,az + 7). (6)

Theorem 2. APPROX1 is a %-approa:imatz’on algorithm for Subproblem 1, and
the ratio is tight.

Proof. Similar to Theorem 1, we multiply the three terms in (6) by %, % and %
respectively, and compute the summation of the resulting inequalities, obtaining

b
74) - bl +a3+b4 Z Cmawa

x (az + 5

1 b1 3 1
fC* — - x (b b -
4 maa:—2 (2+a3)—|—4x(1++4)+2
where the last inequality is due to Lemma 1 and the fact ay = 0.

The tightness instance is shown in Fig. 4, where there are three jobs in Ny

and two jobs in Ny. Figure4(a) gives the conflict graph with the processing

Approximation Algorithms for Two Machine SWC Problem 119

time outside the vertices. The algorithm APPROX1 may generate a type-A block
[{J1,1}; J2,1] in Step 2, and two type-B blocks, [J1,2;0] and [J; 3;0], in Step 3.
This means that Al = {Jl,l}a Bl = {JQ,l}, .A3 = {J172,J173} and 84 = {J272}.
Thus by Step 4, one gets a feasible schedule with Cyq; = b1 + a3 +bs =p21 +
P1,2+D13+Dp22 = T+e (see Fig. 4(b) for an illustration). In an optimal schedule,
the second machine processes J; o followed by Js 1 so that both machines can
keep busy till completion (see Fig 4(c) for an illustration). Therefore C?, . =

max

Ty =T, =4+ €. Then we have "“” — I (e — 0). This proves the theorem.

]12]13

@ Q e]1'1 ' ‘
1+e€ 1 2 J21 Jaz

(b) The schedule output by APPROX1

Q Q]1,1 ll,Z]1,3
2 2+e€

]2,2]2,1

(a) The conflict graph G (c) An optimal schedule

Fig. 4. A tight instance of APPROX1 for Subproblem 1.

Subproblem 2 assumes that each job in Nj has processing time larger than
each job in Ny. With this assumption, APPROX1 never goes into Step 2. Hence
only type-B blocks are generated by the algorithm. This means that A; = By =
(0, or equivalently, a; = by = 0. Rewrite (2) and (3) accordingly, one can get
Crrae > max{ag+as, @ +bs}. Besides, applying the assumption to Lemma 2, one
also obtains that for each type-B block [J1 s; Bs] with 3 ;. jeB, P25 < P1,s/2, any
job in By must conflict with J; ;. Therefore the lower bound given by Lemma 4
can be updated, that is, C},,.. > as + bs. In summary, we come up with the
following lower bound.

* az
Cmal, > max{ag + as, ? + by, a3 + b4} (7)
Theorem 3. APPROX1 is a %—approximation algorithm for Subproblem 2, and
the ratio is tight.

Proof. By Lemma 1, Cp,q: < ag + a3 + by. Similarly, by multiplying the three
terms in (7) by %, % and % respectively, and computing the summation of the
resulting inequalities, we obtain

(%

1
5 ++b4)+§x(a3+b4) =ay+az+bs > Crae.

2 2
C:nam = 3 (aQ +a3) +5 3

120 A. Zhang et al.

The tightness instance is shown in Fig. 5, where there are two jobs in N; and
three jobs in Nj. Figure5(a) gives the conflict graph with the processing time
outside the vertices. The algorithm APPROX1 may generate two type-B blocks,
[Jl’l;{JQ’l}] and [JLQ;(Z)L in Step 3, resulting that AQ = {J1,1}7 82 = {Jg’l},
A3z = {J1,2} and By = {J22,J2,3}. Thus Step 4 gives a feasible schedule with
Craz = a2 + a3 + by = p11 + P12+ P22 + P23 = 5+ € (see Fig. 5(b) for an
illustration). In an optimal schedule, the second machine processes J3 2 followed
by J21 so that both machines can keep busy till completion (see Fig. 5(c) for an

illustration). Therefore C},.. = T1 = 3 + €. Then we have g;"“' — % (e — 0).

This proves the theorem.

@ Q Jia | Sz

2 1+e J21 J2.2 J23

@ ° °]1'1]1,2 ‘
1 1 1

]2,2]2,3]2,1 |

(a) The conflict graph G (c) An optimal schedule

Fig. 5. A tight instance of ApPrROX1 for Subproblem 2.

3.3 An Improved Algorithm for Subproblem 2

By simply modifying APPROX1, we obtain an improved algorithm APPROX2
for Subproblem 2. Compared with APPROX1, the new algorithm allows that
ZJQ,JEBS P2,j > Pi1,s in a type-B block [Jy s; Bs]. In fact, it first sequences the
jobs in N in the non-increasing order of their processing time. Then a set By of
jobs from N, are selected along that sequence when generating a type-B block
[J1,5; Bs], provided that all jobs in By do not conflict with J; 5, and whenever
possible, it ensures that the total processing time of them can reach the threshold

?pl)s. A high-level description of APPROX2 is depicted in Fig. 6.
When APPROX2 stops, it generates a total of ny type-B blocks. Let A;
(B;), i = 1,2,3 be disjoint subsets of N; (Nz) defined as follows. For a

block with ZJz,jeBs P2j > Diss J1,s € A1 and By C By; for a block with

%pl,s < ZszeBS P2 < pis, J1,s € Az and By C By; and for a block with
ZJQ.]EBS P2, < ?]h’s, Jis € As and By, C Bs. Let By = NQ\U?:lgi. Let a; (b;)
denote the total processing time of jobs in A; (B;). Thus we have T} = a1 +as+as
and T = by + by + b3 + by. Besides, the makespan of APPROX2 can be calculated

by Cmax = bl + ag +G,3—|—b4.

Approximation Algorithms for Two Machine SWC Problem 121

Algorithm APPROX2:

1. Initially let B = N> and s = 1.
Reorder the jobs in N2 so that ps j—1 < pa,; for any j = 2,3, na.
3. Find all jobs in B that do not conflict with Ji s, denote them by a
set B, (It allows that B, =) too).
8103, cp P2y < ¥2p, s, then let B, = B..
3.2 if ZJQJ_GB; D2,; > gpl,s, then find the smallest index k such

that Y, cpr je P2 > Y215 Let By = {J,; € Bl|j < k}.
3.3 generate a type-B block [J1,s; Bs] and start to process it at
the earliest time when the (s — 1)-th block is completed. Let
B=B\Bsand s=s+ 1.
4. If s < n1 + 1, return Step 3. Otherwise, process all remaining jobs
in B (if any) one after another without any idle time from the com-
pletion of the ni-th block.

o

Fig. 6. A high-level description of the algorithm APPROX2.

Lemma 5. a; < by < v2a4, @@ <by <az and 0 < bz < gai"

Proof. The inequalities a1 < by, gag < by <agand 0 < b3 < gag trivially
hold from the definition of A; and B;,i = 1,2,3. For each B; C By, it’s clear
that 37 cp =05, ep, P2 > P1,s- From Step 3.2 of APPROX2, By = {J3; €

B(|j < k}, where k is the smallest index such that 3, cp/ i< p2; > gpm.
This means that J; , € Bs and T

V2
Z P2j > P1s > 5 PLs > Z D2,5- (8)

J2 ;€B,,j<k J2,;€Bs,j<k
Note the assumption of Subproblem 2 and Step 2 of APPROX2 together gives
that p1 s > pa;j > po for any Jo; € B,. Then B, \ {J2x} # 0, and hence we
derive pg < EJZ,jEBsgj<kp2’j < %pl)s. Together with (8),

Z P2 = P2,k + Z P2, < \/§p1,s-

J2,;€Bs,j<k Ja ;€Bs,j<k
Accordingly, we can conclude that b; < v/2a;. This proves the lemma.

Lemma 6. C}, ... > a3 + bs.

Proof. For each B; C Bs, ZJg,jeBs pa < gpl’s. Thus the algorithm APPROX2
must go to Step 3.1, which implies that B! = B;. Note B/, contains all jobs in the
current B = Na '\ U;;}Bj that do not conflict with J; 5. In other words, all jobs
in Na \ Uj_; B; must conflict with J; 5. Recall By = Na \ U, B; = Na'\ U;‘;lBj.
Thus each job in B4 must conflict with J; 5. Then we can conclude that each job
in Bs must conflict with each job in A3. Therefore, C}, ... > a3 + by.

122 A. Zhang et al.

One sees that Lemma 5 and 6 together update the lower bound of the optimal
makespan,

2 2
maz = maX{Tl,Tg, a3+b4} > max{gbl +as+as, b1+§a2+b4, a3+b4}. (9)

C*
Theorem 4. APPROX2 is a (3 — ﬂ)-appro:cimation algorithm for Subproblem
2, and the ratio is tight.

Proof. Note APPROX2 outputs of a schedule with makespan Cj,q, = b1 + a2 +
az + by. We then multiply the rightmost terms in (9) by 2 — v/2, 2 — v/2 and
V2 — 1 respectively, and compute the summation of the resulting inequalities,
obtaining

(3—V2)Chae > (2—V2) x (gbl+a2+a3)+(2—\/§) x (b1+§a2+b4)
+(\/§fl)><(a3+b4):bl+a2+a3+b4:me.

The tightness instance is shown in Fig.7, where there are two jobs in Ny
and four jobs in N,. Figure7(a) gives the conflict graph with the process-
ing time outside the vertices. The algorithm APPROX2 generates two type-B
blocks, [J11;{J2,1,J2,2}] and [J12;0], in Step 3, resulting that A; = {J11},
Bl = {Jg’l, J2,2}7 ./42 = BQ = 83 = [Z), .«43 = {JLQ} and 84 = {J2’3, J2’4}. Accord-
ingly, the makespan of the output schedule equals Cy,qr = b1 + a2 + az + by =
D21+ D22+ D12+ D23+ Do = 2v/2 + 1 (see Fig. 7(b) for an illustration). On
the other hand, the optimal algorithm schedules Jy 3, J24 before Jy1,J22 on
the second machine so that both machines can keep busy till completion (see
Fig.7(c) for an illustration). Therefore C,,, = T1 = v/2 + 1+ ¢. Then we have

max

% — 2\/\/55_:-11 =3 — /2 (¢ — 0). This proves the theorem.

@ Q b ha
1+e V2 J21 ‘ J22 J2;3 J24

(b) The schedule output by APPROX2

@ @ ° Q]1V1]12
vz vz 1 1

V2 vz 1 1 J23 J24
2 2 2 2

(a) The conflict graph G (c) An optimal schedule

Fig. 7. A tight instance of APPROX2 for Subproblem 2.

Approximation Algorithms for Two Machine SWC Problem 123

4 The SWC Problem Without Any Fixed Sequence

This section considers the two machine SWC problem where no processing
sequence is fixed in advance. This problem was previously recognized weakly
NP-hard [16]. We give a strong NP-hardness proof and present an approxima-
tion algorithm to solve it. The main results are as follows.

Theorem 5. The problem PD2|G = (N, E)|Cpay is NP-hard in the strong
sense, and there exists a g—approximation algorithm.

5 Conclusions

We studied the problem PD2|G = (N, E)|Chyqq of scheduling with conflict con-
straints on two parallel dedicated machines. The problem was previously known
weakly NP-hard, and shown to be NP-hard in the strong sense under the assump-
tion that jobs on one machine must follow a given and fixed processing sequence
[16]. We proposed several approximation results for this problem, including a g—
approximation algorithm for the SWC problem with a fixed sequence as well as
its tight analysis on two strong NP-hard subproblems, a (3 — ﬂ)—approximation
algorithm for one subproblem, and a g—approximation algorithm for the SWC
problem without any fixed sequence. Our approximation results are mostly based
on the idea of sequentially generating and processing blocks each with a set of
conflict-free jobs and meeting certain processing time requirements. In addition,
we proved the problem PD2|resA11|Ci,q, of scheduling jobs on two parallel
dedicated machines with non-sharable resources is NP-hard in the strong sense.
This answers that the two machine SWC problem without any fixed sequence is
strongly NP-hard too.

A natural question is designing better approximation algorithms or even
PTASes for all strong NP-hard variants of the problem PD2|G = (N, E)|Ciaz-
In particular, the problem of scheduling with multiple non-shareable resources
can be viewed as a special case. The previous approximation results on this
problem is given under the assumption that each job consumes at most one
resource [17]. Thus the next improvement may start by removing this assump-
tion. Another interesting question is the SWC problem on m parallel dedicated
machines. Note that in this case, the conflict constraints will imply a multipartite
conflict graph instead.

Acknowledgements. This research is supported by the Zhejiang Provincial NSF
Grant LY21A010014 and the NSFC Grants 11771114, 11971139.

References

1. Garey, M.R., Graham, R.L.: Bounds for multiprocessor scheduling with resource
constraints. SIAM J. Comput. 4(2), 187-200 (1975)

2. Baker, B.S., Jr., Coffman, E.G.: Mutual exclusion scheduling. Theor. Comput. Sci.
162(2), 225-243 (1996)

124

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

A. Zhang et al.

Halldérsson, M.M., Kortsarz, G., Proskurowski, A., Salman, R., Shachnai, H.,
Telle, J.A.: Multicoloring trees. Inf. Comput. 180(2), 113-129 (2003)

Even, G., Halldérsson, M.M., Kaplan, L., Ron, D.: Scheduling with conflicts: online
and offline algorithms. J. Sched. 12(2), 199-224 (2009)

Bodlaender, H.L., Jansen, K.: Restrictions of graph partition problems part I.
Theor. Comput. Sci. 148, 93-109 (1995)

Corneil, D.G.: The complexity of generalized clique packing. Discrete Appl. Math.
12(3), 233-239 (1985)

Cohen, E., Tarsi, M.: NP-completeness of graph decomposition problem. J. Com-
plex. 7(2), 200-212 (1991)

Jansen, K.: The mutual exclusion scheduling problem for permutation and com-
parability graphs. Inf. Comput. 180(2), 71-81 (2003)

Petrank, E.: The hardness of approximation: gap location. Comput. Complex. 4,
133-157 (1994)

Bendraouche, M., Boudhar, M., Oulamara, A.: Scheduling: agreement graph vs
resource constraints. Eur. J. Oper. Res. 240, 355-360 (2015)

Bendraouche, M., Boudhar, M.: Scheduling jobs on identical machines with agree-
ment graph. Comput. Oper. Res. 39(2), 382-390 (2012)

Mohabeddine, A., Boudhar, M.: New results in two identical machines scheduling
with agreement graphs. Theor. Comput. Sci. 779, 37-46 (2019)

Fiirer, M., Yu, H.: Packing-Based approximation algorithm for the k-Set cover
problem. In: Asano, T., Nakano, S., Okamoto, Y., Watanabe, O. (eds.) ISAAC
2011. LNCS, vol. 7074, pp. 484-493. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25591-5_50

Yu, H-W.: Combinatorial and algebraic algorithms in set covering and partitioning
problems. The Pennsylvania State University. ProQuest Dissertations Publishing,
3647540 (2014)

Ha, M.H., Ta, D.Q., Nguyen, T.T.: Exact algorithms for scheduling problems on
parallel identical machines with conflict jobs. arXiv: 2102.06043 (2021)

Hong, H.C., Lin, B.M.T.: Parallel dedicated machine scheduling with conflict
graphs. Comput. Ind. Eng. 124, 316-321 (2018)

Kellerer, H., Strusevich, V.A.: Scheduling problems for parallel dedicated machines
under multiple resource constraints. Discrete Appl. Math. 133(1), 45-68 (2004)
Kellerer, H., Strusevich, V.A.: Scheduling parallel dedicated machines under a
single non-shared resource. Eur. J. Oper. Res. 147, 345-364 (2003)

Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

https://doi.org/10.1007/978-3-642-25591-5_50
https://doi.org/10.1007/978-3-642-25591-5_50
http://arxiv.org/abs/2102.06043

®

Check for
updates

Computing the One-Visibility Cop-Win
Strategies for Trees

Boting Yang®™)
Department of Computer Science, University of Regina, Regina, SK, Canada
Boting.Yang@uregina.ca

Abstract. We investigate the one-visibility cops and robber game on
trees. For a tree, we use copnumbers of its subtrees to characterize a key
structure, called road. We give an O(nlogn) time algorithm to compute
an optimal cop-win strategy for a tree with n vertices.

1 Introduction

Nowakowski and Winkler [5] and Quilliot [6] introduced the cops and robber
game which is a well-known graph searching model played on graphs. They
characterized the graphs in which one cop can capture the robber. Megiddo et al.
[4] introduced the edge searching model. They gave an O(n) time algorithm to
compute the edge search number of a tree and an O(nlogn) time algorithm to
find an optimal search strategy, where n is the number of vertices in the tree.
The zero-visibility cops and robber game was introduced by Tosi¢ [7], which
is a hybrid of the cops and robber game [5,6] and the edge searching model
[4]. Recent works on this model include results on a variety of graph classes [8].
Clarke et al. [3] considered the ¢-visibility cops and robber game. Yang and Akter
[10] gave a linear-time algorithm for computing the one-visibility copnumber of
trees.

In the one-visibility cops and robber game, we have a graph, a set of cops,
and a single robber. The robber has full information about the cops. But the
cops have the information about the robber’s location only at the moment when
there is a cop who is located on a neighbouring vertex of the robber or located
on the same vertex as the robber (the robber is captured in the latter case). The
game is played over a sequence of rounds. At round 0, after the cops choose a
set of vertices to occupy, the robber chooses a vertex to occupy. At each of the
following rounds, the cops move first and the robber moves next; in a cops’ turn,
each cop either moves to a neighbouring vertex or stays still, then the robber
does the same in his turn. Only when the distance between the cops and the
robber is at most one, we say that the cops see the robber, that is, the cops have
the information about the location of the robber. The cops capture the robber if
one of them occupies the same vertex as the robber. If a cop eventually occupies

Research supported in part by an NSERC Discovery Research Grant, Application No.:
RGPIN-2018-06800.
© Springer Nature Switzerland AG 2021

D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 125-139, 2021.
https://doi.org/10.1007/978-3-030-92681-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_11&domain=pdf
https://doi.org/10.1007/978-3-030-92681-6_11

126 B. Yang

the same vertex as the robber at some moment in the game, then the cops win.
The one-visibility copnumber of a graph G, denoted as c;(G), is the minimum
number of cops required to capture the robber on G.

A cop-win strategy is a sequence of cops’ actions to capture the robber. A
cop-win strategy for G is optimal if it uses c1(G) cops to capture the robber. If a
cop alternates two actions between two adjacent vertices u and v, i.e., “moving
from u to v” and “moving from v to w”, for at least three consecutive rounds,
then we say that this cop vibrates between u and v in these rounds; we also call
the edge uv a wibrating edge. A subgraph known to not contain the robber is
called cleared.

Let G be a graph with vertex set V(G) and edge set E(G). For u,v € V(G),
we use uv to denote the edge between them and also use u ~ v to denote a
path between them. The distance between u and v, denoted by distg(u,v), is
the length of the shortest path between w and v in G, where the length of a
path is the number of edges on the path. The k-th closed neighbourhood of v is
defined as N&[v] = {u € V(G) | distg(u,v) < k}. For U C V(G), we use G — U
to denote the subgraph obtained from G by deleting the vertices of U from G.

In [10], Yang and Akter explored one-visibility cops and robber game on trees.
They proposed a linear-time algorithm for computing the one-visibility copnum-
ber of trees. In this paper, we focus on computing optimal cop-win strategies
efficiently. For this goal, we introduce a key structure for trees, called road, to
provide essential structural information for optimal cop-win strategies. Using the
roadmaps, we present an approach for computing an optimal cop-win strategy
in O(nlogn) time, where n is the number of vertices on the tree.

2 Structures of Trees by Copnumbers

The following three kinds of vertices are introduced for trees in [10].

Definition 1. Let T be a tree with ¢1(7) = k. If there is a vertex v in T such
that each component X in the forest 7' — N2 [v] has c1(X) < k, then v is a hub
of T. If there is a vertex v in T such that T'— N3[v] has two components with
copnumber k satisfying that the path in T connecting them contains v, then v is
an avenue vertex of T. If T does not have a hub or an avenue vertex and there
is a vertex v in T such that T — N2[v] has two components with copnumber
k satisfying that the path in T connecting them contains v, then v is a street
vertex of T'.

Note that hubs, avenue vertices or street vertices can help to make cop-win
search plans. But sometimes it takes extra time to recognize these vertices if
each of them corresponds to a distinct strategy. In this paper, we introduce the
road to unify these structures; this will bypass the cases where it is not easy to
distinguish whether a subtree contains hubs, avenue vertices, or street vertices.

As observed in [3,10], the one-visibility copnumber of a tree is always greater
than or equal to that of any of its subtrees. The following structural lemma is
crucial to Algorithm 1.

Computing the One-Visibility Cop-Win Strategies for Trees 127

Lemma 1. Let T be a tree that contains a verter v € V(T) such that each
component in the forest T — Ni[v] has copnumber at most k. If in T — N3[v]
there are at least three components with copnumber exactly k such that the path in
T connecting any pair of these three components contains v, then c1(T) = k+1.

Yang and Akter [10] showed that any tree that has neither a hub nor an
avenue vertex must contain exactly two street vertices, which are adjacent to
each other. The edge whose endpoints are the street vertices of T is called the
street of T.

For avenue vertices, we have the following properties.

Lemma 2. Let T be a tree with c1(T) = k. (i) If T contains only one avenue
vertex u, then u has exactly two neighbours p1 and ps, each of which satisfies
that T — N2[p;], i € {1,2}, has two components with copnumber k such that
the path in T connecting them contains p;. (ii) If T contains m avenue vertices,
where m > 2, then the subgraph induced by all the avenue vertices of T is a
path, denoted by uy - - U, and moreover, uy (resp. um) has a unique neighbour
p1 # ug (resp. p2 # um—1) such that T — NZ[p1] (resp. T — NZ[p2]) has two
components with copnumber k satisfying that the path in T connecting them
contains py (resp. p2).

The path uq - u,, in Lemma 2(ii) is called the avenue of T; the unique
avenue vertex v in Lemma 2(i) is also defined as the avenue of T. The vertices
p1 and pe in Lemma 2(i)(ii) are called pre-avenue vertices of T.

We now introduce the road which unifies the above structures.

Definition 2. Let T be a tree with c;(T) = k. A path P in T is called a road
of T, denoted by R(T'), if each component X in the forest 7 — N2[V(P)] has
Cl(X) < k.

The relations between the road and the structures of hub, street and avenue
are shown in the following theorem.

Theorem 1. Let T be a tree. (1) If T contains a hub, then any path containing
a hub is a road. (i) If T contains a street vertex, then any path containing the
street is a road. (iii) If T contains an avenue vertex, then any path containing
the two pre-avenue vertices is a road.

Since every tree must contain a hub, or an avenue vertex, or a street vertex
[10], the next result is an immediate consequence of Theorem 1.

Corollary 1. Every tree contains at least one road.

3 Computing Copnumbers and Roadmaps

A rooted tree T with root r is denoted by T"l. Each vertex v # r of Tl is
connected with r by a unique path, where the parent of v is the neighbour of v
on this path; v is also called a descendant of each vertex on this path except v.

128 B. Yang

For any vertex v € V(T["), we use T!*! to denote the subtree of 7"l induced by
v and all its descendants. Thus v is the root of the subtree 71", Note that in the
forest T!"! — v, each component is a rooted subtree whose root is a child of v.

We first describe the general idea of an optimal cop-win strategy, called road-
tactic. Let T be a tree with ¢1(T) = k, and let P = p;---p,, be a road of T.
We first place all k cops on p;. Let Y;, 1 < i < m, be the component containing
p; in the forest T — E(P). The subtree Y; is called a branch of the road P. For
each i =1,...,m, we use the following strategy, called branch-tactic, to clear Y;;
after Y; is cleared, all cops move back to p;, then move forward to p; 1 along the
edge p;p;+1 until Yy, is cleared. In the branch-tactic for clearing Y;, let vy, ..., vq
be all children of p;. For each v;, 1 < j <d, let v;,, 1 < h < my, be all children
of v;. Notice that all £ cops are located on p; at the start of clearing Y;. For
each v; (1 < j <d) and for each vj;, (1 < h <m;), let one cop vibrate between
v; and vjp, in the meantime, let other cops move into each subtree rooted at a
grandchild of v, until all the subtrees rooted at the grandchildren of vj; are
cleared. Finally, let all cops move back to p; after all vertices of Y; are cleared.

Since the road-tactic described above will be an optimal cop-win strategy,
we have to compute c1(7T') and the road P, which implies that we must compute
c1(Y;) (1 <i < m) and the road in each Y; before we can find ¢;(7T") and P. We
will use a bottom-up dynamic programming idea to compute the copnumbers
of the subtrees and their roads. The bottom case is to find the copnumber of
each leaf which is trivial. Then we consider each subtree in which all children are
leaves. We can continue this process until the copnumber and a road of the whole
tree is computed from the copnumbers and roads of the children of the root. In
this section, we design an algorithm to compute c;(7") and the roadmaps. In the
next section, we will give an algorithm to implement the road-tactic strategy
using the copnumbers and roadmaps of the subtrees obtained from this section.

The definitions and notations of the following terms can be found in Def-
initions 5.1-5.3 in [10]: k-pre-branching vertex, k-weakly-branching vertex, k-
branching vertex, k-pre-branching indicator Il’;b(v), k-initial-counter J*(v), k-
weakly-branching indicator I¥, (v), and k-weakly-counter JE(v).

Let u be a descendant of v in T"!. If u is a k-pre-branching (resp. k-weakly-
branching, k-branching) vertex in T, then we say that u is a k-pre-branching
(resp. k-weakly-branching, k-branching) descendant of v.

In the following definition, we generalize the label in [10] so that the new
label contains roads, which will be used to construct cop-win strategies.

Definition 3. Let 71! be a tree with root v. The label of v in T*!, denoted by
L(v, TI"!), is a sequence with the form

L(U, T[U]) = (tm7 Loy Pm; cee ;tlv X1, Pl; I\fvlb(v)a J\fvl (’U), I;L(U), Jtl (U)) (1)
where t;, x; and P; are defined as follows:

1. If Tt contains only one vertex, then t; = 1, z; =L, P; = v, and L(v, TI"!) =
(1, L,v;0,0;0,0); otherwise, set ¢ < 1 and T 7l

Computing the One-Visibility Cop-Win Strategies for Trees 129

2. Set s; « cl(Tiv]), and go to exactly one of the following subcases:

(a) If v has an s;-branching descendant in T!”, let v; be this descendant. Set
R; +— R(Ti“"]). Update Tgv] — Ty}] - V(TC[LW]), i« i+ 1, and go back to
Case 2.

(b) If v does not have an s;-branching descendant in T£U]7 set m « ¢ and
R,, «— R.(Tcgv]). If v is an s,,-branching vertex in TLEU], then v, «— v;
otherwise, v, < L. Determine I3} (v), Jgm (v), I)i (v) and J*m (v) of T
by their definitions.

3. Foreach i € {1,...,m}, let t; = sp—it1, Ti = Um—it1, and P, = Ry i11.

The set of roads {Py, ..., Py} in L(v, T!"!) is called the roadmap of T[]

Lemma 3. The label in Eq. (1) has the following properties. (1) P, is a road
of T and ci (T = t,,. (ii) For each i € {2,...,m}, x; #L. (iii) If 21 #L,
then z1 = v; otherwise, in the rooted subtree T — 7", V(T#l), neither v nor
its descendants is a t1-branching vertex in this subtree.

The last seven components in the label Eq. (1) can be determined as follows.

Lemma 4. Let T be a tree with root v whose label has the form of Eq. (1),
where m > 2. Let Tl[v] =Tl — U, V(T=). Then t; = cl(Tl[U]), Py is a road
of Tl[v], and moreover, (i) if v is a t1-branching vertex in Tl[v], then x1 = v, and
I (v) = Ji(v) = I;)(v) = Jt(v) = 0; (ii) if v is a t1-weakly-branching vertex
inT}"), then a1 =L, It (v) =1, I'} (v) = J" (v) = 0 and 0 < J2 (v) < 2; (iii) if
v is a ty-pre-branching vertex in Tl[v], then x1 =1, I'} (v) = J& (v) = Ji (v) =0

and I;L(v) = 1; (iv) if v is not any of the above three kinds of vertices in Tl[v],
then xy =1, I} (v) = Ji(v) = I}}(v) = 0 and 0 < J* (v) < 2.

As distinct from the label in [10], L(v, T*!) in Eq. (1) contains the roadmap
of TI"!, Tt also contains the structure information shown in the following lemma.

Lemma 5. Let T be a tree such that the label of its root is of the form in
Eq. (1). If m > 2, then there must exist an avenue of Tlml and for each
2 <i < m, there is also an avenue of the subtree T*il — U;ﬁ:iH V(Tlsl).

The terminals of roads in Eq. (1) are related to the utmost-k-pre-branching
vertices that will be defined in Definition 4. Before we give the definition, we
need the following property of k-pre-branching vertices.

Lemma 6. Let TV be a tree with cl(T[”]) = k. Suppose the root v is a k-pre-
branching vertex in T, Let U = {u € V(TW) | u is a k-pre-branching vertex
in the rooted subtree T[“]}. Then the graph H induced by all vertices of U is a
path and v is a terminal of this path.

130 B. Yang

Definition 4. Let T be a rooted tree and c;(T"!) = k. Suppose that there is
a vertex v € V(TI') that is a k-pre-branching vertex in the rooted subtree T,
By Lemma 6, the graph H induced by all k-pre-branching vertices in 71! is a
path. Let H = v ~ p be this path, where p = v if v is the only vertex in H. Then
we say that p is an utmost-k-pre-branching vertex of v, which is also called an
utmost-k-pre-branching vertex in T,

The next result follows from Lemma 6 and Definition 4.

Lemma 7. Let T be a rooted tree with ci(T")) = k. (i) If v is a k-pre-
branching vertez in TV, then there is a unique utmost-k-pre-branching vertex
in T, (i) If v is a k-weakly-branching vertex or k-branching vertex in T,
then there are exactly two utmost-k-pre-branching vertices in T, (iii) If v is
not any of the above three kinds of vertices in T'"!, then there is no utmost-k-
pre-branching vertex in TV,

Definition 5. In Eq. (1), we call the first three components (¢, Zm, Pn) an
item associated with T*! and call each triple (t;,x;, P;), 1 < i < m, an item
m
associated with subtree TV1— (J V(T'[#3]). For each item (t;, z;, P;), 1 < i < m,
j=it1
t; is called the key of the item and x; and P; are its attributes.

For the label in the form of Eq. (1), if 27 #L, it follows from Definition 3
that 1 = v,,, = v.

Definition 6. Let T1* be a tree with root u and let Y be the set of all children
of u. Suppose that for each child y € Y, its label L(y, T!¥) is of the form
Y y v . .y oy py. Tl tf N pt] tY
(tm(y)vxm(y)apm(y)a"'atlvxlvpl7IWb(y)7JW (y)7lpb(y)7‘] (y)) (2)
where m(y) is a positive integer corresponding to m in Eq. (1). Let I, = {y €
Y |2y =L and m(y) > 2} and let I, = {y € Y | ¥ = y}. The kernel subtree of

T[], denoted by T\, is defined as T} = T — |J V(TW) — | V(TE)).
y€Elyp yel,

Yang and Akter [10] gave an algorithm for computing the one-visibility cop-
number of trees in linear time. In this section, we modify that algorithm so that
the new algorithm can compute roadmaps, which will play an important role in
constructing cop-win strategies. The input of Algorithm 1 can be any tree T'. We
first pick a vertex of T as its root. This root induces the parent-child relation,
by which we sort all vertices in a topological order. For each vertex uw whose
children have been labelled, we cut off those subtrees rooted at the branching

descendants of u to construct the kernel subtree T\, We then call Algorithm 2

ker
to compute the label of u in T; i:l which contains a road of TIEZE We finally merge
the label of u in TIEZE with the labels of the branching descendants of u to obtain
the label of u in T,
In order to describe Algorithm 2, we need more notations. For a graph G,
let ¢}(G) = max{c1(G’) | G' is a component in G}. Let T!l be a tree with root

Computing the One-Visibility Cop-Win Strategies for Trees 131

Algorithm 1. Computing vertex labels with roadmaps

Input: A tree T.
Output: The labels of all vertices with roadmaps.

1:

Arbitrarily pick a vertex v of T as its root; compute the parent-child relation in

the rooted tree T[”], If T™! contains only one vertex, then output L(v, T[”]) =(1,L1
,1;0,0;0,0); if 7T contains only two Vertices v and v’, then output L(v’, T[“l]) =
(1 1,450,050, 0) and L(v, T"") = (1, L,vv';0,0;0, 1); otherwise, topologically sort

all vertlces of T™! such that v is the last vertex in the list.

For each vertex u in the sorted list, repeat Steps 3 — 7 until the label of the root v

is computed; then output the labels of all vertices.

If u has no child, set its label as (1,.L,u;0,0;0,0), and go to Step 2. Let wuj,
1 < j < t, be all children of u with labels L(uj, T1%) in the form of Eq. (2).
Construct the kernel subtree T\, If u is the only vertex in T}, then L(u, T[") =

ker?

1, 1,4;0,0;0,0); otherwise, for each child w of u in T/, assign the last seven
g

ker>

components of L(w, T™!) to L(w, T) and call Algorithm 2 to compute L(u, TIEZA)

ker
Let & = o1 (TY).
For each uj, 1 < j <t if its label in Tl contains L, let L; be a list obtained from
L(u;, T[“J']) by deleting its last seven components and items whose key is less than
% (Lj can be an empty list); otherwise, let L; be a list obtained from L(u;, T*!)
by deleting its last four components and items whose key is less than x. Let Ly
be a list containing only the first item of L(w, TIEZT)
If no key in Li,..., L, Liy1 is repeated, then L(u, T — L(u, T[ul), update the
road by Theorem 3, and insert the items of L1, ..., L; into L(u, Tlm Go to Step
2.
Find the largest repeated key k™ in the lists L1,..., L¢, Liv1. Let K = (k1,...,ke)
be a list containing the distinct keys from L, ..., Li4+1 satisfying that the keys in
K are decreasing and are greater than or equal to k*.
Find the smallest index h in K such that kp, = kpy1+1=--- = ke+ (£ —h). Update
K « (ki1,...,kn_1,k;,) where kj, = kj, + 1. Create a list X = (Q1,...,Qn-1,Qn),
where each Q;, 1 < i < h — 1, is an item with key k; and attributes x; and P;
(i-e., z; is a k;-branching vertex in some subtree and P; is the road in that subtree)
and @y, is an item with key kj, and attributes L and the road u (i.e., this subtree
contains no kj-branching vertex and u is the road, referring to Theorem 4). Insert
(0,0;0,0) at the end of X. Set L(u, Tt) «— X. Go to Step 2.

u whose children are vy, ...,vq. Suppose c¢f(T!" —u) = k > 1. We define the
following counters:

nk (T —) = H] | ci(Tl)y =k for j e {1,...,d}}

b

d d
nf)b(T[“] —u) = Z lefb(“j)y n\’;b(T[U} —u) = Z Ix]:zb(vj),
j=1 j=1
Th) = Th) =
PRI =) = max (T%(vy)}, b (T =) = max (70(v;)}-

Similarly to Theorem 5.7 in [10], we have the following result.

132 B. Yang

Theorem 2. Let T be a rooted tree and let T}iﬂ be the kernel subtree with
CT(TIEZl —wu) = k. Let vy,...,vq be all children of u in TIEZl Suppose each label
L(vj,TIEZi]), 1 <j<d, is of the form

Lo, T = (199, 1, Pos 15 (0y), 57 (0,)s T2 (0), 77 (). (3)

Then the label L(u7T1£Z]) can be computed by Algorithm 2.

T

Remark 1. From Lemmas 4.5 and 4.7 in [10], we know that if a tree contains
a street vertex or an avenue vertex, then this tree contains a unique street
or avenue. Unlike street or avenue, roads are flexible. The motivation of this
flexibility is to avoid the cost of distinguishing the different structures (i.e., hub,
street, avenue), which is a time-consuming process in a recursive algorithm. For

example, consider Lines 22-23 in Algorithm 2 where nﬁvb(Tk[Zl —u) = 0 and

nf)b (Tk[g —u) =11 TIEZE contains an avenue, then the road 2% ~ u contains
this avenue of T\"); if 7"

ker? ker
street; or, if Tk[::l contains a hub, then the road z'i ~ wu also contains a hub. So
in Algorithm 2, we bypass these complicated subcases by using the concept of
road.

contains a street, then the road z%¢ ~ u contains this

Lemma 8. Suppose that T is a tree and the label of its root in the output of
Algorithm 1 is

L(u,T[“]) = (tm, Tm, Pm; - .- t1,21, Pr; Ijvlb(u), JE (u); If)}a(u), J (u)),

where m > 2. Then (i) the terminals of Py, are two utmost-t,,-pre-branching
vertices in T and L(xp,, T®m) = (t, £m, Pm;0,0;0,0); (i) the terminals of
each P;, 2 <1 <m — 1, are two utmost-t;-pre-branching vertices in the subtree
T = il T VTR and L TP = (62, Pi0,0;0,0); and (i)
each P;, 2 <i < m, contains at least three vertices.

Theorem 3. Let T be a tree with root u whose children are u1, ..., up. Sup-
pose that for 1 < j < h, L(Uj’T[uj]) =

uj uj
J J uj
t) t

(b g Pt a0 P, (), T () Iy, (ug), T (7)) (4)

mgrTmg o mf'
and these labels satisfy
mj=1and 2}” =L, if1<j<hy,

m; >2and 2}’ =1, if by <j < h, (5)
x?":uj, if hg <j < h.

Let TLEZI]r be the kernel subtree of T with c’{(TlEZl —u) =k and let P be the road
in the label L(u,TIEZE) output by Algorithm 2.

Computing the One-Visibility Cop-Win Strategies for Trees 133

Algorithm 2. Computing vertex labels of a kernel subtree

Input: A kernel subtree Tlﬁ with c’{(T[“] —u) = k. Let v;, 1 < j < d, be all children

ker
of w in T&Zg; each v; has a label in the form of Eq. (3).

Output: The label L(u, TIEZE)
1: if nfvb(T}E“l —u) > 2 then return (k + 1, 1,4;0,0;0,0).

€

2: if nffvb(Tlgl —u)=1and n’;b(Tk[Zl —u) > 1 then

3: return (k+ 1, 1,4;0,0;0,0).
4: if nk, (TIEU] u) = 1, where v; is the k-weakly-branching child of u, n];b(Tiu] u) =0

er er

and n¥ (T&Zﬂ —u) > 2 then

5 if 5 (T —u) = 2 then return (k+ 1, 1,;0,0;0,0).
6: else if th(TILZJ —au) =1 and A" (TLEZE —u) > 1 then

7: return (k+ 1, 1,u; 0,0;0,0)

8: else if h% (T —u) =1 and B*(T") — u) = 0 then

9: return (k, L, P"%; 1,2;0,0)

10: else if h% (T —u) = 0 and B*(T") — u) = 2 then
11: return (k+ 1, L,u; 0,0;0,0)

12: else if h% (Ti:l —u) =0 and h* (TIEZE —u) <1 then
13: return (k, L, PY"; 1,1;0,0)

14: if nk, (T1") — u) = 1, where v, is the k-weakly-branching child of u, and n’ (T} —
u) = 1 then

15: if B (T — u) = 2 then return (k,u, P¥; 0,0;0,0)

16: else if th(TILZJ —u) =1 then return (k, L, P¥"; 1,2;0,0)

17: else if hfﬁ,(T[“] —u) = 0 then return (k, L, P¥%; 1,1;0,0)

ker
18: if nfvb(T}E:l —u) =0 and n’;b(Tlﬁ —u) > 3 then
19: return (k + 1, L, u; 0,0;0,0)
20: if nky (T — u) = 0 and nk (T — u) = 2 then
21: return (k, L, 2" ~ 2%7;1,0;0,0), where v; and v; are k-pre-branching children
of u, and 2" and 2"/ are the utmost-k-pre-branching vertices in T&:ﬁ] and Ti:ﬁ]
respectively.

22: if n"ﬁ,b(TlE:l —u) =0 and n’;b(TIEZl —u) =1 then

23: return (k, L, 2% ~ wu; 0,0;1,0), where v; is a k-pre-branching child of u and
2" is the utmost-k-pre-branching vertex in TIEZ;]

24: if nﬁ,b(TIEZl —u) =0 and nf, (T&ZE —u) =0 then

25: if hk(TIE:l —u) = 2 then return (k, L, u; 0,0;1,0)

26: else if h* (TIEZE —u) = 1 then return (k, L, u; 0,0;0,2)

27: else if K*(T[") —u) = 0 then return (k, L,u; 0,0;0,1)

(i) If cl(TIEZl =k+1 and ci(T —u) <k, then ci(TM")) = k 4+ 1 and u is a
road of T,
(ii) If C1(T1£21 =k and tpi, < k for each j € {h1 +1,...,h}, then c;(T") =k

and P is a road of T,

N

134 B. Yang

Theorem 4. Let T be a tree with root u whose children are uy, ..., up. Sup-
pose that for 1 < j < h, L(u;, T%1) has the form of Eq. (/) and satisfies condi-
tion (5). Let T be the kernel subtree of T,

ker

(i) Suppose cl(TIEZl) =k and (T —u) < k. If there is a j € {hy +1,...,h}
such that tf,{j =k, then cl(T["]) =k+1 and u is a road of T,

(ii) Suppose cl(Tlﬁ) < k and ci(T™ —) = k. If there are two indices i,j €
{h1 +1,...,h} such that t¥% =tni =k, then ci(TM™) =k +1 and u is a
road of T,

From Theorems 2, 3 and 4, we can prove the correctness of Algorithm 1.

Theorem 5. For a tree T, Algorithm 1 computes the labels of all vertices with
roadmaps.

Lemma 9. For a tree T with n vertices, Algorithm 1 can be implemented in a
way such that the length of each vertex label is O(logn).

Theorem 6. For a tree T with n vertices, Algorithm 1 computes the labels of
all vertices with roadmaps in O(nlogn) time.

Proof. In Step 1 of Algorithm 1, after the root of T is selected arbitrarily, it
takes O(n) time to compute the the parent-child relation induced by the root.
It also takes O(n) time to topologically sort all vertices of T such that the root
is the last vertex in the list.

In each iteration of the loop from Step 2 to 7, we compute the label of each
vertex in the sorted list. Suppose that « is the current vertex in the sorted list
for which we want to compute L(u,T"). Let uy,...,u; be all the children of
u. Since these children are listed before u in the list, their labels have been
computed in the previous iterations. It follows from Lemma 9 that the length of

any vertex label is O(logn). So in Step 3, constructing the kernel subtree 7

ker
needs O(tlogn) time. For each child w of u in TIEZ},, we can obtain L(w,TIEZr])

by taking the last seven components of L(w, T*!). Note that when we construct

T}EZL if a child w of u in T is a branching vertex in 7!, that is, ¥ =w in
L(w, T!!) with the form of Eq. (2), then w is not a child of u in Tﬁﬂ
Algorithm 2, we have d < t.

In Algorithm 2, it is easy to see that all lines except Lines 20-23 takes O(d)

time because each label L(w, Til:r]), where w is a child of u in Tk[Zl, contains only

seven components. In Lines 22-23, in order to find the utmost-k-pre-branching
vertex in T&:l, we check the pre-branching indicators in the labels of the d chil-
dren of uw and find the child v; with I{fb(vi) = 1. Then we check the label

L(vi,T[Ui]) with the form of Eq. (3). If P¥ contains only v;, then v; itself is

ker

So in

the utmost-k-pre-branching vertex in Tk[z;']. Thus uv; is a road in TIEZI]r If pvi
contains two terminals z¥* and v;, i.e., PY = 2% ~ v;, then 2z is the utmost-

Ui]

k-pre-branching vertex in Tier , and furthermore, z"¢ is also the utmost-k-pre-

branching vertex in Tlﬁ Hence 2% ~ w is a road in Tlﬁ So to find a road for

Computing the One-Visibility Cop-Win Strategies for Trees 135

Tﬁfl in Lines 22-23, we only need to check the labels of the d children of u, which
can be done in O(d) time because these labels contain only seven components.
In Lines 2021, similarly, we first check the labels of the d children of u to find
the children v; and v; satisfying that Igb(vi) = Il’;b(vj) = 1; we then check the
labels L(v;, TIEZr]) and L(vj, T&Zi]) to find the utmost-k-pre-branching vertices z¥i
and z%. In this way, we can find the road 2% ~ 2% of Tﬁ:l in O(d) time. Thus
Algorithm 2 can be implemented in O(d) time. Therefore, the total running time
of Step 3 is bounded by O(tlogn).

In Step 4, it takes O(tlogn) time to create the lists Lq,...,L;y1. From
Lemma 5.12 in [10], Steps 5 and 6 need O(max{t}, ,...,t5"1 } 4 t) time to
check if all keys in Lq,..., Ly are different or find the largest repeated key k*
in the lists, where tﬁm, 1 <i<t+1,is the first component in L;. Thus the
complexity of Steps 5 and 6 is O(t 4+ logn). In Step 7, it follows from Theorem 4
that the road in item @), = (kj,, L;u) contains only one vertex which is the root
of T, So this road can be found in O(1) time. From Lemma 9, the length of
X is O(logn). Thus Step 7 needs O(logn) time.

Since every vertex of T has only one parent except the root v, from the
above analysis we know that the complexity of the loop from Step 2 to 7 is
O(nlogn). Therefore, the total runtime of Algorithm 1 is O(nlogn). O

Remark 2. Note that in [10], only the root’s label is required because it con-
tains the copnumber of the tree. It is not necessary to store the labels of other
vertices. This is one of the reasons that the running time of Algorithm 1 in
[10] is O(n). However, in Algorithm 1 of this paper, we need to compute the
roadmaps of all rooted subtrees of TV, where v is the root of T', because we will
need these roadmaps to construct an optimal cop-win strategy for T' in Sect. 4.
From Lemma 9, we know that the total size of the output of Algorithm 1 can
be O(nlogn) in the worst case. So it is impossible to design an algorithm for
computing the roadmaps of a tree with n vertices in o(nlogn) time.

4 Computing Optimal Cop-Win Strategies

For graph searching models, computing an optimal search strategy usually takes
more time than computing a search number. For the cops and robber game, it is
even harder to compute an optimal cop-win strategy because a cop-win strategy
can change dynamically depending on the robber’s action in each round. In
this section, we consider the problem of finding an optimal cop-win strategy for
a tree in the one-visibility cops and robber game. We first give an O(nlogn)
time algorithm to compute an ordering of vertices and edges which is used as a
timeline to protect vertices and edges. Note that the input size of this algorithm
is O(nlogn), where n is the number of vertices on the tree. We then present an
O(n) time algorithm to construct an optimal cop-win strategy that is a sequence
of instructions to guide the cops in their search for the robber.

Note that in a tree, once the robber has been seen by a cop, this cop can
chase the robber and eventually force the robber to a leaf in a finite number of

136 B. Yang

rounds; then this cop can capture the robber on the leaf. Note that the number
of rounds from seeing to capturing is bounded by the diameter of the tree. So in
this section, the cops’ goal is to find the robber, that is, if the robber is seen by
a cop, then the cops win and the game is over.

Fig. 1. A tree Ti[zi], 2 < i <m, with road P; = pj...p},.

Definition 7. Let T be a rooted tree. Suppose that the label L(u,T[“]) is
computed by Algorithm 1 and has the form

(s @iy P - -5 01, 0, Prs I (), JEH(u); I3 (), J* (u)). (6)
For 2 < i < m, let Ti[x"] = Tl=d — UT:iH V(T=1), and let Tloml — plem],
For each 2 < i < m, let P; = pjpi...p. be a road in Ti[mi]. It follows from
Lemma 8(iii) that each P;, 2 <17 < m, contains at least three vertices. For each

i €{2,...,m}, let pa ;1 < a; < ¢; — 1, be the great-grandchild of z; in T[w‘}
(see Fig. 1) let ;. 2, pa be the path connecting x; with pj, ; and let Yy, (resp.

ngi, Yz; and Y}) be the component containing z; (resp. v’ , 2. and pai) in

the forest T,") — {ayyl, } (vesp. T\ — fayd, v, 20, 1, T = {yi 20, 20wk)
and Ti[g”] - {Zéipfli,pziqpaiapaipaﬁl}). For each i € {2,...,m}, let Y be the
component in the forest T[M] {pbp}} containing ph; let Y, be the component
in T} [2:] —{pl,,_1pl,.} containing p! ; and let Y}, j € {1,...,¢ — 1} \ {a;}, be the
component containing pj in the forest Ti[ml — {pj_lp;,p§p§+1}. Let Tl[“] = Tl _
U;.n=2 V(Tsl)y and P, = p} .. .pél. When ¢ > 2, it follows from Algorithm 1 that
pi... p;ﬁl is an avenue of Tl[u]7 and p} and pél are two pre-avenue vertices; then
let Y be the component in the forest Tl[“] — {pop1} containing pj, let Y;! be the
component in T[u] —{pélflpél} containing pé ;andlet V', j € {1,...,q1 =1}, be
the component containing p] in the forest T {pj 1pj,p]p]+1} When ¢; = 1,
from Algorithm 1, P, = pjpi is a street of Tl[u], then let Y (resp. Y;!) be the

Computing the One-Visibility Cop-Win Strategies for Trees 137

component in the forest Tl[u] — {p{pt} containing p} (resp. p}). When ¢; = 0,
i.e., P, = p} is a hub of Tl[u]7 then let Y = Tl[u].

Note that in Definition 7, each subtree in, 1<i<m,0< 5 <gq,is arooted
subtree where pé is the root. Similarly, Y,, (resp. ij”, and Yz;i) is a rooted
subtree where x; (resp. v, , and z[) is the root.

Let T be a rooted tree. To construct an optimal cop-win strategy, it is
essential to give an ordering of the vertices by which the cops will clear these
vertices. In Algorithm 3, we use the vertex labels computed by Algorithm 1 to
traverse T, during which, for each vertex v, we stamp it with a start-time s(v)
that is the time when we start to protect N[v] in Algorithm 4, and stamp it with a
finish-time f(v) that is the time when we finish protecting N[v]. In Algorithm 3,
we also timestamp some edges, which will be the potential vibrating edges in
our optimal cop-win strategy presented in Algorithm 4. For each of those edges
vv’ that will be a potential vibrating edge, we stamp it with a start-time s(vv’)
that is the time when we start to protect N[v]UN[v'] in Algorithm 4, and stamp
it with a finish-time f(vv’) that is the time when we finish vibrating between
v and v’. In particular, stamp is an operation to assign the current time to an
object; time is a global variable that is 0 initially and is incremented by 1 after
each assignment. STAMPSUBTREE(T®!, x) is a function to timestamp vertices
and potential vibrating edges in the rooted subtree T,

Let Tl be a rooted tree with c;(T1") = k. After we obtain the timestamps
of vertices and some edges of T from Algorithm 3, Algorithm 4 describes how
these timestamps are used to guide the k cops to clear T, In this algorithm,
we say that a cop on a vertex v is free if he finishes protecting N[v]; otherwise,
we say that the cop on the vertex v is busy. We say that a cop vibrating between
vertices v and v’ is free if he finishes protecting N[v] U N[v']; otherwise, we say
that the cop vibrating between v and v’ is busy. We call a vertex internal if this
vertex has at least one child; we call an edge vv’ internal if v is a parent of v’
and v’ has at least one grandchild.

Theorem 7. For a tree T, the strategy output by Algorithm 4 is an optimal
cop-win strategy for T'.

Theorem 8. For a tree T with n vertices, an optimal cop-win strategy for T
can be computed in O(nlogn) time.

For a tree T it follows from Algorithm 4 that each vibrating edge vv’ is
an internal edge which is stamped a start-time s(vv’) and a finish-time f(vv’)
in Algorithm 3. Note that when a cop starts vibrating between v and v' at
the time s(vv’) and finishes vibrating at the time f(vv’), this cop alternates
two sliding actions between v and v’ for at least three consecutive rounds. So
f(vv') — s(vv’) > 2, and thus the open interval (s(vv’), f(vv')) contains at least
one timestamp.

138 B. Yang

Algorithm 3. TimesTamp (T

Input: T™ with the vertex labels from Algorithm 1, where the notations of labels and

subtrees are given in Eq. (6) and Definition 7.

Output: Timestamps of all vertices and potential vibrating edges in 7.
From L(u, T[“]), construct Tl[u] and Pi(=p;...ps,) defined in Definition 7.
if m =1 (defined in Definition 7) then

for j =0 to ¢1 do
stamp s(pj); STAMPSUBTREE(Y}', p}); stamp f(p}).
return
for i = m down-to 2 do
for j =0toa; —1do
stamp 5(p}); STAMPSUBTREE(Y}, p}); stamp f(p}).
stamp s(pa,), $(%a;)s $(Ya,), $(Ya, 2a;) and s(zi).
for j =0 to ¢1 do
stamp s(p;); STAMPSUBTREE(Y}l,p]l); stamp f(p})
for i =2 to m do
STAMPSUBTREE(Y,,, z:); stamp f(;); stamp f(yi, 24,);
STAMPSUBTREE(ngi,yf”); stamp f(y.,);
STAMPSUBTREE(Y; , 2s,); stamp f(za,);
STAMPSUBTREE(Y;“pZi); stamp f(pfh)
for j =a; + 1 to ¢; do
stamp s(p}); STAMPSUBTREE(Y], p}); stamp f(p}).
function STAMPSUBTREE(T'", z)
if T!*! contains only the vertex z then return
for each child v of x do
stamp s(v);
if v is not a leaf then
for each child v" of v do
stamp s(v’) and s(vv’);
if v" is not a leaf then
for each child v’ of v" do
if v is a leaf then stamp s(v”) and f(v");
else TmvesTamp (T,
stamp f(v) and f(vv').
stamp f(v).

Definition 8. For a tree 7] with the timestamps from TiMESTAMP(T), let
By, = {vv/ € E(T!") | there is a cop vibrating on vv’ in Algorithm 4}. Let
v(t, TM) = [{(s(vv'), f(vv")) | t € (s(vv'), f(vv')), 00" € Eyip}|, and v(TH) =
max{v(t, T | t is a timestamp computed by Algorithm 3}.

We have the following relation between v(T1) and ¢ (7).

Theorem 9. For a tree T, ¢y (T = p(T1) +1.

Computing the One-Visibility Cop-Win Strategies for Trees 139

Algorithm 4. Computing an optimal cop-win strategy

Input: T with k = c1(T™) and the timestamps from Algorithm 3.
Output: An optimal cop-win strategy for 7.

1: Create a linked list S, which initially contains the instruction “If a cop can see the
robber at any timestamp, then the game is over”.

2: Insert “Place k cops on the vertex whose start-time is 0” into S and set the cops
free.

3: for each timestamp in increasing order do insert one of the following instructions
into S:

4: if the timestamp is the start-time of an internal vertex v that is not adjacent
to a vertex occupied by a cop then

5: move a free cop to v and set this cop busy.

6: if the timestamp is the start-time of an internal edge vv’ then

T let a cop start vibrating between v and v’ and set this cop busy.

8: if the timestamp is the finish-time of an internal vertex v then

9: set all cops on v free.

10: if the timestamp is the finish-time of an internal edge vv’ then
11: set the cop vibrating between v and v’ free.

12: if the timestamp is for a non-internal vertex or edge then

13: no new actions for the cops.

14: return S.

References

1. Bonato, A., Nowakowski, R.J.: The Game