
Ding-Zhu Du
Donglei Du
Chenchen Wu
Dachuan Xu (Eds.)

LN
CS

 1
31

35

Combinatorial Optimization
and Applications
15th International Conference, COCOA 2021
Tianjin, China, December 17–19, 2021
Proceedings

Lecture Notes in Computer Science 13135

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873

More information about this subseries at https://link.springer.com/bookseries/7407

https://springerlink.bibliotecabuap.elogim.com/bookseries/7407

Ding-Zhu Du · Donglei Du · Chenchen Wu ·
Dachuan Xu (Eds.)

Combinatorial Optimization
and Applications
15th International Conference, COCOA 2021
Tianjin, China, December 17–19, 2021
Proceedings

Editors
Ding-Zhu Du
University of Texas at Dallas
Richardson, TX, USA

Chenchen Wu
Tianjin University of Technology
Tianjin, China

Donglei Du
University of New Brunswick
Fredericton, NB, Canada

Dachuan Xu
Beijing University of Technology
Beijing, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-92680-9 ISBN 978-3-030-92681-6 (eBook)
https://doi.org/10.1007/978-3-030-92681-6

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-7345-2185
https://orcid.org/0000-0002-6742-8816
https://orcid.org/0000-0003-0111-8572
https://doi.org/10.1007/978-3-030-92681-6

Preface

The 15th Annual International Conference on Combinatorial Optimization and Appli-
cations (COCOA 2021) took place in Tianjin, China, during December 17–19, 2021.
COCOA 2021 provided an excellent venue for researchers in the area of combina-
torial optimization and its applications, including algorithm design, theoretical and
experimental analysis, and applied research of general algorithmic interest.

The Program Committee received a total of 122 submissions, among which 55 were
accepted for presentation at the conference. Each contributed paper was subject to a
rigorous peer review process, with reviewers drawn from a large group of members of
the Program Committee.

We would like to express our sincere appreciation to everyone who made COCOA
2021 a success by volunteering their time and effort: the authors, the Program Commit-
tee members, and the reviewers. We thank Springer for accepting the proceedings of
COCOA 2021 for publication in the Lecture Notes in Computer Science (LNCS)
series. Our special thanks also extend to the other chairs and the conference Organizing
Committee members for their excellent work.

October 2021 Ding-Zhu Du
Donglei Du

Chenchen Wu
Dachuan Xu

Organization

General Chair

Ding-Zhu Du University of Texas at Dallas, USA

Program Committee Co-chairs

Donglei Du University of New Brunswick, Canada
Chenchen Wu Tianjin University of Technology, China
Dachuan Xu Beijing University of Technology, China

Local Organizing Chairs

Yongtang Shi Nankai University, China
Xujian Huang Tianjin University of Technology, China

Finance Chairs

Yicheng Xu Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, China

Jun Yue Shandong Normal University, China

Publication Chairs

Lu Han Beijing University of Posts and
Telecommunications, China

Hui Lei Nankai University, China

Web Chairs

Xinxin Zhong Tianjin University of Technology, China
Rui Li Tianjin University of Technology, China

Program Committee

Zhipeng Cai Georgia State University, USA
Vincent Chau Southeast University, China
Xujin Chen Academy of Mathematics and Systems Science,

Chinese Academy of Sciences, China

viii Organization

Yukun Cheng Suzhou University of Science and Technology,
China

Bhaskar Dasgupta University of Illinois at Chicago, USA
Neng Fan University of Arizona, USA
Qilong Feng Central South University, China
Longkun Guo Fuzhou University, China
Michael Khachay Russian Academy of Sciences, Russia
Joong-Lyul Lee University of North Carolina at Pembroke, USA
Jianping Li Yunnan University, China
Minming Li City University of Hong Kong, Hong Kong
Guohui Lin University of Alberta, Canada
Bin Liu Ocean University of China, China
Xiwen Lu East China University of Science and Technology,

China
Kameng Nip Xiamen University, China
Weitian Tong Eastern Michigan University, USA
Boting Yang University of Regina, Canada
Yitong Yin Nanjing University, China
Jinjiang Yuan Zhengzhou University, China
An Zhang Hangzhou Dianzi University, China
Peng Zhang Shandong University, China
Xiaoyan Zhang Nanjing Normal University, China
Yong Zhang Shenzhen Institute of Advanced Technology,

Chinese Academy of Sciences, China
Zhao Zhang Zhejiang Normal University, China
Martin Ziegler KAIST, South Korea
Vassilis Zissimopoulos National and Kapodistrian University of Athens,

Greece

Additional Reviewers

Sijia Dai
Weiming Feng
Guichen Gao
Jiaming Hu
Lingxiao Huang
Yuping Ke
Daniel Khachay
Ivan Adrian Koswara
Ioannis Lamprou
Yongxin Lan
Shi Li
Bingkai Lin

Mingmou Liu
Katherine Neznakhina
Yuri Ogorodnikov
Chunying Ren
John Sigalas
Xin Sun
Xiaoyun Tian
Ioannis Vaxevanakis
Changjun Wang
Chenhao Wang
Kai Wang
Weiwei Wu

Xiaowei Wu

Jie Xue

Yongjie Yang

Fan Yuan

Chihao Zhang

Hongxiang Zhang

Xinbo Zhang

Yan Zhao

Yingchao Zhao

Chaodong Zheng

Contents

Routing Among Convex Polygonal Obstacles in the Plane 1
R. Inkulu and Pawan Kumar

Target Coverage with Minimum Number of Camera Sensors 12
Pei Yao, Longkun Guo, Shuangjuan Li, and Huihong Peng

Two-Stage Submodular Maximization Under Curvature . 25
Yanzhi Li, Zhicheng Liu, Chuchu Xu, Ping Li, Hong Chang,
and Xiaoyan Zhang

An Improved Approximation Algorithm for Capacitated Correlation
Clustering Problem . 35
Sai Ji, Yukun Cheng, Jingjing Tan, and Zhongrui Zhao

The Selection of COVID-19 Epidemic Prevention and Control Programs
Based on Group Decision Making . 46
Chunsheng Cui, Baiqiu Li, and Liu Wang

Which Option Is a Better Way to Improve Transfer Learning Performance? 61
Honghui Xu, Zhipeng Cai, and Wei Li

On Maximizing the Difference Between an Approximately Submodular
Function and a Linear Function Subject to a Matroid Constraint 75
Yijing Wang, Yicheng Xu, and Xiaoguang Yang

On Various Open-End Bin Packing Game . 86
Ling Gai, Weiwei Zhang, Wenchang Luo, and Yukun Cheng

A Linear-Time Streaming Algorithm for Cardinality-Constrained
Maximizing Monotone Non-submodular Set Functions . 96
Min Cui, Donglei Du, Ling Gai, and Ruiqi Yang

Approximation Algorithms for Two Parallel Dedicated Machine
Scheduling with Conflict Constraints . 111
An Zhang, Liang Zhang, Yong Chen, Guangting Chen, and Xing Wang

Computing the One-Visibility Cop-Win Strategies for Trees 125
Boting Yang

x Contents

Complexity and Approximation Results on the Shared Transportation
Problem . 140
Tom Davot, Rodolphe Giroudeau, and Jean-Claude König

The Complexity of Finding Optimal Subgraphs to Represent Spatial
Correlation . 152
Jessica Enright, Duncan Lee, Kitty Meeks, William Pettersson,
and John Sylvester

New Approximation Algorithms for the Rooted Budgeted Cycle Cover
Problem . 167
Jiangkun Li and Peng Zhang

Evolutionary Equilibrium Analysis for Decision on Block Size
in Blockchain Systems . 180
Jinmian Chen, Yukun Cheng, Zhiqi Xu, and Yan Cao

Efficient Algorithms for Scheduling Parallel Jobs with Interval Constraints
in Clouds . 195
Xuanming Xu and Longkun Guo

Two-Stage Stochastic Max-Weight Independent Set Problems 203
Min Li, Qian Liu, and Yang Zhou

Routing and Scheduling Problems with Two Agents on a Line-Shaped
Network . 214
Hao Yan and Xiwen Lu

The Price of Anarchy of Generic Valid Utility Systems . 224
Yin Yang, Qingqin Nong, Suning Gong, Jingwen Du, and Yumei Liang

Single Machine Scheduling with Rejection and Generalized Parameters 234
Xue Yu, Lingfa Lu, and Liqi Zhang

Approximation Algorithm andHardness Results for Defensive Domination
in Graphs . 247
Michael A. Henning, Arti Pandey, and Vikash Tripathi

An Improved Physical ZKP for Nonogram . 262
Suthee Ruangwises

Finding All Leftmost Separators of Size ≤ k . 273
Mahdi Belbasi and Martin Fürer

Contents xi

Maximize the Probability of Union-Influenced in Social Networks 288
Guoyao Rao, Yongcai Wang, Wenping Chen, Deying Li, and Weili Wu

A Novel Algorithm for Max Sat Calling MOCE to Order . 302
Daniel Berend, Shahar Golan, and Yochai Twitto

The Smallest Number of Vertices in a 2-Arc-Strong Digraph Without Pair
of Arc-Disjoint In- and Out-Branchings . 318
Ran Gu, Gregory Gutin, Shasha Li, Yongtang Shi, and Zhenyu Taoqiu

Generalized Self-profit Maximization in Attribute Networks 333
Liman Du, Wenguo Yang, and Suixiang Gao

Parameterized Complexity Classes Defined by Threshold Circuits: Using
Sorting Networks to Show Collapses with W-hierarchy Classes 348
Raffael M. Paranhos, Janio Carlos Nascimento Silva,
Uéverton S. Souza, and Luiz Satoru Ochi

Maximization of Monotone Non-submodular Functions with a Knapsack
Constraint over the Integer Lattice . 364
Jingjing Tan, Fengmin Wang, Xiaoqing Zhang, and Yang Zhou

Sublinear-Time Reductions for Big Data Computing . 374
Xiangyu Gao, Jianzhong Li, and Dongjing Miao

Capacitated Partial Inverse Maximum Spanning Tree Under the Weighted
l∞-norm . 389
Xianyue Li, Ruowang Yang, Heping Zhang, and Zhao Zhang

Approximation Algorithms for Some Min-Max and Minimum Stacker
Crane Cover Problems . 400
Yuhui Sun, Wei Yu, and Zhaohui Liu

Succinct Data Structures for Series-Parallel, Block-Cactus and 3-Leaf
Power Graphs . 416
Sankardeep Chakraborty, Seungbum Jo, Kunihiko Sadakane,
and Srinivasa Rao Satti

Streaming Submodular Maximization Under Differential Privacy Noise 431
Di Xiao, Longkun Guo, Kewen Liao, and Pei Yao

Online Bottleneck Semi-matching . 445
Man Xiao, Shu Zhao, Weidong Li, and Jinhua Yang

xii Contents

Optimal Due Date Assignment Without Restriction and Convex Resource
Allocation in Group Technology Scheduling . 456
Ying Chen and Yongxi Cheng

Constrained Stable Marriage with Free Edges or Few Blocking Pairs 468
Yinghui Wen and Jiong Guo

Backgammon Is Hard . 484
R. Teal Witter

Two-Facility Location Games with a Minimum Distance Requirement
on a Circle . 497
Xiaoyu Wu, Lili Mei, and Guochuan Zhang

Open Shop Scheduling Problem with a Non-resumable Flexible
Maintenance Period . 512
Yuan Yuan, Xin Han, Xinbo Liu, and Yan Lan

Parallel Algorithm for Minimum Partial Dominating Set in Unit Disk Graph . . . 527
Weizhi Hong, Zhao Zhang, and Yingli Ran

An Improved Approximation Algorithm for Squared Metric k-Facility
Location . 538
Zhen Zhang and Qilong Feng

Parameterized Algorithms for Linear Layouts of Graphs with Respect
to the Vertex Cover Number . 553
Yunlong Liu, Yixuan Li, and Jingui Huang

The Fractional k-truncated Metric Dimension of Graphs . 568
Eunjeong Yi

On Structural Parameterizations of the Offensive Alliance Problem 579
Ajinkya Gaikwad and Soumen Maity

On the k-colored Rainbow Sets in Fixed Dimensions . 587
Vahideh Keikha, Hamidreza Keikha, and Ali Mohades

Cycle-Connected Mixed Graphs and Related Problems . 602
Junran Lichen

Directed Width Parameters on Semicomplete Digraphs . 615
Frank Gurski, Dominique Komander, Carolin Rehs,
and Sebastian Wiederrecht

Contents xiii

Improved Parameterized Approximation for Balanced k-Median 629
Zhen Zhang and Qilong Feng

A LP-based Approximation Algorithm for generalized Traveling
Salesperson Path Problem . 641
Jian Sun, Gregory Gutin, and Xiaoyan Zhang

Hardness Results of Connected Power Domination for Bipartite Graphs
and Chordal Graphs . 653
Pooja Goyal and B. S. Panda

Approximation Algorithm for Min-Max Correlation Clustering Problem
with Outliers . 668
Sai Ji, Min Li, Mei Liang, and Zhenning Zhang

Delay-Constrained Minimum Shortest Path Trees and Related Problems 676
Junran Lichen, Lijian Cai, Jianping Li, Suding Liu, Pengxiang Pan,
and Wencheng Wang

On the Feedback Number of 3-Uniform Linear Extremal Hypergraphs 687
Zhongzheng Tang, Yucong Tang, and Zhuo Diao

A Multi-pass Streaming Algorithm for Regularized Submodular
Maximization . 701
Qinqin Gong, Suixiang Gao, Fengmin Wang, and Ruiqi Yang

Author Index . 713

Routing Among Convex Polygonal
Obstacles in the Plane

R. Inkulu(B) and Pawan Kumar

Department of Computer Science and Engineering, IIT Guwahati, Guwahati, India
{rinkulu,p.kumar16}@iitg.ac.in

Abstract. Given a set P of h pairwise disjoint convex polygonal obsta-
cles in the plane, defined with n vertices, we preprocess P and compute
one routing table at each vertex in a subset of vertices of P. For routing a
packet from any vertex s ∈ P to any vertex t ∈ P, our scheme computes
a routing path with a multiplicative stretch 1+ ε and an additive stretch
2k�, by consulting routing tables at only a subset of vertices along that
path. Here, k is the number of obstacles of P the routing path intersects,
and � depends on the geometry of obstacles in P. During the prepro-

cessing phase, we construct routing tables of size O(n + h3

ε2
polylog(h

ε
))

in O(n + h3

ε2
polylog(h

ε
)) time, where ε < 1 is an input parameter.

Keywords: Computational geometry · Shortest paths ·
Approximation algorithms

1 Introduction

The routing problem is popular in both graph algorithms and computational
geometry. This problem seeks to find a path from the source of a packet to its
destination such that (i) along the path, next hop or the subpath is decided from
the local information stored with the current hop, (ii) distance along the routing
path is upper bounded by a multiplicative factor times the shortest distance
between the source and destination plus possibly with an additive factor, and
(iii) the space occupied by the preprocessed data structures (routing tables) is
small. In the case of graphs, hops are vertices of the graph. And, in the geometric
version of this problem, hops are vertices defining the scene.

Using compact data structures, answering approximate distance queries in a
graph is introduced by Thorup and Zwick in [45,46]. Later, the compact rout-
ing schemes for graphs has been extensively studied [1,4,13,18,20,38–40]. The
routing schemes for special graphs, such as trees [21,41], planar graphs [44], unit
disk graphs [28,48], networks of low doubling dimension [33], and for graphs
embedded in geometric spaces [7,8,11] are also considered. In [38], Peleg and

R. Inkulu—This research is supported in part by SERB MATRICS grant
MTR/2017/000474.

c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 1–11, 2021.
https://doi.org/10.1007/978-3-030-92681-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-92681-6_1

2 R. Inkulu and P. Kumar

Upfal had shown that any routing scheme with constant stretch factor needs to
store Ω(nc) bits per node, for some constant c > 0.

The polygonal domain comprises pairwise-disjoint simple polygons (known
as obstacles) in the plane. For convenience, we assume obstacles in the polygonal
domain are placed in a large bounding box. For any polygonal domain P, the free
space F(P) is the closure of the bounding box without the union of the interior
of all the obstacles in P. Any two points p, q ∈ F(P) are visible to each other
if the open line segment joining p and q lies entirely in F(P). A vertex v ∈ P
is said to be a visible vertex to a point q ∈ F(P) whenever v is visible to q. For
any obstacle O of a polygonal domain, the boundary of O is denoted by bd(O).
We denote the number of vertices of P with n and the number of obstacles of P
by h.

The shortest distance between two nodes s, t of a graph G is denoted by
dG(s, t). The Euclidean distance between any two points p and q is denoted by
‖pq‖. The obstacle-avoiding geodesic shortest distance between any two points
p, q ∈ F(Q) amid a set Q of polygonal obstacles is denoted by distQ(p, q).

Computing a shortest path between two given points in a polygonal domain
is a fundamental problem in computational geometry. This problem is primar-
ily studied using two approaches. In one approach, by constructing a graph
in F(P), called visibility graph, whose nodes are the vertices of P and edges
are the line segments between mutually visible vertices (refer to Ghosh [22]).
Then, a shortest path of interest is determined in the visibility graph [31,32,47].
In the other approach [24,27,29,30,34], a Dijkstra wavefront is expanded in
F(P), starting from the source until it strikes the destination. Significantly,
using Dijkstra wavefront expansion approach, for computing a shortest path
between two points in F(P), Hershberger and Suri devised an O(n lg n) time
algorithm in [24]. Further, by extending the algorithm by Kapoor [29] (which
also expands Dijkstra wavefront in F(P), Inkulu, Kapoor, and Maheshwari [27]
devised an O(n+h((lg h)δ +(lg n)(lg h))) time algorithm. Here, δ is a small posi-
tive constant (resulting from the time for triangulating F(P) with the algorithm
in [6]). The shortest path problem in polygonal domains is extensively stud-
ied [3,16,23,25,26,37,42,43]. A survey of shortest path algorithms in geometric
domains can be found in [35].

A closely related problem is computing a spanner. Given a graph G, a sub-
graph H of G is a t-spanner of G for t ≥ 1 whenever for all pairs of vertices
u and w in G, dG(u,w) ≤ dH(u,w) ≤ t · dG(u,w). The geometric spanner is
a spanner of a graph embedded in a geometric domain. For a comprehensive
survey of results on geometric spanners, refer to monograph [36] by Narasimhan
and Smid and the recent article [12] by Bose and Smid. The spanners of points
located in the free space of a polygonal domain are studied in [2,14,17,26].

Consider the set of rays: for 0 ≤ i ≤ κ, the ray ri passes through the origin
and makes an angle iθ with the positive x-axis, with (κ + 1)θ = 2π. Each pair
of successive rays defines a cone whose apex is at the origin. This collection
of κ cones is denoted by C. It is clear that the cones of C partition the plane.
The Yao-graphs [49] and Θ-graphs [17] compute a spanner by including an edge

Routing Among Convex Polygonal Obstacles 3

between each vertex v and a nearest vertex to v in every cone Cv, where Cv is a
cone in C translated so that its apex is at v. These graphs differ with respect to
how the nearest neighbor in each cone Cv with the apex at v is chosen: in case
of Θ-graphs, the nearest neighbor to v is the one that is closest to v in Cv (with
ties broken arbitrarily); In the case of Yao-graphs, the nearest neighbor to v is
the one whose projection onto the line that bisects Cv is closest to v (with ties
broken arbitrarily). In these graphs, the stretch factor depends on the number
of cones in C. Significantly, both the Yao and Θ-graphs are used in designing
routing schemes [8–10].

The routing scheme for a polygonal domain is considered by Banyassady
et al. [5]. When the polygonal domain comprises convex polygonal obstacles, the
result here improves [5] with respect to the size of routing tables as well as the
preprocessing time. When every vertex stores only the edges that incident to
it and stores no routing table, Bose et al. [8] shown that no geometric routing
scheme can achieve a stretch factor o(

√
n). This lower bound applies regardless

of the amount of information that may be stored in the message.
In the rest of the paper, the polygonal domain comprises convex polygonal

obstacles in a large-sized bounded box.

Our Contributions

By preprocessing the input polygonal domain P in O(n+ h3

ε2 polylog(h
ε)) time, we

compute one routing table at each of the vertices in a subset of vertices of P, and
all the routing tables’ together are of size O(n + h3

ε2 polylog(h
ε)). Following [26],

we compute a sketch Ω of the input polygonal domain P: each convex polygon
P in P is approximated with another convex polygon Q such that Q ⊆ P and
the number of vertices of Q depends only on the input parameter ε. This is
accomplished by partitioning the boundary of each obstacle of P into patches.
Let C be a set of cones that partition the plane, wherein the apex of each cone in
C is at the origin and the cone angles of all the cones in C are the same. For every
convex polygonal obstacle Q in Ω, using the ideas from [17], for every vertex v
of Q and for every cone C ∈ C, we compute a closest vertex of v in Ω that is
visible to v in cone Cv, where Cv is the cone resulting from translating C so that
the apex of the translated cone is at v. Further, by using a property from [5], for
every vertex v ∈ Ω, we partition the boundaries of obstacles in Ω into a set of
O(1ε +h) pieces. For each such piece of v and the cone Cv that it corresponds to,
we introduce an entry into the routing table at v, which considers F(P) ⊆ F(⊗)
and every routing path must belong to F(P). For any two successive vertices
v′, v′′ along the boundary of an obstacle Q ∈ Ω, for Q corresponds to an obstacle
P ∈ P, when the section of bd(P) from v′ and v′′ occurs while traversing bd(P) in
clockwise direction, we save the labels of vertices of P that occur between v′ and
v′′ in the routing table at v′. This helps in routing the packet to a destination
node along a patch of bd(P) whenever the destination node belongs to that
patch.

In the packet routing phase, a packet is routed from any vertex s of P to
any vertex t of P. Our routing scheme computes a routing path from s to t

4 R. Inkulu and P. Kumar

incrementally, that is, by computing successive subpaths of a routing path. Let
s belongs to an obstacle P of P. If s /∈ Ω, we first route the packet from s to an
endpoint v of patch to which s belongs to, where v is a closest vertex in Ω to s
along the boundary of P . In the other case, v is the same as s. By consulting the
routing table at v, we forward the packet along a path located in F(P) to next
hop v′ ∈ Ω. Upon packet reaching v′, our routing scheme checks whether v′ is
equal to t. If it is, the algorithm terminates. Otherwise, our algorithm consults
the routing table at v′ and forwards the packet to the next hop along a geodesic
subpath in F(P). That is, depending on whether the packet belongs to patch S,
where v′ ∈ S. If t ∈ S, then the packet is forwarded along a section of S. If t does
not belong to S, we forward the packet from v′ using an analogous algorithm to
forward the packet from v to v′. We prove that this scheme computes a routing
path with an multiplicative stretch 1 + ε and an additive stretch 2k	. That
is, d(s, t) ≤ r(s, t) ≤ (1 + ε)d(s, t) + 2k	, where r(s, t) is the distance along the
routing path between s and t, and d(s, t) is the geodesic shortest distance among
obstacles in P between s and t. Here, k is the number of obstacles intersected
by the routing path, and 	 is a parameter that depends on the geometry of
polygonal obstacles in P. Further, our algorithm does O(lg (n + h

ε)) amount of
work at O(1) vertices of each of the k obstacles that the routing path intersects.

The algorithm in [5] computes a routing path with stretch 1+ ε with prepro-
cessing time O(n2 lg n+ n

ε) and it computes routing tables of size O(n(1ε +h) lg n).
Our algorithm substantially improves the space of the routing tables’ and the
time to compute these tables, when h is small compared to n (which is typically
true). However, in this paper, only the polygonal domain with convex obstacles
is considered; and, unlike the result in [5], the routing path obtained here has
an additive stretch as well.

2 A Few Structures

In the following subsections, we prove a few structures needed to describe our
algorithm. These include a sketch of P, routing tables stored at a select set of
vertices of P, geodesic cones introduced at these vertices, and pieces defined with
respect to vertices and cones of Ω.

2.1 Sketch of P
For any obstacle Pi ∈ P and any two points p′ and p′′ on the boundary of
Pi, the section of boundary of Pi that occurs while traversing from p′ to p′′

in counterclockwise order is termed a patch of Pi. In specific, we partition the
boundary of each Pi ∈ P into a collection of patches Γi such that for any two
points p′, p′′ belonging to any patch α ∈ Γi, the angle between the outward (w.r.t.
the centre of Pi) normals to respective edges at p′ and p′′ is upper bounded by
ε
2 . The maximum angle between the outward normals to any two edges that
belong to a patch α constructed in our algorithm is the angle subtended by α. To
facilitate in computing patches of any obstacle Pi, we partition the unit circle

Routing Among Convex Polygonal Obstacles 5

S
2 centered at the origin into a minimum number of segments such that each

circular segment is of length at most ε
2 . For every such segment s of S2, a patch

(corresponding to s) comprises a maximal set of the contiguous sequence of edges
of Pi whose outward normals intersect s when each of these normals is translated
to the origin. In particular, for each patch α ∈ Γi, the first and last vertices of α
that occur while traversing the boundary of Pi are chosen to be in the coreset Si

of Pi. The coreset S of P is then simply
⋃

i Si. For 1 ≤ i ≤ h, the core-polygon
Qi of Pi is CH(Si). Let Ω be the set comprising of core-polygons corresponding
to each of the polygons in P. The set Ω is called a sketch of P.

Proposition 1 (Lemma 1, [26]). Let Γi be a partition of the boundary of
a convex polygon Pi into a collection of O(1ε) patches as described above. The
geodesic distance between any two points p, q belonging to any patch α ∈ Γi, the
geodesic distance between p and q along α is upper bounded by (1 + ε)‖pq‖, for
ε < 1.

Proof: For any two points p and q, respectively located on edges ep and eq of a
patch, the angle between ep and eq is upper bounded by π− ε

2 . Hence, the geodesic
length of patch between p and q is upper bounded by ‖pq‖

sin (π
2 − ε

4)
≤ (1 + ε)‖pq‖,

when ε < 1. 	

The h convex polygons in P (resp. Ω) are denoted by P1, . . . , Ph (resp.

Q1, . . . , Qh). The convex polygon in Ω that is a corepolygon of convex poly-
gon Pi ∈ P is denoted by Qi. Analogously, the convex polygon in P from which
the corepolygon Qi ∈ Ω is computed is denoted by Pi. For any patch α, the
endpoint that occurs last while traversing α in the counterclockwise direction is
called the owner of α.

2.2 Routing Path and Its Stretch

Every vertex v of P is associated with a unique label 	(v), a binary number.
And, every obstacle P of P is associated with a unique label 	(P), which is also
a binary number. We assume the packet needs to be transferred from any vertex,
called a source vertex, of P to any other vertex, called a destination vertex, of
P. We denote the source and destination vertices by s and t, respectively. The
packet stores the label of the destination, 	(t), with it. In the preprocessing
phase, with each vertex v ∈ Ω, we store a routing table ρ(v) comprising unique
labels of vertices. The routing tables’ together help in guiding the packet to reach
its destination efficiently. Specifically, at a subset of vertices v along the path
the packet travels, using only ρ(v) and t, the algorithm determines the geodesic
path to reach a specific vertex in Ω.

Suppose t belongs to a patch α and the owner of α is t′. Then, our routing
scheme first routes packet to t′, and then the packet gets routed from t′ to
t along a geodesic shortest path on α between t′ to t. In every iteration of the
algorithm, the packet is routed from one vertex of Ω to another vertex of Ω along
a geodesic path located in F(P), until the packet reaches t′. This is accomplished

6 R. Inkulu and P. Kumar

by consulting routing tables at vertices of Ω that occur along that path. The
piecewise linear s-t path computed by our routing scheme is guaranteed to belong
to F(P), and we call this path the routing path. The distance along the routing
path is the routing distance.

For every two vertices v′, v′′ ∈ P, suppose d(v′, v′′) ≤ r(v′, v′′) ≤ δ ·d(v′, v′′)+
ρ, for δ, ρ > 1. Here, r(v′, v′′) is the routing distance between v′ and v′′ deter-
mined by an algorithm, and d(v′, v′′) is the geodesic shortest distance between
v′ and v′′ in P. Then, the routing path computed by that algorithm is said to be
an (δ, ρ)-approximation to the geodesic shortest path. Specifically, δ is termed
the multiplicative stretch and ρ is called the additive stretch of the routing path.

2.3 Geodesic Cones

Let r′ and r′′ be two rays with origin at p. Let −→v1 and −→v2 be the unit vectors along
the rays r′ and r′′ respectively. A cone Cp(r′, r′′) is the set of points defined by
rays r′ and r′′ such that a point q ∈ Cp(r′, r′′) if and only if q can be expressed
as a convex combination of vectors −→v1 and −→v2 with positive coefficients. When
the rays r′ and r′′ are evident from the context, we denote the cone with Cp.
The counterclockwise angle from the positive x-axis to the line that bisects the
cone angle of Cp is termed as the orientation of the cone Cp. The angle between
rays r′ and r′′ is the cone angle of Cp.

We denote the set of cones, each with cone angle ε and each with the apex
at the origin, which together partitions the plane by C. We note the number of
cones in C is O(1ε). Any cone C ∈ C translated so that its apex is at a point
p ∈ R

2 is denoted by Cp.
Let C ∈ C be a cone with orientation θ and let C ′ ∈ C be the cone with

orientation −θ. For each cone C ∈ C and a set K of points, the set of cones
resultant from introducing a cone Cp for every point p ∈ K is the conic Voronoi
diagram with respect to C and K. Using the algorithm from [17], for every cone
C ∈ C, a conic Voronoi diagram (CVD) is computed using a plane sweep (refer
to [19]). And, the planar point location data structure is used to locate the region
in that CVD to which a given query point belongs. In specific, we compute a
closest vertex of v in Cv for every vertex v ∈ Ω using the CV D(C, VΩ), where
VΩ is the set of vertices that define Ω. Among the points in Cv, if more than
one point is close to v, then we arbitrarily pick one of those points.

Further, [17] computes a geodesic spanner by joining each vertex v to a closest
point in each cone Cv for every C ∈ C. And, it proves that this construction
indeed yields a spanner with a multiplicative stretch (1 + ε). Our algorithm
implicitly relies on this construction.

2.4 Piece

A piece of Cv is a section of the boundary of an obstacle such that the first edge
of the shortest path from v to any vertex of that section lies in Cv. Naturally, a
piece is always with respect to a vertex v and a cone Cv. For any C ∈ C, if β is a
piece of Cv, then β is called a piece of v. Among all the vertices of Ω in Cv, let

Routing Among Convex Polygonal Obstacles 7

r ∈ Ω be the vertex closest to v. Any packet at v that is destined for any vertex
belonging to a piece of Cv, our routing scheme forwards it to r along a geodesic
shortest path in F(P).

The following property from [5] (Lemma 4.2) proves that every piece is con-
tiguous along the boundary of an obstacle.

Proposition 2. Let e = (v, s) be an edge in shortest path tree T rooted at v.
Also, let S be the set of all vertices belonging to any obstacle Q ∈ Ω whose
first edge in the shortest path from v is e. Then, all the vertices in S occur
contiguously along the boundary of Q. Furthermore, let f = (v, s′) another edge
in T , such that e and f are consecutive edge in T around v. Let S′ be the set
of all vertices belonging to any obstacle Q ∈ Ω whose first edge in the shortest
path from v is either e or f . Then, again all the vertices in S′ occur contiguously
along the boundary of Q.

For any vertex v ∈ Ω, from the non-crossing property of shortest paths, there
is at most one section of the boundary of any obstacle that is part of a piece of
more than one cone with apex at v. From this, the following is an immediate
upper bound on the number of pieces.

Lemma 1 (Lemma 5.2, [5]). For any vertex v ∈ Ω, the number of pieces of v
is O(1ε + h).

3 Algorithm

In the preprocessing phase, we compute Ω and build a routing table at each
vertex of Ω. In the packet routing phase, a packet located at any given source
vertex s ∈ P is routed to any given destination node t ∈ P along a path located
in F(P).

As described above, we compute a sketch Ω of P that has h convex polygonal
obstacles, defined with O(h

ε) vertices. To find pieces of vertices of Ω, for every
vertex v ∈ Ω, using the algorithm from [24], we compute the shortest path tree
in F(Ω) that contains a shortest path from v to every other vertex of Ω. As
described in Subsect. 2.3, using CVDs from [17], we compute a nearest visible
vertex of v in Cv for every vertex v ∈ Ω and every C ∈ C. Further, we build
data structures with the processing algorithm for answering ray-shooting queries
from [15].

By exploiting Proposition 2, for every piece β of Cv, we could store in ρ(v)
the label of obstacle P to which β belongs, the endpoints of β, together with
a nearest visible vertex r ∈ Ω in Cv among obstacles in Ω. However, since the
routing path must belong to F(P) and since F(P) ⊆ F(Ω), instead of saving
r in ρ(v), we ray-shoot with ray vr among obstacles of P. Suppose this query
returns a point p located on an obstacle P ′ ∈ P. Then the line segment pr
intersects P ′ with the other endpoint, say p′ ∈ bd(P ′). We note that both p and
p′ belong to the same patch α′. Among the two endpoints of α′, let v′ be the
endpoint that has the shortest geodesic distance along bd(P ′) to p′. We save v′

8 R. Inkulu and P. Kumar

and p in ρ(v), noting the geodesic path in F(P) from v to v′ passes through p
as part of reaching to r. Essentially, packet is transferred from v to p along line
segment vp and then it is transferred from p to v′ along the geodesic shortest
path on α′.

In other words, during the routing phase, if a packet reaches vertex v, our
scheme checks whether (i) v is the destination of the packet (i.e., t = v), (ii)
packet needs be routed to t that is located on patch α to which v belongs, or
(iii) needs to be transferred from v by consulting ρ(v). For below description,
let v be located on a patch α and let v′ be located on a patch α′. There are
three subcases to (iii): In Subcase (a), the labels of p, v′ and r are stored with
the entry of interest in ρ(v). In this subcase, the packet is routed to p along a
line segment vp first, and then it is transferred from p to v′ along the geodesic
shortest path on patch α′. In Subcase (b), the labels of p, p′, and r are present
in the entry. Then, we transfer it from v to p′ along α, from p′ to p along the
line segment p′p, and from p to v′ along the geodesic shortest path on α′. In
Subcase (c), only r is present; hence, we directly transfer the packet from v to
r along line segment vr. The Subcase (c) implies r is visible to v, and r is not
visible from v in subcases (a) and (b).

Theorem 1. Given a polygonal domain P comprising convex polygonal obsta-
cles, our algorithm preprocesses P in O(n + h3

ε2 polylog(h
ε)) time and construct

routing tables of size O(n+ h3

ε2 polylog(h
ε)) so that given any two vertices s, t ∈ P

algorithm outputs a routing path between s and t located in F(P) with a multi-
plicative stretch 1+ε and an additive stretch 2k	, while the routing scheme makes
the routing decisions by searching the routing tables located at O(k) nodes along
the routing path. Here, k is the number of obstacles the routing path intersects,
	 is the maximum length of any patch in P, and ε < 1 is an input parameter.

Proof: Computing Ω from P takes O(h
ε) time. Using the algorithm from [24],

to compute a SPTv in Ω from any vertex v ∈ Ω takes O(h
ε lg h

ε) time. The
time involved in computing shortest path trees rooted at all the vertices of Ω

takes O(h2

ε2 lg h
ε). For any cone C ∈ C, for every vertex v of Ω, determining

a vertex in Ω that is closest in Cv to v takes O(h
ε lg h

ε) time using a plane
sweep, that is, by building a conic Voronoi diagram. Since there are O(1ε) cones
in C, the total time to compute closest neighbor of every vertex in every cone
together takes O(h

ε2 lg h
ε) time. The preprocessing time for ray-shooting query

algorithm from [15] is O(n+h2polylog(h)) and the space of data structures that
it constructs is O(n+h2). Since we invoke O(h) ray-shoot queries for each vertex
v ∈ Ω and cone C ∈ C combination, since Ω has O(h

ε) vertices, and since C has
O(1ε) cones, it takes O(h2

ε2 lg n) time to compute p, p′, v′, r. From [5], the size of
routing tables is O((h

ε (1ε + h) lg h
ε), i.e., O((h

ε2 + h2

ε) lg h
ε). And, since each such

closest point may intersect h obstacles, the number of entries in all the routing
tables together is O(h3

ε2 polylog(h
ε)) for ε < 1. Due to Subcases (a) and (b) of

Case (iii), if the path intersects k obstacles and the maximum length of any
patch it intersects is 	, then there is an additive factor of 2k	. 	

Routing Among Convex Polygonal Obstacles 9

References

1. Abraham, I., Gavoille, C.: On approximate distance labels and routing schemes
with affine stretch. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 404–415.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24100-0 39

2. Arikati, S., Chen, D.Z., Chew, L.P., Das, G., Smid, M., Zaroliagis, C.D.: Planar
spanners and approximate shortest path queries among obstacles in the plane.
In: Diaz, J., Serna, M. (eds.) ESA 1996. LNCS, vol. 1136, pp. 514–528. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61680-2 79

3. Asano, T., Asano, T., Guibas, L.J., Hershberger, J., Imai, H.: Visibility of disjoint
polygons. Algorithmica 1(1), 49–63 (1986). https://doi.org/10.1007/BF01840436

4. Awerbuch, B., Bar-Noy, A., Linial, N., Peleg, D.: Improved routing strategies with
succinct tables. J. Algorithms 11(3), 307–341 (1990)

5. Banyassady, B., et al.: Routing in polygonal domains. Comput. Geom. 87, 101593
(2020)

6. Bar-Yehuda, R., Chazelle, B.: Triangulating disjoint Jordan chains. Int. J. Comput.
Geom. Appl. 4(4), 475–481 (1994)

7. Bose, P., Fagerberg, R., van Renssen, A., Verdonschot, S.: Optimal local routing on
Delaunay triangulations defined by empty equilateral triangles. SIAM J. Comput.
44, 1626–1649 (2015)

8. Bose, P., Fagerberg, R., van Renssen, A., Verdonschot, S.: Competitive local rout-
ing with constraints. J. Comput. Geom. 8(1), 125–152 (2017)

9. Bose, P., Korman, M., van Renssen, A., Verdonschot, S.: Routing on the visibility
graph. In: Proceedings of International Symposium on Algorithms and Computa-
tion, pp. 18:1–18:2 (2017)

10. Bose, P., Korman, M., van Renssen, A., Verdonschot, S.: Constrained routing
between non-visible vertices. Theor. Comput. Sci. 861, 144–154 (2021)

11. Bose, P., Morin, P.: Competitive online routing in geometric graphs. Theor. Com-
put. Sci. 324(2), 273–288 (2004)

12. Bose, P., Smid, M.: On plane geometric spanners: a survey and open problems.
Comput. Geom. 46(7), 818–830 (2013)

13. Chechik, S.: Compact routing schemes with improved stretch. In: Proceedings of
Symposium on Principles of Distributed Computing, pp. 33–41 (2013)

14. Chen, D.Z.: On the all-pairs Euclidean short path problem. In: Proceedings of
Symposium on Discrete Algorithms, pp. 292–301 (1995)

15. Chen, D.Z., Wang, H.: Visibility and ray shooting queries in polygonal domains.
Comput. Geom. 48(2), 31–41 (2015)

16. Chiang, Y.-J., Mitchell, J.S.B.: Two-point Euclidean shortest path queries in the
plane. In: Proceedings of Symposium on Discrete Algorithms, pp. 215–224 (1999)

17. Clarkson, K.L., Kapoor, S., Vaidya, P.M.: Rectilinear shortest paths through polyg-
onal obstacles in O(n(lg n)2) time. In: Proceedings of Symposium on Computa-
tional Geometry, pp. 251–257 (1987)

18. Cowen, L.: Compact routing with minimum stretch. J. Algorithms 38, 170–183
(1999)

19. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geom-
etry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-77974-2

20. Eilam, T., Gavoille, C., Peleg, D.: Compact routing schemes with low stretch factor.
J. Algorithms 46(2), 97–114 (2003)

https://doi.org/10.1007/978-3-642-24100-0_39
https://doi.org/10.1007/3-540-61680-2_79
https://doi.org/10.1007/BF01840436
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-77974-2

10 R. Inkulu and P. Kumar

21. Fraigniaud, P., Gavoille, C.: Routing in trees. In: Orejas, F., Spirakis, P.G., van
Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 757–772. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-48224-5 62

22. Ghosh, S.K.: Visibility Algorithms in the Plane. Cambridge University Press, New
York (2007)

23. Guibas, L.J., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.E.: Linear-time
algorithms for visibility and shortest path problems inside triangulated simple
polygons. Algorithmica 2, 209–233 (1987). https://doi.org/10.1007/BF01840360

24. Hershberger, J., Suri, S.: An optimal algorithm for Euclidean shortest paths in the
plane. SIAM J. Comput. 28(6), 2215–2256 (1999)

25. Inkulu, R., Kapoor, S.: Planar rectilinear shortest path computation using corri-
dors. Comput. Geom. 42(9), 873–884 (2009)

26. Inkulu, R., Kapoor, S.: Approximate Euclidean shortest paths amid polygonal
obstacles. In: Proceedings of Symposium on Algorithms and Computation (2019)

27. Inkulu, R., Kapoor, S., Maheshwari, S.N.: A near optimal algorithm for finding
Euclidean shortest path in polygonal domain. CoRR 1011.6481 (2010)

28. Kaplan, H., Mulzer, W., Roditty, L., Seiferth, P.: Routing in unit disk graphs.
Algorithmica 80(3), 830–848 (2018). https://doi.org/10.1007/s00453-017-0308-2

29. Kapoor, S.: Efficient computation of geodesic shortest paths. In: Proceedings of
Symposium on Theory of Computing, pp. 770–779 (1999)

30. Kapoor, S., Maheshwari, S.N.: Efficient algorithms for Euclidean shortest path
and visibility problems with polygonal obstacles. In: Proceedings of Symposium
on Computational Geometry, pp. 172–182 (1988)

31. Kapoor, S., Maheshwari, S.N.: Efficiently constructing the visibility graph of a
simple polygon with obstacles. SIAM J. Comput. 30(3), 847–871 (2000)

32. Kapoor, S., Maheshwari, S.N., Mitchell, J.S.B.: An efficient algorithm for Euclidean
shortest paths among polygonal obstacles in the plane. Discrete Comput. Geom.
18(4), 377–383 (1997). https://doi.org/10.1007/PL00009323

33. Konjevod, G., Richa, A.W., Xia, D.: Scale-free compact routing schemes in net-
works of low doubling dimension. ACM Trans. Algorithms 12(3), 1–29 (2016)

34. Mitchell, J.S.B.: Shortest paths among obstacles in the plane. Int. J. Comput.
Geom. Appl. 6(3), 309–332 (1996)

35. Mitchell, J.S.B.: Shortest paths and networks. In: Handbook of Discrete and Com-
putational Geometry, pp. 811–848. CRC Press (2017)

36. Narasimhan, G., Smid, M.H.M.: Geometric Spanner Networks. Cambridge Univer-
sity Press, Cambridge (2007)

37. Overmars, M.H., Welzl, E.: New methods for computing visibility graphs. In: Pro-
ceedings of the Fourth Annual Symposium on Computational Geometry, pp. 164–
171 (1988)

38. Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables. J.
ACM 36(3), 510–530 (1989)

39. Roditty, L., Tov, R.: New routing techniques and their applications. In: Proceedings
of ACM Symposium on Principles of Distributed Computing, pp. 23–32 (2015)

40. Roditty, L., Tov, R.: Close to linear space routing schemes. Distrib. Comput. 29(1),
65–74 (2015). https://doi.org/10.1007/s00446-015-0256-5

41. Santoro, N., Khatib, R.: Labelling and implicit routing in networks. Comput. J.
28(1), 5–8 (1985)

42. Sharir, M., Schorr, A.: On shortest paths in polyhedral spaces. SIAM J. Comput.
15(1), 193–215 (1986)

43. Storer, J.A., Reif, J.H.: Shortest paths in the plane with polygonal obstacles. J.
ACM 41(5), 982–1012 (1994)

https://doi.org/10.1007/3-540-48224-5_62
https://doi.org/10.1007/BF01840360
https://doi.org/10.1007/s00453-017-0308-2
https://doi.org/10.1007/PL00009323
https://doi.org/10.1007/s00446-015-0256-5

Routing Among Convex Polygonal Obstacles 11

44. Thorup, M.: Compact oracles for reachability and approximate distances in planar
digraphs. J. ACM 51(6), 993–1024 (2004)

45. Thorup, M., Zwick, U.: Compact routing schemes. In: Proceedings of Symposium
on Parallel Algorithms and Architectures, pp. 1–10 (2001)

46. Thorup, M., Zwick, U.: Approximate distance oracles. J. ACM 52(1), 1–24 (2005)
47. Welzl, E.: Constructing the visibility graph for n-line segments in O(n2) time. Inf.

Process. Lett. 20(4), 167–171 (1985)
48. Yan, C., Xiang, Y., Dragan, F.F.: Compact and low delay routing labeling scheme

for unit disk graphs. Comput. Geom. 45(7), 305–325 (2012)
49. Yao, A.C.: On constructing minimum spanning trees in k-dimensional spaces and

related problems. SIAM J. Comput. 11(4), 721–736 (1982)

Target Coverage with Minimum Number
of Camera Sensors

Pei Yao1 , Longkun Guo1(B) , Shuangjuan Li2 , and Huihong Peng1

1 Fuzhou University, Fuzhou, China
lkguo@fzu.edu.cn

2 South China Agricultural University, Guangzhou, China

Abstract. With the development of the smart city, camera sensors
have attracted more and more research interests from both academic
researchers and industrial engineers. Given a set of points of interests
(POI) and a set of cameras, practical applications require to deploy these
cameras with the minimum cost so that these POIs can be fully covered
by these cameras. In this paper, we study a problem called Min-Num
LTC-CS, which is, given a set of POIs located on a line segment and a
set of cameras distributed on the plane, to choose a minimum number of
cameras so that these POIs can be fully covered by the sensing ranges
of these cameras. We first propose a grouping algorithm by grouping
the POIs according to whether they can be covered by the same camera
with certain rotation angle and then construct a graph using these POI
groups. We show that there exists a feasible constrained st-flow if and
only if there exists a subset of cameras that can completely cover these
POIs. Then we propose an LP formulation for the constrained flow prob-
lem and prove that any basic solution of the LP formulation is integral,
which consequently leads to an optimal solution to Min-Num LTC-CS by
solving this LP formulation. Lastly, extensive numerical experiments are
conducted to demonstrate the practical performance of our algorithms.

Keywords: Camera sensor network · Constrained flow · Linear
programming · Integer optimal solution

1 Introduction

Wireless sensor network has been attracting lots of research interest from many
researchers, since it has many practical applications, including monitoring the
gas pipeline such that the pipeline leakage can be timely found by these sensors,
and monitoring the border of the country or a building to prevent illegal entrance.

Compared with traditional sensors, camera sensors can obtain more rich dig-
ital information such as the pictures and videos. Different from traditional sen-
sors, camera sensors have some unique coverage characteristics [16]. Based on
computer vision technology, camera sensors can be widely used in lots of applica-
tions, such as coal mine monitoring, urban underground engineering, and online
virtual roaming. However, in some cases the pictures or videos captured by
c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 12–24, 2021.
https://doi.org/10.1007/978-3-030-92681-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_2&domain=pdf
http://orcid.org/0000-0002-6151-3462
http://orcid.org/0000-0003-2891-4253
http://orcid.org/0000-0002-1014-3166
http://orcid.org/0000-0003-3518-6880
https://doi.org/10.1007/978-3-030-92681-6_2

Target Coverage with Minimum Number of Camera Sensors 13

Fig. 1. Coverage angle θ and rotation angle α for si.

cameras are useless if these cameras are deployed with wrong rotation angles.
Therefore, for different coverage requirements, how to choose the rotation angles
of cameras for intrusion detection is a challenging problem. Different from tra-
ditional sensors, once the camera sensor is deployed, its position is fixed and its
covering region can be changed only by rotation. Similar to stationary sensor and
mobile sensor, there are three types of sensor coverage [4]: region coverage [10],
barrier coverage [9], and point coverage [19]. In this paper, we study a special
target problem, called on-a-Line Target Coverage of Camera Sensors (LTC-CS),
which is formally defined as follows:

Definition 1 (On-a-Line Target Coverage of Camera Sensors problems, LTC-
CS). Let Π be a set of points of interests (POIs) in which each POI pj ∈ Π has
a position with (pj , 0). Let Γ be a set of camera sensors each of which si ∈ Π
has a position (xi, yi), a sensing radius r, and a coverage angle θ. The Min-Num
LTC-CS problem aims to choose a minimum number of camera sensors from Γ
such that each POI in Π is covered by the sensing range of at least one camera
sensor.

Figure 1 illustrates an example of coverage angle θ and rotation angle αi. As
a generalization of Min-Num LTC-CS, the Min-Sum LTC-CS problem aims to
minimize the sum of the rotation angles of all sensors used for covering all the
POIs. Formally, let γ be the sum of the rotation angles, i.e. γ =

∑
si∈Γ ′ αi where

Γ ′ ⊆ Γ where each Γ ′ is the set of used cameras. Then Min-Sum LTC-CS is to
minimize γ.

1.1 Related Work

Coverage using directional wireless network which consists of directional sensors
was firstly discussed by Ma and Liu [13]. When all POIs are distributed on a
plane, the sensor coverage of these POIs can be regarded as a set cover problem,
and Fowler et al. [5] proved that the planar geometric covering problem is an
NP -complete problem by reduction to 3-SAT problem. Cai et al. [2,3] studied
the multiple directional coverages sets problem (MDCS), which is to find K cover
set D1, · · · , DK ⊆ D, where D is a collection of a subset of A and Di has a
nonnegative weight ti, such that

∑K
i=1 ti is maximized and

∑K
i=1 |s ∩ Di| · ti ≤ L

for each s ∈ S and a given positive number L, where S is a collection of sub-
sets of D. The authors proved that the MDCS problem is NP -complete and
proposed some centralized algorithms and distributed algorithms for MDCS.

14 P. Yao et al.

Ai and Abouzeid [1] proposed a maximum coverage with minimum sensors prob-
lem and proved this problem is NP -complete by reduction to the maximum
cover problem. They proposed an integer linear programming formulation and
also presented an approximation centralized greedy algorithm. Other problems
about directional sensors were also studied, such as the k-coverage problem [6,8],
service delay minimization problem [21], rotatable and directional sensor deploy-
ment problem [23].

Camera sensor network, a special directional sensor networks, has also been
extensively studied by lots of researchers. Liu et al. [11] studied the directional
k-coverage problem in a camera sensor network and the aim of the problem is to
cover each point in the given region by at least k different cameras. Wang and
Cao [22] studied full-view coverage in a camera sensor network, where full-view
coverage requires that an object is always covered by at least one camera for
any direction from 0 to 2π and the facing direction of the object is sufficiently
close to the viewing direction of the sensor. Later, Ma et al. [14] studied the
minimum camera barrier coverage problem in a camera sensor network based on
the definition of full-view coverage in [22] and proposed an optimal algorithm
to solve this problem. Jia et al. [7] designed a

(
1 − 1

e

)
-approximation algorithm

and an efficient heuristic algorithm for the maximum full-view target coverage
problem in a camera sensor network.

Recently, Liu and Ouyang [12] derived a k-coverage probabilistic expression
to estimate the minimum number of camera sensors when the k-coverage can
be achieved while all camera sensors are randomly deployed outside the field
of interest. Si et al. [18] proposed a realistic resolution criterion to capture the
intruder’s face for a three-Dimensional (3D) sensing model of a camera sensor
and they are the first to study the barrier coverage of camera sensor network
in 3D setting. Later, Wang et al. [20] studied the fundamental problem of the
placement of unmanned aerial vehicles for achieving 3D directional coverage and
proposed a greedy algorithm to solve the problem with a (1 − 1/e) approxima-
tion ratio. Saeed et al. [17] proposed an autonomous system called Argus which
aims to minimize the number of drones required to cover a set of targets and
proved the problem is NP -hard by reduced it to a polygon illumination problem.
Mao et al. [15] proposed an alternating optimization algorithm with guaranteed
convergence based on block coordinate descent and successive convex approxi-
mation to minimize the maximum computation delay among internet of things
devices.

1.2 Our Results

In this paper, we devise an approach for optimally solving Min-Num LTC-CS in
polynomial time. The contribution of the paper can be summarized as follows:

– Propose a grouping algorithm that clusters the given POIs according to
whether a set of POIs can be covered by a camera sensor.

– Propose an LP formulation for the constrained flow problem for modeling the
placement problem.

Target Coverage with Minimum Number of Camera Sensors 15

Fig. 2. An example of a POI groups. In (a), there exist three POIs Π = {p1, p2, p3}.
As a consequence, there can be four POI groups G = {G1, G2, G3, G4}, where G1 =
{p1} , G2 = {p1, p2} , G3 = {p2, p3} and G4 = {p3}.

– Prove that any basic solution of the LP formulation can be rounded to an
integral solution.

1.3 Organization

The remainder of the paper is organized as follows: Sect. 2 presents a grouping
algorithm and the integer linear program formulations of two problems: Min-
Num LBC-CS; Sect. 3 proposes an LP-rounding algorithms to solve the Min-Num
LBC-CS; Sect. 4 demonstrates experimental results; Sect. 5 lastly concludes this
paper.

2 Integer Linear Programs

In this section, we propose an Integer Linear Programming (ILP) formulation
for Min-Num on-a-Line Target Coverage of Camera Sensor (LTC-CS). First of
all, we propose a grouping algorithm for clustering the set of points of interests
(POIs) into some groups such that each group can be covered by a camera sensor
under a rotation angle. Then, we formulate an ILP based on these groups to solve
Min-Num LTC-CS.

2.1 Camera Sensor Group

For a camera sensor si, its coverage region can be modeled as a sector such
that si can cover multiple POIs at the same time. For two POIs pi and pj and
camera sensor si, we denote ∠pisipj as a angle. Then, we say a set of POIs
Π1 can be completely covered by sensor si if and only if any pair of POIs
pi, pj ∈ Π1 satisfies ∠pisipj ≤ θ and |pisi| ≤ r, |pjsi| ≤ r, where θ is the
coverage angle of camera sensor si and r is the radius of si. We say such set of
POIs Π1 is a POI group, whose formal definition is as follows:

Definition 2. (POIs group) Let Π = {p1, · · · , pm} be a set of POIs, where
each pi ∈ Π is with the position (xi, 0) on a line. Let Π1 be a subset of Π. If
Π1 is exactly a set of target completely covered by one camera sensor, then
we say Π1 is a POI group.

16 P. Yao et al.

Algorithm 1. A grouping algorithm for POIs groups.
Input: A set of camera sensors Γ and each camera sensor si ∈ Γ is with the position

(xi, yi); the coverage angle θ; the sensing radius r; a set of POIs Π, in which each
pj ∈ Π has a position (pj , 0).

Output: a set of POIs groups G.
Phase I: For each camera sensor si, find all POIs that it can cover;

1: Set G := ∅, Λ := {Λ1, · · · , Λn} where Λi = ∅;
2: For i = 1 to n do
3: Set vi = xi − √

r2 − y2
i and wi = xi +

√
r2 − y2

i ;
/* The maximum range at which camera sensor si intersects the line during
rotation. */

4: Set pm = min {pj | vi ≤ pj ≤ wi}, pn = max {pj | vi ≤ pj ≤ wi};
5: Set Λi := {pm, pm+1, · · · , pn};
6: Endfor

Phase II: For each camera sensor si, group all the POIs that si can cover
7: For i = 1 to n do
8: Select the first element of Λi as the first POIs group, i.e. G := {Λi [1]};
9: Set G := G ∪ {G}, and let jw := 1, ju = 2;

10: While ju ≤ |Λi| do
11: Find θmin := min {ρ (θ, jw) , ρ′ (θ, ju)};

/* ρ (θ, jw) is the angle at which element Λi [jw] is exactly deleted from
G and ρ′ (θ, ju) is the angle at which element Λi [ju] is exactly added
to G. */

12: If θmin = ρ (θ, jw) �= ρ′ (θ, ju) then
13: Set jw := jw + 1, G := G\ {Λi [jw]}, G := G ∪ {G};
14: If θmin = ρ′ (θ, ju) �= ρ (θ, jw) then
15: Set ju := ju + 1, G := G ∪ {Λi [ju]}, G := G ∪ {G};
16: If ρ (θ, jw) = ρ′ (θ, ju) then
17: Set jw := jw + 1, ju := ju + 1, G := G\ {Λi [jw]} ∪ {Λi [ju]},

G := G ∪ {G};
18: Endwhile
19: Endfor
20: return G.

For briefness, we use G = {G1, · · · , Gk} to represent all POI groups of
Π, where each Gi ∈ G is a POI group of Π and contains at least one POI.
Obviously, Gi ∈ G can be covered by one camera sensor. Figure 2 shows an
example of grouping POIs. In the figure, there exist three POIs Π = {p1, p2, p3},
which can produce a family of four POI groups G = {G1, G2, G3, G4}, where
G1 = {p1} (Fig. 2(a)), G2 = {p1, p2} is obtained by adding p2 to G1 (Fig. 2(b)),
G3 = {p2, p3} is obtained by adding p3 to G2 and deleting p1 at the same time
(Fig. 2(c)), and G4 = {p3} is acquired by deleting p2 from G3 (Fig. 2(d)).

Based on Definition 2, we can propose a grouping algorithm of grouping the
given set of POIs Π into several groups. Two POI groups Gi and Gj are different
if and only if there exists at least a POI pi that satisfies pi ∈ Gi, pi /∈ Gj or
pi /∈ Gi, pi ∈ Gj . The grouping algorithm runs in two steps as follows:

Target Coverage with Minimum Number of Camera Sensors 17

1. Find a subset of Π denoted as Πi which can be covered by camera sensor si

when si rotates 360◦, i.e. the distance d(si, pj) ≤ r for ∀pj ∈ Πi;
2. Find two POIs pi and pj , where pi ∈ Πi is the leftmost POI that is covered

by sensor si and pj ∈ Πi is the rightmost POI that can be covered on the
line at the same time by si, i.e. the angle ∠pisipj ≤ θ.

For a POI group Gi, let ρ (θ, jw) and ρ′ (θ, jw) be the minimum angle at which
element jw ∈ Gi is deleted from Gi or added to Gi, respectively. Then the
detailed algorithm is shown in Algorithm 1.

Lemma 1. Algorithm 1 takes O (nm) time to construct the POI groups G.
Proof. From Step 2 to Step 6, Algorithm 1 needs O (nm) time to compute a set
of POIs Λi which is a set of POIs that camera sensor si may cover. Steps 7–18
take O (nm) times to construct the POI group G.

2.2 Integer Linear Programming Formulation

Let Π be a set of POIs and G = {G1, · · · , Gk} be a set of POI groups, where G
is formed by grouping all POIs of Π. Let xij represent whether camera sensor
si cover POI group Gj , then xij ∈ {0, 1}. Let yj indicate whether POI group
Gj is covered, i.e. yj ∈ {0, 1}. Then the ILP formulation of Min-Num can be
described as follows:

min
∑

i

xij

s.t.
∑

j

xij ≤ 1 ∀si ∈ Γ

yj ≤
∑

i

xij ∀gj ∈ G (1)

∑

j: t∈Gj

yj ≥ 1 ∀Gj ∈ G

xij ∈ {0, 1} ∀si ∈ Γ, Gj ∈ G
yj ∈ {0, 1} ∀Gj ∈ G

where the first constraint means each camera sensor si can be used at most
once, the second guarantees that the portion of the POI group Gj is covered
does not exceed the total portion of all camera sensors covering Gj , and the
third inequality ensures that each POI must be covered at least one in total.

Moreover, let αij be the rotation angle of camera sensor si when si is used
to cover the POI group Gj . Then we can generalize the above ILP to Min-Sum
LTC-CS by setting the objective function as min

∑
i xijαij , while retaining the

constraints the same as those of the Min-Num version.

18 P. Yao et al.

3 LP-Rounding Algorithm via Transformation
to the Shortest Matching-Path Problem

In this section, we first transform the Min-Num for the on-a-Line Target Cover-
age of Camera Sensor (LTC-CS) problem into a Shortest Matching-Path (SMP)
problem over a weighted graph. Secondly, the Linear Program (LP) of SMP was
given. Thirdly, we prove there exists an integer solution for SMP iff SMP is
feasible.

3.1 The Construction

To solve Min-Num LTC-CS, we will construct a graph based on Algorithm 1. In
the construction, it is important to judge whether two points of interest (POI)
groups are adjacent, where the definition of the adjacent POI groups is as follows:

Definition 3. (The adjacent POI groups). Let G = {G1, · · · , Gk} be a set of
POI groups, where Gi ∈ G contains at least one POI. Let li and gi be the leftmost
and rightmost POIs of Gi ∈ G, respectively. Then for two POI group Gi, Gj ∈ G
with li ≤ gj, we say they are adjacent if and only if there exists no targets between
gi and lj or lj ≤ gi holds.

The directed auxiliary graph can be constructed in the following main steps:

1. Vertices: For each POI group, we add a corresponding vertex, and collec-
tively obtain V as the set of vertices V = {G1, · · · , Gm}, where m is the
number of POI groups.

2. Edges: For two adjacent points Gi and Gj , we add an arc 〈Gi, Gj〉 to the
graph, in which Gi is the tail of the arc and Gj is the head of the arc.
(a) If p1 ∈ Gi holds, there exists an arc 〈s, Gi〉, and if pm ∈ Gj , there exists

an arc 〈Gj , t〉, where i, j ∈ [n]+ and m is the number of POI groups;
(b) For any two POI groups Gi and Gj , if Gi is adjacent to Gj then there

exists an arc 〈Gi, Gj〉;
(c) For each POI group Gi, if a camera sensor sj can completely cover Gi

then there exists a flow from sj to Gi.

Figure 3 shows an example executing the above construction in details, in
which Γ = {s1, s2, s3, s4, s5} and Π = {p1, · · · , p10} (Fig. 3(a)). By Algorithm
1, seventeen POI groups are computed as in Fig. 3(b). Then we can construct
the directed graph, as part of the auxiliary graph, for all POI groups as in
Fig. 3(c). Finally, we add the points corresponding to the sensors in the graph
as in Fig. 3(d), which corresponds for the counterpart of matching.

Target Coverage with Minimum Number of Camera Sensors 19

Fig. 3. An example of transformation. (a) The instance contains ten POIs and five
camera sensors; (b) Seventeen groups are generated; (c) The corresponding auxiliary
graph with 17 vertices for the groups; (d) is the graph in (c) plus another five points
corresponding to the sensors.

20 P. Yao et al.

3.2 Linear Programming for Shortest Matching-Path Problem

Let E1 be a set of edges in which each edge is between two POI groups. Let
E2 be a set of edges in which each edge (i, j) ∈ E2 represents a flow from a
camera sensor si to a POI group Gj . For Min-Num LTC-CS, the aim is to use
a minimum number of camera sensors to cover all POIs, so the aim of SMP is
to find the path from s to t and minimize the sum of flows. The Integer LP
(ILP) of SMP which is transformed from Min-Num LTC-CS is shown as follows
(ILP(2)):

min
∑

(i, j)∈E2

xij

s.t
∑

e∈δ+∩E1(j)

ye −
∑

e∈δ−∩E1(j)

ye =

⎧
⎨

⎩

1
−1
0

j = s
j = t
j
= s, t

∑

j:(i, j)∈E2

xij ≤ 1 ∀i

∑

i:(i, j)∈E2

xij ≥
∑

e∈δ+(j)∩E1

ye ∀j (2)

xij ∈ {0, 1} (i, j) ∈ E2

ye ∈ {0, 1} e ∈ E1

where the first constraint is to ensure a feasible flow over the edges of E1, the
second guarantees that the total outflows from si is no more than 1 over the
edges of E2 since each camera sensor si can be used for at most once. The third
ensures that the total inflows to j over edges of E2 must be larger than the
total outflows of j in E1. By relaxing 0 ≤ xij ≤ 1 and ye ≥ 0, we can get
LP(1) a linear programming formulation relaxing ILP (2). As one of the main
results of the paper, we conclude that there is a connection between the above
ILP formulation ILP(2) and its LP relaxation LP(1), as stated in the following
theorem whose proof is omitted due to the length limitation.

Theorem 1. The value of an optimal fractional solution of LP(1) equals to
that of an optimal solution of ILP(2). Moreover, an optimal fractional solution
of LP(1) can be rounded to an integral solution of Min-Num LTC-CS.

Note that when the objective function of the LP is min
∑

i xijαij , the above for-
mulations can be extended to Min-Sum LTC-CS. In addition, the above theorem
can also be extended to Min-Sum LTC-CS.

4 Numerical Experiments

In this section, we will evaluate the practical performance and runtime of the
linear program of the shortest matching-path problem (denoted by ILP-SMP) by

Target Coverage with Minimum Number of Camera Sensors 21

(a) Solution quality against growing
number of sensors .

(b) Solution quality against increasing
number of targets.

Fig. 4. Solution quality of ILP-LTC-CS, LP-LTC-CS, ILP-SMP and GA in comparison.

comparing with other baselines: the integer linear program of LTC-CS (denoted
by ILP-LTC-CS), the linear program of LTC-CS (denoted by LP-LTC-CS), and
the greedy algorithm (denoted by GA). All experiments are carried out on a
Win 10 platform with Intel Core i5-6200U CPU, 8.0G RAM. All algorithms were
implemented with Java. In our experiments, the radius of the camera sensor is
set as 40 and the angle is set as 60.

4.1 Solution Quality in Comparison

Figure 4 is the experimental results of Min-Num LTC-CS. In Fig. 4a, the number
of POIs is fixed at 70 and the number of camera sensors increases from 80 to 170
and are divided into ten groups. It can be seen that the results of ILP-SMP and
ILP-LTC-CS are always the same with the increasing number of sensors. Besides,
the results of GA are larger than ILP-LTC-CS which is at least 2 times and the
results of LP-LTC-CS are less than ILP-LTC-CS. Figure 4b is the comparison of
the results of ILP-LTC-CS, LP-LTC-CS, ILP-SMP, and GA with the increasing
number of target points for Min-Num LTC-CS. In these experiments, the number
of camera sensors is 150 and the number of POIs increases from 30 to 120 with
the step 10. Regardless of the number of POIs, the results of ILP-SMP and ILP-
LTC-CS are the same. It can be seen that the results of GA are larger than that
of ILP-LTC-CS (at least 2 times), and the results of LP-LTC-CS are smaller
than that of ILP-LTC-CS in all the experimental results.

4.2 Runtime Comparison

Figure 5 shows the running time of ILP-LTC-CS, LP-LTC-CS, ILP-SMP, and
GA of Min-Num LTC-CS. In the experiments of Fig. 5a, there are 70 POIs that
need to cover. The figure shows the results of ten groups of experiments, in which
the number of camera sensors increases from 80 to 170. First, the runtime of ILP-
LTC-CS is the largest among that of LP-LTC-CS, ILP-SMP, and GA in each

22 P. Yao et al.

(a) Runtimes comparison with growing
number of sensors.

(b) Runtimes comparison with growing
number of targets.

Fig. 5. Runtimes comparison of ILP-LTC-CS, LP-LTC-CS, ILP-SMP and GA.

group of experiments. Second, the runtimes of ILP-LTC-CS, LP-LTC-CS, and
ILP-SMP increase with the increasing number of sensors, and the runtime of GA
T is constant as the number of sensors increases. Figure 5b compares the running
time of ILP-LTC-CS, LP-LTC-CS, ILP-SMP, and GA. In all experiments, the
number of camera sensors is 180 and the number of POIs increases from 30 to
120 with a step 10. As for the running time of ILP-LTC-CS, LP-LTC-CS, ILP-
SMP, and GA, ILP-LTC-CS is the highest, and GA is the lowest. When more
POIs need to cover, the runtime of ILP-LTC-CS, LP-LTC-CS, and ILP-SMP
will increase, but the runtime of GA will always be fixed,

5 Conclusion

In this paper, we proposed the linear programmings for the on-a-Line Target
Coverage with Minimized Number of Camera Sensors (Min-Num LTC-CS) and
the on-a-Line Target Coverage with Minimizing the Sum of rotation angles of
Camera Sensors (Min-Sum LTC-CS). It has been proved that the solutions of the
two linear programmings are integer solutions via transformed to the shortest
matching-path problem. We first grouped the given set of Points Of Interest
(POIs) and formulated the linear programmings of Min-Num LTC-CS and Min-
Sum LTC-CS. Then, we constructed a graph based on the grouping of the above
POIs. Finally, we proposed a rounding method to obtain integer solutions of
Min-Num LTC-CS and Min-Sum LTC-CS. Numerical experiments demonstrate
that the experiment results are consistent with the theoretical analysis.

Acknowledgements. The authors are supported by Natural Science Foundation of
China (No. 61772005), Outstanding Youth Innovation Team Project for Universities of
Shandong Province (No. 2020KJN008), Natural Science Foundation of Fujian Province
(No. 2020J01845) and Educational Research Project for Young and Middle-aged Teach-
ers of Fujian Provincial Department of Education (No. JAT190613).

Target Coverage with Minimum Number of Camera Sensors 23

References

1. Ai, J., Abouzeid, A.A.: Coverage by directional sensors in randomly deployed wire-
less sensor networks. J. Comb. Optim. 11(1), 21–41 (2006). https://doi.org/10.
1007/s10878-006-5975-x

2. Cai, Y., Lou, W., Li, M., Li, X.Y.: Target-oriented scheduling in directional sensor
networks. In: Infocom IEEE International Conference on Computer Communica-
tions. IEEE (2007)

3. Cai, Y., Lou, W., Li, M., Li, X.Y.: Energy efficient target-oriented scheduling in
directional sensor networks. IEEE Trans. Comput. 58(9), 1259–1274 (2009)

4. Cardei, M., Jie, W.: Coverage in wireless sensor networks. In: Handbook of Sensor
Networks, vol. 21, pp. 201–202 (2004)

5. Fowler, R.J., Paterson, M.S., Tanimoto, S.L.: Optimal packing and covering in the
plane are np-complete. Inf. Process. Lett. 12(3), 133–137 (1981)

6. Fusco, G., Gupta, H.: Selection and orientation of directional sensors for coverage
maximization. In: 2009 6th Annual IEEE Communications Society Conference on
Sensor, Mesh and Ad Hoc Communications and Networks, pp. 1–9. IEEE (2009)

7. Jia, J., Dong, C., Hong, Y., Guo, L., Ying, Yu.: Maximizing full-view target cov-
erage in camera sensor networks. Ad Hoc Netw. 94, 101973 (2019)

8. Kasbekar, G.S., Bejerano, Y., Sarkar, S.: Lifetime and coverage guarantees through
distributed coordinate-free sensor activation. IEEE/ACM Trans. Netw. 19(2), 470–
483 (2010)

9. Kumar, S., Lai, T.H., Arora, A.: Barrier coverage with wireless sensors. In: Pro-
ceedings of the 11th Annual International Conference on Mobile Computing and
Networking, pp. 284–298 (2005)

10. Li, X., Frey, H., Santoro, N., Stojmenovic, I.: Localized sensor self-deployment with
coverage guarantee. ACM SIGMOBILE Mob. Comput. Commun. Rev. 12(2), 50–
52 (2008)

11. Liu, L., Ma, H., Zhang, X.: On directional k-coverage analysis of randomly deployed
camera sensor networks. In: 2008 IEEE International Conference on Communica-
tions, pp. 2707–2711. IEEE (2008)

12. Liu, Z., Ouyang, Z.: k-coverage estimation problem in heterogeneous camera sensor
networks with boundary deployment. IEEE Access 6, 2825–2833 (2017)

13. Ma, H., Liu, Y.: On coverage problems of directional sensor networks. In: Jia,
X., Wu, J., He, Y. (eds.) MSN 2005. LNCS, vol. 3794, pp. 721–731. Springer,
Heidelberg (2005). https://doi.org/10.1007/11599463 70

14. Ma, H., Yang, M., Li, D., Hong, Y., Chen, W.: Minimum camera barrier coverage
in wireless camera sensor networks. In: 2012 Proceedings IEEE INFOCOM, pp.
217–225. IEEE (2012)

15. Mao, S., He, S., Wu, J.: Joint UAV position optimization and resource scheduling
in space-air-ground integrated networks with mixed cloud-edge computing. IEEE
Syst. J. 15(3), 3992–4002 (2021)

16. Puvvadi, U.L.N., Di Benedetto, K., Patil, A., Kang, K.-D., Park, Y.: Cost-effective
security support in real-time video surveillance. IEEE Trans. Ind. Inform. 11(6),
1457–1465 (2015)

17. Saeed, A., Abdelkader, A., Khan, M., Neishaboori, A., Harras, K.A., Mohamed, A.:
On realistic target coverage by autonomous drones. ACM Trans. Sens. Networks
15(3), 32:1–32:33 (2019)

18. Si, P., Chengdong, W., Zhang, Y., Jia, Z., Ji, P., Chu, H.: Barrier coverage for 3D
camera sensor networks. Sensors 17(8), 1771 (2017)

https://doi.org/10.1007/s10878-006-5975-x
https://doi.org/10.1007/s10878-006-5975-x
https://doi.org/10.1007/11599463_70

24 P. Yao et al.

19. Wang, J., Zhong, N.: Efficient point coverage in wireless sensor networks. J. Comb.
Optim. 11(3), 291–304 (2006). https://doi.org/10.1007/s10878-006-7909-z

20. Wang, W., et al.: PANDA: placement of unmanned aerial vehicles achieving 3D
directional coverage. In: 2019 IEEE Conference on Computer Communications,
INFOCOM 2019, Paris, France, 29 April–2 May 2019, pp. 1198–1206. IEEE (2019)

21. Wang, Y., Cao, G.: Minimizing service delay in directional sensor networks. In:
2011 Proceedings of the IEEE INFOCOM, pp. 1790–1798. IEEE (2011)

22. Wang, Y., Cao, G.: On full-view coverage in camera sensor networks. In: 2011
Proceedings of the IEEE INFOCOM, pp. 1781–1789. IEEE (2011)

23. Wang, Y.-C., Chen, Y.-F., Tseng, Y.-C.: Using rotatable and directional (R&D)
sensors to achieve temporal coverage of objects and its surveillance application.
IEEE Trans. Mob. Comput. 11(8), 1358–1371 (2011)

https://doi.org/10.1007/s10878-006-7909-z

Two-Stage Submodular Maximization
Under Curvature

Yanzhi Li1 , Zhicheng Liu2 , Chuchu Xu3 , Ping Li4 , Hong Chang3 ,
and Xiaoyan Zhang3(B)

1 School of Mathematical Sciences, University of Science and Technology of China,
Hefei 230026, Anhui, China
davidlee@mail.ustc.edu.cn

2 College of Taizhou, Nanjing Normal University, Taizhou 225300, China
3 School of Mathematical Science and Institute of Mathematics,

Nanjing Normal University, Jiangsu 210023, China
{changh,zhangxiaoyan}@njnu.edu.cn

4 Huawei Technologies Co. Ltd., Theory Lab, Central Research Institute,
2012 Labs, Hongkong 9990777, China

liping129@huawei.com

Abstract. Submodular function optimization has been widely studied
in machine learning and economics, which is a relatively new research
field in the context of big data and has attracted more attention. In this
paper, we consider a two-stage submodular maximization problem sub-
ject to cardinality and p-matroid constraints, and propose an approx-
imation algorithm with constant approximation ratio depends on the
maximum curvature of the submodular functions involved, which gener-
alizes the previous bound.

Keywords: Two-stage submodular maximization · Submodular term ·
Approximation algorithm · Curvature

1 Introduction

We consider a two-stage submodular maximization problem. Given a ground set
V = {1, . . . , n}, let F = (f1, f2, . . . , fm) be a set of functions such that each
fj : 2V → R+ (j = 1, . . . , m) is a nonnegative monotone submodular function.
For a given nonnegative integer k, the two-stage problem is as follows

max
|S|≤k

F (S) = max
|S|≤k

m∑

i=1

max
T∈I(S)

(fj(T)). (1)

where I(S) is the family of the common independent sets of p-matroid M =
(S, I(S)) over the same ground set S ⊆ V . Any matriod satisfies three properties:
(i) ∅ ∈ I; (ii) If J ′ ⊆ J ∈ I(S), then J ′ ∈ I(S); and (iii) ∀A,B ∈ I(S), if
|A| < |B|, then there exists an element u ∈ B \ A such that A + u ∈ I.

c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 25–34, 2021.
https://doi.org/10.1007/978-3-030-92681-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_3&domain=pdf
http://orcid.org/0000-0001-7425-5784
http://orcid.org/0000-0002-5985-7303
http://orcid.org/0000-0002-2149-5423
http://orcid.org/0000-0001-5164-0241
http://orcid.org/0000-0003-0828-5189
http://orcid.org/0000-0002-2224-1484
https://doi.org/10.1007/978-3-030-92681-6_3

26 Y. Li et al.

A set function f : 2V → R+ is normalized if f(∅) = 0. It is non-decreasing if
f(S) ≤ f(T),∀S ⊆ T ⊆ V . It is submodular if f(S) + f(T) ≥ f(S ∩ T) + f(S ∪
T),∀S, T ⊆ V .

In terms of relevant work, two-stage submodular maximization problems have
been investigated in the literature. The two-stage submodular maximization
problem subject to uniform and general matroid constraints was first proposed
in [2] with applications in machine learning, in particular, dictionary learning
[6,11], topic modelling [5], and (convolutional) auto encoders [9], among others.
They proposed a continuous optimization method and get an approximation
ratio which asymptotically approaches 1−1/e. For the case where the asymptote
does not work, they design a local search algorithm whose approximation ratio
is close to 1/2. [8] extended the two-stage problem to more general monotone
submodular functions and more general matroid constraints to give a 1

2 (1−e−2)-
approximation algorithm.

Recently, Yang et al. [10] presented a 1
p+1 (1 − e−(p+1))-approximation algo-

rithm for the two-stage problem (1.1). We show that the bound can be general-
ized if we make further assumptions on the total curvature for the submodular
function [1], which is defined as follows

kf = 1 − min
v∈V

f(V) − f(V \{v})
f(v)

. (2)

Curvature is attractive since it is linear time computable with only oracle func-
tion access [3]. Our contribution is to design a

(
1−kf

p
(1 − e−p) +

kf

p+1
(1 − e−(p+1))

)
-

approximation algorithm for cardinality and p-matroid constrained two-stage
submodular maximization problem. Note that 1−kf

p (1−e−p)+ kf

p+1 (1−e−(p+1)) >
1

p+1 (1 − e−(p+1)) when kf �= 1.
The remainder of our paper is organized as follows. Section 2 present the algo-

rithms along with its analysis for this problems and Sect. 3 gives some concluding
remarks.

2 Two-Stage Submodular Maximization

We present a replacement greedy algorithm in Sect. 2.1 and analyze its approx-
imation ratio in Sect. 2.2.

2.1 Algorithm for Two-Stage Submodular Maximization

We first consider the problem of maximizing the sum of submodular and modular
functions. Construct the following functions:

�i(T) =
∑

t∈T

fi(t|V \ {t}),

gi(T) = fi(T) − �i(T).

Note that gi(T) is a monotone nonnegative submodular function, and �i(T) is a
modular function.

Two-Stage Submodular Maximization Under Curvature 27

Given a ground set V = {1, . . . , n}, the problem is to select a set S ⊆ V of
cardinality no more than a given parameter k and T ∈ I(S) to maximize the
following objective function:

m∑

i=1

max
T∈I(S)

(gi(T) + �i(T)).

The main idea of Algorithm 1 is as follows. Our replacement greedy algorithm
works in k rounds, and in each round it tries to increase the solution in a specific
greedy way. It starts with an empty set S0 = ∅ and checks (in each round)
whether new elements can be added to the set without violating the matroid
constraints or it can be replaced with the elements in the current solution while
increasing the value of the objective function.

Algorithm 1. Replacement Greedy
1: S0 ← ∅, T 0

i ← ∅(∀1 ≤ i ≤ m)
2: for 1 ≤ j ≤ k do
3: t∗ ← arg maxt∈V

∑m
i=1 ∇i(t, T

j−1
i)

4: for ∀1 ≤ i ≤ m do
5: if ∇i(t

∗, T j−1
i) > 0 then

6: T j
i ← T j−1

i ∪ {t∗} \ Repi(t
∗, T j−1

i)
7: else
8: T j

i ← T j−1
i

9: end if
10: end for
11: end for
12: Return sets Sk and T k

1 , T k
2 , · · · , T k

m

For convenience, we define the following notations. Let OPT be the optimal
solution. Let Δg

i (x, T j
i) = gi({x}∪T j

i)−gi(T
j
i) denote the marginal contribution

of an element x to the set T j
i when we consider function gi, where these marginal

contributions are nonnegative due to the monotonicity of gi. Similarly, we use
∇g

i (x, y, T j
i) = gi({x} ∪ T j

i \ {y}) − gi(T
j
i) to define the gain of removing an

element y and replacing it with x. Here, ∇g
i (x, y, T j

i) may not be positive. In
addition, we also denote

Δi(x, T j
i) =

(
1 − p + 1

k

)k−j

Δg
i (x, T j

i) +
(
1 − p

k

)k−j

�i(x),

∇i(x, y, T j
i) =

(
1 − p + 1

k

)k−j

∇g
i (x, y, T j

i) +
(
1 − p

k

)k−j

(�i(x) − �i(y)).

Consider the set T j
i . When we replace the element of T j

i with x, we will not
violate the p-matroid constraint, i.e., I(x, T j

i) = {y ∈ T j
i : T j

i ∪{x}\{y} ∈ I(S)}.

28 Y. Li et al.

So, we define the replacement gain of x w.r.t. a set T j
i as follows:

∇i(x, T j
i) =

{
Δi(x, T j

i) if T j
i ∪ {x} ∈ I(S),

max{0,maxy∈I(x,T j
i)

∇i(x, y, T j
i)} otherwise.

Finally, we use Repi(x, T j
i) to denote the element that should be replaced by

x as follows:

Repi(x, T j
i) =

{
∅ if T j

i ∪ {x} ∈ I(S),
argmaxy∈I(x,T j

i)
∇i(x, y, T j

i) otherwise.

2.2 Analysis of the Algorithm

In this section, we analyze the approximation ratio of Algorithm 1. Our analysis
relies on the following distorted objective function Φ. Let k denote the cardinality
constraint. For any j = 1, · · · , k and any set Ti (i = 1, . . . , m), we define

Φj(Sj) =
m∑

i=1

((
1 − p + 1

k

)k−j

gi(T
j
i) +

(
1 − p

k

)k−j

�i(T
j
i)

)
.

Lemma 1. In each iteration of Algorithm 1,

Φj(S
j) − Φj−1(S

j−1)

=

m∑

i=1

(

∇i(t
j , T j−1

i) +
p + 1

k

(

1 − p + 1

k

)k−j

gi(T
j−1
i) +

p

k

(
1 − p

k

)k−j

�i(T
j−1
i)

)

.

Proof.

Φj(S
j) − Φj−1(S

j−1)

=
m∑

i=1

((

1 − p + 1

k

)k−j

gi(T
j
i) +

(
1 − p

k

)k−j

�i(T
j
i)

)

−
m∑

i=1

((

1 − p + 1

k

)k−(j−1)

gi(T
j−1
i) +

(
1 − p

k

)k−(j−1)

�i(T
j−1
i)

)

=
m∑

i=1

(

1 − p + 1

k

)k−j (

gi(T
j
i) − (1 − p + 1

k
)gi(T

j−1
i)

)

+
m∑

i=1

(
1 − p

k

)k−j (
�i(T

j
i) − (1 − p

k
)�i(T

j−1
i)

)

=
m∑

i=1

(

(1 − p + 1

k
)k−j(gi(T

j
i) − gi(T

j−1
i)) + (1 − p

k
)k−j(�i(T

j
i) − �i(T

j−1
i))

)

+
m∑

i=1

(
p + 1

k

(

1 − p + 1

k

)k−j

gi(T
j−1
i)

)

+
m∑

i=1

(
p

k

(
1 − p

k

)k−j

�i(T
j−1
i)

)

=
m∑

i=1

(

∇i(t
j , T j−1

i) +
p + 1

k

(

1 − p + 1

k

)k−j

gi(T
j−1
i) +

p

k

(
1 − p

k

)k−j

�i(T
j−1
i)

)

.

Two-Stage Submodular Maximization Under Curvature 29

Lemma 2. If we add tj ∈ V to Sj−1, then

m∑

i=1

∇i

(
tj , T j−1

i

)
≥ 1

k

m∑

i=1

∑

t∈T ∗
i \T j−1

i

∇i(t, T
j−1
i),

where S∗ = arg max
S⊆V,|S|≤k

m∑
i=1

max
T∈I(S)

fi(T), T ∗
i = arg maxA∈I(S∗) fi(A).

Proof.

m∑

i=1

∇i(tj , T
j−1
i) ≥ 1

|S∗ \ Sj−1|
∑

t∈S∗\Sj−1

m∑

i=1

∇i(t, T
j−1
i)

≥ 1
|S∗ \ Sj−1|

m∑

i=1

∑

t∈T ∗
i \Sj−1

∇i(t, T
j−1
i)

=
1

|S∗ \ Sj−1|
m∑

i=1

∑

t∈T ∗
i \T j−1

i

∇i(t, T
j−1
i)

≥ 1
k

m∑

i=1

∑

t∈T ∗
i \T j−1

i

∇i(t, T
j−1
i),

where the first inequality holds because the righthand side is the average incre-
ment of values of optimal elements at step j if we add them instead of tj , which
is the maximum one. The second inequality holds because T ∗

i \Sj−1 ⊆ T ∗\T j−1.
The last inequality follows from |S∗\Sj−1| ≤ k.

Property 1. ([4]) Let Mj = (V, Ij) be a matroid for every j ∈ {1, . . . , k}. For any
two independent sets A,B ∈ Ij , there exists a mapping πj : B \A → A\B ∪{∅}
such that

– (A \ πj(b)) ∪ b ∈ Ij for all b ∈ B \ A;
– |π−1

j (a)| ≤ 1 for all a ∈ A \ B;
– let Ab = {π1(b), . . . , πk(b)}, (A \ Ab) ∪ b ∈ ∩k

j=1Ij for all b ∈ B \ A.

Lemma 3. For j = 1, 2, . . . , k, we have

m∑

i=1

∇i(tj , T
j−1
i)

≥ 1
k

(
1 − p + 1

k

)k−j m∑

i=1

(
gi(T ∗

i) − (p + 1)gi(T
j−1
i)

)

+
1
k

(
1 − p

k

)k−j m∑

i=1

(
�(T ∗

i) − p�i(T
j−1
i)

)
.

30 Y. Li et al.

Proof. Based on Property 1, there exist mappings πt : T ∗
i \T j−1

i → T j−1
i \T ∗

i ∪{∅}
such that (T i

j\Ae) ∪ {e} ∈ ∩p
t=1It (t ∈ {1, 2, ..., k}), where e ∈ T ∗

i \T j−1
i and

Ae = {π1(e), ..., πk(e)}.
m∑

i=1

∑

t∈T ∗
i \T j−1

i

∇i(t, T
j−1
i)

≥
m∑

i=1

∑

t∈T ∗
i \T j−1

i

(
1 − p + 1

k

)k−j (
gi({t} ∪ T j−1

i \{π(t)}) − gi(T
j−1
i)

)

+
m∑

i=1

∑

t∈T ∗
i \T j−1

i

(
1 − p

k

)k−j (
�i({t} ∪ T j−1

i \{π(t)}) − �i(T
j−1
i)

)

=
m∑

i=1

∑

t∈T ∗
i \T j−1

i

(
1 − p + 1

k

)k−j

ϕ(i,t) +
m∑

i=1

∑

t∈T ∗
i \T j−1

i

(
1 − p

k

)k−j

ψ(i,t)

=
m∑

i=1

∑

t∈T ∗
i \T j−1

i

(
1 − p + 1

k

)k−j (
Δg

i (t, T
j−1
i) − Δg

i (π(t), {t} ∪ T j−1
i \{π(t)})

)

+
m∑

i=1

∑

t∈T ∗
i \T j−1

i

(
1 − p

k

)k−j

(�i(t) − �i(π(t))) ,

where

ϕ(i,t) =
(
gi({t} ∪ T j−1

i) − gi(T
j−1
i) + gi({t} ∪ T j−1

i \{π(t)}) − gi({t} ∪ T j−1
i)

)
,

ψ(i,t) =
(
�i({t} ∪ T j−1

i) − �i(T
j−1
i) + �i({t} ∪ T j−1

i \{π(t)}) − �i({t} ∪ T j−1
i)

)
.

Together with Lemma 2 implies that

m∑
i=1

∇i(t
j , T j−1

i)

≥ 1

k

m∑
i=1

∑

t∈T∗
i \T j−1

i

(
1 − p + 1

k

)k−j (
Δg

i (t, T
j−1
i) − Δg

i (π(t), {t} ∪ T j−1
i \{π(t)})

)

+
1

k

m∑
i=1

∑

t∈T∗
i \T j−1

i

(
1 − p

k

)k−j
(�i(t) − �i(π(t))) .

We know that

1
k

m∑

i=1

∑

t∈T ∗
i \T j−1

i

(
1 − p + 1

k

)k−j

Δg
i (t, T

j−1
i)

≥ 1
k

(
1 − p + 1

k

)k−j m∑

i=1

(
gi(T ∗

i ∪ T j−1
i) − gi(T

j−1
i)

)

Two-Stage Submodular Maximization Under Curvature 31

≥ 1
k

(
1 − p + 1

k

)k−j m∑

i=1

(
gi(T ∗

i) − pgi(T
j−1
i)

)
,

where the first inequality holds because of the submodularity of gi and the second
inequality follows from the monotonicity of gi.

We also have

1
k

m∑

i=1

∑

t∈T ∗
i \T j−1

i

(
1 − p + 1

k

)k−j

Δg
i (π(t), {t} ∪ T j−1

i \{π(t)})

≤ 1
k

m∑

i=1

∑

y∈T j−1
i

(
1 − p + 1

k

)k−j

Δg
i (y, {y−1} ∪ T j−1

i \{y})

≤ 1
k

(
1 − p + 1

k

)k−j m∑

i=1

gi(T
j−1
i),

where the first inequality holds since the range of mapping π is a subset of T j−1
i

and no two elements in T ∗
i \T j−1

i are mapped to the same y ∈ T j−1
i , while the

second inequality follows from the submodularity of gi.
So, we have,

1
k

m∑

i=1

∑

t∈T ∗
i \T j−1

i

(
1 − p + 1

k

)k−j(
Δg

i (t, T
j−1
i) − Δg

i (π(t), {t} ∪ T j−1
i \{π(t)})

)

≥ 1
k

(
1 − p + 1

k

)k−j m∑

i=1

(
gi(T ∗

i) − (p + 1)gi(T
j−1
i)

)
.

We also have

1
k

m∑

i=1

∑

t∈T ∗
i \T j−1

i

(
1 − p

k

)k−j

(�i(t) − �i(π(t)))

=
1
k

(
1 − p

k

)k−j m∑

i=1

(
�(T ∗

i) − �i(T
j−1
i)

)
.

Hence,

m∑

i=1

∇i(tj , T
j−1
i)

≥ 1
k

(
1 − p + 1

k

)k−j m∑

i=1

(
gi(T ∗

i) − (p + 1)gi(T
j−1
i)

)

+
1
k

(
1 − p

k

)k−j m∑

i=1

(
�(T ∗

i) − p�i(T
j−1
i)

)
.

32 Y. Li et al.

Finally, the main result is summarized as follows.

Theorem 1. Algorithm 1 returns a set Sk of size k such that

m∑

i=1

(
gi(T k

i) + �i(T k
i)

) ≥
(

1
p + 1

(1 − e−(p+1))
) m∑

i=1

gi(T ∗
i)

+
(
1
p
(1 − e−p)

) m∑

i=1

�i(T ∗
i).

Proof. According to the definition of Φ, we have

Φ0(S0) = 0,

Φk(Sk) =
m∑

i=1

((
1 − p + 1

k

)k−k

gi(T k
i) +

(
1 − p

k

)k−k

�i(T k
i)

)

=
m∑

i=1

(
gi(T k

i) + �i(T k
i)

)
.

Applying Lemma 1 and Lemma 3, we have

Φj(S
j) − Φj−1(S

j−1)

=
m∑

i=1

(

∇i(t
j , T j−1

i) +
p + 1

k

(

1 − p + 1

k

)k−j

gi(T
j−1
i) +

p

k

(
1 − p

k

)k−j

�i(T
j−1
i)

)

≥ 1

k

(

1 − p + 1

k

)k−j m∑

i=1

gi(T
∗
i) +

1

k

(
1 − p

k

)k−j
m∑

i=1

�(T ∗
i).

Finally,

m∑

i=1

(
gi(T k

i) + �i(T k
i)

)

=
k∑

j=1

(Φj(Sj) − Φj−1(Sj−1))

≥
k∑

j=1

(
1
k

(
1 − p + 1

k

)k−j m∑

i=1

gi(T ∗
i) +

1
k

(
1 − p

k

)k−j m∑

i=1

�(T ∗
i)

)

≥
(

1
p + 1

(1 − e−(p+1))
) m∑

i=1

gi(T ∗
i) +

(
1
p
(1 − e−p)

) m∑

i=1

�i(T ∗
i).

Theorem 2. There exists an algorithm returning a set Sk of size k such that

F (Sk) ≥
(
1
p
(1 − e−p) − kf

(
1
p
(1 − e−p) − 1

p + 1
(1 − e−(p+1))

))
OPT.

Two-Stage Submodular Maximization Under Curvature 33

Proof. According to the submodularity of gi, we have,

�i(T) =
∑

t∈T

fi(t|V \ {t}) ≥ (1 − kfi
)fi(T),

So,
m∑

i=1

fi(T
k
i) =

m∑

i=1

(
gi(T

k
i) + �i(T

k
i)

)

≥
(

1

p + 1
(1 − e

−(p+1)
)

) m∑

i=1

gi(T
∗
i) +

(
1

p
(1 − e

−p
)

) m∑

i=1

�i(T
∗
i)

=

(
1

p + 1
(1 − e

−(p+1)
)

) m∑

i=1

(
fi(T

∗
i) − �i(T

∗
i)

)
+

(
1

p
(1 − e

−p
)

) m∑

i=1

�i(T
∗
i)

=

(
1

p + 1
(1 − e

−(p+1)
)

) m∑

i=1

fi(T
∗
i) +

(
1

p
(1 − e

−p
) − 1

p + 1
(1 − e

−(p+1)
)

) m∑

i=1

�i(T
∗
i)

≥
(

1

p + 1
(1 − e

−(p+1)
)

) m∑

i=1

fi(T
∗
i) +

(
1

p
(1 − e

−p
) − 1

p + 1
(1 − e

−(p+1)
)

)
(1 − kf)

m∑

i=1

fi(T
∗
i)

=

(
1

p
(1 − e

−p
) − kf

(
1

p
(1 − e

−p
) − 1

p + 1
(1 − e

−(p+1)
)

)) m∑

i=1

fi(T
∗
i).

Hence, we can get,

F (Sk) ≥
(
1
p
(1 − e−p) − kf

(
1
p
(1 − e−p) − 1

p + 1
(1 − e−(p+1))

))
OPT

=
(
1 − kf

p
(1 − e−p) +

kf

p + 1
(1 − e−(p+1)

)
OPT,

where F (Sk) =
m∑

i=1

max
T∈I(Sk)

(fi(T k
i).

3 Conclusion

Many researchers made substantial contribution in submodular maximization
problem, but there are not much research done on the two-stage submodular
maximization problem. In the present paper, we consider the two-stage submod-
ular maximization problem subject to cardinality and p-matroid constraints, and
we propose a

(
1−kf

p (1 − e−p) + kf

p+1 (1 − e−(p+1))
)
-approximation algorithm for

it by replacement greedy method under curvature. In the future, we believe that
there will be more substantial progress in approximation algorithms for the two-
stage submodular maximization problem and the variant of it, and it will be
interesting to further improve the approximation ratios of these problems.

Acknowledgements. The research is supported by NSFC (Nos. 11871280,11971349,
12101314), Qinglan Project, Natural Science Foundation of Jiangsu Province (No.
BK20200723), and Natural Science Foundation for institutions of Higher Learning of
Jiangsu Province (No.20KJB110022).

34 Y. Li et al.

References

1. Bai, W., Bilmes J.A.: Greed is still good: maximizing monotone submodu-
lar+Supermodular (BP) functions. In: ICML, pp. 304–313 (2018)

2. Balkanski, E., Krause, A., Mirzasoleiman, B., Singer, Y.: Learning sparse combi-
natorial representations via two-stage submodular maximization. In: ICML, pp.
2207–2216 (2016)

3. Conforti, M., Cornuejols, G.: Submodular set functions, matroids and the greedy
algorithm: tight worst-case bounds and some generalizations of the Rado-Edmonds
theorem. Discrete Appl. Math. 7(3), 251–274 (1984)

4. Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Maximizing nonmonotone
submodular functions under matroid or knapsack constraints. SIAM J. Discrete
Math. 23(4), 2053–2078 (2010)

5. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning
word vectors for sentiment analysis. In: ACL-HLT,vol. 1, pp. 142–150 (2011)

6. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning for sparse
coding. In: ICML, pp. 689–696 (2009)

7. Schrijver, A.: Combinatorial optimization-polyhedra and efficiency. Algor. Combin.
24, 1–1881 (2003)

8. Stan, S., Zadimoghaddam, M., Krause, A., Karbasi, A.: Probabilistic submodular
maximization in sub-linear time. In: ICML, pp. 3241–3250 (2017)

9. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.: Stacked denois-
ing autoencoders: learning useful representations in a deep network with a local
denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

10. Yang, R., Gu, S., Gao, C., Wu, W., Wang, H., Xu, D.: A constrained two-stage
submodular maximization. Theor. Comput. Sci. 853, 57–64 (2021)

11. Zhou, M., Chen, H., Ren, L., Sapiro, G., Carin, L., Paisley, J.W.: Non-parametric
Bayesian dictionary learning for sparse image representations. In: NIPS, pp. 2295–
2303 (2009)

An Improved Approximation Algorithm
for Capacitated Correlation Clustering Problem

Sai Ji1, Yukun Cheng2(B), Jingjing Tan3, and Zhongrui Zhao4

1 Academy of Mathematics and Systems Science, Chinese Academy of Sciences,
Beijing 100190, People’s Republic of China

2 Suzhou University of Science and Technology, Suzhou 215009, People’s Republic of China
ykcheng@amss.ac.cn

3 School of Mathematics and Information Science, Weifang University, Weifang 261061,
People’s Republic of China

4 Department of Operations Research and Information Engineering, Beijing University
of Technology, Beijing 100124, People’s Republic of China

Abstract. Correlation clustering problem is a classical clustering problem and
has many applications in protein interaction networks, cross-lingual link detec-
tion, communication networks, etc. In this paper, we discuss the capacitated cor-
relation clustering problem on labeled complete graphs, in which each edge is
labeled + or − to indicate two endpoints are “similar” or “dissimilar”, respec-
tively. Our objective is to partition the vertex set into several clusters, subject to
an upper bound on cluster size, so as to minimize the number of disagreements.
Here the number of disagreements is defined as the total number of the edges
with positive labels between clusters and the edges with negative labels within
clusters. The main contribution of this work is providing a 5.37-approximation
algorithm for the capacitated correlation clustering problem, improving the cur-
rent best approximation ratio of 6 [21]. In addition, we have conducted a series
of numerical experiments, which effectively demonstrate the effectiveness of our
algorithm.

Keywords: Correlation clustering · Capacitated correlation clustering ·
Approximation algorithm · LP-rounding

1 Introduction

Clustering problems arise in many applications such as machine learning, computer
vision, data mining and data compression. These problems have been widely studied
in the literatures [5,9,11,13,19]. Compared with clustering problems, which need to
specify the number of clusters in advance, the correlation clustering problem does not
place this constraint on the clustering task. The correlation clustering problem was first
introduced by Bansal et al. [6], which has applications in protein interaction networks,
cross-lingual link detection, and communication networks, etc. Generally, a correlation
clustering problem is modeled on a labeled complete graph G = (V,E), in which each
edge (u, v) is labeled + or − to indicate the two vertices u and v are “similar” or “dis-
similar”, respectively. The goal is to partition the vertices into several disjoint subsets,
c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 35–45, 2021.
https://doi.org/10.1007/978-3-030-92681-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-92681-6_4

36 S. Ji et al.

each being called a cluster, so that the edges within clusters are mostly positive and
the edges between clusters are mostly negative. However the perfect clustering may
not exist because of the similarity assessments between vertices. Thus plenty of work
turned to seek an optimal clustering by considering two kinds of objectives of correla-
tion clustering. One is to maximize the number of agreements, which is defined as the
total number of positive edges within clusters and negative edges between clusters. The
other is to minimize the number of disagreements, that is the number of negative edges
within clusters plus the number of positive edges across clusters.

The correlation clustering problem is proved to be NP-hard [6], meaning that
one cannot obtain an optimal solution in polynomial time under the assumption that
P �= NP . Different approximation algorithms have been proposed for the correlation
clustering problem [1,7,18,22,23]. To be specific, for the minimization version, Bansal
et al. [6] provided a first constant-factor approximation algorithm. Charikar et al. [12]
proved that minimizing the number of disagreements is APX-hard. They gave a nature
integer programming and proved that the integrality gap of the LP formulation is 2.
Then, they presented a 4-approximation algorithm based on LP-rounding technique.
They also studied the correlation clustering problem on general graphs and in addi-
tion provided an O(log n)-approximation algorithm. Later, Ailon et al. [3] introduced a
simple randomized 3-approximation algorithm for the optimal problem to minimize the
number of disagreements. Until now, the best deterministic approximation algorithm for
the minimizing disagreements is an LP-rounding algorithm with 2.06-approximation
ratio, which was provided by Chawla et al. [14].

Besides the study on the correlation clustering problems, there are several inter-
esting variants of the correlation clustering problem, including overlapping correlation
clustering [8], correlation clustering in data streams [2], high-order correlation clus-
tering [17], correlation clustering with noisy input [20], correlation clustering problem
with constrained cluster sizes [21], min-max correlation clustering [4], and so on. In
this paper, we would discuss the correlation clustering problem with constrained clus-
ter sizes.

The correlation clustering problem with constrained cluster size was first intro-
duced by Puleo and Milenkovic [21]. In this problem, we are given a complete graph
G = (V,E) and an integer U . The goal of this problem is to partition the vertices
into several clusters that contain no more than U vertices so as to minimize the num-
ber of disagreements. Referring to other clustering problems [10,15,16], there are two
kinds of constraints on cluster size: lower bound constraint and capacity constraint.
Thus the problem introduced by Puleo and Milenkovic [21] is called the capacitated
correlation clustering problem more appropriately. Puleo and Milenkovic [21] intro-
duced a penalty parameter μv for each vertex v, if vertex v is clustered into a cluster C
with more than U vertices, then it occurs a penalty cost μv(|C| − U). They provided a
6-approximation algorithm for the weighted capacitated correlation clustering problem
by setting μv = 1,∀v ∈ V and splitting each cluster which contains more than U
vertices into several clusters that satisfy the size constraint. In this paper, we propose a
5.37-approximation algorithm for the capacitated correlation clustering problem, which
improves the current best approximation ratio. The improvement comes from following
two perspectives of innovations.

Capacitated Correlation Clustering Problem 37

(1) Innovation in Algorithm Design: Different from the previous work [21] by intro-
ducing a penalty cost for each vertex, we first model the capacitated correlation
clustering problem as an integer programming, and then design an algorithm based
on LP-rounding technique to directly output the feasible clusters, each subject to
the upper bound.

(2) Innovation in Theoretically Analysis: Based on our proposed algorithm, we com-
pute the number of disagreements corresponding to a cluster, by distinguishing
three cases. Especially, when analyzing the number disagreements caused by pos-
itive edges across clusters for one of cases, we innovatively expand the scope of
positive edges and skillfully use their corresponding values in the fractional optimal
solution of LP relaxation. Such an operation thus contributes the constant approxi-
mation ratio.

The rest of this paper is organized as follows. In Sect. 2, we provide the definition
of the capacitated correlation clustering problem, formulate its integer programming as
well as the corresponding LP relaxation. The approximation algorithm and the theoreti-
cal analysis are proposed in Sect. 3. Moreover, the numerical experiments are conducted
in Sect. 4 and the conclusions are given in the last section.

2 Preliminaries

In this section, we formulate the capacitated correlation clustering problem as an integer
programming as well as its corresponding relaxation.

Definition 1 (Capacitated Correlation Clustering Problem). Given a labeled com-
plete graph G = (V,E) as well as an integer U . A capacitated correlation clustering
problem is to partition the vertex set V into several clusters, subject to an upper bound
U on each cluster’s size, such that the number of disagreements is minimized.

For each edge (u, v) ∈ E, we introduce a binary decision variable xuv to indicate
whether two vertices u and v are in a same cluster. To be specific, if u and v lie in a same
cluster, then xuv = 0; otherwise xuv = 1. Then the capacitated correlation clustering
problem can be formulated as follows:

min
∑

(u,v)∈E+

xuv +
∑

(u,v)∈E−
(1 − xuv)

s. t. xuv + xvw ≥ xuw, ∀u, v, w ∈ V,∑

v∈V

(1 − xuv) ≤ U, ∀u ∈ V, (1)

xuu = 0, ∀u ∈ V,

xuv ∈ {0, 1}, ∀u, v ∈ V.

The value of the objective function is just equal to the number of disagreements, which
contains two parts. The first part is the number of disagreements caused by the posi-
tive edges between clusters and the second part is the number of disagreements coming
from the negative edges whose endpoints lie in the same cluster. There are three types

38 S. Ji et al.

of constraints in Programming (1). The first type of constraint ensures that the solution
output by Programming (1) is a feasible clustering of the correlation clustering prob-
lem. Since for any three vertices u, v, w ∈ V , if one cluster contains vertices u, v and
vertices v, w lie in a same cluster, then all of three vertices u, v, w must be in this clus-
ter, showing xuw = 0. The second type of constraint indicates the solution satisfies the
capacitated constraint and the third type is a natural one. By relaxing the variables, we
obtain the following LP relaxation of (1):

min
∑

(u,v)∈E+

xuv +
∑

(u,v)∈E−
(1 − xuv)

s. t. xuv + xvw ≥ xuw, ∀u, v, w ∈ V,∑

v∈V

(1 − xuv) ≤ U, ∀u ∈ V, (2)

xuu = 0, ∀u ∈ V,

xuv ∈ [0, 1], ∀u, v ∈ V.

3 Algorithm and Analysis

This section is one of crucial parts of this paper, in which we first provide our approxi-
mation Algorithm 1 in Subsect. 3.1 and then present the theoretical analysis for constant
approximation ratio in Subsect. 3.2.

3.1 Iterative Clustering Algorithm

Algorithm 1. Iterative clustering algorithm
Input: A labeled complete graph G = (V, E), positive integer U , parameter α ∈ (0, 1/2)
Output: A partition of vertices
1: Solve (2) to obtain the optimal fractional solution x∗

2: Let S := V
3: while S �= ∅ do
4: Select a vertex vi from S randomly. Let Tvi := {u ∈ S : x∗

uvi
≤ α}, and obtain T ∗

vi
=

{u1, · · · , umin{U,|Tvi
|}} ⊆ Tvi , satisfying x∗

viuj
≤ x∗

viuj+1 , j = {1, · · · , |Tvi | − 1}
5: if

∑
u∈T∗

vi
x∗
uvi

|T ∗
vi

| ≥ α
2
, then

6: Let Vi = {vi}
7: else
8: Let Vi = T ∗

vi

9: end if
10: Update S := S − Vi

11: end while
12: return the partition of V

Before providing Algorithm 1, let us introduce a high level description for it. There
are two main phases in this algorithm. In the first phase, we solve Programming (2)

Capacitated Correlation Clustering Problem 39

to obtain the optimal fractional solution x∗ (Line 1 in Algorithm 1). The value x∗
uv

can be viewed as the distance between vertex u and vertex v. The second phase is an
iterative process, which is the core of our algorithm (Lines 3–11 in Algorithm 1). In
each iteration, a vertex is selected randomly from the un-clustered vertices as a center,
and at most (U − 1) other vertices are also chosen from un-clustered vertices, based on
the distances between them and the current center, to form a new cluster. Such a step
is repeated until all the vertices are clustered, and therefore a feasible clustering for the
capacitated correlation problem is obtained ultimately.

3.2 Theoretical Analysis

Assume that there are k iterations in Algorithm 1, and thus vertex set V is partitioned
into k clusters, denoted by V1, · · · , Vk. At the end of the i-th iteration, the cluster Vi

must be one of three types:

– Type 1: Vi := {vi};
– Type 2: Vi := T ∗

vi
with T ∗

vi
⊂ Tvi

;
– Type 3: Vi := T ∗

vi
with T ∗

vi
= Tvi

.

Some useful properties can be explored based on the construction of Vi.

Property 1. Let Vi be the i-th cluster output from Algorithm 1. Then we have

(1) x∗
viu ≥ α ≥ x∗

viv , for any v ∈ T ∗
vi

and any u ∈ Vi\T ∗
vi
;

(2) 1 − x∗
qv ≥ 1−2α

2α x∗
qv, for any q, v ∈ Vi.

The first property can be derived from the construction of T ∗
vi

directly, and the second
one is correct because x∗

qv ≤ x∗
qvi

+ x∗
vvi

≤ 2α for any q, v ∈ Vi.
Let us denote [i] = {1, 2, · · · , i}, for any positive integer i. Based on the partition,

the number of the disagreements from negative edges is

∑

i∈[k]

|(w, p) ∈ E−, w, p ∈ Vi|, (3)

and the disagreements caused by positive edges is

∑

i∈[k]

∣∣(q, v) ∈ E+, q ∈ Vi, v ∈ ∪t∈[k]\[i]Vt

∣∣ . (4)

Subsequently, we would compute the upper bounds on the number of disagreements by
distinguishing three types of clusters, respectively.

Type 1 of Cluster. Because cluster Vi belongs to Type 1 (as shown in Fig. 1), the dis-
agreements generated by Vi must be the positive edges between vi and vertices in other
clusters. Therefore, the number of new disagreements contributed by cluster Vi of Type
1 is |(vi, v) ∈ E+, v ∈ ∪t∈[k]\[i]Vt| and the upper bound on number of disagreements
is shown in Lemma 1.

40 S. Ji et al.

Fig. 1. Type 1 of cluster.

Lemma 1. If cluster Vi returned by Algorithm 1 is of Type 1, then the number of dis-
agreements from edges (vi, v) ∈ E+, v ∈ ∪t∈[k]\[i]Vt has an upper bound of

2

α

⎡
⎢⎣

∑
(vi,v)∈E+,v∈∪t∈[k]\[i]Vt

x∗
viv +

∑
(vi,v)∈E−,v∈T ∗

vi

(1 − x∗
viv)

⎤
⎥⎦ .

Type 2 of Cluster. As Vi is of Type 2 (as shown in Fig. 2), we have Vi = T ∗
v1

⊂ Tvi
,

indicating |Vi| = U and ∅ �= Tvi
\T ∗

vi
⊆ ∪t∈[k]\[i]Vt. Different with Type 1, it is

possible that |Vi| ≥ 2, and thus there are two kinds of disagreements. One is from the
positive edges (q, v) ∈ E+ with q ∈ Vi and v ∈ V \Vi, and the other is from the
negative edges (w, p) ∈ E− with w, p ∈ Vi. For each q ∈ Vi, we use all positive edges
(q, v) ∈ E+, v ∈ V \Vi to upper bound the number of the first kind of disagreements
caused by vertex q, and the corresponding upper bound is shown in Lemma 2.

Fig. 2. Type 2 of cluster.

Lemma 2. Suppose that Vi is of Type 2. For each vertex q ∈ Vi, the number of dis-
agreements caused by positive edges (q, v) ∈ E+, v ∈ ∪t∈[k]\[i−1]Vt is upper bounded
by ∑

(q,v)∈E+,v∈∪t∈[k]\[i−1]Vt

x∗
qv +

2α

1 − 2α

∑
(q,v)∈E−,v∈Vi

(1 − x∗
qv).

To explore the upper bound of disagreements from negative edges, we can observe
that for any two vertices w, p ∈ Vi, x∗

w,p ≤ α and thus 1 − x∗
wp ≥ 1 − 2α, which

indicates |(w, p)| = 1 ≤ (1 − x∗
wp)/(1 − 2α). Therefore, following lemma can be

derived.

Capacitated Correlation Clustering Problem 41

Lemma 3. If Vi is of Type 2, then for each negative edge (w, p) ∈ E− with w, p ∈ Vi,
the number of disagreement caused by (w, p) can be bounded by (1 − x∗

wp)/(1 − 2α).

Type 3 of Cluster. As Vi is of Type 3 (as shown in Fig. 3), we have Vi = Tvi
and |Vi| =

|Tvi
| ≤ U . Similar to Type 2, there are also two kinds of disagreements, caused by the

negative edges within Vi and the positive edges between Vi and another cluster. The
disagreement of a negative edge (w, p) ∈ E−, w, p ∈ Vi is upper bounded by 1

1−2αx∗
wp

by Lemma 3. Next, we would analyze the upper bound on the number of disagreements
caused by positive edges (q, v) ∈ E+ for any q ∈ Vi and v ∈ ∪t∈[k]\[i]Vt, under two
conditions: x∗

viv ≥ 3α/2 and α ≤ x∗
viv < 3α/2, respectively. By applying the similar

proof in [12], we obtain the following lemma.

Fig. 3. Type 3 of cluster.

Lemma 4. If Vi is of Type 3, then the upper bound on the number of disagreements
caused by the positive edges satisfies:

(1) The number of disagreements from positive edges (q, v) ∈ E+, satisfying q ∈ Vi,
v ∈ ∪t∈[k]\[i]Vt and x∗

viv ≥ 3α/2, is upper bounded by 2x∗
qv/α;

(2) The number of disagreements from positive edges (q, v) ∈ E+, satisfying q ∈ Vi,
v ∈ ∪t∈[k]\[i]Vt and α ≤ x∗

viv < 3α/2, is upper bounded by

2

α

⎡
⎣ ∑

(q,v)∈E+,q∈Vi

x∗
qv +

∑
(q,v)∈E−,q∈Vi

(1 − x∗
qv)

⎤
⎦ .

Combining Lemma 1 - Lemma 4, we obtain Theorem 1.

Theorem 1. The number of disagreements returned by Algorithm 1 is bounded by

max

{
2

α
,
1 + 2α

1 − 2α

} ⎡
⎣ ∑

(u,v)∈E+

x∗
uv +

∑
(u,v)∈E−

(1 − x∗
uv)

⎤
⎦ ,

where x∗ is the optimal fractional solution of (2). By setting α =
√
33−5
2 , Algorithm 1

has an approximation ratio of 5.37.

42 S. Ji et al.

4 Numerical Experiments

In this section, we would explore the practicality of our proposed algorithm for three
kinds of data. Moreover, we verify the effectiveness of Algorithm 1 through different
values of the total number N of vertices and the upper bound U of cluster size.

4.1 Datasets

We test the performance of the Algorithm 1 by using three data sets. For the first data
set, we use the “Iris” data set, which contains 150 data samples divided into 3 categories
with 50 data in each category, each containing 4 attributes. Where the samples for the
same species are denoted as “+” and between different species as “–” to initialize the
graph.

Secondly, we run Algorithm 1 on the Census1990 data set. It consists of 2, 458, 285
data points with 68 attributes. The graph is initialized by using the attribute “age” for
clustering, marking people in the same age group as “+” and those in different age
groups as “–”.

Finally, we execute Algorithm 1 with “Heart Disease” data set. This data set is
integer valued from 0 (no presence) to 4. Experiments with the Cleveland database
have concentrated on simply attempting to distinguish presence (values 1, 2, 3, 4) from
absence (value 0). Thus samples of patients with the same type of heart disease (includ-
ing non-presence) are marked as “+” and different as “–”.

4.2 Experimental Setup and Results

Implementation Details. The code is really implemented on Pycharm 2017.3.2 using
Python 3.6. The entire experiment is implemented on a single process with an Intel(R)
Xeon(R) E5-2620 v4 CPU at 2.10GHz and 256 GB RAM.

Setting the Experiments Parameters. The way we set the hyperparameters is the same
regardless of which dataset is mentioned above. As mentioned before, we construct data
of different sizes to test the performance of Algorithm 1. Let the total number of vertices
of the undirected graph, N , increase gradually from 10 to 100 in steps of 10. Let the
capacity U of each cluster be 15%, 20%, 25%, 30% and 35% of the total number of
vertices respectively. Particularly, if U is a decimal, we shall round U to make sure that
U is an integer. Finally, we set the parameter α = (−5+

√
33)/2 in all data experiments.

Results. The results of the numerical experiment are shown in Table 1, Table 2 and
Table 3. In these three tables, approU=15% represents the ratio of output from Algo-
rithm 1 to the optimal solution of (2) when U is taken to be 15%. From Tables Table 1,
Table 2 and Table 3, we can observe that the approximation ratio of the instances after
running Algorithm 1 is much better than the one from the theoretical analysis. In the
three data sets experiments, the majority of approximation ratio, overwhelmingly, is
stabilized between 1 and 3.

Capacitated Correlation Clustering Problem 43

Table 1. “Iris” data. If U is a decimal, we round U to make sure that U is an integer.

N approU :15% approU :20% approU :25% approU :30% approU :35%

10 1.0000 1.1644 1.1088 1.7429 1.5849

20 1.2121 1.2914 1.3329 1.5855 2.0648

30 1.2373 1.3405 1.4910 1.7638 2.0028

40 1.3490 1.3211 1.6923 2.1276 1.7020

50 1.4204 1.6462 2.0924 2.0537 2.0969

60 1.5667 1.9695 2.4923 2.0704 1.8284

70 1.5898 2.0750 2.6694 1.7248 1.8674

80 1.7341 2.2943 2.9256 2.0912 1.7977

90 1.6923 2.3839 3.1530 1.7315 1.9228

100 1.7569 2.3796 2.8714 1.9916 1.9182

Table 2. “USCensus1990”data. If U is a decimal, we round U to make sure that U is an integer.

N approU :15% approU :20% approU :25% approU :30% approU :35%

10 1.0000 1.7111 1.3434 2.0000 1.5333

20 1.2988 1.7415 1.5400 1.8857 1.3944

30 1.4966 1.5413 1.4406 1.2400 1.2667

40 1.3817 1.8711 1.6540 1.7143 1.8667

50 1.3740 1.6954 2.0748 1.7270 1.8889

60 1.6924 1.7694 1.4809 1.7188 1.0000

70 1.8057 2.0932 2.4369 1.1818 1.0000

80 1.8541 2.3153 2.6482 3.4470 1.8065

90 1.7774 2.4853 2.0879 1.8000 1.8235

100 2.0046 2.8666 2.3304 1.8750 1.9444

Table 3. “Heart Disease”data. If U is a decimal, we round U to make sure that U is an integer.

N approU :15% approU :20% approU :25% approU :30% approU :35%

10 1.0000 1.6000 1.3612 1.2400 1.4000

20 1.3561 1.2580 1.1429 1.4857 1.2227

30 1.3628 1.6538 1.4185 1.4400 1.1636

40 1.4218 1.6566 1.7910 1.6505 1.1733

50 1.4339 1.8565 1.9156 1.0000 1.0000

60 1.6539 2.1737 1.7174 1.1600 1.1500

70 1.7318 2.2765 2.3931 1.4990 1.1840

80 1.9869 2.4635 2.0114 1.1692 1.0000

90 1.8665 2.7867 2.3616 1.2660 1.0000

100 2.3083 2.2376 2.2748 1.1636 1.1889

44 S. Ji et al.

5 Conclusions

In this article, we study the capacitated correlation clustering problem and give a
5.37-approximation algorithm for this problem. There are two directions for the future
research on correlation clustering problem. From the results of numerical experiments,
we realize that there is plenty of room for the improvement of the approximation ratio.
So one direction is to continue the study this problem and to obtain a better approxima-
tion ratio by innovating the algorithm. The other is to study other variants of the corre-
lation clustering problem, such as capacitated min-max correlation clustering problem
and capacitated correlation clustering problem in data streams.

Acknowledgements. The first author is supported by National Natural Science Foundation of
China (No. 12101594) and the Project funded by China Postdoctoral Science Foundation (No.
2021M693337). The second author is supported by National Nature Science Foundation of China
(No. 11871366), Qing Lan Project for Young Academic Leaders and Qing Lan Project for Key
Teacher. The third author is supported by Natural Science Foundation of Shandong Province (No.
ZR2017LA002). The fourth author is supported by National Natural Science Foundation of China
(No. 12131003) and Beijing Natural Science Foundation Project No. Z200002.

References

1. Ailon, N., Avigdor-Elgrabli, N., Liberty, E., Zuylen, A.V.: Improved approximation algo-
rithms for bipartite correlation clustering. SIAM J. Comput. 41(5), 1110–1121 (2012)

2. Ahn, K.J., Cormode, G., Guha, S., Mcgregor, A., Wirth, A.: Correlation clustering in data
streams. In: Proceedings of the 32nd International Conference on Machine Learning, pp.
2237–2246 (2015)

3. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and
clustering. J. ACM 55(5), 1–27 (2008)

4. Ahmadi, S., Khuller, S., Saha, B.: Min-max correlation clustering via multicut. In: Proceed-
ings of the 20th International Conference on Integer Programming and Combinatorial Opti-
mization, pp. 13–26 (2019)

5. Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J. : Better guarantees for k-means and
Euclidean k-median by primal-dual algorithms. In: Proceedings of the 58th Annual Sympo-
sium on Foundations of Computer Science, pp. 61–72 (2017)

6. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3), 89–113
(2004)

7. Bressan, M., Cesa-Bianchi, N., Paudice, A., Vitale, F.: Correlation clustering with adaptive
similarity queries. In: Proceedings of the 32nd Annual Conference on Neural Information
Processing Systems, pp. 12510–12519 (2019)

8. Bonchi, F., Gionis, A., Ukkonen, A.: Overlapping correlation clustering. Knowl. Inf. Syst.
35(1), 1–32 (2013)

9. Backurs, A., Indyk, P., Onak, K., Schieber, B., Vakilian, A., Wagner, T.: Scalable fair cluster-
ing. In: Proceedings of the 37th International Conference on Machine Learning, pp. 405–413
(2019)

10. Cohen-Addad, V.: Approximation schemes for capacitated clustering in doubling metrics.
In: Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
2241–2259 (2020)

Capacitated Correlation Clustering Problem 45

11. Choo, D., Grunau, C., Portmann, J., Rozhon, V.: k-means++: few more steps yield constant
approximation. In: Proceedings of the 37th International Conference on Machine Learning,
pp. 1909–1917 (2020)

12. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. J. Comput.
Syst. Sci. 3(71), 360–383 (2005)

13. Cohen-Addad, V., Klein, P.N., Mathieu, C.: Local search yields approximation schemes for
k-means and k-median in Euclidean and minor-free metrics. SIAM J. Comput. 48(2), 644–
667 (2019)

14. Chawla, S., Makarychev, K., Schramm, T., Yaroslavtsev, G.: Near optimal LP rounding algo-
rithm for correlation clustering on complete and complete k-partite graphs. In: Proceedings
of the 47th ACM Symposium on Theory of Computing, pp. 219–228 (2015)

15. Castro, J., Nasini, S., Saldanha-Da-Gama, F.: A cutting-plane approach for large-scale capac-
itated multi-period facility location using a specialized interior-point method. Math. Pro-
gram. 163(1–2), 411–444 (2021)

16. Filippi, C., Guastaroba, G., Speranza, M.G.: On single-source capacitated facility location
with cost and fairness objectives. Eur. J. Oper. Res. 289(3), 959–974 (2021)

17. Kim, S., Yoo, C.D., Nowozin, S., Kohli, P.: Image segmentation using higher-order correla-
tion clustering. IEEE Trans. Patt. Anal. Mach. Intell. 36(9), 1761–1774 (2014)

18. Lange, J.H., Karrenbauer, A., Andres, B.: Partial optimality and fast lower bounds for
weighted correlation clustering. In: Proceedings of the 35th International Conference on
International Conference on Machine Learning, pp. 2892–2901 (2018)

19. Li, S., Svensson, O.: Approximating k-median via pseudo-approximation. SIAM J. Comput.
45(2), 530–547 (2016)

20. Mathieu, C., Schudy, W.: Correlation clustering with noisy input. In: Proceedings of the 21th
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 712–728 (2010)

21. Puleo, G.J., Milenkovic, O.: Correlation clustering with constrained cluster sizes and
extended weights bounds. SIAM J. Optim. 25(3), 1857–1872 (2015)

22. Thiel, E., Chehreghani, M.H., Dubhashi, D.: A non-convex optimization approach to corre-
lation clustering. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence,
pp. 5159–5166 (2019)

23. Veldt, N., Wirth, A., Gleich, D.F.: Parameterized correlation clustering in hypergraphs
and bipartite graphs. Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1868–1876 (2020)

The Selection of COVID-19 Epidemic
Prevention and Control Programs Based

on Group Decision Making

Chunsheng Cui, Baiqiu Li(B), and Liu Wang

Henan University of Economics and Law, Zhengzhou 450046, Henan, China

Abstract. COVID-19 has been sweeping the world for nearly two years.
As the virus continues to mutate, epidemic prevention and control has
become a long and experienced war. In the face of the sudden spread
of virus strains, how to quickly and effectively formulate prevention and
control plans is the most important to ensure the safety and social stabil-
ity of cities. This paper is based on the characteristics of the persistence
of the epidemic and the rapid transmission of the mutant strain, as well
as the database of epidemic prevention and control plans formed by the
existing prevention and control. Then, epidemic prevention experts select
effective alternatives from the program database and rank their prefer-
ences through the preliminary analysis of the local epidemic situation.
The process of the integration scheme is to minimize the differences to
maximize the needs of the local epidemic, and then obtain the consensus
ranking of the scheme and determine the final prevention and control
scheme. The proposed method of this paper, on the one hand, can opti-
mize the opinions of the epidemic prevention expert group and form a
consensus decision. On the other hand, it can save time and carry out
the work effectively, which is of certain practical significance to the pre-
vention and control work of local outbreaks.

Keywords: Epidemic prevention and control · Group decision
making · Alternative ranking · Consensus reaching

1 Introduction

At the end of 2019, COVID-19 erupted in Wuhan, China, spreading to many
countries and regions around the world [13]. At present, novel coronavirus pro-
duces many mutated strains that have posed a serious threat to world health
safety, such as Alpha, Beta, Gamma, Delta and Lambda, and so on. The trans-
mission rate and carrying capacity of the mutated virus far exceed the original
virus, which increases the difficulty of the epidemic prevention and control work.
Judging from the current international epidemic situation, human beings will
coexist with the novel coronavirus for a long time, and the work of epidemic
prevention and control is becoming the norm. In May 2021, Guangzhou became
the first city in China to fight Delta variant strains and handled the outbreak
c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 46–60, 2021.
https://doi.org/10.1007/978-3-030-92681-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-92681-6_5

The Selection of COVID-19 Epidemic Prevention and Control Programs 47

perfectly within a month. In August of the same year, the epidemic broke out and
spread in Nanjing, Yunnan, Yangzhou, Zhengzhou and other cities. The speed of
transmission was as fast as possible, which once again triggered the new think-
ing of epidemic prevention and control experts and even people in all countries.
Based on this, this paper considers how to quickly and effectively formulate pre-
vention and control solutions to ensure urban safety and social stability in view
of the continuous variation of novel coronaviruses at this stage.

In the face of major issues, group decision making is a crucial step in deter-
mining the final programme. It is to integrate the preferences of multiple decision
makers into group preferences [8,9]. What’s more, it is considered an efficient and
accurate means to make optimal decisions quickly, so many experts in different
fields devote time and energy to study group decision making in depth [18,21].
The first group of experts on group decision making focused on voting [14]. And
the simple majority principle is the most typical and widely used in group deci-
sion making [1,5]. Group decision making is designed to achieve the consensus
of group opinions, so the use of a consensus mechanism in group decision mak-
ing is conducive to the smooth implementation of group programs, but also
conducive to building a more harmonious interpersonal relationship within the
organization [16]. Then, experts studying group decision making try to maxi-
mize consensus to rank alternatives, and many scholars measure the preferences
of experts based on fuzzy quantitative [6,15]. Due to the influence of the objec-
tive factors such as the uncertainty of things themselves and the subjective
factors such as the knowledge structure and judgment level of decision-makers,
the views of decision-makers tend to be greatly different [7]. Cook et al. [4] pro-
posed the Borda-Kendall method to measure consensus for ranking alternatives,
but distance-based approaches sometimes fail to properly reflect consensus in
group decision making. Huo et al. [12] put forward a concept based on premetric
to express different opinions of experts, identify the differences among experts
when ranking the alternatives, negotiate and adjust the preferences of experts
with the largest differences, and finally obtain the ranking of the alternatives
with the smallest differences, which makes up for the deficiency of distance-based
identification method. Next, Hou’s subsequent paper followed a post-consensus
analysis of the methodology to facilitate new insights into the alternatives [17].
Group decision making has been widely used in failure mode and impacts anal-
ysis, supply chain management, water resources management and other fields.
At present, group decision-making has also been studied in emergency decision-
making and disaster management [19,20]. However, there is little research on
how to make decisions on many prevention and control solutions in the face of
the changing COVID-19 situation.

With the rapid development of 2019 novel coronavirus mutation strains, rapid
prevention and control of the new outbreak point is the focus of the current
epidemic prevention and control. Because of the rapid spread of variant strains,
once it is found that the source of infection in the outbreak is variant strains,
the government departments should quickly analyze the situation and organize
experts to put forward prevention and control solutions for the local epidemic.

48 C. Cui et al.

In this context, this paper studies that the expert group selects the alternatives
suitable for this epidemic according to the existing epidemic prevention schemes.
Then, according to the method proposed by Huo et al. [10–12], select the solution
that the expert group considers most to meet the needs of the local epidemic.
Experts express their preferences for a program faster than scoring it, which can
save time, improve efficiency and reduce the spread of population in decision
making on epidemic programs.

The rest of the paper is arranged as follows: The second part introduces
the group decision making methods used in this paper, including the concepts
of preference map, consensus gap, and consensus evaluation sequence and so
on. The third part introduces the general process of group decision making of
epidemic control programs from the perspective of epidemic persistence and
rapid transmission of variant strains. The fourth part applies the decision making
method proposed in the third part to the selection of control schemes for the
spread of mutant strains, taking nucleic acid testing (NAT) as an example. At
the same time, compared with the existing group decision making methods, the
method used in this paper is more suitable for the decision making of epidemic
prevention and control programs. Finally, the fifth part is the conclusions and
prospects of this paper.

2 Theoretical Basis

This paper studies how to rank the epidemic preventive measures based on expert
preferences. This part briefly describes the basic theories and concepts used
[10–12].

Let E = {e1, e2, . . . , em} be the set of the expert group and A =
{a1, a2, . . . , an} be the alternatives to be ranked, where 1 < m < +∞ and
1 < n < +∞. Assuming that expert preferences are considered to allow a paral-
lel sequencing, and the alternatives in a tie are arranged in the same positions,
which are continuous positive integers.

Definition 1 [10]. A sequence (Si)n×1 is called the preference map (PM) of the
alternation set A with respect to the order relation �, if and only if the following
is true: Si = {|Pi| + 1, |Pi| + 2, . . . , |Pi| + |Qi|}, where Pi = {aj |aj ∈ A, aj � ai}
and Qi = {ak|ak ∈ A, ai ∼ ak}.

Definition 1 is based on the following two definitions:
A sequence (Pi)n×1 is called the predominance sequence of the alternation

set A with respect to the order relation �, if and only if the following is true:
Pi = {aj |aj ∈ A, aj � ai}.

A sequence (Qi)n×1 is called the indifference sequence of the alternation
set A with respect to the order relation �, if and only if the following is true:
Qi = {ak|ak ∈ A, ai ∼ ak}.

The Selection of COVID-19 Epidemic Prevention and Control Programs 49

Definition 2 [10]. Assume that V (1) = (V (1)
i)n×1, V (2) = (V (2)

i)n×1 are two
PMs of the experts, then the consensus gap between them is defined as follows:

Δ(V (1), V (2)) =
n∑

i=0

δ(V (1), V (2))

=
n∑

i=1

max{0,min V
(1)
i − max V

(2)
i ,min V

(2)
i − max V

(1)
i }.

The consensus gap index is a premetric, which satisfies only the properties
non-negativity and symmetry, so as to represent the disagreement between the
two preference maps.

Moreover, a dispute matrix that is associated with the expert’s disagreements
on alternatives is defined by DispM = (Sik)n×n, where DispM = (Sik)n×n

represents the total gap of the experts if ai is to be ranked at position k.

Definition 3 [10,11]. Assume that V (1) = (V (1)
i)n×1, V

(2) = (V (2)
i)n×1, . . . ,

V (m) = (V (m)
i)n×1 are the PMs of the experts. The experts are in consensus if,

and only if ∀i(V (1)
i ∩ V

(2)
i ∩ · · · ∩ V

(m)
i 	= ∅). The consensus ranking is (Wi),

where
⎛

⎜⎜⎜⎝

W1

W2

...
Wn

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎜⎝

V
(1)
1

V
(1)
2
...

V
(1)
n

⎞

⎟⎟⎟⎟⎠
∩

⎛

⎜⎜⎜⎜⎝

V
(2)
1

V
(2)
2
...

V
(2)
n

⎞

⎟⎟⎟⎟⎠
∩ · · · ∩

⎛

⎜⎜⎜⎜⎝

V
(m)
1

V
(m)
2
...

V
(m)
n

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

⋂m
k=1 V

(k)
1⋂m

k=1 V
(k)
2

...⋂m
k=1 V

(k)
n

⎞

⎟⎟⎟⎟⎠
.

The consensus gap between each pair of PMs represents differences between
the two experts, and the disagreement matrix represents the disagreement among
all experts.

The disagreement matrix is defined as:

D = (Δjk)(m×m), where Δjk = Δ(V (j), V (k)).

Definition 4 [12]. The Consensus Evaluation Sequence (CES) is defined as fol-
lows:

CES = [GCI;MDP,PDisaI;MDA,MDispI].

The consensus evaluation sequence (CES) represents the degree of expert
consensus on the ranking of alternatives. It contains the group consensus index
(GCI), the maximum disagreement pairs (MDP), the pairwise disagreement
index (PDisaI), the maximum dispute alternatives (MDA) and the maximum
dispute index (MDisaI).

(1) GCI indicates the proportion of the number of expert pairs that reach con-
sensus among all possible expert pairs. It is defined as follows:

GCI =
2
∑m−1

i=1

∑m
j=j+1 ρij

m(m − 1)
,where ρij =

{
1, Δij = 0,

0, others.
(1)

50 C. Cui et al.

The range of values of the GCI is [0, 1]. GCI = 1 expresses that the experts
reach a complete consensus, and the bigger GCI expresses that the higher
the consensus level of the experts.

(2) PDisaI indicates the biggest disagreement among the experts. It is defined
as follows:

PDisaI = max
j

{max
k

{Δjk|j < k}}. (2)

PDisaI = 0 indicates that the experts have a complete consensus on each
choice; otherwise, PDisaI represents the largest inconsistency value of the
expert group.

(3) MDP implies the expert pairs with the biggest differences. It is defined as
follows:

MDP = {(j, k)|Δjk = PDisaI, j < k,Δjk < 0}. (3)

MDP represents the subscript-pair set of expert pairs with that index value,
if PDisaI is not 0.

(4) MDispI indicates the most controversial index of experts on alternatives. It
is defined as follows:

MDispI = max
i

min
k

{Sik}. (4)

MDispI = 0 shows that the experts have no controversy about the ranking
of each alternative; otherwise, MDispI represents the maximum controversial
value of the experts for the alternatives.

(5) MDA implies the alternative with the biggest disagreement. It is defined as
follows:

MDA = {i|Sik = MDispI, Sik > 0}. (5)

MDA represents the subscript set of alternatives with that index value, if
MDisaI is not 0.

Decision-makers can identify whether the group of experts fully reaches con-
sensus from the CES. Also, decision-makers can get expert pairs who have the
maximum disagreement and the alternatives which have the maximum contro-
versial value, if the group of experts is not in consensus.

3 General Process of Group Decision Making in Epidemic
Prevention and Control Programs

At present, the epidemic is usually caused by the spread of new coronavirus,
showing new characteristics, such as long duration, wide range, strong trans-
mission ability, high viral load of infected patients, the rapid development of
patients and so on. The measures of epidemic prevention and control need to be
formulated and implemented according to the changing situation of the epidemic.
Therefore, the epidemic prevention and control programs require to be developed
rapidly, effective and enforceable. Since the novel coronavirus mutates rapidly,
the control of the epidemic is related to the immediate safety of the people and

The Selection of COVID-19 Epidemic Prevention and Control Programs 51

social stability. When formulating epidemic prevention and control policies, the
government ought to screen out the existing epidemic prevention and control
schemes according to the local epidemic situation, rather than simply copying
the solutions adopted at the last outbreak. Then ask the experts to make group
decisions and choose the best alternative to meet local needs.

The goal of group decision making is to comprehensively consider the opinions
of various experts, integrate individual decision making into group decision mak-
ing, and ultimately reach expert consensus to the maximum extent to determine
the most feasible alternative. Group decision making can adopt the opinions of
experts from various aspects, so as to break the limitations of individual knowl-
edge and thinking, and reduce the error rate in decision making of epidemic
prevention and control.

Based on the selection of epidemic prevention and control plans, this paper
puts forward the following steps:

Step1: Propose feasible solutions.
Epidemic prevention and control policies involve all aspects, each of which is

an independent decision. The final promulgated prevention and control policies
are the sum of all aspects of decision making. Among them, the control policies,
the nucleic acid testing policies and the traffic control programs are the three
aspects that should be first decided in the early outbreak of the epidemic. After
nearly two years of experience, a database of epidemic prevention and control
plans has been formed. Select a set of options suitable for the local epidemic in
the program library, denoted Xi(i = 1, 2, .., n).

Step 2: Select experts and rank the alternatives in preference.
First, identify the experts involved in the decision making of the scheme

according to their professional direction (if necessary, experts with similar or
less divergent preferences are grouped according to their previous ranking pref-
erences). The expert group is denoted as Ei(i = 1, 2, ...,m). Then, based on
the feasible alternatives proposed in step 1, each expert makes a comprehen-
sive ranking according to the feasibility, implementation effectiveness, control
strength and other aspects of the alternatives.

Step 3: Form expert preference maps (PMs) for the ranking of alternatives.
Based on expert ranking, expert preferences are transformed into PMs

according to Definition 1. Define Consensus Evaluation Sequence (CES) and con-
firm acceptable thresholds for the Group Consensus Index (GCI).

Step 4: Build up a dispute matrix, calculate the pairwise disagreement index
(PDisaI) and determine whether the experts reach a consensus.

The dispute matrix is constructed according to the PMs. And then obtain
the PDisaI. If PDisaI = 0 or GCI reaches an acceptable threshold, it indicates
that experts reach a consensus on the ranking of epidemic prevention and control
schemes, which is solved according to Definition 3; otherwise, turn to step 5.

Step 5: Iterate over the preference ranking of experts for alternatives.
Since experts do not reach a consensus on the order of the epidemic preven-

tion and control plan, choose a Δij(i < j and Δij > 0) in descending order
of the dispute index. Through negotiating with experts related to the selected

52 C. Cui et al.

Δij , modify their preferences for the order of alternatives. If the two experts do
not agree to modify their rankings, then move to another pair of experts with
Δij > 0 and i < j. If none of these experts are willing to change their rankings,
go to Step 6; otherwise, after obtaining the corrected preference order obtained
by the experts, go to step 3.

Step 6: Build an assignment model to minimize the divergence.
The assignment model is established as follows:

min f =
∑

i

∑

k

xikSik

s.t.
n∑

i=1

xik = 1, k = 1, 2, . . . , n,

k∑

i=1

xik = 1, i = 1, 2, . . . , n,

xik = 0, 1, i, k = 1, 2, . . . , n.

Sik is obtained by Definition 2, indicating the total consensus gap for experts
if Xi is to be ranked at position k. Then solve the assignment model.

Step 7: Analyze the results.
According to the results of the allocation model, the final program ranking

is obtained. Then, analyze the consensus results and determine the selected
epidemic prevention and control solution.

4 The Realization of Group Decision Making for NAT
Solutions in Epidemic Prevention and Control

In view of the new situation of the novel coronavirus epidemic, the mutant strains
suddenly spread in a city, and the epidemic prevention and control center is
expected to make decisions quickly.

Next, the selection of nucleic acid testing scheme is taken as an example to
introduce the application of group decision making method in the formulation
of novel coronavirus prevention and control policies.

Step 1: Propose feasible solutions.
In view of the current situation of COVID-19, epidemic prevention and con-

trol experts have screened six alternative plans based on the existing database
of epidemic prevention and control plans. The above six alternatives are denoted
as {X1,X2,X3,X4,X5,X6}.

X1: Organize citizens to carry out six nucleic acid testing on the 1st, 4th, 7th,
10th, 13th, and 16th days after the closure of the area. In nucleic acid sampling,
nucleic acid testing in medium and high-risk areas and the containment area is
performed by one-to-one testing method, and priority is given. Testing of the key
population is adopted 5 individual test samples mixed into one reagent, as well
as the testing of the common population is adopted 10 individual test samples
mixed into one reagent. All work need to be done at off-peak.

The Selection of COVID-19 Epidemic Prevention and Control Programs 53

X2: Organize a round of nucleic acid testing every three days until no new
cases and asymptomatic infections. Nucleic acid testing needs to be done at least
6 times per person. Single sample testing is adopted in key control areas. The
testing of the common population is adopted 10 individual test samples mixed
into one reagent.

X3: Four nucleic acid testings need to be conducted for citizens in high-risk
areas on the 1st, 4th, 7th and 14th days after the closure of the area. Three
nucleic acid testings (each time is separated at least 24 h apart) need to be
conducted for citizens in medium risk areas on the 1st, 4th, 7th and 14th days
after the closure of the area. Other people in the city needed to be tested once.
A single check is used for everyone.

X4: Four times (on the 1st, 4th, 7th, 14th days of isolation) of one-to-one
nucleic acid testing is organized. The detection objects are confirmed cases,
suspected cases, asymptomatic cases, close contacts and resident population,
migrant workers and foreigners within their scope of activities.

X5: Organize citizens in the closed area to carry out NAT five times, on the
1st, 4th, 7th, 10th, 14th days of quarantine. Organize citizens in the control area
to carry out NAT four times, on the 1st, 4th, 7th and 14th days of quarantine.
Other people in the city do not go out unless necessary and stay at home to
quarantine.

X6: Organize confirmed cases and close contacts to carry out NAT five times
on the 1st, 4th, 7th, 10th and 14th days of quarantine. At the same time, organize
the second close contacts to carry out NAT three times, on the 1st, 4th and 7th
days of quarantine. Single check is used for everyone.

Step 2: Select experts and rank the alternatives in preference.
Among the 30 experts in the Center for Epidemic Prevention and Control,

select 6 experts in the direction of nucleic acid detection to make decisions on
the nucleic acid testing scheme in the outbreak area. Six experts are denoted as
{X1,X2,X3,X4,X5,X6}.

The group of experts sorts the six alternatives according to their preferences,
and the ranking is allowed parallel. The experts’ preferences are as follows:

E1 : X1 ∼ X2 � X5 � X3 ∼ X4 ∼ X6,

E2 : X1 � X2 � X5 � X3 � X4 ∼ X6,

E3 : X1 ∼ X3 ∼ X4 � X2 � X5 ∼ X6,

E4 : X1 ∼ X2 � X3 ∼ X4 � X5 � X6,

E5 : X1 ∼ X2 � X3 ∼ X4 ∼ X5 � X6,

E6 : X1 � X2 � X3 ∼ X5 � X4 ∼ X6.

Step 3: Form expert preference maps (PMs) for the ranking of alternatives.

54 C. Cui et al.

According to Definition 1, the PMs of the experts based on the above experts’
preferences are obtained as follows:

V (1)

X1

X2

X3

X4

X5

X6

⎛
⎜⎜⎜⎜⎜⎜⎝

{1, 2}
{1, 2}
{4, 5, 6}
{4, 5, 6}
{3}

{4, 5, 6}

⎞
⎟⎟⎟⎟⎟⎟⎠

,

V (2)⎛
⎜⎜⎜⎜⎜⎜⎝

{1}
{2}
{4}
{5, 6}
{3}
{6}

⎞
⎟⎟⎟⎟⎟⎟⎠

,

V (3)⎛
⎜⎜⎜⎜⎜⎜⎝

{1, 2, 3}
{4}

{1, 2, 3}
{1, 2, 3}
{5, 6}
{6, 6}

⎞
⎟⎟⎟⎟⎟⎟⎠

,

V (4)⎛
⎜⎜⎜⎜⎜⎜⎝

{1, 2}
{1, 2}
{3, 4}
{3, 4}
{5}
{6}

⎞
⎟⎟⎟⎟⎟⎟⎠

,

V (5)⎛
⎜⎜⎜⎜⎜⎜⎝

{1, 2}
{1, 2}
{3, 4, 5}
{3, 4, 5}
{3, 4, 5}
{6}

⎞
⎟⎟⎟⎟⎟⎟⎠

,

V (6)⎛
⎜⎜⎜⎜⎜⎜⎝

{1}
{2}
{3, 4}
{5, 6}
{3, 4}
{5, 6}

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Identify 1 as the acceptable GCI threshold.
Step 4: Build up a dispute matrix, calculate the pairwise disagreement index

(PDisaI) and determine whether the experts reach a consensus.
According to Definition 2, the disagreement matrix D0 is obtained as follows:

D0 = (Δij)6×6 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 6 2 0 0
0 0 7 3 0 0
6 7 0 2 2 5
2 3 2 0 0 2
0 0 2 0 0 0
0 0 5 2 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
.

The pairwise disagreement index (PDisaI) is calculated by formula (2):

PDisaI = 7 	= 0

The group consensus index (GCI) is calculated by using formula (1):

GCI =
7
15

Obviously, the group of experts is not in consensus. The consensus evaluation
sequence (CES) at this time is:

CES = [GCI =
7
15

;MDP = {(2, 3)}, PDisaI = 7;

MDA = {5},MDispI = 4]

It shows that a pair of experts with the maximum controversy is (E2, E3),
and the experts have the maximum disagreement on alternative X5.

Step 5: Iterate over the preference ranking of experts for alternatives.
Iteration 1:
Because expert 2 and expert 3 have the maximum disagreement, we ask

experts 2 and 3 to modify their preferences by negotiating. The changed prefer-
ences by them are as follows:

E2 : X1 � X2 � X3 ∼ X4 � X5 ∼ X6,

E3 : X1 ∼ X2 � X3 ∼ X4 � X5 ∼ X6.

The Selection of COVID-19 Epidemic Prevention and Control Programs 55

Based on Definition 1, the PMs of the experts are as follows:

V (1)

X1

X2

X3

X4

X5

X6

⎛

⎜⎜⎜⎜⎜⎜⎝

{1, 2}
{1, 2}

{4, 5, 6}
{4, 5, 6}

{3}
{4, 5, 6}

⎞

⎟⎟⎟⎟⎟⎟⎠
,

V (2)
⎛

⎜⎜⎜⎜⎜⎜⎝

{1}
{2}

{3, 4}
{5, 6}
{3, 4}
{5, 6}

⎞

⎟⎟⎟⎟⎟⎟⎠
,

V (3)
⎛

⎜⎜⎜⎜⎜⎜⎝

{1, 2}
{1, 2}
{3, 4}
{3, 4}
{5, 6}
{6, 6}

⎞

⎟⎟⎟⎟⎟⎟⎠
,

V (4)
⎛

⎜⎜⎜⎜⎜⎜⎝

{1, 2}
{1, 2}
{3, 4}
{3, 4}
{5}
{6}

⎞

⎟⎟⎟⎟⎟⎟⎠
,

V (5)
⎛

⎜⎜⎜⎜⎜⎜⎝

{1, 2}
{1, 2}

{3, 4, 5}
{3, 4, 5}
{3, 4, 5}

{6}

⎞

⎟⎟⎟⎟⎟⎟⎠
,

V (6)
⎛

⎜⎜⎜⎜⎜⎜⎝

{1}
{2}

{3, 4}
{5, 6}
{3, 4}
{5, 6}

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Based on Definition 2, the disagreement matrix D1 is built as follows:

D1 = (Δij)6×6 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 2 2 0 0
0 0 2 0 0 0
2 2 0 0 0 2
2 0 0 0 0 2
0 0 0 0 0 0
0 0 2 2 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
.

PDisaI is calculated by using formula (2):

PDisaI = 2 	= 0

CGI is calculated by using formula (1):

CGI =
10
15

=
1
3

Obviously, the group of experts is still not in consensus. The consensus eval-
uation sequence (CES) at this time is:

CES = [GCI =
1
3
;MDP = {(1, 3), (2, 3), (1, 4), (3, 6), (4, 6)}, PDisaI = 2;

MDA = {5},MDispI = 4].

We can obtain that there are five pairs of experts that have the maximum
disagreement: E1 and E3; E2 and E3; E1 and E4; E3 and E6; E4 and E6.
Meanwhile, the experts have the maximum disagreement on alternative X5.

Iteration 2:
According to the comprehensive consideration of the parameter values in the

above CES, we randomly selected a pair of experts in the six most controversial
experts in this iteration, and finally we selected experts 1 and 3 for consultation.

The preferences modified after consultation between experts 1 and 3 are as
follows:

E1 : X1 ∼ X2 � X5 � X3 ∼ X4 ∼ X6,

E3 : X1 ∼ X2 � X3 ∼ X4 ∼ X5 ∼ X6.

56 C. Cui et al.

According to Definition 1, at this time, the PMs of the experts are as follows:

V (1)

X1

X2

X3

X4

X5

X6

⎛
⎜⎜⎜⎜⎜⎜⎝

{1, 2}
{1, 2}
{4, 5, 6}
{4, 5, 6}
{3}

{4, 5, 6}

⎞
⎟⎟⎟⎟⎟⎟⎠

,

V (2)⎛
⎜⎜⎜⎜⎜⎜⎝

{1}
{2}
{3, 4}
{5, 6}
{3, 4}
{5, 6}

⎞
⎟⎟⎟⎟⎟⎟⎠

,

V (3)⎛
⎜⎜⎜⎜⎜⎜⎝

{1, 2}
{1, 2}

{3, 4, 5, 6}
{3, 4, 5, 6}
{3, 4, 5, 6}
{3, 4, 5, 6}

⎞
⎟⎟⎟⎟⎟⎟⎠

,

V (4)⎛
⎜⎜⎜⎜⎜⎜⎝

{1, 2}
{1, 2}
{3, 4}
{3, 4}
{5}
{6}

⎞
⎟⎟⎟⎟⎟⎟⎠

,

V (5)⎛
⎜⎜⎜⎜⎜⎜⎝

{1, 2}
{1, 2}
{3, 4, 5}
{3, 4, 5}
{3, 4, 5}
{6}

⎞
⎟⎟⎟⎟⎟⎟⎠

,

V (6)⎛
⎜⎜⎜⎜⎜⎜⎝

{1}
{2}
{3, 4}
{5, 6}
{3, 4}
{5, 6}

⎞
⎟⎟⎟⎟⎟⎟⎠

.

According to Definition 2, the disagreement matrix D2 is built as follows:

D2 = (Δij)6×6 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 2 0 0
0 0 0 0 0 0
0 0 0 0 0 0
2 0 0 0 0 2
0 0 0 0 0 0
0 0 0 2 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Then, PDisaI is calculated by using formula (2) and CGI is calculated by
using formula (1):

PDisaI = 2 	= 0, GCI =
13
15

Now, we can obtain that CES is as follows:

CES = [GCI =
1
3
;MDP = {(1, 3), (2, 3), (1, 4), (3, 6), (4, 6)}, PDisaI = 2;

MDA = {5};MDispI = 4].

Based on the Iteration 2, there are two pairs of experts having the maximum
disagreement. They are experts 1 and 4 and experts 4 and 6. And the experts
still have the maximum disagreement on alternative X5.

Iteration 3: We ask experts 4 and 6 to modify their preferences by negotiating,
but neither of them wants to compromise.

Iteration 4: We ask experts 4 and 6 to modify their preferences by negotiating,
but neither of them wants to modify.

Step 6: Build an assignment model to minimize the divergence.
The expert group has not yet reached a consensus on the sequencing of

alternatives following the iterative consultations. We minimize differences by
constructing an assignment model:

The Selection of COVID-19 Epidemic Prevention and Control Programs 57

min f =
6∑

i=1

6∑

k=1

xikSik

s.t.
6∑

i=1

xik = 1, k = 1, 2, 3, 4, 5, 6,

6∑

i=1

xik = 1, i = 1, 2, 3, 4, 5, 6,

xik = 0, 1, i, k = 1, 2, 3, 4, 5, 6.

Solve the model and the final ranking with minimal disagreement is as follows:

X1 � X2 � X4 � X5 � X3 � X6.

Step 7: Analyze the results.
It shows that the NAT scheme X1 is most suitable for the local epidemic in

the face of sudden transmission of mutant strains in the city.
Next, the Cook-Seiford method [2,3] is used to solve the decision making

problem of the above epidemic prevention and control, and the results are com-
pared with the results obtained in this paper.

Firstly, the sequential ranking is indicated by the Cook-Seiford Vector (CSV)
based on the initial expert ranking of the alternatives.

CSV is represented by medians for parallel rankings, and ultimately assigns
an ordinary single number to all experts’ ordering for each alternative. For exam-
ple, {1, 2} is represented as {1.5}, and {1, 2, 3} is represented as {2}. Thus,
the original expert preferences for alternatives in the above examples can be
expressed as:

CSV (1)

X1

X2

X3

X4

X5

X6

⎛

⎜⎜⎜⎜⎜⎜⎝

1.5
1.5
5
5
3
5

⎞

⎟⎟⎟⎟⎟⎟⎠
,

CSV (2)
⎛

⎜⎜⎜⎜⎜⎜⎝

1
2
4

5.5
3

5.5

⎞

⎟⎟⎟⎟⎟⎟⎠
,

CSV (3)
⎛

⎜⎜⎜⎜⎜⎜⎝

2
4
2
2

5.5
5.5

⎞

⎟⎟⎟⎟⎟⎟⎠
,

CSV (4)
⎛

⎜⎜⎜⎜⎜⎜⎝

1.5
1.5
3.5
3.5
5
6

⎞

⎟⎟⎟⎟⎟⎟⎠
,

CSV (5)
⎛

⎜⎜⎜⎜⎜⎜⎝

1.5
1.5
4
4
4
6

⎞

⎟⎟⎟⎟⎟⎟⎠
,

CSV (6)
⎛

⎜⎜⎜⎜⎜⎜⎝

1
2

3.5
5.5
3.5
5.5

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Secondly, calculate the Cook-Seiford distance between every two CSVs and
represent the problem as assigned problem:

dik =
6∑

i=1

|al
i − k|

58 C. Cui et al.

The distance matrix is obtained as follows:

(dik)6×6 =

⎛

⎜⎜⎜⎜⎜⎜⎝

2.5 3.5 9.5 15.5 21.5 27.5
6.5 3.5 7.5 11.5 17.5 23.5
16 10 6 4 8 14

19.5 13.5 9.5 6.5 6.5 10.5
18 12 6 5 7 12

27.5 21.5 15.5 9.5 3.5 2.5

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Thirdly, minimize the distance among experts:

min f =
6∑

i=1

6∑

k=1

xikdik

s.t.
6∑

i=1

xik = 1, k = 1, 2, 3, 4, 5, 6,

6∑

i=1

xik = 1, i = 1, 2, 3, 4, 5, 6,

xik = 0, 1, i, k = 1, 2, 3, 4, 5, 6.

Finally, the final consensus ranking is as follows:

X1 � X2 � X5 � X3 � X4 � X6.

Comparison with the results obtained in this paper:

X1 � X2 � X4 � X5 � X3 � X6.

We can obtain two conclusions:
First, it finds that the two methods are controversial about the ranking posi-

tion of alternative X4. The method presented in this paper moves the location of
X4 forward after consultation by experts. In the case of an outbreak, the order
in which NAT should be conducted among the local population should be con-
firmed cases, suspected cases, asymptomatic cases, close contacts, the persons
living and active within the scope of the activities of the confirmed cases, the
persons living and active within the scope of the activities of the close contacts,
all personnel in the region around the affected area. X4 means that organize
to carry out nucleic acid screening for confirmed patients, close contacts and
personnel within their activities at first. X5 and X3 are the nucleic acid screen-
ing plans for all people around the outbreak of the epidemic. Considering the
limited human and material resources in the early outbreak, it is necessary and
reasonable to give priority to key populations. This just proves that the method
proposed in this paper is helpful for the prevention and control decision.

Second, obviously, Cook-Seiford is a single iterative approach that terminates
at the first decision. This approach is equivalent to having only one vote, with-
out iterations of expert preferences. It is unable to identify disputes and then

The Selection of COVID-19 Epidemic Prevention and Control Programs 59

negotiate with controversial experts to minimize disputes, so it cannot guide the
expert group to adjust their preferences. Due to the rapid changes in the situ-
ation of the novel coronavirus and the uncertainty of the spread of the mutant
virus at present, the error of using the decision method in this paper is smaller
than that of using the existing decision method in the face of sudden epidemics.
Therefore, the method proposed in this paper is feasible and more conducive to
dealing with uncertain outbreaks.

In summary, the method presented in this paper is more suitable for the
decision making of COVID-19 prevention and control schemes.

5 Conclusions

Considering the current international situation of COVID-19, this paper uses the
method of preference ranking in group decision making to formulate prevention
and control programs, minimizing the differences of the expert group to quickly
and effectively formulate prevention and control schemes to ensure citizen safety
and social stability. On the one hand, the application of this method can opti-
mize the opinions of the epidemic prevention expert group and form a consensus
scheme. On the other hand, it can save time in epidemic prevention and control
and carry out epidemic prevention and control quickly and effectively. However,
there are still some problems in the research of this paper. Firstly, the consensus
evaluation sequence index used in this paper still has room for improvement. Sec-
ondly, the decision making method of epidemic prevention and control proposed
in this paper is an empirical decision making based on the existing epidemic
prevention and control scheme database and experts’ preference. How to use
intelligent decision making to determine the prevention and control solution in
the epidemic outbreak area is the direction that needs to be further studied and
improved.

Acknowledgement. This study was supported by 2020 Henan University Philoso-
phy and Social Sciences Applied Research Major Project Plan (NO. 2020-YYZD-02),
Humanities and Social Science Research General Project of Henan Provincial Depart-
ment of Education in 2021 (NO. 2021-ZZJH-020), 2020 Henan Province Philosophy
and Social Science Planning Project (NO. 2020BJJ041), 2021 Key Scientific Research
Projects of Colleges and Universities in Henan Province (NO. 21A520021).

References

1. Busetto, F., Codognato, G., Tonin, S.: Simple majority rule and integer program-
ming. Math. Soc. Sci. 113, 160–163 (2021)

2. Cook, W.D.: Distance-based and ad hoc consensus models in ordinal preference
ranking. Eur. J. Oper. Res. 172(2), 369–385 (2006)

3. Cook, W.D., Seiford, L.M.: Priority ranking and consensus formation. Manag. Sci.
24(16), 1721–1732 (1978)

4. Cook, W.D., Seiford, L.M.: On the Borda-Kendall consensus method for priority
ranking problems. Manag. Sci. 28(6), 621–637 (1982)

60 C. Cui et al.

5. Eraslan, H., Merlo, A.: Majority rule in a stochastic model of bargaining. J. Econ.
Theory 103(1), 31–48 (2002)

6. Feng, X., Shang, X., Xu, Y., Wang, J.: A method to multi-attribute decision-
making based on interval-valued q-rung dual hesitant linguistic Maclaurin sym-
metric mean operators. Complex Intell. Syst. 6(3), 447–468 (2020)

7. Fu, C., Yang, S.L.: The group consensus based evidential reasoning approach for
multiple attributive group decision analysis. Eur. J. Oper. Res. 206(3), 601–608
(2010)

8. Gehrlein, W.V.: Social choice and individual values. RAIRO - Oper. Res. 15(3),
287–296 (1981)

9. Gou, X., Xu, Z.: Managing noncooperative behaviors in large-scale group decision-
making with linguistic preference orderings: the application in Internet Venture
Capital. Inf. Fusion 69, 142–155 (2021)

10. Hou, F.: A consensus gap indicator and its application to group decision making.
Group Decis. Negot. 24(3), 415–428 (2015). https://doi.org/10.1007/s10726-014-
9396-4

11. Hou, F.: The prametric-based GDM selection procedure under linguistic assess-
ments. In: 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
pp. 1–8. IEEE (2015)

12. Hou, F., Triantaphyllou, E.: An iterative approach for achieving consensus when
ranking a finite set of alternatives by a group of experts. Eur. J. Oper. Res. 275(2),
570–579 (2019)

13. Klavinskis, L.S., Liu, M.A., Lu, S.: A timely update of global COVID-19 vaccine
development. Emerg. Microbes Infect. 9(1), 2379–2380 (2020)

14. Rae, D.W.: Decision-rules and individual values in constitutional choice. Am. Polit.
Sci. Rev. 63(1), 40–56 (1969)

15. Rani, D., Garg, H.: Complex intuitionistic fuzzy preference relations and their
applications in individual and group decision-making problems. Int. J. Intell. Syst.
36(4), 1800–1830 (2021)

16. Susskind, L.E., McKearnen, S., Thomas-Lamar, J.: The Consensus Building Hand-
book: A Comprehensive Guide to Reaching Agreement. Sage Publications, London
(1999)

17. Triantaphyllou, E., Hou, F., Yanase, J.: Analysis of the final ranking decisions
made by experts after a consensus has been reached in group decision making.
Group Decis. Negot. 29(2), 271–291 (2020). https://doi.org/10.1007/s10726-020-
09655-5

18. Wallenius, J., Dyer, J.S., Fishburn, P.C., Steuer, R.E., Zionts, S., Deb, K.: Multiple
criteria decision making, multiattribute utility theory: recent accomplishments and
what lies ahead. Manag. Sci. 54(7), 1336–1349 (2008)

19. Wan, Q., Xu, X., Chen, X., Zhuang, J.: A two-stage optimization model for large-
scale group decision-making in disaster management: minimizing group conflict and
maximizing individual satisfaction. Group Decis. Negot. 29(5), 901–921 (2020).
https://doi.org/10.1007/s10726-020-09684-0

20. Xu, X.H., Du, Z.J., Chen, X.H.: Consensus model for multi-criteria large-group
emergency decision making considering non-cooperative behaviors and minority
opinions. Decis. Support Syst. 79, 150–160 (2015)

21. Zhan, Q., Fu, C., Xue, M.: Distance-based large-scale group decision-making
method with group influence. Int. J. Fuzzy Syst. 23(2), 535–554 (2021). https://
doi.org/10.1007/s40815-020-00993-9

https://doi.org/10.1007/s10726-014-9396-4
https://doi.org/10.1007/s10726-014-9396-4
https://doi.org/10.1007/s10726-020-09655-5
https://doi.org/10.1007/s10726-020-09655-5
https://doi.org/10.1007/s10726-020-09684-0
https://doi.org/10.1007/s40815-020-00993-9
https://doi.org/10.1007/s40815-020-00993-9

Which Option Is a Better Way
to Improve Transfer Learning

Performance?

Honghui Xu, Zhipeng Cai(B), and Wei Li

Department of Computer Science, Georgia State University,
Atlanta, GA 30302-3965, USA

hxu16@student.gsu.edu, {zcai,wli28}@gsu.edu

Abstract. Transfer learning has been widely applied in Artificial Intel-
ligence of Things (AIoT) to support intelligent services. Typically, col-
lection and collaboration are two mainstreaming methods to improve
transfer learning performance, whose efficiency has been evaluated by
real-data experimental results but lacks validation of theoretical anal-
ysis. In order to provide guidance of implementing transfer learning in
real applications, a theoretical analysis is in desired need to help us fully
understand how to efficiently improve transfer learning performance. To
this end, in this paper, we conduct comprehensive analysis on the meth-
ods of enhancing transfer learning performance. More specifically, we
prove the answers to three critical questions for transfer learning: i) by
comparing collecting instances and collecting attributes, which collection
approach is more efficient? ii) is collaborative transfer learning efficient?
and iii) by comparing collection with collaboration, which one is more
efficient? Our answers and findings can work as fundamental guidance
for developing transfer learning.

Keywords: AIoT · Transfer learning · Collaborative transfer learning

1 Introduction

A compound annual growth rate of 47% in network traffic indicates the prolifera-
tion of connected Internet of Things (IoT) devices in recent years [9]. Meanwhile,
known as the next generation IoT, Artificial Intelligence of Things (AIoT) [19]
relies on machine learning (ML) techniques to extract information from data
collected by a number of IoT devices [24] and has been leveraged by real-world
services, such as Facebook, Google, Amazon, and Microsoft, to provide individ-
uals with more efficient services. Transfer learning, which takes an advantage
of learned knowledge from known categories to novel/unknown categories with
limited training instances collected by IoT devices for prediction, is one of the
widely-used machine learning models in AIoT [3]. Therefore, improving transfer
learning performance plays a critical role to promote the quality of AIoT-based
services, which has attracted lots of research attention.
c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 61–74, 2021.
https://doi.org/10.1007/978-3-030-92681-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-92681-6_6

62 H. Xu et al.

Currently, researchers have realized the performance enhancement of trans-
fer learning through collection and collaboration. On the one hand, the trans-
fer learning performance can be improved by collecting more training instances
[12,18,34] and more attributes since transfer learning’s prediction is based on
shared attributes [11,17,32]. Even though these two collection methods have
been validated by conducting real-data experiments, no study has been carried
out to theoretically investigate which collection option is more efficient. On the
other hand, inspired by the idea of collaborative learning [10,14], collabora-
tive transfer learning models have been proposed to improve transfer learning
performance by sharing data among institutions [4,5,13,20,21,30,35]. Although
these works have demonstrated the efficiency of collaborative transfer learning
through the real-data experimental results [4,20], there lacks theoretically anal-
ysis whether collaboration can indeed bring the performance enhancement for
transfer learning. Therefore, in literature, the challenging question, “how to effi-
ciently improve transfer learning performance”, has not been answered yet. How-
ever, with the wide applications of transfer learning models, a thorough analysis
is urgent to be done before implementing these models so as to provide individ-
uals, institutions, and organizations with theoretical guidance illustrating how
to choose collection or collaboration for enhancing transfer learning performance
efficiently.

To fill this gap, in this paper, a series of theoretical analysis is well imple-
mented: i) first of all, we study how to select a more efficient collection option
from two collection ways (i.e. collecting training instances and collecting more
attributes) for performance enhancement in transfer learning; ii) next, we investi-
gate whether collaborative transfer learning in a two-party collaboration scenario
is worth doing to enhance performance; and iii) finally, we compare collection
and collaboration to analyze which one is more efficient for promoting transfer
learning. In our analysis, the conclusions are obtained through rigorous proof
and can be used as fundamental guidance for applying transfer learning in real
applications. Our multi-fold contributions are addressed as below.

– To the best of our knowledge, this is the first work to perform theoretical
analysis on the methods of improving transfer learning performance.

– We provide a theoretical basis for entities to select a more efficient collection
option from two collection ways to improve transfer learning performance.

– We prove whether the collaboration in a two-party scenario is efficient to
promote transfer learning performance.

– We offer guidance to choose collection or collaboration for performance
improvement in transfer learning.

The remainder of this paper is organized as follows. Related works are briefly
summarized in Sect. 2. After formulating problems in Sect. 3, we detail our anal-
ysis process in Sect. 4, Sect. 5, and Sect. 6. Finally, Sect. 7 concludes this paper
and discusses our future work.

Which Option Is a Better Way to Improve Transfer Learning Performance? 63

2 Related Works

Transfer learning [3,31], which refers to domain adaptation or sharing of
knowledge and representations, is a kind of learning model to achieve the
goal of knowledge transfer by transferring information of learned models to
changing or unknown data distributions. Transfer learning approaches can be
broadly classified into four categories: instance-based, feature-based, parameter-
based, and relational-based approaches. i) Instance-based transfer learning
approaches [12,18,34] are mainly based on the instance weighting strategy.
ii) Feature-based approaches [11,17,32] map the original features into a new
feature space, which can be further divided into two subcategories, including
asymmetric and symmetric feature-based transfer learning. The asymmetric
approaches [2,17] transform the features in the source domain to match the fea-
tures in the target domain, while symmetric approaches [28,32] attempt to find a
common feature space and then map the source and target features into the com-
mon feature space. iii) Parameter-based transfer learning approaches [7,16,29]
keep an eye on transferring the shared knowledge at the parameter level. iv)
Relational-based approaches [6,22] focus on transferring the logical relation-
ship learned in the source domain to the target domain. These transfer learning
approaches reduce the effort to collect new labeled training samples and have
been widely applied in different real applications, such as disease prediction [23],
sign language recognition [8], and target online display advertising [26]. However,
no existing work theoretically investigates how to enhance transfer learning per-
formance efficiently.

Collaborative transfer learning was proposed to promote transfer learn-
ing performance by sharing data among institutions [4,5,20,21,30], which is
motivated by the idea of collaborative learning [10,14]. For instance, in the pro-
cess of healthcare and financial marketing analysis, sharing data among insti-
tutions can help enhance the accuracy of medical diagnosis [4] and financial
marketing forecasting [20]. However, these works only validate the efficiency
of collaboration through the real-data experimental results but lack theoretical
analysis.

In a nutshell, the question of how to enhance transfer learning performance
efficiently has not been answered with theoretical analysis. To fill this blank, in
this paper, we will conduct comprehensively and deeply analysis on the methods
of enhancing transfer learning performance, aiming to offer theoretical guidance
for the improvement of transfer learning.

3 Problem Formulation

In this section, we mathematically formulate the problem of transfer learning
based on PAC learning framework [15].

Transfer learning essentially trains a classifier by using the training instances
associated with known labels to predict the testing instances associated with
novel/unknown labels [33]. Inspired by the idea of [25], transfer learning can be
defined to learn a classifier as follows.

64 H. Xu et al.

Definition 1. A classifier consists of two mapping functions, where the first
one is the map from a training instance space X to an attribute space T (i.e.
X → T), and the second one is the map from T to a label space Y (i.e. T → Y).

In the learning process of X → T , we aim to train T binary classifiers using
X , where T ∈ N

+ is the number of attributes in T ; and in the learning process of
T → Y, we use these T binary classifiers to predict class labels in Y. Especially,
every instance’s label is represented by a 0–1 binary attribute vector, where a
vector element is set as 1 if and only if the element’s corresponding attribute
exists in this instance. Let LX→Y denote the training loss (e.g., prediction error)
of the entire process X → Y. Suppose the upper bound of LX→Y is τ ∈ (0, 1).
The probability that the training loss does not exceed τ can be represented as:

P(LX→Y ≤ τ) = 1 − γ, (1)

where γ ∈ (0, 1) is the error probability. Different from traditional learning pro-
cesses, transfer learning technically focuses on how to use the training instances
to learn T binary classifiers instead of a classifier for prediction. Thus, consid-
ering the requirement of LX→Y ≤ τ , the training loss of each binary classifier
in the process X → T , denoted by LX→T , should not be larger than τ

T . The
probability of holding LX→T ≤ τ

T for any a classifier in T is represented by:

P(LX→T ≤ τ

T
) = 1 − δ, (2)

where δ ∈ (0, 1) is the error probability. Accordingly, the probability to ensure
LX→T ≤ τ

T for T classifiers is (1− δ)T , and the probability to ensure LX→Y ≤ τ
with T classifiers is BinoCDF(τ ;T, τ

T) that is the binomial cumulative distribu-
tion probability. On the other hand, according to PAC learning framework [15],
there should be at least N training instances in X such that Eq. (1) and Eq. (2)
can be satisfied, in which N can be computed as follows:

N =
T 2

τ2
�ln(

2
δ
)�. (3)

From Eq. (3), we have δ = 2

e
Nτ2
T2

.

To sum up, with N training instances and T classifiers, the performance of
the transfer learning process X → Y can be defined as the total probability
P (N,T) that the training loss does not exceed the upper bound τ , i.e.,

P (N,T) = (1 − 2

e
Nτ2

T2

)T · BinoCDF(τ ;T,
τ

T
) · (1 − γ). (4)

Generally speaking, there are two major methods to improve the performance
of transfer learning. i) Collection: collecting more training instances for learning
better binary classifiers and/or collecting more attributes for predicting novel
labels more accurately. ii) Collaboration: collaborative transfer learning aims
to enhance the learning performance by sharing collected training instances and
attributes among participants.

Which Option Is a Better Way to Improve Transfer Learning Performance? 65

To thoroughly understand how to improve transfer learning performance
efficiently, the intent of this paper is to deeply investigate the following three
problems:

– By comparing collecting instances and collecting attributes, which collection
approach is more efficient?

– Is collaborative transfer learning efficient?
– By comparing collection with collaboration, which one is more efficient?

In the following, we elaborate on our theoretical analysis on these three problems
in Sect. 4, Sect. 5, and Sect. 6 in order.

4 Collecting Instances vs. Collecting Attributes

First of all, for presentation simplicity, we let

f(N,T) = (1 − 2

e
Nτ2

T2

)T , (5)

and
g(T) = BinoCDF(τ ;T,

τ

T
). (6)

Then, we can rewrite P (N,T) as below,

P (N,T) = f(N,T)g(T)(1 − γ). (7)

The benefit of collecting one more instance rn and the benefit of collecting
one more attribute rt can be computed by Eq. (8) and Eq. (9), respectively.

rn = ΔPN (N,T) = P (N,T) − P (N − 1, T). (8)

rt = ΔPT (N,T) = P (N,T) − P (N,T − 1). (9)

The benefit difference k(N,T) is calculated as:

k(N,T) = rt − rn =P (N,T) − P (N,T − 1) − [P (N,T) − P (N − 1, T)]
=P (N − 1, T) − P (N,T − 1)
= [f(N − 1, T)g(T) − f(N,T − 1)g(T − 1)] (1 − γ).

(10)

We further use Taylor Theorem [27] and Newton’s forward interpolation for-
mula [1] to get a bivar linear function k̃(N,T) to approximate k(N,T). Mean-
while, to guarantee the existence of gradients in the following calculation process,
we approximate k(N,T) at the point (3, 3), i.e.,

k̃(N,T) = k(3, 3) + (N − 3)ΔkN (3, 3) + (T − 3)ΔkT (3, 3). (11)

From Eq. (10), we have

k(3, 3) = [f(2, 3)g(3) − f(3, 2)g(2)] (1 − γ). (12)

66 H. Xu et al.

According to Eq. (10) and Newton’s forward interpolation formula [1], we can
obtain the calculation of gradients in the following.

ΔkN (3, 3) =
k(3, 3) − k(2, 3)

3 − 2
= k(3, 3) − k(2, 3)

= [f(2, 3)g(3) − f(3, 2)g(2) − f(1, 3)g(3) + f(2, 2)g(2)](1 − γ).
(13)

ΔkT (3, 3) =
k(3, 3) − k(3, 2)

3 − 2
= k(3, 3) − k(3, 2)

= [f(2, 3)g(3) − f(3, 2)g(2) − f(2, 2)g(2) + f(3, 1)g(1)](1 − γ).
(14)

By substituting Eq. (12), Eq. (13), and Eq. (14), we can rewrite k̃(N,T) as:

k̃(N, T) = [f(2, 3)g(3) − f(3, 2)g(2)] (1 − γ)

+ (N − 3)[f(2, 3)g(3) − f(3, 2)g(2) − f(1, 3)g(3) + f(2, 2)g(2)](1 − γ)

+ (T − 3)[f(2, 3)g(3) − f(3, 2)g(2) − f(2, 2)g(2) + f(3, 1)g(1)](1 − γ).

(15)

If k̃(N,T) ≤ 0, collecting one more training instance is more efficient for
performance enhancement; otherwise, collecting one more attribute is more effi-
cient. Thus, we can compare k̃(N,T) with 0 to decide which collection option is
more efficient for one party to improve transfer learning performance.

Theorem 1. Suppose that one party has N training instances and T attributes.
Collecting one more training instance is more efficient than collecting one more
attribute to improve transfer learning performance, when any one of the following
two conditions holds:

(i) Condition 1: N , T , and τ satisfy Eq. (16) and Eq. (17);
(ii) Condition 2: N , T , and τ satisfy Eq. (18) and Eq. (19).

N ≤ − (T − 3)
f(2, 3)g(3) − f(3, 2)g(2) − f(2, 2)g(2) + f(3, 1)g(1)
f(2, 3)g(3) − f(3, 2)g(2) − f(1, 3)g(3) + f(2, 2)g(2)

− f(2, 3)g(3) − f(3, 2)g(2)
f(2, 3)g(3) − f(3, 2)g(2) − f(1, 3)g(3) + f(2, 2)g(2)

+ 3.

(16)

f(2, 3)g(3) − f(3, 2)g(2) − f(1, 3)g(3) + f(2, 2)g(2) > 0. (17)

N ≥ − (T − 3)
f(2, 3)g(3) − f(3, 2)g(2) − f(2, 2)g(2) + f(3, 1)g(1)
f(2, 3)g(3) − f(3, 2)g(2) − f(1, 3)g(3) + f(2, 2)g(2)

− f(2, 3)g(3) − f(3, 2)g(2)
f(2, 3)g(3) − f(3, 2)g(2) − f(1, 3)g(3) + f(2, 2)g(2)

+ 3.

(18)

f(2, 3)g(3) − f(3, 2)g(2) − f(1, 3)g(3) + f(2, 2)g(2) < 0. (19)

Note that f(2, 3) = (1 − 2

e
2τ2
9

)3, f(3, 2) = (1 − 2

e
3τ2
4

)2, f(2, 2) = (1 − 2

e
τ2
2

)2,

f(3, 1) = (1 − 2
e3τ2), f(1, 3) = (1 − 2

e
τ2
9

)3 according to Eq. (5), and g(1) =

BinoCDF(τ ; 1, τ
T), g(2) = BinoCDF(τ ; 2, τ

T), g(3) = BinoCDF(τ ; 3, τ
T) accord-

ing to Eq. (6).

Which Option Is a Better Way to Improve Transfer Learning Performance? 67

Proof. The requirement of collecting one more instance to be more efficient is
k̃(N,T) ≤ 0. According to Eq. (15), we have

[f(2, 3)g(3) − f(3, 2)g(2)] (1 − γ)
+ (N − 3)[f(2, 3)g(3) − f(3, 2)g(2) − f(1, 3)g(3) + f(2, 2)g(2)](1 − γ)
+ (T − 3)[f(2, 3)g(3) − f(3, 2)g(2) − f(2, 2)g(2) + f(3, 1)g(1)](1 − γ) ≤ 0.

(20)
When Eq. (20) holds, there are three cases for consideration:

(i) if f(2, 3)g(3) − f(3, 2)g(2) − f(1, 3)g(3) + f(2, 2)g(2) > 0 (i.e., Eq. (17) is
satisfied), then we can get Eq. (16);
(ii) if f(2, 3)g(3) − f(3, 2)g(2) − f(1, 3)g(3) + f(2, 2)g(2) < 0 (i.e., Eq. (19) is
satisfied), then Eq. (18) is obtained;
and (iii) if f(2, 3)g(3) − f(3, 2)g(2) − f(1, 3)g(3) + f(2, 2)g(2) = 0, this is mean-
ingless for our investigated problem.

Thus, Theorem 1 is proved.

Theorem 2. Suppose that one party has N training instances and T attributes.
Collecting one more attribute is more efficient than collecting one more training
instance to enhance transfer learning performance, when any one of the following
two conditions holds:

(i) Condition 1: N , T , and τ satisfy Eq. (21) and Eq. (22);
(ii) Condition 2: N , T , and τ satisfy Eq. (23) and Eq. (24).

N > − (T − 3)
f(2, 3)g(3) − f(3, 2)g(2) − f(2, 2)g(2) + f(3, 1)g(1)
f(2, 3)g(3) − f(3, 2)g(2) − f(1, 3)g(3) + f(2, 2)g(2)

− f(2, 3)g(3) − f(3, 2)g(2)
f(2, 3)g(3) − f(3, 2)g(2) − f(1, 3)g(3) + f(2, 2)g(2)

+ 3.

(21)

f(2, 3)g(3) − f(3, 2)g(2) − f(1, 3)g(3) + f(2, 2)g(2) > 0. (22)

N < − (T − 3)
f(2, 3)g(3) − f(3, 2)g(2) − f(2, 2)g(2) + f(3, 1)g(1)
f(2, 3)g(3) − f(3, 2)g(2) − f(1, 3)g(3) + f(2, 2)g(2)

− f(2, 3)g(3) − f(3, 2)g(2)
f(2, 3)g(3) − f(3, 2)g(2) − f(1, 3)g(3) + f(2, 2)g(2)

+ 3.

(23)

f(2, 3)g(3) − f(3, 2)g(2) − f(1, 3)g(3) + f(2, 2)g(2) < 0. (24)

Note that f(2, 3) = (1 − 2

e
2τ2
9

)3, f(3, 2) = (1 − 2

e
3τ2
4

)2, f(2, 2) = (1 − 2

e
τ2
2

)2,

f(3, 1) = (1 − 2
e3τ2), f(1, 3) = (1 − 2

e
τ2
9

)3 according to Eq. (5), and g(1) =

BinoCDF(τ ; 1, τ
T), g(2) = BinoCDF(τ ; 2, τ

T), g(3) = BinoCDF(τ ; 3, τ
T) accord-

ing to Eq. (6).

Proof. Collecting one more attribute is a more efficient option, which is equiva-
lent to k̃(N,T) > 0. From Eq. (15), we have

68 H. Xu et al.

[f(2, 3)g(3) − f(3, 2)g(2)] (1 − γ)
+ (N − 3)[f(2, 3)g(3) − f(3, 2)g(2) − f(1, 3)g(3) + f(2, 2)g(2)](1 − γ)
+ (T − 3)[f(2, 3)g(3) − f(3, 2)g(2) − f(2, 2)g(2) + f(3, 1)g(1)](1 − γ) > 0.

(25)
There are three cases for solving Eq. (25):

(i) f(2, 3)g(3)− f(3, 2)g(2)− f(1, 3)g(3)+ f(2, 2)g(2) > 0 (i.e., Eq. (22) is met),
then Eq. (21) is obtained;
(ii) f(2, 3)g(3) − f(3, 2)g(2) − f(1, 3)g(3) + f(2, 2)g(2) < 0 (i.e., Eq. (24) is sat-
isfied), then we can gain Eq. (23);
and (iii) f(2, 3)g(3) − f(3, 2)g(2) − f(1, 3)g(3) + f(2, 2)g(2) = 0, this is a mean-
ingless case for our investigated problem.

Therefore, Theorem 2 is proved.

5 Whether to Collaboration

Similar to the analysis in Sect. 4, we use Taylor Theorem [27] and Newton’s
forward interpolation formula [1] to obtain a bivar linear function P̃ (N,T)
to approximate P (N,T). Additionally, to ensure the existence of gradients for
P̃ (N,T), we approximate P (N,T) at (3, 3) as follows,

P̃ (N,T) = P (3, 3) + (N − 3)ΔPN (3, 3) + (T − 3)ΔPT (3, 3). (26)

Based on Eq. (7) and Newton’s forward interpolation formula [1], there exist

ΔPN (3, 3) =
P (3, 3) − P (2, 3)

3 − 2
= P (3, 3) − P (2, 3)

= f(3, 3)g(3)(1 − γ) − f(2, 3)g(3)(1 − γ),
(27)

and

ΔPT (3, 3) =
P (3, 3) − P (3, 2)

3 − 2
= P (3, 3) − P (3, 2)

= f(3, 3)g(3)(1 − γ) − f(3, 2)g(2)(1 − γ).
(28)

With the substitution of Eq. (27) and Eq. (28), P̃ (N,T) can be rewritten as:

P̃ (N,T) =P (3, 3) + (N − 3)[f(3, 3)g(3)(1 − γ) − f(2, 3)g(3)(1 − γ)]
+ (T − 3)[f(3, 3)g(3)(1 − γ) − f(3, 2)g(2)(1 − γ)].

(29)

In this section, our goal is to understand whether collaborative transfer learn-
ing is efficient for one party in a two-party (including party A and party B) col-
laboration scenario. Without loss of generality, party A has N1 training instances
and T1 attributes, and the party B has N2 training instances and T2 attributes.
If the party A does not collaborate with party B, according to Eq. (29), party
A can obtain transfer learning performance P̃ (N1, T1) as below,

P̃ (N1, T1) =P (3, 3) + (N1 − 3)[f(3, 3)g(3)(1 − γ) − f(2, 3)g(3)(1 − γ)]
+ (T1 − 3)[f(3, 3)g(3)(1 − γ) − f(3, 2)g(2)(1 − γ)].

(30)

Which Option Is a Better Way to Improve Transfer Learning Performance? 69

If party A collaborates with party B, according to Eq. (29), party A’s transfer
learning performance P̃ (N1 + N2, T1 ∪ T2) becomes

P̃ (N1 + N2, T1 ∪ T2) = P (3, 3)

+ (N1 + N2 − 3)[f(3, 3)g(3)(1 − γ) − f(2, 3)g(3)(1 − γ)]

+ (T1 ∪ T2 − 3)[f(3, 3)g(3)(1 − γ) − f(3, 2)g(2)(1 − γ)].

(31)

If P̃ (N1 + N2, T1 ∪ T2) ≥ P̃ (N1, T1), collaboration is efficient for party A to
improve transfer learning performance; otherwise, collaboration is not efficient
for party A. In order words, we should compare P̃ (N1, T1) with P̃ (N1 +N2, T1 ∪
T2) in order to judge whether collaboration is efficient for party A to enhance
transfer learning performance.

Theorem 3. In a two-party (party A and party B) collaboration scenario, party
A has N1 training instances and T1 attributes, and party B has N2 train-
ing instances and T2 attributes. Collaboration is more efficient for party A to
improve transfer learning performance, when T1, N2, T2, and τ satisfy Eq. (32).

N2 ≥ −(T1 ∪ T2 − T1)
f(3, 3)g(3) − f(3, 2)g(2)
f(3, 3)g(3) − f(2, 3)g(3)

, (32)

where f(3, 3) = (1− 2

e
τ2
3

)3, f(3, 2) = (1− 2

e
3τ2
4

)2, f(2, 3) = (1− 2

e
2τ2
9

)3 according

to Eq. (5), and g(2) = BinoCDF(τ ; 2, τ
T1

), g(3) = BinoCDF(τ ; 3, τ
T1

) according
to Eq. (6).

Proof. Collaboration is more efficient for party A, which means P̃ (N1+N2, T1∪
T2) ≥ P̃ (N1, T1). By substituting Eq. (30) and Eq. (31), we gain Eq. (33).

P (3, 3) + (N1 + N2 − 3)[f(3, 3)g(3)(1 − γ) − f(2, 3)g(3)(1 − γ)]
+ (T1 ∪ T2 − 3)[f(3, 3)g(3)(1 − γ) − f(3, 2)g(2)(1 − γ)] ≥
P (3, 3) + (N1 − 3)[f(3, 3)g(3)(1 − γ) − f(2, 3)g(3)(1 − γ)]
+ (T1 − 3)[f(3, 3)g(3)(1 − γ) − f(3, 2)g(2)(1 − γ)].

(33)

Since f(3, 3) > f(2, 3) and g(3) > 0, we have [f(3, 3)g(3) − f(2, 3)g(3)] > 0.
Then, by solving Eq. (33), Eq. (32) is obtained. Thus, Theorem 3 is proved.

Theorem 4. In a two-party (party A and party B) collaboration scenario, party
A has N1 training instances and T1 attributes, and party B has N2 training
instances and T2 attributes. Collaboration cannot enhance transfer learning per-
formance for party A if T1, N2, T2, and τ satisfy Eq. (34).

N2 < −(T1 ∪ T2 − T1)
f(3, 3)g(3) − f(3, 2)g(2)
f(3, 3)g(3) − f(2, 3)g(3)

, (34)

where f(3, 3) = (1− 2

e
τ2
3

)3, f(3, 2) = (1− 2

e
3τ2
4

)2, f(2, 3) = (1− 2

e
2τ2
9

)3 according

to Eq. (5), and g(2) = BinoCDF(τ ; 2, τ
T1

), g(3) = BinoCDF(τ ; 3, τ
T1

) according
to Eq. (6).

70 H. Xu et al.

Proof. The failure of collaboration to improve performance indicates P̃ (N1 +
N2, T1 ∪ T2) < P̃ (N1, T1). Accordingly, Eq. (35) can be gained using Eq. (30)
and Eq. (31).

P (3, 3) + (N1 + N2 − 3)[f(3, 3)g(3)(1 − γ) − f(2, 3)g(3)(1 − γ)]
+ (T1 ∪ T2 − 3)[f(3, 3)g(3)(1 − γ) − f(3, 2)g(2)(1 − γ)] <

P (3, 3) + (N1 − 3)[f(3, 3)g(3)(1 − γ) − f(2, 3)g(3)(1 − γ)]
+ (T1 − 3)[f(3, 3)g(3)(1 − γ) − f(3, 2)g(2)(1 − γ)].

(35)

In Eq. (35), [f(3, 3)g(3) − f(2, 3)g(3)] > 0 because f(3, 3) > f(2, 3) and
g(3) > 0. Then, the solution to Eq. (35) is Eq. (34). Thus, Theorem 4 is proved.

From Theorem 3 and Theorem 4, any party in a two-party collaboration
scenario can make a judgement whether collaboration is an efficient choice.

6 Collection vs. Collaboration

In this section, we further compare the efficiency of collection and collaboration.
Considering a two-party (party A and party B) collaboration scenario, party
A has N1 training instances and T1 attributes, and party B has N2 training
instances and T2 attributes. Via collaboration, party A can increase transfer
learning performance to P̃ (N1 + N2, T1 ∪ T2). On the other hand, we assume
that party A can increase N1 to NNT and increase T1 to TNT through collec-
tion. Correspondingly, party A can enhance transfer learning performance to
P̃ (NNT , TNT) as shown in Eq. (36).

P̃ (NNT , TNT) = P (3, 3) + (NNT − 3)[f(3, 3)g(3)(1 − γ) − f(2, 3)g(3)(1 − γ)]
+ (TNT − 3)[f(3, 3)g(3)(1 − γ) − f(3, 2)g(2)(1 − γ)].

(36)
If P̃ (N1 + N2, T1 ∪ T2) ≥ P̃ (NNT , TNT), collaboration is more efficient for

party A to improve transfer learning performance; otherwise, collection is more
efficient for party A. Thus, we need to compare P̃ (NNT , TNT) and P̃ (N1 +
N2, T1 ∪ T2) so as to help party A compare the efficiency of collection and
collaboration for performance improvement.

Theorem 5. In a two-party (party A and party B) collaboration scenario, party
A has N1 training instances and T1 attributes, and party B has N2 training
instances and T2 attributes. Assume that party A can increase N1 to NNT and
increase T1 to TNT via collection. Collaboration is more efficient than collection
for party A to enhance transfer learning performance, when N1, N2, NNT , T1,
T2, TNT , and τ satisfy Eq. (37).

N1 + N2 − NNT ≥ −(T1 ∪ T2 − TNT)
f(3, 3)g(3) − f(3, 2)g(2)
f(3, 3)g(3) − f(2, 3)g(3)

, (37)

where f(3, 3) = (1 − 2

e
τ2
3

)3, f(3, 2) = (1 − 2

e
3τ2
4

)2, and f(2, 3) = (1 − 2

e
2τ2
9

)3

according to Eq. (5), and g(2) = BinoCDF(τ ; 2, τ
T1

), g(3) = BinoCDF(τ ; 3, τ
T1

)
according to Eq. (6).

Which Option Is a Better Way to Improve Transfer Learning Performance? 71

Proof. If collaboration is more efficient, we have

P̃ (N1 + N2, T1 ∪ T2) ≥ P̃ (NNT , TNT),

which is can be equivalently expressed by Eq. (38) via substituting Eq. (31) and
Eq. (36).

P (3, 3) + (N1 + N2 − 3)[f(3, 3)g(3)(1 − γ) − f(2, 3)g(3)(1 − γ)]
+ (T1 ∪ T2 − 3)[f(3, 3)g(3)(1 − γ) − f(3, 2)g(2)(1 − γ)] ≥
P (3, 3) + (NNT − 3)[f(3, 3)g(3)(1 − γ) − f(2, 3)g(3)(1 − γ)]
+ (TNT − 3)[f(3, 3)g(3)(1 − γ) − f(3, 2)g(2)(1 − γ)].

(38)

Since f(3, 3) > f(2, 3) and g(3) > 0, [f(3, 3)g(3) − f(2, 3)g(3)] > 0. Then, by
solving Eq. (38), Eq. (37) is obtained. Therefore, Theorem 5 is proved.

Theorem 6. In a two-party (party A and party B) collaboration scenario, party
A has N1 training instances and T1 attributes, and party B has N2 training
instances and T2 attributes. Assume that party A can increase N1 to NNT and
increase T1 to TNT via collection. Collection is more efficient than collaboration
for party A to enhance transfer learning performance, when N1, N2, NNT , T1,
T2, TNT , and τ satisfy Eq. (39).

N1 + N2 − NNT < −(T1 ∪ T2 − TNT)
f(3, 3)g(3) − f(3, 2)g(2)
f(3, 3)g(3) − f(2, 3)g(3)

, (39)

where f(3, 3) = (1− 2

e
τ2
3

)3, f(3, 2) = (1− 2

e
3τ2
4

)2, f(2, 3) = (1− 2

e
2τ2
9

)3 according

to Eq. (5), and g(2) = BinoCDF(τ ; 2, τ
T1

), g(3) = BinoCDF(τ ; 3, τ
T1

) according
to Eq. (6).

Proof. Similar to the analysis in Theorem 5, P̃ (N1+N2, T1∪T2) < P̃ (NNT , TNT)
is the condition of collection to be more efficient. By substituting Eq. (31) and
Eq. (36), we obtain Eq. (40) as follows.

P (3, 3) + (N1 + N2 − 3)[f(3, 3)g(3)(1 − γ) − f(2, 3)g(3)(1 − γ)]
+ (T1 ∪ T2 − 3)[f(3, 3)g(3)(1 − γ) − f(3, 2)g(2)(1 − γ)] <

P (3, 3) + (NNT − 3)[f(3, 3)g(3)(1 − γ) − f(2, 3)g(3)(1 − γ)]
+ (TNT − 3)[f(3, 3)g(3)(1 − γ) − f(3, 2)g(2)(1 − γ)].

(40)

As f(3, 3) > f(2, 3) and g(3) > 0, [f(3, 3)g(3) − f(2, 3)g(3)] > 0. Thus, for
Eq. (40), the solution is Eq. (39); that is, Theorem 6 is proved.

Theorem 5 and Theorem 6 demonstrate the conditions of selecting collabora-
tion or collection as an efficient method for a party to improve transfer learning
performance in a two-party scenario.

72 H. Xu et al.

7 Conclusion and Future Work

In this paper, we comprehensively investigate how to improve transfer learning
performance more efficiently. To the best of our knowledge, this is the first work
to theoretically analyze the methods of improving transfer learning performance.
Specifically, Theorem 1 and Theorem 2 are proposed in Sect. 4 to help select a
more efficient collection option from two collection ways for promoting trans-
fer learning performance. Besides, Theorem 3 and Theorem 4 are presented in
Sect. 5 to help judge whether collaboration is more efficient to enhancing trans-
fer learning performance without considering collection. Moreover, Theorem 5
and Theorem 6 are put forward in Sect. 6 to help judge whether collaboration is
still efficient while considering both collection and collaboration. To sum up, our
proposed theorems and conclusions provide the thoroughly theoretical decision-
making guidance for improving transfer learning performance.

In our future work, we will advance our theoretical analysis for transfer learn-
ing performance by taking into account the cost of collection and collaboration.

Acknowledgment. This work was partly supported by the National Science Foun-
dation of U.S. (2118083, 1912753, 1704287, 1741277, 1829674).

References

1. AL-Sammarraie, O.A., Bashir, M.A.: Generalization of Newton’s forward interpo-
lation formula. Int. J. Sci. Res. Publ. (2015)

2. Argyriou, A., Evgeniou, T., Pontil, M.: Convex multi-task feature learning. Mach.
Learn. 73, 243–272 (2008). https://doi.org/10.1007/s10994-007-5040-8

3. Blanke, U., Schiele, B.: Remember and transfer what you have learned-recognizing
composite activities based on activity spotting. In: International Symposium on
Wearable Computers, pp. 1–8. IEEE (2010)

4. Chen, Y., Qin, X., Wang, J., Yu, C., Gao, W.: FedHealth: a federated transfer
learning framework for wearable healthcare. IEEE Intell. Syst. 35(4), 83–93 (2020)

5. Daga, H., Nicholson, P.K., Gavrilovska, A., Lugones, D.: Cartel: a system for col-
laborative transfer learning at the edge. In: Proceedings of the ACM Symposium
on Cloud Computing, pp. 25–37. ACM (2019)

6. Davis, J., Domingos, P.: Deep transfer via second-order Markov logic. In: Pro-
ceedings of the 26th Annual International Conference on Machine Learning, pp.
217–224. ACM (2009)

7. Evgeniou, T., Pontil, M.: Regularized multi-task learning. In: Proceedings of the
Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 109–117. ACM (2004)

8. Farhadi, A., Forsyth, D., White, R.: Transfer learning in sign language. In: 2007
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE
(2007)

9. Global Forecast: Cisco visual networking index: global mobile data traffic forecast.
Update 2017–2022 (2019)

10. Hsieh, K., et al.: Gaia: geo-distributed machine learning approaching LAN speeds.
In: 14th USENIX Symposium on Networked Systems Design and Implementation,
pp. 629–647. USENIX (2017)

https://doi.org/10.1007/s10994-007-5040-8

Which Option Is a Better Way to Improve Transfer Learning Performance? 73

11. Jebara, T.: Multi-task feature and kernel selection for SVMs. In: Proceedings of
the 21st International Conference on Machine Learning, p. 55. ACM (2004)

12. Jiang, J., Zhai, C.: Instance weighting for domain adaptation in NLP. In: Proceed-
ings of the 45th Annual Meeting of the Association of Computational Linguistics,
pp. 264–271. ACL (2007)

13. Ju, C., Gao, D., Mane, R., Tan, B., Liu, Y., Guan, C.: Federated transfer learning
for EEG signal classification. In: 42nd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society, EMBC 2020, Montreal, QC,
Canada, 20–24 July 2020, pp. 3040–3045. IEEE (2020). https://doi.org/10.1109/
EMBC44109.2020.9175344

14. Kang, Y., et al.: Neurosurgeon: collaborative intelligence between the cloud and
mobile edge. ACM SIGARCH Comput. Archit. News 45, 615–629 (2017)

15. Kearns, M.J., Vazirani, U.V., Vazirani, U.: An Introduction to Computational
Learning Theory. MIT Press, Cambridge (1994)

16. Lawrence, N.D., Platt, J.C.: Learning to learn with the informative vector machine.
In: Proceedings of the 21st International Conference on Machine Learning, p. 65.
ACM (2004)

17. Lee, S.I., Chatalbashev, V., Vickrey, D., Koller, D.: Learning a meta-level prior for
feature relevance from multiple related tasks. In: Proceedings of the 24th Interna-
tional Conference on Machine Learning, pp. 489–496. ACM (2007)

18. Liao, X., Xue, Y., Carin, L.: Logistic regression with an auxiliary data source.
In: Proceedings of the 22nd International Conference on Machine Learning, pp.
505–512. ACM (2005)

19. Luo, C., et al.: AIoT bench: towards comprehensive benchmarking mobile and
embedded device intelligence. In: Zheng, C., Zhan, J. (eds.) Bench 2018. LNCS,
vol. 11459, pp. 31–35. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
32813-9 4

20. Ma, Z., et al.: PMKT: privacy-preserving multi-party knowledge transfer for finan-
cial market forecasting. Future Gener. Comput. Syst. 106, 545–558 (2020)

21. Ma, Z., et al.: PMKT: privacy-preserving multi-party knowledge transfer for finan-
cial market forecasting. Future Gener. Comput. Syst. 106, 545–558 (2020). https://
doi.org/10.1016/j.future.2020.01.007

22. Mihalkova, L., Huynh, T., Mooney, R.J.: Mapping and revising Markov logic net-
works for transfer learning. In: AAAI, vol. 7, pp. 608–614. AAAI (2007)

23. Ogoe, H.A., Visweswaran, S., Lu, X., Gopalakrishnan, V.: Knowledge trans-
fer via classification rules using functional mapping for integrative modeling of
gene expression data. BMC Bioinform. 16, 1–15 (2015). https://doi.org/10.1186/
s12859-015-0643-8

24. Olmedilla, D.: Applying machine learning to ads integrity at Facebook. In: Pro-
ceedings of the 8th ACM Conference on Web Science, p. 4. ACM (2016)

25. Palatucci, M., Pomerleau, D., Hinton, G.E., Mitchell, T.M.: Zero-shot learning with
semantic output codes. In: Advances in Neural Information Processing Systems,
pp. 1410–1418. MIT Press (2009)

26. Perlich, C., Dalessandro, B., Raeder, T., Stitelman, O., Provost, F.: Machine learn-
ing for targeted display advertising: transfer learning in action. Mach. Learn. 95,
103–127 (2014). https://doi.org/10.1007/s10994-013-5375-2

27. Rababah, A.: Taylor theorem for planar curves. Proc. Am. Math. Soc. 119, 803–
810 (1993)

28. Raina, R., Battle, A., Lee, H., Packer, B., Ng, A.Y.: Self-taught learning: transfer
learning from unlabeled data. In: Proceedings of the 24th International Conference
on Machine Learning, pp. 759–766. ACM (2007)

https://doi.org/10.1109/EMBC44109.2020.9175344
https://doi.org/10.1109/EMBC44109.2020.9175344
https://doi.org/10.1007/978-3-030-32813-9_4
https://doi.org/10.1007/978-3-030-32813-9_4
https://doi.org/10.1016/j.future.2020.01.007
https://doi.org/10.1016/j.future.2020.01.007
https://doi.org/10.1186/s12859-015-0643-8
https://doi.org/10.1186/s12859-015-0643-8
https://doi.org/10.1007/s10994-013-5375-2

74 H. Xu et al.

29. Schwaighofer, A., Tresp, V., Yu, K.: Learning gaussian process kernels via hierarchi-
cal Bayes. In: Advances in Neural Information Processing Systems, pp. 1209–1216.
MIT Press (2005)

30. Sharma, S., Xing, C., Liu, Y., Kang, Y.: Secure and efficient federated transfer
learning. In: 2019 IEEE International Conference on Big Data, pp. 2569–2576.
IEEE (2019)

31. Torralba, A., Murphy, K.P., Freeman, W.T.: Sharing visual features for multiclass
and multiview object detection. IEEE Trans. Pattern Anal. Mach. Intell. 29, 854–
869 (2007)

32. Wang, C., Mahadevan, S.: Manifold alignment using procrustes analysis. In: Pro-
ceedings of the 25th International Conference on Machine Learning, pp. 1120–1127.
ACM (2008)

33. Wang, W., Zheng, V.W., Yu, H., Miao, C.: A survey of zero-shot learning: settings,
methods, and applications. ACM Trans. Intell. Syst. Technol. 10, 1–37 (2019)

34. Wu, P., Dietterich, T.G.: Improving SVM accuracy by training on auxiliary data
sources. In: Proceedings of the 21st International Conference on Machine Learning,
p. 110. ACM (2004)

35. Yang, H., He, H., Zhang, W., Cao, X.: FedSteg: a federated transfer learning frame-
work for secure image steganalysis. IEEE Trans. Netw. Sci. Eng. 14, 78–88 (2018)

On Maximizing the Difference Between
an Approximately Submodular Function

and a Linear Function Subject
to a Matroid Constraint

Yijing Wang1, Yicheng Xu2,3(B), and Xiaoguang Yang1

1 Academy of Mathematics and Systems Science, Chinese Academy of Sciences,
Beijing 100190, People’s Republic of China

2 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences,
Shenzhen 518055, People’s Republic of China

yc.xu@siat.ac.cn
3 Guangxi Key Laboratory of Cryptography and Information Security,

Guilin 541004, People’s Republic of China

Abstract. In this paper, we investigate the problem of maximizing the
difference between an approximately submodular function and a non-
negative linear function subject to a matroid constraint. This model has
widespread applications in real life, such as the team formation problem
in labor market and the assortment optimization in sales market. We
provide a bicriteria approximation algorithm with bifactor ratio (γ

1+γ
, 1),

where γ ∈ (0, 1] is a parameter to characterize the approximate submodu-
larity. Our result extends Ene’s recent work on maximizing the difference
between a monotone submodular function and a linear function. Also,
a generalized version of the proposed algorithm is capable to deal with
huge volume data set.

Keywords: Approximately submodular · Matroid constraint ·
Bicriteria algorithm · Massive data

1 Introduction

The problem of maximizing the difference of a normalized monotone approx-
imately submodular function and a non-negative linear function plays an
important role in team formation problem [12,18] and assortment optimiza-
tion [1,2,5,16]. In the sales market, the sellers wish to attract customers by dis-
playing goods. There is a counter charge for the exhibition, but also, the profit
can be made if the goods are sold. Thus the sellers are aiming to maximize the
profits through the products exhibition. Since the display area is limited, it is of
significance to select which goods to display. This problem can be characterized
as maxS⊆G f(S)−�(S), where G is the ground set of goods, and f, � : 2G → R≥0

represent the benefit and cost functions respectively.

c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 75–85, 2021.
https://doi.org/10.1007/978-3-030-92681-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-92681-6_7

76 Y. Wang et al.

When function f is strictly submodular, it is easy to find the objective func-
tion d(S) := f(S) − �(S) may be negative and non-monotone but submodular.
Maximizing a submodular set function problem is usually NP-hard, and design-
ing approximation algorithms is a common way to solve it. However, the model
that maximizes a potentially negative as well as non-monotone submodular func-
tion may do not get a traditional multiplicative factor approximation, even it is
inapproximable [9,20]. For this case, it is effective and appropriate to design a
bicriteria approximation algorithm [6] provided in Definition 2 to measure the
quality of a solution set.

Sviridenko et al. [22] propose a (1−1/e, 1)-bicriteria approximation algorithm
for the non-negative monotone submodular function minus non-negative linear
function model subject to a matroid constraint. In their work, they first modified
the model maxS∈F f(S) − �(S) to maxS⊆G{f(S) : c(S) ≤ B,S ∈ F}, where F
is a family of independent sets, and B is a knapsack constraint which is con-
structed utilizing the value of �(O∗). Based on the continuous greedy technique,
they performed a variant greedy algorithm by guessing �(O∗)’s value approxi-
mately. Unfortunately, guessing the value of �(O∗) attracted a amount of time
complexity. Feldman [10] improves the time complexity by introducing a time
weight vector to modify the objective function in the work of Sviridenko et al.
further, and keeps the same approximation ratio as Sviridenko et al.

Different from the methods of Sviridenko et al. and Feldman, Ene [8] pro-
poses a simple but standard greedy algorithm to study the model with a matroid
constraint and obtains the bicriteria approximation ratio (1/2, 1). Besides the
matroid constraints, Nikolakaki et al. [19] also investigate the model with car-
dinality constraints under streaming setting, and acquire a ((3 − √

5)/2, 1)-
bicriteria approximation algorithm. Without any constraints, they design an
online approximation algorithm with bicriteria ratio (1/2, 1).

As approximately submodular functions arise in numerous applications, such
as influence maximization in social networks and interpretation of deep neu-
ral networks as well as high dimensional sparse regression in machine learning,
more and more scholars focus on the research of approximately submodularity
[3,11,13,15]. For the model a non-negative monotone approximately submodular
function minus a non-negative modular function under cardinality constraints,
Harshaw et al. [14] provide a (1−1/eγ −ε, 1)-bicriteria approximation algorithm,
where γ ∈ (0, 1] is a parameter to characterize the approximately submodularity
and ε > 0. Instead of the greedy techniques in the above results, Qian [21] takes
a multi-objective evolutionary method to design algorithm, and gets a bicriteria
ratio (1 − 1/eγ , 1) for the problem of maximizing the difference of a monotone
γ-weakly submodular and a non-negative modular function with a cardinality
constraint.

Based on the above models and results, we extend the submodular func-
tions to approximately submodular one, and study the model with matroid con-
straints. Firstly we provide a simple bicriteria algorithm on a given ground set
with bifactor approximation ratio (γ/(1 + γ), 1), where γ ∈ (0, 1]. When func-
tion f is submodular, our result coincides with Ene’s recent work [8]. Faced with

Submodular Function and a Linear Function 77

massive dataset, we improve the bicriteria algorithm to a general one which
is applicable to any form datasets whether they are given finitely or presented
dynamically. The bicriteria ratio is (β−α

β , β−α
αγ), where 0 < γ ≤ 1 and parameters

0 < α ≤ β are used to balance the gain and cost.
The remainder of this work is structured as follows. In Sect. 2, we introduce

some preliminaries including the definitions of approximately submodular func-
tion and bicriteria approximation algorithm. We describe a bicriteria algorithm
as well as its corresponding analysis in Sect. 3. In Sect. 4, we give a general and
novel approximation algorithm to deal with online and streaming data. The
conclusion of this work is given in Sect. 5.

2 Preliminaries

The studied problem can be formulated as maxS⊆G{f(S)−�(S) : S ∈ F}, where
function f is a non-negative normalized monotone approximately submodular
function and � is a non-negative linear function.

For a ground set G = {e1, e2, . . . , en} and a set function defined on G as
g : 2G → R, we call function g non-negative if it satisfies g(S) ≥ 0 for any S ⊆ G;
g is normalized if it satisfies g(∅) = 0; g is monotone if it satisfies g(S) ≤ g(T)
for any subsets S ⊆ T ⊆ G; g is linear if it satisfies g(S) =

∑
e∈S g(e); and g is

submodular if it satisfies g(e|S) ≤ g(e|T), for any T ⊆ S ⊂ G and e ∈ G \ S,
where g(e|S) := g(S ∪{e})−g(S) characterizes the marginal gain when adding e
into S. Combining with the propositions of Lehmann et al. [17] and the definition
in [15], the concept of approximately submodular is given as Definition 1.

Definition 1. The approximately submodularity ratio of a non-negative normal-
ized monotone set function g : 2G → R is the largest value γ ∈ (0, 1] such that
for any subsets T ⊆ S ⊂ G, element e ∈ G\S, there are γg(e|S) ≤ g(e|T). Func-
tion g : 2G → R is called γ-approximately submodular function or approximately
submodular function. When γ = 1, function g is strictly submodular.

Given the properties of functions f and �, it is difficult to get a traditional
multiplicative factor approximation for the studied model. The bicriteria approx-
imation ratio is a natural and feasible way to estimate the performance of a given
algorithm, which is defined as the follows.

Definition 2. An algorithm is called a (σ, ρ)-approximation algorithm if it out-
puts a solution S such that f(S)−�(S) ≥ σ·f(O∗)−ρ·�(O∗) for max{f(S)−�(S) :
S ⊆ G}, where 0 < σ ≤ 1, ρ ≥ 0 and O∗ is an optimal solution to the original
problem.

In the model, our goal is to get a subset S subject to the matroid constraint
M = (G,F) to maximize the objective value d(S) := f(S) − �(S). By means
of the introduction of Edmonds [7], we explain the definition of matroid M =
(G,F) as follows.

78 Y. Wang et al.

Definition 3. The pair (G,F) is a matroid if the ground set G and its subset
family F satisfies the following requirements simultaneously:

– nonempty: ∅ ∈ F ;
– hereditary property: for any subsets T ∈ F , S ⊆ T , there is S ∈ F ;
– augmentation property: for any subsets S, T ∈ F , if |S| ≤ |T |, then there is

an element e ∈ T \ S, such that S ∪ {e} ∈ F .

If M = (G,F) is a matroid, we call F an independent set family, and subset
S is independent if S ∈ F . In this paper, we assume there are two oracles which
can be considered as two black boxes, where one is used to calculate the function
value of a given subset S, and the other is to judge whether S is independent.
We intend to minimize the number of oracle calls in our algorithm.

3 A Bicriteria Algorithm

In this section, we provide a bicriteria approximation algorithm accompany
with its analysis for the model maxS⊆G{f(S) − �(S) : S ∈ F}, where f is
γ-approximately submodular and � is non-negative linear. Easy to observe that
the objective d(S) := f(S) − �(S) is also approximately submodular but not
necessarily be nonnegative and monotone. Towards this end, we first construct
a intermediary function d̂(S) := f(S) − (1 + γ)�(S), where γ ∈ (0, 1] is the sub-
modularity ratio of function f . Then we iteratively select an element e whose
marginal gain is maximal w.r.t. the intermediary function d̂(S). If element e
brings a non-negative gain to the original target function d(S) on the current
solution S, we choose it, otherwise we give up selecting element e. The detailed
presentation is shown in Algorithm 1.

Algorithm 1. A bicriteria algorithm for f − �

1: Input:
Give a ground set G = {e1, e2, . . . , en}, a γ-approximately submodular function f ,
a non-negative linear function �, matroid M = (G, F).

2: Output:
A subset S ∈ F .

3: Process:
4: Initially set S := ∅, R := G
5: For i = 1, 2, 3, . . .
6: select ei = arg maxe∈R:S∪{e}∈F f(e|S) − (1 + γ)�(e)
7: if f(ei|S) − �(ei) < 0
8: update R := R \ {ei}
9: else

10: update S := S ∪ {ei}
11: remove every element e from R such that S ∪ {e} /∈ F
12: Return S

Before analyzing the performance guarantee of Algorithm 1, we introduce
a lemma with respect to the property of two independent subsets in matroid

Submodular Function and a Linear Function 79

M = (G,F), which is a natural extension of the result provided by Buchbinder
et al. [4].

Lemma 4. Let U and V be two independent subsets in matroid M = (G,F)
such that |U | = |V |. There is a bijection b : U\V → V \U such that V \b(e)∪{e} ∈
F for every element e ∈ U \ V and every e ∈ V \ U .

Note that Lemma 4 is applicable to two bases of matroid M = (G,F), of
which the proof is provided in [4]. Based on Lemma 4, we prove that Algorithm
1 outputs a solution set S such that f(S) − �(S) ≥ γ

1+γ f(O∗) − �(O∗), when the
solution set S and optimal set O∗ have the same cardinality. The detail is shown
in the proof to Lemma 5.

Lemma 5. If S satisfies |S| = |O∗|, then Algorithm 1 is a (γ
1+γ , 1)-

approximation, where O∗ is an optimal solution of the original model.

Proof. Assume |S| = |O∗| = m. Let Si = {e1, e2, . . . , ei} represent the solution
after i-th iteration. Denote {o1, o2, . . . , o|Ō|} as the difference set Ō = O∗ \ S,
where the elements are arbitrarily ordered. Denote Ōi = {o1, o2, . . . , oi} with
i ≤ |O∗ \ S|.

Observe from Lemma 4 that there is a bijection b : O∗ → S such that
S \ b(o) ∪ {o} is independent for each elements o ∈ O∗. The detailed mapping
between S and O∗ is matched in the following way: b(o) = e for each element o ∈
O∗\S and b(o) = o for each element o ∈ O∗∩S. Since S = {e1, e2, . . . , em}, where
the elements are ordered as they are added into S by the algorithm. Let oi = b(ei)
for all i ∈ [m], and the optimal solution set O∗ is ordered in o1, o2, . . . , om.
By the selection rule in Algorithm 1, we know the following inequality holds:
d̂(ei|Si−1) ≥ d̂(oi|Si−1), which is explained as follows.

In the bijection, if oi = ei, the above inequality is nature. If oi �= ei, we know
S \ {ei} ∪ {oi} ∈ F by the mapping in Lemma 4. Since Si−1 ⊆ S \ {ei}, there is
Si−1 ∪ {oi} ∈ F by the hereditary property. By the selection rule in Algorithm
1, we choose the element ei to add into subset Si−1, whose marginal gain is
maximal in iteration i-th. Then we get element oi is a candidate for ei, and the
inequality d̂(ei|Si−1) ≥ d̂(oi|Si−1) holds.

Thus, for any i ∈ [m], it satisfies that

f(Si−1 ∪ {ei}) − f(Si−1) − (1 + γ)�(ei)
≥ f(Si−1 ∪ {oi}) − f(Si−1) − (1 + γ)�(oi). (1)

Since function f is approximately submodular, then γf(oi|S ∪ Oi−1) ≤
f(oi|Si−1), i.e.,

f(Si−1 ∪ {oi}) − f(Si−1) ≥ γf(S ∪ Oi−1 ∪ {oi}) − γf(S ∪ Oi−1). (2)

Summing up all indexes i ∈ [m] and combining with Inequality (2), the
left-hand side of Inequality (1) can be restated as:

80 Y. Wang et al.

LHS =
∑

i∈m

(f(Si) − f(Si−1)) − (1 + γ)
∑

i∈m

�(ei)

= f(S) − (1 + γ)�(S). (3)

Similarly, based on the monotonicity of function f , the right-hand side of Inequal-
ity (1) can be reformulated as:

RHS =
∑

i∈m

(f(Si−1 ∪ {oi}) − f(Si−1) − (1 + γ)�(oi))

≥ γ
∑

i∈m

(f(S ∪ Oi) − f(S ∪ Oi−1)) − (1 + γ)
∑

i∈m

�(oi)

= γ (f(S ∪ O∗) − f(S)) − (1 + γ)�(O∗)
≥ γf(O∗) − γf(S) − (1 + γ)�(O∗). (4)

Rearranging Inequalities (1)–(4), we obtain the final solution set S satisfies

f(S) − (1 + γ)�(S) ≥ γf(O∗) − γf(S) − (1 + γ)�(O∗).

Therefore, when solution set S returned by Algorithm 1 has the same cardi-
nality as an optimal solution, it can do that f(S) − �(S) ≥ γ

1+γ f(O∗) − �(O∗),
completing the proof. �

Therefore, we obtain the following conclusion.

Theorem 6. Algorithm 1 outputs a solution S with f(S) − �(S) ≥ γ
1+γ f(O∗) −

�(O∗), where γ ∈ (0, 1].

Proof. Assume set O∗ = {o1, o2, . . . , op} is an optimal solution to the problem,
where p = |O∗|, and S = {e1, e2, . . . , eq} is the solution returned by Algorithm
1, where q = |S|. Let Ō = O∗ \ S and the set Ō = {o1, o2, . . . , o|Ō|} is ordered
arbitrarily. Denote Si = {e1, e2, . . . , ei} is the subset returned after iteration i-th
and Ōi = {o1, o2, . . . , oi}, i ≤ |O∗ \ S| correspondingly. We expand the analysis
of Theorem 6 from the perspective of the cardinalities of S and O∗. There are
three relationships for p and q.

– Case 1: p = q.
Rely on Lemma 5, we can directly find the quality of solution S such that
f(S) − �(S) ≥ γ

1+γ f(O∗) − �(O∗) in this case, where γ ∈ (0, 1].
– Case 2: p > q.

Utilizing the augmentation property in matroid M = (G,F), we know there
is an element o ∈ Ō = O∗ \ S satisfying S ∪ {o} ∈ F . As element o is not
chosen by the algorithm, it must guarantee f(o|S) − �(o) = d(o|S) < 0, that
is d(S ∪ {o}) < d(S). Repeat this augmentation until we get a set S′ such
that |S′| = |O∗|. By the argument process, we know d(S) > d(S′).

Submodular Function and a Linear Function 81

Combing the result of Case 1, it is easy to find the augmentation set S′

satisfies f(S′) − �(S′) ≥ γ
1+γ f(O∗) − �(O∗), i.e., d(S′) = f(S′) − �(S′) ≥

γ
1+γ f(O∗) − �(O∗). Since d(S) > d(S′), there is

d(S) = f(S) − �(S) > d(S′) = f(S′) − �(S′)

≥ γ

1 + γ
f(O∗) − �(O∗).

Thus the output set S guarantees f(S) − �(S) ≥ γ
1+γ f(O∗) − �(O∗) when

p = |O∗| > |S| = q.
– Case 3: p < q.

Denote set S′ = {e1, e2, . . . , ep} ⊂ S, which is consists of the first p elements
added into S. Because the elements ep+1, ep+2, . . . , eq are added into set S′

sequentially, there are d(S) ≥ d(S′) by the selection rule in Algorithm 1.
Combing the result of Case 1, we obtain f(S′) − �(S′) ≥ γ

1+γ f(O∗) − �(O∗),
i.e., d(S′) = f(S′) − �(S′) ≥ γ

1+γ f(O∗) − �(O∗). Since d(S) ≥ d(S′), there is

d(S) = f(S) − �(S) ≥ d(S′) = f(S′) − �(S′)

≥ γ

1 + γ
f(O∗) − �(O∗).

Thus the output set S guarantees f(S) − �(S) ≥ γ
1+γ f(O∗) − �(O∗) when

p = |O∗| < |S| = q.

Combining the above three cases, we get the solution set S output by Algo-
rithm 1 satisfying f(S) − �(S) ≥ γ

1+γ f(O∗) − �(O∗). �

4 An Extended Bicriteria Algorithm for Hiigh Volume
Data

As shown in Sect. 3, we need to know the complete information of data when
running Algorithm 1. So it does not work for huge volume dataset. Accompanied
by the information age, a huge volume data is being generated every second. It
is necessary to design an effective algorithm that is suitable for massive data.
For massive data sets, we need online or streaming algorithms. Thus we extend
Algorithm 1 to a more general one which is applicable to any volume dataset.

Based on a similar idea, we first construct a intermediary function d̂(S) :=
α · f(S) − β · �(S), where parameters 0 < α ≤ β are used to balance the gain
and cost. With the advent of dataset, we iteratively select the single element
e that takes positive marginal gain to the intermediary function. The detailed
presentation is shown in Algorithm 2.

Theorem 7. Algorithm 2 outputs a solution S with f(S)− �(S) ≥ β−α
β f(O∗)−

β−α
αγ �(O∗), where γ ∈ (0, 1] and 0 < α ≤ β.

82 Y. Wang et al.

Algorithm 2. A general bicriteria algorithm for f − �

1: Input:
Give a ground set G = {e1, e2, . . . , en}, a γ-approximately submodular function f ,
a non-negative linear function �, matroid M = (G, F), parameters 0 < α ≤ β.

2: Output:
A subset S ∈ F .

3: Process:
4: Initially set S := ∅
5: For each arriving element e
6: if S ∪ {e} ∈ F and α · f(e|S) − β · �(e) > 0
7: set S := S ∪ {e}
8: Return S

Proof. Let p = |O∗| and q = |S|. Denote Si = {e1, e2, . . . , ei} as the output set
at i-th iteration. Assume that it is ordered as the sequence that the elements are
selected by Algorithm 2. We start with the proof of the upper bound. For each
element ei ∈ S, it holds the following inequality

α · f(ei|Si−1) − β · �(ei) > 0.

Summing up all elements in S, we obtain
∑

ei∈S

α · f(ei|Si−1) −
∑

ei∈S

β · �(ei) > 0.

Rearranging the inequality, then we have �(S) ≤ α
β f(S).

For the lower bound, according to the selection rule in Algorithm 2, for each
element oi ∈ O∗ \ S, since oi is not added into set Si−1, it must perform that

α · f(oi|Si−1) − β · �(oi) ≤ 0.

Rewriting the inequality, we obtain

α · f(oi|Si−1) ≤ β · �(oi).

Since f is approximately submodular, then

f(oi|Si−1) ≥ γ · f(oi|S ∪ Oi−1).

Therefore,
α · γ · f(oi|S ∪ Oi−1) ≤ α · f(oi|Si−1) ≤ β · �(oi).

Summing up all elements oi ∈ O∗ \ S, we have

α · γ ·
∑

oi∈O∗\S

f(oi|S ∪ Oi−1) ≤ β ·
∑

oi∈O∗\S

�(oi).

Rearranging the above inequality yields

α · γ · (f(S ∪ O∗) − f(S)) ≤ β · �(O∗ \ S). (5)

Submodular Function and a Linear Function 83

Since f is monotone, the left-hand side of Inequality (5) can be lower bounded
by LHS ≥ α · γ · (f(O∗) − f(S)). As function � is non-negative linear, the right-
hand side of Inequality (5) can be upper bounded by RHS ≤ β · �(O∗). Then
Inequality (5) can be reduced into

f(S) ≥ f(O∗) − β

α · γ
�(O∗).

Based on the lower bound of f(S) and the upper bound of �(S), we get

f(S) − �(S) ≥ f(S) − α

β
f(S) = (1 − α

β
)f(S)

≥ β − α

β

(

f(O∗) − β

α · γ
�(O∗)

)

=
β − α

β
f(O∗) − β − α

α · γ
�(O∗),

completing the proof. �

5 Conclusion

In this work, we consider the maximization of the difference between a nor-
malized non-negative monotone approximately submodular function and a non-
negative linear function subject to a matroid constraint. This model captures
several typical models, for example, the maximization of a submodular func-
tion minus a linear function. As our main contribution, we provide a (γ

1+γ , 1)-
approximation algorithm, where γ ∈ (0, 1] is the submodularity parameter of
function f . This result also extends several previous work, for example the Ene’s
recent work [8]. We then modify Algorithm 1 to deal with the huge volume
dataset and obtain a (β−α

β , β−α
αγ)-approximation algorithm, where 0 < α ≤ β

are parameters to balance the gain and cost.

Acknowledgements. This work was supported by the National Key Research and
Development Program of China under Grants 2018AAA0101000. Yicheng Xu was sup-
ported by Guangxi Key Laboratory of Cryptography and Information Security (No.
GCIS202116).

References

1. Anagnostopoulos, A., Becchetti, L., Castillo, C., Gionis, A., Leonardi, S.: Online
team formation in social networks. In: Proceedings of the 21st International Con-
ference on World Wide Web, pp. 839–848 (2012)

2. Anagnostopoulos, A., Castillo, C., Fazzone, A., Leonardi, S., Terzi, E.: Algorithms
for hiring and outsourcing in the online labor market. In: Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pp. 1109–1118 (2018)

84 Y. Wang et al.

3. Bian, A.A., Buhmann, J.M., Krause, A., Tschiatschek, S.: Guarantees for greedy
maximization of non-submodular functions with applications. In: Proceedings of
the 34th International Conference on Machine Learning, pp. 498–507 (2017)

4. Buchbinder, N., Feldman, M., Garg, M.: Deterministic (1/2 + ε)-approximation
for submodular maximization over a matroid. In: Proceedings of the 30th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 241–254 (2019)

5. Désir, A., Goyal, V., Segev, D., Ye, C.: Constrained assortment optimization under
the Markov chained-based choice model. Manag. Sci. 66(2), 698–721 (2020)

6. Du, D., Li, Y., Xiu, N., Xu, D.: Simultaneous approximation of multi-criteria sub-
modular functions maximization. J. Oper. Res. Soc. China 2(3), 271–290 (2014)

7. Edmonds, J.: Submodular functions, matroids, and certain Polyhedra. In: Jünger,
M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization—Eureka, You
Shrink! LNCS, vol. 2570, pp. 11–26. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36478-1 2

8. Ene, A.: A note on maximizing the difference between a monotone submodular
function and a linear function. arXiv preprint arXiv: 2002.07782 (2020)

9. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45, 634–652
(1998)

10. Feldman, M.: Guess free maximization of submodular and linear sums. In: Pro-
ceedings of the 16th International Conference Workshop on Algorithms and Data
Structures, pp. 380–394 (2019)

11. Friedrich, T., Göbel, A., Neumann, F., Quinzan, F., Rothenberger, R.: Greedy
maximization of functions with bounded curvature under partition matroid con-
straints. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence,
pp. 2272–2279 (2019)

12. Golshan, B., Lappas, T., Terzi, E.: Profit-maximizing cluster hires. In: Proceedings
of the 20th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 1196–1205 (2014)

13. Gong, S., Nong, Q., Liu, W., Fang, Q.: Parametric monotone function maximiza-
tion with matroid constraints. J. Glob. Optim. 75(3), 833–849 (2019)

14. Harshaw, C., Feldman, M., Ward, J., Karbasi, A.: Submodular maximization
beyond non-negativity: guarantees, fast algorithms, and applications. In: Proceed-
ings of the 36th International Conference on Machine Learning, pp. 2634–2643
(2019)

15. Kuhnle, A., Smith, J.D., Crawford, V.G., Thai, M.T.: Fast maximization of non-
submodular, monotonic functions on the integer lattice. In: Proceedings of the 35th
International Conference on Machine Learning, pp. 2791–2800 (2018)

16. Lappas, T., Liu, K., Terzi, E.: Finding a team of experts in social networks. In:
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 467–476 (2009)

17. Lehmann, B., Lehmann, D., Nisan, N.: Combinatorial auctions with decreasing
marginal utilities. Games Econ. Behav. 55, 270–296 (2006)

18. Liu, S., Poon, C.K.: A simple greedy algorithm for the profit-aware social team
formation problem. In: Proceedings of the 11th International Conference on Com-
binatorial Optimization and Applications, pp. 379–393 (2017)

19. Nikolakaki, S.M., Ene, A., Terzi, E.: An efficient framework for balancing sub-
modularity and cost. In: Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 1256–1266 (2021)

20. Papadimitriou, C., Yannakakis, M.: Optimization, approximation, and complexity
classes. J. Comput. Syst. Sci. 43, 425–440 (1991)

https://doi.org/10.1007/3-540-36478-1_2
https://doi.org/10.1007/3-540-36478-1_2
http://arxiv.org/abs/2002.07782

Submodular Function and a Linear Function 85

21. Qian, C.: Multi-objective evolutionary algorithms are still good: maximizing
monotone approximately submodular minus modular functions. arXiv preprint
arXiv: 1910.05492 (2019)

22. Sviridenko, M., Vondrák, J., Ward, J.: Optimal approximation for submodular
and supermodular optimization with bounded curvature. Math. Oper. Res. 42(4),
1197–1218 (2017)

http://arxiv.org/abs/1910.05492

On Various Open-End Bin Packing Game

Ling Gai1 , Weiwei Zhang2 , Wenchang Luo3 , and Yukun Cheng4(B)

1 Glorious Sun School of Business & Management,
Donghua University, Shanghai 200051, China

lgai@dhu.edu.cn
2 School of Management, Shanghai University, Shanghai 201444, China

zthomas@shu.edu.cn
3 School of Mathematics and Statistics, Ningbo University, Ningbo 315211, China

luowenchang@nbu.edu.cn
4 Business School, Suzhou University of Science and Technology,

Suzhou 215009, China
ykcheng@amss.ac.cn

Abstract. In this paper, we introduce various open-end bin packing
problems in a game theoretic setting. The items (as agents) are selfish and
intelligent to minimize the cost they have to pay, by selecting a proper
bin to fit in. For both general open-end bin packing game and minimum
open-end bin packing game, we prove the existence of the pure Nash
Equilibrium and study the Price of Anarchy. We prove the upper bound
to be approximately 2 and show a corresponding tight lower bound for
both models. Furthermore, we study the open-end bin packing game with
conflict and also give the proof for the existence of Nash Equilibrium.
Under multipartite and simple conflict graph, we study the upper bound
of Price of Anarchy separately.

Keywords: Open-end bin packing · Game · Price of anarchy · Conflict

1 Introduction

Open-end bin packing problem was first introduced by Leung et al. [8,9], then its
parameterized online version was studied by Zhang [13]. In this problem, a bin
is allowed to be filled to a level exceeding one, as long as the bin is not full (the
content is strictly less than one) before the last item is packed. A nice example
were presented in [8,9,13] for the problem.

In Hong Kong, passengers use magnetic card to pay for their subway trips.
Generally there is a standard denomination in the card and the fare is deducted
from the card every time the passenger passes the toll gate in the subway station.
The passenger can pass the gate as long as the remaining balance is still positive,
even if it is less than the fare needed. So the passenger can “gain” by taking a
last long trip with the card of small positive balance. We can see that here the
cards correspond to the bins and the fares of each trip correspond to the items.
How to minimize the number of cards for a passenger who makes several trips
corresponds to the open-end bin packing problem.
c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 86–95, 2021.
https://doi.org/10.1007/978-3-030-92681-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_8&domain=pdf
http://orcid.org/0000-0003-0710-8498
http://orcid.org/0000-0003-3461-3510
http://orcid.org/0000-0002-0335-3253
http://orcid.org/0000-0002-3638-3440
https://doi.org/10.1007/978-3-030-92681-6_8

On Various Open-End Bin Packing Game 87

The open-end bin packing problem is shown to be strongly NP-hard and any
on-line algorithm must have an asymptotic worst-case performance ratio at least
two [8,9]. The parameterized version was studied by [13] where the items are
with size less than (or equal to) 1/m and a best possible algorithm was presented.
In 2003 and 2008, the ordered open-end bin packing was studied by [1,12] where
the items are indexed, and the packing of each bin has to follow the index such
that the largest-indexed item is the last item in the bin. Both worst case and
average case were analyzed, approximation algorithms and optimal algorithms
were presented for this problem. After that, several variants of open-end bin
packing problem with different names appeared in literatures [2–5]. They are
the minimum open-end bin packing, the maximum open-end bin packing and
the maximum indexed open-end bin packing. In the minimum version, removing
the smallest item would bring the total size to a value below 1; in the maximum
version, the largest item’s removing could bring the total size back to below 1.
Since the size of the largest item is at least that of the last packed item, we
can see that the maximum open-end bin packing is the general open-end bin
packing model introduced by [8,9,13]; As for the maximum indexed open-end
bin packing, it is another name of the ordered open-end bin packing.

Recent years there is a trend to combine the well-defined combinatorial opti-
mization problem with game issue, like bin packing game [6,11], bin covering
game [10] etc. Taking the bin packing game as an example, different from the
classical case with a central decision maker, the items are rational and eager to
get higher utility by selecting bins. This make the problem more complicated
while more realistic. To our knowledge, there is not game issue consideration on
the various open-end bin packing problems.

In this paper, we aim to study various open-end bin packing problems under
game circumstance. We are curious about the existence of Nash Equilibrium
for these problems, and the performance of the Equilibria. The methodology of
the Price of Anarchy is applied, which compares the output of the worst Nash
Equilibrium with the optimal solution.

2 Definitions and Terminologies

Suppose there is a set of items to be packed into some unit capacity bins. The
items are with size si ∈ (0, 1], i = 1, . . . , n. Each of the items is owned by a
rational agent. The agent has to pay for his packed item, which is proportional
to the item size. For an item i packed in bin Bh, let S(Bh) denote the load of bin
Bh. Then the cost of item i is ci = si∑

j∈Bh
sj

= si
S(Bh)

. The agent could move the

item unilaterally if that could reduce his cost. A Nash Equilibrium is reached
if no agent would like to move unilaterally. The Price of Anarchy [7], often
abbreviated as PoA, is a concept in economics and game theory that measures
how the efficiency of a system degrades due to selfish behavior of its agents. Let
G denote a game, NE denote a solution of a Nash Equilibrium, OPT denote the
solution of the corresponding optimization problem. Then PoA(G) = supNE(G)

OPT .

88 L. Gai et al.

Corresponding to the various versions of open-end bin packing problem, the
models studied in this paper are named as general open-end bin packing game,
minimum open-end bin packing game. We also study another model which is
named as open-end bin packing game with conflict. In this problem, items are
conflict to some of the other, which means they could not be packed in a same
bin. We use a conflict graph to denote these relations. The node represents the
items, and if there is an edge between two nodes, they are conflict.

3 General Open-End Bin Packing Game

In the general open-end bin packing game, except at most one bin, the load of
each bin minus the size of the last item is strictly less than 1. First we check the
existence of a Nash Equilibrium in this problem.

3.1 Existence of Nash Equilibrium in the General Open-End Bin
Packing Game

Define the potential function as P =
∑

h∈t S(Bh)2 ≤ 4t, where t is the number of
bins used. We can see that this potential function is upper-bounded and its value
strictly increases with the item’s cost reduction unilateral deviation. Specifically,
suppose item i deviates to bin Bk from bin Bh to decrease its cost, then

Δ = P ′ − P

= S(Bk + si)2 + S(Bh − si)2 − S(Bk)2 − S(Bh)2

= 2si(S(Bk) − S(Bh)) + 2s2i
= 2si(S(Bk) − S(Bh) + si) > 0

So, begining with any feasible packing, the maximum of potential function could
be reached after limited steps. Hence the existence of Nash Equilibrium is proved.

3.2 The Upper Bound of Price of Anarchy

Lemma 1. There exists at most one bin with load less than 1.

Proof. Suppose there are two bins Bh and Bk, |Bh| = |Bk| = 1, S(Bh) < 1 and
S(Bk) < 1 in a Nash Equilibrium packing. For si ∈ Bh and S(Bk) < 1, si can
be packed into bin Bk. This is a contradiction.

Theorem 1. The upper bound of the Price of Anarchy for general open-end bin
packing game is 2.

Proof. The load of each bin in an optimal packing is less than 2, hence 2OPT ≥∑
si. According to lemma 1,

∑
si ≥ NE − 1. Thus, 2OPT ≥ NE − 1.

On Various Open-End Bin Packing Game 89

3.3 The Lower Bound of Price of Anarchy

Given an instance with kn items of size 1 − ε, kn items of size ε, k2n− kn items
of size 2ε, where ε = 1

2k , we can show that the Price of Anarchy of the Nash
Equilibrium is greater than or equal to 2k−1

k .
As shown in Figs. 1 and 2, the items are separated to n groups. Under propor-

tional cost sharing mechanism, there is a Nash Equlibrium packing with 2k − 1
bins used for each group, while an optimal packing only uses k bins. So when k
is large enough, the lower bound of Price of Anarchy is 2.

Fig. 1. A Nash equlibrium packing for the general open-end bin packing game

Fig. 2. An optimal packing of the general open-end bin packing problem

4 Minimum Open-End Bin Packing Game

In the definition of minimum open-end bin packing problem, a packing is feasible
only if the load of bins is less than 1 or less than 1 after removing the smallest
item. When we consider the game issue of the problem, we have to notice the
limitations of this definition. If we follow this definition, a trivial case would be
incurred as shown in Figs. 3 and 4. As stated before, the cost that each item has
to share is proportional to its size, ci = si∑

sj∈Bh
sj

.

90 L. Gai et al.

If the movement of item i from bin Bh to bin Bk is prohibited, where ∃sj ∈ Bk

si ≥ sj and si + S(Bk) > 1 + sj , there are some special NE packings where the
load of any bin is below 1. As shown in the following Figs. 5, there is a family of
such NE packings for 2k × ε = 1.

So we modified the definition of minimum open-end bin packing game as fol-
lows. We force the smallest item in the bin, which doesn’t satisfy the assumption
of minimum open-end bin packing, to move into other bin, or open a new bin.
To achieve this effect, define c(smin) = 1 + ε if S(Bh) − smin ≥ 1, where smin

is the smallest item in bin Bh, ε > 0. Moreover, if the smallest item smin ∈ Bh

satisfies that S(Bh) − smin ≥ 1, smin has the priority to move.

Fig. 3. An example of Nash Equlibrium packing under minimum open-end packing
definition

Fig. 4. An optimal packing

Fig. 5. A Nash Equlibrium packing with 2k × ε = 1

On Various Open-End Bin Packing Game 91

4.1 Existence of Nash Equilibrium in Minimum Open-End Bin
Packing Game

Define the potential function as P =
∑

h∈t S(Bh)2 < 4t, where t is the set of
bins. Some movement will force the smallest item in the bin move into other bin,
and therefore there are two different movements– regular movement and forced
movement. During the regular movement, no item will leave the bin. Thus, the
regular movement consists of the movement of item i deviating to bin Bk from
bin Bh.

Δ = P ′ − P

= S(Bk + si)2 + S(Bh − si)2 − S(Bk)2 − S(Bh)2

= 2si(S(Bk) − S(Bh)) + 2s2i
= 2si(S(Bk) − S(Bh) + si) > 0

During the forced movement, there will be more than one item , which have to
leave the bin. Let a set Smin = s1, s2, s3, ..., sm denote the smallest items leaving
the bin one by one. Hence, the forced movement consists of the movement of
item j deviating to bin Bk from bin Bh and the movement of item si ∈ Smin.
To simplify the proof, the exchange of potential function in former movement
is called δ0 and the exchange in latter movement is called δi. Obviously, Δ0 =
2sj(S(Bk)−S(Bh))+2sj × sj . And the item i will move into bin Bi. If S(Bi) ≥
S(Bk), then Δi = 2si(S(Bk) − S(Bh)) + 2si × si > 0. ∀si ∈ Smin,

Δi =

⎛
⎝S(Bk) + sj −

∑
m≤i

sm

⎞
⎠

2

+ (S(Bi) + si)
2 −

(
S(Bk) + sj −

∑
m<i

sm

)2

− S(Bi)
2

= −si

⎛
⎝2S(Bk) + 2sj − 2

∑
m≤i

sm − si

⎞
⎠ + si (2S(Bi) + si)

= 2si

⎛
⎝S(Bi)− S(Bk)− sj +

∑
m≤i

sm

⎞
⎠

> 2si (S(Bh)− S(Bk)− sj)

Δ = Δ0 +
∑

Smin

Δi

= (S(Bk) − S(Bh))

(

sj −
∑

si∈Sminsi

)

+ 2si

(

sj −
∑

si∈Sminsi

)

> 0

92 L. Gai et al.

Therefore, for any type of movement, there is always δ > 0. So begining with
any feasible packing, the maximum of potential function could be reached after
limited steps. Hence the existence of Nash Equilibrium is proved.

4.2 The Upper Bound of Price of Anarchy

Lemma 2. There is at most one bin with load less than 1.

Proof. Suppose there are two bins with load less than 1 in a Nash Equilibrium
packing, then S(Bh) ≥ S(Bk). ∀si ∈ Bk, S(Bh) + si > S(Bk). A contradiction.

Theorem 2. The upper bound of the Price of Anarchy for minimum open-end
bin packing game is 2.

Proof. The load of bins in an optimal packing is less than 2, hence 2Opt ≥ ∑
si.

According to lemma 1,
∑

si ≥ NE − 1. Thus, 2Opt ≥ NE − 1.

4.3 The Lower Bound of Price of Anarchy

In the following we show that under the proportional cost sharing mechanism,
the Price of Anarchy of the Nash Equilibrium is greater than or equal to 2.

Proof. Here we are given an instance with kn−n items of size 1− ε, kn items of
size ε, kn−n items of size 2ε and kn−n items of size 1− 2ε, where ε = 1

3k . The
items are separated into n groups. We can see that for each group items, there
is a Nash Equlibrium packing with 2k − 2 bins used, while an optimal packing
only uses k bins, as showed in Fig. 6 and 7. So the lower bound of PoA is at least
2k−2

k . When k is large enough, the lower bound is 2.

Fig. 6. A Nash Equlibrium packing for minimum open-end bin packing game

On Various Open-End Bin Packing Game 93

Fig. 7. An optimal packing for minimum open-end bin packing

5 Open-End Bin Packing Game with Conflict

In the open-end bin packing game with conflict, a graph G = (V,E) is given
together to present the conflict between items. If for two items si and sj , there
is an edge (si, sj) ∈ E, then si and sj could not be packed into a same bin.
Define the cost of item si ∈ Bh equals to 1 + ε, if there is an item sj ∈ Bh,
(si, sj) ∈ E.

5.1 Existence of Nash Equilibrium

A bin is called conflict-free, if for any si, sj ∈ G, (si, sj) /∈ E. Otherwise, define
the deconflict move as following: For si, sj ∈ Bh and (si, sj) ∈ E, let sj move
into some bin Bk, such that ∀sl ∈ Bk, (sj , sl) /∈ E.

From the definition we know that, each deconflict move can reduce at least
one pair of conflict items. Suppose that there are K pairs of conflict items in the
packing, then after at most K times deconflict move, each bin in the packing
is conflict-free. Then define the potential function as P =

∑
h∈t S(Bh)2. Sim-

ilar to the proof in general open-end bin packing game, the existence of Nash
Equilibrium can be proved.

5.2 Open-End Bin Packing Game with a Complete Multipartite
Conflict Graph

We consider the case that the conflict graph is a complete k-partite graph, which
implies that for any two items in two different independent sets respectively, they
cannot be packed into a same bin.

5.3 The Upper Bound of the Price of Anarchy

Lemma 3. There are at most k bins with load less than 1.

94 L. Gai et al.

Proof. For each independent set, it can be treated as an open-end bin packing.
According to lemma 1, there is at most one bin with load less than 1 for each
independent set. Hence, there are at most k bins with load less than 1.

Theorem 3. The upper bound of the Price of Anarchy for open-end bin packing
game with a complete multipartite conflict graph is 2.

Proof. Similar to the proof of Thoerem 2, 2OPT ≥ ∑
si ≥ (NE − K).

5.4 Open-End Bin Packing with a Simple Conflict Graph

Observation. For any bins Bh, Bk in a Nash Equilibrium packing, if S(Bh) ≤
S(Bk) ≤ 1, then for any si ∈ Bh, there exists an item sj ∈ Bk, (si, sj) ∈ G.

Lemma 4. There are at most δ + 1 bins with load less than 1 in a Nash Equi-
librium packing, where δ is the maximum degree of the vertices in graph G.

Proof. According to observation 1, for an item i in bin Bh, there must be at
least one item connecting with item i in some other bins of load less than 1.
Since δ is the maximum degree of vertices in graph G, there are at most δ + 1
bins.

Theorem 4. 2OPT ≥ NE − δ.

The proof is abbreviated due to similarity.

Remark 1. Note that if the maximum degree of vertices equals the number
of vertices minus 1, then δ seems to be invalidate for the estimation of the
upper bound. In fact, according to observation 1, the degree of each item in the
bins with load less than 1 is at least the number of bins with load less than 1.
Therefore, δ is the solution of following model:

max y
∑

i∈V

f(i) ≥ y

f(i) =
{

1, if δ(i) ≥ y;
0, otherwise. (1)

where δ(i) denotes the degree of vertex i.

Remark 2. The Lower Bound of Price of Anarchy for above open-end bin pack-
ing games with conflict can be similarly reached as that of the general open-end
bin packing game.

On Various Open-End Bin Packing Game 95

6 Conclusion

In this paper we consider several versions of open-end bin packing game, the
general open-end bin packing game, the minimum open-end bin packing game
and the open-end bin packing game with conflict. For each of the problem, we
prove the existence of Nash Equilibrium. We also prove the tight bound of Price
of Anarchy. As for the future work, we are considering a dual version of the
open-end bin packing problem. Given the predetermined trips, how to minimize
total fare if the passengers can buy cards with different amount of denomination.
We are also interested in the performance under game situation.

References

1. Ceselli, A., Righini, G.: An optimization algorithm for the ordered open-end bin-
packing problem. Oper. Res. 56(2), 425–436 (2008)

2. Epstein, L., Levin, A.: Asymptotic fully polynomial approximation schemes for
variants of open-end bin packing. Inf. Process. Lett. 109, 32–37 (2008)

3. Epstein, L.: Open-end bin packing: new and old analysis approaches. https://arxiv.
org/abs/2105.05923v1 [cs.DS] (2021)

4. Epstein, L., Levin, A.: A note on a variant of the online open end bin packing
problem. Oper. Res. Lett. 48, 844–849 (2020)

5. Balogh, J., Epstein, L., Levin, A.: More on ordered open end bin packing. https://
arxiv.org/abs/2010.07119v1 [cs.DS] (2020)

6. Gai, L., Wu, C., Xu, C., Zhang. W.: Selfish bin packing under Harmonic mean cost
sharing mechanism. Optim. Lett. 1–12 (2021)

7. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. Comput. Sci. Rev. 3(2),
65–69 (2009)

8. Joseph, Y.-T., Leung, M.D., Young, G.H.: A note on an open-end bin packing
problem. J. Sched. Manuscriot, 1996

9. Leung, J.Y.T., Dror, M., Young, G.H.: A note on an open-end bin packing problem.
J. Sched. 4(4), 201–207 (2001)

10. Li, W., Fang, Q., Liu, W.: An incentive mechanism for selfish bin covering. In:
Chan, T.-H.H., Li, M., Wang, L. (eds.) COCOA 2016. LNCS, vol. 10043, pp. 641–
654. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48749-6 46

11. Wang, Z., Han, X., Dosa, G., Tuza, Z.: A general bin packing game: interest taken
into account. Algorithmica 80, 1534–1555 (2018)

12. Yang, J., Leung, T.Y.T.: The ordered open-end bin-packing problem. Oper. Res.
51(5), 759–770 (2003)

13. Zhang, G.: Parameterized on-line open-end bin packing. Computing 60, 267–273
(1998)

https://arxiv.org/abs/2105.05923v1
https://arxiv.org/abs/2105.05923v1
https://arxiv.org/abs/2010.07119v1
https://arxiv.org/abs/2010.07119v1
https://doi.org/10.1007/978-3-319-48749-6_46

A Linear-Time Streaming Algorithm
for Cardinality-Constrained Maximizing
Monotone Non-submodular Set Functions

Min Cui1 , Donglei Du2 , Ling Gai3(B) , and Ruiqi Yang4

1 Department of Operations Research and Information Engineering,
Beijing University of Technology, 100 Pingleyuan, Chaoyang District,

Beijing 100124, People’s Republic of China
B201840005@emails.bjut.edu.cn

2 Faculty of Management, University of New Brunswick,
Fredericton, NB E3B 5A3, Canada

ddu@unb.ca
3 Glorious Sun School of Business and Management, Donghua University,

Shanghai 200051, People’s Republic of China
lgai@dhu.edu.cn

4 School of Mathematical Sciences, University of Chinese Academy Sciences,
Beijing 100049, People’s Republic of China

yangruiqi@ucas.ac.cn

Abstract. Nowadays, massive amounts of data are growing at a rapid
rate every moment. If data can be processed and analyzed promptly as
they arrive, they can bring huge added values to the society. In this paper,
we consider the problem of maximizing a monotone non-submodular
function subject to a cardinality constraint under the streaming set-
ting and present a linear-time single-pass deterministic algorithm for
this problem. We analyze the algorithm using the parameter of the
generic submodularity ratio γ to achieve an approximation ratio of[

γ4

c(1+γ+γ2+γ3)
− ε

]
for any ε ≥ 0 with the query complexity �n/c� + c,

and the memory complexity is O(ck log(k) log(1/ε)), where c is a posi-
tive integer. When γ = 1, the algorithm achieves the same ratio for the
submodular version of the problem with the matching query complexity
and memory complexity.

Keywords: Non-submodular · Streaming · Linear-time ·
Cardinality-constrained

1 Introduction

The problem of submodular optimization can be regarded as a subset selection
problem, with a growing number of applications, especially in artificial intel-
ligence [31], data mining [17], document summarization [21], boosting infor-
mation spread [22], genomics [34], social network influence [27], recommender
c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 96–110, 2021.
https://doi.org/10.1007/978-3-030-92681-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_9&domain=pdf
http://orcid.org/0000-0002-5237-2012
http://orcid.org/0000-0003-0111-8572
http://orcid.org/0000-0003-0710-8498
http://orcid.org/0000-0002-9100-9291
https://doi.org/10.1007/978-3-030-92681-6_9

Linear-Time Streaming Algorithm for Non-submodular Functions 97

system [30], and securities market analysis [18], to name just a few. A set func-
tion f : 2N → R+ is submodular if for any S ⊆ T ⊆ N and e ∈ N \ T ,
f(S ∪ {e}) − f(S) ≥ f(T ∪ {e}) − f(T) holds. The cardinality-constrained sub-
modular maximization problem is to select a subset S of N with cardinality at
most k such that the objective value f(S) is maximized:

max
S⊆N

{f(S) : |S| ≤ k} (1)

In the current era of digitized information, human activities are carried out
through information technology, generating a humongous stack of data [4]. The
unprecedented growth of text, image and video data requires technologies that
can effectively process them at high speed. Submodular optimization under the
massive data environment [19,26] is a relatively new area to which many stake-
holders have begun to pay close attention. The streaming model [1,24,25,28] is
a popular model for processing massive amounts of data.

When we have to process massive data, computing systems may quickly
become overloaded if these data are stored at once. Streaming models overcome
this difficulty by visiting the elements in a streaming fashion. According to [1], the
performance guarantee of a streaming algorithm is defined by four parameters:
pass time, memory complexity, update time and approximation ratio. Therefore
any streaming algorithm aims to select appropriate elements from a large number
of inputs to make the final output as good as possible. The main goal is to provide
a good trade-off between the space to process the input stream and the accuracy of
the solution. Other relevant parameters include the update time needed to make
the estimate, and the number of passes ideally is equal to 1.

For the maximization of cardinality-constraint monotone submodular func-
tions under the streaming setting, Chakrabarti and Kale et al. [5] provided the
first single-pass streaming 1/4-approximation algorithm with 2n queries, O(k)
memory and Ω(n log k) time complexity. Badanidiyuru et al. [1] introduced a
threshold-based procedure, improving the single-pass algorithm to 1/2 − ε in
O(k log(k)/ε) with O(n log(k)/ε) queries and time. Kazemi et al. [13] provided
SieveStream++ algorithm which is a single pass algorithm that keeps 1/2 − ε
approximation ration with memory complexity of O(k/ε). Lately, Feldman et
al. [11] showed that any single-pass algorithm with approximation guarantee of
1/2 + ε must essentially store all elements of the stream. Kuhnle [15] proposed
the first deterministic streaming algorithms with linear time complexity.

However, submodularity is a demanding attribute in many applications
[14,22] and hence may not be satisfied in practice. Das and Kempe [8] intro-
duced the parameter-submodularity ratio γN,k, as a key quantity to capture
how close a general set function is to the submodular function. Sviridenko
et al. [32] used the notion of curvature c (a concept introduced for any non-
decreasing submodular function by Conforti and Cornuéjols [6]) to obtain an
(1 − c/e)-approximation algorithm for the monotone non-submodular functions
maximization problem subject to a matroid constraint. Bian et al. [2] com-
bined the curvature c and the submodularity ratio γN,k to derive the first tight
constant-factor approximation ratio of 1

c (1 − e−γN,kc) with O(nk) oracle queries

98 M. Cui et al.

for the non-submodular cardinality-constraint maximization problem. Kuhnle
et al. [16] adapted the threshold greedy framework to non-submodular func-
tions, achieving an approximation ratio 1 − e−νγN,k − ε for ν no less than γN,k

with query complexity O(n log k logκ(ε2/k), where κ, ε ∈ (0, 1) are parameters
of the algorithm. Gong et al. [12] provided a more practical measurement γ
which is called generic submodularity ratio and gave the first (1 − e−γ − o(1))
approximation continuous greedy algorithm for multilinear optimization prob-
lem under matroid constraints. Later, Nong et al. [29] used the generic submod-
ularity ratio γ in the greedy algorithms for maximizing cardinality-constraint
strictly-monotone set function, and provided a (1 − e−γ)-approximation algo-
rithm. Cui et al. [7] and Liu et al. [23] both adapted the threshold technique
from Fahrbach et al. [10] and the generic submodularity ratio γ for maximiz-
ing cardinality-constraint monotone non-submodular set function. Cui et al. [7]
gave an adaptive distributed algorithm that achieved an approximation ratio
1 − e−γ2 − ε with O(log(n/η)/ε2) adaptive rounds and O(n log log(k)/ε3) oracle
queries in expectation. Liu and Hu [23] developed a 1 − e−γ − ε-approximation
continuous algorithm with O(n/ε log(n/ε)) queries.

The research on non-submodular cardinality-constraint maximization prob-
lems in streaming setting started only recently. Elenberg et al. [9] adopted the
high-level idea of Badanidiyuru et al. [1] to give a greedy deterministic stream-

ing algorithm with an approximation ratio (1 − ε)γ
′

2 (3 − e−γ
′
/2 − 2

√
2 − γ′/2)

and O(ε−1k log k) memory for maximizing γ
′
-weakly submodular functions.

Wang et al. [33] used the weak submodularity ratio from [9] to present four
sieve-streaming algorithms for maximizing cardinality-constraint monotone non-
submodular set function. The best approximation ratio for single-pass algorithm
is min{αγ

2γ , 1 − 1
2γ } with k memory where α is a parameter ∈ [0, 1]. Li et al. [20]

proposed two algorithms named Sieve-Streaming++ algorithm and Batch-Sieve-
Streaming++, and the better approximation ratio is min{ (1−ε)γ

2γ , 1 − 1
2γ } with

O(k/ε) memory.

Contributions. Our main contributions are summarized as follows:

• We propose the first linear-time single-pass streaming algorithm for max-
imizing a monotone nonsubmodular function with a cardinality constraint
and show that the approximation ratio is γ4

c(1+γ+γ2+γ3) − ε. When γ = 1, the
algorithm matches the same ratio for the submodular version of the problem.

• The number of queries of the algorithm is at most �n/c	 + c and the mem-
ory complexity of the algorithm is O(ck log(k) log(1/ε)). These ensure that a
feasible solution can be obtained quickly without taking up too much space.

In this paper, we adopt the high-level idea in Kuhnle [15] with the generic
submodularity ratio γ [12]. One of our main technologies is set-swapping, which
is similar to but different from the previous swapping technique [3,5]. We only
consider whether to add this newly arrived elements set when the number of
newly arrived elements reaches c; we would delete some elements that have

Linear-Time Streaming Algorithm for Non-submodular Functions 99

arrived in order when the number of stored elements reaches the upper bound.
These methods indirectly reduce number of queries. The parameter c is the
number of elements processed by the algorithm at one time when the stream
arrives. While the approximation ratio and the query complexity of the algorithm
are negatively correlated with the value of c, the memory complexity is positively
correlated with the value of c. In practical applications, we can appropriately
adjust the size of c according to the needs.

Organization. This paper is structured as follows: The first section is an intro-
duction to this work, explaining its motivation, related works and main contri-
butions. Section 2 introduces the basic definitions and notations used throughout
this article, and gives some properties of the definitions. We provide the imple-
mentation details for the deterministic algorithm, and give the approximate ratio
analysis in Sect. 3. Finally, Sect. 4 offers direction of future work.

2 Preliminaries

In this section, we give a detailed description on notations related to this paper.
We use N to denote the ground set and |N | = n. The function f : 2N → R+

is a non-negative monotone non-submodular set function with f(∅) = 0.

Definition 1. Monotone: The set function f is monotone if for any two subset
S ⊆ T ⊆ N , we have

f(S) ≤ f(T).

For any pair of S, T ⊆ N , f(S ∪ T) − f(S) denotes the marginal gain of
adding T to S. Specially, for any S ⊆ N and any e ∈ N , f(S ∪ {e}) − f(S)
denotes the marginal gain of adding element e to the set S.

Next, we introduce a tool to connect the general function with the submod-
ular function. The generic submodularity ratio γ defined below is the parameter
to measure the multiple relationship between the marginal gains of adding a
single element to the set and adding it to the proper subset.

Definition 2. Generic submodularity ratio [12]: Given a ground set N and
an increasing set function f : 2N → R+, the generic submodularity ratio of f is
the largest scalar γ such that for any S ⊆ T ⊆ N and any e ∈ N \ T ,

f(S ∪ {e}) − f(S) ≥ γ · [f(T ∪ {e}) − f(T)].

Proposition 1 (Property of generic submodularity ratio [12]). For an increas-
ing set function f : 2N → R+ with generic submodularity ratio γ, it holds that

1. γ ∈ (0, 1];
2. The function f is submodular if and only if γ = 1.

Lemma 1. For a non-negative strictly-monotone set function f : 2N → R+

with generic submodularity ratio γ, it holds that: for any S, T ⊆ N ,

100 M. Cui et al.

1. f(S) + γf(T) ≥ f(S ∩ T) + γf(S ∪ T)
2. Set T \ S = {T1, T2, · · · , Th}, Ti ∩ Tj = ∅(i, j ∈ [1, h], i �= j)

f(S ∪ T) − f(S) ≤ 1
γ

h∑

j=1

[f(S ∪ Tj) − f(S)]

Proof. 1. Let X ⊆ Y , C = {j1, ..., jl}, C ⊆ N \Y , and C∩Y = ∅. By the generic
submodularity ratio,

f(X ∪ {j1}) − f(X) ≥γ[f(Y ∪ {j1}) − f(Y)]
f(X ∪ {j1, j2}) − f(X ∪ {j1}) ≥γ[f(Y ∪ {j1, j2}) − f(Y ∪ {j1})]

...

f(X ∪ {j1, ..., jl}) − f(X ∪ {j1..., jl−1}) ≥γ[f(Y ∪ {j1, ..., jl})
− f(Y ∪ {j1, ..., jl−1})]

(2)

Summing up those inequalities, we get

f(X ∪ C) − f(X) = f(X ∪ {j1, ..., jl}) − f(X)
≥ γ[f(Y ∪ {j1, ..., jl}) − f(Y)]
≥ γ[f(Y ∪ C) − f(Y)]

(3)

For any S, T ⊆ N , we set X = S ∩ T,C = S \ T, Y = T . So we have
X ∪ C = S, Y ∪ C = S ∪ T .

f(S) − f(S ∩ T) ≥ γ[f(S ∪ T) − f(T)]

2. From the setting of S, T , T \ S = ∪h
j=1Tj .

f(S ∪ T) − f(S) = f(S ∪ (∪h
j=1Tj))−f(S)

= f(S ∪ (∪h
j=1Tj))−f(S ∪ (∪h−1

j=1Tj))

+f(S ∪ (∪h−1
j=1Tj)) − f(S ∪ (∪h−2

j=1Tj))

+ · · ·
+ f(S ∪ T1) − f(S)

≤ 1
γ

[f(S ∪ Th) − f(S)] +
1
γ

[f(S ∪ Th−1) − f(S)]

+ · · · + [f(S ∪ T1) − f(S)]

=
1
γ

h∑

j=1

[f(S ∪ Tj)−f(S)]

(4)

where the inequality holds from Inequality (3).

In the rest of this paper, the algorithm outputs S as the final solution; OPT
(i.e. f(O) = OPT) and O denote the values of the optimal sets and one of the
optimal sets, respectively.

Linear-Time Streaming Algorithm for Non-submodular Functions 101

3 The Single-Pass Deterministic Algorithm

In this section, we propose a single-pass, deterministic streaming algorithm for
maximizing a monotone non-submodular function subject to a cardinality con-
straint. The parameter c is the number of elements processed by the algorithm
at one time as the streaming arrives, the approximation ratio, query complexity
and memory complexity of the algorithm are all related to this parameter. Our
algorithm is a set swapping algorithm, and uses the order in which elements are
added to A to compare elements, instead of directly comparing with the marginal
benefits of other elements in A; in addition, the algorithm does not query the
function value of each element arriving, but only when c elements arrived. These
indirect, reduced number of comparison methods leads to the algorithm’s linear
time complexity.

For the given c, as the streaming data arrive, the algorithm maintains a
dynamic storage set A, whose length is at most 2cr(�kγ	 + 1)�log2(k)	. At the
beginning of the algorithm, A is an empty set. H denotes the collection block
that temporarily stores elements, and the size of H is no more than c. When the
size of H is reached c or the streaming ends, the algorithm performs one query
on f(A∪H). If the marginal benefit of adding set H to A is no less than 1/(γk)
multiplied by the function value of A, adds H into A; otherwise, discard these
elements, and H restores the newly arriving elements. If the number of elements
in A is no less than 2cr(�kγ	 + 1)�log2(k)	, removing cr(�kγ	 + 1)�log2(k)	
elements from A. When the stream ends, the algorithm selects the last arrived
ck elements of A, takes each k elements as a group according to the last arrival
order, and adds them into the c sets. Finally, the algorithm compares the function
values of these c sets and chooses the maximum value as the output.

Theorem 1. Let c ≥ 1, ε ≥ 0, and k ≥ 2, for any monotone, non nega-
tive non-submodular function f , the Single-pass Deterministic algorithm is a
[γ4

c(1+γ+γ2+γ3) − ε]-approximation algorithm, the query complexity is at most
�n/c	 + c, and the memory complexity is O(ck log(k) log(1/ε)).

In order to prove the approximate ratio of the algorithm, we give some addi-
tional notations. According to the construction of A, initially A0 = ∅. Let Ai

(0 ≤ i < n) denote the state of A after the i-th iteration of the for loop. Let
An denote the state of A in the end of the for loop. First, we need the following
lemma [15]:

Lemma 2. For z ≥ 1, if x ≥ (1 + k) log2 z, then (1 + 1/k)x ≥ z.

Proof. It follows from the inequality: for y > 0, log y ≥ 1 − 1/y.

(1 + 1/k)x = 2x log2(1+1/k)

≥2x(1− 1
(1+1/k))

≥2(1+k) log2 z· 1
1+k = z

(5)

102 M. Cui et al.

Algorithm 1. Single-pass Deterministic
Input: evaluation oracle f : 2N → R+, constraint k, generic submodularity ratio γ,

and error 0 < ε < γk2

Output: the solution S

1: Set r ← �log2(1/(ε))� + 3
2: Set l ← cr(�kγ� + 1)�log2(k)�
3: Initialize A ← ∅, S ← ∅, H ← ∅
4: for every element e arriving do
5: Set H ← H ∪ {e}
6: if | H |= c or all elements arrived then
7: if f(A ∪ H) − f(A) ≥ f(A)/(γk) then
8: Set A ← A ∪ H
9: if | A |≥ 2l then
10: Set A ← { the l elements most recently added to A}
11: Set H ← ∅
12: Initialize j ← 1
13: while j ≤ c do
14: Set Sj ← { the k elements recently added to A}
15: Set A ← A \ Sj

16: Update S ← argmax{f(S), f(Sj)}
17: Update j ← j + 1

18: return S

Next, we show the change of the value of f(A) between iterations of the for
loop.

Lemma 3. For any i-th iteration (1 ≤ i ≤ n), Lines 7–10 of the Single-pass
Deterministic algorithm has one of the following properties:

1. If there is not delete operation in i-th iteration, f(Ai−1) ≤ f(Ai);
2. If there is a delete operation in i-th iteration, f(Ai−1) ≤ 1

γ f(Ai);
2.1 If i-th iteration is not the first round with deletion, set the last round

recorded with deletion of i-th iteration is the i
′
-th iteration, f(Ai′) ≤

f(Ai).

Proof. 1. If the elements are not deleted in i-th iteration, the number of the
elements in Ai−1 is less than 2cr(�kγ	 + 1)�log2(k)	 − c. We only consider
whether to add c elements to Ai−1. From the monotonicity of the function,
f(Ai−1) ≤ f(Ai).

2. If the elements are deleted in i-th iteration, then at the beginning of i-th
iteration, the number of the elements in A is at least 2cr(�kγ	+1)�log2(k)	−c;
in this round, the algorithm performed two operations in A which are adding
at most c elements recorded as Hi and deleting at least cr(�kγ	+1)�log2(k)	
elements recorded as Di, Ai = (Ai−1 \ Di) ∪ Hi. Consequently, for every Di

(1 ≤ i ≤ n), we can find 0 ≤ l < i of the first for loop that Di = Al.
For the relevance of f(Ai) and f(Ai−1):

Linear-Time Streaming Algorithm for Non-submodular Functions 103

From the end of l-th iteration to the beginning of i-th iteration, there have
been cr(�kγ	 + 1)�log2(k)	 − c elements added in the A, which add precisely
the elements in Ai−1 \ Al. It holds that

f(Ai−1 \ Di) ≥γ[f(Ai−1) − f(Di)]

≥γ · (1 +
1
γk

)r(�kγ�+1)�log2(k)�−1.f(Al) − γf(Al)

≥γ · (1 +
1
γk

)(r−1)(�kγ�+1)�log2(k)�.f(Al) − γf(Al)

≥γ(kr−1 − 1) · f(Al)

(6)

where the first inequality holds from the Lemma 1; the second inequality is
obtained by the fact that from the l-th iteration to the (i − 1)-th iteration,
the added value of f(A) in each round of added elements to A is at least
1

γkf(A); the third inequality follows from the fact r(�kγ	 + 1)�log2(k)	 − 1 ≥
(r − 1)(�kγ	 + 1)�log2(k)	 for any k ≥ 2; and the last inequality are received
by the Lemma 2. Therefore

f(Ai−1) ≤f(Di) +
f((Ai−1 \ Di))

γ

=f(Al) +
f((Ai−1 \ Di))

γ

≤(1 +
1

(kr−1 − 1)
)
f((Ai−1 \ Di))

γ

(7)

From Inequality (3), we get

f((Ai−1 \ Di) ∪ Hi) − f(Ai−1 \ Di)
≥γ[f(Ai−1 ∪ Hi) − f(Ai−1)]

≥f(Ai−1)
k

≥ f(Ai−1 \ Di)
k

,

(8)

where the second inequality is obtained by the condition of the addition in
the round. Finally, applying Inequalities (7) and (8), we obtain

f(Ai) =f((Ai−1 \ Di) ∪ Hi)

≥(1 +
1
k

)f(Ai−1 \ Di)

≥ 1 + 1
k

1 + 1
(kr−1−1)

γf(Ai−1) ≥ γf(Ai−1),

(9)

where the last inequality holds because of r ≥ 3 and k ≥ 2.
If i-th iteration is not the first round with deletion, the last round recorded
with deletion of i-th iteration is the i

′
-th iteration. We discuss the change of

function value that the set from Ai′ to Ai:

104 M. Cui et al.

From the end of the i
′
-th iteration to the end of the i-th iteration, there have

been cr(�γk	 + 1)log2(k) elements added in the A, which add precisely the
elements in Ai \ A

′
i. It is easy to see that Di = A

′
i.

f(Ai) − f(A
′
i) =f(Ai−1 ∪ Hi \ Di) − f(A

′
i)

≥γ[f(Ai−1 ∪ Hi) − f(Di)] − f(A
′
i)

≥γ · (1 +
1
γk

)r(�kγ�+1)�log2(k)�.f(A
′
i) − (γ + 1)f(A

′
i)

≥[γ(kr − 1) − 1] · f(A
′
i)

(10)

where the first and the second inequalities are established on the same basis
as the first two inequalities of inequality (7); the third inequality is obtained
by Lemma 2 because f is non-negative function, ε ≤ γk2, γ(kr − 1) − 1 ≥ 0,
the inequality at least is 0.

Next, we limit the total value of f(A) lost from deleted elements during the
entire algorithm run. Let A∗ = ∪0≤i≤nAi denote all stored elements of A and ei

denote the element received in i-th iteration.

Lemma 4. f(A∗) ≤ 1
γ2 (1 + 1

γkr−1−1)f(An)

Proof. Suppose there were m sets deleted from A, recorded as A∗\An = {Dj , 1 ≤
j ≤ m} where each Dj is deleted on Line 10 of the algorithm, and they are sorted
with the reverse order in which they were deleted such that j1 < j2 implies Dj2

was deleted before Dj1 . Set D0 = An. For any j ∈ [0,m − 1], from A = Dj+1 to
A = Dj , there are at least cr(�kγ	 + 1)�log2(k)	 elements added to A for every
number of c elements arrived and deleted exactly once. Moreover, each addition
increases the value of f(A) by at least f(A)

γk except in the deletion case. Hence,
by Lemma 3,

f(Di−1) ≥ · (1 +
1
γk

)r(�kγ�+1)�log2(k)�−1.γ · f(Di)

≥γkr−1 · f(Di)
(11)

Therefore, for any 0 ≤ j ≤ m, f(An) = f(D0) ≥ (γkr−1)j · f(Dj). Then,

f(A∗) ≤f(An) +
1
γ

f(A∗ \ An)

≤ 1
γ2

m∑

j=0

f(Dj)

≤ 1
γ2

m∑

j=0

1
(γkr−1)j

f(An)

≤ 1
γ2

· 1
1 − 1

γkr−1

· f(An) =
1
γ2

(1 +
1

γkr−1 − 1
) · f(An),

(12)

where the first and second inequalities are received by Lemma 2 and γ ∈ (0, 1],
while the forth inequality is the summation of the geometric series.

Linear-Time Streaming Algorithm for Non-submodular Functions 105

Then, we bound the value of OPT with the f(An).

Lemma 5. OPT ≤ 1
γ2 (1 + γ2 + 1

γkr−1−1)f(An)

Proof. O is one of the optimal solutions for the problem. Suppose for each ele-
ment o ∈ O, i(o) is the iteration in the for loop that processes the element o, and
we let i(o) be the first iteration with delete operation after the i(o)-th iteration.
Therefore, we have

f(Ai(o)−1) ≤ f(A
i(o)−1

) ≤ 1
γ

f(A
i(o)

) ≤ 1
γ

f(An)

where all inequalities hold from the Lemma 3. Then,

f(O) − f(A∗) ≤f(O ∪ A∗) − f(A∗)

≤
∑

o∈O\A∗

1
γ

[f(A∗ ∪ {o}) − f(A∗)]

≤
∑

o∈O\A∗

1
γ2

[f(Ai(o)−1 ∪ {o}) − f(Ai(o)−1)]

≤
∑

o∈O\A∗

1
γ2

[f(Ai(o)−1 ∪ Hi(o)) − f(Ai(o)−1)]

<
∑

o∈O\A∗

f(Ai(o)−1)
γ3k

≤
∑

o∈O\A∗

f(An)
γ4k

≤f(An)
γ4

,

(13)

where the first and the forth inequalities are received by the monotonicity of f ;
the second inequality is obtained by the Lemma 2; the third inequality holds from
the definition of generic submodularity ratio; the condition of added element in
A in the algorithm makes the fifth inequality true; and the last inequality holds
because of the size of O. Finally, from Lemma 4 and inequality (13), we have

OPT ≤ 1
γ2

(1 + γ2 +
1

γkr − 1
)f(An)

Recall that the final solution of the Single-pass Deterministic algorithm has
the largest function value of each k elements from the ck elements recently added
to An. We record the ck elements which are recently added to An as Â. Then,
we discuss the relationship of the value of Â and OPT .

106 M. Cui et al.

Lemma 6.

OPT ≤
(

1 + γ + γ2 + γ3

γ3
+

1 + γ

γ3(γkr−1 − 1)
)f(Â)

)

Proof. First, we discuss the relationship of the values of f(Â) and f(An).
If | A |≤ ck, f(Â) = f(An), the lemma holds.
Suppose | A |> ck. Let Â = {D

′
1,D

′
2, · · · ,D

′
k}, | D

′
j |= c(j ∈ [1, k]), in the

order these sets were added to A. Then,

f(̂A) ≥γ[f(An) − f(An \ ̂A)]

= γ
k

∑

i=1

[f((An \ ̂A) ∪ {D
′
1, D

′
2, · · · , Di) − f((An \ ̂A) ∪ {D

′
1, D

′
2, · · · , Di−1)]

≥γ
k

∑

i=1

f((An \ ̂A) ∪ {D
′
1, D

′
2, · · · , Di−1)

γk

≥
k

∑

i=1

f(An \ ̂A)

k
= f(An \ ̂A),

(14)

where the first inequality is obtained by the Lemma 1; the condition of added
element in A in the algorithm makes the second inequality true; and the third
inequality is received by the monotonicity of f . Thus

f(An) ≤ f(An \ Â) +
f(Â)

γ
≤ 1 + γ

γ
f(Â)

Finally, from Lemma 5 and the above inequality, we get

OPT ≤
(

1 + γ + γ2 + γ3

γ3
+

1 + γ

γ3(γkr−1 − 1)

)
f(Â)

Then, we can give the proof of Theorem 1.

Proof. First, we show the approximation ratio: find the relationship between
f(S) and f(Â), and bring in Lemma 6 to obtain the approximate ratio.

When c = 1, S = Â,

f(S) = f(̂A) ≥ 1

1+γ+γ2+γ3

γ3 + 1+γ

γ3(γkr−1−1)

OPT

≥
[

γ3

1 + γ + γ2 + γ3
− γ2

(1 + γ)(1 + γ2)(kr−1 + γ2kr−1 − γ)

]

OPT

≥
[

γ3

1 + γ + γ2 + γ3
− 1

kr−1 − 1

]

OPT.

(15)

Suppose c > 1, and {S1, · · · , Sc} is the partition of Â. Then

f(Â) ≤ 1
γ

c∑

j=1

f(Sj)

≤ c

γ
max
1≤j≤c

f(Sj) =
c

γ
f(S)

(16)

Linear-Time Streaming Algorithm for Non-submodular Functions 107

Consequently,

f(S) ≥ γ

c
f(Â) ≥ [

γ4

c(1 + γ + γ2 + γ3)
− 1

kr−1 − 1
]OPT.

By the choice of r, f(S) ≥ [γ4

c(1+γ+γ2+γ3) − ε]OPT.

Then, we consider the queries of the algorithm by two parts. The first part
is to obtain the value when every c elements arrive. So the number of queries
in this part is �n/c	; the second part is the number of queries made while
comparing the values of at most c candidate solutions; so, the number of
queries is at most �n/c	 + c.
Finally, we show the memory complexity of the algorithm. It depends on the
size of A,S and H. Obviously, the lengths of S and H are at most k and c,
respectively. The length of A could reach 2cr(�kγ	 + 1)�log2(k)	 depending
on the choice of r. Recall that r = �log2(1/(ε))	 + 3. Therefore, the memory
complexity of algorithm is O(ck log(k) log(1/ε)).

From [15], we know the approximation ratio of the latest deterministic, single-
pass streaming algorithm with linear time complexity for the submodular maxi-
mization subject to a cardinality constraint problem is 1/(4c) − ε. When γ = 1,
our algorithm has an approximation ratio consistent with the above results,
also has the same query complexity and almost consistent storage memory
complexity.

4 Discussion

In this paper, we propose the first linear-time single-pass deterministic streaming
algorithm for the maximization of a monotone non-submodular function with a
cardinality constraint. The key idea to reducing the time complexity of this
algorithm is to replace the querying function value of each arriving element
with querying the function value of c elements, and to compare the marginal
gain of adding these c elements with the function value of the entire storage
set rather than comparing the function value of each element in the storage set.
Our algorithm, while effective in query and run in a reasonable time on large
instance, may output a less ideal solution. One future work is to improve the
approximation ratio of the algorithm without increasing the time complexity
and memory complexity.

Acknowledgements. The first author is supported by Beijing Natural Science Foun-
dation Project No. Z200002 and National Natural Science Foundation of China (No.
12131003). The second author is supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC) grant 06446, and Natural Science Foundation
of China (Nos. 11771386, 11728104). The third author is supported by National Nat-
ural Science Foundation of China (No. 11201333). The fourth author is supported by
the Fundamental Research Funds for the Central Universities (No. E1E40108X2) and
National Natural Science Foundation of China (No. 12101587).

108 M. Cui et al.

References

1. Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A., Krause, A.: Streaming submod-
ular maximization: massive data summarization on the fly. In: 20th International
Proceedings on SIGKDD, pp. 671–680. ACM, New York, USA (2014)

2. Bian, A.A., Buhmann, J.M., Krause, A., Tschiatschek, S.: Guarantees for greedy
maximization of non-submodular functions with applications. In: 34th Interna-
tional Proceedings on ICML, pp. 498–507. PMLR, Sydney, NSW, Australia (2017)

3. Buchbinder, N., Feldman, M., Schwartz, R.: Online submodular maximization with
preemption. ACM Trans. Algorithms 15(3), 1–31 (2019)

4. Caldarola, E.G., Rinaldi, A.M.: Big data: a survey. In: 4th International Proceed-
ings on DATA, pp. 362–370. SciTePress, Colmar, Alsace, France (2015)

5. Chakrabarti, A., Kale, S.: Submodular maximization meets streaming: matchings,
matroids, and more. Math. Program. 154, 225–247 (2015)

6. Conforti, M., Cornuéjols, G.: Submodular set-functions, matroids and the greedy
algorithm - tight worst-case bounds and some generalizations of the rado-edmonds
theorem. Discrete Appl. Math. 7(3), 251–274 (1984)

7. Cui, M., Xu, D., Guo, L., Wu, D.: Approximation guarantees for parallelized max-
imization of monotone non-submodular function with a cardinality constraint. In:
Zhang, Z., Li, W., Du, D.-Z. (eds.) AAIM 2020. LNCS, vol. 12290, pp. 195–203.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57602-8 18

8. Das, A., Kempe, D.: Submodular meets spectral: greedy algorithms for subset selec-
tion, sparse approximation and dictionary selection. In: 28th International Proceed-
ings of ICML, pp. 1057–1064. Omnipress, Bellevue, Washington, USA (2011)

9. Elenberg, E. R., Dimakis, A. G., Feldman, M., Karbasi, A.: Streaming weak sub-
modularity: interpreting neural networks on the fly. In: 31st International Proceed-
ings on NIPS, pp. 4044–4054. Long Beach, CA, USA (2017)

10. Fahrbach, M., Mirrokn, V., Zadimoghaddam, M.: Submodular maximization with
nearly optimal approximation, adaptivity and query complexity. In: 30th Interna-
tional Proceedings on SODA, pp. 255–273. SIAM, San Diego, CA, USA (2019)

11. Feldman, M., Norouzi-Fard, A., Svensson, O., Zenklusen, R.: The one-way com-
munication complexity of submodular maximization with applications to stream-
ing and robustness. In: 52nd International Proceedings on STOC, pp. 1363–1374.
ACM, Chicago, IL, USA (2020)

12. Gong, S., Nong, Q., Liu, W., Fang, Q.: Parametric monotone function maximiza-
tion with matroid constraints. J. Glob. Optim. 75(3), 833–849 (2019). https://doi.
org/10.1007/s10898-019-00800-2

13. Kazemi, E., Mitrovic, M., Zadimoghaddam, M., Lattanzi, S., Karbasi, A.: Sub-
modular streaming in all its glory: tight approximation, minimum memory and
low adaptive complexity. In: 36th International Proceedings of ICML, pp. 3311–
3320. PMLR, Long Beach, California, USA (2019)

14. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through
a social network. Theor. Comput. 11(1), 105–147 (2015)

15. Kuhnle, A.: Quick streaming algorithms for maximization of monotone submodular
functions in linear time. In: 24th International Proceedings on AISTATS, pp. 13–
15. PMLR, Virtual Event (2021)

16. Kuhnle, A., Smith, J., Crawford, V.G., Thai, M.T.: Fast maximization of non-
submodular, monotonic functions on the integer lattice. In: 35th International
Proceedings of ICML, pp. 2786–2795. PMLR, Stockholm, Sweden (2018)

https://doi.org/10.1007/978-3-030-57602-8_18
https://doi.org/10.1007/s10898-019-00800-2
https://doi.org/10.1007/s10898-019-00800-2

Linear-Time Streaming Algorithm for Non-submodular Functions 109

17. Lakkaraju, H., Bach, S.H., Leskovec, J.: Interpretable decision sets: a joint
framework for description and prediction. In: 22nd International Proceedings of
SIGKDD, pp. 1675–1684. ACM, San Francisco, CA, USA (2016)

18. Larcker, D.F., Watts, E.M.: Where’s the greenium? J. Account. Econ. 69(2),
101312 (2020)

19. Levin, R., Wajc, D.: Streaming submodular matching meets the primal-dual
method. In: 32nd International Proceedings on SODA, pp. 1914–1933. SIAM, Vir-
tual Conference (2021)

20. Li, M., Zhou, X., Tan, J., Wang, W.: Non-submodular streaming maximization
with minimum memory and low adaptive complexity. In: Zhang, Z., Li, W., Du,
D.-Z. (eds.) AAIM 2020. LNCS, vol. 12290, pp. 214–224. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-57602-8 20

21. Lin, H., Bilmes, J. A.: A class of submodular functions for document summariza-
tion. In: 49th International Proceedings on ACL, pp. 510–520. The Association for
Computer Linguistics, Portland, Oregon, USA (2011)

22. Lin, Y., Chen, W., Lui, J.C.: Boosting information spread: an algorithmic app-
roach. In: 33rd International Proceedings on ICDE, pp. 883–894. IEEE Computer
Society, San Diego, CA, USA (2017)

23. Liu, B., Hu, M.: Fast algorithms for maximizing monotone nonsubmodular func-
tions. In: Zhang, Z., Li, W., Du, D.-Z. (eds.) AAIM 2020. LNCS, vol. 12290, pp.
204–213. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57602-8 19

24. McGregor, A.: Graph stream algorithms: a survey. In: 31st International Proceed-
ings of ICML, pp. 9–20. JMLR.org, Beijing, China (2014)

25. Mirzasoleiman, B., Karbasi, A., Badanidiyuru, A., Krause, A.: Distributed sub-
modular cover: succinctly summarizing massive data. In: 29th International Pro-
ceedings on NIPS, pp. 2881–2889. Montreal, Quebec, Canada (2015)

26. Mirzasoleiman, B., Karbasi, A., Sarkar, R., Krause, A.: Distributed submodular
maximization: identifying representative elements in massive data. In: 27th Inter-
national Proceedings on NIPS, pp. 2049–2057. Lake Tahoe, Nevada, USA (2013)

27. Mossel, E., Roch, S.: On the submodularity of influence in social networks. In: 39th
International Proceedings on STOC, pp. 128–134. ACM, San Diego, California,
USA (2007)

28. Muthukrishnan, S.: Data streams: algorithms and applications. Theoret. Comput.
Sci. 1(2), 117–236 (2005)

29. Nong, Q., Sun, T., Gong, S., Fang, Q., Du, D., Shao, X.: Maximize a monotone
function with a generic submodularity ratio. In: Du, D.-Z., Li, L., Sun, X., Zhang,
J. (eds.) AAIM 2019. LNCS, vol. 11640, pp. 249–260. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-27195-4 23

30. Norouzi-Fard, A., Tarnawski, J., Mitrovic, S., Zandieh, A., Mousavifar, A., Svens-
son, O.: Beyond 1/2-Approximation for submodular maximization on massive
data streams. In: 35th International Proceedings of ICML, pp. 3826–3835. PMLR,
Stockholm, Sweden (2018)

31. Ribeiro, M. T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the
predictions of any classifier. In: 22nd International Proceedings of SIGKDD, pp.
1135–1144. ACM, San Francisco, CA, USA (2016)

32. Sviridenko, M., Vondrák, J., Ward, J.: Optimal approximation for submodular
and supermodular optimization with bounded curvature. In: 26th International
Proceedings on SODA, pp. 1134–1148. SIAM, San Diego, CA, USA (2015)

https://doi.org/10.1007/978-3-030-57602-8_20
https://doi.org/10.1007/978-3-030-57602-8_19
https://doi.org/10.1007/978-3-030-27195-4_23

110 M. Cui et al.

33. Wang, Y., Xu, D., Wang, Y., Zhang, D.: Non-submodular maximization on massive
data streams. J. Glob. Optim. 76(4), 729–743 (2019). https://doi.org/10.1007/
s10898-019-00840-8

34. Wei, K., Libbrecht, M.W., Bilmes, J.A., Noble, W.S.: Choosing panels of genomics
assays using submodular optimization. Genom. Biol. 17(1), 229 (2016)

https://doi.org/10.1007/s10898-019-00840-8
https://doi.org/10.1007/s10898-019-00840-8

Approximation Algorithms for Two
Parallel Dedicated Machine Scheduling

with Conflict Constraints

An Zhang1(B), Liang Zhang1, Yong Chen1, Guangting Chen2(B),
and Xing Wang1

1 Department of Mathematics, Hangzhou Dianzi University, Hangzhou 310018, China
{anzhang,liangzhang,chenyong,wx198491}@hdu.edu.cn

2 Taizhou University, Linhai 317000, China
gtchen@hdu.edu.cn

Abstract. We investigate two parallel dedicated machine scheduling
with conflict constraints. The problem of minimizing the makespan has
been shown to be NP-hard in the strong sense under the assumption that
the processing sequence of jobs on one machine is given and fixed a pri-
ori. The problem without any fixed sequence was previously recognized
as weakly NP-hard. In this paper, we first present a 9

5
-approximation

algorithm for the problem with a fixed sequence. Then we show that
the tight approximation ratios of the algorithm are 7

4
and 5

3
for two

subproblems which remain strongly NP-hard. We also send an improved
algorithm with approximation ratio 3 − √

2 ≈ 1.586 for one subproblem.
Finally, we prove that the problem without any fixed sequence is actually
strongly NP-hard, and design a 5

3
-approximation algorithm to solve it.

Keywords: Parallel dedicated machines · Conflict graph ·
Approximation algorithm · NP-hard

1 Introduction

In the problem of scheduling with conflict constraints (SWC in short), a set N
of jobs is supposed to be processed by a set of machines subject to a conflict
graph G = (N,E) in which the conflict constraints are specified among jobs
(vertices). Two jobs connected by an edge in the graph are called in conflict in
the sense that they cannot be processed concurrently. The objective is to find a
conflict-free schedule with the minimum makespan. The SWC problem arises in
a more general scheduling model where a set of renewable resources is provided
for processing the jobs along with the set of machines [1]. Specifically, there are
λ resources each with a total availability capacity of σ units. Each job consumes
at most ρ (≤ σ) units of each resource at any time of its processing, and the
availability of that amount will be released at the completion of the job. The
general resource constraints can be represented by a conflict hypergraph while
a conflict graph suffices for the special case where resources are non-shareable,
c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 111–124, 2021.
https://doi.org/10.1007/978-3-030-92681-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-92681-6_10

112 A. Zhang et al.

that is, the case of σ = ρ = 1. Some applications of this model are mentioned
by Baker and Coffman [2] in balancing the load in a parallel computation, and
by Halldórsson et al. [3] in traffic intersection control, frequency assignment in
cellular networks, and session management in local area networks.

Scheduling jobs of arbitrary processing time on a constant number of parallel
machines is weakly NP-hard even if the conflict graph is empty. Even et al. [4]
proposed a polynomial time algorithm for the two machine case where jobs
have processing time either 1 or 2. The problem with the same settings except
that jobs might have different release time in {0, r} is shown to be NP-hard
in the strong sense even in complements of bipartite graphs [11]. In the same
paper [11], Bendraouche and Boudhar also proved that the two machine SWC
problem is strongly NP-hard in complements of bipartite graphs when all jobs
have processing time in {1, 2, 3}. Even et al. [4] proved that the two machine
SWC problem with processing time in {1, 2, 3, 4} is APX-hard. Bendraouche et
al. [10] extended a result of [4] by sending a strong NP-hardness proof for all cases
with processing time in {a, 2a + b} (b �= 0) in complements of bipartite graphs.
Mohabeddine and Boudhar [12] showed that the two machine SWC problem with
arbitrary processing times is polynomial solvable in complements of caterpillars
or cycles, and weakly NP-hard in complements of trees.

Scheduling jobs of unit processing time on m parallel machines are considered
by Baker and Coffman [2] which they called the mutual exclusion scheduling
(MES) problem. As Even et al. observed [4], the MES problem is equivalent
to finding a minimum coloring of the conflict graph in which every color class
contains at most m vertices, known as m bounded coloring. In particular, an
optimal schedule for m = 2 can be obtained from a maximum matching on the
complement of the conflict graph. It has been shown to be strongly NP-hard
in general conflict graphs for m ≥ 3 [2] and in various special conflict graphs,
such as chordal graphs [6], complements of line graphs [7] and complements
of comparability graphs [8] for m ≥ 3, bipartite graphs, cographs and interval
graphs for m ≥ 4 [5], and permutation graphs for m ≥ 6 [8]. Even et al. [4]
further pointed out that the hardness proof given by Petrank [9] on a related
problem can be applied to the MES problem so that the latter turns out to be
APX-hard even for m = 3.

In [1], Garey and Graham analyzed a type of greedy list scheduling algorithm
for the more general scheduling problem in conflict hypergraphs, which implies
an approximation ratio of m+1

2 . The tightness is confirmed by Even et al. [4] in
conflict graphs. The same paper [4] also proposed an improved algorithm with
approximation ratio 4

3 for the two machine SWC problem with processing time
in {1, 2, 3}. The SWC problem with unit processing time can be formulated as
the m-set cover problem for which Fürer and Yu [13] presented a packing-based
algorithm with approximation ratio Hm − 0.642 + Θ(1

m), where Hm =
∑m

i=1
1
i

is the harmonic number. The best known approximation results on this problem
are claimed by Yu in his dissertation thesis [14]. For mixed integer programming
formulations and exact solutions of the SWC problem, we refer to a recent paper
given by Hà et al. [15].

Approximation Algorithms for Two Machine SWC Problem 113

Hong and Lin [16] studied a SWC problem where jobs are allocated to
machines in advance so that each machine is dedicated for processing a fixed
set of jobs. They [16] observed that the two machine SWC problem PD2|G =
(N,E)|Cmax can be regarded as two machine scheduling under multiple resource
constraints, that is, PD2|resλσρ|Cmax, and hence is weakly NP-hard [17].
In [16], Hong and Lin proved that the problem becomes strongly NP-hard
if the sequence of jobs on one machine is given and fixed a priori, and the
problem with fixed sequences on both machines admits a polynomial time
optimal algorithm. As special cases of the SWC problem on parallel dedi-
cated machines, the resource constrained scheduling problems PD2|res1σρ|Cmax

and PD2|res211|Cmax are polynomially solvable [17], and PD2|res222|Cmax,
PD2|res311|Cmax and PD3|res111|Cmax are weakly NP-hard [17,18]. Kellerer
and Strusevich [18] proved that the problem PDm|res111|Cmax is strongly NP-
hard if the number m of machines is an input. They presented a group technique
algorithm with approximation ratio 3

2 − 1
2m for odd m and 3

2 − 1
2(m−1) for even

m, and improved the algorithm to approximation ratio 5
4 for m = 3, 4, and

finally a PTAS for any constant m. In [17], Kellerer and Strusevich designed
a 2-approximation algorithm and a PTAS for a special case of the problem
PDm|resλ11|Cmax where each job consumes at most one of the λ resources.

In this paper, we revisit the SWC problem on two parallel and dedicated
machines [16], that is, PD2|G = (N,E)|Cmax. Our first contribution is a 9

5 -
approximation algorithm for the strong NP-hard case where the processing
sequence on one machine is given and fixed a priori. We also analyze the tight
approximation ratios of this algorithm for two subproblems of the case which
remain strongly NP-hard. An improved algorithm with approximation ratio
(3 − √

2) is further designed for one subproblem. Our next contribution is a
strong NP-hardness proof for the problem without any fixed sequence, which is
previously known weakly NP-hard [16]. This also gives the complexity of the
resource constrained scheduling problem PDm|resλ11|Cmax for any constant
m ≥ 2 and an input number of non-sharable resources each with unit avail-
ability capacity [17]. Finally, we provide a 5

3 -approximation algorithm to solve
the SWC problem without any fixed sequence. The next section gives a formal
definition of the problem. Section 3 and Sect. 4 considers the problem with a
fixed sequence and without any fixed sequences respectively. Some concluding
remarks are made in Sect. 5.

2 Problem Statement

Given two parallel dedicated machines and a set N of jobs which is partitioned
in advance into two disjoint subsets, N1 and N2, so that the i-th machine is
dedicated for processing jobs in Ni, i = 1, 2. Let N1 = {J1,1, J1,2, · · · , J1,n1}
and N2 = {J2,1, J2,2, · · · , J2,n2}, a job J1,s ∈ N1 and a job J2,t ∈ N2 are called
in conflict if they are not allowed to be processed concurrently. The conflict
constraints are specified by an undirected bipartite graph G = (N,E), where
the vertex set N = N1 ∪ N2 is composed of all the jobs in N1 and N2, and

114 A. Zhang et al.

an edge connecting two jobs J1,s and J2,t indicates that they are conflicting.
Any job must be processed non-preemptively on its machine till completion
and any machine can process at most one job at a time. Let pi,j denote the
processing time of job Ji,j , and Ci,j be its completion time. Then the makespan
of a schedule is defined by the maximum completion time of all jobs, that is,
Cmax = maxi=1,2;j=1,2,··· ,ni

{Ci,j}. The problem PD2|G = (N,E)|Cmax asks for
a conflict-free schedule with the minimum makespan.

The problem has been recognized weakly NP-hard [16] since its special cases,
PD2|res222|Cmax and PD2|res311|Cmax, are already weakly NP-hard [17]. By
polynomially reducing the 3-partition problem (3PP in short) to the problem
where the processing sequence on one machine is given and fixed a priori, Hong
and Lin [16] proved that the problem in this case becomes NP-hard in the strong
sense. One sees from the reduction that the problem remains strongly NP-hard
even if each job in N1 has no larger processing time than each job in N2, or
vice versa, each job in N1 has strictly larger processing time than each job in
N2. In reminder of the paper, we denote the problem with a fixed sequence
by PD2|G = (N,E), seq1|Cmax, and refer to the two cases defined above as
Subproblem 1 and Subproblem 2 of it respectively.

Let Ti =
∑ni

j=1 pi,j , i = 1, 2 and let C∗
max denote the optimal makespan, then

the following lower bounds for C∗
max trivially hold from the dedicated machine

settings:
C∗

max ≥ max{T1, T2}. (1)

3 The SWC Problem with a Fixed Sequence

This section focuses on the SWC (sub)problem where the processing sequence
of jobs on one machine is given and fixed a priori. Without loss of generality, let
the sequence be fixed to J1,1, J1,2, · · · , J1,n1 on the first machine.

3.1 A 9
5
-Approximation Algorithm

The schedule output by the algorithm Approx1 for the problem PD2|G =
(N,E), seq1|Cmax is composed of a series of blocks which can be roughly divided
into two types: type-A blocks and type-B blocks. In a type-A block denoted as
[At;J2,t], there are a set At of consecutive jobs from N1 and a single job J2,t

from N2. Jobs in At are processed one after another without any idle time
in their fixed sequence, starting from the same time when the job J2,t starts
to be processed (see Fig. 1 for an illustration), which is called the start time
of the block. When Approx1 generates a type-A block, it also ensures that∑

J1,j∈At
p1,j ≤ p2,t ≤ 2

∑
J1,j∈At

p1,j . In a type-B block denoted as [J1,s;Bs],
there are a set Bs of jobs from N2 and a single job J1,s from N1. Jobs in Bs

are processed one after another without any idle time, starting from the same
time when the job J1,s starts to be processed (see Fig. 1 too). When Approx1
generates a type-B block, it also ensures that

∑
J2,j∈Bs

p2,j ≤ p1,s.

Approximation Algorithms for Two Machine SWC Problem 115

Fig. 1. Two types of blocks.

Each round the algorithm strives to find a type-A block, and replaces it with
a type-B block if it fails. The start time of the newly found block is made no
earlier than the completion time of the previous block, that is, the time when all
the jobs in the previous block have been finished. Figure 2 shows an instance from
which one can see how the algorithm Approx1 outputs a conflict-free schedule
with blocks. A high-level description of Approx1 is depicted in Fig. 3.

Fig. 2. An instance solved by Approx1.

Let Ai (Bi), i = 1, 2, 3 be disjoint subsets of N1 (N2) defined as follows.
For each type-A block [At;J2,t], At ⊆ A1 and J2,t ∈ B1. For each type-B block
[J1,s;Bs] with p1,s/2 ≤ ∑

J2,j∈Bs
p2,j ≤ p1,s, J1,s ∈ A2 and Bs ⊆ B2. And for

each type-B block [J1,s;Bs] with
∑

J2,j∈Bs
p2,j < p1,s/2, J1,s ∈ A3 and Bs ⊆ B3.

Note ∪3
i=1Ai = N1. Let B4 = N2 \ ∪3

i=1Bi. Note B4 consists of the remaining
jobs of B in Step 4 of Approx1. For simplicity, denote by ai (bi) the total
processing time of jobs in Ai (Bi). By Step 2 and Step 3 of Approx1, and the
above definitions, we have

a1 ≤ b1 ≤ 2a1,
a2

2
≤ b2 ≤ a2, 0 ≤ b3 <

a3

2
,

116 A. Zhang et al.

Algorithm Approx1:

1. Initially let A = N1, B = N2 and s = 1.
2. If there exists a job J2,t ∈ B which does not conflict with a set

of consecutive jobs beginning with J1,s, say J1,s, J1,s+1, · · · , J1,s′ ,
and satisfies that

∑s′
j=s p1,j ≤ p2,t ≤ 2

∑s′
j=s p1,j (choose one ar-

bitrarily if more than one candidate is found), then let At =
{J1,s, J1,s+1, · · · , J1,s′} and generate a type-A block [At; J2,t]. Let
A = A \ At, B = B \ {J2,t} and s = s′ + 1. Go to Step 4.

3. Find all jobs in B with processing time smaller than p1,s and not
conflicting with J1,s. Denote them by a set B′

s (Note that B′
s might

be empty).
3.1 if

∑
J2,j∈B′

s
p2,j ≤ p1,s, then let Bs = B′

s.
3.2 if

∑
J2,j∈B′

s
p2,j > p1,s, then let Bs be a subset of B′

s such that
p1,s/2 ≤ ∑

J2,j∈Bs
p2,j ≤ p1,s. a

3.3 generate a type-B block [J1,s;Bs]. Let A = A\{J1,s}, B = B\Bs

and s = s+ 1.
4. If s < n1 + 1, return Step 2. Otherwise, process the blocks as early

as possible in the fixed sequence given by the jobs from N1 in the
blocks, provided that each block can start after the previous block is
completed. Process all remaining jobs in B (if any) one after another
without any idle time from the completion of the last block.

a We remark that Bs exists and can be found in polynomial time in this
case. For example, we can reorder jobs in B′

s in the nondecreasing
order of their processing time and select jobs sequentially until the
total processing time reaches or exceeds p1,s/2 for the first time.

Fig. 3. A high-level description of the algorithm Approx1.

Which, together with (1), yields that

C∗
max ≥ T1 = a1 + a2 + a3 ≥ b1

2
+ a2 + a3, (2)

and
C∗

max ≥ T2 = b1 + b2 + b3 + b4 ≥ b1 +
a2

2
+ b4. (3)

Lemma 1. Cmax = b1 + a2 + a3 + b4.

Proof. Since
∑

J1,j∈At
p1,j ≤ p2,t in any type-A block [At;J2,t], its completion

time is determined by J2,t ∈ B1. And similarly since
∑

J2,j∈Bs
p2,j ≤ p1,s in any

type-B block [J1,s;Bs], its completion time is determined by J1,s ∈ A2 ∪ A3.
Therefore, we can conclude

Cmax =
∑

J2,t∈B1

p2,t +
∑

J1,s∈A2∪A3

p1,s +
∑

J2,t∈B4

p2,t = b1 + a2 + a3 + b4.

Approximation Algorithms for Two Machine SWC Problem 117

Lemma 2. For each type-B block [J1,s;Bs] with
∑

J2,j∈Bs
p2,j < p1,s/2, any

job in B4 that does not conflict with J1,s (if any) must have processing time no
smaller than p1,s.

Proof. Suppose not, let J2,k ∈ B4 be the job with p2,k < p1,s and not conflicting
with J1,s. Clearly this job has not been assigned yet when Approx1 starts to
generate this block. If p2,k +

∑
J2,j∈Bs

p2,j ≤ p1,s, then Step 3.1 of the algorithm
must assign J2,k into this block. If p2,k +

∑
J2,j∈Bs

p2,j > p1,s, then Step 3.2 of
the algorithm must update the block so that p1,s/2 ≤ ∑

J2,j∈Bs
p2,j ≤ p1,s. Both

implies a contradcition. This proves the lemma.

Lemma 3. In an optimal schedule, the total processing overlap time of a job
J2,t ∈ B4 and the jobs in A3 cannot exceed p2,t

2 .

Proof. Since the order for processing jobs on the first machine is fixed to
(J1,1, J1,2, · · · , J1,n1), all jobs that overlap with the processing of J2,t must
follow that sequence. In an optimal schedule, let J1,s and J1,s′ (s′ ≥ s) be
the first and the last job from A3 that overlap with J2,t. If no such job
exists or

∑s′

j=s p1,j <
p2,t
2 , then we are already done. Due to J1,s, J1,s′ ∈ A3

and s′ ≥ s, the algorithm Approx1 must first generate the type-B block
[J1,s;Bs] with

∑
J2,j∈Bs

p2,j < p1,s/2, and then the type-B block [J1,s′ ;Bs′]
with

∑
J2,j∈Bs′ p2,j < p1,s′/2, but not necessarily immediately. Since J1,s and

J1,s′ overlap with the processing of J2,t in the optimal schedule, none of the jobs
between J1,s and J1,s′ conflict with J2,t. Hence, if

∑s′

j=s p1,j ≤ p2,t ≤ 2
∑s′

j=s p1,j ,
then Approx1 must find the job J2,t in Step 2 when J1,s is involved by the algo-
rithm, and thus generate a type-A block so that J2,t is included in B1. It is a
contradiciton since J2,t is actually included in B4. Therefore, we suppose in what
follows that

∑s′

j=s p1,j > p2,t. If p1,s ≤ p2,t ≤ 2p1,s, then the similar argument
can lead to a contradiction. By Lemma 2, we are only left with the case when
p2,t > 2p1,s.

Let k be the smallest index such that
∑k

j=s p1,j ≥ p2,t
2 . Then k is well-defined

and s < k ≤ s′, since we have p1,s <
p2,t
2 and

∑s′

j=s p1,j > p2,t. If
∑k

j=s p1,j ≤
p2,t, then we must obtain a contradition by the similar argument as above.
Otherwise,

∑k
j=s p1,j > p2,t. From the definition of k, we obtain

∑k−1
j=s p1,j <

p2,t
2 , which follows that

p1,k =
k∑

j=s

p1,j −
k−1∑

j=s

p1,j >
p2,t
2

. (4)

If J1,k ∈ A3, then by Lemma 2, p2,t ≥ p1,k. Together with (4), Approx1
must find the job J2,t in Step 2 when J1,k is involved by the algorithm, and thus
generate a type-A block so that J2,t is included in B1 too, contradicting with
the fact that J2,t ∈ B4. Therefore, J1,k /∈ A3.

Since J1,s′ ∈ A3, s < k < s′. Note in the optimal schedule, J1,s and J1,s′

are the first and the last job from A3 that overlap with J2,t. This means that

118 A. Zhang et al.

the job J1,k must be entirely processed within the processing interval of J2,t. By
J1,k /∈ A3 and (4), the total processing overlap time of J2,t and the jobs in A3

is no more than p2,t − p1,k <
p2,t
2 . This proves the lemma.

Lemma 4.
C∗

max ≥ a3 +
b4
2

. (5)

Proof. By Lemma 3, the total overlap time of jobs in B4 and A3 does not exceed
b4
2 . Then the total processing time of jobs in A3 that do not overlap with any
job in B4 must be at least max{a3 − b4

2 , 0}. Thus C∗
max ≥ max{a3 − b4

2 , 0}+ b4 ≥
a3 + b4

2 .

Theorem 1. Approx1 is a 9
5 -approximation algorithm for PD2|G =

(N,E), seq1|Cmax.

Proof. Let us multiply both sides of inequalities (2), (3), and (5) by 3
5 , 4

5 and
2
5 , respectively. Then, one can easily verify that the summation of both sides of
the resulting inequalities is

9
5
C∗

max ≥ 3
5

× (
b1
2

+ a2 + a3) +
4
5

× (b1 +
a2

2
+ b4) +

2
5

× (a3 +
b4
2

)

=
11
10

b1 + a2 + a3 + b4 ≥ b1 + a2 + a3 + b4 = Cmax,

where the last inequality is due to Lemma 1. This proves the theorem.

3.2 Tight Analysis of Approx1 for Two Subproblems

In the Subproblem 1, each job in N1 has no larger processing time than each
job in N2. Therefore, Approx1 must always find Bs = B′

s = ∅ when generating
a type-B block [J1,s;Bs] in Step 3. Accordingly, we obtain A2 = B2 = B3 = ∅,
implying that a2 = b2 = b3 = 0. Thus we rewrite the inequalities (2) and (3),
and Lemma 4 as follows,

C∗
max ≥ max{b1

2
+ a3, b1 + b4, a3 +

b4
2

}. (6)

Theorem 2. Approx1 is a 7
4 -approximation algorithm for Subproblem 1, and

the ratio is tight.

Proof. Similar to Theorem 1, we multiply the three terms in (6) by 1
2 , 3

4 and 1
2

respectively, and compute the summation of the resulting inequalities, obtaining

7
4
C∗

max ≥ 1
2

× (
b1
2

+ a3)+
3
4

× (b1 ++b4)+
1
2

× (a3 +
b4
2

) = b1 + a3 + b4 ≥ Cmax,

where the last inequality is due to Lemma 1 and the fact a2 = 0.
The tightness instance is shown in Fig. 4, where there are three jobs in N1

and two jobs in N2. Figure 4(a) gives the conflict graph with the processing

Approximation Algorithms for Two Machine SWC Problem 119

time outside the vertices. The algorithm Approx1 may generate a type-A block
[{J1,1};J2,1] in Step 2, and two type-B blocks, [J1,2; ∅] and [J1,3; ∅], in Step 3.
This means that A1 = {J1,1}, B1 = {J2,1}, A3 = {J1,2, J1,3} and B4 = {J2,2}.
Thus by Step 4, one gets a feasible schedule with Cmax = b1 + a3 + b4 = p2,1 +
p1,2+p1,3+p2,2 = 7+ε (see Fig. 4(b) for an illustration). In an optimal schedule,
the second machine processes J2,2 followed by J2,1 so that both machines can
keep busy till completion (see Fig. 4(c) for an illustration). Therefore C∗

max =
T1 = T2 = 4 + ε. Then we have Cmax

C∗
max

→ 7
4 (ε → 0). This proves the theorem.

Fig. 4. A tight instance of Approx1 for Subproblem 1.

Subproblem 2 assumes that each job in N1 has processing time larger than
each job in N2. With this assumption, Approx1 never goes into Step 2. Hence
only type-B blocks are generated by the algorithm. This means that A1 = B1 =
∅, or equivalently, a1 = b1 = 0. Rewrite (2) and (3) accordingly, one can get
C∗

max ≥ max{a2+a3,
a2
2 +b4}. Besides, applying the assumption to Lemma 2, one

also obtains that for each type-B block [J1,s;Bs] with
∑

J2,j∈Bs
p2,j < p1,s/2, any

job in B4 must conflict with J1,s. Therefore the lower bound given by Lemma4
can be updated, that is, C∗

max ≥ a3 + b4. In summary, we come up with the
following lower bound.

C∗
max ≥ max{a2 + a3,

a2

2
+ b4, a3 + b4}. (7)

Theorem 3. Approx1 is a 5
3 -approximation algorithm for Subproblem 2, and

the ratio is tight.

Proof. By Lemma 1, Cmax ≤ a2 + a3 + b4. Similarly, by multiplying the three
terms in (7) by 2

3 , 2
3 and 1

3 respectively, and computing the summation of the
resulting inequalities, we obtain

5
3
C∗

max ≥ 2
3

× (a2 +a3)+
2
3

× (
a2

2
++b4)+

1
3

× (a3 + b4) = a2 +a3 + b4 ≥ Cmax.

120 A. Zhang et al.

The tightness instance is shown in Fig. 5, where there are two jobs in N1 and
three jobs in N2. Figure 5(a) gives the conflict graph with the processing time
outside the vertices. The algorithm Approx1 may generate two type-B blocks,
[J1,1; {J2,1}] and [J1,2; ∅], in Step 3, resulting that A2 = {J1,1}, B2 = {J2,1},
A3 = {J1,2} and B4 = {J2,2, J2,3}. Thus Step 4 gives a feasible schedule with
Cmax = a2 + a3 + b4 = p1,1 + p1,2 + p2,2 + p2,3 = 5 + ε (see Fig. 5(b) for an
illustration). In an optimal schedule, the second machine processes J2,2 followed
by J2,1 so that both machines can keep busy till completion (see Fig. 5(c) for an
illustration). Therefore C∗

max = T1 = 3 + ε. Then we have Cmax

C∗
max

→ 5
3 (ε → 0).

This proves the theorem.

Fig. 5. A tight instance of Approx1 for Subproblem 2.

3.3 An Improved Algorithm for Subproblem 2

By simply modifying Approx1, we obtain an improved algorithm Approx2
for Subproblem 2. Compared with Approx1, the new algorithm allows that∑

J2,j∈Bs
p2,j > p1,s in a type-B block [J1,s;Bs]. In fact, it first sequences the

jobs in N2 in the non-increasing order of their processing time. Then a set Bs of
jobs from N2 are selected along that sequence when generating a type-B block
[J1,s;Bs], provided that all jobs in Bs do not conflict with J1,s, and whenever
possible, it ensures that the total processing time of them can reach the threshold√

2
2 p1,s. A high-level description of Approx2 is depicted in Fig. 6.

When Approx2 stops, it generates a total of n1 type-B blocks. Let Ai

(Bi), i = 1, 2, 3 be disjoint subsets of N1 (N2) defined as follows. For a
block with

∑
J2,j∈Bs

p2,j > p1,s, J1,s ∈ A1 and Bs ⊆ B1; for a block with
√
2
2 p1,s ≤ ∑

J2,j∈Bs
p2,j ≤ p1,s, J1,s ∈ A2 and Bs ⊆ B2; and for a block with

∑
J2,j∈Bs

p2,j <
√
2
2 p1,s, J1,s ∈ A3 and Bs ⊆ B3. Let B4 = N2\∪3

i=1Bi. Let ai (bi)
denote the total processing time of jobs in Ai (Bi). Thus we have T1 = a1+a2+a3

and T2 = b1 + b2 + b3 + b4. Besides, the makespan of Approx2 can be calculated
by Cmax = b1 + a2 + a3 + b4.

Approximation Algorithms for Two Machine SWC Problem 121

Algorithm Approx2:

1. Initially let B = N2 and s = 1.
2. Reorder the jobs in N2 so that p2,j−1 ≤ p2,j for any j = 2, 3, · · ·n2.
3. Find all jobs in B that do not conflict with J1,s, denote them by a

set B′
s (It allows that B′

s = ∅ too).
3.1 if

∑
J2,j∈B′

s
p2,j <

√
2
2
p1,s, then let Bs = B′

s.

3.2 if
∑

J2,j∈B′
s
p2,j ≥

√
2
2
p1,s, then find the smallest index k such

that
∑

J2,j∈B′
s,j≤k p2,j ≥

√
2

2
p1,s. Let Bs = {J2,j ∈ B′

s|j ≤ k}.
3.3 generate a type-B block [J1,s;Bs] and start to process it at

the earliest time when the (s − 1)-th block is completed. Let
B = B \ Bs and s = s+ 1.

4. If s < n1 + 1, return Step 3. Otherwise, process all remaining jobs
in B (if any) one after another without any idle time from the com-
pletion of the n1-th block.

Fig. 6. A high-level description of the algorithm Approx2.

Lemma 5. a1 < b1 <
√

2a1,
√
2
2 a2 ≤ b2 ≤ a2 and 0 ≤ b3 <

√
2
2 a3.

Proof. The inequalities a1 < b1,
√
2
2 a2 ≤ b2 ≤ a2 and 0 ≤ b3 <

√
2
2 a3 trivially

hold from the definition of Ai and Bi, i = 1, 2, 3. For each Bs ⊆ B1, it’s clear
that

∑
J2,j∈B′

s
≥ ∑

J2,j∈Bs
p2,j > p1,s. From Step 3.2 of Approx2, Bs = {J2,j ∈

B′
s|j ≤ k}, where k is the smallest index such that

∑
J2,j∈B′

s,j≤k p2,j ≥
√
2
2 p1,s.

This means that J2,k ∈ Bs and

∑

J2,j∈Bs,j≤k

p2,j > p1,s >

√
2

2
p1,s >

∑

J2,j∈Bs,j<k

p2,j . (8)

Note the assumption of Subproblem 2 and Step 2 of Approx2 together gives
that p1,s > p2,j ≥ p2,k for any J2,j ∈ Bs. Then Bs \ {J2,k} �= ∅, and hence we
derive p2,k ≤ ∑

J2,j∈Bs,j<k p2,j <
√
2
2 p1,s. Together with (8),

∑

J2,j∈Bs,j≤k

p2,j = p2,k +
∑

J2,j∈Bs,j<k

p2,j <
√

2p1,s.

Accordingly, we can conclude that b1 <
√

2a1. This proves the lemma.

Lemma 6. C∗
max ≥ a3 + b4.

Proof. For each Bs ⊆ B3,
∑

J2,j∈Bs
p2,t <

√
2
2 p1,s. Thus the algorithm Approx2

must go to Step 3.1, which implies that B′
s = Bs. Note B′

s contains all jobs in the
current B = N2 \ ∪s−1

j=1Bj that do not conflict with J1,s. In other words, all jobs
in N2 \ ∪s

j=1Bj must conflict with J1,s. Recall B4 = N2 \ ∪3
i=1Bi = N2 \ ∪n1

j=1Bj .
Thus each job in B4 must conflict with J1,s. Then we can conclude that each job
in B3 must conflict with each job in A3. Therefore, C∗

max ≥ a3 + b4.

122 A. Zhang et al.

One sees that Lemma 5 and 6 together update the lower bound of the optimal
makespan,

C∗
max ≥ max{T1, T2, a3+b4} ≥ max{

√
2

2
b1+a2+a3, b1+

√
2

2
a2+b4, a3+b4}. (9)

Theorem 4. Approx2 is a (3 − √
2)-approximation algorithm for Subproblem

2, and the ratio is tight.

Proof. Note Approx2 outputs of a schedule with makespan Cmax = b1 + a2 +
a3 + b4. We then multiply the rightmost terms in (9) by 2 − √

2, 2 − √
2 and√

2 − 1 respectively, and compute the summation of the resulting inequalities,
obtaining

(3 −
√

2)C∗
max ≥ (2 −

√
2) × (

√
2

2
b1 + a2 + a3) + (2 −

√
2) × (b1 +

√
2

2
a2 + b4)

+(
√

2 − 1) × (a3 + b4) = b1 + a2 + a3 + b4 = Cmax.

The tightness instance is shown in Fig. 7, where there are two jobs in N1

and four jobs in N2. Figure 7(a) gives the conflict graph with the process-
ing time outside the vertices. The algorithm Approx2 generates two type-B
blocks, [J1,1; {J2,1, J2,2}] and [J1,2; ∅], in Step 3, resulting that A1 = {J1,1},
B1 = {J2,1, J2,2}, A2 = B2 = B3 = ∅, A3 = {J1,2} and B4 = {J2,3, J2,4}. Accord-
ingly, the makespan of the output schedule equals Cmax = b1 + a2 + a3 + b4 =
p2,1 + p2,2 + p1,2 + p2,3 + p2,4 = 2

√
2 + 1 (see Fig. 7(b) for an illustration). On

the other hand, the optimal algorithm schedules J2,3, J2,4 before J2,1, J2,2 on
the second machine so that both machines can keep busy till completion (see
Fig. 7(c) for an illustration). Therefore C∗

max = T1 =
√

2 + 1 + ε. Then we have
Cmax

C∗
max

→ 2
√
2+1√
2+1

= 3 − √
2 (ε → 0). This proves the theorem.

Fig. 7. A tight instance of Approx2 for Subproblem 2.

Approximation Algorithms for Two Machine SWC Problem 123

4 The SWC Problem Without Any Fixed Sequence

This section considers the two machine SWC problem where no processing
sequence is fixed in advance. This problem was previously recognized weakly
NP-hard [16]. We give a strong NP-hardness proof and present an approxima-
tion algorithm to solve it. The main results are as follows.

Theorem 5. The problem PD2|G = (N,E)|Cmax is NP-hard in the strong
sense, and there exists a 5

3 -approximation algorithm.

5 Conclusions

We studied the problem PD2|G = (N,E)|Cmax of scheduling with conflict con-
straints on two parallel dedicated machines. The problem was previously known
weakly NP-hard, and shown to be NP-hard in the strong sense under the assump-
tion that jobs on one machine must follow a given and fixed processing sequence
[16]. We proposed several approximation results for this problem, including a 9

5 -
approximation algorithm for the SWC problem with a fixed sequence as well as
its tight analysis on two strong NP-hard subproblems, a (3−√

2)-approximation
algorithm for one subproblem, and a 5

3 -approximation algorithm for the SWC
problem without any fixed sequence. Our approximation results are mostly based
on the idea of sequentially generating and processing blocks each with a set of
conflict-free jobs and meeting certain processing time requirements. In addition,
we proved the problem PD2|resλ11|Cmax of scheduling jobs on two parallel
dedicated machines with non-sharable resources is NP-hard in the strong sense.
This answers that the two machine SWC problem without any fixed sequence is
strongly NP-hard too.

A natural question is designing better approximation algorithms or even
PTASes for all strong NP-hard variants of the problem PD2|G = (N,E)|Cmax.
In particular, the problem of scheduling with multiple non-shareable resources
can be viewed as a special case. The previous approximation results on this
problem is given under the assumption that each job consumes at most one
resource [17]. Thus the next improvement may start by removing this assump-
tion. Another interesting question is the SWC problem on m parallel dedicated
machines. Note that in this case, the conflict constraints will imply a multipartite
conflict graph instead.

Acknowledgements. This research is supported by the Zhejiang Provincial NSF
Grant LY21A010014 and the NSFC Grants 11771114, 11971139.

References

1. Garey, M.R., Graham, R.L.: Bounds for multiprocessor scheduling with resource
constraints. SIAM J. Comput. 4(2), 187–200 (1975)

2. Baker, B.S., Jr., Coffman, E.G.: Mutual exclusion scheduling. Theor. Comput. Sci.
162(2), 225–243 (1996)

124 A. Zhang et al.

3. Halldórsson, M.M., Kortsarz, G., Proskurowski, A., Salman, R., Shachnai, H.,
Telle, J.A.: Multicoloring trees. Inf. Comput. 180(2), 113–129 (2003)

4. Even, G., Halldórsson, M.M., Kaplan, L., Ron, D.: Scheduling with conflicts: online
and offline algorithms. J. Sched. 12(2), 199–224 (2009)

5. Bodlaender, H.L., Jansen, K.: Restrictions of graph partition problems part I.
Theor. Comput. Sci. 148, 93–109 (1995)

6. Corneil, D.G.: The complexity of generalized clique packing. Discrete Appl. Math.
12(3), 233–239 (1985)

7. Cohen, E., Tarsi, M.: NP-completeness of graph decomposition problem. J. Com-
plex. 7(2), 200–212 (1991)

8. Jansen, K.: The mutual exclusion scheduling problem for permutation and com-
parability graphs. Inf. Comput. 180(2), 71–81 (2003)

9. Petrank, E.: The hardness of approximation: gap location. Comput. Complex. 4,
133–157 (1994)

10. Bendraouche, M., Boudhar, M., Oulamara, A.: Scheduling: agreement graph vs
resource constraints. Eur. J. Oper. Res. 240, 355–360 (2015)

11. Bendraouche, M., Boudhar, M.: Scheduling jobs on identical machines with agree-
ment graph. Comput. Oper. Res. 39(2), 382–390 (2012)

12. Mohabeddine, A., Boudhar, M.: New results in two identical machines scheduling
with agreement graphs. Theor. Comput. Sci. 779, 37–46 (2019)

13. Fürer, M., Yu, H.: Packing-Based approximation algorithm for the k -Set cover
problem. In: Asano, T., Nakano, S., Okamoto, Y., Watanabe, O. (eds.) ISAAC
2011. LNCS, vol. 7074, pp. 484–493. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25591-5 50

14. Yu, H.W.: Combinatorial and algebraic algorithms in set covering and partitioning
problems. The Pennsylvania State University. ProQuest Dissertations Publishing,
3647540 (2014)

15. Hà, M.H., Ta, D.Q., Nguyen, T.T.: Exact algorithms for scheduling problems on
parallel identical machines with conflict jobs. arXiv: 2102.06043 (2021)

16. Hong, H.C., Lin, B.M.T.: Parallel dedicated machine scheduling with conflict
graphs. Comput. Ind. Eng. 124, 316–321 (2018)

17. Kellerer, H., Strusevich, V.A.: Scheduling problems for parallel dedicated machines
under multiple resource constraints. Discrete Appl. Math. 133(1), 45–68 (2004)

18. Kellerer, H., Strusevich, V.A.: Scheduling parallel dedicated machines under a
single non-shared resource. Eur. J. Oper. Res. 147, 345–364 (2003)

19. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

https://doi.org/10.1007/978-3-642-25591-5_50
https://doi.org/10.1007/978-3-642-25591-5_50
http://arxiv.org/abs/2102.06043

Computing the One-Visibility Cop-Win
Strategies for Trees

Boting Yang(B)

Department of Computer Science, University of Regina, Regina, SK, Canada
Boting.Yang@uregina.ca

Abstract. We investigate the one-visibility cops and robber game on
trees. For a tree, we use copnumbers of its subtrees to characterize a key
structure, called road. We give an O(n log n) time algorithm to compute
an optimal cop-win strategy for a tree with n vertices.

1 Introduction

Nowakowski and Winkler [5] and Quilliot [6] introduced the cops and robber
game which is a well-known graph searching model played on graphs. They
characterized the graphs in which one cop can capture the robber. Megiddo et al.
[4] introduced the edge searching model. They gave an O(n) time algorithm to
compute the edge search number of a tree and an O(n log n) time algorithm to
find an optimal search strategy, where n is the number of vertices in the tree.
The zero-visibility cops and robber game was introduced by Tošić [7], which
is a hybrid of the cops and robber game [5,6] and the edge searching model
[4]. Recent works on this model include results on a variety of graph classes [8].
Clarke et al. [3] considered the �-visibility cops and robber game. Yang and Akter
[10] gave a linear-time algorithm for computing the one-visibility copnumber of
trees.

In the one-visibility cops and robber game, we have a graph, a set of cops,
and a single robber. The robber has full information about the cops. But the
cops have the information about the robber’s location only at the moment when
there is a cop who is located on a neighbouring vertex of the robber or located
on the same vertex as the robber (the robber is captured in the latter case). The
game is played over a sequence of rounds. At round 0, after the cops choose a
set of vertices to occupy, the robber chooses a vertex to occupy. At each of the
following rounds, the cops move first and the robber moves next; in a cops’ turn,
each cop either moves to a neighbouring vertex or stays still, then the robber
does the same in his turn. Only when the distance between the cops and the
robber is at most one, we say that the cops see the robber, that is, the cops have
the information about the location of the robber. The cops capture the robber if
one of them occupies the same vertex as the robber. If a cop eventually occupies

Research supported in part by an NSERC Discovery Research Grant, Application No.:
RGPIN-2018-06800.

c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 125–139, 2021.
https://doi.org/10.1007/978-3-030-92681-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_11&domain=pdf
https://doi.org/10.1007/978-3-030-92681-6_11

126 B. Yang

the same vertex as the robber at some moment in the game, then the cops win.
The one-visibility copnumber of a graph G, denoted as c1(G), is the minimum
number of cops required to capture the robber on G.

A cop-win strategy is a sequence of cops’ actions to capture the robber. A
cop-win strategy for G is optimal if it uses c1(G) cops to capture the robber. If a
cop alternates two actions between two adjacent vertices u and v, i.e., “moving
from u to v” and “moving from v to u”, for at least three consecutive rounds,
then we say that this cop vibrates between u and v in these rounds; we also call
the edge uv a vibrating edge. A subgraph known to not contain the robber is
called cleared.

Let G be a graph with vertex set V (G) and edge set E(G). For u, v ∈ V (G),
we use uv to denote the edge between them and also use u ∼ v to denote a
path between them. The distance between u and v, denoted by distG(u, v), is
the length of the shortest path between u and v in G, where the length of a
path is the number of edges on the path. The k-th closed neighbourhood of v is
defined as Nk

G[v] = {u ∈ V (G) | distG(u, v) ≤ k} . For U ⊆ V (G), we use G − U
to denote the subgraph obtained from G by deleting the vertices of U from G.

In [10], Yang and Akter explored one-visibility cops and robber game on trees.
They proposed a linear-time algorithm for computing the one-visibility copnum-
ber of trees. In this paper, we focus on computing optimal cop-win strategies
efficiently. For this goal, we introduce a key structure for trees, called road, to
provide essential structural information for optimal cop-win strategies. Using the
roadmaps, we present an approach for computing an optimal cop-win strategy
in O(n log n) time, where n is the number of vertices on the tree.

2 Structures of Trees by Copnumbers

The following three kinds of vertices are introduced for trees in [10].

Definition 1. Let T be a tree with c1(T) = k. If there is a vertex v in T such
that each component X in the forest T − N3

T [v] has c1(X) < k, then v is a hub
of T . If there is a vertex v in T such that T − N3

T [v] has two components with
copnumber k satisfying that the path in T connecting them contains v, then v is
an avenue vertex of T . If T does not have a hub or an avenue vertex and there
is a vertex v in T such that T − N2

T [v] has two components with copnumber
k satisfying that the path in T connecting them contains v, then v is a street
vertex of T .

Note that hubs, avenue vertices or street vertices can help to make cop-win
search plans. But sometimes it takes extra time to recognize these vertices if
each of them corresponds to a distinct strategy. In this paper, we introduce the
road to unify these structures; this will bypass the cases where it is not easy to
distinguish whether a subtree contains hubs, avenue vertices, or street vertices.

As observed in [3,10], the one-visibility copnumber of a tree is always greater
than or equal to that of any of its subtrees. The following structural lemma is
crucial to Algorithm 1.

Computing the One-Visibility Cop-Win Strategies for Trees 127

Lemma 1. Let T be a tree that contains a vertex v ∈ V (T) such that each
component in the forest T − N3

T [v] has copnumber at most k. If in T − N3
T [v]

there are at least three components with copnumber exactly k such that the path in
T connecting any pair of these three components contains v, then c1(T) = k +1.

Yang and Akter [10] showed that any tree that has neither a hub nor an
avenue vertex must contain exactly two street vertices, which are adjacent to
each other. The edge whose endpoints are the street vertices of T is called the
street of T .

For avenue vertices, we have the following properties.

Lemma 2. Let T be a tree with c1(T) = k. (i) If T contains only one avenue
vertex u, then u has exactly two neighbours p1 and p2, each of which satisfies
that T − N2

T [pi], i ∈ {1, 2}, has two components with copnumber k such that
the path in T connecting them contains pi. (ii) If T contains m avenue vertices,
where m ≥ 2, then the subgraph induced by all the avenue vertices of T is a
path, denoted by u1 · · · um, and moreover, u1 (resp. um) has a unique neighbour
p1 �= u2 (resp. p2 �= um−1) such that T − N2

T [p1] (resp. T − N2
T [p2]) has two

components with copnumber k satisfying that the path in T connecting them
contains p1 (resp. p2).

The path u1 · · · um in Lemma 2(ii) is called the avenue of T ; the unique
avenue vertex u in Lemma 2(i) is also defined as the avenue of T . The vertices
p1 and p2 in Lemma 2(i)(ii) are called pre-avenue vertices of T .

We now introduce the road which unifies the above structures.

Definition 2. Let T be a tree with c1(T) = k. A path P in T is called a road
of T , denoted by R(T), if each component X in the forest T − N3

T [V (P)] has
c1(X) < k.

The relations between the road and the structures of hub, street and avenue
are shown in the following theorem.

Theorem 1. Let T be a tree. (i) If T contains a hub, then any path containing
a hub is a road. (ii) If T contains a street vertex, then any path containing the
street is a road. (iii) If T contains an avenue vertex, then any path containing
the two pre-avenue vertices is a road.

Since every tree must contain a hub, or an avenue vertex, or a street vertex
[10], the next result is an immediate consequence of Theorem 1.

Corollary 1. Every tree contains at least one road.

3 Computing Copnumbers and Roadmaps

A rooted tree T with root r is denoted by T [r]. Each vertex v �= r of T [r] is
connected with r by a unique path, where the parent of v is the neighbour of v
on this path; v is also called a descendant of each vertex on this path except v.

128 B. Yang

For any vertex v ∈ V (T [r]), we use T [v] to denote the subtree of T [r] induced by
v and all its descendants. Thus v is the root of the subtree T [v]. Note that in the
forest T [v] − v, each component is a rooted subtree whose root is a child of v.

We first describe the general idea of an optimal cop-win strategy, called road-
tactic. Let T be a tree with c1(T) = k, and let P = p1 · · · pm be a road of T .
We first place all k cops on p1. Let Yi, 1 ≤ i ≤ m, be the component containing
pi in the forest T − E(P). The subtree Yi is called a branch of the road P . For
each i = 1, . . . ,m, we use the following strategy, called branch-tactic, to clear Yi;
after Yi is cleared, all cops move back to pi, then move forward to pi+1 along the
edge pipi+1 until Ym is cleared. In the branch-tactic for clearing Yi, let v1, . . . , vd
be all children of pi. For each vj , 1 ≤ j ≤ d, let vjh, 1 ≤ h ≤ mj , be all children
of vj . Notice that all k cops are located on pi at the start of clearing Yi. For
each vj (1 ≤ j ≤ d) and for each vjh (1 ≤ h ≤ mj), let one cop vibrate between
vj and vjh, in the meantime, let other cops move into each subtree rooted at a
grandchild of vjh until all the subtrees rooted at the grandchildren of vjh are
cleared. Finally, let all cops move back to pi after all vertices of Yi are cleared.

Since the road-tactic described above will be an optimal cop-win strategy,
we have to compute c1(T) and the road P , which implies that we must compute
c1(Yi) (1 ≤ i ≤ m) and the road in each Yi before we can find c1(T) and P . We
will use a bottom-up dynamic programming idea to compute the copnumbers
of the subtrees and their roads. The bottom case is to find the copnumber of
each leaf which is trivial. Then we consider each subtree in which all children are
leaves. We can continue this process until the copnumber and a road of the whole
tree is computed from the copnumbers and roads of the children of the root. In
this section, we design an algorithm to compute c1(T) and the roadmaps. In the
next section, we will give an algorithm to implement the road-tactic strategy
using the copnumbers and roadmaps of the subtrees obtained from this section.

The definitions and notations of the following terms can be found in Def-
initions 5.1–5.3 in [10]: k-pre-branching vertex, k-weakly-branching vertex, k-
branching vertex, k-pre-branching indicator Ikpb(v), k-initial-counter Jk(v), k-
weakly-branching indicator Ikwb(v), and k-weakly-counter Jk

w(v).
Let u be a descendant of v in T [v]. If u is a k-pre-branching (resp. k-weakly-

branching, k-branching) vertex in T [u], then we say that u is a k-pre-branching
(resp. k-weakly-branching, k-branching) descendant of v.

In the following definition, we generalize the label in [10] so that the new
label contains roads, which will be used to construct cop-win strategies.

Definition 3. Let T [v] be a tree with root v. The label of v in T [v], denoted by
L(v, T [v]), is a sequence with the form

L(v, T [v]) = (tm, xm, Pm; . . . ; t1, x1, P1; It1wb(v), J t1
w (v); It1pb(v), J t1(v)) (1)

where ti, xi and Pi are defined as follows:

1. If T [v] contains only one vertex, then t1 = 1, x1 =⊥, P1 = v, and L(v, T [v]) =
(1,⊥, v; 0, 0; 0, 0); otherwise, set i ← 1 and T

[v]
a ← T [v].

Computing the One-Visibility Cop-Win Strategies for Trees 129

2. Set si ← c1(T
[v]
a), and go to exactly one of the following subcases:

(a) If v has an si-branching descendant in T
[v]
a , let vi be this descendant. Set

Ri ← R(T [vi]
a). Update T

[v]
a ← T

[v]
a − V (T [vi]

a), i ← i + 1, and go back to
Case 2.

(b) If v does not have an si-branching descendant in T
[v]
a , set m ← i and

Rm ← R(T [v]
a). If v is an sm-branching vertex in T

[v]
a , then vm ← v;

otherwise, vm ←⊥. Determine Ismwb (v), Jsm
w (v), Ismpb (v) and Jsm(v) of T

[v]
a

by their definitions.
3. For each i ∈ {1, . . . , m}, let ti = sm−i+1, xi = vm−i+1, and Pi = Rm−i+1.

The set of roads {P1, . . . , Pm} in L(v, T [v]) is called the roadmap of T [v].

Lemma 3. The label in Eq. (1) has the following properties. (i) Pm is a road
of T [v], and c1(T [v]) = tm. (ii) For each i ∈ {2, . . . , m}, xi �=⊥. (iii) If x1 �=⊥,
then x1 = v; otherwise, in the rooted subtree T [v] − ⋃m

i=2 V (T [xi]), neither v nor
its descendants is a t1-branching vertex in this subtree.

The last seven components in the label Eq. (1) can be determined as follows.

Lemma 4. Let T [v] be a tree with root v whose label has the form of Eq. (1),
where m ≥ 2. Let T

[v]
1 = T [v] − ⋃m

i=2 V (T [xi]). Then t1 = c1(T
[v]
1), P1 is a road

of T
[v]
1 , and moreover, (i) if v is a t1-branching vertex in T

[v]
1 , then x1 = v, and

It1wb(v) = J t1
w (v) = It1pb(v) = J t1(v) = 0; (ii) if v is a t1-weakly-branching vertex

in T
[v]
1 , then x1 =⊥, It1wb(v) = 1, It1pb(v) = J t1(v) = 0 and 0 ≤ J t1

w (v) ≤ 2; (iii) if

v is a t1-pre-branching vertex in T
[v]
1 , then x1 =⊥, It1wb(v) = J t1

w (v) = J t1(v) = 0
and It1pb(v) = 1; (iv) if v is not any of the above three kinds of vertices in T

[v]
1 ,

then x1 =⊥, It1wb(v) = J t1
w (v) = It1pb(v) = 0 and 0 ≤ J t1(v) ≤ 2.

As distinct from the label in [10], L(v, T [v]) in Eq. (1) contains the roadmap
of T [v]. It also contains the structure information shown in the following lemma.

Lemma 5. Let T [v] be a tree such that the label of its root is of the form in
Eq. (1). If m ≥ 2, then there must exist an avenue of T [xm], and for each
2 ≤ i < m, there is also an avenue of the subtree T [xi] − ⋃m

j=i+1 V (T [xj]).

The terminals of roads in Eq. (1) are related to the utmost-k-pre-branching
vertices that will be defined in Definition 4. Before we give the definition, we
need the following property of k-pre-branching vertices.

Lemma 6. Let T [v] be a tree with c1(T [v]) = k. Suppose the root v is a k-pre-
branching vertex in T [v]. Let U = {u ∈ V (T [v]) | u is a k-pre-branching vertex
in the rooted subtree T [u]}. Then the graph H induced by all vertices of U is a
path and v is a terminal of this path.

130 B. Yang

Definition 4. Let T [r] be a rooted tree and c1(T [r]) = k. Suppose that there is
a vertex v ∈ V (T [r]) that is a k-pre-branching vertex in the rooted subtree T [v].
By Lemma 6, the graph H induced by all k-pre-branching vertices in T [v] is a
path. Let H = v ∼ p be this path, where p = v if v is the only vertex in H. Then
we say that p is an utmost-k-pre-branching vertex of v, which is also called an
utmost-k-pre-branching vertex in T [r].

The next result follows from Lemma 6 and Definition 4.

Lemma 7. Let T [v] be a rooted tree with c1(T [v]) = k. (i) If v is a k-pre-
branching vertex in T [v], then there is a unique utmost-k-pre-branching vertex
in T [v]. (ii) If v is a k-weakly-branching vertex or k-branching vertex in T [v],
then there are exactly two utmost-k-pre-branching vertices in T [v]. (iii) If v is
not any of the above three kinds of vertices in T [v], then there is no utmost-k-
pre-branching vertex in T [v].

Definition 5. In Eq. (1), we call the first three components (tm, xm, Pm) an
item associated with T [v], and call each triple (ti, xi, Pi), 1 ≤ i < m, an item

associated with subtree T [v]−
m⋃

j=i+1

V (T [xj]). For each item (ti, xi, Pi), 1 ≤ i ≤ m,

ti is called the key of the item and xi and Pi are its attributes.

For the label in the form of Eq. (1), if x1 �=⊥, it follows from Definition 3
that x1 = vm = v.

Definition 6. Let T [u] be a tree with root u and let Y be the set of all children
of u. Suppose that for each child y ∈ Y , its label L(y, T [y]) is of the form

(tym(y), x
y
m(y), P

y
m(y); . . . ; t

y
1, x

y
1, P

y
1 ; It

y
1

wb(y), J ty1
w (y); It

y
1

pb(y), J ty1 (y)) (2)

where m(y) is a positive integer corresponding to m in Eq. (1). Let I⊥ = {y ∈
Y | xy

1 =⊥ and m(y) ≥ 2} and let Ib = {y ∈ Y | xy
1 = y}. The kernel subtree of

T [u], denoted by T
[u]
ker, is defined as T

[u]
ker = T [u] − ⋃

y∈Ib

V (T [y]) − ⋃

y∈I⊥
V (T [xy

2]).

Yang and Akter [10] gave an algorithm for computing the one-visibility cop-
number of trees in linear time. In this section, we modify that algorithm so that
the new algorithm can compute roadmaps, which will play an important role in
constructing cop-win strategies. The input of Algorithm 1 can be any tree T . We
first pick a vertex of T as its root. This root induces the parent-child relation,
by which we sort all vertices in a topological order. For each vertex u whose
children have been labelled, we cut off those subtrees rooted at the branching
descendants of u to construct the kernel subtree T

[u]
ker. We then call Algorithm 2

to compute the label of u in T
[u]
ker which contains a road of T

[u]
ker. We finally merge

the label of u in T
[u]
ker with the labels of the branching descendants of u to obtain

the label of u in T [u].
In order to describe Algorithm 2, we need more notations. For a graph G,

let c∗
1(G) = max{c1(G′) | G′ is a component in G}. Let T [u] be a tree with root

Computing the One-Visibility Cop-Win Strategies for Trees 131

Algorithm 1. Computing vertex labels with roadmaps
Input: A tree T .
Output: The labels of all vertices with roadmaps.

1: Arbitrarily pick a vertex v of T as its root; compute the parent-child relation in
the rooted tree T [v]. If T [v] contains only one vertex, then output L(v, T [v]) = (1, ⊥
, v; 0, 0; 0, 0); if T [v] contains only two vertices v and v′, then output L(v′, T [v′]) =
(1, ⊥, v′; 0, 0; 0, 0) and L(v, T [v]) = (1, ⊥, vv′; 0, 0; 0, 1); otherwise, topologically sort
all vertices of T [v] such that v is the last vertex in the list.

2: For each vertex u in the sorted list, repeat Steps 3 – 7 until the label of the root v
is computed; then output the labels of all vertices.

3: If u has no child, set its label as (1, ⊥, u; 0, 0; 0, 0), and go to Step 2. Let uj ,
1 ≤ j ≤ t, be all children of u with labels L(uj , T

[uj]) in the form of Eq. (2).

Construct the kernel subtree T
[u]
ker. If u is the only vertex in T

[u]
ker, then L(u, T

[u]
ker) =

(1, ⊥, u; 0, 0; 0, 0); otherwise, for each child w of u in T
[u]
ker, assign the last seven

components of L(w, T [w]) to L(w, T
[w]
ker), and call Algorithm 2 to compute L(u, T

[u]
ker).

Let κ = c1(T
[u]
ker).

4: For each uj , 1 ≤ j ≤ t, if its label in T [uj] contains ⊥, let Lj be a list obtained from
L(uj , T

[uj]) by deleting its last seven components and items whose key is less than
κ (Lj can be an empty list); otherwise, let Lj be a list obtained from L(uj , T

[uj])
by deleting its last four components and items whose key is less than κ. Let Lt+1

be a list containing only the first item of L(u, T
[u]
ker).

5: If no key in L1, . . . , Lt, Lt+1 is repeated, then L(u, T [u]) ← L(u, T
[u]
ker), update the

road by Theorem 3, and insert the items of L1, . . . , Lt into L(u, T [u]). Go to Step
2.

6: Find the largest repeated key k∗ in the lists L1, . . . , Lt, Lt+1. Let K = (k1, . . . , k�)
be a list containing the distinct keys from L1, . . . , Lt+1 satisfying that the keys in
K are decreasing and are greater than or equal to k∗.

7: Find the smallest index h in K such that kh = kh+1+1 = · · · = k� +(�−h). Update
K ← (k1, . . . , kh−1, k

′
h) where k′

h = kh + 1. Create a list X = (Q1, . . . , Qh−1, Qh),
where each Qi, 1 ≤ i ≤ h − 1, is an item with key ki and attributes xi and Pi

(i.e., xi is a ki-branching vertex in some subtree and Pi is the road in that subtree)
and Qh is an item with key k′

h and attributes ⊥ and the road u (i.e., this subtree
contains no k′

h-branching vertex and u is the road, referring to Theorem 4). Insert
(0, 0; 0, 0) at the end of X. Set L(u, T [u]) ← X. Go to Step 2.

u whose children are v1, . . . , vd. Suppose c∗
1(T

[u] − u) = k ≥ 1. We define the
following counters:

nk
c (T

[u] − u) =
∣
∣
∣
{

j
∣
∣ c1(T [vj]) = k for j ∈ {1, . . . , d}

}∣
∣
∣ ,

nk
pb(T

[u] − u) =
d∑

j=1

Ikpb(vj), nk
wb(T

[u] − u) =
d∑

j=1

Ikwb(vj),

hk(T [u] − u) = max
1≤j≤d

{Jk(vj)}, hk
w(T [u] − u) = max

1≤j≤d
{Jk

w(vj)}.

Similarly to Theorem 5.7 in [10], we have the following result.

132 B. Yang

Theorem 2. Let T [u] be a rooted tree and let T
[u]
ker be the kernel subtree with

c∗
1(T

[u]
ker − u) = k. Let v1, . . . , vd be all children of u in T

[u]
ker. Suppose each label

L(vj , T
[vj]
ker), 1 ≤ j ≤ d, is of the form

L(vj , T
[vj]
ker) = (tvj ,⊥, P vj ; It

vj

wb (vj), J tvj
w (vj); It

vj

pb (vj), J tvj (vj))). (3)

Then the label L(u, T
[u]
ker) can be computed by Algorithm 2.

Remark 1. From Lemmas 4.5 and 4.7 in [10], we know that if a tree contains
a street vertex or an avenue vertex, then this tree contains a unique street
or avenue. Unlike street or avenue, roads are flexible. The motivation of this
flexibility is to avoid the cost of distinguishing the different structures (i.e., hub,
street, avenue), which is a time-consuming process in a recursive algorithm. For
example, consider Lines 22–23 in Algorithm 2 where nk

wb(T
[u]
ker − u) = 0 and

nk
pb(T

[u]
ker − u) = 1. If T

[u]
ker contains an avenue, then the road zvi ∼ u contains

this avenue of T
[u]
ker; if T

[u]
ker contains a street, then the road zvi ∼ u contains this

street; or, if T
[u]
ker contains a hub, then the road zvi ∼ u also contains a hub. So

in Algorithm 2, we bypass these complicated subcases by using the concept of
road.

Lemma 8. Suppose that T [u] is a tree and the label of its root in the output of
Algorithm 1 is

L(u, T [u]) = (tm, xm, Pm; . . . ; t1, x1, P1; It1wb(u), J t1
w (u); It1pb(u), J t1(u)),

where m ≥ 2. Then (i) the terminals of Pm are two utmost-tm-pre-branching
vertices in T [xm] and L(xm, T [xm]) = (tm, xm, Pm; 0, 0; 0, 0); (ii) the terminals of
each Pi, 2 ≤ i ≤ m − 1, are two utmost-ti-pre-branching vertices in the subtree
T

[xi]
i = T [xi] − ⋃m

j=i+1 V (T [xj]) and L(xi, T
[xi]
i) = (ti, xi, Pi; 0, 0; 0, 0); and (iii)

each Pi, 2 ≤ i ≤ m, contains at least three vertices.

Theorem 3. Let T [u] be a tree with root u whose children are u1, . . . , uh. Sup-
pose that for 1 ≤ j ≤ h, L(uj , T

[uj]) =

(tuj
mj

, xuj
mj

, Puj
mj

; . . . ; tuj

1 , x
uj

1 , P
uj

1 ; It
uj
1

wb (uj), J
t
uj
1

w (uj); I
t
uj
1

pb (uj), J t
uj
1 (uj)) (4)

and these labels satisfy
⎧
⎪⎨

⎪⎩

mj = 1 and x
uj

1 =⊥, if 1 ≤ j ≤ h1,
mj ≥ 2 and x

uj

1 =⊥, if h1 < j ≤ h2,
x
uj

1 = uj , if h2 < j ≤ h.
(5)

Let T
[u]
ker be the kernel subtree of T [u] with c∗

1(T
[u]
ker − u) = k and let P be the road

in the label L(u, T
[u]
ker) output by Algorithm 2.

Computing the One-Visibility Cop-Win Strategies for Trees 133

Algorithm 2. Computing vertex labels of a kernel subtree

Input: A kernel subtree T
[u]
ker with c∗

1(T
[u]
ker − u) = k. Let vj , 1 ≤ j ≤ d, be all children

of u in T
[u]
ker; each vj has a label in the form of Eq. (3).

Output: The label L(u, T
[u]
ker).

1: if nk
wb(T

[u]
ker − u) ≥ 2 then return (k + 1, ⊥, u; 0, 0; 0, 0).

2: if nk
wb(T

[u]
ker − u) = 1 and nk

pb(T
[u]
ker − u) ≥ 1 then

3: return (k + 1, ⊥, u; 0, 0; 0, 0).

4: if nk
wb(T

[u]
ker−u) = 1, where vi is the k-weakly-branching child of u, nk

pb(T
[u]
ker−u) = 0

and nk
c (T

[u]
ker − u) ≥ 2 then

5: if hk
w(T

[u]
ker − u) = 2 then return (k + 1, ⊥, u; 0, 0; 0, 0).

6: else if hk
w(T

[u]
ker − u) = 1 and hk(T

[u]
ker − u) ≥ 1 then

7: return (k + 1, ⊥, u; 0, 0; 0, 0)

8: else if hk
w(T

[u]
ker − u) = 1 and hk(T

[u]
ker − u) = 0 then

9: return (k, ⊥, P vi ; 1, 2; 0, 0)

10: else if hk
w(T

[u]
ker − u) = 0 and hk(T

[u]
ker − u) = 2 then

11: return (k + 1, ⊥, u; 0, 0; 0, 0)

12: else if hk
w(T

[u]
ker − u) = 0 and hk(T

[u]
ker − u) ≤ 1 then

13: return (k, ⊥, P vi ; 1, 1; 0, 0)

14: if nk
wb(T

[u]
ker − u) = 1, where vi is the k-weakly-branching child of u, and nk

c (T
[u]
ker −

u) = 1 then

15: if hk
w(T

[u]
ker − u) = 2 then return (k, u, P vi ; 0, 0; 0, 0)

16: else if hk
w(T

[u]
ker − u) = 1 then return (k, ⊥, P vi ; 1, 2; 0, 0)

17: else if hk
w(T

[u]
ker − u) = 0 then return (k, ⊥, P vi ; 1, 1; 0, 0)

18: if nk
wb(T

[u]
ker − u) = 0 and nk

pb(T
[u]
ker − u) ≥ 3 then

19: return (k + 1, ⊥, u; 0, 0; 0, 0)

20: if nk
wb(T

[u]
ker − u) = 0 and nk

pb(T
[u]
ker − u) = 2 then

21: return (k, ⊥, zvi ∼ zvj ; 1, 0; 0, 0), where vi and vj are k-pre-branching children

of u, and zvi and zvj are the utmost-k-pre-branching vertices in T
[vi]
ker and T

[vj]

ker

respectively.

22: if nk
wb(T

[u]
ker − u) = 0 and nk

pb(T
[u]
ker − u) = 1 then

23: return (k, ⊥, zvi ∼ u; 0, 0; 1, 0), where vi is a k-pre-branching child of u and

zvi is the utmost-k-pre-branching vertex in T
[vi]
ker .

24: if nk
wb(T

[u]
ker − u) = 0 and nk

pb(T
[u]
ker − u) = 0 then

25: if hk(T
[u]
ker − u) = 2 then return (k, ⊥, u; 0, 0; 1, 0)

26: else if hk(T
[u]
ker − u) = 1 then return (k, ⊥, u; 0, 0; 0, 2)

27: else if hk(T
[u]
ker − u) = 0 then return (k, ⊥, u; 0, 0; 0, 1)

(i) If c1(T
[u]
ker) = k + 1 and c∗

1(T
[u] − u) ≤ k, then c1(T [u]) = k + 1 and u is a

road of T [u].
(ii) If c1(T

[u]
ker) = k and t

uj
mj < k for each j ∈ {h1 + 1, . . . , h}, then c1(T [u]) = k

and P is a road of T [u].

134 B. Yang

Theorem 4. Let T [u] be a tree with root u whose children are u1, . . . , uh. Sup-
pose that for 1 ≤ j ≤ h, L(uj , T

[uj]) has the form of Eq. (4) and satisfies condi-
tion (5). Let T

[u]
ker be the kernel subtree of T [u].

(i) Suppose c1(T
[u]
ker) = k and c∗

1(T
[u] − u) ≤ k. If there is a j ∈ {h1 + 1, . . . , h}

such that t
uj
mj = k, then c1(T [u]) = k + 1 and u is a road of T [u].

(ii) Suppose c1(T
[u]
ker) < k and c∗

1(T
[u] − u) = k. If there are two indices i, j ∈

{h1 + 1, . . . , h} such that tui
mi

= t
uj
mj = k, then c1(T [u]) = k + 1 and u is a

road of T [u].

From Theorems 2, 3 and 4, we can prove the correctness of Algorithm 1.

Theorem 5. For a tree T , Algorithm 1 computes the labels of all vertices with
roadmaps.

Lemma 9. For a tree T with n vertices, Algorithm 1 can be implemented in a
way such that the length of each vertex label is O(log n).

Theorem 6. For a tree T with n vertices, Algorithm 1 computes the labels of
all vertices with roadmaps in O(n log n) time.

Proof. In Step 1 of Algorithm 1, after the root of T is selected arbitrarily, it
takes O(n) time to compute the the parent-child relation induced by the root.
It also takes O(n) time to topologically sort all vertices of T such that the root
is the last vertex in the list.

In each iteration of the loop from Step 2 to 7, we compute the label of each
vertex in the sorted list. Suppose that u is the current vertex in the sorted list
for which we want to compute L(u, T [u]). Let u1, . . . , ut be all the children of
u. Since these children are listed before u in the list, their labels have been
computed in the previous iterations. It follows from Lemma 9 that the length of
any vertex label is O(log n). So in Step 3, constructing the kernel subtree T

[u]
ker

needs O(t log n) time. For each child w of u in T
[u]
ker, we can obtain L(w, T

[w]
ker)

by taking the last seven components of L(w, T [w]). Note that when we construct
T

[u]
ker, if a child w of u in T [u] is a branching vertex in T [w], that is, xw

1 = w in
L(w, T [w]) with the form of Eq. (2), then w is not a child of u in T

[u]
ker. So in

Algorithm 2, we have d ≤ t.
In Algorithm 2, it is easy to see that all lines except Lines 20–23 takes O(d)

time because each label L(w, T
[w]
ker), where w is a child of u in T

[u]
ker, contains only

seven components. In Lines 22–23, in order to find the utmost-k-pre-branching
vertex in T

[u]
ker, we check the pre-branching indicators in the labels of the d chil-

dren of u and find the child vi with Ikpb(vi) = 1. Then we check the label

L(vi, T
[vi]
ker) with the form of Eq. (3). If P vi contains only vi, then vi itself is

the utmost-k-pre-branching vertex in T
[vi]
ker . Thus uvi is a road in T

[u]
ker. If P vi

contains two terminals zvi and vi, i.e., P vi = zvi ∼ vi, then zvi is the utmost-
k-pre-branching vertex in T

[vi]
ker , and furthermore, zvi is also the utmost-k-pre-

branching vertex in T
[u]
ker. Hence zvi ∼ u is a road in T

[u]
ker. So to find a road for

Computing the One-Visibility Cop-Win Strategies for Trees 135

T
[u]
ker in Lines 22–23, we only need to check the labels of the d children of u, which

can be done in O(d) time because these labels contain only seven components.
In Lines 20–21, similarly, we first check the labels of the d children of u to find
the children vi and vj satisfying that Ikpb(vi) = Ikpb(vj) = 1; we then check the

labels L(vi, T
[vi]
ker) and L(vj , T

[vj]
ker) to find the utmost-k-pre-branching vertices zvi

and zvj . In this way, we can find the road zvi ∼ zvj of T
[u]
ker in O(d) time. Thus

Algorithm 2 can be implemented in O(d) time. Therefore, the total running time
of Step 3 is bounded by O(t log n).

In Step 4, it takes O(t log n) time to create the lists L1, . . . , Lt+1. From
Lemma 5.12 in [10], Steps 5 and 6 need O(max{t1m1

, . . . , tt+1
mt+1

} + t) time to
check if all keys in L1, . . . , Lt+1 are different or find the largest repeated key k∗

in the lists, where timi
, 1 ≤ i ≤ t + 1, is the first component in Li. Thus the

complexity of Steps 5 and 6 is O(t+log n). In Step 7, it follows from Theorem 4
that the road in item Qh = (k′

h,⊥;u) contains only one vertex which is the root
of T [u]. So this road can be found in O(1) time. From Lemma 9, the length of
X is O(log n). Thus Step 7 needs O(log n) time.

Since every vertex of T [v] has only one parent except the root v, from the
above analysis we know that the complexity of the loop from Step 2 to 7 is
O(n log n). Therefore, the total runtime of Algorithm 1 is O(n log n).
�
Remark 2. Note that in [10], only the root’s label is required because it con-
tains the copnumber of the tree. It is not necessary to store the labels of other
vertices. This is one of the reasons that the running time of Algorithm 1 in
[10] is O(n). However, in Algorithm 1 of this paper, we need to compute the
roadmaps of all rooted subtrees of T [v], where v is the root of T , because we will
need these roadmaps to construct an optimal cop-win strategy for T in Sect. 4.
From Lemma 9, we know that the total size of the output of Algorithm 1 can
be θ(n log n) in the worst case. So it is impossible to design an algorithm for
computing the roadmaps of a tree with n vertices in o(n log n) time.

4 Computing Optimal Cop-Win Strategies

For graph searching models, computing an optimal search strategy usually takes
more time than computing a search number. For the cops and robber game, it is
even harder to compute an optimal cop-win strategy because a cop-win strategy
can change dynamically depending on the robber’s action in each round. In
this section, we consider the problem of finding an optimal cop-win strategy for
a tree in the one-visibility cops and robber game. We first give an O(n log n)
time algorithm to compute an ordering of vertices and edges which is used as a
timeline to protect vertices and edges. Note that the input size of this algorithm
is O(n log n), where n is the number of vertices on the tree. We then present an
O(n) time algorithm to construct an optimal cop-win strategy that is a sequence
of instructions to guide the cops in their search for the robber.

Note that in a tree, once the robber has been seen by a cop, this cop can
chase the robber and eventually force the robber to a leaf in a finite number of

136 B. Yang

rounds; then this cop can capture the robber on the leaf. Note that the number
of rounds from seeing to capturing is bounded by the diameter of the tree. So in
this section, the cops’ goal is to find the robber, that is, if the robber is seen by
a cop, then the cops win and the game is over.

Fig. 1. A tree T
[xi]
i , 2 ≤ i ≤ m, with road Pi = pi

0 . . . pi
qi .

Definition 7. Let T [u] be a rooted tree. Suppose that the label L(u, T [u]) is
computed by Algorithm 1 and has the form

(tm, xm, Pm; . . . ; t1, x1, P1; It1wb(u), J t1
w (u); It1pb(u), J t1(u)). (6)

For 2 ≤ i < m, let T
[xi]
i = T [xi] − ⋃m

j=i+1 V (T [xj]), and let T
[xm]
m = T [xm].

For each 2 ≤ i ≤ m, let Pi = pi0p
i
1 . . . piqi be a road in T

[xi]
i . It follows from

Lemma 8(iii) that each Pi, 2 ≤ i ≤ m, contains at least three vertices. For each
i ∈ {2, . . . , m}, let piai

, 1 ≤ ai ≤ qi − 1, be the great-grandchild of xi in T
[xi]
i

(see Fig. 1); let xiy
i
ai

ziai
piai

be the path connecting xi with piai
; and let Yxi

(resp.
Yyi

ai
, Yzi

ai
and Y i

ai
) be the component containing xi (resp. yi

ai
, ziai

and piai
) in

the forest T
[xi]
i − {xiy

i
ai

} (resp. T
[xi]
i − {xiy

i
ai

, yi
ai

ziai
}, T

[xi]
i − {yi

ai
ziai

, ziai
piai

}
and T

[xi]
i − {ziai

piai
, piai−1p

i
ai

, piai
piai+1}). For each i ∈ {2, . . . , m}, let Y i

0 be the
component in the forest T

[xi]
i − {pi0p

i
1} containing pi0; let Y i

qi be the component

in T
[xi]
i − {piqi−1p

i
qi} containing piqi ; and let Y i

j , j ∈ {1, . . . , qi − 1} \ {ai}, be the

component containing pij in the forest T
[xi]
i −{pij−1p

i
j , p

i
jp

i
j+1}. Let T

[u]
1 = T [u] −

⋃m
j=2 V (T [xj]) and P1 = p10 . . . p1q1 . When q1 ≥ 2, it follows from Algorithm 1 that

p11 . . . p1q1−1 is an avenue of T
[u]
1 , and p10 and p1q1 are two pre-avenue vertices; then

let Y 1
0 be the component in the forest T

[u]
1 −{p10p

1
1} containing p10, let Y 1

q1 be the

component in T
[u]
1 −{p1q1−1p

1
q1} containing p1q1 , and let Y 1

j , j ∈ {1, . . . , q1−1}, be

the component containing p1j in the forest T
[u]
1 −{p1j−1p

1
j , p

1
jp

1
j+1}. When q1 = 1,

from Algorithm 1, P1 = p10p
1
1 is a street of T

[u]
1 ; then let Y 1

0 (resp. Y 1
1) be the

Computing the One-Visibility Cop-Win Strategies for Trees 137

component in the forest T
[u]
1 − {p10p

1
1} containing p10 (resp. p11). When q1 = 0,

i.e., P1 = p10 is a hub of T
[u]
1 , then let Y 1

0 = T
[u]
1 .

Note that in Definition 7, each subtree Y i
j , 1 ≤ i ≤ m, 0 ≤ j ≤ qi, is a rooted

subtree where pij is the root. Similarly, Yxi
(resp. Yyi

ai
, and Yzi

ai
) is a rooted

subtree where xi (resp. yi
ai

, and ziai
) is the root.

Let T [u] be a rooted tree. To construct an optimal cop-win strategy, it is
essential to give an ordering of the vertices by which the cops will clear these
vertices. In Algorithm 3, we use the vertex labels computed by Algorithm 1 to
traverse T [u], during which, for each vertex v, we stamp it with a start-time s(v)
that is the time when we start to protect N [v] in Algorithm 4, and stamp it with a
finish-time f(v) that is the time when we finish protecting N [v]. In Algorithm 3,
we also timestamp some edges, which will be the potential vibrating edges in
our optimal cop-win strategy presented in Algorithm 4. For each of those edges
vv′ that will be a potential vibrating edge, we stamp it with a start-time s(vv′)
that is the time when we start to protect N [v]∪N [v′] in Algorithm 4, and stamp
it with a finish-time f(vv′) that is the time when we finish vibrating between
v and v′. In particular, stamp is an operation to assign the current time to an
object; time is a global variable that is 0 initially and is incremented by 1 after
each assignment. StampSubtree(T [x], x) is a function to timestamp vertices
and potential vibrating edges in the rooted subtree T [x].

Let T [u] be a rooted tree with c1(T [u]) = k. After we obtain the timestamps
of vertices and some edges of T [u] from Algorithm 3, Algorithm 4 describes how
these timestamps are used to guide the k cops to clear T [u]. In this algorithm,
we say that a cop on a vertex v is free if he finishes protecting N [v]; otherwise,
we say that the cop on the vertex v is busy. We say that a cop vibrating between
vertices v and v′ is free if he finishes protecting N [v] ∪ N [v′]; otherwise, we say
that the cop vibrating between v and v′ is busy. We call a vertex internal if this
vertex has at least one child; we call an edge vv′ internal if v is a parent of v′

and v′ has at least one grandchild.

Theorem 7. For a tree T , the strategy output by Algorithm 4 is an optimal
cop-win strategy for T .

Theorem 8. For a tree T with n vertices, an optimal cop-win strategy for T
can be computed in O(n log n) time.

For a tree T [u], it follows from Algorithm 4 that each vibrating edge vv′ is
an internal edge which is stamped a start-time s(vv′) and a finish-time f(vv′)
in Algorithm 3. Note that when a cop starts vibrating between v and v′ at
the time s(vv′) and finishes vibrating at the time f(vv′), this cop alternates
two sliding actions between v and v′ for at least three consecutive rounds. So
f(vv′) − s(vv′) ≥ 2, and thus the open interval (s(vv′), f(vv′)) contains at least
one timestamp.

138 B. Yang

Algorithm 3. Timestamp(T [u])

Input: T [u] with the vertex labels from Algorithm 1, where the notations of labels and
subtrees are given in Eq. (6) and Definition 7.
Output: Timestamps of all vertices and potential vibrating edges in T [u].

From L(u, T [u]), construct T
[u]
1 and P1(= p1

0 . . . p1
q1) defined in Definition 7.

if m = 1 (defined in Definition 7) then
for j = 0 to q1 do

stamp s(p1
j); StampSubtree(Y 1

j , p1
j); stamp f(p1

j).

return
for i = m down-to 2 do

for j = 0 to ai − 1 do
stamp s(pi

j); StampSubtree(Y i
j , pi

j); stamp f(pi
j).

stamp s(pi
ai

), s(zi
ai

), s(yi
ai

), s(yi
ai

zi
ai

) and s(xi).

for j = 0 to q1 do
stamp s(p1

j); StampSubtree(Y 1
j , p1

j); stamp f(p1
j).

for i = 2 to m do
StampSubtree(Yxi , xi); stamp f(xi); stamp f(yi

ai
zi

ai
);

StampSubtree(Yyi
ai

, yi
ai

); stamp f(yi
ai

);

StampSubtree(Yzi
ai

, zi
ai

); stamp f(zi
ai

);

StampSubtree(Y i
ai

, pi
ai

); stamp f(pi
ai

).
for j = ai + 1 to qi do

stamp s(pi
j); StampSubtree(Y i

j , pi
j); stamp f(pi

j).

function StampSubtree(T [x], x)

if T [x] contains only the vertex x then return

for each child v of x do
stamp s(v);
if v is not a leaf then

for each child v′ of v do
stamp s(v′) and s(vv′);
if v′ is not a leaf then

for each child v′′ of v′ do
if v′′ is a leaf then stamp s(v′′) and f(v′′);
else Timestamp(T [v′′]).

stamp f(v′) and f(vv′).

stamp f(v).

Definition 8. For a tree T [u] with the timestamps from Timestamp(T [u]), let
Evib = {vv′ ∈ E(T [u]) | there is a cop vibrating on vv′ in Algorithm 4}. Let
ν(t, T [u]) = |{(s(vv′), f(vv′)) | t ∈ (s(vv′), f(vv′)), vv′ ∈ Evib}|, and ν(T [u]) =
max{ν(t, T [u]) | t is a timestamp computed by Algorithm 3}.

We have the following relation between ν(T [u]) and c1(T [u]).

Theorem 9. For a tree T [u], c1(T [u]) = ν(T [u]) + 1.

Computing the One-Visibility Cop-Win Strategies for Trees 139

Algorithm 4. Computing an optimal cop-win strategy
Input: T [u] with k = c1(T

[u]) and the timestamps from Algorithm 3.
Output: An optimal cop-win strategy for T [u].

1: Create a linked list S, which initially contains the instruction “If a cop can see the
robber at any timestamp, then the game is over”.

2: Insert “Place k cops on the vertex whose start-time is 0” into S and set the cops
free.

3: for each timestamp in increasing order do insert one of the following instructions
into S:

4: if the timestamp is the start-time of an internal vertex v that is not adjacent
to a vertex occupied by a cop then

5: move a free cop to v and set this cop busy.

6: if the timestamp is the start-time of an internal edge vv′ then
7: let a cop start vibrating between v and v′ and set this cop busy.

8: if the timestamp is the finish-time of an internal vertex v then
9: set all cops on v free.

10: if the timestamp is the finish-time of an internal edge vv′ then
11: set the cop vibrating between v and v′ free.

12: if the timestamp is for a non-internal vertex or edge then
13: no new actions for the cops.

14: return S.

References

1. Bonato, A., Nowakowski, R.J.: The Game of Cops and Robbers on Graphs. Amer-
ican Mathematical Society, Providence (2011)

2. Bonato, A., Yang, B.: Graph searching and related problems. In: Pardalos, P.M.,
Du, D.-Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp.
1511–1558. Springer, New York (2013). https://doi.org/10.1007/978-1-4419-7997-
1 76

3. Clarke, N.E., Cox, D., Duffy, C., Dyer, D., Fitzpatrick, S., Messinger, M.-E.: Lim-
ited visibility Cops and Robbers, 2017. Discrete Appl. Math. 282, 53–64 (2020)

4. Megiddo, N., Hakimi, S.L., Garey, M., Johnson, D., Papadimitriou, C.H.: The
complexity of searching a graph. J. ACM 35, 18–44 (1988)

5. Nowakowski, R.J., Winkler, P.: Vertex-to-vertex pursuit in a graph. Discrete Math.
43, 235–239 (1983)

6. Quilliot, A.: Jeux et pointes fixes sur les graphes, Thèse de 3ème cycle, Université
de Paris VI, 131–145 (1978)

7. Tošić, R.: Vertex-to-vertex search in a graph. In: Proceedings of the Sixth Yugoslav
Seminar on Graph Theory, pp. 233–237, University of Novi Sad (1985)

8. Xue, Y., Yang, B., Zilles, S.: A simple method for proving lower bounds in the zero-
visibility cops and robber game. J. Combin. Optim. (2021). http://link.springer.
com/article/10.1007/s10878-021-00710-8

9. Yang, B., Zhang, R., Cao, Y., Zhong, F.: Search numbers in networks with special
topologies. J. Interconnect. Netw. 19, 1–34 (2019)

10. Yang, B., Akter, T.: One-visibility cops and robber on trees. Theor. Comput. Sci.
886, 139–156 (2021)

https://doi.org/10.1007/978-1-4419-7997-1_76
https://doi.org/10.1007/978-1-4419-7997-1_76
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10878-021-00710-8
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10878-021-00710-8

Complexity and Approximation Results
on the Shared Transportation Problem

Tom Davot(B) , Rodolphe Giroudeau , and Jean-Claude König

LIRMM, Univ Montpellier, CNRS, Montpellier, France
{davot,rgirou,konig}@lirmm.fr

Abstract. In our modern societies, a certain number of people do not
own a car, by choice or by obligation. For some trips, there is no or few
alternatives to the car. One way to make these trips possible for these
people is to be transported by others who have already planned their
trips. We propose to model this problem using as path-finding problem
in a list edge-colored graph. This problem is a generalization of the s− t-
path problem, studied by Böhmová et al. We study two optimization
functions: minimizing the number of color changes and minimizing the
number of colors. We study the complexity and the approximation of
this problem. We show the existence of polynomial cases. We show that
this problem is NP-complete and hard to approximate, even in restricted
cases. Finally, we provide an approximation algorithm.

Keywords: Complexity · Approximation · List edge coloring

1 Introduction

Shared mobility received a lot of attention in the last decades, both from indus-
try and academics. The motivation behind this is ecological awareness, savings
and social benefits. The rise of this kind of transportation is traduced by the
apparition of mobility platforms and the emergence of scientific studies focusing
on the different various relative questions. In particular, researchers in the field
of operational research have been interested in studying various optimization
problems resulting from shared mobility systems. In these systems, we seek to
match people having similar itineraries on the same dates. A survey on ride-
sharing systems can be found in [10]. The authors present a classification of
different existing ride-sharing systems and identify some challenges. In [19], the
authors present dynamic ride-sharing systems. The authors show the need of
optimization technologies for the success of this type of ride-sharing systems.

Different types of mobilities sharing systems exist. Carpooling is proposed
by large companies to encourage their employees to share itineraries to and from
work, in order to reduce the use of private cars. In dial-a-ride problems (DARP)
[6,7,12], schedules and vehicles routes are designed based on user requests. In
Vanpool problem [12], passengers drive to a park-and-ride location then they

c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 140–151, 2021.
https://doi.org/10.1007/978-3-030-92681-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_12&domain=pdf
http://orcid.org/0000-0003-4203-5140
http://orcid.org/0000-0002-6756-2361
https://doi.org/10.1007/978-3-030-92681-6_12

Complexity and Approximation Results 141

share their trips with a van to the target location. An exhaustive survey on
optimization for shared mobility can be found in [18].

In this paper, we consider a problem where one person aims to travel from
a place to another and can not make the trip by their own means. This can be
due to several reasons: disability, absence of driving license, personal choice... In
order to make the trip possible, we can use the help of drivers that have already
planned their travel and offer to transport another person. We aim to match one
or more driver that can share its/their trip. We model this problem as an s − t-
path problem on list edge-colored digraph. We consider two objective functions.
The first objective function is a color minimization which is a common objective
for optimization problems on colored graphs. The second function, rather less
classical, is to minimize the number of color changes along the path.

Results and Related Works. Similar problems have been studied in the litera-
ture. In [2], the authors showed that the Minimum Label Path/Cycle Problem in
undirected graph is NP-hard. The authors also provide some exact exponential-
time and approximation algorithms to solve the problem. Another approximation
algorithm and approximation hardness results have been presented in [11]. Some
parameterized intractability results for minimum label path and other different
minimum labeling problems have been presented in [8]. Other optimization prob-
lems on edge-labeled graphs have been considered in the literature. The minimum
labeling spanning tree is widely studied [4,5,15]. The objective is to find a span-
ning tree such that the number of labels is the smallest possible. Another variant
of the problem is considered in [21]. The problem is called Label-Constrained
Minimum Spanning Tree Problem and the objective is to find the minimum
weight spanning tree using at most k labels.

The number of problems in the literature using an edge-coloring or a list edge-
coloring is large. We can cite the classic proper edge-coloring as example [3]. A
close related problem has been proposed by Broersma et al. [2]: the aim is to find
a path/cycle in a colored graph with a minimum number of colors. This problem
is NP-hard even in bipartite planar. The authors also propose several exact and
approximation algorithms. Finally, the complexity of the exact algorithms and
the performance ratio of the approximation algorithms are also analyzed.

Our problem is equivalent to finding a path from s to t, using at most k
colors, in an oriented graph G with a list of allowed colors for each arc. Each
color represents a driver. It is a generalization of the st-Path problem studied in
[1]. Whereas in the version studied by Böhmová et al. each subgraph induced by
a color must be a path (representing a subway line), we have chosen not to put
any restriction on these subgraphs in the problem formulation. This enables us
to model the route options that drivers could propose. However, in most of our
results this restriction still holds.

In [1], some complexity results related to a subway network are presented:
they propose an efficient algorithm for finding an st-route according to the num-
ber of line changes plus one. A non-approximation result, for the minimization
of the used lines is proposed. Lastly, a polynomial-time algorithm is developed
for the problem of enumerating all st-paths with a bounded length.

142 T. Davot et al.

In the following we extend the complexity results of Böhmová et al. by con-
sidering severals topologies or restricted cases.

Organization of the Article. The next section is devoted to notation and to the
presentation of the two problems studied in this article. In Sect. 3, we present
some restricted polynomial cases. Section 4 is devoted to the computational
complexity. We develop a polynomial-time approximation algorithm in Sect. 5.
Finally, in Sect. 6, we show the non-existence of a subexponential-time algorithm.

2 Problems Description

2.1 Notation

In this article, we consider a specific oriented graph called list arc-colored graph.
A list arc-colored graph G = (V,A, χ) is a graph with a set of vertices V , a set of
arcs A and a function χ : A �→ P(N) \ {∅} that associates a (sub-)set of colors to
each arc. We denote by n and m the numbers of vertices and arcs of G, respectively.
For each color i, we denote Gi = (Vi, Ai) the subgraph induced by the arcs colored
with color i. Formally, Ai = {e | i ∈ χ(e)} and Vi = {v | ∃uv ∈ Ai}. Let G̃i be
the transitive closure of Gi (i.e. the arc uv belongs to Gi if and only if there is an
oriented path from u to v in Gi) and we denote G̃ = ∪iG̃i.

In the problems studied in this paper, given a list arc-colored graph G, the
aim is to construct a colored path π = (P, λ) where P is an oriented path of G
and λ : V (P) �→ N is an arc-coloring function. For each arc e of P , we attribute
a unique color among χ(e), that is, λ(e) ∈ χ(e). The number of colors of π is
denoted λ#(π) = |{λ(e) | e ∈ P}|. The number of color changes, denoted λc(π) is
the number of pairs of consecutive arcs of π that have different colors. Formally,
let P = (e1, . . . , ek) be a path, we have λc(π) = |{(ei, ei+1) | λ(ei) �= λ(ei+1)}|.
Finally, we denote by π[i] the subgraph of π induced by the arcs with color i.
For simplicity, we sometimes denote π[i] as the subgraph induced by the color i.

2.2 Objective Functions

In this article, we consider two objective functions consisting of minimizing the
number of colors or the number of color changes of a colored path. Hence, we
define the two following problems.

k-colored path (k-CP)
Input: A list arc-colored oriented graph G = (V,A, χ), two given vertices

s and t and a positive integer k.
Question: Is there a colored path π between s and t in G such that

λ#(π) ≤ k?

Complexity and Approximation Results 143

Table 1. Overview of complexity results

Problem Topology Complexity

k-colored path Gi is a bounded-length path NP-C Theorem 3
Planar NP-C Theorem 5
Bipartite NP-C Theorem 4
Planar and bipartite NP-C Theorem 6
General Non-approximable See [1]
Path Non-approximable Corollary 3
Gi is strongly connected P Theorem 2
Gi is a path of length two P Lemma 2

k-color change path General P Theorem 1

k-color change path (k-CCP)
Input: A list arc-colored oriented graph G = (V,A, χ), two given vertices

s and t and a positive integer k.
Question: Is there a colored path π between s and t such that λc(π) ≤ k?

We study the complexity of these problems according to some graph topolo-
gies. An overview of the result is available in Table 1.

3 Polynomial Cases

We present in this section some polynomial time algorithms for some specific
cases related to the connectivity of colored subgraphs Gi,∀i. For this, we show
that the research for a shortest path in the modified graph G̃ guarantees obtain-
ing a optimal solution.

Theorem 1. k-color change path admits a polynomial-time algorithm in
O(n3) time.

Proof. Let G be a list arc-colored oriented graph. First, note that G̃ can be
constructed in O(n3). We show that G contains a colored path π between s and
t with λc(π) = k if and only if there is an oriented path p of length at most k+1
between s and t in G̃.

– Let π be a colored path between s and t in G. For each monochromatic
subpath (u, . . . , v) of π, introduce the arc uv in p (uv exists in G̃ by definition).
Since λc(π) = k, it exists (k + 1) monochromatic subpaths in π. Thus, we
construct a oriented path of length k + 1 in G̃.

– Let p be an oriented path of length k+1 between s and t in G̃. For each arc uv
of p, it exists a monochromatic path p′ between u and v in G, by construction
of G̃. We add p′ in π. Therefore, we obtain a colored path π between s and
t in G that is constituted by at most k + 1 maximal monochromatic paths.
Hence, we obtain a path π with λc(π) = k.

144 T. Davot et al.

Thus, we can construct an optimal colored path in G by computing a shortest
path in G̃ and then apply the transformation described above. Since, a short-
est path can be computed in O(n2) using Dijkstra’s algorithm [9], the overall
complexity is O(n3).

We propose to extend the previous result to k-colored path in some
restricted case. So, we introduce the following lemma.

Lemma 1. Let G be a list arc-colored oriented graph. k-colored path can be
solved in time O(n3) if it exists an optimal colored path π such that for each
color i, π[i] is connected.

Proof. Let G be a list arc-colored oriented graph. Using the same argument
as in the proof of Theorem 1, we can show that G contains a colored path π
respecting lemma’s property with λ#(π) = k between s and t if and only if there
is a path p of length at most k between s and t in G̃. Hence, we can derive an
optimal colored path in G by computing a shortest path in G̃ and by applying
the transformation described in the proof of Theorem 1.

Theorem 2. k-colored path admits an O(n3) time algorithm if for each color
i of χ, Gi is strongly connected.

Proof. Let G be a list arc-colored oriented graph such that each subgraph Gi is
strongly connected and let π be a colored path between s and t. If there is a color
i such that π[i] contains two non-connected subpaths (u, . . . , v) and (u′, . . . , v′),
then since Gi is strongly connected, we can replace the subpath (u, . . . , v′) in
π by a path in Gi from u to v′ without increasing λ#(π). By doing that, we
ensure that for each color i, π[i] is connected. Thus, by Lemma 1, we conclude
that k-colored path can be solved in O(n3)-time in G.

Corollary 1. k-color change path in a non-oriented graph G admits a
polynomial-time algorithm if ∀i, Gi is connected.

Hereafter, we propose a polynomial-time algorithm for the case of each sub-
graph Gi induced by a color i is a path of length at most two.

Lemma 2. k-colored path can be solved in O(n3)-time in graphs for which
each color induces a path of length at most two.

Proof. Let π be an optimal colored path. Suppose that there is a color i such
that π[i] is not connected. Let (v1, v2, v3) be the path constituting Gi. Since both
arcs v1v2 and v2v3 appears in π, then π is not an elementary path, contradicting
its optimality. Hence, for each color i, π[i] is connected and by Lemma 1, k-
colored path can be solved in O(n3) in G.

4 Computational Hardness

In this section, we consider k-color change path problem in which each graph
induced by a color is a path. We show that in that case, k-color change path

is NP-complete. We then show that it remains NP-complete even if the graph
is bipartite or planar.

Complexity and Approximation Results 145

4.1 Each Color Induces a Path of Bounded Length

We now show that k-colored path is NP-complete. We use a similar idea
as the proof proposed for the NP-completeness of the problem of minimizing
the number of used colored in an edge-colored graph [2]. We reduce from the
following classical NP-complete problem.

3-SAT

Input: A Boolean formula ϕ where each clause contains exactly three
literals

Question: Is ϕ satisfiable?

Construction 1. Let ϕ be an instance of 3-SAT with m′ clauses C0, . . . , Cm′−1

and n′ variables x0, . . . , xn′−1. For each variable xi, let ψi (resp. ψi) be the list
of clauses where xi appears positively (resp. negatively). We construct a list arc-
colored graph G = (V,A, χ) as follows:

– create a vertex Qm,
– for each variable xi, create a vertex vi,
– for each clause Cj create a vertex Qj and create a vertex qi

j, for each literal
�i of Cj,

– for each variable xi and for each clause Cj in which xi appears, introduce an
oriented path (Qj , q

i
j , vi, vi+1) (or (Qj , q

i
j , vn−1, Q0) if i = n − 1) with color

ci
j,

– for each variable xi and for each pair of clauses (Cj , Ck) in ψi (resp. ψi) such
that j < k, introduce an oriented path (Qk, qi

k, qi
j , Cj+1) with color tij,k, and

– finally, for each variable xi, let Cj be the last clause of ψi (resp. ψi), introduce
the arc (qi

j , Qj+1) with color zi (resp. z̄i).

Notice that the graph induced by each color is a path of length exactly one or
three.

Theorem 3. k-color change path remains NP-complete even if each color
induces a path of length at most three.

Proof. Let ϕ be 3-SAT formula and G the graph obtained by Construction 1.
Clearly, k-color change path is in NP. We show that ϕ is satisfiable if and
only if it exists a colored path between v0 and Qm with λ#(π) = n + m.

– Suppose that ϕ is satisfiable and consider φ a satisfying assignment for ϕ.
Let fφ : {C0, . . . , Cm−1} �→ {x0, . . . , xn−1} be a function that assigns to each
clause Cj a unique variable xi such that the assignment of xi satisfies Cj . We
suppose that f−1

φ (xi) is an ascending ordered list according to the indices. We
construct π as follows. For each variable xi and for each clause Cj ∈ f−1

φ (xi):
• If Cj is the first clause of f−1

φ (xi), add in π the outgoing arc of xi with
color ci

j and the arc (Cj , q
i
j) with color ci

j . Otherwise, let Ck be the clause
that precedes Cj in f−1

φ (xi), add in π the two arcs (qi
k, Ck+1) and (Cj , q

i
j)

with color tkj .

146 T. Davot et al.

• If Cj is the last clause of f−1
φ (xi), add in π the arc (qi

j , Cj+1) with color
zj .

Since each clause Cj belongs to a list f−1
φ , we construct a path between x0

and Cm using n + m colors.
– Let π be a path between x0 and Cm using n+m colors. Consider the function

gπ : {x0, ..., xn−1} �→ P({C0, . . . , Cm−1}) defined by gπ(xi) = {Cj | qi
j ∈ π}.

First, by construction for each vertex xi ∈ π, we have xi+1 ∈ π (or C0

if i = n − 1). Thus, π contains the subpath Pliterals = (x0, . . . , xn−1, C0)
and uses clearly n colors in it. Moreover, always by construction, for each
vertex Cj ∈ π, the only way to reach a vertex Ck, with k > j from Cj

is to take a path (Cj , q
i
j , Cj+1). Thus, by extension, π contains a subpath

Pclauses = (C0, q
i
0, C1, q

i′
1 , . . . , Cm) and so, each clause is contained in a set

gπ(xi). Clearly, π uses a new color for each arc (qi
j , Cj+1). Hence, since π

can not use more than m colors in Pclauses, each arc aj = (Cj , q
i
j) is colored

with a color already used in the subpath (x0, . . . , Cj). Hence, if λ(aj) = tkj ,
then (qi

k, Ck+1) ∈ π and therefore, by construction, we have {Ck, Cj} ⊆ ψi

or {Ck, Cj} ⊆ ψi. If λ(aj) = ci
j , then the arc (xi, xi+1) is colored with ci

j

in π. Since only one outgoing arc of xi appears in π, by induction, we have
gπ(xi) ⊆ ψi or gπ(xi) ⊆ ψi. If gπ(xi) ⊆ ψi, we assign xi = true in φ and
xi = false otherwise. The assignment of xi satisfies every clause in gπ(xi) and
since for each clause Cj , g−1

π (Cj) is defined, then φ is a satisfying assignment
of ϕ.

From Construction 1, it is easy to extend this result for the case where each
path induced by a color has length exactly three: if a path has length one, we can
extend it by adding two new vertices. Samewise, we can show that this problem
remains NP-complete if every graph Gi is a disjoint union of arcs, by simply
removing the backward arcs in the construction.

Corollary 2. k-color change path remains NP-complete even if:

– each color induces a path of length exactly three, or
– each color induces a collection of disjoint arcs.

4.2 In Bipartite and Planar Graphs

In the following, we reuse Construction 1 to extend the previous hardness result
to planar and bipartite graphs.

Let G be a graph resulting of Construction 1. We can make it bipartite by
applying the following transformation. Let P1 and P2 be any partition of the
vertices of G. For each arc a = (v1, v2) such that v1 ∈ P1 and v2 ∈ P2, we can
introduce a new vertex u and replace (a) by the arcs (v1, u) and (u, v2).

Notice that since this transformation can only be applied to some backward
arcs of G, the length of each path induced by a color is bounded by four. Hence,
we obtain the following result.

Complexity and Approximation Results 147

v0 v1 v5 v6 vn −2 vn −1

Q0

q10

q50

q70

Q1Qm−1

q3m −1

q5m −1

q9m −1

Qm {z5}
{c50}{t50,m −1}

{c50, c5m −1}

{t50,m −1, c
5
m −1}

Fig. 1. Illustration of Construction 1. In this example, the literal x5 appears in
clauses C0 = (x1, x5, x7) and Cm′−1 = (x̄3, x5, x̄9). For simplicity, backward arcs
(q50 , v5), (q

5
m′−1, v5) and (q5m′−1, q

5
0) are not drawn.

Theorem 4. k-color change path is NP-complete even in bipartite graphs
where each color induces a path of length at most four.

Further, if we draw G as in Fig. 1, only backward arcs can cross. In order to
make such graph planar, we apply the classical technique consisting of adding a
vertex for each arc intersection. Formally, let (u, u′) and (v, v′) be two intersect-
ing backward arcs with color i and j respectively. We introduce a new vertex
v, remove (u, u′) and (v, v′) and we construct two paths (u, x, u′) and (v, x, v′)
with color i and j, respectively. Therefore, we add at most O(m′2) vertices to
the construction. Notice that the lengths of the paths induced by a color are no
longer bounded.

Theorem 5. k-color change path is NP-complete in planar graphs.

Finally, by combining the two previous techniques, we obtain the following result.

Theorem 6. k-color change path remains NP-complete for planar bipartite
graphs.

4.3 In Paths

We now show that k-color change path in paths is equivalent to the classical
problem Set Cover, defined as follows.

Set Cover (SC)
Input: A univers U = (e1, . . . , en′) of n′ elements, a collection

C = {S1, . . . , Sm′} of m′ subsets of U and a positive integer k.
Question: Is there a collection C ′ ⊆ C such that

⋃
Si∈C′ Si = U and

|C ′| ≤ k?

Construction 2. Let (U,C) be an instance of Set Cover, we construct a
list-arc colored graph G as follows:

148 T. Davot et al.

– construct an oriented path (v1, vn′+1), and
– for each subset Sj ∈ C and each element ei ∈ Sj, color the arc (vi, vi+1) with

color j.

An example of graph produced by Construction 2 is depicted in Fig. 2.

v1 v2 v3 v4 v5

{1, 2} {1} {2} {1, 3}

Fig. 2. Example of graph produced by Construction 2 on the univers containing the
sets S1 = {1, 2, 4}, S2 = {1, 3} and S3 = {4}.

Theorem 7. The optimization version of k-colored path is LOG-APX-hard
even in paths.

Proof. Let (U,C) be an instance of Set Cover and let G be its list arc-colored
graph resulting from Construction 2. We show that (U,C) admits a set cover
of size k if and only if G contains a colored path π between v1 and vn′+1 with
λ#(π) = k.

– Let C ′ be a minimal set cover of (U,C) of size k. We construct π as follows.
For each element ei, let Sj ∈ C ′ containing xi. Add the arc vivi+1 with color
j in π. Clearly π cannot use more colors than |C ′|, thus we obtain a colored
path π between v1 and vn′+1 with λ#(π) ≤ |C ′|.

– Let π be a colored path between v1 and vn′+1 such that λ#(π) = k. We
construct the following set cover C ′ = {Sj | λ(vivi+1) = j}. Since G is
an oriented path, for each vertex vi, the arc vivi+1 belongs to π. Thus, by
construction, for each element ei ∈ U , ei is contained in the subset Sj , where
λ(xi, xi+1) = j . Hence, C ′ is a set cover of (C,U).

Suppose it exists a polynomial-time algorithm A that can approximate k-
colored path with a factor R(G). Then, we can obtain a polynomial-time
algorithm with the same approximation factor for Set Cover by applying suc-
cessively Construction 2, A and the transformation to obtain a set cover from
a colored path described above. Lund and Yannakakis show that Set Cover

can not be approximated with a factor better than a logarithmic function [17] if
P �= NP. Hence, it implies that k-colored path can not be approximated in
polynomial-time with a factor better than a logarithmic function if P �= NP.

We now reduce k-colored path in paths to Set Cover.

Construction 3. Let G be a list-arc colored path on the vertices (v1, . . . , vn).
We construct an instance of Set Cover (U,C) as follows:

– construct the univers U = {e1, . . . , en−1},
– for each color j, introduce a set Sj, and

Complexity and Approximation Results 149

– for each arc a = (vi, vi+1) and each color j ∈ χ(a), emplace the element ei in
Sj.

Notice, that the previous construction is the inverse function of Construction
2. Thus, we can reuse the same argument as in Theorem 7 to show the following.

Lemma 3. Let G be a list-arc colored path and (U,C) be its instance of Set

Cover resulting of Construction 3. It exists a colored path π between v1 and vn

with λ#(π) = k if and only if it exists a set cover of (U,C) of size k.

Corollary 3. Set Cover ≡ k-colored path in paths.

5 Approximation Results

In the following, we consider the problem in which each subgraph Gi is an
oriented path of length at most �i ≤ �.

We develop a polynomial-time approximation algorithm based on the com-
putation of a shortest path in G̃. As for the algorithms of Sect. 3, the overall
time complexity of this approximation algorithm is O(n3).

Lemma 4. Let G be a list arc-colored graph such that each subgraph Gi is an
oriented path of length at most � and let π be a colored path between s and t. For
each color i, π[i] contains at most
 �

2� connected components.

Proof. Let vivj be an arc of π colored with color c. Let vjvk be the outgoing
arc of vj in Gi. Since π is elementary, either π contains the subpath (vi, vj , vk),
or π does not contain vjvk. Hence, two consecutive arcs of Gi cannot appear
in different connected components of π[i] and then π[i] contains at most
 �

2�
connected components.

Theorem 8. Let G be a list arc-colored graph such that each subgraph Gi is an
oriented path of length at most �. An optimal solution of k-color change path

in G is a
 l
2�-approximation of k-color change path.

Proof. Let π be a colored path between s and t. By Lemma 4, we have

λc(π) ≤
 �

2
� · λ#(π). (1)

Let πopt be an optimal solution of k-color change path and πapp be an optimal
solution of k-color change path. We have

λ#(πapp) ≤ λc(πapp) (2)

and
λc(πapp) ≤ λc(πopt). (3)

Thus,

λ#(πapp)
(2)

≤ λc(πapp)
(3)

≤ λc(πopt)
(1)

≤
 �

2
� · λ#(πopt). (4)

Therefore, we obtain
λ#(πapp)
λ#(πopt)

≤
 �

2
�.

150 T. Davot et al.

6 Lower Bounds for Exact Algorithms

We propose some negative results for k-color change path about the existence
of subexponential-time algorithms under ETH [13,14].

Corollary 4. There is no 2o(n) (resp. 2o(
√

n+m))-time algorithm for the opti-
mization version of k-colored path even in graphs where each color induces
a path of length at most three or in bipartite graphs where each color induces a
path of length at most four (resp. in bipartite planar graphs).

Proof. Let ϕ be a 3-SAT formula with n′ variables and m′ clauses and G be
its list arc-colored graph resulting from Construction 1. By construction, the
number of arcs and vertices of G is O(n′ + m′), even if we make the graph
bipartite. Thus, since 3-SAT does not admit a 2o(n′+m′)-time algorithm, k-
colored path does not admit a 2o(n+m)-time algorithm [13,16,20]. Making the
graph planar as described for Theorem 5 adds O(m′2) vertices in G. Thus, we can
conclude that k-colored path does not admit a 2o(

√
|V |+|E|)-time algorithm

in bipartite planar graphs.

7 Conclusion

In this paper, we tackle the trip sharing problem in complexity and approxima-
tion viewpoints. We show that in the case of each input colored graph, for a fixed
color, has a length at most two, the problem is polynomial whereas the problem
becomes NP-complete for each colored path has length three. The complex-
ity results are supplemented by hardness results according to topology (planar,
bipartite and bipartite planar). On positive side, we develop a polynomial-time
approximation algorithm a ratio at most
 l

2� with l the length of each input
colored path. Next step could be to develop exact algorithms using for example
a tree decomposition.

References

1. Böhmová, K., Häfliger, L., Mihalák, M., Pröger, T., Sacomoto, G., Sagot, M.-
F.: Computing and listing ST-paths in public transportation networks. Theory
Comput. Syst. 62(3), 600–621 (2018)

2. Broersma, H., Li, X., Woeginger, G.J., Zhang, S.: Paths and cycles in colored
graphs. Electron. J. Comb. 31, 299–312 (2005)

3. Cao, Y., Chen, G., Jing, G., Stiebitz, M., Toft, B.: Graph edge coloring: a survey.
Graphs Combin. 35(1), 33–66 (2019)

4. Captivo, M.E., Clímaco, J.C.N., Pascoal, M.M.B.: A mixed integer linear formu-
lation for the minimum label spanning tree problem. Comput. Oper. Res. 36(11),
3082–3085 (2009)

5. Chwatal, A.M., Raidl, G.R.: Solving the minimum label spanning tree problem by
mathematical programming techniques. Adv. Oper. Res. 2011 (2011)

Complexity and Approximation Results 151

6. Cordeau, J.-F., Laporte, G.: The dial-a-ride problem (DARP): variants, modeling
issues and algorithms. Q. J. Belg. Fr. Ital. Oper. Res. Soc. 1(2), 89–101 (2003)

7. Cordeau, J.-F., Laporte, G.: The dial-a-ride problem: models and algorithms. Ann.
Oper. Res. 153(1), 29–46 (2007)

8. Fellows, M., Guo, J., Kanj, I.: The parameterized complexity of some minimum
label problems. J. Comput. Syst. Sci. 76(8), 727–740 (2010)

9. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. In: 25th Annual Symposium on Foundations of Computer
Science, pp. 338–346 (1984)

10. Furuhata, M., Dessouky, M., Ordonez, F., Brunet, M.-E., Wang, X., Koenig, S.:
Ridesharing: the state-of-the-art and future directions. Transport. Res. B Meth.
57, 28–46 (2013)

11. Hassin, R., Monnot, J., Segev, D.: Approximation algorithms and hardness results
for labeled connectivity problems. J. Comb. Optim. 14(4), 437–453 (2007)

12. Ho, S.C., Szeto, W.Y., Kuo, Y.-H., Leung, J.M.Y., Petering, M., Tou, T.W.H.: A
survey of dial-a-ride problems: literature review and recent developments. Trans-
port. Res. B Meth. 111, 395–421 (2018)

13. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci.
62(2), 367–375 (2001)

14. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

15. Krumke, S.O., Wirth, H.-C.: On the minimum label spanning tree problem. Inf.
Process. Lett. 66(2), 81–85 (1998)

16. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the Exponential
Time Hypothesis. Bull. EATCS 105, 41–72 (2011)

17. Lund, C., Yannakakis, M.: On the hardness of approximating minimization prob-
lems. J. ACM 41(5), 960–981 (1994)

18. Mourad, A., Puchinger, J., Chu, C.: A survey of models and algorithms for opti-
mizing shared mobility. Transport. Res. B Meth. 123, 323–346 (2019)

19. Niels, A., Agatz, H., Erera, A.L., Savelsbergh, M.W.P., Wang, X.: Optimization
for dynamic ride-sharing: a review. Eur. J. Oper. Res. 223(2), 295–303 (2012)

20. Woeginger, G.J.: Exact algorithms for NP-hard problems: a survey. In: Jünger,
M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization — Eureka, You
Shrink! LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-36478-1_17

21. Xiongm, Y., Golden, B., Wasil, E., Chen, S.: The label-constrained minimum span-
ning tree problem. In: Raghavan, S., Golden, B., Wasil, E. (eds.) Telecommunica-
tions Modeling, Policy, and Technology, vol. 44, pp. 39–58. Springer, Boston (2008).
https://doi.org/10.1007/978-0-387-77780-1_3

https://doi.org/10.1007/3-540-36478-1_17
https://doi.org/10.1007/3-540-36478-1_17
https://doi.org/10.1007/978-0-387-77780-1_3

The Complexity of Finding Optimal
Subgraphs to Represent Spatial

Correlation

Jessica Enright1 , Duncan Lee2 , Kitty Meeks1 , William Pettersson1(B) ,
and John Sylvester1

1 School of Computing Science, University of Glasgow, Glasgow, UK
{jessica.enright,kitty.meeks,william.pettersson,

john.sylvester}@glasgow.ac.uk
2 School of Mathematics and Statistics, University of Glasgow, Glasgow, UK

duncan.lee@glasgow.ac.uk

Abstract. Understanding spatial correlation is vital in many fields
including epidemiology and social science. Lee, Meeks and Pettersson
(Stat. Comput. 2021) recently demonstrated that improved inference for
areal unit count data can be achieved by carrying out modifications to a
graph representing spatial correlations; specifically, they delete edges of
the planar graph derived from border-sharing between geographic regions
in order to maximise a specific objective function. In this paper we
address the computational complexity of the associated graph optimi-
sation problem. We demonstrate that this problem cannot be solved in
polynomial time unless P = NP; we further show intractability for two
simpler variants of the problem. We follow these results with two param-
eterised algorithms that exactly solve the problem in polynomial time in
restricted settings. The first of these utilises dynamic programming on a
tree decomposition, and runs in polynomial time if both the treewidth
and maximum degree are bounded. The second algorithm is restricted to
problem instances with maximum degree three, as may arise from trian-
gulations of planar surfaces, but is an FPT algorithm when the maximum
number of edges that can be removed is taken as the parameter.

Keywords: Parameterised complexity · Treewidth · Colour coding ·
Spatial statistics

1 Introduction

Spatio-temporal count data relating to a set of n non-overlapping areal units for
T consecutive time periods are prevalent in many fields, including epidemiology
[11] and social science [1]. As geographical proximity can often indicate correla-
tion, such data can be modelled as a graph, with vertices representing areas and
edges between areas that share a geographic boundary and so are assumed to
be correlated. The count data is then represented as a weight assigned to each
vertex. However, such models are often not ideal representations as geographical
c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 152–166, 2021.
https://doi.org/10.1007/978-3-030-92681-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_13&domain=pdf
http://orcid.org/0000-0002-0266-3292
http://orcid.org/0000-0002-6175-6800
http://orcid.org/0000-0001-5299-3073
http://orcid.org/0000-0003-0040-2088
http://orcid.org/0000-0002-6543-2934
https://doi.org/10.1007/978-3-030-92681-6_13

The Complexity of Finding Optimal Subgraphs 153

proximity does not always imply correlation [9]. Instead, Lee, Meeks and Pet-
tersson [7] recently proposed a new method for addressing this issue by deriving
a specific objective function (given in full in Sect. 2.2), and then searching for
a spanning subgraph with no isolated vertices which maximises this function.
Maximising this objective function corresponds to maximising the natural log of
the product of full conditional distributions over all vertices (corresponding to
spatial units) in a conditional autoregressive model. Such models are typically
written as a series of univariate full conditional distributions rather than a joint
distribution. This objective function is highly non-linear, and rewards removing
as few edges as possible, while applying a penalty that (non-linearly) increases
as the difference between the weight of each vertex and the average weight over
its neighbours increases. Due to the size of the data, exhaustive searches for
optimal subgraphs are intractable and so efficient algorithms are required for
this problem. Lee, Meeks and Pettersson [7] gave a heuristic for this problem,
but point out that many standard techniques are not applicable to this problem,
suggesting that this problem is hard to solve efficiently in general.

1.1 Our Contribution

We show that the problem is indeed NP-hard, even on planar graphs, and provide
examples that illustrate two of the major challenges inherent in the problem: we
cannot optimise independently in disjoint connected components and we cannot
iterate towards a solution. We also show that the decision variant of minimising
the penalty portion of the objective function is NP-complete even when restricted
to planar graphs with maximum degree at most five. We then investigate a
simplification in which the goal is to find a subgraph with a penalty term of
zero. We show that this is solvable linear time and space in the number of edges
of the graph, and we completely characterise all such subgraphs. However, we
also show that finding a subgraph with a penalty term of zero on all vertices of
degree two or more is NP-complete.

In the positive direction, we give two exact algorithms that are tractable in
their respective restricted settings. These both require that the input graph have
bounded maximum degree: we note that graphs arising from areal studies will
often have small maximum degree. The first algorithm runs in polynomial time
if both the maximum degree and treewidth of the underlying graph are bounded.
The second algorithm is only guaranteed to be correct if the underlying graph
has maximum degree three, but is fixed-parameter tractable when parameterised
by the maximum number of edges that can be removed.

1.2 Paper Outline

Section 2 gives notation and definitions, the formal problem definition, and exam-
ples that illustrate two of the major challenges inherent in the problem. We then
prove in Sect. 3 that, unless P = NP, there is no polynomial-time algorithm to solve
the main optimisation problem, even when restricted to planar graphs. Section 4
then examines three simplifications of the problem. In Sect. 5 we introduce two

154 J. Enright et al.

algorithms to exactly solve the problem in certain special cases, and we finish
with concluding thoughts and open problems in Sect. 6. Note that some details
and proofs are omitted due to space constraints.

2 Background

In this section we give the notation we need for this paper, define the problem,
and then demonstrate why some common techniques from graph theory are not
applicable to this problem.

2.1 Notation and Definitions

A graph is a pair G = (V,E), where the vertex set V is a finite set, and the edge
set E ⊆ V (2) is a set of unordered pairs of elements of V . Two vertices u and
v are said to be adjacent if e = uv ∈ E; u and v are said to be the endpoints
of e. The neighbourhood of v in G is the set NG(v) := {u ∈ V : uv ∈ E},
and the degree of v in G is dG(v) := |NG(v)|. An isolated vertex is a vertex
of degree zero, and a leaf is a vertex of degree one. The maximum degree of a
graph G is Δ(G) := maxv∈V dG(v). A graph H = (VH , EH) is a subgraph of G
if VH ⊆ V and EH ⊆ E; H is a spanning subgraph of G if VH = V so that H is
obtained from G by deleting a (possibly empty) subset of edges. Given an edge
e in E(G) (respectively a set E′ ⊆ E(G)) we write G\ e (respectively G\E′) for
the subgraph of G obtained by deleting e (respectively deleting every element
of E′). A graph G is planar if it can be drawn in the plane (i.e. vertices can be
mapped to points in the plane, and edges to curves in the plane whose extreme
points are the images of its endpoints) in such a way that no two edges cross.
Given any partition of a subset of the plane into regions, we can define a planar
graph whose vertices are in bijection with the set of regions, in which two regions
are adjacent if and only if they share a border of positive length. In particular,
if each region has three sides (i.e., the partition is a triangulation of a subset of
the plane) then the resulting graph will have maximum degree three.

2.2 The Optimisation Problem

Following Lee, Meeks and Pettersson [7], we are concerned with the following
optimisation problem.

Correlation Subgraph Optimisation

Input: A graph G = (V,E) where |V | = n, and function f : V → Q.
Question: What is the maximum value of

score(H, f) :=
∑

v∈V

ln dH(v)−n ln

⎡

⎣
∑

v∈V

dH(v)

(
f(v) −

∑
u∈NH(v) f(u)

dH(v)

)2
⎤

⎦ ,

taken over all spanning subgraphs H of G such that dH(v) ≥ 1 for all v ∈ V ?

The Complexity of Finding Optimal Subgraphs 155

We will say that a subgraph H of G is valid if H is a spanning subgraph
of G and dH(v) ≥ 1 for all v ∈ V . Given a vertex v in the input graph G, we
will sometimes refer to f(v) as the weight of v. We also define the neighbour-
hood discrepancy of a vertex f in a graph H with weight function f (written
NDH(v, f)) as

NDH(v, f) :=

(
f(v) −

∑
u∈NH(v) f(u)

dH(v)

)2

.

2.3 Why Common Graph Algorithm Techniques Fail

This problem is particularly resistant to many approaches common in algorith-
mic graph theory. We will describe two of these now. Firstly, on a disconnected
graph G, combining optimal solutions on each connected component is not guar-
anteed to find an optimal solution on G. This is true even if there are only two
disconnected components, one of which is an isolated edge and the other being
a path, as illustrated in the following example.

Example 1. Consider the graph G consisting of a path on four vertices (v1, v2, v3,
v4) along with an isolated edge between vertices va and vb, as shown in Fig. 1,
and let H = G \ {v2v3}. Note that H is the only proper subgraph of G which
has no isolated vertices. Let f be defined as follows: f(v1) = 0, f(v2) = 1,
f(v3) = 10, f(v4) = 11, f(va) = 0, and f(vb) = x for some real x. If x = 1 then
score(G, f) < score(H, f) but if x = 1000 then score(G, f) > score(H, f).

0

v1 1

v2

10

v3 11

v4

0

va

x

vb

Fig. 1. Graph for Example 1. The value of the function at each vertex is shown inside
the respective vertex.

To understand why disconnected components can affect each other in such a
manner, note that the negative term in the score function contains a logarithm
of a sum of neighbourhood discrepancies. This means that the relative impor-
tance of the neighbourhood discrepancy of any set of vertices depends on the
total sum of the neighbourhood discrepancies across the whole graph. In other
words, the presence of a large neighbourhood discrepancy elsewhere (even in a
separate component) in the graph can reduce the impact of the neighbourhood
discrepancy at a given vertex or set of vertices. However, the positive term in the
score function is a sum of logarithms, so the contribution to the positive term
from the degree of one vertex does not depend on any other part of the graph.

156 J. Enright et al.

A reader might also be tempted to tackle this problem by identifying a “best”
edge to remove and proceeding iteratively. The following example highlights that
any algorithm using such a greedy approach may, in some cases, not find an
optimal solution.

Example 2. Consider the graph G being a path on six vertices labelled v1, v2, v3,
v4, v5, and v6 with f(v1) = 1000, f(v2) = 2000, f(v3) = 1999, f(v4) = 1001,
f(v5) = 2019, and f(v6) = 981 as shown in Fig. 2. Let H = G\{v2v3, v4v5}, and
let H ′ = G \ {v3v4}. The maximum score that can be achieved with the removal
of only one edge is achieved by removing edge v3v4 and creating H ′. However,
the optimal solution to Correlation Subgraph Optimisation on G is H,
and involves removing edges v2v3 and v4v5.

1000

v1
2000

v2

1999

v3
1001

v4

2019

v5
981

v6

Fig. 2. Graph for Example 2. The value of the function at each vertex is shown inside
the respective vertex.

3 Hardness on Planar Graphs

In this section we prove NP-hardness of Correlation Subgraph Optimisa-

tion on planar graphs.

Theorem 1. There is no polynomial-time algorithm to solve Correlation

Subgraph Optimisation on planar graphs unless P=NP.

We prove this result by means of a reduction from the following problem,
shown to be NP-complete in [10]; the incidence graph GΦ of a CNF formula Φ
is a bipartite graph whose vertex sets correspond to the variables and clauses of
Φ respectively, and in which a variable x and clause C are connected by an edge
if and only if x appears in C.

Cubic Planar Monotone 1-in-3 SAT

Input: A 3-CNF formula Φ in which every variable appears in exactly three
clauses, variables only appear positively, and the incidence graph GΦ is
planar.
Question: Is there a truth assignment to the variables of Φ so that exactly
one variable in every clause evaluates to TRUE?

The Complexity of Finding Optimal Subgraphs 157

We begin by describing the construction of a graph G and function f :
V (G) → N corresponding to the formula Φ in an instance of Cubic Planar

Monotone 1-in-3 SAT; the construction will be defined in terms of an integer
parameter t ≥ 1 whose value we will determine later. Note that G is not the
incidence graph GΦ of Φ.

Suppose that Φ has variables x1, . . . , xn and clauses C1, . . . , Cm. Since every
variable appears in exactly three clauses and each clause contains exactly three
variables, we must have m = n. For each variable xi, G contains a variable
gadget on 3t2 + 6t + 8 vertices. The non-leaf vertices of the gadget are:

– ui, with f(ui) = 7t,
– vi, with f(vi) = 4t,
– zi with f(zi) = t,
– z′

i with f(z′
i) = 4t, and

– wi,j for each j ∈ {1, 2, 3}, with f(wi,j) = 3t.

The vertex vi is adjacent to ui, zi and each wi,j with i ∈ {1, 2, 3}; zi is adjacent
to z′

i. We add leaves to this gadget as follows:

– ui has 3t pendant leaves, each assigned value 7t + 1 by f ;
– zi has 3t pendant leaves, each assigned value t − 1 by f ;
– z′

i has 3t2 pendant leaves, each assigned value 4t by f ;
– each vertex wi,j has exactly one pendant leaf, assigned value 3t by f .

For each clause Cj , G contains a clause gadget on t2 + 2 vertices: aj and a′
j ,

which are adjacent, and t2 pendant leaves adjacent to a′
j . We set f(aj) = 2t, and

f takes value t on a′
j and all of its leaf neighbours. We complete the definition of

G by specifying the edges with one endpoint in a variable gadget and the other
in a clause gadget: if the variable xi appears in clauses Cr1 , Cr2 and Cr3 , with
r1 < r2 < r3, then we have edges wi,1ar1 , wi,2ar2 and wi,3ar,3. The construction
of the variable and clause gadgets is illustrated in Fig. 3.

Recall that a subgraph H of G is valid if H is a spanning subgraph of G and
dH(v) ≥ 1 for all v ∈ V . Recall that the neighbourhood discrepancy of a vertex
v with respect to f in a valid subgraph H, written NDH(v, f), is

NDH(v, f) :=

(
f(v) −

∑
u∈NH(v) f(v)

dH(v)

)2

.

The goal of Correlation Subgraph Optimisation is therefore to maximise

score(H, f) :=
∑

v∈V

ln dH(v) − n ln

[
∑

v∈V

dH(v)NDH(f, v)

]
,

over all valid subgraphs H of G. We now give several results that are necessary;
the proofs of these are omitted due to space constraints but can be found in [3].
This first set of results give several properties of valid subgraphs of G.

158 J. Enright et al.

t

t-1
vi

ui

wi,3

wi,2

wi,1

zi...3t

7t+1 ...

3t

7t+1

4t

4t 4t...

3t2

zi'

aj'aj ... t2t
t

t

Variable gadget

Clause gadgett-1

4t

3t

3t

3t 3t

3t

3t

2t

7t

Fig. 3. Construction of the variable and clause gadgets.

Lemma 1. For any valid subgraph H,
∑

u a leaf in G

NDH(u, f) = 6nt.

Lemma 2. For any valid subgraph H,

0 ≤ NDH(z′
i, f),NDH(a′

i, f) < 1/t2.

Lemma 3. For any valid subgraph H,
∑

v∈V

ln dH(v) ≥ 6n ln t + 2n.

Lemma 4. Let H be any subgraph of G (not necessarily valid). Then
∑

v∈V

ln dH(v) ≤ 6n ln t + 20n.

We now give two lemmas that relate the existence of truth assignments of a
3-CNF formulae to bounds on the neighbourhood discrepancies of some vertices
within a valid subgraph H.

Lemma 5. If Φ is satisfiable, there is a valid subgraph H such that for all v ∈
V \ {z′

i, a
′
i : 1 ≤ i ≤ n} with dG(v) > 1 we have ND(v,H) = 0.

Lemma 6. If Φ is not satisfiable, then for any valid subgraph H, there exists a
vertex v ∈ V \ {z′

i, a
′
i : 1 ≤ i ≤ n} with dG(v) > 1 such that

NDH(v, f) ≥ t2/9.

The Complexity of Finding Optimal Subgraphs 159

We now give bounds on the possible values for score(H, f) depending on
whether or not Φ is satisfiable.

Lemma 7. If Φ is satisfiable, there is a valid subgraph H with

score(H, f) ≥ 6n ln t − n ln(12nt).

Lemma 8. If Φ is not satisfiable, then for every valid subgraph H we have

score(H, f) ≤ 6n ln t + 20n − n ln(t2/9).

We are now ready to prove Theorem 1, which we restate here for convenience.

Theorem 1. There is no polynomial-time algorithm to solve Correlation

Subgraph Optimisation on planar graphs unless P = NP.

Proof. We suppose for a contradiction that there is a polynomial-time algorithm
A to solve Correlation Subgraph Optimisation on planar graphs, and show
that this would allow us to solve Cubic Planar Monotone 1-in-3 SAT in
polynomial time.

Given an instance Φ of Cubic Planar Monotone 1-in-3 SAT, where we
will assume without loss of generality that Φ has n > e47 variables, we proceed
as follows. First construct (G, f) as defined above, taking t = n2; it is clear that
this can be done in polynomial time in |Φ|. Note that G is planar: to see this,
observe that repeatedly deleting vertices of degree one gives a subdivision of the
incidence graph which is planar by assumption. We then run A on (G, f) and
return YES if the output is at least 17

2 n lnn, and NO otherwise.
It remains to demonstrate that this procedure gives the correct answer. Sup-

pose first that Φ is satisfiable. In this case, by Lemma 7, we know that there
exists a subgraph H of G with

score(H, f) ≥ 6n ln t − n ln(12nt)

= 6n lnn2 − n ln(12n3)
= 12n lnn − 3n lnn − n ln 12
≥ 9n lnn − 3n

>
17
2

n lnn,

since 3 < lnn/2, so our procedure returns YES.
Conversely, suppose that Φ is not satisfiable. In this case, by Lemma 8 we

know that, for every valid subgraph H we have

score(H, f) ≤ 6n ln t + 20n − n ln(t2/9)

= 6n lnn2 + 20n − n ln(n4/9)
= 12n lnn + 20n − 4n lnn + n ln 9
≤ 8n lnn + 23n

<
17
2

n lnn,

since 23 < lnn/2, so our procedure returns NO. ��

160 J. Enright et al.

4 Simplifications of the Problem

One may wonder if the hardness of Correlation Subgraph Optimisation

is due to the interplay between the two parts of the objective function. We
show in Sect. 4.1 that just determining if there is a valid subgraph with total
neighbourhood discrepancy below some given constant is NP-complete, even if
the input graph is planar and has maximum degree at most five. In Sect. 4.2 we
that show that subgraphs that have zero neighbourhood discrepancy everywhere
(if they exist) can be found in time linear in the number of edges, however
determining if there exists a subgraph that has zero neighbourhood discrepancy
everywhere excluding leaves is NP-complete.

4.1 Minimising Neighbourhood Discrepancy

Consider the following problem, which questions the existence of a subgraph
whose total neighbourhood discrepancy is below a given constant.

Average Value Neighbourhood Optimisation

Input: A graph G = (V,E), a function f : V → Q, and k ∈ Q.
Question: Is there a spanning subgraph H of G such that dH(v) ≥ 1 for all
v ∈ V and

∑

v∈V

(
f(v) −

∑
u∈NH(v) f(u)

dH(v)

)2

≤ k ?

First observe that the Average Value Neighbourhood Optimisation is
clearly in NP. The NP-hardness of Average Value Neighbourhood Opti-

misation can be shown by giving a reduction from Cubic Planar Monotone

1-in-3 SAT, which we used earlier in Sect. 3. The full proof is omitted due to
space constraints but can be found in [3].

Theorem 2. Average Value Neighbourhood Optimisation is NP-
complete, even when restricted to input graphs G that are planar and have max-
imum degrees at most five.

4.2 Ideal and Near-Ideal Subgraphs

An obvious upper-bound to score(H, f) is given by
∑

v∈V (H) ln dH(v)
(i.e. assume every vertex has zero neighbourhood discrepancy), so a natural
question to ask is whether, for a given graph G and function f , a valid subgraph
H of G can be found that achieves this bound. In such a graph, it must hold
that NDH(v, f) = 0 for every v ∈ V (H). We say such a graph H is f-ideal (or
simply ideal, if f is clear from the context). We now show that this definition is
equivalent to saying that a graph H is f -ideal if and only the restriction of f to
any connected component of H is a constant-valued function.

The Complexity of Finding Optimal Subgraphs 161

Theorem 3. A graph H is f-ideal if and only if for each connected component
Ci in H there exists some constant ci such that f(v) = ci for all v ∈ V (Ci).

Proof. Let P denote a path of maximal length in an f -ideal graph such that
the weights of the vertices of P strictly increase as one follows the path. In an
ideal graph, any edge between vertices of different weights means that P must
contain at least two distinct vertices, however the first and last vertices in such
a path cannot have zero neighbourhood discrepancy. Thus, no such path on one
or more edges can exist in an ideal graph, so a graph G is ideal if and only if
for each connected component Ci in G there exists some constant ci such that
f(v) = ci for all v ∈ V (Ci). ��

Thus, ideal subgraphs can be found by removing any edge uv if f(u) 	= f(v)
(in O(|E|) = O(n2) time), and if necessary we can test if such a graph has no
isolated vertices (and thus is valid) quickly. The proof of Theorem 3 highlights
that maximal paths with increasing weights must start and end on vertices that
do not have zero neighbourhood discrepancy, so one might be tempted to relax
the ideal definition to only apply on vertices that are not leaves. We therefore say
a graph H is f-near-ideal if NDH(v, f) = 0 for every v ∈ V (H) with dH(v) ≥ 2.
In other words, we now allow non-zero neighbourhood discrepancy, but only at
leaves, motivating the following problem.

Near Ideal Subgraph

Input: A graph G = (V,E) where |V | = n, and a function f : V
→ Q.
Question: Is there a valid subgraph H of G such that H is f -near-ideal?

While an ideal subgraph (if one exists) can be found quickly, it turns out
that solving Near Ideal Subgraph is NP-complete, even on trees. We reduce
from subset-sum, which is NP-complete [6], and which we define as follows.

Subset Sum

Input: An integer k, and a set of integers S = {s1, s2, . . . , sn}.
Question: Is there a subset U ⊆ {1, 2, . . . , n} such that

∑
u∈U su = k?

Given an instance (S, k) of Subset Sum, we will construct a graph G with
weight function f such that (G, f) has a near-ideal subgraph if and only if there
is a solution to our instance of Subset Sum.

The graph G contains 3n + 3 vertices labelled as follows:

– vt for the target value, vs for a partial sum, and vz for a pendant, and
– vj

p for p ∈ {1, . . . , n} and j ∈ {1, 2, 3}.

Vertex vs is adjacent to vertices vt, vz, and v1
p for p ∈ {1, . . . , n}. For each

p ∈ {1, . . . , n}, v1
p is adjacent to v2

p, and v2
p is adjacent to v3

p. This graph can be
seen in Fig. 4. We then define f as follows:

162 J. Enright et al.

−k

vt

0

vs

0

vz

s1

v1
1

s1

v2
1

s1

v3
1

s2

v1
2

s2

v2
2

s2

v3
2

sn

v1
n

sn

v2
n

sn

v3
n

Fig. 4.Diagram of graph for reduction from Subset Sum. The values inside the vertices
are their associated weights.

– f(vt) = −k,
– f(vs) = f(vz) = 0, and
– f(vj

p) = sp for p ∈ {1, . . . , n}, and for j ∈ {1, 2, 3}.

Note that for the condition dH(v) ≥ 1 to hold for our subgraph H, the
only edges in G that might not be in H are of the form vsv

1
p or v1

pv2
p for some

p ∈ {1, . . . , n}. Additionally, for any p ∈ {1, . . . , n}, at most of one of vsv
1
p or

v1
pv2

p can be removed. We can then show that G has a near-ideal subgraph if
and only if it is constructed from a yes-instance of Subset Sum. The complete
proof is omitted due to space constraints but can be found in [3].

Theorem 4. Near Ideal Subgraph is NP-complete, even if the input graph
G is a tree.

5 Parameterised Results

In this section we describe two parameterised algorithms for Correlation Sub-

graph Optimisation. We make use of two parameterised complexity problem
classes to describe these. A problem is in the fixed parameter tractable (or FPT)
class with respect to some parameter k if the problem can be solved on inputs
of size n in time f(k) · nO(1) for some computable function f . Note in particular
that the exponent of n is constant. Another class of parameterised problems is
XP: a problem is in XP with respect to some parameter k if the problem can be
solved on inputs of size n in time O(nf(k)). In XP problems, the exponent of n
may change for different values of k, but if an upper bound on k is given then this
also upper bounds the exponent of n. For further background on parameterised
complexity, see [2].

In Sect. 5.1 we show that Correlation Subgraph Optimisation is in XP
parameterised by the maximum degree when treewidth is bounded, and is in
FPT parameterised by treewidth when the maximum degree is bounded. Then

The Complexity of Finding Optimal Subgraphs 163

in Sect. 5.2 we consider the more restricted case where G has maximum degree
three, and show that with this restriction Correlation Subgraph Optimi-

sation is in FPT parameterised by the number of edges that are removed. We
highlight that this restriction on the maximum degree occurs naturally in trian-
gulations of surfaces, such as can occur when discretising geographic maps.

5.1 An Exact XP Algorithm Parameterised by Treewidth
and Maximum Degree

We now briefly describe an exact XP algorithm for solving Correlation Sub-

graph Optimisation on arbitrary graphs that leads to the following result.

Theorem 5. Correlation Subgraph Optimisation can be solved in time

O(22Δ(G)(tw(G)+1) · n2Δ(G)+1).

The algorithm follows fairly standard dynamic programming techniques on
a nice tree decomposition T of G with treewidth tw(G) that is rooted at some
arbitrary leaf bag. A nice tree decomposition is a tree decomposition with one
leaf bag selected as a root bag so that the children of a bag are adjacent bags
that are further from the root, and the additional property that each leaf bag is
empty, and each non-leaf bag is either a introduce bag, forget bag, or join bag,
which are defined as follows. An introduce bag ν has exactly one child below
it, say μ, such that ν contains every element in μ as well as precisely one more
element. A forget bag ν has exactly one child below it, say μ, such that ν contains
every element in μ except one. A join bag λ has exactly two children below it,
say μ and ν, such that λ, μ, and ν, all have precisely the same elements. See [2],
in particular Chap. 7, for an introduction to tree decompositions, and a formal
definition of nice tree decompositions.

We will outline the core ideas here; full details are omitted due to space
constraints but can be found in [3]. We first define some specific terminology
that will be useful when describing the algorithm. Let T be a tree decomposition
(not necessarily nice) with an arbitrary bag labelled as the root. For each bag
ν ∈ T , denote by Gν the induced subgraph of G consisting precisely of vertices
that appear in bags below ν but do not appear in ν, where we take below
to mean further away from the root bag. The set of edges between a vertex
in ν and a vertex in Gν will be important to our algorithm, so we will write
Eν = {uv ∈ E(G) | u ∈ ν ∧ v ∈ Gν} to be the set of edges with one endpoint in
Gν and the other in ν. An example of a graph, a tree decomposition, Gν , and
Eν are shown in Fig. 5.

Our algorithm will process each bag, from the leaves towards the root, deter-
mining a set of states for each bag such that we can guarantee that the optimal
solution will correspond to a state in the root bag. Given a bag ν of a tree
decomposition and a set of edges I ⊆ Eν , define G′

ν,I to be the set of graphs G′

with V (G′) = V (Gν)∪ ν, E(G′) ⊆ E(G), and for any edge uv ∈ Eν , uv ∈ E(G′)
if and only if uv ∈ I.

164 J. Enright et al.

G

A

A

BB

CC

D

D

E E

F F

T

root

ν

Gν

E

D

Eν

F

C E

D

Fig. 5. From left to right, we have a graph G with a tree decomposition displayed by
circling vertices, the tree indexing a tree decomposition of G drawn as a graph with
the root and the bag ν labelled, the graph Gν consisting of the induced subgraph on
vertices D and E, and the the set of edges Eν = {CD, EF} (i.e., the edges of G that
are between a vertex in Gν and a vertex in ν).

Definition 1. For a bag ν, the set of all valid states at ν is

Sν = {(I,D) |I ⊆ Eν , G′
ν,I 	= ∅, and there exists a graph H ∈ G′

ν,I

with D =
∑

v∈Gν

ln dH(v), and dH(v) ≥ 1 ∀v ∈ V (Gν)}.

Each state corresponds to at least one graph (H in the definition) but there
may be multiple graphs that all lead to the same state. For each state we will also
store the best possible (i.e., lowest) value of

∑
v∈H dH(v)NDH(v, f) (i.e., total

neighbourhood discrepancy summed over vertices that only appear below the
current bag) over all of the graphs H that correspond to a given state. This
allows us to compute the contribution to the penalty portion of the objective
function from the subtree under consideration.

5.2 Parameterisation by k in Low Degree Graphs

We also study the problem when G has maximum degree three and we want
to bound the maximum number of edges that can be removed. In this setting
we define k-Correlation Subgraph Optimisation and show that it is in
FPT when parameterised by k, the maximum number of edges that can be
removed from G to create H. This setting is of interest as the dual graph of any
triangulation has maximum degree three and triangulations are often used to
represent discretised surfaces [5,8].

The Complexity of Finding Optimal Subgraphs 165

k-Correlation Subgraph Optimisation

Input: A graph G = (V,E) where |V | = n, an integer k, and a function
f : V → Q.
Question: What is the maximum value of

score(H, f) :=
∑

v∈V

ln dH(v)−n ln

⎡

⎣
∑

v∈V

dH(v)

(
f(v) −

∑
u∈NH(v) f(u)

dH(v)

)2
⎤

⎦ ,

taken over all spanning subgraphs H of G such that |E(G \ H)| ≤ k and
dH(v) ≥ 1 for all v ∈ V ?

Theorem 6. For an integer k ≥ 1, k-Correlation Subgraph Optimisation

can be solved on graphs with maximum degree three in time 2k(2 log k+O(1))n log n.

This can be proven using the following guide; full details are omitted due to
space constraints but can be found in [3]. Consider in turn each possibility R
for the graph consisting of deleted edges, and for each such graph we consider in
turn the possibilities of the degree sequence of the remaining graph. The number
of distinct graphs R that must be considered is independent of n, and for each R
the number of degree sequences of G\R is linear in n. As R has maximum degree
two and therefore consists only of paths and cycles, it has treewidth at most two.
We can therefore adapt well-known colour-coding methods (see [4, Section 13.3]
for more details) for finding subgraphs with bounded treewidth in FPT time
so that we can identify a subgraph R in G whose removal gives the biggest
improvement to the neighbourhood discrepancy term while still maintaining the
correct degree sequence of G \ R.

6 Discussion and Conclusions

Correlation Subgraph Optimisation is a graph optimisation problem aris-
ing from spatial statistics with direct applications to epidemiology and social
science that we show is intractable unless P = NP. We also show that it is
resistant to common techniques in graph algorithms, but can be solved in poly-
nomial time if both the treewidth and maximum degree of G are bounded, or if
G has maximum degree three and we bound the maximum number of edges that
can be removed. However the question still remains as to whether Correla-

tion Subgraph Optimisation itself is hard when the maximum degree of the
input graph is bounded. We also note as an interesting open problem whether
Correlation Subgraph Optimisation admits efficient parameterised algo-
rithms with respect to (combinations of) parameters other than the maximum
degree. Additionally, the original paper that introduced Correlation Sub-

graph Optimisation gives one heuristic for solving the problem, but leaves
open any guarantee on the performance of this heuristic. Thus the investiga-
tion of the performance of this heuristic, or indeed of any new approximation

166 J. Enright et al.

algorithms, form two other significant open problems for correlation subgraph
optimisation.

Acknowledgements. All authors gratefully acknowledge funding from the Engineer-
ing and Physical Sciences Research Council (ESPRC) grant number EP/T004878/1 for
this work, while Meeks was also supported by a Royal Society of Edinburgh Personal
Research Fellowship (funded by the Scottish Government).

References

1. Bradley, J.R., Wikle, C.K., Holan, S.H.: Bayesian spatial change of support for
count-valued survey data with application to the American community survey. J.
Am. Statist. Assoc. 111(514), 472–487 (2016)

2. Cygan, M., et al.: Parameterized Algorithms, vol. 5. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21275-3

3. Enright, J., Lee, D., Meeks, K., Pettersson, W., Sylvester, J.: The complexity of
finding optimal subgraphs to represent spatial correlation (2021). arXiv:2010.10314

4. Flum, J., Grohe, M.: The parameterized complexity of counting problems. SIAM
J. Comput. 33(4), 892–922 (2004)

5. He, Q., Zeng, C., Xie, P., Liu, Y., Zhang, M.: An assessment of forest biomass
carbon storage and ecological compensation based on surface area: a case study of
Hubei Province. China Ecol. Indicat. 90, 392–400 (2018)

6. bibitemch13Karp72 Karp, R.M.: Reducibility among combinatorial problems. In:
Miller, R.E., Thatcher, J.W. (eds.) Proceedings of a Symposium on the Complex-
ity of Computer Computations, The IBM Research Symposia Series, pp. 85–103.
Plenum Press, New York (1972)

7. Lee, D., Meeks, K., Pettersson, W.: Improved inference for areal unit count data
using graph-based optimisation. Stat. Comput. 31(4), 1–17 (2021). https://doi.
org/10.1007/s11222-021-10025-7

8. Mindell, J.S., et al.: Using triangulation to assess a suite of tools to measure com-
munity severance. J. Transp. Geogr. 60, 119–129 (2017)

9. Mitchell, R., Lee, D.: Is there really a “wrong side of the tracks” in urban areas
and does it matter for spatial analysis? Ann. Assoc. Am. Geogr. 104(3), 432–443
(2014)

10. Cristopher Moore and John Michael Robson: Hard tiling problems with simple
tiles. Discrete Comput. Geom. 26(4), 573–590 (2001)

11. Stoner, O., Economou, T., Marques da Silva, G.D.: A hierarchical framework for
correcting under-reporting in count data. J. Am. Stat. Assoc. 114(528), 1481–1492
(2019)

https://doi.org/10.1007/978-3-319-21275-3
http://arxiv.org/abs/2010.10314
https://doi.org/10.1007/s11222-021-10025-7
https://doi.org/10.1007/s11222-021-10025-7

New Approximation Algorithms
for the Rooted Budgeted Cycle Cover

Problem

Jiangkun Li and Peng Zhang(B)

School of Software, Shandong University, Jinan 250101, Shandong, China
lijk lee@mail.sdu.edu.cn, algzhang@sdu.edu.cn

Abstract. The rooted Budgeted Cycle Cover (BCC) problem is a fun-
damental optimization problem arising in wireless sensor networks and
vehicle routing. Given a metric space (V,w) with vertex set V consisting
of two parts D (containing depots) and V \D (containing nodes), and a
budget B ≥ 0, the rooted BCC problem asks to find a minimum number
of cycles such that each cycle has length at most B and must contain
a depot in D, and that these cycles collectively cover all the nodes in
V \D. In this paper, we give new approximation algorithms for the rooted
BCC problem. For the rooted BCC problem with single depot, we give an
O(log B

µ
)-approximation algorithm, where µ is the minimum distance.

For the rooted BCC problem with multiple depots, we give an O(log n)-
approximation algorithm, where n is the number of vertices. Experiments
show that our algorithms have good performance in practice.

Keywords: Budgeted cycle cover · Wireless sensor network · Graph
algorithm · Approximation algorithm · Combinatorial optimization

1 Introduction

Given an undirected graph, the Cycle Cover problem [7,12–14,18,23,24,27,28]
uses cycles to cover all the vertices of the graph. Cycle Cover is a fundamental
combinatorial optimization problem in operations research and approximation
algorithms. This problem arises from many application fields, including partic-
ularly wireless sensor networks.

From the viewpoint of applications, Cycle Cover is a problem belonging to the
class of vehicle routing problems (see, e.g., [5,9,10,20]). In this scenario, cycles
represent the trajectories of vehicles, and vertices represent the places that need
to be visited. We came across the Cycle Cover problem in the study of wireless
sensor networks, which we will discuss in details below.

In a wireless sensor network, sensors usually work in a large open region,
and they are supported by rechargeable batteries with limited energy. So, sen-
sors should be recharged periodically to avoid their energy expiration. To this
aim, multiple mobile chargers are employed to traverse within the network and
charge the sensors [6,11,15,19,21,22]. The mobile chargers have a fixed capacity
c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 167–179, 2021.
https://doi.org/10.1007/978-3-030-92681-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_14&domain=pdf
http://orcid.org/0000-0001-7265-0983
https://doi.org/10.1007/978-3-030-92681-6_14

168 J. Li and P. Zhang

(i.e., amount of carried energy). As the mobile chargers themselves need to be
recharged at depots, the trajectory of a mobile charger is a cycle which must
include a depot. The task is, how to locate a minimum number of mobile charg-
ers at several depots, and how to plan the traveling trajectory for each charger,
so that they can charge all the sensors before returning to the depots?

Moreover, it is a basic task in wireless sensor networks to transmit data from
sensors to sinks (usually a few). Since sensors locate in a large open region and
energy consumption is very crucial to sensors, data transmission is performed
by employing mobile sinks to travel around the sensors to gather their data
[16,17,23,26], so as to reduce the energy consumption of sensors as much as
possible. To finish this task, we also need to locate as few as possible mobile
sinks at depots and to plan their trajectories.

We can use a metric space (V,w) to model the depots (to keep mobile sinks
or mobile chargers) and the sensors in a wireless sensor network: The depots and
sensors constitute the vertex set V . The distance function w on V ×V satisfies the
triangle inequality. The above applications in wireless sensor networks exactly
suggest the following rooted Budgeted Cycle Cover (BCC) problems.

Definition 1. The Single Depot Budgeted Cycle Cover Problem.
(Instance) We are given a metric space (V,w), where V is a set of n vertices

and w : V × V → R
+ is a metric function. We are also given a depot (a.k.a.

root) r ∈ V and a budget B ≥ 0.
(Goal) The problem is to find a minimum number of cycles such that (i) each

vertex in V is contained in some cycle, (ii) each cycle has length at most B, and
(iii) each cycle must contain the depot r.

In Definition 1, by metric space (V,w) we mean that (i) ∀v ∈ V , w(v, v) = 0,
(ii) ∀u, v ∈ V , w(u, v) = w(v, u), and (iii) ∀t, u, v ∈ V , w(t, v) ≤ w(t, u)+w(u, v),
where the third property is often called the triangle inequality. A metric space
(V,w) can also be represented by a complete graph G = (V,E) with metric
weight w defined on edges.

A cycle that contains the depot r is called a r-rooted cycle. A cycle of length
at most B is called a B-budgeted cycle. So, a solution to the single depot BCC
problem is constituted of r-rooted B-budgeted cycles.

Definition 2. The Multi-depot Budgeted Cycle Cover Problem.
(Instance) We are given a metric space (V,w), where V is a set of n vertices

and w : V × V → R
+ is a metric function. We are also given a depot subset

D ⊂ V and a budget B ≥ 0.
(Goal) The problem is to find a minimum number of rooted cycles such that

(i) each vertex in V \ D is contained in some cycle, (ii) each cycle has length at
most B, and (iii) each cycle must contain at least one depot in D.

A cycle that contains a depot in D is called a D-rooted cycle. A solution to
the multi-depot BCC problem is constituted of D-rooted B-budgeted cycles.

For clarity, we also call the vertices in V \ D nodes, while the vertices in D
are obviously called depots. Nodes and depots are all vertices. For simplicity, let
N = V \ D.

New Approximation Algorithms for Budgeted Cycle Cover 169

1.1 Related Work

The rooted BCC problem is NP-hard, since it contains the decision version of the
famous TSP problem as a special case. Therefore, approximation is an essential
way to deal with the problem. Nagarajan et al. [18] gave a bicriteria approxi-
mation algorithm for the single-depot BCC problem. In polynomial time, their
algorithm finds r-rooted cycles covering all nodes in V \ {r}, such that each
cycle has length at most (1 + ε)B, and that the number of cycles is at most
O(log 1

ε)OPT , where OPT is the number of cycles in the optimal solution. That
is, O(log 1

ε) is the approximation ratio, and 1 + ε is the violation of the budget.
Khuller et al. [14] studied the Single Gas Station problem, which is also

referred to as the single depot min-sum BCC problem. In this problem, we are
given a metric space (V,w), a depot r ∈ V , and a bugdet B. The task is to
find r-rooted B-budgeted cycles to cover all nodes in V \ {r}, such that the
total weight of these cycles is minimized. For the single depot min-sum BCC
problem, as well as the single depot BCC problem, Khuller et al. [14] gave an
O(log n)-approximation algorithm.

Given a metric space (V,w) and a budget B, the (un-rooted) BCC problem
asks to find a set of B-budgeted cycles to cover all the vertices, such that the
number of cycles is minimized [13,27]. The current best known approximation
ratio for BCC is 32/7, given by Yu et al. [28].

1.2 Our Results

In this paper, we give new approximation algorithms for the single depot BCC
problem and the multi-depot BCC problem.

For the the single depot BCC problem, we design an O(log B
μ) approxima-

tion algorithm, where μ is the minimum distance in the problem instance. Our
technique to achieve this result is by classifying the vertices to many consecutive
layers. For each layer, we use several path segments to cover the vertices in this
layer. Each path segment is converted into a cycle by connecting its two end-
points to the depot. Our layering technique is inspired by Nagarajan et al. [18],
where the technique is used to give a bicriteria approximation algorithm for the
single depot BCC problem. We observed that by carefully adjusting the layering
method, we can get a true approximation algorithm for the single depot BCC
problem. The previous known approximation results for the single depot BCC
problem are the O(log 1

ε , 1 + ε)-approximation algorithm [18] and the O(log n)-
approximation algorithm [14], as mentioned in Sect. 1.1.

For the multi-depot BCC problem, we design an O(log n)-approximation algo-
rithm. This is a new result for the multi-depot BCC problem. The technique is
a greedy approach, which repeatedly covers some nodes using a length bounded
cycle, until all nodes are covered. Our technique is inspired by Khuller et al. [14],
where the authors use the greedy cover technique to give an approximation algo-
rithm for the single depot min-sum BCC problem. We observe that this method
can be adapted to give an approximation algorithm for the multi-depot BCC

170 J. Li and P. Zhang

problem. To the best of our knowledge, our O(log n)-approximation algorithm is
the first nontrivial approximation algorithm for the multi-depot BCC problem.

Let Algorithm S be the O(log B
μ)-approximation algorithm for the single

depot BCC problem, and Algorithm M be the O(log n)-approximation algorithm
for the multi-depot BCC problem. We test Algorithm S and Algorithm M on
randomly generated instances.

The experimental results show that both algorithms have good practice per-
formance. In particular, Algorithm M behaves rather well in the experiments.
The approximation ratios of Algorithm S on the test instances are about 2 to
4, while their analytical counterparts (i.e., O(log B

μ)) are about 65 to 79. The
approximation ratios of Algorithm M on the test instances are about only 1.1
to 1.5, while their analytical counterparts are about 13 to 18. These results show
that the approximation ratios on test instances are much less than the analyt-
ical approximation ratios. We remark that since we do not know the optimal
values of the test instances, we use a lower bound of the optimal value to com-
pute the approximation ratios on the test instances. In other words, the real
approximation ratios of the two algorithms on the test instances may be even
smaller.

Our experiments show that the algorithms proposed in the paper can be used
as subroutines with theoretical performance guarantees for solving the related
problems in practice.

1.3 More Related Work

Actually, there are several types of the Cycle Cover problem. Besides the Budgeted
Cycle Cover problem, two common types of the problem are the Minimum Cycle
Cover (MCC) problem and the Min-Max Cycle Cover (MMCC) problem.

Given a metric space (V,w) and an integer k, the MCC problem asks to find
at most k cycles to cover all the vertices in V , such that the total weight of
the cycles is minimized. Recently, Khachay et al. [12] gave a 2-approximation
algorithm for this problem.

Then let us focus on the (unrooted) MMCC problem [7,13,23,27]. Given a
metric space (V,w) and an integer k, the MMCC problem asks to find k cycles
to cover all the vertices in V such that the maximum weight of the cycles is
minimized. The best known approximation ratio for this problem is 5, given by
Yu et al. [27].

The single-depot MMCC problem can be approximated within 5/2 [8]. The
multi-depot MMCC problem has been studied in [23,24,27]. Recently, Yu et al.
[27] gave a 6-approximation algorithm for the multi-depot MMCC problem by
reducing it to the unrooted MMCC problem. This is the currently best approxi-
mation ratio for multi-depot MMCC.

In the capacitated multi-depot MMCC problem [23,24], each depot has a
capacity indicating the maximum number of vehicles (i.e., cycles) it can hold.
Different depots may have different capacities. The current best ratio for this
problem is 7 + ε for any ε > 0, given by Xu et al. [23].

New Approximation Algorithms for Budgeted Cycle Cover 171

From the viewpoint of algorithmic graph theory, Cycle Cover is a cover-like
combinatorial optimization problem. There are actually many cover problems in
algorithmic graph theory, such as Vertex Cover (using vertices to cover edges),
Edge Cover (using edges to cover vertices), Tree Cover (using trees to cover ver-
tices) [7,13], Path Cover (using paths to cover vertices) [1,25], and Star Cover
(using stars to cover vertices) [1,29], etc.

2 Single Depot Budgeted Cycle Cover

First note that if there is any vertex v whose distance to the root r is B/2, we
have to use a single cycle (r, v, r) to cover such vertex. (Note that the problem is
defined in the metric space (V,w), so there is an edge between any two different
vertices.) So, as a pre-processing step, we can find all vertices that are of distance
B/2 from the root, and use separate cycles to cover these vertices. Then, they
can be removed from the input safely. Therefore, in the following we may assume
that there is no vertex with distance B/2 to r.

2.1 Layering of Vertices and the Algorithm

Let μ0 be the minimum distance between two vertices. Suppose that there are
q different distances from vertices in V \ {r} to r, and they are denoted as w1,
w2, . . . , wq. Let S = {w1, w2, . . . , wq} ∪ {0} ∪ {B/2}. Let μ1 be the minimum
difference of any two different weights in S, that is, μ1 = min{|w−w′| | ∀w,w′ ∈
S, s.t. w 	= w′}. Then μ is defined as the minimum of μ0 and μ1:

μ = min{μ0, μ1}. (1)

The definition of μ will be clear when the layering of vertices is presented.
The parameter ε is defined as

ε =
μ

B
, (2)

and the parameter t is defined as

t =
⌈
log

1
ε

⌉
. (3)

We partition all the vertices in V into t + 1 layers {V0, V1, . . . , Vt} according
to their distances to the root r. See Fig. 1 for an illustration. The layer Vj (j =
0, 1, . . . , t) is defined as follows.

Vj =
{

v : (1 − 2jε)
B

2
< w(r, v) ≤ (1 − 2j−1ε)

B

2

}
. (4)

The furthest layer to r is layer V0, which contains vertices whose distances to
r are in ((1 − ε)B

2 , (1 − 1
2ε)B

2]. Note that (1 − 1
2ε)B

2 = B
2 − μ

4 . By the definition
(1) of μ, there is no vertex with distance in (B

2 − μ
4 , B

2) to the root r.

172 J. Li and P. Zhang

Fig. 1. Layering of vertices. The depot r is at the origin.

The nearest layer to r is layer Vt, containing vertices whose distances to r are
in ((1−2tε)B

2 , (1−2t−1ε)B
2]. Note that since t =

⌈
log 1

ε

⌉
, we have (1−2tε)B

2 ≤ 0.
All vertices (if any) in Vt are very close to r. If (1 − 2tε)B

2 < 0, the root r will
be contained in Vt.

The approximation algorithm for single depot BCC is given in Algorithm 1.
The algorithm partitions vertices into t layers according to (4). For each layer, the
algorithm finds some 2j−1εB-budgeted paths to cover all the vertices in the layer.
The found paths are converted into cycles finally. To find the 2j−1εB-budgeted
paths, the algorithm call an approximation algorithm for the (unrooted) Bud-
geted Path Cover (BPC) problem as a subroutine. Given a metric space and a
budget λ, the BPC problem asks to find a minimum number of λ-budgeted paths
to cover all the vertices in the space. This problem can be approximated within
a factor of 3 [1].

Algorithm 1 Algorithm S for the single depot BCC problem.
Input: An instance (V,w, r,B) of single depot BCC.
Output: A set of r-rooted B-budgeted cycles covering all nodes in V \ {r}.
1 If there is any vertex v whose distance to r is B

2 , then use a single cycle
(r, v, r) to cover v.

2 Partition vertices in V into layers {V0, V1, . . . , Vt} according to (4).
3 For each layer 0 ≤ j ≤ t, run the approximation algorithm [1] for the BPC

problem on metric space (Vj , w) with budget 2j−1εB, obtaining a set of
paths Πj .

New Approximation Algorithms for Budgeted Cycle Cover 173

4 Convert each found path π ∈ Πj into a cycle by adding respectively two
edges from the root r to its two endpoints.

5 return all the obtained cycles.

2.2 Analysis

Lemma 1. Each cycle found by Algorithm S has length at most B.

Proof. Fix a layer Vj (1 ≤ j ≤ t) and assume that Vj is not empty. Let π ∈ Πj

be a path found in step 3 of Algorithm S. Let u and v be the two endpoints of π.
Note that u and v may be the same vertex (when π contains only one vertex). By
the definition of Vj , we have w(r, u) ≤ (1− 2j−1ε)B

2 and w(r, v) ≤ (1− 2j−1ε)B
2 .

So, the length of the cycle (r, π, r) is at most (1 − 2j−1ε)B
2 · 2 + 2j−1εB = B.

Let k∗ be the optimum of the single depot BCC problem, that is, k∗ = OPT
is the minimum number of B-budgeted r-rooted cycles that cover all nodes in
V \ {r}.

Lemma 2. For each j = 0, 1, . . . , t, Algorithm S uses at most 6k∗ paths to cover
all vertices in layer Vj.

Proof. Let us fix a layer number j in {0, 1, . . . , t}.
Let Γ ∗ be an optimal solution to the single depot BCC problem. We know

that Γ ∗ contains k∗ cycles which are B-budgeted r-rooted and cover all vertices
in V \{r}. Especially, Γ ∗ covers all vertices in Vj . Here we assume that Vj is not
empty, since otherwise there is nothing to do.

Let σ∗ ∈ Γ ∗ be a cycle covering some vertices in Vj . Note that σ∗ may cross
Vj several times. Let us imagine a walk along σ∗ from the root r. Let f ∈ Vj

be the vertex that σ∗ enters Vj at the first time, and l ∈ Vj be the vertex that
σ∗ leaves Vj at the last time. The part of σ∗ from f to l is a path, denoted by
σ∗

fl. Note that σ∗
fl may visit vertices outside Vj . We convert σ∗

fl to a path by
short-cutting vertices of σ∗

fl not in Vj . Let πfl be the resulting path.
If 0 ≤ j ≤ t − 1, by the definition of Vj , the length of σ∗

fl is at most

B − (1 − 2jε)
B

2
· 2 = 2jεB.

This is also an upper bound of the length of πfl. If j = t, the length of σ∗
fl is

< B. (Note that the root r ∈ Vt.) The length of πfl is obviously < B, too. Since
t =

⌈
log 1

ε

⌉
, we have B ≤ 2jεB in this case. So, in both cases we can use

2jεB

as an upper bound of the length of πfl, whatever the layer number j is.
Now we claim that we can decompose πfl into at most two sub-paths each

of which has length at most 2j−1εB. The decomposition method will be given
below. If so, then we will have constructed a feasible solution to the BPC problem

174 J. Li and P. Zhang

on vertex set Vj , which contains 2k∗ paths. Since the BPC problem admit 3-
approximation [1], we know that ∀j, |Πj | ≤ 6k∗, proving the lemma.

Now, we show how to decompose πfl into at most two short sub-paths. If
πfl only contains one vertex (namely, f = l), we need not to separate πfl. It is
already a path of length zero. If πfl contains exactly two vertices, namely, f and
l, we just separate πfl into two zero-length sub-paths (f) and (l).

Then consider the case that πfl contains ≥ 3 vertices. Begining from f , we
walk along πfl to find an edge (u, v) on the path such that the sub-path from
f to u (denoted by πfu) has length ≤ 2j−1εB and the sub-path from f to v
has length > 2j−1εB. If such an edge (u, v) can be found, then removing (u, v)
from πfl gets two sub-paths each of which has length ≤ 2j−1εB, since the length
of πfl is ≤ 2jεB. If such an edge cannot be found, then we break πfl into two
sub-paths πfu and (l), where u is the previous vertex of l on path πfl. Obviously,
the length of πfu is ≤ 2j−1εB in this case.

Theorem 1. The single depot Budgeted Cycle Cover problem can be approxi-
mated within O(log B

μ) in polynomial time, where B is the length bound of each
cycle, and μ is the minimum distance (as defined in (1)).

Proof. By Lemma 1, the solution found by Algorithm S is a feasible solution. By
Lemma 2, the solution contains at most 6(t + 1)k∗ = O(log B

μ)k∗ cycles, where
the equality is due to (2) and (3). The algorithm obviously runs in polynomial
time.

When all distances are integers, we have μ ≥ 1. In this case, the approxima-
tion ratio of Algorithm S is O(log B).

3 Multi-depot Budgeted Cycle Cover

The multi-depot BCC problem asks to find a minimum number of D-rooted B-
budgeted cycles to cover all nodes in V \ D. Recall that a D-rooted cycle means
a cycle contains at least one depot in D. For clarity, let N = V \ D. The vertices
in N are all nodes.

3.1 The Algorithm

For the multi-depot BCC problem, we use a greedy approach to deal with it. Our
technique is inspired by Khuller et al. [14]. The high-level idea of the approach is
very simple. We repeatedly cover some nodes using a length bounded cycle, until
all nodes are covered. To find the length bounded cycles, we call an approxima-
tion algorithm for the s-t Orienteering problem as a subroutine. Given a metric
space (V,w), two vertices s and t, and a budget B, where each vertex in V is
with a prize p(v) ∈ R

+, the s-t Orienteering problem asks to find a B-budgeted
s-t path such that the total prize of the path is maximized. The s-t Orienteering
problem has been studied in [2,3] and [4]. The problem is NP-hard. Its current
best approximation ratio is 2 + ε due to [4].

New Approximation Algorithms for Budgeted Cycle Cover 175

The approximation algorithm for the multi-depot BCC problem is given as
Algorithm 2.

Algorithm 2 Algorithm M for the multi-depot BCC problem.
Input: An instance (V,w,D,B) of multi-depot BCC.
Output: A set of D-rooted B-budgeted cycles covering all vertices in N .
1 Let U be the set of not covered nodes. Initially U ← N . Let C be the set

of found cycles. Initially C ← ∅.
2 while U 	= ∅ do
3 Let the prize of every not covered node (i.e., node in U) be one, and the

prize of every covered node (i.e., node in N \ U) be zero.
4 For every depot d ∈ D, build an instance for the s-t Orienteering problem

with s = d, t = d, and budget being B. Call the algorithm in [4] for
s-t Orienteering to find a path starting from d and ending at d (i.e., a
cycle containing d).

5 Let C be the cycle with the maximum total prize (i.e., number of covered
nodes) among all cycles found in Step 4. Remove all nodes in C from
U . Add C to C.

6 endwhile
7 return C.

3.2 Analysis

Let k∗ be the value of the optimal solution to the multi-depot BCC problem,
that is, k∗ = OPT is the number of cycles used in the optimal solution to cover
all the nodes in N . By sligthly abusing the notation, we also use OPT to denote
the optimal solution. Let si be the total number of nodes covered from the first
round to the i-th round of Algorithm M. Let α be the (best) approximation
ratio of the s-t Orienteering problem. By [4], α = 2 + ε. Actually, for our result
for the multi-depot BCC problem, we only need α to be a constant. Then we
have the following Lemma .

Lemma 3. For the node number si, we have

s1 ≥ 1
α

· |N |
k∗ , (5)

si ≥ si−1 +
1
α

· |N | − si−1

k∗ , i ≥ 2. (6)

Proof. Let Omax be the cycle with the maximum prize in the optimal solution.
Then its prize is at least the average prize of cycles in the optimal solution,
which is |N |

k∗ . Suppose d is a depot contained in Omax. So, the optimal solution
to the s-t Orienteering problem corresponding to d has prize at least |N |

k∗ . Since
the s-t Orienteering problem admits 1/α-approximation, for depot d, Step 4 will
find a cycle whose prize is ≥ 1

3 · |N |
k∗ . Since step 5 of Algorithm M chooses the

cycle with the maximum prize ever found in this round, we know that (5) holds.

176 J. Li and P. Zhang

Then consider the i-th round. In this round, the number of nodes to be
covered is |N | − si−1. Moreover, the cycles in the optimal solution k∗ still cover
all these nodes. By similar reasoning, the number of nodes covered in the i-round
of the algorithm is ≥ 1

α · |N |−si−1
k∗ . So, we know that (6) holds.

Lemma 4. The number of iterations of Algorithm M is O(log n)k∗.

Proof. Solving the recurrence inequality (6), we get

si ≥ si−1 +
1
α

· |N | − si−1

k∗ =
|N |
αk∗ +

(
1 − 1

αk∗

)
si−1

≥ |N |
αk∗ +

(
1 − 1

αk∗

)(|N |
αk∗ +

(
1 − 1

αk∗

)
si−2

)

=
(

1 +
(

1 − 1
αk∗

)) |N |
αk∗ +

(
1 − 1

αk∗

)2

si−2

≥ . . .

≥
((

1 − 1
αk∗

)0

+ · · · +
(

1 − 1
αk∗

)i−2
)

|N |
αk∗ +

(
1 − 1

αk∗

)i−1

s1

≥
((

1 − 1
αk∗

)0

+ · · · +
(

1 − 1
αk∗

)i−1
)

|N |
αk∗

=

(
1 −

(
1 − 1

αk∗

)i
)

|N |.

So, the number of cycles found by Algorithm M is no more than the least i
such that (

1 −
(

1 − 1
αk∗

)i
)

|N | > |N | − 1, (7)

since the left hand side of (7) is the number of nodes covered from the first round
to the i-th round. Solving (7), we get that i can be the least value satisfying

i > (α ln |N |)k∗. (8)

That is to say, when i = O(log |N |)k∗, the algorithm will cover all the nodes.
Therefore, the number of iterations of Algorithm M is O(log n)k∗, by noticing
that n = |N ∪ D| is the number of vertices in the problem.

Theorem 2. The multi-depot BCC problem can be approximated within O(log n)
in polynomial time.

Proof. At each iteration of Algorithm M, the algorithm puts uses a new cycle
to cover some nodes. By Lemma 4, the iteration number is O(log n)k∗. So, the
approximation ratio of Algorithm M is O(log n). Finally, it is obvious that Algo-
rithm M runs in polynomial time. The theorem follows.

New Approximation Algorithms for Budgeted Cycle Cover 177

4 Experiments

For Algorithm S and Algorithm M, we performed several experiments to test
their performance and to investigate the impact of some important parameters
on the algorithmic performance, including the budget B and the network size n.

In our experiments, the test instances are randomly generated. For each
test instance, the generation steps are as follows. First, we generate a complete
graph G = (V,E) with n vertices. Initially, each edge in E has a weight uniformly
distributed in [100, 1000]. Then, to make the edge weights metric, we use Floyd’s
Algorithm to compute the minimum distance between any two vertices in graph
G and use this value as the final weight of the edge between this two vertices.
For the single depot BCC problem, we choose a vertex as the depot uniformly
at random. For the multi-depot BCC problem, we randomly choose 5% of the
vertices to constitute the depot set D.

For each algorithm, we do two groups of experiments. In the first group,
vertex number n is fixed to be 500, and budget B varies from 2000 to 10000.
This is aimed to see the impact of budget B on the number of cycles. In the
second group, budget B is fixed to be 5000, and vertex number n varies from 100
to 500. This is aimed to see the impact of network size n on the number of cycles.
For each experiment, in which n and B are both fixed, we generate 100 random
instances and calculate the average of the outputs (i.e., number of cycles) as the
result of the experiment. Therefore, we do four groups of experiments in total.

From the experimental results we can see that both Algorithm S and Algo-
rithm M have good practical performance. Meanwhile, these two algorithms
are steady and scalable. Their approximation ratios on the test instances are
much better than the corresponding analytical ratios. Among them Algorithm
M is rather better. Note that all the test instances have large size. This means
that we cannot calculate their optimal values effectively. Instead, we infer lower
bounds of the optimal values for the single depot BCC problem and the multi-
depot BCC problem. The approximation ratios of our algorithms reported in the
experiments are calculated using these lower bounds. This also means that the
true ratios of the algorithms on the test instances are even better. The detailed
experimental results and analysis will be given in the full version of the paper.
They are omitted in this preliminary version due to space limitation.

5 Conclusions

The rooted Budgeted Cycle Cover problem is a fundamental problem arising in
wireless sensor networks and vehicle routing. This problem is NP-hard, thus peo-
ple usually pursue approximation algorithms and heuristics for this problem. In
this paper, we design an O(log B

μ)-approximation algorithm for the single depot
BCC problem, and an O(log n)-approximation algorithm for the multi-depot BCC
problem. These ratios are the currently best for the respective problems. The
approximation algorithms are purely combinatorial and easy to implement. We
test these two algorithms on randomly generated instances. The experimental

178 J. Li and P. Zhang

results show that both of them have good practice performance. In particular, the
O(log n)-approximation algorithm behaves rather well in the experiments. The
algorithms can be used as subroutines with theoretical performance guarantees
for solving the related problems in practice.

Acknowledgements. This work is supported by the National Natural Science Foun-
dation of China (61972228 and 61672323), and the Natural Science Foundation of
Shandong Province (ZR2019MF072 and ZR2016AM28).

References

1. Arkin, E., Hassin, R., Levin, A.: Approximations for minimum and min-max vehicle
routing problems. J. Algorithms 59, 1–18 (2006)

2. Bansal, N., Blum, A., Chawla, S., Meyerson, A.: Approximation algorithms for
deadline-TSP and vehicle routing with time-windows. In: Proceedings of the 36th
Annual ACM Symposium on Theory of Computing (STOC), pp. 166–174 (2004)

3. Blum, A., Chawla, S., Karger, D.R., Lane, T., Meyerson, A., Minkoff, M.: Approx-
imation algorithms for orienteering and discounted-reward TSP. SIAM J. Comput.
37(2), 653–670 (2007)

4. Chekuri, C., Korula, N., Pál, M.: Improved algorithms for orienteering and related
problems. ACM Trans. Algorithms 8(3), 23:1–23:27 (2012)

5. Cordeau, J.F., Laporte, G., Savelsbergh, M.W., Vigo, D.: Vehicle routing. In: Barn-
hart, C., Laporte, G. (eds.) Handbook in OR & MS, vol. 14, pp. 367–428 (2007)

6. Erol-Kantarci, M., Mouftah, H.T.: Suresense: sustainable wireless rechargeable sen-
sor networks for the smart grid. IEEE Wireless Commun. 19(3), 30–36 (2012)

7. Even, G., Garg, N., Könemann, J., Ravi, R., Sinha, A.: Min-max tree covers of
graphs. Oper. Res. Lett. 32(4), 309–315 (2004)

8. Frederickson, G., Hecht, M., Kim, C.: Approximation algorithms for some routing
problems. SIAM J. Comput. 7(2), 178–193 (1978)

9. Golden, B., Raghavan, S., Wasil, E. (eds.): The Vehicle Routing Problem: Latest
Advances and New Challenges. Springer, Boston (2008). https://doi.org/10.1007/
978-0-387-77778-8

10. Golden, B.L., Assad, A.A. (eds.): Veh. Rout Methods Stud. North-Holland, Ams-
terdam (1988)

11. Guo, S., Wang, C., Yang, Y.: Mobile data gathering with wireless energy replen-
ishment in rechargeable sensor networks. In: Proceedings of IEEE INFOCOM, pp.
1932–1940 (2013)

12. Khachay, M., Neznakhina, K.: Approximability of the minimum-weight k-size cycle
cover problem. J. Glob. Optim. 66(1), 65–82 (2016)

13. Khani, M.R., Salavatipour, M.R.: Improved approximation algorithms for the min-
max tree cover and bounded tree cover problems. In: Goldberg, L.A., Jansen, K.,
Ravi, R., Rolim, J.D.P. (eds.) APPROX/RANDOM -2011. LNCS, vol. 6845, pp.
302–314. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22935-
0 26

14. Khuller, S., Malekian, A., Mestre, J.: To fill or not to fill: the gas station problem.
ACM Trans. Algorithms 7(3), 36:1–36:16 (2011)

15. Li, Z., Peng, Y., Zhang, W., Qiao, D.: J-RoC: a joint routing and charging scheme
to prolong sensor network lifetime. In: Proceedings of the 19th IEEE International
Conference on Network Protocols (ICNP), pp. 373–382 (2011)

https://doi.org/10.1007/978-0-387-77778-8
https://doi.org/10.1007/978-0-387-77778-8
https://doi.org/10.1007/978-3-642-22935-0_26
https://doi.org/10.1007/978-3-642-22935-0_26

New Approximation Algorithms for Budgeted Cycle Cover 179

16. Liang, W., Luo, J., Xu, X.: Prolonging network lifetime via a controlled mobile
sink in wireless sensor networks. In: Proceedings of the Global Communications
Conference (GLOBECOM), pp. 1–6 (2010)

17. Liang, W., Schweitzer, P., Xu, Z.: Approximation algorithms for capacitated min-
imum forest problems in wireless sensor networks with a mobile sink. IEEE Trans.
Comput. 62(10), 1932–1944 (2013)

18. Nagarajan, V., Ravi, R.: Approximation algorithms for distance constrained vehicle
routing problems. Networks 59(2), 209–214 (2012)

19. Shi, Y., Xie, L., Hou, Y.T., Sherali, H.: On renewable sensor networks with wireless
energy transfer. In: Proceedings of IEEE INFOCOM, pp. 1350–1358 (2011)

20. Toth, P., Vigo, D. (eds.): The Vehicle Routing Problem. SIAM Monographs on
Discrete Mathematics and Applications. SIAM, Philadelphia (2002)

21. Wang, C., Li, J., Ye, F., Yang, Y.: Multi-vehicle coordination for wireless energy
replenishment in sensor networks. In: Proceedings of the 27th IEEE International
Symposium on Parallel and Distributed Processing (IPDPS), pp. 1101–1111 (2013)

22. Xie, L., Shi, Y., Hou, Y.T., Sherali, H.D.: Making sensor networks immortal: an
energy-renewal approach with wireless power transfer. IEEE/ACM Trans. Netw.
20(6), 1748–1761 (2012)

23. Xu, W., Liang, W., Lin, X.: Approximation algorithms for min-max cycle cover
problems. IEEE Trans. Comput. 64(3), 600–613 (2015)

24. Xu, Z., Xu, D., Zhu, W.: Approximation results for a min-max location-routing
problem. Discrete Appl. Math. 160, 306–320 (2012)

25. Xu, Z., Xu, L., Li, C.L.: Approximation results for min-max path cover problems
in vehicle routing. Naval Res. Logist. 57, 728–748 (2010)

26. Xu, Z., Liang, W., Xu, Y.: Network lifetime maximization in delay-tolerant sensor
networks with a mobile sink. In: Proceedings of IEEE 8th International Conference
on Distributed Computing in Sensor Systems (DCOSS), pp. 9–16 (2012)

27. Yu, W., Liu, Z.: Improved approximation algorithms for some min-max and mini-
mum cycle cover problems. Theor. Comput. Sci. 654, 45–58 (2016)

28. Yu, W., Liu, Z., Bao, X.: New approximation algorithms for the minimum cycle
cover problem. Theoretical Computer Science 793, 44–58 (2019)

29. Zhao, W., Zhang, P.: Approximation to the minimum rooted star cover problem.
In: Proceedings of the 4th International Conference of Theory and Applications of
Models of Computation (TAMC), pp. 670–679 (2007)

Evolutionary Equilibrium Analysis
for Decision on Block Size in Blockchain

Systems

Jinmian Chen, Yukun Cheng(B), Zhiqi Xu, and Yan Cao

School of Business, Suzhou University of Science and Technology,
Suzhou 215009, China

{jinmian chen,joisexu}@post.usts.edu.cn,
ykcheng@amss.ac.cn, cy@usts.edu.cn

Abstract. In a PoW-based blockchain network, mining pools (the solo
miner could be regarded as a mining pool containing one miner) compete
to successfully mine blocks to pursue rewards. Generally, the rewards
include the fixed block subsidies and time-varying transaction fees. The
transaction fees are offered by the senders whose transactions are pack-
aged into blocks and is positively correlated with the block size. However,
the larger size of a block brings the longer latency, resulting in a smaller
probability of successfully mining. Therefore, finding the optimal block
size to trade off these two factors is a complex and crucial problem for
the mining pools. In this paper, we model a repeated mining competi-
tion dynamics in blockchain system as an evolutionary game to study
the interactions among mining pools. In this game, each pool has two
strategies: to follow the default size B̄, i.e., the upper bound of a block
size, or not follow. Because of the bounded rationality, each mining pool
pursues its evolutionary stable block size (ESS) according to the min-
ing pools’ computing power and other factors by continuous learning and
adjustments during the whole mining process. A study framework is built
for the general evolutionary game, based on which we then theoretically
explore the existence and stability of the ESSs for a case of two mining
pools. Numerical experiments with real Bitcoin data are conducted to
show the evolutionary decisions of mining pools and to demonstrate the
theoretical findings in this paper.

Keywords: Blockchain · Block size · Transaction fee · Mining
competition · Evolutionary game

1 Introduction

Bitcoin is a decentralized payment system [11], based on a public transaction
ledger, which is called the blockchain. Generally, a block is composed of a block
header and a block body, which contains a certain amount of transactions. Each
transaction is composed of the digital signature of the sender, the transaction
c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 180–194, 2021.
https://doi.org/10.1007/978-3-030-92681-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_15&domain=pdf
https://doi.org/10.1007/978-3-030-92681-6_15

Decision on Block Size by Evolutionary Equilibrium Analysis 181

data, such as the value of digital tokens, the addresses of the sender and the
receiver, as well as the corresponding transaction fee. With the bitcoin system
developing, the number of transactions in the whole network increases quickly,
while the block size currently is limited to 1 MB. Such a bounded block size
results in the congestion of the blockchain network. To alleviate this situation,
Segregated Witness (SegWit) [10] is brought up and applied to segregate the
witness (digital signatures) from the transactions. Then the witness is put into
the “extended block”, which has no impact on the original block size. By SegWit,
a block is able to contain more transactions, enhancing the transaction processing
efficiency. This effect is equivalent to expanding the block size to 2 MB. Thus
the block size of a newly mining block may be more than 1 MB.

Proof-of-work (PoW) is the most popular consensus applied in bitcoin
blockchain system, which reaches a consensus based on miners computing power.
Under the PoW-based consensus protocol, the process of successfully mining
a block includes two steps, i.e., solving the PoW puzzle and propagating the
block to be verified. During the propagation, the block is likely to be discarded
because of long latency which depends on the size of the block. The larger size
of block brings the longer latency, leading to a higher chance that the block suf-
fers orphaned [6]. So, besides raising income from transaction fees by packaging
more transactions in a block, miners need to consider a suitable total size of the
block that would not deeply increase the probability to be orphaned. With the
incentive of transaction fees and the long latency resulting from large block size,
how to select transactions and decide the total block size for maximum payoff is
critical for every miner.

Game theory has been widely applied in mining management, such as com-
putational power allocation, fork chain selection, block size setting and pool
selection. In terms of block size setting, [14] analyzed the quantity setting of
block space with the effect of a transaction fee market, in which a block space
supply curve and a mempool demand curve were introduced to find the optimal
block space for the maximum payoff of miners. By proposing a Bitcoin-unlimited
scheme, [16] modeled a non-cooperative game to examine the interaction among
the miners, each of whom chooses its own upper bound of the block size while it
invalidates and discards the excessive block that is larger than its upper bound.
And the game was proved to exist an unique Nash equilibrium where all miners
choose the same upper bound. Given the limitation on the number of transac-
tions included in the block, the interaction on choosing transactions between the
miners and the users was modeled as a non-cooperative game by [2]. The unique
Nash equilibrium of this game can be obtained when satisfying certain condi-
tions, which is related to the number of miners, the hash rate, bitcoin value, the
transaction fees, the block subsidy and the cost of the mining. As for dynamic
evolutionary behaviors in blockchain, [9] respectively modeled the dynamics of
block mining selection among pools and pool selection among individual miners
as an evolutionary game in a proof-of-work (PoW) blockchain network. It identi-
fied the hash rate and the block propagation delay as two major factors resulting
in the mining competition outcome. Also, in [13], evolutionary game was applied
to examine the process dynamics of selecting super nodes for transaction veri-
fication in the Delegated proof of stake (DPoS) blockchain. The authors found

182 J. Chen et al.

that the strategy of candidates has to do with how much reward they can obtain
from the blockchain platform. Inspired by [7], we adopt its novel expected pay-
off function different with that of [9], to study the block size determination of
mining pools in a dynamic process.

In this work, we assume that the mining pools are bounded rational and can
adapt their strategy on different block sizes according to the received rewards.
Note that the total computing power of each mining pool and the long latency
also affect the choices of pools. Accordingly, we model the repeated mining com-
petition as an evolutionary game, where each pool controlling a certain amount
of computing power has to decide whether following the default size—2 MB or
not, for maximum payoffs. Evolutionary stable strategies are considered to be the
solutions of this game. Then we perform theoretical analysis on the existences
and corresponding conditions of the ESS for a special case of two mining pools.
Finally, simulations are performed to verify the proposed schemes. In addition,
we discuss the impact of the hash rate of pools, the unit transaction fee, the unit
propagation delay,’as well as the default block size on the strategy decision of
mining pools.

The rest of this paper is organized as follows. Section 2 introduces the system
model and the reward function of pools. In Sect. 3, we formulate an evolutionary
game model to study the block size selection problem, and particularly analyze
a case of two mining pools. Section 4 presents the numerical results and some
additional analysis on different factors, and concludes our study.

2 System Model and and Mining Pool’s Expected
Reward

In this paper, we consider the PoW-based blockchain system where there are n
mining pools, denoted by N = {1, 2, · · · , n}, and each contains several miners.
All mining pools compete to mine blocks by costing an amount of computing
power, and thus to pursue the corresponding rewards. Similar to [4] and [5], we
assume the whole system is in a quasi-static state, meaning no miners join in or
leave the system. Under this assumption, each miner keeps its state unchanged,
including which mining pool it is in, and how much computing power it has.
This leads to the mining pools’ constant scale and their total computing power.

By the consensus protocol of PoW, a mining pool, who obtains the reward,
must satisfy the following two conditions: it is the first one to solve a proof-
of-work puzzle by consuming an amount of computing power and it is also the
first one to make its mined block reach the consensus. The expected average
block arriving interval is about of T = 600 s, by adjusting the difficulty of the
proof-of-work puzzle. The whole mining process in a blockchain system consists
of a series of one-shot competitions, in each of which one block is mined. A one-
shot competition can be viewed as a non-cooperative game, in which all mining
pools are the players and they shall make decisions on the mined blocks’ size to
maximize their own rewards.

Decision on Block Size by Evolutionary Equilibrium Analysis 183

Similar to the model in [7], we compute the expected reward of each mining
pool i by regarding its block finding time in one-shot competition as a random
variable, denoted by Xi, which follows the exponential distribution. To be spe-
cific, let Bi be the block size decided by pool i. Denote hi (0 ≤ hi ≤ 1) to be
the relative computing power of pool i, that is the ratio of pool i’s comput-
ing power to the total computing power in blockchain system. The propagation
time of pool i’s block is linear with its size Bi, that is qi = ρBi. It is obvious
that pool i’s block cannot reach the consensus if the block finding time is less
than the propagation time qi. The mining rate of pool i is denoted by λi = hi

T ,
where T = 600 s is the average block arriving interval. By the definition of the
exponential distribution, the probability density function (PDF) of Xi is

fXi
(t;Bi, λi) =

{
0, t < qi;
λie

−λi(t−qi), t ≥ qi.
(1)

and the cumulative distribution function (CDF) of Xi is

FXi
(t;Bi, λi) = Pr(Xi ≤ t) =

{
0, t < qi;
1 − e−λi(t−qi), t ≥ qi.

So, the probability that block finding time of pool i is larger than t is

Pr(Xi > t) = 1 − FXi
(t;Bi, λi) =

{
1, t < qi;
e−λi(t−qi), t ≥ qi.

Define X to be the block finding time among all mining pools. Then X =
mini∈N{Xi}, i.e. the first time to find a block, and hence

Pr(X > t) = Πi=1,··· ,nPr(Xi > t) = Πi∈Active(t)Pr(Xi > t)

= e
∑

i∈Active(t)[−λi(t−qi)], (2)

where Active(t) = {i|qi ≤ t} is the pool set, each pool i in which has the prop-
agation time less than time t. For convenience, we call each pool i in Active(t)
an active pool at time t.

From the probability function of (2), it is not hard to derive the CDF and
PDF of random variable X as the follows

FX(t;B, λ) = 1 − Pr(X > t) = 1 − e
∑

i∈Active(t)[−λi(t−qi)]; (3)

fX(t;B, λ) = (
∑

i∈Active(t)

λi)e
∑

i∈Active(t)[−λi(t−qi)], (4)

where B = (B1, · · · , Bn) and λ = (λ1, · · · , λn).
As stated before, the reward of a mined block comes from two aspects: the

fixed subsidies R (e.g., 6.25 BTC for one block currently), and a variable amount
of transaction fees. Particularly, the transaction fees are more dependent on the
size of a block, since a block with a larger size contains more transactions. For
the sake of simplicity, we assume the total transaction fee is linearly dependent

184 J. Chen et al.

on the block size, i.e., αBi. This is similar to the suggested pricing standard of
transaction fee for users in some token wallets, such as 0.0005 BTC per KB [12].
So the total reward for a block mined by pool i is R + αBi. In addition, the
probability that a pool i solves the proof-of-work puzzle at time t is the ratio of
its computing power to all other active mining pools at time t. Then the reward
of mining pool i in expectation at time t is

E(rewardi|X = t) =

{
0, t < qi;

hi∑
j∈Active(t) hj

(R + αBi), t ≥ qi.
(5)

and then its reward in expectation is expressed as

Ui = E[E(rewardi|X = t)]

=
∫ +∞

−∞
E(rewardi|X = t) · fX(t;B, λ)dt

= λi(R + αBi)
n∑

l=i

e
∑

j λj(qj−ql) − e
∑

j λj(qj−ql+1)∑
j∈Active(ql)

λj
, (6)

where qn+1 = +∞.

3 Evolutionary Game Model for Decision on Block Size

In a PoW-based blockchain system, we suppose that there are n independent
mining pools, each pool i owning an amount of relative computing power hi.
The whole mining process is a series of one-shot competitions, and all mining
pools compete to mine a block to win the reward in each one-shot. In this
paper, we model the mining competition dynamics as an evolutionary game
to study the dynamic interactions among mining pools. In our evolutionary
game model, each pool has two kinds of strategies: to follow the default size B̄,
i.e., the upper bound of a block size, or to choose the block size less than B̄.
For simplicity, these two strategies is named as “following” strategy and “not
following” strategy, respectively. Because of the bounded rationality, each mining
pool pursues its evolutionary stable block size (ESS) through continuous learning
and adjustments.

In this section, we first propose the analysis scheme for general case, and
then theoretically analyze the existence and stability of the ESS for a case of
two mining pools.

3.1 Analysis Scheme

In our evolutionary game model, there is a crucial problem for each mining
pool i that is how to decide the optimal block size to maximize its payoff in
expectation. Note that each pool i has two kinds of strategies: one is to fix the
block to default size, e.g., B̄ = 2 MB, and the other is to choose a block size
Bi < B̄. So in the k-th shot, let us define two subsets,

Decision on Block Size by Evolutionary Equilibrium Analysis 185

N1(k) = {i ∈ N |Bi(k) < B̄} and N2(k) = N − N1(k) = {i ∈ N |Bi(k) = B̄},

and call (N1(k), N2(k)) a subset profile. Clearly, subset profile (N1(k), N2(k))
is determined after all mining pools making decisions on their block sizes. There
are 2n subset profiles totally in each one-shot, and hence we denote the collection
of subset profiles in the k-th slot by N (k) = {(N1(k), N2(k))}.

Suppose that a subset profile (N1(k), N2(k)) in the k-th shot is given. Each
pool i ∈ N1(k) selects the “not following” strategy. In addition, it continues to
decide the optimal block size B∗

i < B̄ by maximizing its expected payoff under
a given subset profile (N1(k), N2(k)).

B∗
i = arg πi

(N1(k),N2(k)) = arg max
Bi<B̄

Ui

= arg max
Bi<B̄

{
λi(R + αBi)

n∑
l=i

e
∑

j λj(qj−ql) − e
∑

j λj(qj−ql+1)∑
j∈Active(ql)

λj

}
. (7)

Each mining pool i ∈ N2(t) sets its block size as B̄ and has its payoff

πi
(N1(k),N2(k)) = λi(R + αB̄)

n∑
l=i

e
∑

j λj(qj−ql) − e
∑

j λj(qj−ql+1)∑
j∈Active(ql)

λj
. (8)

During the evolutionary game, the mining pools keep learning to adjust their
low-income strategies to a higher-income one dynamically. Until n mining pools
reach a stable strategy profile, at which no one would like to change its strategy,
an equilibrium state of block size (B∗

1 , B∗
2 , · · · , B∗

n) is obtained. Though all the
mining competitions are carried out during a series of discrete slots, we can view
each block generating slot as a very small interval with respect to the whole
mining process, and hence deal with it as a continuous version. It allows us to
apply the standard technique to study the evolutionary process for the decisions
on block size.

Let xi(k), 0 ≤ xi(k) ≤ 1, represent the probability of mining pool i ∈ N
to choose the “not following” strategy at the k-th slot. Correspondingly, the
probability of pool i to choose the default size is 1 − xi(k). If the choice of pool
i is not to follow the default size, then its conditional expected payoff is

E1
i (k) =

∑

(N1(k),N2(k))∈N (k),

i∈N1(k)

⎛

⎝
∏

l∈N1(k),l�=i

xl(k)
∏

l∈N2(k)

(1− xl(k)) · πi
(N1(k),N2(k))

⎞

⎠ . (9)

If mining pool i selects the “following default size” strategy, then its conditional
expected payoff is

E
2
i (k) =

∑

(N1(k),N2(k))∈N(k),

i∈N2(k)

⎛

⎝
∏

l∈N1(k)

xl(k)
∏

l∈N2(k),l �=i

(1 − xl(k)) · π
i
(N1(k),N2(k))

⎞

⎠ . (10)

Combining (9) and (10), the average payoff of mining pool i is

Ēi(k) = xi(k)E1
i (k) + (1 − xi(k))E2

i (k). (11)

186 J. Chen et al.

By [3], the growth rate of a strategy selected by a participant is just equal to
the difference between the payoff of this strategy and its average payoff. Then
the replicator dynamic equations for all mining pools are as follows:

fi(x) = ẋi(k) = xi(k)(E1
i (k) − Ēi(k)), ∀i ∈ N. (12)

According to the replicator dynamics (12), a mining pool would like to choose
a smaller block size, when its conditional payoff E1

i (k) is larger than the average
payoff Ei(k). Otherwise, it will set its block size as B̄. A state is stable if no mining
pool would like to change its strategy over time in the replicator dynamics, and
such a stable state is considered to be the evolutionary equilibrium [8]. The strate-
gies in this state are evolutionary stable, called ESS. Specifically speaking, when
the payoff of “not following” strategy is equal to the average payoff for each pool,
all mining pools reaches the ESS and no one has incentive to change its current
strategy. Therefore, the ESS can be obtained by solving ẋi(k) = 0 for all i ∈ N ,
whose solution is called the fixed equilibrium point of replicator dynamics.

3.2 A Case Study of Two Mining Pools

Based on the analysis scheme for general case in previous subsection, we con-
tinue to study the case of two mining pools (n = 2) to exemplify the equilibrium
analysis for the decision on block size. We normalize the whole computing power
in system, thus mining pool i’s relative computing power is hi ∈ h = {h1, h2}
and

∑2
i=1 hi = 1. The whole mining process contains a series of one-shot com-

petitions, and pool 1 and pool 2 need to decide their block sizes B1 and B2 to
pursue the optimal payoffs in each one-shot competition. Without loss of gen-
erality, we concentrate on the case of 0 ≤ h1 ≤ 1

2 ≤ h2 ≤ 1. The analysis for
the case of h2 ≤ h1 ≤ is symmetric, and thus we omit the discussion. As stated
in [7], “a miner with less mining power prefers a smaller block size in order to
optimize his payoff”. Thus the case of 0 ≤ h1 ≤ h2 ≤ 1 leads to B1 ≤ B2 in
one-shot competition and then the propagation time q1 = ρB1 ≤ q2 = ρB2. In a
one-shot mining competition, if B1 ≤ B2 ≤ B̄, then

U1 = λ1(R + αB1)

2∑

l=1

e
∑

λj(qj−ql) − e
∑

λj(qj−ql+1)

∑
j∈Active(ql)

λj

= (R + αB1)[1 − h2e
λ1ρ(B1−B2)]; (13)

U2 = λ2(R + αB2)

2∑

l=2

e
∑

λj(qj−ql) − e
∑

λj(qj−ql+1)

∑
j∈Active(ql)

λj

= (R + αB2)h2e
λ1ρ(B1−B2). (14)

Since each mining pool has two kinds of strategies, i.e., to follow the default
size B̄, and not to follow, in a one-shot competition, there are four strategy
profiles: (B1, B2), (B1, B̄), (B̄, B2), and (B̄, B̄). Note that (B̄, B2) either does
not exist, or equals to (B̄, B̄) under the condition of B1 ≤ B2 ≤ B̄. So we do
not discuss this strategy profile any more.

Decision on Block Size by Evolutionary Equilibrium Analysis 187

Clearly, each pool would receive different payoffs, under different strategy
profiles. For the strategy profile (B1, B2), meaning that both pools choose the
“not following” strategy, we define the payoffs of two pools π1

11 and π2
11 are

their optimal payoffs subject to the conditions of B1 < B̄ and B2 < B̄. The
corresponding optimal block sizes (B∗

1 , B∗
2) can be obtained by solving

∂U1(B1, B2)
∂B1

= 0, and
∂U2(B1, B2)

∂B2
= 0,

simultaneously. For the strategy profile (B1, B̄), showing that pool 1 would not
follow the default size and pool 2’s block size is B̄, π1

12 and π2
12 are denoted to be

the payoffs of pool 1 and 2. To be specific, π1
12 is defined to be the optimal payoff

of pool 1 under the condition of B1 < B̄ and the corresponding optimal block
size B∗

1 can be determined by solving dU1(B1,B̄)
dB1

= 0. For the strategy profile
of (B̄, B̄), both of two pools set their block sizes as B̄, then their payoffs are
denoted by π1

22 and π2
22. We illustrate the payoffs of two pools under different

strategy profiles in the following payoff matrix (Table 1).

Table 1. Payoff matrix of the case of two mining pools.

Mining pool 2

Mining pool 1 B2(x2) B̄(1 − x2)

B1(x1) (π1
11, π

2
11) (π1

12, π
2
12)

B̄(1 − x1) (\, \) (π1
22, π

2
22)

Lemma 1. In a one-shot mining competition, if B1 ≤ B2 ≤ B̄, then

1. For strategy profile (B1, B2) with 0 ≤ B1 < B2 < B̄, the optimal block size of
pool 2 is B∗

2 = 1
λ1ρ − R

α , if 0 < 1
λ1ρ − R

α < B̄. Let B̂∗
1 be the solution satisfying

dU1(B1,B∗
2)

dB1
= 0. If 0 ≤ B̂∗

1 < B∗
2 , then the optimal block size of pool 1 is B̂∗

1 .
Then the payoffs are

π1
11 = (R + αB̂∗

1)[1 − h2e
λ1ρ(B̂∗

1−B∗
2)], π2

11 = [R + αB∗
2]h2e

λ1ρ(B̂∗
1−B∗

2). (15)

If B̂∗
1 < 0, then the best choice of pool 1 is to set its block size as zero and

the payoffs are

π1
11 = R[1 − h2e

−λ1ρB∗
2], π2

11 = (R + αB∗
2)h2e

−λ1ρB∗
2 . (16)

2. For strategy profile (B1, B̄) with 0 < B1 < B2 = B̄, the block size of pool 2 is
B̄. Let B̃∗

1 be the solution satisfying dU1(B1,B̄)
dB1

= 0. If 0 ≤ B̃∗
1 < B̄, then the

optimal block size of pool 1 is B̃∗
1 . Then the payoffs are

π1
12 = (R + αB̃∗

1)[1 − h2e
λ1ρ(B̃∗

1−B̄)], π2
12 = (R + αB̄)h2e

λ1ρ(B̃∗
1−B̄). (17)

188 J. Chen et al.

If B̃∗
1 < 0, then the best choice of pool 1 is to set its block size as zero and

the payoffs are

π1
12 = R[1 − h2e

−λ1ρB̄], π2
12 = (R + αB̄)h2e

−λ1ρB̄ . (18)

3. For strategy profile (B̄, B̄), the block sizes of two pools are both equal to B̄
and the corresponding payoffs are

π1
22 = h1(R + αB̄) and π2

22 = h2(R + αB̄). (19)

Remark 1: By Lemma 1-(1) and (2), the optimal block size of pool 1 depends
on the block size of pool 2 in strategy profiles (B̂∗

1 , B∗
2) and (B̃∗

1 , B̄), and can be
obtained from equations dU1(B1,B∗

2)
dB1

= 0 and dU1(B1,B̄)
dB1

= 0, if 0 ≤ B̂∗
1 < B∗

2 and
0 ≤ B̃∗

1 < B̄, respectively. For convenience, we denote g(B2) to be the implicit
function, satisfying

dU1(B1, B2)
dB1

= α − [α + λ1ρ(R + αg(B2)]h2e
λ1ρ(g(B2)−B2) = 0,

Therefore, B̂∗
1 = g(B∗

2) = g(1
λ1ρ − R

α) and B̃∗
1 = g(B̄).

Lemma 2. Let g(B2) be the implicit function satisfying dU1(g(B2),B2)
dB1

= 0. Then
g(B2) is monotone increasing with B2 and g(B2) < B2 for all B2 ≥ 0.

We leave the proof of Lemma 2 in online full version [1]. Based on the mono-
tonicity of g(B2), we have B̂∗

1 < B̃∗
1 , if 1

λ1ρ − R
α < B̄. Moreover, the property of

g(B2) ≤ B2 ensures B̂∗
1 < 1

λ1ρ − R
α and B̃∗

1 < B̄.
In the following, we would analyze the strategy selections of two mining pools

by distinguishing two conditions: (1) 1
λ1ρ − R

α ≥ B̄; (2) 0 ≤ 1
λ1ρ − R

α < B̄; and
(3) 1

λ1ρ − R
α < 0, and then explore the equilibrium solutions in the evolutionary

game in the following.

Theorem 1. In a one-shot mining competition, if 0 ≤ B1 ≤ B2 ≤ B̄ and
1

λ1ρ − R
α ≥ B̄, then

1. (B̃∗
1 , B̄) is a strict Nash equilibrium, if 0 ≤ B̃∗

1 < B̄; or
2. (0, B̄) is a strict Nash equilibrium, if B̃∗

1 < 0; or
3. (B̄, B̄) is a strict Nash equilibrium, if B̃∗

1 ≥ B̄.

Theorem 1 illustrates that the dominant strategy of pool 2 is to follow the
default size B̄ when 1

λ1ρ − R
α ≥ B̄, while the optimal strategy of pool 1 depends

on the value of B̃∗
1 . The detailed proof is provided in online full version [1].

Next, we concentrate on the condition of 0 ≤ 1
λ1ρ − R

α < B̄, under which pool
2 may set its block size as B∗

2 = 1
λ1ρ − R

α or B̄.
Recall that xi(k), i = 1, 2, is the probability of mining pool i to adopt

the “following” strategy in the k-th slot competition, and thus 1 − xi(k) is the
probability of mining pool i to follow the default size. The expected payoffs of

Decision on Block Size by Evolutionary Equilibrium Analysis 189

mining pool 1 in the k-th slot competition, when it chooses “not following” or
“following” strategy, are

E1
1(k) = x2(k)π1

11 + (1 − x2(k))π1
12; E2

1(k) = (1 − x2(k))π1
22.

The average payoff of mining pool 1 is

E1(k) = x1(k)E1
1(k) + (1 − x1(k))E2

1(k).

Similarly, we can derive the expected payoffs of mining pool 2 as follows,

E1
2(k) = x1(k)π2

11; E2
2(k) = x1(k)π2

12 + (1 − x1(k))π2
22.

The average payoff of mining pool 2 is

E2(k) = x2(k)E1
2(k) + (1 − x2(k))E2

2(k).

Based on the analysis scheme (12) for the general case, the replicator dynamic
system of pool 1 and 2 for the case of two mining pools are:

⎧
⎨

⎩

f1(x) = ẋ1(k) = x1(1 − x1)(E
1
1 − E1) = x1(1 − x1)

[
(π1

11 − π1
12 + π1

22)x2 + (π1
12 − π1

22)
]
;

f2(x) = ẋ2(k) = x2(1 − x2)(E
1
2 − E2) = x2(1 − x2)

[
(π2

11 − π2
12 + π2

22)x1 − π2
22

]
.

(20)

Note that all the solutions satisfying f1(x) = ẋ1(k) = 0 and f2(x) = ẋ2(k) = 0
are the fixed equilibrium points of the replicator dynamic system. It is not hard
to see that there exist four fixed equilibrium points of this system under the
condition of B1 ≤ B2 ≤ B̄: (0, 0), (1, 0), (1, 1) and (x∗

1, x
∗
2), where

x∗
1 =

π2
22

π2
11 − π2

12 + π2
22

, x∗
2 =

π1
22 − π1

12

π1
11 − π1

12 + π1
22

. (21)

To fulfill the condition for probability vector x, x∗
1 and x∗

2 must be in [0, 1].

Theorem 2. For the evolutionary game between two mining pools, if 0 ≤ B1 ≤
B2 ≤ B̄ and 0 ≤ 1

λ1ρ − R
α < B̄, then

– (1, 0) is an ESS, when (1) 0 ≤ B̂∗
1 < B̃∗

1 < B̄ or (2) B̂∗
1 < 0 < B̃∗

1 <

B̄ and λ1ρ(R
α + B̄)eλ1ρ(B̃∗

1−B̄− R
α)+1 > 1;

– (1, 1) is an ESS, when (1) B̂∗
1 < B̃∗

1 < 0 or (2) B̂∗
1 < 0 < B̃∗

1 <

B̄ and λ1ρ(R
α + B̄)eλ1ρ(B̃∗

1−B̄− R
α)+1 < 1;

– (0, 0) and (x∗
1, x

∗
2) cannot be ESSs.

Proof. To obtain the ESS of the evolutionary game for block size selection, we
first compute the Jacobian matrix of the replicator dynamic system (20),

J =

[
∂f1(x)

∂x1
∂f2(x)

∂x1

∂f1(x)
∂x2

∂f2(x)
∂x2

]
,

190 J. Chen et al.

where
∂f1(x)

∂x1
= (1 − 2x1){[π1

11 − (π1
12 − π1

22)]x2 + (π1
12 − π1

22)};

∂f1(x)

∂x2
= x1(1 − x1)[π

1
11 − (π1

12 − π1
22)];

∂f2(x)

∂x1
= x2(1 − x2)[(π

2
11 − π2

12) + π2
22];

∂f2(x)

∂x2
= (1 − 2x2){[(π2

11 − π2
12) + π2

22)]x1 − π2
22}.

Table 2. The determinants and traces of Jacobian matrix J at fixed equilibrium points.

Det(J) Tr(J)

(0, 0) K · (−M) K − M

(1, 0) (−K) · N N − K

(1, 1) (−L) · (−N) −L − N

(x∗
1, x

∗
2)

KLMN
(L−K)(M+N)

0

By the results in [3], if a fixed equilibrium point (x1, x2) is an ESS, then the
Jacobian matrix of the replicator dynamic system is negative definite at (x1, x2),
equivalent to determinant Det(J(x1, x2)) > 0 and trace Tr(J(x1, x2)) < 0.

To simplify the discussion, let us denote K = π1
12 − π1

22, L = π1
11,M =

π2
22, N = π2

11 − π2
12. Table 2 shows the determinants and the traces of Jacobian

matrix at different fixed equilibrium points. Next we propose the fact, based on
which it is easy for us obtain this theorem.

Fact 1. Based on the expressions of πi
11, πi

12 and πi
22, i = 1, 2, in (15)–(19),

K = π1
12 − π1

22 > 0, L = π1
11 > 0, M = π2

22 > 0,

N = π2
11 − π2

12

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
R + α(1

λ1ρ
− R

α
)
]
h2e

λ1ρ(B̂∗
1− 1

λ1ρ
+ R

α
) − (R + αB̄)h2e

λ1ρ(B̃∗
1−B̄) < 0,

if 0 ≤ B̂∗
1 < B̃∗

1 < B̄;[
R + α(1

λ1ρ
− R

α
)
]
h2e

λ1ρ(− 1
λ1ρ

+ R
α

) − (R + αB̄)h2e
λ1ρ(B̃∗

1−B̄) < 0(> 0),

if B̂∗
1 < 0 < B̃∗

1 < B̄ and λ1ρ(R
α

+ B̄)eλ1ρ(B̃∗
1−B̄− R

α
)+1 > 1(< 1);[

R + α(1
λ1ρ

− R
α

)
]
h2e

λ1ρ(− 1
λ1ρ

+ R
α

) − (R + αB̄)h2e
−λ1ρB̄ > 0,

if B̃∗
1 < B̃∗

1 ≤ 0.

Because Tr(J(x∗
1, x

∗
2)) = 0 and Det(J(0, 0)) = −K · M < 0, (x∗

1, x
∗
2) and

(0, 0) cannot be ESS. Moreover, according to the results of Fact 1, we have
Det(J(1, 0)) > 0 and Tr(J(1, 0)) < 0 when 0 ≤ B̃∗

1 < B̄, and then the
fixed equilibrium points (1, 0) is an ESS. When B̃∗

1 < 0, Det(J(1, 1)) > 0 and
Tr(J(1, 1)) < 0. So the fixed equilibrium points (1, 1) is an ESS. ��

Decision on Block Size by Evolutionary Equilibrium Analysis 191

Corollary 1. For the evolutionary game between two mining pools, if 0 ≤ B1 ≤
B2 ≤ B̄ and 0 ≤ 1

λ1ρ − R
α < B̄, then

– (B̃∗
1 , B̄) is an evolutionary stable strategy profile, when 0 ≤ B̂∗

1 < B̃∗
1 < B̄, or

subject to λ1ρ(R
α + B̄)eλ1ρ(B̃∗

1−B̄− R
α)+1 > 1 when 0 ≤ B̂∗

1 < 0 < B̃∗
1 < B̄;

– (0, 1
λ1ρ − R

α) is an evolutionary stable strategy profile, when B̂∗
1 < B̃∗

1 < 0, or

subject to λ1ρ(R
α + B̄)eλ1ρ(B̃∗

1−B̄− R
α)+1 < 1 when 0 ≤ B̂∗

1 < 0 < B̃∗
1 < B̄.

At last, let us discuss the case that 1
λ1ρ − R

α < 0.

Theorem 3. If 0 ≤ B1 ≤ B2 < B̄ and 1
λ1ρ − R

α < 0, then

– (0, 0) is a strict Nash equilibrium when B̃∗
1 ≤ 0;

– (B̄, B̄) is a strict Nash equilibrium when B̃∗
1 ≥ B̄.

– when 0 < B̃∗
1 < B̄, then

• (0, 0) is an evolutionary stable strategy profile if R > eλ1ρ(B̃∗
1−B̄)

1−eλ1ρ(B̃∗
1−B̄) αB̄;

• (B̃∗
1 , B̄) is an evolutionary stable strategy profile if R < eλ1ρ(B̃∗

1−B̄)

1−eλ1ρ(B̃∗
1−B̄) αB̄.

From the condition of 1
λ1ρ − R

α < 0, we can see that the fixed subsidy R is
quite high (> α

λ1ρ). Under this condition, Theorem 3 states an possibility that
neither of pools would like to choose transactions into their blocks. It means
that the mining pools may give up the available transaction fees in hopes of
enhancing their chances to win the high fixed subsidy. The detailed proof can
be found in online full version [1].

4 Numerical Experiments and Conclusions

4.1 Numerical Experiments

In this section, we would analyze the case of two mining pools for the decision
on block size. Based on the statistic data about Bitcoin blockchain on [15], we
firstly consider the following setting to discuss the influence of default size on the
strategy selection of mining pools: the unit transaction fee α = 1 × 10−6 BTC,
the propagation speed ρ = 2.9 × 10−4 s/Byte, the block subsidy R = 6.25 BTC
and the average mining time T = 600 s, and three upper bounds of block size,
i.e., B̄ = 1 MB, 2 MB and 3 MB, as well as the relative computing power of each
pool is hi ∈ (0, 1) and h1+h2 = 1. Let us set h1 = 0.3 and h2 = 0.7 and take 0.2,
0.5 and 0.8 respectively as the initial values of xi, (i = 1, 2). Under the setting,
we get B̂∗

1 = −8.70 × 105, T
h1ρ − R

α = 6.47 × 105, and B̃∗
1 = −6.43 × 105, 6.95 ×

103, 6.69×105 corresponding to B̄ = 1×106, 2×106, 3×106, respectively. These
results satisfy the conditions of B̂∗

1 < B̄, B̃∗
1 < B̄ and T

h1ρ − R
α < B̄. Figure 1

illustrates the evolution processes of behaviors of two pools with different default
block sizes, verifying the result that (1, 0) is an ESS in Theorem 2. It is clear
that the speed of convergence to fixed equilibrium point (1, 0), i.e., the strategy

192 J. Chen et al.

profile (B̃∗
1 , B̄), becomes faster with the increasing of the maximum capacity of

a block. Hence larger upper bound B̄ brings pool 2 more payoff, stimulating the
speed of convergence to the strategy of B̄. At the same time, g′(B2) > 0 (shown
in Lemma 2) shows the optimal size of B1 increases with B2, and thus the rate
of convergence to B̂∗

1 is accelerated by the increasing of B̄.

(a) The evolutionary behavior of pool 1. (b) The evolutionary behavior of pool 2.

Fig. 1. The impact of the upper bound of block size B̄ on pool’s behaviors.

Next, we change the value of α and ρ, i.e., {α, ρ} = {0.8×10−6, 3×10−4}, and
take h1 = 0.24. Under this setting, 0 < B∗

2 = 1
λ1ρ − R

α < B̄ and B̂∗
1 < B̃∗

1 < 0.
Figure 2 illustrates the evolutionary behaviors of the two pools are shown, in
which the ESS is (1, 1), i.e., (0, 1

λ1ρ − R
α) is the evolutionary stable strategy.

From Fig. 2(a), x1 converges to 1 in a relatively short time, while x2 takes much
longer time to converge to 1 shown in Fig. 2(b). In addition, when x2(0) ≤ 0.5,
pool 2 has a strong tendency to take B2 = B̄ initially, considering the small
mining rate of pool 1 and its own large winning probability. However, as time

(a) The evolutionary behavior of pool 1. (b) The evolutionary behavior of pool 2.

Fig. 2. The evolution of two pools when (1,1) is ESS.

Decision on Block Size by Evolutionary Equilibrium Analysis 193

goes by, pool 2 tends to realize the best response is just B∗
2 = 1

λ1ρ − R
α . This

explains the transition from x2 = 0 ��� x2 = 1 when x2(0) ≤ 0.5. Hence, if
B̂∗

1 < B̃∗
1 < 0, the best response of pool 1 is B1 = 0, meaning a block without

any transactions just for faster propagation process.

4.2 Conclusion

In this paper, the issue of selecting appropriate block sizes by mining pools in a
blockchain system is discussed. We model this block size determination problem
as an evolutionary game, in which each pool may follow the upper bound of
block size, i.e., the default size B̄, or not. In addition, if a mining pool chooses
not to follow B̄, then it shall continue to decide its optimal block size under
different strategy profile. In our evolutionary game model, all mining pools are
supposed to be bounded rational and each pool switches the low-payoff strategy
to a higher one on and on by learning others’ better strategies, until the whole
network reaches an evolutionary stable state (ESS). The theoretical analysis has
been done, particularly for a case of two mining pools, we prove the existence of
different ESS under different conditions. In addition to verify the results in our
work, several numerical experiments by using real Bitcoin data are conducted
to show the evolutionary decisions of mining pools.

Acknowledgments. This work is partially supported by the National Nature Sci-
ence Foundation of China (No. 11871366), Qing Lan Project of Jiangsu Province, the
Research Innovation Program for College Graduate Students of Jiangsu Province (No.
KYCX21-2998 and KYCX20-2790), and the project of the philosophy & social sciences
of higher education in Jiangsu province. (No. 2018SJA1347).

References

1. Chen, J., Cheng, Y., Xu, Z., Cao, Y.: Evolutionary equilibrium analysis for decision
on block size in blockchain systems (full version) (2021). https://arxiv.org/abs/
2110.09765

2. Easley, D., OHara, M., Basu, S.: From mining to markets: the evolution of bitcoin
transaction fees. J. Financ. Econ. 134, 91–109 (2019)

3. Friedman, D.: On economic applications of evolutionary game theory. J. Evol.
Econ. 8(1), 15–43 (1998)

4. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

5. Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.:
On the security and performance of proof of work blockchains. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2016, p. 3C16. Association for Computing Machinery (2016)

6. Houy, N.: The bitcoin mining game. Lcloud/fogr J. 1(13), 53–68 (2016)
7. Jiang, S., Wu, J.: Bitcoin mining with transaction fees: a game on the block size.

In: 2019 IEEE International Conference on Blockchain (Blockchain), pp. 107–115
(2019)

https://arxiv.org/abs/2110.09765
https://arxiv.org/abs/2110.09765
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10

194 J. Chen et al.

8. Li, J., Kendall, G., John, R.: Computing nash equilibria and evolutionarily stable
states of evolutionary games. IEEE Trans. Evol. Comput. 20(3), 460C469 (2016)

9. Liu, X., Wang, W., Niyato, D., Zhao, N., Wang, P.: Evolutionary game for mining
pool selection in blockchain networks. IEEE Wirel. Commun. Lett. 7(5), 760–763
(2018)

10. Lombrozo, E., Lau, J., Wuille, P.: Segregated witness (consensus layer) (2015).
https://github.com/bitcoin/bips/wiki/Comments:BIP-0141

11. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). http://bitcoin.
org

12. NervosFans: Bitcoin transaction fee rules. https://zhuanlan.zhihu.com/p/38479785
13. Pan, D., Zhao, J.L., Fan, S., Zhang, Z.: Dividend or no dividend in delegated

blockchain governance: a game theoretic analysis. J. Syst. Sci. Syst. Eng. 30, 1861–
9576 (2021)

14. Rizun, P.R.: A transaction fee market exists without a block size limit, block Size
Limit Debate Working Paper (2015)

15. TOKENVIEW: Bitcoin browser. https://btc.tokenview.com/
16. Zhang, R., Preneel, B.: On the necessity of a prescribed block validity consensus:

analyzing bitcoin unlimited mining protocol. In: Proceedings of the 13th Inter-
national Conference on Emerging Networking Experiments and Technologies, p.
108C119. Association for Computing Machinery, New York (2017)

https://github.com/bitcoin/bips/wiki/Comments:BIP-0141
http://bitcoin.org
http://bitcoin.org
https://zhuanlan.zhihu.com/p/38479785
https://btc.tokenview.com/

Efficient Algorithms for Scheduling
Parallel Jobs with Interval Constraints

in Clouds

Xuanming Xu1 and Longkun Guo2(B)

1 College of Mathematics and Statistics, Fuzhou University, Fuzhou, China
2 College of Computer and Data Science, Fuzhou University, Fuzhou, China

Abstract. Given a set of time slots and jobs, each of which has a degree
of parallelism, an interval constraint (typically an arrival time and a
deadline), and a processing time, we consider the problem of minimizing
the number of machines for scheduling all the jobs while satisfying the
constraints. This paper starts with a Linear Programming (LP) formula-
tion and argues that its decision version is with an integral polyhedron.
Meanwhile, we determine the problem’s feasibility with the LP, whether
the given jobs can be accommodated by a given number of machines over
allocated time slots, based on the property of the integrality. Then, we
show that the feasibility leads to an LP-based algorithm, in which the
optimal solution can be obtained in polynomial time. Moreover, our algo-
rithm can also optimally compute a schedule to the problem rather than
merely determining the minimum number of required machines, which
compares favorably to the Earliest Deadline First (EDF) algorithm and
the Least Laxity First (LLF) algorithm in solution quality.

Keywords: Machine minimization · Integral polyhedron ·
Optimality · Parallel processing

1 Introduction

Applications in the cloud imposed the problem of minimizing the number of
machines for executing a given batch of parallelable jobs. It was known NP-hard
to determine whether a given set of jobs without parallelism can be feasibly
scheduled in two machines [9,15]. In general, the scheduling problem can be
divided into two categories depending on whether the jobs are preemptive or not
[10]. With preemption, any process can be preempted at any time and resumed
later on the same or a different machine. The non-preemptive scheduling problem
has attracted many research interests in relevant fields. In contrast, there exist
fewer results in the literature for the preemptive version due to the overhead
of interrupting and resuming jobs. With the development of task management
technology, the overhead of preemption drops dramatically. Hence, many appli-
cations in clouds require scheduling preemptive jobs. This brings our problem
formally defined as follows:
c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 195–202, 2021.
https://doi.org/10.1007/978-3-030-92681-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_16&domain=pdf
http://orcid.org/0000-0001-9083-6271
http://orcid.org/0000-0003-2891-4253
https://doi.org/10.1007/978-3-030-92681-6_16

196 X. Xu and L. Guo

Definition 1. (Machine minimization for Parallelable Interval Constrained
Jobs (MPI-CJ)) Let T and J are a set of time slots and a set of jobs, respec-
tively. Each job’s summary (aj , dj , Wj , pj) is given in advance, where aj is the
arrival time, dj is the deadline, Wj is the workload and pj is the parallelism
degree. Each job must be executed preemptively in one of the given machines
within time interval Tj = (aj , dj], and each machine can only process one job at
a time slot. The problem is to minimize the total number of machines used and
process every job successfully in its time interval.

To the best of our knowledge, Phillips et al. [17] were the first to signifi-
cantly address the online job scheduling problem with machine minimization in
preemptive setting. To determine a feasible preemptive schedule on a minimum
number of machines, they presented the Least Laxity First (LLF) algorithm with
competitive ratio O

(
log tmax

tmin

)
, where tmax and tmin are the maximum and mini-

mum processing times of jobs, respectively. However, it remained a considerable
gap to the best known lower bound on the competitive ratio of 5

4 . Since then, no
significant improvement had been proposed until nearly two decades later when
Chen et al. [4] effectively improved the competitive ratio to O (log m), where m
is the minimum number of machines in the offline setting. The result depends
only on the optimum value m, instead of other input parameters. Based on the
algorithm and analysis [4], the result was improved to O

(
logm

log logm

)
by Azar et al.

[1] and to O (log log m) by Im et al. [12]. In contrast, for the offline setting, the
optimal solution can be obtained in polynomial time without parallelism degree
by rounding the solution of an LP through distributing fractionally assigned
workload in a round-robin fashion to all machines within a time slot [11].

The non-preemptive machine minimization problem is considerably harder
than the preemptive version. In the offline setting, Raghavan and Tompson [18]
used a standard LP formulation and randomized rounding to obtain an approx-
imation factor of O

(
log n

log log n

)
, where n is the number of jobs. Using a more

sophisticated LP formulation and rounding procedure, the result was improved
by Chuzhoy et al. [5] to O

(√
log n

log log n

)
. Combining with three parameters: the

number of machines m, the looseness λ, and the slackness σ, Van et al. [2] con-
sidered interval constrained scheduling on a minimum number of machines, and
they refined known results of Cieliebak et al. [6] by using tools of parameter-
ized complexity analysis. In the online setting, Saha [19] proposed an algorithm
with the competitive ratio of O

(
log tmax

tmin

)
, which has been the best result so far.

Since then, more researches have been focused on special cases of the problem.
With uniform deadlines (but arbitrary job lengths), Devanur et al. [8] gave a
constant-competitive online algorithm for the case with an upper bound of 16.
With unit processing lengths, Kao et al. [13] proposed an algorithm that pro-
duces an upper bound of 5.2 and a lower bound of 2.09. To investigate how the
lookahead ability improves the performance of online algorithms, Chen et al. [3]
proposed the competitive online algorithm for the case with uniform processing
times and a common deadline in two lookahead models.

Efficient Algorithms for Scheduling Parallel Jobs with Interval Constraints 197

2 Polyhedron and LP-Based Algorithm for MPI-CJ

In this section, we propose an LP relaxation for the MPI-CJ problem as well as
for its decision version of determining whether there exists feasible scheduling
regarding a given number of machines. Then we show the linear program of
decision MPI-CJ is with an integral polyhedron, which means there exist integer
basic optimum solutions for the linear program. Moreover, we devise an LP-
based algorithm to get the minimum number of machines through incorporating
binary search with the LP based on its integrality. Besides, the output schedule
of our algorithm outperforms the Earlier Deadline First (EDF) algorithm and
the Least Laxity First (LLF) algorithm via giving examples.

2.1 Polyhedron of MPI-CJ

Let xj (t) indicate the number of processing units of the tth time slot assigned
to job j. Then the LP relaxation for the MPI-CJ problem is as in LP (1):

min γ

s.t.
∑
t∈Tj

xj (t) ≥ Wj ∀j ∈ J (1)

∑
j:t∈Tj

xj (t) − γ ≤ 0 ∀t ∈
⋃
j∈J

Tj (2)

0≤ xj (t) ≤ pj ∀j ∈ J, t ∈ Tj (3)
γ ≥ 0,

where Constraint (1) guarantees that the processing units assigned to job j
are no fewer than the requirement of its workload, Constraint (2) ensures that
the number of machines γ is sufficient for the requirement in time slot t, and
Constraint (3) requires that each job satisfies the parallelism degree bound.

One straightforward idea is to identify whether LP (1) is integral, i.e., whether
a basic solution of LP (1) is a vector of integers. Unfortunately, there exist
fractions in the basic solution of LP (1) as depicted in the following: Given 4
time slots and 5 jobs, each of which is with arrival time aj = 0, deadline dj = 4,
workload Wj = 2 and parallelism degree pj = 1. Through solving LP (1), we
get γ = 2.5 as the minimum number of machines. Thus, the variables of a basic
optimal solution of LP (1) are with fractional values, so LP (1) is not integral.
Thus, we have the negative result as below:

Proposition 1. LP (1) is not integral as it admits a fractional basic solution.

So we instead investigate the following polyhedron for the decision version
LP (2) of MPI-CJ:

198 X. Xu and L. Guo

−
∑
t∈Tj

xj (t) ≤ −Wj ∀j ∈ J (4)

∑
j:t∈Tj

xj (t) ≤ C ∀t ∈
⋃
j∈J

Tj (5)

xj (t) ≤ pj ∀j ∈ J, t ∈ Tj (6)
xj (t) ≥ 0 ∀j ∈ J, t ∈ Tj , (7)

where C is a fixed number, and the polyhedron is the set of feasible solutions
concerning C. Different from LP (1), we can show the vertex solutions (or namely
basic solutions) of the LP polyhedron are integral as in the theorem below:

Theorem 1. The polyhedron of LP (2) is integral. That is, each xj (t) in any
basic solution of LP (2) is an integer.

The proof of the above theorem starts from the following famous property:

Lemma 1 [16]. Let A ∈ R
m×n be an integer matrix. Any basic optimum solution

to this linear inequality equations LP (3)
{

Ax ≤ b

x ≥ 0
(8)

is an integer vector if A is a Totally Unimodular Matrix (TUM) and b is an
integer vector, where the integer matrix A is a TUM if the determinant of every
square submatrix of A is 0 or 1 or −1 .

Let matrix B be of the form
(

A
I

)
, where A = (aij) from the Constraint (4)

and (5), and I comes from the upper bound Constraint (6). Then by Lemma 1,
we only need to show the correctness of the following lemma to finish the proof:

Lemma 2. The matrix B, the coefficient matrix of LP (2), is a totally unimod-
ular matrix.

The proof of the above lemma is omitted due to the length limitation.

2.2 LP-Based Algorithm for MPI-CJ

Following Theorem 1, for any given instance of MPI-CJ and any fixed integer C,
we can determine its feasibility by verifying whether the polyhedron of LP (2) is
an empty set. Therefore, we can immediately obtain an algorithm for MPI-CJ by
employing the binary search against a range containing the minimum machine
number and incorporating LP (2) to verify the feasibility. The range is initially
[L, R], where L = 1 and R = |J | ·max

j∈J
{pj} = n · max

j∈J
{pj} are the lower and

upper bound of the minimum machine number, respectively. The binary search

Efficient Algorithms for Scheduling Parallel Jobs with Interval Constraints 199

Algorithm 1. LP-based Binary Search Algorithm for MPI-CJ
Input: A set of time slots T , a set of jobs J (|J | = n), in which each job j ∈ J
is with summary (aj , dj , Wj , pj);
Output: The minimum number of required parallel machines C∈ Z

+.
1: Set R = n · max

j∈J
{pj} and L = 1;

2: While R − L > 1 do
3: Set C =

⌊
R+L
2

⌋
;

4: IfLP (2) is feasible wrt C then
5: Set R = C;
6: Else set L = C;
7: Endwhile
8: Return C = R.

reiterates the process of decreasing the size of the range until R − L ≤ 1 holds.
The layout is formally shown in Algorithm 1.

For the correctness of Algorithm 1, following Theorem 1, we can determine
whether the instance of decision MPI-CJ is feasible with respect to C by solving
LP (2). On the other hand, binary search guarantees to find the minimum C
under which decision MPI-CJ is feasible. Then from the fact that LP (2) is
polynomially solvable [14], we have:

Corollary 1. MPI-CJ is optimally solvable in polynomial time.

2.3 Performance Comparison of Our Algorithm with EDF and LLF

Earlier Deadline First (EDF) and Least Laxity First (LLF) [7] are two well-
studied scheduling algorithms in the context of the machine minimization prob-
lems. EDF algorithm executes at any time the job whose deadline is the closest,
that is, the released job with the earliest absolute deadline has the highest pri-
ority. LLF algorithm executes the job with the smallest laxity at any time, i.e.,
the released job with the smallest laxity is assigned the highest priority. Our
Algorithm 1 is to find the minimal number of machines required to finish all
jobs in their time intervals Tj and provide a solution for scheduling. Then, we
show that our algorithm can schedule jobs on the minimal number of machines
over allocated time slots, but EDF and LLF can not in two examples as below:

Example 1. EDF, using 5 machines, can not schedule the input instance which
can be scheduled on 5 machines in the given 6 time slots. Consider the following
input instance I1 consisting of 6 jobs all with the arrival times 0: The first 5
jobs {j1, j2, · · · , j5} have workloads 4, parallelism degrees 4 and deadlines 5;
The 6th job j6 has workload 5, parallelism degree 1, and deadline 6. EDF, the
fractional and integral schedule for I1 are shown in Fig. 1.

As illustrated in Fig. 1a, the instance I1 of MPI-CJ can not be successfully
scheduled in 6 time slots over 5 machines by the EDF algorithm. According to

200 X. Xu and L. Guo

T
1 62 3 4 5

j1

j2

j6

j5

machine 1

machine 2

machine 3

machine 4

machine 5

j3

j4

7 8 9 10

(a) EDF for I1

T
1 62 3 4 5

j1

j2

j3 j5

j4

j6

j1

j2

j4

j3

j4

machine 1

machine 2

machine 3

machine 4

machine 5

j3 j1

j2

j3 j5

j6 j5

j2

j5
j2

j5

j1

(b) A fractional solution for I1

T
1 62 3 4 5

j1

j2

j5

j6

machine 1

machine 2

machine 3

machine 4

machine 5

j5

j5j3

j5j4

(c) An integer solution for I1

Fig. 1. The instance I1 of MPI-CJ in T = {1, 2, · · · , 6} , C = 5

the criterion that the job with the earliest deadline has the highest priority, the
first five jobs j1, j2, · · · , j5 must be processed by the 4th time slot, and job j6 can
only start processing at the 5th time slot, which means it can not be processed
within the given time slot due to its parallelism degree is 1 and workload is 5. As
illustrated in Fig. 1b, all jobs are successfully completed before their deadlines
in the given time slot and machines. In particular, there exist fractions in the
solution. Moreover, Fig. 1c shows an integer solution where all jobs are finished
by the 5th time slot, and it is the optimal solution among these three solutions.
As shown in Fig. 1b and 1c, our algorithm can finish the instance I1 of MPI-CJ.
Therefore, our algorithm is better than EDF in this instance.

Example 2. LLF, using 4 machines, can not schedule the input instance which
can be scheduled on 4 machines in the given 10 time slots. Consider the following
input instance I2: There are 2 workload-8 jobs {j1, j2} with arrival times 0,
deadlines 12, parallelism degree 1, and thus initial laxities of 4. Meanwhile,
for 0 ≤ i ≤ 2, there are 4 workloads-1 jobs with arrival times 2i, deadlines
2 (i + 1), parallelism degrees 1, and thus laxities of 1. Altogether, 12 workloads-
1 jobs {j3, j4, · · · , j14} are arrived from timestamp 0 to timestamp 4. LLF, the
fractional and integral schedule for I2 are depicted in Fig. 2.

As illustrated in Fig. 2a, the LLF algorithm can not successfully finish the
instance I2 of MPI-CJ in 4 machines over 10 time slots. In LLF, the job with
the smallest laxity is assigned the highest priority. Jobs j1 and j2 are processed
completely in the 11th time slot due to the parallelism are 1, and the workload
is 8. As illustrated in Fig. 2b, the fractional solution led to a successful schedule
for the instance I2 of MPI-CJ and finished all the jobs at the 10th time slot.

Efficient Algorithms for Scheduling Parallel Jobs with Interval Constraints 201

T
1 62 3 4 5

j1

j2

j5

machine 1

machine 2

machine 3

machine 4

j3

j4

7 8 9 10

j1 j1

j2 j2

j6

j7

j8

j9

j10

j11

j12

j13

j14

11

(a) LLF for I2

T
1 62 3 4 5

j3

j5

machine 1

machine 2

machine 3

machine 4

j7

7 8 9 10

j1

j6

j2

j4
j8

j9

j10 j12

j13

j14

j11j4

j7 j1

(b) A fractional solution for I2

T
1

j3 j5

machine 1

machine 2

machine 3

machine 4

j7

j1

j6

j2

j4 j8

j9

j10 j12

j13

j14

j11

2 3 4 5 6 7 8 9 10

(c) An integer solution for I2

Fig. 2. The instance I2 of MPI-CJ in T = {1, 2, · · · , 10} , C = 4

In contrast, Fig. 2c shows the integer solution that completes all jobs by the
8th time slot. Apparently, the last solution outperforms the other two solutions,
demonstrating that our algorithm is more efficient than LLF in the instance.

3 Conclusion

In this paper, we proved that the problem of Machine minimization against Par-
allel Interval Constrained Jobs (MPI-CJ) is polynomially solvable. The proof
is based on the fact that the relaxing LP is with an integral polyhedron, which
also leads to an LP-based polynomial algorithm. Then, we showed that our algo-
rithm produces optimal solutions while the Earliest Deadline First (EDF) algo-
rithm and the Least Laxity First (LLF) algorithm only produce approximation
solutions.

Acknowledgements. The authors are supported by Natural Science Foundation of
China (No. 61772005), Outstanding Youth Innovation Team Project for Universities of
Shandong Province (No. 2020KJN008), Natural Science Foundation of Fujian Province
(No. 2020J01845) and Educational Research Project for Young and Middle-aged Teach-
ers of Fujian Provincial Department of Education (No. JAT190613).

202 X. Xu and L. Guo

References

1. Azar, Y., Cohen, S.: An improved algorithm for online machine minimization.
Oper. Res. Lett. 46(1), 128–133 (2018)

2. van Bevern, R., Niedermeier, R., Suchý, O.: A parameterized complexity view on
non-preemptively scheduling interval-constrained jobs: few machines, small loose-
ness, and small slack. J. Scheduling 20(3), 255–265 (2016). https://doi.org/10.
1007/s10951-016-0478-9

3. Chen, C., Zhang, H., Xu, Y.: Online machine minimization with lookahead. J.
Comb. Optim. (2020). https://doi.org/10.1007/s10878-020-00633-w

4. Chen, L., Megow, N., Schewior, K.: An O(log m)-competitive algorithm for online
machine minimization. SIAM J. Comput. 47(6), 2057–2077 (2018)

5. Chuzhoy, J., Guha, S., Khanna, S., Naor, J.S.: Machine minimization for scheduling
jobs with interval constraints. In: 45th Annual IEEE Symposium on Foundations
of Computer Science, pp. 81–90. IEEE (2004)

6. Cieliebak, M., Erlebach, T., Hennecke, F., Weber, B., Widmayer, P.: Scheduling
with release times and deadlines on a minimum number of machines. In: Levy,
J.-J., Mayr, E.W., Mitchell, J.C. (eds.) TCS 2004. IIFIP, vol. 155, pp. 209–222.
Springer, Boston, (2004). https://doi.org/10.1007/1-4020-8141-3 18

7. Dertouzos, M.L., Mok, A.K.: Multiprocessor online scheduling of hard-real-time
tasks. IEEE Trans. Softw. Eng. 15(12), 1497–1506 (1989)

8. Devanur, N., Makarychev, K., Panigrahi, D., Yaroslavtsev, G.: Online algorithms
for machine minimization. CoRR abs/1403.0486 (2014)

9. Garey, M.R., Johnson, D.S.: Two-processor scheduling with start-times and dead-
lines. SIAM J. Comput. 6(3), 416–426 (1977)

10. George, L., Rivierre, N., Spuri, M.: Preemptive and non-preemptive real-time
uniprocessor scheduling. In: Ph.D. thesis, Inria (1996)

11. Horn, W.: Some simple scheduling algorithms. Naval Res. Logistics Q. 21(1), 177–
185 (1974)

12. Im, S., Moseley, B., Pruhs, K., Stein, C.: An O(log log m)-competitive algorithm
for online machine minimization. In: 2017 IEEE Real-Time Systems Symposium
(RTSS), pp. 343–350. IEEE (2017)

13. Kao, M.-J., Chen, J.-J., Rutter, I., Wagner, D.: Competitive design and analysis
for machine-minimizing job scheduling problem. In: Chao, K.-M., Hsu, T., Lee, D.-
T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 75–84. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-35261-4 11

14. Korte, B., Vygen, J., Korte, B., Vygen, J.: Combinatorial optimization, vol. 2.
Springer, Berlin (2012)

15. Lewis, H.R.: Computers and intractability: a guide to the theory of np-
completeness Siam Rev. 24(1), 90 (1983)

16. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity. Courier Corporation, New York (1998)

17. Phillips, C.A., Stein, C., Torng, E., Wein, J.: Optimal time-critical scheduling via
resource augmentation. In: Proceedings of the Twenty-ninth Annual ACM Sym-
posium on Theory of Computing, pp. 140–149 (1997)

18. Raghavan, P., Tompson, C.D.: Randomized rounding: a technique for provably
good algorithms and algorithmic proofs. Combinatorica 7(4), 365–374 (1987)

19. Saha, B.: Renting a cloud. In: IARCS Annual Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science (FSTTCS 2013), vol. 24, pp.
437–448. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2013)

https://doi.org/10.1007/s10951-016-0478-9
https://doi.org/10.1007/s10951-016-0478-9
https://doi.org/10.1007/s10878-020-00633-w
https://doi.org/10.1007/1-4020-8141-3_18
https://doi.org/10.1007/978-3-642-35261-4_11

Two-Stage Stochastic Max-Weight Independent
Set Problems

Min Li, Qian Liu, and Yang Zhou(B)

School of Mathematics and Statistics, Shandong Normal University,
Jinan 250014, People’s Republic of China

{liminEmily,zhouyang}@sdnu.edu.cn

Abstract. The two-stage stochastic maximum-weight independent set problem
extends the classical independent set problem. Given an independent system asso-
ciated with one deterministic weight function and a random weight function both
defined over the same ground set, the problem is to select two nonoverlapping
independent subsets, one in the first stage and the other in the second stage,
whose union has the maximum total expected weight. In this paper, we show
that this problem can be formulated as a submodular function maximization sub-
ject to a matroid constraint if the independent system is a matroid. Furthermore,
we also show that the two-stage stochastic maximum-weight knapsack indepen-
dent set problem is neither submodular nor supermodular maximization problem
by designing a counterexample.

Keywords: Submodular · Matroid · Knapsack · Two-stage stochastic
programming

1 Introduction

The maximization problem for independence systems is one of the most influential
problems in combinatorial optimization: given an independence system M = (V, I),
and a weight function h : V → R+, the objective is to find an independent set S ∈ I
maximizing

h(S) :=
∑

i∈S

hi.

There is a so-called Best-In-Greedy algorithm to solve this problem approximately [13].
Especially, an independence system is a matroid if and only if the Best-In-Greedy finds
an optimum solution for this maximization problem [7].

The main focus of our work is to extend this single-stage problem to a two-stage
problem, where the first stage weight h is known, but the second stage weight u(ω)
is unknown, whose value will be realized at stage 2. Assume that |V | = n, then
u(ω) = (u1(ω), u2(ω), . . . , un(ω)) is an n-dimensional random vector defined on a

This paper is supported by National Science Foundation of China (No. 12001335) and Natural
Science Foundation of Shandong Province (Nos. ZR2019PA004, ZR2020MA029) of China.

c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 203–213, 2021.
https://doi.org/10.1007/978-3-030-92681-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_17&domain=pdf
https://doi.org/10.1007/978-3-030-92681-6_17

204 M. Li et al.

probability space (Ω,F , P). We need to select a subset S ⊆ V at stage 1 and another
nonoverlapping subset T ⊆ V \S at stage 2 such that S ∪ T ∈ I maximizes

f(S) = h(S) + E
[
Qu(ω)(S)

]
, (1)

where Qu(ω)(S) = max
T⊆V \S,T∪S∈I

∑
i∈T ui(ω). We will mainly study the case that the

independence system is a matroid or a knapsack constraint from the view of submod-
ularity. In fact, He et al. have shown that this problem is NP-hard even if the indepen-
dence systemM is a uniformmatroid, which is also known as sell or hold problem [11].
The motivation of our work comes from the hot study and extensive application of two-
stage stochastic combinatorial optimization problems and submodular maximization
problems.

Stochasticity is opposed to determinacy and means that some data are random, also
the aim of stochastic programming is precisely to find an optimal decision in problems
where some of the data are unknown or uncertain [6]. When random parameters are
introduced, there are many two-stage stochastic combinatorial optimization problems
presented, which are usually NP-hard even if the original deterministic decision prob-
lems are easy. For example, the maximum-weight matching problem is polynomially
solvable, but the two-stage stochastic maximum-weight matching problem is shown
to be NP-hard and a factor 1

2 -approximation algorithm is designed [12]. The study of
2-stage minimum spanning tree is also introduced in [8]. The Steiner tree (network)
problem as well as the vertex cover problem has been studied and the algorithms over
two (or multiple) stages of these problems have been presented [9,10]. Moreover, the
two-stage knapsack problemwith randomweights is studied under the aspect of approx-
imability [14].

Submodularity is a very important property in many fields, including combinatorial
optimization, machine learning, economics, etc. Submodular maximization problems
are normally hard from a computational point of view. Therefore there are extant litera-
tures focusing on designing approximation algorithms. There is a (1− 1

e)-approximation
algorithm for monotone submodular maximization with a cardinality constraint [16].
Furthermore, by applying adaptive-sampling algorithm, Balkanski et al. present a novel
approach that yields an approximation algorithm with (1 − 1

e − ε)-approximation
and O(log n

ε2)-adaptivity [1]. For monotone submodular maximization problem with
a matroid constraint, the best deterministic approximation ratio is 0.5008 [3] and the
randomized performance guarantee is (1 − 1

e) [4]. And by using adaptive-sampling

algorithm, the performance guarantee can be obtained as (1 − 1
e − ε) with O(log

2 n
ε3)-

adaptivity [5]. When the objective function is non-monotone, the best determinis-
tic approximation ratio is (14 − ε) [15] and the randomized approximation factor is
0.385 [2]. For monotone submodular maximization problemwith a knapsack constraint,
the best approximation ratio is (1− 1

e) [17]. If the objective function is non-monotone,
both the best deterministic and randomized approximation ratios are 1

2 [15].
In this paper, we continue revealing the good properties of the two-stage stochastic

maximum-weight independent problems in view of submodularity, and give the follow-
ing contributions:

Two-Stage Stochastic Max-Weight Independent Set Problems 205

– The instance of two-stage stochastic maximum-weight matroid problem can be for-
mulated as a submodular maximization problem with a matroid constraint, where
the commutative theory of bases and the good properties of circuits in matroids are
mainly used.

– A 1
2 -approximation algorithm is designed for discrete two-stage stochastic

maximum-weight matroid problem.
– The instance of two-stage stochastic maximum-weight knapsack problem cannot be
formulated as a submodular (or supermodular) maximization problem by showing a
counterexample.

The rest of this paper is organized as follows. In Sect. 2, we introduce some basic
notations and results. In Sect. 3, we formalize the two-stage maximum-weight matroid
independent set problem and present our main result about the two-stage maximum-
weight matroid independent set problem and its analysis. And we present a counterex-
ample to show that the two-stage maximum-weight problem with a knapsack con-
straint is neither a submodular function nor a supermodular function. In this part, we
also design a 1

2 -approximation algorithm for the discrete two-stage maximum-weight
matroid independent set problem.

2 Preliminaries

Assume that V = {1, 2, . . . , n} is a finite set and let I be a family of subsets of V , we
will firstly present some definitions and results about matroids as well as submodular
functions. For more information on matroid theory, one can refer to [13].

Definition 1. M = (V, I) is an independence system if
1. ∅ ∈ I,
2. for any subset A ∈ I, if B ⊆ A, we have B ∈ I.
If M = (V, I) is an independence system, we call each element of I as an inde-

pendent set, and the subsets of V but not included by I as dependent sets. The minimal
dependent sets are called circuits and the maximal independent sets are called bases.
For S ⊆ V , the maximal independent subsets of S are called bases of S. Moreover, for
a basis B of S, B adding any element x ∈ S (if there are more elements) becomes a
circuit, which will be denoted by C(B, x).

Definition 2. Given an independence system M = (V, I), the following function R :
2V → R is called the rank function of M

R(A) = max {|I| : I ⊆ A, I ∈ I} ,∀A ⊆ V.

Definition 3. An independence system (V, I) is a matroid if for all A,B ∈ I with
|B| = |A| + 1, there exists one element e ∈ B \ A such that A ∪ {e} ∈ I.

Let (V, I) be a matroid and p : V → R+, we have known that the Best-In-Greedy
algorithm can return one optimal solution of the following problem:

max
{ ∑

i∈S

pi : S ∈ I}
.

Moreover, there is the following result presented in [13].

206 M. Li et al.

Lemma 1. Let (V, I) be a matroid and p : V → R+, k ∈ N and X ∈ I with |X| = k.
Then p(X) = max{∑

i∈Y pi : Y ∈ I, |Y | = k} if and only if the following two
conditions hold:

1. For all y ∈ V \ X with X ∪ {y} /∈ I and all x ∈ C(X, y) we have p(x) ≥ p(y);
2. For all y ∈ V \ X with X ∪ {y} ∈ I and all x ∈ X we have p(x) ≥ p(y).

For a given matroid, the cardinalities of all its bases are the same. There are also
axiom system defining matroids by circuits, bases and rank functions as follows [13].

Lemma 2. Assume that (V, I) is an independence system and C is the set of its circuits,
then the following statements are equivalent:

1. (V, I) is a matroid;
2. For any X ∈ I and e ∈ V , X ∪ {e} contains at most one circuit;
3. For any C1, C2 ∈ C with C1 	= C2 and e ∈ C1 ∩ C2, there exists a C3 ∈ C with

C3 ⊆ (C1 ∪ C2) \ {e};
4. For any C1, C2 ∈ C with C1 	= C2 and e ∈ C1 ∩ C2 and f ∈ C1 \ C2 , there

exists a C3 ∈ C with f ∈ C3 ⊆ (C1 ∪ C2) \ {e}.
For any A ∈ I and r /∈ A, if A ∪ {r} /∈ I, there is a unique circuit in A ∪ {r},

which will be denoted by C(A, r).

Lemma 3. Let V be a finite set and B ⊆ 2V . B is the set of bases of some matroid
M = (V, I) if and only if the following holds:

1. B 	= ∅;
2. For any B1, B2 ∈ B and x /∈ B1 \ B2, there exists a y ∈ B2 \ B1 with (B1 \

{x}) ∪ {y} ∈ B.

Lemma 4. Given a matroid M = (V, I) and a set function R : 2V → R, then R is a
rank function of M if only if the following conditions hold.

1. 0 ≤ R(A) ≤ |A|, for any A ⊆ V ;

2. R(A) ≤ R(B), for any A ⊆ B ⊆ V ;

3. R(A) + R(B) ≥ R(A ∪ B) + R(A ∩ B), ∀A,B ⊆ V .

In fact, the rank function of a matroid is a special kind of submodular functions
defined as follows.

Definition 4. Given a finite set V , the set function f : 2V → R is submodular if

f(A) + f(B) ≥ f(A ∩ B) + f(A ∪ B),∀A,B ⊆ V.

If −f(·) is a submodular function, then f(·) is called supermodular. There are many
equivalent definitions of submodular functions, and we just present two of them in the
following lemma.

Lemma 5. Given a finite set V , the set function f : 2V → R is submodular if and
only if one of the following result holds:

1. f(A ∪ {x}) − f(A) ≥ f(B ∪ {x}) − f(B), for any A ⊆ V and x ∈ V \ B.
2. f(A ∪ {x}) − f(A) ≥ f(A ∪ {x, y}) − f(A ∪ {y}), for any A ⊆ V and

x, y ∈ V \ A.

Two-Stage Stochastic Max-Weight Independent Set Problems 207

3 The Two-Stage Maximum-Weight Independent Set Problem

In this part, we mainly introduce the results of two special independent systems: one
is matroid, and the other is knapsack. For the first case, we will show that the two-
stage maximum-weight matroid problem is a submodular maximization problem with a
matroid constraint. For the two-stage maximum-weight with a knapsack constraint, we
will show it is neither a submodular problem nor a supermodular problem by presenting
a counter example.

3.1 Main Result and Analysis for Independent Set Problems

In this part, we assume that M = (V, I) is a matroid, and for any S ⊆ V , we denote
FS as the set of feasible solutions in the second stage with respect to S,

FS = {T ⊆ V : S ∪ T ∈ I, S ∩ T = ∅}.

Since M = (V, I) is a matroid, FS as well as Qu(ω)(S) is well-defined if S ∈ I.
Without loss of generality, we denote u(ω) = u in the following discussion. When
S /∈ I we define Qu(S) as follows. If S is a circuit,

Qu(S) :=

⎧
⎨

⎩
Qu(∅), if |S| = 1,

min
r,q∈S

{Qu(S \ {r}) + Qu(S \ {q}) − Qu(S \ {r, q})}, otherwise.

Then define

Qu(S) := min
r,q∈S

{Qu(S \ {r}) + Qu(S \ {q}) − Qu(S \ {r, q})}

sequentially for S when S is not a circuit but |S| = R(S) + 1, R(S) + 2, . . . , |V |.
Our main result is to show that the two-stage problem is a submodular maximization

problem subject to a matroid constraint, by presenting the submodularity of the second-
stage optimal objective function Qu(S).

Theorem 1. Assume that (V, I) is a matroid, then the function f(S) defined in (1) is
submodular.

Proof. If we can prove that the function Qu(ω)(S) is submodular, then

E
[
Qu(ω)(S)

]
=

∫

Ω

Qu(ω)(S)dP (ω),

is submodular, since integration preserves submodularity. Therefore, f(S) is submodu-
lar since it is the sum of a modular function and a submodular function. In the following
part, we will prove Qu(S)(= Qu(ω)(S)) is submodular by showing that for any S ⊆ V
and r, q ∈ V \ S,

Qu(S ∪ {r}) − Qu(S) ≥ Qu(S ∪ {r, q}) − Qu(S ∪ {q}). (2)

208 M. Li et al.

It is easy to conclude (2) in the case that S, S ∪ {r} , S ∪ {q} and S ∪ {r, q} are not all
independent sets.

In the following part, we just need to prove the correctness of (2) when S ∪{r, q} ∈
I. For any S ∈ I, we define a new matroid MS = (V \S, IS), where IS = {T ⊆ V \
S : S ∪ T ∈ I}. We denote TS as the optimal solution of the second stage obtained by
the Best-In-Greedy algorithm with respect to MS . That is, assume |S| = l, we sort the
rest items in V \S according to their prices at the second stage in non-increasing order:
u1 ≥ u2 ≥ · · · ≥ un−l. Then TS can be obtained from an empty set by individually
checking i from 1 to n − l: If S ∪ TS ∪ {i} is an independent set, then add i to TS . By
this algorithm, we can easily get the following results by Lemma 1.

(i) S ∪TS is a basis of the matroid (V, I), denoted as BS and assume that k = |BS |.
(ii) If for some j, which is not added to TS , by Lemma 2 there must be a unique

circuit in S∪(TS∩{1, 2, . . . , j−1})∪{j}, denoted byC(S∪(TS∩{1, 2, . . . , j−1}), j).
Furthermore, if cj denotes the item with largest subscript except j in this circuit, i.e.,
with second-to-last subscript, then C(S ∪ (TS ∩ {1, 2, . . . , j − 1}), j) \ {cj} ∈ I.

We first present the following claim.

Claim 1. For any S ∪{r} ∈ I, assume BS 	= BS∪{r}, then BS∪{r} = BS \{cr}∪{r},
where cr is the element with second-to-last subscript in the unique circuit C(S ∪ (TS ∩
{1, 2, . . . , r − 1}), r). Please see Fig. 1 and Fig. 2.

Fig. 1. The relationship between BS and BS∪{r}.

In the following parts, we will prove (2) holds in four cases according to the rela-
tionship among the bases produced by S, S ∪ {r}, S ∪ {q} and S ∪ {r, q}.
Case 1. BS = BS∪{r} and BS∪{q} = BS∪{r,q}.
In this case, it is trivial to see that both sides of (2) is −ur.

Case 2. BS 	= BS∪{r} and BS∪{q} = BS∪{r,q}.
We will show that this case is impossible to happen. If not, we first know that BS 	=
BS∪{q}. By Claim 1, we have BS∪{q}\BS = {q}, which contradicts that r ∈ BS∪{q}\
BS .

Case 3. BS = BS∪{r} and BS∪{q} 	= BS∪{r,q}.
In this case, the left hand of (2) is equal to −ur. Replacing S by S ∪{q} in Claim 1, we
know there is a circuit C(S ∪{q}∪ (TS∪{q} ∩{l+1, . . . , r − 1}, {r}), and assume the

Two-Stage Stochastic Max-Weight Independent Set Problems 209

Fig. 2. The relationship between BS and BS∪{r}.

second-to-last element is still cr such that ucr ≥ ur, we know thatBS∪{r,q}\BS∪{q} =
{r} and BS∪{q} \ BS∪{r,q} = {cr}. Therefore, the right hand of (2) is −ucr . Then (2)
holds.

Case 4. BS 	= BS∪{r} and BS∪{q} 	= BS∪{r,q}.
First, we denote cr as the second-to-last element of the circuit C1 := C(S ∪ (TS ∩
{1, . . . , r − 1}), {r}) (see Fig. 3), and cq as the second-to-last element of the circuit
C2 := C(S ∪ (TS ∩ {1, . . . , q − 1}), {q}) in the case that BS 	= BS∪{q} (see Fig. 4).

Fig. 3. The circuit C1 produced by adding r to S ∪ (TS ∩ {1, 2, . . . , r − 1}).

Fig. 4. The circuit C2 produced by adding q to S ∪ (TS ∩ {1, 2, . . . , q − 1}).

In fact, if BS = BS∪{q}, it is trial to find that both hands of (2) are equal to −ucr .
Therefore, we assume that BS 	= BS∪{q} in the following part. According to Claim 1,
we have known that BS∪{r} = BS \ {cr} ∪ {r}, BS∪{q} = BS \ {cq} ∪ {q}, which
implies cr 	= q and cq 	= r since {r, q} ∈ I. In the following part, we will prove the
result is correct depending on the relationship between cr and cq.

Case 4.1. cr = cq.
In this subcase, we denote cr and cq by cr,q . Combining r /∈ C2 and q /∈ C1, by
Lemma 2 we know that there exists a circuit C ⊆ (C1 ∪ C2) \ {cr,q} contains r. Since
C1 is the unique circuit containing r before cr,q inBS∩{1, 2, . . . , r−1}, we have q must
be contained in C. Moreover, we know that C must also be the unique circuit produced
by adding r to BS∪{q} in the first stage. Assume c′

r is the element with largest subscript
in circuit C except r, q, then uc′

r
≥ ucr,q by the rules of choosing cr,q . Therefore, the

left hand of (2) is −ucr,q and the right hand of (2) is −uc′
r
, which implies that (2) holds.

210 M. Li et al.

Case 4.2. cr 	= cq.
At first, we remember that BS∪{r} = (BS ∪ {r}) \ {cr}, BS∪{q} = (BS ∪ {q}) \ {cq}
as well as cr, cq ∈ BS . Therefore, BS∪{r} \BS∪{q} = {r, cq} and BS∪{q} \BS∪{r} =
{q, cr}. By Lemma 3, for cr ∈ BS∪{q}, there should be an element y ∈ BS∪{r} such
that BS∪{q} \ {cr} ∪ {y} is a basis. According to the above discussion, we know that
y ∈ {r, cq}. If y = cq, then BS∪{q} \ {cr} ∪ {y} = BS \ {cr} ∪ {q} is a basis, which
contradicts to the fact that S ∪ (TS ∩ {1, 2, . . . , q − 1}) ∪ {q} contains a circuit. Thus
y = r. That is, BS \ {cr, cq} ∪ {r, q} is a basis. Therefore, BS \ {cr, cq} ∪ {r, q}
is a feasible solution to the second stage based on S ∪ {r, q}. Now, we pay attention
to the relationship between bases BS∪{q} and BS∪{r,q} by taking S ∪ {q} instead of
S in Claim 1. If we denote c′′

r as the last item except r and q in the circuit C3 :=
C(S ∪{q}∪ (TS∪{q} ∩{1, . . . , r − 1}), {r}), which is C(S ∪{q}∪ (TS ∩{1, . . . , r −
1}) \ {cq}, {r}), then BS∪{r,q} = BS \ {c′′

r , cq} ∪ {r, q}. So we will finish our proof
if we can show that BS∪{r,q} = BS \ {cr, cq} ∪ {r, q} by proving that ucr = uc′′

r
.

First, since BS \ {cr, cq} ∪ {r, q} is a feasible solution and BS \ {c′′
r , cq} ∪ {r, q} is

an optimal solution to the second stage based on S ∪ {r, q}, we obtain that ucr ≥ uc′′
r
.

Next, we will prove ucr ≤ uc′′
r
depending on whether cq ∈ C1 or not. If cq /∈ C1, we

know that C1 is the unique circuit in (BS \{cq})∪{r}. Moreover, (BS \{cq})∪{q} is
an independent set and (BS \{cq})∪{r, q} is a dependent set. That is, there is a unique
circuit in (BS \{cq})∪{r, q} by Lemma 2. Thus, this unique circuit should be the same
as C1, as well as C3. Therefore, ucr = uc′′

r
. So we assume that cq ∈ C1, then ucq ≥ ucr

(or cq < cr) because of the choice of cr, which implies that r /∈ C2 since cr < r and
the choice of cq. Moreover, with cq ∈ C1 ∩ C2 and r ∈ C1 \ C2, there is a circuit
C ′ ⊆ (C1 ∪ C2) \ {cq} by Lemma 2, which contains r. Without loss of generality, we
can assume the elements in the two circuits C1 and C2 with non-increasing weights as
follows: C1 = {i1, . . . , il, cq, il+2, . . . , cr, r} and C2 = {j1, j2, . . . , cq, q}. It is easy to
know that both C1 \ {cq} and (C1 ∪ C2) \ {cq, q} are independent sets. Then q ∈ C ′.
Since there is only one circuit C ′′ in S ∪ (TS∪{r,q} ∩ {1, 2, . . . ,max{r, q}}) ∪ {r, q},
thusC ′′ = C ′. That is, c′′

r ∈ C ′. Then by the rule of chosen cr, we know that ucr ≤ uc′′
r
.

�
Since uniform matroid is a special matroid, the two-stage stochastic maximum-

weight problem with cardinality constraints is submodular. Therefore, we can get the
following corollary immediately.

Corollary 1 [11]. Assume that V is a finite ground set, the function

max
S⊆V,|S|≤k

∑

i∈S

ri + E

[
max

T⊆V \S,|T∪S|≤k

∑

i∈T

ui(ω)

]
,

is submodular.

Table 1. The input of Example 1 with L = 100.

V 1 2 3 4 5 6

size 38 13 25 35 45 48

u 55 14 15 26 84 25

Two-Stage Stochastic Max-Weight Independent Set Problems 211

In this part, we can show that if the independent set is not a matroid, such as knap-
sack constraint, the submodularity may be destroyed by showing a counterexample in
the following section. Given V = {1, 2, . . . , n}, nonnegative size si(1 ≤ i ≤ n) and
L, as well as the independence system (V, I) defined by I := {S ⊆ V |∑i∈S si ≤ L},
then we can similarly use the function defined in (1) to describe the two-stage stochas-
tic maximum-weight knapsack independent set problem. In the following part, we will
show that Qu(ω)(S) is neither submodular nor supermodular by a counterexample.
Therefore, the same conclusion about f(S) can be obtained.

Example 1. The information of this example is listed in Table 1. We first take S1 = {1},
r1 = {2}, q1 = {3}, then

TS1 = {2, 5}, TS1∪{r1} = {5},

TS1∪{q1} = {4}, TS1∪{r1,q1} = ∅.

Thus,

Qu(S1 ∪ {r1}) − Qu(S1) = u5 − (u2 + u5) = −14,
Qu(S1 ∪ {r1, q1}) − Qu(S1 ∪ {q1}) = 0 − (u4) = −26.

Therefore, Qu(S1 ∪ {r1}) − Qu(S1) > Qu(S1 ∪ {r1, q1}) − Qu(S1 ∪ {q1}).
Then take S2 = {1}, r2 = {3}, q2 = {4}, then

TS2 = {2, 5}, TS2∪{r2} = {4},

TS2∪{q2} = {3}, TS2∪{r2,q2} = ∅.

Thus,

Qu(S2 ∪ {r2}) − Qu(S2) = u4 − (u2 + u5) = −72,
Qu(S2 ∪ {r2, q2}) − Qu(S2 ∪ {q2}) = 0 − (u3) = −15.

Therefore, Qu(S2 ∪ {r2}) − Qu(S2) < Qu(S2 ∪ {r2, q2}) − Qu(S2 ∪ {q2}).

3.2 A 1
2
-Approximation Algorithm for the Discrete Two-Stage Stochastic

Maximum-Weight Matroid Independent Set Problem

In this subsection, we further introduce the discrete two-stage matroid independent
set problem, which mainly follows [11]. Compared to two-stage matroid independent
set problem, the second stage weight u(ω) here only has values chosen from a finite
set {u1, u2, . . . , um} with n-dimensional vectors and the probability of taking ui is
pi(1 ≤ i ≤ m). We have known that the best approximation ratio for non-monotone
submodular maximization problem with a matroid constraint is 1

4 − ε. In this part, we
can present a 1

2 -approximation algorithm for discrete two-stage stochastic maximum-
weight matroid independent set problem. When u(ω) is a general random variable,
the solution of two-stage stochastic maximum-weight matroid independent set problem
could be approximated by the solution of a sequence of discrete two-stage stochastic
maximum-weight matroid independent set problems by the sample average approxima-
tion methods [11]. Let ūi = E[ui(ω)] denote the expected weight of element i in the
second stage.

212 M. Li et al.

Algorithm 1. Greedy algorithm for the discrete two-stage stochastic maximum-weight
matroid independent set problem.
1: Apply Best-In-Greedy algorithm to the problem according to the weights h of the first stage

and obtain the revenue h1;
2: Apply Best-In-Greedy algorithm to the problem according to the weights ū of the second

stage and obtain the revenue h2;
3: if h1 ≥ h2 then
4: Choose the elements obtained in the first stage;
5: else
6: Choose the elements obtained in the second stage;
7: end if

Theorem 2. Algorithm 1 is a 1
2 -approximation algorithm for discrete two-stage

stochastic maximum-weight matroid independent set problem.

References

1. Balkanski, E., Rubinstein, A., Singer, Y.: An exponential speedup in parallel running time
for submodular maximization without loss in approximation. In: Proceedings of SODA, pp.
283–302 (2019)

2. Buchbinder N., Feldman M.: Deterministic algorithms for submodular maximization prob-
lems. ACM Transactions on Algorithms 14(3), 1–20 (2018)

3. Buchbinder N., Feldman M., Garg M.: Deterministic (1/2+ε)-approximation for submodular
maximization over a matroid. In: Proceedings of SODA, pp. 241–254 (2019)

4. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submodular func-
tion subject to a matroid constraint. SIAM J. Comput. 40, 1740–1766 (2011)

5. Chekuri C., Quanrud K.: Parallelizing greedy for submodular set function maximization in
matroids and beyond. In: Proceedings of STOC, pp. 78–89 (2018)

6. Dyer, M., Stougie, L.: Computational complexity of stochastic programming problems.
Math. Program. 106, 423–432 (2006)

7. Edmonds, J.: Matroids and the greedy algorithm. Math. Program. 1, 127–136 (1971)
8. Flaxman A.D., Frieze A., Krivelevich M.: On the random 2-stage minimum spanning tree.

In: Proceedings of SODA, pp. 919–926 (2005)
9. Gupta, A., Kumar, A., Pál, M., Roughgarden, T.: Approximations via cost-sharing: Simpler

and better approximation algorithms for network design. J. ACM 54, 1–38 (2007)
10. Gupta, A., Pál, M., Ravi, R., Sinha, A.: Sampling and cost-sharing: approximation algorithms

for stochastic optimization problems. SIAM J. Comput. 40, 1361–1401 (2011)
11. He, Q., Ahmed, S., Nemhauser, G.L.: Sell or hold: a simple two-stage stochastic combinato-

rial optimization problem. Oper. Res. Lett. 40, 69–73 (2012)
12. Kong, N., Schaefer, A.J.: A factor 1

2
approximation algorithm for two-stage stochastic match-

ing problems. Eur. J. Oper. Res. 172, 740–746 (2006)
13. Korte B., Vygen J.: Combinatorial Optimization: Theory and Algorithms, Fifth Edition.

Springer (2011)
14. Kosuch, S.: Approximability of the two-stage stochastic knapsack problem with discretely

distributed weights. Disc. Appl. Math. 165, 195–204 (2014)
15. Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Maximizing nonmonotone submod-

ular functions under matroid or knapsack constraints. SIAM J. Disc. Math. 23, 2053–2078
(2010)

Two-Stage Stochastic Max-Weight Independent Set Problems 213

16. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing
submodular set functions-I. Math. Program. 14, 265–294 (1978)

17. Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack
constraint. Oper. Res. Lett. 32, 41–43 (2004)

Routing and Scheduling Problems with
Two Agents on a Line-Shaped Network

Hao Yan and Xiwen Lu(B)

Department of Mathematics, East China University of Science and Technology,
Shanghai 200237, China
xwlu@ecust.edu.cn

Abstract. We consider routing and scheduling problems with two
agents on a line-shaped network in this paper. There are two agents
and each agent has some jobs which are located in the network. Let
L = (V, E) be a line-shaped network, where V = {v0} ⋃

V A ⋃
V B is

the set of n + 1 vertices and E is a set of edges. A job v is located at
some vertex v, which is also denoted as v. The travel time d(u, v) is
associated with each edge {u, v} ∈ E. The vehicle starts from an ini-
tial vertex v0 ∈ V and visits all jobs for their processing. The objective
is to find a route of the vehicle that minimizes the completion time of
agent A under the constraint condition that the completion time of agent
B is no more than the threshold value Q. We express this problem as
line−1|CB

max ≤ Q|CA
max. For the problem without release time, an O(n)

time algorithm is provided. For the problem with release time, we show
that this problem is NP-hard even though there is only one job in agent
B and the jobs in agent A have no release time. Finally we give a (3, 3)-
approximation algorithm for the before general problem.

Keywords: Network scheduling · Agent scheduling · Polynomial time
algorithm · Approximation algorithm

1 Introduction

In recent years vehicle scheduling problems(VSP) have become an important
research area, due to their various applications in some applied disciplines. For
the single-vehicle scheduling problems, a single-vehicle starts from the depot and
visits the jobs at different vertices in order to process them. Each job has its
own release time, processing time. The objective is to find a routing schedule of
the vehicle that minimizes the completion time.

For the single agent problem on a line (L-VSP), it has been shown to be NP-
hard by Tsitsiklis [1]. Psaraftis et al. [2] showed that there was a 2- approximation
algorithm for this problem, and if all the processing times are zero (L-VRP),
both the tour version and the path version can be solved in polynomial time. If

This research was supported by the National Natural Science Foundation of China
under Grant 11871213.

c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 214–223, 2021.
https://doi.org/10.1007/978-3-030-92681-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_18&domain=pdf
http://orcid.org/0000-0003-4608-3254
http://orcid.org/0000-0002-4728-6048
https://doi.org/10.1007/978-3-030-92681-6_18

Routing and Scheduling Problems with Two Agents 215

the jobs have additional deadline, L-VRP is shown to be strongly NP-hard by
Tsitsiklis [1]. But if we don’t consider the release time, L-VRP can be solved in
polynomial time. A 3

2 -approximation algorithm was provided by Karuno et al. [3]
for tour version of L-VSP in which the depot is at one of the two extreme points
and Gaur et al. [4] presented a 5

3 -approximation algorithm for the problem with
the same setting except that the depot is located arbitrarily on the line. For the
path-version of L-VSP, a 3

2 -approximation algorithm was given by Yu and Liu
[5].

Agent scheduling problems have been studied 18 years since they were intro-
duced by Baker and Smith [6] and Agnetis et al. [7]. During this period, vari-
ous problems have been studied by a large number of researchers, for example
Agnetis et al. [8] extended some problems which have different functions for
single agent to multi-agent version, and Cheng et al. [9] provided complexity
results for some special cases of multi-agent scheduling problems. But there is
little research on multi-agent vehicle scheduling problems that is widely used
in real life such as an AGV on a shop floor which always belongs to different
customers and in the aviation network, aircraft also belongs to many operators.
The research of the multi-agent vehicle scheduling problems has strong theoret-
ical and practical significance.

In this paper, we study the two-agent vehicle scheduling problems on a line-
shaped network. There are two competing agents in a given network, called A
and B. Let L = (V,E) be a line-shaped network, where V = {v0}

⋃
V A

⋃
V B

is a set of n + 1 vertices and E is a set of edges. A job v is located at some
vertex v, which is also denoted as v. There is a single vehicle, which is initially
situated at the depot v0 at time 0. Agent A and agent B has nA and nB jobs
to be processed by the single vehicle respectively. We also denote the job set of
agent A and agent B by V A = {vA

1 , vA
2 , ..., vAnA

} and V B = {vB
1 , vB

2 , ..., vBnB
}. Let

n = nA + nB . The vehicle starting from the depot v0 visits all the jobs on the
line-shaped network to process them. The travel time d(u, v) is associated with
each edge {u, v} ∈ E. Each job v has its release time r(v) and processing time
h(v). For any arbitrary schedule π, let CA

max(π) and CB
max(π) be the makespan

for agent A and agent B, respectively. The objective of the problem is to find an
optimal schedule that minimizes the makespan of agent A under the constraint
condition that the completion time of agent B is no more than the threshold
value Q. We can express this problem as line − 1|CB

max ≤ Q|CA
max.

The rest of the paper is organized as follows. In Sect. 2, we provide a polyno-
mial algorithm for the problem without processing time. In Sect. 3, we show the
problem is NP-hard even though there is only one job in agent B and the jobs
in agent A have no release time. Furthermore, we give a (3, 3)-approximation
algorithm for general problem.

2 Problem Without Release Time

In this section, we will give a polynomial algorithm for the problem line −
1|r(vj) = 0, CB

max ≤ Q|CA
max. According to the different value ranges of Q, we

216 H. Yan and X. Lu

will give different properties of the optimal schedule. Then we enumerate all
the schedules that satisfy those properties, and select the best feasible schedule
which is the optimal schedule under the constraint.

For simplicity, we only consider the case that the rightmost endpoint of the
line-shaped network belongs to agent B. For the case that the rightmost endpoint
belongs to agent A, we can give the similar lemmas and a homologous algorithm
to solve it. The detailed algorithm will be given in the Appendix at the end of
the paper.

Next, we give some notations used in following.
π∗: the optimal schedule of the problem.
LX : the length from depot v0 to vertex vX

nX
for X ∈ {A,B}.

h(v): the processing time of the job v.
H: total processing time of jobs in V .
HX : total processing time of jobs in V X for X ∈ {A,B}.
W = {vB

1 , ..., vBi }: vertex set of agent B located before vA
nA

on the line-shaped
network L.

C(v): the completion time of the job v.
Before giving the following lemmas, we provide a trivial lower bound of this

problem. That is CA
max(π∗) ≥ LA + HA.

Lemma 2.1. If LB + H ≤ Q, there is CA
max(π∗) < CB

max(π∗) in the optimal
schedule π∗.

Proof. Assume that there is CB
max(π∗) ≤ CA

max(π∗) in the optimal schedule π∗.
Let vA

x to be the last job completed in agent A. We know CB
max(π∗) ≤ C(vA

x).
Thus CA

max(π∗) = C(vA
x) ≥ LB + HB + d(vB

nB
, vA

x) + HA.
We construct a new schedule π such that the vehicle processes all jobs from

left to right one by one on the line-shaped network. Because the rightmost end-
point belongs to agent B, we gain that CA

max(π) ≤ LA + HA + HB . Hence we
get that CA

max(π) < CA
max(π∗). This is a contradiction with the optimal schedule

π∗.

Lemma 2.2. If LB + HB ≤ Q < LB + H, there is CB
max(π∗) < CA

max(π∗) in
the optimal schedule π∗.

Proof. We will prove this lemma by counter evidence method. Assume that there
is CA

max(π∗) ≤ CB
max(π∗) in the optimal schedule π∗. We know that the jobs in

agent A are completed before the jobs in agent B. Thus we have CB
max(π∗) ≥

LB + H > Q. This is a contradiction with the constraint.

Lemma 2.3. If CA
max(π∗) < CB

max(π∗) and W �= ∅, there are results as follows.
(1) If vB

l (l ≤ i) is completed before CA
max(π∗), then vB

k (1 ≤ k ≤ l − 1) must
be completed before CA

max(π∗).
(2) All jobs in W completed before CA

max(π∗) must be processed continuously
from left to right according to the index on the line-shaped network.

(3) For agent B, all the jobs in {V B \ W} are processed after CA
max(π∗). In

other words, only the jobs in W can be processed before CA
max(π∗).

Routing and Scheduling Problems with Two Agents 217

Proof. (1) Assume that vB
k is the first job in {vB

1 , ..., vBl−1} processed after
CA

max(π∗) in π∗. Then we have the following inequality CA
max(π∗) ≥ LA + HA +

∑k−1
j=1 h(vB

j) + h(vB
l).

Next, we construct a new schedule π. In the first phase, the vehicle starts
from v0 to vA

nA
processing the jobs in V A

⋃{vB
1 , ..., vBk−1}. In the second phase,

the vehicle processes the remaining jobs along the shortest path.
Because vB

k is processed after CA
max(π) and the jobs in {vB

k , ..., vBnB
} are pro-

cessed along the shortest path in π, we know that CB
max(π) ≤ CB

max(π∗) ≤ Q.
Thus π is a feasible schedule. Besides we have CA

max(π) = LA + HA +
∑k−1

j=1 h(vB
j) < CA

max(π∗). Hence we know π is a better feasible schedule, which
is contrary to the optimal schedule π∗.

Thus vB
k is processed before CA

max(π∗), and we can prove that all the jobs in
{vB

1 , ..., vBl−1} are processed before CA
max(π∗) in π∗ by the similar method.

(2) Assume that {vB
1 , ..., vBk , vB

k+1, ..., v
B
l } are completed before CA

max(π∗)
according to (1) and C(vB

k+1) < C(vB
k). Let H

′
be the total processing time

of the remaining jobs in agent B completed before CA
max(π∗). Then we get that

CA
max(π∗) ≥ LA + HA + h(vB

k+1) + h(vB
k) + 2d(vB

k , vk+1) + H
′
.

Construct a new schedule π such that the vehicle processes the jobs in
V A

⋃{vB
1 , ..., vBk , vB

k+1, ..., v
B
l } one by one from v0 to vA

nA
and processes the

remaining jobs along the shortest path.
Because the jobs in {vB

1 , ..., vBl } are processed before CA
max(π) and the jobs in

{vB
l+1, ..., v

B
nB

} are processed along the shortest path in π, we get that CB
max ≤ Q.

Hence π is a feasible schedule.
For the completion time of agent A in π, we have CA

max(π) = LA + HA +
h(vB

k+1) + h(vB
k) + H

′
< CA

max(π∗). So π is a better feasible schedule than π∗.
This is a contradiction.

(3) We can use a method similar to that in (1) (2) to prove the conclusion
in (3). For simplicity, the proof is omitted.

Lemma 2.4. If CB
max(π∗) < CA

max(π∗) in the optimal schedule π∗, all jobs in
V A completed before CB

max(π∗) must be processed continuously from left to right
on the line-shaped network L.

Proof. The proof method is similar to Lemma 2.3 (2).

We will use above Lemmas to give the following polynomial algorithm A for the
problem line − 1|CB

max ≤ Q|CA
max. We enumerate all the schedules that satisfy

those Lemmas, and select the best feasible schedule as the optimal schedule.
In the following, for the convenience of description, we denote the set

{a1, a2, ..., ah} as ∅ when h = 0.

Algorithm A
Step1. According to the following candidate schedules to construct the sched-

ule πB .
For s = 0, 1, ..., i − 1,

218 H. Yan and X. Lu

π1B
s : first the vehicle processes the jobs in V A

⋃{vB
1 , ..., vBs } from the depot

v0 to vA
nA

. Next, the vehicle goes to vB
nB

without processing any job, and finally
the vehicle returns to vertex vB

s+1 to process the remaining jobs in JB one by
one.

π2B
s : first the vehicle processes the jobs in V A

⋃{vB
1 , ..., vBs } from the depot

v0 to vA
nA

. Next, the vehicle goes to vB
s+1 without processing any job, and finally

the vehicle processes the remaining jobs in V B from vB
s+1 to vB

nB
in turn.

For s = i,
πB
i : the vehicle processes all the jobs one by one v0 to vB

nB
.

Step2. Choose the best feasible schedule from {π1B
s , s = 0, 1, ..., i − 1},

{π2B
s , s = 0, 1, ..., i − 1} and πB

i as πB with the makespan no more than Q
for agent B.

Step3. By the following candidate schedules to construct the schedule πA.
For y = 0, 1, ..., nA − 1,
πA
y : first the vehicle processes the jobs in V B

⋃{vA
1 , ..., vAy } from the depot

v0 to vB
nB

. Next, the vehicle returns to vertex vA
y+1 to process the remaining jobs

in V A in turn.
Step4. Choose the best feasible schedule from {πA

y , y = 0, 1, ..., nA −1} as πA

under the threshold value constraint.
Step5. If CA

max(πB) ≤ CA
max(πA), select πB as the optimal schedule π. Oth-

erwise, choose πA as the optimal schedule π.

Theorem 2.1. The two-agent problem line − 1|CB
max ≤ Q|CA

max can be solved
in O(n) time by Algorithm A.

Proof. According to different value ranges of Q, we will prove this theorem by
the following four cases respectively.

Case1. LA+min{d(vA
nA

, vB
1)+d(vB

1 , vB
nB

), d(vA
nA

, vB
nB

)+d(vB
nB

, vB
1)}+H ≤ Q.

If CA
max(π1B

0) < CA
max(π2B

0), let π = π1B
0 . Otherwise let π = π2B

0 . Thus
there is

CA
max(π) = LA + HA ≤ CA

max(π
∗)

CB
max(π) = LA +min{d(vA

nA
, vB

1) + d(vB
1 , vB

nB
), d(vA

nA
, vB

nB
) + d(vB

nB
, vB

1)} + H ≤ Q

(1)
So π is an optimal schedule in this case.

Case2. LB + H ≤ Q < LA + min{d(vA
nA

, vB
1) + d(vB

1 , vB
nB

), d(vA
nA

, vB
nB

) +
d(vB

nB
, vB

1)} + H.
According to Lemma 2.1, we know CA

max(π∗) < CB
max(π∗) in the optimal

schedule π∗ in this case. Thus we can construct the following candidate schedules
{π1B

s , s = 0, 1, ..., i − 1}, {π2B
s , s = 0, 1, ..., i − 1} and πB

i by Lemma 2.3, and
calculate the completion time of agent B for each candidate.

⎧
⎪⎨

⎪⎩

CB
max(π1B

s) = LA + d(vA
nA

, vB
s+1) + d(vB

s+1, v
B
nB

) + H

CB
max(π2B

s) = LA + d(vA
nA

, vB
nB

) + d(vB
nB

, vB
s+1) + H

CB
max(πB

i) = LB + H

(2)

Routing and Scheduling Problems with Two Agents 219

Thus there is at least one schedule πB
i satisfying the constraint. Therefore,

there must be an optimal schedule π from the candidate schedules which satisfy
the constraint. Because {π1B

s , s = 0, 1, ..., i − 1}⋃{π2B
s , s = 0, 1, ..., i − 1}⋃

πB
i

are all the candidate schedules meeting Lemma 2.3 and π is optimal of those
schedules, then π is an optimal schedule in this case.

Case3. LB + HB ≤ Q < LB + H.
By Lemma 2.2, we gain that CB

max(π∗) < CA
max(π∗) in the optimal schedule

π∗ in this case. Similarly we can construct the following candidate schedules
{πA

y , y = 0, 1, ..., nA − 1} by Lemma 2.4.
When 1 ≤ y ≤ nA − 1, there is CB

max(πA
y) = LB + HB +

∑y
j=1 h(vA

j). When
y = 0, we have CB

max(πA
0) = LB + HB . So there is at least one feasible schedule

πA
0 satisfying the constraint. Thus there must be a feasible optimal schedule π

from the candidate schedules. By the same method in Case2, we know that π is
an optimal schedule in this case.

Case4. When Q < LB + HB .
There is no feasible schedule in this case.
Through the construction process of the schedule π in algorithm A, the com-

putation in Step1 and Step3 is at most O(n). So this problem can be solved in
O(n) time by Algorithm A.

3 Problem with Release Time

3.1 Special Case

We will investigate the complexity of the problem. We only study a special case
of the problem. For the special problem, there are nA jobs in V A without release
time and there is only one job vB

1 in V B which has the release time r(vB
1). This

problem can be described as line − 1|r(vA
j) = 0, r(vB

1), CB
max ≤ Q|CA

max. Next,
we will prove even this special problem is NP-hard.

Theorem 3.1. The problem line − 1|r(vA
j) = 0, r(vB

1), CB
max ≤ Q|CA

max is NP-
hard.

Proof. We can prove this theorem by reduction from Partition-Problem.
Partition-Problem: given a set A = {a1, a2, ..., am} with m positive integers

and its index set is M = {1, 2, ...,m}. Let
∑m

i=1 ai = F . Is there a subset S ⊆ M
such that

∑
i∈S ai =

∑
i∈M\S ai = 1

2F?
For any instance of Partition-Problem, we can construct an instance of line−

1|r(vA
j) = 0, r(vB

1), CB
max ≤ Q|CA

max as follows. There is a line-shaped network
with length L. For the job set, V A contains m jobs located at the leftmost vertex
of the line. For any job vA

i (i = 1, 2, ...,m), the release time is r(vA
i) = 0 and the

processing time is h(vA
i) = ai. V B has only one job vB

1 located at the rightmost
vertex of the line, and the release time is r(vB

1) = 1
2F + L and the processing

time is h(vB
1) = b. Let Q = L + 1

2F + b and τ = 2L + F + b. Is there a feasible
schedule π such that CA

max(π) ≤ τ holds under the condition of CB
max(π) ≤ Q?

220 H. Yan and X. Lu

If there is a subset S ⊆ M such that
∑

i∈S ai =
∑

i∈M\S ai = 1
2F , we can

construct a schedule π such that in the first phase, the vehicle processes the
jobs in {vA

i , i ∈ S}⋃{vB
1 } from left to right and in the second phase, the vehicle

processes the remaining jobs in V A from vB
1 to the depot. Because

∑
i∈S h(vA

i) =
1
2F and the length of the line is L, we know that the arriving time of the vehicle
at vB

1 is 1
2F + L. Thus there is no waiting before processing vB

1 in π. So we can
calculate that ⎧

⎨

⎩

CB
max(π) = L +

1
2
F + b ≤ Q

CA
max(π) = 2L + F + b ≤ τ

(3)

Hence we know that π is a feasible schedule and CA
max(π) ≤ τ for decision version

of the routing and scheduling problem.
If there is a feasible schedule π, we have CB

max(π) ≤ Q = L+ 1
2F +b. Because

the release time of vB
1 is r(vB

1) = 1
2F + L and the processing time of vB

1 is
h(vB

1) = b, we know that the arriving time of the vehicle at vB
1 is earlier than

L + 1
2F . Assume that the jobs in {vA

i , i ∈ S1} are completed before CB
max(π) in

the schedule π, we have
∑

i∈S1
h(vA

i) ≤ 1
2F . Because CA

max(π) ≤ τ = 2L+F +b,
we can obtain

∑
i∈M\S1

h(vA
i) ≤ 1

2F . Thus we can get that
∑

i∈S1
h(vA

i) =
∑

i∈M\S1
h(vA

i) = 1
2F .

So we have the conclusion that the problem line−1|r(vA
j) = 0, r(vB

1), CB
max ≤

Q|CA
max is NP-hard.

According to Theorem 3.1, we can obtain the following corollary.

Corollary 3.1. The problem line − 1|r(vj), CB
max ≤ Q|CA

max is NP-hard.

3.2 General Case

In this subsection, we will give an approximation algorithm for the general prob-
lem. Let π∗ be the optimal schedule of the problem and L = max{LA, LB}.
Assume rXmax = max{r(v), v ∈ V X} be the maximal release time in V X and
rmax = max{r(v), v ∈ V } be the maximal release time in V .

By the definition of (β1, β2, ..., βg)-approximation algorithm about agent
scheduling problems [10]. We can give the following definition of (βA, βB)-
approximation algorithm for the problem line − 1|rj , CB

max ≤ Q|CA
max.

Definition 3.1. Let CA
max(π∗) be the optimal makespan and Q be the threshold

value for an instance of the problem line − 1|rj , CB
max ≤ Q|CA

max. An algorithm
is called a (βA, βB)- approximation algorithm if it provides a schedule π such
that CA

max(π) ≤ βACA
max(π∗) and CB

max(π) ≤ βBQ. Moreover, if βA = βB = β,
we say that the algorithm is a β-approximation algorithm.

Next, we provide several lower bounds used in this subsection.

Lemma 3.1. If CA
max(π∗) < CB

max(π∗) in the optimal schedule π∗, then

(1)CB
max(π∗) ≥ LB + HA + HB , for LA < LB

(2)CB
max(π∗) ≥ LA + d(vA

nA
, vB

nB
) + HA + HB , for LA > LB

(4)

Routing and Scheduling Problems with Two Agents 221

Proof. (1) This is a trivial case. Then the proof is omitted.
(2) Since the last completed job belongs to agent B and LA > LB , then

the total traveling time is no less than LA + d(vA
nA

, vB
nB

). Thus CB
max(π∗) ≥

LA + d(vA
nA

, vB
nB

) + HA + HB .

Lemma 3.2. If CB
max(π∗) < CA

max(π∗) in the optimal schedule π∗, then

(1)CA
max(π∗) ≥ LA + HA + HB , for LA > LB

(2)CA
max(π∗) ≥ LB + d(vB

nB
, vA

nA
) + HA + HB , for LA < LB

(5)

Proof. The proof method is similar to Lemma 3.1.

An approximation algorithm B for line−1|r(vj), CB
max ≤ Q|CA

max is described
as follows.

Algorithm B
Step1. Schedule the jobs in JA one by one from v0 to vA

nA
, then schedule the

jobs in JB along the shortest path. Denote the schedule by π1.
Step2. Schedule the jobs in JB one by one from v0 to vB

nB
, then schedule the

jobs in JA along the shortest path. Denote the schedule by π2.
Step3. Choose the better feasible schedule from π1 and π2 as π with the makespan
no more than Q for agent B.

Theorem 3.2. For the problem line − 1|r(vj), CB
max ≤ Q|CA

max, the Algorithm
B is a 3-approximation algorithm.

Proof. We will prove that the conclusion is true by following two cases.
When CA

max(π∗) < CB
max(π∗), let π = π1.

By Step 1 of Algorithm B, we have CA
max(π1) ≤ rAmax + LA + HA ≤

2CA
max(π∗).
If there is no waiting time for processing the jobs in agent B in π1, then we

divide the discussion into two cases.
(1) LA < LB . We have CB

max(π1) ≤ rAmax + LA + HA +
min{d(vA

nA
, vB

1), d(vA
nA

, vB
nB

)} + LB + HB . Because LA < LB , then LA +
min{d(vA

nA
, vA

1), d(vA
nA

, vB
nB

)} ≤ LB . Thus we have CB
max(π1) ≤ rAmax+LB+LB+

HA + HB . According to Lemma 3.1(1), we gain CB
max(π1) ≤ 3CB

max(π∗) ≤ 3Q.
(2) LA > LB . We know CB

max(π1) ≤ rAmax+LA+HA+d(vA
nA

, vB
nB

)+LB+HB.
By Lemma 3.1(2), we have CB

max(π1) ≤ rAmax + LB + CB
max(π∗) ≤ 3CB

max(π∗) ≤
3Q.

If there is some waiting time for processing the jobs in agent B in π1, then
we can assume vB

k is the last waiting job. Thus we know that CB
max(π1) ≤

r(vB
k) + h(vB

k) + HB + LB ≤ 2CB
max(π∗) ≤ 3Q.

Therefore we know CA
max(π1) ≤ 2CA

max(π∗) and CB
max(π1) ≤ 3Q when

CA
max(π∗) < CB

max(π∗).
When CA

max(π∗) > CB
max(π∗), let π = π2. By a similar way, we gain

CA
max(π2) ≤ 3CA

max(π∗) and CB
max(π2) ≤ 2CB

max(π∗) ≤ 2Q.

222 H. Yan and X. Lu

So we have {
CA

max(π) ≤ 3CA
max(π∗)

CB
max(π) ≤ 3Q

(6)

Thus by the Definition 3.1 we know that the Algorithm B is a 3-approximation
algorithm.

4 Conclusions

In this paper we consider single vehicle scheduling problem with two-agent
on a line-shaped network. We prove the problem line − 1|r(vj), CB

max ≤
Q|CA

max is NP-hard. Moreover we have presented a polynomial Algorithm A
for line − 1|r(vj) = 0, CB

max ≤ Q|CA
max and a 3-approximation algorithm for

line − 1|r(vj), CB
max ≤ Q|CA

max.
However, it is still an open problem that whether the approximation bounds

for the approximation algorithm is tight. (βA, βB)-approximation algorithms
would be very interesting in future for the multi-agent vehicle scheduling problem
on a given network. We will try to provide a better approximation algorithm for
the problem. In this paper, we only consider the two-agent scheduling problem
on a line-shaped network due to the complexity of the problem. Approximation
algorithms for multi-agent scheduling problems may be considered as well in the
future.

Appendix

For the problem line − 1|r(vj) = 0, CB
max ≤ Q|CA

max, when the rightmost end-
point belongs to agent A, we will give the following Algorithm C. This algorithm
is actually similar to Algorithm A. Let M = {vA

1 , ..., vAj } be the vertex set of
agent A located before vB

nB
on the line-shaped network L.

Algorithm C
Step1. According to the following candidate schedules to construct the sched-

ule σA.
For h = 0, 1, ..., j − 1,
σ1A
h : first the vehicle processes the jobs in V B

⋃{vA
1 , ..., vAh } from the depot

v0 to vB
nB

. Next, the vehicle goes to vA
nA

without processing any job, and finally
the vehicle returns to vertex vA

h+1 to process the remaining jobs in JA one by
one.

σ2A
h : first the vehicle processes the jobs in V B

⋃{vA
1 , ..., vAh } from the depot

v0 to vB
nB

. Next, the vehicle goes to vA
h+1 without processing any job, and finally

the vehicle processes the remaining jobs in V A from vA
h+1 to vA

nA
in turn.

For h = j,
σA
j : the vehicle processes all the jobs one by one v0 to vA

nA
.

Step2. Choose the best feasible schedule from {σ1A
h , h = 0, 1, ..., j − 1},

{σ2A
h , h = 0, 1, ..., j − 1} and σA

j as σA with the makespan no more than Q
for agent B.

Routing and Scheduling Problems with Two Agents 223

Step3. By the following candidate schedules to construct the schedule σB.
For l = 0, 1, ..., nB − 1,
σB
l : first the vehicle processes the jobs in V A

⋃{vB
1 , ..., vBl } from the depot

v0 to vA
nA

. Next, the vehicle returns to vertex vB
l+1 to process the remaining jobs

in V B in turn.
Step4. Choose the best feasible schedule from {σB

l , l = 0, 1, ..., nB −1} as σB

under the threshold value constraint.
Step5. If CA

max(σB) ≤ CA
max(σA), select σB as the optimal schedule σ. Oth-

erwise, choose σA as the optimal schedule σ.

According to different value ranges of Q, we can give following four cases. (1)
2LA−d(v0, vB

1)+H ≤ Q; (2)LA+d(vA
nA

, vB
nB

)+H ≤ Q < 2LA−d(v0, vB
1)+H; (3)

LB+HB ≤ Q < LA+d(vA
nA

, vB
nB

)+H; (4) Q < LB+HB . By the similar method
to Theorem 2.1, we can prove that the problem line − 1|r(vj) = 0, CB

max ≤
Q|CA

max is solvable in O(n) time, when the rightmost endpoint belongs to agent
A.

References

1. Tsitsiklis, J.N.: Special cases of traveling salesman and repairman problems with
time windows. Networks 22(3), 263–282 (1992)

2. Psaraftis, H., Solomon, M.M., Magnanti, T.L., Kim, T.U.: Routing and scheduling
on a shoreline with release times. Manag. Sci. 36, 212–223 (1990)

3. Karuno, Y., Nagamochi, H., Ibaraki, T.: A 1.5-approximation for single vehicle
scheduling problem on a line with release and handling times. In: Proceedings
ISCIE/ASME 1998 Japan-USA Symp on Flexible Automation, Ohtsu, Japan, pp.
1363–1368 (1998)

4. Gaur, D.R., Gupta, A., Krishnamurti, R.: A 5
3
-approximation algorithm for

scheduling vehicles on a path with release and handling times. Inf. Process. Lett.
86(2), 87–91 (2003)

5. Yu, W., Liu, Z.: Single-vehicle scheduling problems with release and service times
on a line. Networks 57(2), 128–134 (2010)

6. Baker, K.R., Smith, J.C.: A multiple-criterion model for machine scheduling. J.
Sched. 6(1), 7–16 (2003)

7. Agnetis, A., Mirchandani, P.B., Pacciarelli, D., Pacifici, A.: Scheduling problem
with two competing agents. Oper. Res. 52(2), 229–242 (2004)

8. Agnetis, A., Pacciarelli, D., Pacifici, A.: Multi-agent single machine scheduling.
Ann. Oper. Res. 150(1), 3–15 (2007)

9. Cheng, T.C.E., Ng, C.T., Yuan, J.J.: Multi-agent scheduling on a single machine
with max-form criteria. Eur. J. Oper. Res. 188(2), 603–609 (2008)

10. Lee, K., Choi, B.C., Leung, J.Y.T., Pinedo, M.L.: Approximation algorithms for
multi-agent scheduling to minimize total weighted completion time. Inf. Process.
Lett. 109(16), 913–917 (2009)

The Price of Anarchy of Generic Valid
Utility Systems

Yin Yang1, Qingqin Nong1(B), Suning Gong1, Jingwen Du1, and Yumei Liang2

1 School of Mathematical Science, Ocean University of China, Qingdao 266100,
Shandong, People’s Republic of China

qqnong@ouc.edu.cn
2 Shanghai Lixin University of Accounting and Finance, Shanghai 201620,

People’s Republic of China

Abstract. In this paper we introduce an (a, b)-generic (a, b ∈ IR+) valid
utility system, a class of non-cooperative games with n players. The social
utility of an outcome is measured by a submodular function. The private
utility of a player is at most a times the change in social utility that would
occur if the player declines to participate in the game. For any outcome,
the total amount of the utility of all players is at most b times the social
utility. We show that the price of anarchy of the system is at least a

a+b

if there exist pure strategy Nash equilibria. For the case that there does
not exist a pure strategy Nash equilibrium, we design a mechanism to
output an outcome that gives a social utility within a

2bn+a−b
times of the

optimal.

Keywords: Valid utility system · Price of anarchy · Nash
equilibrium · Best response

1 Introduction

Non-cooperative game is a widely studied game in which there is no cooperation,
prior information exchange, transmission, or mandatory agreement among play-
ers. Nash equilibrium is a special outcome that no one can get more utility by
unilaterally changing his strategy. To evaluate the efficiency of Nash equilibria,
Roughgarden and Tardos [14] propose the concept of price of anarchy, which is
the ratio of the social utility of a worst Nash equilibria to that of the optimal
outcome in the game.

In 1999, Koutsoupias and Papadimitriou [8] firstly use the price of anarchy as
a measurement of a network routing problem. Later, a lot of studies extensively
apply this measure to more complex games, such as congestion games [2,9],
auction games [5,7,10], influence maximization games [1,6], valid utility systems
[11,15], and so on.

This research was supported in part by the National Natural Science Foundation
of China under grant number 12171444 and 11871442, and was also supported in
part by the Natural Science Foundation of Shandong Province under grant number
ZR2019MA052.

c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 224–233, 2021.
https://doi.org/10.1007/978-3-030-92681-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_19&domain=pdf
https://doi.org/10.1007/978-3-030-92681-6_19

The Price of Anarchy of Generic Valid Utility Systems 225

In 2002, Vetta [15] firstly proposes the concept of valid utility system. It is a
class of games with submodular social utility functions. Each player’s reward is not
less than the difference of social utility caused by his absence. In the meantime,
the reward of all players does not exceed the social utility. Vetta shows that the
price of anarchy of that system is 1

2 . Valid utility system can be applied to a wide
range of games, including facility location games [3,15], traffic routing games [15]
and market sharing games [12]. But most of the existing results concentrate on
the applications and ignore the improvement of the system structure.

In 2020, Grimsman et al. [4] extend valid utility system to incomplete infor-
mation, in which a subset of players either blind (cannot observe any other
players’ choices) or isolated (blind, and cannot be observed by others). Their
main results show that when k (1 ≤ k ≤ n) players are compromised (in any
combination of blind or isolated), the price of anarchy is 1

2+k . They show that
if players use marginal utility functions, and at least one compromised player is
blind (not isolated), the price of anarchy is 1

1+k .
In 2020, Ma et al. [11] extend the valid utility system to α-scalable valid

utility system from another point of view. Under this situation, the reward of
each player is not less than 1

α times the difference of social utility caused by his
absence, where α is a positive real number and other constrains are the same
as those in the valid utility system. In the context of cache network, they prove
that the selfish cache game belongs to a class of α-scalable valid utility system,
and conclude that the price of anarchy of this system is 1

1+α .

Main Contribution. We have following contributions.

1. We introduce an (a, b)-generic (a, b ∈ IR+) valid utility system, a class of
non-cooperative games with n players. The social utility of an outcome is
measured by a submodular function. The private utility of a player is at most
a times the change in social utility that would occur if the player declines to
participate in the game. For any outcome, the total amount of the utility of
all players is at most b times the social utility (Sect. 3.1).

2. We prove the existence of pure strategy Nash equilibria in an (a, b)-generic
basic utility system, and show that the lower bound of the price of anarchy
of this system and (a, b)-generic valid utility system is a

a+b (Sect. 3.2).
3. We design a mechanism for the case that there is no pure strategy Nash equi-

libria in an (a, b)-generic valid utility system. It outputs an outcome whose
social utility is at least a

2bn+a−b times of the optimal (Sect. 3.3).

2 Preliminaries

2.1 Game Theory

We consider a non-cooperative game as follows. Let [n] = {1, 2, . . . , n} be the
set of players. Let V be a ground set and V1, V2, . . . , Vn be a partition of V .
Let Si = {si | si ⊆ Vi} (i = 1, . . . , n) be the pure strategy set of player i. Each
player aims to maximize his private utility function αi : 2V → IR+, which in

226 Y. Yang et al.

general depends on the strategies of all the players. The social utility function is
γ : 2V → IR+. We denote the game by a tuple G = ([n], {Si}i∈[n], {αi}i∈[n], γ).
Note that the social utility function γ : 2V → IR+ and private utility functions
αi : 2V → IR+ (i ∈ [n]) can be regarded as set functions, owing to the disjoint
setting of V1, V2, . . . , Vn.

Denote strategy space as S = S1 × S2 × · · · × Sn. Given an outcome s =
(s1, s2, . . . , sn) ∈ S, let s ⊗ s̃i = (s1, . . . , si−1, s̃i, si+1, . . . , sn) be a new outcome
that player i unilaterally changes his strategy from si to s̃i. We use the standard
notation (si, s−i) to denote the outcome where player i chooses strategy si and
the other players select strategies s−i = (s1, . . . , si−1, si+1, . . . , sn). We use ∅i to
denote the null strategy of player i, and let ∅ = (∅1, ∅2, . . . , ∅n) be an outcome
that each player has a null strategy. For the rest of paper, we assume that
γ(∅) = 0.

The outcome s = (s1, s2, . . . , sn) ∈ S is a pure strategy Nash equilibrium, if

αi(s̃i, s−i) ≤ αi(s), ∀i ∈ [n], ∀s̃i ∈ Si. (1)

In 1951, Nash [13] presents the following theorem. But it holds for mixed strategy
Nash equilibria rather than pure strategy Nash equilibria (abbreviated as PNE).

Theorem 1. A finite non-cooperative game always has at least one Nash
equilibrium.

The efficiency of the Nash equilibria reached by a game is measured by the
price of anarchy [8].

Definition 1. In a non-cooperative game G with PNE, the price of anarchy

PoA = min
s∈N

γ(s)
γ(s∗) , (2)

where N ⊆ S is the set of PNE in the instance I, and s∗ is the optimal outcome
in the instance I.

2.2 Submodular Function

Given a ground set V , consider a set function f : 2V → IR. f is monotone, if
f(A) ≤ f(B), ∀A ⊆ B ⊆ V . f is submodular, if f(A)+f(B) ≥ f(A∪B)+f(A∩
B), ∀A,B ⊆ V. Essentially, submodularity reflects the property of diminishing
returns and possesses the following equivalent definition.

A set function f is submodular if and only if

f(A ∪ {e}) − f(A) ≥ f(B ∪ {e}) − f(B), ∀A ⊆ B, ∀e ∈ V \ B. (3)

3 Generic Valid Utility Systems

In Sect. 3.1, we present our system and prove its existence. In Sect. 3.2, we show
that the existence of a PNE for a special generic basic utility system and give
a conclusion that its price of anarchy is at least a

a+b . Since generic valid utility
system may not have PNE, in Sect. 3.3 we design a best response mechanism
and give a a

2bn+a−b -approximate outcome.

The Price of Anarchy of Generic Valid Utility Systems 227

3.1 Definitions and Properties

We first present the definition of (a, b)-generic valid utility system.

Definition 2. Given a social utility function γ : 2V → IR+ and n private utility
functions αi : 2V → IR+ (i ∈ [n]), the game ([n], {Si}i∈[n], {αi}i∈[n], γ) is said to
be an (a, b)-generic valid utility system, if for any s ∈ S and any a, b ∈ IR+ such
that a ≤ b, it satisfies that:

1. γ and αi (i ∈ [n]) are measured in the same criteria;
2. γ is monotone and submodular;
3. αi(s) ≥ a · (γ(s) − γ(s ⊗ ∅i));
4.

∑
i αi(s) ≤ b · γ(s).

Remark 1. In particular, the Valid Utility System proposed in Vetta [15] is a
special case of the (a, b)-generic valid utility system with a = b = 1.

Specially, we say that an (a, b)-Generic Valid Utility System is basic if the
third constraint holds in equation, i.e., αi(s) = a · (γ(s) − γ(s ⊗ ∅i)) for any
s ∈ S.

Next, we show that there indeed exist (a, b)-generic valid utility systems. Due
to the non-negative of γ(·) and αi(·) (i ∈ [n]), we only consider the meaningful
case where 0 < a ≤ b.

Theorem 2. For any parameters a and b (a, b ∈ IR+) and any monotone sub-
modular function γ, if a ≤ b, then there exist set functions αi(i ∈ [n]), such the
game ([n], {Si}i∈[n], {αi}i∈[n], γ) is an (a, b)-generic valid utility system.

Proof. It is sufficient to prove that there exists an (a, b)-generic basic utility
system, a special case of (a, b)-generic valid utility systems. Given a pair of
reals a, b ∈ IR+ and a submodular function γ : 2V → IR, we define αi(s) =
a · (γ(s) − γ(s ⊗ ∅i)) for any s ∈ S. If a ≤ b, we have

∑n
i=1 αi(s) =

∑n
i=1 a · [γ(s) − γ(s ⊗ ∅i)] ≤ ∑n

i=1 a · [γ(si) − γ(si−1)]
≤ ∑n

i=1 b · [γ(si) − γ(si−1)] ≤ b · γ(s). (4)

Therefore, the game ([n], {Si}i∈[n], {αi}i∈[n], γ) is an (a, b)-generic basic utility
system. �

3.2 PoA of a Generic Basic Utility System

For an (a, b)-generic basic utility system ([n], {Si}i∈[n], {αi}i∈[n], γ), we can
obtain the following results.

Theorem 3. An (a, b)-generic basic utility system ([n], {Si}i∈[n], {αi}i∈[n], γ)
always has at least one PNE.

228 Y. Yang et al.

Proof. Consider an (a, b)-generic basic utility system ([n], {Si}i∈[n], {αi}i∈[n], γ).
We construct a corresponding directed graph G = (Ve, E) as follows. For any
outcome s ∈ S, there is a vertex vs in Ve. For any player i ∈ [n], if

αi(s1, . . . , si, . . . , sn) < αi(s1, . . . , s̃i, . . . , sn), (5)

then there is a directed edge from vertex (s1, . . . , si, . . . , sn) to vertex (s1, . . . ,
s̃i, . . . , sn).

Note that vertex a ∈ Ve corresponds to a PNE if the out-degree of a equals to
zero. Thus, it is enough to prove that directed graph G is acyclic. Assuming that
directed graph G is cyclic. Let D be a directed cycle in G, and D contains vertices
a0, a1, . . . , at−1, at sequentially. Here ai = (si

1, s
i
2, . . . , s

i
n), for i = 0, 1, . . . , t and

a0 = at. On the one hand, from the construction of G, ar and ar+1 have only
one distinction, which is one player’s strategy, denoted as ir. In other words, for
any i �= ir, sr

i = sr+1
i holds. And for r = 0, 1, . . . , t − 1, there is

αir (s
r
1, . . . , s

r
ir

, . . . , sr
n) < αir (s

r+1
1 = sr

1, . . . , s
r+1
ir

, . . . , sr+1
n = sr

n). (6)

Adding up these t terms, we have

t−1∑

r=0
[αir (a

r+1) − αir (a
r)] > 0. (7)

On the other hand, by the definition of (a, b)-generic basic utility system, we have
αir (a

r) = a · [γ(ar) − γ(ar ⊗ ∅ir)] and αir (a
r+1) = a · [γ(ar+1) − γ(ar+1 ⊗ ∅ir)].

Then

αir (a
r+1) − αir (a

r) = a · [γ(ar+1) − γ(ar)] + a · [γ(ar ⊗ ∅ir) − γ(ar+1 ⊗ ∅ir)]
= a · [γ(ar+1) − γ(ar)],

(8)
where the last equality follows from that sr

i = sr+1
i , for any i �= ir. Adding up

these t terms, we have

t−1∑

r=0
[αir (a

r+1) − αir (a
r)]

=
t−1∑

r=0
a · [γ(ar+1) − γ(ar)]

= a · [γ(at) − γ(a0)]
= 0,

(9)

which is contradicted with inequality (7). Thus, we complete the proof. �

Then we discuss the efficiency of any Nash equilibrium in an (a, b)-generic

basic utility system.

Theorem 4. For any (a, b)-generic basic utility system ([n], {Si}i∈[n], {αi}i∈[n],
γ), there holds PoA ≥ a

a+b .

The Price of Anarchy of Generic Valid Utility Systems 229

Proof. Let Ω = (σ1, σ2, . . . , σn) be an optimal outcome, and s = (s1, s2, . . . , sn)
be any Nash equilibrium. Then, we have

γ(Ω) ≤ γ(Ω ∪ s)
≤ γ(s) +

∑

i:σi∈Ω\s
[γ(s ∪ σi) − γ(s)]

≤ γ(s) +
∑

i:σi∈Ω\s
[γ(s ⊗ σi) − γ(s ⊗ ∅i)]

= γ(s) + 1
a · ∑

i:σi∈Ω\s
αi(s ⊗ σi)

≤ γ(s) + 1
a · ∑

i:σi∈Ω\s
αi(s)

≤ γ(s) + 1
a ·

n∑

i=1

αi(s)

≤ γ(s) + b
a · γ(s)

= a+b
a · γ(s)

(10)

where the first inequality follows from the monotonicity of γ, the next two
inequalities follow from the submodularity of γ, the first equality follows from
the definition of (a, b)-generic basic utility system, the fourth inequality holds
since s is a PNE, the fifth inequality holds by the non-negativity of αi (i ∈ [n]),
and the last inequality follows from the definition of (a, b)-generic basic utility
system. �

And we have a theorem as follows.

Theorem 5. For any (a, b)-generic valid utility system ([n], {Si}i∈[n],
{αi}i∈[n], γ) with at least one PNE, there holds PoA ≥ a

a+b .

Its proof is similar to that of Theorem 4. The difference is that the first
equality sign in formula (10) becomes less-than-equal.

3.3 Mechanism of Generic Valid Utility System

Consider any (a, b)-generic valid utility system ([n], {Si}i∈[n], {αi}i∈[n], γ) with
positive a, b. We cannot make sure that there exists a PNE or not in the system.
This requires an alternative approach to evaluate these types of games. In this
section, we design a mechanism to output an outcome which is not necessarily
a PNE, but whose efficiency is guaranteed.

Sort the players in an arbitrary order. Without loss of generality, we denote
them as 1, 2, . . . , n. In this order and starting from any initially outcome s =
(s1, . . . , sn), players change their strategies sequentially. The decision rule is
that each player makes the best response to the current outcome. Let s̃(i) =
(s̃1, . . . , s̃i, si+1, . . . , sn) represent the intermediate outcome after the change of
the i-th player.

Let t be the output of Algorithm 1 and Ω be the optimal solution. In the
following we estimate the efficiency of t , the ratio between γ(t) and γ(Ω).

230 Y. Yang et al.

Algorithm 1. Best Response Mechanism
Input: An (a, b)-generic valid utility system ([n], {Si}i∈[n], {αi}i∈[n], γ).
Output: An outcome t .
1: Initialize: Sort the players in an arbitrary order and denote them by 1, 2, . . . , n; let

s = (s1, s2, . . . , sn) be an arbitrary initial outcome; set t = s̃(0) = s.
2: for i = 1 to n do
3: s̃i ← arg max

s∈Si

{αi(s̃
(i−1) ⊗ s)}, s̃(i) = s̃(i−1) ⊗ s̃i.

4: if γ(s̃(i)) > γ(t).
t ← s̃(i).

5: end if
6: end for
7: Return t .

Theorem 6. Consider an (a, b)-generic valid utility system ([n], {Si}i∈[n],
{αi}i∈[n], γ). Let t be the outcome returned by Algorithm 1 and Ω be the optimal
outcome. Then γ(t) ≥ a

2bn+a−b · γ(Ω).

Proof. Denote the optimal outcome by Ω = (σ1, . . . , σn). For the initial outcome
s, if γ(s) ≥ a

2bn+a−b ·γ(Ω), we have γ(t) ≥ γ(s) ≥ a
2bn+a−b ·γ(Ω) holds trivially.

Thus, we only need to concentrate on the case that γ(s) < a
2bn+a−b · γ(Ω). We

claim that there is some l ∈ [n] such that s̃(l) is the first outcome satisfying
αl(s̃(l)) ≥ ab

2bn+a−b · γ(Ω). If the claim holds, we obtain

γ(t) ≥ γ(s̃(l)) ≥ 1
b ·

n∑

i=1

αi(s̃(l)) ≥ 1
b · αl(s̃(l)) ≥ a

2bn+a−b · γ(Ω), (11)

where the first inequality follows from our mechanism, the second inequality fol-
lows from the definition of (a, b)-generic valid utility system, the third inequality
follows from the nonnegativity of αi(·) (i ∈ [n]), and the last inequality follows
from the claim. Then we are done if we can show that the claim is true.

We now prove the correctness of the claim. Firstly, let m ∈ [n − 1] be a
positive integer such that αi(s̃(i)) < ab

2bn+a−b · γ(Ω) for any i ∈ [m]. Then

γ(s ∪ s̃(m)) − γ(s)

=
m∑

i=1

[γ(s ∪ s̃(i)) − γ(s ∪ s̃(i−1))]

≤
m∑

i=1

[γ(s̃(i)) − γ(s̃(i) ⊗ ∅i)]

≤
m∑

i=1

1
a · αi(s̃(i))

< bm
2bn+a−b · γ(Ω),

(12)

where the first inequality follows from the submodularity of γ, the second
inequality follows from the definition of (a, b)-generic valid utility system. We
have

The Price of Anarchy of Generic Valid Utility Systems 231

γ(s ∪ s̃(m) ∪ Ω) − γ(s ∪ s̃(m))
= [γ(s ∪ s̃(m) ∪ Ω) − γ(s)] − [γ(s ∪ s̃(m)) − γ(s))]
> γ(Ω) − γ(s) − bm

2bn+a−b · γ(Ω)
≥ 2bn−b−bm

2bn+a−b · γ(Ω),

(13)

where the first inequality follows from the monotonicity of γ and (12), and the
last inequality follows from our assumption that γ(s) < a

2bn+a−b ·γ(Ω). Moreover,
there is

γ(s ∪ s̃(m) ∪ {σ1, . . . , σm}) − γ(s ∪ s̃(m))
≤ γ(s ∪ s̃(m) ∪ {σ1, . . . , σm}) − γ(s)

=
m∑

i=1

[γ(s ∪ s̃(i) ∪ {σ1, . . . , σi}) − γ(s ∪ s̃(i−1) ∪ {σ1, . . . , σi−1})]

≤
m∑

i=1

[γ(s ∪ s̃(i) ∪ {σi}) − γ(s ∪ s̃(i−1))]

≤
m∑

i=1

[γ(s̃(i) ∪ {σi}) − γ(s̃(i−1))]

=
m∑

i=1

[γ(s̃(i) ⊗ (σi ∪ s̃i)) − γ(s̃(i−1))]

≤
m∑

i=1

[γ(s̃(i) ⊗ (σi ∪ s̃i)) − γ(s̃(i) ⊗ ∅i)]

≤
m∑

i=1

1
a · αi(s̃(i) ⊗ (σi ∪ s̃i))

≤
m∑

i=1

1
a · αi(s̃(i))

< bm
2bn+a−b · γ(Ω),

(14)

where the first inequality follows from the monotonicity of γ, the second and third
inequalities follow from the submodularity of γ, the fourth inequality follows
from the monotonicity of γ, the fifth inequality follows from the definition of
(a, b)-generic valid utility system, the sixth inequality holds by the fact that s̃(i)

is the best response for i, and the last inequality follows from our assumption.
Combining inequalities (13) and (14), we obtain

∑n
i=m+1[γ(s ∪ s̃(m) ∪ {σi}) − γ(s ∪ s̃(m))]

≥ γ(s ∪ s̃(m) ∪ {σm+1, . . . , σn}) − γ(s ∪ s̃(m))
≥ γ(s ∪ s̃(m) ∪ Ω) − γ(s ∪ s̃(m) ∪ {σ1, . . . , σm})
= γ(s ∪ s̃(m) ∪ Ω) − γ(s ∪ s̃(m)) − [γ(s ∪ s̃(m) ∪ {σ1, . . . , σm}) − γ(s ∪ s̃(m))]
≥ 2bn−b−2bm

(2bn+a−b) · γ(Ω),
(15)

where the first two inequalities follow from the submodularity of γ. Then there
must exist one player l with m + 1 ≤ l ≤ n satisfying

232 Y. Yang et al.

γ(s ∪ s̃(m) ∪ σl) − γ(s ∪ s̃(m)) ≥ 2bn−b−2bm
(2bn+a−b)(n−m) · γ(Ω)

= (2b
2bn+a−b − b

(2bn+a−b)(n−m)) · γ(Ω)
≥ b

2bn+a−b · γ(Ω).
(16)

where the first inequality follows from (15), and the last inequality follows from
n ≥ 2. If there is some l′ ∈ [l − 1] with αl′(s̃(l′)) ≥ ab

2bn+a−b · γ(Ω), the claim
holds naturally. Otherwise, set m = l − 1. Then for each i ∈ [m], αi(s̃(i)) <

ab
2bn+a−b · γ(Ω) and the inequalities (12)–(16) hold. We can obtain

αl(s̃(l)) = αl(s̃(l−1) ⊗ s̃l)
≥ αl(s̃(l−1) ⊗ σl)
≥ a · [γ(s̃(l−1) ⊗ σl) − γ(s̃(l−1) ⊗ ∅l)]
≥ a · [γ((s ∪ s̃(m)) ∪ σl) − γ(s ∪ s̃(m))]
≥ ab

2bn+a−b · γ(Ω).

(17)

where the first inequality holds since s̃l is the best response for l to the outcome
s̃(l−1), the second inequality follows from the definition of (a, b)-generic valid
utility system, the third inequality follows from the submodularity of γ, and the
last inequality follows from (16). Thus, the claim holds and this completes the
proof of theorem. �

References

1. Bharathi, S., Kempe, D., Salek, M.: Competitive influence maximization in social
networks. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp.
306–311. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77105-
0 31

2. Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion
games. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory
of Computing, pp. 67–73. Association for Computing Machinery, New York (2005)

3. Goemans, M., Mirrokni, V., Vetta, A.: Sink equilibria and convergence. In: 46th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), pp.
142–151 (2005)

4. Grimsman, D., Seaton, H.-J., Marden, R.-J., Brown, N.-P.: The cost of denied
observation in multiagent submodular optimization. In: 2020 59th IEEE Confer-
ence on Decision and Control (CDC), pp. 1666–1671 (2020)

5. Hartline, J., Hoy, D., Taggart, S.: Price of anarchy for auction revenue. In: Pro-
ceedings of the Fifteenth ACM Conference on Economics and Computation, pp.
693–710 (2014)

6. He, X., Kempe, D.: Price of anarchy for the N -player competitive cascade game
with submodular activation functions. In: Chen, Y., Immorlica, N. (eds.) WINE
2013. LNCS, vol. 8289, pp. 232–248. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-45046-4 20

7. Johari, R., Tsitsiklis, N.-J.: Efficiency loss in a network resource allocation game.
Math. Oper. Res. 29(3), 407–435 (2004)

8. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-49116-3 38

https://doi.org/10.1007/978-3-540-77105-0_31
https://doi.org/10.1007/978-3-540-77105-0_31
https://doi.org/10.1007/978-3-642-45046-4_20
https://doi.org/10.1007/978-3-642-45046-4_20
https://doi.org/10.1007/3-540-49116-3_38

The Price of Anarchy of Generic Valid Utility Systems 233

9. Law, M.-L., Huang, J.-W., Liu, M.-Y.: Price of anarchy for congestion games in cog-
nitive radio networks. IEEE Trans. Wireless Commun. 11(10), 3778–3787 (2012)

10. Lucier, B., Borodin, A.: Price of anarchy for greedy auctions. In: Proceedings of the
Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 537–553
(2010)

11. Ma, Q., Yeh, E., Huang, J.: Selfish caching games on directed graphs. IEEE/ACM
Trans. Netw. PP(99), 1–14 (2021)

12. Mirrokni, V.S., Vetta, A.: Convergence issues in competitive games. In: Jansen,
K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) APPROX/RANDOM -2004. LNCS,
vol. 3122, pp. 183–194. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-27821-4 17

13. Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286–95 (1951)
14. Roughgarden, T., Tardos, É.: How bad is selfish routing? J. ACM 49(2), 236–259

(2002)
15. Vetta, A.: Nash equilibria in competitive societies, with applications to facility

location, traffic routing and auctions. In: 43rd Annual IEEE Symposium on Foun-
dations of Computer Science, pp. 416–425 (2002)

https://doi.org/10.1007/978-3-540-27821-4_17
https://doi.org/10.1007/978-3-540-27821-4_17

Single Machine Scheduling with Rejection
and Generalized Parameters

Xue Yu1, Lingfa Lu1(B), and Liqi Zhang2

1 School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, Henan,
People’s Republic of China

lulingfa@zzu.edu.cn
2 College of Information and Management Science, Henan Agricultural University,

Zhengzhou, Henan, People’s Republic of China

Abstract. In this paper, we consider three single machine scheduling
problems with rejection and generalized parameters. Inspired by general-
ized due dates, we introduce three generalized parameters into our prob-
lems as follows: (1) generalized release dates, (2) generalized processing
times, and (3) generalized rejection costs. In scheduling with generalized
parameters, each parameter (for examples, release date, processing time
or rejection cost) is assigned not to a specific job but to a job position.
Furthermore, in scheduling with rejection, each job is either rejected and
paid a corresponding rejection cost, or accepted and processed on the
machine. The objective is to minimize the sum of the makespan of the
accepted jobs and the total rejection cost of the rejected jobs. We show
that the first scheduling problem with generalized release dates is binary
NP-hard. Furthermore, we provide a pseudo-polynomial time algorithm,
a 2-approximation algorithm and a full polynomial-time approximation
scheme (FPTAS) for this problem. For the latter two problems with
generalized processing times or generalized rejection costs, we provide a
polynomial-time optimal algorithm, respectively.

Keywords: Scheduling with rejection · Generalized parameters ·
NP-hard · Dynamic programming · FPTAS

1 Introduction

In this section, we will briefly introduce some previous articles on scheduling with
rejection, scheduling with generalized due dates, and scheduling with rejection
and generalized due dates, respectively.

1.1 Scheduling with Rejection

In 2000, Bartal et al. [2] first studied the parallel machine scheduling problems
with rejection. The objective is to minimize the sum of the makespan of the
accepted jobs and the total rejection penalty of the rejected jobs. For the online

c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 234–246, 2021.
https://doi.org/10.1007/978-3-030-92681-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_20&domain=pdf
https://doi.org/10.1007/978-3-030-92681-6_20

Single Machine Scheduling with Rejection and Generalized Parameters 235

problem, they presented an online algorithm with the best-possible competitive
ratio

√
5+3
2 ≈ 2.618. For the off-line problem, they presented a (2− 1

m)− approx-
imation algorithm and a polynomial-time approximation scheme (PTAS). Since
then, scheduling with rejection has receive more and more attention in recent two
decades. Shabtay et al. [24] pointed out, an important application of scheduling
with rejection arises in make-to-order production systems with limited produc-
tion capacity and tight delivery requirements. Another important application
of scheduling with rejection occurs in scheduling with an outsourcing option.
Moreover, there are many close connections between scheduling with rejection
and other scheduling models such as scheduling with controllable processing
times, scheduling with costs, and scheduling with due date assignment, etc.

For more problems and results on this topic, we refer the reader to a survey
on off-line scheduling with rejection by Shabtay et al. [24]. More papers dealing
scheduling with rejection are [1,3,8,12,14,15,18–20,23,27,29,30].

1.2 Scheduling with Generalized Due Dates

Scheduling with generalized due dates (GDD) are first introduced by Hall [10]. In
the GDD model, there are n jobs J1, · · · , Jn and n given due dates d[1], · · · , d[n],
where [i] means the i-th position in a schedule. That is, if Jj is i-th scheduled job,
then job Jj is assigned the due date d[i]. Thus, in the GDD model, each due date
is not for a specific job but for a position. Hall [10] described a number of GDD
applications in different industries including public utility planning problems,
survey design and manufacturing. In most cases, when changing the setting from
standard (job-dependent) due dates to GDD, the problem becomes easier. For
example, Hall [10] showed that problem 1|GDD|∑ Tj can be solved in polyno-
mial time; however, the corresponding problem 1||∑ Tj is NP-hard (see Du and
Leung [4]). Sriskandarajah [25] showed that problem 1|GDD|∑ wjTj is NP-hard.
Furthermore, Gao and Yuan [5,6] showed that problems 1|GDD|∑(Ej +Tj) and
1|GDD|∑ wjTj are strongly NP-hard, respectively. More papers on scheduling
with generalized due dates can be found in [8,11,21,22,26,28].

1.3 Scheduling with Rejection and Generalized Due Dates

To our knowledge, only a few of papers studied several scheduling problems with
rejection and generalized due dates. Gerstl and Mosheiov [8] studied the single
machine scheduling problems with rejection and generalized due dates. Two
objective functions are considered: maximum tardiness plus the total rejection
cost, and total tardiness plus the total rejection cost. They showed that these
two problems are NP-hard and proposed two pseudo-polynomial dynamic pro-
grammes and efficient heuristics for them. Mosheiov et al. [22] considered single
machine scheduling with generalized due dates to minimize the total late work.
For this problem, they provided a polynomial-time algorithm. Furthermore, the
problem is extended to allow job rejection. The objective is to minimize the sum
of the total late work and the total rejection cost. They proved that the latter

236 X. Yu et al.

problem is NP-hard and introduced pseudo-polynomial dynamic programming
algorithms for this problem. Mor et al. [20] considered two scheduling problems
with rejection and generalized due dates in a proportionate flow shop. The goal
in the first problem is to minimize the sum of the total tardiness and the total
rejection cost, while the goal in the second problem is to minimize the total
rejection cost, given a bound on the total tardiness. They showed that both
problems are NP-hard and designed some exact algorithms and approximation
schemes for them.

The remaining parts are organised as follows: In Sect. 2, we provide the prob-
lem formulation on our problems. In Sect. 3, we show that the first problem with
generalized release dates is binary NP-hard. Furthermore, we provide a pseudo-
polynomial time algorithm, a 2-approximation algorithm and a full polynomial-
time approximation scheme (FPTAS) for this problem. In Sects. 4 and 5, we
show that the latter two problems with generalized processing times or general-
ized rejection costs can be solved in polynomial time, respectively.

2 Problem Formulation

The single machine scheduling problems with rejection and generalized parame-
ters can be described as follows. There are n jobs J1, . . . , Jn and a single machine.
Each job Jj has a processing time pj , a release date rj and a rejection cost ej .
We assume that all pj , rj and ej are integers. Jj is either rejected, in which case
the rejection cost ej has to be paid, or accepted and processed on the machine.
Let A and R be the sets of accepted jobs and rejected job, respectively. For each
job Jj with Jj ∈ A, let Cj be its completion time in a schedule. Furthermore,
we define Cmax = max{Cj : Jj ∈ A} and

∑
Jj∈R ej by the makespan and the

total rejection cost, respectively. The objective is to minimize the sum of the
makespan and the total rejection cost.

Inspired by generalized due dates, we introduce three generalized parameters
into our problems as follows: (1) generalized release dates (GRD), (2) generalized
processing times (GPT), and (3) generalized rejection costs (GRC). In the GRD
model, there are n given release dates r[1], · · · , r[n]. If Jj is i-th scheduled job in a
schedule, then job Jj is assigned the release date r[i], i.e., rj = r[i]. That is, if Jj is
i-th scheduled job, then it must be processed at or after time r[i]. The GRD model
can be applied in many service industries. For example, a patient usually make
an appointment for a doctor in advance. According to his/her position among
all patients in the appointment system, a conservatively estimated starting time
is usually recommended to the patient such that the patient must be served by
the doctor at or after this time. Thus, for each patient, this estimated starting
time can be viewed as his/her generalized release date. Under the GRD modol,
following the general notation introduced by Graham et al. [9], the corresponding
problem can be denoted by

1|GRD, reject|Cmax +
∑

Jj∈R

ej . (1)

Single Machine Scheduling with Rejection and Generalized Parameters 237

In the GPT model, if Jj is i-th scheduled job, then job Jj is assigned the process-
ing time p[i]. The GPT model might occur in many scheduling problems with
position-dependent processing times (see Agnetis and Mosheiov [1]). Due to the
learning or deterioration effects, the processing time of a job usually depend on
its normal processing time and its position in a schedule. Furthermore, when all
jobs have the same normal processing time, the processing time of each job will
only depend on its position in a schedule. Thus, in this situation, the position-
dependent processing time can be viewed as its generalized processing time.
Under the GPT model, the corresponding problem can be denoted by

1|rj , GPT, reject|Cmax +
∑

Jj∈R

ej . (2)

Finally, in the GRC model, if Jj is i-th rejected job, then job Jj is assigned the
rejection cost e[i]. The GRC model might occur in some scheduling problems with
outsourcing under different discount rates (see Lu et al. [16,17]). For example, we
first assume that all jobs have the same original outsourcing cost e. Furthermore,
if Jj is i-th outsourced job, then Jj has a corresponding discount rate DRi. Thus,
the actual outsourcing cost of Jj is ej = e · DRi. Thus, the actual outsourcing
cost ej = e · DRi can be viewed as the generalized rejection cost of Jj . Under
the GRC modol, the corresponding problem can be denoted by

1|rj , GRC, reject|Cmax +
∑

Jj∈R

ej . (3)

3 Scheduling with Generalized Release Dates

3.1 NP-Hardness Proof

In this subsection, we show that problem 1|GRD, reject|Cmax+
∑

Jj∈R ej is NP-
hard. Here we modify the NP-hardness proof for problem 1|rj , reject|Cmax +∑

Jj∈R ej in Zhang et al. [29].

Theorem 1. Problem 1|GRD, reject|Cmax +
∑

Jj∈R ej is NP-hard.

Proof. The decision version of the problem is clearly in NP, we use the NP-
complete Partition problem (see Garey and Johnson [7]) for the reduction.

Partition problem: Given t+1 non-negative integers a1, a2, · · · , at, B such that∑t
i=1 ai = 2B, are there two disjointed sets S1 and S2 such that

∑
ai∈S1

ai =∑
ai∈S2

ai = B?
For a given instance of Partition problem, we construct an instance of the

decision version of the problem 1|GRD, reject|Cmax +
∑

Jj∈R ej as follows:

• n = 2t + 1 jobs.
• For j = 1, · · · , t, we have pj = 2aj and ej = aj .
• For j = t + 1, · · · , 2t + 1, we have pj = 0 and ej = 3B + 1.

238 X. Yu et al.

• The release dates are defined by r[1] = · · · = r[t] = 0 and r[t+1] = · · · =
r[2t+1] = 2B.

• The threshold value is defined by Y = 3B.
• The decision version asks whether there is a schedule π such that Cmax +∑

Jj∈R ej ≤ Y .

It can be observed that the above construction can be done in polynomial
time. We show in the following that Partition problem has a solution if and only
if there is a schedule π of the scheduling problem such that Cmax+

∑
Jj∈R ej ≤ Y .

(=⇒) We first assume that Partition problem has a solution (S1, S2). Set
A = {Jj : aj ∈ S1}∪{Jj : j = t+1, · · · , 2t+1} and R = {Jj : aj ∈ S2}. We accept
all jobs in A and reject all jobs in R. Furthermore, the jobs in {Jj : aj ∈ S1} are
processed before the jobs in {Jj : j = t + 1, · · · , 2t + 1}. It is easy to verify that

Cmax+
∑

Jj∈R
ej =

∑

aj∈S1
pj+

∑

aj∈S2
ej = 2

∑

aj∈S1
aj+

∑

aj∈S2
aj = 3B.

Thus, if Partition problem has a solution (S1, S2), we can construct a feasible
schedule such that Cmax +

∑
Jj∈R ej = 3B.

(⇐=) Next, we suppose that there is a schedule π such that Cmax +∑
Jj∈R ej ≤ Y . We need to show that Partition problem has a solution. Denote

by A and R the sets of the accepted jobs and the rejected jobs in π, respectively.
We have the following claims.

Claim 1. {Jj : j = t + 1, · · · , 2t + 1} ⊆ A and Cmax ≥ 2B.

If there is a job Jj with t + 1 ≤ j ≤ 2t + 1 such that Jj ∈ R. Note that
ej = 3B + 1 for each j = t + 1, · · · , 2t + 1. Thus, we have Cmax +

∑
Jj∈R ej ≥

3B+1 > Y , a contradiction. Thus, we have {Jj : j = t+1, · · · , 2t+1} ⊆ A. Note
further that |A| ≥ t + 1. Thus, there must be a job Jj ∈ A which is processed at
or after time r[t+1] = 2B. It follows that Cmax ≥ 2B. Claim 1 follows.

Claim 2.
∑

Jj∈R aj = B.

Since Cmax ≥ 2B and Cmax +
∑

Jj∈R ej ≤ Y = 3B, we have
∑

Jj∈R aj =
∑

Jj∈R ej ≤ B. If
∑

Jj∈R aj < B, then we have

Cmax +
∑

Jj∈R ej ≥ ∑
Jj∈A pj +

∑
Jj∈R ej

= 2
∑

Jj∈A aj +
∑

Jj∈R aj

= 2(
∑

Jj∈A aj +
∑

Jj∈R aj) − ∑
Jj∈R aj

= 4B − ∑
Jj∈R aj

> 3B,

a contradiction. Thus, we have
∑

Jj∈R aj = B. Claim 2 follows.
Let S1 = {aj : Jj ∈ R} and S2 = {aj : Jj ∈ A ∩ {Jj : j = 1, · · · , t}}. By

Claim 2, we have
∑

Jj∈S1
aj =

∑
Jj∈S2

aj = B. Thus, (S1, S2) is a solution of
Partition problem. Theorem 1 follows.

Single Machine Scheduling with Rejection and Generalized Parameters 239

3.2 Dynamic Programming Algorithm

For problem 1|rj , reject|Cmax +
∑

Jj∈R ej , Zhang et al. [29] shows that there
exists an optimal schedule such that the accepted jobs are processed in the ERD-
rule. Based on the ERD-rule, they provided two dynamic programming algo-
rithms for the above problem. However, in our problem 1|GRD, reject|Cmax +∑

Jj∈R ej , all release dates are position-dependent. Thus, the ERD-rule is invalid
for our problem. Next, we will show that the LPT-rule is valid for problem
1|GRD, reject|Cmax +

∑
Jj∈R ej . This means that we can replace the ERD-rule

by the LPT-rule for proposing our dynamic programming algorithm for problem
1|GRD, reject|Cmax +

∑
Jj∈R ej . We have the following lemma.

Lemma 1. For problem 1|GRD, reject|Cmax +
∑

Jj∈R ej, there exists an opti-
mal schedule such that all accepted jobs are processed in the LPT-rule.

Proof. Lemma 1 can be proved by a pairwise exchange argument. Thus, we omit
the detailed proof.

From Lemma 1, we first re-label the jobs in the LPT-rule such that p1 ≥ p2 ≥
· · · ≥ pn. Write E =

∑n
j=1 ej . Let fj(V, i) be the optimal value of the objective

function when the jobs in consideration are J1, · · · , Jj , the total rejection cost
is exactly V and the number of the current accepted jobs is i. Now, we consider
any optimal schedule for the jobs J1, · · · , Jj in which the total rejection cost is
exactly V and the number of the current accepted jobs is i. In any such schedule,
there are two possible cases: either Jj is rejected or Jj is accepted and processed
on the machine.

Case 1. Job Jj is rejected. In this case, when only the jobs J1, · · · , Jj−1 is con-
sidered, the number of the current accepted jobs is still i and the total rejection
cost is V − ej . Thus, we have fj(V, i) = fj−1(V − ej , i) + ej .

Case 2. Job Jj is accepted. In this case, when only the jobs J1, · · · , Jj−1 is
considered, the number of the current accepted jobs is i−1 and the total rejection
cost is still V . Note that Jj is the i−th scheduled job and its release date is exactly
r[i]. Furthermore, the makespan for the accepted jobs among J1, · · · , Jj−1 is
fj−1(V, i−1)−V . Thus, we have fj(V, i) = max{fj−1(V, i−1)−V, r[i]}+pj +V .

Combining the above two cases, we have the following dynamic programming
algorithm DP1.

Dynamic Programming Algorithm DP1

The Boundary Conditions:

f1(V, i) =

⎧
⎨

⎩

r[1] + p1, if V = 0 and i = 1;
e1, if V = e1 and i = 0;
+∞, otherwise.

240 X. Yu et al.

The Recursive Function:

fj(V, i) = min{fj−1(V − ej , i) + ej ,max{fj−1(V, i − 1) − V, r[i]} + pj + V }.

The optimal value is given by min{fn(V, i) : 0 ≤ V ≤ E, 0 ≤ i ≤ n}.

Theorem 2. Algorithm DP1 solves problem 1|GRD, reject|Cmax+
∑

Jj∈R ej in
O(n2E) time.

Proof. The correctness of algorithm DP1 is guaranteed by the above discussion.
The recursive function has at most O(n2E) states and each iteration costs a
constant time. Thus, the running time of algorithm DP1 is bounded by O(n2E).

3.3 Approximation Algorithms

Assume that S is a set of some jobs. We define P (S) =
∑

Jj∈S pj and
E(S) =

∑
Jj∈S ej by the total processing time and the total rejection cost of S,

respectively. Now, we propose a simple 2-approximation algorithm.

Approximation Algorithm A

Step 1: We first re-label the jobs J1, · · · , Jn such that e1 − p1 ≥ e2 − p2 ≥
· · · ≥ en − pn.

Step 2: Set S0 = ∅ and Si = {J1, · · · , Ji} for each i = 1, 2, · · · , n. Further-
more, we also set Si = {Ji+1, · · · , Jn} for i = 0, · · · , n − 1 and Sn = ∅.

Step 3: Accept all jobs in set Si and reject the jobs in set Si. Assign the
accepted jobs to be processed in the time interval [r[i] , r[i] + P (Si)] on the
machine, where we assume that r[0] = 0. The resulting schedule is denoted
by π(i) .

Step 4: Let Z(i) be the value of the objective function for each π(i). Among
all the schedules obtained above, select the one with the minimum Z(i) value.

Let π be the schedule obtained from the above approximation algorithm A.
Let Z and Z∗ be the objective values of the schedule π and an optimal schedule
π∗, respectively.

Theorem 3. Z ≤ 2Z∗ and the bound is tight.

Proof. Let A∗ and R∗ be the sets of the accepted jobs and the rejected jobs in
π∗, respectively. Let |A∗| = k∗ be the number of the jobs in A∗. By the definition
of k∗, we have Z∗ ≥ r[k∗] . Furthermore, we also have

Z∗ ≥ P (A∗) + E(R∗)

=
∑

Jj∈A∗ pj +
∑

Jj∈R∗ ej

=
∑

Jj∈A∗ pj +
∑n

j=1 ej − ∑
Jj∈A∗ ej

=
∑n

j=1 ej − ∑
Jj∈A∗(ej − pj)

≥ ∑n
j=1 ej − ∑

Jj∈Sk∗ (ej − pj)

=
∑

Jj∈Sk∗ pj +
∑

Jj∈Sk∗ ej ,

Single Machine Scheduling with Rejection and Generalized Parameters 241

where the last inequation holds since Sk∗ contains the jobs with the k∗ maximum
ej − pj values. Thus, we have

Z ≤ Z(k∗) = r[k∗]+P (Sk∗)+E(Sk∗) = r[k∗]+
∑

Jj∈Sk∗
pj +

∑

Jj∈Sk∗
ej ≤ 2Z∗.

To show that the bound is tight, we consider the following instance with
three jobs J1, J2, J3 with (p1, e1) = (0, 2), (p2, e2) = (1, 2) and (p3, e3) = (1, 0).
Note that e1 − p1 > e2 − p2 > e3 − p3. The generalized release dates are defined
by r[1] = 0 and r[2] = r[3] = 1. If i = 0, then all jobs are rejected in schedule
π(0). Thus, we have Z(0) =

∑3
j=1 ej = 4. If i = 1, then only J1 is accepted

and J2, J3 are rejected in π(1). Thus, we have Z(1) = r[1] + p1 + e2 + e3 = 2.
If i = 2, then jobs J1, J2 are accepted and J3 is rejected in π(2). Thus, we
have Z(2) = r[2] + p1 + p2 + e3 = 2. If i = 3, then all jobs are accepted in
π(2). Thus, we have Z(3) = r[3] + p1 + p2 + p3 = 3. As a result, we have
Z = min{Z(i) : i = 0, 1, 2, 3} = 2. However, the optimal schedule is to accept
J2, J1 (J2 is scheduled before J1) and reject J3. That is, Z∗ = 1. Thus, we have
Z = 2Z∗.

By using the rounding technology to simplify the input data, Zhang et al. [29]
provided a fully polynomial-time approximation scheme (FPTAS) for problem
1|rj , reject|Cmax +

∑
Jj∈R ej . By borrowing their FPTAS, we can obtain an

FPTAS for problem 1|GRD, reject|Cmax +
∑

Jj∈R ej . In fact, two FPTASs and
their theoretical analysis are identical, only the running time is different. For the
completeness, we repeat the detailed procedure of the FPTAS in the following.

Let Z and Z∗ be the objective values of the schedule obtained by algo-
rithm A and an optimal schedule π∗, respectively. By Theorem 3, we have
Z∗ ≤ Z ≤ 2Z∗. For any job Jj with ej > Z, it is easy to see that Jj ∈ A∗,
where A∗ is the set of the accepted jobs in an optimal schedule π∗. Otherwise,
we have Z∗ ≥ ej > Z ≥ Z∗, a contradiction. If we modify the rejection cost of
such a job Jj such that ej = Z, this does not change the optimal objective value.
Thus without loss of generation, we can assume that ej ≤ Z for j = 1, 2, · · · , n.
Now, we propose an FPTAS Aε for problem 1|GRD, reject|Cmax +

∑
Jj∈R ej .

FPTAS Aε

Step 1: For any ε > 0, set M = εZ
2n . Given an instance I, we define a new

instance I ′ by rounding the rejection cost of the job in I such that ej
′ =
 ej

M �M ,
for j = 1, · · · , n.

Step 2: Apply the dynamic programming algorithm DP1 to instance I ′ to
obtain an optimal solution π∗(I ′) for instance I ′.

Step 3: Replace the modified rejection cost ej
′ by the original rejection cost

ej in π∗(I ′) for each j = 1, · · · , n to obtain a feasible solution π for instance I.
Let Zε be the objective value of the schedule π obtained from Aε. We have

the following theorem.

Theorem 4. Zε ≤ (1 + ε)Z∗ and the running time of Aε is O(n4

ε).

242 X. Yu et al.

Proof. Let Z∗(I ′) be the optimal objective value of the schedule π∗(I ′). From
Step 1 of Aε, we have ej

′ ≤ ej < ej
′ + M . Thus, we have Z∗(I ′) ≤ Z∗. Replace

ej
′ by ej for each j = 1, · · · , n, we have

Zε ≤ Z∗(I ′) +
∑n

j=1
(ej − ej

′) ≤ Z∗ + nM ≤ Z∗ +
εZ

2
≤ (1 + ε)Z∗.

Since ej ≤ Z for j = 1, · · · , n, we have
∑n

j=1
 ej

M � ≤ 2n
ε

∑n
j=1

ej

Z ≤ 2n2

ε .
Note that ej

′ =
 ej

M �M , for j = 1, · · · , n. Then, in the dynamic programming
algorithm DP1, we have V ∈ {kM : 0 ≤ k ≤ ∑n

j=1
 ej

M �}. That is, there are at

most
∑n

j=1
 ej

M � = O(n2

ε) choices for each V in DP1. Thus, the running time of

Aε is O(n4

ε). The theorem follows.

4 Scheduling with Generalized Processing Times

For problem 1|rj |Cmax, Lawer [13] show that it can be solved by ERD-rule in
O(n log n) time. Note that the ERD-rule depends only on the release dates of
the jobs, not on their processing times. Thus, the ERD-rule is still valid for our
problem 1|rj , GPT, reject|Cmax+

∑
Jj∈R ej . Thus, we have the following lemma.

Lemma 2. For problem 1|rj , GPT, reject|Cmax+
∑

Jj∈R ej, there exists an opti-
mal schedule such that all accepted jobs are processed in the ERD-rule.

Based on Lemma 2, we first re-label the jobs such that r1 ≤ r2 ≤ · · · ≤ rn.
Let fj(C, i) be the optimal value of the objective function when the jobs in
consideration are J1, · · · , Jj , the current makespan of the accepted jobs is exactly
C and the number of accepted jobs is i. If i = 0, then we have C = 0. If i > 0,
then the processing times of i accepted jobs are p[1], · · · , p[i], respectively. Let
t be minimum time such that all accepted jobs are processed consecutively in
time [t, C]. Thus, we have t ∈ {rk : 1 ≤ k ≤ j}. Furthermore, there must exist
some i′ with i′ ≤ i such that C − t = p[i′] + · · ·+ p[i]. From the above discussion,
we can conclude that

C ∈ {0} ∪ {rk + p[i′] + · · · + p[i] : 1 ≤ k ≤ j, 1 ≤ i′ ≤ i ≤ j}.

Now, we consider any optimal schedule for the jobs J1, · · · , Jj in which the
current makespan of the accepted jobs is exactly C and the number of accepted
jobs is i. In any such schedule, there are two possible cases: either Jj is rejected
or Jj is accepted and processed on the machine.

Case 1. Job Jj is rejected. In this case, when the jobs J1, · · · , Jj−1 are consid-
ered, the current makespan of the accepted jobs is still C and the number of
accepted jobs is still i. Thus, we have fj(C, i) = fj−1(C, i)+ej . For convenience,
we set VR = fj−1(C, i) + ej .

Single Machine Scheduling with Rejection and Generalized Parameters 243

Case 2. Job Jj is accepted. In this case, when the jobs J1, · · · , Jj−1 are consid-
ered, the number of accepted jobs is i − 1. Note that Jj is the i−th processed
job. Thus, its processing time is p[i]. It follows that C ≥ rj + p[i]. Assume that
the previous makespan is C ′ before Jj is scheduled. Thus, the previous total
rejection cost is fj−1(C ′, i − 1) − C ′. Note further that the starting time of Jj

is exactly max{C ′, rj}. Thus, we have C = max{C ′, rj} + p[i]. If C > rj + p[i],
then we have C ′ = C − p[i]. If C = rj + p[i], then we have C ′ ≤ rj . From the
above discussion, we have

fj(C, i) =
{

fj−1(C − p[i], i − 1) + pj , if C > rj + p[i];
min{fj−1(C ′, i − 1) − C ′ + C : 0 ≤ C ′ ≤ rj}, if C = rj + p[i].

For convenience, we also set V 1
A = fj−1(C − p[i], i − 1) + pj and V 2

A =
min{fj−1(C ′, i − 1) − C ′ + C : 0 ≤ C ′ ≤ rj}.

Combining the above two cases, we have the following dynamic programming
algorithm DP2.

Dynamic Programming Algorithm DP2

The Boundary Conditions:

f1(C, i) =

⎧
⎨

⎩

r1 + p[1], if C = r1 + p[1] and i = 1;
e1, if C = 0 and i = 0;
+∞, otherwise.

The Recursive Function

fj(C, i) =

⎧
⎨

⎩

VR, if C < rj + p[i];
min{VR, V 1

A}, if C > rj + p[i];
min{VR, V 2

A}, if C = rj + p[i].

The optimal value is given by

min{fn(C, i) : C ∈ {0} ∪ {rk + p[i′] + · · · + p[i] : 1 ≤ k ≤ n, 1 ≤ i′ ≤ i ≤ n}, 0 ≤ i ≤ n}.

Theorem 5. Algorithm DP2 solves 1|rj , GPT, reject|Cmax+
∑

Jj∈R ej in O(n5)
time.

Proof. The correctness of the algorithm is guaranteed by the above discussion.
Note that C,C ′ ∈ {0} ∪ {rk + p[i′] + · · · + p[i] : 1 ≤ k ≤ n, 1 ≤ i′ ≤ i ≤ n} in
each iteration. When C �= rj + p[i], the recursive function has at most O(n5)
states and each iteration costs a constant time. When C = rj +p[i], the recursive
function has at most O(n2) states and each iteration costs an O(n3) time due
to the choices of C ′. Thus, the running time is bounded by O(n5).

244 X. Yu et al.

5 Scheduling with Generalized Rejection Cost

Note that Lemma 2 is still valid for problem 1|rj , GRC, reject|Cmax+
∑

Jj∈R ej .
We first re-label the jobs such that r1 ≤ r2 ≤ · · · ≤ rn. Let fj(i) be the optimal
value of the objective function when the jobs in consideration are J1, · · · , Jj and
the current number of rejected jobs is i. Now, we consider any optimal schedule
for the jobs J1, · · · , Jj in which the current rejected number of jobs is i. In any
such schedule, there are two possible cases: either Jj is rejected or Jj is accepted
and processed on the machine.

Case 1. Job Jj is rejected. The number of rejected jobs is i − 1 before Jj is
rejected. Note that, job Jj is the i−th rejected job, its rejection cost is e[i].
Thus, we have fj(i) = fj−1(i − 1) + e[i].

Case 2. Job Jj is accepted. In this case, before Jj is accepted, the number
of rejected jobs is still i. Let V be the current total rejection cost. Clearly,
we have V = 0 if i = 0, and V = e[1] + · · · + e[i] if i > 0. Thus, the pre-
vious makespan before Jj is scheduled is fj−1(i) − V . Thus, we have fj(i) =
max{fj−1(i) − V, rj} + pj + V .

Combining the above two cases, we have the following dynamic programming
algorithm DP3.

Dynamic Programming Algorithm DP3

The Boundary Conditions:

f1(i) =

⎧
⎨

⎩

r1 + p1, if i = 0;
e[1], if i = 1;
+∞, otherwise.

The Recursive Function

fj(i) = min{fj−1(i − 1) + e[i] ,max{fj−1(i) − V, rj} + pj + V },

where V = 0 if i = 0, and V = e[1] + · · · + e[i] if i > 0.

The optimal value is given by min{fn(i) : 0 ≤ i ≤ n}.

Theorem 6. Algorithm DP3 solves problem 1|rj , GRC, reject|Cmax+
∑

Jj∈R ej

in O(n2) time.

Proof. The correctness of the algorithm is guaranteed by the above discussion.
The recursive function has at most O(n2) states and each iteration cost a con-
stant time. Thus, the running time is bounded by O(n2).

Single Machine Scheduling with Rejection and Generalized Parameters 245

6 Conclusions and Future Research

In this paper, we consider three single machine scheduling problems with rejec-
tion and generalized parameters. Inspired by generalized due dates, we introduce
three generalized parameters: (1) generalized release dates, (2) generalized pro-
cessing times, and (3) generalized rejection costs. We show that the first schedul-
ing problem with generalized release dates is binary NP-hard. Furthermore, we
provide a pseudo-polynomial time algorithm, a 2-approximation algorithm and
a full polynomial-time approximation scheme (FPTAS) for this problem. For the
latter two problems with generalized processing times or generalized rejection
costs, we provide a polynomial-time optimal algorithm, respectively.

In future research, an interesting direction is to consider other generalized
parameters such as: generalized weights or generalized delivery times. Moreover,
it is also interesting to consider the online versions of these problems. Finally,
we also plan to extend this problem into parallel machine scheduling or batch
processing scheduling in the future.

Acknowledgments. The authors thank the anonymous reviewers for their construc-
tive comments. This research was supported by NSFCs (11901168, 11971443 and
11771406).

References

1. Agnetis, A., Mosheiov, G.: Scheduling with job rejection and position-dependent
processing times on proportionate flowshops. Optim. Lett. 11, 885–892 (2017)

2. Bartal, Y., Leonardi, S., Spaccamela, A.M., Stougie, J.: Multi-processor scheduling
with rejection. SIAM J. Discret. Math. 13, 64–78 (2000)

3. Chen, R.-X., Li, S.-S.: Minimizing maximum delivery completion time for order
scheduling with rejection. J. Comb. Optim. 40(4), 1044–1064 (2020). https://doi.
org/10.1007/s10878-020-00649-2

4. Du, J.Z., Leung, J.Y.T.: Minimizing total tardiness on one machine is NP-hard.
Math. Oper. Res. 15, 483–495 (1990)

5. Gao, Y., Yuan, J.J.: Unary NP-hardness of minimizing the total deviation with
generalized or assignable due dates. Discret. Appl. Math. 189, 49–52 (2015)

6. Gao, Y., Yuan, J.J.: Unary NP-hardness of minimizing total weighted tardiness
with generalized due dates. Oper. Res. Lett. 44, 92–95 (2016)

7. Garey, M.R., Johnson, D.S.: Computers and Intractablity: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco (1979)

8. Gerstl, E., Mosheiov, G.: Single machine scheduling problems with generalized
due-dates and job-rejection. Int. J. Prod. Res. 55, 3164–3172 (2017)

9. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization
and approximation in deterministic sequencing and scheduling: a survey. Ann.
Discrete Math. 5, 287–326 (1979)

10. Hall, N.G.: Scheduling problems with generalized due dates. IIE Trans. 18, 220–222
(1986)

11. Hall, N.G., Sethi, S.P., Srikandarajah, S.: On the complexity of generalized due
date scheduling problems. Eur. J. Oper. Res. 51, 100–109 (1991)

https://doi.org/10.1007/s10878-020-00649-2
https://doi.org/10.1007/s10878-020-00649-2

246 X. Yu et al.

12. Hermelin, D., Pinedo, M., Shabtay, D., Talmon, N.: On the parameterized tractabil-
ity of a single machine scheduling with rejection. Eur. J. Oper. Res. 273, 67–73
(2019)

13. Lawer, E.L.: Optimal sequencing a single machine subject to precedence con-
straints. Manage. Sci. 19, 544–546 (1973)

14. Liu, P., Lu, X.: New approximation algorithms for machine scheduling with rejec-
tion on single and parallel machine. J. Comb. Optim. 40(4), 929–952 (2020).
https://doi.org/10.1007/s10878-020-00642-9

15. Liu, Z.X.: Scheduling with partial rejection. Oper. Res. Lett. 48, 524–529 (2020)
16. Lu, L.F., Zhang, L.Q., Zhang, J., Zuo, L.L.: Single machine scheduling with out-

sourcing under different fill rates or quantity discount rates. Asia-Pacific J. Oper.
Res. 37, 1950033 (2020)

17. Lu, L.F., Zhang, L.Q., Ou, J.W.: In-house production and outsourcing under differ-
ent discount schemes on the total outsourcing cost. Ann. Oper. Res. 298, 361–374
(2021)

18. Ma, R., Guo, S.N.: Applying “Peeling Onion” approach for competitive analysis
in online scheduling with rejection. Eur. J. Oper. Res. 290, 57–67 (2021)

19. Mor, B., Mosheiov, G., Shapira, D.: Flowshop scheduling with learning effect and
job rejection. J. Sched. 23(6), 631–641 (2019). https://doi.org/10.1007/s10951-
019-00612-y

20. Mor B., Mosheiov G., Shabtay D.: Minimizing the total tardiness and job rejection
cost in a proportionate flow shop with generalized due dates. J. Sched. (2021).
https://doi.org/10.1007/s10951-021-00697-4

21. Mosheiov, G., Oron, D.: A note on the SPT heuristic for solving scheduling prob-
lems with generalized due dates. Comput. Oper. Res. 31, 645–655 (2004)

22. Mosheiov, G., Oron, D., Shabtay, D.: Minimizing total late work on a single
machine with generalized due-dates. Eur. J. Oper. Res. 293, 837C846 (2021)

23. Oron, D.: Two-agent scheduling problems under rejection budget constraints.
Omega 102, 102313 (2021)

24. Shabtay, D., Gaspar, N., Kaspi, M.: A survey on off-line scheduling with rejection.
J. Sched. 16, 3–28 (2013)

25. Srikandarajah, S.: A note on the generalized due dates scheduling problem. Nav.
Res. Logist. 37, 587–597 (1990)

26. Tanaka, K., Vlach, M.: Minimizing maximum absolute lateness and range of late-
ness under generalized due dates on a single machine. Ann. Oper. Res. 86, 507–526
(1999)

27. Wang, D.J., Yin, Y.Q., Jin, Y.: Parallel-machine rescheduling with job unavailabil-
ity and rejection. Omega 81, 246–260 (2018)

28. Yin, Y.Q., Cheng, S.R., Cheng, T.C.E., Wu, C.C., Wu, W.H.: Two-agent single-
machine scheduling with assignable due dates. Appl. Math. Comput. 219, 1674–
1685 (2012)

29. Zhang, L.Q., Lu, L.F., Yuan, J.J.: Single machine scheduling with release dates
and rejection. Eur. J. Oper. Res. 198, 975–978 (2009)

30. Zou, J., Yuan, J.J.: Single-machine scheduling with maintenance activities and
rejection. Discret. Optim. 38, 100609 (2020)

https://doi.org/10.1007/s10878-020-00642-9
https://doi.org/10.1007/s10951-019-00612-y
https://doi.org/10.1007/s10951-019-00612-y
https://doi.org/10.1007/s10951-021-00697-4

Approximation Algorithm and Hardness
Results for Defensive Domination

in Graphs

Michael A. Henning1 , Arti Pandey2(B) , and Vikash Tripathi2

1 Department of Pure and Applied Mathematics, University of Johannesburg,
Auckland Park 2006, South Africa

mahenning@uj.ac.za
2 Department of Mathematics, Indian Institute of Technology Ropar,

Nangal Road, Rupnagar 140001, Punjab, India
{arti,2017maz0005}@iitrpr.ac.in

Abstract. In a graph G = (V,E), a non-empty set A of k distinct
vertices, is called a k-attack on G. The vertices in the set A is considered
to be under attack. A set D ⊆ V can defend or counter the attack A
on G if there exists a one to one function f : A �−→ D, such that either
f(u) = u or there is an edge between u and it’s image f(u), in G. A
set D is called a k-defensive dominating set, if it defends against any
k-attack on G. Given a graph G = (V,E), the minimum k-defensive
domination problem requires us to compute a minimum cardinality k-
defensive dominating set of G. When k is not fixed, it is co-NP-hard to
decide if D ⊆ V is a k-defensive dominating set. However, when k is fixed,
the decision version of the problem is NP-complete for general graphs. On
the positive side, the problem can be solved in linear time when restricted
to paths, cycles, co-chain graphs and threshold graphs for any k. In this
paper, we mainly focus on the problem when k > 0 is fixed. We prove that
the decision version of the problem remains NP-complete for bipartite
graphs, this answers a question asked by Ekim et al. (Discrete Math.
343 (2) (2020)). We give lower and upper bound on the approximation
ratio for the problem. Further, we show that the minimum k-defensive
domination problem is APX-complete for bounded degree graphs. On
the positive side, we show that the problem is efficiently solvable for
complete bipartite graphs for any k > 0.

Keywords: Domination · Defensive domination · NP-completeness ·
Graph algorithms · Approximation algorithms · APX-completeness

1 Introduction

A dominating set D of a graph G = (V,E) is a set D ⊆ V , such that every
vertex not in D has a neighbour in D. The classical Minimum Domination
problem requires to compute a dominating set of minimum size. The cardinal-
ity of a minimum dominating set is known as domination number, denoted by
c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 247–261, 2021.
https://doi.org/10.1007/978-3-030-92681-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_21&domain=pdf
http://orcid.org/0000-0001-8185-067X
http://orcid.org/0000-0002-1242-7808
http://orcid.org/0000-0002-5703-0417
https://doi.org/10.1007/978-3-030-92681-6_21

248 M. A. Henning et al.

γ(G). Due to wide applications, the concept of domination is extensively studied
in literature. A detailed study on domination can be found in the books [10–13].
Depending on requirements in different applications, many variations of the clas-
sical domination problems were introduced and studied by several researchers.
Such variations of domination are obtained by imposing additional conditions
on the dominating set.

In this paper, we study a version of domination, which focuses on security in
networks, known as k-defensive domination. This concept was introduced in [8]
and studied further in [4,6,7]. A similar concept, alliances in graphs, which is
well studied in literature, also focuses on security in networks. A recent survey of
alliances in graphs can be found in [9], and a survey on algorithms and complexity
of alliances in graphs can be found in [14]. The k-defensive domination problem
can be defined as follows:

A k-attack on a graph G = (V,E) is a set of k-distinct vertices, A =
{v1, v2, . . . , vk} ⊆ V . The vertices in the set A are said to be under attack. The
k-attack A, is said to be defended or countered by a set D ⊆ V , if there exists
an injective map f : A �−→ D, such that if f(v) = w where v ∈ A and w ∈ D,
then w ∈ NG[v]. In this case, v is said to be defended by w. A set D ⊆ V , is
called a k-defensive dominating set of G, if any k-attack A on G can be defended
by set D. The minimum cardinality of a k-defensive dominating set is called the
k-defensive domination number, denoted by γk(G). For k = n, γk(G) = n. We
observe that in the special case when k = 1, the k-defensive domination problem
is equivalent to the classical domination problem. The problem is defined in the
case when k is fixed and in the case when k is a part of input. Formally, the
problems and decision version can be stated as follows:

Minimum Fixed k-Defensive Domination problem

Instance: A graph G = (V,E).
Solution: A k-defensive dominating set D of G.
Measure: Cardinality of the set D.

Fixed k-Defensive Domination Decision problem

Instance: A graph G = (V,E) and a positive integer d ≤ |V |.
Question: Does there exist a k-defensive dominating set D of G such that
|D| ≤ d?

Minimum k-Defensive Domination problem

Instance: A graph G = (V,E) and a positive integer k ≥ 1.
Solution: A k-defensive dominating set D of G.
Measure: Cardinality of the set D.

k-Defensive Domination Decision problem

Instance: A graph G = (V,E) and a positive integer k, d ≤ |V |.
Question: Does there exist a k-defensive dominating set D of G such that
|D| ≤ d?

Defensive Domination in Graphs 249

Note that for k = 1, the Fixed k-Defensive Domination problem reduces
to classical Minimum Domination problem. Hence, we are more interested in
the case when k > 1. We remark that even for k = 2, γk(G) may be incomparable
with γ(G). For example, if we take a star graph G = K1,n on n + 1 vertices,
then γ(G) = 1 but γk(G) = n for any k > 1. We also observe that if D is a
k-defensive dominating set of a graph G = (V,E), then |D| ≥ k.

In [8], the authors studied the Minimum k-Defensive Domination prob-
lem in complete graphs, cycles and paths. They describe the structure of opti-
mal solution in complete graphs and cycles and give lower bound for paths.
They also proposed an algorithm to compute a minimum cardinality k-defensive
dominating set in trees. Ekim et al. [6] proved that the Fixed k-Defensive
Domination Decision problem is NP-complete for general graphs and split
graphs. They also proved that, when k is not fixed, it is co-NP-hard to decide,
if a given set of vertices is a k-defensive dominating set or not. Further, they
proved that the Minimum k-Defensive Domination is efficiently solvable for
paths, cycles, threshold graphs, and co-chain graphs. In [7], Ekim et al. proposed
a greedy algorithm, which computes a minimum k-defensive dominating set in
a proper interval graph G = (V,E) in O(|V | · k)-time. The same authors in [6,7]
asked to determine the complexity of the problem in bipartite graphs.

In this paper, we continue the algorithmic study of the problem. The contri-
bution of the paper is as follows. In Sect. 2, we discuss some basic notations. In
Sect. 3, we prove that the Fixed k-Defensive Domination Decision problem
is NP-complete for bipartite graphs, thereby providing an answer to a question
asked by Ekim et al. in [6,7]. In Sect. 4 we prove that, for any fixed k > 1, the
k-defensive domination problem cannot be approximated within (1 − ε

2) ln |V |
for any ε > 0 unless P = NP. In Sect. 5, we propose an approximation algo-
rithm with approximation ratio 1 + k ln(n). In Sect. 6, we prove that for any
fixed k > 1, the Fixed k-Defensive Domination problem is APX-complete
in (k + 2)-bounded degree graphs. In Sect. 7, we study the Minimum Fixed k-
Defensive Domination problem in complete bipartite graphs. Finally, Sect. 8,
concludes the paper with some open question and remarks.

2 Preliminaries

In this paper, we consider only simple and connected graphs with at least three
vertices. Let G = (V,E) be a simple and connected graph. Two vertices u, v ∈ V
are adjacent if uv ∈ E. For a vertex u ∈ V , the sets NG(u) = {v ∈ V | uv ∈
E(G)} and NG[u] = NG(u) ∪ {u} are called the open and closed neighbourhoods
of u, respectively. For a set A ⊆ V , we define N(A) = ∪v∈ANG(u) and N [A] =
∪v∈ANG[u]. For a vertex u ∈ V , |NG(u)| is called the degree of u in G, denoted
by dG(u). A path P is a sequence of vertices v1v2, . . . vk such that vivi+1 ∈ E(G)
for each i ∈ [k − 1]. If P = v1v2, . . . vk is a path, then we say, P is connecting
v1 and vk, and length of P is k − 1. The distance between two distinct vertices
u, v ∈ V (G), denoted by dG(u, v), is the length of a shortest path connecting u
and v.

250 M. A. Henning et al.

A graph G is said to be complete if any pair of distinct vertices in G are
adjacent. For a graph G, a clique of G is a complete subgraph of G. A set I ⊆ V
is independent if no vertices in I are adjacent. A graph G = (V,E) is a bipartite
graph, if the vertex set V can be partitioned into two non-empty sets X and
Y such that each edge of G has one end in X and other end in Y . The sets X
and Y are called the partite sets of G. The pair (X,Y) is called a bipartition
of G, and we represent the resulting graph by G = (X,Y,E). A bipartite graph
G = (X,Y,E) is a complete bipartite graph, if all possible pairs (x, y) ∈ X × Y
are adjacent in G.

Let G = (V,E) be a graph. The kth power of G, denoted by Gk, is the graph
with same vertex set V and where two vertices u and v are adjacent in Gk if
and only if dG(u, v) ≤ k. For a set S ⊂ V , the graph induced by S, denoted by
G[S], is a subgraph of G with vertex set S. Two vertices x, y ∈ S are adjacent
in G[S] only if xy ∈ E. We use the standard notation [n] to denote the set
of integers {1, 2, . . . , n}. For a k-defensive dominating set of G, we have the
following observation.

Observation 1. Let G = (V,E) be a graph and D a k-defensive dominating set
of G. If u, v ∈ V (G) with NG[u] ⊆ NG[v] such that u ∈ D and v /∈ D, then the
set (D \ {u}) ∪ {v} is also a k-defensive dominating set of G.

3 NP-Completeness Result for Bipartite Graphs

In this section, we show that the Fixed k-Defensive Domination Decision
problem is NP-complete for bipartite graphs. This will be done in two steps.
First, given a bipartite graph G = (X,Y,E), we construct another bipartite
graph G′ = (X ′, Y ′, E′) such that any dominating set D′ of G′ has a non empty
intersection with X ′ as well as Y ′. That is, if D′ is any dominating set of G′,
then D′ ∩X ′ �= ∅ and D′ ∩Y ′ �= ∅. We further claim that G has a dominating set
of size at most d if and only if G′ has a dominating set of size at most d+2. This
implies that, the hardness of the domination problem remains the same in the
graph G′ as well. In the second step, from G′ we will construct another bipartite
graph H = (X ′′, Y ′′, E′′) such that G′ has a dominating set of size at most t if
and only if H has a k-defensive dominating set of size at most t + p, where p
will be defined during the proof.

Theorem 1. For any k, Fixed-k-DefDom is NP-complete for bipartite graphs.

Proof. We know that, for any fixed k, Fixed-k-Defensive Domination is in
NP for general graphs. Therefore for any fixed k, Fixed-k-Defensive Domi-
nation problem is in NP for bipartite graphs as well. To prove the hardness,
we will give a polynomial reduction from the Minimum Domination Problem
which is already known to be NP-hard for bipartite graphs [2]. First, given a
bipartite graph G = (X,Y,E), we construct a bipartite graph G′ = (X ′, Y ′, E′)
as follows:

Defensive Domination in Graphs 251

a1

a2a3
b1 b2 b3

v

u

Fig. 1. An illustration to the construction of G′ from G in the proof of Theorem 1.

Consider two paths P = a1a2a3 and P ′ = b1b2b3. Pick any vertex v ∈
X and make a1 adjacent to v. Similarly pick any vertex u ∈ Y and make b1
adjacent to u. Note that the new constructed graph is a bipartite graph with
bipartitions X ′ = X ∪ {a2, b1, b3} and Y ′ = Y ∪ {a1, a3, b2} and edge set E′ =
E ∪ {va1, a1a2, a2a3, ub1, b1b2, b2b3}. An illustration of the construction of G′

from G is given in Fig. 1. We prove next the following claim:

Claim. The graph G has a dominating set of size at most d if and only if the
graph G′ has a dominating set of size at most d + 2.

Proof. If G has a dominating set D of size at most d, then the set D′ = D ∪
{a2, b2} is a dominating set of size at most d + 2.

Conversely, suppose G′ has a dominating set D′ of size at most d + 2. If
a3 ∈ D′, then we can replace a3 in D′ with a2. Hence, in order to dominate a3,
we can choose D′ so that a2 ∈ D′. If a1 ∈ D′, then we can replace a1 in D′ with
v. Hence, we may further choose D′ so that D′ ∩ {a1, a2, a3} = {a2}. Similarly,
we may choose D′ so that D′ ∩ {b1, b2, b3} = {b2}. The set D = D′ \ {a2, b2} is
a dominating set of G of size at most d.
�

Hence, given a bipartite graph G, we can construct another bipartite graph
G′ such that G has a dominating set of size at most d if and only if G′ has a
dominating set of size at most d + 2. More importantly, any dominating set D′

of G′ = (X ′, Y ′, E′) contains at least one vertex from X ′ as well as at least one
vertex from Y ′.

From G′, we construct next a bipartite graph H = (X ′′, Y ′′, E′′) as follows:
for i ∈ [2], let Xi = {xi

1, x
i
2, . . . x

i
k−1} and Yi = {yi

1, y
i
2, . . . y

i
k−1}. Let X ′′ =

X ′ ∪X1 ∪Y1 and Y ′′ = Y ′ ∪X2 ∪Y2. We join each vertex of X1 with each vertex
of Y2 so that the subgraph of G induced by X1 ∪ Y2, that is G[X1 ∪ Y2], is a
complete bipartite graph. Similarly, we join each vertex of X2 with each vertex
of Y1 so that the induced graph G[X2∪Y1] is a complete bipartite graph. Finally,
we make vertex x1

i and x2
i adjacent to all vertices of Y ′ and X ′, respectively, for

252 M. A. Henning et al.

a1

a2

a3

b1

b2

b3

x2
1

x2
2

x1
1

x1
2

y1
1

y1
2

y2
1

y2
2

Y1 X2 X ′ Y ′
X1 Y2

Fig. 2. An illustration of the construction of H from G′ for k = 3 in the proof of
Theorem 1.

each i ∈ [k − 1]. Formally, E′′ = E′ ∪ {(x1
i , y)|y ∈ Y ′, i ∈ [k − 1]} ∪ {(x2

i , x)|x ∈
X ′, i ∈ [k−1]} ∪{(x1

i , y
2
j) | i, j ∈ [k−1]}∪{(x2

i , y
1
j) | i, j ∈ [k−1]}. An illustration

of the construction of H from G′ is given in Fig. 2. Now in order to show the
hardness result, we will prove the following claim:

Claim. The graph G′ = (X ′, Y ′, E′) has a dominating set of size at most t if and
only if the graph H = (X ′′, Y ′′, E′′) has a k-defensive dominating set of size at
most t + 2(k − 1).

Proof. The proof is omitted due to space constraints.
�
The theorem now follows from above Claims.
�
Since k > 1 is a constant, we note that the reduction is also a parameterized

reduction. Hence, we have the following result.

Corollary 1. Fixed k-Defensive Domination problem is W[2]-hard for
bipartite graphs when parameterized by the solution size.

4 Lower Bounds on Approximation Ratio

For the concepts related to approximation algorithms and approximation hard-
ness, we refer the reader to [15]. In this section we will give a lower bound on
the approximation ratio of the k-defensive domination problem in graphs. For
this purpose we will give a polynomial time approximation preserving reduction
from the Minimum Domination problem to k-defensive domination problem.
We will use the same construction used by Ekim et al. [6], to show the NP-
completeness of the Fixed k-Defensive Domination Decision problem. For
sake of completeness, we will illustrate the construction here also.

Defensive Domination in Graphs 253

Chleb́ık and Chleb́ıková in [2], proved that the Minimum Domination prob-
lem can not be approximated within a factor of (1 − ε) ln(|V |) in polynomial
time, for any ε > 0, unless NP ⊆ DTIME(nO(log log n)). They proved this result
by designing a reduction from well known Set Cover problem. Later, in [5],
Dinur and Steurer proved that the Minimum Set Cover problem can not be
approximated within a factor of (1−ε) ln(|V |) in polynomial time, for any ε > 0,
unless P=NP. Hence, the following lower bound on the approximation ratio of
the Minimum Domination problem is already known.

Theorem 2. For a graph G = (V,E), the Minimum Domination problem
cannot be approximated within (1 − ε) ln(|V |) for any ε > 0 unless P=NP.

Now we will prove the following result for k-defensive domination problem.

Theorem 3. For a graph G = (V,E), Fixed k-Defensive Domination
Decision problem cannot be approximated within (12 − ε) ln(|V |) for any ε > 0
unless P=NP.

Proof. Note that for k = 1, the problem is equivalent to the Minimum Dom-
ination problem and hence the results follows. Hence, we may assume that
k > 1 otherwise, the result is immediate. Given an arbitrary instance G =
(V,E) of the Minimum Domination problem, we will construct an instance
H = (V ′, E′) of the k-defensive domination problem as follows. Consider two
sets U = {u1, . . . uk−1} and W = {w1, . . . wk−1}. Let H ′ be obtained from G
by adding the vertices in the sets U and W , forming a clique on the vertices
in U , adding a perfect matching between U and W , and joining every vertex
in U to all vertices in V . Thus, V ′ = V ∪ U ∪ W and E′ = E ∪ {uiwi | i ∈
[k − 1]} ∪ {uiuj | i, j ∈ [k − 1] and i ≤ j} ∪ {uv | u ∈ U and v ∈ V }. We note
that wi has degree 1 in H with ui as its unique neighbour for each i ∈ [k − 1].
Further, W is an independent set in H.

We show that if S∗ is a minimum dominating set of G, then the set S = S∗∪U
is a k-defensive dominating set of H. Consider any k-attack A in H such that
A contains r vertices from the set W with the remaining k − r vertices from the
set U ∪ V where 0 ≤ r ≤ k − 1. The r vertices of W can be defended by their r
neighbours in U , and the k−r vertices in A that belong to V ∪U can be defended
by the remaining k − r − 1 vertices of U and the set S∗. Thus, S = S∗ ∪ U is a
k-defensive dominating set of H. In particular, if S∗

k is a minimum cardinality
k-defensive dominating set, then |S∗

k | ≤ |S∗| + (k − 1).
Suppose there exists an Algorithm A that approximates a k-defensive dom-

inating set S′ of the graph H in polynomial time within a factor α = (12 −
ε) ln(|V ′|) ≥ 1, for some ε > 0. Using Algorithm A we give an algorithm
Algorithm B which approximates a dominating S set of G.

254 M. A. Henning et al.

Algorithm 1: Algorithm B
Input: A graph G = (V,E).
Output: A Dominating set S of G.
begin

if there exists a minimum dominating set S of G of cardinality less than k
then

return S;

else
Construct graph H from G.
Compute a k-defensive dominating set S′ of H using algorithm
Algorithm A.

Let S = S′ ∩ V .
for each v ∈ V do

if (v ∈ V is not dominated by S) then
include v in S

return S;

Clearly, the set S returned by Algorithm B is a dominating set of G. Next,
we show that |S| ≤ |S′| − (k − 1). We note that S′ is a k-defensive dominating
set of H computed by Algorithm A. Since wi is a vertex of degree 1 with ui

as its unique neighbor, to defend an attack on wi, either wi or ui must be in S′.
Moreover if wi ∈ S′ and ui /∈ S′, then since N [wi] ⊆ N [ui], by Observation 1
the set (S′ \ {wi}) ∪ {ui} is also a k-defensive dominating set of H. Therefore,
we may choose S′ so that U ⊆ S′. Now suppose |(S′ \U)∩W | = r. Without loss
of generality we assume that S′ ∩ W = {w1, w2, . . . wr}.

We show that at most r vertices of V are not dominated by the set SG =
S′ ∩ V . Let T be the set of vertices in G that are not dominated by set SG.
Suppose, to the contrary, that |T | > r. If |T | ≥ k, then any subset A ⊆ T
with |A| = k yields a k-attack which cannot be defended by S′, a contradiction.
Therefore, |T | ≤ k −1. Let W ′ = {w|T |, w|T |+1, . . . wk−1}, and so |W ′| = k −|T |.
We now consider a k-attack A = T ∪W . Since S′ is a k-defensive dominating set
of H, the attack A must be defended by S′. Since every vertex in W ′ must be
defended by its unique neighbor that belongs to U , we have only |U | − |W ′| =
(k − 1) − (k − |T |) = |T | − 1 defenders left to defend T , which is not possible.
This contradicts the fact that S′ is a k-defensive dominating set of H. Therefore,
|T | ≤ r. We now let S = SG ∪ T . The set S is a dominating set of G. Moreover,
|S| = |SG|+|T | = (|S′|−|U |−|S′∩W |)+|T | ≤ (|S′|−(k−1)−r)+r = |S′|−(k−1).
Moreover, if S∗

k is a minimum cardinality k-defensive dominating set of H and S∗

is a minimum cardinality dominating set of G, then we have |S∗| ≤ S∗
k − (k −1).

Hence, we may conclude that γk(H) = γ(G) + (k − 1).

Defensive Domination in Graphs 255

Hence, we conclude that Algorithm B returns a minimum dominating set
S of G if |S| < k; otherwise, it returns a dominating set of G of cardinality
at most |S′| − (k − 1) ≤ α|S∗

k | − (k − 1), where S∗
k denotes a minimum k-

defensive dominating set of H. Let S∗ is a minimum dominating set of G. If
|S∗| < k then Algorithm B returns a minimum cardinality dominating set
G. Hence, we assume that |S∗| ≥ k. Now we have, |S| ≤ |S′| − (k − 1) ≤
α|S∗

k | − (k − 1) = α(|S∗| + (k − 1)) − (k − 1) = α|S∗| + (α − 1)(k − 1). Now,
since |S∗| ≥ k, |S| ≤ α|S∗| + (α − 1)|S∗| ≤ 2α|S∗| = (2(12 − ε) ln |V ′|)|S∗| =
((1 − 2 · ε) ln |V ′|)|S∗| = ((1 − ε′) ln |V ′|)|S∗| where ε′ = 2 · ε. Also for sufficiently
large value of |V |, ln |V ′| = ln(|V | + 2(k − 1)) ≈ ln |V |. Therefore, if we take
ε = ε′

2 , the minimum dominating set of G can be approximated within a factor
of α = (1 − ε′) ln |V |, a contradiction to Theorem 2.

This completes the proof of Theorem 3.
�

5 Approximation Algorithm

In this section we will give an approximation algorithm for Fixed k-Defensive
Domination in graphs. Before designing the algorithm, we first recall the fol-
lowing results:

Theorem 4 [7]. A set D ⊆ V in a graph G = (V,E) is a k-defensive dominat-
ing set of G if and only if it defends against every k-attack A such that G2[A]
is connected.

Theorem 5 [7]. A set D ⊆ V in a graph G = (V,E) is a k-defensive dominat-
ing set of G if and only if |N [A] ∩ D| ≥ |A| for every set A ⊆ V with |A| ≤ k
and G2[A] is connected.

Given a graph G = (V,E), and a fixed positive integer k > 1, we approximate
a k-defensive dominating set by reducing it to another problem known as total
vector domination, which we define next.

Let G = (V,E) be a graph and K = (kv | v ∈ V) be a vector associated
with G such that for all v ∈ V , we have kv ∈ {0, 1, . . . dG(v)}. A total vector
dominating set of G is a set S ⊆ V such that |S∩NG(u)| ≥ ku for all u ∈ V . The
total vector domination problem for G is to find a minimum cardinality total
vector dominating set of G. The minimum size of a total vector dominating set
of G is the total vector domination number, denoted by γt(G,K). An instance of
a total vector domination problem is a pair (G,K), where G is a graph, and K is
a corresponding required vector. The following approximation result is already
known for the total vector domination problem.

Theorem 6. ([3]) The total vector domination problem in a graph G can be
approximated in polynomial time within a factor of ln(Δ(G)) + 1, where Δ(G)
denotes the maximum degree of a vertex in G.

Before proving the main theorem of this section, we provide the following
construction for a given graph G and a fixed positive integer k.

256 M. A. Henning et al.

Construction A: Let G = (V,E) be a graph such that |V | = n and k > 1
be a fixed integer. We construct another graph G′ = (V ′, E′) as follows: let S
be the set of all sets A such that |A| ≤ k and G2[A] is connected. Let |S| = r.
Note that, |S| = r = O(nk). More precisely, let S = {S1, . . . Sr} be such that
Si ⊂ V , |Si| ≤ k, and G2[Si] is connected for each i ∈ [r]. Let U = {s1, . . . , sr}
be a set of new vertices, where the vertex si corresponding to the set Si for
each i ∈ [r]. Now we construct the graphs G′ = (V ′, E′) where V ′ = U ∪ V and
E′ = {uv : u, v ∈ V and u �= v} ∪ {siu : u ∈ NG[Si], i ∈ [r]}. We may note that
G′[V] is a clique in G′ and U is an independent set of G′. Now construct a vector
K = (kv | v ∈ V ′) such that kv = 1 for all v ∈ V and ksi

= |Si| for all si ∈ U .
We note that the transformation of the graph G to the graph G′ is polynomial
time, if k > 1 is fixed.

Let k > 1 be a fixed integer. Given an instance G = (V,E) of the k-
Defensive Domination problem, in polynomial time we can construct an
instance (G′ = (V ′, E′),K) of the total vector domination problem, using Con-
struction A. We now prove that a k-defensive dominating set D of G can be
obtained from a total vector dominating set D′ of G′ such that |D| = |D′|, and
vice versa.

Lemma 1. Fix an integer k > 1. Let G = (V,E) be a graph and G′ = (V ′, E′)
be the graph obtained from G using Construction A with vector K. A k-defensive
dominating set D of G can be obtained from a total vector dominating set D′ of
G′ and vice versa.

Proof. Let D′ be a total vector dominating set of G′ = (V ′, E′). We note that
V ′ = U ∪ V where U contains the vertices si corresponding to sets Si ⊆ V
where |Si| ≤ k and G2[Si] is connected. Further, we know that G′[V] is a clique
and U is an independent set in G′. In addition, we have K = (kv | v ∈ V ′)
such that kv = 1 for all v ∈ V and ksi

= |Si| for all si ∈ U . This implies that
|NG′(si) ∩ D′| ≥ |Si| for all i ∈ [r]. We now let D = D′ ∩ V . Since U is an
independent set and |NG′(si) ∩ D′| ≥ |Si|, we have |NG[Si] ∩ D| ≥ |Si| for all
i ∈ [r]. Hence, using Theorem 5, the set D is a k-defensive dominating set of G
with |D| ≤ |D′|.

Now, suppose D is a k-defensive dominating set of G. Using Theorem 5, we
have |NG[Si] ∩ D| ≥ |Si| for all i ∈ [r]. We now let D′ = D. Using the fact that
|NG[Si] ∩ D| ≥ |Si|, we have that |NG′(si) ∩ D′| ≥ |Si| for all i ∈ [r]. Also since
k > 1, we have |NG′(v)∩D′| ≥ 1. Hence, the set D′ is a total vector dominating
set of G′ with |D′| ≤ |D|.
�

In Lemma 1, a set D is a feasible solution of an instance G = (V,E) of Fixed
k-Defensive Domination problem if and only if D can be obtained from a
feasible solution D′ of the corresponding instance (G′ = (V ′, E′),K) of the total
vector domination problem. Using this we prove the following result.

Theorem 7. In any graph G = (V,E) with |V | = n, Min k-Defensive Domi-
nating Set problem can be approximated within an approximation of 1+k ln(n).

Defensive Domination in Graphs 257

Proof. Given a graph G = (V,E) with |V | = n, we can construct a graph
G′ = (V ′, E′) and corresponding vector K, using Construction A. We note that
the size of G′ is polynomial in the size of G. Indeed, |V ′| = |V | + O(|V |k) =
O(|V |k) and since G′ is a simple graph, we have |E′| = O(|V |2k). Now, using
Theorem 6, we can approximate a total vector dominating set D′ of G′ with an
approximation ratio of 1 + ln(Δ(G′)). We note that Δ(G′) ≤ nk. Therefore, we
have 1 + ln(Δ(G′)) = 1 + ln(nk) = 1 + k ln(n).

Using Lemma 1, we note that from D′ we can obtain a k-defensive dominating
set D of G. Consequently, we have a k-defensive dominating set D of G with an
approximation ratio of 1 + k · ln(n), yielding the desired result.
�

6 APX-Completeness

In this section, we will show that Fixed k-Defensive Domination problem is
APX-complete for bounded degree graphs. For this purpose we recall the follow-
ing definitions. An optimization problem Π is a tuple (I,S, c, opt), where I is
the set of instances of Π, S(I) is the set of feasible solutions of an instance of
I ∈ I, c : I × S → N is called objective function, and opt is either minimize or
maximize (in short, min or max respectively). We now define L-reduction.

Definition 1. L-reduction
Let Π1 = (I1,S1, c1,min) and Π2 = (I2,S2, c2,min) be two minimization prob-
lems. Let f : I1 → I2 be a polynomial time function which transforms each
instance of Π1 to an instance of Π2. We say the function f is an L-reduction
if there exists positive constants α and β such that for any instance I ∈ I1 the
following holds:

1. min f(I) ≤ α · min(I).
2. For every feasible solution y ∈ S2(f(I)), in polynomial time, we can find a

solution x ∈ S1(I) such that |min(I)−c1(I, x)| ≤ β · |min(f(I))−c2(f(I), y)|.
To show that an optimization problem Π ∈ APX is APX-complete, we need

to show the existence of an L-reduction from some known APX-complete to the
problem Π.

Since every k-defensive dominating set is a dominating set, for any graph
G, we have γk(G) ≥ γ(G). It is well know that if G = (V,E) is a graph with
maximum degree Δ, then γ(G) ≥ |V |

Δ+1 . Therefore, γk(G) ≥ |V |
Δ+1 . Thus, taking

D = V as a k-defensive dominating set, we have |D| ≤ γk(G)(Δ + 1). Conse-
quently, Fixed k-Defensive Domination problem is in APX.

To show the APX-completeness of the Minimum Fixed k-Defensive Domi-
nation problem, we give an L-reduction from the minimum domination problem.
The following result is already known for the minimum domination problem.

Theorem 8 [1]. The Minimum Domination problem is APX-complete for
graphs with maximum degree 3.

258 M. A. Henning et al.

Now, we prove the APX-completeness of the Minimum Fixed k-Defensive
Domination problem for graphs with maximum degree k + 2.

Theorem 9. The Minimum Fixed k-Defensive Domination is APX-
complete for graphs with maximum degree k + 2.

Proof. Since by Theorem 8, the Minimum Domination problem is APX-
complete for the graphs with maximum degree 3, to complete the proof of the
theorem, it is enough to establish an L-reduction from the instances of the Mini-
mum Domination problem for graphs with maximum degree 3 to the instances
of the Minimum Fixed k-Defensive Domination problem for graphs with
maximum degree k + 2. Given a graph G = (V,E), where V = {v1, v2, . . . , vn},
we construct a graph G′ = (V ′, E′) in the following way:

– Define a graph Hi = (Vi, Ei), where the vertex set Vi and the edge set Ei are
defined in the following way:
Vi = Xi∪Yi∪{zi}, where Xi = {x1

i , x
2
i , . . . , x

k−1
i } and Yi = {y1

i , y2
i , . . . , yk−1

i }.
Ei = {xj

iy
j
i | j ∈ [k − 1]} ∪ {xj

ix
p
i | 1 ≤ j < p ≤ k − 1} ∪ {zix

j
i | j ∈ [k − 1]}.

We call Hi, a gadget.
– For each vi ∈ V , add a gadget Hi and make vi adjacent to all the vertices of

Xi.

We note that the graph G′ can be constructed from G in the polynomial
time. Note that, for each i ∈ [n], the degree of every vertex in Yi is 1, degree of
every vertex in Xi is k + 1, and degree of zi is k − 1 in G′. Also for any vertex
vi ∈ V , degree of vi in G′ is at most k + 2. Hence, Δ(G′) ≤ k + 2. An example
of the construction of G′ from G is illustrated in Fig. 3.

Next, we prove the following claim:

Claim. If D∗ is a minimum dominating set of G, and D∗
k is a minimum k-

defensive dominating set of G′, then |D∗| = |D∗
k| − kn.

Proof. The proof is omitted due to space constraints.
�
We now return to the proof of our theorem. By above claim, if D∗ is a

minimum dominating set of G, and D∗
k is a minimum k-defensive dominating set

of G, then |D∗
k| = |D∗|+kn. Since G is a graph of order n with maximum degree 3,

we have n ≤ 4γ(G) = 4|D∗|. Hence, we have |D∗
k| ≤ |D∗|+4k|D∗| = (4k+1)|D∗|.

Hence, |D∗
k| ≤ α · |D∗|, where α = 4k + 1.

Now consider a k-defensive dominating set, say Dk of G′. Without loss of
generality, we may assume that Xi ∪ zi ⊆ Dk and Yi ∩ Dk = ∅ for all i ∈ [n].
Similar to the proof of claim, we may argue that the set D is a dominating set of
G of cardinality at most |Dk|−kn. Hence |D|−|D∗| ≤ (|Dk|−kn)−(|D∗

k|−kn) =
|Dk| − |D∗

k|.
This proves that | |D∗| − |D| | ≤ β · | |D∗

k| − |Dk| |, where β = 1. This proves
that f an L-reduction with α = 4k + 1 and β = 1.

This completes the proof of our theorem.
�

Defensive Domination in Graphs 259

v1 v1

v2 v2

v3 v3

v4 v4

zi

x1
i x2

i

y1
i y2

i

(i) Hi G

G′

H1

H2

H4

H3

(ii)

Xi

Yi

Fig. 3. (i) a gadget Hi for k = 3, (ii) an example of the construction of G′ from G for
k = 3 in the proof of Theorem 9.

7 Defensive Domination Complete Bipartite Graphs

Let G = (V,E) be a graph and D be a k-defensive dominating set of G. Let A
be any k-attack on G. We call a vertex u a non-attacked defender if u /∈ A and
u ∈ D. Further, we say that a vertex u is non-defender attacked if u ∈ A and
u /∈ D.

In this section, we study k-Defensive Domination problem in complete
bipartite graphs. Let G = (X,Y,E) be a complete bipartite graph of order n
such that |X| = n1 and |Y | = n2, and so n = n1 + n2. If n ≤ k, then γk(G) = n.
If k = 1, then the k-Defensive Domination problem is equivalent to the
classical domination problem, and therefore, if G is a complete bipartite graph
then γk(G) = γ(G) ≤ 2. Hence, it is only of interest to consider the case when
n > k ≥ 2. Without loss of generality we may assume that n1 ≥ n2. Here, we
have the following cases for k: (i) k > n1, (ii) n2 ≤ k ≤ n1, (iii) n2

2 ≤ k < n2,
and (iv) k ≤ n2

2 .

Theorem 10. If G = (X,Y,E) is a complete bipartite graph, where |X| = n1,
|Y | = n2 and n1 ≥ n2 ≥ 1, then the following holds:

(a) If n1 < k, then γk(G) = k.
(b) If n2 = k, then γk(G) = k.
(c) If n2 < k ≤ n1, then γk(G) = n1.
(d) If k < n2 < 2k, then γk(G) = n2.
(e) If n2 ≥ 2k, then γk(G) = 2k.

Proof. Let G = (X,Y,E) be a complete bipartite graph where |X| = n1 and
|Y | = n2. Also assume that n1 + n2 = n > k ≥ 2. Let X = {x1, . . . xn1} and
X = {y1, . . . , yn2}.

260 M. A. Henning et al.

(a) Suppose that n1 < k. For any graph G, we know that γk(G) ≥ k. To
show that γk(G) = k, it suffices for us to show that there exists a k-defensive
dominating set D of G of cardinality k. Let D = Y ∪ {x1, . . . , xk−n2}, and so
|D ∩ X| = k − n2. We claim that the set D is a k-defensive dominating set of G.
Since n1 < k, we have |X \D| = |X|−|X∩D| = n1−(k−n2) = n1+n2−k < n2.
Thus, there are at most n2 − 1 vertices in X that do not belong to the set D.

Now consider any k-attack A consisting of l1 and l2 vertices from X and Y ,
respectively. That is, |A ∩ X| = l1 and |A ∩ Y | = l2, where l1 + l2 = k. Let
|A ∩ (X \ D)| = r1 and |A ∩ (X ∩ D)| = r2. Clearly, r1 + r2 = l1.

Suppose that r1 ≤ n2 − l2. Thus, the number of non-attacked defenders in Y
is at least r1. In this case, these r1 attacked vertices in X \ D can be defended
by the non-attacked defenders of Y . The remaining attacked vertices all belong
to the set D, and can be defended by themselves.

Suppose that r1 > n2−l2. We note that the number of non-attacked defenders
in X is given by |(X∩D)\A| = (k−n2)−r2. If (k−n2)−r2 < r1−(n2−�2), then
�1 + �2 = r1 + r2 + �2 > k, a contradiction. Hence, (k −n2)− r2 ≥ r1 − (n2 − �2).
Let Y2 be a subset of vertices in A ∩ Y of cardinality r1 − (n2 − �2). The r1
vertices in X \ D can be defended by the set of n2 − l2 non-attacked defenders
in Y together with the set of r1 − (n2 − �2) vertices in Y2. The vertices in Y2

can be defended by the set of non-attacked defenders in X, since by our earlier
observations there are at least |Y2| non-attacked defenders in X. The remaining
attacked vertices all belong to the set D, and can be defended by themselves.

In both cases, the set D is a k-defensive dominating set of G of cardinality k,
implying that γk(G) ≤ |D| = k. As observed earlier, γk(G) ≥ k. Consequently,
γk(G) = k.

The proof of part (b), (c), (d) and (e) of the theorem is omitted due to space
constraints.
�

8 Conclusion

In this paper, we studied the hardness and approximation results of the Mini-
mum Fixed k-Defensive Domination problem. We proved that the decision
version of the problem remain NP-complete even for chordal bipartite graphs,
thereby answering a question posed by Ekim et at. in [6]. We studied the approx-
imation hardness of the problem. We proved that, for a fixed k > 1, a k-defensive
dominating set of a graph G = (V,E) cannot be approximated within a ratio of
(1− ε

2) ln(|V |) unless P=NP. Using the same result, we claim that for fixed k > 1,
the problem is W[2]-hard for bipartite graphs when parameterized by solution
size. We also proposed a polynomial algorithm which approximates a k-defensive
dominating set of a graph of order n with approximation ratio 1 + k ln(n) for a
fixed k > 1. We prove that the Fixed k-Defensive Domination problem is
APX-complete for (k+2)-bounded degree graphs, where k > 1. Further, investi-
gating the hardness of the problem and designing polynomial time approximation
algorithm for the problem in planar graphs is a good research direction.

In the last section, we show that the Minimum k-Defensive Domination
problem is polynomial time solvable for complete bipartite graphs. The problem

Defensive Domination in Graphs 261

is already polynomial time solvable for paths, cycles, co-chain graphs, thresh-
old graphs and proper interval graphs. One can try to design polynomial time
algorithms for the problem in interval graphs and block graphs.

References

1. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theoret.
Comput. Sci. 237(1–2), 123–134 (2000)

2. Chleb́ık, M., Chleb́ıková, J.: Approximation hardness of dominating set problems
in bounded degree graphs. Inform. Comput. 206(11), 1264–1275 (2008)

3. Cicalese, F., Milanič, M., Vaccaro, U.: On the approximability and exact algo-
rithms for vector domination and related problems in graphs. Discrete Appl. Math.
161(6), 750–767 (2013)

4. Dereniowski, D., Gavenčiak, T., Kratochv́ıl, J.: Cops, a fast robber and defensive
domination on interval graphs. Theoret. Comput. Sci. 794, 47–58 (2019)

5. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: STOC 2014–
Proceedings of the 2014 ACM Symposium on Theory of Computing, pp. 624–633.
ACM, New York (2014)

6. Ekim, T., Farley, A.M., Proskurowski, A.: The complexity of the defensive domi-
nation problem in special graph classes. Discrete Math. 343(2), 111665, 13 (2020)

7. Ekim, T., Farley, A.M., Proskurowski, A., Shalom, M.: Defensive domination in
proper interval graphs. CoRR abs/2010.03865 (2020)

8. Farley, A.M., Proskurowski, A.: Defensive domination. In: Proceedings of the
Thirty-Fifth Southeastern International Conference on Combinatorics, Graph The-
ory and Computing, vol. 168, pp. 97–107 (2004)

9. Haynes, T.W., Hedetniemi, S.T.: Alliances and related domination parameters. In:
Haynes, T.W., Hedetniemi, S.T., Henning, M.A. (eds.) Structures of Domination
in Graphs. DM, vol. 66, pp. 47–77. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-58892-2 3

10. Haynes, T.W., Hedetniemi, S.T., Henning, M.A. (eds.): Topics in Domination in
Graphs, Developments in Mathematics, vol. 64. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-51117-3

11. Haynes, T.W., Hedetniemi, S.T., Henning, M.A. (eds.): Structures of Domination
in Graphs, vol. 66. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
58892-2

12. Haynes, T.W., Hedetniemi, S.T., Slater, P.J. (eds.): Domination in Graphs:
Advanced Topics, Monographs and Textbooks in Pure and Applied Mathemat-
ics, vol. 209. Marcel Dekker, Inc., New York (1998)

13. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in
Graphs, Monographs and Textbooks in Pure and Applied Mathematics, vol. 208.
Marcel Dekker Inc, New York (1998)

14. Hedetniemi, S.T.: Algorithms and complexity of alliances in graphs. In: Haynes,
T.W., Hedetniemi, S.T., Henning, M.A. (eds.) Structures of Domination in Graphs.
DM, vol. 66, pp. 521–536. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-58892-2 17

15. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001). https://
doi.org/10.1007/978-3-662-04565-7

https://doi.org/10.1007/978-3-030-58892-2_3
https://doi.org/10.1007/978-3-030-58892-2_3
https://doi.org/10.1007/978-3-030-51117-3
https://doi.org/10.1007/978-3-030-51117-3
https://doi.org/10.1007/978-3-030-58892-2
https://doi.org/10.1007/978-3-030-58892-2
https://doi.org/10.1007/978-3-030-58892-2_17
https://doi.org/10.1007/978-3-030-58892-2_17
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-662-04565-7

An Improved Physical ZKP for Nonogram

Suthee Ruangwises(B)

Department of Mathematical and Computing Science,
Tokyo Institute of Technology, Tokyo, Japan

Abstract. Nonogram is a logic puzzle consisting of a rectangular grid
with an objective to color every cell black or white such that the lengths
of blocks of consecutive black cells in each row and column are equal to
the given numbers. In 2010, Chien and Hon developed the first physical
zero-knowledge proof for Nonogram, which allows a prover to physically
show that he/she knows a solution of the puzzle without revealing it.
However, their protocol requires special tools such as scratch-off cards
and a machine to seal the cards, which are difficult to find in everyday
life, making the protocol impractical. Their protocol also has a nonzero
soundness error. In this paper, we propose a more practical physical zero-
knowledge proof for Nonogram that uses only a deck of regular paper
cards and also has perfect soundness.

Keywords: Zero-knowledge proof · Card-based cryptography ·
Nonogram · Puzzle

1 Introduction

Nonogram, also known as Picross or Pic-a-Pix, is one of the most popular logic
puzzles alongside Sudoku, Kakuro, and other puzzles. A large number of Nono-
gram mobile apps have been developed [7].

A Nonogram puzzle consists of a rectangular grid of size m×n. The objective
of this puzzle is to color every cell black or white according to the following
constraints. In each row and each column, there is a sequence of numbers, say
(x1, x2, ..., xk), assigned to it; this means the corresponding row (resp. column)
must contain exactly k blocks of consecutive black cells with lengths x1, x2, ..., xk

in this order from left to right (resp. from top to bottom), with at least one white
cell separating consecutive blocks. For instance, in Fig. 1, the sequence (3, 2) on
the topmost row means that row must contain a block of three consecutive black
cells, and another block of two consecutive black cells to the right of it, separated
by at least one white cell.

Suppose that Percy created a difficult Nonogram puzzle and challenged his
friend Violetta to solve it. After a while, Violetta could not solve his puzzle and
began to doubt whether the puzzle has a solution. In order to convince her that
his puzzle actually has a solution without revealing it (which would make the
challenge pointless), Percy needs a zero-knowledge proof (ZKP).
c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 262–272, 2021.
https://doi.org/10.1007/978-3-030-92681-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_22&domain=pdf
http://orcid.org/0000-0002-2820-1301
https://doi.org/10.1007/978-3-030-92681-6_22

An Improved Physical ZKP for Nonogram 263

Fig. 1. An example of a Nonogram puzzle (left) and its solution (right)

1.1 Zero-Knowledge Proof

A prover P and a verifier V are given a computational problem x, but only P
knows a solution w of x. A ZKP is an interactive proof introduced by Goldwasser
et al. [6], which allows P to convince V that he/she knows w without revealing
any information about it. A ZKP must satisfy the following properties.

1. Completeness: If P knows w, then P can convince V with high probability.
(Here we consider the perfect completeness property where the probability is
one.)

2. Soundness: If P does not know w, then P cannot convince V , except with a
small probability called soundness error. (Here we consider the perfect sound-
ness property where the soundness error is zero.)

3. Zero-knowledge: V learns nothing about w. Formally, there exists a proba-
bilistic polynomial time algorithm S (called a simulator) that does not know
w such that the outputs of S and the outputs of the real protocol follow the
same probability distribution.

Goldreich et al. [5] showed that a computational ZKP exists for every NP
problem. As Nonogram is NP-complete [25], one can construct a computational
ZKP for it via a reduction to another problem. Such construction, however, is
not intuitive and looks unconvincing. Hence, many recent results instead focused
on constructing physical ZKPs using portable objects such as a deck of cards and
envelopes. These protocols have benefits that they do not require computers and
allow external observers to check that the prover truthfully executes the protocol
(which is often a challenging task for digital protocols). These intuitive protocols
can also be used to teach the concept of ZKP to non-experts.

1.2 Related Work

Development of physical ZKPs for logic puzzles began in 2009 when Grad-
wohl et al. [8] proposed six ZKP protocols for Sudoku. Each of these protocols

264 S. Ruangwises

either requires special tools such as scratch-off cards, or has a nonzero soundness
error. Later, Sasaki et al. [22] improved the ZKP for Sudoku to achieve perfect
soundness without using special tools. Very recently, Ruangwises [18] developed
another ZKP for Sudoku that uses a deck of all different cards.

In 2010, Chien and Hon [3] proposed the first physical ZKP for Nonogram.
Their protocol, however, requires scratch-off cards and a machine to seal the
cards. These special tools cannot be easily found in everyday life, making the
protocol very impractical. Moreover, their protocol has a nonzero soundness
error. In fact, the soundness error is as high as 6/7, which means practically, the
protocol has to be repeated for many times until the soundness error becomes
reasonably low.

After Sudoku and Nonogram, physical ZKPs for several other logic puzzles
have been developed, including Akari [1], Takuzu [1,12], Kakuro [1,13], KenKen
[1], Makaro [2], Norinori [4], Slitherlink [11], Juosan [12], Numberlink [19], Suguru
[17], Ripple Effect [20], Nurikabe [16], Hitori [16], and Bridges [21]. All of these
subsequent protocols uses only regular paper cards without requiring special
tools and have perfect soundness (except the ones in [1]).

1.3 Our Contribution

Despite Nonogram being the second logic puzzle after Sudoku to have a physical
ZKP, it still lacks a practical protocol that do not require special tools, or the one
with perfect soundness. The problem of developing such protocol has remained
open for more than ten years.

In this paper, we propose a practical physical ZKP for Nonogram using only
a deck of regular paper cards, which are easy to find in everyday life and can
be reused. Our protocol also has perfect completeness and perfect soundness.
In an m × n Nonogram puzzle with a total of w white cells, our protocol uses
2mn + 2max(m,n) + 6 cards and mn + 2m + 2n + 2w shuffles.

2 Preliminaries

2.1 Cards

We use four types of cards in our protocol: ♣ , ♥ , ♠ , and ♦ . The front sides
of cards in the same type are identical. The back sides of all cards are identical
and are denoted by ? .

2.2 Random Cut

Given a sequence of k cards, a random cut rearranges the cards by a random
cyclic shift, i.e. shifts the cards cyclically to the right by r cards for a uniformly
random r ∈ {0, 1, ..., k − 1} unknown to all parties.

The random cut can be performed in real world by taking turns to apply
several Hindu cuts (taking several cards from the bottom and putting them on
the top) to the sequence of cards [24].

An Improved Physical ZKP for Nonogram 265

2.3 Pile-Shifting Shuffle

Given an � × k matrix of cards, a pile-shifting shuffle rearranges the columns of
the matrix by a random cyclic shift, i.e. shifts the columns cyclically to the right
by r columns for a uniformly random r ∈ {0, 1, ..., k − 1} unknown to all parties
(see Fig. 2).

The pile-shifting shuffle was developed by Shinagawa et al. [23]. It can be
performed in real world by putting the cards in each column into an envelope
and applying the random cut to the sequence of envelopes.

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

4

3

2

1

1 2 3 4 5

⇒
? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

4

3

2

1

4 5 1 2 3

Fig. 2. An example of a pile-shifting shuffle on a 4 × 5 matrix with r = 2

2.4 Copy Protocol

Given a sequence of two face-down cards of either ♣ ♥ or ♥ ♣ , a copy protocol
creates an additional copy of the original sequence without revealing it. This
protocol was developed by Mizuki and Sone [15].

? ?

♣ ♥

♣ ♥

Fig. 3. A 3 × 2 matrix constructed in Step 1 of the copy protocol

1. Construct a 3 × 2 matrix of cards by placing an original sequence in the first
row, and a sequence ♣ ♥ in each of the second and third rows (see Fig. 3).

2. Turn over all face-up cards. Apply the pile-shifting shuffle to the matrix.
3. Turn over the two cards in the first row. If the revealed sequence is ♣ ♥ , do

nothing; if the sequence is ♥ ♣ , swap the two columns of the matrix.
4. The sequences in the second and third rows are the two copies of the original

sequence as desired.

Note that this protocol also verifies that the original sequence is either ♣ ♥
or ♥ ♣ (and not ♣ ♣ or ♥ ♥).

266 S. Ruangwises

2.5 Chosen Cut Protocol

Given a sequence of k face-down cards A = (a1, a2, ..., ak), a chosen cut protocol
allows the prover P to select a card ai he/she wants without revealing i to the
verifier V . This protocol was developed by Koch and Walzer [9].

? ? ... ? ? ? ... ?
a1 a2 ai−1 ai ai+1 ak

? ? ... ? ? ? ... ?

♥ ♥ ♥ ♣ ♥ ♥

Fig. 4. A 2 × k matrix constructed in Step 1 of the chosen cut protocol

1. Construct the following 2 × k matrix (see Fig. 4).
(a) In the first row, P publicly places the sequence A.
(b) In the second row, P secretly places a face-down ♥ at every position

except at the i-th column where P places a face-down ♣ instead.
2. Apply the pile-shifting shuffle to the matrix.
3. Turn over all cards in the second row. The card above the only ♣ will be the

card ai as desired.

3 Main Protocol

First, P secretly places a face-down sequence ♣ ♥ on each black cell, and a
face-down sequence ♥ ♣ on each white cell in the Nonogram grid according
to his/her solution. Then, P publicly applies the copy protocol to create an
additional copy of the sequence on every cell. Each of the two copies will be used
to verify the row and the column that cell is located on. Note that the copy
protocol also verifies that each sequence is in a correct format (either ♣ ♥ or
♥ ♣).

From now on, we will show the verification of a row R with n cells and with
a sequence (x1, x2, ..., xk) assigned to it. (The verification of a column works
analogously in the direction from top to bottom.)

P takes only the left card from the sequence on each cell in R (which is a
♣ for a black cell and is a ♥ for a white cell) to form a sequence of n cards
S = (a1, a2, ..., an), where each card corresponds to each cell in R in this order
from left to right. As R may start and end with a white or black cell, P publicly
appends two face-down ♥ s a0 and an+1 at the beginning and the end of S,
respectively, to ensure that the sequence starts and ends with a ♥ (S now has
length n + 2). Finally, P publicly appends a face-down marker card ♦ , called
an+2, at the end of S to mark the end of the sequence (S now has length n+3).
See Fig. 5 for an example. The purpose of appending a ♦ is to allow all parties
to locate the beginning and the end of S after S has been shifted cyclically.

An Improved Physical ZKP for Nonogram 267

♥ ♣ ♣ ♥ ♥ ♥ ♣ ♣ ♥ ♥ ♣ ♥ ♦
a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

Fig. 5. A sequence S representing the third row of the solution in Fig. 2

The verification is divided into the following three phases.

3.1 Phase 1: Counting Black Cells

Currently, there are k blocks of consecutive ♣ s in S. In this phase, P will reveal
the length of each block as well as replacing every ♣ with a ♠ .

P performs the following steps for k rounds. In the i-th round:

1. Apply the chosen cut protocol to S to select a card corresponding to the
leftmost cell of the i-th leftmost block of black cells in R (the block with
length xi). Let aj denote the selected card.

2. Turn over cards aj , aj+1, aj+2, ..., aj+xi−1 to reveal that they are all ♣ s (oth-
erwise V rejects), where the indices are taken modulo n + 3.

3. Turn over cards aj−1 and aj+xi
to reveal that they are both ♥ s (otherwise

V rejects), where the indices are taken modulo n + 3.
4. Replace every face-up ♣ with a ♠ . Turn over all face-up cards. The purpose

of this step is to mark that this block of black cells has been selected.

After k rounds, V is now convinced that there are k different blocks of black
cells with lengths x1, x2, ..., xk, but still does not know about the order of these
blocks, or whether there are any additional blocks of black cells besides these k
blocks. Note that all ♣ s in S is now replaced by ♠ s. See Fig. 6 for an example.

♥ ♠ ♠ ♥ ♥ ♥ ♠ ♠ ♥ ♥ ♠ ♥ ♦

Fig. 6. The sequence S from Fig. 5 at the end of Phase 1 (in a cyclic rotation)

3.2 Phase 2: Removing White Cells

Currently, there are k+1 blocks of consecutive ♥ s in S (including a block at the
beginning containing a0 and a block at the end containing an+1). In this phase,
P will remove some ♥ s from S such that there will be exactly one remaining
♥ in each block.

Let X = x1 + x2 + ... + xk. There are n − X white cells in R, so there are
currently n − X + 2 ♥ s in S. P performs the following steps for (n − X + 2) −
(k + 1) = n − X − k + 1 rounds.

268 S. Ruangwises

1. Apply the chosen cut protocol to S to select any ♥ such that there are
currently at least two remaining ♥ s in a block it belongs to.

2. Turn over the selected card to reveal that it is a ♥ (otherwise V rejects).
3. Remove that card from S.

Now, each pair of consecutive blocks of ♠ s are separated by exactly one ♥ ,
and there is also a ♥ before the first block and after the last block (S now has
length X + k + 2). See Fig. 7 for an example.

♥ ♠ ♠ ♥ ♠ ♠ ♥ ♠ ♥ ♦

Fig. 7. The sequence S from Fig. 5 at the end of Phase 2 (in a cyclic rotation)

3.3 Phase 3: Verifying Order of Blocks

P applies the random cut to S, turns over all cards, and shifts the sequence
cyclically such that the rightmost card is a ♦ . V verifies that the remaining
cards in S are: a ♥ , a block of x1 ♠ s, a ♥ , a block of x2 ♠ s, ..., a ♥ , a block
of xk ♠ s, a ♥ , and a ♦ in this order from left to right. Otherwise, V rejects.

P performs the verification for every row and column of the grid. If all rows
and columns pass the verification, then V accepts.

3.4 Optimization

In fact, at the beginning we do not need to copy a sequence on each cell since we
only use one card per cell during the verification. Instead, we perform the copy
protocol without putting cards in the third row of the matrix in Step 1. This
modified protocol verifies that the original sequence is either ♣ ♥ or ♥ ♣ , and
then returns the original sequence in the second row. This modified protocol was
developed by Mizuki and Shizuya [14].

After verifying that each sequence is in a correct format, we use the left card
to verify a row, and the right card to verify a column that cell is located on.
When verifying a column, the corresponding card is a ♥ for a black cell and a
♣ for a white cell, so we now treat ♣ and ♥ exactly the opposite way in the
main protocol.

After the optimization, our protocol uses mn + 1 ♣ s, mn + max(m,n) + 4
♥ s, max(m,n) ♠ s, and one ♦ , resulting in a total of 2mn + 2max(m,n) + 6
cards. It uses mn + 2m + 2n + 2w shuffles, where w is the total number of white
cells in the grid.

An Improved Physical ZKP for Nonogram 269

4 Proof of Security

We will prove the perfect completeness, perfect soundness, and zero-knowledge
properties of our protocol.

Lemma 1 (Perfect Completeness). If P knows a solution of the Nonogram
puzzle, then V always accepts.

Proof. Suppose P knows a solution of the puzzle. Consider the verification of
any row R.

In Phase 1, in each i-th round P selects a card aj corresponding to the left-
most cell of the i-th leftmost block of black cells in R. Since that block has length
xi and has never been selected before, all of the cards aj , aj+1, aj+2, ..., aj+xi−1

must be ♣ s. Also, since there is at least one white cell between two consecutive
blocks of black cells (and at least one ♥ to the left of the leftmost block of ♣ s
and to the right of the rightmost block of ♣ s), both of the cards aj−1 and aj+xi

must be ♥ s. Hence, the verification will pass Phase 1.
At the start of Phase 2, there are a total of n − X + 2 ♥ s in k + 1 blocks of

♥ s, so P can remove a ♥ in each round for (n−X +2)−(k+1) = n−X −k+1
rounds such that there will be exactly one remaining ♥ in each block. Hence,
the verification will pass Phase 2.

In Phase 3, there is exactly one ♥ between two consecutive blocks of ♠ s (and
a ♥ at the beginning and the end of S). Moreover, the blocks of ♠ s are arranged
in exactly the same order as the blocks of black cells, so the lengths of these blocks
are x1, x2, ..., xk in this order from left to right. Hence, the verification will pass
Phase 3.

Since this is true for every row (and analogously for every column), V will
always accept. ��
Lemma 2 (Perfect Soundness). If P does not know a solution of the Nono-
gram puzzle, then V always rejects.

Proof. We will prove the contrapositive of this statement. Suppose V accepts,
meaning that the verification must pass for every row and column. We will prove
that P must know a solution.

Consider the verification of any row R. In Phase 1, the steps in each i-th
round ensure that there exists a block of exactly xi consecutive black cells in R.
Also, since all ♣ s selected in previous rounds have been replaced with ♠ s, this
block must be different from the blocks revealed in previous rounds. Therefore,
there must be at least k different blocks of black cells with lengths x1, x2, ..., xk

(in some order) in R.
Moreover, in Phase 2 only ♥ s are removed from S, and when all cards in S

are turned face-up in Phase 3 there is no ♣ remaining. This implies R has no
other black cells besides the ones in these k blocks.

During Phase 3, the lengths of the blocks of ♠ s are x1, x2, ..., xk in this order
from left to right. As the blocks of ♠ s are arranged in exactly the same order

270 S. Ruangwises

as the blocks of black cells, the lengths of the blocks of black cells must also be
x1, x2, ..., xk in this order from left to right.

Since this is true for every row (and analogously for every column), P must
know a solution of the puzzle. ��
Lemma 3 (Zero-Knowledge). During the verification, V learns nothing
about P ’s solution.

Proof. To prove the zero-knowledge property, it is sufficient to show that all
distributions of cards that are turned face-up can be simulated by a simulator
S that does not know P ’s solution.

– In Step 3 of the copy protocol in Sect. 2.4, the revealed sequence has an equal
probability to be ♣ ♥ or ♥ ♣ , so this step can be simulated by S.

– In Step 3 of the chosen cut protocol in Sect. 2.5, the ♣ has an equal proba-
bility to be at any of the k positions, so this step can be simulated by S.

– In the main protocol, when verifying each row (resp. column), there is only
one deterministic pattern of the cards that are turned face-up in every phase.
This pattern solely depends on the sequence (x1, x2, ..., xk) assigned to that
row (resp. column), which is a public information, so the whole protocol can
be simulated by S. ��

5 Future Work

We developed a physical ZKP for Nonogram using 2mn+2max(m,n)+6 cards
and mn + 2m + 2n + 2w shuffles. A challenging future work is to develop a ZKP
for this puzzle that can be performed using a standard deck (a deck containing
all different cards with no duplicates) like the one for Sudoku in [18], an open
problem posed in [10]. Other possible future work includes developing ZKPs for
other popular logic puzzles or improving the already existing ones to become
more practical, as well as exploring methods to physically verify other numerical
functions.

References

1. Bultel, X., Dreier, J., Dumas, J.-G., Lafourcade, P.: Physical zero-knowledge proofs
for Akari, Takuzu, Kakuro and KenKen. In: Proceedings of the 8th International
Conference on Fun with Algorithms (FUN), pp. 8:1–8:20 (2016)

2. Bultel, X., et al.: Physical zero-knowledge proof for Makaro. In: Izumi, T.,
Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 111–125. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03232-6 8

3. Chien, Y.-F., Hon, W.-K.: Cryptographic and physical zero-knowledge proof: from
Sudoku to Nonogram. In: Boldi, P., Gargano, L. (eds.) FUN 2010. LNCS, vol.
6099, pp. 102–112. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13122-6 12

https://doi.org/10.1007/978-3-030-03232-6_8
https://doi.org/10.1007/978-3-642-13122-6_12
https://doi.org/10.1007/978-3-642-13122-6_12

An Improved Physical ZKP for Nonogram 271

4. Dumas, J.-G., Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.:
Interactive physical zero-knowledge proof for Norinori. In: Du, D.-Z., Duan, Z.,
Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 166–177. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26176-4 14

5. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their valid-
ity and a methodology of cryptographic protocol design. J. ACM 38(3), 691–729
(1991)

6. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

7. Google Play: Nonogram. https://play.google.com/store/search?q=Nonogram
8. Gradwohl, R., Naor, M., Pinkas, B., Rothblum, G.N.: Cryptographic and physical

zero-knowledge proof systems for solutions of Sudoku puzzles. Theor. Comput.
Syst. 44(2), 245–268 (2009)

9. Koch, A., Walzer, S.: Foundations for actively secure card-based cryptography. In:
Proceedings of the 10th International Conference on Fun with Algorithms (FUN),
pp. 17:1–17:23 (2020)

10. Koyama, H., Miyahara, D., Mizuki, T., Sone, H.: A secure three-input AND proto-
col with a standard deck of minimal cards. In: Santhanam, R., Musatov, D. (eds.)
CSR 2021. LNCS, vol. 12730, pp. 242–256. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-79416-3 14

11. Lafourcade, P., Miyahara, D., Mizuki, T., Robert, L., Sasaki, T., Sone, H.: How to
construct physical zero-knowledge proofs for puzzles with a “single loop” condition.
Theor. Comput. Sci. 888, 41–55 (2021)

12. Miyahara, D.: Card-Based ZKP protocols for Takuzu and Juosan. In: Proceedings
of the 10th International Conference on Fun with Algorithms (FUN), pp. 20:1–
20:21 (2020)

13. Miyahara, D., Sasaki, T., Mizuki, T., Sone, H.: Card-Based physical zero-knowledge
proof for Kakuro. IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
E102.A(9), 1072–1078 (2019)

14. Mizuki, T., Shizuya, H.: Practical card-based cryptography. In: Ferro, A., Luccio,
F., Widmayer, P. (eds.) Fun with Algorithms. FUN 2014. LNCS, vol 8496. Springer,
Cham. https://doi.org/10.1007/978-3-319-07890-8 27

15. Mizuki, T., Sone, H.: Six-Card secure AND and Four-Card secure XOR. In: Deng,
X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8 36

16. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Interactive physical ZKP
for connectivity: applications to Nurikabe and Hitori. In: Proceedings of the 17th
Conference on Computability in Europe (CiE), pp. 373–384 (2021)

17. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Physical zero-knowledge
proof for Suguru Puzzle. In: Devismes, S., Mittal, N. (eds.) SSS 2020. LNCS, vol.
12514, pp. 235–247. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64348-5 19

18. Ruangwises, S.: Two standard decks of playing cards are sufficient for a ZKP for
Sudoku. In: Chen, C.-Y., Hon, W.-K., Hung, L.-J., Lee, C.-W. (eds.) COCOON
2021. LNCS, vol. 13025, pp. 631–642. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-89543-3 52

19. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for numberlink puzzle and
k vertex-disjoint paths problem. New Gener. Comput. 39(1), 3–17 (2021)

20. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for ripple effect. In: Uehara,
R., Hong, S.-H., Nandy, S.C. (eds.) WALCOM 2021. LNCS, vol. 12635, pp. 296–
307. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68211-8 24

https://doi.org/10.1007/978-3-030-26176-4_14
https://play.google.com/store/search?q=Nonogram
https://doi.org/10.1007/978-3-030-79416-3_14
https://doi.org/10.1007/978-3-030-79416-3_14
https://doi.org/10.1007/978-3-319-07890-8_27
https://doi.org/10.1007/978-3-642-02270-8_36
https://doi.org/10.1007/978-3-030-64348-5_19
https://doi.org/10.1007/978-3-030-64348-5_19
https://doi.org/10.1007/978-3-030-89543-3_52
https://doi.org/10.1007/978-3-030-89543-3_52
https://doi.org/10.1007/978-3-030-68211-8_24

272 S. Ruangwises

21. Ruangwises, S., Itoh, T.: Physical ZKP for connected spanning subgraph: applica-
tions to bridges puzzle and other problems. In: Kostitsyna, I., Orponen, P. (eds.)
UCNC 2021. LNCS, vol. 12984, pp. 149–163. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-87993-8 10

22. Sasaki, T., Miyahara, D., Mizuki, T., Sone, H.: Efficient card-based zero-knowledge
proof for Sudoku. Theor. Comput. Sci. 839, 135–142 (2020)

23. Shinagawa, K., et al.: Card-Based protocols using regular polygon cards. IEICE
Trans. Fundam. Electron. Commun. Comput. Sci. E100.A(9), 1900–1909 (2017)

24. Ueda, I., Miyahara, D., Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: Secure
implementations of a random bisection cut. Int. J. Inf. Secur. 19(4), 445–452
(2019). https://doi.org/10.1007/s10207-019-00463-w

25. Ueda, N., Nagao, T.: NP-completeness Results for NONOGRAM via Parsimonious
Reductions. Technical Report TR96-0008, Department of Computer Science, Tokyo
Institute of Technology (1996)

https://doi.org/10.1007/978-3-030-87993-8_10
https://doi.org/10.1007/978-3-030-87993-8_10
https://doi.org/10.1007/s10207-019-00463-w

Finding All Leftmost Separators
of Size ≤ k

Mahdi Belbasi(B) and Martin Fürer(B)

Department of Computer Science and Engineering, Pennsylvania State University,
University Park, PA 16802, USA

{belbasi,fhs}@psu.edu

Abstract. We define a notion called leftmost separator of size at most
k. A leftmost separator of size k is a minimal separator S that separates
two given sets of vertices X and Y such that we “cannot move S more
towards X” such that |S| remains smaller than the threshold. One of the
incentives is that by using leftmost separators we can improve the time
complexity of treewidth approximation. Treewidth approximation is a
problem which is known to have a linear time FPT algorithm in terms
of input size, and only single exponential in terms of the parameter,
treewidth. It is not known whether this result can be improved theoreti-
cally. However, the coefficient of the parameter k (the treewidth) in the
exponent is large. Hence, our goal is to decrease the coefficient of k in
the exponent, in order to achieve a more practical algorithm. Hereby, we
trade a linear-time algorithm for an O(n logn)-time algorithm. The pre-
vious known O(f(k)n logn)-time algorithms have dependences of 224kk!,
28.766kk2 (a better analysis shows that it is 27.671kk2), and higher. In this
paper, we present an algorithm for treewidth approximation which runs
in time O(26.755k n logn),

Furthermore, we count the number of leftmost separators and give a
tight upper bound for them. We show that the number of leftmost sep-
arators of size ≤ k is at most Ck−1 (Catalan number). Then, we present

an algorithm which outputs all leftmost separators in time O(4k√
k
n).

1 Introduction

Finding vertex separators that partition a graph in a “balanced” way is a crucial
problem in computer science, both in theory and applications. For instance, in
a divide and conquer algorithm, most of the time it is vital to have balanced
subproblems. If we want to separate two subsets of vertices in a graph, we prefer
the separator to be closer to the bigger side. In this work, we place the bigger
set on the left side and the smaller one on the right. Before going into depth, we
review and introduce some notations1.

1 Please note that the full version of this result with all the proofs and the figures can
be found on the ArXiv version [2]. We have omitted some details here due to space
constraints.

c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 273–287, 2021.
https://doi.org/10.1007/978-3-030-92681-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_23&domain=pdf
https://doi.org/10.1007/978-3-030-92681-6_23

274 M. Belbasi and M. Fürer

1.1 Notation

W.l.o.g., assume that G is a connected graph. S ⊆ V is a separator that separates
two subsets of vertices X,Y ⊆ V in G, if there is no X − Y path in G[V \ S],
where G[V \ S] is the induced graph on V \ S. In the following, we use G − S
instead of G[V \ S] for the sake of simplicity. We call S an (X,Y)G-separator.
Later on, we drop the superscripts if it is obvious from the context.

Definition 1. SG
X,Y is the set of all (X,Y)G-separators.

Definition 2. The separator S ∈ SG
X,Y partitions G − S into three sets VX,S,

VS,Y , and VZ , where VX,S is the set of vertices with a path from X \ S, VS,Y

is the set of vertices with a path from Y \ S, and VZ is the set of all vertices
reachable from neither X \ S nor Y \ S in G − S.

Having a non-empty VZ set is only to our advantage. We think of X being on
the left side and Y on the right side of S. Any of the three sets (X, Y , and S)
might intersect.

Definition 3 Partial Ordering. We say separator S ∈ SG
X,Y is at least as

much to the left as separator S′ ∈ SG
X,Y if VX,S ⊆ VX,S′ . In this case, we use

the notation S � S′.

Definition 4. Separator S ∈ SG
X,Y is called an (X, Y , ≤ k)G-separator if |S| ≤

k.

Definition 5. Separator S ∈ SG
X,Y is called a leftmost (X, Y , ≤ k)G-separator

if it is minimal and there exists no other minimal (X, Y , ≤ k)G-separator S′

such that S′ � S.

Notice that the minimality is important here, otherwise according to the
partial ordering definition, one can keep adding extra vertices to the left of S′

(towards X) and artificially make it more to the left. In order to avoid this, we
require all separators we work with to be minimal unless specified otherwise.

The notion of leftmost separator is closely related to the notion of important
separator. Important separator has been defined in [10], and then used in [5] and
[9].

The difference between a leftmost separator and an important separator
comes from their corresponding partial orders. The partial order defined for
important separators is as follows:

Definition 6 Partial Ordering used for Important Separators. Separator
S ∈ SG

X,Y dominates (or “is more important than”) separator S′ ∈ SG
X,Y if

|S| ≤ |S′| and VS,Y ⊂ VS′,Y .

Definition 7. Separator S ∈ SG
X,Y is an important (X, Y , ≤ k)G-separator if

there exists no other minimal (X, Y , ≤ k)G-separator S′ dominating S.

Finding All Leftmost Separators 275

As you see, when ordering important separators we also look at the relation
between the sizes but in a leftmost separator, its size just has to be ≤ k.

Lemma 1. Every leftmost (X, Y , ≤ k)G-separator is an important (X, Y ,
≤ k)G-separator, but the converse does not hold.

The proof is omitted due to space constraints.
Notice that not all the important separators are leftmost. Our purpose is to

find a separator more towards the bigger side in order to have more balanced sep-
arators. For that reason, not all the important separators are good. For instance
we do not need to consider S1 because that is the most unbalanced separator
one can find. This is the main reason that we defined the new notion of leftmost
separators. As argued, leftmost separators are better candidates for our applica-
tion. However, as the reader can see, there is a strong similarity between these
two notions. We give tight upper bounds for the number of leftmost separators
and a tight upper bound for the number of important separators.

Lemma 2. Let AG
X,Y,≤k and BG

X,Y,≤k be the set of all leftmost (X,Y,≤ k)G-
separators and the set of all important (X,Y,≤ k)G-separators, respectively.
Then,

BG
X,Y,≤k =

k⋃

i=1

AG
X,Y,≤i

The proof has been omitted due to space constraints.
In this paper, we show that the number of leftmost (X, Y , ≤ k)-separators

is ≤ Ck−1, where Cn is the n-th Catalan number. Furthermore, we close the
gap and show that this upper bound is tight. Then, we give an O(4kkn)-time
algorithm finding all minimal leftmost (X, Y , ≤ k)-separators. Notice that
Ck−1 ∼ 4k−1

√
π(k−1)

3
2
.

Based on Lemma 2, this implies that the number of important (X, Y , ≤ k)-

separators is ≤
k−1∑
i=1

Ci and the bound is tight.

One of the important applications of the algorithm that finds all the left-
most separators is treewidth approximation. Treewidth approximation is a cru-
cial problem in computer science. Courcelle’s methatheorem [6] states that every
problem which can be described in monadic second order logic has an FPT algo-
rithm with the treewidth k as its parameter. An FPT algorithm is an algorithm
that runs in time O(f(k) poly(n)), where n is the input size, k is the parameter
(here, treewidth), and f(·) is a computable function.

So, based on Courcelle’s methatheorem, many NP-complete graph problems
obtain polynomial algorithms (in terms of the input size), and hence they can
be solved fast if the treewidth is small. These algorithms require access to tree
decompositions of small width. However, finding the exact treewidth itself is
another NP-complete problem [1]. Here, we look for an approximation algorithm
to solve the treewidth problem.

276 M. Belbasi and M. Fürer

Problem 0. Given a graph G = (V,E), and an integer k ∈ N, is the
treewidth of G at most k? If yes, output a tree decomposition with width
≤ αk, where α ≥ 1 is a constant. Otherwise, output a subgraph which is
the bottleneck.

There are various algorithms solving this problem for different α’s (the
approximation ratio). As mentioned above, we are interested in constant-factor
approximation FPT algorithms.

Algorithms [4] and [8] both run in 2O(k)n time, which is linear in n. However,
the coefficients of k in the exponent are large. The former one does not mention
the exact coefficient and seems to have a very large coefficient. The latter one,
which is a very recent paper, mentions that the coefficient of k in the exponent is
some number between 10 and 11. Our goal is to make treewidth approximation
more applicable by decreasing the coefficient of k in the exponent. We can afford
an extra log n factor in the running time in order to reduce the huge dependence
on k. We sacrifice the linear dependence on n, and give an algorithm which runs
way faster in various cases. So, let us look at n log n-time algorithms. Reed [12]
gave the first n log n-time algorithm. He did not mention the dependence on k
precisely but a detailed analysis in [3] shows that it is O(224kk!). Here, even
though 224k = o(k!), actually k! is reasonable for small k’s while 224k is not.
Later on, the authors of this paper introduced an O(28.766kn log n)-algorithm
[3]. The algorithm presented in this paper is based on [12] and [3]. In these
papers, when it is known that a good separator S exists between X and Y , an
efficient algorithm finds an arbitrary separator between X and Y . The ability
to find leftmost separators allows for an improvement. If S is a good separator
between X and Y , and VX,S is estimated to be at least as big as VS,Y , then the
best leftmost separator between X and Y has a definite advantage.

Instead of a balanced separator with minimum size, we consider all left-
most separators (closest possible to the bigger side). This helps us to obtain an
O(26.755kn log n)-time algorithm with the same approximation ratio of 5 as in
[12] and [3].

Before moving onto the next section, we have to mention that the algorithm
to find all leftmost separators works for both directed and undirected graphs.

Below, we summarize our contributions.

1.2 Our Contributions

First, we give a tight upper bound on the number of the leftmost separators.

Theorem 1. Let G = (V,E) be a graph, X,Y ⊆ V , and k ∈ N. The number of
leftmost (X, Y , ≤ k)G-separators2 is at most Ck−1

3= 1
k

(
2(k−1)

k−1

)
∼ 4k−1√

π(k−1)3/2
.

2 Notice that all leftmost separators are minimal per definition.
3 Cn is the nth Catalan number.

Finding All Leftmost Separators 277

Furthermore, the number of important (X, Y , ≤ k)G-separators is at most
k−1∑
i=0

Ci. Both bounds are tight.

Then, we give an algorithm finding all leftmost separators.

Theorem 2. Let G = (V,E) be a graph, X,Y ⊆ V , and k ∈ N. There is
an O(22k

√
kn)-time algorithm which outputs all the leftmost (X, Y , ≤ k)G-

separators.

Now, we use the algorithm finding all the leftmost separators to solve treewidth
approximation much faster.

Theorem 3. Let G = (V,E) be a graph, and k ∈ N. There is an algorithm that
either outputs a tree decomposition of G with width ≤ 5(k − 1), or determines
that tw(G) > k − 1 in time O

(
26.755kn log n

)
.

2 Finding the Leftmost Minimum Size (X, Y ,
≤ k)G-Separator

This section is omitted due to space constraint but a variation of it can be found
in [7].

Algorithm 1: Left Minimum Sep(G,Y,P): Find the leftmost min-
imum separator
Input: Graph G = (V,E), a subset of vertices Y , and a set P of pairwise

disjoint paths from X to Y
Output: The leftmost minimum (X, Y , ≤ k)G-separator, and an updated set

of pairwise disjoint paths P
1 while ∃ a P-augmenting walk Q do
2 Update P.

// by sending a unit flow through the edges of P and Q. Also, |P|
is increased by 1

3 Construct R(P) = {v ∈ V | ∃ a P-augmenting walk from X to v} using DFS.
4 Initialize C(P) ← ∅
5 for P ∈ P do
6 cP ← the first vertex ∈ P and /∈ R(P).
7 C(P) ← C(P) ∪ {cP }.

8 return (C(P),P).

278 M. Belbasi and M. Fürer

Algorithm 2: Init(G,Y): Initialization
Input: Graph G

1 {S,P} ← Left Minimum Sep(G,Y, ∅)
// S is the minimum size leftmost (X, Y , ≤ k)-separator and P is

a set of pairwise disjoint paths

2 push all the vertices in S onto empty stack R.
3 Branch(G[VX,S ∪ S], S, ∅,P,R, T rue)

Algorithm 3: Branch(G,S, Y, I,P, R, leftmost): the Main Procedure
for finding all leftmost (X, Y , ≤ k)-separators

Input: Graph G, a separator S ∈ SX,Y , a subset of vertices Y , I: the included
vertices, P: a set of pairwise disjoint paths between X and Y , R: the
stack to hold the order of handling vertices, and leftmost : a boolean
indicating whether we have a leftmost separator.

1 if I == S then
2 A ← A ∪ {S}
3 else
4 pop v from R
5 Y ′ ← (S \ {v}) ∪ (N (v) ∩ VX,S)
6 {S′,P ′} ← Left Minimum Sep(G,Y ′,P)
7 if |S′| ≤ k ∧ I ⊆ S′ then
8 leftmost ← False
9 if |S′| < k then

10 let R′ be a copy of R. Push all vertices of (N (v) ∩ VX,S) onto R′

11 Branch (G[VX,S′], S′, Y ′, I,P ′, R′, T rue)

12 if (|S \ I| ≥ 2 ∨ leftmost) ∧ (|S| ≤ k) then
13 Branch (G[VX,S], S, Y, I ∪ {v},P, R, leftmost)

3 Finding All Minimal Leftmost (X, Y , ≤ k)-Separators

In this section, we present our main algorithm. In the introduction, we mentioned
why it is important to find the leftmost4 separators. Also, in Sect. 2 we reviewed
an algorithm (Algorithm 1) to find the leftmost minimum separator. We use this
algorithm in ours.

In our problem, we have two subsets of vertices X and Y such that |X| ≥ |Y |.
W.l.o.g., assume X is the set on the left and Y is the set on the right.

Problem 2. Given a graph G = (V,E), sets X,Y ⊆ V , and k ∈ N, what
are the minimal leftmost (X, Y , ≤ k)G-separators?

4 We drop the term “minimal” because it is the default for the separators throughout
this paper unless mentioned otherwise.

Finding All Leftmost Separators 279

Theorem 4. Given a graph G = (V,E), sets X,Y ⊆ V , and k ∈ N, there exists
an algorithm which solves Problem 2 in time O(22k

√
kn)

Proof. We present a recursive branching algorithm (Algorithm 3). Initially, it
calls Algorithm 1 to find the leftmost minimum size (X, Y , ≤ k)-separator
(using a simple flow algorithm), namely S by feeding X as the left set, Y as
the right set, and an empty set of pairwise disjoint paths (namely P) from X
to Y (inherited from the parent branch). Notice that the leftmost minimum size
separator is unique. This is the root (namely r) of the computation tree (namely
T). Let us refer to the computation subtree rooted at node x, as T (x).

In each node x of T with the corresponding graph Gx, let Yx, Ix, and Px be
the right set, the set of vertices that we require to be in the separator, and the set
of disjoint paths inherited from the parent’s node, respectively. Notice that we
do not pass Xx (the left set) as an argument since it does not change throughout
the algorithm and hence we have defined it as a global variable (∀x,Xx = X).

Claim. Let S be a minimal leftmost (X, Y , ≤ k)G-separator, and S′ be the
separator generated by Algorithm 1. Then, S ⊆ VX,S′ ∪ S′.

Proof. For the sake of contradiction, assume that ∃v ∈ S such that v /∈ VX,S′∪S′.
This means that v ∈ VS′,Y ∪ VZ .

If v ∈ VZ , then S \ {v} is still a leftmost (X, Y , ≤ k)G-separator which
contradicts the minimality of S.

The other possibility is that v ∈ VS′,Y . Let Sout be the set of all such vertices;
i.e., Sout = {v ∈ S | v ∈ VS′,Y }. Any X − Sout-path5 goes through S′, otherwise
S′ would not be a separator. Let S′

in be the set of all vertices of S′ that are on a
path from vertex of X to a vertex of Sout. Now, let S′′ = (S \Sout)∪S′

in. Hence,
S′′ is an (X,Y,≤ k)G-separator such that S′′ � S with |S′′| ≤ S ≤ k, which is a
contradicts that S is a leftmost (X, Y , ≤ k)-separator. �

Claim 3 allows us to ignore the subgraph G[VS,Y ∪ VZ] and focus only on the
graph to the left of the current separator and keep moving towards left until it
is impossible.

Let Sx be the separator found by Algorithm 1 while processing node x from
the computation tree. If Sx is a leftmost (X, Y , ≤ k)-separator, this branch
terminates and we add Sx to the set of all the leftmost (X, Y , ≤ k)G-separators,
namely A (A is a global variable). Otherwise, we keep pushing the separator to
the left by branching 2-fold. Let us call the children of x by c1 and c2. If Sx was
not a leftmost (X, Y , ≤ k)Gx -separator6, this means that there exists at least
one leftmost (X, Y , ≤ k)Gx -separator, namely S′ such that S′
= S and S′ � S.
Also, as a result of Claim 3, S′ is a leftmost (X, Y , ≤ k)G-separator, too.

In each node x, we call Algorithm 1 to find the minimum separator Sx of
size ≤ k between X and Yx. Now, we push all the vertices of Sx onto stack R.

5 any path from a vertex in X to a vertex in Sout.
6 note that by Claim 3 Gx = G[VX,S ∪ S].

280 M. Belbasi and M. Fürer

Then, we pop vertex v which is on top of the stack R and consider the following
two scenarios (corresponding to c1 and c2).

1. If we want v to belong to the leftmost separators. In this case, we add v to
set I, which is the set of vertices that we require to be in all the leftmost
separators in Tc1 .

2. If v does not belong to the leftmost separators. Here, we pop v and push the
left neighbors of v (i.e., N(v) ∩ VX,SX

) onto R (we just move to the left due
to Claim 3).

Notice that the order of handling vertices is not important but we use stack
because it simplifies the proof later on.

Every produced separator is a leftmost (X, Y , ≤ k)G-separator because the
only time that one branch terminates is when it finds a leftmost separator. Now,
we show that all the leftmost (X, Y , ≤ k)G-separators are generated by the
algorithm given.

Let S0 be an arbitrary leftmost (X, Y , ≤ k)G-separator, and as before let
S be the separator generated by Algorithm 1. At this point R is filled with the
vertices of S. Pop v from R.

– If v ∈ S0, then put v in I, and recurs.
– If v /∈ S0, push N(v) ∩ VX,S into R, recurs.

This determines an exact computation branch. All branches halt with a minimal
leftmost separator since each time we go at least one more to the left. So, this
branch terminates with minimal leftmost separator S′

0 as well. All the vertices
of S0 are pushed into R at some point because otherwise this branch terminates
with a separator which is not leftmost and we can push it more to the left. At
the end of this branch, I ⊆ S′

0. On the other hand, I = S0 ⊆ S′
0, which implies

that S0 = S′
0 because both of them should be minimal. �

In [11], the authors mention that the number of important (X,Y,≤ k)G-
separators is ≤ 4k, and they even mention that this upper bound can be tight
by a polynomial factor. Here, we give a precise upper bound for the number
of leftmost (X,Y,≤ k)G-separators and the number of important (X,Y,≤ k)G-
separators and we show that both bounds are tight.

Before that, let us review the definition of the Catalan numbers.

Definition 8. Catalan numbers is a sequence of numbers where the n-th Cata-
lan number is:

Cn =
(

2n

n

)
−

(
2n

n + 1

)
=

1
n + 1

(
2n

n

)
∼ 4n

n3/2
√

π
.

Theorem 5. Let G = (V,E) be a graph and let X,Y ⊆ V and let k ∈ N. The
number of leftmost (X,Y,≤ k)G-separators is at most Ck−1 and the number of

important (X,Y,≤ k)G-separators is at most
k−1∑
i=0

Ci. Furthermore, both upper

bounds are tight.

Finding All Leftmost Separators 281

Before giving a proof, we mention some definitions.

Definition 9. A full k-paranthesization is a string over the alphabet {[,]} con-
sisting of k “[” and k “]” having more “[” than “]” in every non-trivial prefix.
This forms a language slightly different from the Dyck language (a well-known
language). We call this language restricted Dyck language and any string in this
language is called a restricted Dyck word.

Notice that [x] is a restricted Dyck word iff x is a Dyck word7.
Full paranthesizations (the restricted Dyck language over the alphabet {[,]})

are generated by the following context-free grammar G = ({S,A}, {[,]}, R, S),
where the set of the rules R is:

S → [A] | ε
A → AA | [A] | ε

Definition 10. The k-parentheses tree is the binary tree (V,E) with the follow-
ing properties.

– V is the set of prefixes of full k′-parenthesizations for 0 < k′ ≤ k.
– If “x” is in V , then “x[” is the left child of x, and if “x]” is in V , then “x]”

is the right child of x.
– If “x[” or “x]” are not in V , then x has no left or right child respectively.

Definition 11. The compact ≤ k-parentheses tree is obtained from the ≤ k-
parentheses tree by removing all nodes containing k “[” and ending in “]”.

Note that the nodes with k “[” ending in “]” have been removed, because no
branching happens at their parents, as there are no left children.

The compact ≤ k-parentheses tree is a full binary tree, every node has 0
or 2 children. The number of leaves in this tree is equal to the number of full
≤ k-parenthesizations, which is equal to

∑k−1
k′=1 Ck′ = O(Ck) where Ck is the

k-th Catalan number. An immediate consequence is that the number of nodes
in the compact ≤ k-parentheses tree is 2

∑k−1
k′=1 Ck′ − 1 = O(Ck).

For the algorithm to find all leftmost (X,Y,≤ k)-separators, the worst case
computation tree is the compact ≤ k-parentheses tree with the nodes represent-
ing full k′-parenthesizations for 1 ≤ k′ ≤ k − 1 removed.

An arbitrary computation tree for the algorithm to find all leftmost ≤ k-
separators is obtained form the worst case computation tree by the following
two operations.

(a) For any node x, the subtree rooted at the left child c1(x) may be just removed
or replaced by the subtree rooted at c1(c1(x)). This splicing operation can
be repeated to jump down arbitrarily far.

7 Notice the difference between the restricted Dyck Language and the Dyck language
itself. In every non-trivial prefix of a Dyck word, the number of “[” is ≥ the number
of “]”, whereas for the restricted version it should be strictly greater.

282 M. Belbasi and M. Fürer

(b) For any node x with less than or equal to k “[”s, let xi be x concatenated
with i “]”s. If xi∗ is a full k′-parenthesization for some k′ with 0 < k′ < k,
and the nodes xi′ for 0 ≤ i′ < i∗ have no left children, then the leaf xi∗ is
added. (In the added node xi∗ , a minimal separator S of size < k is picked,
because there is no larger minimal ≤ k-separator to the left of S.)

Note that the number of leaves in an arbitrary computation tree for the
algorithm to find all (X,Y,≤ k)-separators is ≤ Ck−1, because for every leaf
“x]” added in (b), at least one leaf, namely “x[· · · [] · · ·]]” (full parenthesization
of length k) has been removed in (a).

For the recursive procedure, we introduce a boolean parameter leftmost. The
parameter is originally true in the root and in every node that is a left child. If
a node has a left child, i.e., excluding v, a new larger separator S′ with |S′| ≤ k
has been found, then leftmost is set to false. The current truth value of leftmost
is passed to the right child (include v call). If x contains k′ < k “[” and k′ − 1
“]”, then a right call (including v) is only made if leftmost is true, i.e., there is no
larger (X,Y,≤ k)-separator to the left of the current small (size < k) separator.

In every node, S is the minimum leftmost separator between and including
X and the current Y .

– In the root, Y is the original Y . I = ∅, and leftmost = true. The node is
represented by a sequence of “[”s of length |S|.

– A node x with |S| = k′ < k, is represented by a prefix x of a full parenthe-
sization with k′ “[” and |I| “]”.

[Alternatively, one could include a root in the computation tree corresponding
to the empty 0-parenthesization. In such a root, no S is defined. The minimum
leftmost separator S′ is computed. A left call is made if |S′| ≤ k. No right call is
made. In this view, the root node has only one child. Not including such a root
node means that this node is not handled by the recursive procedure, but by a
different calling procedure.]

Now, here is the proof of Theorem 5.

Proof. First, we prove the result corresponding to the leftmost separators. As
explained above, we show excluding a vertex by a “[”, which corresponds to a left
branch. Analogously, “]” denotes including a vertex in I (requiring the leftmost
separator to have v in it), which corresponds to the right branch.

Now, we see why we used a stack to handle branching on the vertices. Even
though the order does not matter but we need a stack to have a nice cor-
respondence between the algorithm behavior and the restricted Dyck words.
It is well known that the number of the Dyck words of length 2k is Ck.
So, the upper bound on the number of leftmost (X, Y , ≤ k)-separators is

Ck−1 = (2(k−1)
k−1)
k ∼ 4k−1

(k−1)3/2
√

π
. We also close the gap and show that this bound

is tight.
Let Ĝ be a complete binary tree with depth at least k + 1. Let X be the set

of all the leaves of Ĝ, and Y be the root. (see Fig. 1). The number of full subtrees

Finding All Leftmost Separators 283

with exactly k leaves is Ck−1. On the other hand in Ĝ, no (X, Y , ≤ k − 1)Ĝ-
separator is a leftmost (X, Y , ≤ k)Ĝ-separator since we can replace a node with
its both children and move more to the left. So, the number of minimal leftmost
(X, Y , ≤ k)Ĝ-separators is exactly Ck−1.

For the upper bound on the number of important separators, we use Lemma 2
and this immediately implies that the number of important (X, Y , ≤ k)Ĝ-

separators ≤
i=k−1∑

i=1

Ci.

For the tightness part, assume the same Ĝ with the same X and Y .

The number of important (X,Y,≤ k)Ĝ-separators is
k−1∑
i=1

Ci since based

on Lemma 2, the number of important (X,Y,≤ k)Ĝ-separators is ≤
k−1∑
i=1

(the number of leftmost (X,Y,≤ k)Ĝ-separators). On the other hand, as we

mentioned earlier, in Ĝ, no leftmost (X,Y,≤ k − 1)Ĝ-separator is a leftmost
(X,Y,≤ k)Ĝ-separator. Hence, the number of important (X,Y,≤ k)Ĝ-separators

is exactly
k−1∑
i=1

(the number of leftmost (X,Y,≤ k)Ĝ-separators), which is equal

to
k−1∑
i=1

Ci. �

Fig. 1. Here, k = 6. We illustrate two out of 42 minimal leftmost (X, Y , ≤ 6)Ĝ-

separators. Also, there are 1+2+5+14+42 = 64 important (X, Y , ≤ 6)Ĝ-separators.

Notice that
k−1∑
i=1

Ci = Θ(4k−1

(k−1)3/2
).

Remark 1. Let AG
X,Y,≤ and BG

X,Y,≤ be the set of all leftmost (X, Y , ≤ k)G-
separators and the set of Based on Lemma 2, the set of all important (X, Y ,
≤ k)G-separators that are not leftmost (X, Y , ≤ k)G-separator is the union of
the set of all leftmost (X, Y , ≤ i)G-separator, for i = 1, · · · , k − 1.

284 M. Belbasi and M. Fürer

Remark 2. Let Ĝ be a complete binary tree with depth at least k + 1, X̂ be the
set of all leaves of Ĝ, and Ŷ be the root. For a fixed k ∈ N,

1. Ĝ has the highest number of leftmost (X, Y , ≤ k)G-separators among all
graphs like G and for all X,Y ⊆ V (G) and it happens by setting X = X̂ and
Y = Ŷ .

2. Ĝ has the highest number of important (X, Y , ≤ k)G-separators among all
graphs like G and for all X,Y ⊆ V (G) and it happens by setting X = X̂ and
Y = Ŷ .

3. Ĝ has the highest number of important but not leftmost (X, Y , ≤ k)G-
separators among all graphs like G and for all X,Y ⊆ V (G) and it happens
by setting X = X̂ and Y = Ŷ .

Theorem 6. Let G = (V,E) be a graph, X,Y ⊆ V , and k ∈ N. There is an
algorithm which finds all minimal leftmost (X, Y , ≤ k)G-separators in time
O(4k√

k
n).

Proof. Our algorithm searches all the possibilities and enumerates all the pos-
sible leftmost separators. We showed that the number of leaves, which is the
number of leftmost separators is O(Ck−1). So, we have O(Ck−1) nodes in our
computation tree and work done in every node is O(kn) (the running time of a
simple flow algorithm). Hence, the total running time is O(2

2k√
k
n). �

4 Application to Treewidth Approximation

As mentioned in the introduction, Reed’s 5-approximation algorithm [12] for
treewidth runs in time O(224k(k + 1)!n log n). This was improved to a 5-
approximation algorithm running in O(k228.766kn log n) [3]. Here, we further
improve the treewidth approximation algorithm. In order to do so, we briefly
describe the algorithms given in [12], and [3]. Hence, we review some notations
and for the others we give references.

For a graph G = (V,E) and a subset W of the vertices, G[W] is the subgraph
induced by W . For the sake of simplicity throughout this paper, let G − W be
G[V \ W] and G − v be G − {v} for any W ⊆ V (G) and any v ∈ V (G).

Also, in a weighted graph, a non-negative integer weight w(v) is defined for
each vertex v. For a subset W of the vertices, the weight w(W) is simply the sum
of the weights of all vertices in W . Furthermore, the total weight or the weight
of G is the weight of V . Some of the common definitions have been omitted due
to space constraints.

Lemma 3. [7, Lemma 11.16] Let G = (V,E) be a graph of treewidth at most
k−1 and W ⊆ V . Then there exists a balanced W -separator of G of size at most
k.

Definition 12. Let G = (V,E) be a graph and W ⊆ V . A weakly balanced
separation of W is a triple (X,S, Y), where X,Y ⊆ W , S ⊆ V are pairwise
disjoint sets such that:

Finding All Leftmost Separators 285

– W = X ∪ (S ∩ W) ∪ Y .
– S separates X from Y .
– 0 < |X|, |Y | ≤ 2

3 |W |.

Lemma 4. [7, Lemma 11.19] For k ≥ 3, let G = (V,E) be a graph of treewidth
at most k−1 and W ⊆ V with |W | ≥ 2k+1. Then there exists a weakly balanced
separation of W of size at most k.

Theorem 7. [7, Corollary 11.22] For a graph of treewidth at most k − 1 with a
given set W ⊆ V of size |W | = 3k − 2, a weakly balanced separation of W can
be found in time O(23kk2n).

4.1 Our Improvement

In this subsection, our goal is to use the algorithm for finding the leftmost
separators to further improve the coefficient of k in the exponent of the tree
decomposition algorithm to make it more applicable.

– For the analysis, we consider a centroid by volume, namely C. It has size
k′ ≤ k.

– Each connected component of G − C has volume at most 1
2 (n − k′).

– These connected components can be grouped into 3 parts, each with volume
at most 1

2 (n − k′). (Just place the components by decreasing volume into the
part with currently smallest volume.)

– Let the proper volume be the part of the volume that has its corresponding
weight in the same part. In other words, the proper volume is the number of
vertices whose representative is in the same part.

– Let t be the threshold for the size of the small trees. At most k′(t − 2) =
k′((12 − ε)n/k − 2) ≤ (12 − ε)n − 2k′ vertices can be in a different part than
their representative. Therefore, the total proper volume is at least n − k′ −
(12 − ε)n + 2k′ ≥ (12 + ε)n + k′

– Of the proper volume, at least (12 + ε)n + k′ − 1
2 (n − k′) > εn is not in the

part with largest proper volume.
– Therefore, there are at least 2 parts with proper volume at least εn

2
– Of these 2 parts, we put the part with larger weight on the left side, the other

one on the right side.
– We also put the third part on the left side.
– The left part has weight at least half the total weight, which is 1

2 (n − k′).
– The right part has weight at most 1

2 (n − k′) and (proper) volume at least εn
2

The algorithm tries all possible 2-partitions of the representatives. This
includes the left-right partition that we are currently investigating. While search-
ing for a leftmost separator, the centroid is a competitor. Thus the algorithm
finds a separator that is equal to the centroid or is located strictly to the left of
it. From now on, left (call it X) and right (namely Y) are defined by the leftmost
(X, Y , ≤k)G-separator found by Algorithm 2. This separator has size k′′ with
k′ ≤ k′′ ≤ k. It produces the same weight partition as the centroid, but part of
the volume might shift to the right.

286 M. Belbasi and M. Fürer

– Thus the left part has still weight at least 1
2 (n − k′) and therefore volume at

least 1
2 (n − k′) − (12 − ε)n + 2k ≥ εn + 3

2k.
– The right part has still volume at least εn

2
– The recursive calls are done with the subgraphs induced by the union of the

vertices of a connected component with the vertices of the separator. Their
number of vertices is upper bounded by n minus the volume of the smaller
side. It is less than (1 − ε

2)n.
– After 2 ln 2

ε (log n − log b) = O(log n) rounds for b ≥ k, the largest volume of a
recursive call is at most b.

In the worst case, the algorithm alternates between a split by volume and
log k splits of W steps. Let the time spent between two splits by volume be at
most f(k)n. Note that f(k) ≤ g(k) + 33kk log k = O(g(k)), where g(k) is the
time of one split by volume step. Then we get the following recurrence for an
upper bound on the running time of the whole algorithm.

T (n) =

{
O(k) if n ≤ 3k

maxp,n1,...,np

{∑
i∈[p] T (ni)

}
+ f(k)n otherwise,

where the maximum is taken over p ≥ 2 and n1, . . . , np ∈ [n − 1] such that∑
i∈[p](ni − k) = n − k. Note that

∑
i∈[p](ni − k′′) = n − k′′ reflects that every

recursive call includes a connected component of G − S together with the sep-
arator S of size k′′. We can round up k′′ to k, because T (n) is an increasing
function. Because, the sum of the ni’s is more than n, it is beneficial to consider
the following modified function T ′(n′) = T (n + k). Then we get the simpler
recursion

T ′(n′) =

{
O(k) if n′ ≤ 2k

maxp,n′
1,...,n′

p

{∑
i∈[p] T

′(n′
i)

}
+ f(k)(n′ + k) otherwise,

where the maximum is taken over p ≥ 2 and n′
1, . . . , n

′
p ∈ [n′ − 1] such that∑

i∈[p](n
′
i) = n′.

Now we prove
T ′(n′) ≤ c

ε
f(k)n′ log n′

by induction, where c is minimal such that c ≥ 3 and the base case (n′ ≤ 2k)
is satisfied. Assume that the ith component of size ni is on the side of the
separator with smaller volume if and only if 1 ≤ i ≤ p′. Let nS =

∑
i∈[p′] n

′
i, and

let nL = n′ − nS . Furthermore, let

hS =
∑

i∈[p′]

n′
i log n′

i ≤
∑

i∈[p′]

n′
i log

n′

2
= nS(log n′ − 1),

and
hL =

∑

i∈{p′+1,...,p}
n′

i log n′
i ≤

∑

i∈{p′+1,...,p}
n′

i log n′ = nL log n′.

Finding All Leftmost Separators 287

Recall that εn′/2 ≤ nS ≤ n′/2. By the inductive hypothesis, for n′ > 2k we
have

T ′(n′) ≤ c

ε
f(k)(hS + hL) + f(k)(n′ + k)

This implies T ′(n′) ≤ c
εf(k)(n′ log n′ − nS) + f(k)(n′ + k)

Thus T ′(n′) ≤ c
εf(k)n′ log n′ if c

εnS ≥ n′ + k. As nS ≥ εn′/2 and n′ > 2k,
this is the case when c ≥ 3.

Each split by volume can be done by finding at most Ck−1 = Θ(4k/k3/2)
separators in time O(Ck−1kn) = O(4k/

√
k) for each placement of at most n/t =

k/(1/2 − ε) representatives to the left or right side and the placement of at
most k vertices into the centroid. These are at most (2 + 8ε)k representatives
for ε ≤ 1/4. Choosing ε = Θ(1/k) this results in a running time of f(k)n =
O(

(
(3+8ε)k

k

)
24kk−1/2n) = O(33k

22kk
24kn for one split by volume in a graph of size

n. Together with the solution of the previous recurrence, we obtain.

Theorem 8. If a graph has treewidth at most k, then a tree decomposition of
width at most 5(k − 1) can be found in time O(26.755kn log n).

References

1. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM J. Algebraic Discrete Methods 8(2), 277–284 (1987)

2. Belbasi, M., Fürer, M.: Finding all leftmost separators of size ≤ k. arXiv preprint
arXiv:2111.02614 (2021)

3. Belbasi, M., Fürer, M.: An improvement of Reed’s treewidth approximation. In:
Uehara, R., Hong, S.-H., Nandy, S.C. (eds.) WALCOM 2021. LNCS, vol. 12635, pp.
166–181. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68211-8 14

4. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D.,
Pilipczuk, M.: A ckn 5-approximation algorithm for treewidth. SIAM J. Comput.
45(2), 317–378 (2016)

5. Chitnis, R., Hajiaghayi, M.T., Marx, D.: Fixed-parameter tractability of directed
multiway cut parameterized by the size of the cutset. SIAM J. Comput. 42(4),
1674–1696 (2013)

6. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Inf. Comput. 85(1), 12–75 (1990)

7. Flum, J., Grohe, M.: Parameterized Complexity Theory (Texts in Theoretical Com-
puter Science. An EATCS Series). TTCS, Springer, Heidelberg (2006). https://doi.
org/10.1007/3-540-29953-X

8. Korhonen, T.: A single-exponential time 2-approximation algorithm for treewidth.
arXiv e-prints [to appear in FOCS] arXiv:2104.07463 (2021)

9. Lokshtanov, D., Marx, D.: Clustering with local restrictions. Inf. Comput. 222,
278–292 (2013)

10. Marx, D.: Parameterized graph separation problems. Theor. Comput. Sci. 351(3),
394–406 (2006)

11. Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by
the size of the cutset. SIAM J. Comput. 43(2), 355–388 (2014)

12. Reed, B.A.: Finding approximate separators and computing tree width quickly.
In: Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of
Computing (STOC), pp. 221–228 (1992)

http://arxiv.org/abs/2111.02614
https://doi.org/10.1007/978-3-030-68211-8_14
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/3-540-29953-X
http://arxiv.org/abs/2104.07463

Maximize the Probability of
Union-Influenced in Social Networks

Guoyao Rao1 , Yongcai Wang1 , Wenping Chen1 , Deying Li1(B) ,
and Weili Wu2

1 School of Information, Renmin University of China, Beijing 100872, China
{gyr,ycw,wenpingchen,deyingli}@ruc.edu.cn

2 Department of Computer Science, University of Texas at Dallas,
Richardson, TX 75080, USA

weiliwu@utdallas.edu

Abstract. Nowadays, the social network plays an important role in
advertisements and propaganda, and it creates the research of social
influence. The prior works in social influence mainly consider the influ-
ence of individual or just the number of them. However, the union related
is usual seen that is always together and each one is indispensable such as
the team recruitment, in which a company or some business projections
wish to recruit several candidates from different positions all to compose
a team through the social networks. In this paper, different from targeted
influence model, we consider such scenarios as an union-influence and
propose the union-influence probability maximization problem (UIPM)
to choose seeds to maximize the probability of the all nodes in an union
are influenced. Unlike the most problems in previous social influence, the
object function of UIPM is not submodularity or supermodularity. Then
we design a data-driven β(1 − 1

ε
)-approximation algorithm. At last we

evaluate the performance on effectiveness and efficiency of the algorithms
we proposed by the experiments in real-world social network datasets.

1 Introduction

Nowadays, the development of internet is profoundly influencing our lives. Inter-
net also has changed the traditional business model and marketing strategy.
Especially in the outbreak of COVID-19, many offline businesses and markets
change to run online. At the same time, social platforms such as Facebook,
Twitter, Weibo and Wechat is replacing traditional media and gradually become
the main ways for information dissemination and communication. So the online
social network also play an very important role in the online business such as
famous viral marketing using the effect of word-of-mouth. For example, in viral
marketing, many businesses would like to promote their products through social
network platforms by choosing few costumers to experience firstly, and then

This work is supported by the National Natural Science Foundation of China (Grant
NO. 12071478, 61972404), and partially by NSF 1907472.

c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 288–301, 2021.
https://doi.org/10.1007/978-3-030-92681-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_24&domain=pdf
http://orcid.org/0000-0002-6462-5355
http://orcid.org/0000-0002-4197-2258
http://orcid.org/0000-0002-0923-9267
http://orcid.org/0000-0002-7748-5427
http://orcid.org/0000-0001-8747-6340
https://doi.org/10.1007/978-3-030-92681-6_24

Maximize the Probability of Union-Influenced in Social Networks 289

letting them spread the related positive information about their products to
attract more latent costumers in social networks. It creates the research of social
influence. Since Kemp et al. [9] al firstly formulated the influence maximization
(IM) problem, many variants, extension and applications researches have been
well studied. Most of the previous works are major in the individual influence,
e.g., maximize the number of influenced individual in whole or target part or
maximizing the probability of certain individual to be influenced.

However, in many scenarios, the entirety is more important than individual.
For example, a successful online group-buying depends on whether all members
have disputes in the shopping intentions, i.e., whether they can been simultane-
ously influenced in the marketing viral of a product. We further consider another
scenario as following. A person or a company want to recruit a team with sev-
eral intention candidates, and to build such special team successfully, and then
it hopes all candidates will trust and have interest. However, this person or com-
pany usually can’t contact them directly as they may not trust the strangers,
so he want to some people assist him by using their relationship networks i.e.,
let some agents (e.g., their friends or their friends’ friends, etc.) influence these
target candidates through the influence spread in social networks. We note such
team or group above which requires members’ consistency (i.e., be influenced
synchronicity) as an union which is also usual seen in scenarios such as group
cooperation, government lobby. And we consider to use the method of social
influence to achieve this goal.

In previous works, some researches like the target influence [11,18] is closed
to solve our problem, in which they set the group members as targets and further
maximize the number of them to be influenced, but such idea may be immature
with unbalanced influence and we show it as the following example in Fig. 1.
Let the direct edge in the figure represents the direct influence from the starting
node to the ending node and the edge weight is the influence probability. When
we chose a seed from {s1, s2}, if adopting the target maximization strategy to
chose s2 as seed, we have the successful probability to influence the union is 0.05
though there are expected 3.05 members influenced in the union. However the
seed s1 can make the probability larger to 0.125 though the expected number of
influenced members is 2.6 less than that with s1. It seems that the uniformity of
seeds’ influence is more important to achieve the goal of union to be influenced.

The big difference between our idea from the target influence is that we don’t
want to optimize the number and we consider to optimize the chance of target
entirety influenced. So in this paper, we consider such entirety influenced problem
that is to make all the members in other word an union be influenced as far as
possible instead of making more members influenced. The main contributions
are as followings:

– We propose the union-influence probability maximization (UIPM) problem
and prove it’s NP-hard and the probability computation is #P-hard.

– We prove the UIPM is not either submodularity or supmodularity. To address
this problem, we design a β(1 − α)-approximation algorithm.

290 G. Rao et al.

Fig. 1. Illustration of distinguishing the union influence and target influence.

– We conduct and designed experiments based on four real-world databases
which validate our proposed algorithm performance well to solve the problem.

2 Related Work

Kempe et al. [9] firstly formulate the Influence Maximization problem (IM) based
on two influence diffusion models they proposed, i.e., Independent Cascade (IC)
and Linear Threshold (LT). The IM problem aims to select k nodes as seeds
to maximize the expected number of influenced node through a stochastic dif-
fusion process in social networks. This work has attracted and inspired many
researches into social influence and brought many variants and extended works.
Many researches major in the spread problem based on different and specific
scenes, such as time-constrained [5,12], topic-aware [1,4], competition [2,13],
rumor-control [8], multi-round [19] and so on.

Specially, the researches like [11] consider the number influence in a group
of nodes as a target set, and as we said in the introduction, it’s an immature
strategies in our problem. In addition, the research [7] of personalize influence
maximization and the works like [24] of the acceptance probability maximization
(APM) problem all are based on the idea to maximize the probability of certain
given node to be influenced alone. Then we still don’t see any other researches
closed to our problem which aims to influence several nodes synchronously.

There were two important properties used to solve related researches, i.e.,
submodularity and supmodularity [15] which are defined as following: Let S be
a finite set and function f : 2S → R, and if for any A ⊆ B ⊆ S and any x /∈ S\B,
we say that f is submodularity as long as f(A∪{x})−f(A) ≥ f(B∪{x})−f(B),
and f is supermodularity if the inequality is reversed.

The basic IM problem is proved to be NP-hard and the influence computation
is #P-hard. With the good property of submodularity for the target function,
the basic greedy method can provide a (1 − 1/e − ε)-approximation solution
[15], where ε is the loss caused by influence estimation since it’s hard to get the
accurate influence.

Maximize the Probability of Union-Influenced in Social Networks 291

Gneral greedy-based methods cost too much time using the heavy Monte Carlo
simulations to estimate the marginal gain of node’s influence, and it’s hard to
apply to the large scale network, although there are many improvements [6,10,17].
Then Tang et al. [22] and Borgs et al. [3] proposed the reverse influence set(RIS)
sampling method to estimate the influence. The idea of RIS is using a revere propa-
gate from a node v to get a random set of nodes that can influence v, hence through
the number of set covered by the seeds set to estimate the influence which is more
efficient than repeatable simulations. Then after transforming the IM problem to
the classical set cover problem, there are many RIS-based extensions and improve-
ments such as the IMM [21], SSA and D-SSA [16], OPIM [20].

3 Problems Formulation

Review of the Classical IC Model: IC model [1] is a classical diffusion model
in social influence and in this paper, all of our work is based on this diffusion
model. Let G(V,E, p) be an influence graph which is a directed and weighted
network where the weight of each direct edge puv ∈ [0, 1] is the probability that
a node u influences another node v, and then the influence spreads from a set of
seeds in rounds. Initially, only all seeds are active while other nodes are inactive.
In each diffusion round, each node becoming active in the previous round has
one chance to influence each one of its inactive out-neighbours following the
influence probability. The process terminates as long as no more inactive nodes
can be influenced to become active.

There is also an equivalent generating formulation [1] for the diffusion pro-
posed above as following: (1) Firstly, get a G’s edge-induced subgraph noted as
g by flipping1 each edge euv randomly following the probability puv. Specially
we write g ∼ G to mean that g is randomly realized from G by such way. (2)
Secondly, we mark gS to be the set of nodes which can be reached in the graph
g by any seed node in seeds set S, and we naturally have gS are the influenced
nodes.

Problems Descriptions: Based on the diffusion formulation of IC model, here
we give our UIPM problem definition as following.

Definition 1 Union-influenced Probability Maximization Problem.
Given the influence graph G(V,E, p), an union set U ⊆ V , a set of alternative
nodes S ⊆ V , and a budget k, the union-influenced probability maximization prob-
lem is to chose a set S∗ of at most k nodes from S as seeds maximizing the proba-
bility that every node in U is influenced, i.e., S∗ := argmaxS⊆S,|S|≤k Prg∼G{U ⊆
gS}, and further we rewrite the problem as S∗ := argmaxS⊆S,|S|≤k σ(S), where
σ(S) = α · Prg∼G{U ⊆ gS} + β called the linear enlarge measurement and

1 We said flipping an edge euv is that remove it with the probability 1 − puv from the
graph and mark it to be “on” if the edge isn’t removed and otherwise be “off”.

292 G. Rao et al.

α, β > 0 is the parameters to enlarge the value of probabilities to a wider value
range [β, α + β].

Note that we add the scaling linear parameters to expand the union-influenced
probabilities as the value of probabilities is crowded in a value range of zero lower
bound [0, 1], but through linear expanding without the lost of total order(i.e.,
given two sets S1 and S2, Pr{U ⊆ AS1} > Pr{U ⊆ AS2} i.f.f. σ(S1) > σ(S2)),
Pr{U ⊆ AS1} < Pr{U ⊆ AS2} i.f.f. σ(S1) < σ(S2)), and Pr{U ⊆ AS1} =
Pr{U ⊆ AS2} i.f.f. σ(S1) = σ(S2))), we can more precisely to estimate the
target function, hence more easily to design the algorithm to solve this problem
shown later. We firstly introduce two obvious cases for the UIPM problem as
following:

1. When |U| = 1, the UIPM problem is the same as personal influence maxi-
mization problem [7].

2. When k ≥ |U| and U ⊆ S, the UIPM problem is easily to be solved by
selecting all the nodes in U as the seeds.

In this paper, we consider more about the general situation and nextly we analyse
the hardness of the UIPM.

Theorem 1. The UIPM problem is NP-hard.

Proof. Consider any instance of the NP-complete Set Cover problem with a set
collection C = {c1, c2, . . . , cm}, a set of nodes T = {t1, t2, . . . , tn}. We wish to
know whether there exist k sets in C covering all nodes in T . We construct a
special UIPM problem with G(V,E, p),U,S, k as following:

(1) Create U = {u1, u2, ..., un}, each ui(1 ≤ i ≤ n) corresponding ti in T .
(2) Create S = {s1, s2, ..., sm}, each si(1 ≤ j ≤ m) corresponding ci in C.
(3) Let V = U ∪ S, and create an E’s edge < sj , ui > with influence probability

1 as long as ti ∈ cj.

It’s easy to get that there exist k sets in C covering all nodes in T if and
only if there exists at most k seeds in S with the union-influenced probability 1
and hence σ = α + β. So we proved it.

Theorem 2. The computation problem for σ is #P-hard.

Proof. Consider any instance of the #P-complete s-t connectedness counting
problem with G′(V ′, E′) and two vertix s and t in V ′. We wish to count the
number of G′’s subgraphs where s is connected to t, and we denote these subgraphs
as a set G. We show this problem is equivalent to the following computation
problem of union-influenced probability with G(V,E, p),U where V = V ′ ∪ U,
E = E′ ∪ {< t, u > |u ∈ U}. Given a seed set S = {s}, we can easily have
that Pr{U ⊆ AS} = Pr{t ∈ A{s}} · p|U| = p|U| ∑

g∈G Pr(g) = p|U||G|p|E| =

|G|p|E|+|U|. Thus we can get the size of G by the computation of Pr{U⊆AS}
p|E|+|U| and

further by σ−β
αp|E|+|U| . We proved it.

Maximize the Probability of Union-Influenced in Social Networks 293

Many problems in social influence have good properties such as submodularity
or supmodularity which is very useful in designing approximation algorithms.
However, in our problems, these properties are lost.

Theorem 3. The object function σ is either submodularity nor supmodularity.

Proof. We show it by a special case in Fig. 2 with a given union U = {a, b, c} and
alternative seeds S = {s1, s2, s3, s4}. let δs′Pr{U ⊆ AS} and δs′σ(S) correspond
to the gain of union-influenced probability and σ respectively after add a seed
s′ into S. Then we have δs3Pr{U ⊆ A{s1}} = 0 and δs3Pr{U ⊆ A{s1,s2}} =
0.5 and hence δs3σ(s1) ≤ δs3σ(s1, s2), so it’s not submodularity. We also have
δs4Pr{U ⊆ A{s1}} = 0.5 and δs4Pr{U ⊆ A{s1,s2}} = 0.5, and so δs4σ(s1) ≥
δs4σ(s1, s2), and it’s still not supmodularity.

Fig. 2. A special case to illustrate of the properties of σ.

4 The UIS-Based Algorithms Designs

If we use the natural idea of greedy-climbing to solve the UIPM, unlike most
of the social influence problem with submodularity, it has no approximation-
guarantee. Besides since the computation of probability is #P-hard, the prob-
ability estimation method regularly using the simulation of Mont Carlo is very
heavy. For the later algorithm designs, inspired by the RIS method of using a
set cover to estimate the influence, we first introduce the union-reverse influence
set-sequences (UIS) which can be used to estimate the union-influenced prob-
ability more efficiently. We first give our definition of union-reverse influence
set-sequences as following:

Definition 2. Union-reverse Influence Set-sequences. Given an influence
Graph G and an Union U, let g be an edge-induced subgraph of G by flipping
edges randomnly with the probability , the union-reverse influence set-sequences
is a set sequence (ru1 , ru1 , . . . , ru|U|) where set rui

is a subset of alternative seeds
S in which every node can be reversely reached by U’s node ui over g.

294 G. Rao et al.

By the definition, as shown in Algorithm 1, a natural idea of sampling an UIS set
sequence is firstly creating a G’s edge-induced subgraph g by flipping all edges
with the edge probability, and then doing multiple independent reverse BFSs
(breadth-first search) over g sourced from each different union node ui in U to
get the corresponding nodes set rui

reached by ui. Nextly, we will analyse how

Algorithm 1: SG-BFS(G(V,E, p), U, S)
1 Get a G’s random subgraph of g ;
2 for each ui ∈ U do
3 Do a bfs search in g sourced from ui and get the searched set rui

4 return (ru1 , ru2 , . . . , ru|U|)

the UIS can be used to estimate our object function. Given a set sequence R and
a set S, let IR be the indicator function where IR(S) = 0 if ∃rj ∈ R, rj ∩S = ∅
and IR(S) = 1 if ∀rj ∈ R, rj ∩ S
= ∅. Then we have the theorem as following:

Theorem 4. Given an union U , let R be the related random UIS, the union-
influenced probability of the seed set S equals to the expectation of IR(S), i.e.,
Pr{U ⊆ AS} = E(IR(S)).

Proof. By the generating model of IC and the definition of UIS, we have

Prg∼G{U ⊆ gS} = Prg∼G{
∧

uj∈U

(uj ∈ gS)}

= Prg∼G{
∧

uj∈U

(ḡuj
∩ S
= ∅)}

= PrR{
∧

rj∈R
(rj ∩ S
= ∅)}

= E(IR(S)).

Then we can use the statistic method sampling UIS to estimate the expectation
of the random variable IR(S) instead of Monte Carlo simulations in which it
needs re-simulation once the seeds set is changed. Sampling θ UIS sequences
independently and getting �θ = {R1,R2, . . . ,Rθ}, we have that σ̄(S,�θ) :=
α
θ

∑
i∈[θ] IRi

(S) + β is the unbiased estimation for σ(S,U).
To analyse the gap of estimation error which is related to the sampling num-

ber θ, we can get first Lemma 1 by the Chernoff Bounds [14] and hence get the
following gap Theorem 5.

Lemma 1. If θ ≥ − ln (1−δ)α2

2ε2β2 , we have σ̄ − σ ≤ εσ with probability at least δ

and if θ ≥ − ln (1−δ)α2

ε2β2 , we have σ̄ − σ ≥ −εσ with probability at least δ, For any
ε > 0 and 0 ≤ δ < 1.

Maximize the Probability of Union-Influenced in Social Networks 295

Proof. We first introduce the Chernoff Bounds [14]:
Let X1,X2, · · · ,Xθ be random variables such that a ≤ Xi ≤ b for all i. Let

X =
∑θ

i=1 Xi and μ = E(X). Then for any ε ≥ 0,

Pr{X ≥ (1 + ε)μ} ≤ exp(− 2ε2μ2

θ(b − a)2
), (1)

Pr{X ≤ (1 − ε)μ} ≤ exp(− ε2μ2

θ(b − a)2
). (2)

Let Xi = αIRi
(S) + β, for i = 1.2, . . . , θ and then β ≤ Xi ≤ α + β. We have

X =
∑n

i=1 Xi = θσ̄, and μ = E(X) = E(θ · (α(IR(S) + β))) = θ(αE(IR(S) +
β) = θ · σ. By the Eq. 1, let θ ≥ − ln (1−δ)α2

2ε2β2 and we have

Pr{θσ̄−θσ ≥ ε · θσ} = Pr{σ̄ − σ ≥ εσ}

≤exp(−2ε2θσ2

α2
) ≤ exp(−2ε2θβ2

α2
) ≤ 1 − δ.

Then get Pr{σ̄ − σ ≤ εσ} ≥ δ. By the Eq. 2, let θ ≥ − ln (1−δ)α2

ε2β2 and we have

Pr{θσ̄−θσ ≤ −ε · θσ} = Pr{σ̄ − σ ≤ −εσ}

≤exp(−ε2θσ2

α2
) ≤ exp(−ε2θβ2

α2
) ≤ 1 − δ.

Then get Pr{σ̄ − σ ≥ −εσ} ≥ δ.

Theorem 5. If θ ≥ −α2

ε2β2 · min{ ln(1−δ1)
2 , ln(1 − δ2)}, for any ε > 0, we have

Pr{|σ̄ − σ| ≤ εσ} ≥ δ, where δ1, δ2 ≥ 0 and δ1 + δ2 = δ.

By above analysis such like Theorem 5, ignoring the loss of estimation after
sampling sufficient number of UIS sequences, we can get a solution of UIPM
by solving the maximization problem of σ̄ instead of the origin target σ, i.e.,
find the nodes set S� := argmaxS⊆S,|S|≤k σ̄(S,�θ). Further back to our original
problem, we have the following theorem.

Theorem 6. If θ ≥ − ln (1−δ)α2

ε2β2 , we have σ(S�) ≥ 1−ε
1+εσ(S∗). with probability at

least 2δ − 1.

Proof. We have σ̄(S�) ≥ σ̄(S∗). By the Lemma 1, if θ ≥ − ln (1−δ)α2

ε2β2 , we have
σ̄(S∗) ≥ (1 − ε)σ(S∗) and σ(S�) ≥ 1

1+ε σ̄(S�) and the union probability of them
is at least 2δ − 1. We proved it.

The Theorem 6 tells that we can get a high accuracy and confidence solution
for the UIPM by solving S�. So nextly, we consider how to solve this prob-
lem. We show that σ̄ is also not submodularity w.r.t the seed set S by a spe-
cial case as following: Given R1 = ({v4}, {v1}), R2 = ({v1, v3}, {v2}), R3 =
({v1}, {v2, v3}) and T = {v1, v2, v3, v4}, we have σ̄({v1, v2},�θ) − σ̄({v2},�θ) =
2 ≥ σ̄({v1},�θ) − σ̄(∅,�θ) = 0.

296 G. Rao et al.

SA Algorithm: Considering the similar idea of Sandwich, and for our target
function σ̄ without submodularity, we find a lower bund σ̄l and upper bound
σ̄u, i.e., σ̄l(S) ≤ σ̄(S) ≤ σ̄u(S) for all S ∈ S. Supposing that we get a α-
approximation solution Sl and Su β-approximation respectively corresponding
to each maximization problem of the two bunds. Hence we can have the following
Sandwich approximation lemma:

Lemma 2. Let S+ = argmaxS∈{Sl,Su}σ̄(S), then we have σ̄(S+) ≥ max{α ·
σ̄(Su)

σ̄u(Su) , β · σ̄l(S
l)

σ̄(S�) } · σ̄(S�).

Proof. We have

σ̄(Su) =
σ̄(Su)
σ̄u(Su)

· σ̄u(Su) ≥ σ̄(Su)
σ̄u(Su)

· α · σ̄u(S�)

≥ σ̄(Su)
σ̄u(Su)

· α · σ̄(S�),

and

σ̄(Sl) = σ̄l(Sl) ≥ β · σ̄l(S�) ≥ β · σ̄l(Sl)
σ̄(S�)

σ̄(S�),

Then we proved it.

Nextly we will construct such upper and lower bounds for σ̄. Firstly we get
two collections of sets Rl = {rl

1, r
l
2, . . . , r

l
θ} and Ru = {ru

1 , ru
2 , . . . , ru

θ } where
rl
i =

⋂
rj∈Ri

rj and ru
i =

⋃
Rj∈R Rj corresponding to each Ri ∈ �θ. Let Ir be

the indicator function where Ir(S) = 0 if r ∩ S = ∅ and Ir(S) = 1 if r ∩ S
= ∅
Further we can define two following functions η1(S,Ru) := α

θ

∑
rl

i∈Ru

Iru
i
(S) + β, η2(S,Rl) := α

θ

∑
ru

i ∈Rl Irl
i
(S) + β. Then we prove that η1 is an

upper bound of σ̄ and η2 is a lower bound of σ̄ as shown in theorem 8 which can
be naturally infered by following lemma.

Lemma 3. For any S ⊆ S, we have Irl
i
(S) ≤ IRi

(S) ≤ Iru
i
(S).

Proof. For each Ri, we have the corresponding rl
i =

⋂
rj∈Ri

rj, ru
i =

⋃
rj∈Ri

rj.
If Irl

i
(S) = 1, i.e., rl

i ∩ S
= ∅, we have rj ∩ S
= ∅ for each rj ∈ Ri, and hence
IRi

(S) = 1. So we have Irl
i
(S) ≤ IRi

(S). If IRi
(S) = 1, i.e., ∃rj ∈ Ri s.t.

rj ∩ S
= ∅, we have each ru
i ∩ S
= ∅ as rj ⊂ ru

i , and hence Iru
i
(S) = 1. So we

have IRi
(S) ≤ Iru

i
(S).

Theorem 7. For all S ⊆ S, we have η2 ≤ σ̄ ≤ η1.

We naturally have the Theorem 7 from Lemma 3. Actually the sum of Ir(S)
is the number of set covered by S and it’s submodular, hence we have η1 and
η2 are also submodular. So standard greedy algorithm for maximum coverage
[23] can provide a (1 − 1/e)-approximation solution for η1 and η2 respectively.
Further we can get the SA-algorithm in Algorithm 2 to obtain an approximation
solution S+. and we have the approximation for the original problem as following
theorem.

Maximize the Probability of Union-Influenced in Social Networks 297

Theorem 8. The solution S+ given by algorithm SA can guarantee that
σ(S+) ≥ β(1 − 1

e)σ(S∗) with probability at least 2δ − 1, where β = 1−ε
1+ε ·

max{ σ̄(Su)
σ̄u(Su) ,

σ̄l(S
l)

σ̄(S�) }.

Algorithm 2: UIS-SA(GU,S , k, ε, δ)

1 Sample θ = �− ln (1−δ)α2

ε2β2 � UIS sequences by Algorithm 1;

2 Using coverage [23] to get a solution Sl for η2;
3 Using coverage [23] to get a solution Su for η1;

4 Let S+ = argmax{σ̄(Sl), σ̄(Su)};
5 return S+

Proof. According Lemma 2, we have

σ̄(S+) ≥ (1 − 1/e) · max{ σ̄(Su)
σ̄u(Su)

,
σ̄l(Sl)
σ̄(S�)

} · σ̄(S�)

≥ (1 − 1/e) · max{ σ̄(Su)
σ̄u(Su)

,
σ̄l(Sl)
σ̄(S�)

} · σ̄(S∗),

and according Lemma 1, we have σ̄(S∗) ≥ (1 − ε)σ(S∗) and σ(S+) ≥ 1
1+ε σ̄(S+)

with union probability at least 2δ − 1. Then we proved it.

Note that we can’t get β exactly because of σ̄l(S
l)

σ̄(S�) since the optimum solution

of σ̄(S�) is NP-hard to get, but we can get the value of σ̄(Su)
σ̄u(Su) after the compu-

tation, which is a lower bound for the β.
Actually for the lower bound and upper bound, we can find physical expla-

nations. The node u in most of intersection set of UIS sequences means that it
has high probability to influence all union nodes. The node v in most of union
sets of UIS sequences means that it has high probability to influence at least
one union node. So in the network, if there are more the nodes like u, the best
solution may be closed to the one provided by lower bound, and if there are
more nodes like v not u, the best solution may be closed to the one provided by
upper bound.

5 Experiments

We have conduct an experimental study to evaluate the performance of our pro-
posed methods over 4 real-world datasets2 (BlogcCatalog, Flickr, DBLP, Twit-
ter). The number of vertices corresponds to 10K, 80k, 203k, 580k and the number
of edges corresponds to 333k, 5.9M, 382k, 717k. All codes of the experiments are
written in C++ and all experiments run in a linux server with a 12 cores, 24
threads, 3.6 Hz, CPU and 64 G memory.
2 http://networkrepository.com.

http://networkrepository.com

298 G. Rao et al.

Experiment Setup: As the general setting in IC model, we set the influence
probability i,e. the weight of each direct edge <u, v>, puv := 1

din(v) where din(v)
is the in-degree of node v. For the node choice of the union, we first exclude the
nodes with zero in-degree as they can’t be influenced. Since the node’s influence
probability is related to the in-degree, so to avoid low union influence probability
of the union, we specially choice nodes for each union from the remaining nodes
according to the in-degree such that is the node with lower in-degree has larger
probability to be chosen. We use 10000 times of Menton Carlo simulations and
count the proportion of union being influenced to get the evaluation of union-
influenced probability for given seeds.

For alternative seeds setting, We exclude the nodes with zero out-degree as
they can’t influence anyone, we also exclude the union nodes and their one hop
in-going neighbours as it’s easy to make choice by selecting nodes from them. So
we set the alternative seeds S = V \ (U

⋃
(∪u∈UN in

u) ∪ {v|dou(v) = 0, v ∈ V }),
where din(v) is the out-degree of node v and N in

u are u’s one hop in-going
neighbours. By default, we set α = 100, β = 10, ε = 0.1, δ = 0.99, which can
guarantee a high accuracy and confidence for the algorithm we designed.

Comparison Algorithms. We compare our algorithms with some baseline
algorithms where Target-IM is the algorithm proposed [18] to solve the targeted
influence in U. UIS-greedy is the general greedy algorithm to solve the seeds
selection problem to maximize σ̄. and Random is the basic baseline algorithms
by choosing seeds randomly.

Union Influence Probability Comparison: We conduct these experiments
on two datasets of DBLP and Twitter. Firstly, for each dataset, we choose
10 nodes to compose an union to evaluate the performance of the different
algorithms by running each algorithm 10 times. We vary the budgets k by
1,5,10,20,50,100 by setting half of the budgets are less than the union size and
half are more than the union size. At last, we report the best one of the 10
runs for each algorithm. As shown in Fig. 3, the algorithms we proposed are
significantly better than others and the improved algorithms UIS-SA have great
improvement compared with the general UIS-greedy (nearly +30% in DBLP,
+100% in Twitter).

Lower Bound of Budget Cost Comparison: Nextly we evaluate the lower
bound of the budget cost (i.e., the necessary number of seeds) for certain union
influence probability in all four datasets. We set 6 unions with different sizes of
1, 5, 10, 15, 20 and vary the budgets k from 1 to 500 to compare the lower bound
of the budget with the union influence at least 0.1 under different algorithms by
running each 10 times too. Special for the situation that all of the budgets k we
provide can’t achieve such influence, we record its lower bound as ∞. As shown
in Fig. 4, to achieve the targeted union influence probability, the Random costs
more than 500 budget of the seeds size. For the result in DBLP and Twitter,

Maximize the Probability of Union-Influenced in Social Networks 299

Fig. 3. The performance comparisons achieved by different algorithms in different
datasets with an union of size 10.

Fig. 4. The comparisons for lower bound of budget

we have the budget cost comparison: Target-IM>UIS-greedy>UIS-SA when the
union size under 10 and Target-IM�UIS-greedy>UIS-SA when the union size
above 10. Note that when the union size is one, the lower bound of them is
same to be 1 as the problem is equal to the special case of personal influence
maximization [7].

300 G. Rao et al.

6 Conclusions

In this paper, we study the entirety influence problem, and propose the union-
influence probability maximization (UIPM) problem in which the goal is to find
a seed set with small size such that the probability of all nodes in a union being
influenced is maximized. We show the UIPM is NP-hard and the computation of
target function is #P-hard. Without the property of submodularity, we propose
a data-driven β(1 − 1

e)-approximation algorithm based on the union reverse
Influence set-sequences. To analyse and evaluate proposed methods, a lot of
experiments have been conducted on real-world datasets. The results show that
the method we proposed solve the problems well.

References

1. Barbieri, N., Bonchi, F., Manco, G.: Topic-aware social influence propagation mod-
els. Knowl. Inf. Syst. 37(3), 555–584 (2013). https://doi.org/10.1007/s10115-013-
0646-6

2. Bharathi, S., Kempe, D., Salek, M.: Competitive influence maximization in social
networks. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp.
306–311. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77105-
0 31

3. Borgs, C., Brautbar, M., Chayes, J., Lucier, B.: Maximizing social influence in
nearly optimal time. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 946–957. SIAM (2014)

4. Chen, S., Fan, J., Li, G., Feng, J., Tan, K.I., Tang, J.: Online topic-aware influence
maximization. Proc. VLDB Endow. 8(6), 666–677 (2015)

5. Cohen, E., Delling, D., Pajor, T., Werneck, R.F.: Timed influence: computation
and maximization. arXiv preprint arXiv:1410.6976 (2014)

6. Goyal, A., Lu, W., Lakshmanan, L.V.: CELF++: optimizing the greedy algorithm
for influence maximization in social networks. In: Proceedings of the 20th Interna-
tional Conference Companion on World Wide Web, pp. 47–48. ACM (2011)

7. Guo, J., Zhang, P., Zhou, C., Cao, Y., Guo, L.: Personalized influence maximization
on social networks. In: Proceedings of the 22nd ACM International Conference on
Information & Knowledge Management, pp. 199–208 (2013)

8. He, X., Song, G., Chen, W., Jiang, Q.: Influence blocking maximization in social
networks under the competitive linear threshold model. In: Proceedings of the 2012
SIAM International Conference on Data Mining, pp. 463–474. SIAM (2012)

9. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: Proceedings of the Ninth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)

10. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.:
Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
420–429. ACM (2007)

11. Li, G., Chen, S., Feng, J., Tan, K.l., Li, W.S.: Efficient location-aware influence
maximization. In: Proceedings of the 2014 ACM SIGMOD International Confer-
ence on Management of Data, pp. 87–98. ACM (2014)

https://doi.org/10.1007/s10115-013-0646-6
https://doi.org/10.1007/s10115-013-0646-6
https://doi.org/10.1007/978-3-540-77105-0_31
https://doi.org/10.1007/978-3-540-77105-0_31
http://arxiv.org/abs/1410.6976

Maximize the Probability of Union-Influenced in Social Networks 301

12. Liu, B., Cong, G., Xu, D., Zeng, Y.: Time constrained influence maximization in
social networks. In: 2012 IEEE 12th International Conference on Data Mining, pp.
439–448. IEEE (2012)

13. Lu, W., Chen, W., Lakshmanan, L.V.: From competition to complementarity: com-
parative influence diffusion and maximization. Proc. VLDB Endow. 9(2), 60–71
(2015)

14. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
New York (1995)

15. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions-I. Math. Program. 14(1), 265–294 (1978)

16. Nguyen, H.T., Thai, M.T., Dinh, T.N.: Stop-and-stare: optimal sampling algo-
rithms for viral marketing in billion-scale networks. In: Proceedings of the 2016
International Conference on Management of Data, pp. 695–710. ACM (2016)

17. Ohsaka, N., Akiba, T., Yoshida, Y., Kawarabayashi, K.I.: Fast and accurate influ-
ence maximization on large networks with pruned Monte-Carlo simulations. In:
Twenty-Eighth AAAI Conference on Artificial Intelligence (2014)

18. Song, C., Hsu, W., Lee, M.L.: Targeted influence maximization in social networks.
In: Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management, pp. 1683–1692. ACM (2016)

19. Sun, L., Huang, W., Yu, P.S., Chen, W.: Multi-round influence maximization. In:
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 2249–2258. ACM (2018)

20. Tang, J., Tang, X., Xiao, X., Yuan, J.: Online processing algorithms for influence
maximization. In: Proceedings of the 2018 International Conference on Manage-
ment of Data, pp. 991–1005 (2018)

21. Tang, Y., Shi, Y., Xiao, X.: Influence maximization in near-linear time: a martin-
gale approach. In: Proceedings of the 2015 ACM SIGMOD International Confer-
ence on Management of Data, pp. 1539–1554. ACM (2015)

22. Tang, Y., Xiao, X., Shi, Y.: Influence maximization: near-optimal time complexity
meets practical efficiency. In: Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, pp. 75–86. ACM (2014)

23. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-662-04565-7

24. Yang, D.N., Hung, H.J., Lee, W.C., Chen, W.: Maximizing acceptance probability
for active friending in online social networks. In: Proceedings of the 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
713–721 (2013)

https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-662-04565-7

A Novel Algorithm for Max Sat Calling
MOCE to Order

Daniel Berend1,2 , Shahar Golan3 , and Yochai Twitto2(B)

1 Department of Mathematics, Ben-Gurion University, 84105 Beer Sheva, Israel
berend@cs.bgu.ac.il

2 Department of Computer Science, Ben-Gurion University, 84105 Beer Sheva, Israel
twittoy@cs.bgu.ac.il

3 Department of Computer Science, Jerusalem College of Technology,
9116001 Jerusalem, Israel

sgolan@jct.ac.il

Abstract. In this paper, we present and study a new algorithm for the
Maximum Satisfiability (Max Sat) problem. The algorithm, GO-MOCE,
is based on the Method of Conditional Expectations (MOCE, also known
as Johnson’s Algorithm), and applies a greedy variable ordering to it. We
conduct an extensive empirical evaluation on two collections of instances
– instances from a past Max Sat competition and random instances. We
show that GO-MOCE reduces the number of unsatisfied clauses by tens
of percents as compared to MOCE. We prove that, using tailored data
structures we designed, GO-MOCE retains the linear time complexity.
Moreover, its runtime overhead in our experiments is at most 10%. We
combine GO-MOCE with CCLS, a state-of-the-art solver, and show that
the combined solver improves CCLS on the above mentioned collections.

1 Introduction

In the Maximum Satisfiability (Max Sat) problem [10], we are given a sequence
of clauses over some Boolean variables. Each clause is a disjunction of literals
over distinct variables. A literal is either a variable or its negation. We seek
a truth (true/false) assignment for the variables, maximizing the number of
satisfied (made true) clauses. In the Max r-Sat problem, each clause is restricted
to consist of at most r literals. Here we restrict our attention to instances with
clauses consisting of exactly r literals each.

Let n be the number of variables. Denote the variables by x1, x2, . . . , xn.
The number of clauses is denoted by m, and the clauses by C1, C2, . . . , Cm. We

We thank David Gamarnik, MohammadTaghi Hajiaghayi, Dmitry Panchenko, and
Gregory Sorkin for helpful information and correspondence regarding bounds on the
optimum of Max r-Sat. This research was partially supported by the Milken Families
Foundation Chair in Mathematics, by the Lynne and William Frankel Foundation for
Computer Science, and by the Israeli Council for Higher Education (CHE) via the Data
Science Research Center, Ben-Gurion University of the Negev.

c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 302–317, 2021.
https://doi.org/10.1007/978-3-030-92681-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_25&domain=pdf
http://orcid.org/0000-0002-5756-5921
http://orcid.org/0000-0002-7361-7971
http://orcid.org/0000-0002-2764-3642
https://doi.org/10.1007/978-3-030-92681-6_25

Calling MOCE to Order 303

denote the density, i.e., the clause-to-variable ratio, by α = m/n. We use the
terms “positive variable” and “negative variable” to refer to a variable and to
its negation, respectively. Whenever we find it convenient, we consider the truth
values true and false as binary 1 and 0, respectively. In pseudocodes we use T
and F instead of true and false, respectively.

As Max r-Sat (for r ≥ 2) is NP-hard [5], large instances cannot be exactly
solved efficiently in the worst case unless P = NP , so one must resort to approx-
imation algorithms and heuristics. Numerous methods have been suggested for
solving Max Sat, e.g. [3,11,22,25,33,34], and an annual competition of solvers
has been held since 2006 [4]. Overall, satisfiability related questions attracted a
lot of attention from the scientific community. For a comprehensive overview of
the whole domain of satisfiability, we refer to [9].

Various complete solvers for Max Sat have been developed during recent
years, some of which were presented in the annual competition of Max Sat
solvers [4]. Among these practical solvers, one can find Branch and Bound solvers
(e.g., MaxSatz [21], Clone [27]), Satisfiability based solvers (e.g., SAT4J [20],
QMaxSat [19]), Unsatisfiablity based solver (e.g., WPM1 [1,2]), etc. Com-
plete solvers which participated in the last evaluations include MaxHS [15],
Pacose [26], EvalMaxSAT [6], and more. Practical incomplete solvers for Max Sat
are actively researched as well. Some of them competed in the incomplete track
of the last evaluations. E.g., Loandra [8], TT-open-WBO-Inc [24], sls-mcs [17],
and more.

Consider the naive randomized approximation algorithm, which assigns to
each variable a truth value uniformly at random, independently of all other
variables. It satisfies a proportion of 1 − 1/2r of all clauses on the average.
Furthermore, it can also be easily derandomized using the Method of Conditional
Expectations (MOCE, also known as Johnson’s Algorithm) [12,16,29], yielding
an assignment guaranteed to satisfy at least this proportion of all clauses.

MOCE iteratively constructs an assignment by going over the variables in
an arbitrary, usually random, order. At each step, it sets the seemingly better
truth value to the currently considered variable. This is done by comparing the
expected number of satisfied clauses under each of the two possible truth values.

For a given truth value, the expected number of satisfied clauses is the sum
of three quantities. The first is the number of clauses already satisfied by the
assignment to the previously assigned variables. The second is the additional
number of clauses satisfied by the assignment of the given truth value to the
current variable. The third is the expected number of clauses that will be satisfied
by a uniformly random assignment to all other currently unassigned variables.
The truth value for which this sum is the larger of the two is the one selected for
the current variable. Ties are broken arbitrarily (usually randomly). The process
is repeated until all variables are assigned.

In a sense, this method is optimal for Max 3-Sat, as no polynomial time
algorithm for Max 3-Sat can guarantee a performance ratio exceeding 7/8 unless
P = NP [18]. Typically, though, this method yields assignments that are much

304 D. Berend et al.

better than this worst-case bound. Theoretical and empirical works related to
MOCE, and algorithms of the same spirit, include [13,28,30,31].

In [7] it was shown that state-of-the-art local search algorithms can be
improved by supplying them a good starting point. In particular, combining
MOCE with CCLS [22] results in a decrease in the number of unsatisfied clauses
of up to 75%. This motivates us to develop improved linear-time algorithms that
can supply even better starting points.

In Sect. 2 we introduce our algorithm GO-MOCE for Max Sat. A full time
complexity analysis is provided in Sect. 3. Section 4 is dedicated to present-
ing an empirical study designed to evaluate the performance of GO-MOCE. In
Sect. 5 we show how to use our algorithm to improve CCLS and demonstrate the
improvement on some families of random instances and on public competition
benchmarks. A conclusion is provided in Sect. 6.

2 The Greedy Order MOCE (GO-MOCE)

In this section we present a new algorithm, GO-MOCE, for Max Sat. The algo-
rithm is based on the Method of Conditional Expectations, and in addition
applies a greedy variable ordering to it. Subsection 2.1 is dedicated to the con-
cept of gain and the basic idea behind GO-MOCE. In Subsect. 2.2 and 2.3,
we describe how we efficiently maintain and update instances and gains dur-
ing the execution of GO-MOCE. A pseudocode of GO-MOCE is presented in
Subsect. 2.4.

2.1 The Concept of Gain and Its Usage in GO-MOCE

A gain conveys information on the profitability of assigning a given value to a
given variable, namely the expected increase in the number of satisfied clauses.

Consider a variable x and a clause C of length l = |C| in which x appears.
The probability that C will be satisfied by a random assignment of the l variables
appearing in it is 1 − 1/2l. If we assign the variable x a truth value, for which
C is satisfied, the contribution of C to the expected number of satisfied clauses,
increases by 1/2l from 1−1/2l to 1. On the other hand, if we assign the variable
x a truth value, for which C is not satisfied, this literal is removed from it. Hence
the contribution of C to the expected number of satisfied clauses decreases by
1/2l, from 1 − 1/2l to 1 − 1/2l−1.

For a clause C, a variable x appearing in C, and a truth value b, put

sign(C, x) =

⎧
⎪⎨

⎪⎩

−1, x appears negatively inC,

0, xdoes not appear inC,

1, x appears positively inC,

and

sat(C, x, b) =

{
sign(C, x), b = true,

− sign(C, x), b = false.

Calling MOCE to Order 305

Each clause C contributes sat(C, x, b) · 1/2|C| to the gain of assigning b to x.
The total gain of assigning the truth value b to x is

gain(x, b) =
∑

C∈I

sat(C, x, b) · 1/2|C|.

On each iteration, GO-MOCE uses the gains to assign the variable with the
largest gain to the value that provides this gain, breaking ties randomly. The
main challenge for the design of GO-MOCE is to efficiently maintain the instance
and the gains throughout the execution.

2.2 Efficient Instance Representation and Residualization

In our algorithm, an instance is represented by means of two core data structures:

clauses– a mapping of clause indices to clauses. A clause is a mapping of variable
indices to Boolean values, where true means the variable appears as is in the
clause and false means it appears negated.

variables– a mapping of variable indices to variables. A variable is a mapping
of clause indices to Boolean values, where true means the variable appears
as is in the clause and false means it appears there negated.

Residualization is the operation in which information, regarding the assign-
ment of a given truth value to a given variable, is used to simplify an instance.
The simplification is done by removing assigned variables, satisfied clauses, and
empty clauses (which are considered unsatisfied). The input to the residual-
ization operation is a variable and its assigned truth value. The result of the
operation is a simplified instance, which we refer to as the residual instance.

First, if a clause is satisfied by the variable assignment, we remove it from
clauses and from its associated variables in variables. If no clauses are then
associated with some variable, the variable itself is removed from variables.
Then, we remove the literal associated with the assigned variable from the clauses
it appears in (i.e., the clauses it does not satisfy). In case a clause becomes empty,
we remove it from clauses and mark it as unsatisfied.

2.3 Efficient Maintenance and Update of Gains

As the number of variables is large, we should maintain the gains of all the
variables in an efficient manner throughout the execution. Since gain(x, true) =
−gain(x, false), we maintain only the gain of one truth value for each variable
(the gain of true). We need to accommodate the following operations: find the
gain of a given variable; update the gain of a given variable; find the largest gain
over all variables; remove the largest gain from the collection of gains.

To allow performing these operations efficiently, our algorithm maintains a
compound data structure gains, consisting of two elementary data structures:
gbv (gains by variables), which maps each variable to its gain, and gbm (gains by
magnitudes), which allows fast access to the largest gain at any given moment.

306 D. Berend et al.

The operations on gains are done in such a way that gbv and gbm are kept
synchronized and consistent (partially sorted).

The following describes the gains maintenance. Initially, we go over all the
variables, and for each one perform a full direct calculation of its gain as described
in Subsect. 2.1. Then, we insert the calculated values into gains. At each step
of the algorithm, once we have selected an assignment of a truth value to the
current variable, we should update the gains of all affected variables. These are
all neighbors of the currently assigned variable, namely all variables appearing
with it in at least one clause. Recall that we only maintain the gain of assigning
true. This process is done by iterating over all the clauses in which the currently
assigned variable appears. For each such clause, we iterate over all its other
variables. The magnitude of the change in the gain is always 1/2l, where l is the
length of the clause we currently consider. Table 1 summarizes the changes in
the gain of true of a variable neighboring the currently assigned variable.

Table 1. The change in the gain of true of a neighboring variable, for each clause that
neighbor shares with the currently assigned variable.

Assigned\Neighbor Appears positively in clause Appears negatively in clause

Satisfies clause −1/2l 1/2l

Unsatisfies clause 1/2l −1/2l

2.4 Pseudocode

In this subsection we provide a pseudocode for GO-MOCE – see Algorithm 1.
The pseudocode details the main procedure GO-MOCE and its sub-procedures:
Calculate Gains – initializing the gains, Find Best Assignment – finding
the best variable to be assigned and its “correct” value, Update Gains – updat-
ing the gains, and Residualize Instance – updating the instance. Each of the
last three procedures is performed at each iteration of the main loop.

3 Time Complexity

We deal with instances of Max r-Sat over n variables, with density α. Thus, the
number of clauses is m = αn, and the overall size of the instance is rm = rαn.

The key data structure for an efficient implementation is gbm, which supports
three operations: add element, remove element and extract maximal element. We
update the gain of a variable in terms of these operations by removing it from
gbm and reinserting it with the updated gain. In Subsect. 3.1, we assume gbm
is implemented by a balanced binary search tree. Thus, the complexity of each
of these three operations is O(log n). In Subsect. 3.2, we present a tailored data

Calling MOCE to Order 307

Algorithm 1. The Greedy Order MOCE
Input: An instance I over n variables.
Output: An assignment of truth values to the variables.
1: procedure GO-MOCE(I)
2: gains ← Calculate Gains(I)
3: while I has clauses do � instance is not empty
4: variable, value ← Find Best Assignment(gains)
5: variable ← value � assign variable
6: Update Gains(gains, I, variable, value)
7: Residualize Instance(I, variable, value, gains)
8: end while
9: end procedure

10: procedure Calculate Gains(I)
11: for each variable x of I do
12: gT

x = 0 � expected gain of assigning x = T
13: for each clause C of I in which x appears do
14: gT

x = gT
x + sign(C, x) · 2−|C|

15: end for
16: update gains (i.e., gbv and gbm) with gT

x

17: end for
18: end procedure

19: procedure Find Best Assignment(gains)
20: variable ← a maximum gain variable extracted from gbm

21: if gbv.gT
variable > 0 then

22: value ← T
23: else if gbv.gT

variable < 0 then
24: value ← F
25: else
26: value ← either T or F , selected uniformly at random
27: end if
28: end procedure

29: procedure Update Gains(gains, I, variable, value)
30: for each clause C of I, in which variable appears, do
31: for each variable neighbor in C, except for variable, do
32: gbv.gT

neighbor = gbv.gT
neighbor−sat(C, variable, value)∗sign(C, neighbor)·

2−|C|

33: gbm.gT
neighbor = gbv.gT

neighbor

34: end for
35: end for
36: end procedure

308 D. Berend et al.

37: procedure Residualize Instance(I, variable, value, gains)
38: for each clause C of I, in which variable appears, do
39: if sat(C, variable, value) then
40: remove C from clauses

41: for each variable neighbor in C, except for variable, do
42: remove C from neighbor in variables

43: if neighbor has no clauses then
44: remove neighbor from variables and gains

45: assign neighbor to either T or F , uniformly at random
46: end if
47: end for
48: else
49: remove variable from C in clauses

50: if C has no variables then
51: remove C from clauses

52: end if
53: end if
54: end for
55: remove variable from variables

56: end procedure

structure for gbm, for which these operations take an amortized constant time.
In our experiments, to be presented in Sects. 4 and 5, we used the latter version.

All the other data structures – clauses, variables, and gbv – can be imple-
mented as simple arrays. A removal of an element from these arrays is done by
marking it as deleted. In addition, for clauses, we hold a counter for the actual
number of elements, so that we can terminate when it is depleted. With this
implementation, all operations on these data structures take a constant time.

3.1 A Linearithmic Time Complexity Implementation

We analyze the asymptotic time complexity of GO-MOCE by inspecting each
of its procedures line-by-line. As explained above, here we assume that gbm is
implemented by a balanced binary search tree.

Lemma 1. The time complexity of Calculate Gains is O(n log n + rαn).

Proof. In Calculate Gains, line 12 takes constant time and is executed O(n)
times. Line 14 takes constant time and is executed once for every appearance of
every literal. In other words, it is executed r times for each clause, and rm times
in total. Line 16 is executed n times and takes O(log n) time.

Lemma 2. The overall time complexity of the calls to Find Best Assignment
is O(n log n).

Proof. The procedure is called once in every iteration of the main loop. All the
operations in this procedure take constant time, except for the extract maximum
operation (line 20) that takes O(log n) time.

Calling MOCE to Order 309

Lemma 3. The overall time complexity of the calls to Update Gains is
O(r2αn log n).

Proof. Each execution of line 32 takes O(1) time, and of line 33 – O(log n) time.
For each clause, we execute these lines O(r) times. Hence, the processing of each
clause takes O(r log n) time. The procedure is executed for each variable at most
once. For each such variable, the procedure inspects all the clauses it appears
in. Since all variables appear altogether rm times in the instance, and each such
appearance adds O(r log n) time, the total time for all calls is O(r2αn log n).

Lemma 4. Throughout the execution of GO-MOCE, the overall time complexity
of the calls to Residualize Instance is O(n log n + rαn).

Proof. Lines 40 and 51 are executed at most once for each clause, and lines 42
and 49 are executed at most once for each literal. Since each of these four lines
takes O(1) time, and there are m clauses and rm literals, the total time for these
lines is O(rm). Since a variable is removed from the instance at most once, lines
44 and 55 are executed at most once for each variable. This means that there
are O(n) executions of these two lines altogether, each taking O(log n) time.

Employing the lemmas above, we can easily prove the following result,
asserted in the opening of the section.

Theorem 1. The time complexity of GO-MOCE, with gbm implemented as a
balanced binary search tree, is O(r2αn log n). In particular, if r = O(1) and
α = O(1), it is O(n log n).

Proof. As a direct consequence of the previous lemmas, the time complexity
of Update Gains dominates all the other parts of the algorithm, and hence
determines the time complexity of the algorithm.

3.2 A Linear Time Complexity Implementation

We now suggest a tailored implementation for gbm which yields constant amor-
tized time for each of the required operations. Afterward, we show that this
tailored data structure reduces the (worst-case) time complexity of GO-MOCE
to O(r2αn), which is linear assuming r is bounded.

Our implementation for gbm comprises of 2 elementary data structures:

1. An array levels, such that levels[i] contains all variables whose current
gain is i2−r. Each level is implemented by a dynamic array. In addition, we
maintain the maximal gain, gmax.

2. An array index, such that index[i] is the location of variable xi within
levels[2rgbv.i].

Note that a dynamic array supports addition and removal of elements at the
end of the array in constant amortized time. An element may be deleted from
the middle of the array in constant time by swapping it with the last element,
updating index of the swapped element and deleting the currently last element.

Given the above data structures, the three required operations of gbm are
implemented as follows:

310 D. Berend et al.

1. Add xi to gbm: Add xi at the end of levels[2rgbv.i]. If gbv.i is higher
than gmax, update gmax accordingly.

2. Remove xi from gbm: Remove xi from levels[2rgbv.i][index[i]]. If the
level of xi is maximal and contains no other variables, scan the levels below
it until finding a non-empty level, and update gmax accordingly. Note that
an element may be deleted from the middle of the array in constant time by
swapping it with the last element, updating index accordingly and deleting
the currently last element.

3. Extract a top-gain variable from gbm: The top level variables are in
levels[2rgmax]. Remove a random element from this level. As above, update
gmax if necessary.

In the rest of this subsection we analyze the time complexity of GO-MOCE
for the new implementation of gbm.

Lemma 5. During the execution of GO-MOCE:

1. The maximal gain gmax does not exceed 2−rm.
2. The sum of all increases in the maximal gain between two consecutive steps

does not exceed 2−rm.

Remark 1. With high probability, for random instances of Max r-Sat, the num-
ber of gain levels is O(log n/ log log n) [32], which is practically constant. For
example, our empirical experiments show that, even for r = α = 10 and
n = 1000000, there are approximately 50 levels only. Another important prop-
erty of GO-MOCE, both intuitively and experimentally is that the difference
between maximal gains in two consecutive steps is 2−rO(1) with high proba-
bility. In other words, this number is a bounded multiple of the “basic gain”
2−r.

Proof (Lemma 5). A gain is defined as the increase in the expected number of
satisfied clauses. Since this number is initially (1− 2−r)m and there are at most
m satisfied clauses, no variable can have a gain of more than 2−rm. Since every
time the maximal gain increases, the next variable assignment will increase the
expectation at least by the increase size, the sum of all increases is at most 2−rm.

Theorem 2. The time complexity of GO-MOCE, using our tailored data struc-
ture, is O(r2αn). In particular, if r = O(1) and α = O(1), it is O(n).

Proof. The two gbm operations that do not have constant time complexity are
its initialization and finding of the maximal gain level. We will show that the
amortized time required for these operations, though, is constant. Indeed, since
the maximal possible gain is 2−rm and each additional level represents a “step”
of 2−r, the initialization will require at most 2−rm/2−r = m space and time.

The time of finding the maximal gain level at any step is the number of levels
between the current and the next level. The sum of all gain decreases is bounded
by the sum of the initial maximal gain and all gain increases. As both the initial
maximal gain and the sum of all increases are bounded by 2−rm, over the whole
execution the total time complexity of finding the next maximal level is O(m).

Calling MOCE to Order 311

The instance size is rαn. As any reasonable algorithm reads the whole
instance, the only “non-linear” term in the expression for the complexity is r2.
Note that this is relevant only to the atypical case, when the clause length is
unbounded. Let us now explain why the average-case time complexity is O(rαn).

The reason for the additional r factor is the number of clause shortenings,
which is bounded by mr. Any clause may be shortened r times, and each time
we need to deal with all O(r) literals still in the clause. Next, we explain why
the number of shortenings is usually O(m), leading to total runtime of O(rαn).

If we set the variables randomly instead of by GO-MOCE (but perform all
other operations as does GO-MOCE), then each clause has a probability of 1/2
of being satisfied the first time we set a variable appearing in it, a probability of
1/4 being satisfied the second time, and so forth. The number of times the clause
is shortened is distributed geometrically with parameter 1/2, except that it is
truncated at r. The average number of times a clause is shortened is

∑r
i=1 i/2i <

2, so that the total number of clause shortenings is O(m) on the average.
If we use MOCE, and more so if we use GO-MOCE, the situation is usually

better. In fact, to each variable we assign the value satisfying a set of clauses
weighing more than the set of clauses we shorten due to that value. Hence
the number of times we shorten a clause should be stochastically smaller than
the corresponding number for the algorithm setting the variables uniformly at
random. This fact has been also verified in our simulations, and the observed
number of clause shortenings was always less than m.

4 Performance Analysis

In this section, we perform a comparative evaluation of GO-MOCE versus its
baseline algorithm MOCE. We compare the performance of the algorithms by
comparing the number of unsatisfied clauses and the runtime. We conclude this
section by comparing these two algorithms on public competition benchmarks.

We conducted experiments on several families of random instances. A family
is defined by three parameters: r, α, and n. The families have been selected
in a systematic way, so as to reveal trends in the performance. Instances are
constructed as follows. The clauses are selected independently of each other.
Each clause is generated by selecting r distinct variables uniformly at random,
then negating each of them independently with probability 1/2.

We focus on random Max 3-Sat, with the number of variables ranging from
1000 to 1000000, and the density from 3 to 10. This range of densities allows
us to study the performance of the algorithms at hand both below and above
the satisfiability threshold density (which is approximately 4.27 for Max 3-Sat
[14,23]). We executed both MOCE and GO-MOCE on 1000 instances of each of
the families, and recorded the number of clauses unsatisfied by them.

Table 2 presents the average number of clauses unsatisfied by MOCE and
GO-MOCE. The rows of the table (but the last row) record the number of
variables, while the columns record the densities. For the sake of readability, all
the numbers in those rows are rounded to the nearest integer. It turns out that,

312 D. Berend et al.

for any fixed density, the average number of clauses unsatisfied by each of the
algorithms scales linearly with the number of clauses, and thus can be described
as a proportion of the number of all clauses. This proportion is provided in
the last row of the table. The data in the table indicates that the same holds
for GO-MOCE. Figure 1b provides graphs of the average proportion of clauses
unsatisfied by each of the two algorithms for r = 3 and α ranging from 3 to
10 in steps of size 0.25. For each density, we provide the average proportion of
unsatisfied clauses over 1000 instances.

Table 2. The average number of clauses unsatisfied by MOCE and GO-MOCE.

n\α 4 5 7 10

MOCE GO-MOCE MOCE GO-MOCE MOCE GO-MOCE MOCE GO-MOCE

1000 90 25 149 63 288 172 526 377

10000 899 250 1492 633 2886 1719 5262 3765

100000 8995 2508 14943 6331 28856 17199 52629 37646

1000000 89915 25056 149438 63316 288588 171955 526267 376454

% Unsat 2.25% 0.63% 2.99% 1.27% 4.12% 2.46% 5.26% 3.76%

Fig. 1. The average proportion of clauses unsatisfied by MOCE and GO-MOCE.

Given the advantage of GO-MOCE over MOCE, one may want to consider
the runtime overhead GO-MOCE introduces. Besides the time complexity pro-
vided in Subsect. 3, we measured the actual runtimes of both algorithms. In our
experiments, we used the tailored data structure we suggested in Subsect. 3 for
gbm. Table 3 lists these runtimes. For each family, we provide the mean runtime
over the 1000 instances. Examining the runtimes, one can see that the additional
time overhead introduced by GO-MOCE is negligible.

Calling MOCE to Order 313

Table 3. The average runtime (CPU seconds) of MOCE and GO-MOCE.

n\α 4 5 7 10

MOCE GO-MOCE MOCE GO-MOCE MOCE GO-MOCE MOCE GO-MOCE

1000 0.092 0.096 0.099 0.105 0.114 0.123 0.131 0.141

10000 0.355 0.363 0.407 0.430 0.509 0.535 0.651 0.686

100000 2.738 2.990 3.209 3.413 4.136 4.459 5.377 5.826

1000000 24.694 27.553 29.676 32.504 42.202 45.772 80.720 85.969

We have also examined instances of Max 2-Sat – see Fig. 1a. The pattern of
performance, whereby the proportion of unsatisfied clauses is independent of n,
holds here and for other values of r we have tested as well, indicating that this
is a general property of MOCE and GO-MOCE. We also studied the asymptotic
performance of GO-MOCE as the density grows larger. We showed that, for
Max 3-Sat, GO-MOCE has an advantage of 21%–41% over MOCE.

We conclude this section by presenting a comparative evaluation of GO-
MOCE versus MOCE on public competition benchmarks. An international eval-
uation of Max Sat solvers has been held annually since 2006 [4]. Here, we focus on
the random and crafted categories of the 2016 evaluation. The random category
has two benchmarks and the crafted category has three benchmarks.

We compare the solvers using the Instance Won measure, used in the 2016
evaluation. A solver wins an instance if no other solver has found a superior
solution. Note that there may be several winners in an instance. The Instance
Won measure of a solver is the number of instances it has won.

The results are presented in Table 4. In this table, one can see, for example,
that the crafted category has a benchmark called Max Cut with 292 instances.
GO-MOCE won in 284 instances, while MOCE won only in 18 instances (with
a draw on 10 instances). The result of the competition between MOCE and
GO-MOCE is a clear-cut victory to GO-MOCE over all benchmarks.

Table 4. The Instance Won for MOCE versus GO-MOCE over the instances of the
Max Sat 2016 Evaluation.

Category Benchmark Size MOCE GO-MOCE

Random Abrame-Habet 372 0 372

High Girth 82 0 82

Crafted Bipartite 100 0 100

Max Cut 292 18 284

Set Cover 10 0 10

314 D. Berend et al.

5 Improving a State-of-the-Art Solver Using GO-MOCE

In this section, we suggest a combination of GO-MOCE with Configuration
Checking Local Search (CCLS), a state-of-the-art solver, based on local search.
We refer to this combined solver as GO-MOCE-CCLS. Thus, we first run GO-
MOCE, and then run CCLS, starting from the assignment obtained by GO-
MOCE instead of a random assignment. We compare the performance of this
combined solver to two other solvers. The first is CCLS itself, which we denote
here by RAND-CCLS. The second is MOCE-CCLS, which works analogously,
starting the CCLS search from an assignment produced by MOCE. We evaluate
GO-MOCE-CCLS on random instances as well as on public benchmarks.

Random Instances: We conduct experiments on diverse families of random
instances. In all experiments we used n = 100000 variables and let CCLS perform
10n = 1000000 flips. Table 5 presents the results. As one can see, GO-MOCE-
CCLS improves on RAND-CCLS consistently by up to 75%. Note that when we
are well above the satisfiability threshold, the optimum gets further from 0, and
we cannot possibly improve by so much. Thus, the improvement we see is in fact
only a lower bound on the real improvement. We also analyze the performance of
GO-MOCE-CCLS as a function of the number of flips we allow CCLS to make.
For some families the performance of GO-MOCE-CCLS after n flips is better
than that of RAND-CCLS even after 10n flips.

Table 5. The average number and proportion of clauses unsatisfied by RAND-CCLS,
MOCE-CCLS, and GO-MOCE-CCLS, over 100 random instances.

r α RAND-CCLS MOCE-CCLS GO-MOCE-CCLS

2 2 4875 2.43% 4869 2.43% 4866 2.43%

2 3 16312 5.43% 16294 5.43% 16280 5.42%

3 4 352 0.08% 222 0.05% 87 0.02%

3 5 4127 0.82% 3893 0.77% 3606 0.72%

3 7 14896 2.13% 14497 2.07% 13996 1.99%

4 9 1151 0.12% 717 0.08% 245 0.02%

4 11 5108 0.46% 4412 0.40% 3581 0.32%

4 13 10124 0.77% 9231 0.71% 8130 0.62%

Max Sat 2016 Evaluation Instances: Similarly to the evaluation described
in Sect. 4, we use the instances of the 2016 Max Sat international competition to
evaluate GO-MOCE-CCLS. We compare RAND-CCLS and GO-MOCE-CCLS
using the Instance Won measure described earlier. For each solver we give CCLS
10n flips. The results are presented in Table 6.

As one can see, GO-MOCE-CCLS achieved better results in all the bench-
marks. For example, on the Abrame-Habet benchmark, the Instance Won mea-
sure of GO-MOCE-CCLS was 315, whereas the one of RAND-CCLS is only 250.

Calling MOCE to Order 315

This implies that, on this benchmark, GO-MOCE-CCLS was the sole winner on
122 instances, whereas RAND-CCLS was the sole winner on only 57 instances.
On 193 instances there was a draw.

Table 6. The Instance Won of RAND-CCLS and GO-MOCE-CCLS, over the instances
of Max Sat 2016 Evaluation.

Category Benchmark Size RAND-CCLS GO-MOCE-CCLS

Random Abrame-Habet 372 250 315

High Girth 82 38 58

Crafted Bipartite 100 49 69

Max Cut 292 156 209

Set Cover 10 3 9

6 Conclusion

We have studied a new algorithm, GO-MOCE, for Max Sat. We have shown that
it performs much better than MOCE, yet keeps the runtime almost the same.

GO-MOCE may be seen as a derandomization of MOCE. It derandomizes
the order in which the variables are assigned, but not completely. When selecting
the variable to be assigned at a given step, it does not determine which of the
variables with the same maximal gain will be assigned. As there are usually
numerous variables with this gain, it opens a possibility for further improvement,
by choosing the variable to be set in a smart way rather than randomly.

References

1. Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving SAT-based weighted
MaxSAT solvers. In: Milano, M. (ed.) CP 2012. LNCS, pp. 86–101. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-33558-7 9

2. Ansótegui, C., Bonet, M.L., Levy, J.: Solving (weighted) partial MaxSAT through
satisfiability testing. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 427–
440. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2 39

3. Ansótegui, C., Bonet, M.L., Levy, J.: SAT-based MaxSAT algorithms. Artif. Intell.
196, 77–105 (2013)

4. Argelich, J., Li, C.M., Manyá, F., Planes, J.: MaxSAT Evaluations. http://www.
maxsat.udl.cat/

5. Ausiello, G., et al.: Complexity and Approximation: Combinatorial Optimization
Problems and Their Approximability Properties, 2nd edn. Springer-Verlag, Hei-
delberg (2003). https://doi.org/10.1007/978-3-642-58412-1

6. Avellaneda, F.: A short description of the solver EvalMaxSAT. MaxSAT Eval.
2020, 8 (2020)

7. Berend, D., Twitto, Y.: Effect of initial assignment on local search performance for
Max Sat. In: Faro, S., Cantone, D. (eds.) 18th International Symposium on Exper-
imental Algorithms (SEA 2020). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 160, pp. 8:1–8:14 (2020)

https://doi.org/10.1007/978-3-642-33558-7_9
https://doi.org/10.1007/978-3-642-02777-2_39
http://www.maxsat.udl.cat/
http://www.maxsat.udl.cat/
https://doi.org/10.1007/978-3-642-58412-1

316 D. Berend et al.

8. Berg, J., Korhonen, T., Järvisalo, M.: Loandra: PMRES extended with prepro-
cessing entering MaxSAT evaluation 2017. MaxSAT Evaluation 2017, p. 13 (2017)

9. Biere, A., Heule, M., van Maaren, H.: Handbook of Satisfiability, vol. 185. IOS
Press, Amsterdam (2009)

10. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): MaxSAT, Hard and Soft
Constraints, vol. 185, pp. 613–631. IOS Press, Amsterdam (2009)

11. de Boer, P.T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-
entropy method. Ann. Oper. Res. 134(1), 19–67 (2005). https://doi.org/10.1007/
s10479-005-5724-z

12. Chen, J., Friesen, D.K., Zheng, H.: Tight bound on Johnson’s algorithm for max-
imum satisfiability. J. Comput. Syst. Sci. 58(3), 622–640 (1999)

13. Coppersmith, D., Gamarnik, D., Hajiaghayi, M., Sorkin, G.B.: Random MAX
SAT, random MAX CUT, and their phase transitions. Random Struct. Algorithms
24(4), 502–545 (2004)

14. Crawford, J.M., Auton, L.D.: Experimental results on the crossover point in ran-
dom 3-SAT. Artif. Intell. 81(1–2), 31–57 (1996)

15. Davies, J.: Solving MaxSAT by decoupling optimization and satisfaction. Ph.D.
thesis, University of Toronto (2013)

16. Erdős, P., Selfridge, J.L.: On a combinatorial game. J. Comb. Theory Ser. A 14(3),
298–301 (1973)

17. Guerreiro, A.P., Terra-Neves, M., Lynce, I., Figueira, J.R., Manquinho, V.:
Constraint-based techniques in stochastic local search MaxSAT solving. In: Schiex,
T., de Givry, S. (eds.) CP 2019. LNCS, vol. 11802, pp. 232–250. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30048-7 14

18. H̊astad, J.: Some optimal inapproximability results. J. ACM (JACM) 48(4), 798–
859 (2001)

19. Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: a partial max-sat
solver. J. Satisf. Boolean Model. Comput. 8(1–2), 95–100 (2012)

20. Le Berre, D., Parrain, A.: The SAT4J library, release 22. J. Satisf. Boolean Model.
Comput. 7(2–3), 59–64 (2010)

21. Li, C.M., Manya, F., Planes, J.: New inference rules for max-sat. J. Artif. Intell.
Res. 30, 321–359 (2007)

22. Luo, C., Cai, S., Wu, W., Jie, Z., Su, K.W.: CCLS: an efficient local search algo-
rithm for weighted Maximum Satisfiability. IEEE Trans. Comput. 64(7), 1830–
1843 (2014)

23. Mertens, S., Mézard, M., Zecchina, R.: Threshold values of random k-SAT from
the cavity method. Random Struct. Algorithms 28(3), 340–373 (2006)

24. Nadel, A.: TT-open-WBO-Inc: tuning polarity and variable selection for anytime
SAT-based optimization. In: Proceedings of the MaxSAT Evaluations (2019)

25. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT
resolution. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial
Intelligence, pp. 2717–2723. AAAI Press (2014)

26. Paxian, T., Reimer, S., Becker, B.: Pacose: an iterative sat-based MaxSAT solver.
MaxSAT Eval. 2018, 20 (2018)

27. Pipatsrisawat, K., Darwiche, A.: Clone: solving weighted Max-SAT in a reduced
search space. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI), vol.
4830, pp. 223–233. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-76928-6 24

28. Poloczek, M.: Bounds on greedy algorithms for MAX SAT. In: Demetrescu, C.,
Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 37–48. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-23719-5 4

https://doi.org/10.1007/s10479-005-5724-z
https://doi.org/10.1007/s10479-005-5724-z
https://doi.org/10.1007/978-3-030-30048-7_14
https://doi.org/10.1007/978-3-540-76928-6_24
https://doi.org/10.1007/978-3-540-76928-6_24
https://doi.org/10.1007/978-3-642-23719-5_4

Calling MOCE to Order 317

29. Poloczek, M., Schnitger, G.: Randomized variants of Johnson’s algorithm for MAX
SAT. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 656–663. SIAM (2011)

30. Poloczek, M., Schnitger, G., Williamson, D.P., Van Zuylen, A.: Greedy algorithms
for the maximum satisfiability problem: simple algorithms and inapproximability
bounds. SIAM J. Comput. 46(3), 1029–1061 (2017)

31. Poloczek, M., Williamson, D.P.: An experimental evaluation of fast approximation
algorithms for the maximum satisfiability problem. In: Goldberg, A.V., Kulikov,
A.S. (eds.) SEA 2016. LNCS, vol. 9685, pp. 246–261. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-38851-9 17

32. Raab, M., Steger, A.: “Balls into Bins” — a simple and tight analysis. In: Luby,
M., Rolim, J.D.P., Serna, M. (eds.) RANDOM 1998. LNCS, vol. 1518, pp. 159–170.
Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49543-6 13

33. Selman, B., Kautz, H.A., Cohen, B.: Local search strategies for satisfiability testing.
In: DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
pp. 521–532 (1996)

34. Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfi-
ability problems. In: Proceedings of the Tenth National Conference on Artificial
Intelligence, pp. 440–446. AAAI Press (1992)

https://doi.org/10.1007/978-3-319-38851-9_17
https://doi.org/10.1007/3-540-49543-6_13

The Smallest Number of Vertices
in a 2-Arc-Strong Digraph Without Pair
of Arc-Disjoint In- and Out-Branchings

Ran Gu1, Gregory Gutin2, Shasha Li3, Yongtang Shi4, and Zhenyu Taoqiu4(B)

1 College of Science, Hohai University,
Nanjing 210098, Jiangsu, People’s Republic of China

rangu@hhu.edu.cn
2 Department of Computer Science, Royal Holloway, University of London, Egham,

Surrey TW20 0EX, UK
g.gutin@rhul.ac.uk

3 Department of Mathematics, Ningbo University, Ningbo 315211, Zhejiang, China
4 Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, China

shi@nankai.edu.cn, tochy@mail.nankai.edu.cn

Abstract. Branchings play an important role in digraph theory and
algorithms. In particular, a chapter in the monograph of Bang-Jensen
and Gutin, Digraphs: Theory, Algorithms and Application, Ed. 2, 2009
is wholly devoted to branchings. The well-known Edmonds Branching
Theorem provides a characterization for the existence of k arc-disjoint
out-branchings rooted at the same vertex. A short proof of the theorem
by Lovász (1976) leads to a polynomial-time algorithm for finding such
out-branchings. A natural related problem is to characterize digraphs
having an out-branching and an in-branching which are arc-disjoint. Such
a pair of branchings is called a good pair.

Bang-Jensen, Bessy, Havet and Yeo (2020) pointed out that it is
NP-complete to decide if a given digraph has a good pair. They also
showed that every digraph of independence number at most 2 and arc-
connectivity at least 2 has a good pair, which settled a conjecture of
Thomassen for digraphs of independence number 2. Then they asked for
the smallest number nngp of vertices in a 2-arc-strong digraph which has
no good pair. They proved that 7 ≤ nngp ≤ 10. In this paper, we prove
that nngp = 10, which solves the open problem.

Gu was supported by Natural Science Foundation of Jiangsu Province (No.
BK20170860), National Natural Science Foundation of China (No. 11701143), and Fun-
damental Research Funds for the Central Universities. Li was supported by National
Natural Science Foundation of China (No. 11301480), Zhejiang Provincial Natural Sci-
ence Foundation of China (No. LY18A010002), and the Natural Science Foundation
of Ningbo, China. Shi and Taoqiu are supported by the National Natural Science
Foundation of China (No. 11922112), the Natural Science Foundation of Tianjin (Nos.
20JCJQJC00090 and 20JCZDJC00840) and the Fundamental Research Funds for the
Central Universities, Nankai University.

c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 318–332, 2021.
https://doi.org/10.1007/978-3-030-92681-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_26&domain=pdf
https://doi.org/10.1007/978-3-030-92681-6_26

The Smallest Number of Vertices in a 2-Arc-Strong Digraph 319

Keywords: Arc-disjoint branchings · Out-branching · In-branching ·
Arc-connectivity

1 Introduction

Let D = (V,A) be a digraph. For a non-empty subset X ⊂ V , the in-degree (resp.
out-degree) of the set X, denoted by d−

D(X) (resp. d+D(X)), is the number of arcs
with head (resp. tail) in X and tail (resp. head) in V \X. The arc-connectivity of
D, denoted by λ(D), is the minimum out-degree of a proper subset of vertices.
A digraph is k-arc-strongly connected (or, just k-arc-strong) if λ(D) ≥ k. In
particular, a digraph is strongly connected (or, just strong) if λ(D) ≥ 1.

An out-branching (in-branching) of a digraph D = (V,A) is a spanning ori-
ented tree which has a vertex r called its root such that there is a directed path
from (to) r to (from) every other vertex. Branchings play an important role in
digraph theory and algorithms. In particular, Chap. 9 in the monograph [5] is
wholly devoted to branchings. The well-known Edmonds Branching Theorem
(see e.g. [5]) provides a characterization for the existence of k arc-disjoint out-
branchings rooted at the same vertex. A short proof of the theorem by Lovász
[11] leads to a polynomial-time algorithm for finding such out-branchings. A
natural related problem is to characterize digraphs having an out-branching and
an in-branching which are arc-disjoint. Such a pair of branchings is called a good
pair.

Thomassen [12] conjectured the following:

Conjecture 1. There is a constant c, such that every digraph with arc-
connectivity at least c has a good pair.

He also proved that it is NP-complete to decide whether a given digraph D has
an out-branching and an in-branching both rooted at the same vertex such that
these are arc-disjoint. This implies that it is NP-complete to decide if a given
digraph has a good pair [2]. Conjecture 1 has been verified for semicomplete
digraphs [1] and their genearlizations: locally semicomplete digraphs [7] and
semicomplete compositions [6] (it follows from the main result in [6]).

An out-branching and an in-branching of D are k-distinct if each of them has
at least k arcs, which are absent in the other. Bang-Jensen et al. [8] proved that
the problem of deciding whether a strongly connected digraph D has k-distinct
out-branching and in-branching is fixed-parameter tractable when parameterized
by k. Settling an open problem in [8], Gutin et al. [10] extended this result to
arbitrary digraphs.

In [2], Bang-Jensen et al. showed that every digraph of independence number
at most 2 and arc-connectivity at least 2 has a good pair, which settles the
conjecture for digraphs of independence number 2.

Theorem 1. If D is a digraph with α(D) ≤ 2 ≤ λ(D), then D has a good pair.

Moreover, they also proved that every digraph on at most 6 vertices and arc-
connectivity at least 2 has a good pair and gave an example of a 2-arc-strong

320 R. Gu et al.

digraph D on 10 vertices with independence number 4 that has no good pair.
They posed the following open problem.

Problem 1 ([2]). What is the smallest number n of vertices in a 2-arc-strong
digraph which has no good pair?

In this paper, we prove that every digraph on at most 9 vertices and arc-
connectivity at least 2 has a good pair, which answers this problem. The main
results of the paper are as follows.

Theorem 2. Every 2-arc-strong digraph on 7 vertices has a good pair.

Theorem 3. Every 2-arc-strong digraph on 8 vertices has a good pair.

Theorem 4. Every 2-arc-strong digraph on 9 vertices has a good pair.

This paper is organised as follows. In the rest of this section, we provide
further terminology and notation on digraphs. Undefined terms can be found in
[4,5]. In Sect. 2, we outline the proofs of Theorems 2, 3 and 4 and state some
auxiliary lemmas which we use in their proofs. Section 3 contains a number
of technical lemmas which will be used in proofs of our main results. Then
we respectively devote one section for proofs of each theorem and its relevant
auxiliary lemmas. The proofs not given in this paper due to the space limit can
be found in [9].

Additional Terminology and Notation. For a positive integer n, [n] denotes
the set {1, 2, . . . , n}. Throughout this paper, we will only consider digraphs with-
out loops and multiple arcs. Let D = (V,A) be a digraph. We denote by uv the
arc whose tail is u and whose head is v. Two vertices u, v are adjacent if at least
one of uv and vu belongs to A. If u and v are adjacent, then we also say that u
is a neighbour of v and vice versa. If uv ∈ A, then v is called an out-neighbour
of u and u is called an in-neighbour of v. Moreover, we say uv is an out-arc of u
and an in-arc of v and that u dominates v. The order |D| of D is |V |.

In this paper, we will extensively use digraph duality, which is as follows. Let
D be a digraph and let Drev be the reverse of D, i.e., the digraph obtained from
D by reversing every arc xy to yx. Clearly, D contains a subdigraph H if and
only if Drev contains Hrev. In particular, D contains a good pair if and only if
Drev contains a good pair.

Let N−
D (X) = {y : yx ∈ A, x ∈ X} and N+

D (X) = {y : xy ∈ A, x ∈ X}. Note
that X may be just a vertex. For two non-empty disjoint subsets X,Y ⊂ V ,
we use N−

Y (X) to denote N−
D (X) ∩ Y and d−

Y (X) = |N−
Y (X)|. Analogously, we

can define N+
Y (X) and d+Y (X). For two non-empty subsets X1,X2 ⊂ V , define

(X1,X2)D = {v1v2 ∈ A : v1 ∈ X1 and v2 ∈ X2} and [X1,X2]D = (X1,X2)D ∪
(X2,X1)D. We will drop the subscript when the digraph is clear from the context.

We write D[X] to denote the subdigraph of D induced by X. A clique in D
is an induced subdigraph D[X] such that any two vertices of X are adjacent.
We say that D contains Kp if it has a clique on p vertices. A vertex set X of

The Smallest Number of Vertices in a 2-Arc-Strong Digraph 321

D is independent if no pair of vertices in X are adjacent. A dipath (dicycle) of
D with t vertices is denoted by Pt (Ct). We drop the subscript when the order
is not specified. A dipath P from v1 to v2, denoted by P(v1,v2), is often called
a (v1, v2)-dipath. A dipath P is a Hamilton dipath if V (P) = V (D). We call
C2 a digon. A digraph without digons is called an oriented graph. If two digons
have and only have one common vertex, then we call this structure a bidigon.
A semicomplete digraph is a digraph D that each pair of vertices has an arc
between them. A tournament is a semicomplete oriented graph.

In- and out-branchings were defined above. An out-tree (in-tree) is an out-
branching (in-branching) of a subdigraph of D. We use B+

s (B−
t) to denote an

out-branching rooted at s (an in-branching rooted at t). The root s (t) is called
out-generator (in-generator) of D. We denote by Out(D) (In(D)) the set of
out-generators (in-denerators) of D. If the root is not specified, then we drop
the subscripts of B+

s and B−
t . We also use OD (ID) to denote an out-branching

(in-branching) of a digraph D. If OD and ID are arc-disjoint, then we write
(OD, ID) to denote a good pair in D.

2 Proofs Outline

In this section, we outline constructions we use to prove our main results. We
prove each of them by contradiction. We give the statements of some auxiliary
lemmas. Some of their proofs are too complicated and we will not give them in
the paper due to the length restriction. For simplicity, when outlining the proof
of our main results, we assume that |D1| = 7, |D2| = 8 and |D3| = 9.

2.1 Theorem 2

First we show that the largest clique in D1 is a tournament by Lemma 6, next
we prove that D1 is an oriented graph in Claim 2.1 by Lemma 7. Lemmas 6
and 7 will be given in Sect. 3. Then we use Proposition 12 to show that D1 has
a Hamilton dipath in Sect. 4. After that, we prove that D1 has a good pair by
Proposition 10, which is shown in Sect. 3.

2.2 Theorem 3

Our proof will follow three steps.
Firstly, we prove that the largest clique R in D2 has 3 vertices by Lemma 6.

Then we show that R is a tournament through Claim 3.1, which is proved by
Lemmas 6 and 7.

Our second step is to prove that D2 is an oriented graph in Claim 3.2 by
Lemmas 8, 9 and 10, which are given in Sect. 3.

In the last step, we proceed as follows in Sect. 5. We use Proposition 15 to
show that D2 has a Hamilton dipath. To prove it, we show Proposition 14 first.
After that, we prove that D2 has a good pair by Proposition 10.

322 R. Gu et al.

2.3 Theorem 4

Our proof will follow four steps.
Firstly, we show that the largest clique R in D3 has 3 vertices by Claim 4.1,

which is proved using Proposition 5 given in Sect. 3, and Lemmas 6 and 7.
Next we show that R has no digons by Claim 4.2, which is proved analogously

to Claim 3.1 using Lemmas 7, 8, 9 and 10.
Our third step is to show that D3 is an oriented graph in Claim 4.3. To do

this we need Lemmas 11 and 13 given in Sect. 6. For the first lemma, we give
a generalization of Proposition 6 as Proposition 16, and for the second one, we
prove Lemma 12 first.

Then we use Lemma 14 to show that D3 has a Hamilton dipath in Sect. 6.
To prove it, we show Proposition 17 first. After that, we prove that D3 has a
good pair by Proposition 10.

3 Preliminaries and Useful Lemmas

Proposition 5. Let D be a digraph with λ(D) ≥ 2 and with a good pair
(B+

s , B−
s). If there exists a vertex t in D such that D[{s, t}] is a digon, then

D has a good pair (B+
t , B−

t).

Proof. Let B+
t = ts+B+

s − e1 and B−
t = B−

s + st− e2, where e1 (e2) is the only
in-arc (out-arc) of t in B+

s (B−
s). Observe that B+

t (B−
t) is an out-branching (in-

branching) rooted at t in D. Since the root of any out-branching has in-degree
zero, if ts ∈ B+

s ∪B−
s , then ts must be in B−

s and moreover ts is the only out-arc
e2 of t in B−

s . Similarly, if st ∈ B+
s ∪ B−

s , then st must be in B+
s and moreover

st is the only in-arc e1 of t in B+
s . Thus, B+

t and B−
t are arc-disjoint and so

(B+
t , B−

t) is a good pair of D.

Proposition 6. Let D be a digraph with a subdigraph Q that has a good pair
(OQ, IQ). Let X = N−

D (Q) and Y = N+
D (Q) with X ∩ Y = ∅ and X ∪ Y =

V − V (Q). Let Xi (Yj) be the initial (terminal) strong components in D[X]
(D[Y]), i ∈ [a] (j ∈ [b]). If one of the following holds, then D has a good pair.
Meanwhile, we can always get two arc-disjoint PX ,PY and respectively an out-
and an in-forest TX and TY in D.

1. d−
Y (X1) ≥ 1, d−

Y (Xi) ≥ 2, i ∈ {2, . . . , a} and d+X(Yj) ≥ 2, j ∈ [b].
2. d+X(Y1) ≥ 1, d+X(Yj) ≥ 2, j ∈ {2, . . . , b} and d−

Y (Xi) ≥ 2, i ∈ [a].

Proof. Let B+ be an out-tree containing OQ and an in-arc of any vertex in Y
from Q. Let B− be an in-tree containing IQ and an out-arc of any vertex in X
to Q. Set X = {Xi, i ∈ [a]} and Y = {Yj , j ∈ [b]}. By the digraph duality, it
suffices to prove that condition 1 implies that D has a good pair.

Now assume that d−
Y (X1) ≥ 1, d−

Y (Xi) ≥ 2, i ∈ {2, . . . , a}, and d+X(Yj) ≥ 2,
j ∈ [b]. Then there are at least two arcs from Yj (for each j ∈ [b]) to X, at
least two arcs from Y to Xi (for each i ∈ {2, . . . , a}) and at least one arc from
Y to X1. Set X ′

1 = X1. If there is an arc y1x1 from Y to X ′
1 with y1 in some

The Smallest Number of Vertices in a 2-Arc-Strong Digraph 323

Yj , j ∈ [b], then we choose such an arc and let Y ′
1 = Yj , otherwise we choose an

arbitrary arc y1x1 from Y to X ′
1 and let Y ′

1 be an arbitrary strong component
in Y. Let PX = {y1x1}. There now exists an arc, y1x

1, out of Y ′
1 (x1 ∈ X)

which is different from y1x1 (as Y ′
1 has at least two arcs out of it). If there is

such an arc y1x
1 with x1 in some Xi, i ∈ {2, . . . , a}, then we choose one of

these arcs and let X ′
2 = Xi, otherwise we choose such an arbitrary arc y1x

1

out of Y ′
1 (x1 ∈ X) and let X ′

2 be an arbitrary strong component in X − X ′
1.

Let PY = {y1x
1}. Likewise, for t ≥ 2, we get an arc ytxt into X ′

t (yt ∈ Y)
which is different from yt−1x

t−1 in PY . If there is such an arc ytxt with yt in
some Yj ∈ Y − {Y ′

1 , . . . , Y
′
t−1}, then choose one of these arcs and let Y ′

t = Yj ,
otherwise we choose such an arbitrary arc ytxt and let Y ′

t be an arbitrary strong
component in Y − {Y ′

1 , . . . , Y
′
t−1}. Add ytxt to PX . For s ≥ 2, we get an arc

ysx
s out of Y ′

s (xs ∈ X) which is different from ysxs in PX . If there is such an
arc ysx

s with xs in some Xi ∈ X −{X ′
1, . . . , X

′
s−1}, then we choose one of these

arcs and let X ′
s = Xi, otherwise we choose such an arbitrary arc ysx

s and let
X ′

s be an arbitrary strong component in X − {X ′
1, . . . , X

′
s−1}. Add ysx

s to PY .
Hence we get two arc sets PX and PY with PX ∩ PY = ∅.

We will now show that D has a good pair. Let DX be the digraph obtained
from D[X] by adding one new vertex y∗ and arcs from y∗ to xi for i ∈ [a].
Analogously let DY be the digraph obtained from D[Y] by adding one new vertex
x∗ and arcs from yj to x∗ for j ∈ [b]. Since Out(DX)= {y∗} and In(DY)= {x∗},
there exists an out-branching B+

y∗ in DX and an in-branching B−
x∗ in DY . Set

TX = B+
y∗ − y∗ and TY = B−

x∗ − x∗.
By construction, (OD, ID) is a good pair of D with OD = B+ + PX + TX

and ID = B− + PY + TY .

Corollary 1. Let D be a digraph with λ(D) ≥ 2 that contains a subdigraph
Q with a good pair. Set X = N−

D (Q) and Y = N+
D (Q). If X ∩ Y = ∅ and

X ∪ Y = V − V (Q), then D has a good pair.

Proof. Let Xi be the initial strong components in D[X] and Yj be the terminal
strong components in D[Y], i ∈ [a] and j ∈ [b]. Since λ(D) ≥ 2, d−

Y (Xi) ≥ 2 and
d+X(Yj) ≥ 2, for any i ∈ [a] and j ∈ [b], which implies that D has a good pair by
Proposition 6.

Lemma 1 ([2]). Let D be a digraph and X ⊂ V (D) be a set such that every
vertex of X has both an in-neighbour and an out-neighbour in V − X. If D − X
has a good pair, then D has a good pair.

By Lemma 1, in this paper we will often use the fact that if Q is a maximal
subdigraph of D with a good pair and X = N−

D (Q), Y = N+
D (Q), then X∩Y = ∅.

Lemma 2. Let D be a 2-arc-strong digraph containing a subdigraph Q with
a good pair, X = N−

D (Q) and Y = N+
D (Q). If X ∩ Y = ∅ and X ∪ Y =

V − V (Q) − {w}, where w ∈ V − V (Q), then D has a good pair.

324 R. Gu et al.

Proof. Assume that Q has a good pair (OQ, IQ). Let B+ be an out-tree con-
taining OQ with an in-arc of any vertex in Y from Q, while B− be an in-tree
containing IQ with an out-arc of any vertex in X to Q.

First assume that either (Y,w)D 	= ∅ or (w,X)D 	= ∅. By the digraph duality,
we may assume that (Y,w)D 	= ∅, i.e., there exists an arc e from Y to w in D.
Let D′ = D − e. Set X ′ = N−

D′(Q) = X and Y ′ = N+
D′(Q) ∪ {w} = Y ∪ {w}.

Let X ′
i be the initial strong components in D′[X ′] and Y ′

j be the terminal strong
components in D′[Y ′], i ∈ [a] and j ∈ [b]. If w has an in-neighbour v in Y with v in
some Y ′

j , j ∈ [b], then let e = vw and Y ∗
1 = Y ′

j , otherwise we choose an arbitrary
in-neighbour v of w in Y and let e = vw and Y ∗

1 be an arbitrary terminal
strong component of D′[Y ′]. Since λ(D) ≥ 2, d+X′(Y ∗

1) ≥ 1, d+X′(Y ′
j) ≥ 2 and

d−
Y ′(X ′

i) ≥ 2, for any Y ′
j 	= Y ∗

1 , j ∈ [b] and i ∈ [a], which implies that we get arc
sets PX′ and PY ′ with PX′∩PY ′ = ∅, and digraphs TX′ and TY ′ by Proposition 6.
By construction, D has a good pair (B+ + PX′ + TX′ + e,B− + PY ′ + TY ′).

Now assume that (Y,w)D = ∅ and (w,X)D = ∅, which implies that d−
X(w) ≥

2 and d+Y (w) ≥ 2. Let Xi be the initial strong components in D[X] and Yj be
the terminal strong components in D[Y], i ∈ [a] and j ∈ [b]. Since λ(D) ≥ 2
and (w,X)D = (Y,w)D = ∅, d−

Y (Xi) ≥ 2 and d+X(Yj) ≥ 2 for any i ∈ [a] and
j ∈ [b]. By Proposition 6, we get PX , TX and PY , TY with PX ∩ PY = ∅. It
follows that (B+ + PX + TX + w−w,B− + PY + TY + ww+) is a good pair of
D, where w− ∈ X and w+ ∈ Y .

Proposition 7 ([2]). Every digraph on 3 vertices has a good pair if and only if
it has at least 4 arcs .

Following [4], we shall use δ0(D) to denote the minimum semi-degree of D,
which is the minimum over all in- and out-degrees of vertices of D.

Proposition 8 ([2]). Let D be a digraph on 4 vertices with at least 6 arcs except
E4 (see Fig. 1). If δ0(D) ≥ 1 or D is a semicomplete digraph, then D has a good
pair.

Fig. 1. E4.

The Smallest Number of Vertices in a 2-Arc-Strong Digraph 325

Lemma 3 ([5], p. 354). Let D = (V,A) be a digraph. Then D is k-arc-strong
if and only if it contains k arc-disjoint (s, t)-paths for every choice of distinct
vertices s, t ∈ V .

Lemma 4 (Edmonds’ branching theorem [4]). A directed multigraph D =
(V,A) with a special vertex z has k arc-disjoint out-branchings rooted at z if and
only if d−(X) ≥ k for all ∅ 	= X ⊆ V − z.

Lemma 5 ([2]). If D is a 2-arc-strong digraph on n vertices that contains a
subdigraph on n − 3 vertices with a good pair, then D has a good pair.

Lemma 6. If D is a 2-arc-strong digraph on n vertices that contains a subdi-
graph Q on n − 4 vertices with a good pair, then D has a good pair.

Lemma 7. Let D be a 2-arc-strong digraph on n vertices that contains a sub-
digraph Q on n − 5 vertices with a good pair, X = N−

D (Q), Y = N+
D (Q) and

X ∩ Y = ∅. If |X| ≥ 2 or |Y | ≥ 2, then D has a good pair.

Lemma 8. Let D be a 2-arc-strong digraph on n vertices that contains a sub-
digraph Q on n − 6 vertices with a good pair. Let X = N−

D (Q) and Y = N+
D (Q)

with X ∩Y = ∅. If |X| = |Y | = 2 and at most one of X and Y is an independent
set, then D has a good pair.

Lemma 9. Let D = (V,A) be a 2-arc-strong digraph on n vertices that contains
a subdigraph Q on n−6 vertices with a good pair. Set X = N−

D (Q) = {x1, x2} and
Y = N+

D (Q) = {y1, y2} with X∩Y = ∅, and W = V −X−Y −V (Q) = {w1, w2}.
If X,Y are both independent sets, then D has a good pair except for the case
below:

(∗) (Y,X)D = {yjxi, y3−jx3−i} for some i, j ∈ [2], D[W] = C2 and
N+

W (yj) ∩ N+
W (y3−j) = N−

W (xi) ∩ N−
W (x3−i) = ∅ while N+

W (yj) ∩ N−
W (xi) 	= ∅

and N+
W (y3−j) ∩ N−

W (x3−i) 	= ∅.
We use D ⊇ E3 (D � E3) to denote that D contains an arbitrary orientation

(no orientation) of E3 as a subdigraph. (E3 is a mixed graph and only the two
edges are to be oriented.) E3 is shown in Fig. 2.

Fig. 2. E3.

326 R. Gu et al.

Lemma 10. Let D = (V,A) be a 2-arc-strong digraph on n vertices that con-
tains a subdigraph Q on n − 6 vertices with a good pair. Set X = N−

D (Q) =
{x1, x2} and Y = N+

D (Q) = {y1, y2} with X ∩ Y = ∅, and W = V − X − Y −
V (Q) = {w1, w2}. If n = 8 or 9 and X,Y are both independent, then D has a
good pair.

Proposition 9. ([3]). A digraph D has an out-branching (resp. in-branching)
if and only if it has precisely one initial (resp. terminal) strong component. In
that case every vertex of the initial (resp. terminal) strong component can be the
root of an out-branching (resp. in-branching) in D.

We use T+
x (resp. T−

x) to denote an out-tree (resp. in-tree) rooted at x.

Proposition 10. Let D be an oriented graph on n vertices. Let PD =
x1x2 . . . xn be the Hamilton dipath of D and D′ = D − A(P). Assume that
there are exactly two non-adjacent strong components I1 and I2 in D′. Set
q ∈ {2, 3, n − 1, n}. If for some q, xq−1 and xq are respectively in I1 and I2,
then D has a good pair.

Proof. W.l.o.g., assume that xq−1 ∈ I1 and xq ∈ I2. Since Ii is strong, δ0(Ii) ≥ 1,
for any i ∈ [2].

First assume q ∈ {n − 1, n}. Let x be an in-neighbour of xq in I2. We get an
out-branching of D as B+

x1
= PD − xq−1xq + xxq. Then we will show that there

is an in-branching B−
x in D − A(B+

x1
). Since I2 is strong, I2 − xxq is connected

and has only one terminal strong component which contains x. This implies that
there is an in-branching T−

x in I2 − xxq. Note that there exists an in-branching
T−
xq−1

in I1, as I1 is strong. Then B−
x = T−

x +xq−1xq +T−
xq−1

, which implies that
(B+

x1
, B−

x) is a good pair of D.
Now we assume q ∈ {2, 3}. Let y be an out-neighbour of xq−1 in I1. We get

an in-branching of D as B−
xn

= PD − xq−1xq + xq−1y. Then we will show that
there is an out-branching B+

y in D − A(B−
xn

). Since I1 is strong, I1 − xq−1y
is connected and has only one initial strong component which contains y. This
implies that there is an out-branching T+

y in I1 − xq−1y. Note that there exists
an out-branching T+

xq
in I2, as I2 is strong. Then B+

y = T+
y + xq−1xq + T+

xq
. So,

(B+
y , B−

xn
) is a good pair of D.

Proposition 11. Let D be a 2-arc-strong oriented graph on at least seven ver-
tices. Then D has a dipath P6.

Proof. Suppose that there is no P6 in D. Assume that Pt is the longest dipath
in D, then t ≥ 4, as there is no digon in D and λ(D) ≥ 2. Observe that there is
no Ct in D, otherwise D has a longer dipath Pt+1.

First assume that t = 4 and set P4 = x1x2x3x4. Since d+D(x4) ≥ 2 and D has
no digon, the out-neighbourhood of x4 either contains x1 or contains a vertex in
V − V (P4). This implies that there is a P5 in D, a contradiction.

Henceforth we may assume that t = 5 and set P5 = x1x2x3x4x5. Since
λ(D) ≥ 2, d+D(x5) ≥ 2 and d−

D(x1) ≥ 2. Then we get N+
D (x5) = {x2, x3} and

The Smallest Number of Vertices in a 2-Arc-Strong Digraph 327

N−
D (x1) = {x3, x4}, as P5 is the longest dipath in D and D has no digon.

Observe that there exists a different 4-length dipath, x4x5x3x1x2, in D. Likewise,
N+

D (x2) = {x3, x5}, which implies that D[{x2, x5}] is a digon, a contradiction.

4 Good Pairs in Digraphs of Order 7

Proposition 12. A 2-arc-strong oriented graph D on n vertices has a P7, where
7 ≤ n ≤ 9.

Proof. Suppose to the contrary that P is the longest dipath in D, where |P | = 6.
Obviously D has no C6 by Proposition 11. Set P = x1x2x3x4x5x6. Since λ(D) =
2, we have d+D(x6) ≥ 2 and d−

D(x1) ≥ 2. Note that N+
D (x6) ⊆ {x2, x3, x4} and

N−
D (x1) ⊆ {x3, x4, x5}.

Assume first that N+
D (x6) ∩ N−

D (x1) = ∅.
If N+

D (x6) = {x2, x3} and N−
D (x1) = {x4, x5}, then we can get a new P6 in D

as x6x2x3x4x5x1. Likewise, we have x3 ∈ N+
D (x1) and x4 ∈ N−

D (x6). Then there
exists a good pair (B+

x4
, B−

x4
) in D[P] with B+

x4
= x4x1x2 + x4x5 + x4x6x3 and

B−
x4

= x5x6x2x3x4 + x1x3, which implies that D has a good pair by Lemma 5
and Lemma 1.

If N+
D (x6) = {x2, x4} and N−

D (x1) = {x3, x5}, then we can get a new P6 in
D as x6x4x5x1x2x3. Likewise, we have x1 ∈ N−

D (x6), which implies that there
is a C6 as x6x2x3x4x5x1x6, a contradiction.

Henceforth, we may assume that there is at least one common vertex in
N+

D (x6) and N−
D (x1). Without loss of generality, assume that x3 is one of

the common vertices. The case when x4 ∈ N+
D (x6) ∩ N−

D (x1) can be proved
analogously by reversing all arcs of D. Then we can get a new P6 in D as
x4x5x6x3x1x2. Likewise, we have

N+
D−x3

(x2) ⊆ {x5, x6} and N−
D−x3

(x4) ⊆ {x1, x6}. (1)

Note that x4 ∈ N−
D (x1) and x5 ∈ N+

D (x2) will not hold at the same time, or
there will exist a C6 as x1x2x5x6x3x4x1, a contradiction.

If x2 ∈ N+
D (x6), then we have x5 ∈ N+

D (x2) as D is an oriented graph. This
implies that x5 is an in-neighbour of x1. Observe a new P6 as x4x5x6x2x3x1,
we can get that x6 ∈ N+

D (x1). Thus there exists a C6 as x6x2x3x4x5x1x6, a
contradiction.

Thus we have N+
D (x6) = {x3, x4}. If x4 ∈ N−

D (x1), then x6 is an out-
neighbour of x2. Observe a new P6 as x5x6x4x1x2x3, we can get that x1 ∈
N−

D (x5). Thus there exists a good pair (B+
x2

, B−
x6

) in D[P] with B+
x2

= x2x6x4 +
x6x3x1x5 and B−

x6
= PD, which implies that D has a good pair by Lemma 5 and

Lemma 1. If x5 ∈ N−
D (x1), then we can get a new P6 as x6x3x4x5x1x2. Like-

wise, we have N+
D−x3

(x2) ⊆ {x4, x5} and N−
D−x5

(x6) ⊆ ∪{x1, x4}. By (1) and
x4 ∈ N+

D (x6), we can get that x5 ∈ N+
D (x2) and x1 ∈ N−

D (x6). Then there exists
a good pair (B+

x2
, B−

x6
) in D[P] with B+

x2
= x2x5x1x6x3 + x6x4 and B−

x6
= PD,

which implies that D has a good pair as λ(D) = 2, a contradiction.

328 R. Gu et al.

Now we are ready to prove Theorem 2. For convenience, we restate it here.

Theorem 2. Every 2-arc-strong digraph on 7 vertices has a good pair.

Proof. Suppose that D has no good pair. Let R be a largest clique in D. By
Lemma 5 and Proposition 8, |R| = 3. Moreover, R is a tournament by Lemma 6
and Proposition 7.

Claim 2.1. D is an oriented graph.

Proof. Suppose that there is a digon Q in D with V (Q) = {s, t}. Observe that
Q has a good pair. Since R is a tournament with three vertices, both in- and
out-neibourhoods of Q in D have at least two vertices. This implies that D has
a good pair by Lemma 7, a contradiction.

Assume that PD = x1x2 . . . x7 is a Hamilton dipath of D by Proposition 12.
Set D′ = D−A(PD). Let Ii and Tj respectively be the initial and terminal strong
component in D′, where i ∈ [a] and j ∈ [b]. Note that a, b ≥ 2 by Proposition 9.
Since D is an oriented graph and λ(D) ≥ 2, |Ii|, |Tj | ≥ 3, for any i ∈ [a], j ∈ [b].
Thus there are only two non-adjacent strong components in D′, say I1 and I2,
with |I1| = 3 and |I2| = 4. Note that |N−

D′(x1)| ≥ 2 and |N+
D′(x7)| ≥ 2 as

λ(D) ≥ 2, which implies that x1, x7 ∈ I2. Moreover, x2, x6 ∈ I1 by Claim 2.1.
Then D has a good pair by Proposition 10.

5 Good Pairs in Digraphs of Order 8

The digraph E3 used in the next proposition is shown in Fig. 2.

Proposition 13 ([2]). Let D be a 2-arc-strong digraph without any subdigraph
on order 4 that has a good pair. If D contains an orientation Q of E3 as a
subdigraph, then N+

D (Q) ∩ N−
D (Q) = ∅, |N+

D (Q)| ≥ 2 and |N−
D (Q)| ≥ 2.

Proposition 14. Let D be a 2-arc-strong oriented graph on n vertices without
K4 as a subdigraph, where 8 ≤ n ≤ 9. If D has two disjoint cycles C1 and C2

which cover exactly 7 vertices, then D contains a P8.

Proof. Suppose that P7 is the longest dipath of D by Proposition 12. In fact
there exist arcs between C1 and C2 from both directions, otherwise D has a P8

as λ(D) ≥ 2. W.l.o.g., assume |C1| ≥ |C2|. Then |C1| = 4 and |C2| = 3. Let
C1 = x1x2x3x4x1, C2 = x5x6x7x5, P7 = x1x2 . . . x7 and yj be the vertex in
V − V (C1 ∪ C2), where j = 1 when n = 8 and j ∈ [2] when n = 9. From the
maximality of P7 in D, we have the following facts.

Fact 14.1. For any j, at least one of (Ci, yj)D and (yj , C3−i)D is empty for any
i ∈ [2].

Fact 14.2. For any j, at least one of arcs xiyj and yjxi+1 is not in A for any
i ∈ [6].

The Smallest Number of Vertices in a 2-Arc-Strong Digraph 329

Fact 14.3. For n = 9, let yjy3−j ∈ A. If xiyj ∈ A, then y3−jxi+1, y3−jxi+2 /∈ A,
where j ∈ [2] and i ∈ [5].

Since D is oriented, there are at least three arcs between yj and Ci, for some
i, by Fact 14.1. W.l.o.g., assume i = 1. Note that d+C1(yj) ≥ 1 and d−

C1(yj) ≥ 1.
Then N(yj) ⊂ {y3−j} ∪ C1 when n = 9 and N(yj) ⊂ C1 when n = 8.

If yj is not adjacent to y3−j or n = 8, then N+(yj) = {x1, x2} and
N−(y3−j) = {x3, x4} by Fact 14.2, which implies that D has a P8 as yjx1 ∈ A,
a contradiction.

Hence n = 9 and y1 is adjacent to y2. W.l.o.g., assume that y1y2 ∈ A. If
x1y1 ∈ A, then N+(y2) = {x1, x4} by Fact 14.3 and λ(D) ≥ 2, which implies that
D has a Hamilton dipath as y2x1 ∈ A, a contradiction. Hence x1 is not adjacent
to y1. By Fact 14.2, N+(y1) = {x2, y2} and N−(y1) = {x3, x4}. By Fact 14.3
and the longestness of P7, N+(y2) = {x2, x3}. It implies that D[{x2, x3, y1, y2}]
is a K4, a contradiction.

Proposition 15. Let D = (V,A) be a 2-arc-strong digraph on n vertices without
good pair, where 8 ≤ n ≤ 9. If D is an oriented graph without K4 as a subdigraph,
then D has a P8.

Now we are ready to show Theorem 3. For convenience, we restate it here.

Theorem 3. Every 2-arc-strong digraph on 8 vertices has a good pair.

Proof. Suppose that D has no good pair. Let R be a largest clique in D. By
Lemma 6 and Proposition 8, |R| = 3.

Claim 3.1. No subdigraph of D of order at least 3 has a good pair.

Proof. By Lemma 6, it suffices to show that there is no Q ⊂ D on 3 vertices with
a good pair. Suppose that Q has a good pair. If Q is an orientation of E3, then
we use Lemma 7 to find a good pair of D by Proposition 13, a contradiction.
Now assume that Q is a bidigon. Set V (Q) = {x, y, z} with Q[{x, y}] = C2 and
Q[{y, z}] = C2. If there exists a vertex w in N+

D (Q) ∩ N−
D (Q), then D[Q ∪ {w}]

has a good pair by Lemma 1. Thus N+
D (Q)∩N−

D (Q) = ∅. If N−
D (Q) = {w}, then

D[Q ∪ {w}] has a good pair as B+
w = wzyx and B−

z = wxyz. By symmetry, this
implies that |N+

D (Q)| ≥ 2 and |N−
D (Q)| ≥ 2. Thus by Lemma 7, D has a good

pair, a contradiction. ♦

By the claim above, R is a tournament.

Claim 3.2. D is an oriented graph.

Proof. Suppose that there is a digon Q in D with V (Q) = {s, t}. Observe that
Q has a good pair. Since R is a tournament with 3 vertices, both in- and out-
neibourhoods of Q in D have at least two vertices with N+

D (Q) ∩ N−
D (Q) = ∅.

This implies that D has a good pair by Lemmas 2, 8, 9 and 10, and Corollary 1,
a contradiction. ♦

330 R. Gu et al.

By Proposition 15, assume that PD = x1x2 . . . x8 is a Hamilton dipath of D.
Set D′ = D−A(PD). Let Ii and Tj respectively be the initial and terminal strong
component in D′, where i ∈ [a] and j ∈ [b]. Note that a, b ≥ 2 by Proposition 9.
Since D is an oriented graph and λ(D) ≥ 2, |Ii|, |Tj | ≥ 3 for any i ∈ [a], j ∈ [b].
Thus there are only two non-adjacent strong components in D′, say I1 and I2, as
n = 8. Since λ(D) ≥ 2, x1 has at least two in-neighbours and one out-neighbour
in D′, while x8 has at least two out-neighbours and one in-neighbour in D′. If
|I1| = 3 and |I2| = 5, then x1, x8 ∈ I2 and |A(I2)| ≥ 6. Note that at least one
of x2 and x7 is in I1 as |R| = 3. Then we use Proposition 10 to get a good pair
of D. Now assume |I1| = |I2| = 4. If x8 ∈ I1 then x7 ∈ I2 by Claim 3.2. By
Proposition 10, D has a good pair.

6 Good Pairs in Digraphs of Order 9

We have several generalizations of Proposition 6 here, which are easy to check
as they satisfy the conditions in Proposition 6.

Proposition 16. Let D = (V,A) be a digraph and Q be a subdigraph of D with
good pair (OQ, IQ). Set X = N−

D (Q) and Y = N+
D (Q) with X ∩ Y = ∅ and

X ∪ Y = V − V (Q) − W , where W = {w1, w2}. Let e1 be an arc from w1 to X
and e2 be an arc from Y to w2. Set X ′ = X ∪w1, Y ′ = Y ∪w2 and D′ = (V,A′)
with A′ = A − {e1, e2}. Let X be the set of initial strong components in D′[X ′]
and Y be the set of terminal strong components in D′[Y ′]. Assume that there
exists X0 and Y0 in X and Y respectively such that d−

Y (X0) = 1 and d+X(Y0) = 1.
Let ex and ey be arcs from Y to X0 and from Y0 to X respectively. If one of the
following holds, then D has a good pair.

1. ex 	= ey, but at least one of X or Y has only one element.
2. ex (or ey) is adjacent to some Yx (or Xy) in Y (or X), such that d+X(Yx) ≥ 3

(or d−
Y (Xy) ≥ 3).

3. ex (or ey) is adjacent to Y ′ − V (Y) (or X ′ − V (X)).
4. ex (or ey) is adjacent to some Yx 	= Y0 (or Xy 	= X0) in Y (or X), such that

there exists an arc from Yx (or Xy) to X ′ − V (X) (or Y ′ − V (Y)).

Lemma 11. Let D be a 2-arc-strong digraph on 9 vertices that contains a digon
Q. Assume that D has no subdigraph with a good pair on 3 or 4 vertices. Set
X = N−

D (Q) and Y = N+
D (Q) with X ∩ Y = ∅. If |X| = 3 and |Y | = 2, then D

has a good pair.

Lemma 12. Let D = (V,A) be a 2-arc-strong digraph on 9 vertices that contains
a digon Q. Assume that D has no subdigraph with a good pair on at least 3
vertices. Set X = N−

D (Q) and Y = N+
D (Q) with X ∩ Y = ∅ and W = V −

V (Q) − X − Y . Assume that |X| = |Y | = 2 and there is an arc e = st ∈ A such
that s ∈ Y and t ∈ W (resp. s ∈ W and t ∈ X). If there are at least three arcs
in D[Y ∪ {t}] (resp. D[X ∪ {s}]), then D has a good pair.

The Smallest Number of Vertices in a 2-Arc-Strong Digraph 331

Lemma 13. Let D be a 2-arc-strong digraph on 9 vertices that contains a digon
Q. Assume that D has no subdigraph with a good pair on 3 or 4 vertices. Set
X = N−

D (Q) and Y = N+
D (Q) with X ∩ Y = ∅. If |X| = 2 and |Y | = 2, then D

has a good pair.

Proposition 17. Let D = (V,A) be a 2-arc-strong oriented graph on 9 vertices
without K4 as a subdigraph. If D have two cycles C1 and C2 with C1 ∩ C2 = ∅
which cover 8 vertices, then D contains a Hamilton dipath.

Lemma 14. Let D = (V,A) be a 2-arc-strong digraph on 9 vertices without
good pair. If D is an oriented graph without K4 as a subdigraph, then D has a
Hamilton dipath.

Now we are ready to show Theorem 4. For convenience, we restate it here.

Theorem 4. Every 2-arc-strong digraph on 9 vertices has a good pair.

Proof. By contradiction, suppose that D has no good pair.

Claim 4.1. No subdigraph of D of order at least 4 has a good pair.

Let R be a largest clique in D. Then R has three vertices by Claim 4.1 and
Proposition 8.

Claim 4.2. No subdigraph of D of order at least 3 has a good pair.

Proof. By Lemma 7, it suffices to show that there is no Q ⊂ D on 3 vertices
with good pair. Suppose to the contrary that Q has a good pair. Analogous to
Claim 3.1, |N+

D (Q)| ≥ 2 and |N−
D (Q)| ≥ 2 with N+

D (Q) ∩ N−
D (Q) = ∅. Thus by

Lemma 8, D has a good pair, a contradiction. ♦

By the claim above, R is a tournament.

Claim 4.3. D is an oriented graph.

Proof. Suppose that D has a digon Q. Set X = N−
D (Q) and Y = N+

D (Q). By
Claim 4.2, X∩Y = ∅. Since λ(D) ≥ 2, both X and Y have at least two vertices. If
|X|+|Y | = 4, then D has a good pair by Lemma 13, a contradiction. If |X|+|Y | =
5, then D has a good pair by Lemma 11 and the digraph duality, a contradiction.
If |X| + |Y | = 6, then D has a good pair by Lemma 2, a contradiction. If
|X| + |Y | = 7, then D has a good pair by Corollary 1, a contradiction. ♦

Now we are ready to finish the proof of Theorem 3. By Lemma 14, assume
that PD = x1x2 . . . x9 is a Hamilton dipath of D. Set D′ = D − A(PD). Let
Ii, i ∈ [a], be the initial strong components in D′ and let Tj , j ∈ [b], be the
terminal strong components in D′. Note that a, b ≥ 2 by Proposition 9. Since D
is an oriented graph and λ(D) ≥ 2, |Ii|, |Tj | ≥ 3, for any i ∈ [a], j ∈ [b]. Since
λ(D) ≥ 2, x1 has at least two in-neighbours and one out-neighbour in D′ and
x9 has at least two out-neighbours and one in-neighbour in D′. Thus there are

332 R. Gu et al.

only two non-adjacent strong components in D′, say I1 and I2, as n = 9 and D
is an oriented graph. We distinguish two cases below.

Case 1: |I1| = 4 and |I2| = 5.
If x9 ∈ I1, then x8 ∈ I2 as |R| = 3. Analogously, if x1 ∈ I1, then x2 ∈ I2. By
Proposition 10, D has a good pair for each cases. Henceforth, both x1 and x9 are
in I2. Note that at least one of x2 and x8 is in I1 as |R| = 3. By Proposition 10,
D has a good pair, a contradiction.

Case 2: |I1| = 3 and |I2| = 6.
In this case, x1, x9 ∈ I2 and |A(I2)| ≥ 7. If one of x2 and x8 is in I1, then
D has a good pair by Proposition 10. Thus both x2 and x8 are in I2. Then
V (I1) = {x3, x5, x7}, which implies that D has a good pair by Proposition 10, a
contradiction.

This completes the proof of Theorem 4.

References

1. Bang-Jensen, J.: Edge-disjoint in- and out-branchings in tournaments and related
path problems. J. Combin. Theory Ser. B 51(1), 1–23 (1991)

2. Bang-Jensen J., Bessy S., Havet F., Yeo, A.: Arc-disjoint in- and out-branchings
in digraphs of independence number at most 2. arXiv:2003.02107 (2020)

3. Bang-Jensen J., Bessy, S., Yeo, A.: Non-separating spanning trees and out-
branchings in digraphs of independence number 2. arXiv:2007.02834v1 (2020)

4. Bang-Jensen, J., Gutin, G. (eds.): Classes of Directed Graphs. SMM, Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-71840-8

5. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications, 2nd
edn. Springer Verlag, London (2009). https://doi.org/10.1007/978-1-84800-998-1

6. Bang-Jensen, J., Gutin, G., Yeo, A.: Arc-disjoint strong spanning subdigraphs of
semicomplete compositions. J. Graph Theory 95(2), 267–289 (2020)

7. Bang-Jensen, J., Huang, J.: Decomposing locally semicomplete digraphs into strong
spanning subdigraphs. J. Combin. Theory Ser. B 102(3), 701–714 (2010)

8. Bang-Jensen, J., Saurabh, S., Simonsen, S.: Parameterized algorithms for non-
separating trees and branchings in digraphs. Algorithmica 76(1), 279–296 (2016).
https://doi.org/10.1007/s00453-015-0037-3

9. Gu R., Gutin G., Li S., Shi Y., Taoqiu Z.: The smallest number of vertices in a
2-arc-strong digraph which has no good pair. arXiv:2012.03742 (2020)

10. Gutin, G., Reidl, F., Wahlström, M.: k-distinct in- and out-branchings in digraphs.
J. Comput. Syst. Sci. 95, 86–97 (2018)

11. Lovász, L.: On two min-max theorems in graph theory. J. Comb. Theory Ser. B
21, 96–103 (1976)

12. Thomassen, C.: Configurations in graphs of large minimum degree, connectivity,
or chromatic number. Ann. New York Acad. Sci. 555, 402–412 (1989)

http://arxiv.org/abs/2003.02107
http://arxiv.org/abs/2007.02834v1
https://doi.org/10.1007/978-3-319-71840-8
https://doi.org/10.1007/978-1-84800-998-1
https://doi.org/10.1007/s00453-015-0037-3
http://arxiv.org/abs/2012.03742

Generalized Self-profit Maximization
in Attribute Networks

Liman Du , Wenguo Yang(B) , and Suixiang Gao

School of Mathematical Sciences, University of Chinese Academy of Science,
Beijing 100049, China

duliman18@mails.ucas.edu.cn, {yangwg,sxg}@ucas.ac.cn

Abstract. Profit maximization, an extension of classical Influence Max-
imization, asks for a small set of early adopters to maximize the expected
total profit generated by all the adopters. This is a meaningful optimiza-
tion problem in social network which has attracted many researchers’
attention. Nevertheless, most of the related works are based on pure
networks and one-entity diffusion model without considering the rela-
tionship of different promotional products and the influence of both
emotion tendency and interest classification (label) in real marketing
process. In this paper, we propose a novel nonsubmodular optimiza-
tion problem, Generalized Self-profit Maximization in Attribute networks
(GSMA), which is based on a community structure in attribute networks
and captures the unilateral complementary relationship, a setting with
complementary entities. To solve GSMA, the R-GSMA algorithm which
is inspired by sampling method and martingale analysis is designed. We
evaluate our proposed algorithm by conducting experiments on randomly
generated and real datasets and show that R-GSMA is superior in effec-
tiveness and accuracy comparing with other baseline algorithms.

Keywords: Profit maximization · Nonsubmodularity · Attribute
networks · Random algorithm · Martingale

1 Introduction

Nowadays, a growing number of people spend more time communicating with
their friends through large-scale communication platforms, such as Facebook,
Twitter and Wechat. Each of these platforms can be modeled as a social net-
work containing the information of relationships and interaction among users.
Motivated by viral marketing, recommend system and so on, there has been a
large amount of research into the information propagation in social networks.

A great quantity of studies focus on the classical Influence Maximization
(IM) which is modeled as a combinatorial optimization problem in [10] and aims

Supported by the National Natural Science Foundation of China under grant num-
bers 12071249 and 11991022 and the Fundamental Research Funds for the Central
Universities under Grant Number E1E40107.

c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 333–347, 2021.
https://doi.org/10.1007/978-3-030-92681-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_27&domain=pdf
http://orcid.org/0000-0002-4553-3762
http://orcid.org/0000-0002-8441-7334
https://doi.org/10.1007/978-3-030-92681-6_27

334 L. Du et al.

to select at most k influential social network users (named as seeds) to maximize
the expected number of users who receive the information initially supplied by
seeds and spreading through social interactions. The large body of work in IM
research can be classified into the diffusion models, classical IM solutions and
extended IM problems. All the efforts that extend the classical IM by incorpo-
rating various realistic issues associated with information diffusion are classified
as extended IM problems, including Robust Influence Maximization [1,5], Activ-
ity Maximization [19], Profit Maximization [16,17], CoFIM [14] and so on. The
Profit maximization (PM) extends the influence spread to profit spread which
is defined as the difference between benefit and cost generated by all the active
nodes. It aims to find all the seed nodes to maximize the return value of profit
spread function while the Constrained Profit Maximization (CPM) proposed in
[11] confines the number of seed nodes. As is shown in [16] and [11] respec-
tively, both PM and CPM belong to nonsubmodular optimization instead of
submodular optimization. Although extensive work on submodular optimiza-
tion has been carried out, nonsubmodular optimization has attracted more and
more researchers in recent years. Many methods to address this problem are
well known to us, such as supermodular degree, Difference of Submodular (DS)
functions and so on [3,4,7–9,13,20].

Back to the studies about IM problem, Lu et al. firstly highlighted the rela-
tionship between entities and extended the classical IC model to Com-IC model
which covers the full spectrum of entity interactions from competition to comple-
mentarity in [12]. Besides, a new model which makes full use of topology struc-
ture similarity and attribute similarity to predict influence strength between
nodes in attribute networks is proposed in [6]. And Song et al. put forward the
Emotion Independent Cascade (EIC) model and Influence Maximization Prob-
lem based on Emotion (IMPE) in [15], taking the impact of emotion on influence
spread process into consideration.

In real life, there are various factors that may be present and influence the
decision of potential adopters in marketing process and we take into account
some of them. At first, it is difficult for modern consumers to exclude the influ-
ence of both others’ and their own emotions because no one is of an intelligent
and rational turn of mind all the time. Different from the assumption under
which EIC model is proposed, we underline the influence of emotion tendency
on interaction probability between potential adopters and exclude the process
of updating emotion. One reason is consumers’ impression of a product or its
manufacturer is always inherent regardless of whether they purchase the product
or not in actual marketing activities. And the other is that we focus on how to
reach the maximum of profit instead of emotion. Secondly, we try to reflect the
influence of label similarity on interaction between users of social networks. As
is known to all, when uploading photos and text to communicate with others on
online social platforms, users tend to tag them. Those tags may help others to
understand their interest. In addition, they often use labels in self-introduction,
such as “sports enthusiast”, “music-lover”, “amateur photographer” and others.
Labels assist users in finding people of the same taste or hobby quickly. And it is

Generalized Self-profit Maximization in Attribute Networks 335

beyond doubt that the label similarity affects the interaction frequency. Last but
not least, under the assumption that more than one entity is involved, in order
to maximize the total profit generated by all the active nodes after information
spread, special stress is laid on the interrelation between entities. In this paper,
we pay attention to the unilateral instead of mutual complementary relationship
between entities.

In this paper, we present Generalized Self-profit Maximization in Attribute
Networks for unilateral complementary entities with an unpredicted seed set for
one among them. The objective function of GSMA problem is nonsubmodular
and nonmonotone, and the R-GSMA algorithm inspired by sampling method and
martingale analysis in [18] is proposed. Lastly, we experimentally evaluate the
performance of R-GSMA and the results indicate that the R-GSMA algorithm
obtains the best results in comparison with some other baseline algorithms.

The remainder of this paper is organized as follows: Sect. 2 presents Attribute
networks and the Profit Complementary Independent Cascade Model. The
GSMA problem is formulated in this part and related properties are introduced.
The detail of the R-GSMA algorithm is given in Sect. 3. Section 4 shows the
experimental results and we conclude in Sect. 5.

2 Problem Formulation

2.1 Attribute Networks

Inspired by the study of attribute networks in [6] and Influence Maximization
Problem based on Emotion (IMPE) in [15], we propose an attribute network
G = (V,E,W,M,L), where V and E represent users and social ties between
each pair of them respectively. For each (u, v) ∈ E, let wu,v ∈ W represent
the influence of u on v. M and L reflect the emotion tendency and labels of
nodes respectively. For each node v ∈ V , the value of Mv shows v’s emotion
tendency which can be divided into three cases. Mv ∈ [−1, 0) (Mv ∈ (0, 1])
means that node v holds negative (positive) emotion while Mv = 0 represents
that v is neural. Given t different kinds of labels which are used in the attribute
network to describe the characters of users, L is a binary-valued label matrix.
For i = 1, . . . , t, lv,i = 1 when node v associated with label i and lv,i = 0 if the
association does not exist.

Now, we redefine the influence probability between two users and show how to
calculate it based on two kinds of influence strength related to emotion tendency
and social interaction respectively.

Emotion Tendency. In social platforms, people tend to increase the frequency
of interaction with friends who can provoke emotional resonance with them, and
subconsciously avoid communicating with those whose emotion is different from
them. If they have the same emotional tendency, the more similar the extent
of individuals’ liking or aversion is, the stronger the influence between them
is. If two people have opposite emotional tendencies, the influence strength will

336 L. Du et al.

increase with the emotional intensity gap. In other words, if one is very emotional
and the other is gentle, the influence strength between them will be larger. So,
for a pair of neighbor nodes u, v ∈ V , define the emotion-based influence strength

Peu,v =
{

1 − ||M(u)| − |M(v)||, M(u) · M(v) > 0
||M(u)| − |M(v)||, otherwise (1)

where M(u),M(v) ∈ [−1, 1] represent the emotion tendency of u and v respec-
tively. In addition, define Peu,u = 0.

Social Interaction. Denote C = {C1, C2, . . . , Cp} as a non-overlapping com-
munity structure of given social network, where

⋃p
k=1 Ck = V and Ci ∩ Cj = ∅

for each i �= j. We cite formulas proposed by [6] to calculate influence strength
based on social interaction.

– For a pair of neighbor nodes u, v ∈ V , ISu,v = Isu,v−Ismin

Ismax−Ismin
, where Isu,v =

wu,v, Ismax = maxu,v∈V wu,v and Ismin = minu,v∈V wu,v.
– For two adjacent nodes u and v that are in the same community, based on

logistic function σ(X) = (1 + e−x)−1 and the definition of transposed vector,
topology structure similarity and label similarity between u and v are defined
as TSu,v = σ(tsT

u ·tsv) and Lsu,v = σ(lsT
u ·lsv), where tsu = {wu,1, . . . , wu,|V |},

tsv = {wv,1, . . . , wv,|V |}, lsu = {lu,1, . . . , lu,t} and lsv = {lv,1, . . . , lv,t}.

To calculate influence strength between u and v from the perspective of social
interaction, define

Piu,v =
(
1 + e6−4(ISu,v+TSu,v+LSu,v)

)−1

. (2)

Based on the property of logistic function, the influence strength increases with
similarity and the value range of Piu,v is approximately between 0 and 1.

Definition 1 (Influence Probability). The influence probability between
adjacent nodes u and v in attribute networks is defined as

pu,v = a · Peu,v + (1 − a) · Piu,v, (3)

where a ∈ [0, 1] is a weight parameter.

Remark 1. The influence probability in attribute networks is similar to the influ-
ence probability proposed in pure networks which represents the success proba-
bility of information dissemination between nodes.

2.2 Profit Complementary Independent Cascade Model
and Diffusion Dynamics

Profit Complementary Independent Cascade Model. Profit Complemen-
tary Independent Cascade (PCIC) Model focused in this paper is generated from

Generalized Self-profit Maximization in Attribute Networks 337

Comparative Independent Cascade (Com-IC) Model proposed in [12] and only
considers the unilateral complementary relationship between entities.

There are at least two entities involved in the PCIC model, and we focus
on a special case which only considers two entities A and B. The network is
abstracted as a directed graph G = (V,E, P,Q,B,C) where V is the set of user
and E contains all the social relations between each pair of users. For each edge
(u, v) ∈ E, pu,v ∈ P is the influence probability that the information propagates
along the edge from node u to v. For each q(v) ∈ Q, it consists of four parameters
related to node v which can influence whether v adopts the target entity or not.
B and C respectively represent the benefit and cost of each node with respect
to each entity when it is activated.

During the information dissemination, each node v ∈ V can be in any of
the states {idle, suspended, adopted, rejected} with respect to every entity. All
the nodes are initially stay in the joint state of (A-idle, B-idle) when only A
and B are considered. Both the benefit and cost generated by nodes are 0.
Edges only control the information diffusion while the state transition is decided
by both node’s current state with regard to A or B and a set of parameters
q(v) = {qv

A|∅, q
v
A|B, qv

B|∅, q
v
B|A}. For node v ∈ V , qv

A|∅ is the probability that
user v adopts A when B is not adopted by v. If user v has adopted B and is
informed of A, it adopts A with qv

A|B. The meaning of qv
B|∅ and qv

B|A are similar
to those of qv

A|∅ and qv
A|B. What should be emphasized is that in order to repre-

sent the unilateral complementary relationship between A and B which means
B-diffusion is independent of A, it is assumed that for every node, qA|∅ ≤ qA|B
and qB|∅ = qB|A.

Diffusion Dynamics. Let G = (V,E, P,Q,B,C) be a directed social graph.
Before the information diffusion, each node stays in the joint state of (A-idle,
B-idle). Let SA, SB ⊂ V be seed sets for two different entities A and B respec-
tively. Then, nodes which belong to SA\SB become A-adopted and those belong-
ing to SB\SA are B-adopted at t = 0. They only generates profit for correspond-
ing entity. If u ∈ SA ∩ SB, the order of u adopting these entities is randomly
decided with a fair coin and u generates profit for two entities. At every time
step t ≥ 1, for a node u that becomes A-adopted or B-adopted at t − 1, the
information spreads to one of its neighbor v with probability pu,v ∈ P . There-
fore, whether v makes an adoption depends on both the influence probability
for information spread and the state transition parameter set q(v) of v. Figure 1
shows a concise representation of state transition.

2.3 Problem Statements

In this paper, we propose an extension of Constrained Profit Maximization
problem studied in [11] and name it as Generalized Self-profit Maximization
in Attribute networks (GSMA) problem. It is inspired by Self Influence Maxi-
mization which is proposed in [12].

Let BA and CA represent the benefit and cost generated by A-adopted
nodes. For each node v ∈ V adopting A, bA(v) ∈ BA is the benefit while

338 L. Du et al.

Fig. 1. State transition for A

cA(v) ∈ CA represents the cost. Without lose of generality, the value of both
b′
A(v) and c′

A(v) can be confined into [0, 1] by setting b′
A(v) = bA(v)

maxv∈V b′
A(v)

and c′
A(v) = cA(v)

maxv∈V cA(v) . For node v, define b̄v = max{0, b′
A(v) − c′

A(v)} and
c̄v = max{0, c′

A(v) − b′
A(v)} as its normalized benefit and cost.

Given the seed sets SA and SB, denote the expected profit of A-adopted
nodes under PCIC model by φA(SA, SB). The profit metric is defined as the
difference between benefit and cost, i.e., φA(SA, SB) = βA(SA, SB)−γA(SA, SB).
βA(SA, SB) is the expected normalized benefit of nodes which receive information
spread from (SA, SB) and adopt A. And the interpretation of γA(SA, SB) is
similar to that of βA(SA, SB) while it focuses on the expected cost.

Definition 2 (Generalized Self-profit Maximization in Attribute net-
works). Given a directed graph G = (V,E,W), emotion tendency vector M ,
Label matrix L, parameter set Q, benefit and cost of each node with respect to
each entities, a probability distribution over B = {SB|SB ⊂ V, |SB | = r} which
collects all possible B seed set, and constant k, Generalized Self-profit Maximiza-
tion in Attribute networks problem aims to find A-seed set S∗

A ⊂ V such that the
expected profit of A-adopted nodes is maximized under PCIC model, i.e.

S∗
A ∈ arg maxSA⊆V,|SA|≤kφA(SA, SB) (4)

Theorem 1. GSMA is NP-hard.

Proof. Because of the interpretation of influence probability proposed in Remark
1, it is obviously that GSMA problem can subsume Influence Maximization prob-
lem under the classic IC model when SB = ∅, qA|∅ = qA|B = 1 and bA(v) =
1, cA(v) = 0 for every node v ∈ V . Therefore, it is easy to see that GSMA is NP-
hard based on a conclusion about the property of classical Influence Maximiza-
tion problem proposed in [10]. And it is #P-hard to compute the exact value of
φA(SA, SB) for any given SA and SB due to the research shown in [2].

Theorem 2. For any fixed B-seed set SB, φA(SA, SB) is nonmonotone with
respect to SA under PCIC model in general.

Proof. Taking one further step from Theorem 3 in [12], we can come to the
conclusion that βA(SA, SB) and γA(SA, SB) are monotonically increasing with

Generalized Self-profit Maximization in Attribute Networks 339

SA and SB respectively. However, φA(SA, SB) may be nonmonotone as it is
generally known that a function which can be expressed as the difference of two
monotone function no longer remain monotone in general.

Theorem 3. For any instance of PCIC model, φA is a nonsubmodular function.
And φA can be expressed as a difference between two self-submodular functions
w.r.t. SA when B-seed set SB is fixed.

Proof. It is widely known that a set function which can be expressed as the dif-
ference between two submodular functions may not carry on the special property.
So even in the mentioned special cases where βA and γA are self-submodular,
φA may still be a nonsubmodular function.

3 R-GSMA Algorithm

To address the GSMA problem, which is a nonsubmodular optimization prob-
lem and difficult to solve, the R-GSMA algorithm including three main steps is
proposed in this paper. After randomly sampling a size-r B-adopted seed set SB

and an outcome g by removing each edge (u, v) ∈ E with probability 1 − Puv

respectively, let the r-RR set of a selected node v consist of all nodes u such that
the singleton set {u} would activate v. Denote fRβ

(S) =
∑

v∈V b′
A(v) · fβ as the

benefit brought by A-adopted seed set S where fβ is the fraction of r-RR sets
covered by S in Rβ which is a collection of r-RR sets. And the interpretation of
fRβ

(S) =
∑

v∈V b′
A(v) · fβ is similar to that of fRγ

(S).
First of all, based on the result of Louvain Algorithm which aims to get a

non-overlapping partition, the influence probability is recalculated by Algorithm
1. Then, Algorithm 2 determines B adoption and generates r-RR sets by run-
ning two backward BFS. Algorithm 3 selects one node which can maximize the
marginal value of GSMA’s objective function at recent iteration until the num-
ber of selected nodes reaches k. Due to the definition of profit, there may exist
a node v such that bA(v) < cA(v). Therefore, potential seed nodes should be
checked as shown in the line 4–7 of Algorithm 3.

Algorithm 1. Model Influence probability
Require: G = (V, E, W, M, L), parameter a
Ensure: a influence probability matrix P

1: C = Louvain Algorithm (G = (V, E, W))
2: for (u, v) ∈ E do
3: calculate Peu,v and ISu,v

4: if u and v are in the same community then
5: calculate TSu,v and LSu,v respectively.

6: calculate Piu,v

7: calculate Pu,v according to the Eq. 3.

340 L. Du et al.

Algorithm 4 begins with a directed graph G(V,E,B,C), influence probability
matrix P and four parameters k, r, ε and σ. Based on Algorithm 2 and Algorithm
3, it searches various lower bounds of OPT to get a sufficiently precise one such
that the break condition can be satisfied. In addition, it generates some r-RR sets
to make sure the size of output R is big enough. At the third step of R-GSMA,

Algorithm 2. Generate r-RR set
Require: G(V, E), v ∈ V , SB and influence probability matrix P
Ensure: r-RR set

1: create an FIFO queue Q, empty sets R, T I and A;
2: Q.enqueue(v);
3: while Q is not empty do
4: u= Q.dequeue(), T = T ∪ {u};
5: for w ∈ N−(u) do
6: if (w, u) is live then
7: Q.enqueue(w), I = I ∪ {w};

8: if T ∩ SB �= ∅ then
9: clear Q;

10: for a ∈ T ∩ SB do
11: Q.enqueue(a);

12: while Q is not empty do
13: u=Q.dequeue(), A = A ∪ {u};
14: for v ∈ N+(u) do
15: if (u, v) is live, αv,g

B ≤ qB|∅ and I ∩ {v} = ∅ then
16: Q.enqueue(v);

17: clear Q;
18: Q.enqueue(v);
19: while Q is not empty do
20: u=Q.dequeue(), R = R ∪ {u};
21: if ({u} ∩ A �= ∅ and αv,g

B ≤ qB|∅) or ({u} ∩ A = ∅ and αv,g
B ≤ qB|∅) then

22: for w ∈ N−(u) do
23: if (w, u) is live and {w} ∩ I = ∅ then
24: Q.enqueue(w), I = I ∪ {w};

25: Return R as the r-RR set

Algorithm 3 is used to generate a A-adopted node set for GSMA problem. The
framework of R-GSMA is shown as Algorithm 5.

4 Experiment

We conduct some experiments on two different data sets to test the effec-
tiveness of R-GSMA algorithm proposed above and the analysis of param-
eters’ effect is also based on experiment results. What should be empha-
sized is that there is a special case in which the profit function is defined as
φ (X) =

∑
v∈V bX

v − ∑
u∈X c (u), resulting in the change of profit function’s

property from nonsubmodular to submodular.

Generalized Self-profit Maximization in Attribute Networks 341

Algorithm 3. Node selection
Require: sampling results Rβ and Rγ , parameters k
Ensure: a A-adopted seed set S∗

1: Initialize: S∗ = ∅
2: while |S∗| < k do
3: u = arg maxu∈V \S∗(fRβ (S∗ ∪ {u}) − fRβ (S∗)) − (fRγ (S∗ ∪ {u}) − fRγ (S∗));
4: if (fRβ (S∗ ∪ {u}) − fRβ (S∗)) − (fRγ (S∗ ∪ {u}) − fRγ (S∗)) < 0 then
5: return S∗;
6: else
7: S∗ = S∗ ∪ {u};

8: Return S∗

4.1 Experimental Settings

Data Set. We use two data sets in this paper. One is derived from a randomly
generated graph of a social network with 2708 nodes and 5278 edges, named as
Synthetic. The weight of each edge is randomly selected from {0.1, 0.01, 0.001}.
The other is the NetHEPT academic collaboration network. There are 15233
nodes and 32235 edges. Edges indicate cooperation between authors.

Parameter Settings. In order to compare the experimental results, the following
assumptions are proposed.

– Set benefit b = 0.5 and cost c = 1 for a small part of nodes and set b = 1, c =
0.5 for others.

– L is a randomly generated binary-valued matrix and the maximum value of
t is 30. Extract the first ten columns and first twenty columns as the new
matrix L when t = 10 and t = 20 respectively.

– Emotion tendency vector M is randomly generated and weight parameter a
is chosen from {0.25, 0.5, 0.75}.

– Denote the number of nodes which adopt B and A as r and k respectively.
The value of r is set as 10, 20 and 30 while k varies from 1 to 20.

– Unless otherwise specified, we set ε = 0.1 and σ = 1.

Algorithms. We conduct experiments based on four algorithms to compare their
performance.

– R-GSMA. This is the algorithm proposed in this paper.
– Copy. It randomly samples a B-adopted seed set SB from B and selects all

the nodes in SB as the seed nodes for A
– Degree. This algorithm sorts nodes according to their degree and selects top

k as seed nodes to adopt A.
– Random. This is a classical baseline method where the seed nodes for A is

randomly selected.

342 L. Du et al.

Algorithm 4. Sampling of r-RR sets
Require: G = (V, E, B, C), influence probability matrix P , parameters k, r, ε and l
Ensure: collections of r-RR sets

1: Initialize: Rβ = ∅, Rγ = ∅, NPT = 1, ε0 =
√

2ε;

2: α =
√

l log n + log 2, β =
√

(1 − 1
e
) · (

log
(

n
k

)
+ l log n + log 2

)
;

3: μ0 =
(
2 + 2

3
ε0

) · (
log

(
n
k

) − l log n + log log2 n
) · n · ε−2

0 ;

4: μ̄ = 2n · (
(1 − 1

e
)α + β

)2 · ε−2;
5: for i = 1 to log2 n − 1 do
6: ξi = n · 2−i, ρi = μ0

ξi

7: while |Rβ | ≤ ρi and |Rγ | ≤ ρi do
8: Randomly sample a size-r B-adopted seed set SB from B and an outcome

g by removing each edge (u, v) ∈ E with probability 1 − Puv;
9: Choose αv,g

B uniformly at random from [0, 1] for every node v ∈ V for adop-
tion decision;

10: Select u ∈ V with probability bv∑
v∈V bv

and generate a r-RR set and put it

into Rβ ;
11: Select v ∈ V with probability cv∑

v∈V cv
and generate a r-RR set and put it

into Rγ ;

12: Si=Algorithm 3;
13: if n · fRβ (Si) ≥ (1 + ε0) · ξi and n · fRγ (Si) ≥ (1 + ε0) · ξi then

14: NPT = n · min{fRβ
(Si),fRγ (Si)}
1+ε0

15: break
16: ρ = μ̄

NPT
;

17: while |Rβ | ≤ ρ and |Rγ | ≤ ρ do
18: Randomly sample a size-r B-adopted seed set SB from B and an outcome g by

removing each edge (u, v) ∈ E with probability 1 − Puv;
19: Choose αv,g

B uniformly at random from [0, 1] for every node v ∈ V for adoption
decision;

20: Select u ∈ V with probability bv∑
v∈V bv

and generate a r-RR set and put it into

Rβ ;
21: Select v ∈ V with probability cv∑

v∈V cv
and generate a r-RR set and put it into

Rγ ;

22: return Rβ and Rγ

Algorithm 5. R-GSMA
Require: G = (V, E, W, M, L, B, C), parameters a, k, r, ε and σ
Ensure: seed node set S∗ for R-GSMA problem

1: P = Model influence probability (G = (V, E, W, M, L), a)
2: σ = σ · log 2/ log n
3: (Rβ , Rγ) = Sampling of r-RR sets (G = (V, E, B, C), P, k, r, ε, σ)
4: S∗ = Node selection (Rβ , Rγ , k)
5: Return S∗

Generalized Self-profit Maximization in Attribute Networks 343

4.2 Experimental Results

First of all, we introduce some experimental results of R-GSMA on Synthetic
network and analyze the influence of parameters respectively.

(a) r = 10, a = 0.5 (b) r = 20, a = 0.5 (c) r = 30, a = 0.5

Fig. 2. The influence of label number t on Synthetic

(a) r = 10, t = 20 (b) r = 20, t = 20 (c) r = 30, t = 20

Fig. 3. The influence of weight parameter a on Synthetic

Figure 2 shows how the total profit changes with the number of label under
three different conditions in which the weight parameter is set as 0.5 while the
number of B-adopted nodes varies. Even though the difference is not so large,
it still leads us to a conclusion that the profit always increases with the number
of labels, even the size of B-adopted nodes changes. The reason may be that a
large number of labels can demonstrate more details and increase the similarity.
Based on the property of logistic function, the influence probability between
nodes increase with similarity and ultimately more profit are generated.

Similar to Fig. 2, Fig. 3 reflects the influence of weight parameter a on profit
generated by all the active nodes when the number of label is set as 20. Due to
the definition of influence probability, emotion tendency and social interaction
have equal weighting when a = 0.5. Given that a can be adjusted as needed,
we only take a = 0.25, a = 0.5 and a = 0.75 as examples. Under our settings
introduced above, the profit increases with the value of a regardless of the value
of r.

After analyzing the influence of two parameters t and a, we focus on another
more important parameter r which is the number of B-adopted nodes. In Fig. 4,
it is obvious that the profit increases with the value of r. It is consistent with our

344 L. Du et al.

(a) t = 10, a = 0.5 (b) t = 20, a = 0.5 (c) t = 30, a = 0.5

(d) t = 20, a = 0.25 (e) t = 20, a = 0.75

Fig. 4. The influence of r on Synthetic

common knowledge. Under the assumption that B is a complementary entity to
A while A has no effect on B, if there are a large number of consumer buying
B, the amount of A-adopter is more likely to increase. This conclusion can be
drawn from these experimental results and also suitable for real life.

(a) t = 10, a = 0.5 (b) t = 20, a = 0.5 (c) t = 30, a = 0.5

(d) t = 20, a = 0.25 (e) t = 20, a = 0.75

Fig. 5. Algorithm compare on Synthetic

Generalized Self-profit Maximization in Attribute Networks 345

In the last set of experiments conducted on Synthetic network, we compare
R-GSMA with other three algorithms, named as Degree, Copy and Random.
Figure 5 illustrates the expected profit generated by all the active nodes on the
four algorithms. The performance of algorithms are compared in five different
cases with varying the number of seed nodes from 1 to 20. The subtitles show
the value of parameters in different cases. Note that r is always set to be 20 due
to the design of Copy algorithm. The performance of R-GSMA is much better
than other algorithms in all the cases.

Some results of experiments conducted on NetHEPT are shown in Fig. 6. In
this part, we set t = 20, a = 0.5 and change the data set from a synthetic network
to a real network. Figure 6a depicts the influence of r. Although the total profit
is smaller than that in the synthetic network mentioned above, we still can form
the conclusion that the profit increases with r. And for the comparison between
four algorithms, Fig. 6b highlights the superiority of R-GSMA. So, combining
conclusions drawn from the experimental results shown in Fig. 5 and Fig. 6b, we
can acclaim that R-GSMA proposed in this paper outperforms other algorithms.

(a) the influence of r (b) algorithm compare

Fig. 6. Experimental results on NetHEPT

5 Conclusion and Future Works

In this paper, we propose Generalized Self-profit Maximization in Attribute net-
works (GSMA) problem, which involves an unpredicted complementary entity
adopter seed set, profit generated by adopters and the influence of label and emo-
tion tendency. The goal of GSMA is to select k seed nodes to adopt an entity such
that the total profit generated by all the activated nodes reaches maximum. We
redefine the influence probability which considers the attributes and topology
structures in attribute network and show that the objective function is neither
submodular or monotone in general. To address the GSMA problem, we propose
an effective algorithm based on sampling and martingale, i.e. R-GSMA. Finally,
we conduct experiments on both artificial and real-world networks to evaluate its
effectiveness. The simulation results show the superiority of R-GSMA algorithm.

346 L. Du et al.

The number of r-RR sets generated in R-GSMA algorithm is large so the
expected running time is quite long. How to improve the performance of R-
GSMA in high influence networks deserves further study. What’s more, this
paper does not consider the mutual complementary or competitive relationships
between entities. The related research is also a interesting direction in the future.

References

1. Chen, W., Lin, T., Tan, Z., Zhao, M., Zhou, X.: Robust influence maximization. In:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 795–804. ACM, San Francisco, California, USA,
August 2016. https://doi.org/10.1145/2939672.2939745

2. Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent
viral marketing in large-scale social networks. In: ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1029–1038. ACM, New
York (2010). https://doi.org/10.1145/1835804.1835934

3. Feige, U., Izsak, R.: Welfare maximization and the supermodular degree. In: Pro-
ceedings of the 4th Conference on Innovations in Theoretical Computer Science -
ITCS 2013, p. 247. ACM Press, Berkeley, California, USA (2013). https://doi.org/
10.1145/2422436.2422466

4. Feldman, M., Izsak, R.: Constrained Monotone Function Maximization and the
Supermodular Degree, August 2014. http://arxiv.org/abs/1407.6328

5. He, X., Kempe, D.: Stability of influence maximization. In: Proceedings of the
20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining - KDD 2014, pp. 1256–1265. ACM Press, New York, New York, USA (2014).
https://doi.org/10.1145/2623330.2623746

6. Huang, H., Shen, H., Meng, Z.: Community-based influence maximization in
attributed networks. Appl. Intell. 50(2), 354–364 (2019). https://doi.org/10.1007/
s10489-019-01529-x

7. Iyer, R., Jegelka, S., Bilmes, J.: Curvature and Optimal Algorithms for Learn-
ing and Minimizing Submodular Functions, November 2013. http://arxiv.org/abs/
1311.2110

8. Iyer, R.K., Bilmes, J.A.: Submodular optimization with submodular cover and
submodular knapsack constraints. CoRR abs/1311.2106 (2013). http://arxiv.org/
abs/1311.2106

9. Iyer, R.K., Bilmes, J.A.: Algorithms for approximate minimization of the difference
between submodular functions, with applications. CoRR (2014). http://arxiv.org/
abs/1408.2051

10. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through
a social network. Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 137–146 (2003). https://doi.org/10.
1145/956750.956769

11. Du, L., Chen, S., Gao, S., Yang, W.: Nonsubmodular constrained profit maximiza-
tion from increment perspective. J. Comb. Optim. 2, 1–28 (2021). https://doi.org/
10.1007/s10878-021-00774-6

12. Lu, W., Chen, W., Lakshmanan, L.V.S.: From competition to complementarity:
comparative influence diffusion and maximization. Proc. VLDB Endow. 9(2), 60–
71 (2015). https://doi.org/10.14778/2850578.2850581

https://doi.org/10.1145/2939672.2939745
https://doi.org/10.1145/1835804.1835934
https://doi.org/10.1145/2422436.2422466
https://doi.org/10.1145/2422436.2422466
http://arxiv.org/abs/1407.6328
https://doi.org/10.1145/2623330.2623746
https://doi.org/10.1007/s10489-019-01529-x
https://doi.org/10.1007/s10489-019-01529-x
http://arxiv.org/abs/1311.2110
http://arxiv.org/abs/1311.2110
http://arxiv.org/abs/1311.2106
http://arxiv.org/abs/1311.2106
http://arxiv.org/abs/1408.2051
http://arxiv.org/abs/1408.2051
https://doi.org/10.1145/956750.956769
https://doi.org/10.1145/956750.956769
https://doi.org/10.1007/s10878-021-00774-6
https://doi.org/10.1007/s10878-021-00774-6
https://doi.org/10.14778/2850578.2850581

Generalized Self-profit Maximization in Attribute Networks 347

13. Narasimhan, M., Bilmes, J.A.: A submodular-supermodular procedure with appli-
cations to discriminative structure learning. CoRR (2012). http://arxiv.org/abs/
1207.1404

14. Shang, J., Zhou, S., Li, X., Liu, L., Wu, H.: CoFIM: a community-based framework
for influence maximization on large-scale networks. Knowl. Based Syst. 117, 88–
100 (2017). https://doi.org/10.1016/j.knosys.2016.09.029

15. Song, J., Liu, Y., Guo, L., Xuan, P.: Research on social network propagation
model and influence maximization algorithm based on emotion. J. Comb. Optim.
055(013), 85–92 (2019)

16. Tang, J., Tang, X., Yuan, J.: Towards Profit Maximization for Online Social Net-
work Providers, December 2017. http://arxiv.org/abs/1712.08963

17. Tang, J., Tang, X., Yuan, J.: Profit maximization for viral marketing in online
social networks: algorithms and analysis. IEEE Trans. Knowl. Data Eng. 30(6),
1095–1108 (2018). https://doi.org/10.1109/TKDE.2017.2787757

18. Tang, Y., Shi, Y., Xiao, X.: Influence maximization in near-linear time: a martin-
gale approach. In: Proceedings of the 2015 ACM SIGMOD International Confer-
ence on Management of Data, pp. 1539–1554. SIGMOD 2015. Association for Com-
puting Machinery, New York, NY, USA (2015). https://doi.org/10.1145/2723372.
2723734

19. Wang, Z., Yang, Y., Pei, J., Chu, L., Chen, E.: Activity maximization by effective
information diffusion in social networks. IEEE Trans. Knowl. Data Eng. 29(11),
2374–2387 (2017). https://doi.org/10.1109/TKDE.2017.2740284

20. Wu, W.-L., Zhang, Z., Du, D.-Z.: Set function optimization. J. Oper. Res. Soc.
China 7(2), 183–193 (2018). https://doi.org/10.1007/s40305-018-0233-3

http://arxiv.org/abs/1207.1404
http://arxiv.org/abs/1207.1404
https://doi.org/10.1016/j.knosys.2016.09.029
http://arxiv.org/abs/1712.08963
https://doi.org/10.1109/TKDE.2017.2787757
https://doi.org/10.1145/2723372.2723734
https://doi.org/10.1145/2723372.2723734
https://doi.org/10.1109/TKDE.2017.2740284
https://doi.org/10.1007/s40305-018-0233-3

Parameterized Complexity Classes
Defined by Threshold Circuits: Using
Sorting Networks to Show Collapses

with W-hierarchy Classes

Raffael M. Paranhos1, Janio Carlos Nascimento Silva1,2(B),
Uéverton S. Souza1, and Luiz Satoru Ochi1

1 Instituto de Computação, Universidade Federal Fluminense, Niterói, RJ, Brazil
raffaelmp@id.uff.br, {ueverton,satoru}@ic.uff.br

2 Instituto Federal do Tocantins, Campus Porto Nacional, Porto Nacional, TO, Brazil
janio.carlos@ifto.edu.br

Abstract. The main complexity classes of the Parameterized
Intractability Theory are based on weighted Boolean circuit satisfiabil-
ity problems and organized into a hierarchy so-called W-hierarchy. The
W-hierarchy enables fine-grained complexity analyses of parameterized
problems that are unlikely to belong to the FPT class. In this paper, we
introduce the Th-hierarchy, a natural generalization of the W-hierarchy
defined by weighted threshold circuit satisfiability problems. Investigat-
ing the relationship between Th-hierarchy and W-hierarchy, we discuss
the complexity of transforming Threshold circuits into Boolean circuits,
and observe that sorting networks are powerful tools to handle such
transformations. First, we show that these hierarchies collapse at the
last level (W[P]=Th[P]). After that, we present a time complexity anal-
ysis of an AKS sorting network construction, which supports some of our
results. Finally, we prove that Th[t] ⊆ W[SAT] for every t ∈ N.

Keywords: Threshold circuits · AKS sorting network · Parameterized
complexity · W-hierarchy

1 Introduction

A decidable problem is a parameterized problem when coupled to its instance,
some additional information representing particular aspects of the input (that
constitute the parameter) are also given. Typically, the parameters measure
structural properties of the input or the solution size to be found. In general,
the parameters are aspects of the input and/or question to be answered that
are isolated for further specialized analysis, where it is assumed that the size of
these parameters is much smaller than the size of the input.

Considering an instance I of a problem Π parameterized by k, we say that
Π is fixed-parameter tractable (it belongs to the class FPT) if Π can be solved

Supported by CAPES, CNPq and FAPERJ.

c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 348–363, 2021.
https://doi.org/10.1007/978-3-030-92681-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_28&domain=pdf
https://doi.org/10.1007/978-3-030-92681-6_28

Parameterized Complexity Classes Defined by Threshold Circuits 349

by an algorithm (called FPT algorithm) in f(k) · poly(|I|) time. Alternatively,
a parameterized problem Π is slice-wise polynomial (Π ∈ XP) if there is an
algorithm that solves any instance I of Π in f(k) · |I|g(k) time.

The main goal in a parameterized complexity analysis is to design FPT algo-
rithms for the target problem. However, some problems have a higher level of
intractability that brings to us the concepts related to the W-hierarchy.

A decision Boolean circuit is a Boolean circuit consisting of small and large
gates1 with a single output line, and no restriction on the fan-out of gates. For
such a circuit, the depth is the maximum number of gates on any path from the
input variables to the output line, and the weft is the maximum number of large
gates on any path from the input variables to the output line.

The W-hierarchy was originally motivated by considering the “circuit re-
presentations” of parameterized problems, and terms the union of parameterized
complexity classes defined by the weft of decision Boolean circuits.

Before defining the W-hierarchy classes, we consider the following definitions.

Definition 1 (fixed-parameter reduction). Let A,B ⊆ Σ∗ × N be two
parameterized problems. A fixed-parameter (or parameterized) reduction from
A to B is an algorithm that, given an instance (x, k) of A, outputs an instance
(x′, k′) of B such that

– (x, k) is a yes-instance of A if and only if (x′, k′) is a yes-instance of B,
– k′ ≤ g(k) for some computable function g, and
– the running time is f(k) · |x|O(1) for some computable function f .

Weighted Weft t Depth h Circuit Satisfiability – WCS(t, h)
Instance: A Boolean decision circuit C with weft t and depth h.
Parameter: A positive integer k.
Question: Does C have a weight k satisfying assignment?

Definition 2. A parameterized problem Π belongs to the class W[t] if and only
if Π is fixed-parameter reducible to WCS(t, h) for some constant h.

For instance, k-Independent Set (parameterized by k) is FPT-reducible
to WCS(1, 2), thus it belongs to W[1]. On the other hand, k-Dominating Set
(parameterized by k) is FPT-reducible to WCS(2, 2), which implies that it is in
W[2]. In addition, it is conjectured that k-Dominating Set cannot be fixed-
parameter reducible to WCS(1, h) for some h, since it is complete for the class
W[2]. Therefore, it is assumed that k-Dominanting Set has higher parameter-
ized complexity than k-Independent Set, since it seems to admit only more
complex circuit representations (i.e., circuit representations of bounded depth
with greater weft).

Based on this, several parameterized problems are classified according to
their parameterized complexity level. Recall that FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆
XP, and it is conjectured that each of the containment is proper [5].
1 A gate is called large if its fan-in exceeds some bound, which is typically considered
to be two.

350 R. M. Paranhos et al.

The W[t] classes are defined by satisfiability problems of circuits with
bounded depth. Additionally, it is also considered parameterized complexity
classes defined by circuits having no bound on the depth, so-called W[P] and
W[SAT]. These classes are generated by the following problems.

Weighted Circuit Satisfiability – WCS
Instance: A decision Boolean Circuit C.
Parameter: A positive integer k.
Question: Does C has a satisfying assignment of weight k?

Weighted Satisfiability – WSAT
Instance: A decision circuit C corresponding to a Boolean formula
(or alternatively, just a Boolean formula C).
Parameter: A positive integer k.
Question: Does C has a satisfying assignment of weight k?

Definition 3. The class W[P] is the class of parameterized problems that are
fixed-parameter reducible to Weighted Circuit Satisfiability.

Definition 4. The class W[SAT] is the class of parameterized problems that are
fixed-parameter reducible to Weighted Satisfiability.

Although W[P] and W[SAT] are both defined by unbounded depth circuits,
it is worth mentioning that circuits corresponding to Boolean formulas are tree-
like circuits, i.e., circuits whose graph induced by its gates is isomorphic to a
tree. Besides, general decision Boolean circuits can be transformed into treelike
circuits; however, the time complexity for such a transformation typically takes
exponential time on their number of gates and depth. Thus, it is conjectured
that W[SAT] ⊂ W[P], i.e., the containment is proper.

Thus, the W-hierarchy is organized as follow:

W [1] ⊆ W [2] ⊆ . . . ⊆ W [SAT] ⊆ W [P].

Besides, the W-hierarchy classes are defined by circuits restricted to conven-
tional Boolean operators (AND, OR and NOT). By allowing another kind of circuits,
potentially, it is possible to represent more decision parameterized intractable
problems. In Circuit Complexity, the characterization of complexity classes con-
cerning threshold circuits is well-known. In 1987, Hajnal et al. [7] defined TC0,
the class of all languages which are decided by threshold circuits with constant
depth and polynomial size. Analogously, we can use similar reasoning to establish
a hierarchy of parameterized complexity classes generated by weighted satisfiabil-
ity problems on non-conventional circuits. In [6], the authors constructed a hier-
archy of classes called W(C) as an alternative to W-hierarchy classes. However,
in [6], the main discussion is restricted to bounded connectives gates (including
threshold gates with bounded threshold). In addition, they also presented some
results regarding majority gates.

Parameterized Complexity Classes Defined by Threshold Circuits 351

In this paper, we focus on general threshold gates and define the Th-hierarchy
as an analogue of the W-hierarchy by replacing decision Boolean circuits by deci-
sion threshold circuits. The primary tool used in this paper is sorting networks,
which are used to transform threshold gates in Boolean circuits efficiently.

In Sect. 2, we present some preliminaries about threshold circuits and sort-
ing networks. Also, in Sect. 2, the Th-hierarchy is formally defined. In Sect. 3,
we made the first comparisons between W- and Th-hierarchies, especially about
W[P] and Th[P]; here, we use sorting networks to support our conclusions. In
Sect. 4, we face a challenge in relating the Th-hierarchy classes with the W[SAT]
class. As the W[SAT] class deals with treelike circuits, trivial conversions using
sorting networks are not helpful because converting a circuit C(V,E) with depth
h into a equivalent treelike circuit takes exponential time with respect to h.
Finally, by analyzing the time complexity to construct a particular sorting net-
work with O(log n) depth, called AKS, we show that Th[t] ⊆ W[SAT] for every
t ∈ N.

2 Satisfiability of Threshold Circuits

The characterization of decision problems as WCS(t, h) in standard Boolean
circuits has widespread attention, especially considering the enormous advance
in Parameterized Complexity Theory. When classifying a problem in the
W-hierarchy, in short, we are encapsulating the parameterized intractability of
this problem in terms of satisfiability of a corresponding circuit based on Boolean
functions (AND, OR and NOT). Thus, some questions emerge. Is W-hierarchy com-
prehensive enough? Are there problems complete considering a more general
basis of functions?

Due to these questions, naturally, our curiosity turns into the threshold cir-
cuits. Threshold circuits are circuits that admit threshold gates, i.e., gates that
emulate threshold functions (See Definition 5). In Sect. 2.1, we provide some
notations about threshold circuits.

2.1 Preliminaries

First, we present some conventions and preliminaries that are important for the
sequence of this paper.

Definition 5 (Threshold function). Given a set A = {a1, a2, . . . , an} of
inputs (with ai ∈ {0, 1}, for any 1 ≤ i ≤ n), a set W = {w1, w2, . . . , wn} of
weights (with wi ∈ Z, for any i ≤ n) and an integer value t called threshold,
then a threshold function Tn

t (A,W) holds as follows:

Tn
t (A,W) = true ⇐⇒

n∑

i

(ai × wi) ≥ t, otherwise Tn
t (A,W) = false.

352 R. M. Paranhos et al.

We can specialize the Definition 5 for functions where every wi ∈ W is equal
to 1, such functions are called unweighted threshold functions. In practice, an
unweighted function evaluates true when exactly t inputs ai ∈ A are set to be
1. A particular unweighted threshold function is the majority function, which
has threshold t equals to n/2.

Definition 6 (Decision threshold circuits). A decision threshold cir-
cuit is a decision circuit containing AND gates, OR gates, NOT gates, and
unweighted threshold gates, where every unweighted threshold gate com-
putes an unweighted threshold function.

Note that one can consider circuits having weighted threshold gates; how-
ever, in this paper we are dealing only with unweighted threshold gates.

2.2 The Th-hierarchy

For convenience, we present a generalization of WCS(t, h) by considering deci-
sion threshold circuits.

Weighted Weft t Depth h Threshold Circuit Satisfiability –
WTCS(t, h)
Instance: A decision threshold circuit C with weft t and depth h.
Parameter: A positive integer k.
Question: Does C has a satisfying assignment of weight k?

Similarly, we present the complexity classes Th[t].

Definition 7. A parameterized problem Π belongs to the class Th[t] if and only
if Π is fixed-parameter reducible to WTCS(t, h) for some constant h.

Analogously, we define Weighted Threshold Circuit Satisfiability
(WTCS) and Th[P] as a generalization of WCS and W[P] by considering deci-
sion threshold circuits instead of decision Boolean circuits. In addition, we define
the generalization of WSAT as follows.

Weighted Treelike Threshold Circuit Satisfiability – WTTSAT
Instance: A decision threshold circuit C whose graph induced by its gates
is isomorphic to a tree (treelike circuit).
Parameter: A positive integer k.
Question: Does C has a satisfying assignment of weight k?

Hence, the Th-hierarchy is as follow:

Th[1] ⊆ Th[2] ⊆ · · · ⊆ Th[SAT] ⊆ Th[P].

By definition, it holds that W[t] ⊆ Th[t] (for every t ∈ N) as well as W[SAT]
⊆ Th[SAT] and W[P] ⊆ Th[P].

At this point, some questions emerge such as “W[t] = Th[t], for each t?”,
“W[P] = Th[P]?”, “W[SAT] = Th[SAT]?”, and “W[1] = Th[1]?”. In Sects. 3 and
4, we explore some of these issues.

Parameterized Complexity Classes Defined by Threshold Circuits 353

To understand the relationship between these classes (at the highest levels),
we revisit the Sorting Network field and present a time complexity analysis for
the construction of AKS sorting networks [11].

3 W-hierarchy Versus Th-hierarchy

Although the W-hierarchy is a set of infinite classes of parameterized problems, it
may possible that the W-hierarchy is not complete in the sense that may exist a
parameterized problem Π such that Π ∈ W[t + 1]; Π /∈ W[t]; Π is hard for W[t];
but, Π is not complete for W[t + 1], for some t. Then, it seems possible that there
are classes of problems between W[t] and W[t+1], or between W[SAT] and W[P].

Therefore, one of the motivation of this work is consider classes based on
threshold circuits to identify potential gaps in the W-hierarchy.

By definition, the following proposition is clear.

Lemma 1. W [t] ⊆ Th[t], for every t ∈ N.

In contrast, it is not clear if Th[t] ⊆ W [t] for some t. Figure 1 depicts the
current snapshot of these classes.

Fig. 1. Relationship between W[t] and Th[t] classes.

We begin our discussion by disregarding structural constraints on circuits,
which leads us to the W[P] versus Th[P] dilemma.

To show that Th[P] ⊆ W[P] it is enough to present a fixed-parameter reduc-
tion from Weighted Threshold Circuit Satisfiability to Weighted Cir-
cuit Satisfiability. In this case, it suffices to provide a way to locally replace
each unweighted threshold gate for an equivalent Boolean circuit. For that, we
consider the Sorting Networks.

Sorting Networks
A sorting network is a comparison network circuit with n inputs and n outputs,
where the outputs are monotonically ordered (using AND and OR gates only).
Such circuits are represented by directed graphs having n inputs (bits to be
ordered) and n outputs (ordered bits).

354 R. M. Paranhos et al.

The first implementation of a sorting network was proposed by Daniel G.
O’Connor and Raymond J. Nelson in 1954, patented three years later [10]. In
1968, Kenneth E. Batcher [4] presented some fundamental concepts about Sort-
ing Networks. One of these concepts is the comparison element idea (See Fig. 2a),
which consists in a node of the network that receives two inputs A and B and
it returns the outputs L and H, such that L = min(A,B) and H = max(A,B).
For Boolean values, a comparison elements can be constructed with two Boolean
gates as shown in Fig. 2b.

(a) Generic comparator. (b) Boolean comparator.

Fig. 2. Comparison elements.

Therefore, we can define sorting networks as circuits with n inputs that
flow by multiple comparison elements, resulting in ordering those n values in a
deterministic sequence of steps.

It is possible to construct a sorting network that simulates famous sort algo-
rithms, e.g., Bubble Sort. In [4], for instance, was described the Bitonic Sorter
inspired by the Merge Sort algorithm.

Depending on the strategy adopted to organize a sorting network, we can
have circuits with different depths. While a sorting network based on bubble
sort has O(n) depth, a bitonic sorter has O(log2 n) depth. Furthermore, the most
popular sorting networks can be constructed in polynomial time. As example,
Bitonic Mergesort can be constructed in O(n × log2 n) time [4]. Thus, Lemma 2
is supported by a vast literature.

Lemma 2. Given an unweighted threshold gate T with n inputs and threshold
t, in polynomial time with respect to n, one can construct an decision Boolean
circuit CT such that CT computes the same function of T .

Proof. Let I be the set of inputs of T . It is enough to construct in polynomial
time a sorting network for the set I of inputs (sorting from highest to lowest
value) and then connect the network outputs in such a way that the output gate
returns true if and only if t-th output of the sorting network is true. 	

Theorem 1. It holds that Th[P] = W [P].

Proof. By definition, it is clear that W[P] ⊆ Th[P]. To show that Th[P] ⊆
W[P], it is enough to present a fixed-parameter reduction from Weighted
Threshold Circuit Satisfiability to Weighted Circuit Satisfiability
by locally replacing each unweighted threshold gate for an equivalent Boolean
decision circuit. Therefore, by Lemma 1 the claim holds. 	

Parameterized Complexity Classes Defined by Threshold Circuits 355

4 On the Classes Th[t], Th[SAT], and W[SAT]

Due to the depth constraints, Lemma 2 does not implies that W[t] = Th[t], for
any t ∈ N. In addition, correlated with the structural issues of each class, we
also have to worry about the algorithmic time needed for converting a threshold
circuit into a Boolean one, respecting such restrictions.

Also, the discussion between W[SAT] and Th[SAT] seems challenging. The
WSAT problem does not have restrictions on weft or depth, but it considers
only treelike circuits. This constraint brings us an alert about the depth when
using sorting networks to convert threshold gates into a Boolean circuit, because
after this conversion, it is still necessary to convert the resulting sub-circuit into
a treelike one.

Since treelike decision circuits are exactly the decision circuits where each
gate has fan-out equal to one (each gate has a single parent), by duplicating
gates, it is easy to see that from a decision circuit G one can obtain an equivalent
treelike decision circuit in |V (G)|O(h) time, where h is the depth of G and V (G)
is the set containing gates and input variables of G. However, when each gate has
fan-out bounded by a constant c, by duplicating the gates in top-down manner
according to the gates’ depth (the length of the longest path from each gate to
the output line), one can duplicate each gate gi at most chi times, where hi is the
length of the longest path from gi to the output line. Therefore, in this setting
one can construct an equivalent treelike decision circuit in ch · |V (G)|O(1) time.

Note that sorting networks tend to have only bounded fan-out gates, since
its construction is typically based on Boolean comparators. This motivates us
to revisit an in-depth discussion in Theory of Computation about the existence
and construction of sorting networks with O(log n) depth.

However, even if we have an algorithm that converts a threshold gate in
Boolean circuits with O(log n) depth, we still have trouble with the cascade
effect of the local gate-replacement/tree-conversion process, i.e., by replacing a
threshold gate by an equivalent treelike decision circuit, one can increase the
fan-out of gates that were seen as inputs by this threshold gate, which implies
duplications in the level inter such sorting networks. Note that such a process
may take |V (G)|O(h) time, since after the replacement of threshold gates the
fan-out of some gates may be unbounded. Since instances of WSAT may have
unbounded depth, we left open the question “W[SAT] = Th[SAT]?”. However,
our sorting network framework is able to show that Th[t] ⊆ W[SAT] (for every
t ∈ N), if one can construct in polynomial time sorting networks with depth
O(log n) and bounded maximum fan-out.

Note that in Lemma 2 we do not ensure the existence of sorting networks
with logarithmic depth. Besides, the only known sorting network that satisfies
such a condition is the AKS Sorting Networks. However, to the best of our
knowledge, there are no time complexity analysis of an explicit construction of
an AKS sorting network. In Sect. 4.1, we detail this particular type of sorting
network and we address the possibility of using AKS sorting networks to prove
that Th[t] ⊆ W[SAT], for every t ∈ N.

356 R. M. Paranhos et al.

4.1 AKS Sorting Networks

Proposed by M. Ajtai, J. Komlos, and E. Szemerédi [1], AKS sorting networks
are originally based on a probabilistic error-recovery structure called separator.
A separator is a network composed of structures called ε-halvers. A separator,
in short, partitions its inputs into four parts semi-ordered where each partition
has a tolerance for strangers. Hence, constructing an AKS sorting network is an
arrangement of separators in an efficient manner that the values flow in it with a
low depth. The core of AKS sorting networks is a kind of graphs called expander
graphs, which are graphs endowed with good connectivity properties. We refer
to the following definitions to better describe AKS sorting networks.

In this work, for the construction of an AKS network we consider a particular
type of expander: a Bipartite balanced k-regular graph based on a Ramanujan
graphs. Thus, for convenience, we define only one specific configuration of an
expander in Definition 8.

Let G be a bipartite graph with a bipartition of V (G) into V1 and V2. We
denote by Γ (W) the neighborhood of a subset W ⊂ V (G).

Definition 8 (Bipartite (k, ε)-expander graphs). A bipartite graph G =
([V1, V2], E) with n vertices is (k, ε)-expander, if and only if

– the sets V1 and V2 contain exactly n/2 each one;
– every vertex has degree k, and
– for every subset W �= ∅ such that either W ⊆ V1, or W ⊆ V2 it holds that

|Γ (W)| × ε ≥ min(ε/2, |W |) × (1 − ε)

where 0 < ε < 0.5.

Figure 3 illustrates a bipartite (3, 1/4)-expander graph.

Fig. 3. A bipartite (3, 1/4)-expander graph G.

One of the AKS networks “tricks” is the tolerance with elements out of
position (strangers) after a comparison stage. Therefore, AKS sorting networks
uses ε-halvers instead of perfect halvers (See Definition 9).

Definition 9 (Halvers). A circuit C with n inputs (where n is even) is a
perfect halver if C return the input values in two output sets: One with exactly
n/2 larger inputs; and other with n/2 smaller inputs. We say that a circuit is
an ε-halver when these two output sets has at most ε×n strangers (inputs which
were directed to wrong output set).

Parameterized Complexity Classes Defined by Threshold Circuits 357

Due to the expansion properties of a (k, ε)-expander, it is possible to extract
several perfect matchings. Each perfect matching divides the n inputs into two
sets with the same size. Thus, it is possible to perform n/2 swaps for each perfect
matching and the pairs in matchings are natural comparators (see Fig. 4). From
(k, ε)-expanders we design ε-halvers with k swap stages (see Fig. 5).

(a) A perfect matching M in G. (b) Swap based in M .

Fig. 4. A perfect matching in a (k, ε)-expander determining swap stages. Each vertical
wire in (b) represents a comparator between its endpoints.

Fig. 5. A (1/4)-halver constructed from G with three swap stages.

Considering that an ε-halver H outputs the sets V1 and V2 such that V1

has the smallest values and V2 has the largest values, with an ε-tolerance to
strangers. Using these semi-ordered values outputted by H to construct another
ε-halver H ′, we have a new round of swaps. Here, it is expected that H ′ outputs
the sets V ′

1 and V ′
2 with less strangers. It is easy to see that a well-structured

web of ε-halvers, without doubt, can order n inputs in few stages. To this web,
we call the notion of separator.

Definition 10 (Separator). A circuit C with n inputs is a (λ, σ, ε)-separator
if C returns four output sets G1, G2, G3 and G4 (a partition of the inputs) of
sizes λ × (n/2), (1 − λ) × (n/2), (1 − λ) × (n/2) and λ × (n/2), respectively. In
addition, G1 and G4 have at most σ × λ × (n/2) strangers; and G2 and G3 have
at most ε × (n/2) strangers.

Applying the same reasoning of the ε-halvers to separators, it is easy to see
that flowing values through a network of separators, in few stages, the parti-
tioning of G1, G2, G3 and G4 will dissipate the presence of its strangers, and

358 R. M. Paranhos et al.

consequently, this order the input values. That is a summary of the idea behind
the AKS sorting network: a chain of separators, which is, in its turn, a chain of
halvers. Note that we are not providing all details about AKS sorting networks.
A survey about this topic can be found in [3].

For a while, the existence of a O(log n)-depth sorting network was an open
question. The first version of an AKS sorting network [1] solved this question.
However, behind the asymptotic expression O(log n) there is a constant factor
of approximately 2100. This huge constant factor inhibits the practical imple-
mentation of AKS sorting networks, and there are just a few explicit algorithms
describing the construction of an AKS network. In 1990, Paterson [11] presented
an improved construction of AKS networks with a depth substantially smaller,
but still impracticable. After all, several works address some slight improvements
in the AKS construction and Paterson algorithm. However, none of those works
achieve a substantial decrease in the constant factor of AKS networks’ depth.

In [13], Hang Xie presented an explicit description of the Paterson’s strat-
egy. However, although Hang Xie presented a constructive proof to obtain AKS
networks, to the best of our knowledge, there is no work presenting a time com-
plexity analysis of the construction of this sorting networks. The main reason
for the absence of this analysis is due to the “galactic” size of these networks,
which makes their practical implementation impossible. However, in this work
our interest in AKS networks is different, since our focus is on complexity classes.

Nevertheless, from the explicit algorithm detailed in [13], we have all tools
to address the time complexity of such a construction. As we remark in Sect. 4.2
that the construction presented in [13] can be performed in polynomial time, we
can conclude the proper containment of Th[t] ⊆ W[SAT], for every t ∈ N.

4.2 Th[t] ⊆ W[SAT]

Now, we present a description of the construction of an AKS network detailed
in [13]. We focused only on algorithmic time to perform each step of the con-
struction. For more details on the construction see [13].

Given a value ε and n (number of keys to be ordered), we can construct a
ε-halver according to Algorithm 1.

Algorithm 1 (ε−Halver construction [13])

1. Let

K =
2(1 − ε)(1 − ε +

√
1 − 2ε)

ε2

2. Pick the minimum prime p congruent to 1 mod 4(≥K − 1). Let k = p + 1.
3. Find the minimum prime q congruent to 1 mod 4, such that q ≥ n/2.
4. Construct a k-regular Ramanujan graph with q vertices.
5. Construct a balanced bipartite k-regular graph GB with 2q vertices.
6. Find a perfect matching of the graph using Hungarian algorithm and trans-

form each pair in a sequence of comparators; remove this matching from the
graph to get a (k − 1)-regular graph;

Parameterized Complexity Classes Defined by Threshold Circuits 359

7. Repeat 6 until GB has no perfect matchings.

In this construction, ε-halvers are organized as balanced bipartite k-regular
graphs generated from k-regular Ramanujan graphs of q vertices, where q ≥ n/2.
Additionally, the method used to construct Ramanujan graphs was based on
[8,9] (also known as LPS graphs). Thus, the first three steps in Algorithm 1
were dedicated to finding k and q based on the desirable K.

In order to find an appropriated value of K, Hang Xie was based on [12] to
calculate the depth of an associated ε-halver providing the Lemma 3.

Lemma 3. (From [13]) Let

K =
2(1 − ε)(1 − ε +

√
1 − 2ε)

ε2

For every k-regular LPS graph, if k ≥ K then every subset X of size εn has
at least (1 − ε)n neighbors.

The choice of ε impacts the depth and size of this ε-halver. For example, if we
decide to construct a (1/72)-halver, we have K ≈ 20162.99. By steps 2 and 3, we
can find p = 20173, which indicates the creation of a 20174-regular Ramanujan
graph in step 4 [13].

For a smaller (or larger) Ramanujan graph, we need to exploit the equation
in Lemma 3 to discover another ε. This choice can be guided by the size of
the input to be ordered. If we already know the desirable ε, then the first step
costs O(1). Also, p and q are values used to construct Ramanujan graphs called
LPS graphs (more details in [8,13]). Be prime and congruent to 1 mod 4 are
specific conditions for this construction. By number theory, we know that for a
value m ≥ 13 then there is a prime number x congruent to 1 mod 4 such that
m ≤ x ≤ 2m. Hence, since p need to be larger than K then in steps 2 find p
by iterating from K to 2K until find the first number that fit the conditions.
Hence, steps 2 takes polynomial time on K, since for each candidate value we
have to check if it is prime. In addition, K depends only on ε. For q we need
to find a prime number congruent 1 mod 4 and greater than n/2. By iterating q
from n/2 to n, and verifying for each q if it is prime, we perform in polynomial
time on n.

For Step 4, it is well-known that a graph with a small second eigenvalue of
its adjacency matrix is a good expander [13]. By Alon-Boppana theorem [2], we
know that 2

√
k − 1 is the lower bound for the second eigenvalue of a k-regular

graph adjacency matrix. By Definition 11, we can observe that the Ramanujan
graph is a family of k-regular graphs with the best possible second eigenvalue of
its adjacency matrix, which guarantees Ramanujan graphs as good expanders.

Definition 11. A Ramanujan graph is a connected k-regular graph whose eigen-
values are at most 2

√
k − 1 in absolute value.

The explicit construction of a k-regular Ramanujan graph was presented in
[8,9] and takes polynomial time on k.

360 R. M. Paranhos et al.

For Step 5, in order to create a balanced bipartite k-regular graph Gb from
the Ramanujan graph G created in step 4, we present the Algorithm 2, which
takes O(|E(G)|) time.

Algorithm 2

1. Given a G(V,E) with q vertices V = {v1, v2, . . . , vq}, create a new graph
Gb([U,W], Eb) with 2q vertices divided in U = {u1, u2, . . . , uq} and W =
{w1, w2, . . . , wq};

2. For each pair of positive integers (i, j), with i ≤ n and j ≤ n, create an edge
from ui to wj in Eb iff (vi, vj) ∈ E.

Finally, for Step 6 and 7, we perform k executions of the well-known Hun-
garian algorithm, which also can be done in polynomial time.

After analyzing each step of Algorithm 1, we conclude that this explicit
construction of an ε-halver can be done in polynomial-time.

Now, it remains to verify the time complexity in arranging a separator.
Here, we present a simplified construction of a (λ, σ, ε)-separator. In [11,13],

there is more sophisticated constructions. But, our purpose is only to show it is
possible to perform it with a polynomial construction.

Algorithm 3 ((λ, σ, ε)-separator construction) [3].

1. Given an input with m keys to be ordered, create an array S with m positions
in the bottom level d.

2. Construct a ε-halver in the first level (level 0) of the separator. Apply the m
keys to this ε-halver and send the output sets L0 and R0 with m/2 (each) to
level 1.

3. For each level 0 < i < d, construct two ε-halver hL
i and hR

i and then:
– Apply the m/2i keys in Li−1 to hL

i and send the output left half to level
i + 1 as Li.

– Send the output right half of hL
i to the positions S[(m/2i+1) + 1] to

S[m/2i] in bottom level.
– Apply the m/2i keys in Ri−1 to hR

i and send the right half of the output
to level i + 1 as Ri.

– Send the output left half of hR
i to the positions S[(m/2i)+1] to S[(m/2i)+

(m/2i+1)] in bottom level.

Note that by this construction λ = 2(1−d) and σ = d × ε (the presence of
ε × m strangers dissipates across the levels resulting in σn). For a depth d = 4
(See Fig. 6), we can construct a (1/8, 1/18, 1/72)-separator using (1/72)-halvers.

The sorting network has O(log n) layers with a complete binary tree on each
layer with O(n) nodes. Each node has a (λ, σ, ε)-separator, and the layers are
interconnected so that the complete circuit has depth O(log n) (See a detailed
construction in [3], Sect. 11.4). Then, Proposition 1 holds.

Parameterized Complexity Classes Defined by Threshold Circuits 361

Fig. 6. A (1/8, 1/18, 1/72)-separator. The array S is formed by {G1, G2, G3, G4}.

Proposition 1. One can construct an AKS sorting network in polynomial time.

Lemma 4. For each t ∈ N, it holds that Th[t] ⊆ W[SAT].

Proof. To show the W[SAT]-membership of WTCS(t, h), for every t ∈ N, we first
ensure the existence of a polynomial-time algorithm that converts a threshold
gate (with fan-in n) in Boolean circuit with O(log n) depth. We know that the
AKS sorting networks have logarithmic depth, and by construction its gates
has bounded fan-out. In addition, AKS sorting networks can be constructed in
polynomial time on the number of inputs as described in this section.

Therefore, we can replace each unweighted threshold gate for an equivalent
decision Boolean circuit by first construct an AKS network and then converting
it into a treelike sub-circuit. After that, to obtain a complete treelike circuit, it
is enough to handle with the gates inter sorting networks, which can be done
since instances of WTCS(t, h) have depth bounded by h, which is a constant.

Hence, in polynomial time one can take an instance of WTCS(t, h) and out-
puts an equivalent treelike Boolean circuit C, i.e., a decision circuit correspond-
ing to a Boolean formula. Thus, WTCS(t, h) is fixed-parameter reducible to
WSAT and Th[t] ⊆ W[SAT], for each t ∈ N. 	

Figure 7 shows the inclusion relationships we know between classes of the
W-hierarchy and Th-hierarchy.

362 R. M. Paranhos et al.

Fig. 7. Relationship between W-hierarchy and Th-hierarchy.

References

1. Ajtai, M., Komlós, J., Szemerédi, E.: An 0 (n log n) sorting network. In: Proceed-
ings of the Fifteenth Annual ACM Symposium on Theory of Computing, pp. 1–9
(1983)

2. Alon, N.: Eigenvalues and expanders. Combinatorica 6(2), 83–96 (1986). https://
doi.org/10.1007/BF02579166

3. Al-Haj Baddar, S.W., Batcher, K.E.: The AKS sorting network. In: Designing
Sorting Networks. Springer, New York. https://doi.org/10.1007/978-1-4614-1851-
1 11

4. Batcher, K.E.: Sorting networks and their applications. In: Proceedings of the
Spring Joint Computer Conference, April 30 – 2 May 1968, pp. 307–314 (1968)

5. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer Science & Busi-
ness Media (2012)

6. Fellows, M., Flum, J., Hermelin, D., Müller, M., Rosamond, F.: W-hierarchies
defined by symmetric gates. Theory Comput. Syst. 46(2), 311–339 (2010). https://
doi.org/10.1007/s00224-008-9138-6

7. Hajnal, A., Maass, W., Pudlák, P., Szegedy, M., Turán, G.: Threshold circuits of
bounded depth. J. Comput. Syst. Sci. 46(2), 129–154 (1993)

8. Lubotzky, A., Phillips, R., Sarnak, P.: Explicit expanders and the Ramanujan
conjectures. In: Proceedings of the Eighteenth Annual ACM Symposium on Theory
of Computing, pp. 240–246 (1986)

9. Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8(3),
261–277 (1988)

10. O’connor, D.G., Nelson, R.J.: Sorting system with nu-line sorting switch, 10 April
1962, US Patent 3,029,413

11. Paterson, M.S.: Improved sorting networks with o (log n) depth. Algorithmica 5(1),
75–92 (1990)

https://doi.org/10.1007/BF02579166
https://doi.org/10.1007/BF02579166
https://doi.org/10.1007/978-1-4614-1851-1_11
https://doi.org/10.1007/978-1-4614-1851-1_11
https://doi.org/10.1007/s00224-008-9138-6
https://doi.org/10.1007/s00224-008-9138-6

Parameterized Complexity Classes Defined by Threshold Circuits 363

12. Tanner, R.M.: Explicit concentrators from generalized N-GONS. SIAM J. Alge-
braic Discrete Methods 5(3), 287–293 (1984)

13. Xie, H.: Studies on sorting networks and expanders. Ph.D. thesis, Ohio University
(1998)

Maximization of Monotone
Non-submodular Functions
with a Knapsack Constraint

over the Integer Lattice

Jingjing Tan1, Fengmin Wang2, Xiaoqing Zhang3, and Yang Zhou4(B)

1 School of Mathematics and Information Science, Weifang University,
Weifang 261061, People’s Republic of China

2 Beijing Jinghang Research Institute of Computing and Communication,
Beijing 100074, People’s Republic of China

3 Department of Operations Research and Information Engineering,
Beijing University of Technology, Beijing 100124, People’s Republic of China

4 School of Mathematics and Statistics, Shandong Normal University,
Jinan 250014, People’s Republic of China

zhouyang@sdnu.edu.cn

Abstract. The problem of submodular maximization on the integer lat-
tice has attracted more and more attention due to its deeply applications
in many areas. In this paper, we consider maximizing a non-negative
monotone non-submodular function with knapsack constraint on massive
data. We combine two proposed algorithms called StreamingKnapsack
and BinarySearch for this problem by introducing the DR ratio γd and
the weak DR ratio γw of the non-submodular objective function. Finally,
we obtain the performance guarantee of the StreamingKnapsack supple-
mented by a simple one-pass algorithm, with the approximation ratio
of the better output of them as min{γ2

d(1 − ε)/2γd+1, 1 − 1/γw2γd − ε}.
Meanwhile, both the time complexity and space complexity are depen-
dent on the size of knapsack capacity K and ε ∈ (0, 1).

Keywords: Integer lattice · Non-submodular · Knapsack constraint ·
Streaming algorithm

1 Introduction

Submodularity is a concept that describes the diminishing-return property, that
is, adding an element to a small set produces more gain than adding it to a larger
one. Since the submodularity has this property, and many practical scenes, such
as, virus marketing, diversification of search results, active learning, network rea-
soning and so on [1–6,8–12,14–16,22,29,34]. For traditional maximizing submod-
ular function defined on a set, Nemhauser et al. [25] pioneered designed a greedy
algorithm with (1− 1/e)-approximation subject to a cardinality constraint. Sviri-
denko [28] proposed a (1 − 1/e)-approximation algorithm under a knapsack con-
straint. Călinescuet al. [6] used the methods of multilinear extension to design a
c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 364–373, 2021.
https://doi.org/10.1007/978-3-030-92681-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_29&domain=pdf
https://doi.org/10.1007/978-3-030-92681-6_29

Maximization of Monotone Non-submodular Functions 365

continuous greedy algorithm with (1 − 1/e)-approximation for the matroid con-
straint. However, there are still many practical problems that can not be charac-
terized by pure submodular optimization problem, such as some subset selection
problems in data science. When selecting subsets of training data in machine learn-
ing system, there may be not only redundancy but also complementarity among
some subsets of elements. All the collective utilities of these elements can be seen
only when they are used together, this requires the use of non-submodular func-
tions for modeling. This idea is also widely used in economics and social sciences,
which are aroused a lot of scholars interesting [7,17–21,23,26,27,33,35,36].

However, in the emerging applications, such as exemplar clustering to sensor
placement and machine learning problems in feature selection [31,32], we need
to maximize a submodular and non-submodular function on the integer lat-
tice. For this kind of problem, Soma et al. [30] proposed a generalization of the
problem of submodular optimization in integer lattice. Ene et al. [13] studied the
problem of maximizing a DR-submodular function with a budget constraint. For
non-submodular maximization problems, Kuhnle et al. [24] proposed Threshold-
Greedy algorithm under the cardinality constraint. Zhang et al. [37] presented a
threshold Greedy algorithm for maximizing DR-submodular plus supermodular
functions with a cardinality constraint.

In this paper, we concentrate on streaming algorithms for maximizing a non-
negative monotone non-submodular function with knapsack constraint on mas-
sive data.

1.1 Preliminaries

We will first introduce some notations, definitions and lemmas in this part.
Let K ∈ N

+, and denote [K] be the set of all the positive integer between
one and k. E = {e1, e2, · · · , en} be the ground set. Let u be a n-dimensional
vector in N

E , and denote the component of coordinate ei ∈ E of u to be u(ei).
We use 0 to denote the zero vector, χei

denote the standard unit vector, that
is, all the components has a value of 0 except for the i-th component has a
value of 1. For U ⊆ E, we denotes the characteristic vector of U as χU , and
u(U) :=

∑
ei∈U u(ei). For u ∈ N

E , supp+(u) = {e ∈ E|u(e) > 0} is the
supporting set of u. Let {u} be the multi-set where the frequency of occurrence
for e is u(e), and |{u}| := u(E). Let u ∨ w and u ∧ w denote the coordinate
wise maximum and minimum of u and w, respectively. That is,

(u ∧ w)(e) = min{u(e),w(e)},

and
(u ∨ w)(e) = max{u(e),w(e)},

for each element e ∈ E. Let {u} \ {w} := {(u \w)∨0}, where {u} and {w} are
arbitrary two multi-sets.

A function g : NE → R+ is monotone non-decreasing if g(u) ≤ g(w) for any
u ≤ w. The nonegative and normalized of the function g means g(u) ≥ 0 for any
u ∈ N

E and g(0) = 0. Next, we give the definitions of (lattice) submodularity
and diminishing return submodularity.

366 J. Tan et al.

Definition 1 (DR-submodular). We call that a function g is DR-submodular
if for any e ∈ E, u,w ∈ N

V with u ≤ w, there holds

g(w + χe) − g(w) ≤ g(u + χe) − g(u).

Definition 2 (Lattice submodular). We call that a function g is lattice sub-
modular, if for all u,w ∈ N

E there holds

g(u ∨ w) + g(u ∧ w) ≤ g(u) + g(w).

Suppose that the function g is defined on N
E . According to Definition 1 and

Definition 2, it is obvious that the lattice submodularity of g is not equivalent
to the DR-submodularity [32].

Let B ∈ {N⋃{∞}}E be a positive integer vector and g be defined on DB =
{u ∈ N

E : u ≤ B} satisfying g(0) = 0. Denote FB as the set of non-negative
monotone DR-submodular functions defined on DB . For g ∈ FB , and vectors
u,w ∈ N

E , define Δw (u) as the marginal increment of a vector u with w, that
is,

Δw (u) = g(u + w) − g(u).

In the following we recall the definition of DR ratio, weak DR ratio and gener-
alized curvature on the integer lattice.

Definition 3 (DR ratio). For a function g ∈ FB , the diminishing return
ratio (briefly called DR ratio) γd(g) of g is the maximal scalar that satisfies

γd(g)Δχe
(w) ≤ Δχe

(u),

for any e ∈ E, u,w ∈ DB with u ≤ w and w + χe ∈ DB .

Definition 4 (Weak DR ratio). For a function g ∈ FB , the weak DR ratio
γw(g) of g is the maximum scalar that satisfies

γw(g)(g(w) − g(u)) ≤
∑

e∈{w}\{u}
Δχe

(u),

for all u,w ∈ DB with u ≤ w, where {w} and {u} are the multisets correspond-
ing to vectors w and u respectively.

Based on the above definition, we partition all the real-valued monotone
functions defined on DB into sets Fγd,γw

B = {g ∈ FB : γd(g) = γd, γw(g) = γw}
with respect to the above non-submodularity ratios.

1.2 Problem Formulation

In this paper, we study the maximization of a non-submodular function with
knapsack constraint on the integer lattice (briefly called MKC). We denote E
as the ground set with size n, y ∈ N

E as an n-dimensional vector, g ∈ FB as

Maximization of Monotone Non-submodular Functions 367

a monotone non-submodular function. Therefore, the problem can be expressed
as

max g(y) subject to hTy ≤ K,

where K ∈ N is the total budget, and h ∈ R
E
+ is the vector of weight with hei

as the weight of element ei. Consequently we have an assumption that hei
≤ K

for i = 1, . . . , n since any ei which does not satisfy this condition must not be
in the feasible solution and thus can be discarded. Also note that multiplying
both h and K by a positive scalar has no effect on the optimal value or the
optimal solution of the problem. Therefore, WLOG, we can always assume that
min{hei

}n
i=1 ≥ 1. Denote y∗ as the optimal solution and OPT as the optimal

value of MKC.

1.3 Organization

The rest of the paper is organized as follows. In Sect. 2 we propose the Stream-
ingKnapsack algorithm to solve MKC with its theoretical analysis. In Sect. 3, we
summarize our work.

2 Algorithms

In this section, we propose the StreamingKnapsack algorithm for MKC, which
is not only a generalization of the MarginalRatioThresholding algorithm in [17]
to the non-submodular case, but also extends this algorithm to the setting of
integer lattice.

Description. The StreamingKnapsack adds all copies of e ∈ E when the addi-
tion does not violate the knapsack constraint and the average marginal gain
exceeds the threshold condition

Δtχe
(yv) ≥ γdv − g(yv)

2γdK − hTyv
.

If t also satisfies the following condition

Δ(t+1)χe
(y) <

γdv − g(yv)
2γdK − hTyv

,

then t is the satisfactory level of the remaining element e. Note that although in
BinarySearch the marginal increment density, denoted as Δtχe (y)

the
, is not mono-

tone with respect to t, the output of this algorithm still satisfies the above two
equalities. In this whole subsection we denote ỹ as the output of StreamingKnap-
sack. For this algorithm we can deduce the following two lemmas to get further
conclusions on its approximation guarantee.

368 J. Tan et al.

Algorithm 1. StreamingKnapsack

Input: stream of data E, g ∈ FB , B ∈ N
E , ε > 0, weight vector h ∈ R

E
+, total

budget K.

Output: a vector y ∈ N
E .

1: M ← max
e∈E

g(χe);

2: Vε = {(1 + ε)i| M
1+ε

≤ (1 + ε)i ≤ KM
(1−ε)γd

};

3: for each v ∈ Vε do

4: yv ← 0;

5: for e ∈ E do

6: if hTyv ≤ K then

7: t ← BinarySearch

(
g,yv,B,h, e, K, γdv−g(y v)

2γd K−hT y v

)
;

8: end if

9: end for

10: end for

11: return y = arg maxv g(yv)

Lemma 1. For each i-th iteration of StreamingKnapsack, we have

g(yi−1 + tiχei
) ≥ γdv

2γdK
hTyi. (1)

Lemma 2. If hT ỹ < K, we have

Δχe
(ỹ) <

v

2γdK
he,

for any e ∈ {y∗} \ {ỹ}.
Indeed, simply running StreamingKnapsack could not get a constant approx-

imation factor solution. Similar with submodular maximization problems with
knapsack constraints in set function settings, the reason is that there may exist
some elements in the optimal solution which is of large weight with their marginal
increment density not large enough. The existence of such elements will lead to
the priority of adding some elements with small weights and high density in the
running of the algorithm so that they cannot be added due to the knapsack con-
straint. We call this kind of elements as “bad elements”, whose formal definition
is as the following.

Definition 5 (Bad element). We call e ∈ {y∗} a bad element if it satisfies
the threshold condition

Δteχe
ye

tehe
≥ γdv − g(ye)

2γdK − hTye

, (2)

Maximization of Monotone Non-submodular Functions 369

Algorithm 2. BinarySearch (g,y,B,h, e,K, τ)

Input: stream of data E, e ∈ E, g ∈ FB , h ∈ N
E , y ∈ N

E , and τ ∈ R+.

Output: t.

1: ts ← 1;

2: tr ← min
{
Be,

⌊
K−hT y

he

⌋}

3: if
Δtrχe (y)

trhe
≥ τ then

4: return tr;

5: end if

6: if
Δχe (y)

he
< τ then

7: return 0;

8: end if

9: while tr < ts + 1 do

10: m = � tr+ts
2

�;
11: if

Δmχe (y)

mh (e)
≥ τ then

12: ts = m;

13: else

14: tr = m;

15: end if

16: end while

17: return ts

in StreamingKnapsack, but the total budget exceeds K when added. That is,
hTye ≤ K and hT (ye + teχe) > K, where ye is the vector just before element e
arrives.

The following two lemmas indicates that when there is no bad element in
the running of StreamingKnapsack, then a preliminary constant approximation
guarantee can be obtained.

Lemma 3. Assume that v ≤ g(y∗) and there has been no bad item in Stream-
ingKnapsack, then we have g(ỹ) ≥ (1 − 1/γw2γd)v.

Lemma 4. Suppose that M = max
e∈E

g(χe)
he

. Then there must exist a v ∈ Vε satis-

fying (1 − ε)OPT ≤ v ≤ OPT.

To deal with instances that may exists bad elements, a one-pass algorithm
name as OptimalSingleton in which we choose an optimal element with maximal

370 J. Tan et al.

feasible copies is proposed as a supplement of StreamingKnapsack, as is shown
in Algorithm 3.

Algorithm 3. OptimalSingleton

Input: stream of data E, e ∈ E, g ∈ FB .

1: y ← 0;

2: for the coming element e do

3: te ← min
{
Be,

⌊
K
he

⌋}
;

4: if g (teχe) > g(y) then

5: y ← teχe;

6: end if

7: end for

8: return y

In general, the output of separately running OptimalSingleton is not a con-
stant factor approximation solution either, whereas the better one of both
StreamingKnapsack and OptimalSingleton can be. Denote ŷ as the solution
returned by OptimalSingleton, which is the best singleton of the data. Suppose
that there are some e’s in the OPT that are bad, then together with ŷ, we
analysis the approximation ratio of StreamingKnapsack as follows.

Theorem 1. Given an instance of MKC with g ∈ Fγd,γw

B , let ỹ be the solution
returned by StreamingKnapsack, and ŷ be the solution returned by OptimalSin-
gleton. Then we have

max {g(ỹ), g(ŷ)} ≥ min
{

γ2
d(1 − ε)
2γd+1

, 1 − 1
γw2γd

− ε

}

OPT.

The total memory complexity of the two algorithms is O(K log K
ε), and the total

query complexity for each element is O(log
2 K
ε).

3 Conclusions

In this paper we consider the problem of maximizing a non-submodular func-
tion with a knapsack constraint. We design the StreamingKnapscak algorithm
combing with the BinarySearch algorithm as a subroutine for this problem. By
introducing the DR ratio and weak DR ratio, we obtain the approximation ratio
of StreamingKnapscak. Moreover, in order to get one pass algorithm, we can
further design a online algorithm by dynamically updates the maximal value of
g(χe).

Maximization of Monotone Non-submodular Functions 371

Acknowledgements. The first author is supported by Natural Science Foundation
of Shandong Province (Nos. ZR2017LA002, ZR2019MA022), and Doctoral research
foundation of Weifang University (No. 2017BS02). The second author is supported
by National Natural Science Foundation of China (No. 11901544). The third author is
supported by National Natural Science Foundation of China (No. 11871081) and Beijing
Natural Science Foundation Project No. Z200002. The fourth author is supported by
Natural Science Foundation of Shandong Province of China (No. ZR2019PA004) and
National Natural Science Foundation of China (No. 12001335).

References

1. Agrawal, R., Gollapudi, S., Halverson, A., Ieong, S. Diversifying search results. In:
Proceedings of WSDM, pp. 5–14 (2009)

2. Alon, N., Gamzu, I., Tennenholtz, M.: Optimizing budget allocation among chan-
nels and influencers. In: Proceedings of WWW, pp. 381–388 (2012)

3. Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A., Krause, A.: Streaming sub-
modular maximization: massive data summarization on the fly. In: Proceedings of
KDD, pp. 671–680 (2014)

4. Buchbinder, N., Feldman, M., Schwartz, R.: Online submodular maximization with
preemption. In: Proceedings of SODA, pp. 1202–1216 (2015)

5. Balkanski, E., Rubinstein, A., Singer, Y.: An exponential speedup in parallel run-
ning time for submodular maximization without loss in approximation. In: Pro-
ceedings of SODA, pp. 283–302 (2019)

6. Călinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set
function subject to a matroid constraint. SIAM J. Comput. 40, 1740–1766 (2011)

7. Chakrabarti, A., Kale, S.: Submodular maximization meets streaming: matchings,
matroids, and more. Math. Program. 154(1), 225–247 (2015). https://doi.org/10.
1007/s10107-015-0900-7

8. Chekuri, C., Quanrud, K.: Submodular function maximization in parallel via the
multilinear relaxation. In: Proceedings of SODA, pp. 303–322 (2019)

9. Chekuri, C., Quanrud, K.: Randomize MWU for positive LPs. In: Proceedings of
SODA, pp. 358–377 (2018)

10. Das, A., Kempe, D.: Algorithms for subset selection in linear regression. In: Pro-
ceedings of STOC, pp. 45–54 (2008)

11. Das, A., Kempe, D.: Submodular meets spectral: greedy algorithms for subset
selection, sparse approximation and dictionary selection. In: Proceedings of ICML,
pp. 1057–1064 (2011)

12. EI-Arini, K., Guestrin, C.: Beyond keyword search: discovering relevant scientific
literature. In: Proceedings of ICKDDM, pp. 439–447 (2011)

13. Ene, A., Nguyen, H.L.: Submodular maximization with nearly-optimal approxima-
tion and adaptivity in nearly-linear time. In: Proceedings of SODA, pp. 274–282
(2019)

14. Golovin, D., Krause, A.: Adaptive submodularity: theory and applications in active
learning and stochastic optimization. J. Artif. Intell. Res. 42, 427–486 (2011)

15. Gomez, R.M., Leskovec, J., Krause, A.: Inferring networks of diffusion and influ-
ence. ACM Trans. Knowl. Discov. Data 8, 36–39 (2018)

16. Gong, S., Nong, Q., Liu, W., Fang, Q.: Parametric monotone function maximiza-
tion with matroid constraints. J. Glob. Optim. 75(3), 833–849 (2019). https://doi.
org/10.1007/s10898-019-00800-2

https://doi.org/10.1007/s10107-015-0900-7
https://doi.org/10.1007/s10107-015-0900-7
https://doi.org/10.1007/s10898-019-00800-2
https://doi.org/10.1007/s10898-019-00800-2

372 J. Tan et al.

17. Huang, C.-C., Kakimura, N.: Improved streaming algorithms for maximizing mono-
tone submodular functions under a Knapsack constraint. In: Friggstad, Z., Sack,
J.-R., Salavatipour, M.R. (eds.) WADS 2019. LNCS, vol. 11646, pp. 438–451.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24766-9 32

18. Jiang, Y.J., Wang, Y.S., Xu, D.C., Yang, R.Q., Zhang, Y.: Streaming algorithm
for maximizing a monotone non-submodular function under d-knapsack constraint.
Optim. Lett. 14, 1235–1248 (2020)

19. Krause, A., Leskovec, J., Guestrin, C., VanBriesen, J.M., Faloutsos, C.: Efficient
sensor placement optimization for securing large water distribution networks. J.
Water Resour. Plan. Manag. 134, 516–526 (2008)

20. Krause, A., Singh, A., Guestrin, C.: Near-optimal sensor placements in gaussian
processes: theory, efficient algorithms and empirical studies. J. Mach. Learn. Res.
9, 235–284 (2008)

21. Kapralov, M., Post, I., Vondrák, J.: Online submodular welfare maximization:
greedy is optimal. In: Proceedings of SODA, pp. 1216–1225 (2012)

22. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through
a social network. In: Proceedings of KDD, pp. 137–146 (2003)

23. Khanna, R., Elenberg, E.R., Dimakis, A.G., Negahban S., Ghosh, J.: Scalable
greedy feature selection via weak submodularity. In: Proceedings of ICAIS, pp.
1560–1568 (2017)

24. Kuhnle, A., Smith, J.D., Crawford, V.G., Thai, M.T.: Fast maximization of non-
submodular, monotonic functions on the integer lattice. In: Proceedings of ICML,
pp. 2791–2800 (2018)

25. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions. Math. Program. 14, 265–294 (1978)

26. Norouzi-Fard, A., Tarnawski, J., Mitrovic, S., Zandieh, A., Mousavifar, A., Svens-
son, O.: Beyond 1/2-approximation for submodular maximization on massive data
streams. In: Proceedings of ICML, pp. 3829–3838 (2018)

27. Simon, I., Snavely, N., Seitz, S.M.: Scene summarization for online image collec-
tions. In: Proceedings of ICCV, pp. 1–8 (2007)

28. Sviridenko, M.: A note on maximizing a submodular set function subject to a
knapsack constraint. Oper. Res. Lett. 32, 41–43 (2004)

29. Shioura, A.: On the pipage rounding algorithm for submodular function
maximization-a view from discrete convex analysis. Discrete Math. Algorithms
Appl. 1, 1–23 (2009)

30. Soma, T., Kakimura, N., Inaba, K., Kawarabayashi, K.: Optimal budget allocation:
theoretical guarantee and efficient algorithm. In: Proceedings of ICML, pp. 351–359
(2014)

31. Soma, T., Yoshida, Y.: A generalization of submodular cover via the diminishing
return property on the integer lattice. In: Proceedings of NIPS, pp. 847–855 (2014)

32. Soma, T., Yoshida, Y.: Maximization monotone submodular functions over the
integer lattice. Math. Program. 172, 539–563 (2018)

33. Vondrǎk, J.: Optimal approximation for the submodular welfare problem in the
value oracle model. In: Proceedings of STOC, pp. 67–74 (2008)

34. Wolsey, L.: Maximising real-valued submodular set function: primal and dual
heuristics for location problems. Math. Oper. Res. 7, 410–425 (1982)

35. Wang, Y., Xu, D., Wang, Y., Zhang, D.: Non-submodular maximization on massive
data streams. J. Glob. Optim. 76(4), 729–743 (2019). https://doi.org/10.1007/
s10898-019-00840-8

https://doi.org/10.1007/978-3-030-24766-9_32
https://doi.org/10.1007/s10898-019-00840-8
https://doi.org/10.1007/s10898-019-00840-8

Maximization of Monotone Non-submodular Functions 373

36. Yang, R.Q., Xu, D.C., Jiang, Y.J., Wang, Y.S., Zhang, D.M.: Approximation
robust parameterized submodular function maximization in large-scales. Asia Pac.
J. Oper. Res. 36, 195–220 (2019)

37. Zhang, Z.N., Du, D.L., Jiang, Y.J., Wu, C.C.: Maximizing DR-submodular +
supermodular function on the integer lattice subject to a cardinality constraint. J.
Glob. Optim. 80, 595–616 (2021)

Sublinear-Time Reductions for Big Data
Computing

Xiangyu Gao1,2, Jianzhong Li1,2(B), and Dongjing Miao1

1 Department of Computer Science and Technology, Harbin Institute of Technology,
Harbin, China

{gaoxy,lijzh,miaodongjing}@hit.edu.cn
2 Faculty of Computer Science and Control Engineering, Shenzhen Institute

of Advanced Technology Chinese Academy of Sciences, Shenzhen, China

Abstract. With the rapid popularization of big data, the dichotomy
between tractable and intractable problems in big data computing has
been shifted. Sublinear time, rather than polynomial time, has recently
been regarded as the new standard of tractability in big data computing.
This change brings the demand for new methodologies in computational
complexity theory in the context of big data. Based on the prior work
for sublinear-time complexity classes [9], this paper focuses on sublinear-
time reductions specialized for problems in big data computing. First, the
pseudo-sublinear-time reduction is proposed and the complexity classes
P and PsT are proved to be closed under it. To establish PsT-intractability
for certain problems in P, we find the first problem in P\PsT. Using the
pseudo-sublinear-time reduction, we prove that the nearest edge query is
in PsT but the algebraic equation root problem is not. Then, the pseudo-
polylog-time reduction is introduced and the complexity class PsPL is
proved to be closed under it. The PsT-completeness under it is regarded
as an evidence that some problems can not be solved in polylogarithmic
time after a polynomial-time preprocessing, unless PsT = PsPL. We prove
that all PsT-complete problems are also P-complete, which gives a further
direction for identifying PsT-complete problems.

Keywords: Big data computing · Sublinear-time tractability ·
Reduction techniques · Preprocessing

1 Introduction

Traditionally, a problem is considered to be tractable if there exists a polynomial-
time (PTIME) algorithm for solving it. However, PTIME no more serves as a good
yardstick for tractability in the context of big data, and sometimes even linear-
time algorithms can be too slow in practice. For example, a linear scan of a 1PB
dataset with the fastest Solid State Drives on the market will take 34.7 h [1].
Therefore, sublinear time is considered as the new standard of tractability in big
data computing [12]. This change has promoted the development of computa-
tional complexity theory specialized for problems in big data computing.
c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 374–388, 2021.
https://doi.org/10.1007/978-3-030-92681-6_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_30&domain=pdf
https://doi.org/10.1007/978-3-030-92681-6_30

Sublinear-Time Reductions for Big Data Computing 375

In the last few years, many complexity classes were proposed to formalize
tractable problems in big data computing [8,9,19]. The first attempt was made
by Fan et al. in 2013 [8], which focuses on tractable boolean query classes with
the help of preprocessing. They defined a concept of �-tractability for boolean
query classes. A boolean query class is �-tractable if it can be processed in
parallel polylogarithmic time (NC) after a PTIME preprocessing. They defined a
query complexity class � T0

Q to denote the set of �-tractable query classes. To
clarify the difference between �T0

Q and P, they proposed a form of generalized
NC reduction, referred as F -reduction ≤NC

F , and proved that �T0
Q is closed under

F -reduction. They showed that NC ⊆ �T0
Q ⊆ P, but �T0

Q
�= P unless P = NC.

Then, Yang et al. introduced a �′-tractability for short query classes, i.e.
the query length is bounded by a logarithmic function with respect to the
data size [19]. On the basis of �-tractability theory, they placed a logarithmic-
size restriction on the preprocessing result and relaxed the query execution
time to polynomial. The corresponding query complexity class was denoted as
�′T0

Q, including the set of �′-tractable short query classes. They proved that
F -reduction is also compatible with �′T0

Q and any �′T0
Q-complete query class

under F -reduction is P -complete query class under NC reduction.
A year ago, to completely describe the scope of sublinear-time tractable prob-

lems, the authors of this paper proposed two categories of sublinear-time com-
plexity classes [9]. One kind characterizes the problems that are directly feasi-
ble in sublinear time, while the other describes the problems that are solvable
in sublinear time after a PTIME preprocessing. However, we only showed that
the polylogarithmic-time class PPL is closed under DLOGTIME reduction and the
sublinear-time class PT is closed under linear-size DLOGTIME reduction, but left
reductions for pseudo-sublinear-time complexity classes as a future work.

Open Question 1. What kind of reductions are appropriate for pseudo-
sublinear-time tractable problems in big data computing?

On the other, it is also important to identify the problems that are unsolv-
able in sublinear time. Since, the new tractable standard in big data computing
essentially dichotomizes problems in P, it is significant to differentiate hardness
of problems in P. The modern approach is to prove conditional lower bounds via
fine-grained reductions [3]. Generally, a fine-grained reduction starts from a key
problem such as SETH, 3SUM, APSP, etc.., which has a widely believed conjec-
ture about its time complexity, and transfers the conjectured intractability to the
reduced problem, yielding a conditional lower bounds on how fast the reduced
problem can be solved. The resulting area is referred as fine-grained complex-
ity theory, and we refer to the surveys [17,18] for further reading. However, to
establish a problem is intractable in the context of big data, an unconditional
lower bound, even rough, is also preferred. Thus, the other goal of this paper is
to overcome the following barrier.

Open Question 2. Is there a natural problem belonging to P but not to PsT?

376 X. Gao et al.

1.1 Our Results

The focus of this paper is mainly on pseudo-sublinear-time reductions special-
ized for problems in big data computing. We reformulate the reduction used
in [4], which was originally designed for complexity classes beyond NP. The gen-
eral description of reductions proposed in this paper is illustrated in Fig. 1. We
derive appropriate reductions for different complexity classes by limiting the
computational power of functions used in it.

Fig. 1. Illustration of reductions used in this paper.

We first introduce the pseudo-sublinear-time reduction, ≤PsT
m for problems

in PsT. We prove that it is transitive and the complexity classes P and PsT are
closed under ≤PsT

m . Due to the limitation of the fraction power function, we do
not define a new P-completeness under ≤PsT

m to include the problems in P\PsT.
Instead, we prove a natural problem, the circuit value problem, can not be solved
in sublinear time after a PTIME preprocessing. This also proves that PsT � P.
After that, we reduce the algebraic equation root problem to the circuit value
problem, which means the former also belongs to P\PsT. Moreover, we show the
nearest neighbor problem is in PsT by reducing it to the range successor query.

Then, we propose the notion of pseudo-polylog-time reduction, ≤PsPL
m , and

show that PsPL is closed under ≤PsPL
m . We define the PsT-completeness under

≤PsPL
m , which can be treated as an evidence that certain problems are not solvable

in polylogarithmic time after a PTIME preprocessing unless PsT = PsPL. We prove
that all PsT-complete problems are also P-complete. This specifies the range of
possible PsT-complete problems.

Moreover, we also extend L-reduction [7] to pseudo-sublinear time and prove
that it linearly preserve approximation ratio for pseudo-sublinear-time approx-
imation algorithms. Finally, we give a negative answer to the existence of com-
plete problems in PPL under DLOGTIME reduction.

Outline. The remainder of this paper is organized as follows. Necessary prelim-
inaries are stated in Sect. 2. The definitions and properties of pseudo-sublinear-
time reduction and pseudo-polylog-time reduction are presented in Sect. 3 and
Sect. 4 respectively. The pseudo-sublinear-time L-reduction is introduced in
Sect. 5. A negative results for the existence of complete problems in PPL is shown
in Sect. 6. The paper is concluded in Sect. 7.

Sublinear-Time Reductions for Big Data Computing 377

2 Preliminaries

In this section, we briefly review the sublinear-time complexity classes introduced
in [9] and the basic concepts of reductions.

We start with some notations.

Notations. To reflect the characteristics in big data computing, the input of a
problem is partitioned into data part and problem part. Thus, a decision problem
P can be considered as a binary relation such that for each D and problem P
defined on D, 〈D,P 〉 ∈ P if and only if P (D) is true. We say that a binary
relation is in complexity class C if it is in C to decide whether a pair 〈D,P 〉 ∈ P.
Following the convention of complexity theory [14], we assume a finite alphabet
Σ of symbols to encode both of them. The length of a string x ∈ Σ∗ is denoted
by |x|. Given an integer n, let �n� denote the binary form of n.

Sublinear-Time Complexity Classes. The computational model is crucial
when describing sublinear-time computation procedures. A random-access Tur-
ing machine (RATM) M is a k-tape Turing machine including a read-only input
tape and k − 1 work tapes, referred as non-index tape. And M is additionally
equipped with k binary index tapes, one for each non-index tape. M has a spe-
cial random access state which, when entered, moves the head of each non-index
tape to the cell described by the respective index tape in one step. Based on
RATM, a series of pure-sublinear-time complexity classes are proposed in [9] to
include problems that are solvable in sublinear time.

Definition 2.1. The class PPL consists of problems that can be solved by a
RATM in O(polylog(n)) time, where n is the length of the input. And for each
i ≥ 1, PPLi consists of problems that can be solved by a RATM in O(logi n) time.

Definition 2.2. The class PT consists of problems that can be solved by a RATM
in o(n) time, where n is the length of the input.

Moreover, when the data part is fixed and known in advance, it makes sense to
perform an off-line preprocessing on it to accelerate the subsequent processing of
problem instances defined on it. Hence, some pseudo-sublinear-time complexity
classes are also defined to include the problems which are solvable in sublinear
time after a PTIME preprocessing on the data part.

Definition 2.3. A problem P is in PsPL if there exists a PTIME preprocessing
function Π(·) such that for any pair of strings 〈D,P 〉 it holds that: P (Π(D)) =
P (D), and P (Π(D)) can be solved by a RATM in O(polylog(|D|)) time.

Definition 2.4. A problem P is in PsT if there exists a PTIME preprocessing
function Π(·) such that for any pair of strings 〈D,P 〉 it holds that: P (Π(D)) =
P (D), and P (Π(D)) can be solved by a RATM in o(|D|) time. Moreover, a problem
P is in PsTR (resp. PsTE) if P ∈ PsT and the PTIME preprocessing function Π(·)
satisfies that for all big data D: |Π(D)| < |D| (resp. |Π(D)| ≥ |D|).

378 X. Gao et al.

Reductions. In complexity theory, reductions are always used to both find effi-
cient algorithms for problems, and to provide evidence that finding particularly
efficient algorithms for some problems will likely be difficult [11,14]. Two main
types of reductions are used in computational complexity theory, the many-one
reduction and the Turing reduction. A problem P1 is Turing reducible to a prob-
lem P2, denoted as P1 ≤T P2 if there is an oracle machine to solve P1 given an
oracle for P2. That is, there is an algorithm for P1 if it is available to a subrou-
tine for solving P2. While, many-one reductions are a special case and stronger
form of Turing reductions. A decision problem P1 is many-one reducible to a
decision problem P2, denoted as P1 ≤m P2, if the oracle that is, the subroutine
for P2 can be only invoked once at the end, and the answer can not be modified.

Reductions define difficulty orders (from different aspects) among problems
in a complexity class. Hence, reductions are required to be transitive and easy to
compute, relative to the complexity of typical problems in the class. For example,
when studying the complexity class NP and harder classes such as the polynomial
hierarchy, polynomial-time reductions are used, and when studying classes within
P such as NC and NL, log-space reductions are used. We say a complexity class
C is closed under a reduction if problem P1 is reducible to another problem P2

and if P2 is in C, then so must be P1.

3 Pseudo-sublinear-Time Reduction

In this section, we introduce the notion of pseudo-sublinear-time reduction to tell
whether a problem can be solved in sublinear time after a PTIME preprocessing.

Definition 3.1. A decision problem P1 is pseudo-sublinear-time reducible
to a decision problem P2, denoted as P1 ≤PsT

m P2, if there is a triple
〈f1(·), f2(·), g(·, ·)〉, where f1(·) and f2(·) are linear-size NC computable func-
tions and g(·, ·) is a PsT computable function, such that for any pair of strings
〈D,P 〉 it holds that

〈D,P 〉 ∈ P1 ⇔ 〈f(D), g(D,P)〉 ∈ P2.

Recall the general formalization of reductions specialized for problems in
big data computing shown in Fig. 1. In contrast to traditional reductions such
as polynomial-time reduction and log-space reduction, the pseudo-sublinear-time
reduction is defined for the two parts of problems respectively. Concretely speak-
ing, (1) the data part of P2 is obtained from the data part of P1 using f1(·),
and (2) the problem part of P2 is generated from the problem part of P1 using
g(·, ·) with some additional information of the data part of P1 provided by f2(·).
Intuitively, for different problems defined on the same data D, the computation
of f2(D) can be regarded as an off-line process with a one-time cost. Hence, when
talking about the running time of g(·, ·), the running time of f2(·) is excluded.
We first prove that ≤PsT

m is transitive.

Theorem 3.1. If P1 ≤PsT
m P2 and P2 ≤PsT

m P3, then also P1 ≤PsT
m P3.

Sublinear-Time Reductions for Big Data Computing 379

Proof. From P1 ≤PsT
m P2 and P2 ≤PsT

m P3, it is known that there exist four
linear-size NC computable functions f1(·), f2(·), f ′

1(·), and f ′
2(·), and two PsT

computable functions g(·, ·), g′(·, ·) such that for any pair of strings 〈D1, P1〉 and
〈D2, P2〉 it holds that

〈D1, P1〉 ∈ P1 ⇔ 〈f1(D1), g(f2(D1), P1)〉 ∈ P2,

〈D2, P2〉 ∈ P2 ⇔ 〈f ′
1(D2), g′(f ′

2(D2), P2)〉 ∈ P3.

To show P1 ≤PsT
m P3, we define three functions f ′′

1 (·), f ′′
2 (·) and g′′(·)

as follows. Let f ′′
1 (x) = f ′

1(f1(x)), f ′′
2 (x) = �|f2(x)|�#f2(x)#f ′

2(f1(x)) and
g′′(x, y) = g′(q, g(p, y)) if x = �|p|�#p#q, where # is a special symbol that
is not used anywhere else. Then we have

〈D1, P1〉 ∈ P1 ⇔ 〈f1(D1), g(f2(D1), P1)〉 ∈ P2

⇔ 〈f ′
1(f1(D1)), g′(f ′

2(f1(D1)), g(f2(D1), P1))〉 ∈ P3

⇔ 〈f ′′
1 (D1), g′′(�|f2(D1)|�#f2(D1)#f ′

2(f1(D1)), P1)〉 ∈ P3

⇔ 〈f ′′
1 (D1), g′′(f ′′

2 (D1), P1)〉 ∈ P3

With the fact that the concentration and composition of two linear-size NC
computable function are still linear-size NC computable functions, it is easy
to verify that f ′′

1 (·), f ′′
2 (·) are linear-size NC computable. As for g′′(·, ·), the

total time needed for computing g′′(f ′′
2 (D), P) is bounded by O(tg(|f2(D)|) +

tg′(|f ′
2(f1(D))|) + log |f2(D)|) = o(|D|). This completes the proof. ��

The pseudo-sublinear-time reduction is designed as a tool to prove that for
some problems in P, there is no algorithm can solve it in sublinear time after
a PTIME preprocessing. Hence, in addition to time restriction, we also limit the
output size of f1(·) and f2(·) to ensure that PsT is closed under ≤PsT

m .

Theorem 3.2. The complexity classes P and PsT is closed under ≤PsT
m .

Proof. To show PsT is closed under ≤PsT
m , we claim that for all P1 and P2 if

P1 ≤PsT
m P2 and P2 ∈ PsT, then P1 ∈ PsT. From P1 ≤PsT

m P2, we know that
there exist two linear-size NC computable functions f1(·) and f2(·), and a PsT
computable function g(·, ·) such that for any pair of strings 〈D1, P1〉 it holds that

〈D1, P1〉 ∈ P1 ⇔ 〈f1(D1), g(f2(D1), P1)〉 ∈ P2.

Furthermore, since P2 ∈ PsT, there exists a PTIME preprocessing function
Π2(·) such that for any pair of strings 〈D2, P2〉 it holds that: P2(Π2(D2)) =
P2(D2), and P2(Π2(D2)) can be solved by a RATM M2 in o(|D2|) time. Therefore,
for any pair of strings 〈D1, P1〉 we have,

P1(D1) = g(f2(D1), P1)(f1(D1)) = g(f2(D1), P1)(Π2(f1(D1))).

To show P1 ∈ PsT, we define a PTIME preprocessing function Π1(·) for P1

such that P1(D1) = P1(Π1(D1)) and a RATM for P1(Π1(D1)) running in sublinear

380 X. Gao et al.

time with respect to |D1|. First, let Π1(x) = �|f2(x)|�#f2(x)#Π2(f1(x)), where
is a special symbol that is not used anywhere else. It is remarkable to see that
�|f2(x)|� is used to help us to distinguish the two parts of the input in logarithmic
time. Then we construct a RATM M1 by appending a pre-procedure to M2. More
concretely, with input Π1(D1) and P1, M1 first copies �|f2(D1)|� to its work tap
and computes the index of the second #, which equals to |f2(D1)|+|�|f2(D1)|�|+
1. Then M1 generates g(f2(D1), P1) according to the information between the
two #s. Finally, M1 simulates the computation of M2 with input Π2(f1(D1)),
the information behind the second #, and g(f2(D1), P1), then outputs the result
returned by M2.

Since Π2(·) is PTIME computable, both f1(·) and f2(·) are NC computable,
and the length of a string is logarithmic time computable, the running time of
Π1(·) can bounded by a polynomial. The time required by computing the index
of the second # is tI = O(log |f2(D1)|) And, g(·, ·) is computable in o(|f2(D1)|)
time. As both f1(·) and f2(·) are linear-size functions, the running time of M1 is
bounded by tI + tg + tM2 = O(log |f2(D1)|+o(|f2(D1)|)+o(|f1(D1)|) = o(|D1|).
Thus, P1 ∈ PsT.

As for P, we can consider another characterization for problems in P. That is,
there is a PTIME preprocessing function Π(·) and a PTIME RATM M such that for
any pair of strings 〈D,P 〉 it holds that: P (Π(D)) = P (D) and P (Π(D)) can be
solved by M . Then with similar construction as above, it is easy to prove that
P is closed under ≤PsT

m . ��
The reduction defines a partial order of computational difficulty of problems

in a complexity class, and the complete problems are regarded as the hardest
ones. Analogous to NP-completeness, the P-complete problems under ≤PsT

m can
be considered as intractable problems in P\PsT if P �= PsT. However, we don’t
think it is appropriate to define that new P-completeness for the following reason.
According to the proofs of the first complete problem of P (under NC reduction)
and NP, we notice that the size of the resulted instance is always related to the
running time of the Turing machine for the origin problem. Hence, the linear-
size restriction of f1(·) and f2(·) may be too strict to hold. Nevertheless, we
succeeded to find a natural problem in P\PsT. Then, based on it, we can establish
the unconditional pseudo-sublinear-time intractability for problems in P\PsT.
Circuit Value Problem (CVP)

◦ Given: A Boolean circuit α, and inputs x1, · · · , xd.
◦ Problem: Is the output of α is TRUE on inputs x1, · · · , xd?

Theorem 3.3. There is no algorithm can preprocess a circuit α in polynomial
time and subsequently answer whether the output of α on the input x1, · · · , xd is
TRUE in sublinear time. That is, CVP ∈ P\PsT.
Proof. As stated in [10], given d variables, there are 22d distinct boolean functions
can be constructed in total. And each of them can be written as a full disjunc-
tive normal from its truth table, which can easily represented by a circuit. Sup-
pose CVP belongs to PsT, i.e., there is a PTIME preprocessing function Π(·) on α

Sublinear-Time Reductions for Big Data Computing 381

such that for all interpretations of x1, · · · , xd, α(x1, · · · , xd) = Π(α)(x1, · · · , xd)
can be computed in sublinear time with respect to |α|. Consider any two distinct
circuits α1 and α2 with the same variables x1, · · · , xd. There exists an interpre-
tation for x1, · · · , xd such that α1(x1, · · · , xd) �= α2(x1, · · · , xd). Consequently,
Π(α1) �= Π(α2). Therefore, all these circuits have different outputs of the function
Π(·). Since there are totally 22d different circuits, then there should be at least 22d

different outputs of Π(·) on all these circuits. To denote these, the length of Π(α)
should be at least log 22d = 2d. This contradicts to Π(·) is PTIME computable by
choosing d = ω(log |α|). ��

Algebraic Equation Root Problem (AERP)

◦ Given: An algebraic equation P with variables x1, · · · , xd, and an assignment
A = (a1, · · · , ad).

◦ Problem: Is A a root of P?

Theorem 3.4. CVP ≤PsT
m AERP.

Proof. Assume we are given a boolean circuit α, we define a transformation of
α into an equation P such that the output of α is TRUE on inputs x1, · · · , xd if
and only if A = (x1, · · · , xn) is a root of P . First, let f1(·), f2(·) express the
following procedure. Traverse α in a topological order: (1) if an AND gate with
input u, v is met, represent it by u × v, (2) if an OR gate with input u, v is met,
represent it by u + v − u × v, (3) if a NOT gate with input u, is met, represent it
by 1 − u, (4) if the final output gate z is met, represent it by z = 1. Then, for
each xi if the input xi is TRUE, g(f2(α), xi) = 1, otherwise, g(f2(α), xi) = 0.

It is easy to see that the output of α is TRUE on inputs x1, · · · , xd if and only
if A = (g(f2(α), x1), · · · , g(f2(α), xn)) is a root of f1(α). And as stated in [6], the
topological traversal of a DAG can be computed in NC. Moreover, both |f1(α)|
and |f2(α)| are less than 7|α|. And let d = o(|α|), g(·, ·) is PsT computable. ��
Corollary 3.1. There is no algorithm can preprocess an algebraic equation P
in polynomial time and subsequently answer whether a given assignment A is a
root of P in sublinear time.

Also, ≤PsT
m can also be used to derive efficient algorithms for problems in PsT.

In the breakthrough work of dynamic DFS on undirected graphs [2], Baswana
et al. defined a nearest edge query between a subtree and an ancestor-descendant
path in the procedure of rerooting a DFS tree, which was used in almost all
subsequent work. Chen et al. showed that this query could be solved by running
a range successor query [5]. We refine the procedure as a pseudo-sublinear-time
reduction. The definitions of these two problems are given as follows.

Nearest Edge Query (NEQ)

◦ Given: A DFS tree T of graph G, the endpoints x, y of an ancestor-
descendant path, the root w of a subtree T (w) such that par(w) ∈ path(x, y).

382 X. Gao et al.

◦ Problem: Find the edge e that is incident nearest to x among all edges
between T (w) and path(x, y).

Range Successor Query (RSQ)

◦ Given: A set of d-dimensional points S, a query rectangle Q = Πd
i=1[ai, bi].

◦ Problem: Find the point p with smallest x-coordinate among all points that
are in the rectangle Q.

Theorem 3.5 [5]. NEQ ≤PsT
m RSQ.

Proof. Given a graph G = (V,E) and a DFS tree T of G, define f1 : E →
S as follows, where S is a set of 2-dimensional points. Denote the preorder
traversal sequence of T by ρ, note that every subtree of T can be represented by
a continuous interval of ρ. Let ρ(v) denote the index of vertex v in this sequence
that is if v is the i-th element in ρ, then ρ(v) = i. For each edge (u, v) ∈ E,
f1((u, v)) = (ρ(u), ρ(v)). That is for each edge (u, v), a point (ρ(u), ρ(v)) is
added into S. Notice that for each point p ∈ S, there exists exactly one edge
(u, v) associated with p. Next we state the information provided by f2(·). For
each vertex v, let γ(v) = maxw∈T (v) ρ(w), i.e., the maximum index of vertices in
T (v). Thus, define f2(v) as ρ(v)#γ(v) for each v ∈ V .

Then, to answer an arbitrary query instance T (w), p(x, y), let g be the func-
tion mapping w, x, y to a rectangles Ω = [ρ(x), ρ(w) − 1] × [ρ(w), γ(w)]. Finally,
given a point p ∈ S as the final result of RSQ, let h(·, ·) be reverse function
of f1(·), i.e., it returns the edge of G corresponding to p. It is easily to verify
that the edge corresponding to the point with minimum x-coordinate is the edge
nearest to x among all edges between T (w) and path(x, y) [5].

The preorder traversal sequence of T can be obtained by performing a DFS
on it, which can be done in NC as stated in [16]. Therefore, both f1(·) and f2(·)
are NC computable. Moreover, since each e ∈ E, there is a point p = f1(e) in S
and for each point p ∈ S, there is exactly one edge e associated with p, we have
|f1(G)| ∈ O(|G|). Similarly, for each vertex v, f2(v) records two values for it.
Hence, |f2(G)| ∈ O(|G|). As for g(·, ·) and h(·, ·), with the mapping provided by
f2(·), both of them can be computed in sublinear time. ��

Notice that for optimization problems, we need not only the functions con-
verting the data part and problem part of P1 to corresponding part of P2, but
also a function h(·, ·) mapping the solution of P2 back to the solution of P1. The
resources restriction of h(·, ·) is set to be the same as g(·, ·). There is numer-
ous work showing that RSQ belongs to PsT [13]. Hence, with the fact that the
complexity class PsT is closed under ≤PsT

m , the following corollary is obtained.

Corollary 3.2. NEQ ∈ PsT.

4 Pseudo-polylog-Time Reduction

In this section, we introduce the notion of pseudo-polylog-time reduction, which
will be used to clarify the difference between PsT and PsPL.

Sublinear-Time Reductions for Big Data Computing 383

Definition 4.1. A decision problem P1 is pseudo-polylog-time reducible to
a decision problem P2, denoted as P1 ≤PsPL

m P2, if there is a triple
〈f1(·), f2(·), g(·, ·)〉, where f1(·) and f2(·) are NC computable functions and g(·, ·)
is a PPL computable function, such that for any pair of strings 〈D,P 〉 it holds
that

〈D,P 〉 ∈ P1 ⇔ 〈f1(D), g(f2(D), P)〉 ∈ P2.

With similar proof of Theorem 3.1 and Theorem 3.2, we can show that ≤PsPL
m

is transitive and the complexity class PsPL is closed under ≤PsPL
m .

Theorem 4.1. If P1 ≤PsPL
m P2 and P2 ≤PsPL

m P3, then also P1 ≤PsPL
m P3.

Proof. From P1 ≤PsPL
m P2 and P2 ≤PsPL

m P3, it is known that there exist four NC
computable functions f1(·), f ′

1(·), f2(·) f ′
2(·), and two PPL computable functions

g(·, ·), g′(·, ·) such that for any pair of strings 〈D1, P1〉 and 〈D2, P2〉 it holds that

〈D1, P1〉 ∈ P1 ⇔ 〈f1(D1), g(f2(D1), P1)〉 ∈ P2,

〈D2, P2〉 ∈ P2 ⇔ 〈f ′
1(D2), g′(f ′

2(D2), P2)〉 ∈ P3.

To show P1 ≤PsPL
m P3, we define two NC computable functions f ′′

1 (·), f ′′
2 (·)

and a PPL computable function g′′(·) as follows. Let f ′′
1 (x) = f ′

1(f1(x)), f ′′
2 (x) =

�|f2(x)|�#f2(x)#f ′
2(f1(x)) and g′′(x, y) = g′(p, g(q, y)) if x = �|p|�#p#q, where

is a special that is not used anywhere else. Then we have

〈D1, P1〉 ∈ P1 ⇔ 〈f1(D1), g(f2(D1), P1)〉 ∈ P2

⇔ 〈f ′
1(f1(D1)), g′(f ′

2(f1(D1)), g(f2(D1), P1))〉 ∈ P3

⇔ 〈f ′′
1 (D1), g′′(�|f2(D1)|�#f2(D1)#f ′

2(f1(D1)), P1)〉 ∈ P3

⇔ 〈f ′′
1 (D1), g′′(f ′′

2 (D1), P1)〉 ∈ P3

It is easy to verify that f ′′
1 (·), f ′′

2 (·) are in NC and g′′(·, ·) is in PPL. ��
Theorem 4.2. The complexity class PsPL is closed under ≤PsPL

m .

Proof. From P1 ≤PsPL
m P2, we know that there exist two NC computable functions

f1(·), f2(·), and a PPL computable function g(·, ·) such that for any pair of strings
〈D1, P1〉 it holds that

〈D1, P1〉 ∈ P1 ⇔ 〈f1(D1), g(f2(D1), P1)〉 ∈ P2.

Furthermore, since P2 ∈ PsPL, there exists a PTIME preprocessing function
Π2(·) such that for any pair of strings 〈D2, P2〉 it holds that: P2(Π2(D2)) =
P2(D2), and P2(Π2(D2)) can be solved by a RATM M2 in O(logc2 |D2|) for some
c2 ≥ 1. Therefore, for any pair of strings 〈D1, P1〉 we have,

P1(D1) = g(f2(D1), P1)(f1(D1)) = g(f2(D1), P1)(Π2(f1(D1))).

To show P1 ∈ PsPL, we claim that there exist a PTIME preprocessing func-
tion Π1(·) for P1 such that P1(D1) = P1(Π1(D1)) and a RATM for P1(Π1(D1))

384 X. Gao et al.

running in polylogarithmic time as required in Definition 2.3. First, let Π1(x) =
�|f2(x)|�#f2(x)#Π2(f1(x)), where # is a special symbol that is not used any-
where else. Then we construct a RATM M1 by appending a pre-procedure to
M2. More concretely, with input Π1(D1) and P1, M1 first copies �|f2(x)|� to
one of its work tapes and computes the index of the second #, which equals
to |f2(x)| + |�|f2(x)|�| + 1. Then M1 generates g(f2(D1), P1) according to the
information between the two #s. Finally, M1 simulates the computation of M2

with input Π2(f1(D1)) behind the second # and g(f2(D1), P1), then outputs the
result returned by M2.

Since Π2(·) is in PTIME, f1(·) and f2(·) are in NC, and the length of a string is
logarithmic time computable Π1(·) is obviously in PTIME. Notice that computing
the index of the second # requires tI = O(log |f2(D1)|) time and g(·, ·) is com-
putable in time O(logc3 |f2(D1)|) for some c3 ≥ 1. Therefore, the total running
time of M1 is bounded by tI + tg + tM2 = O(logc3 |f2(D1)| + logc2 |f1(D1)|) =
O(logc1 |D1|) where c1 = max{c2, c3}. Thus, P1 ∈ PsPL. ��

Due to the limitations of fractional power functions, the complexity class PsT
is not closed under ≤PsPL

m unless we add an addition linear-size restriction of func-
tion f1(·). Fortunately, this does not prevent us from defining PsT-completeness.

Definition 4.2. A problem P is PsT-hard under ≤PsPL
m if P ′ ≤PsPL

m P for all P ′ ∈
PsT. A problem P is PsT-complete under ≤PsPL

m if P is PsT-hard and P ∈ PsT.

Identifying the PsT-complete problems may help us to separate PsT and PsPL.
That is if there is a PsT-complete problem belonging to PsPL, then PsPL = PsT.
In the following, we give a specified range of possible complete problems for
PsT, by relating them to a well-known P-complete problem. Given a graph G, a
depth-first search(DFS) traverses G in a particular order by picking an unvisited
vertex v from the neighbors of the most recently visited vertex u to search, and
backtracks to the vertex from where it came when a vertex u has explored all
possible ways to search further.

Ordered Depth-First Search (ODFS)

◦ Given: A graph G = (V,E) with fixed adjacent lists, fixed starting vertex s,
and vertices u and v.

◦ Problem: Does vertex u get visited before vertex v in the DFS traversal of
G starting from s?

Theorem 4.3 [15]. ODFS is P-complete under NC reduction.

Theorem 4.4. Given a problem P, if P is PsT-complete, then P is P-complete.

Proof. It is easy to see that ODFS is in PsT. Since P is PsT-complete,
ODFS ≤PsPL

m P. That is, there exist two NC computable functions f1(·), f2(·)
and a PPL computable function g(·, ·) such that for all 〈[G, s], [u, v]〉 it holds that

〈[G, s], [u, v]〉 ∈ ODFS ⇔ 〈f1([G, s]), g(f2([G, s]), [u, v])〉 ∈ P.

Sublinear-Time Reductions for Big Data Computing 385

As stated in Theorem 4.3, ODFS is P-complete under NC reduction. For any
problem L ∈ P, there is a NC computable function h(·) such that

x ∈ L ⇔ h(x) ∈ ODFS.

Recall that the input of ODFS consists of a graph G, a starting point s,
and two vertices u, v. It is easy to modify the output format of h(x) to
�|[G, s]|�#[G, s]#[u, v] in NC, where # is a new symbol that is not used any-
where else. Now let f ′

1(x) = f1(y) and g′(x) = g(f2(y), z), if x = �|y|�#y#z.
The two separators # can be founded in logarithmic time. Consequently, it fol-
lows that

x ∈ L ⇔ 〈h(x).[G, s], h(x).[u, v]〉 ∈ ODFS ⇔ 〈f ′
1(h(x)), g′(h(x))〉 ∈ P.

Let h′(x) = f ′
1(h(x)) ◦ g′(h(x)) to denote the concentration of two parts of P we

can see that L is NC reducible to P. Therefore, P is P-complete. ��

5 Approximation Preserving Pseudo-sublinear-Time
Reduction

A natural approach to cope with problems in P\PsT or that are PsT-complete is
to design pseudo-sublinear-time approximation algorithm. Hence, in this section,
we propose the pseudo-sublinear-time L-reduction, and prove that it linearly pre-
serves approximation ratio for pseudo-sublinear-time approximation algorithms.

Let P be a big data optimization problem, given a dataset D and a problem
instance P ∈ P defined on D, let P (D) denote the set of feasible solutions of P ,
and for any feasible solution y ∈ P (D), let τP(y) denote the positive measure of
y, which is called the objective function. The goal of an optimization problem
with respect to a problem instance P ∈ P is to find an optimum solution, that
is, a feasible solution y such that τP(y) = {max,min}{τP(y′) : y′ ∈ P (D)}. In
the following, optP will denote the function mapping an instance P ∈ P defined
on D to the measure of an optimum solution.

What’s more, for each feasible solution y of D,P , the approximation ratio
of y with respect to D,P is defined as ρ(D,P, y) = max

{
τP(y)

optP(D,P) ,
optP(D,P)

τP(y)

}
.

The approximation ratio is always a number greater than or equal to 1 and is
as close to 1 as the value of the feasible solution is close to the optimum value.
Let A be an algorithm that for any D and problem instance P ∈ P defined
on D, returns a feasible solution A(Π(D), P) in sublinear time after a PTIME
preprocessing Π(·). Given a rational r ≥ 1, we say that A is an r-approximation
algorithm for P if the approximation ratio of the feasible solution A(Π(D), P)
with respect to D,P satisfies ρA(D,P,A(Π(D), P)) ≤ r.

Definition 5.1. A problem P1 is pseudo-polylog-time L-reducible to a prob-
lem P2, denoted as P1 ≤PsPL

L P2, if there is a pseudo-polylog-time reduction
〈f1(·), f2(·), g(·, ·), h(·, ·)〉 from P1 to P2 such that for all D and P ∈ P1 defined
on D it holds that:

386 X. Gao et al.

1. optP2
(f1(D), g(f2(D), P)) ≤ α · optP1

(D,P)
2. for any y ∈ solP2(f1(D), g(f2(D), P)),

|optP1
(D,P) − τP1(h(f2(D), y))| ≤ β · |optP2

(f1(D), g(f2(D), P)) − τP2(y)|.
Theorem 5.1. Given two problems P1 and P2, if P1 ≤PsPL

L P2 with parameter
α and β and there is a pseudo-polylog-time (1 + δ)-approximation algorithm for
P2, then there is a pseudo-polylog-time (1 + γ)-approximation algorithm for P1,
where γ = αβ · δ if P1 is a minimization problem and γ = αβδ

1−αβδ if P1 is a
maximization problem.

Proof. The algorithm for P1 is constructed as stated in the proof of Theorem
4.2. Then, if P1 is a minimization problem, it holds that

τP1(h(D, P, y))

optP1
(D, P)

=
optP1

(D, P) + τP1(h(D, P, y)) − optP1
(D, P)

optP1
(D, P)

≤ optP1
(D, P) + β · ∣

∣τP2(y) − optP2
(f(D), g(D, P))

∣
∣

optP1
(D, P)

≤ 1 + αβ ·
∣
∣
∣
∣
∣

τP2(y) − optP2
(f(D), g(D, P)))

optP2
(f(D), g(D, P))

∣
∣
∣
∣
∣

Thus we obtain a (1 + αβ · δ)-approximation algorithm for P1. And, if P1 is a
maximization problem, it holds that

τP1(h(D, P, y))

optP1
(D, P)

=
optP1

(D, P) + τP1(h(D, P, y)) − optP1
(D, P)

optP1
(D, P)

≥ optP1
(D, P) − β · ∣

∣optP2
(f(D), g(D, P)) − τP2(y)

∣
∣

optP1
(D, P)

≥ 1 − αβ ·
∣
∣
∣
∣
∣

optP2
(f(D), g(D, P)) − τP2(y))

optP2
(f(D), g(D, P))

∣
∣
∣
∣
∣

Thus the algorithm is a (1 + αβδ
1−αβδ)-approximation algorithm for P1. ��

It is easy to extend the above definition in the context of pseudo-sublinear-
time reduction. Hence, the following theorem is derived.

Theorem 5.2. Given two problems P1 and P2, if P1 ≤PsT
L P2 with parameter α

and β and there is a pseudo-sublinear-time (1 + δ)-approximation algorithm for
P2, then there is a pseudo-sublinear-time (1 + γ)-approximation algorithm for
P1, where γ = αβ · δ if P1 is a minimization problem and γ = αβδ

1−αβδ if P1 is a
maximization problem.

6 Complete Problems in PPL

We have shown that PPL is closed under DLOGTIME reduction and defined PPL-
completeness in [9]. However, we did not manage to find the first natural PPL-
complete problem. In this section, we give a negative answer to the existence of
PPL-complete problems.

Sublinear-Time Reductions for Big Data Computing 387

Lemma 6.1 [9]. For any two problems P1 and P2, if P2 ∈ PPLi, and there is a
DLOGTIME reduction from P1 to P2, then P1 ∈ PPLi+1.

Theorem 6.1 [9]. For any i ∈ N, PPLi � PPLi+1.

Theorem 6.2. There is no PPL-complete problem under DLOGTIME reduction.

Proof. For contradiction, suppose there is a PPL-complete problem P under
DLOGTIME reduction. Hence, there is a constant c ≥ 1 such that P ∈ PPLc. For
Theorem 6.1, for any i ∈ N, there is a problem Pi+1 which belongs to PPLi+1 but
not to PPLi. Let k = c+1. Since P is PPL-complete, there is a DLOGTIME reduction
from Pk+1 to P. From Lemma 6.1, it is derived that Pk+1 ∈ PPLc+1 = PPLk.
This contradicts to the fact that Pk+1 ∈ PPLk+1\PPLk. ��

Notice that every un-trivial problems in PPL1 is PPL1-complete under
DLOGTIME reduction. It is still meaningful to find complete problems of each
level in PPL hierarchy.

7 Conclusion

This paper studies the pseudo-sublinear-time reductions specialized for problems
in big data computing. Two concrete reductions ≤PsT

m and ≤PsPL
m are proposed. It

is proved that the complexity classes P and PsT are closed under ≤PsT
m , and the

complexity class PsPL is closed under ≤PsPL
m . These provide powerful tools not

only for designing pseudo-sublinear-time algorithms for some problems, but also
for proving certain problems are infeasible in sublinear time after a PTIME pre-
processing. More concretely, based on the fact that circuit value problem belongs
to P\PsT, the algebraic equation root problem is proved not in PsT by establish
a ≤PsT

m reduction from CVP to it. Since CVP is P-complete under NC reduc-
tion, it may turn out to be an excellent starting point for many results, yielding
pseudo-sublinear-time reductions for fundamental problems and giving uncon-
ditional pseudo-sublinear intractable results. Then to separate PsT and PsPL,
the PsT-completeness is defined under ≤PsPL

m . We give out a range of possible
PsT-complete problems by proving that all of them are also P-complete under NC
reduction. We also extend the L-reduction to pseudo-sublinear time and prove it
linearly preserves approximation ratio for pseudo-sublinear-time approximation
algorithms. Finally, we give an negative answer to the existence of PPL-complete
problems under DLOGTIME reduction. This may guide the following efforts focus-
ing on finding complete problems for each level of PPL hierarchy.

Acknowledgment. This work was supported by the National Natural Science Foun-
dation of China under grants 61732003, 61832003, 61972110 and U1811461.

References

1. SSD ranking: the fastest solid state drives. https://www.gamingpcbuilder.com/
ssd-ranking-the-fastest-solid-state-drives/. Accessed 4 Aug 2021

https://www.gamingpcbuilder.com/ssd-ranking-the-fastest-solid-state-drives/
https://www.gamingpcbuilder.com/ssd-ranking-the-fastest-solid-state-drives/

388 X. Gao et al.

2. Baswana, S., Chaudhury, S.R., Choudhary, K., Khan, S.: Dynamic DFS in undi-
rected graphs: breaking the o(m) barrier. In: Krauthgamer, R. (ed.) Proceedings
of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, Arlington, VA, USA, 10–12 January 2016, pp. 730–739. SIAM (2016)

3. Bringmann, K.: Fine-grained complexity theory (tutorial). In: 36th International
Symposium on Theoretical Aspects of Computer Science (STACS 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

4. Cadoli, M., Donini, F.M., Liberatore, P., Schaerf, M.: Preprocessing of intractable
problems. Inf. Comput. 176(2), 89–120 (2002)

5. Chen, L., Duan, R., Wang, R., Zhang, H., Zhang, T.: An improved algorithm for
incremental DFS tree in undirected graphs. In: Eppstein, D. (ed.) 16th Scandina-
vian Symposium and Workshops on Algorithm Theory, SWAT 2018. Volume 101
of LIPIcs, Malmö, Sweden, 18–20 June 2018, pp. 16:1–16:12. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2018)

6. Cook, S.A.: A taxonomy of problems with fast parallel algorithms. Inf. Control
64(1–3), 2–22 (1985)

7. Crescenzi, P.: A short guide to approximation preserving reductions. In: Proceed-
ings of the Twelfth Annual IEEE Conference on Computational Complexity, Ulm,
Germany, 24–27 June 1997, pp. 262–273. IEEE Computer Society (1997)

8. Fan, W., Geerts, F., Neven, F.: Making queries tractable on big data with prepro-
cessing. Proc. VLDB Endow. 6(9), 685–696 (2013)

9. Gao, X., Li, J., Miao, D., Liu, X.: Recognizing the tractability in big data com-
puting. Theor. Comput. Sci. 838, 195–207 (2020)

10. Holdsworth, B., Woods, R.C.: Karnaugh maps and function simplification. In:
Holdsworth, B., Woods, R.C. (eds.) Digital Logic Design, 4th edn, pp. 43–80.
Newnes, Oxford (2002)

11. Rogers, H., Jr.: Theory of Recursive Functions and Effective Computability. MIT
Press, Cambridge (1987). (Reprint from 1967)

12. Li, J.: Complexity, algorithms and quality of big data intensive computing. In:
Database Systems for Advanced Applications - 19th International Conference,
DASFAA 2014, Bali, Indonesia. Springer (2014)

13. Nekrich, Y., Navarro, G.: Sorted range reporting. In: Fomin, F.V., Kaski, P. (eds.)
SWAT 2012. LNCS, vol. 7357, pp. 271–282. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31155-0 24

14. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)
15. Reif, J.H.: Depth-first search is inherently sequential. Inf. Process. Lett. 20(5),

229–234 (1985)
16. Smith, J.R.: Parallel algorithms for depth-first searches I. Planar graphs. SIAM J.

Comput. 15(3), 814–830 (1986)
17. Williams, V.V.: Hardness of easy problems: basing hardness on popular conjec-

tures such as the strong exponential time hypothesis (invited talk). In: Husfeldt,
T., Kanj, I.A. (eds.) 10th International Symposium on Parameterized and Exact
Computation, IPEC 2015, Volume 43 of LIPIcs, Patras, Greece, 16–18 September
2015, pp. 17–29. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2015)

18. Williams, V.V.: On some fine-grained questions in algorithms and complexity. In:
Proceedings of the International Congress of Mathematicians: Rio de Janeiro 2018,
pp. 3447–3487. World Scientific (2018)

19. Yang, J., Wang, H., Cao, Y.: Tractable queries on big data via preprocessing with
logarithmic-size output. Knowl. Inf. Syst. 56(1), 141–163 (2017). https://doi.org/
10.1007/s10115-017-1092-7

https://doi.org/10.1007/978-3-642-31155-0_24
https://doi.org/10.1007/978-3-642-31155-0_24
https://doi.org/10.1007/s10115-017-1092-7
https://doi.org/10.1007/s10115-017-1092-7

Capacitated Partial Inverse Maximum
Spanning Tree Under the Weighted

l∞-norm

Xianyue Li1(B) , Ruowang Yang1, Heping Zhang1, and Zhao Zhang2

1 School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000,
Gansu, People’s Republic of China

lixianyue@lzu.edu.cn
2 College of Mathematics Physics and Information Engineering, Zhejiang Normal

University, Jinhua 321004, Zhejiang, People’s Republic of China

Abstract. Given an edge weighted graph, and an acyclic edge set, the
goal of the partial inverse maximum spanning tree problem is to modify
the weight function as small as possible such that there exists a maximum
spanning tree with respect to the new weight function containing the
given edge set. In this paper, we consider this problem with capacitated
constraint under the weighted l∞-norm. By studying the properties of
the optimal value and a special kind of optimal solutions, combining the
algorithm for the decision version of this problem with the Binary search
method, we present a strongly polynomial-time algorithm for calculating
the optimal value and an optimal solution.

Keywords: Partial inverse problem · Spanning tree · Polynomial time
algorithm

1 Introduction

Many classical 0–1 combinatorial optimization problems can be written as
(E, T , w), where E is a ground set, T ⊆ 2E is the set of feasible solutions, w is
a weight function on E, and for any T ∈ 2E , w(T) =

∑

e∈T

w(e). The objective of

(E, T , w) is to find an optimal solution T ∗ ∈ T such that

w(T ∗) = optT∈T w(T),

where “opt” can be “max” or “min”. Given a combinatorial optimization prob-
lem P = (E, T , w) and a partial solution T ′ (contained in some feasible solu-
tions), the partial inverse problem on P is to find a new weight function w∗ such

Supported by National Numerical Windtunnel Project (No. NNW2019ZT5-B16),
National Natural Science Foundation of China (Nos. 11771013, 11871256, 12071194,
U20A2068), and the Basic Research Project of Qinghai (No. 2021-ZJ-703), Zhejiang
Provincial Natural Science Foundation of China (No. LD19A010001).

c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 389–399, 2021.
https://doi.org/10.1007/978-3-030-92681-6_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_31&domain=pdf
http://orcid.org/0000-0002-6311-8888
http://orcid.org/0000-0003-4191-7598
https://doi.org/10.1007/978-3-030-92681-6_31

390 X. Li et al.

that T ′ can be extended to an optimal solution with respect to w∗ and the dif-
ference between w and w∗ is minimized. Researchers usually use the Hamming
distance ‖·‖H and the lp-norm ‖·‖p (p ≥ 1 is an integer or p = ∞) to measure the
difference. A partial inverse problem is called as capacitated, if for any element
e ∈ E, −l(e) ≤ w∗(e)−w(e) ≤ u(e), where l and u are two nonnegative functions
on E, called as decreasing and increasing bound functions, respectively.

By studying the relationship between partial inverse linear programming
problem and bi-level linear programming, researchers showed that the par-
tial inverse linear programming problem are strongly NP-Hard [1,5]. Yang [11]
showed that the capacitated partial inverse assignment problem and the capaci-
tated partial minimum cut problem under the l1-norm are APX-Hard. Without
the capacitated constraint, Gassner [4] showed that the partial inverse minimum
cut problem under the l1-norm is NP-Hard, and Yang and Zhang [12] presented
a strongly polynomial time algorithm to solve the partial inverse assignment
problem. Yang and Zhang [13] also studied the partial inverse sorting problem
and showed that this problem under the lp-norm (p = 1, 2,∞) can be solved in
polynomial-time. For the special case when the partial solution has only one ele-
ment, Lai and Orlin [6] proved that under the l∞-norm, decision versions of the
partial inverse shortest path problem on acyclic graphs, the partial inverse assign-
ment problem, the partial inverse minimum cost arc (or vertex) disjoint cycle
problem, and the partial inverse minimum cut problem are all NP-Complete.

Spanning tree problem is a very classical and famous combinatorial optimiza-
tion problem. The capacitated partial inverse maximum spanning tree problem
(abbreviated as CPIMST) have received extensive attention from researchers.
Lai and Orlin [6] firstly showed that the decision version of un-capacitated prob-
lem under the weighted l∞-norm can be solved in strongly polynomial-time.
Cai et al. [3] considered a special case of CPIMST when l ≡ 0 (in that paper,
they considered the capacitated partial inverse minimum spanning tree problem
with u ≡ 0, the two problems are equivalent) and they presented a strongly
polynomial-time algorithm to solve it. Zhang et al. [14] generalized above algo-
rithm to solve the capacitated partial inverse maximum cost base of matroid
problem with l ≡ 0. On the other hand, when u ≡ 0, Li et al. [7] showed that
CPIMST under the l∞-norm can be solved in polynomial-time. But under the
lp-norm, Li et al. [9] showed that if the partial solution has at least two edges,
CPIMST is APX-Hard, and if the partial solution has only one edge, it can be
solved in strongly polynomial-time. In [8], the authors showed that CPIMST
under the weighted sum Hamming distance is APX-Hard and it can be solved
in strongly polynomial-time under the weighted bottleneck Hamming distance.
Recently, Li et al. [10] presented approximation algorithms for CPIMST under
the weight lp-norm and the weighted sum Hamming distance. These are the first
approximate algorithms for partial inverse and inverse combinatorial optimiza-
tion problems.

In this paper, we study CPIMST under the weighted l∞-norm and present
a strongly polynomial-time algorithm to solve it. Therefore, the computational
complexity of CPIMST is completely solved.

CPIMST Under the Weighted l∞-norm 391

This paper is organized as follows. The main results are presented in Sect. 2.
In detail, we firstly present an algorithm for the decision version of this problem.
Then, by characterizing the properties of the optimal value and a special kind
of optimal solutions of CPIMST under the un-weighted l∞-norm, we present a
strongly polynomial-time algorithm to solve it. Finally, we generalize the results
from the un-weighted l∞-norm to the weighted l∞-norm. In Sect. 3, we make a
conclusion.

2 Main Results

At the beginning of this section, we give the formal definition of CPIMST under
the weighted l∞-norm and introduce some useful notations.

Definition 1. Given a graph G = (V,E) with an edge weight function w, an
edge subset E′ such that G[E′] is acyclic, a positive norm-weight function c,
and non-negative decreasing and increasing bound functions l and u, the goal of
CPIMST is to find a new weight function w∗ satisfying:

(1) there exists a maximum spanning tree T of G with respect to w∗ such that
E′ ⊆ E(T);

(2) −l(e) ≤ w∗(e) − w(e) ≤ u(e), for any edge e ∈ E;
(3) ‖ w − w∗ ‖∞= max

e∈E
{c(e)|w∗(e) − w(e)|} is minimum.

A weight function w′ is feasible if it satisfies the first two conditions.

Let G = (V,E) be a graph, and T be a spanning tree of G. For any edge
e ∈ E(G)−E(T), T +e has a unique cycle, which is called the fundamental cycle
with respect to T and e, and denoted by C(T, e). It is easy to see that for any
edge e′ ∈ C(T, e), T + e − e′ is also a spanning tree of G. On the other hand,
for any edge e ∈ E(T), T − e has exactly two components. The set of edges
connecting these two components is called the fundamental cut with respect to
T and e, and denoted by K(T, e). Similarly, for any edge e′ ∈ K(T, e), T − e+ e′

is also a spanning tree of G. The following two equations are the well-known
necessary and sufficient conditions for a spanning tree T of G to be maximum
(see Exercises 6.2.2 and 6.2.3 in [2]),

for any edge e ∈ E(T), w(e) = max{w(y) : y ∈ K(T, e)};
for any edge e ∈ E(G) \ E(T), w(e) = min{w(y) : y ∈ C(T, e)}.

Clearly, these two equations are equivalent to the following two inequalities,
respectively.

for any edge e ∈ E(T), w(e) ≥ max{w(y) : y ∈ K0(T, e)}; (1)
for any edge e ∈ E(G) \ E(T), w(e) ≤ min{w(y) : y ∈ C0(T, e)}, (2)

where K0(T, e) = K(T, e) \ {e} and C0(T, e) = C(T, e) \ {e}.

392 X. Li et al.

2.1 Algorithm for the Decision Version of CPIMST

Let I = (G,w,E′, l, u, c) be an instance of CPIMST under the weighted l∞-
norm, and K > 0 be a given real number. The decision version of I is to ask
whether there exists a feasible weight function w′ such that ‖w′ − w‖∞ ≤ K.
Lai and Orlin [6] showed that if l = u ≡ ∞, which is the PIMST problem, can
be solved in strongly polynomial-time. The main idea is as follows. Firstly, they
defined a new weight function wK with

wK(e) =
{

w(e) + K/c(e), e ∈ E′;
w(e) − K/c(e), e /∈ E′.

(3)

Then, they showed that the answer is “YES” if and only if wK is a feasible
solution of I. We can generalize this method for CPIMST directly and obtain
the following result and algorithm.

Theorem 1. Let I be an instance of CPIMST and K > 0 be a given real num-
ber. There exists a feasible weight function w′ with ‖w′ − w‖∞ ≤ K if and only
if wK is feasible, where

wK(e) =
{

w(e) + min{K/c(e), u(e)}, e ∈ E′;
w(e) − min{K/c(e), l(e)}, e /∈ E′.

(4)

Algorithm 1: Algorithm for the decision version of CPIMST under the
weighted l∞-norm
Input: An instance I = (G,w,E′, l, r, c) of CPIMST and a real number

K > 0.
Output: “YES” or “NO”.

1 Calculate wK by Eq. (4);
2 if there exists a maximum spanning tree of G with respect to wK

containing E′ then
3 return “YES”;
4 else
5 return “NO”;
6 end

Naturally, combining Algorithm 1 with the Binary search method, we can
design an algorithm to solve CPIMST under the weighted l∞-norm within any
prescribed additive error. However, this algorithm has two drawbacks. First,
the number of iterations in the Binary search method is related to the size of
the input data. Thus, it is not a strongly polynomial-time algorithm. Second,
there may exist error between the result obtained by this algorithm and the
exactly optimal value. Hence, it is not trivial to design a strongly polynomial-
time algorithm for CPIMST under the weighted l∞-norm.

2.2 Algorithm for CPIMST Under the Un-Weighted l∞-norm

Although the Binary search method can not generate a strongly polynomial-time
algorithm directly, if we can obtain a candidate set of optimal values, the size

CPIMST Under the Weighted l∞-norm 393

of which is a polynomial function related to n and m, the algorithm obtained
from combining Algorithm 1 with the Binary search method will be strongly
polynomial-time. To achieve this goal, we study properties of the optimal value
and the optimal solutions of this problem. For the ease of statement, we first
consider CPIMST under the (un-weighted) l∞-norm (c(e) = 1 for all edges).
Then, we generalize the results to the weighted l∞-norm in the next subsection.

Let I = (G,w,E′, l, u, c ≡ 1) be an instance of CPIMST under the l∞-norm,
and opt be the optimal value of I. Clearly, the optimal solution of I may not be
unique. Figure 1 illustrates an instance I which has at least two different optimal
solutions. We define an optimal solution w∗ to be a minimal optimal solution if

(i) the size of w∗, defined to be |R(w∗)| = |{e ∈ E : |w∗(e) − w(e)| = opt}|, is
minimum among all optimal solutions;

(ii) under condition (i), ‖ w∗ − w ‖1=
∑

e∈E

|w(e∗) − w(e)| is minimum.

Fig. 1. (a) An instance I of PIMST (CPIMST with l ≡ u ≡ ∞) under the l∞-norm
and the E′ are the two dashed edges; (b) an optimal solution of I with opt= 5 and
the solid lines form a maximum spanning tree containing E′; (c) a minimal optimal
solution of I.

The following lemma shows that minimal optimal solutions have separate
property, that is, the weights of all edges in E′ are non-decreasing and the weights
of all the other edges are non-increasing.

Lemma 1. Let I be an instance of CPIMST under the l∞-norm, w∗ be a mini-
mal optimal solution of I, and T ∗ be a maximum spanning tree of G with respect
to w∗ containing E′. Then,

w∗(e)

⎧
⎨

⎩

≥ w(e), e ∈ E′;
= w(e), e ∈ E(T ∗)\E′;
≤ w(e), e /∈ E(T ∗).

(5)

394 X. Li et al.

Proof. For the first inequality, suppose to the contrary that there is an edge
e′ ∈ E′ with w∗(e′) < w(e′). Let

w′(e) =
{

w(e′), e = e′;
w∗(e), otherwise. (6)

Clearly, −l(e′) ≤ w′(e′) − w(e′) = 0 ≤ u(e′) and −l(e) ≤ w′(e) − w(e) =
w∗(e) − w(e) ≤ u(e) for any other edge e. Thus, the new weight function w′

satisfies the capacitated constraint.
Furthermore, by Eq. (1),

w′(e′) = w(e′) > w∗(e′)
≥ max{w∗(y) : y ∈ K0(T ∗, e′)}
= max{w′(y) : y ∈ K0(T ∗, e′)}.

And for any edge e ∈ E(T ∗) \ {e′},

w′(e) = w∗(e) ≥ max{w∗(y) : y ∈ K0(T ∗, e)} = max{w′(y) : y ∈ K0(T ∗, e)},

where the last equality holds because e′ /∈ K0(T ∗, e). So by Eq. (1), T ∗ is also
a maximum spanning tree of G with respect to w′ containing E′. Combining
this with |w′(e) − w(e)| ≤ |w∗(e) − w(e)| for any edge e, w′ is also an optimal
solution. But, R(w′) ⊆ R(w∗) and ‖ w′ − w ‖1<‖ w∗ − w ‖1, which implies that
w∗ can not be a minimal optimal solution.

The other inequalities can be proved by similar arguments.

Based on the separate property, we can obtain the following result.

Lemma 2. Let w∗ be a minimal optimal solution of I, and T ∗ be a maximum
spanning tree of G with respect to w∗ containing E′. For any edge e′ ∈ E′ with
w∗(e′) > w(e′), there exists an edge ē ∈ K0(T ∗, e′) such that w∗(ē) = w∗(e′).
Similarly, for any edge ē /∈ E(T ∗) with w∗(ē) < w(ē), there exists an edge
e′ ∈ C(T ∗, e) ∩ E′ such that w∗(e′) = w∗(ē).

Proof. For the first part of this lemma, we suppose that there is an edge e′ ∈ E′

with w∗(e′) > w(e′), but w∗(ē)
= w∗(e′) for any edge ē ∈ K0(T ∗, e′). Then,
w∗(ē) < w∗(e′) for any ē ∈ K0(T ∗, e′) since T ∗ is maximum and because of Eq.
(1). Let q = max{w∗(ē) : ē ∈ K0(T ∗, e′)} and

w′(e) =
{

max{w(e′), q}, e = e′;
w∗(e), otherwise. (7)

We can obtain that

−l(e′) ≤ 0 ≤ w′(e′) − w(e′) ≤ w∗(e′) − w(e′) ≤ u(e).

Since w′(e) ≥ q = max{w′(y) : y ∈ K0(T ∗, e′)}, by a similar argument in the
proof of Lemma 1, the spanning tree T ∗ is also maximum with respect to w′.

CPIMST Under the Weighted l∞-norm 395

If e′ ∈ R(w∗), then either ‖ w′−w ‖∞<‖ w∗−w ‖∞ or ‖ w′−w ‖∞=‖ w∗−w ‖∞
and R(w′) ⊂ R(w∗); if e′ /∈ R(w∗), then ‖ w′ − w ‖∞=‖ w∗ − w ‖∞ and
R(w′) = R(w∗), but ‖ w′ −w ‖1<‖ w∗ −w ‖1. Both of them contradict with the
assumption that w∗ is a minimal optimal solution.

To show the second part of this lemma, suppose that ē /∈ E(T ∗) has w(ē) >
w∗(ē), and for any edge e′ ∈ C(T ∗, ē)∩E′, w∗(e′)
= w∗(ē). Since T ∗ is maximum,
w∗(ē) < w∗(e′) for any edge e′ ∈ C(T ∗, ē) ∩ E′ by Eq. (2). Let t = min{w∗(e′) :
e′ ∈ C(T ∗, ē) ∩ E′} and

w′(e) =
{

min{w(ē), t}, e = ē;
w∗(e), otherwise. (8)

Then, −l(ē) ≤ w∗(ē)−w(ē) ≤ w′(ē)−w(ē) ≤ 0 ≤ u(ē). If w′ is a feasible solution,
by a similar argument as the first part, w′ is better than w∗ and w∗ cannot be a
minimal optimal solution. Hence, we shall show that w′ is feasible by proving that
w′ satisfies Eq. (2). This is obvious that if w′(ē) = min{w′(y) : y ∈ C(T ∗, ē)}.

Next, suppose that x = arg min{w′(y) : y ∈ C0(T ∗, ē)} and w′(ē) > w′(x).
Then, x /∈ E′ and T ′ = T ∗ − x + ē is a spanning tree of G containing E′. Since
C(T ′, x) = C(T ∗, ē), we have w′(x) = min{w′(y) : y ∈ C(T ′, x)}. For any other
edge e /∈ E(T ′), if x /∈ C(T ∗, e), then C(T ′, e) = C(T ∗, e) and

w′(e) = min{w′(y) : y ∈ C(T ′, e)}. (9)

If x ∈ C(T ∗, e), then C(T ′, e) is contained in the closed walk C(T ∗, e)∪C(T ′, x)−
x. Thus,

w′(e) = w∗(e) ≤ min{w∗(y) : y ∈ C0(T ∗, e)}
≤ w∗(x) = w′(x) = min{w′(y) : y ∈ C(T ′, x)}.

(10)

Combining Eq. (9) with (10), we have w′(e) ≤ min{w′(y) : y ∈ C0(T ′, e)}.
Hence, w′ is a feasible solution. The proof is completed.

Remark 1. Lemma 1 and Lemma 2 also hold for optimal solutions under the
weighted lp-norm.

Suppose that E′ ∩ R(w∗)
= ∅, that is, there is an edge e′ ∈ E′ such that
w∗(e′) − w(e′) = opt. Choosing such an edge e′, by Lemma 2, there exists an
edge ē ∈ K0(T ∗, e′) such that w∗(ē) = w∗(e′). Notice that w∗(ē) ≤ w(ē) by
Lemma 1. If

δ(ē) = w(ē) − w∗(ē) < min{l(ē), opt}, (11)

we can decrease w∗(e′) and w∗(ē) a little such that e′ and ē also have the same
weight and the new weight also satisfies the capacitated constraint. Figure 2
illustrates this statement.

An intuition is that if all edges in K0(T ∗, e′) whose weights satisfy Eq. (11),
then we can get a new feasible solution better than w∗. The following lemma
gives the detailed statement and strict proof about it.

Lemma 3. Let opt and w∗ be the optimal value and a minimal optimal solution
of I, respectively. Let T ∗ be a maximum spanning tree of G with respect to w∗

containing E′. If e′ ∈ E′ has w∗(e′) − w(e′) = opt, then there exists an edge
ē ∈ K0(T ∗, e′) such that w∗(ē) = w∗(e′) and w(ē) − w∗(ē) = min{l(ē), opt}.

396 X. Li et al.

Fig. 2. An illustration of the adjustment.

Proof. Let M = {ē ∈ K0(T ∗, e′) : w∗(ē) = w∗(e′)}. By Lemma 2, M
= ∅.
Suppose to the contrary that for any ē ∈ M , w(ē) − w∗(ē)
= min{l(ē), opt}.
Since w∗ is an optimal solution, w(ē) − w∗(ē) < min{l(ē), opt}.

Let ε1 = min
e∈M

{min{l(e), opt} − w(e) + w∗(e)} and ε2 = min{w∗(e′) − w∗(e) :

e ∈ K0(T ∗, e′) \ M}. Then ε1 > 0 and ε2 > 0. Now, we define a new weight
function w′ as follows. Let ε = 1

2 min{ε1, ε2, opt} and

w′(e) =
{

w∗(e) − ε, e ∈ M ∪ {e′};
w∗(e), otherwise. (12)

Then, we can obtain that

− l(e′) ≤ 0 < w′(e′) − w(e′) < opt ≤ u(e′), (13)

and for any edge ē ∈ M ,

− l(ē) ≤ w∗(ē) − w(ē) − ε1 < w′(ē) − w(ē) < w∗(ē) − w(ē) ≤ u(ē). (14)

Equations (13) and (14) show that w′ satisfies the capacitated constraint.
Furthermore, for any edge ē ∈ M ,

w′(e′) − w′(ē) = w∗(e′) − w∗(ē) ≥ 0; (15)

and for any edge e ∈ K0(T ∗, e′) \ M ,

w′(e′) − w′(e) = w∗(e′) − w∗(e) − ε ≥ w∗(e′) − w∗(e) − ε2 ≥ 0. (16)

By Eqs. (15) and (16), we have w′(e′) = max{w′(y) : y ∈ K(T ∗, e′)}. For any
edge e ∈ E(T ∗) \ {e′}, e /∈ M because M ⊂ K(T ∗, e′). Thus, we can obtain that

w′(e) = w∗(e) ≥ max{w∗(y) : y ∈ K0(T ∗, e)} ≥ max{w′(y) : y ∈ K0(T ∗, e)}.

CPIMST Under the Weighted l∞-norm 397

Hence, by Eq. (1), T ∗ is also a maximum spanning tree of G with respect to w′

containing E′. Moreover, w′ is a feasible solution of I.
On the other hand, from Eqs. (13) and (14), we can obtain that for any edge

e ∈ M ∪ {e′},
|w′(e) − w(e)| < opt.

It implies that either ‖ w′ − w ‖∞<‖ w∗ − w ‖∞ or ‖ w′ − w ‖∞=‖ w∗ − w ‖∞
and R(w′) ⊂ R(w∗), which contradicts that w∗ is a minimal optimal solution.

Using the same technique, we can obtain the following lemma.

Lemma 4. Let opt and w∗ be the optimal value and a minimal optimal solution
of I, respectively. Let T ∗ be a maximum spanning tree of G with respect to w∗

containing E′. If ē /∈ E(T ∗) has w(ē) − w∗(ē) = opt, then there exists an edge
e′ ∈ C(T ∗, ē)∩E′ such that w∗(e′) = w∗(ē) and w∗(e′)−w(e′) = min{u(e′), opt}.

Combining Lemma 3 with Lemma 4, we can obtain the key result in this
subsection directly.

Theorem 2. Let I be an instance of CPIMST under the l∞-norm, and opt be
the optimal value of I. Then, there exist edges e′ ∈ E′ and ē /∈ E′ such that

opt = max
{

1
2
(
w(ē) − w(e′)

)
, w(ē) − w(e′) − l(ē), w(ē) − w(e′) − u(e′)

}

. (17)

Theorem 2 indicates that there is a candidate optimal value set whose size is
at most |E′|(m−|E′|) = O(mn). Hence, we can present the following algorithm.

Algorithm 2: Algorithm for CPIMST under the un-weighted l∞-norm
Input: An instance I = (G,w,E′, l, u, c ≡ 1) of CPIMST.
Output: The optimal value opt and an optimal solution w∗.

1 if the output of Alg. 1 on (I, 0) is “YES” then
2 return opt = 0 and w∗ = w;
3 end
4 Set lmax := max

e∈E
l(e) and umax := max

e∈E
u(e);

5 if the output of Alg. 1 on (I,max{lmax, umax}) is “NO” then
6 return “No Feasible Solutions!”;
7 end
8 Set OV S := ∅;
9 for e′ ∈ E′ and ē /∈ E′ do

10 if w(e′) < w(ē) and w(ē) − w(e′) ≤ u(e′) + l(ē) then
11 Set OV S := OV S ∪

{max
{

1
2

(
w(ē) − w(e′)

)
, w(ē) − w(e′) − l(ē), w(ē) − w(e′) − u(e′)

}
};

12 end
13 end
14 Order the numbers in OV S with increasing ordering;
15 Use the Binary search to find the minimum number opt in OV S such that

the output of Alg. 1 on (I, opt) is “YES”;
16 return opt and w∗ = wopt by Eq. (4).

398 X. Li et al.

Remark 2. The running time of Algorithm 2 is O(mn log n). In fact, since the size
of OV S is O(mn), sort the set will cost O(mn log mn) time and the Binary search
will carry out O(log mn) iterations. Hence, the running time is O(mn log mn +
log mn · min{(m log m), n2}) = O(mn log n).

2.3 CPIMST Under the Weighted l∞-norm

To solve this problem, we firstly modify the definition of minimal optimal solu-
tion w∗ as follows.

(i) The size of w∗, which defined as |R(w∗)| = |{e ∈ E : c(e)|w(e∗) − w(e)| =
opt}| is minimum among all optimal solutions;

(ii) Under condition (i), ‖ w∗ − w ‖1=
∑

e∈E

c(e)|w(e∗) − w(e)| is minimum.

Using the same proof technique, we can see that Lemma 1 and Lemma 2
also hold for minimal optimal solutions under the weighted l∞-norm. Hence,
Theorem 2 can be generalized to Theorem 3 as follows.

Theorem 3. Let I be an instance of CPIMST under the weighted l∞-norm.
Then, there exist edges e′ ∈ E′ and ē /∈ E′ such that the optimal value of I is
equal to

max
{

c(e′)c(ē)Δw(ē, e′)
c(e′) + c(ē)

, c(e′)
(
Δw(ē, e′) − l(ē)

)
, c(ē)

(
Δw(ē, e′) − u(e′)

)
}

,

where Δw(ē, e′) = w(ē) − w(e′).

Therefore, CPIMST under the weight l∞-norm can also be solved in
O(mn log n) time.

3 Conclusion

In this paper, we study the capacitated partial inverse maximum spanning tree
problem under the weighted l∞-norm. We obtain some properties of the optimal
value and minimal optimal solutions of this problem. Based on these properties,
combining the algorithm for the decision version with the Binary search method,
we present an algorithm to solve this problem with running time O(mn log n).
Thus, combined with the previous results, the computational complexity of
CPIMST has been completely solved.

References

1. Ben-Ayed, O., Blair, C.E.: Computational difficulties of bilevel linear program-
ming. Oper. Res. 38(3), 556–560 (1990)

2. Chvátal, V.: Correction to: a De Bruijn-Erdős theorem in graphs? In: Gera, R.,
Haynes, T.W., Hedetniemi, S.T. (eds.) Graph Theory. PBM, pp. C1–C2. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-97686-0 15

https://doi.org/10.1007/978-3-319-97686-0_15

CPIMST Under the Weighted l∞-norm 399

3. Cai, M.-C., Duin, C.W., Yang, X., Zhang, J.: The partial inverse minimum span-
ning tree problem when weight increasing is forbidden. Eur. J. Oper. Res. 188,
348–353 (2008)

4. Gassner, E.: The partial inverse minimum cut problem with L1-norm is strongly
NP-hard. RAIRO Oper. Res. 44, 241–249 (2010)

5. Hansen, P., Jaumard, B., Savard, G.: New branch-and-bound rules for linear bilevel
programming. SIAM J. Sci. Stat. Comput. 13, 1194–1217 (1992)

6. Lai, T., Orlin, J.: The Complexity of Preprocessing. Research Report of Sloan
School of Management. MIT (2003)

7. Li, S., Zhang, Z., Lai, H.-J.: Algorithms for constraint partial inverse matroid
problem with weight increase forbidden. Theor. Comput. Sci. 640, 119–124 (2016)

8. Li, X., Shu, X., Huang, H., Bai, J.: Capacitated partial inverse maximum spanning
tree under the weighted Hamming distance. J. Comb. Optim. 38(4), 1005–1018
(2019). https://doi.org/10.1007/s10878-019-00433-x

9. Li, X., Zhang, Z., Du, D.-Z.: Partial inverse maximum spanning tree in which
weight can only be decreased under lp-norm. J. Glob. Optim. 70(3), 677–685
(2017). https://doi.org/10.1007/s10898-017-0554-5

10. Li, X., Zhang, Z., Yang, R., Zhang, H., Du, D.-Z.: Approximation algorithms
for capacitated partial inverse maximum spanning tree problem. J. Glob. Optim.
77(2), 319–340 (2019). https://doi.org/10.1007/s10898-019-00852-4

11. Yang, X.: Complexity of partial inverse assignment problem and partial inverse cut
problem. RAIRO Oper. Res. 35, 117–126 (2001)

12. Yang, X., Zhang, J.: Partial inverse assignment problem under l1 norm. Oper. Res.
Lett. 35, 23–28 (2007)

13. Yang, X., Zhang, J.: Inverse sorting problem by minimizing the total weighted
number of changers and partial inverse sorting problem. Comput. Optim. Appl.
36(1), 55–66 (2007)

14. Zhang, Z., Li, S., Lai, H.-J., Du, D.-Z.: Algorithms for the partial inverse matroid
problem in which weights can only be increased. J. Glob. Optim. 65(4), 801–811
(2016). https://doi.org/10.1007/s10898-016-0412-x

https://doi.org/10.1007/s10878-019-00433-x
https://doi.org/10.1007/s10898-017-0554-5
https://doi.org/10.1007/s10898-019-00852-4
https://doi.org/10.1007/s10898-016-0412-x

Approximation Algorithms for Some
Min-Max and Minimum Stacker Crane

Cover Problems

Yuhui Sun, Wei Yu(B) , and Zhaohui Liu

School of Mathematics, East China University of Science and Technology,
Shanghai 200237, China

y30190197@mail.ecust.edu.cn, {yuwei,zhliu}@ecust.edu.cn

Abstract. We study two stacker crane cover problems and their vari-
ants. Given a mixed graph G = (V, E, A) with vertex set V , edge set E
and arc set A. Each edge or arc is associated with a nonnegative weight.
The Min-Max Stacker Crane Cover Problem (SCC) aims to find at most
k closed walks covering all the arcs in A such that the maximum weight
of the closed walks is minimum. The Minimum Stacker Crane Cover
Problem (MSCC) is to cover all the arcs in A by a minimum number
of closed walks of length at most λ. The Min-Max Stacker Crane Walk
Cover Problem (SCWC)/Minimum Stacker Crane Walk Cover Problem
(MSCWC) is a variant of the SCC/MSCC problem with closed walks
replaced by (open) walks.

For the SCC problem with symmetric arc weights, i.e. for every
arc there is a parallel edge of no greater weight, we obtain a
33/5-approximation algorithm. This improves on the previous 37/5-
approximation algorithm for a restricted case of the SCC problem with
symmetric arc weights. If the arc weights are symmetric, we devise the
first constant-factor approximation algorithms for the SCWC problem,
the MSCC problem and the MSCWC problem with ratios 5, 5 and 7/2,
respectively. Finally, for the (general) MSCWC problem we first propose
a 4-approximation algorithm.

Keywords: Approximation algorithm · Stacker Crane Problem · Rural
postman problem · Traveling Salesman Problem · Stacker Crane Cover

1 Introduction

Given a mixed graph G = (V,E,A) with vertex set V , edge set E and arc set
A, each edge or arc is associated with a nonnegative weight. The Stacker Crane
Problem (SCP) [8] is to find a minimum weight closed walk that starts from
and ends at a given vertex and traverses all the arcs in A, where the weight of a
walk is the sum of the weights of the traversed edges and arcs. The SCP and its
variants have a wide range of applications in many related industries, including
driving a pick-up and delivery truck [8], the design of the movements of climber
c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 400–415, 2021.
https://doi.org/10.1007/978-3-030-92681-6_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_32&domain=pdf
http://orcid.org/0000-0002-6127-1264
http://orcid.org/0000-0003-1215-7622
https://doi.org/10.1007/978-3-030-92681-6_32

Approximation Algorithms for Min-Max and Minimum Stacker Crane Cover 401

robots and cutting plotters [5], ambulatory services [4], street sweeping [7], etc.
The SCP satisfying the property that the weight of each arc (u, v) equals the
length of the shortest path between u and v in the spanning graph H = (V,E)
is also described as the Dial-a-Ride Problem (DARP).

In some practical applications, we are required to design a set of routes that
jointly cover the arcs, rather than a single route for one vehicle. Instead of consid-
ering the traditional objective of minimizing the total length, many applications
also focus on other objective functions, including minimizing the latest finishing
time in the snow plow routing problem [13], minimizing the longest traveling
time among mobile sensors [18], and minimizing the number of detecting sensors
in the wireless sensor networks [10], and so on. This prompts us to study the
following extensions of the SCP with multiple vehicles and min-max objective
functions. (1) Given a mixed graph G = (V,E,A) with a nonnegative weight
function on E ∪ A and a positive integer k, the objective is to find at most k
closed walks that traverse all the arcs in A such that the maximum weight of the
closed walks is minimum. It is called the Min-Max Stacker Crane Cover Problem
(SCC). By replacing the closed walks with (open) walks in the SCC problem,
we have the Min-Max Stacker Crane Walk Cover Problem (SCWC). (2) Given
a mixed graph G = (V,E,A) with a nonnegative weight function on E ∪ A and
a nonnegative number λ, the goal is to find a set of closed walks which cover all
the arcs in A such that the weight of each closed walk is upper bounded by λ and
the number of closed walks used is minimum. It is called the Minimum Stacker
Crane Cover Problem (MSCC). Analogously, by replacing the closed walks with
(open) walks in the MSCC problem, we have the Minimum Stacker Crane Walk
Cover Problem (MSCWC).

Since the SCP is a generalization of the well-known Metric Traveling Sales-
man Problem (Metric TSP), it is NP-hard, as noted by Frederickson et al. [8].
Then the variants of the SCP (the SCC/MSCC problem) are also NP-hard. Sim-
ilarly, both the SCWC problem and the MSCWC problem are NP-hard since
they are extensions of the NP-Complete Hamiltonian Path Problem [11] (pp.
60). Therefore, we mainly consider approximation algorithms for these problems
in this paper.

Definition 1. For a minimization combinatorial optimization problem, an algo-
rithm is called an α-approximation algorithm if for any instance of the problem
the algorithm always produces, in polynomial time, a solution of objective value
no more than α times the optimal value. α is called the approximation ratio of
the algorithm.

Frederickson et al. [8] first considered the Symmetric SCP, which is a special
case of the SCP where the arc weights are symmetric, i.e. for every arc (u, v) ∈ A
there is a parallel edge [u, v] of no greater weight. Note that the symmetric
arc weights occur naturally in some real world applications. For example, in
electronic printing [16] the weight of arc (u, v) represents the length of a curve
from vertex u to vertex v in the plane and the weight of edge [u, v] indicates
the length of the straight line between u and v. Since the length of a straight

402 Y. Sun et al.

line is no more than that of a curve, the arc weights are symmetric in this
case. Frederickson et al. [8] gave an algorithm for the Symmetric SCP which has
an approximation ratio of 9

5 and runs in O(max{|V |3, |A|3}) time. Frederickson
et al. [9] achieved a better approximation ratio of 5

4 for the DARP on trees,
a restricted case of the Symmetric SCP, in which the spanning subgraph H =
(V,E) of G is a tree and the weight of the arc (u, v) equals the length of the
shortest path between u and v. Moreover, it is proved that the DARP on trees is
NP-hard [9] and the DARP on either simple paths or simple cycles is polynomial
time solvable [2]. In addition, we mention that Treleaven et al. [17] have proposed
asymptotically optimal algorithms for the SCP, which produce, almost surely, a
solution approaching the optimal solution as the number of arcs goes to infinity.
The SCP/DARP can be extended to a more general model, known as the Pickup
and Delivery Problem (PDP). Parragh et al. [14,15] gave a detailed survey on
various variants of the PDP, including the online and dynamic versions of the
SCP/DARP.

As for the SCP with multiple vehicles, Frederickson et al. [8] considered the
Symmetric SCC problem with a single depot, i.e. all the k closed walks must
contain a common depot vertex, and derived a (ρ + 1 − 1

k)-approximation algo-
rithm, where ρ is the approximation ratio for the Symmetric SCP. Furthermore,
Bao et al. [3] devised a 37

5 -approximation algorithm for a special case of the
Symmetric SCC problem where for every arc (u, v) ∈ A there is a parallel edge
[u, v] of the same weight and the edge weights satisfy the triangle inequality. Yu
et al. [19] considered another variant of the SCP with k vehicles, called the k-
SCP, which aims to find k closed walks including all the arcs such that the total
weight of the closed walks is minimized. They gave a 3-approximation algorithm
and developed a 2-approximation algorithm for the Symmetric k-SCP. Moreover,
they also obtained some approximation algorithms for the k-Depot SCP, where
a depot set D ⊆ V with |D| = k is given and each closed walk has to contain a
distinct depot vertex.

For the SCC/SCWC problem, there is a closely related problem called the
Min-Max Rural Postmen Cover Problem (RPC), where the input is an undi-
rected weighted graph G = (V,E) and the objective is to find at most k closed
walks covering a subset R ⊆ E of edges to minimize the length of the longest
closed walk. By replacing closed walks with (open) walks in the RPC problem,
we have the Min-Max Rural Postmen Walk Cover Problem (RPWC). Arkin
et al. [1] first gave a 7-approximation algorithm for the RPWC problem and
Yu et al. [20] developed an improved 5-approximation algorithm. Moreover, Yu
et al. [20] gave a 6-approximation algorithm for the Metric RPC problem, i.e. a
restricted case of the RPC problem with the weights of all the edges satisfying
the triangle inequality.

For the MSCC/MSCWC problem, there are also two related problems called
the Minimum Rural Postmen Cover Problem (MRPC) and the Minimum Rural
Postmen Walk Cover Problem (MRPWC). Arkin et al. [1] first devised a 4-
approximation algorithm for the MRPWC problem and gave a 7-approximation

Approximation Algorithms for Min-Max and Minimum Stacker Crane Cover 403

algorithm for the MRPC problem. Mao et al. [12] derived two 5-approximation
algorithms for the MRPC problem based on graph decomposition.

In this paper, we obtain the following results. For the Symmetric SCC prob-
lem, we develop a 33/5-approximation algorithm, improving on the previous
37/5-approximation algorithm designed for a special case of the Symmetric SCC
problem. For the Symmetric SCWC problem, the Symmetric MSCC problem and
the Symmetric MSCWC problem, we propose the first constant-factor approx-
imation algorithms with ratios 5, 5 and 7/2, respectively. For the (general)
MSCWC problem, we first develop a 4-approximation algorithm.

The rest of the paper is organized as follows. We formally describe the prob-
lems and give some preliminaries in Sect. 2. In Sect. 3 we give the approximation
algorithms for the SCC/SCWC problem, which is followed by the discussion
of the MSCC/MSCWC problem in Sect. 4. Finally, we conclude the paper in
Sect. 5.

2 Preliminaries

Given a mixed graph G = (V,E,A) with vertex set V , edge set E and arc set
A. Each edge e = [u, v] ∈ E connects two vertices u and v in V , where u, v are
called the end vertices of e. Each arc a = (u, v) ∈ A is a directed edge from
vertex u to vertex v, where u is called the tail of a and v is called the head of
a. If u is one of the end vertices of edge e (either the head or the tail of arc
a), we call u is incident to edge e (arc a). The total number of edges and arcs
incident to vertex v is called the degree of v. The number of arcs directed into
(directed out of) vertex v is called the indegree (outdegree) of v. If the degree of
vertex v is even (odd), v is called even degree (odd degree). Each edge e (arc a) is
associated with a nonnegative weight w(e) (w(a)). For any B > 0, G[B] denotes
the subgraph of G obtained by removing all the edges in E (no arcs included)
with weight greater than B.

A walk W is a sequence v0e1v1e2 · · · vt−1etvt such that vi ∈ V for i = 0, 1, . . . t
and either ei = [vi−1, vi] ∈ E or ei = (vi−1, vi) ∈ A for i = 1, . . . t. We call v0
(vt) the initial vertex (terminal vertex) of W . If v0, v1, . . . , vl are clear in the
context, the walk W is denoted simply by e1e2 · · · et. A path is a walk without
repeated vertices except for the initial and terminal vertex. Obviously, there
are no repeated edges or arcs in a path. A closed walk is a walk with identical
initial and terminal vertices. Similarly, a cycle is defined as a closed path. An
undirected path is a path that only uses edges (no arcs included).

For a subgraph G′ of G, we say the graph obtained by adding some copies
of the edges or arcs of G′ a multi-subgraph of G. Given a (multi-)subgraph H
(e.g. path, cycle, walk) of G, we use V (H), E(H) and A(H) to denote the vertex
set, edge (multi-)set and arc (multi-)set of H, respectively. H is called (weakly)
connected if for any u, v ∈ V , there exists a path between u and v in H after
ignoring the directions of the arcs in A. H is called strongly connected if for any
u, v ∈ V , there exist both a path from u to v and a path from v to u in H. The
edge weight of H is defined as wE(H) =

∑
e∈E(H) w(e). The arc weight of H

404 Y. Sun et al.

is defined as wA(H) =
∑

a∈A(H) w(a). The weight of H denotes the sum of the
weights of edges and arcs of H, i.e. w(H) = wE(H) + wA(H). Note that any
edge e appearing t times in E(H) contributes t · w(e) to wE(H). Similarly, any
arc a appearing t times in A(H) contributes t · w(a) to wA(H). The weight of
a path (cycle, walk) is also called its length. A cycle C is also called a tour on
V (C). A path (cycle, walk) containing only one vertex and no edges or arcs is a
trivial path (cycle, walk) and its length is defined as zero.

For A′ ⊆ A, we say that a set {W1, . . . ,Wk} of closed walks (some of them
may be trivial walks) is a stacker crane cover of A′ if A′ ⊆ ⋃k

i=1 A(Wi). The cost
of this stacker crane cover of A′ is defined as max1≤i≤k w(Wi), i.e. the maximum
length of the closed walks. By replacing closed walks with (open) walks we can
define analogously a stacker crane walk cover of A′ as well as its cost.

A connected graph is said to be Eulerian if there exists a Eulerian tour, i.e. a
closed walk which contains each arc and each edge exactly once and each vertex
at least once. Eiselt et al. [6] gave necessary and sufficient conditions for a graph
to be Eulerian. One of the sufficient conditions is given as follows.

Fact 1. A mixed graph is a Eulerian graph if it is strongly connected, each
vertex is even degree and the indegree of each vertex is equal to its outdegree.

Now we formally state the problems considered in this paper:

Min-Max Stacker Crane Cover Problem (SCC)
Input: A mixed graph G = (V,E,A), a nonnegative integer weight function w
on E ∪ A and a positive integer k.
Output: A stacker crane cover of A with k′ ≤ k closed walks C1, . . . , Ck′ .
Goal: Minimize the cost of the stacker crane cover of A, i.e. max1≤i≤k′ w(Ci).

Min-Max Stacker Crane Walk Cover Problem (SCWC)
Input: A mixed graph G = (V,E,A), a nonnegative integer weight function w
on E ∪ A and a positive integer k.
Output: A stacker crane walk cover of A with k′ ≤ k walks W1, . . . ,Wk′ .
Goal: Minimize the cost of the stacker crane walk cover of A, i.e.
max1≤i≤k′ w(Wi).

Minimum Stacker Crane Cover Problem (MSCC)
Input: A mixed graph G = (V,E,A), a nonnegative integer weight function w
on E ∪ A and a nonnegative integer λ.
Output: A stacker crane cover of A with k closed walks C1, . . . , Ck such that
w(Ci) ≤ λ for i = 1, . . . , k.
Goal: Minimize k.

Minimum Stacker Crane Walk Cover Problem (MSCWC)
Input: A mixed graph G = (V,E,A), a nonnegative integer weight function w
on E ∪ A and a nonnegative integer λ.
Output: A stacker crane walk cover of A with k walks W1, . . . ,Wk such that
w(Wi) ≤ λ for i = 1, . . . , k.

Approximation Algorithms for Min-Max and Minimum Stacker Crane Cover 405

Goal: Minimize k.

The Symmetric SCC problem is a special case of the SCC problem where
the weights of the arcs are symmetric, i.e. for every arc there is a parallel edge
of no greater weight. Similarly, we define the Symmetric SCWC problem, the
Symmetric MSCC problem and the Symmetric MSCWC problem.

Given an instance I of the SCC/SCWC/MSCC/MSCWC problem defined on
a mixed graph G = (V,E,A) with a nonnegative weight function w on E ∪A, we
may assume w.l.o.g that any two arcs have no common head (tail). Otherwise,
let (u, v) and (w, v) be two arcs with a common head v, we can add a new vertex
v′ connected with v by a zero weight edge [v, v′] and replace (w, v) by (w, v′)
to obtain another instance equivalent to I. The case of common tails can be
addressed similarly. From I we can derive a new instance I ′ with exactly the
same input except that G is replaced by a graph G′ = (V ′, E′, A) such that:

(i) V ′ = V (A), i.e., each vertex in V ′ is either the head or the tail of at least
one arc in A;

(ii) For any two vertices u, v ∈ V ′, there is an edge [u, v] ∈ E′ whose weight
equals the length of the shortest undirected path between u and v in G;

(iii) For any arc (u, v) ∈ A in G, there is an arc (u, v) ∈ A of equal weight in G′.

We call G′ the reduced graph of G. Since the weights of edges in E′ are generated
by the shortest undirected path in G, they clearly satisfy the triangle inequality.
In addition, if the arc weights in G are symmetric, the weights of the arcs in G′ are
also symmetric. Similar to the SCP (see [8]), one can verify that I ′ is equivalent
to I. Therefore, we focus on the instances of the SCC/SCWC/MSCC/MSCWC
problem in which G is the reduced graph of some graph, say Ḡ, in the following
discussion.

For an instance I of the SCC/SCWC/MSCC/MSCWC problem, we use
OPT (I) to represent the optimal value as well as the corresponding optimal
solution. Each (closed) walk in OPT (I) is called an optimum (closed) walk. If
the instance I is clear we simply write OPT for OPT (I). Note that the optimum
(closed) walks may be neither edge-disjoint nor vertex-disjoint.

The following two results on splitting a long walk into several walks of small
length are proved implicitly by Arkin et al. [1], which are very useful to design
and analyze the algorithms for the SCC/SCWC/MSCC/MSWC problem.

Lemma 1. (Arkin et al. 2006) Given B > 0, β ≥ 0, a walk W and an arc set
A′ ⊆ A(W) with maxa∈A′ w(a) ≤ β, we can decompose W in O(|E(W)∪A(W)|)
time into t ≤ max

{⌈
w(W)

B

⌉
, 1

}
walks W1, . . . ,Wt of length at most B + β such

that (i) for each i = 1, . . . , t, either w(Wi) ≤ B or Wi consists of a walk W ′
i with

w(W ′
i) ≤ B and an arc (v′, v) ∈ A′ connecting the terminal vertex v′ of W ′

i with
the terminal vertex v of Wi; (ii) these walks contain all the vertices in V (W)
and all the arcs in A′.

Lemma 2. (Arkin et al. 2006) Given B > 0, a walk W and an arc set A′ ⊆
A(W) with maxa∈A′ w(a) ≤ B, we can decompose W in O(|E(W)∪A(W)|) time

406 Y. Sun et al.

into t ≤ max
{⌈

w(W)+w(A′)
B

⌉
, 1

}
walks of length at most B, which contain all

the vertices in V (W) and all the arcs in A′.

Based on Lemma 1 we can show the following result.

Lemma 3. Given B > 0, β ≥ 0, a walk W with symmetric arc weights, an arc
set A′ ⊆ A(W) and a path Pa with w(a) + w(Pa) ≤ β for any a ∈ A′, we can
generate in O(|E(W) ∪ A(W)|) time a stacker crane cover of A′ that consists of
t ≤ max

{⌈
w(W)

B

⌉
, 1

}
closed walks and has a cost of at most 2B + β.

The proof idea consists of two steps. First we use Lemma 1 to obtain t ≤
max

{⌈
w(W)

B

⌉
, 1

}
walks W1, . . . ,Wt. For each walk Wi, if w(Wi) ≤ B, we simply

double the edges and add the corresponding parallel edges of the arcs in W ′
i to

derive a closed walk of length no more than 2w(Wi) ≤ 2B. If Wi consists of a
walk W ′

i with w(W ′
i) ≤ B and an arc a ∈ A′, we double the edges of W ′

i , add
the corresponding parallel edges of the arcs of W ′

i , and supplement the path Pa

to derive a closed walk of length no more than 2w(W ′
i)+w(a)+w(Pa) ≤ 2B+β.

To design an α-approximation algorithm for the SCC/SCWC problem, it is
sufficient to devise an α-subroutine, which is defined as below.

Definition 2. A polynomial time algorithm is called an α-subroutine for the
SCC/SCWC problem if for any instance consisting of G = (V,E,A) and an
integer k > 0, and any value λ ∈ [0, 2w(G)], the algorithm returns either failture
or a feasible stacker crane (walk) cover of A of cost at most αλ, and it always
returns the latter output as long as OPT ≤ λ.

Simiar to the arguments in [20], we can use a binary search to transform an
α-subroutine into an α-approximation algorithm for the SCC/SCWC problem.

Lemma 4. Any T (n)-time α-subroutine for the SCC/SCWC problem yields an
α-approximation algorithm for the same problem that runs in O(T (n) log w(G))
time.

Based on the sufficient condition for a mixed graph to be a Eulerian graph,
the next result obtains a Eulerian graph of bounded weight. This can be used
to deal with the Symmetric MSCC problem.

Lemma 5. Given a mixed connected graph G = (V,E,A), let G′ = (V,E′, A′)
be the graph obtained by doubling all the edges in E, adding an edge [u, v] for
each arc (u, v) ∈ A and associating with [u, v] the direction opposite to (u, v),
then G′ is a Eulerian graph. If the weights of the arcs in A are symmetric, then
w(G′) ≤ 2w(G).

Proof. Since we double all the edges in E and add in essence a reversed arc for
each arc in A, each vertex in G′ is even degree and the indegree of each vertex
equals its outdegree. By Fact 1, the graph G′ is Eulerian. If the weights of the
arcs in A are symmetric, the weights of added edges (reversed arcs) are no more
than the weights of corresponding arcs in A. Therefore, w(G′) ≤ 2w(G). ��

Approximation Algorithms for Min-Max and Minimum Stacker Crane Cover 407

3 Min-Max Stacker Crane (Walk) Cover

In this section, we consider the Symmetric SCC problem and the Symmetric
SCWC problem. Based on a mixed strategy, we first design a 33

5 -approximation
algorithm for the Symmetric SCC problem. In the second part, we consider the
Symmetric SCWC problem, which is required to find (open) walks instead of
closed walks, and present a 5-approximation algorithm.

3.1 Min-Max Stacker Crane Cover Problem

We give the following algorithm for the Symmetric SCC problem, which turns
out to be a 33

5 -subroutine.

Algorithm SymSCC(λ)

Input: An instance of the Symmetric SCC problem consisting of a reduced
graph G = (V,E,A), a nonnegative integer weight function w on E ∪ A and
a positive integer k, and a value λ ∈ [maxa∈A w(a), 2w(G)].

Output: Either failure or a stacker crane cover of A containing at most k closed
walks with cost no more than 33

5 λ.

Step 1. Delete all the edges with weight greater than λ
2 in G. Suppose that the

resulting graph G[λ
2] has p connected components F1, . . . , Fp.

Step 2. For each i = 1, . . . , p, let Ai = A ∩ A(Fi), construct two Eulerian tours
C1

i and C2
i covering all the arcs in Ai, where C1

i is derived by Algorithm
SymSCC1 and C2

i is obtained by Algorithm SymSCC2.
Step 3. For each i = 1, . . . , p, let C0

i be one of C1
i and C2

i with smaller length.
By taking B = 14

5 λ, β = λ, W = C0
i , A′ = Ai and Pa as the shortest path

from the head to the tail of a for any a ∈ Ai in Lemma 3, we can generate a
stacker crane cover of Ai that consists of ki ≤ max

{⌈
w(C0

i)
14
5 λ

⌉
, 1

}
closed walks

and has a cost of at most 33
5 λ.

Step 4. If
∑p

i=1 ki ≤ k, return the stacker crane cover of A consisting of the∑p
i=1 ki closed walks obtained in Step 3; otherwise, return failure.

Now we give the detailed description of Algorithm SymSCC1 and Algorithm
SymSCC2. First, we describe Algorithm SymSCC1 and the steps of this algo-
rithm are shown by an example in Fig. 1.

Algorithm SymSCC1

Step 1. Construct a weighted bipartite graph Bi = (V 1
i ∪ V 2

i , A0) from Fi as
follows. The vertex set V 1

i (V 2
i) consists of all the heads (tails) of the arcs of

Ai. For any u ∈ V 1
i and v ∈ V 2

i , there is an arc (u, v) ∈ A0. There are no
other arcs in A0. The weight of an arc a = (u, v) ∈ A0 is defined as the length
of the shortest path from u to v in Fi.

408 Y. Sun et al.

v1 v2

v3 v4

v5 v6

v7 v8

v9 v10

v11 v12

(a) Original arc set Ai

v2

v4

vj

v12

V 1
i

v1

v3

vr

v11

V 2
i

(b) Bipartite graph
Bi = (V 1

i ∪ V 2
i , A0)

v1 v2

v3 v4

v5 v6

v7 v8

v9 v10

v11 v12

(c) Pefect matching Mi =
{(v2, v3), (v4, v5), (v6, v1),

(v8, v9), (v10, v7), (v12, v11)}

v1 v2

v3 v4

v5 v6

v7 v8

v9 v10

v11 v12

(d) Spanning multi-subgraph Hi

(The path P = v2v5v6v3
corresponds to the matching

arc (v2, v3) in Mi)

v1 v2

v3 v4

v5 v6

v7 v8

v9 v10

v11 v12

(e) Minimum weight
connected multi-subgraph H1

i

v1 v2

v3 v4

v5 v6

v7 v8

v9 v10

v11 v12

(f) Spanning multi-subgraph H2
i

Fig. 1. An example for Algorithm SymSCC1. In picture (d), the dashed arrows rep-
resent the edges in E(Fi) traversed in the corresponding directions. In picture (e), the
dotted lines denote the edges in MSTi.

Step 2. Determine a minimum weight perfect matching Mi of Bi. Each arc
(u, v) ∈ Mi corresponds to a shortest path Pu,v from u to v in Fi. Construct
a spanning multi-subgraph Hi of Fi composed of the arcs in Ai and the edges
and arcs on each path Pu,v with (u, v) ∈ Mi. Note that if an arc or edge
appears t times in the paths, there are t additional copies of this arc or edge
in Hi besides the arcs in Ai. Assume that Hi consists of q strongly connected
components T 1

i , . . . , T q
i , each of which is a Eulerian graph.

Step 3. Find a minimum weight connected multi-subgraph H1
i of Fi as follows.

Starting with T 1
i , . . . , T q

i , we keep adding a least weight edge in E(Fi) that
connects two distinct connected components, say T̂ j

i and T̂ l
i and stop until

a connected graph H1
i is obtained. Clearly, H1

i contains all the edges and
arcs in Hi. Let MSTi be the set of edges added to Hi when deriving H1

i . By
doubling the edges of MSTi in H1

i , we obtain a spanning multi-subgraph H2
i

of Fi, which is a Eulerian graph. Then we construct a Eulerian tour C1
i of

H2
i , which contains all the arcs in Ai.

Approximation Algorithms for Min-Max and Minimum Stacker Crane Cover 409

Algorithm SymSCC2 is described as follows and the steps of this algorithm
are demonstrated by an example in Fig. 2.

Algorithm SymSCC2

Step 1. Suppose that Ai = {(v1
1 , v

2
1), . . . , (v

1
|Ai|, v

2
|Ai|)}. By contracting all the

arcs of Ai in Fi, we derive an undirected complete graph F 0
i = (VA, E0) with

VA = {n1, . . . , n|Ai|}, where vertex nj (j = 1, . . . , |Ai|) corresponds to the
arc (v1

j , v2
j) in Ai. For any pair of vertices nj , nl ∈ VA, the weight of the edge

[nj , nl] ∈ E0 is given by

w′([nj , nl]) = min{w([v1
j , v1

l]), w([v1
j , v2

l]), w([v2
j , v1

l]), w([v2
j , v2

l])}.

For each edge [nj , nl] ∈ E0, we determine the length of the shortest path
between nj and nl in F 0

i , denoted by w̃(nj , nl). Obtain a graph G̃i from F 0
i

by simply replacing the weight of each edge [nj , nl] ∈ E0 with w̃(nj , nl).
Step 2. Find a minimum weight spanning tree T̃i for the graph G̃i. Let Odd(T̃i)

be the set of vertices that have odd degree in T̃i. Compute a minimum weight
perfect matching M̃i on Odd(T̃i). Construct a Eulerian graph T̂i by adding
the matching edges of M̃i to T̃i. We replace each edge of T̂i by the corre-
sponding shortest path in F 0

i and then uncontract each vertex nj ∈ VA as
the corresponding arc (v1

j , v2
j) ∈ Ai to generate a graph F̂i.

Step 3. In F̂i, consider each arc (v1
j , v2

j) ∈ Ai, if it is an odd arc, i.e. both v1
j and

v2
j have odd degree, we add a copy of the edge [v1

j , v2
j] and direct this edge

from v2
j to v1

j . Otherwise, it must be an even arc, i.e. both v1
j and v2

j are of
even degree in F̂i, and we add no edges. In this way, we derive an even graph
denoted by F ′

i . Let Aeven
i be the set of even arcs in F̂i (or F ′

i).
Step 4. In F ′

i , ignore the directions of the even arcs to obtain a Eulerian graph
with Eulerian tour C ′

i. If the total weight of the even arcs in F ′
i that are

traversed backwards in C ′
i exceeds w(Aeven

i)/2, we reverse the direction of
C ′

i. For each even arc (v1
j , v2

j) traversed in the opposite direction in C ′
i, we

recover the direction of (v1
j , v2

j), add two copies of the edge [v1
j , v2

j] to C ′
i which

are oriented from v2
j to v1

j . This results in a Eulerian graph with Eulerian tour
C2

i covering all the arcs in Ai in the right direction.

We first show the time complexity of Algorithm SymSCC(λ).

Lemma 6. Algorithm SymSCC(λ) runs in O(|V |3) time.

We assume w.l.o.g. that the optimal solution consists of exactly k optimum
closed walks C∗

1 , . . . , C∗
k , since otherwise we may add some trivial closed walks.

According to the triangle inequality for all the edges (note that G is a reduced
graph) and the arc weights are symmetric, it is easy to obtain the following fact.

Observation 1. If OPT ≤ λ, then w(e) ≤ OPT
2 ≤ λ

2 for each e ∈ ⋃k
i=1 E(C∗

i)
and w(a) + w(Pa) ≤ OPT ≤ λ for each a ∈ ⋃k

i=1 A(C∗
i), where Pa denotes the

shortest path from the head to the tail of a.

410 Y. Sun et al.

v1
1 v2

1

v1
2 v2

2

v1
3 v2

3

v1
4 v2

4

v1
5 v2

5

n1

n2

n3

n4

n5

(a) Original arc set Ai

n1

n2

n3

n4

n5

(b) Undirected complete
graph F 0

i = (VA, E0)

n1

n2

n3

n4

n5

(c) Minimum weight

spanning tree T̃i

n1

n2

n3

n4

n5

(d) Eulerian graph T̂i

v1
1 v2

1

v1
2

v2
2

v1
3 v2

3

v1
4 v2

4

v1
5 v2

5

n1

n2

n3

n4

n5

(e) Graph F̂i

v1
1 v2

1

v1
2

v2
2

v1
3 v2

3

v1
4 v2

4

v1
5 v2

5

n1

n4n2

n3

n5

(f) Final even graph

Fig. 2. An example for Algorithm SymSCC2. In picture (d), the dotted lines denote
the matching edges in M̃i. In picture (f), the dashed arrows represent the oriented
parallel edges of the odd arcs and the even arcs.

Due to Observation 1, if OPT ≤ λ, then in Step 1 Algorithm SymSCC(λ)
does not delete any edge in the optimal solution and any arc in A. So the
vertex set of each optimum closed walk is contained entirely in exactly one
of V (F1), . . . , V (Fp). Let k∗

i ≥ 1 (i = 1, . . . , p) be the number of optimum
closed walks whose vertex sets are contained in V (Fi). One can see that these k∗

i

optimum closed walks constitute a stacker crane cover of Ai. Furthermore, the
cost of this stacker crane cover of Ai is at most OPT , since the length of each
optimum closed walk is at most OPT . Therefore, we have the following fact.

Observation 2. If OPT ≤ λ, the k∗
i ≥ 1 (i = 1, . . . , p) optimum closed walks

whose vertex sets are contained in V (Fi) constitute a stacker crane cover of Ai

with cost at most λ.

Based on the above two observations, we can obtain upper bounds on the
length of C1

i and C2
i , and hence establish an upper bound on w(C0

i).

Lemma 7. If OPT ≤ λ, then w(C0
i) ≤ (

14
5 k∗

i − 1
)
λ for i = 1, . . . , p.

Now we can show the correctness of Algorithm SymSCC(λ).

Lemma 8. If OPT ≤ λ, Algorithm SymSCC(λ) returns a stacker crane cover
of A with at most k closed walks whose cost is no more than 33

5 λ.

Approximation Algorithms for Min-Max and Minimum Stacker Crane Cover 411

Proof. For each connected component Fi (i = 1, . . . , p), C0
i is a closed walk that

contains all the arcs in Ai. By definition the closed walks generated in Step 3 of
Algorithm SymSCC(λ) can also cover all the arcs in Ai. By Lemmas 7 and 3,

p∑

i=1

ki ≤
p∑

i=1

max
{⌈

w(C0
i)

14
5 λ

⌉

, 1
}

≤
p∑

i=1

max
{⌈

k∗
i − 5

14

⌉

, 1
}

≤
p∑

i=1

k∗
i = k.

This implies that Algorithm SymSCC(λ) returns the stacker crane cover of A =⋃p
i=1 Ai in Step 4. Due to Observation 1, it holds that w(a) + w(Pa) ≤ β for any

a ∈ A. So we can indeed take B = 14
5 λ and β = λ in Lemma 3, the length of each

closed walk which generated from C0
i is at most 2B + β = 33

5 λ. ��
Based on Lemmas 4, 6 and 8, we have the following result.

Theorem 1. There is an O(|V |3 log w(G)) time 33
5 -approximation algorithm for

the Symmetric SCC problem.

Remark 1. The algorithm of Bao et al. [3] only applies to a special case of the
Symmetric SCC problem. We generalize their algorithm to the (general) Sym-
metric SCC problem while improve the approximation ratio from 37

5 to 33
5 . There

are mainly two differences between our algorithm and that of Bao et al.
First, the analysis on the algorithm of Bao et al. simply uses the conclusion

of the Christofides’ algorithm to give an upper bound on w(C2
i). Instead, we

construct two multi-subgraphs of Fi, which contain all the arcs in Ai and span-
ning V (Fi), to give a more precise analysis. It turns out that this improves the
upper bound on w(C2

i) in Lemma 7 from roughly 16
5 k∗

i λ to 14
5 k∗

i λ.
Second, the previous algorithm generates a stacker cover of Ai by first split-

ting the walk C0
i , using Lemma 1 (set B = 16

5 λ and β = λ
2), into walks of length

at most B+β = 37
10λ and then doubling the edges or adding parallel edges corre-

sponding to the arcs to derive closed walks. Therefore, the resulting stacker crane
cover of Ai has a cost of at most 2(B + β) = 37

5 λ. Note that this approach relies
on the upper bound λ

2 on the length of the arcs. For the (general) Symmetric
SCC problem, the arc length may be in the interval (λ

2 , λ] and the approach of
Bao et al. will result in an approximation ratio of 42

5 λ since the value of β has
to be set to λ. In contrast, our algorithm adopts a better approach, i.e. using
Lemma 3 (set B = 14

5 λ and β = λ), to derive a stacker cover of Ai of cost at
most 2B + β = 33

5 λ. Furthermore, the correctness of this approach is based on
the simple but crucial property that the total length of each arc and the shortest
path from its head to its tail is at most λ, as stated in Observation 1.

Remark 2. One can see that in Step 4 of Algorithm SymSCC2, for each even
arc (v1

j , v2
j) that traversed in the opposite direction in C ′

i, we add two copies of
the edge [v1

j , v2
j] to C ′

i. If the weights of the arcs are symmetric, we can upper
bound the weight of the added parallel edges in terms of the corresponding arcs.
Otherwise, i.e. the arc weights are not symmetric, we can not do this because
the weight of the added parallel edges can be arbitrarily large. This makes the
Algorithm SymSCC(λ) not suitable for the (general) SCC problem. It is also

412 Y. Sun et al.

the main difficulty of designing an approximate algorithm for the (general) SCC
problem. The same problem also appears in the following discussion on the
MSCC problem.

3.2 Min-Max Stacker Crane Walk Cover Problem

We give the following algorithm for the Symmetric SCWC problem, which is a
5-subroutine.

Algorithm SymSCWC(λ)

Input: An instance of the Symmetric SCWC problem consisting of a reduced
graph G = (V,E,A), a nonnegative integer weight function w on E ∪ A and
a positive integer k, and a value λ ∈ [maxa∈A w(a), 2w(G)].

Output: Either failure or a stacker crane walk cover of A containing at most k
walks with cost no more than 5λ.

Step 1. Delete all the edges with weight greater than λ in G. Suppose that the
resulting graph G[λ] has p connected components F1, . . . , Fp.

Step 2. For each i = 1, . . . , p, let Ai = A ∩ A(Fi), find a minimum weight
connected subgraph Ti of Fi such that Ti contains all the arcs in Ai and
spans V (Fi). Construct a Eulerian graph T ′

i from Ti using Lemma 5. Let Ci

be a Eulerian tour of T ′
i . By taking B = 4λ, β = λ, W = Ci, and A′ = Ai

in Lemma 1, we can decompose Ci into ki ≤ max
{⌈

w(Ci)
4λ

⌉
, 1

}
walks, which

constitute a stacker crane walk cover of Ai of cost no more than 5λ.
Step 3. If

∑p
i=1 ki ≤ k, return the stacker crane walk cover of A consisting of

the
∑p

i=1 ki walks obtained in Step 2; otherwise, return failure.

The time complexity of Algorithm SymSCWC(λ) can be shown as follows.

Lemma 9. Algorithm SymSCWC(λ) runs in O(|V |2 log |V |) time.

As before, we assume w.l.o.g. that the optimal solution consists of exactly k
optimum walks W ∗

1 , . . . ,W ∗
k . It is easy to verify the following fact.

Observation 3. If OPT ≤ λ, then w(e) ≤ OPT ≤ λ for each e ∈ ⋃k
i=1 E(W ∗

i)
and w(a) ≤ OPT ≤ λ for each a ∈ ⋃k

i=1 A(W ∗
i).

By Observation 3, if OPT ≤ λ, in Step 1 Algorithm SymSCWC(λ) does not
delete any edge in the optimal solution and any arc in A. Therefore, the vertex set
of each optimum walk is contained entirely in exactly one of V (F1), . . . , V (Fp).
Let k∗

i ≥ 1 (i = 1, . . . , p) be the number of optimum walks whose vertex sets are
contained in V (Fi). Similarly to Observation 2, we have the following fact.

Observation 4. If OPT ≤ λ, the k∗
i ≥ 1 (i = 1, . . . , p) optimum walks whose

vertex sets are contained in V (Fi) constitute a stacker crane walk cover of Ai

with cost at most λ.

Approximation Algorithms for Min-Max and Minimum Stacker Crane Cover 413

Based the above observations, we can obtain an upper bound on w(Ci).

Lemma 10. If OPT ≤ λ, then w(Ci) ≤ (4k∗
i − 2)λ for i = 1, . . . , p.

Using the above lemma, we derive the correctness of Algorithm
SymSCWC(λ).

Lemma 11. If OPT ≤ λ, Algorithm SymSCWC(λ) returns a stacker crane
walk cover of A with at most k walks whose cost is at most 5λ.

Based on Lemmas 9, 11 and 4, we have the following result.

Theorem 2. There is an O(|V |2 log |V | log w(G)) time 5-approximation algo-
rithm for the Symmetric SCWC problem.

4 Minimum Stacker Crane (Walk) Cover Problem

In this section, we deal with the Symmetric MSCC problem and the MSCWC
problem. We obtain a 5-approximation algorithm for the Symmetric MSCC prob-
lem by using the algorithm for the MRPC problem in [12] as a subroutine. For
the MSCWC problem, we devise a 4-approximation algorithm. We also present
a better 7

2 -approximation algorithm for the Symmetric MSCWC problem. (Due
to page limits, these results are deferred to the full-version of the paper.)

5 Conclusions

In this paper, we deal with two stacker crane cover problems and their variants.
We develop a better 33/5-approximation algorithm for the Symmetric SCC prob-
lem, which improves on the previous 37/5-approximation algorithm for a special
case of the Symmetric SCC problem. We also present the first constant-factor
approximation algorithms for the Symmetric SCWC problem, the Symmetric
MSCC problem and the Symmetric MSCWC problem with approximation ratios
5, 5 and 7/2, respectively. For the (general) MSCWC problem, we first give a
4-approximation algorithm.

For future research, it is desired to propose approximation algorithms for the
above problems with better approximation ratios. Furthermore, one can design
good approximation algorithms for the SCC problem, the SCWC problem and
the MSCC problem without symmetric arc weights constraint.

Acknowledgement. This research is supported by the National Natural Science
Foundation of China under grant numbers 11671135, 11871213 and the Natural Science
Foundation of Shanghai under grant number 19ZR1411800.

414 Y. Sun et al.

References

1. Arkin, E.M., Hassin, R., Levin, A.: Approximations for minimum and min-max
vehicle routing problems. J. Algorithms 59(1), 1–18 (2006)

2. Atallah, M.J., Kosaraju, S.R.: Efficient solutions to some transportation problems
with applications to minimizing robot arm travel. SIAM J. Comput. 17(5), 849–869
(1988)

3. Bao, X., Lu, C., Huang, D., Yu, W.: Approximation algorithm for min-max cycle
cover problem on a mixed graph. Oper. Res. Trans. 25(1), 107–113 (2021). [in
Chinese]

4. Calvo, R.W., Colorni, A.: An effective and fast heuristic for the Dial-a-Ride prob-
lem. 4OR 5(1), 61–73 (2007). https://doi.org/10.1007/s10288-006-0018-0

5. Corberan, A., Laporte, G.: Arc Routing: problems, methods, and applications. In:
SIAM, Philadelphia, pp. 101–127 (2015)

6. Eiselt, H.A., Gendreau, M., Laporte, G.: Arc routing problems, part I: the Chinese
postman problem. Oper. Res. 43, 231–242 (1995)

7. Eiselt, H.A., Gendreau, M., Laporte, G.: Arc routing problems, part II: the rural
postman problem. Oper. Res. 43, 399–414 (1995)

8. Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some
routing problems. SIAM J. Comput. 7(2), 178–193 (1978)

9. Frederickson, G.N., Guan, D.J.: Nonpreemptive ensemble motion planning on a
tree. J. Algorithms 15(1), 29–60 (1993)

10. Gao, X., Fan, J., Wu, F., Chen, G.: Approximation algorithms for sweep coverage
problem with multiple mobile sensors. IEEE/ACM Trans. Netw. 26(2), 990–1003
(2018)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco (1979)

12. Mao, Y., Yu, W., Liu, Z., Xiong, J.: Approximation algorithms for some minimum
postmen cover problems. In: Li, Y., Cardei, M., Huang, Y. (eds.) COCOA 2019.
LNCS, vol. 11949, pp. 375–386. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-36412-0 30

13. Olivier, Q., Andre, L., Fabien, L., Olivier, P., Martin, T.: Solving the large-scale
min-max k-rural postman problem for snow plowing. Networks 70(3), 195–215
(2017)

14. Parragh, S.N., Doerner, K.F., Hartl, R.F.: A survey on pickup and delivery
problems, Part I: transportation between customers and depot. J. Für Betrieb-
swirtschaft 1, 21–51 (2008)

15. Parragh, S.N., Doerner, K.F., Hartl, R.F.: A survey on pickup and delivery prob-
lems, Part II: transportation between pickup and delivery locations. J. Für Betrieb-
swirtschaft 2, 81–117 (2008)

16. Safilian, M., Hashemi, S.M., Eghbali, S., Safilian, A.: An approximation algorithm
for the Subpath Planning. In: the Proceedings of the 25th International Joint
Conference on Artificial Intelligence, pp. 669–675 (2016)

17. Treleaven, K., Pavone, M., Frazzoli, E.: Asymptotically optimal algorithms for one-
to-one pickup and delivery problems with applications to transportation systems.
IEEE Trans. Autom. Control 58(9), 2261–2276 (2013)

18. Xu, W., Liang, W., Lin, X.: Approximation algorithms for min-max cycle cover
problems. IEEE Trans. Comput. 64(3), 600–613 (2015)

https://doi.org/10.1007/s10288-006-0018-0
https://doi.org/10.1007/978-3-030-36412-0_30
https://doi.org/10.1007/978-3-030-36412-0_30

Approximation Algorithms for Min-Max and Minimum Stacker Crane Cover 415

19. Yu, W., Dai, R., Liu, Z.: Approximation algorithms for multi-vehicle stacker crane
problems. J. Oper. Res. Soc. China (2021, to appear)

20. Yu, W., Liu, Z., Bao, X.: Approximation algorithms for some min-max postmen
cover problems. Ann. Oper. Res. 300, 267–287 (2021). https://doi.org/10.1007/
s10479-021-03933-4

https://doi.org/10.1007/s10479-021-03933-4
https://doi.org/10.1007/s10479-021-03933-4

Succinct Data Structures
for Series-Parallel, Block-Cactus

and 3-Leaf Power Graphs

Sankardeep Chakraborty1 , Seungbum Jo2(B) , Kunihiko Sadakane1 ,
and Srinivasa Rao Satti3

1 The University of Tokyo, Tokyo, Japan
{sankardeep,sada}@mist.i.u-tokyo.ac.jp

2 Chungnam National University, Daejeon, South Korea
sbjo@cnu.ac.kr

3 Norwegian University of Science and Technology, Trondheim, Norway
srinivasa.r.satti@ntnu.no

Abstract. We design succinct encodings of series-parallel, block-cactus
and 3-leaf power graphs while supporting the basic navigational queries
such as degree, adjacency and neighborhood optimally in the RAM model
with logarithmic word size. One salient feature of our representation is
that it can achieve optimal space even though the exact space lower
bound for these graph classes is not known. For these graph classes,
we provide succinct data structures with optimal query support for the
first time in the literature. For series-parallel multigraphs, our work also
extends the works of Uno et al. (Disc. Math. Alg. and Appl., 2013) and
Blelloch and Farzan (CPM, 2010) to produce optimal bounds.

Keywords: Space efficient data structures · Succinct encoding ·
Series-parallel graphs · Cactus graphs

1 Introduction

In modern algorithm development, we observe two drastically opposing trends.
Even though memory capacities are increasing and their prices are drastically
reducing day-by-day, input data sizes that are being stored are growing at a much
faster pace, and this is due to the ongoing digital transformation of business and
society in general. There are many application areas, e.g., social networks, web
mining, and video streaming systems, where already there exists a tremendous
amount of data and it is only increasing. In these domains, most often, a natural
representation of the underlying data sets is in the form of graphs, and with each
passing day, these graphs are becoming massive. To process such huge graphs

S. Chakraborty—Supported by MEXT Quantum Leap Flagship Program (MEXT Q-
LEAP) Grant Number JPMXS0120319794.
S. Jo—Supported by the National Research Foundation of Korea (NRF) grant funded
by the Korea government (MSIT) (No. NRF-2020R1G1A1101477).

c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 416–430, 2021.
https://doi.org/10.1007/978-3-030-92681-6_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_33&domain=pdf
http://orcid.org/0000-0002-2395-4160
http://orcid.org/0000-0002-8644-3691
http://orcid.org/0000-0002-8212-3682
http://orcid.org/0000-0003-0636-9880
https://doi.org/10.1007/978-3-030-92681-6_33

Succinct Data Structures for SP, Block-Cactus and 3-Leaf Power Graphs 417

and extract useful information from them, we need to answer the following two
concrete questions among others: (1) can we store these massive graphs in com-
pressed form using the minimum amount of space? and (2) can we build space-
efficient indexes for these huge graphs so that we can extract useful information
about them by executing efficient query algorithms on the index itself? The field
of succinct data structures aims to exactly answer these questions satisfactorily,
and it has been one of the key contributions to the algorithm community in the
past two decades, both theoretically and practically. More specifically, given a
class of certain combinatorial objects, say T , from a universe U , the main objec-
tive here is to store any arbitrary member x ∈ T using the information-theoretic
lower bound of log(|U |) bits (in addition to o(log(|U |)) bits)1 along with efficient
support of a relevant set of operations on x.

There exists already a large body of work representing various combinatorial
structures succinctly along with fast query support. For example, succinct data
structures for rooted ordered trees [16,17,21,22], chordal graphs [18], graphs
with treewidth at most k [11], separable graphs [2], interval graphs [1] etc., are
some examples of these data structures. Following similar trend, in this work
we provide succinct data structures for series-parallel multigraphs [24], block-
cactus graphs [14] and 3-leaf power graphs [4]. We defer the definitions of the
graph classes to the individual sections where their succinct data structure is
proposed. These graphs are important because not only they are theoretically
appealing to study but they also show up in important practical application
domains, e.g., series-parallel graphs are used to model electrical networks, cacti
are useful in computational biology etc. To the best of our knowledge, our work
provides succinct data structures with optimal query support for the first time in
the literature (although there exists a succinct data structure for simple series-
parallel graphs [2], such a structure is not known for series-parallel multigraphs).

1.1 Previous Work

Series-Parallel (SP) Graphs. The information-theoretic lower bound (ITLB)
for encoding a simple SP-graph with n vertices is 3.18n + o(n) bits [3] whereas
the ITLB for encoding an SP multigraph with m edges is 1.84m+o(m) bits [27].
Since an SP graph is separable, one can obtain a succinct representation of any
SP graph by using the result of Blelloch and Farzan [2] while supporting some
navigation queries efficiently. However, this only works for simple SP graphs [19]
since one cannot store the look-up table for all possible micro-graphs (containing
multi SP graphs with any fixed number of vertices) within the limited space (as
the number of edges is not bounded)2. Also since simple SP graphs are exactly
the class of graphs with treewidth 2, one can use the data structure of Farzan and
Kamali [11] for representing SP graphs but again, this only works for simple SP

1 Throughout the paper, we use logarithm to the base 2.
2 Note that one can encode SP multigraphs by encoding the underlying simple graph

using Blelloch and Farzan’s encoding, along with a bit string of size m to represent
the multiplicities of the edges. However, the space usage is not succinct in this case.

418 S. Chakraborty et al.

graphs. For multigraph case with m edges, Uno et al. [27] present an encoding for
SP multigraphs taking at most 2.53 m bits without supporting any navigational
queries efficiently.

Block-Cactus and 3-Leaf Power Graphs. The ITLB for encoding a block-
cactus graph and a 3-leaf power graph with n vertices are 2.092n + o(n) [29]
and 1.35n+ o(n) [7] bits respectively. Note that the class of Block-cactus graphs
contains both cactus and block graph classes. As any cactus graph is planar,
and hence separable, one can again use the result of Blelloch and Farzan [2]
to encode them optimally with supporting the navigation queries efficiently.
However, this approach doesn’t work for block or block-cactus graphs since they
are not separable.

1.2 Our Main Contribution

We design succinct data structures for (i) series-parallel multigraphs in Sect. 3
and (ii) block-cactus graphs in Sect. 4, and finally (iii) 3-leaf power graphs in
Sect. 5 to support the following queries. Given a graph G = (V,E) and two
vertices u, v ∈ V , (i) degree(v) returns the number of edges incident to v in G,
(ii) adjacent(u, v) returns true if u and v are adjacent in G, and false otherwise,
and finally (iii) neighborhood(v) returns the set of all (distinct) vertices that are
adjacent to v in G. The following theorem summarizes our main results on these
graphs.

Theorem 1. There exists a succinct data structure that supports degree(u) and
adjacent(u, v) queries in O(1) time, and neighborhood(u) query in O(degree(u))
time, for (1) series-parallel multigraphs, (2) block-cactus graphs, and (3) 3-leaf
power graphs.

The reason for considering these three (seemingly unrelated) graph classes
is that any graph in each of these three classes has a corresponding tree-based
representation - and hence these graphs can be encoded succinctly by encoding
the corresponding tree. In what follows, we briefly discuss a high level idea on
how to succinctly represent the graphs of our interest. Roughly speaking, given a
graph G (G could be series-parallel, block-cactus or 3-leaf power), we first convert
it to a labeled tree TG which can be used to decode G. We then represent G by
encoding TG using the tree covering (TC) algorithm of Farzan and Munro [12],
which supports various tree navigation queries in O(1) time. However, we cannot
obtain directly the succinct representation of G with efficient navigation queries
from the tree covering of TG. More specifically, the tree covering algorithm first
decomposes the input tree and encodes each decomposed tree separately. Thus,
a lot of information of G can be lost in each of the decomposed trees. For
example, decomposed trees may not even belong to the graph class that we
originally started with in the first place (and this is in stark contrast to the
situation while designing succinct data structures for trees). Thus, we need to
apply non-trivial local changes (catering to each graph class separately) to these
decomposed trees and argue that (i) these changes convert them again back to

Succinct Data Structures for SP, Block-Cactus and 3-Leaf Power Graphs 419

the original graph class, without consuming too much space, and (ii) navigation
queries on G can be supported efficiently as tree queries on TG. As a consequence,
one salient feature of our approach is that for the graphs G we consider in this
paper, it is not necessary to know the exact information-theoretic lower bound,
to design succinct data structures for them if we only know the asymptotic
lower bound of the number of non-isomorphic graphs of G with a given number
of vertices. Note that the overall idea of ‘encoding the graph as a tree-based
representation and using the TC algorithm to encode the tree to support the
navigation operations on the graph’ is subsequently used in [6] to obtain succinct
representation for graphs of small clique-width. The other main contribution of
this paper is to construct suitable tree-based encodings and showing how to
adapt the TC representation to support the operations.

2 Preliminaries and Main Techniques

Throughout our paper, we assume familiarity with succinct/compact data struc-
tures (as given in [20]), basic graph theoretic terminology (as given in [9]), and
graph algorithms (as given in [8]). All the graphs in our paper are assumed to
be connected and unlabeled, i.e., we can number the vertices arbitrarily. More-
over, we assume the usual model of computation, namely a Θ(log n)-bit word
RAM model where n is the size of the input (n is the number of vertices in
the case of graphs, and the number of edges in the case of multigraphs). We
start by sketching a modification to the tree covering algorithm of Farzan and
Munro [13].

2.1 Tree Covering

The high level idea of the tree covering algorithm is to decompose the tree into
subtrees called mini-trees (in the rest of the paper, we use subtree to denote any
connected subgraph of a given tree), and further decompose the mini-trees into
yet smaller subtrees called micro-trees. The micro-trees are small enough to be
stored in a compact table. The root of a mini-tree can be shared by several other
mini-trees. To represent the tree, we only have to represent the connections and
links between the subtrees. In what follows, we summarize the main result of
Farzan and Munro [13] in the following theorem:

Theorem 2. ([13]). For a rooted ordered tree with n nodes and a positive integer
1 ≤ L ≤ n, we can obtain a tree covering satisfying (1) each subtree contains at
most 2L nodes, (2) the number of subtrees is O(n/L), (3) each subtree has at
most one outgoing edge, apart from those from the root of the subtree.

For each subtree after the decomposition of Theorem 2, the unique node that
has an outgoing edge is called the boundary node of the subtree, and the edge is
called the boundary edge of the subtree. The subtree may have multiple outgoing
edges from its root node (in this case, we call it a shared root node), and those
edges are called root boundary edges.

420 S. Chakraborty et al.

To obtain a succinct representation, we first apply Theorem 2 with L =
log2 n, to obtain O(n/ log2 n) mini-trees (here and in the rest of the paper, we
ignore all floors and ceilings which do not affect the main result). The tree
obtained by contracting each mini-tree into a vertex is referred to as the tree
over mini-trees. If more than one mini-tree shares a common root, we create a
dummy node in the tree and make the nodes corresponding to the mini-trees as
children of the dummy node. We also set the parent of the dummy node as the
node corresponding to the parent mini-tree. (See Fig. 1 for an example.) This tree
has O(n/ log2 n) vertices and therefore can be represented in O(n/ log n) = o(n)
bits using a pointer-based representation. Then, for each mini-tree, we again
apply Theorem 2 with parameter � = 1

4 log n to obtain O(n/ log n) micro-trees
in total. The tree obtained from each mini-tree by contracting each micro-tree
into a node, and adding dummy nodes for micro-trees sharing a common root
(as in the case of the tree over mini-trees) is called the mini-tree over micro-
trees. Each mini-tree over micro-trees has O(L/�) = O(log n) vertices, and can
be represented by O(log(L/�)) = O(log log n)-bit pointers. For each non-root
boundary edge of a micro-tree t, we encode from which vertex of t it comes
out and the rank among all children of the vertex. One can encode the position
where the boundary edge is inserted in O(log �) bits. Note that in our modified
tree decomposition, each node in the tree is in exactly one micro-tree.

For each micro-tree, we define its representative as its root node if it is not
shared with other micro-trees, or the next node of the root node in preorder if
it is shared. Then we mark bits of the balanced parentheses representation [17]
of the entire tree corresponding to the representatives. If we extract the marked
bits, it forms a balanced parentheses (BP) and it represents the mini-tree over
micro-trees. The positions of marked bits are encoded in O(n log log n/ log n)
bits because there are O(n/ log n) marked bits in the BP representation of 2n
bits. The BP representation is partitioned into O(n/ log n) many variable-length
blocks, each of which is of length O(log n). We can decode each block in constant
time.

To support basic tree navigational operations such as parent, i-th child, child
rank, degree, lowest common ancestor (LCA), level ancestor, depth, subtree size,
leaf rank, etc. in constant time, we use the data structure of [21]. Note that we
slightly change the data structure because now each block is of variable length.
We need to store those lengths, but it is done by using the positions of the
marked bits.

The total space for all mini-trees over micro-trees is O(n/� · log �) =
O(n log log n/ log n) = o(n) bits. Finally, the micro-trees are stored as two-level
pointers (storing the size, and an offset within all possible trees of that size)
into a precomputed table that contains the representations of all possible micro-
trees. The space for encoding all the micro-trees using this representation can
be shown to be 2n + o(n) bits.

Succinct Data Structures for SP, Block-Cactus and 3-Leaf Power Graphs 421

2.2 Graph Representation Using Tree Covering

This section describes the high-level idea to obtain succinct encodings for the
graph classes that we consider. Let C be one of the graph classes among series-
parallel multigraphs, block-cactus graphs, and 3-leaf power graphs. Then the
following properties hold.

– the ITLB for representing any graph G ∈ C is kn + o(kn) bits for some
constant k > 0 [7,27,29], where n is the number of vertices (block-cactus,
and 3-leaf power graphs) or edges (series-parallel multigraphs) in G.

– For any connected graph G ∈ C, there exists a labeled tree TG of O(n) nodes,
such that G can be uniquely decoded from TG.

By the above properties, one can represent any graph G ∈ C by encoding
the tree covering of TG (with L = log2 n and � = log n

2k). Unfortunately, tree
covering on TG does not directly give a succinct encoding of G since the number
of all non-isomorphic graphs in C can be much smaller than the number of all
non-isomorphic labeled trees of the same size (for example, multiple labeled
trees can correspond to the same graph). To solve this problem, we maintain
a precomputed table of all non-isomorphic graphs in C of size at most �, along
with their corresponding trees in canonical representation. By representing each
micro-tree as an index of the corresponding graph in the precomputed table,
we can store all the micro-trees of TG in succinct space. If a micro-tree t does
not have a corresponding graph in C (i.e., there is no corresponding graph in
the precomputed table), we first extend t to Tg where g ∈ C of size at most �
by adding some dummy nodes, and encode t as the index of g, along with the
information about dummy nodes. Since we only add a small number of (at most
O(1)) dummy nodes for each micro-tree, all the additional information can be
stored within succinct space. In the following sections, we describe how to add
such dummy nodes for series-parallel, block-cactus, and 3-leaf power graphs.

Finally, for the case when G ∈ C is not connected, we extend the above idea
as follows. We first encode all the connected components of G separately, and
encoding the sizes of the connected components using the encoding of [10,26]
using at most O(

√
n) additional bits. This implies we can still encode G in

succinct space even if G is not connected. In the rest of this paper, we assume
that all the graphs are connected.

3 Series-Parallel Graphs

Series-parallel graphs [24] (SP graphs in short) are undirected multi-graphs
which are defined recursively as follows.

– A single edge is an SP graph. We call its two end points as terminals.
– Given two SP graphs G1 with terminals s1, t1 and G2 with terminals s2, t2,

• their series composition, the graph made by identifying t1 = s2, is an SP
graph with terminals s1, t2; and

422 S. Chakraborty et al.

P

S

S

S

S

P

S

P

S

1

2

3

4

6 7

10

5

a

b c

d

e

f g

h i j k7 85 76 85 6

4 51 4

1 10

2 10

3 102 3

1 2

5 85 8

5 8

1 101 10

1 10

2 10

2 10

l8 9

8 9

1

2

3

10

4

5

6 7
k

jh

i

g
f

e

d

c

b

a

8

9
l

m
n

o

o

m9 10 n9 10

P9 10

1 10

Fig. 1. Example of an SP graph (left), its SP tree representation with tree covering
(middle), and the tree over mini-trees (right). The roots of mini-tree G and K are
dummy nodes. Numbers below S nodes are inorders. Numbers besides internal nodes
of the SP tree are the left and right labels. Leaves of the tree also have the left and
right labels, which are vertex labels of the SP graph.

• their parallel composition, the graph made by identifying s1 = s2, and
t1 = t2, is an SP graph with terminals s1 and t1.

From this construction, we can obtain the binary tree T representing an SP
graph G = (V,E) as follows. Each leaf of the binary tree T corresponds to an
edge of G. Each internal node v of T has a label S (or P), which represents an SP
graph made by the series (or parallel) composition of the two SP graphs repre-
sented by the two child subtrees of v. We convert it into a multi-ary SP tree TG

by merging vertically consecutive nodes with identical labels into a single node.
More precisely, while scanning all the nodes in TG in bottom-up, we contract
every edge (v, v′) if v and v′ have the same labels. Then all the internal nodes
at the same depth have the same labels, and the labels alternate between the
levels. See Fig. 1 for an example. Note that any two non-isomorphic SP graphs
have different SP trees.

Succinct Representation. Let n and m be the number of vertices and edges of
G, respectively. Then TG has m leaves, and O(m) nodes. First, we construct the
SP tree TG from an SP graph G = (V,E). If the root of TG is a P node, we add
a dummy parent r labeled S with three children, and make the original root as
the middle child of r. The first and the last children of r correspond to dummy
edges. If the root of TG is an S node, we also add two leaves as the leftmost
and rightmost children of the root, corresponding to dummy edges. We refer to
this modified tree as TG. Let s = O(m) be the number of nodes in TG. Then we
apply the tree covering algorithm with parameters L = log2 s and � = (log s)/4.

It is obvious that each micro-tree without dummy leaf nodes represents an
SP graph. For each graph corresponding to a micro-tree, we use a linear time
algorithm [28] to obtain a canonical representation of the micro-tree. Note that

Succinct Data Structures for SP, Block-Cactus and 3-Leaf Power Graphs 423

if the graphs corresponding to two micro-trees are isomorphic, then those two
micro-trees have the same canonical representation. We create a table to store all
non-isomorphic SP graphs with at most � vertices, and encode each micro-tree
as a pointer into this table. To reconstruct the original graph from the graphs
corresponding to the micro-trees, we need additional information to combine
these graphs. More specifically, assume an SP graph G consists of a series com-
position of graphs G1 and G2, whose terminals are s1, t1, and s2, t2 respectively.
Then one can construct two different graphs G and G′ by (i) connecting t1 and
t2 or (ii) t1 and s2. Thus, for each micro tree, we add one extra bit to store this
information.

For each S node of TG, we assign an inorder number [25] (we only assign
inorder numbers for S nodes). Inorder numbers in a rooted tree are given during
a preorder traversal from the root. If a node v is visited from one of its children
and another child of v is visited next, we assign one inorder number to v. If a
node has k children, we assign k − 1 inorder numbers to it. (Unary nodes are
not assigned any inorder number.) If a node has more than one inorder number,
we use the smallest value as its representative inorder number. Now we consider
two operations (i) irank(k, i): return the i-th inorder rank of S node k (given
as preorder number), and (ii) iselect(j): given an inorder rank j of an S node,
return (k, i) where k is the preorder number of the node with inorder rank j and
i is the number such that k is the i-th inorder number of the node. The following
describes how to support both queries in O(1) time using o(n) bits of additional
space.

One can observe that for each micro-tree (or mini-tree) t of TG, all the inorder
numbers corresponding to the S nodes in t form two intervals I1t = [l1t , r

1
t] and

I2t = [l2t , r
2
t]. Note that all the intervals corresponding to the mini-trees or micro-

trees partition the interval [1,S] where S is the largest inorder number in TG.
We construct a dictionary DM that stores the right end points of all the intervals
corresponding to the mini-trees, where with each element of the dictionary, we
store a pointer to the mini-tree corresponding to that interval as the satellite
information. The number of elements in this dictionary is O(s/L) with universe
size at most s, and hence can be represented as an FID [23] using o(s) bits to
support membership, rank and select queries in O(1) time. The satellite infor-
mation can also be stored in o(s) bits, to support O(1)-time access. For each
mini-tree M , we also construct a dictionary DM

µ that stores the right end points
of all the intervals corresponding to its micro-trees, where with each element we
associate a pointer to the corresponding micro-tree as the satellite information.
The space usage of the dictionaries corresponding to all the mini-trees adds up to
o(s) bits in total.

In addition, for each mini-tree T of TG, we store its corresponding intervals
I1T and I2T using o(s) bits in total. We call the two values l1T and l2T as the offsets
corresponding to T . Also, for each micro-tree t contained in the mini-tree T and
i ∈ {1, 2}, we store {[lit − l1T , rit − l1T]} if Iit ⊆ I1T , and [lit − l2T , rit − l2T] otherwise
(i.e., offsets with respect to the mini-tree intervals they belong to). Since all the

424 S. Chakraborty et al.

endpoints of these intervals are at most L, we can store all such intervals using
o(s) bits in total. The total space usage is o(s) bits.

To compute irank(k, i), we first find the micro-tree t which contains the node
k. Then, we decode the interval corresponding t using the interval stored at t as
well as the offsets corresponding to t, and return the i-th smallest value within
the interval. To compute iselect(k), we first find micro-tree t that contains the
answer by the rank queries on DM and DM

µ . Finally, we compute the answer
within the micro-tree t in O(1) time using the intervals stored with t.

Next, we assign labels to the vertices of the graph. Any vertex in the graph
corresponds to a common terminal of two SP graphs which are combined by
series composition. For each vertex v ∈ G, let Sv be an S node in TG which
represents such series composition. Then we assign one inorder number of Sv

as the label of v (note that any two subgraphs which have a common terminal
correspond to the subtree at the consecutive child nodes of Sv). For example,
vertex 5 in the graph corresponds to the common terminal of the following two
subgraphs: (i) the subgraph consisting of the edge g from 4 to 5, and (ii) the
subgraph corresponding to the subtree rooted at the mini-tree H (consisting of a
single P node), which contains the four edges h, j, i and k. Note that the inorder
number 5 is assigned to the S node corresponding to the mini-tree F , when we
traverse from subtree corresponding to (i) to the subtree corresponding to (ii)
(during the preorder traversal of T).

Also, we define a label for each node v of TG, which is an ordered pair (lv, rv)
of the two terminals of the subgraph corresponding to the subtree rooted at that
node. We call lv and rv the left and the right label of the node v. The label
(lv, rv) of a P node v can be computed in O(1) time as follows. (1) If v is the
leftmost child of its parent p, then rv is equal to the smallest inorder number of
p, given when p is visited from v. To obtain lv, we traverse the SP tree TG up
from v until we reach an S node q such that v does not belong to the leftmost
subtree of q. We can compute the node q in O(1) time as follows. If q is in the
same micro-tree as v, then we can find q using a table lookup. Otherwise, if q
is in the same mini-tree as v, then we store q with the root of the micro-tree
containing v. Finally, if q is not in the same mini-tree, then we explicitly store q
with the root of the mini-tree containing v. (2) If v is the rightmost child of its
parent p, then lv is equal to the inorder number of p, given when p is visited the
last time before visiting v. To obtain rv, we traverse the SP tree TG up from v
until we reach an S node p such that v does not belong to the rightmost subtree
of p. We use a similar data structure as in (1) to compute the answer. (3) In
all other cases, lv and rv are the inorder numbers of the parent p of v, defined
immediately before visiting v from p, and immediately after visiting the next
sibling of v from p, respectively.

The label of an S node is the same as its parent P node (we don’t assign a
label to the root S node). The label of a leaf can be determined by the same
algorithm for P or S nodes depending on whether its parent is an S or P node.
Note that, from the above definition, the label of a P node is the same as the
label of any of its child S nodes. For an S node v, suppose v1, v2, . . . , vk be its k

Succinct Data Structures for SP, Block-Cactus and 3-Leaf Power Graphs 425

children, and (�1, r1), (�2, r2), . . . , (�k, rk) be the left and the right labels. Then
it holds that r1 = �2, r2 = �3, . . . , rk−1 = �k, and the label of v is (�1, rk).

We also define b(u) and f(u) for each vertex u of the graph, as follows.
Suppose that during the preorder traversal of the tree, we visit nodes x, p, y in
this order and we assign the inorder number u to p. Then we define b(u) = x and
f(u) = y. If iselect(u) returns the pair (p, j), then x and y are the j-th and the
(j +1)-th children of node p, respectively. Thus, b(u) and f(u) can be computed
in O(1) time.

This completes the description for encoding of SP graphs.

Supporting Navigation Queries. For SP graphs, we additionally consider
multiplicity (u, v) queries, which returns the number of edges between u and v.

1. adjacent(u, v): Without loss of generality, assume that u < v. We first find
the nodes b(u), f(u), b(v) and f(v). (1) If f(u) = b(v), the subgraph corre-
sponding to the node f(u) has terminals with labels u and v. Therefore u and
v are adjacent if f(u) is a leaf (this corresponds to the edge (u, v)) or f(u) has
a leaf child (f(u) is a P node and it has a leaf child that corresponds to the
edge (u, v)).(2) If depth(b(u)) > depth(b(v)), find the label of f(u). Let (u, x)
be the label of f(u). Then u and v are adjacent iff x = v, and f(u) is either
a leaf or is a P node with a leaf child. (3) If depth(b(u)) < depth(b(v)), find
the labels of b(v). Let (y, v) be the label of b(v). Then u and v are adjacent
iff y = u, and b(v) is either a leaf or is a P node with a leaf child. In all three
cases, the query can be supported in O(1) time.

2. multiplicity(u, v): Again, without loss of generality, assume that u < v. If
adjacent(u, v) = false, then we return 0. If not, we consider the three cases
above, and describe how to support the multiplicity query. For Case (1),
if f(u) is a P node (otherwise, we return 1), we can answer the query by
returning the number of leaf children of f(u) (note that this can be supported
in O(1) time using the tree covering of TG). For Case (2), if f(u) is a P node
with label (u, v) (if f(u) is a leaf node, we return 1), we answer the query
by returning the number of leaf children of f(u). Case (3) is analogous to
Case (2).

3. neighborhood(u): First we find b(u) and f(u). Then we apply the following
procedure to explore all the neighbors of u by executing the two procedure
calls, Explore(b(u),R) and Explore(f(u),L).

Explore(x,D): if x is a leaf with label (u,w) or (w, u), then output w.
If x is an S node, then call Explore(y,D), where y is the leftmost
(rightmost) child of x, if D = L (D = R). If x is a P node, then call
Explore(y,D) for all the children y of x.

The running time of this procedure is proportional to the size of the output.
Note that if we do not want to report the same neighbour multiple times, we
can define a canonical ordering between the children of P nodes such that all
the leaf children appear after the non-leaf children (S nodes), and only report
the first leaf child of the node.

426 S. Chakraborty et al.

4. degree(u): Let μ and M be the micro-tree and mini-tree containing u respec-
tively. Then the degree of u is the summation of (i) the number of adjacent
vertices in μ, (ii) the number of adjacent vertices not in μ but in M , and
(iii) the number of adjacent vertices not in M , denoted by d1u, d2u, and d3u
respectively. Here an adjacent vertex of u refers to a vertex v such that (u, v)
or (v, u) is the label of some leaf node. If u is not one of the labels of the
boundary node of μ (of M), then d2u = 0 (respectively, d3u = 0). Now we
consider three cases as follows. First, d1u can be computed in O(1) time using
a precomputed table. The value d2u (d3u) can be stored with the root of micro-
tree (mini-tree) whose parent is the boundary node in μ (M). Note that in
the above scheme, we only need to store two values corresponding to the two
labels of the root, for each micro-tree/mini-tree root. Thus the space usage
for storing these values is o(n) bits.

4 Block/Cactus/Block-Cactus Graphs

A block graph (also known as a clique tree or a Husimi tree [15]) is an undirected
graph in which every block (i.e., maximal biconnected component) is a clique. A
cactus graph (same as almost tree(1) [14]) is a connected graph in which every
two simple cycles have at most one vertex in common (equivalently every block
is a cycle). A block-cactus graph is a graph in which every block is either a cycle
or a complete graph.

Any graph that belongs to one of these three graph classes can be converted
into a tree as follows. Replace each block (either a clique or an induced cycle)
with k vertices by a star graph K1,k by introducing a dummy node that is
connected to the k nodes that correspond to the k vertices of the block. The
remaining edges and vertices of the graph are simply copied into the tree. See
Fig. 2 for an example. Note that the number of dummy nodes is always less than
the number of non-dummy nodes. In the following, we describe a succinct encod-
ing for block-cactus graphs, and note that it is easy to obtain succinct encoding
for block graph and cactus graph using these ideas.

Succinct Representation. Let G be the input block-cactus graph, and let TG

be the corresponding tree obtained by replacing each block with a star graph,
as described above. We apply the tree covering algorithm of Theorem 2 on TG

with mini-tree and micro-trees of size L = log2 n and � = (log n)/(2α) for some
constant α ≥ 2.092 respectively.

It is easy to see that each micro/mini-tree obtained by the tree cover algo-
rithm corresponds to a block-cactus graph, although it may not be a sub-
graph of the original graph G. And by storing some additional information with
each micro/mini-tree along with its representation, we can give a bijective map
between the vertices in G and the nodes in TG, which we use in describing the
query algorithms.

We first note that when we convert a block (Ck or Kk) into a star graph
(K1,k), the neighbors of the dummy node can be ordered in multiple ways when

Succinct Data Structures for SP, Block-Cactus and 3-Leaf Power Graphs 427

9

8

10

5

11

6

29

27

28

3

15

12

14

16

1

30

19

17

20

22

24

21
25

23
7

4

13

2

18

26

98 10

5 116 2927 28

3

15

12

14

16

1

30

19

17

20

22

24

21

25

23

7

4

13

2

18

26

Fig. 2. An example of a block-cactus graph (left) and its tree representation (right).
Squares are dummy vertices.

we consider the resulting graph as an ordered tree. In particular, if the ordered
tree is rooted at a dummy node corresponding to a cycle, then its children can
be ordered in either the clockwise or anti-clockwise order of the cycle, and also
the first child can be any vertex on the cycle. When the root of micro-tree t is
a dummy node corresponding to a cycle, the cycle corresponding to the dummy
node is cut into two or more pieces, and the one inside t represents a shorter cycle.
Then the micro-tree t is encoded as a canonical representation of the modified
subgraph, and it loses the information of how it was connected to the other part
of the graph. To recover this information, for the micro-tree it is enough to store
one vertex in the shorter cycle that is connected to the outside and the direction
(clockwise or anti-clockwise) of the cycle. The vertex is encoded in O(log �) bits,
and the direction in one bit. We need the same information for the non-root
boundary node of the micro-tree. This additional information will enable us to
reconstruct the cycle in the original graph from the subgraphs corresponding to
the micro-trees. Note that if the dummy node corresponds to a clique, then we
don’t need this information.

Each micro-tree is encoded as a two-level pointer into a precomputed table
that stores the set of all possible block-cactus graphs on at most � vertices.
Note that the number of dummy nodes is O(n/ log n) since we can delete all the
dummy nodes which are not boundary nodes of micro-trees. We also store 1 bit
with each of these O(n/ log n) dummy nodes, indicating whether it corresponds
to a clique or a cycle. Thus each micro-tree is represented optimally, apart from
an O(log �)-bit additional information. Hence the overall space usage is succinct.
This completes the description for the succinct encoding of block-cactus graphs.

Supporting Navigation Queries

1. adjacent(u, v): If there is an edge in TG between the nodes corresponding to
u and v, then u and v are adjacent in the graph (since we only delete some
edges from the original graph; and all the edges added are incident to some
dummy node). Otherwise, u and v are adjacent if they are connected to the

428 S. Chakraborty et al.

same dummy node x, and either (a) x corresponds to a clique, or (b) u and
v are “adjacent” in the tree – i.e., if they are adjacent siblings or one of them
is the parent of x and the other is either the first or last child of x. Since all
these conditions can be checked in O(1) time using the tree representation,
we can support the query in O(1) time.

2. neighborhood(u): The algorithm for this follows essentially from the condi-
tions for checking adjacency. More specifically, to report neighborhood(u), we
first output all the non-dummy nodes adjacent to u in the tree. And if u is
adjacent to any dummy node x, then we also output all the vertices: (a) that
are connected to x if x corresponds to a clique, and (b) that are “adjacent” to
it in the tree if x corresponds to a cycle. This can be done in time proportional
to the output size.

3. degree(u): From the algorithm for the neighborhood(u) query, we observe that
the degree of a node can be computed by adding the two quantities: (1) the
number of non-dummy neighbors of u, and (2) the number of nodes that are
adjacent to u through a dummy neighbor. It is easy to compute (1) and (2)
within a micro-tree, in constant time using precomputed tables. In addition,
we may need to add the contributions from outside the micro-tree, if u is
either a boundary node or is adjacent to a boundary node which is dummy.
For each such dummy boundary node, we need to add either 1 or 2 (if the
dummy node corresponds to a cycle) or k (if the dummy node corresponds
to a clique of size k). Since there are at most two such boundary nodes which
can be adjacent to u, this can be computed in constant time. Also, for the
roots of the mini (micro) trees, which are non-dummy, we store their degrees
(within the mini-tree) explicitly. Thus, we can compute the degree(u) query
in O(1) time.

5 3-leaf Power Graph

A graph G with n vertices is a k-leaf power if there exists a tree TG with n
leaves where each leaf node corresponds to a vertex in the graph G, and any two
vertices in G are adjacent if and only if the distance between their corresponding
leaves in the tree is at most k. The tree TG is called a k-leaf root of G (see Fig. 3
for an example). Note that for any connected and non-clique 3-leaf power G, TG

has at most O(n) nodes [4]. To obtain a succinct representation of G, we first
make TG as a rooted tree, and apply the tree covering algorithm of Theorem 2
on TG and show how to support the queries on the graph using the tree covering
representation. (We describe all the details in the full version [5]).

Succinct Data Structures for SP, Block-Cactus and 3-Leaf Power Graphs 429

b d

ca

i j

hg

f

e
a

e f

c

g h

i j

b

d

Fig. 3. An example of a 3-leaf power graph (left) and its 3-leaf root (right).

6 Conclusions

We present in this work succinct representations of series-parallel, block-cactus
and 3-leaf power graphs along with supporting basic navigational queries opti-
mally. We conclude with some possible future directions for further exploration.
Following the works of [1,11], is it possible to support shortest path queries
efficiently on these graphs while using same space as in this paper? Is it pos-
sible to design space-efficient algorithms for various combinatorial problems for
these graphs? Can we generalize the data structure of Sect. 5 to construct a
succinct representation of k-leaf power graphs? Finally, can we prove a lower
bound between the query time and the extra space i.e., redundancy, for our data
structures?

References

1. Acan, H., Chakraborty, S., Jo, S., Satti, S.R.: Succinct data structures for families
of interval graphs. In: WADS, pp. 1–13 (2019)

2. Blelloch, G.E., Farzan, A.: Succinct representations of separable graphs. In: CPM,
pp. 138–150 (2010)

3. Bodirsky, M., Giménez, O., Kang, M., Noy, M.: Enumeration and limit laws for
series-parallel graphs. Eur. J. Comb. 28(8), 2091–2105 (2007)

4. Brandstädt, A., Le, V.B.: Structure and linear time recognition of 3-leaf powers.
Inf. Process. Lett. 98(4), 133–138 (2006)

5. Chakraborty, S., Jo, S., Sadakane, K., Satti, S.R.: Succinct data structures for
series-parallel, block-cactus and 3-leaf power graphs (2021). https://arxiv.org/abs/
2108.10776

6. Chakraborty, S., Jo, S., Sadakane, K., Satti, S.R.: Succinct data structures for small
clique-width graphs. In: 31st Data Compression Conference, DCC 2021, Snowbird,
UT, USA, 23–26 March, 2021, pp. 133–142. IEEE (2021)

7. Chauve, C., Fusy, É., Lumbroso, J.O.: An exact enumeration of distance-hereditary
graphs. In: ANALCO 2017, Barcelona, Spain, Hotel Porta Fira, 16–17 January,
2017, pp. 31–45 (2017)

https://arxiv.org/abs/2108.10776
https://arxiv.org/abs/2108.10776

430 S. Chakraborty et al.

8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press (2009)

9. Diestel, R.: Graph Theory, Graduate texts in mathematics, 4th edn., vol. 173.
Springer (2012)

10. El-Zein, H., Lewenstein, M., Munro, J.I., Raman, V., Chan, T.M.: On the succinct
representation of equivalence classes. Algorithmica 78(3), 1020–1040 (2017)

11. Farzan, A., Kamali, S.: Compact navigation and distance Oracles for graphs with
small treewidth. Algorithmica 69(1), 92–116 (2014)

12. Farzan, A., Munro, J.I.: Succinct encoding of arbitrary graphs. Theor. Comput.
Sci. 513, 38–52 (2013)

13. Farzan, A., Munro, J.I.: A uniform paradigm to succinctly encode various families
of trees. Algorithmica 68(1), 16–40 (2014)

14. Gurevich, Y., Stockmeyer, L.J., Vishkin, U.: Solving NP-Hard problems on graphs
that are almost trees and an application to facility location problems. J. ACM
31(3), 459–473 (1984)

15. Husimi, K.: Note on mayers’ theory of cluster integrals. J. Chem. Phys. 18(5),
682–684 (1950)

16. Jacobson, G.J.: Succinct static data structures. Ph.D. thesis, Carnegie Mellon Uni-
versity (1998)

17. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static
trees. SIAM J. Comput. 31(3), 762–776 (2001)

18. Munro, J.I., Wu, K.: Succinct data structures for chordal graphs. In: ISAAC, pp.
67:1–67:12 (2018)

19. Munro, J.I., Nicholson, P.K.: Compressed representations of graphs. In: Encyclo-
pedia of Algorithms, pp. 382–386 (2016)

20. Navarro, G.: Compact Data Structures - A Practical Approach. Cambridge Uni-
versity Press, New York (2016)

21. Navarro, G., Sadakane, K.: Fully functional static and dynamic succinct trees.
ACM Trans. Algorithms 10(3), 16:1–16:39 (2014)

22. Raman, R., Rao, S.S.: Succinct representations of ordinal trees. In: Brodnik, A.,
López-Ortiz, A., Raman, V., Viola, A. (eds.) Space-Efficient Data Structures,
Streams, and Algorithms. LNCS, vol. 8066, pp. 319–332. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40273-9 20

23. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms
3(4), 43 (2007)

24. Riordan, J., Shannon, C.E.: The number of two-terminal series-parallel networks.
J. Math. Phys. 21(1–4), 83–93 (1942). https://doi.org/10.1002/sapm194221183

25. Sadakane, K.: Compressed suffix trees with full functionality. Theory Comput.
Syst. 41(4), 589–607 (2007)

26. Sumigawa, K., Sadakane, K.: Storing partitions of integers in sublinear space. Rev.
Socionetwork Strateg. 13(2), 237–252 (2019)

27. Uno, T., Uehara, R., Nakano, S.: Bounding the number of reduced trees, cographs,
and series-parallel graphs by compression. Discrete Math. Algorithms Appl.
05(02), 1360001 (2013)

28. Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series parallel digraphs.
SIAM J. Comput. 11(2), 298–313 (1982)

29. Voblyi, V.A., Meleshko, A.K.: Enumeration of labeled block-cactus graphs. J. Appl.
Ind. Math. 8(3), 422–427 (2014). https://doi.org/10.1134/S1990478914030156

https://doi.org/10.1007/978-3-642-40273-9_20
https://doi.org/10.1002/sapm194221183
https://doi.org/10.1134/S1990478914030156

Streaming Submodular Maximization
Under Differential Privacy Noise

Di Xiao1 , Longkun Guo1(B) , Kewen Liao2 , and Pei Yao1

1 Fuzhou University, Fuzhou, China
lkguo@fzu.edu.cn

2 Australian Catholic University, Sydney, Australia
kewen.liao@acu.edu.au

Abstract. The era of big data has brought the need of fast data stream
analysis. Recently the problem of streaming submodular optimization
has attracted much attention due to the importance of both submod-
ular functions and streaming analytics. However, in real practical set-
ting, streaming data often comes with noise which causes difficulties in
analysing and optimizing submodular functions. In this paper, we study
the problem of submodular maximization with cardinality constraint
under a noisy streaming model, where the impact of noise is assumed
to be small as inspired by the framework of differential privacy (so we
also call it DP noise). For this problem, we eventually give a worst-case
approximation ratio of 1(

2+(1+ 1
k)2

)
(1+ 1

k)
−δ in one pass. To complement

the theoretical analysis, we also conduct experiments across real datasets
to show our algorithm outperforms the baseline streaming methods.

Keywords: Submodular maximization · Streaming algorithms ·
Differential privacy noise

1 Introduction

Submodular function is a mathematical function over sets naturally derived from
many practical observations and experiences. It captures the property of natural
diminishing returns, in which the function value gained after repeatly adding
a single element into the input set keeps decreasing. This property is deemed
to be important in many practical applications and recently the submodular
function has continued to show great practicality in a broad topics of machine
learning, AI, data mining, and combinatorial optimization [3,9,10,16,19,21,23].
In particular, the submodular maximization problem subject to a cardinality
constraint has been widely studied and applied with the simple best greedy
algorithms [8,17]. This common variant of the problem asks to select a bounded
number of elements from a ground set of elements such that the objective func-
tion over the selected set of elements attains the maximum value (details as in

c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 431–444, 2021.
https://doi.org/10.1007/978-3-030-92681-6_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_34&domain=pdf
http://orcid.org/0000-0002-3102-0827
http://orcid.org/0000-0003-2891-4253
http://orcid.org/0000-0003-0371-6525
http://orcid.org/0000-0002-6151-3462
https://doi.org/10.1007/978-3-030-92681-6_34

432 D. Xiao et al.

the preliminaries section). The greedy solutions are on static sets, but in many
cases data arrives in a streaming fashion where the characteristics of data stream
determine that the processing of data stream usually requires one access, contin-
uous processing, limited storage, approximate results, and fast response [8]. The
aforementioned greedy approaches are not suitable for the streaming model as
multiple accesses to the entire dataset are required. A state-of-the-art streaming
algorithm at present is SieveStreaming [1].

In addition, the above mentioned submodular optimization algorithms do not
consider noise in the data which can naturally arise in many data-driven appli-
cations like social media and IoT. In non-streaming setting, noise has been gen-
erally considered as additive or multiplicative noise [2,21] and the noisy version
of the problem can be transformed into an approximate submodular maximiza-
tion problem. For instance, an exact submodular function is f but under a noisy
environment we can only observe the value of an approximate function F . The
concept of approximating the submodular function was introduced by Horel et al.
[11]. As an example, for ε > 0, we say F : 2V → R is a ε-multiplicative approx-
imate submodular function, if there exists a non-negative submodular function
f : 2V → R such that (1 − ε) f (S) ≤ F (S) ≤ (1 + ε) f (S) ,∀S ⊆ V. Similarly
the additive noise model dictates that f (S) − ε ≤ F (S) ≤ f (S) + ε. Note that
these model settings are designed to capture unbounded general noise. However,
in client-centric applications such as differential private databases, random noise
added to the data creates a small impact only with the purpose of privacy-
preserving. Inspired by some pioneer works of differential privacy [7,12,18], we
introduce the ε-differential privacy approximate submodular function as follows:

Definition 1. For ε > 0, we say F : 2V → R is a ε-differential privacy
approximate submodular function, if for any non-negative submodular function
f : 2V → R there exists a F such that e−εf (S) ≤ F (S) ≤ eεf (S) ,∀S ⊆ V.

The above function mirrors the outcome of adding differential private noise
to the data. A simplest way to simulate the noise is by adding the Laplace noise
analyzed by Sarathy et al. [20] which has been shown to preserve differential
privacy of numerical data. In addition, the impact of such noise injection is
small, so in our analysis ε is kept at a relatively small value.

Our Contribution. In this paper, we study a new streaming submodular maxi-
mization problem under cardinality constraint and differential privacy noise with
the following results:

– For this problem, we eventually give a streaming approximation algorithm
called DP-SS that overcomes the challenge of using approximate submodular
function to bound the optimal value of underlying submodular function.

– Our proposed algorithm only needs a single pass over the data stream while
the required memory is independent of the size of the dataset. Under the
assumption that ε = 1

2 ln
(
1 + 1

k

)
where k is the cardinality, the algorithm

achieves an approximation ratio of 1(
2+(1+ 1

k)2
)
(1+ 1

k)
− δ, and when ε → 0 it

Streaming Submodular Maximization Under Differential Privacy Noise 433

can provide an approximation guarantee of 1
2 − δ, for δ > 0. The algorithm

requires O (
k log

(
e2εk

)
/δ

)
memory and O (

log
(
e2εk

)
/δ

)
update time per

element.
– We conduct numerical experiments on our proposed method and several base-

line methods across three real data sets. Under DP noise, our algorithm DP-SS
performs consistently better than SieveStreaming.

2 Preliminaries

The problem studied is to select a subset from a set V data points of size n. We
call V the ground set. Now there is a non-negative set function f : 2V → R+

and f is normalized iff f (∅) = 0. The function f is non-negative iff f (S) > 0
for all S ⊆ V . The function f is monotone iff f (A) ≤ f (B) for all A ⊆ B ⊆ V .
For a submodular set function f , its marginal gain can be defined as

∇f (a|S) = f (S ∪ {a}) − f (S)

where S ⊆ V and a ∈ V . From this formula, it can be considered that the
marginal gain is when a is added to S, the size of the gain brought to function f .
Another condition for function f to be monotonic iff ∇f (a|S) ≥ 0 for all a and S.
For a set function f is submodular iff ∇f (a|A) ≥ ∇f (a|B) for all A ⊆ B ⊆ V and
a ∈ V \B. Another equivalent condition is f (A)+f (B) ≥ f (A ∪ B)+f (A ∩ B) ,
for all A,B ⊆ V. The submodularity of the function means that the marginal
gain is diminishing, indicates that adding an element to a small set helps more
than a large one. Throughout this paper we will use the submodularity and
monotonicity of functions.

Here in a noise-free environment, our problem is to maximize the submodular
function f subject to the constraint of the base k, that means we need to select a
subset of the ground set V whose size cannot exceed k to maximize the function
value. The specific expression is

max
S⊆V,|S|≤k

f (S) .

The problem we are considering in this paper introduces new constraints.
Firstly, the problem’s ground set we consider is generated under a streaming
model. This means that each element of data stream V arrives at the storage
point one by one. The speed of data arrival is very fast, elements will arrive
at any time and in a natural order. But our memory is much smaller than the
size of the data stream, so we must select and store the most valuable data
points. Secondly, the problem we consider is carried out in a noisy environment.
Here we still need to maximize f , but we can only estimate the value of f . At
the same time, in order to simulate a noisy environment, we pretend that the
original data conforms to differential privacy, so we added differential privacy
noise to the original data (details explained in the experiments section). Under
differential privacy mechanism, it is difficult for us to directly obtain the value

434 D. Xiao et al.

of function f, but it’s not difficult to calculate the noisy counterpart F. There-
fore, we can regard F as an approximate submodular function and F does not
necessarily satisfy submodularity. In addition, both submodular function f and
noisy function F satisfy monotonicity and normalization rules.

3 Related Work

First we introduce some related work in a noise-free environment, which of
course is all about the submodular maximization problem with the cardinal-
ity constraint. When it is not a data stream, Nemhauser et al. [17] obtained the
approximate ratio of 1− e−1 through the greedy algorithm of k iterations. Since
Feige [5] proved that the submodular function optimization problem is NP-hard,
it is difficult to improve the approximation ratio of 1−e−1 unless P = NP. Gomes
and Krause [8] first gave the StreamGreedy algorithm to solve the problem of
submodular maximization on the stream, it provides an approximate value of
0.5−δ and only needs to use O (k) memory, where ε depends on the submodular
function and some user-specified parameters. The best approximation factor can
only be obtained after multiple passes through the data, otherwise, the perfor-
mance of StreamGreedy will decrease arbitrarily with k. Therefore, we believe
that StreamGreedy is not a suitable streaming algorithm. For the same problem,
Badanidiyuru et al. [1] is the first to give a streaming algorithm that only needs
to pass data once, they called SieveStreaming. It also provides 0.5 − δ approx-
imate ratio with O ((k log k) /δ) memory. Recently, Kazemi et al. [13] extended
SieveStreaming and proposed a streaming algorithm called SieveStreaming++,
it does not improve the approximation guarantee of SieveStreaming, but only
requires O (k/δ) memory instead of O ((k log k) /δ) .

Then we survey the work related to the submodular optimization problem
in a noisy environment. Horel et al. [11] proposed the concept of approximate
submodular maximization for the first time. They proved that maximizing the
monotonic submodular can obtain a better approximation ratio than O (

1/nβ
)
,

and this function satisfies the 1/
(
n

1
2−β

)
approximation submodular, where n is

the size of the ground set, β is a given positive value. For the problem of maximiz-
ing ε approximate submodular function subject to cardinality constraints, they
gave a lower bound on query complexity. When ε ≥ n−1/2, they show the lower
bound of exponential query complexity in the case of general submodular func-
tions. Running the greed algorithm for an ε approximately submodular function
results in a constant approximation ratio when ε ≤ 1

k ,and the approximation
ratio is 1 − e−1 − 16δ, where δ = kε as long as δ < 1. Hassidim and Singer [10]
considered a consistent random noise model, for each subset X, except that the
first evaluation is randomly drawn from the distribution of F (X), the other eval-
uations return the same value. They provide a polynomial time algorithm with
a constant approximation for certain types of noise distribution. When k is large
enough, they designed the SlickGreedy algorithm, which can obtain the guaran-
tee of the approximate ratio of 1−e−1−δ with probability at least 1−n−1. Qian
et al. [19] considered the more general case for the multiplicative noise model and

Streaming Submodular Maximization Under Differential Privacy Noise 435

the additive noise model, namely the selection of a noisy subset with a monotonic
objective function f . They proved the approximation ratio of the approximation
algorithm under the two noise models. Approximate ratios are 1−ε

1+ε (1 − e−γ)
and 1 − e−γ − O (ε) respectively, where γ is submodularity ratio. Yang et al.
[23] considered the problem of submodular maximization on the stream under
the additive noise and multiplicative noise models, when ε → 0, the algorithms
under both noises have a 2/k approximate ratio. For streaming algorithm evalu-
ation, we mainly compared the memory required between algorithms, the update
time of each new data element, and the approximate guarantee.

4 The DP-SS Algorithm

In this section, we will first present the submodular optimization streaming
algorithm under differential privacy noise (DP-SS) with known OPTF , and then
by guessing the value of OPTF , we develop another algorithm without knowing
OPTF .

4.1 DP-SS with Known OPTF

The core of the DP-SS algorithm is to filter the arriving elements by threshold
to obtain the final optimal solution set. So the threshold for filtering elements
is particularly important. Here we must know OPTF = maxS⊆V,|S|≤kF (S) and
OPTf = maxS⊆V,|S|≤kf (S). We also assume that we know that OPTF is used
to construct the threshold. Obviously, with the environment of noise, the con-
struction of the threshold must be related to noise. Here we set Threshold =

OPTF

((1+k(e2ε−1))·e−2ε+e2ε)k . At the same time, we must limit the size of the noise,
here we set ε = 1

2 ln
(
1 + θ

k

)
, where 0 < θ ≤ 1.

Algorithm 1. DP-SS under knowing OPTF

Input: The value of OPTF , data streaming V = {a1, a2, · · · , an}, the noise function
F , integer k, noise parameter 0 < ε ≤ 1

2
ln

(
1 + 1

k

)
;

Output: An approximate solution set S.
1: Set T = OPTF

((1+k(e2ε−1))e−2ε+e2ε)k
;

2: Set S ← ∅ and i ← 1;
3: For i = 1 to n do
4: If ∇F (ai|S) ≥ T and |S| < k then
5: S ← S ∪ {ai};
6: Endif
7: Endfor
8: return S.

In Algorithm 1, we abbreviate the threshold as T , and start selecting elements
from S = ∅. When |S| < k, as long as the gain of the element to F is greater

436 D. Xiao et al.

than or equal to our threshold, we can select it into the set S, the algorithm can
finally output an approximate solution set. After the key parts are set, we can
start our algorithm.

Properties of Algorithm 1. a) Obviously it only needs one pass and most store
k elements. b) The Algorithm 1 outputs a set S such that |S| ≤ k, then it have
f (S) ≥ 1

2+(1+ 1
k)2

OPTf . See Theorem 2 for details.

From Algorithm 1, we can clearly see that when the output |S| < k, if an
element wants to enter S, then its marginal gain satisfies at least ∇F (ai|S) ≥ T.
This is a necessary and sufficient condition, so we have Lemma 1.

Lemma 1. When |S| < k, any singleton element ai ∈ V is rejected to be elected
to the current solution Si−1 ⊆ S if and only if F (Si−1 ∪ {ai}) − F (Si−1) < T.

Theorem 1. For the submodular optimization under differential privacy noise,
for ε > 0, there is an approximate submodular function F through the
Algorithm 1 to obtain S such that |S| ≤ k. The Algorithm 1 achieves an approx-
imation ratio 1

(1+k(e2ε−1))+e4ε .

InAlgorithm 1, the noise is restricted. Our goal is to make the added noise
very small. Therefore, under this restriction, there is Theorem 2.

Theorem 2. For the submodular optimization under differential privacy noise,
assume ε = 1

2 ln
(
1 + θ

k

)
, where 0 < θ ≤ 1. Then the output S of the Algorithm 1

has no more than k elements such that f (S) ≥ 1

2+(1+ 1
k)2

OPTf .

4.2 The Final DP-SS Under DP Noise

In the previous section, we introduced the streaming algorithm based on the
premise of knowing OPTF , that is to solve the optimal solution set by knowing
the optimal solution. In many cases we don’t know the value of the optimal
solution, but we can estimate the value of the optimal solution, so we must
theoretically get the bounds of OPTF . Here we analyze the construction of the
set G capable of estimating the optimal solution, and then we propose the DP-SS
algorithm on the basis of expanding the range of G and adding restrictions to the
noise. In order to construct the set G we introduced the concept of the largest
single element. The function here refers to F with noise. We denote element
amax = arg maxa∈V F ({a}). We can get the largest single element function
value through a data flow calculation. Then we can get the upper and lower
bounds of OPTF under the differential privacy noise.

First of all, it is obvious that can be obtained F ({amax}) ≤ OPTF by
monotonicity. Next, in order to estimate the upper bound of OPTF , here we
also assume OPTF = F (OF), we use the same Of and Oj as in the proof of
Theorem 1. We have

Streaming Submodular Maximization Under Differential Privacy Noise 437

OPTF = F (OF) ≤ eεf (OF) ≤ eεf (Of)

= eε
k∑

j=1

(f (Oj−1 ∪ {aj}) − f (Oj−1))

≤ eε
k∑

j=1

(f (∅ ∪ {aj}) − f (∅))

= eε
k∑

j=1

f ({aj}) ≤ e2ε
k∑

j=1

F ({aj})

≤ e2ε
k∑

j=1

F ({amax}) = e2εkF ({amax})

in which the first inequality is right since F (S) ≤ eεf (S). The following
inequality can be easily derived from the submodularity of f and the mono-
tonicity of F . Therefore, we have

F ({amax}) ≤ OPTF ≤ e2ε · k · F ({amax}) .

But such a rough estimate of the range of OPTF is not enough to estimate its
value, it is not enough to know the specific value to better estimate the OPTF .
So we consider the set

G =
{

(1 + δ)i |i ∈ Z,m1 ≤ (1 + δ)i ≤ m2

}

where δ is aa tuning parameter and m1 = F ({amax}), m2 = e2ε · k ·
F ({amax}). Obviously from the range of OPTF given previously, we can know
that there is at least one value v ∈ G that can be a good estimate of the value
of OPTF [1], such that (1 − δ) OPTF ≤ v ≤ OPTF . This means that we can
run the algorithm one time for each v ∈ G. In order to avoid multiple repeated
calculations on the same data stream, we can run multiple copies of Algorithm 1
in parallel. Finally, compare the results of each v ∈ G to output one optimal
solution.

Specifically, we need to calculate the data stream at the beginning of the
algorithm to get the maximum singleton element function value, then we can
construct the set G. But the algorithm does not yet know which v ∈ G has a
good estimate of OPTF . Therefore, each v ∈ G is calculated by Algorithm 1,
and then the corresponding candidate solution set Sv is output. Finally, the
best one is selected from all the candidate solution sets. But this is not enough.
The algorithm needs to calculate the data stream twice. Therefore, here is an
improvement to the algorithm, so that the final algorithm only needs to pass the
data once.

First, we must construct the current set

Gi = (1 + δ)i
, i ∈ Z,Current Lower ≤ (1 + δ)i ≤ Current Upper

438 D. Xiao et al.

Algorithm 2. The DP-SS algorithm
Input: Streaming V = {a1, a2, · · · , an}, the noise function F , integer k, tuning param-

eter δ, G =
{

(1 + δ)i |i ∈ Z
}

, 0 < ε ≤ 1
2

ln
(
1 + 1

k

)
;

Output: Sv.
1: Set Ω ← 0;
2: For each v ∈ G do
3: Set Sv ← ∅ and Tv = v

((1+k(e2ε−1))e−2ε+e2ε)k
;

4: For i = 1 to n do
5: Set Ω ← max {Ω, F ({ai})};
6: Set Current Lower ← Ω, Current Upper ← 2e2εkΩ;

7: Gi =
{

(1 + δ)i |Current Lower ≤ (1 + δ)i ≤ Current Upper
}

;

8: Delete all Sv and Tv such that v /∈ Gi;
9: For v ∈ Gi do

10: If ∇F (ai|Sv) ≥ Tv and Sv| < k then
11: Let Sv ← Sv ∪ {ai};
12: Endif
13: Endfor
14: Endfor
15: return S = argmaxv∈GF (Sv).

by keeping the current largest single element. Since we need to see the elements
that reach the threshold when or after v is instantiated, here we let

Current Lower = F ({amax})

Current Upper = 2e2εkF ({amax})

We can regard F ({amax}) as a random variable, after observing each element
ai, it will be updated in time. Then a corresponding threshold set Gi will be
constructed for the current F ({amax}) and it will only leave all the thresholds
that meet v ∈ Gi. This also means to delete all Sv such that v /∈ Gi. Then run
Algorithm 2 on all the remaining v. Finally, we can choose the best one among the
many Sv. In this way, the final version of the submodular optimized streaming
algorithm under differential privacy noise is obtained. We call Algorithm 1 the
DP-SS algorithm.

Properties of Algorithm 2 (DP-SS). a) Note that |G| = O (
log

(
e2εk

)
/δ

)
, for

each value v, we must keep the size of one set Sv with at most k elements. Thus
for differential privacy noise, the total memory size is O (

k log
(
e2εk

)
/δ

)
. For

each elements, the algorithm has O (
log

(
e2εk

)
/δ

)
update time. b) It need one

passes over the data.
The DP-SS algorithm finally outputs a set S such that |S| ≤ k, and when

we set an upper limit on the noise, we can have a good approximate ratio per-
formance.

Theorem 3. For the submodular optimization under differential privacy noise,
for ε > 0, there is an approximate submodular function F through the

Streaming Submodular Maximization Under Differential Privacy Noise 439

Algorithm 2 to obtain S such that |S| ≤ k. The DP-SS algorithm achieves an
approximation ratio 1

(1+k(e2ε−1)+e4ε)e2ε − δ.

Theorem 4. For the submodular optimization under differential privacy noise,
assume ε = 1

2 ln
(
1 + θ

k

)
, where 0 < θ ≤ 1. Then the output S of the Algorithm 2

has no more than k elements such that f (S) ≥
(

1(
2+(1+ 1

k)2
)
(1+ 1

k)
− δ

)
OPTf .

5 Experiments

In order to evaluate the specific effectiveness of Algorithm 2 (DP-SS), we have
to perform several sets of numerical experiments on it. The specific experiments
are guided by the following ideas.

– First, under the same noise conditions, the experimental results need to show
the specific advantages of the approximate solution obtained by Algorithm 2
(DP-SS) over other approximation algorithms.

– Second, numerical experiments need to show the variation of the utility func-
tion with the variation of the noise.

– Third, we need to analyze the results of the algorithm under different data
sets through numerical experiments.

5.1 Experimental Setup

Here we use three real-world data-sets: ForestCover dataset, Creditfraud dataset
and KDDCup99 dataset. The ForestCover dataset [4] includes 286,048 data
points with 10 attributes. The Creditfraud dataset [15] consists of 284,807 data
points with 29 attributes. And the last one we chose is the KDDCup99 dataset
[3], which consists of 60,632 data points with 41 attributes. Baseline methods to
compare against are the standard greedy algorithm, the random algorithm [6],
and the SieveStreaming [1] algorithm. To simplify our numerical experiments, we
randomly select a large enough sample set W ⊆ V . Let fW be the expectation
of independent random variables X1,X2, · · · ,X|W |, and Xi ∈ [−1, 1] and f be
the mean value of random variables, we can use Hoffding’s inequality to obtain
the upper of the probability of deviation between the mean and the expectation
under differential privacy as

Pr
[
e−εf − eεfW ≤ fW − f ≤ eεf − e−εfW

]

≥ 1 − exp
(

−|W |
2

)
· (ρ1 + ρ2) (1)

where

ρ1 = exp
((

eεf − e−εfW

)2)

ρ2 = exp
((

e−εf − eεfW

)2)

440 D. Xiao et al.

Obviously, we can find that the value of fW under the sample set can be enough
to estimate the value of fv in the real situation by using Hoffding’s inequality.

Therefore, it can be seen from Inequality (1) that fW can be used to estimate
f under the differential privacy noise, which means that a sufficient sample W
can be used to replace the ground set V . So in our numerical experiment, we
select W of size 1

10 |V | that is similarly [22].
In this paper, our main study is the streaming submodular maximization

under differential privacy noise, so we firstly add noise to the selected real data
set by using the Laplace mechanism [9,20] to add noise. Firstly of all, we intro-
duce the Laplace probability density function y (x|μ, b) = 1

2bexp
(
− |x−μ|

b

)
, where

μ is the position parameter and b is the scale parameter [14]. Secondly, we can
easily obtain its probability density distribution function

Y (x|μ, b) =

{
1
2 exp

(−μ−x
b

)
, x < μ

1 − 1
2 exp

(−x−μ
b

)
, x ≥ μ

Obviously, for a given μ = 0 and b > 0, we know that the range of the
distribution function is [0, 1]. We can using the following two steps to obtain
Laplace noise: (1) obtaining random values with a uniform distribution in the
interval; (2) solving the inverse function of the probability distribution function.
Formally, let random variable ξ ∼ Uni (0, 1) which means that the random
variable ξ satisfies a uniform distribution, we can get the inverse probability
distribution function

Y −1 (ξ|μ, b) =

{
b ln (2ξ) + μ, ξ < 1

2

μ − b ln (2 (1 − ξ)) , ξ ≥ 1
2

(2)

In our experiments, we will add noise to our data but the availability of
data is also needed to be ensured, so we use the privacy protection budget
ϕ in differential privacy. Since the Laplace noise needs satisfy the distribution
Lap (0,
f/ϕ), so we set μ = 0, b =
f/ϕ. Obviously, the b is proportional to
noise that is obtain by Equality (2) that. For the privacy protection budget ϕ,
it can be cleared that the larger the ϕ, the smaller the noise and the higher the
data availability. So to protect the availability of our data, we need to make ϕ
big enough to make noise smaller.

5.2 Experimental Results

The specific results of the experiment are as follows.

– We first analyze the comparison of the results between the algorithm and
the benchmark in the case of a non-streaming model. In Fig. 1, we fixed the
Laplace noise by setting the scale parameter of the Laplace distribution to no
more than 0.1, we selected the Creditfraud dataset to run Algorithm 2 (DP-
SS) under the differential privacy model, chose to obtain an approximate
solution, and ran the other benchmarks, compare how the values obtained

Streaming Submodular Maximization Under Differential Privacy Noise 441

after running them change with the increase of k. We ran the other two
datasets under the same operation. In fact, through (a), (b), and (c) in Fig. 1,
it can be seen that in the three real data sets, as the base k increases, DP-SS
is significantly better than the random algorithm, and it is closer to the result
of the greedy algorithm. Here, because the numerical value of the data set is
different, the corresponding scale parameters are also different.

Fig. 1. Performances of the results of Algorithm 2 (DP-SS) is compared with other
benchmarks, when the same noise is fixed.

– In Fig. 2, we pretended that all three real datasets are free of noise and brought
them into DP-SS and SieveStreaming to ran (Here we just need to not add
noise to the dataset). This set of experiments we performed under the stream-
ing model. With the same change of setting k, it can be seen that in the three
sets of data, the results of our algorithms are not as good as those of the
SieveStreaming algorithm.

Fig. 2. Comparison of Algorithm 2 (DP-SS) performance and SieveStreaming perfor-
mance under noise-free environment.

– In the third set of experiments we first set up Algorithm 2 (DP-SS) and
SieveStreaming to run in the same data set, the same noise environment, and
the same streaming model to compare. We ran Algorithm 2 (DP-SS) and
SieveStreaming and compared their results under the change of k. Here we
set the scale parameter of the Laplace distribution to be greater than 0.1. In
Fig. 3, our algorithm is obviously better than SieveStreaming.

442 D. Xiao et al.

Fig. 3. Comparison of the running results of Algorithm 2 (DP-SS) and SieveStreaming
in the same noise environment.

– We need to analyze the situation between the results and the noise under the
streaming model. In Fig. 4, under the same three datasets, we set k to 10 and
20 and assume b increases from 0.01 to 0.1. We observed how the results of
Algorithm 2 (DP-SS) change as the b increases after k is fixed. Since the scale
parameter b is proportional to the noise, combined with the results in Fig. 4
we can see that as b increases, the noise becomes larger, and the value of the
truth function utility decreases.

Fig. 4. The performance of Algorithm 2 (DP-SS) under the fluctuation of the scale
parameter of Laplace noise, when k is fixed.

Acknowledgements. The authors are supported by Natural Science Foundation of
China (No. 61772005), Outstanding Youth Innovation Team Project for Universities of
Shandong Province (No. 2020KJN008), Natural Science Foundation of Fujian Province
(No. 2020J01845) and Educational Research Project for Young and Middle-aged Teach-
ers of Fujian Provincial Department of Education (No. JAT190613).

References

1. Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A., Krause, A.: Streaming submod-
ular maximization: Massive data summarization on the fly. In: Proceedings of the
20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 671–680 (2014)

2. Belloni, A., Liang, T., Narayanan, H., Rakhlin, A.: Escaping the local minima via
simulated annealing: optimization of approximately convex functions. In: Confer-
ence on Learning Theory, pp. 240–265. PMLR (2015)

3. Campos, G.O., et al.: On the evaluation of unsupervised outlier detection: mea-
sures, datasets, and an empirical study. Data Min. Knowl. Disc. 30(4), 891–927
(2016)

Streaming Submodular Maximization Under Differential Privacy Noise 443

4. Dal Pozzolo, A., Caelen, O., Johnson, R.A., Bontempi, G.: Calibrating probability
with undersampling for unbalanced classification. In: 2015 IEEE Symposium Series
on Computational Intelligence, pp. 159–166. IEEE (2015)

5. Feige, U.: A threshold of ln n for approximating set cover. J. ACM (JACM) 45(4),
634–652 (1998)

6. Feige, U., Mirrokni, V.S., Vondrak, J.: Maximizing non-monotone submodular
functions. SIAM J. Comput. 40(4), 1133–1153 (2011)

7. Feldman, D., Fiat, A., Kaplan, H., Nissim, K.: Private coresets. In: Proceedings
of the Forty-first Annual ACM Symposium on Theory of Computing, pp. 361–370
(2009)

8. Gomes, R., Krause, A.: Budgeted nonparametric learning from data streams. In:
Fürnkranz, J., Joachims, T. (eds.), Proceedings of the 27th International Con-
ference on Machine Learning (ICML-10), 21–24 June, Haifa, Israel, pp. 391–398.
Omnipress (2010)

9. Gupta, A., Ligett, K., McSherry, F., Roth, A., Talwar, K.: Differentially private
combinatorial optimization. In: Proceedings of the Twenty-first Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 1106–1125. SIAM (2010)

10. Hassidim, A., Singer, Y.: Submodular optimization under noise. In: Conference on
Learning Theory, pp. 1069–1122. PMLR (2017)

11. Horel, T., Singer, Y.: Maximization of approximately submodular functions. In:
Lee, D.D., Sugiyama, M., von Luxburg, U., Guyon, I., Garnett, R. (eds.), Advances
in Neural Information Processing Systems 29: Annual Conference on Neural Infor-
mation Processing Systems 2016, pp. 3045–3053, 5–10 December, Barcelona, Spain
(2016)

12. Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.: What
can we learn privately? SIAM J. Comput. 40(3), 793–826 (2011)

13. Kazemi, E., Mitrovic, M., Zadimoghaddam, M., Lattanzi, S. and Karbasi, A.: Sub-
modular streaming in all its glory: tight approximation, minimum memory and
low adaptive complexity. In: International Conference on Machine Learning, pp.
3311–3320. PMLR (2019)

14. Kotz, S., Kozubowski, T. and Podgòrski, K.: The Laplace Distribution and Gener-
alizations: A Revisit with Applications to Communications, Economics, Engineer-
ing, and Finance. Springer, Cham (2012)

15. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: Proceedings of the 8th
IEEE International Conference on Data Mining (ICDM 2008), 15–19 December,
Pisa, Italy, pp. 413–422. IEEE Computer Society (2008)

16. Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A.: Fast constrained submodular
maximization: personalized data summarization. In: International Conference on
Machine Learning, pp. 1358–1367. PMLR (2016)

17. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions - I. Math. Program. 14(1), 265–294 (1978)

18. Nissim, K., Raskhodnikova, S., Smith, A.: Smooth sensitivity and sampling in
private data analysis. In Proceedings of the thirty-ninth annual ACM symposium
on Theory of computing, pp. 75–84 (2007)

19. Qian, C., Shi, J.C., Yu, Y., Tang, K., Zhou, Z.H.: Subset selection under noise. In:
NIPS, pp. 3560–3570 (2017)

20. Sarathy, R., Muralidhar, K.: Evaluating Laplace noise addition to satisfy differen-
tial privacy for numeric data. Trans. Data Priv. 4(1), 1–17 (2011)

21. Singer, Y., Vondrák, J.: Information-theoretic lower bounds for convex optimiza-
tion with erroneous oracles. Adv. Neural Inf. Process. Syst. 28, 3204–3212 (2015)

444 D. Xiao et al.

22. Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. (TOMS)
11(1), 37–57 (1985)

23. Yang, R., Xu, D., Cheng, Y., Gao, C., Du, D.Z.: Streaming submodular maximiza-
tion under noises. In: 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS), pp. 348–357. IEEE (2019)

Online Bottleneck Semi-matching

Man Xiao1, Shu Zhao1, Weidong Li1(B), and Jinhua Yang2

1 School of Mathematics and Statistics, Yunnan University, Kunming, China
2 Dianchi College, Kunming, China

Abstract. We introduce the online bottleneck semi-matching (OBSM)
problem, which is to assign a sequence of requests to a given set of m
servers, such that the maximum cost is minimized. We present a lower
bound m+ 1 and an online algorithm with competitive ratio 2m− 1 for
the OBSM problem on a line, where the distance between every pair of
adjacent servers is the same. When m = 2, we present an optimal online
algorithm with competitive ratio 3 for the OBSM problem. When m = 3,
we present two optimal online algorithms with competitive ratio at most
3 +

√
2 for the OBSM problem on a line, which matches the previous

best lower bound proposed about thirty years ago.

Keywords: Online bottleneck matching · Online algorithm · Capacity
limits · Competitive ratio

1 Introduction

We are given a metric space (X, d), where X is a (possibly infinite) set of points
and d(·, ·) is a distance function. Let S = {s1, s2, . . . , sm} ⊆ X be a set of
servers and R = {r1, r2, . . . , rn} ⊆ X be a set of requests arriving one-by-one
in an online fashion. When a request rj ∈ R arrives, it must be immediately
and irrevocably matched to some previously unmatched server si. The cost of
matching rj to si is d(rj , si). The classical Online Minimum Matching (OMM)
[10] is to find a matching M such that the total cost of matching all requests is
minimized. The Online Bottleneck Matching (OBM) [10] is to find a matching
M such that the maximum cost of matching all requests is minimized.

We use competitive ratio to evaluate the performance of an online algorithm
A. For an input instance I, let CA(I) (CA for short) and COPT (I) (COPT for
short) be the costs of the feasible solution obtained by an online algorithm A and
an optimal offline algorithm, respectively. An online algorithm A is ρ-competitive
(or the competitive ratio of A is at most ρ) if CA ≤ ρCOPT for any input
instance I.

Kalyanasundaram and Pruhs [10] introduced the OMM problem and proved
that the Permutation algorithm is (2n−1)-competitive and optimal. Bansal et
al. [5] presented an O(log2 n)-competitive randomized algorithm for the OMM
problem. Kalyanasundaram and Pruhs [11] proposed an interesting question
whether one can design an optimal online algorithm for the OMM problem on
c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 445–455, 2021.
https://doi.org/10.1007/978-3-030-92681-6_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_35&domain=pdf
https://doi.org/10.1007/978-3-030-92681-6_35

446 M. Xiao et al.

a line. Gupta and Lewi [7] gave an O(log n)-competitive randomized algorithm
for the OMM problem on a line. Fuchs et al. [6] showed that no online algorithm
can achieve a competitive ratio strictly less than 9.001 for the OMM problem
on a line. Antoniadis et al. [4] designed a deterministic online algorithm with
competitive ratio O(nlog(3+ε)−1/ε) for any ε > 0 for the OMM problem on a line.
Nayyar and Raghvendra [13] proved that the competitive ratio of the determinis-
tic online algorithm proposed in [15] is O(log2 n), which is improved to O(log n)
[16], for the OMM problem on a line. Recently, Peserico and Scquizzato [14]
proved that the competitive ratio of any randomized online algorithm for the
OMM problem on a line exceeds

√
log2(n + 1)/15.

Kalyanasundaram and Pruhs [10] introduced the OBM problem and proved
that the Permutation algorithm is (2n − 1)-competitive. Idury and Schaffer
[8] gave a lower bound approximately 1.44n for the OBM problem on a line.
Anthony and Cheung [2,3] used resource augmentation analysis to examine the
performance of several classic online algorithms for the OBM problem and its
variant where a specified number of requests can be reject or skip.

A generalized version of the OMM problem, which is called online b-matching
[10], online transportation [10], the fire station problem [12], the school assign-
ment problem [12], or online facility assignment [1], is also considered, where
each server can be matched multiple times. Recently, Itoh et al. [9] presented
several lower bounds on the competitive ratio for this problem with different
number of servers.

In this paper, we consider a variant of the OBM problem, called online bottle-
neck semi-matching (OBSM), where each server can be matched multiple times
and obtain several interesting results. The remainder of the paper is organized
as follows. We first introduce the problem definition and theoretical results in
Sect. 2. We provide several lower and upper bounds for the OBSM problem with
arbitrary number of servers in Sect. 3. We then present several optimal online
algorithms for the OBSM problem with 2 or 3 servers in Sect. 4 and Sect. 5,
respectively. Finally, we conclude the paper with future research directions in
Sect. 6.

2 Preliminaries

We are given a metric space (X, d) and a set S = {s1, s2, . . . , sm} ⊆ X of servers,
where X is a (possibly infinite) set of points and d(·, ·) is a distance function. Let
R = {r1, r2, . . . , rn} ⊆ X be a set of requests arriving one-by-one in an online
fashion, where 2 ≤ m ≤ n. Each server si ∈ S is characterized by the capacity
ci ∈ N that satisfies

m∑

i=1

ci = n.

It means that the server si can be matched with exact ci requests.
When a request rj ∈ R arrives, an online algorithm A must immediately and

irrevocably assign a server si = π(rj) ∈ S which is matched less than ci times to

Online Bottleneck Semi-matching 447

service that request. The cost of matching rj to π(rj) is d(rj , π(rj)). After all the
requests are matched, we obtain a semi-matching M where each vertex rj ∈ R
is matched exactly once. The online bottleneck semi-matching (OBSM) problem
is to find an assignment π : R �→ S such that |{rj |π(rj) = si}| = ci and the
maximum cost maxj d(rj , π(rj)) of matching all requests is minimized. Clearly,
the OBSM problem is a generalized version of the OBM problem considered in
[2,10]. A most related problem is the online minimum semi-matching (OMSM)
problem, which is to find an assignment π : R �→ S such that |{rj |π(rj) =
si}| = ci and the maximum cost

∑n
j=1 d(rj , π(rj)) of matching all requests is

minimized.
It is widely acknowledged that the line is the most interesting metric space

for the related online matching problems [4,14]. If X is a line, without loss of
generality, assume that the servers are placed in an increasing order of their
indices, i.e.,

0 = p(s1) < p(s2) < . . . < p(sm),

where p(si) is the position of server si on the line, for i = 1, 2, . . . , m. Let p(r) be
the position of request r. The distance between a, b ∈ S ∪ R can be described as
d(a, b) = |p(a) − p(b)|. Moreover, for i = 1, 2, . . . ,m − 1, let di = p(si+1) − p(si)
be the distance between two adjacent servers.

3 Online Bottleneck Semi-matching with Arbitrary
Number of Servers

In this section, we consider the OBSM problem with arbitrary number of servers.
If each server si ∈ S is replaced by ci servers with capacity 1, the OBSM problem
is exactly the OBM problem considered in [2]. Therefore, following from Theorem
3 and Theorem 4 in [2], we have

Theorem 1. The competitive ratio of the permutation algorithm is at most
(2n − 1) for the OBSM problem.

Kalyanasundaram and Pruhs [10] conjectured that the competitive ratio of
the permutation algorithm is (2m − 1) for the OMSM problem. However, this
conjecture is still open. Similarly, it is interesting to design an online algorithm
for the OBSM problem whose competitive ratio is a function of m. We obtain
several related results for the OBSM problem in this section.

Theorem 2. The competitive ratio of any deterministic online algorithm for
the OBSM problem on a line is at least

2 +
1

2
1

m−1 − 1
.

Proof. Similarly to the construction in [8].

448 M. Xiao et al.

Theorem 3. The competitive ratio of any deterministic online algorithm is at
least m + 1 for the OBSM problem on a line, even if di = 1 for every i =
1, 2, . . . ,m − 1.

Proof. Let A be any deterministic online algorithm, and π be the correspond-
ing assignment. Our adversary first gives ci − 1 requests at p(si) for each
i = 1, 2, · · · ,m. If A matches some request r with a server not at p(r), then
the adversary gives m more requests with one at each position of the server si.
An optimal offline assignment π∗ matches every request r with the server at
the same position p (r). Therefore, CA > 0 and COPT = 0, implying that the
competitive ratio of A is infinity.

Suppose that A matches each request r with a server at p(r). For convenience,
let r1, r2, . . . , rm be the last m requests and x = 1

m . The adversary gives the
requests ri at p (si+1) − x for i = 1, 2, . . . ,m − 1 one by one (see Fig. 1).

Fig. 1. The m − 1 requests.

If A matches each request ri with server si+1 for 1, 2, . . . ,m−1. The adversary
gives the last request rm at p(sm)+1−x. Clearly, we have COPT = 1−x = 1− 1

m ,
and

CA ≥ d(rm, s1) = m − 1 + 1 − x = m − 1
m

≥ (m + 1)COPT .

Otherwise, the adversary gives the last request rm at p(s1) − x. Clearly, we
have COPT = x = 1

m . We distinguish the follow three cases.

Case 1. A matches request r1 with server s1. Clearly, we have

CA ≥ d(rm, π(rm)) ≥ 1 + x = 1 +
1
m

≥ (m + 1)COPT .

Case 2. A matches request r1 with server s2. Let k ∈ {2, . . . , m − 1} be the
minimum index such that A does not match request rk with server sk+1. If A
matches request rk with server sl with l ≤ k, by the minimality of k, rk must
be matched with s1, implying that

CA ≥ d(rk, s1) ≥ 2 − x ≥ 1 +
1
m

≥ (m + 1)COPT .

If A matches rk with a server su with u ≥ k + 2, we have

CA ≥ d(rk, su) ≥ 1 + x = 1 +
1
m

≥ (m + 1)COPT .

Online Bottleneck Semi-matching 449

Case 3. A matches request r1 with a server sk (k ≥ 3). Clearly, we have

CA ≥ d(r1, sk) ≥ 1 + x = 1 +
1
m

≥ (m + 1)COPT .

Therefore, the theorem holds.

As mentioned in [2,10], greedy assigns the nearest available server to each
request as it arrives. It is proved that the greedy algorithm performs exponen-
tially poorly for the OMM problem [10] and the OBM problem [2]. However,
greedy performs well for the OBSM problem on a line with di = 1.

Theorem 4. The competitive ratio of greedy is at most 2m−1 for the OBSM
problem on a line with di = 1 for every i = 1, 2, . . . ,m − 1.

Proof. Without loss of generality, assume that

p(si) = i − 1, for i = 1, 2, . . . ,m.

Let I1 = (−∞, 1
2], Im = (m − 1 − 1

2 ,+∞), and Ii = (i − 1 − 1
2 , i − 1 + 1

2] for
i = 2, 3, . . . ,m − 1. Let

Ri = {ri ∈ R|p(ri) ∈ Ii}.

be the set of requests whose positions lie in Ii for i = 1, 2, . . . ,m.
Clearly, if |Ri| = ci for every i, greedy produces an optimal solution. Else,

we have

COPT ≥ 1
2
.

Let r ∈ R be the request attaching the maximum in the feasible solution pro-
duced by greedy, which implies that CA = d(r, π(r)). We distinguish the fol-
lowing three cases.

Case 1. p(r) ∈ R1.
If p(r) ∈ (−∞,− 1

2], we have COPT ≥ d(r, s1) = |p(r)|, and

CA ≤ |p(r)| + d(s1, sm) = |p(r)| + m − 1 ≤ |p(r)|(1 +
m − 1
|p(r)|) ≤ (2m − 1)COPT .

If p(r) ∈ (− 1
2 , 1

2], we have

CA ≤ d(r, sm) ≤ m − 1 +
1
2

= (2m − 1) · 1
2

≤ (2m − 1)COPT .

Case 2. p(r) ∈ Ri with i ∈ {2, 3, . . . ,m − 1}.
Clearly, we have

CA ≤ d(r, sm) ≤ m − 1 ≤ (2m − 1)COPT .

450 M. Xiao et al.

Case 3. p(r) ∈ Rm.
If p(r) ∈ (m − 1 − 1

2 ,m − 1 + 1
2], we have

CA ≤ d(r, s1) ≤ m − 1 +
1
2

= (2m − 1) · 1
2

≤ (2m − 1)COPT .

If p(r) ∈ (m − 1 + 1
2 ,+∞), we have COPT ≥ d(r, sm) = p(r) − (m − 1) ≥ 1

2 and

CA ≤ d(r, s1) ≤ p(r) = p(r) − (m − 1) + (m − 1)
≤ d(r, sm) + (2m − 2)COPT ≤ (2m − 1)COPT .

Therefore, we have CA ≤ (2m − 1)COPT in any case.

4 Online Bottleneck Semi-matching with Two Servers

When m = 2, it is proved that the permutation algorithm is an optimal online
algorithm with competitive ratio 3 for the OMM problem [10] and the OBM
problem [2]. Recently, Itoh et al. [9] proved that greedy algorithm is an optimal
online algorithm with competitive ratio 3 for the OMSM problem.

By Theorem 2, the lower bound for the OBSM problem is 3 when m = 2.
Recall that greedy assigns the nearest available server to each request as it
arrives. We obtain

Theorem 5. The competitive ratio of the greedy algorithm is 3.

Proof. Let R be a minimal instance with the least number of requests whose
competitive ratio is maximized. For j = 1, 2, . . . , n, if rj is matched with the
server in the offline optimal solution π∗ and the feasible solution π produced by
the greedy algorithm. Without loss of generality, assume that π(rj) = π∗(rj) =
s1. If CA = d(rj , s1), we have COPT = CA, implying that the greedy algorithm
produces an optimal solution. Else, we construct a new instance R′ = R \ {rj}
with c′

1 = c1 − 1. It is easy to verify that CA(R′) = CA(R) and COPT (R′) =
COPT (R), which contradicts the minimality of R. Therefore, we have

π(rj)
= π∗(rj), for each j = 1, 2, . . . , n. (1)

Let rj1 be the request attaching the maximum in the feasible solution pro-
duced by the greedy algorithm, which means CA = d(rj1 , π(rj1)). Without loss
of generality, assume that π(rj1) = s1, which means that

CA = d(rj1 , s1) ≥ d(rj1 , s2), and π∗(rj1) = s2.

Let rj2 be the request attaching the maximum in the optimal solution, which
means COPT = d(rj2 , π

∗(rj2)). We distinguish the following two cases.

Case 1. π∗(rj2) = s1 = π(rj1).
By (1), we have j1
= j2 and π∗(rj1) = π(rj2) = s2. If j1 < j2, by the choice of
greedy, we have d(rj1 , s1) ≤ d(rj1 , s2). Therefore,

Online Bottleneck Semi-matching 451

CA = d(rj1 , s1) ≤ d(rj1 , s2) = d(rj1 , π
∗(rj1)) ≤ COPT .

If j1 > j2, by the choice of greedy, we have d(rj2 , s2) ≤ d(rj2 , s1). Therefore,

CA = d(rj1 , s1) ≤ d(rj1 , s2) + d(s1, s2)
≤ d(rj1 , s2) + d(s1, rj2) + d(rj2 , s2)
≤ d(rj1 , π

∗(rj1)) + 2d(rj2 , s1)
= d(rj1 , π

∗(rj1)) + 2d(rj2 , π
∗(rj2))

≤ 3COPT .

Case 2. π∗(rj2) = s2.
Clearly, we have COPT = d(rj2 , s2) ≤ d(rj2 , s1). Since c1 + c2 = n, there is a
request rj with j < j1 satisfying that π∗(rj) = s1 and π(rj) = s2. By the choice
of greedy, we have d(rj , s2) ≤ d(rj , s1) = d(rj , π

∗(rj)) ≤ COPT . Therefore,

CA = d(rj1 , s1) ≤ d(rj1 , s2) + d(s2, s1)
≤ d(rj1 , π

∗(rj1)) + d(s2, rj) + d(rj , s1)
≤ COPT + 2d(rj , s1)
≤ 3COPT .

Thus, CA ≤ 3COPT in any case.

5 Online Bottleneck Semi-matching on a Line with Three
Servers

When m = 3 and X is a line, Kalyanasundaram and Pruhs [10] claimed that the
optimal competitive ratio for the OMM problem on a line is 3.6494359. Recently,
Itoh et al. [9] gave a lower bound 1+

√
6 on the competitive ratio for the OMSM

problem on a line with d1 = d2 = 1. However, the optimal competitive ratio is
not given. Idury and Schaffer [8] gave a lower bound 3 +

√
2 on the competitive

ratio for the OBM problem on a line. In this section, we consider the OBSM
problem on a line with m = 3. Without loss of generality, assume that

p(s1) = 0, p(s2) = 1, and p(s3) = 1 + α ≥ 2.

When α ≤ √
2, we design an optimal online algorithm with a competitive ratio of

3 + α. When α >
√

2, we design an optimal online algorithm with a competitive
ratio of 3 + 2

α . Clearly, the upper bound on the competitive ratio for the OBM
problem on a line is 3 +

√
2, which matches the lower bound given in [8].

Theorem 6. When 1 ≤ α ≤ √
2, the competitive ratio of any online algorithm

A for the OBSM problem on a line is at least 3 + α.

Proof. Let c1 = c2 = c3 = 1. The first request r1 arrives at p(r1) = p(s2)− 1
2+α .

We distinguish the following three cases.

452 M. Xiao et al.

Case 1. r1 is matched with s1.
The last two requests r2 and r3 arrive at p(r2) = p(s1)− 1

2+α and p(r3) = p(s3),
respectively. Therefore, COPT = 1

2+α and

CA ≥ d(r2, s2) = 1 +
1

2 + α
≥ (3 + α)COPT .

Case 2. r1 is matched with s2.
The second request r2 arrives at p(r2) = p(s2) + α

2 . If r2 is matched with s1,
the last request r3 arrives at p(r3) = p(s1) − α

2 . Since 1
2+α ≤ 1

2 ≤ α
2 , we have

COPT = α
2 and CA = d(r3, s3) = 1 + α + α

2 , then

CA ≥ d(r3, s3) = 1 + α +
α

2
≥ (3 +

2
α

)COPT ≥ (3 + α)COPT ,

as α ≤ √
2.

If r2 is matched with s3, the last request r3 arrives at p(r3) = p(s3) + 1+α
2+α .

Since α ≤ √
2, we have 1+α

2+α ≥ α
2 , which implies that COPT = d(r3, s3) = 1+α

2+α ,
and

CA = d(r3, s1) = 1 + α +
1 + α

2 + α
≥ (3 + α)COPT .

Case 3. r1 is matched with s3.
The last two requests r2 and r3 arrive at p(r2) = p(s1) and p(r3) = p(s3),
respectively. Clearly, COPT = 1

2+α , and

CA ≥ d(r1, s3) =
1

2 + α
+ α =

α2 + 2α + 1
2 + α

≥ (3 + α)COPT ,

as α ≥ 1.
Therefore, the theorem holds.

For convenience, let

I1 = (−∞, p(s2) − 1
2 + α

),

I2 = [p(s2) − 1
2 + α

, p(s2) +
α2 + α − 1

2 + α
],

and I3 = (p(s2) +
α2 + α − 1

2 + α
,+∞).

Three intervals are depicted in Fig. 2. For each server si, we say that si is available
if it is matched less than ci times. Otherwise, we say that si is full.

Online Bottleneck Semi-matching 453

Fig. 2. Three intervals in Algorithm A1

Algorithm A1:
When a new request rj arrives, we distinguish the following three cases.

Case 1. p(rj) ∈ I1. Match rj with the first available server in the sequence
(s1, s2, s3).

Case 2. p(rj) ∈ I2. Match rj with the first available server in the sequence
(s2, s1, s3).

Case 3. p(rj) ∈ I3. Match rj with the first available server in the sequence
(s3, s2, s1).

Theorem 7. When 1 ≤ α ≤ √
2, the competitive ratio of Algorithm A1 for

the OBSM problem on a line is at most 3 + α.

Proof. We omitted the proof due to space constraints.

Theorem 8. When α >
√

2, the competitive ratio of any online algorithm A
for the OBSM problem on a line is at least 3 + 2

α .

Proof. Let c1 = c2 = c3 = 1. The first request arrives at p(r1) = p(s2) − 1
2+α .

We distinguish the following three cases.

Case 1. r1 is matched with s1.
The last two requests arrive at p(r2) = p(s1) − 1

2+α and p(r3) = p(s3), respec-
tively. Therefore, COPT = 1

2+α and

CA ≥ d(r2, s2) = 1 +
1

2 + α
≥ (3 + α)COPT ≥ (3 +

2
α

)COPT ,

where the last inequality follows from the assumption α >
√

2.

Case 2. r1 is matched with s2.
The second request arrives at p(r2) = p(s2) + α

2 . If r2 is matched with s1, the
last request r3 arrives at p(r3) = p(s1) − α

2 . Therefore, COPT = α
2 and

CA = d(r3, s3) = 1 + α +
α

2
≥ (3 +

2
α

)COPT .

If r2 is matched with s3, the last request r3 arrives at p(r3) = p(s3) + α
2 . There-

fore, COPT = α
2 , and

CA = d(r3, s1) = 1 + α +
α

2
≥ (3 +

2
α

)COPT .

454 M. Xiao et al.

Case 3. r1 is matched with s3.
The last two requests arrive at p(r2) = p(s1) and p(r3) = p(s3). Therefore,
COPT = 1

2+α , and

CA = d(r1, s3) ≥ 1
2 + α

+ α ≥ (α2 + 2α + 1)COPT ≥ (3 +
2
α

)COPT .

as α >
√

2.
Therefore, the theorem holds.

Algorithm A2:
When a new request rj arrives, we distinguish the following three cases.

Case 1. p(rj) ∈ (−∞, p(s2) − α
2+2α). Match rj with the first available server in

the sequence (s1, s2, s3).

Case 2. p(rj) ∈ [p(s2)− α
2+2α , p(s2)+ α

2]. Match rj with the first available server
in the sequence (s2, s1, s3).

Case 3. p(rj) ∈ (p(s2) + α
2 ,+∞). Match rj with the first available server in the

sequence (s3, s2, s1) (Fig. 3).

Theorem 9. When α >
√

2, the competitive ratio of Algorithm A2 for the
OBSM problem on a line is at most 3 + 2

α .

Proof. We omitted the proof due to space constraints.

Fig. 3. Three intervals in algorithm A2

6 Conclusion

We propose an online algorithm for the OBSM problem on a line with compet-
itive ratio 2m − 1, where the distance between every pair of adjacent servers is
the same. It is interesting to design an online algorithm with competitive ratio
dependent of m for a general metric space. We conjecture that permutation
[2,10] achievers a (2m − 1) competitive ratio for the OBSM problem and the
OMSM problem.

When the number of servers is three, we design two optimal online algorithms
for the OBSM problem on a line, whose competitive ratio is dependent on the
ratio of two distances between two adjacent servers. In addition, we close the gap
for the OBM problem with three servers, which has been open about thirty years.
Although Kalyanasundaram and Pruhs [10] claimed the optimal competitive
ratio of the OMM problem with three servers is 3.6494359, it is interesting to
design several optimal online algorithms with competitive ratio dependent on
the ratio of two distances between two adjacent servers, as in Sect. 5.

Online Bottleneck Semi-matching 455

Acknowledgement. The work is supported in part by the National Natural Science
Foundation of China [No. 12071417], Program for Excellent Young Talents of Yun-
nan University, Training Program of National Science Fund for Distinguished Young
Scholars, and IRTSTYN.

References

1. Ahmed, A.R., Rahman, M.S., Kobourov, S.: Online facility assignment. Theoret.
Comput. Sci. 806, 455–467 (2020)

2. Anthony, B.M., Chung, C.: Online bottleneck matching. J. Comb. Optim. 27(1),
100–114 (2012). https://doi.org/10.1007/s10878-012-9581-9

3. Anthony, B.M., Chung, C.: Serve or skip: the power of rejection in online bot-
tleneck matching. J. Comb. Optim. 32(4), 1232–1253 (2015). https://doi.org/10.
1007/s10878-015-9948-9

4. Antoniadis, A., Barcelo, N., Nugent, M., Pruhs, K., Scquizzato, M.: A o(n)- com-
petitive deterministic algorithm for online matching on a line. Algorithmica 81,
2917–2933 (2019)

5. Bansal, N., Buchbinder, N., Gupta, A., Naor, J.S.: A randomized O(log2 k)-
competitive algorithm for metric bipartite matching. Algorithmica 68, 390–403
(2014)

6. Fuchs, B., Hochstattler, W., Kern, W.: Online matching on a line. Theoret. Com-
put. Sci. 332(1), 251–264 (2005)

7. Gupta, A., Lewi, K.: The online metric matching problem for doubling metrics. In:
Proceedings of International Colloquium on Automata, Languages, and Program-
ming (ICALP), pp. 424–435 (2012)

8. Idury, R., Schaffer, A.A.: A better lower bound for on-line bottleneck matching,
manuscript (1992)

9. Itoh, T., Miyazaki, S., Satake, M.: Competitive analysis for two variants of online
metric matching problem, Discrete Mathematics, Algorithms and Applications, ID
2150156 (2021)

10. Kalyanasundaram, B., Pruhs, K.: Online weighted matching. J. Algorithms 14(3),
478–488 (1993) Preliminary version appeared in Proceedings of the 2nd Annual
ACM-SIAM Symposium on Discrete algorithms (SODA), pp. 234–240 (1991)

11. Kalyanasundaram, B., Pruhs, K.: On-line network optimization problems. In: Fiat,
A., Woeginger, G.J. (eds.) Online Algorithms. LNCS, vol. 1442, pp. 268–280.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0029573

12. Kalyanasundaram, B., Pruhs, K.: The online transportation problem. SIAM J.
Discret. Math. 13(3), 370–383 (2000)

13. Nayyar, K., Raghvendra, S.: An input sensitive online algorithm for the metric
bipartite matching problem. In: Proceedings of IEEE 58th Annual Symposium on
Foundations of Computer Science, pp. 505–515 (2017)

14. Peserico, E., Scquizzato, M.: Matching on the line admits no o(
√

logn)-competitive
algorithm. In: Proceedings of the 48th International Colloquium on Automata,
Languages, and Programming (ICALP), Article No. 103 (2021)

15. Raghvendra, S.: A robust and optimal online algorithm for minimum metric bipar-
tite matching. In: Proceedings of Approximation, Randomization, and Combina-
torial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016), ID
18 (2016)

16. Raghvendra, S.: Optimal analysis of an online algorithm for the bipartite matching
problem on a line. In: Proceedings of 34th International Symposium on Computa-
tional Geometry, ID 67 (2017)

https://doi.org/10.1007/s10878-012-9581-9
https://doi.org/10.1007/s10878-015-9948-9
https://doi.org/10.1007/s10878-015-9948-9
https://doi.org/10.1007/BFb0029573

Optimal Due Date Assignment Without
Restriction and Convex Resource
Allocation in Group Technology

Scheduling

Ying Chen1 and Yongxi Cheng1,2(B)

1 School of Management, Xi’an Jiaotong University, Xi’an 710049, China
guolichenying@stu.xjtu.edu.cn, chengyx@mail.xjtu.edu.cn

2 State Key Lab for Manufacturing Systems Engineering, Xi’an 710049, China

Abstract. We consider a single machine group scheduling problem with
convex resource allocation in which the scheduler decides optimal due
dates for different jobs under a group technology environment. The jobs
are classified into groups in advance due to their production similarities,
and jobs in the same group are required to be processed consecutively,
to achieve efficiency of high-volume production. The goal is to deter-
mine the optimal group sequence and job sequence within each group,
together with a due date assignment strategy and resource allocation
to minimize an objective function, which includes earliness, tardiness,
due date assignment and resource allocation costs. The actual job pro-
cessing times are resource dependent, and the due date assignment is
without restriction, that is, it is allowed to assign different due dates to
jobs within one group. We present structural results that characterize
the optimal schedule in the case where the number of jobs in each group
is identical and the cost ψij (the minimum of the due date assignment
cost and the tardiness cost) for each job Jij is also identical, and present
an O(n log n) time algorithm to solve this problem optimally.

Keywords: Single machine scheduling · Due date assignment · Group
technology · Convex resource allocation

1 Introduction

We consider a due date assignment problem in a group technology (GT) schedul-
ing environment with convex resource allocation. In manufacturing processes, it
is well-known that the production efficiency in high-volume production can be
increased by grouping various parts and products with similar designs, produc-
tion processes and/or from the same order. After classified into groups, products
(jobs) within a group are consecutively sequenced. Many advantages have been
claimed through the wide applications of group technology. For instance, prod-
ucts spend less time waiting, which results in less work-in-process inventory,
c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 456–467, 2021.
https://doi.org/10.1007/978-3-030-92681-6_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_36&domain=pdf
https://doi.org/10.1007/978-3-030-92681-6_36

Optimal Due Date Assignment Without Restriction and Convex Resource 457

products tend to move through production in a direct route, and hence the
manufacturing lead time is reduced (see, e.g., Liu et al. [1], Keshavarz et al. [2],
Qin et al. [3] and Wang et al. [4]).

The class of due date assignment problems is a challenging topic, and has
attracted much attention in the past few decades due to the increasing interest
in Just-In-Time systems. Products which complete processing prior to their due
date often incur earliness costs. These may include storage costs, insurance fees
and so on. Equivalently, products completed past their due date often incur
tardiness penalties in the form of compensation of customers and overtime work.
An increasing number of studies have viewed due date assignment as part of the
scheduling process, motivated by the common real-life situation where the due
date is often determined during sales negotiations with the customer. Hence,
there is also a cost associated with the due date assignment. Due to limited
production capacity, it is often unlikely to complete all jobs exactly on their
respective due dates. Thus, it is crucial for manufacturing systems to take into
account all associated costs and develop policies which focus on the aggregate
cost(see, e.g., Seidmann et al. [5], Panwalkar et al. [6] and Shabtay [7]).

Pioneering research in the field of scheduling with due date assignments was
conducted by Seidmann et al. [5] and Panwalkar et al. [6]. Seidmann et al. [5]
analyzed a single machine non-preemptive scheduling problem where all jobs are
available for processing at time zero. They used a due date assignment method
where each job can be assigned a due date without any restriction, and presented
an O(n log n) time optimization algorithm to determine the set of due dates. Pan-
walkar et al. [6] studied a problem where the scheduler has to assign a common
due date to all jobs, to minimize an objective function which is a combination of
earliness, tardiness, and due date costs. They provided an O(n log n) optimiza-
tion algorithm to solve the problem. Li et al. [8] considered a single machine
scheduling problem involving both the due date assignment and job scheduling
under a group technology environment, with three different due date assignment
methods. The objective is to find an optimal combination of the due date assign-
ment strategy and job schedule, to minimize an objective function that includes
earliness, tardiness, due date assignment and flow time costs. Bajwa et al. [9]
investigated a single machine problem of minimizing the total number of tardy
jobs in a GT environment with individual due dates. They proposed a hybrid
heuristic approach to solve the problem. Li et al. [10] and Ji et al. [11] consid-
ered group scheduling problem on a single machine with multiple due windows
assignment.

In classical scheduling problems, it is usually assumed that job processing
times are known and fixed. However, for many modern industrial processes the
actual processing time of a job is controllable by the allocation of a continuous
and nonrenewable resource such as fuel or manpower to compress the job pro-
cessing times. Shabtay et al. [12] investigated a due date assignment problem
under a group technology environment in which jobs within a family (group) are
restricted to be assigned the same due date, while the due dates for different
families are allowed to be different. The objective is to find the job schedule and

458 Y. Chen and Y. Cheng

the due date for each group that minimizes an objective function which includes
earliness, tardiness and due date assignment costs. They also extended the anal-
ysis to the case in which the job processing times are resource dependent. Lv
et al. [13] introduced a single machine common flow allowance group schedul-
ing with learning effect under resource allocation. The jobs within a group are
assigned the same flow allowance and two types of resource allocation function
are considered in the paper. They gave a polynomial time algorithm to solve the
problem. In addition, Yin et al. [15] investigated scheduling problems on a single
machine with learning effect, deteriorating jobs and resource allocation under
group technology assumption. They proved that the problems have polynomial
solutions under the condition that the number of jobs in each group are the
same.

As far as we know, there is no research on scheduling with convex resource
allocation and different due dates under group technology in which the unit due
date, earliness, tardiness and resource allocation costs could be different for jobs
within one group. Based on the research gap found, in this paper we consider
the group scheduling problem with due date assignment and convex resource
allocation, in which jobs within one group may have different unit due date,
earliness, tardiness and resource allocation costs. Besides it is allowed to assign
different due dates to jobs within one group.

The rest of this paper is organized as follows. In Sect. 2, we formally describe
the group scheduling problem with due date assignment and convex resource
allocation studied in this paper and present some preliminary analysis in Sect. 3.
In Sect. 4, structural results of the optimal schedule are presented in the case
where the number of jobs in each group is identical and the cost ψij (the mini-
mum of the due date assignment cost and the tardiness cost) for each job Jij is
also identical, and an O(n log n) time optimization algorithm for the problem is
given. The paper is concluded in Sect. 5.

2 Problem Formulation

A set of n independent and non-preemptive jobs is available for processing at
time zero and has been classified into m groups G1, G2, · · · , Gm. Each group
Gi, for i = 1, 2, · · · ,m, consists of a set {Ji1, Ji2, · · · , Jini

} of ni jobs, where∑m
i=1 ni = n. The jobs within the same group are required to be processed

contiguously. A sequence-independent machine setup time si precedes the pro-
cessing of the first job in group Gi. The machine can handle one job at a time
and jobs within one group are allowed to be assigned different due dates. Let
Cij denote the completion time of job Jij . The earliness and tardiness of job Jij

is given by Eij = max{dij − Cij , 0} and Tij = max{Cij − dij , 0}. Clearly, Eij

and Tij cannot both be positive.
In scheduling with controllable processing times, the relationship between

resource allocation and actual job processing time is usually presented via a con-
vex resource consumption function. The function is a convex decreasing function
of the following form pij(uij) = (wij

uij
)r, where pij(uij) is the processing time of

Optimal Due Date Assignment Without Restriction and Convex Resource 459

Table 1. Notations.

Simbol Definition

G[i] The group scheduled in the ith position of a sequence

J[i][j] The job scheduled in the jth position in group G[i]

p[i][j] The processing time of job J[i][j]

s[i] The setup time for group G[i]

d[i][j] The due date assigned to job J[i][j]

ψ[i][j] min(α[i][j], γ[i][j])

P[i] =
∑n[i]

j=1 p[i][j] The total processing time of all jobs within group G[i]

Ψ[i] =
∑n[i]

j=1 ψ[i][j] The sum of ψ[i][j] for all jobs within group G[i]

job Jij and affected by the amount of resource allocated to job Jij , i.e., uij ,
wij is a positive parameter which represents the workload of job Jij and r is a
positive constant.

For the single machine due date scheduling with the resource allocation in GT
environment, the objective is to determine a schedule π for the group sequence
and job sequence within each group Gi for i = 1, 2, · · · ,m, the due date assign-
ment vector d(π) = (d11(π), d12(π), · · · , d1n1(π), · · · , dm1(π), · · · , dmnm

(π))
specifying the due date for each job Jij and the optimal resource allocation
vector u(π) = (u11(π), u12(π), · · · , u1n1(π), · · · , um1(π), · · · , umnm

(π)) to mini-
mize a cost function that includes earliness, tardiness, due date assignment and
resource allocation costs, given by the following equation:

Z(π, d(π), u(π)) =
m∑

i=1

ni∑

j=1

(αijdij + βijEij + γijTij + vijuij) .

where αij , βij , γij and vij be unit due date, earliness, tardiness and resource
allocation costs of job Jij , respectively. All ni, si, αij , βij , γij and vij are given
parameters.

Following Graham’s et al. [17] three-field notation, we denote the problem
with the convex resource consumption function by

1|GT,DIF,CONV |
m∑

i=1

ni∑

j=1

(αijdij + βijEij + γijTij + vijuij),

where GT denotes group technology, DIF denotes that each job can be assigned
a different due date without restriction and CONV denotes the convex resource
allocation. Please refer to Table 1 for notations that will be used in this paper.

3 Preliminary Analysis

In this section, the following two lemmas will be given for the later analysis.

460 Y. Chen and Y. Cheng

Lemma 1. Fix a schedule π for the group sequence and job sequence within each
group, the optimal due date assignment vector, d∗(π), for problem

1|GT,DIF,CONV |
m∑

i=1

ni∑

j=1

(αijdij + βijEij + γijTij + vijuij)

can be determined as follows:

d∗
[i][j](π) =

⎧
⎨

⎩

C[i][j](π) if α[i][j] < γ[i][j]
0 if α[i][j] > γ[i][j]

any value in [0, C[i][j](π)] if α[i][j] = γ[i][j]

for i = 1, 2, · · · ,m, and j = 1, 2, · · · , ni.

Proof. According to the study in [18], we can know that the optimal due date
assignment vector for the problem 1|GT,DIF |∑m

i=1

∑n[i]
j=1(αijdij + βijEij +

γijTij) is same to the results in Lemma 1. As the optimal due date assignment
vector is independent of the resource allocation uij , then the result can be imme-
diately generalized to the problem 1|GT,DIF,CONV |∑m

i=1

∑ni

j=1(αijdij +
βijEij + γijTij + vijuij). The proof is completed. ��
Lemma 2. An optimal schedule does not have idle times.

Proof. It is omitted due to the similarity to the proof in [8].

Given a schedule π, let d∗(π) be an optimal due date assignment as given in
Lemma 1, and let Z[i][j](π, d∗(π), u(π)) be the contribution to the objective func-
tion from job J[i][j]. According to Lemma 1, we can analyze Z[i][j](π, d∗(π), u(π))
according to the following three cases.

Case 1. α[i][j] > γ[i][j]. According to Lemma 1, in this case we have d∗(π)[i][j] =
E[i][j] = 0 and T[i][j] = C[i][j], for i = 1, 2, · · · ,m and j = 1, 2, · · · , ni. Hence,

Z[i][j](π, d∗(π), u(π)) = γ[i][j]C[i][j] + v[i][j]u[i][j].

Case 2. α[i][j] < γ[i][j]. In this case, we have d∗(π)[i][j] = C[i][j] and E[i][j] =
T[i][j] = 0, for i = 1, 2, · · · ,m and j = 1, 2, · · · , ni. Hence,

Z[i][j](π, d∗(π), u(π)) = α[i][j]C[i][j] + v[i][j]u[i][j].

Case 3. α[i][j] = γ[i][j]. Similarly, according to Lemma 1 in this case we have

Z[i][j](π, d∗(π), u(π)) = α[i][j]d[i][j] + γ[i][j](C[i][j] − d[i][j]) + v[i][j]u[i][j]

= α[i][j]C[i][j] + v[i][j]u[i][j].

Recall that ψ[i][j] = min(α[i][j], γ[i][j]), for i = 1, 2, · · · ,m, and j = 1, 2, · · · , ni.
Hence, for all the above three cases Z[i][j](π, d∗(π), u(π)) can be written in a
unified way as follows:

Z[i][j](π, d∗(π), u(π)) = ψ[i][j]C[i][j] + v[i][j]u[i][j].

Optimal Due Date Assignment Without Restriction and Convex Resource 461

It follows that Z(π, d∗(π), u(π)), the objective value of the problem, can be
written as

Z(π, d∗(π), u(π)) =
m∑

i=1

n[i]∑

j=1

ψ[i][j]C[i][j] + v[i][j]u[i][j]. (1)

4 The Optimal Schedule

In this section, we will analyze the structure of an optimal schedule for problem
1|GT,DIF,CONV |∑m

i=1

∑ni

j=1(αijdij + βijEij + γijTij + vijuij). By Lemma
2, we can restrict our attention to schedules without idle times. Hence, for any
given schedule π, the completion time for job J[i][j] can be calculated by the
following equation:

C[i][j] =
i−1∑

k=1

P[k] +
i∑

k=1

s[k] +
j∑

l=1

p[i][l].

Thus, by Eq. (1), the objective value can be written as

Z(π, d
∗(π), u(π))

=
m∑

i=1

n[i]∑

j=1
ψ[i][j]C[i][j] + v[i][j]u[i][j]

=
m∑

i=1

n[i]∑

j=1
ψ[i][j]

⎛

⎝
i−1∑

k=1
P[k] +

i∑

k=1
s[k] +

j∑

l=1
p[i][l]

⎞

⎠ + v[i][j]u[i][j]

=
m∑

i=1

n[i]∑

j=1
ψ[i][j]

⎛

⎜⎝
i−1∑

k=1

n[k]∑

l=1
p[k][l] +

i∑

k=1
s[k] +

j∑

l=1
p[i][l]

⎞

⎟⎠ + v[i][j]u[i][j]

=
m∑

i=1
Ψ[i]

⎛

⎝
i∑

k=1
s[k]

⎞

⎠ +
m∑

i=1

n[i]∑

j=1
v[i][j]u[i][j] +

m∑

i=1

n[i]∑

j=1
ψ[i][j]

⎛

⎝
j∑

l=1
p[i][l]

⎞

⎠ +
m∑

i=1

n[i]∑

j=1
ψ[i][j]

⎛

⎜⎝
i−1∑

k=1

n[k]∑

l=1
p[k][l]

⎞

⎟⎠

=
m∑

i=1
Ψ[i]

⎛

⎝
i∑

k=1
s[k]

⎞

⎠ +
m∑

i=1

n[i]∑

j=1
v[i][j]u[i][j] +

m∑

i=1

n[i]∑

j=1

⎛

⎜⎝

n[i]∑

l=j

ψ[i][l]

⎞

⎟⎠ p[i][j] +
m∑

i=1
Ψ[i]

⎛

⎜⎝
i−1∑

k=1

n[k]∑

l=1
p[k][l]

⎞

⎟⎠

=
m∑

i=1
Ψ[i]

⎛

⎝
i∑

k=1
s[k]

⎞

⎠ +
m∑

i=1

n[i]∑

j=1
v[i][j]u[i][j] +

m∑

i=1

n[i]∑

j=1

⎛

⎜⎝

n[i]∑

l=j

ψ[i][l]

⎞

⎟⎠ p[i][j] +
m∑

i=1

⎛

⎝
m∑

k=i+1
Ψ[k]

⎞

⎠

⎛

⎜⎝

n[i]∑

l=1
p[i][l]

⎞

⎟⎠

=
m∑

i=1
Ψ[i]

⎛

⎝
i∑

k=1
s[k]

⎞

⎠ +
m∑

i=1

n[i]∑

j=1
v[i][j]u[i][j] +

m∑

i=1

n[i]∑

j=1

⎛

⎜⎝
m∑

k=i+1
Ψ[k] +

n[i]∑

l=j

ψ[i][l]

⎞

⎟⎠ p[i][j]. (2)

Considering the relationship between the processing time and resource allo-
cation and substituting pij(uij) = (wij

uij
)r into the objective function in Eq. (2),

we obtain the following expression

Z(π, d∗(π), u(π)) =
m∑

i=1

Ψ[i]

(
i∑

k=1

s[k]

)

+
m∑

i=1

n[i]∑

j=1

v[i][j]u[i][j]

+
m∑

i=1

n[i]∑

j=1

⎛

⎝
m∑

k=i+1

Ψ[k] +
n[i]∑

l=j

ψ[i][l]

⎞

⎠
(

w[i][j]

u[i][j]

)r

(3)

462 Y. Chen and Y. Cheng

Lemma 3. The optimal resource allocation for problem

1|GT,DIF,CONV |
m∑

i=1

ni∑

j=1

(αijdij + βijEij + γijTij + vijuij)

can be determined by

u∗
[i][j](π) =

(
r(

∑m
k=i+1 Ψ[k] +

∑n[i]

l=j ψ[i][l])
v[i][j]

)1/(r+1)

× w
r/(r+1)
[i][j] . (4)

for i = 1, 2, · · · ,m, and j = 1, 2, · · · , ni.

Proof. By taking the derivative of the objective function given by Eq. (3) with
respect to u[i][j] for i = 1, 2, · · · ,m, and j = 1, 2, · · · , ni, equating it to zero and
solving it for u∗

[i][j], we obtain Eq. (4). Since the objective is a convex function,
Eq. (4) provides necessary and sufficient conditions for optimality. ��

By substituting Eq. (4) into Eq. (3), we obtain the following new expres-
sion for the cost function under an optimal resource allocation and due date
assignment.

Z(π, d∗(π), u∗(π)) =
m∑

i=1

Ψ[i]

(
i∑

k=1

s[k]

)

+ (r−r/(r+1) + r1/(r+1))

m∑

i=1

n[i]∑

j=1

θ[i][j]

⎛

⎝
m∑

k=i+1

Ψ[k] +

n[i]∑

l=j

ψ[i][l]

⎞

⎠

1/(r+1)

(5)

where θij = (wij × vij)r/(r+1), i = 1, 2, · · · ,m, and j = 1, 2, · · · , ni.

Lemma 4. Let there be two sequences of numbers xi and yi. The sum
∑

i xiyi
of products of the corresponding elements is the least(largest) if the sequences
are monotonic in the opposite (same) sense ([19], 1967).

Lemma 5. The optimal job sequence within each group Gi (i = 1, 2, · · · ,m) is
obtained by sequencing jobs in non-decreasing order of θij.

Proof. As shown in Eq. (5), the values of
∑m

i=1 Ψ[i]

(∑i
k=1 s[k]

)
and

∑m
k=i+1 Ψ[k]

are independent of the internal job sequence within each group. In addition, the
value of the term r−r/(r+1)+r1/(r+1) is a constant. Stemming from

∑n[i]

l=1 ψ[i][l] ≥
∑n[i]

l=2 ψ[i][l] ≥ · · · ≥ ∑n[i]

l=n[i]
ψ[i][l] and Lemma 4, the optimal job sequence within

a group can be obtained by assigning the largest
∑n[i]

l=1 ψ[i][l] to the smallest
θ[i][1], the second largest

∑n[i]

l=2 ψ[i][l] to the second smallest θ[i][2] and so on.
Hence the jobs within a group are arranged in non-decreasing order of θij in
optimal schedule. ��

Optimal Due Date Assignment Without Restriction and Convex Resource 463

After obtaining the optimal job sequence within each group Gi (i =
1, 2, · · · ,m) according to Lemma 5, the original problem is reduced to finding
the optimal group sequence to minimize Eq. (5). The complexity of this problem
remains an open question. However, in the following we show that if the value
of ψij for each job Jij for i = 1, 2, · · · ,m and j = 1, 2, · · · , ni is identical and
ni = n = n/m for i = 1, 2, · · · ,m, then the optimal group sequence can be
obtained in O(m×max(n,m2)) time by optimally assigning the groups into the
m possible positions. This can be done by solving a linear assignment problem
as described in the following lemma.

Lemma 6. For n1 = n2 = · · · = nm = n/m = n and ψij = ψ for each job Jij,
where i = 1, 2, · · · ,m and j = 1, 2, · · · , ni, the optimal group sequence can be
determined in O(m × max(n,m2)) time.

Proof. For the case where n1 = n2 = · · · = nm = n/m = n and ψij = ψ for each
job Jij , where i = 1, 2, · · · ,m and j = 1, 2, · · · , ni, recall that Ψ[i] =

∑n[i]
j=1 ψ[i][j],

then the value of Ψi for each group is identical, i.e. Ψ1 = Ψ2 = · · · = Ψm = Ψ .
Therefore, the objective function in Eq. (5) becomes

Z(π, u∗(π), d∗(π)) = Ψ

m∑

i=1

(m − i + 1)s[i]

+ (r−r/(r+1) + r1/(r+1))

m∑

i=1

n∑

j=1

θ[i][j]
(
(m − i)Ψ + (n − j + 1)ψ

)1/(r+1)

(6)

As the optimal job sequence within each group can be predetermined by
Lemma 5, then the total cost with optimal job sequence is just dependent on
the position of each group in π.

Let til be the minimal penalty incurred by assigning group Gi to position l
in π for i = 1, 2, · · · ,m. According to Eq. (6), we obtain that:

til = Ψ(m − l + 1)si

+ (r−r/(r+1) + r1/(r+1))
n∑

j=1

θi[j]
(
(m − l)Ψ + (n − j + 1)ψ

)1/(r+1) (7)

where the job sequence within each group Gi for i = 1, 2, · · · ,m can be deter-
mined by Lemma 5.

It is straightforward that computing the value of til requires O(n) time. Since
there are m groups and m positions for each group, computing all the til values
requires O(nm2) = O(nm) time.

Let us now define xil = 1 if group Gi is assigned to position l in π and
xil = 0 otherwise. The sequencing problem of determining the optimal group
can be formulated as the following linear assignment problem:

464 Y. Chen and Y. Cheng

(P1) min
m∑

i=1

m∑

l=1

til × xil

s.t.
∑m

l=1 xil = 1,i = 1, 2, 3, . . . ,m.∑m
i=1 xil = 1,l = 1, 2, 3, . . . ,m.

xil = 0 or 1, i, l = 1, 2, 3, . . . ,m.

The first set of constraints in the formulation ensures that each group will
be assigned only to one position, the second set ensures that each position will
be assigned only once, and the penalty for each assignment under an optimal
resource allocation appears in the objective function.

Since a linear assignment problem can be solved in O(m3) time, the com-
plexity of determining the optimal group sequence for the case where n1 = n2 =
· · · = nm = n/m = n and ψij = ψ for each job Jij for i = 1, 2, · · · ,m and
j = 1, 2, · · · , ni, is O(nm) + O(m3) = O(m × max(n,m2)). Since m = O(n),
then the overall complexity is O(n3). ��

Now we are ready to present an O(n3) time optimal algorithm for problem
1|GT,DIF,CONV, ni = n, ψij = ψ|∑m

i=1

∑ni

j=1(αijdij+βijEij+γijTij+vijuij).

Algorithm 1
1: Calculate the values of θij and order the jobs within each group Gi (i = 1, 2, · · · , m)

in non-decreasing order of θij .
2: Calculate all til values according to Eq. (7).
3: Determine the optimal group sequence by solving the linear assignment problem

P1. Let π be the schedule obtained.
4: Determine the optimal resource allocation u∗(π) by using Eq. (4) with optimal

schedule π.
5: Assign the optimal due dates for jobs according to Lemma 1.

Theorem 1. Algorithm 1 optimally solves 1|GT,DIF,CONV, ni = n, ψij =
ψ|∑m

i=1

∑ni

j=1(αijdij + βijEij + γijTij + vijuij) in O(n3) time.

Proof. The correctness of Algorithm 1 follows from Lemmas 1–6. Calculating the
job sequence in Step 1 requires O(

∑m
i=1 ni log ni) = O(n log n) time, and Step

2 requires O(nm) time. Solving a linear assignment problem in Step 3 requires
O(m3) time, and determining the optimal resource allocation in Step 4 requires
O(n) time. Step 5 requires O(n) time. Thus the overall time complexity of the
algorithm is O(max(nlogn),m×max(n,m2)). Since m = O(n) and

∑m
i=1 ni = n,

the complexity is bounded by O(n3). ��

Optimal Due Date Assignment Without Restriction and Convex Resource 465

4.1 Numerical Example

We consider the following numerical example to illustrate the solution procedure
of the problem with n = 9,m = 3, ni = n = 3, ψij = ψ = 2, r = 1. The other
parameters, such as the cost parameters and set up times are shown in Table 2
to illustrate our algorithm.

Table 2. Parameters of the numerical examples.

Group Jij αij βij γij vij wij si

G1 J11 2 3 3 2 3 3

J12 4 5 2 4 2

J13 2 2 2 2 6

G2 J21 3 4 2 1 5 5

J22 5 3 2 2 3

J23 2 6 4 2 1

G3 J31 4 5 2 4 2 6

J32 2 3 3 1 4

J33 2 3 6 3 5

Step 1. Calculate the value of θij according to θij = (wij × vij)r/(r+1), then
the results can be shown as follows.

i, j(θij) 1 2 3

1
√

6
√

8
√

12

2
√

5
√

6
√

2

3
√

8
√

4
√

15

According to Lemma 5, we can get the optimal job sequence within each
group is G1 : J11 → J12 → J13, G2 : J23 → J21 → J22, G3 : J32 → J31 → J33.

Step 2. The values of all til can be calculated as follows:

i, l(til) 1 2 3
1 123.335 90.455 51.112
2 138.219 97.797 52.801
3 176.581 125.654 68.066

Step 3. By solving the linear assignment problem P1, we can deter-
mine the optimal group sequence is {G1, G2, G3}. Then π =

{
J11, J12, J13,

J23, J21, J22, J32, J31, J33

}
is the schedule obtained.

Step 4. Determine the optimal resource allocation u∗(π) by using Eq. (4)
with optimal schedule π.

Step 5. Assign the optimal due dates for jobs according to Lemma 1.

466 Y. Chen and Y. Cheng

[i], [j](u∗
[i][j](π)) 1 2 3

1 5.196 2.828 6.481
2 2.449 7.071 3.464
3 4.899 1.414 1.826

[i], [j](d∗
[i][j](π)) 1 2 3

1 3.577 0 5.210
2 10.618 0 0
3 21.007 0 25.160

5 Conclusion

In this paper, we study a single machine group scheduling problem with con-
vex resource allocation, in which the scheduler determines optimal due dates for
different jobs under a group technology environment. The due date assignment
is without restriction, that is, it is allowed to assign different due dates to jobs
within one group. The actual processing time of each job depends on the resource
allocated to the job. The objective is to determine the optimal group sequence
and job sequence within each group, together with the optimal due date assign-
ment strategy and resource allocation, to minimize an objective function which
includes earliness, tardiness, due date assignment and resource allocation costs.
We determine the optimal job sequence within each group and show that it is
independent of the group sequence. However, the problem of determining the
optimal group sequence remains an open question. We present structural results
that characterize the optimal schedule in the case where the number of jobs in
each group is identical and the cost ψij (the minimum of the due date assign-
ment cost and the tardiness cost) for each job Jij is the same, and present an
O(n log n) time algorithm to solve this problem optimally.

Acknowledgements. This work was partially supported by the National Natural
Science Foundation of China under Grant No. 11771346.

References

1. Liu, L., Xu, Y., Yin, N., Wang, J.: Single machine group scheduling problem with
deteriorating jobs and release dates. Appl. Mech. Mater. 513–517, 2145–2148
(2014)

2. Keshavarz, T., Savelsbergh, M., Salmasi, N.: A branch-and-bound algorithm for
the single machine sequence-dependent group scheduling problem with earliness
and tardiness penalties. Appl. Math. Model. 39(20), 6410–6424 (2015)

3. Qin, H., Zhang, Z., Bai, D.: Permutation flowshop group scheduling with position-
based learning effect. Comput. Ind. Eng. 92, 1–15 (2016)

4. Wang, L., Liu, M., Wang, J., Lu, Y., Liu, W.: Optimization for Due-Date Assign-
ment Single-Machine Scheduling under Group Technology. Complexity, vol. 2021
(2021). https://doi.org/10.1155/2021/6656261

5. Seidmann, A., Panwalkar, S.S., Smith, M.L.: Optimal assignment of due-dates for
a single processor scheduling problem. Int. J. Prod. Res. 19(4), 393–399 (1981)

https://doi.org/10.1155/2021/6656261

Optimal Due Date Assignment Without Restriction and Convex Resource 467

6. Panwalkar, S.S., Smith, M.L., Seidmann, A.: Common due date assignment to
minimize total penalty for the one machine scheduling problem. Oper. Res. 30(2),
391–399 (1982)

7. Shabtay, D.: Optimal restricted due date assignment in scheduling. Eur. J. Oper.
Res. 252(1), 79–89 (2016)

8. Li, S., Ng, C.T., Yuan, J.: Group scheduling and due date assignment on a single
machine. Int. J. Prod. Econ. 130(2), 230–235 (2011)

9. Bajwa, N., Melouk, S., Bryant, P.: A hybrid heuristic approach to minimize number
of tardy jobs in group technology systems. Int. Trans. Oper. Res. 26(5), 1847–1867
(2019)

10. Li, W.-X., Zhao, C.-L.: Single machine scheduling problem with multiple due win-
dows assignment in a group technology. J. Appl. Math. Comput., 477–494 (2014).
https://doi.org/10.1007/s12190-014-0814-1

11. Ji, M., Zhang, X., Tang, X., Cheng, T.C.E., Wei, G., Tan, Y.: Group scheduling
with group-dependent multiple due windows assignment. Int. J. Prod. Res. 54(4),
1244–1256 (2016)

12. Shabtay, D., Itskovich, Y., Yedidsion, L., Oron, D.: Optimal due date assignment
and resource allocation in a group technology scheduling environment. Comput.
Oper. Res. 37(12), 2218–2228 (2010)

13. Lv, D., Luo, S., Xue, J., Xu, J., Wang, J.: A note on single machine common flow
allowance group scheduling with learning effect and resource allocation. Comput-
ers & Industrial Engineering, vol. 151 (2021). https://doi.org/10.1016/j.cie.2020.
106941

14. Yin, N., Kang, L., Sun, T., Wang, X.: Unrelated parallel machines scheduling with
deteriorating jobs and resource dependent processing times. Appl. Math. Model.
38(19–20), 4747–4755 (2014)

15. Yin, N., Kang, L., Wang, X.: Single machine group scheduling with processing
times dependent on position, starting time and allotted resource. Appl. Math.
Model. 38(19–20), 4602–4613 (2014)

16. Pei, J., Liu, X., Liao, B., Panos, P.M., Kong, M.: Single machine scheduling with
learning effect and resource-dependent processing times in the serial-batching pro-
duction. Appl. Math. Model. 58, 245–253 (2018)

17. Graham, R.L., Lawler, E.L., Lenstra, J.K., et al.: Optimization and approximation
in deterministic sequencing and scheduling: a survey. Ann. Discrete Math. 5, 287–
326 (1979)

18. Chen, Y., Cheng, Y.: Group scheduling and due date assignment without restriction
on a single machine. Adv. Prod. Manag. Syst. 632, 250–257 (2021)

19. Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press,
London (1967)

https://doi.org/10.1007/s12190-014-0814-1
https://doi.org/10.1016/j.cie.2020.106941
https://doi.org/10.1016/j.cie.2020.106941

Constrained Stable Marriage with Free
Edges or Few Blocking Pairs

Yinghui Wen(B) and Jiong Guo(B)

School of Computer Science and Technology, Shandong University, Qingdao, China
yhwen@mail.sdu.edu.cn, jguo@sdu.edu.cn

Abstract. Given two disjoint sets U and W , where the members (also
called agents) of U and W are called men and women, respectively, and
each agent is associated with an ordered preference list that ranks a sub-
set of the agents from the opposite gender, a stable matching is a set of
pairwise disjoint woman-man pairs admitting no blocking pairs. A block-
ing pair refers to a woman and a man, who prefer each other to their
partners in the matching. Gale and Shapley proved that a stable match-
ing exists for every instance. Since then, a lot of stable matching variants
have been introduced. For instance, the π-stable marriage problem asks
for a stable matching satisfying a given constraint π. Unlike in the uncon-
strained case, a given instance may not admit a π-stable matching and
one has to accept a semi-stable matching satisfying π, for instance, a
matching satisfying π and admitting few blocking pairs. In this paper,
we study two such problems, namely, π-Stable Marriage with Free
Edges (π-SMFE) and π-Stable Marriage with t-Blocking Pairs
(π-SMtBP). π-SMFE seeks for a matching M satisfying π and the con-
dition that all blocking pairs occurring in M are from a given set F of
woman-man pairs, while the solution matchings of π-SMtBP need to sat-
isfy π and admit at most t blocking pairs. We examine four constraints,
Regret, Egalitarian, Forced, and Forbidden, and prove that both π-SMFE
and π-SMtBP are NP-hard for all four constraints even with complete
preference lists. Concerning parameterized complexity, we establish a
series of fixed-parameter tractable and intractable results for π-SMFE
and π-SMtBP with respect to some structural parameters such as the
number of agents and the number of free edges/blocking pairs.

Keywords: Social choice · Stable matching · Computational
complexity · Parameterized complexity

1 Introduction

Matching problems have received a considerable amount of attention from both
economics and computer science communities and have been studied for several

Supported by NSFC 61772314, 61761136017 and 62072275.

c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 468–483, 2021.
https://doi.org/10.1007/978-3-030-92681-6_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_37&domain=pdf
http://orcid.org/0000-0003-1748-0779
http://orcid.org/0000-0003-2137-205X
https://doi.org/10.1007/978-3-030-92681-6_37

Constrained Stable Marriage with Free Edges or Few Blocking Pairs 469

decades, due to their rich applications in the real world, for instance, assign-
ment of students to colleges [1], kidney patients to donors [19], refugees to host
countries [3].

One of the most prominent matching models is the Stable Marriage prob-
lem, which was introduced by Gale and Shapley [12]. Given two disjoint sets U
and W , we denote the members of U as men and the members of W as women.
Each member u ∈ U (resp. w ∈ W) is associated with an ordered preference
list that ranks a subset of the members in W (resp. U), called the preference
list of u (resp. w) and denoted as �u (resp. �w). A matching M is a one-to-one
assignment of u ∈ U to w ∈ W . We call a woman w ∈ W is the partner of a
man u ∈ U if M matches them together, denoted as M(u), and vice versa. The
Stable Marriage problem seeks for a matching M which is stable, that is,
there is no blocking pair in M . Herein, a blocking pair is a pair of two agents
u ∈ U and w ∈ W such that u and w are not matched by M but u prefers
w to M(u) in �u and w prefers u to M(w) in �w. The preference list of an
agent a ∈ U ∪W could be incomplete, meaning that some agents in the opposite
gender are not acceptable for a, or could contain ties, meaning that two agents
are considered to be equally good as a partner of a.

A lot of variants of Stable Marriage have been introduced, which seek for
a stable matching satisfying some constraints. Some try to find a stable matching
satisfying a score bound, such as Egalitarian [15], Regret [14], Balanced [11], and
Sex-equal [16], etc. Some variants focus on finding a matching with restricted
edges, such as Forced [7–9], Forbidden [7–9], and Distinguished [20]. Let π denote
a constraint. We say a stable matching M is π-stable if M satisfies π. When π
being Egalitarian/Regret/Forced/Forbidden, it is polynomial-time to decide the
existence of a π-stable matching [9,14,15]. Note that, unlike the unconstrained
case, π-stable matching may not exist for some instances. In this case, one has
to accept a matching close to being stable, for instance, a matching containing
a few blocking pairs. This line of research mainly consists of two directions. The
first direction asks, given a subset of agent pairs, denoted as F , whether there
is a matching M such the set of blocking pairs of M is a subset of F . Each ele-
ment in F is called a free edge of the instance. We name this setting as the free
edges setting. Cechlárová et al. [6] investigated Stable Roommates with Free
Edges and provided that finding a stable roommate matching with free edges is
NP-hard, where Stable Roommates is a well-known generalization of Stable
Marriage. Cseh and Heeger [7] studied Strongly/Super Stable Marriage
with Free Edges, where strong stable and super stable are two well-known
extensive definitions of stable, and derived a similar classical computational com-
plexity result as Cechlárová et al. The second direction decides, given an integer t,
whether there is a matching M such that the number of blocking pairs in M is at
most t. In this paper, we name this setting as the t-blocking pairs setting.1 Abra-
ham et al. [2] investigated Stable Roommates with t-Blocking Pairs. Biró

1 In most papers, this setting is named as “almost stable” matchings. Considering a
matching in a free edge setting can also be seen as a matching which is “almost
stable”, we rename this setting as t-blocking pairs.

470 Y. Wen and J. Guo

et al. [4] extended the work of [2] to incomplete preference lists. They found out
that even with t = 3, Stable Roommates with t-Blocking Pairs becomes
NP-hard. Biró et al. [5] introduced t-blocking pairs to Stable Marriage with
Incomplete Preference Lists and achieved a similar classical computational
complexity result. Cseh and Manlove [8] combined t-blocking pairs with Sta-
ble Marriage and Roommates with Restricted Edges and showed that
when forbidden edges are allowed, it is NP-hard to decide the existence of sta-
ble matching with t blocking pairs. Manlove et al. [18] studied the combination
of t-blocking pairs and Hospitals/Residents Problem with Couples and
proved that find such a matching is NP-hard.

We study the combination of π-Stable Marriage and free edges/t-blocking
pairs. That is, given two sets of agents U and W with each agent having a pref-
erence list and a pair set F (for π-Stable Marriage with Free Edges
(π-SMFE)) or an integer t (for π-Stable Marriage with t-Blocking Pairs
(π-SMtBP)), we seek for a matching satisfying π and the condition that the set
of blocking pairs is a subset of F (for π-SMFE) or the number of blocking pairs
is at most t (for π-SMtBP). There are four constraints studied in this paper,
namely, Egalitarian (Egal), Regret (Reg), Forced, and Forbidden. We will for-
mally define the constraints in Sect. 2. We use π-Stable Marriage with Ties
(π-SMT) to name the variant of Stable Marriage, where ties are allowed in
the preference lists and the target is to find a π-stable matching. We first show
an interesting connection between π-SMT and π-SMFE (resp. π-SMtBP). That
is, each instance of π-SMT can be reduced in polynomial time to an equivalent
π-SMFE (resp. π-SMtBP) instance without ties. Thus, we can conclude that π-
SMFE (resp. π-SMtBP) is NP-hard with π being Egal/Reg/Forced/Forbidden,
since their corresponding π-SMT problems are NP-hard2. Then we investi-
gate the parameterized complexity of π-SMFE and π-SMtBP and achieve the
following results. First, we find problem kernels for Reg-SMFE, Reg-SMtBP
and Forced-SMFE, which implies that the three problems are fixed-parameter
tractable (FPT) with respect to k, where k is the cardinality of a maximum
matching of the bipartite graph constructed from the matching instance. Sec-
ond, we design an FPT algorithm for π-SMFE and an XP algorithm for π-SMtBP
with respect to t with t being the number of blocking pairs or the size of the
free edge set F . Third, we prove that Egal-SMtBP and Forbidden-SMtBP are
W[1]-hard with respect to n − t with n being the number of women (or men).
Fourth, we consider the case with short preference lists and prove that even
with l being a constant, π-SMFE and π-SMtBP remain NP-hard for π being
Egal/Reg/Forced/Forbidden, where l equals the maximum length of all prefer-
ence lists. Refer to Table 1 for an overview of parameterized complexity results.
Due to lack of space, the proofs of the theorems marked with (*) are moved to
Appendix.

2 The NP-hardness of π-SMT with π ∈ {Reg, Egal, Forced} has been proved by
Manlove et al. [17], and the NP-hardness of SMT-Forbidden is proved in Theorem 1.

Constrained Stable Marriage with Free Edges or Few Blocking Pairs 471

Table 1. Parameterized complexity results. The FPT results with respect to n are
trivial. “Para-NP-hard” stands for NP-hardness even with the corresponding parameter
being a constant.

t k n n − t l

π-SMFE FPT

(Theorem 5)

FPT

(Reg/Forced

(Theorem 4))

FPT ? Para-NP-h

(Reg/Forced

(Theorem 9),

Egal/Forbidden

(Theorem 10))

π-SMtBP XP

(Theorem 6)

FPT (Reg

(Theorem 4))

FPT W[1]-hard (Egal

(Theorem 8),

Forbidden

(Theorem 7))

Para-NP-h

(Reg/Egal/Forced

(Theorem 11)))

2 Preliminaries

Let U = {u1, · · · , un} and W = {w1, · · · , wn} be two n-elements disjoint sets
of agents. We call the members in U men, and the members in W women. The
preference list of u ∈ U is an ordered subset that ranks a subset of the members
in W , denoted as �u. If the length of �u is less than n, we say �u is incomplete.
If there are two women wi and wj are considered equally good as a partner of
u, we say �u contains tie and use wi ∼ wj to denote the relation of wi and
wj in �u. For instance, if there are three women w1, w2, w3, and a man u ∈ U
prefers w1 to w2 and w3, and considers w2 as good as w3, then the preference list
of u is defined as �u: w1 � w2 ∼ w3. The preference list �w of w ∈ W is defined
analogously. A matching M ⊆ {{u,w}|u ∈ U ∧ w ∈ W} is a set of pairwise
disjoint pairs with u in w’s preference list and vice versa. We say M is a perfect
matching if |M | = n. If {u,w} ∈ M , we say that w is the partner of u matched
by M , denoted as M(u), and vice versa. If u has no partner, we say M(u) = ∅.
Given an agent a, Pa(b) stands for the position of b in �a with b being an agent
from the opposite gender.3 Given a matching M , we define “the score of a” as
Pa(M(a)), and define “the π-score of a set A ⊆ U ∪ W” as

∑
a∈A Pa(M(a)) for

π = Egal, or maxa∈A Pa(M(a)) for π = Reg. A preference profile L is the set
of all preference lists. We say L contains ties if at least one preference list in L
contains ties and L is incomplete if at least one preference list in L is incomplete.
A matching M is stable if M does not contain blocking pairs; a blocking pair is a
pair {u,w} /∈ M such that u prefers w to M(u) and w prefers u to M(w). Given
a set B,

−→
B denotes an arbitrary but fixed ordering of the elements in B. Given

two agents a and c from the same gender with �a: b � (�c) � d and �c: f � h,
the notation (�c) in �a means that the agents between b and d in �a are the
same agents in �c and have the same order as in �c. That is, �a: b � f � h � d.

Constraints and Problems. There are four constraints studied in this paper,
namely, Reg, Egal, Forced, and Forbidden. Each constrained stable marriage

3 Note that the positions of the agents connected by a tie are set equal to the minimum
position of the agents in this tie. For instance, in �u: w1 � w2 ∼ w3, the positions
of w2 and w3 are 2. If an agent has no partner, the position equals to n + 1.

472 Y. Wen and J. Guo

Table 2. The four constrains studied in this paper.

π πi πr

Reg An integer d (Reg-score bound) maxa∈U∪W Pa(M(a)) ≤ d

Egal An integer d (Egal-score bound)
∑

a∈U∪W Pa(M(a)) ≤ d

Forced A set S ⊆ U × W (Forced pairs set) S ⊆ M

Forbidden A set S ⊆ U × W (Forbidden pairs set) M ∩ S = ∅

problem with a constraint π has an additional input πi, and an additional require-
ment πr for the solution matching M . We define them in Table 2.

Given a constraint π, a matching M is π-stable if M is a stable matching
and satisfies π, that is, M meets the additional requirement πr with taking πi

as an additional input. The π-Stable Marriage (π-SM) problem asks for a
π-stable matching, given two sets U and W , a profile L, and πi. The π-Stable
Marriage with Ties (π-SMT) problem represents the variant of π-SM, where
ties occur in the preference lists. Note that π-stable matchings do not exist for
some instances. Thus, we focus on two “relaxed” version of π-SM. Let π ∈ {Egal,
Reg, Forced, Forbidden}.

π-Stable Marriage with Free Edges(π-SMFE)
Input: Two sets of agents U and W of n agents each, a preference profile L
without ties, a set of pairs F ⊆ U × W , and πi.
Question: Is there a matching M satisfying πr and the condition that the
set of blocking pairs in M is a subset of F?

π-Stable Marriage with t-Blocking Pairs(SMtBP)
Input: Two sets of agents U and W of n agents each, a preference profile L
without ties, an integer t ≥ 0, and πi.
Question: Is there a matching M satisfying πr and the condition that the
number of blocking pairs in M is at most t?

Note that, we also consider incomplete preference lists. Each instance of π-
SMFE or π-SMtBP can be seen as a bipartite graph G. That is, each vertex
denotes an agent. G has an edge e = {vu, vw} if vu and vw are the vertices
corresponding to u ∈ U and w ∈ W , respectively, and u and w appear in each
other’s preference list. Each neighbor of vu (resp. vw) has an index with respect
to vu (resp. vw), which is set equal to the position of the corresponding woman
(resp. man) in �u (resp. �w).

Parameterized Complexity. Parameterized complexity provides a refined
exploration of the connection between problem complexity and various problem-
specific parameters. A parameterized problem is fixed-parameter tractable (FPT)
with respect to a parameter k, if there is an O(f(k) · |I|O(1))-time algorithm solv-
ing the problem, where I denotes the whole input instance and f can be any
computable function. Parameterized problems can be classified into many classes
with W[1] and W[2] being the basic fixed-parameter intractability classes. For

Constrained Stable Marriage with Free Edges or Few Blocking Pairs 473

more details on parameterized complexity, we refer to [10,21]. We study the
parameterized complexity of π-SMFE and π-SMtBP, and consider the following
parameters: t, k, n = |U | = |W |, n − t, and l, where t is the number of free
edges in F or the number of blocking pairs, k is the cardinality of the maxi-
mum matching of the bipartite graph constructed from the instance, and l is the
maximum length of all preference lists.

3 Classical Complexity

In this section, we prove the classical complexity of π-SMFE and π-SMtBP with
π ∈ {Reg, Egal, Forced, Forbidden}. To do this, we reduce π-Stable Mar-
riage with Ties (π-SMT) to π-SMFE and π-SMtBP and show π-SMT with
π ∈ {Reg, Egal, Forced, Forbidden} is NP-hard even with all preference lists
being complete. We first show the NP-hardness of Forbidden-SMT. The NP-
hardness of π-SMT with π ∈ {Reg, Egal, Forced} has been proved by Manlove
et al. [17].

Theorem 1. (*) Forbidden-SMT is NP-hard even with all preference lists being
complete.

3.1 π-SMFE

We introduce some notations which will be used in the following reduction.
Given a preference list �a with a ∈ U ∪ W , a tie-set in �a is a set of agents
who occur in a tie in �a. A preference list can have several tie-sets. The tie-
length of �a is defined as the maximum size of all tie-sets in �a. For instance,
let �a be b1 ∼ b2 ∼ b3 � b4 ∼ b5. There are two tie-sets T 1

a and T 2
a in �a with

T 1
a = {b1, b2, b3} and T 2

a = {b4, b5}. The tie-length of �a is 3, the size of T 1
a .

Note that a preference list with strict order has no tie-set.

Theorem 2. π-SMFE with π ∈ {Reg, Egal, Forced, Forbidden} is NP-hard,
even with all preference lists being complete.

Proof. Here, we only prove the NP-hardness of Forced-SMFE; the proofs of
other cases are in Appendix. For a given Forced-SMT instance (U,W,L, S), we
assume that the preference lists of all women in W contain no tie. For the case
that the preference lists of both genders contain ties, we can “eliminate” the
ties in the preference lists of U as shown in the following, and then apply the
same process to the women side. We construct the Forced-SMFE instance in two
steps. First, we create an instance (U ′,W ′, L′, F, S′) with incomplete preference
lists, and then, transform the incomplete lists to complete lists, resulting in a
new Forced-SMFE instance (U ′′,W ′′, L′′, F, S′′). Given a preference list �u in
L with u ∈ U , let T 1

u , · · · , Tm
u be the tie-sets in �u and d∗ be the tie-length

of �u. Give an arbitrary ordering
−→
T j

u to the elements in T j
u and let T j

u [i] be

the woman at the i-th position in
−→
T j

u . We first create two auxiliary agent sets

474 Y. Wen and J. Guo

P = {p1, · · · , p(m−1)d∗} and Q = {q1, · · · , q(m−1)d∗}. If the size of a tie-set T j
u

is less than d∗, we add qx to T j
u with

[
(j − 1)d∗ + |T j

u |] < x ≤ jd∗. Thus, all
T j

u ’s have the same size d∗. Create d∗ − 1 men Xu = {x1
u, · · · , xd∗−1

u } and d∗ − 1
women Yu = {y1

u, · · · , yd∗−1
u } for each u ∈ U . Thus, U ′ = U ∪ (

⋃
u∈U Xu) ∪ P

and W ′ = W ∪ (
⋃

u∈U Yu) ∪ Q.
Next, we set the preference lists, where �pi

and �qi
with 1 ≤ i ≤ (m − 1)d∗

have the following form:

�pi
: qi � −−−−−→

Q \ {qi} � −−−−→
W ′ \ Q �qi

: pi � −−−−−→
P \ {pi} � −−−−→

U ′ \ P .

We construct the preference lists for {u} ∪ Xu from �u: (�1
u) � T 1

u � (�2
u)

� T 2
u � · · · � Tm

u � (�m+1
u), where we abuse T j

u to denote the ties in �u and

(�j
u)’s denote the suborders of �u with no tie. Let

−−−−→
T j

u \ B be the suborder of−→
T j

u resulting by deleting the elements in B ⊆ T j
u from

−→
T j

u . The preference lists
of {u} ∪ Xu in L′ are set as follows:

�′
u: y1

u � y2
u � y3

u � · · · � yd∗−1
u � (�1

u) � T 1
u [1] �

−−−−−−−−→
T 1
u \ {T 1

u [1]} �

(�2
u) � T 2

u [1] �
−−−−−−−−→
T 2
u \ {T 2

u [1]} � · · · � Tm
u [1] � −−−−−−−−−→

Tm
u \ {Tm

u [1]} � (�m+1
u)

�x1
u
:y1

u � y2
u � y3

u � · · · � yd∗−1
u � (�1

u) � T 1
u [2] �

−−−−−−−−→
T 1
u \ {T 1

u [2]} �

(�2
u) � T 2

u [2] �
−−−−−−−−→
T 2
u \ {T 2

u [2]} � · · · � Tm
u [2] � −−−−−−−−−→

Tm
u \ {Tm

u [2]} � (�m+1
u)

�x2
u
:y1

u � y2
u � y3

u � · · · � yd∗−1
u � (�1

u) � T 1
u [3] �

−−−−−−−−→
T 1
u \ {T 1

u [3]} �

(�2
u) � T 2

u [3] �
−−−−−−−−→
T 2
u \ {T 2

u [3]} � · · · � Tm
u [3] � −−−−−−−−−→

Tm
u \ {Tm

u [3]} � (�m+1
u)

...

�
xd∗−1

u
:y1

u � y2
u � y3

u � · · · � yd∗−1
u � (�1

u) � T 1
u [d∗] �

−−−−−−−−−→
T 1
u \ {T 1

u [d∗]} �

(�2
u) � T 2

u [d∗] �
−−−−−−−−−→
T 2
u \ {T 2

u [d∗]} � · · · � Tm
u [d∗] � −−−−−−−−−−→

Tm
u \ {Tm

u [d∗]} � (�m+1
u).

The box in a preference list means that there are free edges formed by the
agents inside the box and the agent to whom the preference list is constructed.
For instance, we add the free edges {u, yi

u} with 1 ≤ i ≤ d∗ − 1 to F according
to �′

u. Then we set the preference lists of the agents in Yu as below:

�y1
u
: u � x1

u � x2
u � · · · � xd∗−1

u

�y2
u
: u � x1

u � x2
u � · · · � xd∗−1

u

...

�
yd∗−1

u
: u � x1

u � x2
u � · · · � xd∗−1

u .

Constrained Stable Marriage with Free Edges or Few Blocking Pairs 475

Next, we construct the preference lists in L′ for w ∈ W . Suppose w occurs in
the tie-sets T j1

u1
, · · · , T jb

ub
of u1, · · · , ub ∈ U with w = T jr

ur
[ir] and �w∈ L has the

form: (�1
w) � u1 � (�2

w) � u2 � · · · � ub � (�b+1
w). Let zur

= ur if w = T jr
ur

[1];
otherwise, zur

= xir−1
ur

. Define Zur
= ({ur} ∪ Xur

) \ {zur
}. Then, the preference

list of w in L′ has the following form: (�1
w) � zu1 � (�2

w) � zu2 � · · · � zub
�

(�b+1
w) � −−→

Zu1 � −−→
Zu2 � · · · � −−→

Zub
. Set the forced pair set S′ as follows. For

each {u,w} ∈ S, if w = T j
u [i] with 1 ≤ j ≤ m, let {xi

u, w} ∈ S′ with x0
u = u;

otherwise, let {u,w} ∈ S′.
Note that the preference lists of the agents in (U ′ \ P) ∪ (W ′ \ Q) are incom-

plete. Now, we enter the second step, transforming the lists to complete lists.
We create one pair of auxiliary agents p∗ and q∗. Set U ′′ = U ′ ∪ {p∗} and
W ′′ = W ′ ∪{q∗}. Set the preference list of p∗ in L′′ as �p∗ :

−→
W ′ � q∗ and set the

preference list of q∗ in L′′ analogously. Then set the preference list of u ∈ U ′ in
L′′ as �′′

u: (�′
u) � q∗ � −→̄

W ′
u with W̄ ′

u denoting the set of women who are not in
�′

u. Set the preference list of w ∈ W ′ in L′′ analogously. Define a forced pairs set
as S+ = {{p∗, q∗}}. Obviously, u ∈ U ′ cannot be matched to any w ∈ W̄ ′

u, since,
otherwise, {u, q∗} forms a blocking pair. Set the forced set as S′′ = S′ ∪ S+.
Now, the construction of the new instance is complete. The reduction is clearly
doable in polynomial time.

To better illustration, we show a concrete example. Suppose there is an agent
u ∈ U with �u: w1 ∼ w2 ∼ w3 � w4 � w5 ∼ w6. The forced set is S = {{u,w2}}.
There are two tie-sets T 1

u and T 2
u in �u and the tie-length of �u is 3. We create

two auxiliary set P and Q with |P | = |Q| = 3. Thus, we have T 1
u [1] = w1,

T 1
u [2] = w2, T 1

u [3] = w3, T 2
u [1] = w5, T 2

u [2] = w6, T 2
u [3] = q3. We create Xu and

Yu with |Xu| = |Yu| = 2. Then we set the preference list of u, Xu, Yu, and W as
below. Herein, the “· · · ” denotes that this part of preference is set as the original
preference list and S′ = {{x1

u, w2}}:

�′
u: y1

u � y2
u � w1 � w2 � w3 � w4 � w5 � w6 � q3 � −−−−−→

Q \ {q3}

�x1
u
: y1

u � y2
u � w2 � w1 � w3 � w4 � w6 � w5 � q3 � −−−−−→

Q \ {q3}
�x2

u
: y1

u � y2
u � w3 � w1 � w2 � w4 � q3 � w5 � w6 � −−−−−→

Q \ {q3}
�y1

u
: u � x1

u � x2
u � −−−−−−−−−−→

U ′ \ Xu ∪ {u}
�y2

u
: u � x1

u � x2
u � −−−−−−−−−−→

U ′ \ Xu ∪ {u}
�′

w1
: · · · � u � x1

u � x2
u � · · ·

�′
w2

: · · · � x1
u � u � x2

u � · · ·
�′

w3
: · · · � x2

u � u � x1
u � · · ·

�′
w4

: · · · � u � x1
u � x2

u � · · ·
�′

w5
: · · · � u � x1

u � x2
u � · · ·

�′
w6

: · · · � x1
u � u � x2

u � · · · .

476 Y. Wen and J. Guo

To show the equivalence of the instances, we prove several properties of the
constructed instance.

First, pi ∈ P can only be matched to qi ∈ Q, or the solution is not a stable
matching. Since each pi prefers qi to all other women and each qi prefers pi to
all other men, if we do not match them together, {pi, qi} will form a blocking
pair.

Second, M ′ must be a perfect matching. Suppose not, there is a pair of agents
having no partner, denoted as {ai, bj}. {ai, bj} must be connected by a free edge,
that is, ai ∈ {u}∪Xu \{xd∗−1

u } and bj ∈ Yu. Since aj has no partner, then either
no woman w ∈ W prefers ai to her partner, or {ai, w} has a free edge. bj meets
the same situation. Thus, we can add {ai, bj} to M ′ safely. Then, y ∈ Yu can
only be matched to u or x ∈ Xu, since, otherwise, {p∗, y} forms a blocking pair.

Third, for 1 ≤ i ≤ d∗ −1, xi
u can only be matched to T j

u [i+1] with 1 ≤ j ≤ m
if he is not the partner of y ∈ Yu. Suppose not, there exists a pair {xa

u, T j
u [b]}

with a �= b − 1. We remove all the pairs associated with Xu, u, and Yu from the
solution M ′, and add the following pairs to M ′ with x0

u = u:

– Let {xi−1
u , yi

u} ∈ M ′ with 1 ≤ i < b.
– Let {xi−1

u , T j
u [b]} ∈ M ′ with i = b.

– Let {xi
u, yi

u} ∈ M ′ with b < i ≤ d∗ − 1.

After the modification, M ′ is still stable. Since each xi
u prefers yi+1

u to yi+2
u

with 0 ≤ i < d∗−1, and each yi
u prefers xi−1

u to xi
u with 1 ≤ i ≤ d∗−1. Although

xb−1
u prefers yi−1

u to T j
u [b], there is a free edge between xb−1

u and yi−1
u , which does

not form a blocking pair. Then, M ′ is still stable. Thus, u can only be matched
to a woman who is not in {T j

u [i]} with 2 ≤ i ≤ d∗ − 1 and 1 ≤ j ≤ m. All
pairs {x, y} with x ∈ {u}∪Xu and y ∈ Y cannot be blocking pairs in M ′, which
implies that blocking pairs in M ′ can only be pairs in {{a, b}|a ∈ U∪Xu, b ∈ W}.
Next, we prove the equivalence of the instances.

“⇒”: Suppose that M ′ has a blocking pair, denoted as {a, b} with b ∈ W
and a ∈ {u}∪Xu. The only difference between �u and �a is that �a has no ties
and �a contains all the agents of Yu. By the third property, there is no blocking
pair containing agent in Yu. Thus, b must be a woman in T j

u with 1 ≤ j ≤ m.
Considering M does not contain this blocking pair, a must be matched to a
woman who is no worse than b in �u, that is, a is matched to a woman T j

u [i]
who is in the same tie-set as b and has the position being less than b in �a, a
contradiction of that {a, b} forms a blocking pair.

“⇐”: Suppose that M contains a blocking pair, denoted as {a, b}. Then {a, b}
must be a free edge in M ′, that is, b ∈ Yu, which cannot form a blocking pair in
M since b is not a member in W , a contradiction. ��

3.2 π-SMtBP

First, we show that Perfect π-SMtBP can be reduced to π-SMtBP with
π ∈ {Reg, Egal, Forced, Forbidden}. Here, Perfect π-SMtBP denotes the vari-
ant of π-SMtBP with an additional requirement that the solution matching must

Constrained Stable Marriage with Free Edges or Few Blocking Pairs 477

be perfect. Then, we show that each π-SMT instance can be reduced to an equiv-
alent Perfect SMtBP instance with π ∈ {Reg, Egal, Forced, Forbidden}. The
constructed Perfect SMtBP instance has complete preference lists with no
tie. Thus, π-SMtBP is NP-hard with π ∈ {Reg, Egal, Forced, Forbidden} even
if the preference lists are complete.

Theorem 3. (*) π-SMtBP with π ∈ {Reg, Egal, Forced, Forbidden} is NP-hard,
even with all preference lists being complete.

4 Parameterized Complexity

In this section, we study the parameterized complexity of π-SMFE and π-
SMtBP. We first show that Reg-SMFE, Reg-SMtBP, and Forced-SMFE admit
problem kernels of size O(k4) with k being the cardinality of the maximum
matching of the bipartite graph corresponding to the instance of Reg-SMFE,
Reg-SMtBP, or Forced-SMFE. The main idea behind the kernelization is simi-
lar to the one by Gupta et al. [13]. Then we show an FPT algorithm for π-SMFE
and an XP algorithm for π-SMtBP. We also get some intractable results. Egal-
SMtBP and Forbidden-SMtBP are W[1]-hard with respect to n − t, where t is
the number of free edges or blocking pairs. Given incomplete preference lists,
both problems are Para-NP-hard with respect to l for all four constraints, where
l is the maximum length of the preference lists.

4.1 Tractable Results

Theorem 4. Reg-SMFE, Reg-SMtBP, and Forced-SMFE admit problem kernels
of size O(k4).

Proof. Given a π-SMFE or π-SMtBP instance I, let G be the bipartite graph
constructed from I. We first compute a maximum matching of G, denoted as
Ma, and thus k = |Ma|. We use AI to denote the set of the agents whose
corresponding vertices are in Ma, and AO the other agents. For Reg-SMFE and
Reg-SMtBP, we need two reduction rules:

Reduction Rule 1. Remove ao from AO, if Pai
(ao) > 2k + 1 for all ai ∈ AI

who are from the opposite gender of ao.

Next we will prove that Reduction Rule 1 is safe. Let I be the original instance,
and I ′ be the resulting instance from which no agent can be removed by Reduc-
tion Rule 1. Let U ′ and W ′ be the sets of men and women in I ′. Let M be a
solution of I. Suppose that M is not a solution of I ′, which means that, (1) M
is not stable in I ′ or (2) M contains a pair {u,w} such that at least one of u
and w is not in I ′. The first one is impossible, since U ′ ∪ W ′ ⊆ U ∪ W . If M
does not admit blocking pairs in I, then it admits no blocking pairs in I ′. For
the second one, if u /∈ U ′ and w /∈ W ′, we set M ′ = M \ {u,w}. M ′ must be a
solution for I ′, since the only difference between M and M ′ is {u,w} ∈ M but

478 Y. Wen and J. Guo

u /∈ U ′ and w /∈ W ′. Consider the case that either u /∈ U ′ or w /∈ W ′, saying
u ∈ U ′ and w /∈ W ′. The number of the agents in �u must be 2k + 1, since,
otherwise, w would be one of the first 2k + 1 agents in �u, and would not be
removed by Reduction Rule 1. Thus, there is at least one woman in �u, denoted
as w′, who is not matched by M , since |M | = k. Let M ′ = {u,w′} ∪ M \ {u,w}.
We claim that M ′ must be a solution for I ′, since w′ is better than w for u and
the blocking pairs associated with {u,w} must be blocking pairs associated with
{u,w′}. Thus, M ′ must be a solution for I ′. Let M ′ be a solution of I ′. Then,
M ′ must be a solution for I. Suppose this is not true. M ′ must be blocked by a
pair {u,w} such that (1) either u /∈ U ′ or w /∈ W ′ or (2) u /∈ U ′ and w /∈ W ′. For
the first case, we suppose that there is a pair {u,w′} blocked by {u,w}. Thus,
the position of w in �u must be less than the position of w′, a contradiction
to w /∈ W ′. The second case implies that in the corresponding bipartite graph,
there is an edge between vu and vw and both vertices are not in any pair in Ma.
This is impossible, since Ma is a maximum matching.

Reduction Rule 2. Remove ao from AO, if Pai
(ao) > d for all ai ∈ AI with

ai from the opposite gender of ao.

This reduction rule is safe. Suppose this is not true. Then, there is an agent
ao ∈ AO who (1) is in a pair block the solution matching M or (2) is in the
solution matching M . For the first case, we assume that {ao, b} /∈ M blocks
M . Then, both ao and b have partners in M worse than each other. That is,
b is matched to an agent whose position in �b is greater than d. Then, M
cannot satisfy the Reg-score bound, a contradiction. For the second case, M
cannot satisfy the Reg-score bound either, since no agent places ai at the first d
positions in her/his preference list. this reduction rule can shrink the length of
preference list of ai ∈ AI if d < 2k + 1.

After applying the two reduction rules, the number of the remaining agents
can be bounded by O(k2) for Reg-SMFE and Reg-SMtBP, since Reduction
Rule 2 is applied after Reduction Rule 1, after which only VI and vo ∈ VO with
vo being at one of the first 2k +1 positions in �vi

for at least one vi ∈ VI . Then,
the length of all preference lists is O(k4). Thus, Reg-SMFE and Reg-SMtBP
admit a size-O(k4) problem kernel.

For the case of Forced-SMFE, we need also two reduction rules, first applying
the following Reduction Rule 3 and then the above Reduction Rule 1. Reduction
Rule 3 shrinks the instance size and makes no pair can block any forced pairs
in S.

Reduction Rule 3. For each {u,w} ∈ S,

(1) remove u′ from �w′ , if Pu(w′) < Pu(w), Pw′(u′) > Pw′(u), and {u′, w′} /∈ F ;
(2) remove w′ from �u′ , if Pw(u′) < Pw(u), Pu′(w′) > Pu′(w), and {u′, w′} /∈ F .

This means that, if u prefers w′ to w with {u,w} ∈ S, we remove agents who
are worse than u in the preference list of w′, since {u,w′} forms a blocking pair
if Pw′(u) < Pw′(M(w′)). Similarly, we remove agents who are worse than w in
the preference list of u′ if w prefers u′ to u with {u,w} ∈ S. Then, by Reduction

Constrained Stable Marriage with Free Edges or Few Blocking Pairs 479

Rule 1, the number of the remaining agents can be bounded by O(k2) and the
length of all preference lists is O(k4). Forced-SMFE admits a size-O(k4) problem
kernel. ��

Next, we present two algorithms for π-SMFE and π-SMtBP. To this end, we
show a lemma about {π1, π2}-SM, the problem that seeks for a stable matching
satisfying two constraints π1 and π2.

Lemma 1. (*) {π, Forced}-SM with π ∈ {Reg, Egal, Forbidden} can be solved
in polynomial time.

Theorem 5. (*) π-SMFE is solvable in O(2t) time, where t = |F | and π ∈{Reg,
Egal, Forced, Forbidden}.
Theorem 6. (*) π-SMtBP is solvable in O(n2t) time, where t is the number of
blocking pairs and π ∈{Reg, Egal, Forced, Forbidden}.

4.2 Intractable Results

First, we show that Forbidden-SMtBP and Egal-SMtBP are W[1]-hard with
respect to n − t.

Theorem 7. (*) Forbidden-SMtBP is W[1]-hard with respect to n − t.

Theorem 8. (*) Egal-SMtBP is W[1]-hard with respect to n − t.

In Sect. 3, we proved that π-SMFE and π-SMtBP with π ∈ {Reg, Egal,
Forced, Forbidden} are NP-hard even if all preference lists are complete. Here,
we consider the other extreme case, that is, all preference lists being very short.
We show that, even with the maximum length l of all preference lists being
bounded by a constant, π-SMFE and π-SMtBP with π ∈ {Reg, Egal, Forced,
Forbidden} are NP-hard, which implies that both problems are fixed-parameter
intractable with respect to l.

Theorem 9. Even with l = 5, π-SMFE is NP-hard with π ∈ {Reg, Forced}.
Proof. We first this theorem for Reg-SMFE. We establish this theorem by
a reduction from 1-in-3 Positive 3-sat. Given a set of variables V =
{v1, · · · , vn′} and a collection C = {c1, · · · , cm′} of triples of variables, in
which all variables occur positively and every variable occurs in exactly three
triples, 1-in-3 Positive 3-sat asks whether there exists a truth assignment
to the variables so that each triple contains exactly one true literal and two
false literals. The NP-hardness of this problem has been proved by Porschen
et al. [22]. Given a 1-in-3 Positive 3-sat instance, we construct a Reg-
SMFE instance as follows. For each variable vi in V , we create twelve agents:
U(vi) = {yvi

, nvi
, a1

vi
, a2

vi
, x1

vi
, x2

vi
} and W (vi) = {wvi

, evi
, b1vi

, b2vi
, d1vi

, d2vi
},

and create twelve pairs of auxiliary agents with one pair for each agent cre-
ated for vi, denoted as pj

vi
and qj

vi
with 1 ≤ j ≤ 12. Next, for each triple

ci ∈ C, we create six agents per side: U(ci) = {u1
ci

, e1ci
, e2ci

, a1
ci

, a2
ci

, a3
ci

} and

480 Y. Wen and J. Guo

W (ci) = {w1
ci

, w2
ci

, w3
ci

, b1ci
, b2ci

, b3ci
}. Then create twelve pairs of auxiliary agents

with one pair for each agent created for ci, denoted as pj
ci

and qj
ci

with 1 ≤ j ≤ 12.
Finally, we create two pairs of auxiliary agents p+, q+, p−, q−. There are totally
(6 + 12)n′ + (6 + 12)m′ + 2 agents per side. Next, we set the preference lists. Set
the preference lists of p+, q+ as �p+ : q+ and �q+ : p+ and the preference list of
p−, q− accordingly. Let Xθ[i] denote the i-th agent in U(θ) with θ ∈ V ∪ C and
1 ≤ i ≤ 6, and Yθ[i] is defined analogously. For each pi

θ and qi
θ with θ ∈ V ∪ C,

we set their preference lists as follows:

�pi
θ
: qi

θ �qi
θ
:Xθ[i] � pi

θ 1 ≤ i ≤ 6

�pi
θ
: Yθ[i − 6] � qi

θ �qi
θ
:pi

θ 7 ≤ i ≤ 12.

Next, for each variable vi ∈ V , we set the preference lists of its corresponding
agents as follows. Herein, assume that variable vi occurs in the clauses cj , ck, ch:

�yvi
: b1vi

� w1
cj

� wvi
� q+ � q1vi

�wvi
:yvi

� nvi
� p+ � p− � p7vi

�a1
vi

: b1vi
� w2

ck
� b2vi

� q+ � q2vi
�b1vi

:yvi
� a1

vi
� p+ � p− � p8vi

�a2
vi

: b2vi
� w3

ch
� evi

� q+ � q3vi
�b2vi

:a1
vi

� a2
vi

� p+ � p− � p9vi

�nvi
: d1vi

� b1cj
� wvi

� q+ � q4vi
�d1

vi
:nvi

� x1
vi

� p+ � p− � p10vi

�x1
vi

: d1vi
� b2ck

� d2vi
� q+ � q5vi

�d2
vi

:x1
vi

� x2
vi

� p+ � p− � p11vi

�x2
vi

: d2vi
� b3ch

� evi
� q+ � q6vi

�evi
:a2

vi
� x2

vi
� p+ � p− � p12vi

.

Next, for each triple ci ∈ C with ci = {vj , vk, vh}, we set the preference lists of
its corresponding agents as follows:

�uci
: w1

ci
� w2

ci
� w3

ci
� q+ � q1ci

�w1
ci

:a1
ci

� yvj
� uci

� p+ � p7ci

�e1
ci

: b1ci
� b2ci

� b3ci
� q+ � q2ci

�w2
ci

:a2
ci

� a1
vk

� uci
� p+ � p8ci

�e2
ci

: b1ci
� b2ci

� b3ci
� q+ � q3ci

�w3
ci

:a3
ci

� a2
vh

� uci
� p+ � p9ci

�a1
ci

: w1
ci

� b1ci
� q+ � q− � q4ci

�b1ci
:a1

ci
� nvj

� e1ci
� e2ci

� p10ci

�a2
ci

: w2
ci

� b2ci
� q+ � q− � q5ci

�b2ci
:a2

ci
� b1vk

� e1ci
� e2ci

� p11ci

�a3
ci

: w3
ci

� b3ci
� q+ � q− � q6ci

�b3ci
:a3

ci
� b2vh

� e1ci
� e2ci

� p12ci
.

Finally, set the free edge set F = {{a1
ci

, w1
ci

}, {a2
ci

, w2
ci

}, {a3
ci

, w3
ci

}|ci ∈ C} ∪
{{yvi

, b1vi
}, {nvi

, d1vi
}|vi ∈ V }. Set the Reg-score bound d = 4. The maximum

length of the preference lists is clearly bounded by l = 5. The proof of Before
showing the equivalence of the instances, we prove several properties of the
constructed instance.

First, each pi
θ ∈ P can only be matched to qi

θ ∈ Q for each θ ∈ V ∪ C, since,
otherwise, the Reg-score of at least one of M(pi

θ) and M(qi
θ) is equal to 5, which

is greater than d. Thus, the solution matching must be a perfect matching. If
this is not true, there is a man u ∈ U who has no partner. Then, {u, q} forms a

Constrained Stable Marriage with Free Edges or Few Blocking Pairs 481

blocking pair with q ∈ Q \ {q+, q−} being the auxiliary agent in �u. M(w) �= ∅
with w ∈ W can be proved in a similar way.

Second, there are only two possible matchings for the agents created for
vi ∈ V .

1. {{yvi
, wvi

}, {a1
vi

, b1vi
}, {a2

vi
, b2vi

}, {nvi
, d1vi

}, {x1
vi

, d2vi
}, {x2

vi
, evi

}} ⊂ M
2. {{yvi

, b1vi
}, {a1

vi
, b2vi

}, {a2
vi

, evi
}, {nvi

, wvi
}, {x1

vi
, d1vi

}, {x2
vi

, d2vi
}} ⊂ M

We call the first matching as “TRUE”-matching and the second as “FALSE”-
matching.

Third, given a triple ci, uci
is matched to one agent in {w1

ci
, w2

ci
, w2

ci
}. Thus,

the agents created for vk with 1 ≤ k ≤ n′ must be matched as “TRUE”-
matching, if uvk

, a1
vk

, or a2
vk

occurs in the preference list of M(uci
). The other

two agents in {w1
ci

, w2
ci

, w2
ci

} are matched to the agents in {a1
ci

, a2
ci

, a3
ci

}. That is,
{aj

ci
, wj

ci
} ∈ M if {uci

, wj
ci

} /∈ M with 1 ≤ j ≤ 3. Thus, bj
ci

can only be matched
to e1ci

or e2ci
if {uci

, wj
ci

} /∈ M with 1 ≤ j ≤ 3. Since M cannot admit blocking
pairs other than the pairs in Q, the agents created for vk with 1 ≤ k ≤ n′ must
be matched as “FALSE”-matching, if nvk

, c1vk
, or c2vk

occurs in the preference list
of bj

ci
and {uci

, wj
ci

} /∈ M with 1 ≤ j ≤ 3. For instance, if {uci
, w1

ci
} ∈ M , then

vj must be matched as “TRUE”, and vk and vh must be matched as “FALSE”.
Now, we show the equivalence between the two instances.

“⇒”: Given a truth assignment to the variables, we construct a matching
M as follows. For each vi assigned TRUE, we match the agents created for
vi as “TRUE”-matching, and for vi assigned FALSE, as “FALSE”-matching.
For each ci ∈ C, if yvi

, a1
vi

, or a2
vi

occurs in the preference list of {wj
ci

} with
1 ≤ j ≤ 3 and vi being assigned TRUE, we let {{uci

, wj
ci

}, {aj
ci

, bj
ci

}} ⊂ M , and
let {{aj∗

ci
, wj∗

ci
}|1 ≤ j∗ ≤ 3∧ j∗ �= j} ⊂ M as well as {{ej∗

ci
, bj∗

ci
}|1 ≤ j∗ ≤ 3∧ j∗ �=

j} ⊂ M . Since the original instance has a truth assignment, there is no blocking
pair formed by men created for variables and women created for clauses, which
implies M is a stable matching.

“⇐”: Let M be the solution. By the third property, there is no blocking pair
formed by men created for variables and women created for clauses. That is, in
each triple, exactly one literal is TRUE and the others are FALSE, which form
a truth assignment to the variables of the original instance.

For Forced-SMFE, we use almost the same reduction as above. The only
difference is that Forced-SMFE does not have the Reg-score d. We set the forced
pair set as S = {{pi

θ, q
i
θ}|θ ∈ V ∪ U}. Thus, the solution matching must be

perfect and each agent in U(vi) can only be matched to W (vi) with vi ∈ V and
each agent in U(ci) can only be matched to W (ci) with ci ∈ C. Then we can
prove the equivalence in a similar way. ��
Theorem 10. (*) Even with l = 6, π-SMFE is NP-hard with π ∈ {Egal, For-
bidden}.
Theorem 11. (*) Even with l = 6, π-SMtBP is NP-hard with π ∈ {Reg, Egal,
Forced}

482 Y. Wen and J. Guo

5 Concluding Remarks

In this paper, we study π-Stable Marriage with Free Edges (π-SMFE)
and π-Stable Marriage with t-Blocking Pairs (π-SMtBP) with π ∈{Reg,
Egal, Forced, Forbidden}. We first show a connection between π-SMT and π-
SMFE and π-SMtBP, which implies that π-SMFE and π-SMtBP are NP-hard
if its corresponding π-SMT is NP-hard. This connection also implies solving
algorithms for π-SMT if there is an algorithm for π-SMFE or π-SMtBP for
some constraints π. We then study the parameterized complexity of π-SMFE or
π-SMtBP and provide FPT results as well as intractable results.

There are still some open problems for π-SMFE and π-SMtBP. First, the
parameterized complexity of π-SMFE and π-SMtBP with respect to n − t other
than Egal-SMtBP and Forbidden-SMtBP remains open. Second, it is interesting
to explore other structural parameters such as the one used by Gupta et al. [13].

References

1. Abdulkadiroğlu, A., Pathak, P.A., Roth, A.E.: The New York city high school
match. Am. Econ. Rev. 95(2), 364–367 (2005)

2. Abraham, D.J., Biró, P., Manlove, D.F.: “Almost stable” matchings in the room-
mates problem. In: Proceedings of the 3rd International Workshop on Approxima-
tion and Online Algorithms, pp. 1–14 (2005)

3. Aziz, H., Chen, J., Gaspers, S., Sun, Z.: Stability and pareto optimality in refugee
allocation matchings. In: Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, pp. 964–972 (2018)

4. Biró, P., Manlove, D.F., McDermid, E.: “Almost stable” matchings in the room-
mates problem with bounded preference lists. Theoret. Comput. Sci. 432, 10–20
(2012)

5. Biró, P., Manlove, D.F., Mittal, S.: Size versus stability in the marriage problem.
Theoret. Comput. Sci. 411(16–18), 1828–1841 (2010)

6. Cechlárová, K., Fleiner, T.: Stable roommates with free edges. Technical report,
Egerváry Research Group on Combinatorial (2009)

7. Cseh, Á., Heeger, K.: The stable marriage problem with ties and restricted edges.
Discrete Optim. 36, 100571 (2020)

8. Cseh, Á., Manlove, D.F.: Stable marriage and roommates problems with restricted
edges: complexity and approximability. Discrete Optim. 20, 62–89 (2016)

9. Dias, V.M.F., da Fonseca, G.D., de Figueiredo, C.M.H., Szwarcfiter, J.L.: The
stable marriage problem with restricted pairs. Theoret. Comput. Sci. 306(1–3),
391–405 (2003)

10. Downey, R., Fellows, M.: Parameterized Complexity. Springer Science & Business
Media (2012). https://doi.org/10.1007/978-1-4612-0515-9

11. Feder, T.: Stable Networks and Product Graphs. Stanford University Press, Palo
Alto (1995)

12. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.
Math. Monthly 69(1), 9–15 (1962)

13. Gupta, S., Jain, P., Roy, S., Saurabh, S., Zehavi, M.: On the (parameterized) com-
plexity of almost stable marriage. In: Proceedings of the 40th IARCS Annual Con-
ference on Foundations of Software Technology and Theoretical Computer Science,
pp. 1–17 (2020)

https://doi.org/10.1007/978-1-4612-0515-9

Constrained Stable Marriage with Free Edges or Few Blocking Pairs 483

14. Gusfield, D.: Three fast algorithms for four problems in stable marriage. SIAM J.
Comput. 16(1), 111–128 (1987)

15. Irving, R.W., Leather, P., Gusfield, D.: An efficient algorithm for the “optimal”
stable marriage. J. ACM 34(3), 532–543 (1987)

16. Kato, A.: Complexity of the sex-equal stable marriage problem. Jpn. J. Ind. Appl.
Math. 10(1), 1–19 (1993)

17. Manlove, D.F., Irving, R.W., Iwama, K., Miyazaki, S., Morita, Y.: Hard variants
of stable marriage. Theoret. Comput. Sci. 276(1–2), 261–279 (2002)

18. Manlove, D.F., McBride, I., Trimble, J.: “Almost-stable” matchings in the hospi-
tals/residents problem with couples. Constraints - Int. J. 22(1), 50–72 (2017)

19. Manlove, D.F., O’Malley, G.: Paired and altruistic kidney donation in the UK:
algorithms and experimentation. In: Proceedings of 11th International Symposium
on Experimental Algorithms, pp. 271–282 (2012)

20. Mnich, M., Schlotter, I.: Stable marriage with covering constraints-a complete com-
putational trichotomy. In: Proceedings of the 10th International Symposium of
Algorithmic Game Theory, pp. 320–332 (2017)

21. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

22. Porschen, S., Schmidt, T., Speckenmeyer, E., Wotzlaw, A.: XSAT and NAE-SAT
of linear CNF classes. Discr. Appl. Math. 167, 1–14 (2014)

Backgammon Is Hard

R. Teal Witter(B)

NYU Tandon, Brooklyn, NY 11201, USA
rtealwitter@nyu.edu

Abstract. We study the computational complexity of the popular
board game backgammon. We show that deciding whether a player can
win from a given board configuration is NP-Hard, PSPACE-Hard, and
EXPTIME-Hard under different settings of known and unknown oppo-
nents’ strategies and dice rolls. Our work answers an open question posed
by Erik Demaine in 2001. In particular, for the real life setting where the
opponent’s strategy and dice rolls are unknown, we prove that determin-
ing whether a player can win is EXPTIME-Hard. Interestingly, it is not
clear what complexity class strictly contains each problem we consider
because backgammon games can theoretically continue indefinitely as a
result of the capture rule.

Keywords: Computational complexity · Games

1 Introduction

Backgammon is a popular board game played by two players. Each player has
15 pieces that lie on 24 points evenly spaced on a board. The pieces move in
opposing directions according to the rolls of two dice. A player wins if they are
the first to move all of their pieces to their home and then off the board.

The quantitative study of backgammon began in the early 1970’s and algo-
rithms for the game progressed quickly. By 1979, a computer program had beat
the World Backgammon Champion 7 to 1 [2]. This event marked the first time
a computer program bested a reigning human player in a recognized intellec-
tual activity. Since then, advances in backgammon programs continue especially
through the use of neural networks [11,17,18].

On the theoretical side, backgammon has been studied from a probabilis-
tic perspective as a continuous process and random walk [10,19]. However, the
computational complexity of backgammon remains an open problem two decades
after it was first posed [5]. One possible explanation (given in online resources)
is that the generalization of backgammon is unclear.

From a complexity standpoint, backgammon stands in glaring contrast to
many other popular games. Researchers have established the complexity of
numerous games including those listed in Table 1 but we are not aware of any
work on the complexity of backgammon.

In this paper, we study the computational complexity of backgammon. In
order to discuss the complexity of the game, we propose a natural generalization
c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 484–496, 2021.
https://doi.org/10.1007/978-3-030-92681-6_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_38&domain=pdf
http://orcid.org/0000-0003-3096-3767
https://doi.org/10.1007/978-3-030-92681-6_38

Backgammon Is Hard 485

Table 1. A selection of popular games and computational complexity results.

Game Complexity class

Tic-Tac-Toe PSPACE-complete [12]

Checkers EXPTIME-complete [14]

Chess EXPTIME-complete [6]

Bejeweled NP-hard [7]

Go EXPTIME-complete [13]

Hanabi NP-Hard [1]

Mario Kart PSPACE-complete [3]

of backgammon. Inevitably, though, we have to make arbitrary choices such as
the number or size of dice in the generalized game. Nonetheless, we make every
effort to structure our reductions so that they apply to as many generalizations
as possible.

There are two main technical issues that make backgammon particularly
challenging to analyze. The first is the difficulty in forcing a player into a specific
move. All backgammon pieces follow the same rules of movement and there
are at least 15 unique combinations of dice rolls (possibly more for different
generalizations) per turn. For other games, this problem has been solved by
more complicated reductions and extensive reasoning about why a player has to
follow specified moves [4]. In our work, we frame the backgammon problem from
the perspective of a single player and use the opponent and dice rolls to force
the player into predetermined moves.

The second challenge is that the backgammon board is one-dimensional. Most
other games with computational complexity results have at least two dimensions
of play which creates more structure in the reductions [8]. We avoid using mul-
tiple dimensions by carefully picking Boolean satisfiability problems to reduce
from.

We show that deciding whether a player can win is NP-Hard, PSPACE-
Hard, and EXPTIME-Hard for different settings of known or unknown dice rolls
and opponent strategies. In particular, in the setting most similar to the way
backgammon is actually played where the opponent’s strategy and dice rolls are
unknown, we show that deciding whether a player can win is EXPTIME-Hard.
Our work answers an open problem posed by Demaine in 2001 [5].

In Sect. 2, we introduce the relevant rules of backgammon and generalize
it from a finite board to a board of arbitrary dimension. In Sect. 3, we prove
that deciding whether a player can win even when all future dice rolls and the
opponent’s strategy are known is NP-Hard. In Sect. 4, we prove that deciding
whether a player can win when dice rolls are known and the opponent’s strategy
is unknown is PSPACE-Hard. Finally in Sect. 5, we prove that deciding whether
a player can win when dice rolls and the opponent’s strategy are unknown is
EXPTIME-Hard.

486 R. T. Witter

2 Backgammon and Its Generalization

We begin by describing the rules of backgammon relevant to our reductions.
When played in practice, the backgammon board consists of 24 points where
12 points lie on Player 1’s side and 12 points lie on Player 2’s side. However,
without modifying the structure of the game, we will think of the board as a
line of 24 points where Player 1’s home consists of the rightmost six points and
Player 2’s home consists of the leftmost six points. Figure 1 shows the relationship
between the regular board and our equivalent model. Player 1 moves pieces right
according to dice rolls while Player 2 moves pieces left. The goal is to move all
of one’s pieces home and then off the board.

Fig. 1. Backgammon board in normal play (top); equivalent board ‘unfolded’ (bottom).

Players move their pieces by taking turns rolling dice. On their roll, a player
may move one or more pieces ‘forward’ (right for Player 1 and left for Player
2) by the numbers on the dice provided that the new points are not blocked.
A point is blocked if the opponent has at least two pieces on it. The turn ends
when either the player has moved their pieces or all moves are blocked. Note
that a player must always use as many dice rolls as possible and if the same
number appears on two dice then the roll ‘doubles’ so a player now has four
moves (rather than two) of the number.

If only one of a player’s pieces is on a point, the opponent may capture it
by moving a piece to the point. The captured piece is moved off the board and
must be rolled in from the opponent’s home before any other move may be made.
This sets back the piece and can prove particularly disadvantageous if all of the
points in the opponent’s home are blocked.

Backgammon Is Hard 487

The obvious way to generalize the backgammon board used in practice is to
concatenate multiple boards together, keeping the top right as Player 1’s home
and the bottom right as Player 2’s home. In the line interpretation, we can equiv-
alently view this procedure as adding more points between the respective homes.
The rules we described above naturally extend. We formalize this generalization
in Definition 1.

Definition 1 (Generalized Backgammon). Let m be a positive integer
given as input. We define constants h ≥ 6, and d ≥ 2 s ≥ 6 where the lower
bounds originate from traditional backgammon. Then a generalized backgammon
instance consists of n points on a line with the leftmost h and rightmost h marked
as each player’s home and d dice each with s sides. We require the number of
pieces p to be polynomial in m and specify our choice of p in the reductions.

In our proofs, we fix the constants without loss of generality by modifying
our reductions. We assume h = 6 home points by blocking additional points in
the opponent’s home. We also assume d = 2 dice and s = 6 sides by rolling
blocked pieces for the player and using dummy moves for the opponent.

3 NP-Hardness

In this section, we show that determining whether a player can win against a
known opponent’s strategy and known dice rolls (KSKR) is NP-Hard. We begin
with formal definitions of Backgammon KSKR and the NP-Complete problem
we reduce from.

Definition 2 (Backgammon KSKR). The input is a configuration on a gen-
eralized backgammon board, a complete description of the opponent’s strategy,
and all future dice rolls both for the player and opponent. The problem is to
determine whether a player can win the backgammon game from the backgam-
mon board against the opponent’s strategy and with the specified dice rolls.

We do not require that the configuration is easily reachable from the start
state. However, one can imagine that given sufficient time and collaboration
between two players, any configuration is reachable using the capture rule.

An opponent’s strategy is known if the player knows the moves the opponent
will make from all possible positions in the resulting game. Notice that such a
description can be very large. However, in our reduction, we limit the number
of possible positions by forcing the player to make specific moves and predeter-
mining the dice rolls. Therefore the reduction stays polynomial in the size of the
3SAT instance. We formalize this intuition in Lemma 1.

Definition 3 (3SAT). The input is a Boolean expression in Conjunctive Nor-
mal Form (CNF) where each clause has at most three variables. The problem is
to determine whether a satisfying assignment to the CNF exists.

488 R. T. Witter

Given any 3SAT instance, we construct a backgammon board configura-
tion, an opponent strategy, and dice rolls so that the solution to Backgammon
KSKR yields the solution to 3SAT. Since 3SAT is NP-Complete [9], Backgam-
mon KSKR must be NP-Hard. We state the result formally below.

Theorem 1. Backgammon KSKR is NP-Hard.

Proof. Our proof consists of a reduction from 3SAT to Backgammon KSKR.
Assume we are given an arbitrary 3SAT instance with n variables and k clauses.
First, we force Player 1 (black) to choose either xi or ¬xi for every i ∈ [n]. Then,
we propagate their choice into the appropriate clauses in the Boolean expression
from the 3SAT instance. Finally, we reach a board configuration where Player
1 wins if and only if they have chosen an assignment of bits that satisfies the
Boolean expression.

We compartmentalize the process into “gadgets.” Each gadget simulates the
behavior of a part of the 3SAT problem: There is an assignment gadget for every
variable that forces Player 1 to choose either xi or ¬xi for every i ∈ [n]. There
is a clause gadget for every clause that records whether the assignment Player 1
chose satisfies cj for every j ∈ [k].

Player 1 wins if and only if their assignment satisfies all clauses. We ensure
this by putting a single black piece in each clause. Player 1 satisfies the clause by
protecting their piece. Once the assignment has been propagated to the clauses,
Player 2 (white) captures any unprotected piece. If even a single clause is unsat-
isfied (i.e. a single piece is open), Player 2 traps the piece and moves all the
white pieces home before Player 1 can make a single additional move. We block
Player 2’s home and use the rule that a captured piece must be rolled in the
board before any other move can be made.

If, on the other hand, Player 1 satisfies every clause then Player 1 will win
since we will feed rolls with larger numbers to Player 1 and smaller numbers to
Player 2. Player 1 will then beat Player 2 given their material advantage in the
number of pieces on the board.

We now describe the variable and clause gadgets in Fig. 2. In order to simplify
the concepts, we explain the gadgets in the context of their function in the
reduction rather than providing a complicated, technical definition. There are
n variable gadgets followed by k clause gadgets arrayed in increasing order of
index from left to right.

For each xi, we repeat the following process: There are initially two white
pieces each on point 4 and point 16 (the top of Fig. 2). We move these pieces
to 1 and 13 respectively while feeding Player 1 blocked rolls e.g. one. We then
give Player 1 a two and a three. The only moves they can make are from 2 to
4 to 7 or from 14 to 16 to 19. This choice corresponds to setting xi. Without
loss of generality, Player 1 chooses xi and Player 2 blocks 4 from 6 and 7 from
9. We feed Player 1 rolls of two and three until all the xi pieces are on 19; the
number of these pieces is exactly the number of times xi appears in clauses. We
give Player 1 enough rolls to move all the pieces corresponding to either xi or
xi. We then move to the next variable.

Backgammon Is Hard 489

xi

1 2 3 4 5 6 7

xi

13 14 15 16 17 18 199 21

1 7 9 13 19 21

Fig. 2. Reduction from 3SAT: variable gadget (top) for setting xi and clause gadget
(bottom).

Once all the variables have been set, we move down the variable gadgets
from xn to x1 propagating the choice of xi to the appropriate clauses. We use
Player 2’s pieces to block 1 and 13 for all variable gadgets with lower indices
so only the pieces in gadget xi can move. (Variable gadgets with higher indices
have already been emptied to clauses.) For each xi, we move the pieces on 19
through the variable gadgets xi+1, . . . , xn with rolls of sixes. Once we reach the
clause gadgets, we move one piece at a time with sixes until we reach a clause
that contains xi. Once it reaches its clause, we give the piece a two to protect
the open piece.

We use a similar set of rolls for the xi pieces on 7. Since the rolls have to
be deterministic, we give the rolls for both the xi and xi before moving on to
the xi−1 variable gadget. The rolls for whichever of xi and xi Player 1 did not
choose simply cannot be used.

Notice that every roll we give Player 1 can be played by exactly one piece
(except when Player 1 sets xi). While Player 1 receives rolls, we give Player 2
‘dummy’ rolls of one and two to be used on a stack of pieces near Player 2’s
home.

Once all variables have been set and the choices propagated to the clauses,
we give Player 2 a one to capture any unprotected pieces. If Player 2 captures
the unprotected piece, Player 2’s home is blocked so Player 1 cannot make any
additional moves until all of Player 2’s pieces are in their home. At this point,
Player 2 easily wins. Otherwise, none of Player 1’s pieces are captured and the
game becomes a race to the finish. We give Player 2 low rolls and Player 1 high
rolls so Player 1 quickly advances and wins.

Since Player 1 wins if and only if they find a satisfying assignment, deter-
mining whether Player 1 can win determines whether a satisfying assignment to
the 3SAT instance exists. Then, with Lemma 1, Backgammon KSKR reduces
from 3SAT in polynomial space and time so Backgammon KSKR is NP-Hard.

490 R. T. Witter

Lemma 1. The reduction from 3SAT to Backgammon KSKR is polynomial in
space and time complexity with respect to the number of variables and the number
of clauses in the 3SAT instance.

Proof. The length of the board is linear with respect to the variables and clauses
plus some constant buffer on either end. Player 1 has at most twice the number
of clauses for each variable while Player 2 has at most a constant number of
pieces per variable and clause. Only one piece is captured per reduction so the
number of moves is at most the product of the length of the board and the
number of pieces.

While it is potentially exponential with respect to the input, the description
of the dice rolls and opponent’s move may be stored in polynomial space due to
their simplicity. In the assignment stage, the rolls and opponent moves are the
same for each variable gadget and can be stored in constant space plus a pointer
for the current index. In the propagation stage, the rolls and opponent moves
are almost the same for each variable gadget and clause gadget except that the
number of rolls necessary to move between the variable and clause gadgets varies.
However, we can store the number of rolls by the index in addition to constant
space for the rules. In the end game, Player 1 and Player 2 both move with
doubles if able and the rolls are repeated until one player wins.

4 PSPACE-Hardness

In this section, we show that determining whether a player can win against an
unknown opponent’s strategy and known dice rolls (USKR) is PSPACE-Hard.
We begin with formal definitions of Backgammon USKR and the PSPACE-
Complete problem we reduce from.

Definition 4 (Backgammon USKR). The input is a configuration on a gen-
eralized backgammon board, an opponent’s strategy which is unknown to the
player, and known dice rolls. The problem is to determine whether a player can
win the backgammon game from the backgammon board against the opponent’s
unknown strategy and with the specified dice rolls.

An opponent’s strategy is unknown if the player does not know what the
opponent will play given a possible position and dice rolls in the resulting game.
The opponent’s strategy is not necessarily deterministic; it can be adaptive or
stochastic.

Definition 5. (Gpos [15]). The input is a positive CNF formula (without nega-
tions) on which two players will play a game. Player 1 and Player 2 alternate
setting exactly one variable of their choosing. Once it has been set, a variable
may not be set again. Player 1 wins if and only if the formula evaluates to True
after all variables have been set. The problem is to determine whether Player 1
can win.

Backgammon Is Hard 491

Given any Gpos instance, we construct a backgammon board configuration,
an unknown opponent’s strategy, and known dice rolls so that the solution
to Backgammon USKR yields the solution to Gpos. Since Gpos is PSPACE-
Complete [15], Backgammon USKR must be PSPACE-Hard. We state the result
formally below.

Theorem 2. Backgammon USKR is PSPACE-Hard.

Proof. The reduction from Gpos to Backgammon USKR closely follows the
reduction from 3SAT to Backgammon KSKR so we primarily focus on the dif-
ferences. Assume we are given an arbitrary Gpos instance with n variables and
k clauses. The key observation is that, since the CNF is positive, Player 1 will
always set variables to True while Player 2 will always set variables to False. We
can therefore equivalently think about the game as Player 1 moving variables
to a True position while Player 2 blocks variables from becoming True. Once all
the variables have been set, we propagate the choices to the clause gadgets as
we did in the 3SAT reduction.

The winning conditions also remain the same. Player 1 wins if and only if
they are able to cover the open piece in each clause. We require the opponent’s
strategy to be unknown so they can adversarially set variables.

Fig. 3. Reduction from Gpos: variable gadgets. Player 1 sets xi to True while Player 2
has already set xi+1 to False.

We now describe the variable gadgets in Fig. 3. In the 3SAT reduction, we
needed a stack of xi pieces and a stack of xi pieces since Player 1 could set xi

to True or False. Here, since the CNF is positive, Player 1 will only set variables
to True and so only require an xi stack.

At the beginning of Player 1’s turn, all unset variables are blocked by two
pieces on point 4. Then, while Player 1 receives dummy rolls of one, Player 2
moves all the blocking pieces to 1. Next, Player 1 receives a roll of two and
three and must choose which unset variable to set to True. Once the variable
is chosen, Player 2 blocks all other unset variables by moving two pieces from
6 to 4 while Player 1 again receives dummy rolls. The remaining pieces for the
chosen variable are then moved from 2 to 4 to 7.

Player 2’s turn is more simple. They choose which variable to set to False
and do so by blocking 16 from 18. For the remainder of Player 1’s turns, the
blocking pieces on 16 will not be moved.

492 R. T. Witter

After all the variables have been set to True or False, we move the pieces set
to True to the clauses they appear in. We again move from xn to x1, removing
the blocking pieces on 13 and then 1 as we go. The process and clause gadgets
are the same as in the 3SAT reduction.

Player 1 wins in Backgammon USKR if and only if the positive CNF instance
in Gpos is True after alternating setting variables with Player 2. Therefore the
solution to Backgammon USKR yields an answer to Gpos and, by Lemma 2,
Gpos reduces in polynomial space to Backgammon USKR.

Lemma 2. The reduction from Gpos to Backgammon USKR is polynomial in
space complexity with respect to the number of clauses and variables in Gpos.

Proof. As in the reduction from 3SAT to Backgammon KSKR, the size of the
board is linear in the number of clauses and variables plus some constant buffer.
By similar arguments, the size of the description is polynomial because it depends
only on the stage of the reduction and the index of the current variable and clause
gadgets.

5 EXPTIME-Hardness

In this section, we show that determining whether a player can win against an
unknown opponent strategy and unknown dice rolls (USUR) is EXPTIME-Hard.
We begin with formal definitions of Backgammon USUR and the EXPTIME-
Complete problem we reduce from.

Definition 6 (Backgammon USUR). The input is a configuration on a gen-
eralized backgammon board. The opponent’s strategy and dice rolls are unknown
to the player. The problem is to determine whether a player can win the backgam-
mon game from the backgammon configuration against the unknown strategy and
dice rolls.

Definition 7. (G6 [16]). The input is a CNF formula on sets of variables X
and Y and an initial assignment of the variables. Player 1 and Player 2 alternate
changing at most one variable. Player 1 may only change variables in X while
Player 2 may only change variables in Y . Player 1 wins if the formula ever
becomes true. The problem is to determine whether Player 1 can win.

Given any G6 instance, we construct a backgammon board configuration and
exhibit an opponent’s strategy and dice rolls such that the solution to Backgam-
mon USUR yields the solution to G6. Since G6 is EXPTIME-Complete [16],
Backgammon USUR must be EXPTIME-Hard.

Theorem 3. Backgammon USUR is EXPTIME-Hard.

Proof. The proof consists of a reduction from G6 to Backgammon USUR.
Assume we are given a CNF formula with nx variables X, ny variables Y , k
clauses, and an initial assignment to X and Y . First, Player 1 and Player 2 take

Backgammon Is Hard 493

turns changing variables in their respective sets X and Y . Then, once Player 1
gives the signal, the game progresses to a board state where Player 1 wins if and
only if the CNF formula is True on the current assignment.

Player 1 changes variable xi by moving a signal piece corresponding to xi.
Then, with Player 2’s help, we feed Player 1 dice rolls that update the clause
gadgets that contain xi. We require that the dice rolls adaptively respond to
Player 1 and that Player 2 can adversarially set variables in Y .

xi

1 5 8 10 13 17 21

xi

1

xi

7

xi+1 xi+1

13 19

Fig. 4. Reduction from G6: variable gadget (top) and clause gadget (bottom).

We next describe the gadgets in Fig. 4. The variable gadgets consist of stacks
of pieces corresponding to xi and xi for i ∈ [nx]. On their turn, Player 1 changes
a variable by using their six to move the appropriate piece. For example, Player
1 can change xi to False by moving a piece on point 7 to 13 as shown at the top
of Fig. 4. If xi is already False, Player 1 has effectively skipped their turn (which
is an acceptable move in G6).

Once Player 1 changes a variable, Player 2 and the dice rolls work together
to update the appropriate clauses. The key insight of a clause is that it is True
if at least one variable in the clause is True in either X or Y . We represent this
on the backgammon board as shown at the bottom of Fig. 4. Point 8 is empty or
contains Player 1’s pieces if at least one of the X variables in the clause is True
and 10 is empty if at least one of the Y variables in the clause is True. Therefore
Player 1 can progress a piece from 5 to 13 on rolls three and five if and only if
either a variable in X or Y in the clause is True.

We update the clause when Player 1 sets a variable in one of two ways: If
the variable is True in the clause, we move two pieces from 1 to 5 to 8. If the
variable is False in the clause, we move two pieces from 8 to 13 to 17. If 8 becomes
empty, we move two pieces from a white stack to 8 in order to block Player 1
from unfairly using it to bypass the clause. By using blocking pieces on 5 and
13 we ensure the correct clause is modified.

494 R. T. Witter

We update the clause when Player 2 sets a variable in one of two ways: If the
variable is True in the clause and all other Y variables in the clause are True, we
move two pieces from 10 to another white stack. If the variable is False in the
clause and all other Y variables in the clause are True, we move two pieces from
another white stack to 10. In all other cases, 10 should remain in its current
‘open’ or ‘closed’ position.

Notice that the process of changing variables could continue indefinitely. We
make sure that we do not run out of pieces by using the capture rule. If Player 1
needs more pieces in the variable or clause gadgets, we feed them rolls to move
excess pieces through the board towards their home where Player 2 will capture
them one by one. We perform an analogous process if Player 2 needs more pieces.

The variable changing process ends when, instead of moving a variable piece,
Player 1 moves a specified signal at the end of the variable gadgets. Then Player
1 will receive enough six and 4-3-5-4 rolls to move all of their pieces home
while Player 2 makes slow progress. If all of the clauses are True, Player 1 can
successfully get all their pieces home and win the game. Otherwise, they will be
blocked at a False clause and Player 2 will continue their slow progress until all
white pieces except for those in the False clause remain. We will then feed small
rolls to Player 1 and large rolls to Player 2 so Player 2 can capitalize on their
advantage and win.

We have therefore simulated the G6 instance and Player 1 can win Backgam-
mon USUR if and only if they can win the corresponding G6 game. The reduction
is polynomial in the G6 input size since there are a constant number of pieces
and points for every clause and variable.

Lemma 3. The reduction from G6 to Backgammon USUR is exponential in
time and space complexity with respect to the number of clauses and variables in
G6.

Proof. As before, the board is still polynomial in the number of clauses. The
game may now continue

Notice that Backgammon USUR is not obviously EXPTIME-Complete
because the game can progress indefinitely as a result of the capture rule.

6 Conclusion

We show that deciding whether a player can win a backgammon game under
different settings of known or unknown opponent strategies and dice rolls is NP-
Hard, PSPACE-Hard, and EXPTIME-Hard. It would seem that our results show
backgammon is hard even when it is a one-player game. However, in the settings
for our PSPACE-Hardness and EXPTIME-Hardness results, the second player
is hidden in the unknown nature of the opponent’s strategy and dice rolls.

Despite the popularity of backgammon and academic interest in the com-
putational complexity of games, to the best of our knowledge our work is the
first to address the complexity of backgammon. One possible explanation is the

Backgammon Is Hard 495

apparent ambiguity in generalizing backgammon. We contend, however, that the
backgammon generalization we use is as natural as those for other games like
checkers or chess. Another explanation is the difficulty in forcing backgammon
moves as needed for a reduction.

Interestingly, it is not clear that the problems we consider are in EXPTIME
because backgammon games can theoretically continue indefinitely. One natural
follow up question to our work is what complexity class contains these backgam-
mon problems.

References

1. Baffier, J.F., et al.: Hanabi is NP-hard, even for cheaters who look at their cards.
Theoret. Comput. Sci. 675, 43–55 (2017)

2. Berliner, H.J.: Backgammon computer program beats world champion. Artif. Intell.
14(2), 205–220 (1980)

3. Bosboom, J., Demaine, E.D., Hesterberg, A., Lynch, J., Waingarten, E.: Mario kart
is hard. In: Japanese Conference on Discrete and Computational Geometry and
Graphs, pp. 49–59. Springer (2015). https://doi.org/10.1007/978-3-319-48532-4 5

4. Buchin, K., Hagedoorn, M., Kostitsyna, I., van Mulken, M.: Dots & boxes is pspace-
complete. arXiv preprint arXiv:2105.02837 (2021)

5. Demaine, E.D.: Playing games with algorithms: algorithmic combinatorial game
theory. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136,
pp. 18–33. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44683-4 3

6. Fraenkel, A.S., Lichtenstein, D.: Computing a perfect strategy for n × n chess
requires time exponential in n. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS,
vol. 115, pp. 278–293. Springer, Heidelberg (1981). https://doi.org/10.1007/3-540-
10843-2 23

7. Guala, L., Leucci, S., Natale, E.: Bejeweled, candy crush and other match-three
games are (NP-) hard. In: 2014 IEEE Conference on Computational Intelligence
and Games, pp. 1–8. IEEE (2014)

8. Hearn, R.A., Demaine, E.D.: Games, Puzzles, and Computation. CRC Press, Boca
Raton (2009)

9. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations, pp. 85–103. Springer (1972). https://doi.org/10.1007/978-1-
4684-2001-2 9

10. Keeler, E.B., Spencer, J.: Optimal doubling in backgammon. Oper. Res. 23(6),
1063–1071 (1975)

11. Pollack, J.B., Blair, A.D.: Co-evolution in the successful learning of backgammon
strategy. Mach. Learn. 32(3), 225–240 (1998)

12. Reisch, S.: Hex ist pspace-vollständig. Acta Informatica 15(2), 167–191 (1981)
13. Robson, J.M.: The complexity of go. In: Proceedings of the 9th World Computer

Congress on Information Processing 1983, pp. 413–417 (1983)
14. Robson, J.M.: N by N checkers is Exptime complete. SIAM J. Comput. 13(2),

252–267 (1984)
15. Schaefer, T.J.: On the complexity of some two-person perfect-information games.

J. Comput. Syst. Sci. 16(2), 185–225 (1978)
16. Stockmeyer, L.J., Chandra, A.K.: Provably difficult combinatorial games. SIAM

J. Comput. 8(2), 151–174 (1979)

https://doi.org/10.1007/978-3-319-48532-4_5
http://arxiv.org/abs/2105.02837
https://doi.org/10.1007/3-540-44683-4_3
https://doi.org/10.1007/3-540-10843-2_23
https://doi.org/10.1007/3-540-10843-2_23
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9

496 R. T. Witter

17. Tesauro, G.: TD-Gammon, a self-teaching backgammon program, achieves master-
level play. Neural Comput. 6(2), 215–219 (1994)

18. Tesauro, G.: Programming backgammon using self-teaching neural nets. Artif.
Intell. 134(1–2), 181–199 (2002)

19. Thorp, E.O.: Backgammon: the optimal strategy for the pure running game. Opti-
mal Play: Mathematical Studies of Games and Gambling. Institute for the Study
of Gambling and Commercial Gaming, University of Nevada, Reno, pp. 237–265
(2007)

Two-Facility Location Games
with a Minimum Distance Requirement

on a Circle

Xiaoyu Wu1, Lili Mei2(B), and Guochuan Zhang3

1 School of Mathematical Sciences, Zhejiang University, Hanghzou, China
xiaoyu wu@zju.edu.cn

2 College of Sciences, China Jiliang University, Hangzhou, China
meilili@zju.edu.cn

3 College of Computer Science, Zhejiang University, Hanghzou, China
zgc@zju.edu.cn

Abstract. We consider the games of locating two facilities with a min-
imum distance requirement, which was first introduced by Duan et al.
2019. In the setting, a mechanism maps the locations reported by strate-
gic agents to two facilities, and the distance between them is at least d.
The cost or utility of an agent is the sum of his distances to two facilities
given that both facilities are favorite or obnoxious. One aims at design-
ing strategyproof mechanisms, meanwhile achieving good approximation
bounds on minimizing the total cost/maximizing the total utility or min-
imizing the maximum cost/maximizing the minimum utility.

This paper is mainly focused on a circle network. We devise optimal
strategyproof mechanisms for minimizing the maximum cost and maxi-
mizing the minimum utility, respectively. A group strategyproof mecha-
nism with approximation ratio of 1/(2d) is designed for minimizing the
total cost. And for maximizing the total utility, we establish a group
strategyproof (2 − 2d)-approximation mechanism.

We also revisit the line interval, while we propose a strategyproof
mechanism towards maximizing the total utility, improving upon the
previous bounds.

Keywords: Facility location games · Strategyproofness ·
Approximation mechanism design

1 Introduction

We study a model consisting of a network where a set of strategic agents stay.
Two facilities with a minimum distance requirement are located, in a way based
on the locations reported by all the agents. Here, the minimum distance require-
ment means that the distance between the two facilities must be at least a certain

This work was supported by Shanghai Key Laboratory of Pure Mathematics and Math-
ematical Practice [Project NO. 18dz2271000], and National Natural Science Foundation
of China [Project NO. 11771365].

c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 497–511, 2021.
https://doi.org/10.1007/978-3-030-92681-6_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_39&domain=pdf
https://doi.org/10.1007/978-3-030-92681-6_39

498 X. Wu et al.

value. In this paper, we deal with two distinct scenarios in which either the two
facilities are both favorite or both obnoxious to all agents. In the sense that an
agent is willing to be close to a facility, it is favorite, while in the obnoxious case,
an agent wants to keep away from the facility. For both scenarios, each agent
takes care of the total distance to both facilities, which is defined as the cost
(utility) with respect to the favourite (obnoxious) facilities.

A mechanism in the above setting is a map that takes the locations reported
by all agents as input, and outputs a pair of facility locations which satisfy the
minimum distance requirement. Our game-theoretic goal is to design mecha-
nisms that are strategyproof, which says that an agent cannot benefit by lying,
regardless of the reports of other agents. Moreover, we wish our mechanism has
a good approximation ratio, where the approximation ratio is defined by the
worst-case bound between the mechanism’s solution and the optimal solution.

The setting was first proposed by Duan et al. [7], where the network is a closed
interval. As they said, many real life facility locating scenarios either favorite or
obnoxious can be modeled to this setting. For example, when building a school
and a theater, it is inappropriate to build them close to each other; while build-
ing a dumping ground and a chemical plant, to comply with the environmental
regulations, we should not build them close to each other. Moreover, they pro-
posed that it is interesting to consider other metric spaces. In this paper, we
mainly focus on a circle network.

1.1 Related Work

Procaccia and Tennenholtz [17] initialized the seminal study of approximation
mechanism design without money. In the literature, researchers discussed the
characterization of deterministic strategyproof mechanisms such as [16,18]. Pro-
caccia and Tennenholtz mainly studied the model of locating one or two favorite
facilities in the line network. For the 1-facility location games, they designed
deterministic and randomized strategyproof mechanisms. Alon et al. [1] extended
mechanisms to the tree and circle networks.

For the 2-facility location games, researchers first considered the cost of each
agent is his distance to the nearest facility. For the line network, Procaccia and
Tennenholtz [17] showed a mechanism outputting two extreme points is group
strategyproof with the approximation ratio of (n − 2) for minimizing the total
cost, where n is the number of agents. Furthermore, Fotakis and Tzamos [9]
showed this mechanism is best possible. The settings for other metric networks
were studied by Lu et al. [13]. They mainly discussed deterministic and random-
ized strategyproof mechanisms in a circle and the general metric space.

As mentioned above, Duan et al. [7] first proposed the model where the cost of
each agent is the total distance to two facilities. It is easy to see that an optimal
mechanism locates two facilities at the same point if there is no constraint on the
distance of the facilities. They thus proposed a minimum distance requirement
for two facilities, which is available for scores of real life applications. They
provided optimal strategyproof mechanisms for the objectives of minimizing the
total cost and the maximum cost. Many other models dealing with different

Two-Facility Location Games with a Minimum Distance Requirement 499

agent costs and different objective functions have been addressed as well. See
also [2,3,8,11,12,19].

Cheng et al. [5] first proposed a model of locating one obnoxious facility in a
closed interval, where each agent wants to maximize his distance to the facility,
coined by the utility of each agent. They presented a 3-approximation deter-
ministic group strategyproof mechanism for maximizing the total utility. In [6],
they further studied mechanisms in tree and circle networks. Ibara and Nag-
amochi [10] completely characterized strategyproof deterministic mechanisms in
the general metric space, which implies that the mechanism proposed in [5] is
best possible. Similarly to favorite facility location games, a lot of work exists
for other utility functions. See also [4,14,15,21].

Table 1. Our results and the state of the art2

Circle Line interval

2-FLG SC UB : 1
2d

UB : 1 SP [20]

LB : NA

MC UB : 1 SP UB : 1 SP [20]

2-OFLG SU UB : 2 − 2d UB : ≤ √
3
1

LB : NA LB: 7−d
6

[20]

MU UB : 1 SP UB : 1 SP [20]
1The upper bound is related to the distance
constraint, which will be specified in Sect. 4.
2Our results are in bold. UB refers to upper
bound; LB refers to lower bound.

1.2 Our Results

In this paper, we mainly study 2-facility location games with a minimum distance
requirement d on a circle, where the cost (resp. utility) of each agent is the
sum of distances to both facilities. For two-facility location games (2-FLG), we
investigate the objectives of minimizing the total cost (SC) and the maximum
cost (MC). Meanwhile, the setting of locating two obnoxious facilities (2-OFLG)
is also considered in this paper. For this model, we discuss the objectives of
maximizing the total utility (SU) and the minimum utility (MU).

On the circle, we present optimal strategyproof mechanisms for minimizing
the MC and maximizing the MU, respectively. If the objectives are minimizing
the SC and maximizing the SU, we first illustrate an instance to demonstrate
that the optimal solutions are not strategyproof, whereas on the line interval, one
optimal solution for minimizing the SC is strategyproof [7]. Finally, we establish
strategyproof mechanisms with the approximation ratios of 1

2d and 2 − 2d for
minimizing the SC and maximizing the SU, respectively. Besides, on the line
interval, for maximizing the SU, we present a group strategyproof mechanism
which improves the approximation ratio in [7].

We summarize our results and the state of the art in Table 1.

500 X. Wu et al.

1.3 Organization of the Paper

In Sect. 2, we present some definitions and notations. At the end of this section,
a relationship between 2-facility location games and obnoxious 2-facility games
is established. In Sect. 3, we design strategyproof mechanisms for obnoxious 2-
facility location games with respect to two objectives of maximizing the total
utility and the minimum utility. Then according to the relationship between
the obnoxious version and the favorite one, it is easy to obtain strategyproof
mechanisms for minimizing the total cost and the maximum cost. In Sect. 4, we
study the obnoxious 2-facility location games on the line interval, and present
a strategyproof mechanism which improves the approximation ratio in [7]. The
conclusion of this paper is presented in the last section.

2 Preliminaries

Let N = {1, 2, . . . , n} be a set of agents. Each agent has a location xi on a
network G. Let x = (x1, x2, . . . , xn) be a location profile. We use d(x, y) to
denote the distance between two points x, y ∈ G.

Given a location profile x, a deterministic mechanism outputs two facility
locations (y1, y2) ∈ G2 satisfying the minimum distance requirement d, i.e.,
d(y1, y2) ≥ d.

In the 2-facility location games, the cost of agent i is the sum of his distances
to both facilities, i.e.,

ci((y1, y2), xi) = d(y1, xi) + d(y2, xi).

Analogously, in the obnoxious 2-facility games, the utility of agent i is,

ui((y1, y2), xi) = d(y1, xi) + d(y2, xi).

In the 2-facility location games (resp. the obnoxious 2-facility games), a mech-
anism f is strategyproof if no agent can benefit by reporting a false location,
regardless of the other agents. Formally, for any agent i, any location profile
x = (x1, . . . , xi, . . . , xn) ∈ Gn, i ∈ N and any location x′

i ∈ G, it holds that

ci(f(x), xi) ≤ ci(f(x′
i,x−i), xi)(resp. ui(f(x), xi) ≥ ui(f(x′

i,x−i), xi)),

where x−i = (x1, . . . , xi−1, xi+1, . . . , xn) is the location profile of all agents with-
out agent i. Furthermore, a mechanism is group strategyproof if for any group of
agents, at least one of them cannot benefit if they misreport simultaneously.

For the 2-facility location games, we study the objectives of minimizing the
total cost and the maximum cost. Given two facility locations (y1, y2), the the
total cost is

sc((y1, y2),x) =
∑

i∈N

ci((y1, y2), xi),

and maximum cost is

mc((y1, y2),x) = max
i∈N

ci((y1, y2), xi).

Two-Facility Location Games with a Minimum Distance Requirement 501

Meanwhile, for the obnoxious 2-facility games, we discuss the objectives of
maximizing the total utility denoted by su((y1, y2),x) =

∑
i∈N ui((y1, y2), xi),

and maximizing the minimum utility that is mu((y1, y2),x) = mini∈N ui((y1,
y2), xi).

A mechanism f is ρ-approximate (ρ ≥ 1) if the ratio between the optimal
solution and the mechanism solution for a maximizing objective is at most ρ.
For a minimizing objective, the ratio is reciprocal. Let (y∗

1 , y
∗
2) denote the pair

of the optimal facility locations. Formally, sc(f(x),x) ≤ ρ · sc((y∗
1 , y

∗
2),x) (resp.

su((y∗
1 , y

∗
2),x) ≤ ρ · sc(f(x),x)).

A single circle C is mainly interested in this paper. Without loss of general-
ity, the circumference of C can be normalized to 1, and the minimum distance
constraint d is between 0 and 1/2. For each point x ∈ C, the antipodal point of
x is denoted by x̂. Given x, y ∈ C, let d(x, y) be the length of the shorter arc
between x and y.

In the context of an arc of length less than 1, we introduce � as “clockwise
operator ”, i.e., given x, y ∈ C, x � y means that y lies beyond x in a clockwise
direction. We replace location profile (x1, x2, . . . , xn) with < x1, x2, . . . , xn >,
which contains direction relationship among points. Formally, xi � xi+1(i =
0, . . . , n) and xn+1 = x1;x0 = xn. Particularly, < x, y > not only represents the
location profile of x and y, but also represents the arc spanned from x to y in
a clockwise direction. Let d(< x, y >) be the length of the arc < x, y >. We
denote δ as the longest length of the clockwise arc between two adjacent agents,
i.e., δ = maxi∈N d(< xi, xi+1 >). And let λ = 1 − δ.

For simplicity, let [x, y], (x, y), [x, y) and (x, y] denote the closed, open, left
open right closed and left closed right open clockwise arc < x, y >, respectively.

Observation 1. For any points x, y, ŷ ∈ C, d(x, y)+ d(x, ŷ) = 1
2 . Furthermore,

for two pairs of facility locations (y1, y2) and (ŷ1, ŷ2), it holds that d(x, y1) +
d(x, y2) + d(x, ŷ1) + d(x, ŷ2) = 1.

Remark. The above observation implies if f is a (group) strategyproof mech-
anism for the 2-facility location games, then given arbitrary location profile
x, a mechanism f̂ outputting f(x̂) is (group) strategyproof for the obnoxious
2-facility games, vice versa. Here x̂ is the location profile constructed by all
antipodals of points in x. Especially, if f is an optimal (group) strategyproof
mechanism for minimizing the maximum cost (resp. the total cost), then f̂ is
an optimal (group) strategyproof mechanism for maximizing the minimum cost
(resp. the total utility).

3 The Circle

In this section, we study mechanisms for obnoxious 2-facility location games.
According to the relationship between the obnoxious version and the favorite
one described in the last section, it is easy to establish mechanisms for 2-facility
location games.

502 X. Wu et al.

3.1 Maximizing the Total Utility

First, we take an instance to illustrate that a mechanism which outputs the
optimal facility locations is not strategyproof even if d = 0.

Given a location profile x =< x1, x2, x3 > such that d(x1, x2) = 1
3 − 2ε − θ

and d(x2, x3) = 1
3 + ε + θ, where ε, θ are extremely small positive numbers. The

optimal solution locates the two facilities both at x̂1. Note that currently, the
cost of agent 2 at x2 is 1/3 + 4ε + 2θ. Then consider another location profile x′

that agent 2 moves ε/2 + θ distance clockwise. Let x′
2 denote the new location

of agent 2. For location profile x′, the optimal location of facilities are both x̂′
2.

Now, the cost of the agent at x2 is 1− ε− 2θ > 1/3+4ε+2θ, which implies that
agent 2 at x2 can benefit by misreporting to x′

2.
Here, we discuss a simple mechanism locating two antipodal facilities, which

naturally satisfies the distance constraint.

Mechanism 1. Given a location profile x =< x1, x2, . . . , xn >, outputs
(x1, x̂1).

Theorem 1. Mechanism 1 is group strategyproof with the approximation ratio
of 2 − 2d for maximizing the total utility.

Proof. From Observation 1, one can know wherever a coalition of agents deviate,
the utility/cost of each agent is still 1

2 . Thus, Mechanism 1 is group strategy-
proof.

Now we turn to prove the approximation ratio. Let f denote Mechanism 1.
Since the utility of each agent is 1

2 , the total utility of Mechanism 1 is

su(f(x),x) =
1
2
n.

By the minimum distance constraint d, the utility of each agent is at most
1 − d. Therefore,

su((y∗
1 , y

∗
2),x) ≤ (1 − d)n.

Hence, the approximation ratio is

su((y∗
1 , y

∗
2),x)

su(f(x),x)
≤ (1 − d)n

n/2
= 2 − 2d,

which is tight. Consider a location profile that all the agents are at the same
location. The optimal solution is (1 − d)n, while the mechanism solution is 1

2n.

��
By the relationship between the obnoxious setting and the favorite one, we

can know that Mechanism 1 is also group strategyproof for minimizing the total
cost. And the approximation ratio is revealed in the following corollary.

Corollary 1. Mechanism 1 is group strategyproof with the approximation ratio
of 1

2d for minimizing the total cost.

Two-Facility Location Games with a Minimum Distance Requirement 503

3.2 Maximizing the Minimum Utility

Unlike the previous objective, we first give a complete characterization of the
optimal facility locations if the addresses of all the agents are public. Before
discussing the full characterization of the optimal facility locations, we illustrate
the following observation.

Observation 2. Given two facility locations (y1, y2), w.l.o.g., suppose that the
clockwise arc < y1, y2 > satisfies d(< y1, y2 >) ≤ 1

2 . Denote ym as the midpoint
of arc < y1, y2 >. The utility of agent i on the circle is

ui((y1, y2), xi) =

⎧
⎪⎨

⎪⎩

d(y1, y2) if agent i is on arc[y1, y2],
2d(xi, ym) if agent i is on arc[y2, ŷ1]or arc[ŷ2, y1],
1 − d(y1, y2) if agent i is on arc[ŷ1, ŷ2].

Remark. Due to d(< y1, y2 >) ≤ 1
2 , we can find that agents on arc [y1, y2] get

the smallest utility and agents on arc [ŷ1, ŷ2] get the largest utility.
Given a location profile x, recall that δ is the longest length of the clockwise

arc between two adjacent agents and λ = 1 − δ. Let xj , xj+1 be two adjacent
agents who admit δ, that is, d(< xj , xj+1 >) = δ. Let zm be the midpoint of arc
< xj , xj+1 >. Note that there may be more than one pair of points admit δ, and
this scenario could only happen for λ ≥ 1

2 .
The following theorem gives a full characterization of the optimal facility

locations for maximizing the minimum utility.

Theorem 2. Given a location profile x, let (y∗
1 , y

∗
2) be any pair of optimal facil-

ity locations for maximizing the minimum utility. Without loss of generality,
assume that the clockwise arc < y∗

1 , y
∗
2 > satisfies d(< y∗

1 , y
∗
2 >) ≤ 1

2 .

1. If d = 1
2 or λ > 1

2 , then (y∗
1 , y

∗
2) satisfy that y∗

2 is the antipodal point of y∗
1 .

(Condition 1)
2. If λ < d < 1

2 , then (y∗
1 , y

∗
2) satisfy that d(y∗

1 , y
∗
2) = d and [y∗

1 , y
∗
2]∩ [x̂j+1, x̂j] =

[x̂j+1, x̂j]. (Condition 2)
3. If d ≤ λ < 1

2 , then (y∗
1 , y

∗
2) satisfy that y∗

1 and y∗
2 are symmetric on zm with the

distance in the range of [d
2 , λ

2], i.e., d(< y∗
1 , zm >) = d(< y∗

2 , zm >) ∈ [d
2 , λ

2].
(Condition 3)

4. If λ = 1
2 and d < 1

2 , then (y∗
1 , y

∗
2) satisfy Condition 1 or Condition 3.

Proof. We discuss four cases described in the theorem. We first calculate the
minimum utility of (y∗

1 , y
∗
2) if they satisfy the conditions. Then it is sufficient

to show that for any pair of facility locations (y1, y2) which do not satisfy the
conditions, w. l. o. g., assume that < y1, y2 > satisfies d(< y1, y2 >) ≤ 1

2 , then
the minimum utility is strictly less than the minimum utility of (y∗

1 , y
∗
2).

Case 1: d = 1
2 or λ > 1

2 .
If d = 1

2 , then by Observation 1, it is easy to verify that any two antipodal
points are a pair of optimal facility locations.

504 X. Wu et al.

Then we discuss the scenario that λ > 1
2 . If (y∗

1 , y
∗
2) satisfy Condition 1, then

for any agent i ∈ N , ui((y∗
1 , y

∗
2), xi) = 1

2 . It is sufficient to show that there always
exists some agent i ∈ N such that ui((y1, y2), xi) < 1

2 .
If there exists an agent i on the arc < y1, y2 >, then by Observation 2,

ui((y1, y2), xi) = d(y1, y2) < 1
2 . Now consider the scenario that there are no

agents on the arc < y1, y2 >. Let c be the midpoint of < y1, y2 >. We claim
that there exists some agent i on the semicircle with the midpoint of c excluding
the boundary points, otherwise, all the agents are on a semicircle, which is a
contradiction of λ > 1

2 . Then by Observation 2, ui((y1, y2), xi) = 2d(xi, c)) < 1
2 .

The last inequality holds since xi and c is on a quarter of circle arc (Fig. 1).

Fig. 1. Illustrations for Case 2 and Case 3.

Case 2: λ < d < 1
2 . Note that if (y∗

1 , y
∗
2) satisfy Condition 2, then the utility

of each agent is 1 − d.
By Observation 2, if d(y1, y2) > d, the utility of each agent is strictly less

than 1 − d. Hence, we consider the scenario that d(y1, y2) = d.
If [y1, y2] ∩ [xj+1, xj] 	= ∅, then at least one of agent j and j + 1 is on

the arc [y1, y2]. Due to Observation 2, it holds that the utility of this agent
is d(y1, y2) = d < 1 − d. Now, we only need to consider the case that
[y1, y2] ∩ [xj+1, xj] = ∅. In this case, by the symmetry, suppose that y2 is on the
arc (x̂j , xj+1) and y1 is on the arc [x̂j , xj+1) or (x̂j+1, x̂j). Then we obtain that
xj+1 is always on the arc (y2, ŷ1). The utility of agent j +1 is d(< y1, xj+1 >)+
d(< ŷ2, x̂j+1 >) < 1− d(< xj+1, ŷ2 >) < 1− d(< ŷ1, ŷ2 >) = 1− d. The inequal-
ities hold since the location y1 cannot coincide with x̂j+1, otherwise, (y1, y2)
satisfy Condition 2.

Case 3: d ≤ λ < 1
2 . By Observation 2, we can know that if (y∗

1 , y
∗
2) satisfy

Condition 3, then agents j and j + 1 both obtain the minimum utility. And
uj((y∗

1 , y
∗
2), xj) = uj+1((y∗

1 , y
∗
2), xj+1) = 2d(xj , zm) = 1 − λ.

Similarly as the analysis for case 2, if d(y1, y2) > λ or [y1, y2] ∩ [xj+1, xj] 	= ∅
there always exists an agent whose utility is equal to d(y1, y2) < 1−λ. Hence, we
only need to consider the scenario that d(y1, y2) ≤ λ and [y1, y2]∩ [xj+1, xj] = ∅.

Two-Facility Location Games with a Minimum Distance Requirement 505

Assume that [y1, y2]∩[x̂j+1, x̂j] 	= [y1, y2]. Without loss of generality, suppose
that y2 is on the arc (x̂j , xj+1) and y1 is on the arc [x̂j , xj+1) or (x̂j+1, x̂j). The
utility of agent j + 1 is d(< y1, xj+1 >) + d(< ŷ2, x̂j+1 >) < 1 − d(< xj+1, ŷ2 >
) < 1 − λ. The last inequality holds since arc [xj+1, ŷ2] ∩ [xj+1, xj] = [xj+1, xj].

Finally, we study the case that [y1, y2] ∩ [x̂j+1, x̂j] = [y1, y2], i.e., the arc
< y1, y2 > is totally on the arc < x̂j+1, x̂j >. By Observation 2, we know
that one of agents j and j + 1 gets the minimum utility. By the fact that
uj((y1, y2), xj) = 2d(y2, xj) − d(y1, y2), uj+1((y1, y2), xj+1) = 2d(y1, xj+1) −
d(y1, y2) and uj((y1, y2), xj) + uj+1((y1, y2), xj+1) = 2(1 − λ), if y1 and y2 are
not symmetric on zm, the minimum utility is less than 1 − λ.

Case 4: λ = 1
2 and d < 1

2 .
Combining the analysis of case 1 and case 3, we can know that any pair of

optimal facilities (y∗
1 , y

∗
2) satisfies Condition 1 or Condition 3. It worth to mention

that, for location profile x =< x, . . . , x, x̂, . . . , x̂ >, there are two midpoints. ��
Then, we present the following optimal mechanism.

Mechanism 2. Given a location profile x =< x1, x2, . . . , xn >, if λ ≥ 1
2 , output

(x1, x̂1), otherwise, output two facilities that are symmetric on zm with the dis-
tance of max{λ

2 , d
2}. Recall that xj , xj+1 are two adjacent points with the largest

gap and zm is the midpoint of arc< xj , xj+1 >.

Theorem 3. Mechanism 2 is strategyproof and outputs a pair of optimal facil-
ities for maximizing the minimum utility.

Proof. By Theorem 2, it is easy to check that Mechanism 2 outputs a pair of
optimal facilities.

For simple statement, denote Mechanism 2 by f . For any location profile
x, let (y1, y2) = f(x). Without loss of generality, suppose d(< y1, y2 >) ≤ 1

2 .
Let x′ denote the location profile that some agent i deviates from xi to x′

i.
Let (y′

1, y
′
2) = f(x′) and d(< y′

1, y
′
2 >) ≤ 1

2 . Denote the longest length of the
clockwise arc between two adjacent agents for location profile x′ by δ′, and let
λ′ = 1 − δ′.

Consider the following two cases.
Case 1: λ ≥ 1

2 .
Note that in this case, the utility of each agent is 1

2 . If λ′ ≥ 1
2 , the utility of

each agent is still 1
2 . Hence, the agent will not misreport. Then the case λ′ < 1

2
will be discussed. This can only happen in the case that there exists an agent i
such that d(< xi−1, xi+1) >) > 1

2 , xi is on arc < x̂i+1, x̂i−1 > and x′
i is on arc

< x̂i−1, x̂i+1 >. By Mechanism 2, we have [x̂i+1, x̂i−1] ⊆ [y′
1, y

′
2], then xi is on

the arc < y′
1, y

′
2 >. Therefore, by Observation 2, ui(f(x′), xi) = max{λ′, d} ≤ 1

2 ,
which implies that agent i will not deviate.

Case 2: λ < 1
2 .

By Observation 2, the utility of each agent i is

ui((y1, y2), xi) = 1 − d(y1, y2) = min{1 − λ, 1 − d} ≥ 1
2
.

506 X. Wu et al.

Fig. 2. An illustration for case of λ > d, λ′ < λ and [xj+1, xj] � [l, r]

For location profile x′ with λ′ ≥ 1
2 , the utility of each agent in location profile

x is 1
2 , which implies that agent i has no incentive to lie. Hence, we only need

to consider the case that λ′ < 1
2 .

If d(y1, y2) ≤ d(y′
1, y

′
2), then agent i will have no incentive to lie by the fact

that ui((y1, y2), xi) already gets the maximum utility he can obtain. Meanwhile,
if λ′ ≥ λ or d ≥ λ, we have that 1 − d(y1, y2) ≥ 1 − d(y′

1, y
′
2). Thus, we will

discuss the scenario that λ′ < λ and λ > d.
Denote two adjacent points who admit largest gap δ′ of x′ by points l and r.

Suppose that d(< l, r >) = λ′. If [xj+1, xj] ⊆ [l, r], then we have λ ≤ λ′, by the
above statement, then ui((y′

1, y
′
2), xi) ≤ ui((y1, y2), xi).

Then, we only need to consider the case that [xj+1, xj] � [l, r], which can
only happen when agents j or j+1 deviate. By the symmetry, assume that agent
j deviates to a location on the arc < x̂j−1, xj >. (See Fig. 2 for an illustration.)
Recall that we now discuss the case that λ′ < λ and λ > d. Hence, we have
ŷ2 = xj and d(ẑm, xj) = λ

2 . It is worth to notice that ẑm is the midpoint of
the arc < xj+1, xj >. Let c′ denote the midpoint of < l, r >. Then d(< c′, xj >
) > d(ẑm, xj) = λ

2 . Actually, ŷ′
1 and ŷ′

2 are symmetric on c′ with distance of
max{λ′

2 , d
2}. Hence, we know that xj cannot on the arc [ŷ′

1, ŷ
′
2].

If xj is on the arc [y′
1, y

′
2], it is obvious that uj((y′

1, y
′
2), xj) = d(y′

1, y
′
2) <

uj((y1, y2), xj). Finally, consider the case that xj is on the arc [ŷ′
2, y

′
1]. The

utility of xj is
uj((y′

1, y
′
2), xj) = 2d(xj , ĉ

′).

Note that uj((y1, y2), xj) = 2d(xj , zm) and d(< c′, xj >) > d(< ẑm, xj >).
Therefore, we have

uj((y′
1, y

′
2), xj) = 2d(xj , ĉ

′) = 1 − 2d(< c′, xj >)
< 1 − 2d(< ẑm, xj >) = 2d(xj , zm) = uj((y1, y2), xj),

which completes the proof. ��
Note that not all mechanisms that output a pair of optimal facility locations

are strategyproof. Only carefully choosing a pair of optimal facility locations can
be strategyproof. For example, let an optimal mechanism be outputting (x1, x̂1)

Two-Facility Location Games with a Minimum Distance Requirement 507

if λ ≥ 1
2 , otherwise, outputting two facilities that are symmetric on zm with

the distance of d
2 . Consider an instance if 1

2 > λ > d. The utility of agent j
is 2d(xj , ẑm). Then if he misreports his location to (xj , x̂j+1], his utility will
increase.

For minimizing the maximum cost, we have the following corollary.

Corollary 2. A mechanism which outputs the antipodal points of Mechanism 2
is strategyproof and optimal for minimizing the maximum cost.

4 A Line Interval

In this section, we consider the obnoxious 2-facility location games where all
the agents are on a closed line interval I = [0, 1], which was studied in [7]. We
present a group strategyproof mechanism for maximizing the total utility, which
improves the approximation ratio in [7].

Mechanism 3. Let l1 = 1
2 (1 − d) and l2 = 1

2 (1 + d). Given a location profile
x, let nl, nr and nm denote the number of agents in [0, l1), (l2, 1] and [l1, l2],
respectively. If nl > αn, then output (1 − d, 1), if nr > αn, output (0, d), and
otherwise, output (0, 1), where α ≥ 1

2 will be given later.

Before discussing the strategyproofness and the approximation ratio of Mech-
anism 3, we import the following useful results, which is showed in [7].

Theorem 4 ([7]). For any xi ∈ [0, l1), we have ui((1 − d, 1), xi) ≥ ui((0, 1), xi)
≥ ui((0, d), xi); for any xi ∈ (l2, 1], we have ui((0, d), xi) ≥ ui((0, 1), xi) ≥
ui((1−d, 1), xi); for any xi ∈ [l1, l2], we have ui((0, 1), xi) ≥ ui((0, d), xi), ui((1−
d, 1), xi).

Theorem 5 ([7]). One of (0, d), (1 − d, 1) and (0, 1) is optimal for maximizing
the total utility.

Theorem 6. Mechanism 3 is group strategyproof with an approximation ratio
of

ρ =

{
max{ (2−d)−(1+d)α

α(1−d)+d , 1
α(1−d)+d , (1 − d)α + 1} if d ≤ 1

3 ,

max{ 1
α(1−d)+d , (1 − d)α + 1} otherwise.

Moreover, if 1−d
1+d ≥

√
d2−2d+5−(1+d)

2(1−d) , let α =
√

(1+d)2(2−d)2+8(1−d)3−(2−d)(1+d)

2(1−d)2 ,

then the ratio is
√

(1+d)2(2−d)2+8(1−d)3+d2−3d

2(1−d) , which does not exceed
√

3; other-

wise, let α =
√

d2−2d+5−(1+d)
2(1−d) , then the approximation ratio is

√
d2−2d+5+1−d

2 ,

which is at most
√
5+1
2 .

Before proving this theorem, we give a brief illustration of the approxi-
mation ratio. If d is approximately in [0, 0.258] (reserve three decimals), then
1−d
1+d ≥

√
d2−2d+5−(1+d)

2(1−d) . Successively, set the corresponding α and the approx-

imation ratio is at most
√

3(≈ 1.732). While d is somewhere more than 0.259,
the approximation ratio is at most

√
5+1
2 (≈ 1.618).

508 X. Wu et al.

Proof. Denote Mechanism 3 as f . We first show the strategyproofness. Consider
another location profile x′ that each agent i ∈ S in location profile x deviates
from xi to x′

i. Similarly, let n′
l, n′

r, n′
m denote the number of agents in [0, l1),

(l2, 1], [l1, l2] for location profile x′, respectively. For simplicity, let (y′
1, y

′
2) =

f(x′). We then show the strategyproofness according to the outputs of f(x).
Due to the symmetry, we only need to consider that f(x) = (1 − d, 1) or (0, 1).

We first consider the scenario that f(x) = (1 − d, 1).
If f(x′) is still (1 − d, 1), then f(x) = f(x′). Thus, agent i has no incentive

to misreport. If f(x′) = (0, 1), then n′
l ≤ αn. Hence, there exists at least one

agent in [0, l1) misreports his location to a point in [l1, 1]. By Theorem 4, we
conclude that ui(f(x), xi) ≥ ui(f(x′), xi). Finally, if f(x′) = (0, d), then in this
case, we can easily find that there exists at least one agent in [0, l1) misreports
his location to x′

i ∈ (l2, 1], since the total number of agents in [l1, 1] is at most
(1 − α)n ≤ αn. Analogously, by Theorem 4, that agent cannot benefit by lying.

Finally, for f(x) = (0, 1), using similar analysis as above, we can draw the
same conclusion that f is group strategyproof.

Now we turn to discuss the approximation ratio. We show the approximation
ratio by three cases according to the outputs of Mechanism 3. Given any location
profile x, let (y∗

1 , y
∗
2) be a pair of optimal facility locations. Denote f(x) by

(y1, y2).
Case 1: (y1, y2) = (1 − d, 1).
By Theorem 5, if the optimal facility locations are (1−d, 1), then Mechanism 3

obtains the optimal solution.
First, consider the scenario that (y∗

1 , y
∗
2) = (0, d). If d ≤ 1

3 , then l1 ≥ d. For
location profile x, we first move all the agents in [l1, 1] to 1, then move all the
agents in [0, l1) to l1. In the moving process, su((y∗

1 , y
∗
2),x) will be better and

su((y1, y2),x) will not be better. Then the approximation ratio of x is

su((y∗
1 , y∗

2),x)

su((y1, y2),x)
=

su((0, d),x)

su((1 − d, 1),x)
≤ (2 − d)n − (1 + d)nl

nl(1 − d) + nd
≤ (2 − d) − (1 + d)α

α(1 − d) + d
,

where the last inequality holds since the left-hand side is decreasing with nl and
nl > αn.

Similarly, for d > 1
3 , we can first move all the agents in [l1, 1] to 1, then move

all the agents in [0, l1) to l1. The approximation ratio of x is

su((y∗
1 , y

∗
2),x)

su((y1, y2),x)
=

su((0, d),x)
su((1 − d, 1),x)

≤ (2 − d)n − 2(1 − d)nl

nl(1 − d) + nd

≤ (2 − d) − 2(1 − d)α
α(1 − d) + d

≤ 1
α(1 − d) + d

.

The last inequality holds since α ≥ 1
2 .

Finally, if (y∗
1 , y

∗
2) = (0, 1), the approximation ratio of x is

su((y∗
1 , y

∗
2),x)

su((y1, y2),x)
=

su((0, 1),x)
su((1 − d, 1),x)

≤ n

nl + (n − nl)d
≤ 1

α(1 − d) + d
.

The first inequality hold since the utility of each agent in [l1, 1] is at least d. The
last inequality holds since nl > αn.

Two-Facility Location Games with a Minimum Distance Requirement 509

Case 2: (y1, y2) = (0, 1).
Due to the symmetry, we only need to consider the case that (y∗

1 , y
∗
2) = (0, d).

If d ≤ 1
3 , we can first move all the agents in (l2, 1] to 1, then move all the

agents in [l1, l2] to l2, finally move all the agents in [0, l1) to l1. The approximation
ratio of x is

su((y∗
1 , y

∗
2),x)

su((y1, y2),x)
=

su((0, d),x)
su((0, 1),x)

≤ nl(1 − 2d) + nm + nr(2 − d)
n

≤ (1 − d)α + 1,

where the last inequality holds since that the total utility admits its maximum
value when exact αn agents are at 1, and the remaining (1 − α)n agents are at
l2.

Similarly, when d > 1
3 , it still holds that su((y∗

1 ,y∗
2),x)

su((y1,y2),x)
≤ (1 − d)α + 1.

Case 3: (y1, y2) = (0, d). Due to the symmetry, the analysis is similar to
Case 1.

Therefore, we can see if d ≤ 1
3 , the approximation ratio is

ρ = max{ (2 − d) − (1 + d)α
α(1 − d) + d

,
1

α(1 − d) + d
, (1 − d)α + 1}. (1)

View the above three formulas as functions on α. It is easy to see that
the second and the third function are decreasing and increasing on α, respec-
tively. Meanwhile, the first and the second functions also have unique inter-
section 1−d

1+d . And if α < 1−d
1+d , then (2−d)−(1+d)α

α(1−d)+d > 1
α(1−d)+d . Additionally,

the intersection of the second and third functions is
√

d2−2d+5−(1+d)
2(1−d) . Moreover,

the minimal value of Eq. (1) is according to the relative positions of the above
two intersections. Finally, the intersection of the second and third functions is√

(1+d)2(2−d)2+8(1−d)3−(2−d)(1+d)

2(1−d)2 .

Therefore, if 1−d
1+d ≥

√
d2−2d+5−(1+d)

2(1−d) , Eq. (1) reaches its minimum value at

α =
√

(1+d)2(2−d)2+8(1−d)3−(2−d)(1+d)

2(1−d)2 , and the value is at most
√

3. Other-

wise, Eq. (1) gets its minimum value at α =
√

d2−2d+5−(1+d)
2(1−d) . And the value

is
√

d2−2d+5+1−d
2 ≤

√
5+1
2 .

If d > 1
3 , the approximation ratio is

ρ = max
{

1
α(1 − d) + d

, (1 − d)α + 1
}

. (2)

Using the analogous analysis, we can obtain the minimum approxima-
tion ratio when α =

√
d2−2d+5−(1+d)

2(1−d) . It is worth to mention that 1−d
1+d <

√
d2−2d+5−(1+d)

2(1−d) always holds for d > 1
3 , which completes our proof. ��

5 Conclusions

In this paper, we study the 2-facility location games with the minimum dis-
tance requirement, and investigate strategyproof mechanisms with respect to

510 X. Wu et al.

two objectives: minimizing the total cost/maximizing the total utility and min-
imizing the maximum cost/maximizing the minimum utility. We are mainly
focused on a circle network, and obtain optimal strategyproof mechanisms for
minimizing the maximum cost/maximizing the minimum utility. Meanwhile, a
group strategyproof mechanism with the approximation ratio of 1

2d (resp. 2−2d)
is designed for minimizing the total cost(resp. maximizing the total utility). On
the line interval, for maximizing the total utility, we obtain a group strategyproof
mechanism which improves the approximation ratio in [7].

It is meaningful to improve the lower bound for 2-facility location games
with minimum distance requirement on the circle. Besides, our work could be
extended in several ways, such as considering randomized mechanisms for two-
facility location games with minimum distance requirement; extending facility
location games to more general metric spaces.

References

1. Alon, N., Feldman, M., Procaccia, A.D., Tennenholtz, M.: Strategyproof approxi-
mation mechanisms for location on networks. CoRR, abs/0907.2049 (2009)

2. Chen, X., Fang, Q., Liu, W., Ding, Y., Nong, Q.: Strategyproof mechanisms for
2-facility location games with minimax envy. J. Comb. Optim., 1–17 (2021)

3. Chen, Z., Fong, K.C.K., Li, M., Wang, K., Yuan, H., Zhang, Y.: Facility location
games with optional preference. Theoret. Comput. Sci. 847, 185–197 (2020)

4. Cheng, Y., Han, Q., Wei, Yu., Zhang, G.: Strategy-proof mechanisms for obnoxious
facility game with bounded service range. J. Comb. Optim. 37(2), 737–755 (2019)

5. Cheng, Y., Yu, W., Zhang, G.: Mechanisms for obnoxious facility game on a path.
In: Proceedings of the 5th International Conference on Combinatorial Optimization
and Applications, pp. 262–271 (2011)

6. Cheng, Y., Wei, Yu., Zhang, G.: Strategy-proof approximation mechanisms for an
obnoxious facility game on networks. Theoret. Comput. Sci. 497, 154–163 (2013)

7. Duan, L., Li, B., Li, M., Xu, X.: Heterogeneous two-facility location games with
minimum distance requirement. In: Proceedings of the 18th International Confer-
ence on Autonomous Agents and MultiAgent Systems, pp. 1461–1469 (2019)

8. Fong, C.K.K., Li, M., Lu, P., Todo, T., Yokoo, M.: Facility location games with
fractional preferences. In: Proceedings of the AAAI Conference on Artificial Intel-
ligence, vol. 32 (2018)

9. Fotakis, D., Tzamos, C.: On the power of deterministic mechanisms for facility
location games. ACM Trans. Econ. Comput. 2(4), 1–37 (2014)

10. Ibara, K., Nagamochi, H.: Characterizing mechanisms in obnoxious facility game.
In: Proceedings of the 6th International Conference on Combinatorial Optimization
and Applications, pp. 301–311 (2012)

11. Li, M., Lu, P., Yao, Y., Zhang, J.: Strategyproof mechanism for two heterogeneous
facilities with constant approximation ratio. In: Proceedings of the 29th Interna-
tional Joint Conference on Artificial Intelligence, pp. 238–245 (2020)

12. Liu, W., Ding, Y., Chen, X., Fang, Q., Nong, Q.: Multiple facility location games
with envy ratio. Theoret. Comput. Sci. 864, 1–9 (2021)

13. Lu, P., Sun, X., Wang, Y., Zhu, Z.A.: Asymptotically optimal strategy-proof mech-
anisms for two-facility games. In: Proceedings of the 11th ACM Conference on
Electronic Commerce, pp. 315–324 (2010)

Two-Facility Location Games with a Minimum Distance Requirement 511

14. Mei, L., Li, M., Ye, D., Zhang, G.: Facility location games with distinct desires.
Discret. Appl. Math. 264, 148–160 (2019)

15. Mei, L., Ye, D., Zhang, G.: Mechanism design for one-facility location game with
obnoxious effects on a line. Theoret. Comput. Sci. 734, 46–57 (2018)

16. Moulin, H.: On strategy-proofness and single peakedness. Public Choice 35(4),
437–455 (1980)

17. Procaccia, A.D., Tennenholtz, M.: Approximate mechanism design without money.
ACM Trans. Econ. Comput. 1(4), 1–26 (2013)

18. Schummer, J., Vohra, R.V.: Strategy-proof location on a network. J. Econ. Theory
104(2), 405–428 (2002)

19. Serafino, P., Ventre, C.: Truthful mechanisms without money for non-utilitarian
heterogeneous facility location. In: Proceedings of the 29th AAAI Conference on
Artificial Intelligence, pp. 25–30 (2015)

20. Xu, X., Li, B., Li, M., Duan, L.: Two-facility location games with minimum dis-
tance requirement. J. Artif. Intell. Res. 70, 719–756 (2021)

21. Zou, S., Li, M.: Facility location games with dual preference. In: Proceedings of
the 2015 International Conference on Autonomous Agents and Multiagent Systems,
pp. 615–623 (2015)

Open Shop Scheduling Problem with a
Non-resumable Flexible Maintenance Period

Yuan Yuan1 , Xin Han1(B) , Xinbo Liu2 , and Yan Lan3

1 School of Software, Dalian University of Technology, Dalian 116620, Liaoning, China
hanxin@dlut.edu.cn

2 SolBridge International School of Business, Woosong University,
Uam-ro 128, Daejeon 34613, South Korea
xliu215@student.solbridge.ac.kr

3 School of Information and Communication Engineering, Dalian Minzu University,
Dalian 116600, Liaoning, China

lanyan@dlnu.edu.cn

Abstract. This paper investigates two-machine open shop scheduling problem in
which one flexible maintenance period is imposed on the second machine, where
the maintenance period has to start within a given time window and its duration
is constant. The objective is to minimize the makespan. Mosheiov et al. present a
3/2-approximation algorithm for this problem. We propose a 4/3-approximation
algorithm with O(n) time complexity.

Keywords: Scheduling · Machine maintenance · Approximation algorithm

1 Introduction

Machine scheduling problems with machine maintenance constraints have been attract-
ing many research interests in the field of operational research. This paper investigates
the two-machine open shop scheduling problem in which the second machine is subject
to maintenance period, this problem was first introduced in [1].

There are two common kinds of maintenance period (MP): f ixed MP and f lexible
MP. The former is the case where the starting time and completion time of the MP are
fixed, while the latter is the case where the MP starts within a given window and the
duration is constant.

In the scheduling literature, there are three scenarios handling scheduling problems
with the fixedMP. During theMP no job can be processed on that machine. Suppose that
some job fails to finish on a certain machine prior to the MP. If the job can be continued
after the MP without any penalty, Lee [2] calls this scheduling model resumable; if
the uncompleted job must restart from scratch after the completion time of the MP, the
model is named non-resumable [2]; and if the job will have to partially restart after the
machine has become available again, the model is called semi-resumable [3].

The two-machine open shop scheduling problem with one fixed MP is NP-hard
[4]. We prefer to look for an approximation solution rather than an exact optimal solu-
tion for these problems. Therefore, this paper concentrates on designing approximation
c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 512–526, 2021.
https://doi.org/10.1007/978-3-030-92681-6_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_40&domain=pdf
http://orcid.org/0000-0001-5403-6576
http://orcid.org/0000-0002-1694-7712
http://orcid.org/0000-0001-6999-4144
http://orcid.org/0000-0003-3311-1105
https://doi.org/10.1007/978-3-030-92681-6_40

Open Shop Scheduling Problem with a Non-resumable Flexible Maintenance Period 513

algorithms and analyzing their performance. A polynomial-time algorithm is called a
ρ-approximation algorithm, if it creates a schedule with makespan at most ρ times the
optimal value (where ρ ≥ 1); where the value of ρ is called a worst-case ratio bound.
A family of ρ-approximation algorithms is called a polynomial-time approximation
scheme, or a PTAS for short, if ρ = 1+ ε for any fixed ε > 0 and the running time is
polynomial with respect to the length of problem input.

While interesting results have been proposed for two-machine open shop schedul-
ing problems with fixed MPs, there has been few results on the shop scheduling prob-
lem with flexible MPs. For the problem with one fixed MP, Breit et al. [4] gave a 4

3 -
approximation algorithm considering the resumable MP, while Breit et al. [6] presented
a 4

3 -approximation algorithm with the non-resumable MP. Yuan et al. [7] gave a PTAS
for open shop scheduling problem with one fixedMP under the non-resumable scenario.
Kubzin et al. [8] presented two PTAS, where one deals with the problem with one fixed
MP on each machine and the other tackles the problem with several fixed MPs on one
of machines, considering the resumable scenario. Mosheiov et al. [1] established two
3
2 -approximation algorithms, one for flow shop, and the other for open shop, provided
that one flexible MP is imposed on the second machine.

For the two-machine open shop scheduling problem with one flexible MP on the
second machine, we present a 4

3 -approximation algorithm which outperforms the pre-
vious approximation algorithm proposed in [1], under the same time complexity. The
main idea of our approximation algorithm is as follows: we first define two big jobs,
then try several possible schedules for big jobs, finally run the greedy strategy to sched-
ule the remaining jobs.

The remainder of this paper is organized as follows. Section 2 gives a formal
description of the problem. We present a 4

3 -approximation algorithm for two-machine
open shop scheduling problem with a flexible MP in Sect. 3. In Sect. 4, we conclude
with a short summary.

2 Preliminaries

In the two-machine open shop scheduling problem, we are given two machines M1,
M2 and a set of jobs N = {1, · · · ,n}. Each job j consists of two operations: Oj,1 and
Oj,2, where operation Oj,1 is processed on M1 with a j time units, and operation Oj,2 is
performed on M2 with b j time units. Each job is processed on at most one machine at
a time, while each machine processes no more than one job at a time. No preemption
is allowed in processing of any operation. If the processing routes are not given in
advance, but have to be chosen, the processing system is called the open shop. The
objective mentioned in this paper is to minimize the makespan, i.e., the completion
time of all jobs on two machines.

Following the notation of [9], the classical two-machine open shop scheduling
problem is denoted by O2||Cmax, which can be solved in O(n) time due to Gonzalez
and Sahni [10]. We define a(N) = ∑n

j=1 a j, b(N) = ∑n
j=1 b j and denote the optimal

makespan of problem O2||Cmax by Cmax(̂S∗), according to [10], it is

Cmax(̂S∗) =max{a(N),b(N),max
j∈N

{a j+b j}}. (1)

514 Y. Yuan et al.

In this paper, we study an extension of the classical two-machine open shop schedul-
ing problem, in which there is a flexible MP on machine M2. The MP starts within a
given time interval [T1,T2] and the duration of the MP is Δ which is irrelevant to T1
and T2, and during the MP no job can be processed on the corresponding machine. We
denote the two-machine open shop scheduling problem with a flexible MP on M2 by
O2|nr− f (M2)|Cmax, where nr denotes the non-resumable MP and f (M2) denotes the
MP is imposed on machine M2.

For a feasible schedule S for problem O2|nr − f (M2)|Cmax, let Cj,i(S) denote
the completion time of job j on machine Mi in schedule S, and Cmax(S) denote the
makespan of schedule S. Let S∗ denote the optimal schedule and Cmax(S∗) the optimal
makespan. Let LB denote the lower bound of the optimal makespan, and we define
LB=max{a(N),b(N)+Δ ,T1+Δ ,max j∈N{a j+b j}}, we can obtain

Cmax(S∗) ≥ LB. (2)

Observation 1. Cmax(̂S∗) ≤Cmax(S∗).

We prove that Observation 1 is true. Firstly, we can obtain that any one feasible
schedule for problem O2|nr− f (M2)|Cmax is also feasible for problem O2||Cmax; sec-
ondly, for the same feasible schedule, the makespan of problem O2||Cmax is no worse
than that of problem O2|nr− f (M2)|Cmax; finally, for problem O2||Cmax, the optimal
makespan is no more than the makespan of any feasible schedule. Therefore, the con-
clusion is valid.

3 A 4
3 -Approximation Algorithm

In this section, we present a 4
3 -approximation algorithm for O2|nr− f (M2)|Cmax whose

time complexity is O(n).

3.1 The Greedy Algorithm

Before introducing the formal algorithm, we first state the standard greedy algorithm in
[11], which is used in the subsequent algorithm. Sevastianov and Woeginger [12] apply
the greedy algorithm as a part of their PTAS for Om||Cmax. The greedy algorithm is
involved in approximation algorithms proposed by [1,6,8]. When m = 2, the standard
greedy algorithm is stated below:

Algorithm 1: The Greedy Algorithm GA

Input: The set of jobs, two machines M1 and M2.
Output: A feasible schedule S.

1 At any time t, when machine Mi, for i= 1,2, becomes available, arbitrarily
chooses operation Ok,i which is unscheduled, such that operation Ok,3−i is not
being scheduled on M3−i.

Open Shop Scheduling Problem with a Non-resumable Flexible Maintenance Period 515

For problemO2|nr− f (M2)|Cmax, we introduce a modified greedy algorithmGA(c).

Algorithm 2: The Greedy Algorithm GA(c)
Input: The set of jobs, the starting time of MP c ∈ [T1,T2].
Output: A feasible schedule S.

1 At any time t, when machine Mi, for i= 1,2, becomes available, arbitrarily
chooses unscheduled operation Ok,i, such that operation Ok,3−i is not being
scheduled on M3−i. In particular, if machine M2 is available and t < c, process
operation Ok,2 only if it can be completed before time c.

The running time of the GA(c) is O(n).

Observation 2. When we apply GA(c) for problem O2|nr− f (M2)|Cmax, there is at
most one idle interval W on M1 or after the MP on M2. Only one job k is left to be
processed after W, and during W the other operation of job k is being processed and
whose length is more than the length of W. See Fig. 1(a) and (b).

Fig. 1. Possible schedules found by GA(c) for O2|nr− f (M2)|Cmax.

Definition 1. We denote by N1 the operations completed before the MP on M2, and by
N2 the operations processed after the MP on M2.

Lemma 1. When we apply GA(c) for problem O2|nr− f (M2)|Cmax, we have the fol-
lowing properties:

Fig. 2. Possible schedules found by GA(c) for O2|nr− f (M2)|Cmax.

(i) if no idle interval occurs after the MP on M2, then there are at most two idle
intervals before the MP.

(ii) if there are two idle intervals whose length are I1 and I2, respectively, before the
MP on M2, then the total length of two intervals is less than the processing time of any
one job j ∈ N2 on M2, i.e., I1+ I2 < b j, see Fig. 2(a).

(iii) if there is only one idle interval whose length is I before the MP on M2, then
there exists at most one job i ∈ N2 such that bi ≤ I. See Fig. 2(b).

516 Y. Yuan et al.

Proof. (i) We prove it by contradiction. Assume there are three idle intervals before the
MP on M2, let I1, I2 and I3 denote the length of three intervals, respectively, and let τ
denote the starting time of the first idle interval, See Fig. 3. During the first and second
interval, jobs k and i are being processed on M1, respectively. According to GA(c), job
i can be processed at time τ rather than after job k on M2. Therefore, the second idle
interval will not appear.

Fig. 3. A counterexample of Lemma 1 (i).

(ii) Let τ denote the starting time of the first idle interval, set δ = c−τ . Any one job
j ∈ N2 cannot be processed before the MP since δ < b j, so I1+ I2 < δ < b j, ∀ j ∈ N2.

(iii) We again prove it by contradiction. Assume there exist two jobs i, j ∈ N2 such
that bi ≤ I and b j ≤ I, then one of them can be processed in the idle interval. So the
conclusion is valid. ��

3.2 Approximation Algorithm and Analysis

In this section, we present and analyze a 4
3 -approximation algorithm for problem

O2|nr − f (M2)|Cmax. The running time of this algorithm is linear in the size of the
instance. The main idea of the algorithm is as follows: we first define two big jobs, then
try several possible schedules for big jobs, finally run GA(c) to schedule the remaining
jobs.

We define jobs p and q such that bp ≥ bq ≥ max{b j| j ∈ N\{p,q}}, and refer to p
as the first big job and q as the second big job.

Lemma 2. Due to the definition of jobs p and q and Eq. (2), we can get ∀ j ∈ N\{p,q},
b j ≤ 1

3LB.

Proof. We prove the result by contradiction. Assume there exists a job j ∈ N\{p,q}
such that b j >

1
3LB, which implies bp ≥ bq ≥ b j >

1
3LB. So, we can obtain b(N) ≥

bp+bq+b j > LB, which contradicts (2). ��

Open Shop Scheduling Problem with a Non-resumable Flexible Maintenance Period 517

Our approximation algorithm is given below.

Algorithm 3: 4
3 -approximation algorithm

Input: A set of jobs, the starting time window of MP is [T1,T2], the duration of
MP is Δ .

Output: A feasible schedule S
1 Find jobs p and q, set Q= /0;
2 if bp ≤ T2 then
3 Generate schedule S1: first schedule job q on M1 and p on M2 at time zero,

then run GA(max{bp,T1}) for the remaining jobs; Q ← Q∪{S1};
4 If bp+bq ≤ T2, generate schedule S2: first schedule job q on M2 at time zero,

then process job q on M2 at time bq, finally run GA(max{bp+bq,T1}) for
the remaining jobs; Q ← Q∪{S2};

5 If max{bp+bq,aq+bq} ≤ T2, generate schedule S3: first schedule job q on
M1 and p onM2 at time zero, then process job q onM2 at time max{bp,aq},
finally run GA(max{bp+bq,aq+bq,T1}) for the remaining jobs;
Q ← Q∪{S3};

6 If max{bp+bq,ap+bp} ≤ T2, generate schedule S4: reverse the roles of jobs
p and q in schedule S3; Q ← Q∪{S4};

7 Choose the schedule with the minimal makespan from Q;
8 else
9 if bq ≤ T2 then
10 Generate schedule S5: first schedule job p on M1 and q on M2 at time

zero, then run GA(max{bq,T1}) for the remaining jobs;
11 else
12 Generate schedule S6: run Gonzalez-Sahni algorithm for all jobs,

provided that two machines are available all the time from time T1+Δ ;
13 Generate schedule S7: first schedule job p on M1 at time zero, then

process job q on M1 at time ap, finally run GA(T1) for the remaining
jobs;

14 Choose the schedule with the minimal makespan from S6 and S7;

The running time of Algorithm 3 is O(n).

Theorem 1. Algorithm 3 outputs schedule S which satisfies

Cmax(S) ≤ 4
3
Cmax(S∗), (3)

and this bound is tight.

Proof. We are going to branch in two cases depending on bp ≤ T2.

Case 1: bp ≤ T2. It is not difficult to verify the following lower bound of the optimal
makespan hold

Cmax(S∗) ≥ max{bp+bq,T1}+Δ (4)

518 Y. Yuan et al.

Case 1-1: bq ≤ 1
3LB. We take Schedule S1 into consideration. In this case, we can get

a better lower bound of the optimal makespan than (4)

Cmax(S∗) ≥ max{T1,bp}+Δ . (5)

If the makespan in schedule S1 occurs onM1, then either there is no idle interval on
M1 and S1 is optimal or there is an idle intervalW on M1. In the latter case, according
to Observation 2, there is only one job to be processed afterW . The last job is either job
p or j ∈ N\{p,q}, see Fig. 4(a) and (b), respectively. So we have

Cmax(S1) ≤ max{ap+bp,a(N)+b j} ≤ 4
3
Cmax(S∗),

where the last inequality is due to b j ≤ bq ≤ 1
3LB and (2).

If the makespan in schedule S1 occurs on M2, we need to consider whether there is
an idle interval after the MP onM2 or not. If there is an idle timeW after the MP, due to
Observation 2, there is only one job either j ∈ N\{p,q} see Fig. 4(c), or q see Fig. 4(d),
to be processed afterW . So we have

Cmax(S1) =max{Cj,1(S1)+b j,aq+bq} ≤ 4
3
Cmax(S∗),

where the last inequality is due to b j ≤ bq ≤ 1
3LB and (2).

Fig. 4. Schedule S1.

If there is no idle time after the MP, but there are idle intervals before the MP on
M2. According to Lemma 1, there are at most two gaps before the MP on M2. If there
are two idle intervals before the MP on M2, let the lengths of two intervals be I1 and
I2, respectively, see Fig. 4(e), then we have I1+ I2 ≤ b j (∀ j ∈ N2). Therefore, we can
obtain

Cmax(S1) = b(N1)+ I1+ I2+Δ +b(N2)< b(N)+Δ +b j ≤ 4
3
Cmax(S∗),

Open Shop Scheduling Problem with a Non-resumable Flexible Maintenance Period 519

where the last inequality is due to (2) and b j ≤ bq ≤ 1
3LB. If there is only one idle

interval before the MP onM2, let I denote the length of the idle interval, we may assume
that I > 1

3LB; otherwise we have

Cmax(S1) = b(N1)+ I+Δ +b(N2) = b(N)+Δ + I ≤ 4
3
Cmax(S∗).

We claim that there is at most one job j ∈ N2 to be processed after the MP, see Fig. 4(f).
So we obtain

Cmax(S1) =max{T1,bp}+Δ +b j ≤ 4
3
Cmax(S∗),

where the last inequality is due to b j ≤ 1
3LB, (5) and (2).

Case 1-2: bq > 1
3LB. We first note that b(N\{p,q})≤ 1

3LB due to (2). Then we consider
the following cases.

Case 1-2-1: bp+ bq > T2. We still consider Schedule S1. The conditions bp ≤ T2 and
bp+bq > T2 hold, which means that in any feasible schedule there is at most one job in
p and q to be processed before the MP, so we deduce a new lower bound of the optimal
makespan

Cmax(S∗) ≥ max{T1,bp}+Δ +bq. (6)

If the makespan in schedule S1 occurs on M1, same as Case 1-1, we can obtain
Cmax(S1) ≤ max{a(N),ap+bp,a(N)+b j} ≤ 4

3Cmax(S∗).
If the makespan in schedule S1 occurs on M2 and there is an idle interval W after

the MP, similarly as Case 1-1, we have Cmax(S1) = max{aq + bq,Cj,1(S1) + b j} ≤
4
3Cmax(S∗).

If the makespan in schedule S1 occurs on M2 but no idle interval occurs after the
MP, we notice that p /∈ N2 and b(N2\{q}) ≤ b(N\{p,q}) ≤ 1

3LB, so it is sufficient to
consider Fig. 4(e). Thus, we get

Cmax(S1) =max{T1,bp}+Δ +bq+b(N2\{q}) ≤ 4
3
Cmax(S∗),

where the last inequality is due to (2) and (6).

Case 1-2-2: bp+bq ≤ T2.

Case 1-2-2-1: ap+bp > T2 and aq+bq > T2. If there is at most one job in p and q to be
processed before the MP in the optimal schedule, Schedule S1 is considered. Similarly
as Case 1-2-1, we can obtain the derived result.

If both p and q are processed before the MP in the optimal schedule, we consider
Schedule S2. According to conditions ap+ bp > T2 and aq+ bq > T2, it is not hard to
get ap > bq > 1

3LB and aq > bp > 1
3LB. We further have a(N\{p,q})≤ 1

3LB due to (2).

520 Y. Yuan et al.

Fig. 5. Schedules S2.

If the makespan in schedule S2 occurs onM1, since a(N\{p,q}) ≤ 1
3LB< bq, there

must exist an idle interval on M1 in schedule S2, see Fig. 5(a), so we have Cmax(S2) =
bq+bp+ap. According to conditions ap+bp > T2, aq+bq > T2 and bp+bq ≤ T2, we
know that the order of jobs p and q on two machines in the optimal schedule is the same
as that in schedule S2, so we have Cmax(S2) ≤Cmax(S∗).

If the makespan in schedule S2 occurs onM2, we know that scheduling set N\{p,q}
on two machines will produce no clashes, see Fig. 5(b). Consequently, it is impossible
to induce idle time after the MP on M2, so we have

Cmax(S2) =max{bp+bq,T1}+Δ +b(N2) ≤ 4
3
Cmax(S∗),

due to p,q /∈ N2, b(N2) ≤ b(N\{p,q}) ≤ 1
3LB, (2) and (4).

Case 1-2-2-2: ap+bp ≤ T2 or aq+bq ≤ T2.
When aq+bq ≤ T2, Schedule S2 or S3 is considered. Without loss of generality, we

assume that aq+bq ≤ bp+bq and consider schedule S3. In the same way, we can prove
the case aq+bq > bp+bq.

If the makespan in schedule S3 occurs onM1, then either there is no idle interval on
M1 and S3 is optimal, or there is an idle interval on M1. In the latter case, see Fig. 6(a)
and (b), we have Cmax(S3) ≤ max{ap + bp,a(N) + b j} ≤ 4

3Cmax(S∗), due to (2) and
Lemma 2.

If the makespan in schedule S3 occurs on M2, we need to consider whether there is
an idle interval after the MP on M2 or not. If there is an idle interval after the MP on
M2, then only one job j ∈ N\{p,q} is processed after W on M2, see Fig. 6(c). So we
have Cmax(S3) =Cj,1(S3)+b j ≤ 4

3Cmax(S∗) due to (2) and Lemma 2.

Fig. 6. Schedule S3.

Open Shop Scheduling Problem with a Non-resumable Flexible Maintenance Period 521

When there is no idle interval after the MP, see Fig. 6(d), then we have

Cmax(S3) =max{bp+bq,T1}+Δ +b(N2) ≤ 4
3
Cmax(S∗),

where the last inequality is due to b(N2) ≤ b(N\{p,q}) ≤ 1
3LB, (2) and (4).

When ap+bp ≤ T2, Schedule S2 or S4 is considered. Without loss of generality, we
assume that ap+bp > bp+bq. In the same way, we can prove the case ap+bp ≤ bp+bq.
If in an optimal schedule jobs p and q have the same order on two machines, Schedule
S2 is considered. We can verify that (3) is valid similar to Case 1-2-2-1. If in an optimal
schedule jobs p and q are assigned the opposite route, we can get a new lower bound of
the optimal makespan

Cmax(S∗) ≥ max{ap+bp,T1}+Δ . (7)

If the makespan in schedule S4 occurs onM1, then either there is no idle interval on
M1 and S4 is optimal, or there is an idle interval on M1. In the latter case, see Fig. 7(a),
we have Cmax(S4) ≤ a(N)+b j ≤ 4

3Cmax(S∗).
If the makespan in schedule S4 occurs on M2 and there is an idle interval after the

MP on M2, then only one job j ∈ N\{p,q} is processed after W on M2, see Fig. 7(b).
So we have Cmax(S4) =Cj,1(S4)+b j ≤ 4

3Cmax(S∗) due to (2) and Lemma 2.

Fig. 7. Schedule S4.

When there is no idle interval after the MP, see Fig. 7(c), then we have

Cmax(S4) =max{ap+bp,T1}+Δ +b(N2) ≤ 4
3
Cmax(S∗),

where the last inequality is due to b(N2) ≤ b(N\{p,q}) ≤ 1
3LB, (2) and (7).

Case 2: bp > T2. This condition means that in any schedule job p must be processed
after the MP. We still need to judge whether bq ≤ T2 or not.

522 Y. Yuan et al.

Case 2-1: bq ≤ T2. We have a new lower bound of the optimal makespan

Cmax(S∗) ≥ max{T1,bq}+Δ +bp. (8)

In this situation, we consider Schedule S5.
If the makespan in schedule S5 occurs onM1 and no idle interval occurs onM1, then

S5 is optimal. If there is one idle interval occurs onM1, see Fig. 8(a) and (b), we have

Cmax(S5) ≤ max{aq+bq,a(N)+b j} ≤ 4
3
Cmax(S∗),

where the last inequality is due to (2) and Lemma 2.
If the makespan in schedule S5 occurs onM2 and there is an idle timeW after the MP

onM2, according to Observation 2, only one job either p, see Fig. 8(c), or j ∈N\{p,q},
see Fig. 8(d), is processed afterW onM2. We have

Cmax(S5) =max{ap+bp,Cj,1(S5)+b j} ≤ 4
3
Cmax(S∗),

where the last inequality is due to (2) and Lemma 2.
If there is no idle time after the MP onM2, we need to consider idle intervals before

the MP. According to Lemma 1, if there are two idle intervals before the MP onM2, see
Fig. 8(e), let the length of two intervals be I1 and I2, respectively, then the total length
of two idle intervals is no more than b j, j ∈ N2\{p}, i.e., I1+ I2 < b j. So we can get

Cmax(S5) = b(N1)+ I1+ I2+Δ +b(N2)< b(N)+Δ +b j ≤ 4
3
Cmax(S∗),

where the last inequality is due to (2) and Lemma 2. If there is only one idle interval
before the MP on M2, let I denote the length of the idle interval. We assume I > 1

3LB;
otherwise we have

Cmax(S5) = b(N1)+ I+Δ +b(N2) = b(N)+Δ + I ≤ 4
3
Cmax(S∗).

We claim that there are at most two jobs p and j ∈N2\{p} to be processed after the MP
on M2, see Fig. 8(f). Thus, we deduce

Cmax(S5) =max{T1,bq}+Δ +bp+b j ≤ 4
3
Cmax(S∗),

where the last inequality is due to q /∈ N2, (8) and Lemma 2.

Open Shop Scheduling Problem with a Non-resumable Flexible Maintenance Period 523

Fig. 8. Schedule S5.

Case 2-2: bq > T2. It is not difficult to imply in any feasible schedule jobs p and q are
processed after the MP, so that a new lower bound of the optimal makespan

Cmax(S∗) ≥ T1+Δ +bp+bq (9)

follows. We will choose the best one from Schedule S6 and S7.

Case 2-2-1: If bq > T1 + Δ , we consider Schedule S6. We first claim T1 + Δ ≤
1
3Cmax(S∗), otherwise we would imply T1+Δ +bp+bq >Cmax(S∗), which contradicts
(9). So, we have

Cmax(S6) = T1+Δ +Cmax(̂S∗) ≤ 4
3
Cmax(S∗),

due to the fact that ̂S∗ denotes the optimal makespan for O2||Cmax and Observation 1.

Case 2-2-2: If bq ≤ T1+Δ , we consider Schedule S7. We claim bq ≤ 1
3Cmax(S∗), oth-

erwise, we would have T1+Δ +bp+bq >Cmax(S∗), which also contradicts (9).
If the makespan in schedule S7 occurs on M1 and no idle interval occurs on M1,

then S7 is optimal. If there is one idle interval occurs on M1, according to Observation
2, only one job j ∈ N\{p,q} is processed after the idle interval, see Fig. 9(a). So we
have

Cmax(S7) = a(N)+ I ≤ a(N)+b j ≤ 4
3
Cmax(S∗),

due to b j ≤ 1
3LB and (2).

If the makespan in schedule S5 occurs on M2, we need to consider whether there is
an idle interval after the MP onM2 or not. If there is an idle timeW after the MP onM2,
according to Observation 2, only one job either p, or j ∈ N\{p,q}, or q, is processed
afterW on M2. If job p or j ∈ N\{p,q} is the last job on M2, see Fig. 9(b) and (c), it is
easy to deduce

Cmax(S7) =max{ap+bp,Cj,1(S7)+b j} ≤ 4
3
Cmax(S∗)

524 Y. Yuan et al.

Fig. 9. Schedule S7.

due to (2) and Lemma 2. If job q is processed after the idle interval onM2, see Fig. 9(d),
we have

Cmax(S7) = ap+aq+bq ≤ 4
3
Cmax(S∗),

where the last inequality is due to (2) and bq ≤ 1
3Cmax(S∗).

When there is no idle time after the MP onM2, we consider the idle time before the
MP onM2. According to Lemma 1, if there are two idle intervals before the MP onM2,
see Fig. 9(e), then the total length of two idle intervals is no more than b j, j ∈N2\{p,q}.
Let the length of two intervals be I1 and I2, respectively. So we have

Cmax(S7) = b(N1)+ I1+ I2+Δ +b(N2)< b(N)+Δ +b j ≤ 4
3
Cmax(S∗),

where the last inequality is due to (2) and Lemma 2. If there is only one idle interval
before the MP on M2, let I denote the length of the idle interval, we assume I > 1

3LB;
otherwise we have

Cmax(S7) = b(N1)+ I+Δ +b(N2) = b(N)+Δ + I ≤ 4
3
Cmax(S∗).

We claim that there are at most three jobs p, q and j ∈ N2\{p,q} to be processed after
the MP, see Fig. 9(f). Thus, we can obtain

Cmax(S7) = T1+Δ +bp+bq+b j ≤ 4
3
Cmax(S∗),

where the last inequality is due to (9) and Lemma 2.

Open Shop Scheduling Problem with a Non-resumable Flexible Maintenance Period 525

Table 1. A tight example for Algorithm 3

1 2 3 4

a j 1 1 1 1

b j U+1 U+1 1 U −1

Thus, we have proved that Algorithm 3 derives a 4
3 -approximation ratio. To see that

the bound is tight, consider an instance that consists of four jobs, the processing times
are given in Table 1, whereU > 4 is a large number. The MP start window on machine
M2 is defined by T1 =U −2 and T2 =U −1, while the duration of MP is 1, i.e., Δ = 1.
It follows that LB = max{a(N),b(N) + Δ ,T1 + Δ ,max j∈N{a j + b j}} = b(N) + Δ =
3U+3, and jobs p and q are 1 and 2, respectively.

Since b1 = b2 =U + 1 >U − 1 = T2, so both jobs 1 and 2 are processed after the
MP onM2, Algorithm 3 creates schedules S6 and S7. We first consider schedule S6, see
Fig. 10(a), it is not difficult to obtain that the optimal makespan of problem O2||Cmax

is Cmax(̂S∗) = max{a(N),b(N),max j∈N{a j + b j}} = 3U + 2, so we have Cmax(S6) =
T1+Δ +Cmax(̂S∗) = 4U+1.

Fig. 10. (a) Schedule S6, (b) Schedule S7, (c) Schedule S∗.

Then we consider schedule S7. Since the jobs besides jobs 1 and 2 to be assigned on
M2 can be taken arbitrarily, it is possible that the order of jobs onM2 is (3,1,2,4), while
the order on machineM1 is (1,2,3,4), see Fig. 10(b). Consequently,Cmax(S7) = 4U . So
that Cmax(S) =min{Cmax(S6),Cmax(S7)} =Cmax(S7) = 4U .

On the other hand, there exists an optimal schedule S∗ with Cmax(S∗) = 3U + 3,
in which machine M2 processed the jobs in the sequence (4,1,2,3) since job 4 can be

completed before the MP, see Fig. 10(c). As U increases, the ratio Cmax(S)
Cmax(S∗) approaches

4
3 . ��

4 Conclusion

This paper investigates two-machine open shop scheduling problem with one flexi-
ble maintenance window under the non-resumable scenario. For this problem, a fast

526 Y. Yuan et al.

4
3 -approximation algorithm is proposed, which solves the open question in [1]. No
paper studies the two-machine flow shop scheduling problem with one flexible MP
on machine M1, which is interesting goal in the future research.

References

1. Mosheiov, G., Sarig, A., Strusevich, V.A., Mosheiff, J.: Two-machine flow shop and open
shop scheduling problems with a single maintenance window. Eur. J. Oper. Res. 271(2),
388–400 (2018)

2. Lee, C.: Machine scheduling with an availability constraint. J. Global Optim. 9(3–4), 395–
416 (1996)

3. Lee, C.: Two-machine flowshop scheduling with availability constraints. Eur. J. Oper. Res.
114(2), 420–429 (1999)

4. Breit, J., Schmidt, G., Strusevich, V.A.: Two-machine open shop scheduling with an avail-
ability constraint. Oper. Res. Lett. 29(2), 65–77 (2001)

5. Kubzin, M., Potts, C., Strusevich, V.A.: Approximation results for flow shop scheduling
problems with machine availability constraints. Comput. Oper. Res. 36(2), 379–390 (2009)

6. Breit, J., Schmidt, G., Strusevich, V.A.: Non-preemptive two-machine open shop scheduling
with non-availability constraints. Math. Methods Oper. Res. 57(2), 217–234 (2003)

7. Yuan, Y., Lan, Y., Ding, N., Han, X.: A PTAS for non-resumable open shop scheduling with
an availability constraint. J. Comb. Optim., 1–13 (2021). https://doi.org/10.1007/s10878-
021-00773-7

8. Kubzin, M., Strusevich, V., Breit, J., Schmidt, G.: Polynomial-time approximation schemes
for two-machine open shop scheduling with nonavailability constraints. Nav. Res. Logist.
53(1), 16–23 (2006)

9. Lawler, E., Lenstra, J., Kan, A., Shmoys, D.: Sequencing and scheduling: algorithms and
complexity. Handbooks Oper. Res. Management Sci. 4, 445–522 (1993)

10. Gonzalez, T., Sahni, S.: Open shop scheduling to minimize finish time. J. ACM 23(4), 665–
679 (1976)

11. Strusevich, V.A.: A greedy open shop heuristic with job priorities. Ann. Oper. Res. 83, 253–
270 (1998)

12. Sevastianov, S., Woeginger, G.: Makespan minimization in open shops: a polynomial time
approximation scheme. Math. Program. 82(1–2), 191–198 (1998)

https://doi.org/10.1007/s10878-021-00773-7
https://doi.org/10.1007/s10878-021-00773-7

Parallel Algorithm for Minimum Partial
Dominating Set in Unit Disk Graph

Weizhi Hong, Zhao Zhang(B), and Yingli Ran(B)

College of Mathematics and Computer Sciences, Zhejiang Normal University,
Jinhua 321004, Zhejiang, China

hxhzz@sina.com, ranyingli@zjnu.edu.cn

Abstract. In this paper, we consider the minimum partial dominating
set problem in unit disk graphs (MinPDS-UD). Given a set of points
V on the plane with |V | = n, two points in V are adjacent in the unit
disk graph if their Euclidean distance is no larger than one unit length.
A point dominates itself and all its neighboring points. For an integer
k ≤ n, the goal of MinPDS-UD is to find a minimum subset of points
D ⊆ V such that at least k points are dominated by D. We present the
first parallel algorithm for MinPDS-UD. It runs in O(log n) rounds on
O(n) machines, and achieves a constant approximation ratio.

Keywords: Partial dominating set · Unit disk graph · Parallel
algorithm · Approximation ratio

1 Introduction

For a graph G = (V,E) with vertex set V and edge set E, a vertex v is dominated
by a vertex set D ⊆ V if either v ∈ D or v has a neighbor in D. A dominating
set (DS) of G is a subset D ⊆ V which dominates every vertex of G. The
minimum dominating set problem (MinDS) is to compute a dominating set of
the smallest size. It is widely used in many fields such as wireless networks [23].
MinDS is a well-known NP-hard problem [11] and there are extensive studies on
its approximation algorithms [7]. This paper considers the partial version which
requires D to dominate at least k vertices instead of all vertices. This is called
the minimum partial dominating set problem (MinPDS).

A unit disk graph is a graph in which every vertex corresponds to a point on
the plane and there is an edge between two vertices of the graph if the Euclidean
distance between the two corresponding points is no greater than one unit. It is
a widely adopted topology in a homogeneous wireless sensor network [23]. This
paper studies the MinPDS problem on a unit disk graph (MinPDS-UD).

MinPDS is a special case of the minimum partial set cover problem (MinPSC).
Given a ground set U with n elements, a collection S of subsets of U and an

This research work is supported in part by NSFC (11901533, U20A2068, 11771013),
and ZJNSFC (LD19A010001).

c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 527–537, 2021.
https://doi.org/10.1007/978-3-030-92681-6_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_41&domain=pdf
https://doi.org/10.1007/978-3-030-92681-6_41

528 W. Hong et al.

integer k ≤ n, the goal of MinPSC is to find a minimum size sub-collection of S
that covers at least k elements of U . The minimum set cover problem (MinSC)
is a special case of MinPSC with k = n. A MinPDS instance can be viewed as a
MinPSC instance by setting U = V and S = {Sv : v ∈ V }, where Sv is the set of
neighbors of v including v itself. There are a lot of studies on parallel algorithms
for MinSC [2,18,21]. For the partial version MinPSC, Ran et al. [21] presented a
parallel algorithm with approximation ratio at most f

1−2ε in O(1ε log mn
ε) rounds,

where f is the maximum number of sets containing a common element, 0 < ε < 1
2

is a constant, and m is the number of the sets. This is the only paper we know
on parallel algorithm for the partial cover problem with a theoretical guarantee
of performance. Note that f may be as big as Θ(n), which is very large. The
question is, using the speciality of the dominating set problem and the geometric
structure of a unit disk graph can we design a parallel algorithm for MinPDS-UD
with a constant approximation ratio?

1.1 Related Works

For MinDS, Bar-Yehuda and Moran proved that MinDS on general graphs is
polynomially equivalent to MinSC [1]. Thus no polynomial time algorithm can
achieve an approximation ratio within (1 − ε) log n for any real number ε >
0 unless P = NP [6,8], where n is the number of vertices. Clark et al. [4]
proved that MinDS is NP-hard even on unit disk graphs. Extensive studies on
approximation algorithms for MinDS can be found in the monograph [7]. In
particular, MinDS-UD has much better approximation due to the geometric
structure of unit disk graphs. Hunt et al. [15] presented a PTAS for MinDS-UD
using partition and shifting technique, the running time is nO(1

ε2
). Nieberg and

Hurink [20] presented a PTAS for MinDS-UD without requiring a geometric
representation of the unit disk graph, the running time is nO(1

ε log 1
ε). For the

partial verstion, Joachim et al. [17] presented an exact algorithm for MinPDS-
UD whose running time is O(n(16 + ε)k).

As will be seen from Sect. 3, the MinDS-UD problem is related with the
minimum unit disk cover problem (MinUDC), the goal of which is to find the
minimum number unit disks (that is, disks of the same size) to cover all points.
The continuous version of MinUDC (in which unit disks can be placed anywhere
on the plane) is NP-hard [9] and has been known to admit PTAS [13,14]. The
discrete version of MinUDC is much more tricky. Das et al. [5] presented an
18-approximation algorithm for the discrete MinUDC problem. The ratio was
improved to (9 + ε) by Raslimisnata et al. [22]. For the weighted version of
MinUDC, constant approximation ratio is known [3] based on LP rounding,
and Li and Jin [19] found a PTAS using a complicated guessing and dynamic
programming technique.

Most of the above algorithms are sequential, which have very high running
time, especially for the LP-based methods and dynamic programming methods.
Although divide and conquer technique has some parallel mechanism, the above
algorithms using this technique run in time at least nO(1

ε log 1
ε), and thus are not

parallel algorithms in the real sense.

Parallel Algorithm for Minimum Partial Dominating Set in Unit Disk Graph 529

There are a lot of studies on parallel algorithms for MinSC. Khuller et al. [18]
presented a parallel (f + ε)-approximation algorithm in O(f log n log 1

ε) rounds,
where f is the maximum number of sets containing a common element. For
the MinPSC problem, Gandhi et al. [10] designed a parallel algorithm with
approximation ratio f

1−ε in (1 + f log 1
ε)(1 + log n) rounds. Since f might be

as large as Θ(n), the number of rounds is not log-polynomial in the input size.
Recently, Ran et al. [21] improved the result to approximation ratio at most

f
1−2ε in O(1ε log mn

ε) rounds. As we have noted before, these ratios for the general
problem might be too large for a geometric setting. This motivates us to find a
better parallel algorithm for MinPDS-UD.

1.2 Our Contributions

In this paper, we design a parallel algorithm for MinPDS-UD. Although MinPDS
is a special case of MinPSC, compared with [21], which has approximation ratio

f
1−2ε for MinPSC in O(1ε log mn

ε) rounds, special structure indeed brings new
benefit : a constant approximation ratio can be achieved in O(log n) rounds for
MinDS-UD, where n is the number of vertices of the unit-disk graph. This is the
first parallel constant approximation algorithm for MinPDS-UD.

In Sect. 2, we present an algorithm for MinPDS-UD by utilizing a relation
between maximal independent set and dominating set, obtaining approximation
ratio at most 80 in O(log n) rounds on O(n) machines. Then in Sect. 3, we
propose another algorithm by exploring a relation between unit disk cover and
dominating set, improving the ratio to 14 in O(log n) rounds on O(n) machines.
A big challenge brought by the “partial” consideration is to determine which
points are to be dominated. We employ a greedy idea in a parallelized manner.

2 A Constant Approximation Algorithm for MinPDS-UD

In this section, we make use of maximal independent set to design a parallel
algorithm for MinPDS-UD. An independent set (IS) in a graph is a set of mutu-
ally nonadjacent vertices. A maximal independent set (MIS) is an IS such that
adding any vertex is no longer independent. Note that an MIS is also a DS.

A unit disk graph G can also be viewed as an intersection graph of unit
disks, that is, every vertex corresponds to a point on the plane and a disk of
diameter 1 centered at this point. Two vertices are adjacent in G if and only if
their corresponding unit disks have nonempty intersection. From such a point of
view, a DS of a unit disk graph G is a set of unit disks D such that every other
unit disk of V (G) \ D has a nonempty intersection with some unit disk in D,
and an IS of G is a set of disjoint unit disks.

For a MinPDS-UD instance on unit disk graph G with a geometric rep-
resentation on the plane, suppose the n points are contained in a square Q.
Partition Q into blocks of side-length 2 × 2, yielding a partition P . If block
b in P contains no point, then b is called an empty block. Otherwise, b is
called a nonempty block. Let block(P) be the set of all nonempty blocks in

530 W. Hong et al.

partition P , i.e. block(P) = {b : there exists at least one point in b, b ∈ P}.
For a b ∈ block(P), denote by VP (b) the set of points contained in b with
respect to partition P , sort all nonempty blocks as b1, b2, · · · , bq such that
|VP (b1)| ≥ |VP (b2)| ≥ · · · ≥ |VP (bq)|. Since |V | = n and q ≤ n, there exists
an index nP such that

nP∑

i=1

|VP (bi)| ≥ k and
nP −1∑

i=1

|VP (bi)| < k. (1)

The algorithm is described in Algorithm 1. It returns the better one between
two solutions AP1 and AP2 with respect to two partition P1 and P2. Assume,
without loss of generality, that both P1 and P2 contain all points. For each
partition P , sort all nonempty blocks b in decreasing order of |VP (b)| and find the
index nP satisfying inequality (1). Our next step is to find, for each b ∈ block(P),
a dominating set dominating all the points in b. Note that a point p in b might
be dominated by a vertex v whose center is outside of b. Since two vertices are
adjacent if and only if their corresponding points have distance no larger than 1,
such a v must have its center in the extended block b′ of b, which is obtained from
b through extending its four boundaries by 1 (see Fig. 1). Compute a maximal
independent set I(b) in b′ to serve as a DS of b, using a parallel algorithm for MIS
such as the one described in [12]. By the choice of nP ,

⋃
b∈block(P) I(b) covers at

least k points.

Algorithm 1. Algorithm for MinPDS-UD by MIS
Input: A geometric representation of a unit disk graph G.
Output: A set A of vertices dominating at least k vertices of G.

1: P1 ← a partition of the area containing all points into blocks of side-length 2 × 2
2: P2 ← a shifting of P1 to north-east by 1 unit up and 1 unit right
3: j ← 0
4: for j = 1 to 2 do
5: Sort blocks in block(Pj) as b1, . . . , bq such that |VPj (b1)| ≥ · · · ≥ |VPj (bq)|.
6: nPj ← arg minj′{j′ : | ⋃j′

i=1 VPj (bi)| ≥ k}
7: for any bi with i ≤ nPj in parallel do
8: I(bi) ← a maximal independent set in b′

i

9: end for
10: APj ← ⋃nPj

i=1 I(bi)
11: end for
12: if |AP1 | ≤ |AP2 | then
13: A ← AP1

14: else
15: A ← AP2

16: end if
17: return A

The next lemma evaluates the size of an MIS in an extended block (Fig. 1).

Parallel Algorithm for Minimum Partial Dominating Set in Unit Disk Graph 531

block b

b

1

Fig. 1. Block b and its extended block b′.

P1

P2

1
1

Fig. 2. Partition P1 and partition P2.

Lemma 1. The size of a maximal independent set I(b) computed in line 8 of
Algorithm 1 is at most 32.

Proof. Let b′ be the extended block of b and b′′ be the block extending the
boundaries of b by 3

2 (see Fig. 3). Since every unit disk in I(b) has its center
located in b′, it must be completely contained in b′′. Combining this observation
with the fact that an independent set corresponds to a set of mutually disjoint
unit disks, so |I(b)| is upper bound by � (2+3)2

π/4 � ≤ 32.

Next we estimate the approximation ratio of Algorithm 1.

Theorem 1. Algorithm 1 achieves approximation ratio at most 80 and runs in
O(log n) rounds on O(n) machines.

532 W. Hong et al.

block b

b

1

b

1
2

Fig. 3. Extending the boundaries of the block by 1 and 3
2

Proof. Let OPT be an optimal solution and opt be the value of the OPT . For a
partition P , denote by noP

the number of blocks in block(P) intersecting the unit
disks in OPT . For a block b ∈ block(P), denote OPTP (b) = {d ∈ OPT : d ∩ b 	=
∅} the set of unit disks of OPT intersecting b. Then

noP
≤

∑

b∈block(P)

|OPTP (b)|. (2)

Denote by HP and YP the set of unit disks in OPT that intersect two horizon-
tal strips and two vertical strips of P , respectively. Note that if a disk intersects
more than two blocks in P , it must belong to both HP and YP . Furthermore, a
unit disk can intersect at most four blocks of P . Therefore,

∑

b∈block(P)

|OPTP (b)| ≤ opt + |HP | + 2|YP |. (3)

Note that a unit disk cannot belong to both HP1 and HP2 . Therefore, HP1 ∩
HP2 = ∅ and thus

|HP1 | + |HP2 | ≤ opt. (4)

Similarly

|YP1 | + |YP2 | ≤ opt. (5)

By the greedy method in line 6 of Algorithm 1, we have

nP ≤ noP
. (6)

Combining Lemma 1 with inequalities (2), (3) and (6), for any partition Pj ,

|AP | ≤ 32nP ≤ 32noP
≤ 32(opt + |HP | + 2|YP |). (7)

Parallel Algorithm for Minimum Partial Dominating Set in Unit Disk Graph 533

Combining inequalities (4), (5) and (7),

|AP1 | + |AP2 | ≤ 32(2opt + |HP1 | + 2|YP1 | + |HP2 | + 2|YP2 |) ≤ 160opt.

Since Algorithm 1 chooses the minimum of |AP1 | and |AP2 |, we have |A| ≤ 80opt.
Next we estimate the number of rounds and the number of machines needed

by Algorithm 1. Line 5 and 6 can be done in O(log n) rounds on O(n) machine by
a parallel sorting method a parallel selecting method in [16], Using the algorithm
in [12] to compute an MIS in parallel needs O(log n) rounds on O(n) machines.
The other operations can be done in O(1) rounds on O(n) machines. So the
adaptive complexity follows.

3 An Improved Approximation Algorithm
for MinPDS-UD

In this section, we propose another parallel algorithm for MinPDS-UD, which
improves the approximation ratio as well as the adaptive complexity.

The algorithm makes use of a relation between MinPDS-UD and a restricted
version of the partial unit disk cover problem. Given a set V of n points and a
set D of disks of the same size on the plane, the goal of the Minimum Partial
Unit Disk Cover problem (MinPUDC) is to find a minimum number of disks to
cover at least k points. The meaning of “restricted” is that the centers of those
disks in D coincide with the points in V. In fact, for a MinPDS-UD instance on
unit disk graph G, let the points corresponding to the vertices of G to be the
points to be covered, as well as the centers of disks of diameter 2. Note that a
disk of diameter 2 centered at point u covers point v if and only if the Euclidean
distance between u and v is at most 1, that is, v is dominated by u in G. Hence
we may focus on such a restricted MinPUDC problem. It should be emphasized
that in the following, a unit disk refers to a disk of diameter 2, not 1.

The algorithm is described in Algorithm 2. It differs from Algorithm 1 in
three aspects. First, instead of taking the better one between two solutions,
it only computes a solution for one partition. Second, the size of each block is√

2
2 ×

√
2
2 (not 2×2). Third, a DS in block b ∈ block(P) is no longer approximated

by an MIS, but is computed by selecting an arbitrary point in b; denote the unit
disk (of diameter 2) centered at this point as D(b). The other steps are the same
as Algorithm 1. Note that D(b) covers all the points in block b (see Fig. 4 for an
illustration). By the choice of nP in line 3 of Algorithm 2,

⋃nP

i=1 D(b) covers at
least k points.

Lemma 2. Every D(b) can intersect at most 14 blocks.

Proof. Note that a disk of diameter 2 is completely contained in a square of
side-length 2

√
2 × 2

√
2, and thus it can intersect at most 4 × 4 = 16 blocks.

To further reduce the number, we divide block b into four cells of side-length√
2
4 ×

√
2
4 , and denote them as e1, . . . , e4 (see Fig. 5 for an illustration). Without

loss of generality, we assume that the selected point v is located in cell e1 (see

534 W. Hong et al.

√
2
2

Fig. 4. A disk centered in a
√
2
2

×
√
2
2

block can cover this block.

Algorithm 2. Algorithm for restricted MinPUDC
Input : Area Q containing all points in V .
Output : A disks set A, which covers at least k points of V .

1: P ← a partition of Q into blocks of side-length
√

2
2

×
√
2
2

2: Sort nonempty blocks as b1, · · · , bq such that |VP (b1)| ≥ |VP (b2)| ≥ · · · ≥ |VP (bq)|.
3: nP ← arg minj′{j′ :

⋃j′
i=1 |VP (bi)| ≥ k}

4: for any block bi with i ≤ nP in parallel do
5: D(bi) ← the disk centered at an arbitrarily selected point in bi
6: end for
7: return A ← ⋃nP

i=1 D(bi)

Fig. 6). The following two facts can be observed. First, D(b) does not interest
b11. Otherwise, the radius of the disk is larger than 1 since the distance between
any point in b11 and v is larger than 1, contradicting the fact that the diameter
of a disk is 2. Second, D(b) does not simultaneously interest both b14 and b41,
since the distance between any point in b41 and any point in b14 is larger than
2. It follows that D(b) can intersect at most 14 blocks.

block b

e1 e2

e3 e4

Fig. 5. Divide a block into four cells

Next we evaluate |A| in Algorithm 2.

Theorem 2. The approximation ratio of Algorithm 2 is at most 14 and Algo-
rithm 2 runs O(log n) rounds on O(n) machines.

Parallel Algorithm for Minimum Partial Dominating Set in Unit Disk Graph 535

b11 b12 b13 b14

b21 b22 b23 b24

b31 b32
b

b34

b41 b42 b43 b44

Fig. 6. D(b) can intersect at most 14 blocks

Proof. Since we only selects one point in each of the nP nonempty blocks,

|A| = nP . (8)

Using the same notation nOP
as in the proof of Lemma 1, we also have inequality

(6). Combining this with Lemma 2, we have

nP ≤ nOP
≤ 14opt. (9)

Combining (8) and (9), approximation ratio 14 is proved.
Since line 2 and line 3 of Algorithm 2 can be done in O(log n) rounds on O(n)

machines (see [16]), and line 5 can be done in constant time on each machine,
the adaptive complexity follows.

4 Conclusion

This paper presented two parallel approximation algorithms for MinPDS-UD.
The first one makes use of a relation between a maximal independent set and
a dominating set, achieving approximation ratio 80 in O(log n) rounds on O(n)
machines. The second one transforms the MinPDS-UD problem into a restricted
partial unit disk cover problem, achieving approximation ratio 14 in O(log n)
rounds on O(n) machines. These are the first parallel algorithms for MinPDS-
UD achieving constant approximation ratio in log-polynomial rounds.

The first method is much more complicated, while its approximation ratio is
worse. The reason might be: using inequality (2) to bridge the computed solution
and an optimal solution might be too loose, it is tight only when every block
intersects very few disks from the optimal solution, but the estimation for the
number of vertices in an MIS only depends on the size of the block. In fact,
the larger the block size is, the looser inequality (2) will be, and the larger the
number of disks in a MIS will be. We believe that the first method might yield a
better solution if a more delicate relation between MIS and PDS can be found.
One difficulty lies in the fact that in a partial cover problem, one does not know
which points should be covered.

536 W. Hong et al.

Note that our method in Sect. 3 can be applied to the minimum partial con-
tinuous unit disk cover problem, the goal of which is to find the minimum number
of disks with diameter 2, that can be located anywhere on the plane, to cover at
least k points. Similar method yields a parallel algorithm with approximation
ratio at most 9 in O(log n) rounds on O(n) machines.

Note that our method can only be used for the cardinality case. New tech-
niques have to be further explored for the weighted version.

References

1. Bar-Yehuda, R., Moran, S.: On approximation problems related to the independent
set and vertex cover problem. Disc. Appl. Math. 9(1), 1–10 (1984)

2. Berger, B., Rompel, J., Shor, P.W.: Efficient NC algorithms for set cover with
applications to learning and geometry. J. Comput. Syst. Sci. 49(3), 454–477 (1994)

3. Chan, T.M., Grant, E.: Weighted capacitated, priority, and geometric set cover via
improved quasi-uniform sampling. In: ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 1576–1585. SIAM (2012)

4. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Disc. Math. 86(1–3),
165–177 (1990)

5. Das, G.K., Fraser, R., Lopez-ortiz, A., Nickerson, B.G.: On the discrete unit disk
cover problem. Int. J. Comput. Geometry Appl. 22(5), 407–419 (2012)

6. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: 46th Annual
ACM Symposium on Theory of Computing, pp. 624–633, New York (2014)

7. Du, D.Z., Wang, P.J.: Connected Dominating Set: Theory and Applications.
Springer, New York (2013). https://doi.org/10.1007/978-1-4614-5242-3

8. Feige, U.: A threshold of ln n for approximating set cover. In: 28th International
Proceedings on ACM Symposium on Theory of Computing, pp. 314–318. ACM,
New York (1996)

9. Fowler, R.J., Paterson, M.S., Tanimoto, S.L.: Optimal packing and covering in the
plane are NP-complete. Inf. Process. Lett. 12(3), 133–137 (1981)

10. Gandhi, R., Khuller, S., Srinivasan, A.: Approximation algorithms for partial cov-
ering problems. J. Algorithms 53(1), 55–84 (2004)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co.Subs. of Scientific American, Inc. 41
Madison Avenue, 37th Fl. New York, NY, United States (1979)

12. Ghaffari, M., Haeupler, B.: A Time-optimal randomized parallel algorithm for MIS.
In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, pp.
2892–2903. SIAM (2021)

13. Gonzalez, T.F.: Covering a set of points in multidimensional space. Inf. Process.
Lett. 40(4), 181–188 (1991)

14. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing
problems in image processing and VLSI. J. ACM 32(1), 130–136 (1985)

15. Hunt, H.B., III., Marathe, M.V., Radhakrishnan, V., Ravi, S.S., Rosenkrantz, D.J.,
Stearns, R.E.: NC-approximation schemes for NP- and PSPACE-hard problems for
geometric graphs. J. Algorithms 26(2), 238–274 (1998)

16. JáJá J.: An Introduction to Parallel Algorithms. Addison Wesley Longman Pub-
lishing Co., Inc. 350 Bridge Pkwy suite 208 Redwood City, CA, United State (1992)

https://doi.org/10.1007/978-1-4614-5242-3

Parallel Algorithm for Minimum Partial Dominating Set in Unit Disk Graph 537

17. Joachim, K., Daniel, M., Peter, R.: Partial vs. complete domination: t-dominating
set. In: International Conference on Current Trends in Theory and Practice of
Computer Science, vol. 4362(1), pp. 367–376 (2007)

18. Khuller, S., Vishkin, U., Young, N.: A primal-dual parallel approximation technique
applied to weighted set and vertex covers. J. Algorithms 17(2), 280–289 (1994)

19. Li, J., Jin, Y.: A PTAS for the weighted unit disk cover problem. In: Halldórsson,
M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol.
9134, pp. 898–909. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-47672-7 73

20. Nieberg, T., Hurink, J.: A PTAS for the minimum dominating set problem in unit
disk graphs. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879,
pp. 296–306. Springer, Heidelberg (2006). https://doi.org/10.1007/11671411 23

21. Ran, Y.L., Zhang, Y., Zhang, Z.: Parallel approximation for partial set cover. Appl.
Math. Comput. 408, 126358 (2021)

22. Rashmisnata, A., Manjanna, B., Gautam, K.D.: Unit disk cover problem in 2D. J.
Discrete Algorithms 33, 193–201 (2015)

23. Wu, J., Dai, F., Gao, M., Stojmenovic, I.: On calculating power-aware connected
dominating sets for efficient routing in Ad Hoc wireless networks. J. Commun.
4(1), 59–70 (2002)

https://doi.org/10.1007/978-3-662-47672-7_73
https://doi.org/10.1007/978-3-662-47672-7_73
https://doi.org/10.1007/11671411_23

An Improved Approximation Algorithm
for Squared Metric k-Facility Location

Zhen Zhang1,2 and Qilong Feng1(B)

1 School of Computer Science and Engineering, Central South University,
Changsha 410000, People’s Republic of China

csufeng@mail.csu.edu.cn
2 School of Frontier Crossover Studies, Hunan University of Technology

and Business, Changsha 410000, People’s Republic of China

Abstract. In this paper, we study the squared metric k-facility loca-
tion problem, which generalizes the k-means problem in that each facil-
ity has a specific cost of opening it in the solution. The current best
approximation guarantee for the squared metric k-facility location prob-
lem is a ratio of 44.473 + ε based on a local search algorithm. We give
a (36.343 + ε)-approximation for the problem using the techniques of
primal-dual and Lagrangian relaxation. We propose a new rounding app-
roach that exploits the properties of the squared metric, which is the
crucial step in getting the improved approximation ratio.

Keywords: Approximation algorithm · Squared metric k-facility
location · k-means

1 Introduction

k-means is a commonly studied clustering problem. This problem considers a
set D of clients and a set F of facilities located in a metric space. The goal is
to open no more than k facilities and assign each client to an opened facility,
such that the sum of the squared distance from each client to the corresponding
facility is minimized. The k-means problem was known to be NP-hard [2,15],
which leads to considerable attentions paid on the design of its approximation
algorithms [1,3,9,13,17,21,22]. The current best approximation guarantee for
the k-means problem is a ratio of 9 + ε [1], which was obtained based on a
primal-dual approach.

The k-means problem inherently assumes that each facility can be opened
without paying opening cost. However, the facilities are associated with non-
uniform opening costs in many clustering applications, such as data placement [5,
14], network design [19,25], and warehouse location [10,24]. In this paper, we
consider the squared metric k-facility location problem (SM-k-FL), which is

This work was supported by National Natural Science Foundation of China (61872450
and 62172446).

c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 538–552, 2021.
https://doi.org/10.1007/978-3-030-92681-6_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_42&domain=pdf
http://orcid.org/0000-0002-2974-5781
https://doi.org/10.1007/978-3-030-92681-6_42

Squared Metric k-Facility Location 539

similar to the k-means problem, except that it involves non-uniform facility
opening costs. The problem is formally defined as follows.

Definition 1 (squared metric k-facility location). The squared metric k-
facility location problem considers a set D of clients and a set F of facilities in
a metric space, and an integer k > 0, where each i ∈ F has an opening cost
f(i) > 0. The goal is to open a set S ⊆ F of no more than k facilities, such that
the objective function

∑
i∈S f(i) +

∑
j∈D Δ(j,S) is minimized, where Δ(j,S)

denotes the squared distance for j to the nearest facility from S.
Jain and Vazirani [21] showed that the techniques of primal-dual and

Lagrangian relaxation yield a (54 + ε)-approximation for SM-k-FL. Zhang et
al. [27] later gave a (44.473 + ε)-approximation based on local search, which
is currently the best approximation guarantee for SM-k-FL. A closely related
problem to SM-k-FL is the k-facility location problem, where the assignment
cost of each client is measured by its distance to the corresponding facility. Jain
and Vazirani [21] gave a (6 + ε)-approximation for k-facility location using a
primal-dual algorithm. The approximation guarantee for the problem was later
improved by a series of work [20,28] to the current best ratio of 3.25 [8].

We briefly remark on the commonly used techniques for the related problems
to SM-k-FL, such as k-means and k-facility location, to show the challenges in
obtaining approximation ratios better than 44.473 + ε for SM-k-FL.

– Local search has been successfully applied to solve the problems of k-facility
location [28] and k-means [17,22,29]. Starting with an arbitrary feasible solu-
tion, local search-based algorithms iteratively improve the solution by closing
a set of opened facilities and opening a set of closed facilities. The desired
approximation guarantee is obtained by the fact that none of such swaps can
significantly improve a local optimum. Gupta and Tangwongsan [17] showed
that local search yields a (25 + ε)-approximation for the k-means problem.
For SM-k-FL, the non-uniform facility opening costs make the approximation
ratio of a local optimum much more difficult to bound. It is hard to improve
the 44.473 + ε ratio using more refined analysis of local search.

– Charikar and Li [8] gave a 3.25-approximation for the k-facility location prob-
lem using an LP-rounding algorithm. Unfortunately, it was known that under
the squared metric, the current LP-rounding techniques yield quite large
approximation ratios, and some commonly used linear programming formu-
lations in clustering problems have unbounded integrality gaps [12]. Thus, it
seems quite difficult to improve the performance guarantee of SM-k-FL based
on LP-rounding.

– Jain and Vazirani [21] gave a (6+ε)-approximation algorithm for the k-facility
location problem based on the techniques of primal-dual and Lagrangian
relaxation. The algorithm uses a rounding method that relies on triangle
inequality. This significantly deteriorates the performance of the method in
the squared metric. Indeed, Jain and Vazirani [21] showed that a similar algo-
rithm yields a (54 + ε)-approximation for SM-k-FL. Most recently, improved

540 Z. Zhang and Q. Feng

rounding methods that behave well in the squared metric have been intro-
duced. For example, Ahmadian et al. [1] gave a (9 + ε)-approximation algo-
rithm for the k-means problem, and Feng et al. [11] presented a (19.849 + ε)-
approximation algorithm for the k-means with penalties problem, both of
which are based on the framework outlined in [21]. However, these algorithms
rely heavily on the assumption that the facilities can be arbitrarily opened
without paying opening cost, and can induce unbounded cost when applied
to solve SM-k-FL.

1.1 Our Results

In this paper, we obtain a (36.343 + ε)-approximation for SM-k-FL.

Theorem 1. For any constant ε > 0, there is a (36.343 + ε)-approximation
algorithm for SM-k-FL that runs in polynomial time.

Given an instance of SM-k-FL, our algorithm first relaxes the constraint on
the number of opened facilities, and then obtains two solutions H1 and H2 to
the relaxed problem. Here, H1 opens k1 < k facilities, H2 opens k2 > k facilities,
and we have ak1 + (1 − a)k2 = k for a real number a ∈ (0, 1). Let S1 and S2

denote the sets of the facilities opened in H1 and H2, respectively. A convex
combination of H1 and H2 is a feasible fractional solution to SM-k-FL, which
we want to round to an integral solution.

We apply different strategies depending on the values of a and k − k1.

– Case (1): a ∈ [14 , 1). H1 opens no more than k facilities and thus is a feasible
solution to SM-k-FL. For this case, we show that the cost of H1 is quite small
and directly return H1 as the final solution.

– Case (2): a ∈ [1
36 , 1

4) and k − k1 ≤ 1
εa . For this case, we show that a set of

k facilities from S2 yields the desired approximation for the problem. Such k
facilities can be found in polynomial time by enumerating all the subsets of
S2 of size k since k2 is close to k.

– Case (3): a ∈ [1
36 , 1

4) and k−k1 > 1
εa . We first open each facility from S1, and

then improve the solution by swapping in some facilities from S2. A linear
program that maximizes the reduced cost is considered.

– Case (4): a ∈ (0, 1
36). For this case, H1 has unbounded cost, and we prefer to

select the facilities from S2 to open. We show that k facilities selected from
S2 using a greedy method achieve the desired approximation for SM-k-FL.

In the past two decades, the technique of Lagrangian relaxation has been
extensively studied and used in clustering problems. Specifically, the best known
approximation ratios for many problems, such as k-median [6], k-means [1],
and k-median with uniform penalties [26], are based on Lagrangian relaxation,
which significantly improved the ratios of the local search-based approaches [4,
17,18,22]. However, this technique has not yielded similar improvements for
SM-k-FL, and the current best approximation guarantee for SM-k-FL is based
on local search [27]. This paper overcomes this barrier and gives an improved

Squared Metric k-Facility Location 541

approximation ratio for SM-k-FL. The main technical contribution of the paper
is a deterministic rounding approach that is quite different from the previously
used randomized rounding methods [7,21]. The approach exploits the properties
of the squared metric, which is the crucial step in getting the improved ratio.

2 Preliminaries

Let I = (D,F , k, f) be an instance of SM-k-FL. Given two points i, j ∈ D∪F , let
δ(i, j) and Δ(i, j) be the distance and squared distance from i to j, respectively.
For any A ⊆ D ∪F , define δ(i,A) = minl∈A δ(i, l) and Δ(i,A) = minl∈A Δ(i, l).
We formalize I as an integer program and relax the integrality constraints to
get the following linear program.

min
∑

i∈F
yif(i) +

∑

i∈F,j∈D
xijΔ(j, i) LP1

s.t.
∑

i∈F
xij = 1 ∀j ∈ D (1)

xij ≤ yi ∀j ∈ D, i ∈ F (2)
∑

i∈F
yi ≤ k (3)

xij , yi ≥ 0 ∀j ∈ D, i ∈ F (4)

LP1 associates a variable xij with each i ∈ F and j ∈ D indicating whether
j is assigned to i, and a variable yi with each i ∈ F indicating whether i is
opened. Constraints (1) and (2) enforce that each client should be assigned to
an opened facility, and constraint (3) says that at most k facilities can be opened.
An integral solution to LP1 exactly corresponds to a solution to I. Let opt∗ be
the cost of an optimal integral solution to LP1.

Let Δmin and Δmax be the minimum and maximum squared distances
between any i, j ∈ D ∪ F , repectively. Similarly, let fmin = mini∈F f(i) and
fmax = maxi∈F f(i). The following result shows that both Δmax/Δmin and
fmax/fmin can be polynomially bounded, which induces an arbitrarily small loss
in the approximation guarantee.

Lemma 1. Given a real number ε > 0 and an instance I = (D,F , k, f) of SM-
k-FL, we can assume that Δmax/Δmin ≤ |D|2ε−1 and fmax/fmin ≤ |D|kε−1 with
losing a factor 1 + O(ε) in the approximation guarantee.

The following algebraic fact is useful in analyzing the assignment costs.

Lemma 2. For any three positive numbers μ, ν, and ρ, we have (μ + ν)2 ≤
(1 + ρ)μ2 + (1 + 1

ρ)ν2.

Proof. Observe that

(μ + ν)2 = μ2 + ν2 + 2
√

ρμ
1√
ρ
ν ≤ μ2 + ν2 + ρμ2 +

1
ρ
ν2,

as desired. 	

542 Z. Zhang and Q. Feng

3 A Fractional Solution

The constraint on the number of opened facilities is one of the main obstacles
in finding integral solutions to LP1. The framework of Lagrangian relaxation
outlined in [21] is frequently used to overcome such kind of obstacles [1,6,16,23,
26,30]. The idea is to remove the constraint but pay the penalty for its violation.
This motivates the following relaxation of LP1, where τ ≥ 0.

min
∑

i∈F
yif(i) +

∑

i∈F,j∈D
xijΔ(j, i) + τ(

∑

i∈F
yi − k) LP2(τ)

s.t. (1), (2), and (4)

The dual program of LP2(τ) is

max
∑

j∈D
αj − τk DUAL(τ)

s.t. αj ≤ Δ(j, i) + βij ∀j ∈ D, i ∈ F (5)
∑

j∈D
βij ≤ f(i) + τ ∀i ∈ F (6)

αj , βij ≥ 0 ∀j ∈ D, i ∈ F (7)

For any τ ≥ 0, let opt(τ) denote the cost of an optimal solution to LP2(τ).
Given a solution H′ = (x′, y′) to LP2(τ), define F (H′) =

∑
i∈F y′

if(i) and
S(H′) =

∑
i∈F,j∈D x′

i,jΔ(i, j) for brevity, and let C(H′) = F (H′) + S(H′). If H′

is a feasible solution to LP1, then C(H′) is its cost for LP1. It can be seen that
LP2(τ) is a linear program of the squared metric facility location problem [12],
where each facility i ∈ F is associated with an opening cost f(i) + τ , and
the objective function has a constant term of −τk. Based on the primal-dual
algorithm given by Jain and Vazirani [21], integral solutions to LP2(τ) with the
following guarantee can be obtained.

Lemma 3 ([21]). Given an instance I = (D,F , k, f) of SM-k-FL and a real
number τ ≥ 0, there is an algorithm that yields an integral solution H = (x, y)
to LP2(τ) and the corresponding dual solution (α, β) in polynomial time, such
that 9

(
F (H) + τ

∑
i∈F yi

)
+ S(H) ≤ 9

∑
j∈D αj .

As a corollary of Lemma 3, we have the following result. This corollary says
that we can obtain two integral solutions to LP2(τ) for some τ > 0, such that a
convex combination of the two solutions is a well-behaved fractional solution to
LP1, which we round to an integral one in Sect. 4.

Corollary 1. Given an instance I = (D,F , k, f) of SM-k-FL and a real num-
ber ε > 0, there exists a polynomial-time algorithm that returns either a 9-
approximation solution to I, or two integral solutions H1 = (x1, y1) and H2 =
(x2, y2) to LP2(τ) for some τ > 0, such that

∑
i∈F y1

i = k1 < k,
∑

i∈F y2
i =

k2 > k, and a
(
9F (H1

)
+ S(H1)

)
+ b

(
9F (H2) + S(H2)

) ≤ (
9 + O(ε)

)
opt∗, where

a = k2−k
k2−k1

and b = 1 − a.

Squared Metric k-Facility Location 543

The essential idea of Corollary 1 follows the Lagrangian relaxation approach
given by Jain and Vazirani [21], but it implies a slightly stronger performance
guarantee for the solutions to LP2(τ). Jain and Vazirani [21] gave that we can
find two solutions H1 and H2 to LP2(τ) for some τ > 0, such that the value
of aC(H1) + (1 − a)C(H2) is within a constant times opt∗ for some a ∈ (0, 1).
Corollary 1 further indicates that the facility opening costs induced by such two
solutions can be relatively small compared with opt∗, which is quite valuable in
selecting opened facilities in the rounding phase.

4 Rounding

In this section, we give a rounding approach that yields the desired integral
solution to SM-k-FL. We first introduce some notations to help with analysis.
Given a constant ε > 0 and an instance I = {D,F , k, f} of SM-k-FL, if Corol-
lary 1 does not yield a 9-approximation solution to I, then let H1 = {x1, y1}
and H2 = {x2, y2} be the two integral solutions given by Corollary 1, where∑

i∈F y1
i = k1 < k and

∑
i∈F y2

i = k2 > k. Denote by S1 = {i ∈ F : y1
i = 1}

and S2 = {i ∈ F : y2
i = 1} the sets of the facilities opened in H1 and H2,

respectively. For each j ∈ D, let i1(j) be the nearest facility to j from S1, and
let Δ1(j) = Δ(j, i1(j)). Similarly, define i2(j) as the nearest facility to j from
S2, and let Δ2(j) = Δ(j, i2(j)). We can assume that S(H1) =

∑
j∈D Δ1(j) and

S(H2) =
∑

j∈D Δ2(j), which is without loss of generalization since reassigning
each client to the nearest opened facility can only improve the solutions. Define
γ1(i) = {j ∈ D : i1(j) = i} for each i ∈ S1 and γ2(i) = {j ∈ D : i2(j) = i} for
each i ∈ S2. For any A1 ⊆ S1 and A2 ⊆ S2, define γ1(A1) =

⋃
i∈A1

γ1(i) and
γ2(A2) =

⋃
i∈A2

γ2(i). For each i ∈ S1, denote by η2(i) the nearest facility to i
from S2. Similarly, for each i ∈ S2, let η1(i) be the nearest facility to i from S1.
The following result implies that both Δ(j, η1(i2(j))) and Δ(j, η2(i1(j))) can be
bounded by a combination of Δ1(j) and Δ2(j) for each j ∈ D.

Lemma 4. For any real number ρ > 0 and any j ∈ D, it is the case that
Δ(j, η1(i2(j))) ≤ 4(1 + ρ)Δ2(j) + (1 + 1

ρ)Δ1(j) and Δ(j, η2(i1(j))) ≤ 4(1 +
ρ)Δ1(j) + (1 + 1

ρ)Δ2(j).

We now show how the desired solution to I can be obtained based on H1

and H2. Define c1 = 9F (H1) + S(H1) and c2 = 9F (H2) + S(H2) for brevity.
Define cf = ac1 + bc2, where a = k2−k

k2−k1
and b = 1 − a. Corollary 1 implies that

cf ≤ (
9 + O(ε)

)
opt∗. We consider the following four cases: (1) a ∈ [14 , 1), (2)

a ∈ [1
36 , 1

4) and k − k1 ≤ 1
εa , (3) a ∈ [1

36 , 1
4) and k − k1 > 1

εa , and (4) a ∈ (0, 1
36).

The simplest case is that of a ∈ [14 , 1), where we have c1 ≤ 1
a (ac1 + bc2) ≤(

36 + O(ε)
)
opt∗ due to Corollary 1. Observe that H1 opens less than k facilities

and is feasible for SM-k-FL. Thus, directly returning H1 as the final solution
yields a

(
36 + O(ε)

)
-approximation for the problem for case (1).

We prefer to select the facilities from S2 to open for the rest three cases since
the cost of H1 might be quite large. For cases (2) and (4), we show that a set
of k facilities from S2 yields the desired approximation ratio for the problem,

544 Z. Zhang and Q. Feng

and can be found in polynomial time. For case (3), we start with opening each
facility from S1, and then improve the solution by swapping in some facilities
from S2. A linear program is considered to maximize the reduced cost.

Case (2): a ∈ [1
36

, 1
4
) and k − k1 ≤ 1

εa
.

For this case, we show that k facilities from S2 yield the desired approximation.
Such k facilities are found by enumerating all the subsets of S2 of size k and
selecting the one with the minimum cost for SM-k-FL. By the fact that a =
k2−k
k2−k1

and the assumption that a ∈ [1
36 , 1

4) and k − k1 ≤ 1
εa , we have k2 − k =

(k − k1) a
1−a = O(1ε), which implies that the enumeration of the facilities can

be completed in polynomial time. We now consider the cost induced by the k
facilities selected from S2.

Lemma 5. If c1 > cf , then there exists a set C ⊂ S2 of k facilities, such that∑
i∈C f(i) +

∑
j∈D Δ(j, C) <

(
26 + O(ε)

)
opt∗.

Proof. Denote by S∗ the set of the facilities opened in an optimal solution to I.
For each i ∈ S∗, let π(i) be the nearest facility to i from S2. Define S ′ = {π(i) :
i ∈ S∗}. For each j ∈ D, let i∗(j) denote its nearest facility from S∗. We have

δ(j,S ′) ≤ δ(j, π(i∗(j))) ≤ δ(j, i∗(j)) + δ(i∗(j), π(i∗(j)))
≤ δ(j, i∗(j)) + δ(i∗(j), i2(j)) ≤ 2δ(j, i∗(j)) + δ(j, i2(j)), (8)

where the first step follows from the fact that π(i∗(j)) ∈ S ′, the second and last
steps are derived from triangle inequality, and the third step follows from the
fact that π(i∗(j)) is the nearest facility to i∗(j) in S2. Using inequality (8) and
Lemma 2, we get

Δ(j,S ′) ≤ (
2δ(j, i∗(j)) + δ(j, i2(j))

)2 ≤ 8Δ(j, i∗(j)) + 2Δ2(j)
= 8Δ(j,S∗) + 2Δ2(j).

Summing both sides of the inequality over j ∈ D, we have
∑

j∈D
Δ(j,S ′) ≤ 8

∑

j∈D
Δ(j,S∗) + 2S(H2) < 8opt∗ + 2S(H2). (9)

Consequently, for any C ⊂ S2 that satisfies |C| = k and S ′ ⊆ C, we have
∑

i∈C
f(i) +

∑

j∈D
Δ(j, C) ≤

∑

i∈C
f(i) +

∑

j∈D
Δ(j,S ′)

< 8opt∗ +
∑

i∈C
f(i) + 2S(H2)

< 8opt∗ + F (H2) + 2S(H2)
< 8opt∗ + 2c2 < 8opt∗ + 2cf

≤ (
26 + O(ε)

)
opt∗,

Squared Metric k-Facility Location 545

where the first step is due to S ′ ⊆ C, the second step is due to inequality (9),
the third step follows from the fact that C ⊂ S2, the fourth step is derived from
the definition of c2, the fifth step follows from the fact that cf = ac1 + (1 − a)c2
and the assumption that c1 > cf , and the last step is due to Corollary 1. Thus,
Lemma 5 is true. 	

Lemma 5 implies that either the k facilities selected from S2 yield a
(
26 +

O(ε)
)
-approximation for SM-k-FL, or c1 ≤ cf , in which case H1 is a

(
9 + O(ε)

)
-

approximation solution due to Corollary 1.

Case (3): a ∈ [1
36

, 1
4
) and k − k1 > 1

εa
.

For this case, we show how H1 and H2 can be combined into the desired solu-
tion to I. We first consider a straightforward solution, which opens all the
facilities from S1 and assigns each j ∈ D to η1(i2(j)). Lemma 4 implies that
the total assignment cost of the clients induced by this solution is no more
than

∑
j∈D

(
6Δ2(j) + 3Δ1(j)

)
= 6S(H2) + 3S(H1). We reduce the assign-

ment cost by opening some facilities from S2. Given a facility i ∈ S1, define
Qi = {i′ ∈ S2 : η1(i′) = i}. If we open a facility i′ ∈ Qi and reassign each
j ∈ γ2(i′) to i′, then the provable assignment cost of the solution can be reduced
by

∑
j∈γ2(i′)

(
6Δ2(j)+3Δ1(j)

)−∑
j∈γ2(i′) Δ2(j) =

∑
j∈γ2(i′)

(
5Δ2(j)+3Δ1(j)

)
.

Moreover, if we close i, open all the facilities from Qi, and reassign each
j ∈ γ2(Qi) to i2(j), then we can reduce the provable assignment cost by∑

j∈γ2(Qi)

(
5Δ2(j) + 3Δ1(j)

)
. Define Φ2(i′) =

∑
j∈γ2(i′)

(
5Δ2(j) + 3Δ1(j)

)
for

each i′ ∈ S2 and Φ1(i) =
∑

j∈γ2(Qi)

(
5Δ2(j) + 3Δ1(j)

)
=

∑
i′∈Qi

Φ2(i′) for each
i ∈ S1. We want to maximize the reduced assignment cost, which motivates the
following linear program.

max
∑

i∈S1

Φ1(i)zi LP3

s.t.
∑

i∈S1

zi(|Qi| − 1) = k − k1 (10)

0 ≤ zi ≤ 1 ∀i ∈ S1 (11)

LP3 has a variable zi for each i ∈ S1. zi = 1 implies that we close i, open each
facility from Qi, and reassign each j ∈ γ2(Qi) from i to i2(j). By the argument
above, this reduces the provable assignment cost by Φ1(i) compared with the
aforementioned straightforward solution, and increases the number of opened
facilities by |Qi| − 1. Constraint (10) says that the number of opened facilities
can be increased to k.

LP3 is similar to the Knapsack-type linear programs considered in [6,23],
which are solved to select opened facilities for the k-median problem. Unfortu-
nately, the algorithms given in [6,23] can only yield pseudo-solutions that open
k + 2 facilities in the worst case. Moreover, the algorithms need to open some
specific facilities that minimize the total assignment cost of a given set of clients,

546 Z. Zhang and Q. Feng

and can induce unbounded facility opening cost in SM-k-FL. In this section, we
give a more refined analysis and obtain the desired approximation solution for
SM-k-FL that opens at most k facilities.

Lemma 6. There is a polynomial-time algorithm that yields an optimal solution
to LP3. The solution has at most one fractional variable, which is associated with
a facility l ∈ S1 satisfying |Ql| > 1.

We find an optimal solution z∗ to LP3 using Lemma 6. Let L0 = {i ∈ S1 :
z∗
i = 0} and L1 = {i ∈ S1 : z∗

i = 1}. If z∗ has a fractional variable, then let
l ∈ S1 denote the facility associated with this variable. Our solution to I is
constructed as follows.

• If facility l ∈ S1 is associated with a fractional variable z∗
l , then define Q† =

arg max
Q⊂Ql ∧ |Q|=�z∗

l |Ql|	

∑
i′∈Q Φ2(i′). We open l and each facility from Q†. We

assign each j ∈ γ2(Q†) to i2(j) and each j ∈ γ2(Ql\Q†) to l. Lemma 4
implies that the total assignment cost of the clients from γ2(Ql) is no more
than

∑
j∈γ2(Q†) Δ2(j)+

∑
j∈γ2(Ql\Q†)

(
6Δ2(j)+3Δ1(j)

)
. If z∗ does not involve

a fractional variable, then let Ql = Q† = ∅.
• For each i ∈ L1 and i′ ∈ Qi, we open i′ and assign each j ∈ γ2(i′)

to i′. The total assignment cost of the clients from γ2(
⋃

i∈L1
Qi) is∑

j∈γ2(
⋃

i∈L1
Qi)

Δ2(j).

• For each i ∈ L0, we open i and assign each j ∈ γ2(Qi) to i. Lemma 4 implies
that the total assignment cost of the clients from γ2(

⋃
i∈L0

Qi) is at most
∑

j∈γ2(
⋃

i∈L0
Qi)

(
6Δ2(j) + 3Δ1(j)

)
.

We first show that our solution opens no more than k facilities and is feasible
for SM-k-FL. If z∗ does not have a fractional variable, then the number of the
facilities opened in the solution is

|L0| +
∑

i∈L1

|Qi| =
∑

i∈L1

(|Qi| − 1) + k1 =
∑

i∈S1

z∗
i (|Qi| − 1) + k1,

which is exactly k due to constraint (10). For the case where z∗ involves a
fractional variable z∗

l , the facilities opened in our solution is no more than

1 + z∗
l |Ql| + |L0| +

∑

i∈L1

|Qi| = z∗
l |Ql| +

∑

i∈L1

(|Qi| − 1) + k1

=
∑

i∈S1

z∗
i (|Qi| − 1) + k1 + z∗

l

= k + z∗
l < k + 1,

where the third step is due to constraint (10), and the last step follows from the
fact that z∗

l is a fractional variable. Thus, our solution opens at most k facilities
and is a feasible solution to I in both cases.

Squared Metric k-Facility Location 547

We now consider the cost induced by our solution. Denote by Rs and Rf the
total assignment cost of the clients and the total opening cost of the facilities
induced by the solution, respectively. Define R = Rs + Rf . By the argument
above, we know that

Rs ≤
∑

j∈γ2(
⋃

i∈L0
Qi)∪γ2(Ql\Q†)

(
6Δ2(j) + 3Δ1(j)

)
+

∑

j∈γ2(
⋃

i∈L1
Qi)∪γ2(Q†)

Δ2(j)

= 6S(H2) + 3S(H1) −
∑

i∈L1

Φ1(i) −
∑

i∈Q†
Φ2(i), (12)

where the second step is due to the definitions of Φ1(i) and Φ2(i). Compared with
the straightforward solution that opens all the facilities from S1 and assigns each
j ∈ D to η1(i2(j)) (whose total assignment cost is at most 6S(H2) + 3S(H1)),
our solution reduces the provable assignment cost by

∑
i∈L1

Φ1(i)+
∑

i∈Q† Φ2(i).
The following result shows a lower bound on this difference value.

Lemma 7. If k−k1 > 1
εa , then

∑
i∈L1

Φ1(i)+
∑

i∈Q† Φ2(i) > (1−εa)b
(
5S(H2)+

3S(H1)
)
.

Proof. Let opt′ be the value of z∗ for LP3. We first show that
∑

i∈L1
Φ1(i) +∑

i∈Q† Φ2(i) is close to opt′. If z∗ does not have a fractional variable, then we
have Q† = ∅, and

∑
i∈L1

Φ1(i) +
∑

i∈Q† Φ2(i) =
∑

i∈L1
Φ1(i) = opt′ due to the

definition of L1. We now consider the case where z∗ has a fractional variable z∗
l .

For this case, we have

opt′ =
∑

i∈L1

Φ1(i) + z∗
l Φ1(l). (13)

This implies that

opt′ −
∑

i∈L1

Φ1(i) −
∑

i∈Q†
Φ2(i) = z∗

l Φ1(l) −
∑

i∈Q†
Φ2(i)

≤ z∗
l Φ1(l) − z∗

l |Ql| − 1
|Ql| Φ1(l)

=
1

|Ql|Φ1(l) ≤ 1
|Ql| − 1

Φ1(l), (14)

where the second step is derived from the fact that Φ1(l) =
∑

i∈Ql
Φ2(i) and

Q† = arg max
Q⊂Ql ∧ |Q|=�z∗

l |Ql|	

∑
i′∈Q Φ2(i′), and the last step follows from the fact

that |Ql| > 1, which is due to Lemma 6.
Define A1 = {i ∈ L1 : |Qi| ≤ 1} and A2 = {i ∈ L1 : |Qi| > 1}. It can

be seen that inequality Φ1(i)/(|Qi| − 1) ≥ Φ1(l)/(|Ql| − 1) holds for any i ∈
A2. Otherwise, we can simultaneously increase z∗

l and decrease z∗
i to obtain

an improved solution to LP3, which contradicts the fact that z∗ is an optimal
solution to LP3. Consequently, we have

548 Z. Zhang and Q. Feng

εa · opt′ = εa
(∑

i∈L1

Φ1(i) + z∗
l Φ1(l)

)
>

1
k − k1

(∑

i∈L1

Φ1(i) + z∗
l Φ1(l)

)

=

∑
i∈L1

Φ1(i) + z∗
l Φ1(l)

∑
i∈L1

(|Qi| − 1) + z∗
l (|Ql| − 1)

=

∑
i∈A1

Φ1(i) +
∑

i∈A2
Φ1(i) + z∗

l Φ1(l)
∑

i∈A1
(|Qi| − 1) +

∑
i∈A2

(|Qi| − 1) + z∗
l (|Ql| − 1)

≥
∑

i∈A2
Φ1(i) + z∗

l Φ1(l)
∑

i∈A2
(|Qi| − 1) + z∗

l (|Ql| − 1)
≥ 1

|Ql| − 1
Φ1(l), (15)

where the first step is due to equality (13), the second step follows from the
assumption that k − k1 > 1

εa , the third step is due to constraint (10), the fifth
step is derived from the fact that |Qi| − 1 ≤ 0 for each i ∈ A1, and the last step
follows from the fact that Φ1(i)/(|Qi| − 1) ≥ Φ1(l)/(|Ql| − 1) for each i ∈ A2.
Inequalities (14) and (15) imply that

∑

i∈L1

Φ1(i) +
∑

i∈Q†
Φ2(i) ≥ opt′ − 1

|Ql| − 1
Φ1(l) > (1 − εa)opt′. (16)

If we can show that
opt′ ≥ b

(
5S(H2) + 3S(H1)

)
, (17)

then Lemma 7 can be proven using inequality (16). It remains to show inequal-
ity (17). Observe that

∑
i∈S1

b(|Qi|−1) = b(k2−k1) = k−k1, which implies that
the solution taking zi = b for each i ∈ S1 is a feasible solution to LP3, whose
value is b

∑
i∈S1

Φ1(i) = b
(
5S(H2) + 3S(H1)

)
due to the definition of Φ1(i). By

the fact that opt′ is the value of an optimal solution to LP3, we complete the
proof of inequality (17). Thus, Lemma 7 is true. 	

We now show that our solution achieves a
(
36 + O(ε)

)
-approximation for

SM-k-FL in case (3).

Lemma 8. If a ∈ [1
36 , 1

4) and k − k1 > 1
εa , then R <

(
36 + O(ε)

)
opt∗.

Proof. Inequality (12) and Lemma 7 imply that

Rs ≤ 6S(H2) + 3S(H1) −
∑

i∈L1

Φ1(i) −
∑

i∈Q†
Φ2(i)

< 6S(H2) + 3S(H1) − (1 − εa)b
(
5S(H2) + 3S(H1)

)

= (1 + 5a)S(H2) + 3aS(H1) + εab
(
5S(H2) + 3S(H1)

)
.

Thus, we have

Rs

aS(H1) + bS(H2)
<

(1 + 5a)S(H2) + 3aS(H1)
(1 − a)S(H2) + aS(H1)

+ 5ε

<
(3 − 3a)S(H2) + 3aS(H1)
(1 − a)S(H2) + aS(H1)

+ 5ε

= 3 + O(ε), (18)

Squared Metric k-Facility Location 549

where the second step is due to the assumption that a ∈ [1
36 , 1

4). By the same
assumption and the fact that our solution only selects the facilities from S1 ∪S2

to open, we have

Rf

9aF (H1) + 9bF (H2)
<

F (H1) + F (H2)
9aF (H1) + 9bF (H2)

< 4. (19)

Using inequalities (18) and (19), we get

Rf + Rs <
(
4 + O(ε)

)(
aS(H1) + 9aF (H1) + bS(H2) + 9bF (H2)

)

≤ (
36 + O(ε)

)
opt∗,

where the last step is due to Corollary 1. Thus, Lemma 8 is true. 	

Case (4): a ∈ (0, 1
36

).

For this case, we select a set of facilities from S2 to open. Let ρ be an arbitrary
positive number. Lemma 4 implies that Δ(j, η2(i1(j))) ≤ 4(1 + ρ)Δ1(j) + (1 +
1
ρ)Δ2(j) for each j ∈ D. Our idea is to ensure that η2(i) is opened in the solution
for each i ∈ S1, such that each j ∈ D can always be assigned to either i2(j) or
η2(i1(j)). This implies that the cost induced by assigning j is Δ2(j) if i2(j) is
opened, and can be upper-bounded by 4(1 + ρ)Δ1(j) + (1 + 1

ρ)Δ2(j) otherwise.

Let S†
2 = {η2(i) : i ∈ S1}. It is the case that |S†

2 | ≤ k1. For each i ∈
S2\S†

2 , define Γ (i) =
∑

j∈γ2(i)

(
4(1 + ρ)Δ1(j) + 1

ρΔ2(j)
)

for brevity, and let

S‡
2 = arg max

S⊂S2\S†
2 ∧ |S|=k−|S†

2 |

∑
i∈S Γ (i). Our solution for case (4) opens each facility

from S†
2 ∪S‡

2 and assigns each client to the nearest opened facility. We now show
that this solution achieves the desired approximation for SM-k-FL.

Lemma 9. If a ∈ (0, 1
36), then we have

∑
i∈S†

2∪S‡
2
f(i) +

∑
j∈D Δ(j,S†

2 ∪ S‡
2) <

max{4 + 4ρ, 36
35 + 1

35ρ}cf for any ρ > 0.

Proof. We consider the following strategy for assigning clients to obtain an upper
bound on

∑
j∈D Δ(j,S†

2 ∪ S‡
2). We open each facility from S†

2 ∪ S‡
2 . For each

j ∈ γ2(S†
2∪S‡

2), we assign j to i2(j). The total assignment cost of the clients from
γ2(S†

2 ∪ S‡
2) is

∑
j∈γ2(S†

2∪S‡
2)

Δ2(j). For each j ∈ γ2(S2\(S†
2 ∪ S‡

2)), the definition

of S†
2 implies that η2(i1(j)) is guaranteed to be opened, and we can assign j

to η2(i1(j)). Lemma 4 implies that the total assignment cost of the clients from
γ2(S2\(S†

2 ∪S‡
2)) is no more than

∑
j∈γ2(S2\(S†

2∪S‡
2))

4(1+ρ)Δ1(j)+(1+ 1
ρ)Δ2(j).

Thus, we have

550 Z. Zhang and Q. Feng

∑

j∈D
Δ(j,S†

2 ∪ S‡
2)

≤
∑

j∈γ2(S†
2∪S‡

2)

Δ2(j) +
∑

j∈γ2(S2\(S†
2∪S‡

2))

4(1 + ρ)Δ1(j) + (1 +
1
ρ
)Δ2(j)

=
∑

j∈D
Δ2(j) +

∑

j∈γ2(S2\(S†
2∪S‡

2))

4(1 + ρ)Δ1(j) +
1
ρ
Δ2(j)

=
∑

j∈D
Δ2(j) +

∑

i∈S2\(S†
2∪S‡

2)

Γ (i), (20)

where the last step follows from the definition of Γ (i).
Observe that

∑

i∈S2\(S†
2∪S‡

2)

Γ (i) ≤ |S2\(S†
2 ∪ S‡

2)|
|S2\S†

2 |
∑

i∈S2\S†
2

Γ (i) =
k2 − k

k2 − |S†
2 |

∑

i∈S2\S†
2

Γ (i)

≤ k2 − k

k2 − k1

∑

i∈S2\S†
2

Γ (i) = a
∑

i∈S2\S†
2

Γ (i) ≤ a
∑

i∈S2

Γ (i)

= 4a(1 + ρ)
∑

j∈D
Δ1(j) +

a

ρ

∑

j∈D
Δ2(j), (21)

where the first step is due to the fact that S‡
2 = arg max

S⊂S2\S†
2 ∧ |S|=k−|S†

2 |

∑
i∈S Γ (i),

the third step is due to the fact that |S†
2 | ≤ k1, and the last step is derived from

the definition of Γ (i). Using inequalities (20) and (21), we have
∑

j∈D
Δ(j,S†

2 ∪ S‡
2) ≤

∑

j∈D
Δ2(j) + 4a(1 + ρ)

∑

j∈D
Δ1(j) +

a

ρ

∑

j∈D
Δ2(j)

= 4a(1 + ρ)S(H1) + (1 +
a

ρ
)S(H2). (22)

Consequently, we get

1
cf

(∑

i∈S†
2∪S‡

2

f(i) +
∑

j∈D
Δ(j,S†

2 ∪ S‡
2)

)

=

∑
i∈S†

2∪S‡
2
f(i) +

∑
j∈D Δ(j,S†

2 ∪ S‡
2)

aS(H1) + 9aF (H1) + bS(H2) + 9bF (H2)

<
F (H2) + 4a(1 + ρ)S(H1) + (1 + a

ρ)S(H2)

aS(H1) + 9aF (H1) + bS(H2) + 9bF (H2)

< max{ 1
9b

, 4(1 + ρ), (1 +
a

ρ
)
1
b
} < max{4 + 4ρ,

36
35

+
1

35ρ
},

where the first step follows from the definition of cf , the second step is due to
inequality (22) and the fact that S†

2 ∪ S‡
2 ⊂ S2, and the last step is due to the

assumption that a ∈ (0, 1
36). This completes the proof of Lemma 9. 	

Squared Metric k-Facility Location 551

Let ρ = 1
105 . Using Lemma 9 and Corollary 1, we have

∑
i∈S†

2∪S‡
2
f(i) +

∑
j∈D Δ(j,S†

2 ∪ S‡
2) < 424

105cf <
(
36.343 + O(ε)

)
opt∗. This implies that we get

a
(
36.343 + O(ε)

)
-approximation solution to I in case (4). Recall that H1 is a(

36 + O(ε)
)
-approximation solution in case (1), the k facilities selected from S2

form a
(
26+O(ε)

)
-approximation solution in case (2), and the solution constructed

based on LP3 achieves a
(
36+O(ε)

)
-approximation in case (3). Putting everything

together, we obtain a
(
36.343 + O(ε)

)
-approximation algorithm for the problem.

5 Conclusions

In this paper, we give a new approximation algorithm for the squared metric k-
facility location problem based on the techniques of primal-dual and Lagrangian
relaxation, which has the guarantee of yielding a (36.343 + ε)-approximation
solution. This improves the current best approximation ratio of 44.473+ ε given
in [27]. Our main technical contribution is a new rounding approach that exploits
the properties of the squared metric.

References

1. Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for
k-means and Euclidean k-median by primal-dual algorithms. SIAM J. Comput.
49(4), FOCS17:97–FOCS17:156 (2020)

2. Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of Euclidean sum-
of-squares clustering. Mach. Learn. 75(2), 245–248 (2009)

3. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In:
Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 1027–1035 (2007)

4. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local
search heuristics for k-median and facility location problems. SIAM J. Comput.
33(3), 544–562 (2004)

5. Baev, I.D., Rajaraman, R., Swamy, C.: Approximation algorithms for data place-
ment problems. SIAM J. Comput. 38(4), 1411–1429 (2008)

6. Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approx-
imation for k-median and positive correlation in budgeted optimization. ACM
Trans. Algor. 13(2), 23:1–23:31 (2017)

7. Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility
location problems with outliers. In: Proceedings of the 12th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 642–651 (2001)

8. Charikar, M., Li, S.: A dependent LP-rounding approach for the k-median problem.
In: Proceedings of the 39th International Colloquium on Automata, Languages,
and Programming (ICALP), pp. 194–205 (2012)

9. Cohen-Addad, V., Klein, P.N., Mathieu, C.: Local search yields approximation
schemes for k-means and k-median in Euclidean and minor-free metrics. SIAM J.
Comput. 48(2), 644–667 (2019)

10. Cura, T.: A parallel local search approach to solving the uncapacitated warehouse
location problem. Comput. Ind. Eng. 59(4), 1000–1009 (2010)

552 Z. Zhang and Q. Feng

11. Feng, Q., Zhang, Z., Shi, F., Wang, J.: An improved approximation algorithm
for the k-means problem with penalties. In: Proceedings of the 13th International
Workshop on Frontiers in Algorithmics (FAW), pp. 170–181 (2019)

12. Fernandes, C.G., Meira, L.A.A., Miyazawa, F.K., Pedrosa, L.L.C.: A systematic
approach to bound factor-revealing LPs and its application to the metric and
squared metric facility location problems. Math. Program. 153(2), 655–685 (2015)

13. Friggstad, Z., Rezapour, M., Salavatipour, M.R.: Local search yields a PTAS for
k-means in doubling metrics. SIAM J. Comput. 48(2), 452–480 (2019)

14. Golubchik, L., Khanna, S., Khuller, S., Thurimella, R., Zhu, A.: Approximation
algorithms for data placement on parallel disks. ACM Trans. Algor. 5(4), 34:1–
34:26 (2009)

15. Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms.
J. Algor. 31(1), 228–248 (1999)

16. Gupta, A., Guruganesh, G., Schmidt, M.: Approximation algorithms for aversion k-
clustering via local k-median. In: Proceedings of the 43rd International Colloquium
on Automata, Languages and Programming (ICALP), pp. 1–13 (2016)

17. Gupta, A., Tangwongsan, K.: Simpler analyses of local search algorithms for facility
location. CoRR abs/0809.2554 (2008)

18. Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-
blue median problem. Algorithmica 63(4), 795–814 (2012)

19. Hayrapetyan, A., Swamy, C., Tardos, É.: Network design for information networks.
In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 933–942 (2005)

20. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facility
location algorithms analyzed using dual fitting with factor-revealing LP. J. ACM
50(6), 795–824 (2003)

21. Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and
k-median problems using the primal-dual schema and Lagrangian relaxation. J.
ACM 48(2), 274–296 (2001)

22. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu,
A.Y.: A local search approximation algorithm for k-means clustering. Comput.
Geom. 28, 89–112 (2004)

23. Li, S., Svensson, O.: Approximating k-median via pseudo-approximation. SIAM J.
Comput. 45(2), 530–547 (2016)

24. Michel, L., Hentenryck, P.V.: A simple tabu search for warehouse location. Eur. J.
Oper. Res. 157(3), 576–591 (2004)

25. Wang, S., Bi, J., Wu, J., Vasilakos, A.V.: CPHR: In-network caching for
information-centric networking with partitioning and hash-routing. IEEE/ACM
Trans. Netw. 24(5), 2742–2755 (2016)

26. Wu, C., Du, D., Xu, D.: An approximation algorithm for the k-median problem
with uniform penalties via pseudo-solution. Theor. Comput. Sci. 749, 80–92 (2018)

27. Zhang, D., Xu, D., Wang, Y., Zhang, P., Zhang, Z.: A local search approximation
algorithm for a squared metric k-facility location problem. J. Comb. Optim. 35(4),
1168–1184 (2018)

28. Zhang, P.: A new approximation algorithm for the k-facility location problem.
Theor. Comput. Sci. 384(1), 126–135 (2007)

29. Zhang, Z., Feng, Q., Huang, J., Guo, Y., Xu, J., Wang, J.: A local search algorithm
for k-means with outliers. Neurocomputing 450, 230–241 (2021)

30. Zhang, Z., Feng, Q., Xu, J., Wang, J.: An approximation algorithm for k-median
with priorities. Sci. China Inf. Sci. 64(5), 150104 (2021)

Parameterized Algorithms for Linear
Layouts of Graphs with Respect
to the Vertex Cover Number

Yunlong Liu(B) , Yixuan Li , and Jingui Huang(B)

College of Information Science and Engineering, Hunan Provincial Key Laboratory
of Intelligent Computing and Language Information Processing, Hunan Normal

University, Changsha 410081, People’s Republic of China
{ylliu,yxlee,hjg}@hunnu.edu.cn

Abstract. The linear layout of graphs problem asks, given a graph
G = (V, E) and an integer k, whether G admits a linear layout consisting
of a linear order of V and a partition of E into k sets such that the edges in
each set satisfy some restrictions. In this paper, we study parameterized
algorithms for a series of specific linear layout problems with respect to
the vertex cover number τ of the input graph. We first focus on the mixed
s-stack q-queue layout problem and show that it admits a kernel of

size 2O(τ) and an algorithm running in time O(22O(τ)
+ τ · |V |), where

|V | denotes the size of the input graph. Our work does not only confirm
the existence of a fixed-parameter tractable algorithm for this problem
which was mentioned by Bhore et al. (GD 2020), but also derives new
results improving that for the k-stack layout problem (J. Graph Alg.
Appl. 2020), that for the upward k-stack layout problem (GD 2021),
and that for the k-queue layout problem (GD 2020) respectively. We
also generalize our techniques to the k-arch layout problem and obtain
a similar result.

Keywords: Linear layouts · Vertex cover number · Cloneable vertex

1 Introduction

Linear layouts of graphs form a main topic for drawing graphs. In a linear order of
the vertices of a graph, there are three possible layouts of two independent edges,
that is, they can be crossing, nested, or disjoint. Correspondingly, three basic
linear layouts can be defined as follows. A k-stack (respectively, k-queue, k-arch)
layout of a graph G = (V,E) is a linear layout 〈≺, σ〉 of G consisting of a linear
order ≺ of its vertices along a spine and an assignment σ of its edges to k subsets
of pairwise non-crossing (respectively, non-nested, non-disjoint) edges [11]. Note
that edges with a common endpoint do not cross, do not nest, and are not

This research was supported in part by the National Natural Science Foundation of
China under Grant No. 61572190 and Hunan Provincial Science and Technology Pro-
gram under Grant No. 2018TP1018.

c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 553–567, 2021.
https://doi.org/10.1007/978-3-030-92681-6_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_43&domain=pdf
https://orcid.org/0000-0003-2686-5240
https://orcid.org/0000-0001-9363-6996
https://orcid.org/0000-0002-6965-7989
https://doi.org/10.1007/978-3-030-92681-6_43

554 Y. Liu et al.

disjoint. A family of edges assigned to the same subset accordingly forms a stack
(respectively, queue, arch) page. See Fig. 1 for an illustration. Linear layouts of
graphs have a wide rang of applications including sorting permutations, parallel
process scheduling, fault tolerant VLSI design, matrix computations, and so on
(see, e.g., [3,9,22] and refer also to [11] for a survey).

Fig. 1. Layouts of K6: (a) 3-queue, (b) 3-arch, and (c) mixed 2-stack 1-queue.

There is a growing interest in studying various computation problems about
linear layouts of graphs (see, e.g., [18,21,24] and refer also to [11] for an
overview). In particular, a series of parameterized algorithms with respect to
the vertex cover number of the input graph have been presented in recent years
(see, e.g., [1,4,5,14,17,19,20]).

Stack layouts are also commonly called book embeddings [2,4]. The k-stack
layout problem deciding, given a graph G = (V,E) and a positive integer k,
whether G admits a k-stack layout, has been extensively studied (see, e.g., [4,
9,24]). The 2-stack layout problem is known to be NP-complete [9]. Just
because of this, Bhore et al. [4] studied parameterized algorithms for k-stack

layout. Specially, they presented an algorithm running in time O(2τO(τ)
+τ ·|V |)

with respect to the vertex cover number τ [4].
Upward stack layouts are a natural extension of stack layouts to directed

acyclic graphs with the additional requirement that the linear order ≺ of vertices
respects the directions of all edges [6]. The upward k-stack layout problem
is generally NP-complete, even for fixed values of k ≥ 3 [9]. Recently, Bhore
et al. [6] also presented an algorithm running in time O(τ τO(τ)

+ τ · |V |) with
respect to the vertex cover number τ .

Queue layouts were introduced by Heath et al. [15,16]. The k-queue layout
problem asks, given a graph G = (V,E) and a positive integer k, whether G
admits a k-queue layout. The 1-queue layout problem is known to be NP-
complete [7]. Bhore et al. [5] also studied parameterized algorithms for it with
respect to the vertex cover number τ . They presented an algorithm running in
time O(2τO(τ)

+τ log τ ·|V |) for the optimization version of the k-queue layout
problem [5].

Arch layouts were formally introduced by Dujmović and Wood [11]. The k-
arch layout problem determines, given a graph G and a positive integer k,
whether G admits a k-arch layout. When k ≥ 2, the k-arch layout problem
is known to be NP-complete [11].

Parameterized Algorithms for Linear Layouts of Graphs 555

Besides these basic linear layouts, the mixed linear layouts, which combine
s ≥ 1 stack pages and q ≥ 1 queue pages, have also attracted much attention
(see, e.g., [10,12,13,16,23]). It is NP-complete to decide if a given graph G
admits a 2-stack 1-queue layout [10]. The parameterized complexity for mixed
s-stack q-queue layouts was mentioned as an interesting question by Bhore et
al. in [5].

In this paper, we further study these linear layout problems parameterized
by the vertex cover number τ of the input graph. The target is to develop
some uniform problem-solving techniques for them. For ease of presentation, we
assume that s ≥ 0, q ≥ 0 but s + q �= 0 in the definition of mixed s-stack
q-queue layout. By this assumption, the k-stack layout problem and the
k-queue layout problem can be seen as two special cases of the mixed s-
stack q-queue layout problem. Thus, we first focus on the mixed s-stack
q-queue layout problem and show that it admits a kernel of size 2O(τ) and an
algorithm running in time O(22

O(τ)
+τ ·|V |). Our work does not only confirm the

existence of a fixed-parameter tractable algorithm for this problem mentioned
by Bhore et al. [5], but also derives new results improving that for the k-stack
layout problem in [4], that for the upward k-stack layout problem in [6],
and that for the k-queue layout problem in [5] respectively. For the k-arch
layout problem, by using our techniques, we also obtain a kernel of size 2O(τ)

and an algorithm running in time O(22
O(τ)

+ τ · |V |).
Our kernelization is inspired by the “suitable vertex” used in [4,5], by which

the reduced vertices together with their incident edges can follow up in the same
way. However, we introduce the concept of uncloneable/cloneable vertex into our
algorithm. The cloneable vertex corresponds to the “suitable vertex”, but the
concept of uncloneable vertex plays a key role in deriving new reduction rules.
Given a yes-instance of the considered problem, we argue that the number of
uncloneable vertices can be bounded by a function of τ . Based on this fact, we
give a new approach to locate the cloneable vertex. In our kernelization proce-
dure, the primary step is to identify the uncloneable/cloneable vertex according
to specific problem. It also turns out that with this concept the proving correct-
ness of the algorithms becomes a rather simple task.

2 Preliminaries

We consider only simple graphs. Some notations only for the linear layouts of
undirected graphs are given as follows. On those for the upward stack layouts of
directed acyclic graphs, refer to [6] for details.

For a graph G = (V,E), let n = |V |, and we denote by V (G) the vertex set of
G and by E(G) the edge set of G respectively. For two vertices u and v in V (G),
we denote by uv the edge between u and v. Two edges are called independent
edges if they do not share an endpoint. For r ∈ N, we use [1, r] to denote the set
{1, . . . , r}.

556 Y. Liu et al.

Given a graph G = (V,E), we use 〈≺, σ〉 to denote a k-stack (respectively,
k-queue, k-arch) layout, where ≺ is a linear order of V , and σ : E → [1, k] is a
function that maps each edge of E to one of k stack pages (respectively, queue
pages, arch pages).

In a vertex ordering ≺ of V (G), let L(e) and R(e) denote the endpoints of
each edge e ∈ E(G) such that L(e) ≺ R(e). Let e1, e2 ∈ E(G) be two independent
edges. Without loss of generality, L(e1) ≺ L(e2). The three basic layouts for e1
and e2 are defined as follows [11]. (1) e1 and e2 cross if L(e1) ≺ L(e2) ≺ R(e1) ≺
R(e2); (2) e1 and e2 nest and e2 is nested inside e1 if L(e1) ≺ L(e2) ≺ R(e2) ≺
R(e1); and (3) e1 and e2 are disjoint if L(e1) ≺ R(e1) ≺ L(e2) ≺ R(e2).

A vertex cover C of a graph G = (V,E) is a subset C ⊆ V such that each
edge in E has at least one endpoint in C. The vertex cover number of G, denoted
by τ , is the size of a minimum vertex cover of G. Given a graph G, a vertex cover
with size τ can be computed in time O(2τ + τ · n) [8]. In the rest of this paper,
we will use C to denote a minimum vertex cover of the input graph.

Let W ⊆ C. A vertex in V (G)\C is of type W if its set of neighbors is equal
to W [4]. By this definition, the vertices in V (G)\C are partitioned into at most
2τ − 1 distinct types. We denote by VW the set of vertices of type W .

Because of the space limit, several proofs are deferred to a full version of this
paper.

3 Mixed s-Stack q-Queue Layout

The mixed s-stack q-queue layout problem parameterized by the vertex
cover number τ can be formally described as follows.

Parameterized mixed s-stack q-queue layout (abbreviated as SQ-
Lay)
Input: an undirected graph G = (V,E), two non-negative integers s, q ;
Parameter: τ ;
Question: does there exist a mixed s-stack q-queue layout 〈≺, σ〉 of G?

In this section, we will show that the SQ-lay problem admits a kernel of size
2O(τ) and an algorithm running in time O(22

O(τ)
+τ ·|V |). Our result confirms the

existence of a fixed-parameter tractable algorithm for this problem mentioned
by Bhore et al. [5].

3.1 Two Kinds of Vertices in VW

Assume that (G, τ, s, q) is a yes-instance of the SQ-lay problem. Let 〈≺, σ〉 be
a mixed s-stack q-queue layout for (G, τ, s, q) and let W ⊆ C. Without loss of
generality, we denote by [1, s] the s stack pages (if s �= 0) and by [s+1, s+q] the q
queue pages (if q �= 0) in 〈≺, σ〉. Observe that if |W | = 1, then the edges incident
to the unique vertex in W can be simultaneously assigned to an arbitrary page.
In the following, we assume that |W | ≥ 2 and identify two kinds of vertices in
VW (i.e., the uncloneable vertices and the cloneable vertices) as follows.

Parameterized Algorithms for Linear Layouts of Graphs 557

When s �= 0, let p ∈ [1, s]. A vertex v in VW is called an uncloneable vertex
with respect to stack page p if v has two edges, say wiv and wjv, assigned
to page p simultaneously. Vertices wi and wj are accordingly called a pair of
barrier vertices for v with respect to stack page p. Similarly, when q �= 0, let h ∈
[s+1, s+q]. A vertex v in VW is called an uncloneable vertex with respect to queue
page h if v has two edges, say wav and wbv, assigned to page h simultaneously
such that the ordering of vertices wa, wb, and v in ≺ is either wa ≺ wb ≺ v or
v ≺ wa ≺ wb. Vertices wa and wb are accordingly called a pair of barrier vertices
for v with respect to queue page h. Furthermore, a vertex v in VW is called
an uncloneable vertex with respect to 〈≺, σ〉 if it is an uncloneable vertex with
respect to either at least one stack page or at least one queue page in 〈≺, σ〉.
Otherwise, vertex v is called a cloneable vertex with respect to 〈≺, σ〉 (see Fig. 2
for examples). For simplicity, we also call v uncloneable (resp. cloneable) if it is
an uncloneable (resp. a cloneable) vertex.

Fig. 2. An uncloneable vertex v in (a), an uncloneable vertex z in (b), and a cloneable
vertex u in (c) are shown in three mixed 2-stack 1-queue layouts respectively. In each
layout, the upper vertical page and the horizontal page are all stack pages, but the
lower vertical page is a queue page.

From the definition above, the following property for the cloneable vertex
holds.

Lemma 1. Let 〈≺, σ〉 be a mixed s-stack q-queue layout of a given graph. If v
is a cloneable vertex with respect to 〈≺, σ〉, then inserting a vertex v∗ of type W
right (or left) next to v and assigning each edge v∗w (for w ∈ W) to the same
page as vw will result in a valid mixed s-stack q-queue layout of the resulting
graph.

Proof. Let p be an arbitrary page to which v has some edge assigned and let
Ep be the set of edges assigned to page p. We distinguish two cases based on
whether p is a stack page or not.

Case 1: p is a stack page. Since v is a cloneable vertex with respect to 〈≺, σ〉,
v has at most one edge assigned to any stack page in [1, s]. Without loss of
generality, assume that an edge vwi (for some wi ∈ W) is assigned to page p.
After assigning the corresponding edge v∗wi to page p, edges v∗wi and vwi would

558 Y. Liu et al.

not cross on page p because they have a common endpoint. Moreover, no two
independent edges in Ep \ {vwi} ∪ {v∗wi} cross because v∗ lies right (or left)
next to v. Thus, the resulting page is still a stack page.

Case 2: p is a queue page. First, we show that the cloneable vertex v has at
most two edges assigned to page p simultaneously. Suppose by contradiction that
v has at least three edges assigned to page p simultaneously. By the pigeonhole
principle, vertex v must have at least two edges, say vwi and vwj (wi ≺ wj),
assigned to the same side of v on page p. Namely, the ordering of vertices wi, wj

and v is either v ≺ wi ≺ wj or wi ≺ wj ≺ v. Hence, vertex v is an uncloneable
vertex, leading to a contradiction. Next, we show that the resulting page is still
a queue page. If v has exactly one edge vw assigned to page p, by employing
the same argument used in the proof of case 1, then page p containing v∗w is
still a queue page. Assume now that v has exactly two edges, say wiv and vwj

(wi ≺ wj), assigned to page p simultaneously. Then, it holds that wi ≺ v ≺ wj .
After inserting v∗ right (or left) next to v and assigning edges wiv

∗ and v∗wj

to page p, no two independent edges in {wiv, wiv
∗, vwj , v

∗wj} nest on page p
because both v and v∗ lie between wi and wj . Moreover, no two independent
edges in Ep \ {wiv, vwj} ∪ {wiv

∗, v∗wj} nest because v∗ lies right (or left) next
to v. Hence, page p containing edges wiv

∗ and v∗wj is still a queue page. ��
To estimate the number of uncloneable vertices in VW , we first consider a

special case, i.e., the number of uncloneable vertices for which two fixed vertices
in W form a pair of barrier vertices.

Fig. 3. Illustration for having at most 2 uncloneable vertices for which wi and wj form
a pair of barrier vertices with respect to a stack page.

Lemma 2. Assume that 〈≺, σ〉 is a mixed s-stack q-queue layout for (G, τ, s, q)
and W ⊆ C. Let wi and wj be two arbitrary vertices in W . Then there exist at
most 2(s + q) uncloneable vertices of type W for which wi and wj form a pair
of barrier vertices with respect to at least one page in 〈≺, σ〉.

Parameterized Algorithms for Linear Layouts of Graphs 559

Proof. When s �= 0, we will show that VW contains at most 2s uncloneable
vertices for which wi and wj form a pair of barrier vertices for which wi and
wj form a pair of barrier vertices with respect to at least one stack page in
〈≺, σ〉. Suppose by contradiction that VW contains at least 2s + 1 uncloneable
vertices. By the pigeonhole principle, there must be at least one page p ∈ [1, s]
such that VW contains at least 3 uncloneable vertices, say v1, v2 and v3, for
which wi and wj form a pair of barrier vertices with respect to page p. Without
loss of generality, assume that wi ≺ wj , v1 ≺ v2, and that no two independent
edges in {v1wi, v1wj , v2wi, v2wj} cross. Then, for the linear ordering of vertices
in {v1, v2, wi, wj}, there are only two possible layouts: v1 ≺ wi ≺ v2 ≺ wj and
wi ≺ v1 ≺ wj ≺ v2.

Considering the ordering v1 ≺ wi ≺ v2 ≺ wj , we distinguish five cases based
on the position of v3 (refer to Fig. 3 for an illustration).

Case (a): v3 ≺ v1, then v3wi and v1wj are crossing.
Case (b): v1 ≺ v3 ≺ wi ≺ v2 ≺ wj , then v3wj and v1wi are crossing.
Case (c): v1 ≺ wi ≺ v3 ≺ v2 ≺ wj , then v3wj and wiv2 are crossing.
Case (d): v1 ≺ wi ≺ v2 ≺ v3 ≺ wj , then wiv3 and v2wj are crossing.
Case (e): wj ≺ v3, then v1wj and wiv3 are crossing.
Hence, no matter where vertex v3 lies, there must be an edge-crossing caused

by two independent edges on page p, thus contradicting the hypothesis that p is
a stack page. For the ordering wi ≺ v1 ≺ wj ≺ v2, the proof is similar.

When q �= 0, we use a similar proof to show that VW contains at most 2q
uncloneable vertices for which wi and wj form a pair of barrier vertices with
respect to at least one queue page in 〈≺, σ〉. Suppose by contradiction that VW

contains at least 2q + 1 uncloneable vertices. By the pigeonhole principle, there
must be at least one queue page h ∈ [s + 1, s + q] such that VW contains at
least 3 uncloneable vertices, say v1, v2 and v3, for which wi and wj form a
pair of barrier vertices with respect to page h. Assume w.l.o.g. that wi ≺ wj ,
v1 ≺ v2, and that no two independent edges in {v1wi, v1wj , v2wi, v2wj} nest.
Then, vertices v1, v2, wi and wj must be ordered by ordering v1 ≺ wi ≺ wj ≺ v2
in ≺. We distinguish four cases based on the position of v3 (refer to Fig. 4 for an
illustration).

Case (a): v3 ≺ v1, then v1wi is nested inside v3wj .
Case (b): v1 ≺ v3 ≺ wi ≺ wj ≺ v2, then v3wi is nested inside v1wj .
Case (c): v1 ≺ wi ≺ wj ≺ v3 ≺ v2, then wjv3 is nested inside wiv2.
Case (d): v2 ≺ v3, then wjv2 is nested inside wiv3.
Thus, in each case, page h is not a queue page, leading to a contradiction.

Note that we need not consider the order v1 ≺ wi ≺ v3 ≺ wj ≺ v2 because this
case means v3 is not uncloneable. ��

Using Lemma 2, we can give an upper bound on the number of uncloneable
vertices in VW .

Lemma 3. Assume that 〈≺, σ〉 is a mixed s-stack q-queue layout for (G, τ, s, q)
and W ⊆ C. Then there are at most |W | · (|W | − 1) · (s + q) uncloneable vertices
of type W with respect to 〈≺, σ〉.

560 Y. Liu et al.

Fig. 4. Illustration for having at most 2 uncloneable vertices for which wi and wj form
a pair of barrier vertices with respect to a queue page.

Proof. Let V ∗
W be the set of all uncloneable vertices of type W and let v ∈ V ∗

W .
Then, there must exist at least one page p ∈ [1, s + q] and two vertices in W ,
say wi and wj , such that wi and wj form a pair of barrier vertices to v with
respect page p. From Lemma 2, there are at most 2(s + q) uncloneable vertices
for which wi and wj form a pair of barrier vertices in 〈≺, σ〉. Furthermore, for
the vertices in W , there are in total

(|W |
2

)
combinations of two vertices. Thus,

|V ∗
W | ≤ 2(s + q) · (|W |

2

)
= |W | · (|W | − 1) · (s + q). ��

3.2 An Algorithm Based on Kernelization

Now, we present an algorithm based on kernelization for the SQ-lay problem.
Given an instance (G, τ, s, q), we first locate a minimum vertex cover C and
then, for each subset W ⊆ C, deal with the vertices in the corresponding set VW

by some reduction rule (this strategy has been used in [4,5]). By Lemma 3, our
specific reduction rule is described as follows. If |VW | > |W | ·(|W |−1) ·(s+q)+1
then delete all but |W |·(|W |−1)·(s+q)+1 vertices in VW . Note that when |W | =
1 and |VW | > 1, this reduction rule means keeping only one vertex in VW , which
is sufficient for our purposes. After executing this preprocessing procedure, we
obtain a reduced instance denoted by (G∗, τ, s, q).

Theorem 1. (G, τ, s, q) is a yes-instance of the SQ-lay problem if and only if
(G∗, τ, s, q) is a yes-instance of the SQ-lay problem. Moreover, the size of G∗

can be bounded by 2O(τ).

Proof. (⇒) Assume that (G, τ, s, q) is a yes-instance of the SQ-lay problem.
Then (G∗, τ, s, q) must be a yes-instance of the SQ-lay problem because deleting
some vertex from a mixed s-stack q-queue layout keeps the property of being a
mixed s-stack q-queue layout.

(⇐) Assume that (G∗, τ, s, q) is a yes-instance of the SQ-lay problem. Let
〈≺, σ〉 be a mixed s-stack q-queue layout for the instance (G∗, τ, s, q). Assume
that C is a minimum vertex cover of G∗ and W ⊆ C. Let v ∈ VW . By our
definition, the vertex v is either cloneable or uncloneable. From Lemma 3, the
number of uncloneable vertices in VW is at most |W | · (|W | − 1) · (s + q). Thus,
if there are at least |W | · (|W | − 1) · (s + q) + 1 vertices in VW , then there must
exist at least one cloneable vertex, say u. By Lemma 1, we can extend ≺ by
inserting the reduced vertices right next to u one by one, and by assigning the
edges of each reduced vertex to the same pages as the corresponding edges of

Parameterized Algorithms for Linear Layouts of Graphs 561

u. Obviously, the extended assignment is a mixed s-stack q-queue layout for the
graph G.

Finally, we can easily estimate the size of G∗. Given a vertex cover C with
size τ , there are at most 2τ − 1 nonempty subsets. Since W ⊆ C, |W | ≤ τ .
Moreover, we can assume that s < τ and q < τ because if s ≥ τ (resp. q ≥ τ),
then we can immediately construct an s-stack (resp. q-queue) layout of G [4,5].
Hence, the size of G∗ can be bounded by 2τ · (2τ3 + 1) + τ = 2O(τ). ��

By Theorem 1, the reduced instance (G∗, τ, s, q) is exactly a kernel of the
original instance (G, τ, s, q). Thus, we can obtain the following conclusion.

Theorem 2. The SQ-lay problem admits an algorithm running in time
O(22

O(τ)
+ τ · |V |), where τ and |V | denote the vertex cover number and the

size of the input graph, respectively. If (G, τ, s, q) is a yes-instance, this algo-
rithm can also return a mixed s-stack q-queue layout of G.

Proof. From Theorem 1, we have an equivalent instance (G∗, τ, s, q) with size
2O(τ). The next step is to solve the equivalent instance by guessing all possible
linear orders of V (G∗) and by enumerating all possible edge assignments for each
fixed linear order.

The running time can be analyzed as follows. The time for computing a vertex
cover C of size τ is O(2τ +τ · |V |) [8]. All subsets of C can be enumerated in time
O(2τ). Partitioning the vertices in V \C into 2τ types and deleting all redundant
vertices can be done in time O(τ · |V |) respectively. Hence, the running time for
our kernelization procedure is O(2τ +τ · |V |). From Theorem 1, the size of V (G∗)
is 2O(τ). Since the position of two vertices of the same type can be exchanged in
a linear order [4], the number of fixed linear orders on V (G∗) can be bounded
by (2τ)2

O(τ)
= 22

O(τ)
. For each fixed linear order, the mixed s-stack q-queue

layout can be checked by enumerating at most (2τ)2
O(τ)

= 22
O(τ)

assignments,
where 2τ denotes the sum of at most τ stack pages and at most τ queue pages.
Therefore, whether G∗ admits a mixed s-stack q-queue layout can be determined
in time O(22

O(τ) · 22
O(τ)

) = O(22
O(τ)

). If (G∗, τ, s, q) is a yes-instance, then we
can obtain a mixed s-stack q-queue layout of G by extending the mixed s-stack
q-queue layout of G∗ in time O(τ · |V |). ��

3.3 The Derived Results for Some Related Problems

We further consider the k-stack layout problem, the upward k-stack lay-
out problem, and the k-queue layout problem respectively.

The k-stack layout problem parameterized by the vertex cover number τ
can be formally described as follows.

Parameterized k-stack layout (abbreviated as S-Lay)
Input: an undirected graph G = (V,E) and a positive integer k ;
Parameter: τ ;
Question: does there exist a k-stack layout 〈≺, σ〉 of G?

562 Y. Liu et al.

For the S-Lay problem, Bhore et al. [4] presented an algorithm running in
time O(2τO(τ)

+ τ · |V |) based on a kernel of size kO(τ). Since a k-stack layout
of G can be seen as a mixed k-stack 0-queue layout of G, we can immediately
obtain improved results for it. From Theorem1, the S-Lay problem admits a
kernel of size 2O(τ). By Theorem 2, the following conclusions hold.

Theorem 3. The S-lay problem admits an algorithm running in time
O(22

O(τ)
+ τ · |V |), where τ and |V | denote the vertex cover number and the

size of the input graph, respectively. If (G, τ, k) is a yes-instance, this algorithm
can also return a k-stack layout of G.

Corollary 1. Let G = (V,E) be a graph with vertex cover number τ . A stack
layout of G with minimum number of stack pages can be computed in O(22

O(τ)
+

τ log τ · |V |) time.

The upward k-stack layout problem parameterized by the vertex cover
number τ can be formally described as follows.

Parameterized upward k-stack layout (abbreviated as U-S-Lay)
Input: a directed acyclic graph D = (V,E) and a positive integer k;
Parameter: τ ;
Question: does there exist an upward k-stack layout 〈≺, σ〉 of D?

For the U-S-Lay problem, Bhore et al. [6] presented an algorithm running
in time O(τ τO(τ)

+ τ · |V |) based on a kernel of size kO(τ). Since the U-S-Lay
problem can be seen as a variant of the S-Lay problem, our technique can also be
applied to it with minor adjustments. Assume that (D, τ, k) is a yes-instance of
the U-S-Lay problem. Let C be a minimum vertex cover set of D. The vertices
in V (D) \ C are firstly classified into at most 22τ distinct types [6]. Let W ⊆ C.
Then we estimate the number of uncloneable vertices in VW . Let wi, wj be two
vertices in W , let v1, v2 be two vertices in VW , and let p be an arbitrary page
in 〈≺, σ〉. Since v1w and v2w for w ∈ {wi, wj} have the same orientation, at
most one vertex in {v1, v2} is an uncloneable vertex for which wi and wj form a
pair of barrier vertices with respect to page p. It follows that there are at most
1
2 |W | · (|W | − 1) · k uncloneable vertices in VW with respect to 〈≺, σ〉. Thus,
the size of kernel for the U-S-Lay problem can also be bounded by 2O(τ). The
following conclusions hold.

Theorem 4. The U-S-lay problem admits an algorithm running in time
O(22

O(τ)
+ τ · |V |), where τ and |V | denote the vertex cover number and the

size of the input graph, respectively. If (D, τ, k) is a yes-instance, this algorithm
can also return an upward k-stack layout of D.

Corollary 2. Let D = (V,E) be a directed acyclic graph with vertex cover num-
ber τ . An upward stack layout of D with minimum number of stack pages can be
computed in O(22

O(τ)
+ τ log τ · |V |) time.

Parameterized Algorithms for Linear Layouts of Graphs 563

The k-queue layout problem parameterized by the vertex cover number τ
can be formally described as follows.

Parameterized k-queue layout (abbreviated as Q-Lay)
Input: an undirected graph G = (V,E) and a positive integer k;
Parameter: τ ;
Question: does there exist a k-queue layout 〈≺, σ〉 of G?

For the optimization version of the k-queue layout problem, Bhore et al. [5]
presented a parameterized algorithm running in time O(2τO(τ)

+ τ log τ · |V |)
based on a kernel of size kO(τ). Since a k-queue layout of G can be seen as a
mixed 0-stack k-queue layout of G, we can immediately obtain improved results
for it. From Theorem 1, the Q-Lay problem admits a kernel of size 2O(τ). By
Theorem 2, the following conclusions are sound.

Theorem 5. The Q-lay problem admits an algorithm running in time
O(22

O(τ)
+ τ · |V |), where τ and |V | denote the vertex cover number and the

size of the input graph, respectively. If (G, τ, k) is a yes-instance, this algorithm
can also return a k-queue layout of G.

Corollary 3. Let G = (V,E) be a graph with vertex cover number τ . A queue
layout of G with minimum number of queue pages can be computed in O(22

O(τ)
+

τ log τ · |V |) time.

4 k-Arch Layout

The k-arch layout problem parameterized by the vertex cover number τ can
be formally defined as follows.

Parameterized k-arch layout (abbreviated as A-Lay)
Input: an undirected graph G = (V,E), a positive integer k ;
Parameter: τ ;
Question: does there exist a k-arch layout 〈≺, σ〉 of G?

In this section, we will generalize the techniques used in the SQ-lay problem
to the A-lay problem. Our result is that the A-lay problem admits a kernel of
size 2O(τ) and an algorithm running in time O(22

O(τ)
+ τ · |V |). The key step in

our work is to redefine the uncloneable/cloneable vertex.
We start by giving an observation, which matches the analogous observations

in [4,5].

Lemma 4. Every graph G = (V,E) with a vertex cover C of size τ admits a
τ -arch layout. Moreover, if G and C are given as input, such a τ -arch layout
can be computed in O(|V | + τ · |V |) time.

By Lemma 4, if k ≥ τ , we can immediately construct a k-arch layout of G.
Thus, we assume that k < τ in the rest of this paper.

564 Y. Liu et al.

4.1 Two Kinds of Vertices in VW

Recall that an arch page in 〈≺, σ〉 is a set of edges F ⊆ E(G) such that no
two independent edges in F are disjoint. By this definition, we can identify the
uncloneable/cloneable vertices in VW (for |W | ≥ 2) as follows.

Assume that (G, τ, k) is a yes-instance of the A-lay problem. Let 〈≺, σ〉 be a
k-arch layout of G and let W ⊆ C. A vertex v of type W is called an uncloneable
vertex with respect to 〈≺, σ〉 if there exist at least one page p ∈ [1, k] such that
v has two edges wiv and vwj with order wi ≺ v ≺ wj assigned to page p. The
edges wiv and vwj are accordingly called a pair of barrier edges for v respect
to page p. Otherwise, the vertex v of type W is called a cloneable vertex with
respect to 〈≺, σ〉 (refer to Fig. 5 for examples).

Fig. 5. Two uncloneable vertices v1, v2 (left) and two cloneable vertices u1, u2 (right)
are shown in two 2-arch layouts respectively, where W = {w1, w2, w3}.

For the cloneable vertex, the following property holds.

Lemma 5. Let 〈≺, σ〉 be a k-arch layout of a given graph. If v is a cloneable
vertex with respect to 〈≺, σ〉, then inserting a vertex v∗ of type W right (or left)
next to v and assigning each edge v∗w (for w ∈ W) to the same arch page as vw
will result in a valid k-arch layout of the resulting graph.

Proof. Assume that v is a cloneable vertex with respect to 〈≺, σ〉. Then with
respect to each arch page p ∈ [1, k], the vertex v has no pair of barrier edges.
Suppose that v has t (1 ≤ t ≤ |W |) edges, say w1

pv, w2
pv, . . . , wt

pv, assigned to
page p such that the vertices w1

p, w2
p, . . . , wt

p uniformly lie on the left of v in ≺.
After inserting v∗ right next (or left next) to v and assigning all edges wi

pv
∗ for

i = 1, 2, . . . , t to page p, no pair of disjoint edges occur on page p because v∗ is
right next (or left next) to v. Thus, the resulting page is still an arch page. ��

The next lemma shows an upper bound on the number of uncloneable vertices
in VW .

Lemma 6. Assume that 〈≺, σ〉 is a k-arch layout for (G, τ, k) and W ⊆ C.
Then there exist at most k uncloneable vertices of type W with respect to 〈≺, σ〉.

Parameterized Algorithms for Linear Layouts of Graphs 565

Proof. Suppose by contradiction that VW contains at least k + 1 uncloneable
vertices with respect to 〈≺, σ〉. By the pigeonhole principle, there must be at least
one page p ∈ [1, k] such that VW contains an uncloneable vertex, say v1, having
a pair of barrier edges wi1v and vwj1 (wi1 ≺ v1 ≺ wj1) assigned to page p, and
another uncloneable vertex, say v2, having a pair of barrier edges wi2v2, v2wj2

(wi2 ≺ v2 ≺ wj2) assigned to page p. Note that vertices wi2 and wi1 (resp.
wj2 and wj1) may be the same one. If v1 ≺ v2 then the edges wi1v1 and v2wj2

are disjoint; otherwise the edges wi2v2 and v1wj1 are disjoint. Consequently,
the resulting page is no longer an arch page. Therefore, there are at most k
uncloneable vertices of type W with respect to 〈≺, σ〉. ��

4.2 An Algorithm Based on Kernelization

Now, we propose an algorithm based on kernelization for the A-lay prob-
lem. The kernelization framework is the same as that for the SQ-lay problem
described in Sect. 3. By Lemma 6, our specific reduction rule for the A-lay prob-
lem is described as follows. If |VW | > k + 1 then delete all but k + 1 vertices in
VW . We denote by (G∗, τ, k) the reduced instance.

Theorem 6. (G, τ, k) is a yes-instance of the A-lay problem if and only if
(G∗, τ, k) is a yes-instance of the A-lay problem. Moreover, the size of G∗ can
be bounded by 2O(τ).

Proof. (⇒) Assume that (G, τ, k) is a yes-instance of the A-lay problem. Then
(G∗, τ, k) must be a yes-instance of the A-lay problem because deleting some
vertex from a k-arch layout keeps the property of being a k-arch layout.

(⇐) Assume that (G∗, τ, k) is a yes-instance of the A-lay problem. Let 〈≺, σ〉
be a k-arch layout for (G∗, τ, k). Assume that C is a minimum vertex cover of
G∗ and W ⊆ C. From Lemma 6, the number of uncloneable vertices is at most
k in VW . Thus, if there are at least k + 1 vertices in VW , then there must exist
at least one vertex, say u, that is cloneable. By Lemma 5, we can extend ≺ by
inserting the reduced vertices right next to u one by one, and by assigning the
edges of each reduced vertex to the same arch pages as the corresponding edges
of u. Obviously, the extended assignment is exactly a k-arch layout of G.

Finally, we can easily estimate the size of G∗. For a vertex cover C with size
τ , there are at most 2τ −1 nonempty subsets. Since W ⊆ C, |W | ≤ τ . Moreover,
from Lemma 4, we can assume that k < τ . Thus, the size of G∗ can be bounded
by 2τ · (k + 1) + τ ≤ 2τ · τ + τ = 2O(τ). ��
Lemma 7 ([11]). Given a vertex ordering ≺ of an n-vertex m-edge graph G,
there is an algorithm A that assigns the edges of G to the minimum number of
arches with respect to ≺ in O(n + m) time.

Using Theorem 6 and Lemma 7, we give the following.

Theorem 7. The A-lay problem admits an algorithm running in time
O(22

O(τ)
+ τ · |V |), where τ and |V | denote the vertex cover number and the

size of the input graph, respectively. If (G, τ, k) is a yes-instance, this algorithm
can also return a k-arch layout of G.

566 Y. Liu et al.

An arch layout with the minimum number of arches can be obtained by
trying all possible choices for k ∈ [1, τ]. Herein, by applying a binary search on
the number of pages k (this technique has been used in [4,5]), we obtain the
following result.

Corollary 4. Let G = (V,E) be a graph with vertex cover number τ . An arch
layout of G with minimum number of arch pages can be computed in O(22

O(τ)
+

τ log τ · |V |) time.

5 Conclusion

In this work, we study a series of linear layouts of graphs parameterized by
the vertex cover number τ of the input graph G = (V,E). By introducing the
concept of uncloneable/cloneable vertex, we propose some novel reduction rules
in kernelization. By these rules, we show that each of parameterized problems
we considered admits a kernel of size 2O(τ) and an algorithm running in time
O(22

O(τ)
+ τ · |V |).

Some questions are interesting and deserve further research. (1) Do the prob-
lems we considered admit kernels of polynomial size with respect to the vertex
cover number of the input graph? (2) The key ingredient in our kernelization
lies in the concept of uncloneable/cloneable vertex. We believe that this tool will
find further utility in other graph drawing problems.

Acknowledgements. The authors thank the anonymous referees for their valuable
comments and suggestions.

References

1. Bannister, M.J., Cabello, S., Eppstein, D.: Parameterized complexity of 1-planarity.
J. Graph Alg. Appl. 22(1), 23–49 (2018)

2. Bekos, M.A., Gronemann, M., Raftopoulou, C.N.: Two-page book embeddings of
4-planar graphs. Algorithmica 75(1), 158–185 (2016)

3. Bhatt, S.N., Chung, F.R.K., Leighton, F.T., Rosenberg, A.L.: Scheduling tree-dags
using FIFO queues: a control-memory trade-off. J. Parallel Distrib. Comput. 33,
56–68 (1996)

4. Bhore, S., Ganian, R., Montecchiani, F., Nöllenburg, M.: Parameterized algorithms
for book embedding problems. J. Graph Alg. Appl. 24(4), 603–620 (2020)

5. Bhore, S., Ganian, R., Montecchiani, F., Nöllenburg, M.: Parameterized algorithms
for queue layouts. In: Auber, D., Valtr, P., et al. (eds.) GD 2020. LNCS, vol. 12590,
pp. 40–54. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-68766-3 4

6. Bhore, S., Da Lozzo, G., Montecchiani, F., Nöllenburg, M.: On the upward book
thickness problem: combinatorial and complexity results. arXiv: 2108.12327v1
[cs.DM], 27 August 2021. GD 2021 (in press)

7. Binucci, C., Da Lozzo, G., Di Giacomo, E., Didimo, W., Mchedlidze, T., Patrig-
nani, M.: Upward book embeddings of st-graphs. In: Barequet, G., Wang, Y.
(eds.) SoCG 2019. LIPIcs, vol. 129, pp. 13:1–13:22 (2019). https://doi.org/10.4230/
LIPIcs.SoCG.2019.13

https://doi.org/10.1007/978-3-030-68766-3_4
http://arxiv.org/abs/2108.12327v1
https://doi.org/10.4230/LIPIcs.SoCG.2019.13
https://doi.org/10.4230/LIPIcs.SoCG.2019.13

Parameterized Algorithms for Linear Layouts of Graphs 567

8. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor.
Comput. Sci. 411(40–42), 3736–3756 (2010)

9. Chung, F., Leighton, F., Rosenberg, A.: Embedding graphs in books: a layout
problem with applications to VLSI design. SIAM J. Alg. Discr. Meth. 8(1), 33–58
(1987)

10. de Col, P., Klute, F., Nöllenburg, M.: Mixed linear layouts: complexity, heuristics,
and experiments. In: Archambault, D., Tóth, C.D. (eds.) GD 2019. LNCS, vol.
11904, pp. 460–467. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
35802-0 35

11. Dujmović, V., Wood, D.R.: On linear layouts of graphs. Discrete Math. Theor.
Comput. Sci. 6, 339–358 (2004)

12. Dujmović, V., Wood, D.R.: Stacks, queues and tracks: layouts of graph subdivi-
sions. Discrete Math. Theor. Comput. Sci. 7(1), 155–202 (2005)

13. Enomoto, H., Miyauchi, M.: Stack-queue mixed layouts of graph subdivisions. In:
Forum on Information Technology, pp. 47–56 (2014)

14. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph
layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H.,
Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-92182-0 28

15. Heath, L.S., Leighton, F.T., Rosenberg, A.L.: Comparing queues and stacks as
mechanisms for laying out graphs. SIAM J. Discrete Math. 5(3), 398–412 (1992)

16. Heath, L.S., Rosenberg, A.L.: Laying out graphs using queues. SIAM J. Comput.
21(5), 927–958 (1992)

17. Hliněný, P., Sankaran, A.: Exact crossing number parameterized by vertex cover.
In: Archambault, D., Tóth, C.D. (eds.) GD 2019. LNCS, vol. 11904, pp. 307–319.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35802-0 24

18. Klawitter, J., Mchedlidze, T., Nöllenburg, M.: Experimental evaluation of book
drawing algorithms. In: Frati, F., Ma, K.-L. (eds.) GD 2017. LNCS, vol. 10692, pp.
224–238. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73915-1 19

19. Liu, Y., Chen, J., Huang, J.: Fixed-order book thickness with respect to the vertex-
cover number: new observations and further analysis. In: Chen, J., Feng, Q., Xu,
J. (eds.) TAMC 2020. LNCS, vol. 12337, pp. 414–425. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-59267-7 35

20. Liu, Y., Chen, J., Huang, J.: Parameterized algorithms for fixed-order book draw-
ing with bounded number of crossings per edge. In: Wu, W., Zhang, Z. (eds.)
COCOA 2020. LNCS, vol. 12577, pp. 562–576. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-64843-5 38

21. Liu, Y., Chen, J., Huang, J., Wang, J.: On parameterized algorithms for fixed-
order book thickness with respect to the pathwidth of the vertex ordering. Theor.
Comput. Sci. 873, 16–24 (2021)

22. Pemmaraju, S.V.: Exploring the powers of stacks and queues via graph layouts.
Ph.D. thesis, Virginia Tech (1992)

23. Pupyrev, S.: Mixed linear layouts of planar graphs. In: Frati, F., Ma, K.-L. (eds.)
GD 2017. LNCS, vol. 10692, pp. 197–209. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-73915-1 17

24. Yannakakis, M.: Linear and book embeddings of graphs. In: Makedon, F.,
Mehlhorn, K., Papatheodorou, T., Spirakis, P. (eds.) AWOC 1986. LNCS, vol. 227,
pp. 226–235. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-16766-
8 20

https://doi.org/10.1007/978-3-030-35802-0_35
https://doi.org/10.1007/978-3-030-35802-0_35
https://doi.org/10.1007/978-3-540-92182-0_28
https://doi.org/10.1007/978-3-030-35802-0_24
https://doi.org/10.1007/978-3-319-73915-1_19
https://doi.org/10.1007/978-3-030-59267-7_35
https://doi.org/10.1007/978-3-030-64843-5_38
https://doi.org/10.1007/978-3-030-64843-5_38
https://doi.org/10.1007/978-3-319-73915-1_17
https://doi.org/10.1007/978-3-319-73915-1_17
https://doi.org/10.1007/3-540-16766-8_20
https://doi.org/10.1007/3-540-16766-8_20

The Fractional k-truncated Metric
Dimension of Graphs

Eunjeong Yi(B)

Texas A&M University at Galveston, Galveston, TX 77553, USA
yie@tamug.edu

Abstract. Let G be a graph with vertex set V (G), and let d(x, y)
denote the length of a shortest x − y path in G. Let k be a positive
integer. For any x, y ∈ V (G), let dk(x, y) = min{d(x, y), k + 1} and
let Rk{x, y} = {z ∈ V (G) : dk(x, z) �= dk(y, z)}. A set S ⊆ V (G)
is a k-truncated resolving set of G if |S ∩ Rk{x, y}| ≥ 1 for any dis-
tinct x, y ∈ V (G), and the k-truncated metric dimension dimk(G)
of G is the minimum cardinality over all k-truncated resolving sets
of G. For a function g defined on V (G) and for U ⊆ V (G), let
g(U) =

∑
s∈U g(s). A real-valued function g : V (G) → [0, 1] is a k-

truncated resolving function of G if g(Rk{x, y}) ≥ 1 for any distinct
x, y ∈ V (G), and the fractional k-truncated metric dimension dimk,f (G)
of G is min{g(V (G)) : g is a k-truncated resolving function of G}. Note
that dimk,f (G) reduces to dimk(G) if the codomain of k-truncated resolv-
ing functions is restricted to {0, 1}. In this paper, we initiate the study
of the fractional k-truncated metric dimension of graphs. For any con-
nected graph G of order n ≥ 2, we show that 1 ≤ dimk,f (G) ≤ n

2
; we

characterize G satisfying dimk,f (G) equals 1 and n
2
, respectively. We also

examine dimk,f (G) of some graph classes and conclude with some open
problems.

Keywords: (Fractional) metric dimension · k-truncated metric
dimension · Distance-k dimension · Fractional k-truncated metric
dimension · Fractional distance-k dimension

1 Introduction

Let G be a finite, simple, undirected, and connected graph with vertex set V (G)
and edge set E(G). The distance between two vertices x, y ∈ V (G), denoted
by d(x, y), is the minimum number of edges on a path connecting x and y in
G. The diameter, diam(G), of G is max{d(x, y) : x, y ∈ V (G)}. Let Z

+ denote
the set of positive integers. For k ∈ Z

+ and for two vertices x, y ∈ V (G), let
dk(x, y) = min{d(x, y), k + 1}.

Metric dimension, introduced in [15] and [23], is a graph parameter that has
been studied extensively. But, what if the landmarks have a limited range –
capable of sending signals to nodes no further than k-units away from them-
selves? For distinct x, y ∈ V (G), let R{x, y} = {z ∈ V (G) : d(x, z) �= d(y, z)}.
c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 568–578, 2021.
https://doi.org/10.1007/978-3-030-92681-6_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_44&domain=pdf
http://orcid.org/0000-0002-7493-8398
https://doi.org/10.1007/978-3-030-92681-6_44

Fractional Truncated Metric Dimension 569

A vertex subset S ⊆ V (G) is a resolving set of G if |S ∩ R{x, y}| ≥ 1 for any
pair of distinct x, y ∈ V (G), and the metric dimension dim(G) of G is the
minimum cardinality over all resolving sets of G. For k ∈ Z

+ and for distinct
x, y ∈ V (G), let Rk{x, y} = {z ∈ V (G) : dk(x, z) �= dk(y, z)}. A vertex sub-
set S ⊆ V (G) is a k-truncated resolving set (also called a distance-k resolving
set) of G if |S ∩ Rk{x, y}| ≥ 1 for any pair of distinct x, y ∈ V (G), and the
k-truncated metric dimension (also called the distance-k dimension) dimk(G) of
G is the minimum cardinality over all k-truncated resolving sets of G. Notice
that dimk(G) = dim(G) if k ≥ diam(G) − 1. The metric dimension of a metric
space (V, dk) is studied in [3]. The k-truncated metric dimension corresponds to
the (1, k+1)-metric dimension in [7] and [8]. We note that dim1(G) is also called
the adjacency dimension of G in [17]. For detailed results on dimk(G), we refer
to [11], which is formed from merging the two papers [14] and [25]. It is known
that determining the metric dimension and the k-truncated metric dimension of
a general graph are NP-hard problems; see [8,10,12] and [20].

The fractionalization of various graph parameters has been extensively stud-
ied (see [22]). For definition and a formulation of fractional metric dimension as
the optimal solution to a linear programming problem by relaxing a condition
of the integer programming problem for metric dimension, see [5] and [9]. The
fractional metric dimension of graphs was officially studied in [1]. For a function
g defined on V (G) and for U ⊆ V (G), let g(U) =

∑
s∈U g(s). A real-valued

function g : V (G) → [0, 1] is a resolving function of G if g(R{x, y}) ≥ 1 for any
distinct vertices x, y ∈ V (G). The fractional metric dimension, dimf (G), of G is
min{g(V (G)) : g is a resolving function of G}.

For k ∈ Z
+, a real-valued function h : V (G) → [0, 1] is a k-truncated resolv-

ing function (also called a distance-k resolving function) of G if h(Rk{x, y}) ≥
1 for any pair of distinct x, y ∈ V (G). The fractional k-truncated metric
dimension (also called the fractional distance-k dimension) of G, denoted by
dimk,f (G), is min{h(V (G)) : h is a k-truncated resolving function of G}. Note
that dimk,f (G) = dimk(G) if the codomain of k-truncated resolving func-
tions is restricted to {0, 1}, dimk,f (G) = dimf (G) if k ≥ diam(G) − 1, and
dimk,f (G) = dim(G) if k ≥ diam(G) − 1 and the codomain of k-truncated
resolving functions is restricted to {0, 1}.

In this paper, we initiate the study of the fractional k-truncated metric
dimension of graphs. In Sect. 2, for any connected graph G of order n ≥ 2 and
for any k ∈ Z

+, we show that 1 ≤ dimk,f (G) ≤ n
2 and we characterize G satisfy-

ing dimk,f (G) equals 1 and n
2 , respectively. In Sect. 3, we examine dimk,f (G) of

some graph classes. In Sect. 4, we examine the relation among dim(G), dimf (G),
dimk(G) and dimk,f (G). We show the existence of non-isomorphic graphs G and
H such that dimk(G) = dimk(H) and dimk,f (G) �= dimk,f (H). Based on the
construction in [13], we also show the existence of two connected graphs H and
G with H ⊂ G such that dimk,f (H)

dimk,f (G) can be arbitrarily large. We conclude the
paper with some open problems. Throughout the paper, let Pn, Cn and Kn,
respectively, denote the path, the cycle and the complete graph on n vertices.

570 E. Yi

2 Some Observations and Bounds on dimk,f (G)

In this section, for any connected graph G of order n ≥ 2 and for any k ∈ Z
+,

we show that 1 ≤ dimk,f (G) ≤ n
2 ; we characterize G satisfying dimk,f (G) equals

1 and n
2 , respectively.

We begin with some observations. For v ∈ V (G), let N(v) = {w ∈ V (G) :
vw ∈ E(G)}. Two vertices x, y ∈ V (G) are called twins if N(x) − {y} = N(y) −
{x}. It was observed in [26] that, if x and y are distinct twin vertices, then
g(x) + g(y) ≥ 1 for any resolving function g of G. Hernando et al. [16] observed
that the twin relation is an equivalence relation and that an equivalence class
under it, called a twin equivalence class, induces a clique or an independent set.

Observation 1. Let G be a non-trivial connected graph, and let k, k′ ∈ Z
+.

Then

(a) [1] dimf (G) ≤ dim(G);
(b) [3,7] if k > k′, then dim(G) ≤ dimk(G) ≤ dimk′(G) ≤ dim1(G);
(c) dimf (G) ≤ dimk,f (G) ≤ dimk(G);
(d) if k > k′, then dimf (G) ≤ dimk,f (G) ≤ dimk′,f (G) ≤ dim1,f (G) ≤

dim1(G).

Observation 2. Let G be a connected graph with diam(G) = d, and let k ∈ Z
+.

(a) [7] If k ≥ d − 1, then dimk(G) = dim(G).
(b) If k ≥ d − 1, then dimk,f (G) = dimf (G).

Next, we recall some results involving the bounds of the k-truncated metric
dimension and the fractional metric dimension of graphs.

Theorem 3. Let G be a connected graph of order n ≥ 2, and let k ∈ Z
+. Then

(a) [7] 1 ≤ dimk(G) ≤ n − 1, and dimk(G) = 1 if and only if G ∈ ∪k+2
i=2 {Pi};

(b) [1,18] 1 ≤ dimf (G) ≤ n
2 , and dimf (G) = n

2 if and only if there exists a
bijection φ : V (G) → V (G) such that φ(v) �= v and |R{v, φ(v)}| = 2 for all
v ∈ V (G);

(c) [19] dimf (G) = 1 if and only if G = Pn.

For the characterization of connected graphs G of order n satisfying
dimk(G) = n − 2 and dimk(G) = n − 1 respectively, see [11] and [24]. For
an explicit characterization of graphs G satisfying dimf (G) = |V (G)|

2 , we recall
the following construction from [2]. Let K = {Ka : a ≥ 2} and K = {Kb : b ≥ 2},
where G denotes the complement of a graph G. Let H[K ∪ K] be the family of
graphs obtained from a connected graph H by replacing each vertex ui ∈ V (H)
by a graph Hi ∈ K ∪ K, and each vertex in Hi is adjacent to each vertex in Hj

if and only if uiuj ∈ E(H).

Theorem 4. [2] Let G be a connected graph of order at least two. Then
dimf (G) = |V (G)|

2 if and only if G ∈ H[K ∪ K] for some connected graph H.

Fractional Truncated Metric Dimension 571

Next, we obtain the bounds on dimk,f (G).

Proposition 1. For any connected graph G of order n ≥ 2 and for any k ∈ Z
+,

1 ≤ dimk,f (G) ≤ n
2 .

Proof. Let k ∈ Z
+, and let G be a connected graph of order n ≥ 2. By definition,

dimk,f (G) ≥ 1. If g : V (G) → [0, 1] is a function defined by g(v) = 1
2 for each

v ∈ V (G), then Rk{x, y} ⊇ {x, y} and g(Rk{x, y}) ≥ g(x) + g(y) = 1 for
any distinct x, y ∈ V (G); thus, g is a k-truncated resolving function of G with
g(V (G)) = n

2 . So, dimk,f (G) ≤ n
2 . �

Next, we characterize connected graphs G satisfying dimk,f (G) = 1 for any
k ∈ Z

+.

Theorem 5. Let G be a non-trivial connected graph, and let k ∈ Z
+. Then

dimk,f (G) = 1 if and only if G ∈ ∪k+2
i=2 {Pi}.

Proof. Let G be a connected graph of order n ≥ 2, and let k ∈ Z
+.

(⇐) Let G ∈ ∪k+2
i=2 {Pi}. Then 1 = dimf (G) ≤ dimk,f (G) ≤ dimk(G) = 1 by

Observation 1(c) and Theorem 3(a)(c). So, dimk,f (G) = 1.
(⇒) Let dimk,f (G) = 1. By Observation 1(c) and Theorem 3(c), dimk,f (G) ≥

dimf (G) ≥ 1 and dimf (G) = 1 if and only if G = Pn. So, if G �= Pn,
then dimk,f (G) > 1. Now, suppose G = Pn, and let Pn be a path given by
u1, u2, . . . , un. Let g : V (Pn) → [0, 1] be any minimum k-truncated resolving
function of Pn. If n ≤ k + 2, then dimk,f (Pn) = 1 as shown above. So, suppose
n ≥ k + 3; we show that dimk,f (Pn) > 1.

First, let k + 3 ≤ n ≤ 2k + 3. Then Rk{u1, u2} = ∪k+2
i=1 {ui}, Rk{un−1, un} =

∪n
i=n−(k+1){ui}, and Rk{ui−1, ui+1} = V (Pn) − {ui} for ui ∈ Rk{u1, u2} ∩

Rk{un−1, un} (i.e., n − k − 1 ≤ i ≤ k + 2). So, g(Rk{u1, u2}) =
∑k+2

i=1 g(ui) ≥ 1,
g(Rk{un−1, un}) =

∑n
i=n−(k+1) g(ui) ≥ 1, and g(Rk{ui−1, ui+1}) = g(V (Pn)) −

g(ui) ≥ 1 for each i ∈ {n− (k +1), . . . , k +2}. By summing over the (6+2k −n)
inequalities, we have (5+2k−n)g(V (Pn)) ≥ 6+2k−n, i.e., g(V (Pn)) ≥ 6+2k−n

5+2k−n ;
thus, dimk,f (Pn) ≥ 6+2k−n

5+2k−n . On the other hand, let h : V (Pn) → [0, 1] be a
function defined by

h(ui) =
{

1
5+2k−n if ui ∈ {u1, un} ∪ (Rk{u1, u2} ∩ Rk{un−1, un}),
0 otherwise.

Then h is a k-truncated resolving function of Pn with h(V (Pn)) = 6+2k−n
5+2k−n ; thus,

dimk,f (Pn) ≤ 6+2k−n
5+2k−n . Therefore, dimk,f (Pn) = 6+2k−n

5+2k−n for k + 3 ≤ n ≤ 2k + 3.
Second, let n ≥ 2k + 4. Then Rk{u1, u2} = ∪k+2

i=1 {ui} and Rk{un−1, un} =
∪n

i=n−k−1{ui}. So, g(Rk{u1, u2}) =
∑k+2

i=1 g(ui) ≥ 1 and g(Rk{un−1, un}) =∑n
i=n−k−1 g(ui) ≥ 1. Since n − k − 1 ≥ 2k + 4 − k − 1 = k + 3, g(V (Pn)) ≥

∑k+2
i=1 g(ui) +

∑n
i=n−k−1 g(ui) ≥ 2, which implies dimk,f (Pn) ≥ 2. �

Next, via a proof technique used in [2], we characterize connected graphs G

satisfying dimk,f (G) = |V (G)|
2 for any k ∈ Z

+.

572 E. Yi

Theorem 6. Let G be a connected graph of order n ≥ 2. Then dim1,f (G) = n
2

if and only if G ∈ H[K ∪ K] for some connected graph H.

Proof. Let G be a connected graph of order n ≥ 2.
(⇐) Let G ∈ H[K ∪ K] for some connected graph H. Then dim1,f (G) ≥

dimf (G) = n
2 by Observation 1(d) and Theorem4. By Proposition 1,

dim1,f (G) = n
2 .

(⇒) Let dim1,f (G) = n
2 . It suffices to show that each twin equivalence class

of V (G) has cardinality at least two. Assume, to the contrary, that there exists
a twin equivalence class Q ⊂ V (G) consisting of exactly one element; let z ∈ Q.
Let h : V (G) → [0, 1] be a function defined by h(z) = 0 and h(v) = 1

2 for each
v ∈ V (G)−{z}. Since |R1{z, u}| ≥ 3 for any u ∈ V (G)−{z}, h is a 1-truncated
resolving function of G with h(V (G)) = n−1

2 , and hence dim1,f (G) ≤ n−1
2 , a

contradiction. So, each twin equivalence class of V (G) must have cardinality at
least two. By the connectedness of G, we conclude that G ∈ H[K ∪ K] for some
connected graph H. �

Observation 1(d), Theorems 4 and 6 imply the following

Corollary 1. Let G be a connected graph of order n ≥ 2, and let k ∈ Z
+. Then

dimk,f (G) = n
2 if and only if G ∈ H[K ∪ K] for some connected graph H.

3 dimk,f (G) of Some Graph Classes

In this section, we examine dimk,f (G) for some classes of graphs.

3.1 Cycles and Graphs G with diam(G) ≤ 2

First, we determine dimk,f (Cn) for any k ∈ Z
+ and for n ≥ 3.

Theorem 7. [1] For n ≥ 3, dimf (Cn) =
{ n

n−1 if n is odd,
n

n−2 if n is even.

Theorem 8. For any k ∈ Z
+ and for n ≥ 3,

dimk,f (Cn) =

⎧
⎨

⎩

n
n−1 if n ≤ 2k + 3 and n is odd,

n
n−2 if n ≤ 2k + 3 and n is even,

n
2(k+1) if n ≥ 2k + 4.

Proof. Let k ∈ Z
+. For n ≥ 3, let Cn be given by u0, u1, . . . , un−1, u0. Let

g : V (Cn) → [0, 1] be any minimum k-truncated resolving function of Cn.
First, let n ≤ 2k + 3; then diam(Cn) ≤ � 2k+3

2 � = k + 1. By Observation 2(b),
dimk,f (Cn) = dimf (Cn). So, by Theorem 7, dimk,f (Cn) = n

n−1 for an odd n and
dimk,f (Cn) = n

n−2 for an even n.
Second, let n ≥ 2k + 4. Note that, for each i ∈ {0, 1, . . . , n − 1},

Rk{ui, ui+2} = ∪k
j=0{ui−j , ui+2+j}, where the subscript is taken modulo n; thus

Fractional Truncated Metric Dimension 573

∑k
j=0(g(ui−j) + g(ui+2+j)) ≥ 1. By summing over n such inequalities, we have

2(k +1)g(V (Cn)) ≥ n since each vertex appears 2(k +1) times in the n inequal-
ities. So, g(V (Cn)) ≥ n

2(k+1) , and hence dimk,f (Cn) ≥ n
2(k+1) . On the other

hand, if we let h : V (Cn) → [0, 1] be a function defined by h(ui) = 1
2(k+1) for

each i ∈ {0, 1, . . . , n − 1}, then h is a k-truncated resolving function of Cn with
h(V (Cn)) = n

2(k+1) . To see this, for any distinct x, y ∈ {0, 1, . . . , n − 1}, note
that |Rk{ux, uy}| ≥ 2(k + 1) and h(Rk{ux, uy}) ≥ 1

2(k+1) · 2(k + 1) = 1. So,
dimk,f (Cn) ≤ h(V (Cn)) = n

2(k+1) . Therefore, dimk,f (Cn) = n
2(k+1) . �

Next, we consider graphs G with diam(G) ≤ 2. The join of two graphs G and
H, denoted by G+H, is the graph obtained from the disjoint union of G and H by
joining an edge between each vertex of G and each vertex of H. If diam(G) ≤ 2,
then dimk,f (G) = dimf (G) for any k ∈ Z

+. So, dimk,f (G) = dimf (G) when G is
the Petersen graph, the join graph (a wheel graph or a fan graph, for examples)
or a complete multipartite graph. See [1] for dimf (G) when G is the Petersen
graph or a wheel graph; see [26] for dimf (G) when G is a complete multipartite
graph. Next, we state the following result on dimk,f (Pn + K1); we refer to [27]
for its proof.

Theorem 9. Let k ∈ Z
+.

(a) For n ≥ 1,

dimk,f (Pn +K1) = dimf (Pn +K1) =

⎧
⎪⎪⎨

⎪⎪⎩

n+1
2 if n ∈ {1, 2, 3},

5
3 if n ∈ {4, 5},
n+1
4 if n ≥ 6 and n ≡ 1, 3 (mod 4),

n+2
4 if n ≥ 6 and n ≡ 2 (mod 4).

(b) If n ≥ 8 and n ≡ 0(mod 4), then n
4 ≤ dimk,f (Pn + K1) = dimf (Pn + K1) ≤

n+2
4 .

3.2 Grid Graphs

For s, t ≥ 2, we examine dimk,f (Ps × Pt). We recall some notations. For two
functions f(x) and g(x) defined on R, f(x) = O(g(x)) if there exist positive
constants N and C such that |f(x)| ≤ C|g(x)| for all x > N , f(x) = Ω(g(x)) if
g(x) = O(f(x)), and f(x) = Θ(g(x)) if f(x) = O(g(x)) and f(x) = Ω(g(x)). We
note that dim1(G)

dim(G) can be arbitrarily large (see [13]) and that both dim1(G)
dimk(G) and

dimk(G)
dim(G) can be arbitrarily large for k > 1 (see [11]).

First, we show that dim1,f (G)
dimk,f (G) and dimk,f (G)

dimf (G) can be arbitrarily large for k > 1.

Proposition 2. [1] If G = Ps × Pt (s, t ≥ 2), then dimf (G) = 2.

Proposition 3. [13] If G = Pm × Pm for m ≥ 2, then dim1(G) = Θ(m2).

Proposition 4. [11] If G = Pk2 × Pk2 for k > 1, then dimk(G) = Θ(k2).

574 E. Yi

Proposition 5. If G = P4m × P3m for m ≥ 1, then dim1,f (G) = Θ(m2).

Proof. By Proposition 3 and Observation 1(d), dim1,f (G) = O(m2). To see that
dim1,f (G) = Ω(m2), suppose that the grid graph G = P4m × P3m is drawn in
the xy-plane with the four corners at (1, 1), (4m, 1), (1, 3m) and (4m, 3m) with
horizontal and vertical edges of equal lengths, and let g : V (G) → [0, 1] be any 1-
truncated resolving function of G. Then, for every P4 ×P3 subgraph, say Bi,j , of
G with the four corners (1+4i, 1+3j), (4+4i, 1+3j), (1+4i, 3+3j) and (4+4i, 3+
3j), where i, j ∈ {0, 1, . . . ,m−1}, we have R1{(2+4i, 2+3j), (3+4i, 2+3j)} ⊂
V (Bi,j), and thus g(V (Bi,j)) ≥ 1. So, dim1,f (G) ≥ ∑m−1

j=0

∑m−1
i=0 g(V (Bi,j)) ≥

m2, and hence dim1,f (G) = Ω(m2). Therefore, dim1,f (G) = Θ(m2). �

Theorem 10. For k > 1, let G = P(2k+2)2×P(2k+1)2 . Then dimk,f (G) = Θ(k2),
and thus both dim1,f (G)

dimk,f (G) and dimk,f (G)
dimf (G) can be arbitrarily large.

Proof. For k > 1, let G = P(2k+2)2 × P(2k+1)2 . Then dimf (G) = 2 by Proposi-
tion 2, and dim1,f (G) = Θ(k4) by Proposition 5. Next, we show that dimk,f (G) =
Θ(k2). By Proposition 4 and Observation 1(c), dimk,f (G) = O(k2). To see that
dimk,f (G) = Ω(k2), notice that G contains disjoint union of (2k + 2)(2k + 1)
copies of P2k+2×P2k+1. Let g : V (G) → [0, 1] be any k-truncated resolving func-
tion of G. For each subgraph P2k+2×P2k+1 of G, if x and y are the two adjacent
central vertices of P2k+2 ×P2k+1, then Rk{x, y} ⊆ V (P2k+2 ×P2k+1), and hence
g(V (P2k+2 × P2k+1)) ≥ g(Rk{x, y}) ≥ 1; thus dimk,f (G) ≥ (2k + 2)(2k + 1). So,
dimk,f (G) = Ω(k2). Therefore, dimk,f (G) = Θ(k2) for k > 1, and both dim1,f (G)

dimk,f (G)

and dimk,f (G)
dimf (G) can be arbitrarily large. �

Next, we state the following result on grid graphs G satisfying dim1,f (G) =
dimf (G); we refer to [27] for its proof.

Proposition 6. For the grid graph G = Ps × Pt with s ≥ t ≥ 2, dim1,f (G) =
dimf (G) if and only if G ∈ {P2 × P2, P3 × P2, P4 × P2, P3 × P3}.

3.3 Trees

We examine dimk,f (T) for non-trivial trees T . For n ≥ 2, dimk,f (Pn) = dimf (Pn)
if and only if n ∈ {2, 3, . . . , k + 2} by Theorems 3(c) and 5. We first state the
following result on dimk,f (Pn); we refer to [27] for its proof.

Theorem 11. Let k ∈ Z
+ and n ≥ 2.

(a) If n ≤ k + 2, then dimk,f (Pn) = 1.
(b) If k + 3 ≤ n ≤ 2k + 3, then dimk,f (Pn) = 6+2k−n

5+2k−n .
(c) Let n ≥ 2k + 4.

(i) If n ≡ 1(mod (2k + 2)), then dimk,f (Pn) = n+k
2k+2 .

(ii) If n ≡ 2, 3, . . . , k + 2(mod (2k + 2)), then dimk,f (Pn) = � n
2k+2�.

Fractional Truncated Metric Dimension 575

(iii) If n ≡ 0(mod (2k + 2)) or n ≡ k + 3, k + 4, . . . , 2k + 1(mod (2k + 2)), then
� n
2k+2� ≤ dimk,f (Pn) ≤ � n

2k+2� + 1
2 .

Next, we examine non-trivial trees T satisfying dim1,f (T) = dimf (T). We
recall some terminology and notation. The degree of a vertex v ∈ V (G) is |N(v)|;
a leaf is a vertex of degree one and a major vertex is a vertex of degree at least
three. Fix a tree T . A leaf � is called a terminal vertex of a major vertex v
if d(�, v) < d(�, w) for every other major vertex w in T . The terminal degree,
ter(v), of a major vertex v is the number of terminal vertices of v in T , and
an exterior major vertex is a major vertex that has positive terminal degree.
An exterior degree-two vertex is a vertex of degree 2 that lies on a path from
a terminal vertex to its major vertex, and an interior degree-two vertex is a
vertex of degree 2 such that the shortest path to any terminal vertex includes a
major vertex. Let M(T) be the set of exterior major vertices of T and let L(T)
be the set of leaves of T . Let M1(T) = {w ∈ M(T) : ter(w) = 1}, M2(T) =
{w ∈ M(T) : ter(w) ≥ 2}; then M(T) = M1(T) ∪ M2(T). Let σ(T) = |L(T)|,
ex(T) = |M(T)| and ex1(T) = |M1(T)|.
Theorem 12. [26] For any non-trivial tree T , dimf (T) = 1

2 (σ(T) − ex1(T)).

The following lemma is used in proving Proposition 7; see [27] for proofs of
the next two statements.

Lemma 1. Let T be a tree with ex(T) ≥ 1 satisfying dim1,f (T) = dimf (T).

(a) If v ∈ M2(T), then every terminal vertex of v is adjacent to v in T .
(b) T contains no major vertex of terminal degree one.
(c) T contains neither a major vertex of terminal degree zero nor an interior

degree-two vertex.

Proposition 7. Let T be a non-trivial tree. Then dim1,f (T) = dimf (T) if and
only if T ∈ {P2, P3}, or ex(T) ≥ 1 and V (T) = M2(T) ∪ L(T).

For any k ∈ Z
+, it is an interesting yet challenging task to characterize all

connected graphs G satisfying dimk,f (G) = dimf (G) even when G is restricted
to trees. For trees T with ex(T) = 1, we state the following result on T satisfying
dimk,f (T) = dimf (T); we refer to [27] for its proof.

Proposition 8. Let k ∈ Z
+, and let T be a tree with ex(T) = 1 such that

�1, �2, . . . , �α are the terminal vertices of the exterior major vertex v in T . Then
dimk,f (T) = dimf (T) if and only if d(v, �i) ≤ k for each i ∈ {1, 2, . . . , α}.

4 Some Remarks and Open Problems

In this section, we examine the relation among dimf (G), dimk,f (G), dim(G) and
dimk(G) for k ∈ Z

+ in conjunction with Observation 1. We show that, for two
connected graphs H and G with H ⊂ G, dimk,f (H)

dimk,f (G) can be arbitrarily large. We

576 E. Yi

also show the existence of non-isomorphic graphs G and H with dimk(G) =
dimk(H) and dimk,f (G) �= dimk,f (H). We conclude the paper with some open
problems.

It is known that metric dimension is not a monotone parameter on subgraph
inclusion (see [6]), and the following results were obtained in [13] and [11].

Theorem 13. Let H and G be connected graphs with H ⊂ G. Then

(a) [13] dim(H)
dim(G) and dim1(H)

dim1(G) can be arbitrarily large;

(b) [11] for any k ∈ Z
+, dimk(H)

dimk(G) can be arbitrarily large.

We recall the following construction from [13]. For m ≥ 3, let H = Km(m+1)
2

;
let V (H) be partitioned into V1, V2, . . . , Vm such that Vi = {wi,1, wi,2, . . . , wi,i}
with |Vi| = i, where i ∈ {1, 2, . . . ,m}. Let G be the graph obtained from H
and m isolated vertices u1, u2, . . . , um such that, for each i ∈ {1, 2, . . . ,m}, ui

is joined by an edge to each vertex of Vi ∪ (∪m
j=i+1{wj,i}); notice H ⊂ G. Since

diam(H) = 1 and diam(G) = 2, by Observation 2(b), dimk,f (H) = dimf (H)
and dimk,f (G) = dimf (G) for any k ∈ Z

+. Note that dimf (H) = m(m+1)
4 by

Theorem 4, and dimf (G) ≤ m by Observation 1(a) since {u1, u2, . . . , um} forms
a resolving set of G. So, dimk,f (H)

dimk,f (G) = dimf (H)
dimf (G) ≥ m+1

4 for any k ∈ Z
+, which

implies the following

Corollary 2. For any k ∈ Z
+, there exist connected graphs H and G such that

H ⊂ G and both dimf (H)
dimf (G) and dimk,f (H)

dimk,f (G) can be arbitrarily large.

It was shown that dimk(G)
dim(G) and dimk,f (G)

dimf (G) can be arbitrarily large (see [11] and
Theorem 10, respectively). In view of Observation 1, we obtain the following

Remark 1. Let k ∈ Z
+, and let G be a non-trivial connected graph. Then

(a) dim(G) − dimf (G) can be arbitrarily large;
(b) dimk(G) − dimk,f (G) can be arbitrarily large;
(c) dim(G) − dimk,f (G) can be arbitrarily large;
(d) dimk,f (G)

dim(G) can be arbitrarily large.

Proof. Let k ∈ Z
+. It is known that, for any tree T that is not a path,

dim(T) = σ(T)− ex(T) (see [4,20,21]). For (a), (b) and (c), let G be a tree with
V (G) = M2(G) ∪ L(G) such that M2(G) = {v1, v2, . . . , vx} with ter(vi) = α ≥ 3
for each i ∈ {1, 2, . . . , x}, where x ≥ 1. Then dimk(G) ≥ dim(G) = x(α − 1)
by Observation 1(b). Also, note that dimk,f (G) ≥ dimf (G) = xα

2 by Observa-
tion 1(c) and Theorem 12. Since a function g : V (G) → [0, 1] defined by g(u) = 1

2
for each u ∈ L(G) and g(w) = 0 for each w ∈ M2(G) = V (G) − L(G) is
a k-truncated resolving function for G with g(V (G)) = xα

2 , dimk,f (G) ≤ xα
2 .

So, dimk,f (G) = dimf (G) = xα
2 . Thus, dimk(G) − dimk,f (G) ≥ dim(G) −

dimk,f (G) = dim(G) − dimf (G) = x(α − 1) − xα
2 = x(α−2)

2 → ∞ as x → ∞ or
α → ∞.

For (d), let G = Cx(k+1)(k+5) for some x ∈ Z
+. Then dimk,f (G) = x(k+5)

2 by
Theorem 8 and dim(G) = 2. So, dimk,f (G)

dim(G) = x(k+5)
4 → ∞ as x → ∞. �

Fractional Truncated Metric Dimension 577

Next, we show the existence of non-isomorphic graphs G and H with
dimk(G) = dimk(H) and dimk,f (G) �= dimk,f (H) for each k ∈ Z

+. We recall the
following result.

Theorem 14. [11] Let k ∈ Z
+. Then

(a) dimk(Pn) = 1 for 2 ≤ n ≤ k + 2;
(b) dimk(Cn) = 2 for 3 ≤ n ≤ 3k+3, and dimk(Pn) = 2 for k+3 ≤ n ≤ 3k+3;
(c) for n ≥ 3k + 4,

dimk(Cn) = dimk(Pn) =

⎧
⎪⎨

⎪⎩

� 2n+3k−1
3k+2

� if n ≡ 0, 1, . . . , k + 2 (mod (3k + 2)),

� 2n+4k−1
3k+2

� if n ≡ k + 3, . . . , � 3k+5
2

� − 1 (mod (3k + 2)),

� 2n+3k−1
3k+2

� if n ≡ � 3k+5
2

�, . . . , 3k + 1 (mod (3k + 2)).

Remark 2. Let k ∈ Z
+. There exist non-isomorphic graphs G and H such that

dimk(G) = dimk(H) and dimk,f (G) �= dimk,f (H). For n ≥ 3k + 4, dimk(Cn) =
dimk(Pn) by Theorem 14 and dimk,f (Cn) �= dimk,f (Pn) for n ≡ 1(mod (2k +2))
by Theorems 8 and 11(c).

We conclude the paper with some open problems.

Question 1. For any tree T and for any k ∈ Z+, can we determine dimk,f (T)?

Question 2. For any k ∈ Z
+, can we characterize all connected graphs G satis-

fying dimk,f (G) = dimf (G)?

Question 3. For any k ∈ Z
+, can we characterize all connected graphs G satis-

fying dimk(G) = dimk,f (G)?

Acknowledgements. The author thanks the anonymous referees for some helpful
comments.

References

1. Arumugam, S., Mathew, V.: The fractional metric dimension of graphs. Discrete
Math. 312, 1584–1590 (2012)

2. Arumugam, S., Mathew, V., Shen, J.: On fractional metric dimension of graphs.
Discrete Math. Algorithms Appl. 5, 1350037 (2013)

3. Beardon, A.F., Rodŕıguez-Velázquez, J.A.: On the k-metric dimension of metric
spaces. Ars Math. Contemp. 16, 25–38 (2019)

4. Chartrand, G., Eroh, L., Johnson, M.A., Oellermann, O.R.: Resolvability in graphs
and the metric dimension of a graph. Discrete Appl. Math. 105, 99–113 (2000)

5. Currie, J., Oellermann, O.R.: The metric dimension and metric independence of a
graph. J. Combin. Math. Combin. Comput. 39, 157–167 (2001)

6. Eroh, L., Kang, C.X., Yi, E.: Metric dimension and zero forcing number of two
families of line graphs. Math. Bohem. 139(3), 467–483 (2014)

7. Estrada-Moreno, A.: On the (k, t)-metric dimension of a graph. Dissertation, Uni-
versitat Rovira i Virgili (2016)

578 E. Yi

8. Estrada-Moreno, A., Yero, I.G., Rodŕıguez-Velázquez, J.A.: On the (k, t)-metric
dimension of graphs. Comput. J. 64(5), 707–720 (2021)

9. Fehr, M., Gosselin, S., Oellermann, O.R.: The metric dimension of Cayley digraphs.
Discrete Math. 306, 31–41 (2006)

10. Fernau, H., Rodŕıguez-Velázquez, J.A.: On the (adjacency) metric dimension of
corona and strong product graphs and their local variants: combinatorial and com-
putational results. Discrete Appl. Math. 236, 183–202 (2018)

11. Frongillo, R.M., Geneson, J., Lladser, M.E., Tillquist, R.C., Yi, E.: Truncated
metric dimension for finite graphs (2021, Submitted)

12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, New York (1979)

13. Geneson, J., Yi, E.: Broadcast dimension of graphs. arXiv:2005.07311v1 (2020).
https://arxiv.org/abs/2005.07311

14. Geneson, J., Yi, E.: The distance-k dimension of graphs. arXiv:2106.08303v2
(2021). https://arxiv.org/abs/2106.08303

15. Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Combin. 2,
191–195 (1976)

16. Hernando, C., Mora, M., Pelayo, I.M., Seara, C., Wood, D.R.: Extremal graph
theory for metric dimension and diameter. Electron. J. Combin. 17, 1–28 (2010).
Article no. R30

17. Jannesari, M., Omoomi, B.: The metric dimension of the lexicographic product of
graphs. Discrete Math. 312(22), 3349–3356 (2012)

18. Kang, C.X.: On the fractional strong metric dimension of graphs. Discrete Appl.
Math. 213, 153–161 (2016)

19. Kang, C.X., Yi, E.: The fractional strong metric dimension of graphs. In: Wid-
mayer, P., Xu, Y., Zhu, B. (eds.) COCOA 2013. LNCS, vol. 8287, pp. 84–95.
Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03780-6 8

20. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discrete Appl.
Math. 70, 217–229 (1996)

21. Poisson, C., Zhang, P.: The metric dimension of unicyclic graphs. J. Combin. Math.
Combin. Comput. 40, 17–32 (2002)

22. Scheinerman, E.R., Ullman, D.H.: Fractional Graph Theory: A Rational Approach
to the Theory of Graphs. Wiley, New York (1997)

23. Slater, P.J.: Leaves of trees. Congr. Numer. 14, 549–559 (1975)
24. Tillquist, R.C.: Low-dimensional embeddings for symbolic data science. Disserta-

tion, University of Colorado, Boulder (2020)
25. Tillquist, R.C., Frongillo, R.M., Lladser, M.E.: Truncated metric dimension for

finite graphs. arXiv:2106.14314v1 (2021). https://arxiv.org/abs/2106.14314
26. Yi, E.: The fractional metric dimension of permutation graphs. Acta Math. Sin.

Engl. Ser. 31, 367–382 (2015)
27. Yi, E.: The fractional k-truncated metric dimension of graphs. arXiv:2108.02745v1

(2021). https://arxiv.org/abs/2108.02745

http://arxiv.org/abs/2005.07311v1
https://arxiv.org/abs/2005.07311
http://arxiv.org/abs/2106.08303v2
https://arxiv.org/abs/2106.08303
https://doi.org/10.1007/978-3-319-03780-6_8
http://arxiv.org/abs/2106.14314v1
https://arxiv.org/abs/2106.14314
http://arxiv.org/abs/2108.02745v1
https://arxiv.org/abs/2108.02745

On Structural Parameterizations
of the Offensive Alliance Problem

Ajinkya Gaikwad and Soumen Maity(B)

Indian Institute of Science Education and Research, Pune, India
ajinkya.gaikwad@students.iiserpune.ac.in, soumen@iiserpune.ac.in

Abstract. The Offensive Alliance problem has been studied exten-
sively during the last twenty years. A set S ⊆ V of vertices is an offensive
alliance in an undirected graph G = (V, E) if each v ∈ N(S) has at least
as many neighbours in S as it has neighbours (including itself) outside
S. We study the parameterzied complexity of the Offensive Alliance
problem, where the aim is to find a minimum size offensive alliance. Our
focus here lies on parameters that measure the structural properties of
the input instance. We enhance our understanding of the problem from
the viewpoint of parameterized complexity by showing that the Offen-
sive Alliance problem is W[1]-hard parameterized by a wide range of
fairly restrictive structural parameters such as the feedback vertex set
number, treewidth, pathwidth, and treedepth of the input graph. We also
prove that the Strong Offensive Alliance problem parameterized by
the vertex cover number of the input graph does not admit a polynomial
compression unless coNP ⊆ NP/poly.

Keywords: Defensive and offensive alliance · Parameterized
complexity · FPT · W[1]-hard · Treewidth

1 Introduction

An alliance is a collection of people, groups, or states such that the union is
stronger than individual. The alliance can be either to achieve some common
purpose, to protect against attack, or to assert collective will against others.
This motivates the definitions of defensive and offensive alliances in graphs.
The properties of alliances in graphs were first studied by Kristiansen, Hedet-
niemi, and Hedetniemi [11]. They introduced defensive, offensive and powerful
alliances. The alliance problems have been studied extensively during last twenty
years [2,6,13,15,16], and generalizations called r-alliances are also studied [14].
Throughout this article, G = (V,E) denotes a finite, simple and undirected

A. Gaikwad—Gratefully acknowledges support from the Ministry of Human Resource
Development, Government of India, under Prime Minister’s Research Fellowship
Scheme (No. MRF-192002-211).
S. Maity—Research was supported in part by the Science and Engineering Research
Board (SERB), Govt. of India, under Sanction Order No. MTR/2018/001025.

c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 579–586, 2021.
https://doi.org/10.1007/978-3-030-92681-6_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_45&domain=pdf
https://doi.org/10.1007/978-3-030-92681-6_45

580 A. Gaikwad and S. Maity

graph of order |V | = n. The subgraph induced by S ⊆ V (G) is denoted by G[S].
We use dS(v) to denote the degree of vertex v in G[S]. The complement of the
vertex set S in V is denoted by Sc.

Definition 1. A non-empty set S ⊆ V is a strong offensive alliance in G if
dS(v) ≥ dSc(v) + 2 for all v ∈ N(S).

In this paper, we consider Offensive Alliance, Exact Offensive Alliance
and Strong Offensive Alliance problems under structural parameters. We
define these problems as follows:

Offensive Alliance
Input: An undirected graph G = (V,E) and an integer r ≥ 1.
Question: Is there an offensive alliance S ⊆ V (G) such that 1 ≤ |S| ≤ r?

Strong Offensive Alliance
Input: An undirected graph G = (V,E) and an integer r ≥ 1.
Question: Is there a strong offensive alliance S ⊆ V (G) such that 1 ≤ |S| ≤ r?

For the standard concepts in parameterized complexity, see the recent textbook
by Cygan et al. [3]. The graph parameters we explicitly use in this paper are
vertex cover number, feedback vertex set number, pathwidth, treewidth and
treedepth [3].

1.1 Known Results

Fernau and Raible showed in [4] that the defensive and offensive alliance prob-
lems and their global variants are fixed parameter tractable when parameterized
by the solution size k. Kiyomi and Otachi showed in [9], the problems of finding
smallest alliances of all kinds are fixed-parameter tractable when parameteried
by the vertex cover number. The problems of finding smallest defensive and
offensive alliances are also fixed-parameter tractable when parameteried by the
neighbourhood diversity [7]. Bliem and Woltran [1] proved that deciding if a
graph contains a defensive alliance of size at most k is W[1]-hard when param-
eterized by treewidth of the input graph. This puts it among the few problems
that are FPT when parameterized by solution size but not when parameterized
by treewidth (unless FPT = W[1]).

2 Hardness Results

In this section we show that Offensive Alliance is W[1]-hard parameterized
by a vertex deletion set to trees of height at most seven, that is, a subset D of
the vertices of the graph such that every component in the graph, after removing
D, is a tree of height at most seven. On the way towards this result, we provide
hardness results for several interesting versions of the Offensive Alliance

The Offensive Alliance Problem 581

problem which we require in our proofs. The problem Offensive AllianceF

generalizes Offensive Alliance where some vertices are forced to be outside
the solution; these vertices are called forbidden vertices. This variant can be
formalized as follows:

Offensive AllianceF

Input: An undirected graph G = (V,E), an integer r and a set V� ⊆ V (G)
of forbidden vertices such that each degree one forbidden vertex is adjacent
to another forbidden vertex and each forbidden vertex of degree greater than
one is adjacent to a degree one forbidden vertex.
Question: Is there an offensive alliance S ⊆ V such that (i) 1 ≤ |S| ≤ r, and
(ii) S ∩ V� = ∅?

Strong Offensive AllianceFN is a generalization of Strong Offensive

AllianceF that, in addition, requires some “necessary” vertices to be in S.
This variant can be formalized as follows:

Strong Offensive AllianceFN

Input: An undirected graph G = (V,E), an integer r, a set V� ⊆ V , and
a set V� ⊆ V (G) of forbidden vertices such that each degree one forbidden
vertex is adjacent to another forbidden vertex and each forbidden vertex of
degree greater than one is adjacent to a degree one forbidden vertex.
Question: Is there a strong offensive alliance S ⊆ V such that (i) 1 ≤ |S| ≤ r,
(ii) S ∩ V� = ∅, and (iii) V� ⊆ S?

While the Offensive Alliance problem asks for offensive alliance of size at
most r, we also consider the Exact Offensive Alliance problem that con-
cerns offensive alliance of size exactly r. Analogously, we also define exact ver-
sions of Strong Offensive Alliance presented above. To prove Lemma 2, we
consider the following problem:

Multidimensional Relaxed Subset Sum (MRSS)
Input: Two integers k and k′, a set S = {s1, . . . , sn} of vectors with si ∈ N

k

for every i with 1 ≤ i ≤ n and a target vector t ∈ N
k.

Parameter: k + k′

Question: Is there a subset S′ ⊆ S with |S′| ≤ k′ such that
∑

s∈S′
s ≥ t?

Lemma 1. [8] MRSS is W[1]-hard when parameterized by the combined
parameter k + k′, even if all integers in the input are given in unary.

We now show that the Strong Offensive AllianceFN problem is W[1]-hard
parameterized by the size of a vertex deletion set into trees of height at most 5,
via a reduction from MRSS.

582 A. Gaikwad and S. Maity

Lemma 2 (�1). The Strong Offensive AllianceFN problem is W[1]-hard
when parameterized by the size of a vertex deletion set into trees of height at
most 5.

We have the following corollary from Lemma2.

Corollary 1. The Strong Offensive AllianceFN problem is W[1]-hard
when parameterized by the size of a vertex deletion set into trees of height
at most 5, even when |V�| = 1.

Next, we give an FPT reduction without proof that eliminates necessary vertices.

Lemma 3 (�). The Offensive AllianceF problem is W[1]-hard when param-
eterized by the size of a vertex deletion set into trees of height at most 5.

We are now ready to show our main hardness result for Offensive Alliance

using a reduction from Offensive AllianceF.

Theorem 1. The Offensive Alliance problem is W[1]-hard when parame-
terized by the size of a vertex deletion set into trees of height at most 7.

Proof. We give a parameterized reduction from Offensive AllianceF which
is W[1]-hard when parameterized by the size of a vertex deletion set into trees of
height at most 5. Let I = (G, r, V�) be an instance of Offensive AllianceF.
Let n = |V (G)|. We construct an instance I ′ = (G′, r′) of Offensive Alliance
the following way. We set r′ = r. Recall that each degree one forbidden vertex is
adjacent to another forbidden vertex and each forbidden vertex of degree greater
than one is adjacent to a degree one forbidden vertex. Let u be a degree one
forbidden vertex in G and u is adjacent to another forbidden vertex v. For each
degree one forbidden vertex u ∈ V�, we introduce a tree Tu rooted at u of
height 2 as shown in Fig. 1. The forbidden vertex v has additional neighbours
from the original graph G which are not shown here. We define G′ as follows:
V (G′) = V (G)

⋃

u∈V�

{
V (Tu) | where u is a degree one forbidden vertex in G

}

and E(G′) = E(G)
⋃

u′∈V�
E(Tu). We claim I is a yes instance if and only if

Fig. 1. Our tree gadget Tu for each degree one forbidden vertex u ∈ V�

1 Due to paucity of space, the proofs of statements marked with a � have been omitted.

The Offensive Alliance Problem 583

I ′ is a yes instance. It is easy to see that if R is an offensive alliance of size at
most r in G then it is also an offensive alliance of size at most r′ = r in G′.

To prove the reverse direction of the equivalence, suppose that G′ has an
offensive alliance R′ of size at most r′ = r. We claim that no vertex from the
set V�

⋃

u∈V�
V (Tu) is part of R′. It is easy to see that if any vertex from the

set V�
⋃

u∈V�
V (Tu) is in R′ then the size of R′ exceeds 2r. This implies that

R = R′ ∩G is an offensive alliance such that R∩V� = ∅ and |R| ≤ r. This shows
that I is a yes instance. �	
We have the following consequences.

Corollary 2. The Exact Offensive Alliance problem is W[1]-hard when
parameterized by the size of a vertex deletion set into trees of height at most 7.

Clearly trees of height at most seven are trivially acyclic. Moreover, it is easy
to verify that such trees have pathwidth [10] and treedepth [12] at most seven,
which implies:

Theorem 2. The Offensive Alliance and Exact Offensive Alliance
problems are W[1]-hard when parameterized by any of the following parameters:

– the feedback vertex set number,
– the treewidth and pathwidth of the input graph,
– the treedepth of the input graph.

3 No Polynomial Kernel When Parameterized by Vertex
Cover Number

A set C ⊆ V is a vertex cover of G = (V,E) if each edge e ∈ E has at least
one endpoint in X. The minimum size of a vertex cover in G is the vertex cover
number of G, denoted by vc(G). Parameterized by vertex cover number vc, the
Offensive Alliance problem is FPT [9] and in this section we prove the
following kernelization hardness of the Strong Offensive Alliance problem.

Theorem 3. The Strong Offensive Alliance problem parameterized by
the vertex cover number of the input graph does not admit a polynomial com-
pression unless coNP ⊆ NP/poly.

To prove Theorem 3, we give a polynomial parameter transformation (PPT)
from the well-known Red Blue Dominating Set problem (RBDS) to Strong
Offensive Alliance parameterized by vertex cover number. Recall that in
RBDS we are given a bipartite graph G = (R ∪ B,E) and an integer k, and we
are asked whether there exists a vertex set S ⊆ B of size at most k such that
N(S) = R. The following theorem is known:

Theorem 4. [5] RBDS parameterized by |R| does not admit a polynomial com-
pression unless coNP ⊆ NP/poly.

584 A. Gaikwad and S. Maity

3.1 Proof of Theorem3

By Theorem 4, RBDS parameterized by |R| does not admit a polynomial com-
pression unless coNP ⊆ NP/poly. To prove Theorem3, we give a PPT from
RBDS parameterized by |R| to Strong Offensive Alliance parameterized
by the vertex cover number. Given an instance (G = (R ∪ B,E), k) of RBDS,
we construct an instance (G′, k′) of Strong Offensive Alliance as follows.
First we duplicate the vertices of B. That is, G′ contains both B and B′ where
B′ = {b′ | b ∈ B}. For r ∈ R and b ∈ B, we have (r, b), (r, b′) ∈ E(G′) if and
only if (r, b) ∈ E(G). Next we add a vertex a and make it adjacent to all the
vertices of B. We also add a set Va = {a1, . . . , a|B|} of vertices and make them
adjacent to a. We introduce two vertices x1, x2 and make them adjacent to all
the vertices of B. Make x2 adjacent to all the vertices of R. We also make a
adjacent to x1 and x2. Finally we add a set Vx of 6|B| vertices and make x1 and
x2 adjacent to all the vertices of Vx. We observe that R ∪ {a, x1, x2} is a vertex
cover of G′. Therefore the vertex cover size of G′ is bounded by |R| + 3. We set
k′ = |B| + k + 2. See Fig. 2 for an illustration.

Fig. 2. The graph G′ produced by the reduction algorithm from G in Theorem 3.

We now claim that (G, k) is a yes instance of RBDS if and only if (G′, k′) is
a yes instance of Strong Offensive Alliance. Suppose there exists a vertex
set S ⊆ B of size at most k in G such that N(S) = R. We claim that the set
D = B ∪{b′ ∈ B′ | b ∈ S}∪ {x1, x2} is a strong offensive alliance in G′. Observe
that N(D) = R ∪ Vx ∪ {a}. Next, we show that each v ∈ N(D) satisfies the
inequality dD(v) ≥ dDc(v) + 2.

Case 1: Suppose v ∈ R has d neighbours in B. As v has at least one neighbour
in {b′ ∈ B′ | b ∈ S} and v is adjacent to x2, we get |ND(v)| ≥ d + 2. Note that
|NDc(v)| ≤ d − 1. This implies dD(v) ≥ dDc(v) + 2.

The Offensive Alliance Problem 585

Case 2: Observe that for a, we have NDc(a) = Va. This implies that |NDc(a)| =
|B|. It is easy to see that ND(a) = B ∪ {x1, x2}. Therefore, we have |ND(a)| =
|B| + 2. This implies that dD(a) ≥ dDc(a) + 2. For each v ∈ Vx, it easy to see
that dDc(v) = 0 and dD(v) = 2.

Conversely, suppose there exists a strong offensive alliance D of size at
most k′ in graph G′. First, we show that {x1, x2} ⊆ D. It is easy to see that
{x1, x2} �⊆ N(D) due to the size of Vx as otherwise |D| ≥ 3|B| > k′. Since a
strong offensive alliance is non-empty, it must contain a vertex from one of the
sets {a}, Va, B,B′, R. Clearly, if D contains a vertex from B ∪ R ∪ {a} then
{x1, x2} ⊆ D. If D contains a vertex from Va then a ∈ N(D) and a has to
satisfy the condition dD(a) ≥ dDc(a)+2 which requires at least two vertex from
B ∪ {x1, x2} inside D. This implies that {x1, x2} ⊆ D. If D contains a vertex
from B′ then some vertex r ∈ R is in N(D) and r has to satisfy the condition
dD(r) ≥ dDc(r) + 2 which requires at least one vertex from B to be inside D.
This implies {x1, x2} ⊆ D. This shows that for any strong offensive alliance D,
we have {x1, x2} ⊆ D.

Next, we show that starting from D, we can always construct another strong
offensive alliance D′ such that B ⊆ D′ and |D′| ≤ |D|. Since x1 ∈ D, this
implies that a ∈ D or a ∈ N(D).

Case 1: Observe that if a ∈ D then Va ⊆ D as otherwise Va ∩N(D) �= ∅ and the
vertices in the set Va ∩ N(D) do not satisfy the inequality dD(v) ≥ dDc(v) + 2.
Therefore, we have Va ⊆ D. In this case, we replace {a} ∪ Va by B in D′. Note
that N(D′) = N(D) ∪ {a} and a satisfies the condition dD′(v) ≥ dD′c(v) + 2.
The vertices v in N(D) also satisfy the condition dD′(v) ≥ dD′c(v) + 2 as we
increase their neighbours in D′. In this case, it is easy to see that |D′| ≤ |D|.

Case 2: Observe that if a ∈ N(D) then a has to satisfy the condition dD(a) ≥
dDc(a) + 2 which requires at least |B| vertices from Va ∪ B in D. We replace
that set of |B| vertices by B in D′. It is easy to see that a satisfies the con-
dition dD′(a) ≥ dD′c(a) + 2, in fact, each v ∈ N(D′) satisfies the condition
dD′(a) ≥ dD′c(a)+2 . Therefore D′ is a strong offensive alliance and |D′| ≤ |D|.

Thus we assume that {x1, x2} ∪ B ⊆ D′. Since |D′| ≤ |B| + k + 2, it implies
that D′ contains at most k vertices apart from the vertices in {x1, x2}∪B. Next,
we observe that every red vertex r ∈ R is either in D′ or N(D′). If r ∈ N(D′),
then r has to satisfy the condition dD′(r) ≥ dD′c(r)+2 which requires r having at
least one neighbour in D′∩B′. We construct another set D� from D′ by replacing
each r ∈ D′ by an arbitrary neighbour of r in B′. Thus we get R∩D� = ∅. Note
that each r ∈ R now satisfies the condition dD�(r) ≥ dD�c(r)+2. Therefore D� is
a strong offensive alliance and |D�| ≤ |D′|. This implies that each vertex in R has
at least one neighbour in S′ = D�∩B′ and |S′| ≤ k. Define S = {b ∈ B | b′ ∈ S′}.
This implies that S ⊆ B is a vertex set of size at most k such that N(S) = R. �	

586 A. Gaikwad and S. Maity

4 Conclusions

It would be interesting to consider the parameterized complexity with respect
to twin cover. The parameterized complexity of offensive and defensive alliance
problems remain unsettled when parameterized by other important structural
graph parameters like clique-width and modular-width.

References

1. Bliem, B., Woltran, S.: Defensive alliances in graphs of bounded treewidth. Discret.
Appl. Math. 251, 334–339 (2018)

2. Chellali, M., Haynes, T.W.: Global alliances and independence in trees. Discuss.
Math. Graph Theor. 27(1), 19–27 (2007)

3. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

4. Fernau, H., Raible, D.: Alliances in graphs: a complexity-theoretic study. In: Pro-
ceeding Volume II of the 33rd International Conference on Current Trends in The-
ory and Practice of Computer Science (2007)

5. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory of
Parameterized Preprocessing. Cambridge University Press (2019)

6. Fricke, G., Lawson, L., Haynes, T., Hedetniemi, M., Hedetniemi, S.: A note on
defensive alliances in graphs. Bull. Inst. Combin. Appl. 38, 37–41 (2003)

7. Gaikwad, A., Maity, S., Tripathi, S.K.: Parameterized complexity of defensive and
offensive alliances in graphs. In: Goswami, D., Hoang, T.A. (eds.) ICDCIT 2021.
LNCS, vol. 12582, pp. 175–187. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-65621-8 11

8. Ganian, R., Klute, F., Ordyniak, S.: On structural parameterizations of the
bounded-degree vertex deletion problem. Algorithmica 83(1), 297–336 (2021)

9. Kiyomi, M., Otachi, Y.: Alliances in graphs of bounded clique-width. Discret. Appl.
Math. 223, 91–97 (2017)

10. Kloks, T. (ed.): Treewidth. Computations and Approximations. LNCS, vol. 842.
Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0045375

11. Kristiansen, P., Hedetniemi, M., Hedetniemi, S.: Alliances in graphs. J. Comb.
Math. Comb. Comput. 48, 157–177 (2004)

12. Nešetřil, J., Ossona de Mendez, P.: Sparsity. Graphs, Structures, and Algo-
rithms. AC, vol. 28. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-27875-4

13. Rodŕıguez-Velázquez, J., Sigarreta, J.: Global offensive alliances in graphs. Elec-
tron. Notes Discrete Math. 25, 157–164 (2006)

14. Sigarreta, J., Bermudo, S., Fernau, H.: On the complement graph and defensive
k-alliances. Discret. Appl. Math. 157(8), 1687–1695 (2009)

15. Sigarreta, J., Rodŕıguez, J.: On defensive alliances and line graphs. Appl. Math.
Lett. 19(12), 1345–1350 (2006)

16. Sigarreta, J., Rodŕıguez, J.: On the global offensive alliance number of a graph.
Discret. Appl. Math. 157(2), 219–226 (2009)

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-030-65621-8_11
https://doi.org/10.1007/978-3-030-65621-8_11
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4

On the k-colored Rainbow Sets in Fixed
Dimensions

Vahideh Keikha1(B) , Hamidreza Keikha2, and Ali Mohades3

1 Institute of Computer Science, The Czech Academy of Sciences,
Pod Vodárenskou věž́ı 2, 182 07 Prague, Czech Republic

keikha@cs.cas.cz
2 Department of Computer Engineering, Amirkabir University of Technology,

Tehran, Iran
keikha@aut.ac.ir

3 Department of Mathematics and Computer Science, Amirkabir University
of Technology, Tehran, Iran

mohades@aut.ac.ir

Abstract. In this paper, we introduce a variant of the minimum diam-
eter color spanning set (MDCSS) problem. Let P be a set of n points
of m colors in R

d. For a given k, our objective is to find a set with k
points of different colors that admits the minimum possible diameter.
Such a set is called a k-rainbow set. This problem has applications in
database queries, mostly composed by weighted points (i.e., a positive
value is assigned to each point as its weight), and seeking a maximum
weight k-rainbow set. We first assume the points have equal weight and
design an FPT algorithm, which we generalize to the weighted version.
We also solve the decision and the enumeration version of the problem
by introducing a reduction to all maximal independent sets of a bipar-
tite graph. We also introduce a 1.154-approximation algorithm for this
problem and a 2.236-approximation for the enumeration version, and we
perform some experimental studies on a real data-set, as well as providing
several analyses of the data-set based on the outputs of our algorithm.
Our exact algorithms and the approximation algorithm for the enumer-
ation problem have a complexity being near-linear to n in R

2.

Keywords: Minimum diameter color spanning set · FPT algorithms ·
Colored points

1 Introduction

Let P = {p1, . . . , pn} be a set of n points in R
d, the diameter of P is defined as

diameter(P) = max
pi,pj∈P

d(pi, pj), and can be computed in O(dn2) time [26]. In R
2,

computing the diameter takes O(n log n) time [28]. Now, suppose each pi ∈ P
is assigned a color. The objective of the minimum diameter color spanning set
(MDCSS) problem is to find a subset P ∗ ⊆ P that contains one point from each
color, and P ∗ has the smallest possible diameter among all choices of P ∗, where
c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 587–601, 2021.
https://doi.org/10.1007/978-3-030-92681-6_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_46&domain=pdf
http://orcid.org/0000-0003-2821-5903
https://doi.org/10.1007/978-3-030-92681-6_46

588 V. Keikha et al.

Fig. 1. (a) The diameter of a set P of points in R
2. (b) For a set P with m = 3 colors,

the rainbow set P ∗ = {p2, p7, p10}.

the diameter is the maximum distance between any two points in P ∗. P ∗ is
called the color spanning set or the rainbow set; see Fig. 1.

The MDCSS problem can be considered as a database query; consider a spa-
tial database where each tuple is associated with a keyword or, equivalently, a
color code in our setting. The m-closest keywords query is the problem of finding
the m tuples that match all the keywords chosen by the customer [29]. In our
problem, the closeness is measured by the diameter. Now suppose a customer
aims at finding some closest keywords of the desired number and his/her maxi-
mum willingness. The motivation behind this study is efficiently answering such
queries. We note that such queries are introduced in the database literature as
reverse top-k queries [13], without theoretic analysis, but have recently received
considerable attention from the database community.

Related Work. Fleischer and Xu [12] showed that for a large number of col-
ors, the MDCSS problem is NP-hard even in two dimensions but is solvable in
polynomial-time for a small number of colors. The fixed-parameter tractability
of MDCSS is posed as an open problem in [12], in which they assume that the
dimension d is fixed. Recently, Pruente [27] answered this question by proving
that MDCSS is W[1]-hard by using a complicated reduction from multi-colored
clique graph problems [11], where the dimension d is not fixed. Also, the author
shows that the problem does not admit an FPTAS in arbitrarily high dimen-
sional spaces. In the same paper, some algorithms with quadratic dependencies
to n are also supporting the result.

Kazemi et al. presented a PTAS in high dimensional space for the MDCSS
problem and proved that assuming the Exponential Time Hypothesis (ETH),
there is no (1+ε)-approximation algorithm with running time 2o(ε(1−d)/2)poly(n)
to solve the MDCSS problem [17].

Instead of considering a discrete set for the possible locations of a color
code, a continuous region of possible locations may determine a color code.
Finding a point in each region such that the chosen set admits the smallest
diameter is also extensively studied in this model. This formulation is introduced
and extensively studied by Löffler and van Kreveld [22] for disks and squares,

On the k-colored Rainbow Sets in Fixed Dimensions 589

Fig. 2. Problem definition and optimal solutions, with k-rainbow sets for k = 2, 3, 4, 5.

and several improvements have been made recently to the complexity of their
algorithms by Keikha et al. [19].

Regardless of whether the associated set of each color code is a continuous
or a discrete set, the maximum diameter color spanning set problem is to locate
a set of points, where the diameter has the largest possible size. This problem
usually takes polynomial time as it is involved with the points in convex position.
We refer the interested reader to [2,7,15,29] for other related studies on MDCSS.

Our problem is closely related to outlier detection problems, except that their
input is a set of monochromatic points: for a given k < n, exclude n − k points
(referred to as outliers) from P , such that the remaining points have the smallest
possible diameter. In R

2, the best-known algorithm for this problem, developed
by Eppstein et al., runs in O(n log n + k2n log2 k) time [9]. There also exists a
lower bound Ω(n log n) for this problem even for one outlier since the diameter
picks the outlier as a vertex [3]. This implies that any fixed-parameter algorithm
for computing a k-rainbow set is no better than Ω(n log n) in R

2.
We finally note that to the best of our knowledge, no study has been con-

ducted on our problem or the weighted version of the MDCSS problem.

Contribution. In the following, we formally define our problems: Let P =
{p1, . . . , pn} be a set of n points of m colors in R

d, let t be the maximum
frequency of any color in P , and let 1 < k < m be a positive integer.

Definition 1. Minimum Diameter k-Colored Spanning Set (MDkCSS).
The objective of the MDkCSS problem is to find a subset P ∗ ⊆ P of size k of
distinct colors, such that P ∗ has the smallest possible diameter among all possible
choices. Formally diameter(P ∗) = min

P∈D(P)
diameter(P), where D(P) denote the

collection of all k-subsets1 of P of distinct colors.

We call P ∗ a k-rainbow set of P ; see Fig. 2 for an illustration. The main
application of this problem is in the case where the points have a predefined
weight assigned, and the optimal k-rainbow set has the maximum total weight.
1 i.e., subsets of size k.

590 V. Keikha et al.

Definition 2. Maximum Weight Minimum Diameter k-Colored Span-
ning Set (MWMDkCSS). We define a maximum weight k-rainbow set P ∗ as a
k-subset of distinct colors that minimizes diameter(P ∗)

weight(P ∗) , where weight(P ∗) is the
total sum of the weights of the points in P ∗.

Results. In this paper, we first focus on the case where all the points have the
same weight and then we discuss to what extent our results can be generalized
to the weighted version under some restrictions. In particular:

– For the first time, we introduce a relation between the MDCSS problem and
higher-order Voronoi diagrams. We first provide a fixed-parameter tractable
(FPT) algorithm that has near-linear dependency on n in R

2 (Theorem 1),
which is helpful to improve the existing quadratic FPT algorithm (for small
k and t) for the MDCSS problem [27].

– We show that MDkCSS is fixed-parameter tractable in R
d for any fixed d

(Sect. 3.1). We then show our FPT algorithm gives an approximation for the
MWMDkCSS problem (Sect. 3.2).

– We have implemented our exact algorithm on a real data-set to consider the
efficiency of our technique in practice, and we give several analyses on the
studied data-set (Sect. 4).

– We then discuss the decision and the enumeration version of the MDkCSS
problem for a given value q, and introduce an O(n(tk)2((tk)2.5 + α)) time
algorithm, where α is the maximum number of the k-rainbow sets of size at
most q. We hope these problems are of independent interest in data mining
and database inquiries. To solve these problems, we introduce a reduction to
all maximal independent sets of a bipartite graph (Sect. 5).

– We introduce a 2.236-approximation with running time O(mn log mn) for the
enumeration version of MDkCSS, and a 1.154-approximation for the MDkCSS
problem in R

2 with running time O(m3n) (Sect. 6).

Our FPT algorithm is efficient when the parameters t and k are small, which
is the common assumption of any FPT algorithm. Note that parametrizing a
problem by the number of colors is common in computational geometry. We also
remark that in the MDCSS problem if the number of the existing colors in P is
a small k (possibly constant), we still do not have any exact algorithm with a
running time better than

(
n
k

)
. In R

2, our FPT algorithm is near-linear to n.

2 Preliminaries

Maximum Independent Set (MIS). A maximum independent set of a graph
G = (V,E) is a subset X ⊆ V with maximum size, in which there is no edge e ∈ E
between any a, b ∈ X. This problem is NP-hard, fixed-parameter intractable, and
also hard to approximate [8]. The best algorithm for computing all maximum
independent sets of a bipartite graph takes O(s2.5 + α) time [16], where s and α
are the number of vertices and the total size of the output, respectively.

On the k-colored Rainbow Sets in Fixed Dimensions 591

k-Order Voronoi Diagram. The Voronoi diagram of order k of P is the
partitioning of the plane into a set of Voronoi cells, such that each Voronoi cell
c is associated with a set X ⊆ P of k points, and for each point p in the cell
c, the k nearest neighbors of p are exactly the elements of X. We denote this
diagram by Vk. Such diagrams can be computed in O(k2n + n log n) time and
have at most O(nk) cells [20].

Fixed-Parameter Tractable (FPT). In fixed-parameter tractability, we pro-
vide some algorithms which no longer are exponential on the input size but on
some other parameter related to the problem. These parameters are called the
fixed parameter of the problem. Formally, for a given problem Υ , we characterize
the input size, n, and some parameter k, and say Υ is fixed-parameter tractable
if Υ can be solved by an algorithm that runs in O(�(k) · nc) time, where � is
a computable function depending on k, and c is any constant independent of
k. Also, it is already known that parameterized complexity can be extended to
achieve approximation algorithms for hard problems [24]. We use the same idea
to achieve an FPT approximation algorithm for MWMDkCSS in Sect. 3.2.

Minimum Color Spanning Circle. For a set of n colored points of m colors,
the smallest color spanning circle is a circle of the smallest radius that is covering
m distinct colors [1]. In R

2, the smallest color spanning circle of m colors can
be computed in O(nm log n) time by computing the upper envelope of some
Voronoi surfaces [1,14]. This problem becomes NP-hard in R

d, where d is in the
input, but admits a (1 + ε)-approximation in O(dn�1/ε�+1) time [18].

We first note that MDCSS problem is para-NP-hard2 for the parameter t
since the proof in [12] shows NP-hardness for t bounded by three. It can easily be
extended to also show NP-hardness if at most 5 colored points are co-located (if
we do a reduction by MAX-E3SAT(5) [10]). Hence, the problem may get easier
if the number of colors is large, i.e., more than n

3 .

3 MDkCSS is in FPT in Any Fixed Dimension

In the following, we assume that the points of P are in general position, that
means no four points are co-circular. Recall that a k-rainbow set P ∗ is a set of
points of k distinct colors, where P ∗ has the smallest possible diameter among all
choices. In [12] it is posed as an open question which value of k is the threshold
between easy and hard. We partially answer that question, as we do not need
to cover all, but only k colors that their instances realize the smallest possible
diameter. Our algorithm has a near-linear dependency on the number of points,
where its hardness depends on k (and t, but we discussed above that t is not
a parameter to determine the hardness). Consequently, we answer the posed

2 A problem is para-NP-hard if it is NP-hard already for a constant value of the param-
eter.

592 V. Keikha et al.

Fig. 3. Illustration of Lemma 1, the case where D∗ has two points on its boundary. On
a set P of colored points with t = 2, the optimal solution with k = 2 is associated with
a cell c (shown in gray) of Vt(k−1)+1, and uses a pair of red and blue points (connected
by a dashed line segment). Observe that D∗ cannot contain more than 3 points of P ,
otherwise, there must be two points of different colors strictly within D∗, such that
they realize a smaller diameter than the diameter of D∗. (Color figure online)

question in [12] partially as follows: for any constant number of colors which we
need to span, the MDCSS problem in R

2 can be answered in near-linear time.
In the following, we will show that any set of k colored points of smallest

diameter is a subset of the points which are associated to a Voronoi cell of a
Voronoi diagram (of P) of order t(k − 1) + 1, or 3t(k − 1) + 1.

Lemma 1. Let P be a set of n colored points, and let P ∗ be a k-rainbow set of
P . Then P ∗ is a subset of the points which are corresponding to a Voronoi cell
of a Voronoi diagram either of order t(k − 1) + 1, or 3t(k − 1) + 1.

Proof. Let c(P) denote a subset of points of P that are associated with only one
cell c of a Voronoi diagram Vt(k−1)+1, or V3t(k−1)+1. Recall that for each Voronoi
cell c, there exists a disk D having its center within c, where D contains no other
point of P − c(P). The set P ∗ also realizes a disk D∗ such that either two or
three points of P ∗ are located on its boundary.

Suppose by contradiction that the lemma is false, and P ∗ of k colors is
not associated with one cell of a Voronoi diagram of order t(k − 1) + 1, or
3t(k − 1) + 1.

By definition, in Vt(k−1)+1, the points of each cell of the diagram have the
same t(k−1)+1 nearest neighbors. Observe that in the case where there are two
points on the boundary of D∗, D∗ cannot contain more than t(k−1)+1 points. If
not, there always exist at least another set P ′ of k points from k distinct colors,
which they all are entirely located within D∗, and the diameter of P ′ is strictly
smaller than the diameter of D∗ (i.e., P ∗). This gives a contradiction. It follows
that D∗ cannot contain more than t(k − 1) + 1 points and P ∗ is contained in
some Voronoi cell of a Voronoi diagram of order t(k − 1) + 1. See Fig. 3 for an
illustration.

In the case where D∗ has three points on its boundary, we partition D∗ into
three sectors by connecting the center of D∗ to the points of P ∗ on its boundary.

On the k-colored Rainbow Sets in Fixed Dimensions 593

Algorithm 1. Exact Algorithm
Input: P = {P1, . . . , Pn}, and k > 0
Output: k-rainbow set of P
1: d∗ = ∞
2: Compute V3t(k−1)+1 (or Vt(k−1)+1 if V3t(k−1)+1 does not exist)
3: for each cell c in V3t(k−1)+1 do
4: Pc= the associated points of P to c
5: for any k-subset Pc of c do
6: if there are k distinct colors in Pc then
7: dc=the diameter of Pc

8: end if
9: if d∗ > dc then

10: d∗ = dc, P
∗
c = Pc

11: end if
12: end for
13: end for
14: return d∗ and P ∗

c

Then each sector cannot contain more than t(k −1) points since otherwise there
would be k points from distinct colors in that sector so that the determined
diameter by those points is strictly smaller than the diameter of P ∗. Hence, D∗

is contained in the associated points of a Voronoi cell of V3t(k−1)+1. ��

3.1 Algorithm

Observe that we only need to consider V3t(k−1)+1 as the associated points in
its cells strictly cover all possibilities in Vt(k−1)+1. From Lemma 1, the smallest
diameter among each subset of k points of distinct colors that is associated
to a Voronoi cell of V3t(k−1)+1 determines an optimal solution. We design our
algorithm based on this fact.

In the algorithm, we first make the Voronoi diagram of order 3t(k−1)+1, of
all the n points of P , without considering their colors in the construction. In each
step of the algorithm, we consider the associated points of each cell of V3t(k−1)+1

independently. Let d∗ denote the diameter of the k-rainbow set P ∗, and let Pc

denote the associated points of a cell c. We use a brute force idea on Pc to find
a subset P ∗

c ⊆ Pc of k distinct colors with the smallest possible diameter, and
remember the P ∗

c with the smallest d∗
c among all the cells of V3t(k−1)+1.

In Lemma 1 we observed that each set Pc has a reasonable size with only
a linear dependency to k and t, which means our algorithm has exponential
dependence only in k and t. Since the complexity of the number of the cells of
a Voronoi diagram of order tk is O(ntk), our method gives an FPT algorithm
with k and t as the parameters; see Algorithm 1.

Running Time Analysis. We will now elaborate on the complexity of the
algorithm for a cell of V3t(k−1)+1. To analyse the running time of considering

594 V. Keikha et al.

all k-subsets of 3tk − 3t + 1 points, we use the Stirling’s formula:
(
3tk−3t+1

k

)
=

2log(3tk−3t+1)!−log k!−log(3tk−3t−k+1)!. Then we have log(3tk − 3t + 1)! − log k! −
log(3tk − 3t − k + 1)! = 3tk ln(3tk − 3t + 1)− (3tk − 3t + 1) +O(ln(3tk − 3t + 1))
−k ln k + k − O(ln k) − (3tk − 3t + 1) ln(3tk − 3t − k + 1) +(3tk − 3t − k + 1) −
O(ln(3tk − 3t − k + 1)) ∈ O(tk).

Hence, considering all possible k-rainbow sets of one cell of V3t(k−1)+1 takes
O(2O(tk)) time.

For each cell c of V3t(k−1)+1, we can find a solution to the MDkCSS prob-
lem by finding a k-rainbow set with the smallest possible diameter among the
corresponding points of c in O(k log k2O(tk)) time, in which, in O(k) time we
determine whether the selected set contains k distinct colors, and O(k log k)
time is required to find the diameter of this k-subset.

To generalize our FPT to a higher dimension d, we first need to construct
the k-order Voronoi diagram in that dimension. Recall that a k-order Voronoi
diagram in R

d can be constructed in O(n�d/2�k�d/2	+1) time [6].

Theorem 1. Let P be a set of n colored points in R
d. MDkCSS can be solved

in O(n(2O(tk) + log n) + n�d/2�k�d/2	+1) time.

Proof. A Voronoi diagram of order O(tk) can be computed in O((tk)2n+n log n)
time and has at most O(ntk) cells. A k-order Voronoi diagram in the dimension
d can be constructed in O(n�d/2�k�d/2	+1) time, so by repeating the algorithm of
Sect. 3.1 for all the cells of the Voronoi diagram V3t(k−1)+1 in R

d, the algorithm
takes O(n2O(tk)+n log n) time. Hence, the problem can be solved in O(n(2O(tk)+
log n) + n�d/2�k�d/2	+1) time. ��
Corollary 1. MDkCSS is in FPT in R

d for any fixed d, with k and t as the
parameters.

3.2 Maximum Weight k-rainbow Set

For any point pi ∈ P , let wi denote the weight of pi. W.l.o.g, we assume wi > 0,
i = 1, . . . , n. It is easy to observe that the problem at which a k-rainbow set P ∗

(for general values of k) minimizes diameter(P ∗)
weight(P ∗) , where weight(P ∗) =

∑
pi∈P ∗ wi

is NP-hard with the same reduction in [12] for the MDCSS, by using an extra
assumption of assigning the same weight to all the points in P . We discuss
that Algorithm 1 is applicable on particular cases of this problem, at which the
ratio of the weights of any two points in P is at most ω. This is a reasonable
assumption since in any environment, the input data are usually relevant and
are not that much different in the sense of measurement precisions. Also, we can
measure the ratio of the weights in polynomial time. Then Algorithm1 gives
a ω-approximation for the MWMDkCSS problem, as in the worst case the two
points of large weight that are far apart from each other, and have to be in an
optimal solution, will not land in the same cell. So we may not consider solutions
containing both these points. But the ratio of the weight of a point in the reported
and the optimal solution is at most within a factor ω. Assuming all the elements

On the k-colored Rainbow Sets in Fixed Dimensions 595

k=3100
k=3200

k=3300
k=3000

Fig. 4. Illustration of the output of Algorithm 1 on the data-set [5,21], and the ranges
at which the optimal solutions for k = 3000, 3100, 3200, 3300 appear.

of P ∗ lands at different cells and summing up the weights of such points gives
the approximation factor at most ω. Note that an arbitrary k-rainbow set has
the same approximation ratio only for the total sum of the weights of the points.
But such a set cannot guarantee to have the minimum possible diameter among
all choices for approximating diameter(P ∗)

weight(P ∗) within a factor ω.

Theorem 2. If the ratio of the weights of any two points in P is at most ω,
Algorithm1 gives an FPT ω-approximation for MWMDkCSS in R

d for any fixed
d, with k and t as the parameters.

4 Experimental Studies

We discussed an application for our problem in the Introduction. In this section,
we discuss another application along with our experimental tests to evaluate the
performance of Algorithm 1 in practice. We do our computational tests on a real
data-set in R

2.
Our data-set characterizes the locations and times of check-ins of the

Brightkite social network, which has a reasonable size and several users with differ-
ent check-ins each, so that we can model each user as a color code. This network has
58,228 users and 4,491,143 check-ins of these users ranging in the period of April
2008 to October 2010. This data-set is contained in the SNAP network [5,21].

We assign a color to each user, and of course we need the users with at
least one check-in (to denote the frequency at least one for each color). This
number equals 51,685 in this data-set. The total number of colors (m) is also

596 V. Keikha et al.

Table 1. Experimental results of Algorithm 1 on the Brightkite data-set [5,21].

Input size k # cells of Vt(k−1)+1 Alg 1 Time (s) BF Time (s)

4,491,143 3000 10272 2.3867 0.1191e+2

3100 13070 2.8967 0.1259e+2

3200 14221 3.9683 0.1436e+2

3300 19744 4.1662 0.1696e+2

51,685, and n equals 4,491,143, that is the total number of the check-ins. Each
user had at most 325,821 check-ins which means t = 325,821. For a given k, our
objective is to find k customers whose target check-ins are as close as possible.
One may use this information to locate a facility for at least k customers in the
neighbourhood of their check-in places. Our experiments have shown that for
k ≤ 2876, the solution to the MDkCSS was zero in this data-set, which means
this number of customers have at least one common check-in station. In our
experiments, we set k = 3000, 3100, 3200, 3300; see Fig. 4.

We have implemented our algorithm in C++ with Visual Studio 2013. The
algorithm is performed on a Core (TM) i9CPU and 8 GB RAM computer with
Windows 10 operating system. In some of the computations of the Voronoi
diagrams, we have used CGAL-5.1. The reported running time in Table 1 is
the elapsed time of searching for a solution on Vt(k−1)+1, since the condition
3t(k − 1) + 1 ≤ n did not hold, and there is no solution on V3t(k−1)+1.

In each test, we have verified the output of our algorithm with the brute force
algorithm which is trying all k-subsets, as this problem is not considered so far,
and the brute force is the only existing current algorithm. We have reported the
running times in Table 1. The last column contains the running time of the brute
force algorithm which is comparable to the running time of our algorithm in the
previous column.

We observe that our algorithm has a reasonable performance in the reported
experimental studies in this paper. In our experiments, computing a Voronoi
diagram of a high order was the time-consuming part, and was taking at least
67.46% of the reported elapsed times. Based on this, we conclude the other com-
putations were relatively quick; that is because the dependency of the algorithm
to the number of points is near-linear in R

2. The results of the implementation
are summarized in Table 1.

5 Enumerating All MDkCSS of Diameter at Most q

In this section, we study the following problems: given a set P of colored points
and a positive value q, determine whether there is any k-rainbow set in P of
diameter at most q, and report all k-rainbow sets of P of diameter at most q.

Let c be any cell of V3t(k−1)+1 that has at most O(tk) points, and let X ⊆ P
denote the associated points of P to c. For any pair pi, pj ∈ X of distinct
colors, let z = d(pi, pj) denote their Euclidean distance. Our first objective is to

On the k-colored Rainbow Sets in Fixed Dimensions 597

Fig. 5. Illustration of the graph G in Lemma 2.

determine whether there is any set of k points of distinct colors in X, where the
pairwise distances between the points are at most z ≤ q. Consider two circles
Ci and Cj of radius z, one is centered at pi and the other at pj . Let X ′ denote
the set of points in Ci ∩ Cj ∩ P . Construct a graph G on X ′ by connecting any
pair of points with a distance at most z, and let G denote the complement of G.
Observe that the vertices of X ′ which are lying on exactly one side of the line
through pipj are at a distance less than z. Consequently, in G, the connected
pair of vertices lie on opposite sides of the line through pipj .

Lemma 2. G is a bipartite graph.

Proof. The vertices of the graph which lie on only one side of the line through
pipj have a smaller distance of z. Consequently, the vertices which are already
connected in G, have a further distance than z, and lie at different sides of the
line through pipj ; see Fig. 5. Hence, the vertices at each side of the line through
pipj in G determine a part in a bipartite graph. ��

Observe that the points forming a clique in G are points such that each pair of
points has a distance smaller than z, and thus, such points form an independent
set in G.

Lemma 3. Any k-rainbow set of diameter at most z is a subset of at least one
maximum independent set in G.

Proof. Suppose, by contradiction, there is a k-rainbow set S of diameter at most
z that is not a subset of any maximum independent set in G. Every independent
set (including the ones in G) has this property that there is no edge between any
pair of the vertices. If S is not a subset of any of the independent sets (including
the maximum ones) in G, there must be an edge between at least one pair of
vertices in S. But this means the distance between those vertices is strictly larger
than z; contradiction. ��

Hence, maximum independent set enumeration algorithm can be used for our
problem but only reports the ones having our cardinality and color constraint.
We check whether there is any maximum independent set X∗ of size at least
k in G, where at least k vertices in X∗ has distinct colors. To treat this, for
each possible maximum independent set we check whether there is any set of k
distinct colors among the reported vertices or not. Using the presented algorithm

598 V. Keikha et al.

Algorithm 2. Enumeration Algorithm
Input: P = {P1, . . . , Pn}, and k, q > 0
Output: all k-rainbow set of P of diameter at most q
1: Compute V3t(k−1)+1 (or Vt(k−1)+1 if V3t(k−1)+1 does not exist)
2: for each cell c in V3t(k−1)+1 do
3: X=the associated points of P to c
4: for each pair pi, pj ∈ X do
5: if they have distinct colors and z = d(pi, pj) ≤ q then
6: G = (X ′, E) = ∅
7: Construct Ci, Cj

8: X ′ = Ci ∩ Cj ∩ P
9: end if

10: for any pair x, y ∈ X ′ do
11: if d(x, y) ≤ z then
12: add xy to E
13: end if
14: end for
15: G = the complement of G
16: report any MIS of G which has k distinct colors
17: end for
18: end for

in [16] and considering the freedom of pi and pj in O(ntk) cells of V3t(k−1)+1, the
enumeration algorithm takes O(ntk) × O(tk)2 × O((tk)2.5 + α) time, where α is
the maximum number of the k-subsets of diameter at most q. This procedure is
outlined in Algorithm2. We note that one may use this algorithm combined with
a binary search to compute the optimal q among O(n2) possible candidates. But
the asymptotic running time would be worse than what we discussed in Sect. 3.1.

Theorem 3. The decision or the enumeration version of MDkCSS can be solved
in O(n(tk)2((tk)2.5 + α)) time, where α is the maximum number of k-subsets of
diameter at most q.

6 Approximation Algorithms

In this section, we discuss several approximation algorithms, mostly by geometric
reductions to other problems. We first reduce MDkCSS to a well-known problem
in trajectory analysis, the discrete popular places problem. Given is a set Π of
polygonal paths with a total of n vertices, that is modelling a set of moving
points (so-called entity) belonging to m distinct entities in the plane, an integer
threshold k > 0 and a real value r > 0. A popular place is a square of side length
r, that is visited by at least k distinct entities [4]. This problem can be solved in
O(mn log mn) time and O(mn) space [4]. In our setting, we assign the points of
the same color to a single entity. The path between them is arbitrary. Hence, a
popular place with a maximum number of entities gives a

√
2-approximation for

the MDCSS problem. Also, any algorithm for squares assuming a threshold k as

On the k-colored Rainbow Sets in Fixed Dimensions 599

a popular place gives also an approximation for the MDkCSS problem. Reporting
all the popular places for rectangles of threshold k takes O(mn log mn) time and
O(mn) space [4]. Reporting all popular places with at least k entities, where the
popular places modelled by a rectangle of size 1 × 2, reports all k-rainbow sets
of diameter at most γq for a given q > 0, where γ =

√
5 ≈ 2.236.

Theorem 4. For a given q > 0, all the k-rainbow sets of diameter of size at
most

√
5q can be listed in O(mn log mn) time and O(mn) space.

A 1.154-Approximation for MDkCSS. We discuss another simple efficient
approximation algorithm. We start stating our result with the following lemma.

Lemma 4. For any set X of points, the diameter of X is longer than
√

3 times
the radius of the smallest enclosing circle (SEC) of X.

Proof. Consider the configuration at which three points on the boundary of the
SEC form an equilateral triangle, and the side of the triangle determines the
diameter. If one translates any pair of these points on the boundary of the SEC,
to get closer, the size of the diameter would be increased between at least one
pair. The lemma follows. ��

Let rX and dX denote the radius of the SEC and the diameter of X,
respectively. For a set P of points, let X be the set realizing the smallest
color spanning circle with k colors, and let P ∗ denote the set of points real-
izing the k-rainbow set of smallest diameter. Using the fact that the radius
rX is smaller than the radius of the color spanning circle of P ∗, we have
dP ∗ ≤ dX ≤ 2rP ∗ ≤ 2/3

√
3(

√
3rP ∗) ≤ 2/3

√
3dP ∗ . So, the diameter of X approx-

imates the optimal k-rainbow set within a factor 2/3
√

3 ≈ 1.154. An obvious
O(m3n) time algorithm for computing the smallest color spanning circle of at
least k colors considers any pair or triple of points of distinct colors that define
a circle. We then have the following result.

Theorem 5. Let P be a set of n colored points of m colors. In R
2, a 1.154-

approximation for the MDkCSS problem can be computed in O(m3n) time.

7 Discussions and Open Problems

In this paper, we introduced an easy proof that MDCSS problem is in FPT in
R

d for any fixed d, and we discussed several new variants of this problem, FPT,
exact and approximation algorithms along a practical application.

One open question concerns designing efficient algorithms for the general
case of the weighted points, and also for the enumeration problem on particular
sets of points, in which the bipartite graph G has a bounded tree-width and
admits a polynomial time algorithm for computing all MIS’s. The tree-width
O(kt) for G is obvious. Another direction is to find the attributes on the point

600 V. Keikha et al.

sets in which the maximum colorful independent set (i.e., an independent set of
maximum number of colors) on the bipartite graph G admits a polynomial time
algorithm. This problem was recently shown to be NP-hard, but admits polyno-
mial time algorithms on trees and cluster graphs [23]. Another open question is
the existence of the FPT algorithms for other parameters of a point set in the
MDCSS problem, such as assuming a specific extent measure for the points of
any color code.

The possibility of improving the running time of our algorithms also remained
open. One possible improvement to our results concerns approximating the
MDkCSS in fixed dimensions using LP-formulation. According to Theorem 1.2
in [25], computing a circle of smallest radius that intersects n points can be
reformulated to satisfy only k of n constraints, in O(nkd) time, where d equals
the geometric dimension of the original problem, and this would be performed by
finding the optimal solution to O(kd) independent LP-type problems. When we
are generating an independent LP-type problem from the original problem, we
can rewrite the constraint that counts the number of points to count the num-
ber of points of distinct colors; let xi = 1 if the color ci appears in the solution
space, and xi = 0, otherwise. Then we need to satisfy the constraint

∑m
i=1 xi = k

in any of the independent solution sub-spaces. Thus, we can apply the existing
algorithms for computing the smallest color spanning balls in R

2 [1,14] and in
R

d [18], that intersect k colors in each of the solution spaces of the independent
LP-type problems. This may slightly improve the approximation ratio and the
running time we discussed in Theorem 5.

Acknowledgment. V. Keikha was supported by the Czech Science Foundation, grant
number GJ19-06792Y, and with institutional support RVO: 67985807.

References

1. Abellanas, M., et al.: Smallest color-spanning objects. In: auf der Heide, F.M. (ed.)
ESA 2001. LNCS, vol. 2161, pp. 278–289. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-44676-1 23

2. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Approximating extent measures
of points. J. ACM 51(4), 606–635 (2004)

3. Atanassov, R., et al.: Algorithms for optimal outlier removal. J. Discrete Algo-
rithms 7(2), 239–248 (2009)

4. Benkert, M., Djordjevic, B., Gudmundsson, J., Wolle, T.: Finding popular places.
Int. J. Comput. Geom. Appl. 20(01), 19–42 (2010)

5. Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in
location-based social networks. In: Proceedings of the 17th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pp. 1082–1090
(2011)

6. Clarkson, K.L., Shor, P.W.: Applications of random sampling in computational
geometry, II. Discrete Comput. Geom. 4(5), 387–421 (1989). https://doi.org/10.
1007/BF02187740

7. Consuegra, M.E., Narasimhan, G.: Geometric avatar problems. In: Leibniz Inter-
national Proceedings in Informatics. LIPIcs, vol. 24. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik (2013)

https://doi.org/10.1007/3-540-44676-1_23
https://doi.org/10.1007/3-540-44676-1_23
https://doi.org/10.1007/BF02187740
https://doi.org/10.1007/BF02187740

On the k-colored Rainbow Sets in Fixed Dimensions 601

8. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
3th Annual ACM Symposium on Theory of Computing, pp. 151–158 (1971)

9. Eppstein, D., Erickson, J.: Iterated nearest neighbors and finding minimal poly-
topes. Discrete Comput. Geom. 11(3), 321–350 (1994). https://doi.org/10.1007/
BF02574012

10. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652
(1998)

11. Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized
complexity of multiple-interval graph problems. Theoret. Comput. Sci. 410(1),
53–61 (2009)

12. Fleischer, R., Xu, X.: Computing minimum diameter color-spanning sets is hard.
Inf. Process. Lett. 111(21), 1054–1056 (2011)

13. He, Z., Lo, E.: Answering why-not questions on top-k queries. IEEE Trans. Knowl.
Data Eng. 26(6), 1300–1315 (2012)

14. Huttenlocher, D.P., Kedem, K., Sharir, M.: The upper envelope of Voronoi surfaces
and its applications. Discrete Comput. Geom. 9(3), 267–291 (1993)

15. Ju, W., Fan, C., Luo, J., Zhu, B., Daescu, O.: On some geometric problems of
color-spanning sets. J. Combinat. Optim. 26(2), 266–283 (2013)

16. Kashiwabara, T., Masuda, S., Nakajima, K., Fujisawa, T.: Generation of maximum
independent sets of a bipartite graph and maximum cliques of a circular-arc graph.
J. Algorithms 13(1), 161–174 (1992)

17. Kazemi, M.R., Mohades, A., Khanteimouri, P.: Approximation algorithms for color
spanning diameter. Inf. Process. Lett. 135, 53–56 (2018)

18. Kazemi, M.R., Mohades, A., Khanteimouri, P.: On approximability of minimum
color-spanning ball in high dimensions. Discret. Appl. Math. 279, 188–191 (2020)

19. Keikha, V., Löffler, M., Mohades, A.: A fully polynomial time approximation
scheme for the smallest diameter of imprecise points. Theoret. Comput. Sci. 814,
259–270 (2020)

20. Lee, D.-T.: On k-nearest neighbor Voronoi diagrams in the plane. IEEE Trans.
Comput. 100(6), 478–487 (1982)

21. Leskovec, J., Krevl, A.: Snap datasets: Stanford large network dataset collection
(2014)

22. Löffler, M., van Kreveld, M.: Largest bounding box, smallest diameter, and related
problems on imprecise points. Comput. Geom. 43(4), 419–433 (2010)

23. Manoussakis, Y., Pham, H.P.: Maximum colorful independent sets in vertex-
colored graphs. Electron. Notes Discrete Math. 68, 251–256 (2018)

24. Marx, D.: Parameterized complexity and approximation algorithms. Comput. J.
51(1), 60–78 (2008)

25. Matoušek, J.: On geometric optimization with few violated constraints. Discrete
Comput. Geom. 14(4), 365–384 (1995). https://doi.org/10.1007/BF02570713

26. Preparata, F.P., Shamos, M.I.: Convex hulls: basic algorithms. In: Computational
Geometry. Texts and Monographs in Computer Science, pp. 95–149. Springer, New
York (1985). https://doi.org/10.1007/978-1-4612-1098-6 3

27. Pruente, J.: Minimum diameter color-spanning sets revisited. Discrete Optim. 34,
100550 (2019)

28. Toussaint, G.T.: Solving geometric problems with the rotating calipers. In: Pro-
ceedings of the IEEE MELECON, vol. 83, p. A10 (1983)

29. Zhang, D., Chee, Y.M., Mondal, A., Tung, A.K., Kitsuregawa, M.: Keyword search
in spatial databases: towards searching by document. In: Proceedings of the 25th
IEEE International Conference on Data Engineering, pp. 688–699 (2009)

https://doi.org/10.1007/BF02574012
https://doi.org/10.1007/BF02574012
https://doi.org/10.1007/BF02570713
https://doi.org/10.1007/978-1-4612-1098-6_3

Cycle-Connected Mixed Graphs
and Related Problems

Junran Lichen(B)

Institute of Applied Mathematics, Academy of Mathematics and Systems Science,
No. 55, Zhongguancun East Road, Beijing 100190, People’s Republic of China

Abstract. In this paper, motivated by vertex connectivity of digraphs
or graphs, we address the cycle-connected mixed graph (CCMG) prob-
lem. Specifically, given a mixed graph G = (V, A ∪ E), for every pair x,
y of distinct vertices in G, we are asked to find a mixed cycle C in G to
contain such two vertices x and y, where C traverses its arc (u, v) along
the direction from u to v and its edge uv along one direction either from
u to v or from v to u. Similarly, we consider the circuit-connected (or
weakly cycle-connected) mixed graph (WCCMG) problem, substituting
a mixed circuit for a mixed cycle in the CCMG problem. Whenever the
CCMG problem is specialized to either digraphs or graphs, we refer to
this version as either the cycle-connected digraph (CCD) problem or the
cycle-connected graph (CCG) problem, and we refer to this mixed graph
as either a cycle-connected digraph or a cycle-connected graph in related
versions. Furthermore, given a graph G = (V, E), the cycle-connectivity,
denoted by κc(G), of G is the smallest number of vertices in G whose
deletion causes the reduced subgraph either not to be a cycle-connected
graph or to become an isolated vertex; In addition, for every pair x,
y of distinct vertices in G, we denote by κsc(x, y) the maximum num-
ber of internally vertex-disjoint cycles in G containing x and y, then the
strong cycle-connectivity, denoted by κsc(G), of G is the smallest of these
numbers κsc(x, y) among all pairs {x, y} of distinct vertices in G, i.e.,
κsc(G) = min{κsc(x, y) | x, y ∈ V }.

We obtain the three main results. (1) Using the directed 2-linkage
problem which is NP-complete, we prove that the CCD problem is NP-
complete, implying that the CCMG problem still remains NP-complete,
and however, we can design an exact algorithm in polynomial time to
solve the CCG problem; (2) We present a simply exact algorithm in
polynomial time to solve the WCCMG problem; (3) Given a graph
G = (V, E), we provide twin exact algorithms in polynomial time to
compute cycle-connectivity κc(G) and strong cycle-connectivity κsc(G),
respectively.

Keywords: Combinatorial optimization · Cycle-connected mixed
graphs · Circuit-connected mixed graphs · Cycle-connectivity · Exact
algorithms

This paper is supported by the National Natural Science Foundation of China [Nos.
11861075, 12101593].

c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 602–614, 2021.
https://doi.org/10.1007/978-3-030-92681-6_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_47&domain=pdf
https://doi.org/10.1007/978-3-030-92681-6_47

Cycle-Connected Mixed Graphs and Related Problems 603

1 Introduction

Given a graph G = (V,E), the vertex connectivity of G is the smallest num-
ber of vertices whose deletion separates this graph G or makes it trivial. Vertex
connectivity of graphs is a fundamental parameter that, by the Menger The-
orem [1,15], can be characterized by the existence of internally vertex-disjoint
paths between every vertex pairs in graphs. So far, much work concerning vertex
connectivity has been devoted to the internally vertex-disjoint paths problem,
i.e., given a graph G = (V,E) and a positive integer k, for every pair x, y of
distinct vertices in G, it is asked to compute k internally vertex-disjoint paths
between x and y if such paths exist. Despite all further efforts, the traditional
flow-based approach by Even and Tarjan [3] in 1975 provided still an efficient
deterministic algorithm in time O(n1/2m2) for solving the vertex connectivity
problem, where n = |V | and m = |E|. Using the maximal forest decomposition of
Nagamochi and Ibaraki [11] and a generalization of the preflow-push algorithm
of Hao and Orlin [5], Henzinger et al. [6] in 2000 presented an algorithm in time
O(min{κ3 + n, κn}κn) to compute the vertex connectivity of a graph G, where
κ is the vertex connectivity of G.

We are interested in designing an algorithm to determine whether a graph
is 2-connected. The Menger Theorem [1,15] tells us that a graph G = (V,E) is
2-connected if and only if, for every pair x, y of distinct vertices in G, there exist
two internally vertex-disjoint paths P 1

xy and P 2
xy connecting x and y. In addition,

we can construct a cycle P 1
xy ◦ Q2

yx to contain x and y using a combination of
these two paths P 1

xy and Q2
yx, where Q2

yx is a path connecting y and x using the
path P 2

xy along the inverse direction from y to x. Furthermore, when we increase
vertex connectivity of G, we can construct more internally vertex-disjoint cycles
in G containing x and y.

Given a digraph D = (V,A), D is called to be strongly connected if, for every
pair x, y of distinct vertices in D, there exists an (x, y)-walk from x to y and a
(y, x)-walk from y to x. In this sense, D is called a strongly connected digraph.
Given a digraph D = (V,A), the vertex connectivity of D is the smallest number
of vertices whose deletion causes the reduced directed subgraph either not to be
a strongly connected digraph or to become an isolated vertex. Vertex connec-
tivity of digraphs is an important and fundamental parameter that, also by the
(directed) Menger Theorem [1,15], can be characterized by the existence of inter-
nally vertex-disjoint directed paths from every vertex to any other vertex in a
digraph. Using the Menger Theorem [1,15] and the traditional flow-based meth-
ods, Even and Tarjan [3] in 1975 also presented a simple deterministic algorithm
in time O(n1/2m2) for computing vertex connectivity of a digraph D, where
n = |V | and m = |E|. Combining two previous vertex connectivity algorithms
and a generalization of the preflow-push algorithm of Hao and Orlin [5], Hen-
zinger et al.[6] in 2000 also presented an algorithm in time O(min{κ3+n, κn}m)
to compute the vertex connectivity of a digraph D, where κ is the vertex con-
nectivity of D.

When we are interested in determining whether a digraph D = (V,A) is a
strongly 2-connected digraph, the Menger Theorem [1,15] tells us that a digraph

604 J. Lichen

D is strongly 2-connected if and only if, for every pair x, y of distinct vertices in
D, there exist two internally vertex-disjoint directed paths P 1

xy and P 2
xy from x

to y, and meanwhile two internally vertex-disjoint directed paths Q1
yx and Q2

yx

from y to x. However, being different from a 2-connected graph, where we may
construct a cycle to contain u and v using two internally vertex-disjoint paths
connecting any two distinct vertices u, v in G, for every pair x, y of distinct
vertices in a digraph D, we can not find an algorithm to construct a directed
cycle to contain x and y using two internally vertex-disjoint directed paths P 1

xy

and P 2
xy from x to y plus two internally vertex-disjoint paths Q1

yx and Q2
yx from

y to x in D, further we can neither find an algorithm in other ways to determine
a directed cycle to contain x and y in D. Whenever we increase the vertex
connectivity of D, can we design an algorithm to determine a directed cycle to
contain every pair x, y of distinct vertices in D? Unfortunately, Thomassen [17] in
1991 constructed a planar digraph Dk to show that, for every positive integer k,
there exists a strongly k-connected digraph which contains two vertices through
which there is no directed cycle.

Motivated by vertex connectivity of digraphs or graphs, where we can not
construct a directed cycle to contain every pair of distinct vertices in a digraph
and meanwhile we are able to do the same affair in a graph, we think that
the vertex connectivity of a digraph has no relationship with the existence of
a directed cycle passing through every pair of distinct vertices in this digraph.
In this paper, we should address the cycle-connected mixed graph (CCMG)
problem, which is modelled as follows. Given a mixed graph G = (V,A ∪ E),
for every pair x, y of distinct vertices in G, we are asked to determine a mixed
cycle C in G to contain such two vertices x and y, where C traverses its arc
(u, v) along the direction only from u to v and its edge uv along one direction
either from u to v or from v to u. Similarly, we consider the circuit-connected
(or weakly cycle-connected) mixed graph (WCCMG) problem, substituting a
mixed circuit for a mixed cycle in the CCMG problem. Whenever the CCMG
problem is specialized to either digraphs or graphs, we refer to this version of
the CCMG problem as either the cycle-connected digraph (CCD) problem or the
cycle-connected graph (CCG) problem. For convenience, we refer to this mixed
graph as either a cycle-connected digraph or a cycle-connected graph in related
versions.

It is different from computing the vertex connectivity of a digraph or a graph
by executing some exact algorithms in polynomial time [3,6], using the directed
2-linkage problem which is NP-complete [4], we prove that the CCD problem
is NP-complete, implying that the CCMG problem still remains NP-complete,
and however, we design an exact algorithm in polynomial time to solve the CCG
problem, then we can present a simply exact algorithm in polynomial time to
solve the WCCMG problem.

Since there exists a planar digraph Dk, which is constructed in 1991 by
Thomassen [17], with highly strong vertex connectivity k such that there is no
directed cycle to pass through some two vertices in Dk, we may consider a new
parameter of a graph, which is defined in the twin versions as follows. Given a

Cycle-Connected Mixed Graphs and Related Problems 605

graph G = (V,E), the cycle-connectivity, denoted by κc(G), of G is the smallest
number of vertices in G whose deletion causes the reduced subgraph either not
to be a cycle-connected graph or to become an isolated vertex; In addition, for
every pair x, y of distinct vertices in G, we denote by κsc(x, y) the maximum
number of internally vertex-disjoint cycles in G containing such two vertices x
and y, then the strong cycle-connectivity, denoted by κsc(G), of G is the smallest
of these numbers κsc(x, y) among all pairs {x, y} of distinct vertices in G, i.e.,
κsc(G) = min{κsc(x, y) | x, y ∈ V }.

It is easy to see that this new parameter in the twin versions, saying cycle-
connectivity or strong cycle-connectivity of graphs, is different from either vertex
connectivity or edge connectivity of graphs. Given a graph G = (V,E), we shall
provide twin exact algorithms in polynomial time to compute cycle-connectivity
κc(G) and strong cycle-connectivity κsc(G), respectively.

We have noticed other parameter called as cyclic connectivity of graphs,
which is not only different from vertex connectivity of digraphs or graphs, but
also different from cycle-connectivity or strong cycle-connectivity of graphs. Per-
oche [13] in 1983 considered the cyclic connectivity of a graph G = (V,E) so as
to plan to present the relations among several sorts of connectivity. A set S of
vertices in G is a cyclic vertex cut-set if the reduced subgraph G[V \S] is not con-
nected and at least two components of G[V \S] contain a cycle, respectively. The
cyclic connectivity, denoted by cκ(G), of G is the minimum cardinality taken
over all vertex cyclic cut-sets of G. There is little previous work on polynomial-
time algorithms for cyclic vertex connectivity of general graphs, but only a few
algorithms in polynomial time for cyclic vertex connectivity of some regular
graphs [8–10].

In the sequel sections, we successively consider cycle-connected mixed graphs
and new related parameters. We hope that these new parameters and related
problems will have many further applications in our reality life. We shall design
some algorithms to solve them and related problems, respectively.

This paper is organized as follows. In Sect. 2, we present some terminologies
and fundamental lemmas to ensure the correctness of our algorithms. In Sect. 3,
using the directed 2-linkage problem which is NP-complete [4], we prove that the
CCD problem is NP-complete, implying that the CCMG problem still remains
NP-complete, and however, we design an exact algorithm in polynomial time to
solve the CCG problem. In Sect. 4, we present a simply exact algorithm in poly-
nomial time to solve the WCCMG problem and propose a conjecture concerning
k-circuit-connected mixed graphs. In Sect. 5, given a graph G = (V,E), we pro-
vide twin exact algorithms in polynomial time to compute cycle-connectivity
κc(G) and strong cycle-connectivity κsc(G), respectively. In Sect. 6, we provide
our conclusion and further research.

606 J. Lichen

2 Terminologies and Fundamental Lemmas

In this section, we present some terminologies and fundamental lemmas in order
to prove our results in the sequel, and other terminologies and notations not
defined can be found in those references [1,7,15].

Given a mixed graph G = (V,A ∪ E), a walk P from a vertex vi1 to a
vertex vik+1 is an alternating sequence π = vi1ei1vi2ei2vi3 · · · vikeikvik+1 such
that, for each integer 1 ≤ j ≤ k, eij is either an arc from vij to vij+1 or an edge
connecting vij and vij+1 , where P traverses its arc (vij , vij+1) along the direction
only from vij to vij+1 and its edge eij along one direction either from vij to vij+1

or from vij+1 to vij , and the integer k is called as the length of this walk P .
For convenience, we may define this walk as Pvi1vik+1

= vi1vi2vi3 · · · vikvik+1 or
(vi1 , vik+1)-walk. A walk P is called as a circuit or tour with k edges if vi1 = vik+1 .
In addition, a walk P is called as a path if the vertices in P are all distinct, and
we may simply refer to this path P as a vi1-vik+1 path or a (vi1 , vik+1)-path in
G. Similarly, a circuit C is called as a cycle if the vertices in C are all distinct.
Particularly, whenever a mixed graph G = (V,A ∪ E) becomes a directed graph
(simply, digraph), i.e., E = ∅, we refer to path, cycle, circuit in such a digraph
as directed path, directed cycle, directed circuit.

Given a mixed graph G = (V,A ∪ E), for every pair of distinct vertices x,
y in G, if there exists a mixed path P (in G) from x to y, then G is called as
a connected mixed graph. In addition, whenever E = ∅ in G = (V,A ∪ E), we
call this mixed graph as a strongly connected digraph, denoted by D = (V,A);
whenever A = ∅ in G = (V,A ∪ E), we call this mixed graph as a connected
graph, denoted by G = (V,E). According to the definitions mentioned-above
in Sect. 1, a cycle-connected mixed graph must be a connected mixed graph,
however, the reverse result is not true (seeing contents in Sect. 3).

Given a mixed graph G = (V,A∪E) and V ′ ⊆ V , we construct a mixed graph
H = (V ′, A′ ∪ E′) equipped with the vertex-set V ′, the arc-set A′ = {(x, y) ∈
A | x, y ∈ V ′} and the edge-set E′ = {xy ∈ E | x, y ∈ V ′}, then we denote this
graph H = (V ′, A′ ∪ E′) as the subgraph (of G) reduced by the set V ′, simply a
reduced subgraph of G, and denoted by G[V ′].

For a mixed graph G = (V,A∪E), there are many exact algorithms [7,12,14,
15] to find a mixed path Pxy from x to y for every pair x, y of distinct vertices
in G, then we may determine whether G is a connected mixed graph or not.
We restate such an algorithm, denoted by the Prim algorithm, in the following
lemma.

Lemma 1 [14]. Given a mixed graph G = (V,A ∪ E), for every pair x, y of
distinct vertices in G, the Prim algorithm determines a shortest mixed path from
x to y, and this algorithm runs in time O(|A ∪ E|).

In addition, for a fixed vertex x in a mixed graph G = (V,A ∪ E), we can
modify the Prim algorithm [14] to determine whether there exists a shortest
mixed path from x to every other vertex y in G or not, and this modified algo-
rithm still runs in time O(|A ∪ E|). For convenience, we denote this modified

Cycle-Connected Mixed Graphs and Related Problems 607

algorithm as the Prim algorithm-modified-1. At the same time, we can revise the
Prim algorithm-modified-1 to determine whether there exists a shortest mixed
path from every other vertex y in G to x or not, and that new algorithm still
runs in time O(|A ∪ E|). Again for convenience, we still denote that modified
algorithm as the Prim algorithm-modified-2.

In the point of algorithmic view, we need the following definitions to deter-
mine whether a mixed graph G = (V,A ∪ E) to be a cycle-connected mixed
graph or not.

Definition 1. Given a digraph D = (V,A) equipped with 2k distinct vertices
x1, x2, . . ., xk, y1, y2, . . ., yk, if there exist k directed paths P1, P2, . . ., Pk

in D such that Pi is a directed path from xi to yi for each i = 1, 2, . . . , k and
that V (Pi) ∩ V (Pj) = ∅ for i 	= j, then these k directed paths are called as k
vertex-disjoint directed paths in D from (x1, x2, . . ., xk) to (y1, y2, . . ., yk).

For convenience, these k vertex-disjoint directed paths in Definition 1 is also
a k-linkage from (x1, x2, . . ., xk) to (y1, y2, . . ., yk) in Thomassen [16,17].

Definition 2. Given a digraph D = (V,A) equipped with two distinct vertices
x, y, if there exist k directed paths P1, P2, . . ., Pk in D from x to y such that
V (Pi) ∩ V (Pj) = {x, y} for i 	= j, then these k directed paths are called as k
internally vertex-disjoint directed paths in D from x to y.

Definition 3. Given a graph G = (V,E) equipped with two distinct vertices
x, y, if there exist k paths P1, P2, . . ., Pk in G connecting x and y such that
V (Pi)∩V (Pj) = {x, y} for i 	= j, these k paths are called as k internally vertex-
disjoint paths in G connecting x and y.

In order to compute connectivity of digraphs or graphs, we need the Menger
Theorem [1,15] restated as follows.

Lemma 2 [1,15] (Menger Theorem)

(1) Given a digraph D = (V,A), D is a strongly k-connected digraph if and only
if, for every pair x, y of distinct vertices in D, there exist at least k internally
vertex-disjoint directed paths (in D) from x to y.

(2) Given a graph G = (V,E), G is a k-connected graph if and only if, for every
pair x, y of distinct vertices in G, there exist at least k internally vertex-
disjoint paths (in G) connecting x and y.

Using the Menger Theorem [1,15] as a wonderful bridge between computing
connectivity of digraphs or graphs and traditional flow-based methods [7], Even
and Tarjan [3] in 1975 presented an efficient deterministic algorithm for finding
k internally vertex-disjoint paths, then we obtain the following lemma.

Lemma 3 [3]. Given a network N = (V,A; c, c̃; s, t), where c : A → Z+ and
c̃ : V → Z+, we obtain the following

(1) If the vertex capacities are all equal to one, the Dinic algorithm [2] requires
at most O(n1/2m) time;

608 J. Lichen

(2) If the edge capacities are all equal to one, the Dinic algorithm [2] requires
at most O(n2/3m) time.

These results are used to test the vertex connectivity of a graph in O(n1/2m2)
time and the edge connectivity in O(n5/3m) time, where n = |V | and m = |E|.

For convenience, we denote the Connectivity algorithm in Lemma 3 to present
an algorithm to compute the vertex connectivity of D or the vertex connectivity
of G, depending on the related version of digraphs or graphs.

In order to determine the feasible solutions for our problems, we need the
following definitions, which are similarly defined as Definitions 2 and 3.

Definition 4. Given a digraph D = (V,A) equipped with two distinct vertices
x, y, if there exist k directed cycles C1, C2, . . ., Ck in D to contain x and y such
that V (Ci) ∩ V (Cj) = {x, y} for i 	= j, then these k directed cycles are called as
k internally vertex-disjoint directed cycles in D.

Definition 5. Given a graph G = (V,E) equipped with two distinct vertices x,
y, if there exist k cycles C1, C2, . . ., Ck in G to contain x and y such that
V (Ci) ∩ V (Cj) = {x, y} for i 	= j, then these k cycle are called as k internally
vertex-disjoint cycles in G.

We describe the directed 2-linkage problem [4]. Given a digraph D = (V,A)
with four distinct vertices x1, x2, y1, y2, it is asked to determine whether D
contains two vertex-disjoint directed paths P1, P2 such that Pi is an xi-yi directed
path in D for each i ∈ {1, 2}.

Lemma 4 [4]. The 2-linkage problem is NP-complete.

3 The Cycle-Connected Mixed Graph Problem

In this section, we consider the cycle-connected mixed graph (CCMG) problem,
and when the CCMG problem is specialized to either digraphs or graphs, we
refer to this version as either the cycle-connected digraph (CCD) problem or the
cycle-connected graph (CCG) problem, respectively.

By Lemma 1, the connected mixed graph (CMG) problem is solvable in
polynomial time. However, we shall prove in the following way that the CCD
problem is NP-complete, implying that the CCMG problem still remains NP-
complete.

Now, we may consider a special version of the CCD problem, denoted by the
SV-CCD problem, which is modelled as follows. Given a digraph D = (V,A) with
the two fixed distinct vertices x∗ and y∗, we are asked to determine a directed
cycle C in D to contain such two vertices x∗ and y∗.

We obtain the following result concerning the SV-CCD problem.

Theorem 1. Unless P = NP, the SV-CCD problem is NP-complete.

Cycle-Connected Mixed Graphs and Related Problems 609

Proof. It is easy to see that the SV-CCD problem is in NP. Using a transfor-
mation from the directed 2-linkage problem [4], we shall prove that the SV-CCD
problem is NP-complete.

Given an instance I of the directed 2-linkage problem [4], i.e., given a digraph
H = (V,A) with four distinct vertices x1, x2, y1, y2, it is asked to find two vertex-
disjoint directed paths P1, P2 in H such that Pi is a directed path in H from xi

to yi for each i ∈ {1, 2}.
We may construct an instance τ(I) of the SV-CCD problem as follows, i.e., a

digraph D = (V ∪{x∗, y∗}, A∪A∗), where x∗, y∗ are two new vertices which are
not in V and A∗ = {(x∗, x1), (y1, y∗), (y∗, x2), (y2, x∗)}, it is asked to determine
a directed cycle C in D to contain such two vertices x∗ and y∗.

For the instance I and the instance τ(I), we can obtain the following claim.
Claim 1. The instance I of the directed 2-linkage problem has a feasible solution,
i.e., a 2-linkage from (x1, x2) to (y1, y2) in H, if and only if the instance τ(I)
of the V-CCD problem has a feasible solution, i.e., a directed cycle C in D to
contain such two fixed vertices x∗ and y∗.

Since the directed 2-linkage problem [4] is NP-complete, using a transforma-
tion from the instance I to the instance τ(I) and Claim 1, we prove that the
SV-CCD problem is NP-complete, too.

This completes a proof of this theorem.

Since the CCD problem is a generalization of the SV-CCD problem, using
Theorem 1, we can obtain the following result.

Corollary 1. Unless P = NP, the CCD problem is NP-complete. In addition,
the CCMG problem is NP-complete.

At the end of this section, we consider the cycle-connected graph (CCG)
problem. Using Menger Theorem [1,15] (seeing Lemma 2), we can obtain the
following lemma.

Lemma 5 [1,15]. Given a graph G = (V,E), the following statements are equiv-
alent from a computational point of view.

(1) This graph G is a 2-connected graph;
(2) For every pair x, y of distinct vertices in G, there exist two internally vertex-

disjoint paths connecting x and y;
(3) For every pair x, y of distinct vertices in G, there exists a cycle containing

x and y.

Using Lemma 5, we design an exact algorithm to solve the CCG problem as
follows.

Algorithm 1: CCG
Input: A graph G = (V,E);
Output: G is whether a cycle-connected graph or not.
Begin

610 J. Lichen

Step 1. Given a graph G = (V,E), we construct a weighted digraph D =
(V,A; c, c̃; b) equipped with the arc-set A = {(u, v), (v, u) | uv ∈ E}, define
an arc-capacity function c : A → Z+ by c(x, y) = 1 for each arc (x, y) ∈ A
and a capacity function c̃ : V → Z+ by c̃(u) = 1 for each vertex u ∈ V ,
respectively, and a cost function b : A → Z+ by b(x, y) = 1 for each arc
(x, y) ∈ A.

Step 2. For every pair s, t of distinct vertices in G, do
2.1 We construct a network Nst = (V,A; c, c̃; b; s, t), where s is a source, t

is a sink and the digraph D = (V,A; c, c̃; b) is constructed in Step 1.
2.2 Using the Buildup algorithm [12] to find a minimum-cost integral flow

fst from s to t, having its value v(fst) = 2.
2.3 If (there is no such flow fst in Step 2.2) then

Output “G is not a cycle-connected graph”, stop.
Step 3. Output “G is a cycle-connected graph”, stop.
End

Using Lemmas 1 and 5, we can obtain the following result.

Theorem 2. The CCG algorithm is an exact algorithm to solve the CCG prob-
lem, and this algorithm runs in time O(n2m), where n is the number of vertices
and m is the number of edges of a graph G = (V,E).

Proof. Given a graph G = (V,E), for every pair s, t of distinct vertices in G,
by executing Step 2 in the CCG algorithm, if we obtain a minimum-cost integral
flow fst from s to t, having its flow value v(fst) = 2, we can construct two
internally vertex-disjoint paths Pst, Qst in G connecting x and y (the minimum
cost of this integral flow fst from s to t can maintain this property that these two
paths are internally vertex-disjoint in G), then the combination of two paths Pst

and Qst in G becomes a cycle to contain such two vertices s and t. This shows
that G is a cycle-connected graph.

On the other hand, if there exists a pair s∗, t∗ of distinct vertices in G such
that there is no flow fs∗t∗ from s∗ to t∗ to have its flow value v(fs∗t∗) = 2, by
using Lemma 5, this shows that G is not a cycle-connected graph.

The complexity of the CCG algorithm (i.e., Algorithm 1) can be determined
as follows. (1) Step 1 needs time O(m) to construct a weighted digraph D =
(V,A; c, c̃; b). (2) For two fixed vertices s and t in G, since each arc in the network
Nst = (V,A; c, c̃; s, t) has its capacity 1, by executing the Buildup algorithm [12]
at Step 2.2 per time, it needs time O(m) to increase an unit flow from s to t along
a shortest directed path in the auxiliary network Nf [12] (by using Lemma 1),
where f is a current flow at present. This process lasts two times to obtain a
current flow fst from s to t having its flow value v(fst) = 2, implying that it
needs time O(m) to construct the minimum-cost integral flow fst having its flow
value v(fst) = 2, thus it needs time O(n2m) to execute Step 2. Hence, the total
time of the CCG algorithm is at most O(n2m).

This establishes the theorem.

Cycle-Connected Mixed Graphs and Related Problems 611

4 The Circuit-Connected Mixed Graph Problem

In this section, we consider the circuit-connected (or weakly cycle-connected)
mixed graph (WCCMG) problem. We need the following lemma to present an
exact algorithm to solve the circuit-connected mixed graph (WCCMG) problem.

Lemma 6. For a mixed graph G = (V,E ∪ A), the following statements are
equivalent from a computational point of view.

(1) This mixed graph G is a connected graph;
(2) For every pair x, y of distinct vertices in G, there exists a mixed path from

x to y and other path from y and x;
(3) For every pair x, y of distinct vertices in G, there exists a mixed circuit to
contain x and y.

Using Lemma 6 and the Prim algorithm (seeing Lemma 1) to find a shortest
mixed path from x to y, it is easy for us to present an exact algorithm in time
O(n2m) to solve the WCCMG problem.

To more efficiently decease the complexity of the algorithm mentioned-above
to solve the WCCMG problem, we may first choose a fixed vertex x∗ in G and
use the Prim algorithm-modified-1 (seeing Lemma 1) to find a shortest mixed
path from x∗ to every other vertex y in G, then we use the Prim algorithm-
modified-2 (seeing Lemma 1) to find a shortest mixed path from every other
vertex y in G to x∗.

We describe our new algorithm to solve the WCCMG problem as follows.

Algorithm 2: WCCMG
Input: A mixed graph G = (V,E ∪ A);
Output: G is whether a circuit-connected mixed graph or not.
Begin
Step 1. Choose a fixed vertex x∗ in G;
Step 2. Use the Prim algorithm-modified-1 (seeing Lemma 1) to find a shortest

mixed path Px∗y from x∗ to y, where y is every other vertex in G; If there is
no such path Px∗y∗ for some other vertex y∗ in G, then output “G is not a
circuit-connected graph”, and stop.

Step 3. Use the Prim algorithm-modified-2 (seeing Lemma 1) to find a shortest
mixed path Qyx∗ from y to x∗, where y is every other vertex in G; If there is
no such path Qy∗x∗ for some other vertex y∗ in G, then output “G is not a
circuit-connected graph”, and stop.

Step 4. Output “G is a circuit-connected graph”.
End

Executing the WCCMG algorithm and using Lemma 6, we can obtain the
following result, where we may omit the correct proof.

Theorem 3. The WCCMG algorithm is an exact algorithm to solve the
WCCMG problem, and this algorithm runs in time O(m), where n is the order
and m is the size of a graph G = (V,E).

612 J. Lichen

5 Cycle-Connectivity and Strong Cycle-Connectivity

In this section, given a graph G = (V,E), we consider the twin problems of
computing cycle-connectivity κc(G) and strong cycle-connectivity κsc(G) of G,
respectively.

We need the following two results, whose proofs are omitted in the sequel.

Lemma 7. For a graph G = (V,E) and a positive integer k, the following state-
ments are equivalent from a computational point of view.

(1) This graph G is a k-connected graph, where the vertex connectivity κ(G) of
G is k;

(2) This graph G is a (k−1)-cycle-connected graph, where the cycle-connectivity
κc(G) of G is k − 1.

Lemma 8. Given a graph G = (V,E) and a positive integer k, the following
statements are equivalent from a computational point of view.

(1) This graph G is a 2k-connected graph, where the vertex connectivity κ(G)
of G is either 2k or 2k + 1;

(2) This graph G is a k-cycle-connected graph, where the strong cycle-
connectivity κsc(G) of G is k.

Given of a graph G, we design an algorithm, denoted by Cycle-Connectivity,
to compute the cycle-connectivity κc(G) and the strong cycle-connectivity
κsc(G).

Algorithm 3: Cycle-Connectivity
Input: A graph G = (V,E);
Output: Cycle-connectivity κc(G) and strong cycle-connectivity κsc(G).
Begin
Step 1. Executing the Connectivity algorithm [1,3,7,15] on the graph G =

(V,E), compute the vertex connectivity κ(G) of G.
Step 2. Denote κc(G) = κ(G) − 1 and κsc(G) = �κ(G)/2�.
Step 3. Output “Cycle-connectivity κc(G) and strong cycle-connectivity

κsc(G)”
End

Using Lemmas 7–8 and executing the Cycle-Connectivity algorithm, we can
easily obtain the following result.

Theorem 4. Given a graph G = (V,E), the Cycle-Connectivity algorithm is an
exact algorithm to compute the cycle-connectivity κc(G) and the strong cycle-
connectivity κsc(G) of G, and its complexity is as same as that of the Connec-
tivity algorithm [1,3,7,15].

Cycle-Connected Mixed Graphs and Related Problems 613

6 Conclusion and Further Research

In this paper, we consider the cycle-connected mixed graph (CCMG) problem
and related problems, where the CCMG problem is indeed different from the
connected mixed graph (CMG) problem. We obtain the following three main
results.

(1) We prove that the CCD problem is NP-complete, implying that the CCMG
problem still remains NP-complete, and we design an exact algorithm in
polynomial time to solve the CCG problem.

(2) We present an exact algorithm in polynomial time to solve the WCCMG
problem, and we propose a conjecture concerning the k-circuit-connected
mixed graph problem.

(3) Given a graph G = (V,E), we provide twin exact algorithms in polyno-
mial time to compute cycle-connectivity κc(G) and strong cycle-connectivity
κsc(G), respectively.

A challenging task for further research is to determine whether the cycle-
connected mixed graph problem specialized to planar mixed graphs is NP-
complete or not.

References

1. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, New York (2008)
2. Dinic, E.A.: Algorithm for solution of a problem of maximum flow in a network

with power estimation. Soviet Math. Dokl. 11, 1277–1280 (1970)
3. Even, S., Tarjan, R.E.: Network flow and testing graph connectivity. SIAM J.

Comput. 4(4), 507–518 (1975)
4. Fortune, S., Hopcroft, J.E., Wyllie, J.: The directed subgraph homeomorphism

problem. Theoret. Comput. Sci. 10, 111–121 (1980)
5. Hao, J., Orlin, J.B.: A faster algorithm for finding the minimum cut in a directed

graph. J. Algorithms 17, 424–446 (1994)
6. Henzinger, M., Rao, S., Gabow, H.N.: Computing vertex connectivity: new bounds

from old techniques. J. Algorithms 34(2), 222–250 (2000)
7. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms. AC,

vol. 21, 5th edn. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
24488-9

8. Liang, J., Lou, D.J.: A polynomial algorithm determining cyclic vertex connectivity
of k-regular graphs with fixed k. J. Comb. Optim. 37, 1000–1010 (2019)

9. Liang, J., Lou, D.J., Qin, Z.R., Yu, Q.L.: A polynomial algorithm determining
cyclic vertex connectivity of 4-regular graphs. J. Comb. Optim. 38(2), 589–607
(2019)

10. Liang, J., Lou, D.J., Zhang, Z.B.: The cubic graphs with finite cyclic vertex con-
nectivity larger than girth. Discrete Math. 344(2) (2021). Paper No. 112197, 18pp

11. Nagamochi, H., Ibaraki, T.: A linear-time algorithm for finding a sparse k-
connected spanning subgraph of a k-connected graph. Algorithmica 7, 583–596
(1992)

https://doi.org/10.1007/978-3-642-24488-9
https://doi.org/10.1007/978-3-642-24488-9

614 J. Lichen

12. Papadimitriou, C., Steiglitz, D.K.: Combinatorial Optimization: Algorithms and
Complexity. Dover Publications Inc., New York (1998)

13. Peroche, B.: On several sorts of connectivity. Discret. Math. 46, 267–277 (1983)
14. Prim, R.C.: Shortest connecting networks and some generalizations. Bell Syst.

Tech. J. 36, 1389–1401 (1957)
15. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Hei-

delberg (2003)
16. Thomassen, C.: 2-linked graphs. Eur. J. Comb. 1, 371–378 (1980)
17. Thomassen, C.: Highly connected non-2-linked digraphs. Combinatorica 11, 393–

395 (1991)

Directed Width Parameters on Semicomplete
Digraphs

Frank Gurski1 , Dominique Komander1(B) , Carolin Rehs1 ,
and Sebastian Wiederrecht2

1 Institute of Computer Science, Algorithmics for Hard Problems Group,
Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
{frank.gurski,dominique.komander,carolin.rehs}@hhu.de

2 Département Informatique, Université de Montpellier, 34095 Montpellier, France

Abstract. The map of relations between the different directed width measures
in general still has some blank spots. In this work we fill in many of these open
relations for the restricted class of semicomplete digraphs. To do this we show the
parametrical equivalence between directed path-width, directed tree-width, DAG-
width, and Kelly-width. Moreover, we show that directed (linear) clique-width is
upper bounded in a function of directed tree-width on semicomplete digraphs. In
general the algorithmic use of many of these parameters is fairly restricted. On
semicomplete digraphs our results allow to combine the nice computability of
directed tree-width with the algorithmic power of directed clique-width. More-
over, our results have the effect that on semicomplete digraphs every digraph
problem, which is describable in monadic second-order logic on quantification
over vertices and vertex sets, is fixed parameter tractable for all of the shown
width measures if a decomposition of bounded width is given.

Keywords: Algorithmic meta theorem · Semicomplete digraphs · Directed
clique-width · Directed tree-width

1 Introduction

The rediscovery of path-width and tree-width in the graph minors project by Robert-
son and Seymour [23] has led to a wide range of algorithmic results. In the wake of
this success several possible generalizations to directed graphs have since emerged,
among which are directed path-width (d-pw), directed tree-width (d-tw) [20], DAG-
width (dagw) [5] and Kelly-width (kw) [18].

While all of these parameters are related, directed path-width and directed tree-
width are not parametrically equivalent to either of the other parameters and the equiv-
alence of DAG-width and Kelly-width is an open conjecture.

All these width parameters correspond to different variants of so-called cops and
robber games. Width parameters corresponding to variants of the cops and robber game

This work is partly funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) - 388221852.

c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 615–628, 2021.
https://doi.org/10.1007/978-3-030-92681-6_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_48&domain=pdf
http://orcid.org/0000-0002-1212-1796
http://orcid.org/0000-0001-6990-5164
http://orcid.org/0000-0002-8788-1028
http://orcid.org/0000-0003-0462-7815
https://doi.org/10.1007/978-3-030-92681-6_48

616 F. Gurski et al.

have the inherent advantage of coming with an XP-time (approximation) algorithm for
finding a decomposition of (almost) optimal width. They also tend to correlate with
structural properties and thus, as exemplified by tree-width, make for great tools for
structure theory. However, there exists strong evidence that for digraphs no such param-
eter can, in addition to these advantages, replicate the algorithmic power of tree-width
in undirected graphs [13].

An algorithmically stronger parameter is directed clique-width (d-cw) which is
related to the parameter clique-width by Courcelle et al. [8]. This width measure is,
in essence, defined for relational structures and its algorithmic properties do not dis-
tinguish between graphs and digraphs. Hence directed clique-width does not suffer
from the sudden increase in complexity when transitioning from graphs to digraphs
and the existence of a powerful algorithmic meta theorem is preserved: Every problem
expressible in monadic second-order logic on quantification over vertices and vertex
sets, MSO1 for short, is fixed parameter tractable with respect to the parameter directed
clique-width [8]. Still, directed clique-width has its drawbacks, as there is no known
direct way to compute a bounded width expression. The current method to obtain such
an expression is by approximating birank-width which leads to an exponential approxi-
mation of directed clique-width [22]. Unfortunately, directed clique-width is in general
incomparable to the previously mentioned tree-width inspired parameters. So in gen-
eral the nice computability properties of the decompositions relating to variants of the
cops and robber game cannot be used to obtain bounded width expression for directed
clique-width.

Table 1. Relations between digraph parameters on semicomplete digraphs. The parameter of
the left column is bounded by the respective parameter of the top row by the specified function
where k is the corresponding width. We use ‘∞’ if the relation is unbounded, that is if h f ,g does
not exist.

g f

d-pw d-tw dagw kw d-lcw d-cw

d-pw k 4k2+15k+10 k−1 4k2+7k ∞ ∞
d-tw k k k−1 6k−2 ∞ ∞
dagw k+1 4k2+15k+11 k k2 ∞ ∞
kw k+1 4k2+15k+11 k k ∞ ∞
d-lcw k+2 4k2+15k+12 k+1 k2+2 k ∞
d-cw k+2 4k2+15k+12 k+1 k2+2 k k

A digraph G = (V,E) is called semicomplete, if for every two vertices u,v ∈ V it
holds that at least one of the two arcs (u,v) and (v,u) is in E. This leads to a superclass
of tournaments which received significant attention in the past [7,21]. In this paper
we show that on semicomplete digraphs, all of the path-width and tree-width inspired
parameters are equivalent. Indeed, all of these equivalences are realized by relatively
tame functions obtained without complicated proofs.

Directed Width Parameters on Semicomplete Digraphs 617

As by [10] for a semicomplete digraph G it holds that d-cw(G) is at most
d-pw(G) + 2, we finally conclude that all above mentioned parameters are upper
bounds to directed clique-width. This result is even extendable to directed linear
clique-width (d-lcw). More precisely we show that, for any choice of functions f ,g ∈
{d-pw,d-tw,dagw,kw,d-lcw,d-cw}, there exists a function h f ,g such that, if G is a
semicomplete digraph with f (G) ≤ k then g(G) ≤ h f ,g(k) where the functions h f ,g are
presented in Table 1.

Theorem 1. Let G be a semicomplete digraph and f ,g ∈ {d-pw,d-tw,dagw,kw,d-lcw,
d-cw}. If f (G) ≤ k, then g(G) ≤ h f ,g(k) where h f ,g : N → N is given by Table 1 if a
function exists.

Combining these results with the above mentioned theorem of Courcelle et al. on
bounded clique-width [8] and the FPT-algorithm for approximating directed tree-width
within a linear factor by Campos et al. [6], we have the following result:

Theorem 2. Every problem expressible in MSO1 logic is fixed parameter tractable on
semicomplete digraphs with respect to the parameter directed tree-width.

2 Preliminaries

For basic definitions of digraphs we refer to [3]. For digraph G= (V,E) let und(G) be
the underlying undirected graph of G without multiple edges. A subdigraph induced
by V ′ ⊆ V of G is denoted by G[V ′]. The sets N+(v) = {u ∈ V | (v,u) ∈ E} and
N−(v) = {u ∈ V | (u,v) ∈ E} are called the out-neighbors and the in-neighbors of a
vertex v ∈ V . The out-degree of vertex v is |N+(v)| while the in-degree is |N−(v)|. An
acyclic digraph (DAG for short) is a digraph without any directed cycles. We say that G
is bioriented if for every (u,v) ∈ E there is also (v,u) ∈ E, we call G the complete bior-
ientation of und(G). A bioriented clique is the complete biorientation of Kn, where Kn

is the undirected graph on n vertices and all possible edges. A directed walk in G is an
alternating sequence W = (u1,e1,u2,e2,u3, . . . ,ek−1,uk) of vertices vi ∈ V , 1 ≤ i ≤ k,
and edges ei ∈ E, 1 ≤ i ≤ k− 1, such that ei = (ui,ui+1), with 1 ≤ i ≤ k− 1. If the
vertices of the directed walkW are mutually distinct, thenW is a directed path.

Let D= (V,E) be a DAG. A vertex r ∈V is called a source if N−(r) = /0 and a sink
if N+(r) = /0. We say that a vertex u ∈V reaches a vertex v∈V if there exists a directed
path from u to v in D. In this case we write u �D v. Note that �D defines a partial order
on V . A DAG which is an orientation of a tree and has a unique source is called an
arborescence.

A (directed) graph parameter of a (directed) graph G is a function α that maps
from (di)graph G to an integer. We call two graph parameters α and β equivalent, if
there exist functions f ,g such that for every digraph G it holds that α(G) ≤ f (β(G))
and β(G) ≤ g(α(G)).

3 Directed Width Parameters

In this section we give a more formal introduction to the above mentioned directed width
parameters. All presented width parameters except for directed (linear) clique-width

618 F. Gurski et al.

correspond to different variants of cops and robber games. So we start with introducing
the notion of cops and robber games, especially two variants will come up in our proofs.
Then we formally define different parameters by so-called decompositions. Please note
that many definitions also occur in our papers [15] and [14].

3.1 Directed Cops and Robber Games

A cops and robbers game on a (directed) graph is a pursuit-evasion game with two
teams of players, the cops, which can move unrestrictedly to every vertex with their
helicopters and the robbers moving from vertex to vertex along the arcs/edges of the
graph. The cops try to “catch” the robbers by moving onto the vertices where the robbers
are positioned, while the robbers try to evade this capture.

Let G= (V,E) be a directed graph with one robber and a set of cops. A position in
the game is a pair (C,r) where C ⊆ V is the current position of the cops and r ∈ V is
the current position of the robber. Initially, there is no cop on the graph, i.e.,C0 = /0 and
in the first round the robber can choose a start position r0. In every round i+1, (Ci,ri)
is the current position of the cops and robber. The game is then played as follows: The
cops announce their new position Ci+1. Then the robber can chose any vertex ri+1 as
a new position, that is reachable from ri in the graph G− (Ci ∩Ci+1). There are two
variations of reachability: In strong component searching, the robber can move to every
vertex in the same strong component of G− (Ci ∩Ci+1). In reachability searching, the
robber can move to any vertex ri+1 such that there is a directed walk from ri to ri+1.

If ri ∈ Ci after any round i, then the cops capture the robber and win the game.
Otherwise, the game never ends and the robber wins the game. Clearly, the game can
always be won by the cops, by positioning a cop on every vertex of G. However, an
interesting question is, how many cops are needed for a graph G, such that there is
always a winning strategy for the cops.

By varying the rules, many different cops and robber games can be defined. The best
known modification is, if the cops know the current robber position (visible CnR-Game)
or do not know the current robber position (invisible CnR-Game). Another variant is a
so-called inert robber: This robber is only allowed to move, if ri ∈ Ci+1, i.e., if the
robber would be captured in the next round.

3.2 Directed Path-Width

In the following we define some width parameters, starting with a very common one
which got many different equivalent definitions over time.

Definition 1 (directed path-width). Let G = (V,E) be a digraph. A directed path-
decomposition of G is a sequence (X1, . . . ,Xr) of subsets of V , called bags, such that the
following three conditions hold.

(dpw-1) X1 ∪·· ·∪Xr = V,
(dpw-2) for each (u,v) ∈ E there is a pair i ≤ j such that u ∈ Xi and v ∈ Xj, and
(dpw-3) for all i, j, � with 1 ≤ i < j < � ≤ r it holds Xi ∩X� ⊆ Xj.

The width of a directed path-decomposition X = (X1, . . . ,Xr) is max1≤i≤r |Xi|−1. The
directed path-width of G, d-pw(G) for short, is the smallest integer w such that there is
a directed path-decomposition for G of width w.

Directed Width Parameters on Semicomplete Digraphs 619

3.3 Directed Tree-Width

There exist many definitions for directed tree-width which differ in technical details but
are otherwise parametrically equivalent. In this paper we use the definition by Johnson
et al. from [20].

Let G = (V,E) be a digraph and Z ⊆ V . The digraph G[V \ Z] which is obtained
from G by deleting Z is denoted by G−Z. A vertex set S ⊆V \Z is Z-normal if every
directed walk which leaves and again enters S must contain a vertex from Z. For two
vertices u,v of an out-tree T we write u ≤ v if there is a directed path from u to v or
u= v.

Definition 2 (directed tree-width, [20]). A (-n arboreal) tree-decomposition of a
digraph G = (VG,EG) is a triple (T,X ,W). Here T = (VT ,ET) is an arborescence,
X = {Xe | e ∈ ET} and W = {Wr | r ∈ VT} are sets of subsets of VG, such that the
following two conditions hold.

(dtw-1)W = {Wr | r ∈VT} is a partition of VG into nonempty subsets.1

(dtw-2) For every (u,v) ∈ ET the set
⋃{Wr | r ∈VT ,v ≤ r} is X(u,v)-normal.

The width of a (-n arboreal) tree-decomposition (T,X ,W) is maxr∈VT |Wr ∪⋃
e∼r Xe|−

1. Here e ∼ r means that r is one of the two vertices of arc e. The directed tree-width
of G, d-tw(G) for short, is the smallest integer k such that there is a (-n arboreal) tree-
decomposition (T,X ,W) of G of width k.

As mentioned in the introduction, there is a strong link between a variant of the cops
and robber game and directed tree-width. Indeed, this link played an important role in
finding the definition of directed tree-width in the first place.

Proposition 1 ([20]). If G has directed tree-width of at most k, then k+ 1 cops have
a robber monotone winning strategy in the visible strong component cops and robber
game on G. If k cops have a winning strategy in this game, then the directed tree-width
of G is at most 3k+2.

3.4 DAG-Width

The main difference between directed tree-width and DAG-width is that the separations
in an arboreal decomposition only destroy strong connectivity, while those in a DAG-
decomposition block all directed paths leaving the bags of a sub-DAG. Since directed
separations are more restricted than strong separations, the model graph which is used
for the decomposition needs to be relaxed from an arborescence to a DAG. DAG-width
has been defined in [4].

For a digraph G = (VG,EG) let V ′ ⊆ VG, then a set W ⊆ VG guards V ′ if for all
(u,v) ∈ EG it holds that if u ∈V ′ then v ∈V ′ ∪W .

Definition 3 (DAG-width). ADAG-decomposition of a digraph G= (VG,EG) is a pair
(D,X) where D = (VD,ED) is a directed acyclic graph (DAG) and X = {Xu | Xu ⊆
VG,u ∈VD} is a family of subsets of VG such that:

1 A remarkable difference to the undirected tree-width [23] is that the setsWr have to be disjoint
and non-empty.

620 F. Gurski et al.

(dagw-1)
⋃

u∈VD Xu =VG.
(dagw-2) For all vertices u,v,w ∈VD with u �D v �D w, it holds that Xu ∩Xw ⊆ Xv.
(dagw-3) For all edges (u,v) ∈ ED it holds that Xu ∩Xv guards X�v \Xu, where X�v =

∪v�DwXw. For any source u, X�u is guarded by /0.

The width of a DAG-decomposition (D,X) is the number maxu∈VD |Xu|. The DAG-
width of a digraph G, dagw(G) for short, is the smallest width of all possible DAG-
decompositions for G.

It is straightforward that a DAG-decomposition where D is a path can also be seen
as a directed path decomposition, as it meets the same conditions.

3.5 Kelly-Width

We now come to Kelly-width, which has originally been introduced in [18]. The original
definition of Kelly-width bears some resemblance to the definition of DAG-width, but it
is more technical. In [18] it was conjectured that Kelly-width and DAG-width are indeed
parametrically equivalent, but so far only one of the two relations has been proven [2].
The actual definition of Kelly-width is based on a decomposition [18].

Definition 4 (Kelly-width). A Kelly decomposition of a digraph G = (VG,EG) is a
triple (W ,X ,D) where D is a directed acyclic graph, X = {Xu | Xu ⊆VG,u ∈VD} and
W = {Wu |Wu ⊆VG,u ∈VD} are families of subsets of VG such that:

(kw-1)W is a partition for VG.
(kw-2) For all vertices v ∈VG, Xv guards W�v .
(kw-3) For all vertices v ∈ VG, there is a linear order u1, . . . ,us on the successors of

v such that for every ui it holds that Xui ⊆ Wi ∪Xi ∪ ⋃
j<iW�u j

. Similarly, there is
a linear order r1,r2, . . . on the roots of D such that for each root ri it holds that
Wri ⊆

⋃
j<iW�r j

.

The width of a Kelly decomposition (W ,X ,D) is the number maxu∈VD |Xu|+ |Wu|.
The Kelly-width of a digraph G, denoted with kw(G), is the smallest width of all possi-
ble Kelly decompositions for G.

For our purpose we need a relation of Kelly-width to a variant of the cops and robber
game given by the following characterization.

Proposition 2 ([18]). A digraph G has Kelly-width of at most k+1 if and only if k+1
cops have a winning strategy to capture an invisible and inert robber in the reachability
searching game.

3.6 Directed (Linear) Clique-Width

Directed clique-width has been introduced together with clique-width on undirected
graphs, see by Courcelle and Olariu in [9]. The linear clique-width for undirected graphs
was introduced in [16] as a parameter by restricting the clique-width, to an underlying
path-structure.

Directed Width Parameters on Semicomplete Digraphs 621

Definition 5 (directed clique-width). The directed clique-width of a vertex-labeled
digraph G, d-cw(G) for short, is the minimum number of labels needed to define G
using the following four operations:

1. Creation of a new vertex with label a (denoted by •a).
2. Disjoint union of two labeled digraphs G and H (denoted by G⊕H).
3. Inserting an arc from every vertex with label a to every vertex with label b (a �= b,

denoted by αa,b).
4. Change label a into label b (denoted by ρa→b).

The directed clique-width of an unlabeled digraph G = (V,E), d-cw(G) for short,
is the smallest integer k, such that there is a mapping lab :V → {1, . . . ,k} such that the
labeled digraph (V,E, lab) has directed clique-width at most k.

Directed linear clique-width can be obtained, when the disjoint union operation is
only allowed for one digraph and one labeled vertex, i.e., in the above definition, the
graph H contains exactly one vertex.

4 Comparison of Directed Width Parameters on Semicomplete
Digraphs

Before we start with the comparisons between different parameters which eventually
lead to Theorem 1, let us introduce the current landscape of bounding functions between
these parameters on general digraphs.

Proposition 3. Let G be a digraph and f ,g ∈ {d-pw,d-tw,dagw,kw,d-lcw,d-cw}. If
f (G) ≤ k, then g(G) ≤ h′

f ,g(k) where h′
f ,g : N → N is given by Table 2 if a function

exist.

Proof. 1. d-pw is unbounded in terms of kw: In [3] the example of a complete bior-
ientation of an undirected binary tree of height h is considered. This digraph has
directed path-width h while it has the fixed Kelly-width of 2.

2. d-pw is unbounded in terms of d-tw: Holds with the example from 1 which is
inspired by the undirected comparisons of path-width and tree-width. Increasing
h, the directed tree-width is 1, while the directed path-width increases.

3. d-tw is bounded by d-pw: This follows immediately from the definition.
4. d-pw, d-tw, dagw and kw are unbounded in terms of d-lcw and thus in d-cw: The

set of all bioriented cliques is a counterexample.
5. kw is unbounded in terms of d-tw: As an example consider a binary tree, where

all edges are oriented from the root to the leaves. Additionally, every vertex has a
backward edge to each of its predecessors on the unique path from the root to itself.

6. d-cw and thus also d-lcw is unbounded in terms of d-pw, d-tw, dagw and kw. An
acyclic orientation of a grid graph is a counterexample.

7. d-lcw is unbounded in terms of d-cw: In Lemma 11 of [16] it has been shown that
for G1 = • and Gi+1 = (Gi ∪Gi)× (Gi ∪Gi) for i ≥ 1, graph Gi has linear NLC-
width at least i. The proof idea can be used to show that for G1 = • and Gi+1 =
(Gi �Gi)⊗ (Gi �Gi) for i ≥ 1, digraph Gi has directed linear NLC-width at least i.

622 F. Gurski et al.

All graphs Gi are directed co-graphs which implies that they have directed clique-
width at most 2, see [17]. Since directed linear clique-width is greater or equal to
directed linear NLC-width [15], the result follows.

8. d-cw is bounded by d-lcw: This follows immediately from the definition. ��

Table 2. Relations between digraph parameters on digraphs. The parameter of the left column
is bounded by the respective parameter of the top row by the specified function where k is the
corresponding width. We use ‘∞’ if the relation is unbounded, that is if h′

f ,g does not exist. The
cell with ‘???’ represents the remaining relation of the conjecture on DAG-width and Kelly-width.

g f

d-pw d-tw dagw kw d-lcw d-cw

d-pw k ∞ ∞ [5] ∞ ∞ ∞
d-tw k k 3k+1 [5] 6k−2 [18] ∞ ∞
dagw k+1 [5] ∞ [5] k 72k2 [2] ∞ ∞
kw k+1 [12] ∞ ??? [18] k ∞ ∞
d-lcw ∞ ∞ ∞ ∞ k ∞
d-cw ∞ ∞ ∞ ∞ k k

Please note that Proposition 3 contains in particular the known fact that directed
path-width poses as an upper bound for all tree-width inspired width parameters. More-
over, on semicomplete digraphs, by Proposition 7 it also is an upper bound on directed
clique-width. It therefore suffices, towards a proof of Theorem 1, to establish upper
bounds on directed path-width in terms of directed tree-width, DAG-width, and Kelly-
width, as well as proving that Proposition 7 can be extended to also include directed
linear clique-width.

4.1 DAG-Width and Directed Path-Width on Semicomplete Digraphs

As a first step towards Theorem 1 we show that DAG-width plus 1 and directed path-
width are equal on the class of semicomplete digraphs, which leads also to the fact that
computing DAG-width of a semicomplete digraph is in NP.

This later fact might be of independent interest since DAG-width is PSPACE-
complete in general [2], but, it is one of only few known parameters from the tree-width
inspired family which allows for an efficient solving of parity games [4].

As a tool we need a normalized version of DAG-decompositions.

Definition 6 (Nice DAG-decomposition). A DAG-decomposition (D,X) of a digraph
G is nice, if the following properties are fulfilled.

1. D has exactly one source r.
2. Every vertex in D has at most two successors.
3. If vertex d has two successors d′ and d′′, then Xd = Xd′ = Xd′′ .

Directed Width Parameters on Semicomplete Digraphs 623

4. If vertex d has one successors d′, then |(Xd \Xd′)∪ (Xd′ \Xd)| = 1.

Berwanger et al. [4] showed that if digraph G has a DAG-decomposition of width
k, it also has a nice DAG-decomposition of width k. Moreover, since deleting transitive
edges from D does neither destroy any of the properties of a DAG-decomposition, nor
increase the width of the DAG-decomposition, we get the following property.

Lemma 1. If digraph G has a DAG-decomposition of width k, it also has a nice DAG-
decomposition (D,X) of width k such that D has no transitive edges.

Proposition 4. For every semicomplete digraph G it holds that

d-pw(G) ≤ dagw(G)−1.

Proof. Let G be a semicomplete digraph and let (D,X) be a nice DAG-decomposition
for G of width k with digraph D, vertex set VD and X = {Xu | u ∈ VD}. By Lemma
1 we can assume that D has exactly one source, every vertex in D has at most two
successors and no transitive edges. We show that in case D is not a path, we can convert
it into a path without increasing the width. Assume D is not a path. For any vertex r
let VDr is the set of vertices of D which are reachable from r. Let Dt be the maximal
subdigraph of D with unique source t. Consider vertex q ∈ VD with two successors s
and t. We differentiate three cases: All vertices from G which are in bags of Ds are also
in the bags of Dt (Case 1.a), the opposite inclusion (Case 1.b) or, at last none of these
inclusions (Case 2) occur.

Case 1.a: (
⋃

u∈VDs Xu)∪Xq ⊆ (
⋃

u∈VDt Xu)∪Xq.
In order to define a new DAG-decomposition (D′,X ′) for G, we simply remove all
vertices VDs\VDt from D and forget all bags associated with removed vertices. We
now show that (D′,X ′) is a DAG-decomposition for G by checking the conditions
of Definition 3.
– (dagw-1) Is satisfied since

⋃

u∈VD′
Xu =

⋃

u∈VD\VDs
Xu ∪

⋃

u∈VDt
Xu

(∗)
⊇

⋃

u∈VD\VDs
Xu ∪

⋃

u∈VDs
Xu =

⋃

u∈VD
Xu =VG

The inclusion in (∗) holds by assumption of case 1a) since q ∈VD\VDs .
– (dagw-2) is still satisfied since for every a,b,c∈VD′ it holds that if a�D′ b�D′ c

then
X ′
a ∩X ′

b = Xa ∩Xc ⊆ Xb = X ′
b

– (dagw-3) Let (a,b) ∈ ED′ , then it follows that (a,b) ∈ ED. Therefore, it must
hold that Xa ∩Xb guards X�b\Xa. It holds that X ′

a = Xa and X ′
b = Xb. Further,

X ′
�b is the union of all bags of vertices that we can reach from vertex b in D′,

such that X ′
�b =

⋃
b�D′u Xu.

624 F. Gurski et al.

(i) If b �D′ t, then:

X ′
�b =

⋃

b�D′u�D′ t
Xu ∪

⋃

t�D′u
X ′
u =

⋃

b�Du�Dt

Xu ∪
⋃

t�Du

Xu

(since Xq ⊆
⋃

b�Du�Dt

Xu)

=
⋃

b�Du�Dt

Xu ∪
⋃

t�Du

Xu ∪
⋃

s�Du

Xu =
⋃

b�Du

Xu = X�b

(ii) Else t ≺D′ b, then: Since every successor of b in D is also in D′ it holds that

X ′
�b =

⋃

b�D′u
Xu =

⋃

b�Du

Xu = X�b

This leads to X ′
a ∩X ′

b = Xa ∩Xb guards X ′
�b\X ′

a = X�b\Xa.
Thus, all requirements of a DAG-decomposition are met by (D′,X ′).

Case 1.b: (
⋃

u∈VDt Xu)∪Xq ⊆ (
⋃

u∈VDs Xu)∪Xq can be handled analogously to case 1.a.
Case 2: (

⋃
u∈VDs Xu)∪Xq �⊆ (

⋃
u∈VDt Xu)∪Xq and (

⋃
u∈VDt Xu)∪Xq �⊆ (

⋃
u∈VDs Xu)∪Xq.

More informally, this means that there exist vertices fromG that are only represented
in bags of Ds but not in bags of Dt . We show now, that this case cannot occur. There
are x,y such that

x ∈ Xq ∪
⋃

u∈VD≥s

Xu,x �∈ Xq ∪
⋃

u∈VD≥t

Xu (1)

y �∈ Xq ∪
⋃

u∈VD≥s

Xu,y ∈ Xq ∪
⋃

u∈VD≥t

Xu (2)

SinceG is semicomplete, there is an arc between x and y inG. W.l.o.g. let (x,y)∈EG.
By the connectivity property given by (dagw-2) it holds that x,y �∈ ⋃

u�Dq Xu, since
x,y �∈ Xq. Let w ∈ VD,x ∈ Xw,x �∈ Xu and u �D w. As Eq. (1) holds, this leads to
s�D w. By (dagw-3) it further holds that Xw′ ∩Xw guards X�w\Xw′ for a predecessor
w′ of w in D with w′ �= s. This means that for all (z,z′) ∈ EG with z ∈ X�w\Xw′ it
holds that z′ ∈ (X�w\Xw′)∪ (Xw′ ∩Xw).
As assumed before, it holds that (x,y) ∈ EG with x ∈ X�w\Xw′ . By Eq. (2) it holds
that y �∈ Xw′ ∩Xw ⇒ y ∈ X�w\Xw′ . By Eq. (2) it holds that y �∈ Xw′ ⇒ y ∈ X�w =
⋃

w�Du Xu. But since s �D w it holds that
⋃

w�Du Xu ⊆ ⋃
s�Du Xu. This contradicts

that by Eq. (2) it holds that y �∈ ⋃
s�Du Xu. This leads to the conclusion that case 2

cannot occur.

Consequently, starting at the root, we can transform every DAG D of a DAG-
decomposition of the semicomplete digraph G into a directed path. Since directed path-
width is exactly the path variant of DAG-width, d-pw(G) ≤ dagw(G)−1 holds. ��

By Proposition 4 we can conclude that on semicomplete digraphs, DAG-width plus
1 and path-width are equal.

Corollary 1. For every semicomplete digraph G it holds that

d-pw(G)+1= dagw(G).

Directed Width Parameters on Semicomplete Digraphs 625

4.2 Escaping Pursuit in the Jungle: Directed Path-Width, Directed Tree-Width
and Kelly-Width

Fradkin and Seymour [11] gave a description of semicomplete digraphs of bounded
directed path-width. Indeed, they proved that every semicomplete digraph of huge
directed path-width must contain a subdivision of a large bioriented clique [11]. While
this result immediately implies that directed path-width acts, parametrically, as a lower
bound for all tree-width inspired directed width measures discussed in this paper, the
proof uses a Ramsey argument and thus, for G to contain a subdivision of the complete
biorientation of Kt , the directed path-width must be exponential in t. However, Fradkin
and Seymour introduced another obstruction to small directed path-width on semicom-
plete digraphs which is similar to the idea of well linked sets. With a bit of more careful
analysis we are able to obtain the quadratic bounds of Theorem 1.

Note that [11] could also be used for comparisons between directed path-width and
DAG-width, but this would only lead to equivalence between those parameters, whereas
we could prove equality (plus 1).

Two vertices u,v are k-connected, if there are at least k internally-disjoint paths from
u to v and from v to u. For digraph G= (V,E) a setU ⊆V is a k-jungle in G if |U | = k
and for all u,v ∈U it holds that u and v are k-connected.

For both directed tree-width and Kelly-width, we show that the existence of a k+
1-jungle is enough to ensure a winning strategy for the robber against k cops in the
respective variants of cops and robber game. Let us start with directed tree-width.

Proposition 5. Let G be a semicomplete digraph. If d-pw(G) ≥ 4(k+ 1)2 + 7(k+ 1)
then d-tw(G) ≥ k.

Proof. Let us assume d-pw(G) ≥ 4(k+1)2+7(k+1). Then, by the results from [11],
we know that G = (V,E) contains a k+ 1-jungle J ⊆ V . If we can show that the exis-
tence of J is enough to ensure that k-cops cannot catch the robber in the visible strong
component cops and robber game on G, it follows from Proposition 1 that the directed
tree-width ofGmust be at least k and thus the assertion follows. Hence what is left to do
is describe a winning strategy for the robber against k cops on a k+1-jungle J. For the
first position (C0,r0) we haveC0 = /0 and the robber may select r0 to be any vertex of J.
Now suppose the game has been going on for i rounds and in each round the robber was
able to select a vertex of J as her position. Let (Ci−1,ri−1) be the current state of the
game and let Ci ⊆V be the next position of the cops. In case ri−1 /∈Ci there is nothing
to do for the robber and she can stay where she is i.e. ri := ri−1. So we may assume
ri−1 ∈Ci. In this case we know |Ci \{ri−1}| ≤ k−1 and thus |Ci−1 ∩Ci| ≤ k−1. Hence
there must exist a vertex v ∈ J \Ci. As ri−1 �= v we know from J being a k+ 1-jungle
that there exist k+1 pairwise internally disjoint paths from ri−1 to v and vice versa. As
|Ci| ≤ k in G− (Ci−1 ∩Ci) at least one path from ri−1 to u and one from u to ri−1 must
be left and thus both vertices belong to the same strong component of G− (Ci−1 ∩Ci).
Thus v is reachable from ri−1 and we may set ri := v. As the robber was able to flee to
another vertex of J our claim now follows by induction. ��

From [2] and Corollary 1 we already know an upper bound on directed path-width
in terms of Kelly-width, which is d-pw(G) ≤ 72kw(G)2 + 1. We can improve this

626 F. Gurski et al.

bound following the same general idea as given above. Indeed, since in the strategy
as described in the proof of Proposition 5 the robber only changed her position if she
was threatened to be caught if she did not, the strategy above is already a strategy for
a visible robber in the strong component game. Since the reachability searching game
is a relaxation of the strong component game and the (in)visibility of the robber does
not play a role in this strategy it is straightforward to see that using the same technique,
an invisible and inert robber can also avoid being caught by k cops in the reachability
searching game. From these arguments we obtain the following result.

Proposition 6. Let G be a semicomplete digraph. If d-pw(G) ≥ 4(k+ 1)2 + 7(k+ 1)
then kw(G) ≥ k.

4.3 Directed (Linear) Clique-Width and Directed Path-Width on Semicomplete
Digraphs

In [10], the authors prove that on semicomplete digraphs, directed path-width can be
used to give an upper bound for directed clique-width. The main idea of the proof
of [10, Lemma 2.14] is to define a directed clique-width expression along a nice path-
decomposition. Since this proof only uses linear clique-width operations, we can restrict
their result to the following result:

Proposition 7 ([10]). For every semicomplete digraph G it holds that

d-cw(G) ≤ d-lcw(G) ≤ d-pw(G)+2.

Note that the other direction, i.e., using directed (linear) clique-width as an upper
bound of directed path-width, is not possible for semicomplete digraphs in general. That
follows directly from the proof of Proposition 3, as the counterexample, a bioriented
clique, is a semicomplete digraph.

Using the results from this and previous subsections, it is possible to improve
the general results for the comparison of directed width parameters on semicomplete
digraphs.

By using Propositions 4, 5, 6 and 7 we improve also other bounds between directed
width parameters on semicomplete digraphs.

5 Conclusion

The landscape of directed width measures is a wild one. Started by the introduction of
directed tree-width many different generalizations of undirected tree-width have been
invented and received different amounts of attention. Some of these parameters were
considered very little; possibly because of the results of [13], which essentially rule out
any algorithmic application of these parameters beyond some specialized routing prob-
lems. So while the search for ‘good’ digraph width parameters inspired by tree-width
does not seem very promising, one could turn to the logic based parameters instead.
Here directed clique-width reigns supreme, but recently other attempts at finding inter-
esting parameters such as a directed version of maximum induced matching width [19]
have been made.

Directed Width Parameters on Semicomplete Digraphs 627

In this paper we have shown the equivalence of directed path-width, directed tree-
width, Kelly-width and DAG-width on semicomplete digraphs. In particular this implies
that each of these measures acts as an upper bound on directed clique-width and thus,
the algorithmic power of directed clique-width can now be accessed by any of the other
parameters.

Hence as a consequence of our results on semicomplete digraphs every digraph
problem, which is describable in MSO1 logic is fixed parameter tractable for these
width measures if a decomposition of bounded width is given.

Our result, that computing DAG-width is in NP on semicomplete digraphs while
it is PSPACE-hard in general [1], recalls the question if computing directed path-width
and thus, DAG-width is NP-hard on semicomplete digraphs, though there are FPT algo-
rithms to solve this problem [10].

References

1. Amiri, S.A., Kreutzer, S., Rabinovich, R.: DAG-width is PSPACE-complete. Theoret. Com-
put. Sci. 655, 78–89 (2016)

2. Amiri, S.A., Kaiser, L., Kreutzer, S., Rabinovich, R., Siebertz, S.: Graph searching games
and width measures for directed graphs. In: 32nd International Symposium on Theoretical
Aspects of Computer Science (STACS), volume 30 of Leibniz International Proceedings in
Informatics (LIPIcs), pp. 34–47. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2015)

3. Bang-Jensen, J., Gutin, G. (eds.): Classes of Directed Graphs. SMM, Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-71840-8

4. Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S.: DAG-width and parity games. In: Durand,
B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 524–536. Springer, Heidelberg
(2006). https://doi.org/10.1007/11672142 43

5. Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S., Obdrzálek, J.: The DAG-width of directed
graphs. J. Comb. Theory Ser. B 102(4), 900–923 (2012)

6. Campos, V., Lopes, R., Maia, A.K., Sau, I.: Adapting the directed grid theorem into an FPT
algorithm. Electron. Notes Theoret. Comput. Sci. 346, 229–240 (2019)

7. Chudnovsky, M., Seymour, P.D.: A well-quasi-order for tournaments. J. Comb. Theory Ser.
B 101(1), 47–53 (2011)

8. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on
graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)

9. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discret. Appl. Math.
101, 77–114 (2000)

10. Fomin, F.V., Pilipczuk, M.: On width measures and topological problems on semi-complete
digraphs. J. Comb. Theory Ser. B 138, 78–165 (2019)

11. Fradkin, A., Seymour, P.D.: Tournament pathwidth and topological containment. J. Comb.
Theory Ser. B 103, 374–384 (2013)

12. Ganian, R., Hlinený, P., Kneis, J., Langer, A., Obdrzálek, J., Rossmanith, P.: Digraph width
measures in parameterized algorithmics. Discret. Appl. Math. 168, 88–107 (2014)

13. Ganian, R., et al.: Are there any good digraph width measures? J. Comb. Theory Ser. B 116,
250–286 (2016)

14. Gurski, F., Komander, D., Rehs, C.: How to compute digraph width measures on directed
co-graphs. Theoret. Comput. Sci. 855, 161–185 (2021)

15. Gurski, F., Rehs, C.: Comparing linear width parameters for directed graphs. Theory Com-
put. Syst. 63(6), 1358–1387 (2019)

https://doi.org/10.1007/978-3-319-71840-8
https://doi.org/10.1007/11672142_43

628 F. Gurski et al.

16. Gurski, F., Wanke, E.: On the relationship between NLC-width and linear NLC-width. The-
oret. Comput. Sci. 347(1–2), 76–89 (2005)

17. Gurski, F., Wanke, E., Yilmaz, E.: Directed NLC-width. Theoret. Comput. Sci. 616, 1–17
(2016)

18. Hunter, P., Kreutzer, S.: Digraph measures: Kelly decompositions, games, and orderings.
Theoret. Comput. Sci. 399(3), 206–219 (2008)

19. Jaffke, L., Kwon, O., Telle, J.A.: Classes of intersection digraphs with good algorithmic
properties. ACM Computing Research Repository (CoRR), abs/2105.01413 (2021)

20. Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed tree-width. J. Comb. The-
ory Ser. B 82, 138–155 (2001)

21. Kim, I., Seymour, P.D.: Tournament minors. J. Comb. Theory Ser. B 112(C), 138–153 (2015)
22. Oum, S., Seymour, P.D.: Approximating clique-width and branch-width. J. Comb. Theory

Ser. B 96(4), 514–528 (2006)
23. Robertson, N., Seymour, P.D.: Graph minors II. Algorithmic aspects of tree width. J. Algo-

rithms 7, 309–322 (1986)

Improved Parameterized Approximation
for Balanced k-Median

Zhen Zhang1,2 and Qilong Feng2(B)

1 School of Frontier Crossover Studies, Hunan University of Technology
and Business, Changsha 410000, People’s Republic of China

2 School of Computer Science and Engineering, Central South University,
Changsha 410000, People’s Republic of China

csufeng@mail.csu.edu.cn

Abstract. Balanced k-median is a frequently encountered problem in
applications requiring balanced clustering results, which generalizes the
standard k-median problem in that the number of clients connected
to each facility is constrained by the given lower and upper bounds.
This problem is known to be W[2]-hard if parameterized by k, imply-
ing that the existence of an FPT(k)-time exact algorithm is unlikely.
In this paper, we give a (3 + ε)-approximation algorithm for balanced
k-median that runs in FPT(k) time, improving upon the previous best
approximation ratio of 7.2 + ε obtained in the same time. The crucial
step in getting the improved ratio and our main technical contribution
is a different random sampling method for selecting opened facilities.

Keywords: Approximation algorithm · Parameterized algorithm ·
k-median

1 Introduction

Clustering is a common task in computer science, which aims to partition a given
set of data points into several clusters, such that the points assigned to the same
cluster are relatively similar. Many objective functions have been proposed to
estimate the clustering quality, among which the k-median cost function is one
of the most ordinary versions. Given a set of facilities and a set of clients in a
metric space, the goal of the k-median problem is to open at most k facilities
and connect each client to an opened facility, such that the sum of the distance
from each client to the corresponding facility is minimized. Designing approx-
imation algorithms for this problem remains an active area of research due to
its applications in many fields [2,6,7,16,17,20]. The current best approximation
ratio for the k-median problem is 2.675+ ε [6], which was obtained based on the
pseudo-approximation technique outlined in [20].

This work was supported by National Natural Science Foundation of China (61872450
and 62172446).

c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 629–640, 2021.
https://doi.org/10.1007/978-3-030-92681-6_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_49&domain=pdf
http://orcid.org/0000-0002-2974-5781
https://doi.org/10.1007/978-3-030-92681-6_49

630 Z. Zhang and Q. Feng

In many clustering applications, the data points are required to be regu-
larly assigned to each cluster, such that the sizes of the clusters are similar to
each other. Such examples can be found in the design of wireless sensor net-
works, where balanced clustering is utilized to avoid unbalanced energy con-
sumption [23], and distributed computation, where balancedness needs to be
taken into account when dispatching data to multiple machines [3,4,11]. The
balanced k-median problem has been extensively studied due to its important
role in these applications [5,11,12,21]. This problem generalizes the k-median
problem in that the size of each cluster is constrained within a given interval,
which can be formally defined as follows.

Definition 1 (balanced k-median [12]). The balanced k-median problem con-
siders a set C of clients and a set F of facilities located in a metric space, an
integer k > 0, a positive number Bl ≤ |C| called lower bound, and a number
Bu ≥ max{|C|k−1, Bl} called upper bound. The goal is to open a set H ⊆ F
of no more than k facilities and connect each j ∈ C to an opened facility
τ(j) ∈ H, such that Bl ≤ |τ−1(i)| ≤ Bu for each i ∈ H, and the objective
function

∑
j∈C Δ(j, τ(j)) is minimized, where Δ(j, τ(j)) denotes the distance

from j to τ(j).

The balanced k-median problem is much more poorly understood than the
standard k-median problem. While practical algorithms for the balanced k-
median problem are known [5,21], these approaches are at best heuristics and
have no performance guarantee. Dick et al. [11] gave a constant factor approx-
imation algorithm for balanced k-median based on the techniques of min cost
flow and LP-rounding, but it violates the upper bound by a constant factor.
Ding [12] gave a (7.2 + ε)-approximation algorithm for the problem under the
assumption that k is a fixed parameter. Whether a constant factor approxima-
tion for balanced k-median can be obtained in polynomial time without such
assumption is still an opened problem.

1.1 Our Contributions

In this paper we consider the balanced k-median problem for the case where k is
small. Given an instance (C,F , k, Bl, Bu) of the problem, brute force searching
yields an optimal solution in (|C||F|)O(k) time, but the question we consider is:
what can be done in FPT(k) time (i.e., f(k)(|C||F|)O(1))?

We cannot hope to obtain an optimal solution to the balanced k-median
problem in FPT(k) time: Guha and Khuller [13] showed that the problem is
W[2]-hard if parameterized by k, and Cohen-Addad et al. [8] proved that if the
Gap-Exponential Time Hypothesis [22] is true, then the approximation ratios
of FPT(k)-time algorithms for the problem cannot be better than 1 + 2/e − ε.
However, these negative results do not rule out the possibility of approximat-
ing balanced k-median by a constant factor in FPT(k) time. Indeed, Ding [12]
showed that an FPT(k)-time algorithm yields a (7.2 + ε)-approximation for the
problem. We go a step further in this direction and give a (3+ ε)-approximation
algorithm that runs in FPT(k) time.

Improved Parameterized Approximation for Balanced k-Median 631

(a) (b)

Fig. 1. (a) The clusters in a solution to the k-median problem; (b) the clusters in a
solution to the balanced k-median problem, where Bl = 6 and Bu = 8.

Theorem 1. Given a real number ε ∈ (0, 1] and an instance (C,F , k, Bl, Bu) of
balanced k-median, there exists a (3 + O(ε))-approximation algorithm that runs
in (|C||F|)O(1)(kε−1)O(k) time.

A crucial property utilized in the algorithms developed for the standard k-
median problem is that each client from a cluster is located in the Voronoi cell
defined by the corresponding facility. The main obstacle in solving the balanced
k-median problem lies in the deficiency of this property (the clients are correlated
with each other to satisfy the constraint on the size of each cluster, which is
illustrated in Fig. 1). We propose a random sampling-based approach to deal
with this obstacle, which involves the following two steps.

• Instead of directly selecting the opened facilities, our algorithm first identifies
a set R that involves k clients close to the facilities opened in an optimal
solution. Such k clients can be found with a factor of |R|k multiplied on
runtime. To ensure that our algorithm runs in FPT(k) time, the size of client
set R should be independent of the total number of the clients and facilities.
We prove that randomly sampling k clients yields the desired client set with
certain probability.

• The facilities opened in our solution are selected based on the k clients iden-
tified in the first step. When solving the standard k-median problem, we
can directly connect each client to the nearest opened facility to minimize
the clustering cost. However, for the case of balanced k-median, connecting
clients is not as trivial as exhibited in the k-median problem due to the con-
straint on the sizes of clusters. We give a connection algorithm that ensures
the legitimacy of the clustering result.

1.2 Other Related Work

The variants of the k-median problem that take into account upper or lower
bounds on cluster sizes have been paid lots of attentions. For the case where the
cluster sizes have upper bounds, the current best approximation guarantee is a
ratio of O(log k) obtained by tree embedding of the underlying metric [1], and a
constant factor approximation can be obtained with violating the constraint on
the cluster sizes [10,19] or cluster number [18]. For the case with lower bounds,
Han et al. [15] and Guo et al. [14] gave an O(1)-approximation that violates the
lower bounds by some constant factor. Based on such a bi-criteria approximation

632 Z. Zhang and Q. Feng

solution, Guo et al. [14] gave a 516-approximation algorithm that firmly satisfies
the constraints.

Most recently, the technique of coreset construction has been refined and
used for designing parameterized approximation algorithms for many clustering
problems. These problems include k-median [8], k-means [8], facility location [8],
capacitated k-median [1,9], and capacitated k-means [9]. A coreset is a small sub-
set of the input such that minimizing the objective function on it is sufficient
to obtain the desired solution. In [1,8,9], the coresets are constructed by par-
titioning the space into a set of cells and selecting a weighted representative
point from each cell. The main challenge in constructing such coresets for the
balanced k-median problem lies in that the loss in the approximation guarantee
induced by each cell is quite difficult to analyze due to the additional constraint
on the cluster sizes. How to approximate the input data by a small coreset in
the balanced k-median problem is still not clear.

1.3 Preliminaries

Denote by I = {C,F , k, Bl, Bu} an instance of the balanced k-median problem.
For each x, y ∈ C ∪F and S1,S2 ⊆ C ∪F , let Δ(x, y) denote the distance from x
to y, and define Δ(x,S2) = minz∈S2 Δ(x, z) and Δ(S1, y) =

∑
z∈S1

Δ(z, y). The
following algebraic fact is useful in analyzing the running time of our algorithm.

Lemma 1. Given two numbers i and j larger than 1, we have logj i ≤ ijO(j).

Proof. We consider the following two cases: (1) j < log i
log log i , and (2) j ≥ log i

log log i .

For case (1), we have logj i < log
log i

log log i i = i, as desired. For case (2), we have
log i ≤ O(j log j), which implies that logj i ≤ jO(j). This completes the proof of
Lemma 1. ��

2 The Sampling Algorithm

In this section, we give a sampling algorithm that identifies a set of clients close
to the facilities opened in an optimal solution, which is described in Algorithm 1
and Algorithm 2. Algorithm 1 invokes Algorithm 2 to obtain a set of clients in
each iteration. The input parameters of Algorithm 2 involve an integer k and
three sets R, C†, and R, where k denotes the maximum allowable quantity of
opened facilities, R is used to record the clients that has been selected, C† is
a subset of C that is sampled from, and R contains all the client sets sampled
by Algorithm 1. The idea of Algorithm 2 is to select the clients close to the
opened facilities in optimal solutions by random sampling. For the case where
such clients are hard to be selected, the algorithm narrows the sample range to
increase the probability of finding the desired clients.

We now introduce some notations to help with analysis. Let k∗ denote the
number of facilities opened in an optimal solution to I, let C = {C1, . . . , Ck∗}
denote the set of clusters in the solution, where |C1| ≥ |C2| ≥ . . . ≥ |Ck∗ |, and

Improved Parameterized Approximation for Balanced k-Median 633

Algorithm 1: The Sampling Algorithm
Input: An instance I = (C, F , k, Bl, Bu) of the balanced k-median problem and

a real number ε ∈ (0, 1];
Output: A set R of client sets;

1 R ⇐ ∅;

2 for i ⇐ 1 to (kε−1)O(k) do
3 Median(k, ∅, C,R);

4 return R.

Algorithm 2: Median(k,R, C†,R)
if |R| = k then

R ⇐ R ∪ {R};

else

Randomly and uniformly select a client c ∈ C†;
Median(k, R ∪ {c}, C†,R);

C‡ ⇐ arg max
C′⊆C†,|C′|=�|C†|/2�

∑
x∈C′ Δ(x, R);

Median(k, R, C‡,R).

let f1, . . . , fk∗ be the corresponding opened facilities, where the clients from Ct

are connected to ft for each t ∈ [1, k∗]. For each Ct ∈ C, define optt = Δ(Ct, ft),
rt = optt/|Ct|, and bα(Ct) = {c ∈ Ct : Δ(c, ft) ≤ αrt} for any α > 0. bα(Ct) is
the set of clients from Ct that lie on a closed ball with radius αrt centered at ft.
Define opt =

∑k∗

t=1 optt as the cost of an optimal solution to I. The following
result shows a lower bound on the proportion of bα(Ct) in Ct for each α ≥ 1 and
Ct ∈ C.

Lemma 2. Given a cluster Ct ∈ C and a real number α ≥ 1, we have |bα(Ct)| ≥
(1 − 1

α)|Ct|.
Proof. The definition of bα(Ct) implies that

Δ(Ct\bα(Ct), ft) > |Ct\bα(Ct)|αrt = α
|Ct\bα(Ct)|

|Ct| optt. (1)

By the fact that Δ(Ct\bα(Ct), ft) ≤ optt and inequality (1), we know that
|Ct\bα(Ct)| < 1

α |Ct|, and thus |bα(Ct)| ≥ (1 − 1
α)|Ct|. This completes the proof

of Lemma 2. ��
Let R denote the set given by Algorithm 1. It can be seen that |R| =

(kε−1)O(k) logk |C|, which is upper-bounded by (kε−1)O(k)|C| due to Lemma 1.
We will show the following result in this section.

Lemma 3. With a constant probability, there exists a client set R ∈ R satisfying
∑k∗

t=1 |Ct|(ft,R) ≤ (1 + O(ε))opt.

634 Z. Zhang and Q. Feng

Lemma 3 says that R involves a client set containing k∗ clients close to
f1, . . . , fk∗ with high probability. We first give a high-level idea for proving
Lemma 3. Given a cluster Ct ∈ C and a real number α > 0, it can be seen
that each client from bα(Ct) is close to ft if α is small. We want to find a client
from bα(Ct) for each t ∈ [1, k∗]. Lemma 2 implies that a certain number of clients
from Ct lie on bα(Ct), and thus bα(Ct) has a good chance to be sampled from if
Ct accounts for a relatively large part of the sample range. For the case where
Ct contains only a tiny portion of the sample range, we show that Algorithm 2
can successfully narrow the sample range and increase the possibility of finding
a client from bα(Ct).

Denote by R
† the set of client sets obtained in the first iteration of Algo-

rithm 1. For each R ∈ R
† and t ∈ [1, k∗], let Rt denote the set of the first t

clients added to R by Algorithm 2. Rather than immediately proving Lemma 3,
we first consider the following variant, which will be shown to be maintained for
t ∈ [1, k∗].

κ(t): With probability higher than (εk−1)O(t), there exists a client set R ∈ R
†,

such that
∑t

s=1 |Cs|Δ(fs,Rs) ≤ (1 + O(ε))
∑t

s=1 opts + εt
k∗ opt.

If κ(k∗) is true, then the probability that Algorithm 1 finds the desired
client set of Lemma 3 in each iteration can be lower-bounded by (εk−1)O(k∗) ≥
(εk−1)O(k). Since the algorithm iterates (kε−1)O(k) times, the probability can be
boosted to a constant, which implies that Lemma 3 is true.

It remains to show the correctness of invariant κ(t). The invariant is proved
by induction on t. We first consider the case of t = 1. Observe that the client
from R1 is randomly and uniformly selected from C. We have

|b1+ε(C1)|
|C| ≥ |b1+ε(C1)|

k∗|C1| ≥ |b1+ε(C1)|
k|C1| ≥ (

ε

k
)O(1), (2)

where the first step follows from the fact that |C1| ≥ |C2| ≥ . . . ≥ |Ck∗ |, and
the last step is due to Lemma 2. The definition of b1+ε(C1) and inequality (2)
imply that with probability higher than (ε

k)O(1), the client c ∈ R1 satisfies
|C1|Δ(f1, c) ≤ (1 + ε)opt1, which implies that κ(1) is true.

Given an integer t ∈ (1, k∗], we prove the correctness of κ(t) under the
assumption that κ(t′) holds for each t′ ∈ [1, t − 1]. Define Bt = {c ∈ C :
Δ(c,Rt−1) ≤ ε opt

k∗|Ct|}. We break the analysis into the following two cases: (1)
b1+ε(Ct) ∩ Bt
= ∅, and (2) b1+ε(Ct) ∩ Bt = ∅.

We first consider case (1). Let c denote a client from b1+ε(Ct) ∩ Bt, and let
r(c) be its nearest client from Rt−1. It is the case that

Δ(ft, r(c)) ≤ Δ(ft, c) + Δ(c, r(c)) ≤ (1 + ε)rt + ε
opt

k∗|Ct| , (3)

Improved Parameterized Approximation for Balanced k-Median 635

where the first step is due to triangle inequality, and the second step follows
from the definitions of b1+ε(Ct) and Bt. Consequently, we know that inequality

t∑

s=1

|Cs|Δ(fs,Rs) ≤
t−1∑

s=1

|Cs|Δ(fs,Rs) + |Ct|Δ(ft, r(c))

≤ (1 + O(ε))
t−1∑

s=1

opts +
ε(t − 1)

k∗ opt + |Ct|Δ(ft, r(c))

≤ (1 + O(ε))
t∑

s=1

opts +
εt

k∗ opt

holds with probability higher than (εk−1)O(t), where the second step follows
from the assumption that κ(t − 1) is true, and the last step is derived from
inequality (3). This implies that κ(t) holds for case (1).

We now consider case (2). For this case, we prove κ(t) by showing that a client
near to ft can be selected with high probability. Consider a client c ∈ b1+ε(Ct),
the definition of b1+ε(Ct) implies that |Ct|Δ(ft, c) ≤ (1+ε)|Ct|rt = (1+ε)optt. By
this inequality and the assumption that κ(t−1) is true, we know that inequality

t−1∑

s=1

|Cs|Δ(fs,Rs) + |Ct|Δ(ft, c) ≤ (1 + O(ε))
t−1∑

s=1

opts +
ε(t − 1)

k∗ opt + (1 + ε)optt

≤ (1 + O(ε))
t∑

s=1

opts +
εt

k∗ opt (4)

holds with probability at least (εk−1)O(t). Thus, proving that a client c ∈
b1+ε(Ct) can be selected with high probability is sufficient to ensure the correct-
ness of κ(t). We now show that b1+ε(Ct) indeed contains a substantial portion
of the sample range.

Lemma 4. If κ(t − 1) is true, then we have |C\Bt| ≤ O(kε−2)|b1+ε(Ct)|.
Proof. For each s ∈ [1, t − 1], let hs ∈ Rt−1 denote the client nearest to fs. The
definition of Bt implies that

Δ(Cs, hs) ≥ ε|Cs\Bt|opt

k∗|Ct| . (5)

636 Z. Zhang and Q. Feng

Using inequality (5), we get

t−1∑

s=1

|Cs\Bt| ≤ k∗|Ct|
ε · opt

t−1∑

s=1

Δ(Cs, hs)

≤ k∗|Ct|
ε · opt

t−1∑

s=1

(opts + |Cs|Δ(fs, hs))

≤ k∗|Ct|
ε · opt

((2 + O(ε))
t−1∑

s=1

opts + ε · opt)

≤ O(k∗ε−1)|Ct| ≤ O(kε−1)|Ct|, (6)

where the second step is due to triangle inequality, and the third step follows
from the assumption that κ(t − 1) is true.

Observe that

|C\Bt| =
t−1∑

s=1

|Cs\Bt| + |Ct\Bt| +
k∗
∑

s=t+1

|Cs\Bt|

≤ O(kε−1)|Ct| + |Ct\Bt| +
k∗
∑

s=t+1

|Cs|

= O(kε−1)|Ct|, (7)

where the second step is derived from inequality (6), and the last step is due to
the fact that |C1| ≥ |C2| ≥ . . . ≥ |Ck∗ |. Consequently, we get

|b1+ε(Ct)|
|C\Bt| =

|Ct|
|C\Bt| · |b1+ε(Ct)|

|Ct| ≥ O(kε−2),

where the last step follows from Lemma 2 and inequality (7). Thus, Lemma 4 is
true. ��

We sort each c ∈ C by increasing value of Δ(c,Rt−1), and let cl denote the l-
th client in this order for each l ∈ [1, |C|]. Given an integer x ∈ [0, �log |C|
],
define Qx = {c|C|+1−�2−x|C|�, . . . , c|C|}. In order to find a client close to ft,
Algorithm 2 invokes Median(k,Rt−1,Qx,R) and selects clients from Qx for
each x ∈ [0, �log |C|
]. The definition of Bt implies that there exists an integer
x∗ ∈ [0, �log |C|
], such that C\Bt ⊆ Qx∗ and |Qx∗ | ≤ 2|C\Bt|. Using Lemma 4,
we have |b1+ε(Ct)|

|Qx∗ | =
|b1+ε(Ct)|

|C\Bt| · |C\Bt|
|Qx∗ | ≥ O(kε−2).

Moreover, the assumption that b1+ε(Ct)∩Bt = ∅ implies that b1+ε(Ct) ⊆ C\Bt ⊆
Qx∗ . Consequently, we know that a client from b1+ε(Ct) can be found and added
to R with probability at least O(kε−2). Using inequality (4), we complete the
proof of κ(t). Thus, κ(k∗) and Lemma 3 are true.

Improved Parameterized Approximation for Balanced k-Median 637

3 The Connection Algorithm

Given a real number ε ∈ (0, 1] and an instance I = {C,F , k, Bl, Bu} of balanced
k-median, denote by k∗ the number of facilities opened in an optimal solution
to I, let C = {C1, . . . , Ck∗} be the set of clusters in the solution, and denote by
f1, . . . , fk∗ the corresponding opened facilities. Let R denote the set returned by
Algorithm 1, and let R ∈ R denote the desired client set in Lemma 3. We define
a multi-set R† = {ht : t ∈ [1, k∗]}, where ht ∈ R denote the client nearest to ft

for each t ∈ [1, k∗]. By multiplying the running time of our algorithm by a factor
of |R|kO(k) = (kε−1)O(k)|C|, we can assume that both R† and k∗ are known.

In this section, we show how to construct the solution to I based on R†.
Given a set H ⊆ F of opened facilities, we connect the clients from C based on
the following Integer program.

min
∑

f∈H,c∈C
Δ(c, f)xcf (IP1)

s.t.
∑

f∈H
xcf = 1 ∀c ∈ C (8)

∑

c∈C
xcf ≥ Bl ∀f ∈ H (9)

∑

c∈C
xcf ≤ Bu ∀f ∈ H (10)

xcf ∈ {0, 1} ∀f ∈ H, c ∈ C (11)

IP1 associates each f ∈ H and c ∈ C with a variable xcf , which indicates whether
c is connected to f . Constraint (8) says that each client should be connected to
an opened facility, and constraints (9) and (10) ensure that the upper and lower
bounds on the cluster sizes are satisfied. It can be seen that IP1 is an integer
program of the minimum cost circulation problem, where each client corresponds
to a vertex with the supply 1, and each facility corresponds to a vertex with the
demand Bl and capacity Bu. Using the rounding approach given in [12], an
optimal solution to IP1 can be found in (|C|k)O(1) time.

It remains to show how to select the opened facilities. A straightforward
approach is to open the nearest facility to each h ∈ R†. For the case of balanced
k-median, the issue with this approach lies in that a facility may be selected
for more than once, which can make the constraint on cluster sizes violated. We
open the facilities using a color-coding method to deal with this issue. We assign
a random label from [1, k∗] to each f ∈ F . With probability higher than k−k,
we can associate label t with ft for each t ∈ [1, k∗], and the probability can be
boosted to a constant by repeating the algorithm for kk times. We now open
the nearest facility mt ∈ F to ht that is labeled with t for each t ∈ [1, k∗]. Such
a selection method is described in Algorithm 3. Since we need to guess k∗ and
R†, the algorithm runs in (|C||F|)O(1)(kε−1)O(k) time.

638 Z. Zhang and Q. Feng

Algorithm 3: The Selection of Opened Facilities
Input: An instance I = (C, F , k, Bl, Bu) of the balanced k-median problem,

client set R† = {h1, . . . , ht∗}, and the number of opened facilities k∗;
Output: A set H ⊆ F of opened facilities and a connection function τ ;

1 U = ∅;

2 for i ⇐ 1 to kk do
3 H = ∅;
4 for each f ∈ F do
5 Randomly and uniformly select an integer x ∈ [1, k∗], c(f) ⇐ x;

6 for t ⇐ 1 to k∗ do
7 H ⇐ H ∪ { arg min

m∈F,c(m)=t

Δ(ht, m)};

8 Compute the connection function τ using H and IP1;
9 U ⇐ U ∪ {(H, τ)};

10 return (H, τ) ⇐ arg min
(H′,τ ′)∈U

∑
c∈C Δ(c, τ ′(c)).

Let (H, τ) be the solution given by Algorithm 3, where H = {m1, . . . , mk∗},
and let (H∗, τ∗) be the optimal solution to I that opens facilities f1, . . . , fk∗ . We
have

∑

c∈C
Δ(c, τ(c)) ≤

k∗
∑

t=1

Δ(Ct,mt) ≤
k∗
∑

t=1

(Δ(Ct, ht) + |Ct|Δ(ht,mt))

≤
k∗
∑

t=1

(Δ(Ct, ft) + |Ct|Δ(ht, ft) + |Ct|Δ(ht,mt))

≤
k∗
∑

t=1

(Δ(Ct, ft) + 2|Ct|Δ(ht, ft))

≤ (3 + O(ε))
k∗
∑

t=1

Δ(Ct, ft),

where the second and third steps are due to triangle inequality, the fourth step
is due to the definition of mt, and the last step follows from Lemma 3. This
inequality implies that a (3 + O(ε))-approximation solution to I is obtained.

4 Conclusions

In this paper we give an FPT(k)-time algorithm for the balanced k-median
problem, which has the guarantee of yielding a (3 + ε)-approximation solution.
This improves the current best approximation ratio of 7.2 + ε [12] obtained in
the same time. Our main technical contribution is a different sampling approach
for selecting opened facilities, which we think is of independent interests.

Improved Parameterized Approximation for Balanced k-Median 639

References

1. Adamczyk, M., Byrka, J., Marcinkowski, J., Meesum, S.M., Wlodarczyk, M.:
Constant-factor FPT approximation for capacitated k-median. In: Proceedings of
the 27th Annual European Symposium on Algorithms (ESA), pp. 1:1–1:14 (2019)

2. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local
search heuristics for k-median and facility location problems. SIAM J. Comput.
33(3), 544–562 (2004)

3. Aydin, K., Bateni, M., Mirrokni, V.S.: Distributed balanced partitioning via linear
embedding. In: Proceedings of the 9th ACM International Conference on Web
Search and Data Mining (WSDM), pp. 387–396 (2016)

4. Bateni, M., Bhaskara, A., Lattanzi, S., Mirrokni, V.S.: Distributed balanced clus-
tering via mapping coresets. In: Proceedings of the 27th Annual Conference on
Neural Information Processing Systems (NeurIPS), pp. 2591–2599 (2014)

5. Borgwardt, S., Brieden, A., Gritzmann, P.: An LP-based k-means algorithm for
balancing weighted point sets. Eur. J. Oper. Res. 263(2), 349–355 (2017)

6. Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approx-
imation for k-median and positive correlation in budgeted optimization. ACM
Trans. Algorithms 13(2), 23:1–23:31 (2017)

7. Charikar, M., Li, S.: A dependent LP-rounding approach for the k-median problem.
In: Proceedings of the 39th International Colloquium on Automata, Languages,
and Programming (ICALP), pp. 194–205 (2012)

8. Cohen-Addad, V., Gupta, A., Kumar, A., Lee, E., Li, J.: Tight FPT approxima-
tions for k-median and k-means. In: Proceedings of the 46th International Col-
loquium on Automata, Languages, and Programming (ICALP), pp. 42:1–42:14
(2019)

9. Cohen-Addad, V., Li, J.: On the fixed-parameter tractability of capacitated clus-
tering. In: Proceedings of the 46th International Colloquium on Automata, Lan-
guages, and Programming (ICALP), pp. 41:1–41:14 (2019)

10. Demirci, H.G., Li, S.: Constant approximation for capacitated k-median with
(1 + ε)-capacity violation. In: Proceedings of the 43rd International Colloquium
on Automata, Languages, and Programming (ICALP), pp. 73:1–73:14 (2016)

11. Dick, T., Li, M., Pillutla, V.K., White, C., Balcan, N., Smola, A.J.: Data driven
resource allocation for distributed learning. In: Proceedings of the 20th Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS), pp. 662–671
(2017)

12. Ding, H.: Faster balanced clusterings in high dimension. Theor. Comput. Sci. 842,
28–40 (2020)

13. Guha, S., Khuller, S.: Greedy strikes back: improved facility location algorithms.
J. Algorithms 31(1), 228–248 (1999)

14. Guo, Y., Huang, J., Zhang, Z.: A constant factor approximation for lower-bounded
k-median. In: Proceedings of the 16th International Conference on Theory and
Applications of Models of Computation (TAMC), pp. 119–131 (2020)

15. Han, L., Hao, C., Wu, C., Zhang, Z.: Approximation algorithms for the lower-
bounded k-median and its generalizations. In: Proceedings of the 26th International
Conference on Computing and Combinatorics (COCOON), pp. 627–639 (2020)

16. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facility
location algorithms analyzed using dual fitting with factor-revealing LP. J. ACM
50(6), 795–824 (2003)

640 Z. Zhang and Q. Feng

17. Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and
k-median problems using the primal-dual schema and Lagrangian relaxation. J.
ACM 48(2), 274–296 (2001)

18. Li, S.: Approximating capacitated k-median with (1 + ε)k open facilities. In:
Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 786–796 (2016)

19. Li, S.: On uniform capacitated k-median beyond the natural LP relaxation. ACM
Trans. Algorithms 13(2), 22:1–22:18 (2017)

20. Li, S., Svensson, O.: Approximating k-median via pseudo-approximation. SIAM J.
Comput. 45(2), 530–547 (2016)

21. Lin, W., He, Z., Xiao, M.: Balanced clustering: a uniform model and fast algorithm.
In: Proceedings of the 28th International Joint Conference on Artificial Intelligence
(IJCAI), pp. 2987–2993 (2019)

22. Manurangsi, P., Raghavendra, P.: A birthday repetition theorem and complexity of
approximating dense CSPs. In: Proceedings of the 44th International Colloquium
on Automata, Languages, and Programming (ICALP), pp. 78:1–78:15 (2017)

23. Siavoshi, S., Kavian, Y.S., Sharif, H.: Load-balanced energy efficient clustering
protocol for wireless sensor networks. IET Wirel. Sens. Syst. 6(3), 67–73 (2016)

A LP-based Approximation Algorithm
for generalized Traveling Salesperson

Path Problem

Jian Sun1 , Gregory Gutin2 , and Xiaoyan Zhang3(B)

1 Department of Operations Research and Information Engineering,
Beijing University of Technology, Beijing 100124, People’s Republic of China

B201806011@emails.bjut.edu.cn
2 Department of Computer Science Royal Holloway, University of London,

Egham, Surrey TW200EX, UK
g.gutin@rhul.ac.uk

3 School of Mathematical Science and Institute of Mathematics,
Nanjing Normal University, Nanjing 210023, Jiangsu, China

zhangxiaoyan@njnu.edu.cn

Abstract. Hamiltonian path problem is one of the fundamental prob-
lems in graph theory, the aim is to find a path in the graph that visits
each vertex exactly once. In this paper, we consider a generalizedized
problem: given a complete weighted undirected graph G = (V, E, c), two
specified vertices s and t, let V ′ and E′ be subsets of V and E, respec-
tively. We aim to find an s-t path which visits each vertex of V ′ and
each edge of E′ exactly once with minimum cost. Based on LP rounding

technique, we propose a 9−√
33

2
-approximation algorithm.

Keywords: Hamiltonian path · LP rounding · Generalized TSP path
problem · Approximation algorithm

1 Introduction

The traveling salesperson problem (TSP) is one of the most important problems
in graph theory and computer science [7,10,14]: given a series of cities and the
distance between each pair of cities, find the shortest circuit to visit each city
once and return to the starting city. In graph theoretical terms, the problem can
be modeled as follows: there is an undirected complete graph G = (V,E, c) in
which c : E → R+ is a metric edge-cost function, the task is to find a minimum-
cost Hamilton cycle.

Even if the edge-cost function is metric, TSP is still NP-hard [14]. Therefore,
approximation algorithms are appropriate tools for solving this problem (and
other NP-hard problems); their approximation ratios are often used to mea-
sure the performance of approximation algorithms. Christofides [2] designed a

X. Zhang–This research is supported or partially supported by the National Natural
Science Foundation of China (Grant Nos. 11871280 and 11871081) and Qinglan Project.

c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 641–652, 2021.
https://doi.org/10.1007/978-3-030-92681-6_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_50&domain=pdf
http://orcid.org/0000-0003-4205-9513
http://orcid.org/0000-0002-2377-0417
http://orcid.org/0000-0002-2224-1484
https://doi.org/10.1007/978-3-030-92681-6_50

642 J. Sun et al.

well known approximation algorithm for metric TSP with ratio 1.5. Recently,
Karlin et al. made a breakthrough on this issue [13], they designed a (1.5 − ε)-
approximation algorithm for metric TSP where ε is a constant greater than
10−36. If the edge-cost function is not metric, there is no polynomial time con-
stant factor approximation algorithm, under the assumption that P �= NP [18].

The earliest mathematical programming formulation of TSP was proposed
by Dantzig et al. [4]. The traveling salesperson problem was studied in depth in
the field of discrete optimization and many optimization methods use as a bench-
mark for testing. Although the problem is computationally difficult, there are a
number of heuristic algorithms and exect methods available to solve instances
with tens of thousands of vertices with error within 1%.

TSP on graphic metrics (graph-TSP), where cost function over the vertex pair
is the minimum number of edges on the path between vertices in the underlying
graph, has recently received a great deal of attention and is the subject of current
work. Using a sophisticated probabilistic analysis, Gharan, Saberi and Singh
[17] presented a (1.5 − ε)-approximation for ε > 0. Mömke and Svensson [15]
obtained a 1.461-approximation by a simple and clever polyhedral idea, which
easily yields the ratio 4

3 for cubic (actually subcubic) graphs. The technique
of [15] was used in subsequent studies. Mucha [16] proposed an approximation
ratio of 13

9 via redefining their analysis. Sebö and Vygen [21] proved new results
for approximating the graph-TSP and some related problems, in particular they
improved the approximation ratio to 1.4 for graph-TSP.

Compared to TSP, the traveling salesperson path problem (TSPP) is a more
general model and has also received much attention [8,11,12,19,20,22]. The
only difference between TSP and TSPP is that while the TSP’s goal is to find
the Hamilton cycle with minimum cost, the TSPP’s goal is to search for the
minimum-cost Hamilton path.

Depending on whether the endpoints are given, Hoogeveen [12] consid-
ered three subproblems of TSPP as follows and presented a modification of
Christofides’ algorithm.

(1) neither endpoints is pre-specified;
(2) one of the endpoints is pre-specified;
(3) both the endpoints are pre-specified.

Property 1. It was proved in [12] that for cases (1) and (2), the approximation
ratio of the modified algorithm is 3

2 .

Case (3) is more difficult than cases (1) and (2), and the modified algorithm
in [12] is a 5

3 -approximation algorithm. This result has not been improved in
nearly two decades. In 2012, An et al. [1] presented an approximation algorithm
with ratio 1+

√
5

2 for the metric s-t path TSP. Traub and Vygen [22] obtained
an improvement and proposed a 1.5 + ε-approximation algorithm for any fixed
ε > 0. Zenklusen [23] pointed out that a variation of the dynamic programming
idea recently introduced by Traub and Vygen [22] was sufficient to handle larger
cuts by utilizing Karger’s groundbreaking results on near minimum cut numbers.

A LP-based Approximation Algorithm for Generalized TSP Path Problem 643

Based on this observation, he designed an approximation algorithm with ratio
1.5 which matches the ratio of cases (1) and (2).

In this paper, we introduce and consider the generalized traveling salesperson
path problem (GTSPP), a generalization of traveling salesperson path problem.
In GTSPP, there is an edge-weighted undirected graph G = (V,E, c) where the
weight function c is metric, and two distinct specified endpoints s and t. Given a
vertex subset V ′ ⊆ V and a disjoint edge subset E′ ⊆ E (i.e., any two edges in E′

have no common vertices), we aim to find a minimum cost s-t path which visits
each vertex in V ′ and each edge in E′ exactly once. Using the LP-rounding
technique, we further utilize some structural features of the graph, and then
design an approximation algorithm for the problem. We use the concept of a
narrow cut to analyze the approximation ratio of this approximation algorithm.
First, we prove that the approximation ratio is 1.6577, and then using further
analysis, we show that the ratio is no more than 9−√

33
2 � 1.6277. Both bounds

improve our previous work [24].
In a transportation network, edges correspond to streets or parts of streets

and vertices correspond to street intersections and locations on a street. Vertices
can generally be divided into two types: one represents actual street intersec-
tions on the transportation network, called junctions; the other represents the
required vehicle visits (pickup or delivery points), called stops. In real life, due to
restrictions on vehicle types or license plates, vehicles have to detour through cer-
tain routes in the distribution process. The edges corresponding to these routes
are required edges in E′, and the vertices corresponding to the stops belong to
V ′. s and t represent the starting and ending points of the distribution route
respectively. Then the vehicle transport problem can be modeled as GTSPP.

The remainder of this paper is organized as follows. We provide some pre-
liminaries and the LP model of GTSPP in Sect. 2. We study the algorithm for
the GTSPP and propose its analysis in Sect. 3. We conclude in Sect. 4.

2 Preliminaries

In this section we introduce some basic notation and terminology which will
be used throughout this paper. For U ⊂ V , (U, Ū) is the cut defined by U ;
δ(U) := {{u, v}|u ∈ U, v ∈ Ū} denotes the set of cut edges. If one of endpoints
belongs to U , i.e., |U ∩ {s, t}| = 1, then (U, Ū) is called an s-t cut; otherwise it
is called a non-separating cut.

The problem has a feasible solution if and only if E′ is the union of disjoint
paths (and s and t have degree at most 1 in E′). Thus edges in E \ E′ that are
incident to an interior vertex of one of these paths can never be used; so we can
delete them and we can essentially treat each paths in E′ as if it was a single
edge from its startpoint to its endpoint. In the absence of confusion, we still
call the new edge set E′. In the following, we only study the case where feasible
solutions exist.

We can delete vertices that are neither contained in V ′, nor in {s, t}, and
that are not an endpoint of any edge in E′. This is because the edge weights are

644 J. Sun et al.

metric (and thus we could shortcut any tour that visits one of these vertices).
Thus instead of considering the problem on G, we construct a new graph G1 =
(V1, E1), where V1 := V ′∪V (E′)∪{s, t} and G1 = G[V1] is the induced subgraph
of G on V1. Without loss of generality, we may assume that {s, t} ∩ V (E′) = ∅.
Otherwise if s ∈ V (E′), i.e., there exists an edge e1 = (s, s1) ∈ E′, we can
construct an s1-t path P1 that visits each vertex of V ′ and each edge of E′ \{e1}
exactly once; then e1 ∪ P1 is a feasible s-t path for original problem.

Based on the Held-Karp relaxation of TSP and Path TSP, we present the
LP-relaxation of our problem as follows:

min
∑

e∈E1

c(e)x(e)

s.t. x(δ(S)) ≥ 1 ∀S � V1, |S ∩ {s, t}| = 1 (1)
x(δ(S)) ≥ 2 ∀S � V1, |S ∩ {s, t}| �= 1, S �= ∅
x(δ({v})) = 2 ∀v ∈ V1 \ {s, t}
x(δ({s})) = x(δ({t})) = 1
x(e) = 1 ∀e ∈ E′

x(e) ≥ 0 ∀e ∈ E1 \ E′,

where x(δ(S)) =
∑

e∈δ(S) x(e). The first and second constraints are referred
to as sub-path and sub-tour removal, respectively. Though this linear program
contains exponential multiple constraints, it can be solved in polynomial time via
the ellipsoid method using a min-cut algorithm to solve the separation problem
[9].

In the algorithm and analysis, we will use the following terms.

Definition 1 (Q-join). Let Q be a subset of V with even cardinality. Then an
edge set J with odd degrees precisely for the vertices in Q is called an Q-join,
i.e., odd(J) = Q where odd(J) denotes the set of odd-degree vertices in J .

In order to facilitate the understanding of the concept of Q-join, a simple
example is given in Fig. 1:

Fig. 1. An example of Q-join, where Q = {v1, v3, v4, v5}.

A LP-based Approximation Algorithm for Generalized TSP Path Problem 645

Definition 2 (wrong-degree set). Let T be a spanning tree of G and s �= t ∈ V.
Then the vertex subset odd(T)
 {s, t} := (odd(T) \ {s, t}) ∪ ({s, t} \ odd(T)) is
called the wrong-degree set.

Definition 3 [6]. (Q-join polytope)

P ↑
Q−join := {y ∈ RE

≥0|y(δ(C)) ≥ 1 ∀|C ∩ Q| ≡ 1(mod 2)}.

Observe that the cost of a feasible solution of Q-join polytope is an upper bound
on the cost of a minimum Q-join.

Definition 4 (spanning tree polytope [5]). The spanning tree polytope of G =
(V,E) can be described as follows:

PST =

⎧
⎪⎨

⎪⎩

x(E) = |V | − 1,

x(E[S]) ≤ |S| − 1,

x ∈ RE
≥0.

(2)

It is not difficult to show that any feasible solution of (1) is in the spanning
tree polytope of G1. Thus for any given feasible solution x∗ of (1), it can be
expressed as x∗ :=

∑k
i=1 γiχTi

, where Ti is a spanning tree of G1 and γi ≥ 0
∀i ∈ [k] and k is bounded by a polynomial. Besides,

∑k
i=1 γi = 1, i.e., x∗ equals

to a convex combination of k spanning trees of G1. In particular, such a convex
combination can be found in polynomial time [3,9].

In the above convex combination of x∗, each spanning tree satisfies the fol-
lowing:

Lemma 1. For each e ∈ E′ and i ∈ [k], χTi
(e) = 1.

Proof. Since ∀e ∈ E′ (x∗(e) = 1) and x∗ :=
∑k

i=1 γiχTi
, for each e ∈ E′ we have∑k

i=1 γiχTi
(e) = 1. Besides, ∀e ∈ E′ (0 ≤ χTi

(e) ≤ 1), and hence

1 = x∗(e) =
k∑

i=1

γiχTi
(e) ≤

k∑

i

γi = 1.

Note that the inequality is in fact an equality. Thus for each e ∈ E′ and i ∈ [k],
χTi

(e) = 1. ��

3 Algorithm and Analysis

The immediate idea is to use Zenklusen’s algorithm to deal with this general-
ized problem and expect to get the same approximate ratio. However, due to
the graph structure characteristics of the problem itself, we cannot simply call
Zenklusen’s algorithm. To better explain the question, let’s briefly review the
algorithmic framework for solving TSP and TSPP.

646 J. Sun et al.

The framework of TSP or TSPP is generally divided into three steps: the
first step is to construct the spanning tree; the second step is to modify the
spanning tree constructed in the first step to obtain an Euler tour or Euler trail.
The third step uses the shortcutting algorithm to transform the Euler tour or
Euler trail into Hamiltonian cycle or path. Compared to the classical TSPP, the
main difference is that in GTSPP, the edges in E′ must be passed exactly once.
Therefore, in order to ensure the feasibility of the final solution, the algorithm
for solving GTSPP needs to ensure that the edge in E′ has been included in the
obtained Euler trail after completing the first and second steps. In addition, it
is also necessary to ensure that the edge in E′ will not be deleted after the third
step of shortcutting operation (this can be achieved by the method we show in
Fig. 2).

In Zenklusen’s algorithm, the spanning tree T is constructed by the support
of a special solution y of the programming (1), then it computes a minimum
Q-join where Q := odd(T)Δ{s, t} such that the cost of T and Q does not exceed
one and half of the cost of the optimal solution, respectively. Thus the ratio of
this algorithm is 1.5. (Theorem 2.1 of [23]). If we call this algorithm directly,
there is no guarantee that the edge in E′ will be included in the Euler trail since
some edges in E′ may be not in T .

Thus in this section, we propose the following approximation algorithm for
GTSPP and its detailed analysis.

3.1 Approximation Algorithm

The details of our algorithm is presented in following:

Algorithm 1. Algorithm of GTSPP
Input:
1: An edge-weighted undirected graph G = (V, E, c).
2: Endpoints s and t.
3: V ′ ⊆ V , E′ ⊆ E are required vertex subset and edge subset, respectively.
Output: A generalized travelling salesperson path.

begin:
4: Construct a new graph G1 := G[V1] where V1 = {v|v ∈ e, e ∈ E′} ∪ {s, t} ∪ V ′.
5: Solve the LP-relaxation (1) and obtain a optimal solution x∗.
6: Construct a convex combination of x∗ =

∑k
i=1 γiχTi with polynomial number of

spanning trees T1, T2, · · · , Tk.
7: Select the spanning tree Ti with probability γi and denote the tree by T .
8: Find all the wrong-degree vertices in T , denoted by Q.
9: Compute a minimum Q-join J .

10: Construct a solution P via shortcutting the Eulerian s-t trail in T ∪ J .
11: output P .

end

A LP-based Approximation Algorithm for Generalized TSP Path Problem 647

Lemma 2. The solution P output by Algorithm 1 is a feasible solution of
GTSPP.

Proof. In GTSPP, it is required that all the vertices in V ′ and edges in E′ must
be visited exactly once. Note that P is an s-t path in G1, thus it must traverse
each vertices exactly once. So the point of the proof is that P goes through each
edge in E′ exactly once.

If there exists no cycle in T ∪ J , then P happens to be the Eulerian s-t trail
and thus it visits all the edges in E′ exactly once. Otherwise, consider the two
cases as illustrated in Fig. 2:

Fig. 2. An example illustrating the existence of cycle as subgraph of T ∪J , where every
purple edge belongs to E′.

For the left case, we preform the shortcutting to obtain a subpath v1-v2-v3-v4-
· · · -vq-vq+1; for the right case, we preform the shortcutting to obtain a subpath
v1-v2-v4-· · · -vq-v3-vq+1. For both two cases, we construct a feasible subpath via
shortcutting. ��

3.2 An Improvement on 5
3

We designed a 5
3 -approximation algorithm for GTSPP via the discrete technique

[24]. In this subsection we will prove that the ratio of Algorithm 1 is less that
5
3 . Inspired by the work of [1], we use the combination of x∗ and χT to obtain
an upper bound on the minimum Q-join cost.

In order to construct a nice combination, we need to take advantage of some
structural features especially the narrow cut.

Lemma 3 [1]. Suppose that (U, Ū) is an odd s-t cut with respect to Q, i.e.,
|U ∩ Q| ≡ 1(mod 2), then we have |δ(U) ∩ T | ≥ 2.

The probability that (U, Ū) is an odd s-t cut with respect to Q can be for-
mulated by the following inequality.

Lemma 4.
Pr[|U ∩ Q| ≡ 1(mod 2)] ≤ x∗(δ(U)) − 1.

648 J. Sun et al.

Proof. Let |δ(U) ∩ T | = X, p(x) be the density function of the random variable
X. Then we have that

E[X] − 1 =
∫ ∞

0

xp(x)dx −
∫ ∞

0

p(x)dx

=
∫ ∞

0

(x − 1)p(x)dx.

Due to the connectivity of T , |δ(U) ∩ T | ≥ 1 always holds. Thus

E[X] − 1 =
∫ ∞

1

(x − 1)p(x)dx

=
∫ 2

1

(x − 1)p(x)dx +
∫ ∞

2

(x − 1)p(x)dx

≥
∫ ∞

2

p(x)dx

= Pr[X ≥ 2].

From Lemma 3, it can be derived that Pr[|U ∩ Q| ≡ 1(mod 2)] ≤ Pr[X ≥ 2],
thus

Pr[|U ∩ Q| ≡ 1(mod 2)] ≤ E[X] − 1 = x∗(δ(U)) − 1,

the last equality holds from the fact Pr[e ∈ T] = x∗(e). ��
Initially set y := αx∗+βχT , then y(δ(U)) ≥ 2α+β for non-separating cut (U, Ū).
If (U, Ū) is an odd s-t cut with respect to Q, then y(δ(U)) ≥ αx∗(δ(U)) + 2β.

The key to improving the approximation ratio is to adjust α and β while
keeping the resulting y still in Q-join polytope. If we increase α by ε and decrease
β by 2ε, then 2α + β is not changed while E[c(y)] is decreased by εc(x∗).

If (U, Ū) is an odd s-t cut with large capacities, then αx∗(δ(U)) + 2β will
still be larger than 1 after a small adjustment on α. If x∗(δ(U)) = 1, then we
have that E[|δ(U)∩T |] = x∗(δ(U)) = 1. According to Lemma 3, |U ∩Q| is even,
thus this is not a concern since the Q-join polytope only has constraint on odd
cut with respect to Q.

To ensure that y is in Q-join polytope, we will add small fractions of the
deficient odd s-t cuts. Note that an edge may belong to several different s-t cuts,
we need to be careful to address this issue. Based on the concept of a narrow
cut, we show that s-t cuts of small capacities are “almost” disjoint.

Definition 5 [1]. For 0 < τ ≤ 1, an s-t cut (U, Ū) is called a τ -narrow cut if
x∗(δ(U)) < 1 + τ .

An, Kleinberg, and Shmoys [1] proved that the τ -narrow cuts form a chain, and
there exists a partition {Li}k

i=1 of V1 such that:

1. L1 = {s}, Lk = {t};
2. {U |(U, Ū) is τ -narrow, s ∈ U}={Ui|1 ≤ i < k} in which Ui := ∪i

j=1Lj .

A LP-based Approximation Algorithm for Generalized TSP Path Problem 649

Let L≤i := ∪i
j=1Lj , L≥i = ∪k

j=iLj and Fi := E(Li, L≥i+1), it is easily to see
that Fi’s are disjoint and Fi ⊆ δ(Ui) for all i. For each τ -narrow cut (Ui, Ūi),
they obtain an lower bound on x∗(Fi) as follows:

x∗(Fi) >
1 − τ + x∗(δ(Ui))

2
≥ 1 − τ

2
.

For each τ -narrow cut, we define an incident vector g∗
Ui

:

(g∗
Ui

)e =

{
x∗(e), if e ∈ Fi;
0, otherwise.

Now we are ready to obtain the first result in this paper:

Theorem 1. E[c(P)] ≤ 1.6577c(x∗).

Proof. Set

y := αx∗ + βχT +
∑

i:|Ui∩Q| is odd, 1≤i<k

1 − (α + 2β)
1 − 0.5τ

g∗
Ui

,

where α = 0.35, β = 0.3 and τ = 1−2β
α −1. Then we show that y is in the Q-join

polytope. It is easy to see that y ≥ 0, besides we have claimed that y(δ(U)) ≥ 1
for non-separating cut (U, Ū) as 2α + β still equals to 1.

Suppose (U, Ū) is an odd s-t cut with respect to Q, if x∗(δ(U)) ≥ 1+ τ , then

y(δ(U)) ≥ αx∗(δ(U)) + β|δ(U) ∩ Q|
≥ α(1 + τ) + 2β
= 1.

If x∗(δ(U)) < 1 + τ , i.e., there exists 1 ≤ i < k such that U = Ui, then

y(δ(U)) ≥ αx∗(δ(U)) + β|δ(U) ∩ Q| +
1 − (α + 2β)

1 − 0.5τ
g∗

U

≥ α + 2β +
1 − (α + 2β)

1 − 0.5τ
(1 − 0.5τ)

= 1.

650 J. Sun et al.

Thus y is in the Q-join polytope. The next task is to analyze the upper bound
on the cost of P .

E[c(P)] ≤ E(c(T)) + E[c(J)]

≤ E(c(T)) + E[c(y)]

= E(c(T)) + αE[c(x∗)] + βE[c(χT)] + E

⎡

⎣c

⎛

⎝
∑

i:|Ui∩Q| is odd, 1≤i<k

A · g∗
Ui

⎞

⎠

⎤

⎦

= (1 + α + β)c(x∗) + c

(
k−1∑

i=1

Pr[|Ui ∩ Q| is odd] · A · g∗
Ui

)

≤ (1 + α + β)c(x∗) + τ · A · c

(
k−1∑

i=1

g∗
Ui

)

≤ (1 + α + β + τ · A)c(x∗),

where A := 1−(α+2β)
1−0.5τ .

The third inequality holds according to the conclusion of Lemma 4 as for
each τ -narrow cut (U, Ū) Pr[|U ∩ Q| is odd] ≤ x∗(δ(U)) − 1 < τ . Based on the
disjointness of Fi’s, the last inequality is obvious.

Thus we have that E[c(P)] ≤ 1.6577c(x∗). ��

3.3 Tighter Analysis

In this subsection, we aim to propose a tighter analysis for the algorithm so as
to obtain a better approximation ratio. Now, unlike the previous analysis, we
use 1−τ+x∗(δ(Ui))

2 instead of 1 − τ
2 to represent the lower bound of x∗(Fi). Then

we can get the following:

Theorem 2. E[c(P)] ≤ 9−√
33

2 c(x∗).

Proof. Set

y := αx∗ + βχT +
∑

i:|Ui∩Q| is odd, 1≤i<k

1 − (αx∗(δ(Ui)) + 2β)
bi

g∗
Ui

,

where bi := 1−τ+x∗(δ(Ui))
2 , α = 1

2 − 1
2
√
33

and β = 1√
33

.
Similarly to Theorem 1, we can prove that y is in the Q-join polytope. We

have that

E[c(P)] ≤ (1 + α + β)c(x∗) + c

(
k−1∑

i=1

Pr[|Ui ∩ Q| is odd]
1 − (αx∗(δ(Ui)) + 2β)

bi
g∗

Ui

)

≤ (1 + α + β)c(x∗) + c

(
k−1∑

i=1

(x∗(δ(Ui)) − 1)
1 − (αx∗(δ(Ui)) + 2β)

bi
g∗

Ui

)

≤ (1 + α + β)c(x∗) +

[

max
0≤η≤τ

(

η
1 − (2β + α(1 + η))

1 − τ
2

+ η
2

)]

c

(
k−1∑

i=1

g∗
Ui

)

≤
(

1 + α + β + max
0≤η≤τ

(

η
1 − (2β + α(1 + η))

1 − τ
2

+ η
2

))

c(x∗).

A LP-based Approximation Algorithm for Generalized TSP Path Problem 651

Let R(η) := η 1−(2β+α(1+η))
1− τ

2+
η
2

; then using differentiation we obtain that R(η)
attains its maximum value at

η0 =
1
α

(1 − 3α − 2β +
√

(−2α)(1 − 3α − 2β)),

implying that E[c(P)] ≤ (11α + 5β − 1 − 4
√

(−2α)(1 − 3α − 2β))c(x∗). Then
we have that E[c(P)] ≤ 9−√

33
2 c(x∗). ��

4 Conclusion

In this paper, we consider a variant of traveling salesperson path problem and
design a constant approximation algorithm for this problem. First we prove
that the approximation ratio of this algorithm is 1.6577, then based on some
observations we further analyze and prove that the ratio is 9−√

33
2 .

References

1. An, H.-C., Kleinberg, R., Shmoys, D.-B.: Improving Christofides’ algorithm for the
s-t path TSP. J. ACM 62(5), 34 (2015)

2. Christofides, N.: Worst-case analysis of a new heuristic for the traveling sales-
man problem. Carnegie-Mellon University of Pittsburgh Pa Management Sciences
Research Group (1976)

3. Cunningham, W.-H.: Testing membership in matroid polyhedra. J. Comb. Theory
Ser. B 36(2), 161–188 (1984)

4. Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling-salesman
problem. J. Oper. Res. Soc. Am. 2(4), 393–410 (1954)

5. Edmonds, J.: Matroids and the greedy algorithm. Math. Program. 1(1), 127–136
(1971)

6. Edmonds, J., Johnson, E.-L.: Matching, Euler tours and the Chinese postman.
Math. Program. 5(1), 88–124 (1973)

7. Frederickson, G.-N.: Approximation algorithms for some postman problems. J.
ACM 26, 538–554 (1979)

8. Fumei, L., Alantha, N.: Traveling salesman path problems. Math. Progrom. 13,
39–59 (2008)

9. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica 1(2), 169–197 (1981)

10. Gutin, G., Punnen, A.: The Traveling Salesman Problem and its Variations.
Kluwer, Dordrecht (2002)

11. Guttmann-Beck, N., Hassin, R., Khuller, S., Raghavachari, B.: Approximation
algorithms with bounded performance guarantees for the clustered traveling sales-
man problem. Algorithmica 28, 422–437 (2000)

12. Hoogeveen, J.-A.: Analysis of Christofides’ heuristic: some paths are more difficult
than cycles. Oper. Res. Lett. 10, 291–295 (1991)

13. Karlin, A.-R., Klein, N., Gharan, S.-O.: A (slightly) improved approximation algo-
rithm for metric TSP. In: Proceedings of the 53rd Annual ACM SIGACT Sympo-
sium on Theory of Computing, pp. 32–45 (2021)

652 J. Sun et al.

14. Karp, R.-M.: Reducibility among combinatorial problems. Complex. Comput.
Comput. 2, 85–103 (1972)

15. Mömke, T., Svensson, O.: Removing and adding edges for the traveling salesman
problem. J. ACM 63(1), 2 (2016)

16. Mucha, M.: 13/9-approximation for graphic TSP. Theory Comput. Syst. 55, 640–
657 (2014)

17. Gharan, S.-O., Saberi, A., Singh, M.: A randomized rounding approach to the
traveling salesman problem (2011)

18. Sahni, S., Gonzales, T.: P -complete approximation problems. J. ACM 23(3), 555–
565 (1976)

19. Sebő, A.: Eight-Fifth approximation for the path TSP. In: Goemans, M., Correa,
J. (eds.) IPCO 2013. LNCS, vol. 7801, pp. 362–374. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36694-9 31

20. Sebö, A., Van Zuylen, A.: The salesman’s improved paths through forests. J. ACM
66(4), 28 (2019)

21. Sebő, A., Vygen, J.: Shorter tours by nicer ears: 7/5-Approximation for the graph-
TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs. Combi-
natorica 34(5), 597–629 (2014). https://doi.org/10.1007/s00493-014-2960-3

22. Traub, V., Vygen, J.: Approaching 3
2

for the s-t path TSP. J. ACM 66(2), 14
(2019)

23. Zenklusen, R.-A.: 1.5-Approximation for path TSP. In: Proceedings of the 30th
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1539–1549 (2019)

24. Zhang, X., Du, D., Gutin, G., Ming, Q., Sun, J.: Approximation algorithms for
general cluster routing problem. In: Kim, D., Uma, R.N., Cai, Z., Lee, D.H. (eds.)
COCOON 2020. LNCS, vol. 12273, pp. 472–483. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-58150-3 38

https://doi.org/10.1007/978-3-642-36694-9_31
https://doi.org/10.1007/s00493-014-2960-3
https://doi.org/10.1007/978-3-030-58150-3_38
https://doi.org/10.1007/978-3-030-58150-3_38

Hardness Results of Connected Power
Domination for Bipartite Graphs

and Chordal Graphs

Pooja Goyal and B. S. Panda(B)

Computer Science and Application Group, Department of Mathematics,
Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India

{Pooja.Goyal,bspanda}@maths.iitd.ac.in

Abstract. A set D ⊆ V of a graph G = (V, E) is called a connected
power dominating set of G if G[D], the subgraph induced by D, is con-
nected and every vertex in the graph can be observed from D, following
the two observation rules for power system monitoring: Rule 1: if v ∈ D,
then v can observe itself and all its neighbors, and Rule 2: for an already
observed vertex whose all neighbors except one are observed, then the
only unobserved neighbor becomes observed as well. Minimum Con-
nected Power Domination Problem is to find a connected power
dominating set of minimum cardinality of a given graph G and Decide
Connected Power Domination Problem is the decision version of
Minimum Connected Power Domination Problem. Decide Con-
nected Power Domination Problem is known to be NP-complete
for general graphs. In this paper, we strengthen this result by proving
that Decide Connected Power Domination Problem remains NP-
complete for perfect elimination bipartite graph, a proper subclass of
bipartite graphs, and split graphs, a proper subclass of chordal graphs.
On the positive side, we show that Minimum Connected Power Dom-
ination Problem is polynomial-time solvable for chain graphs, a proper
subclass of perfect elimination bipartite graph, and for threshold graphs,
a proper subclass of split graphs. Further, we show that Minimum Con-
nected Power Domination Problem cannot be approximated within
(1 − ε) ln |V | for any ε > 0 unless P = NP, for bipartite graphs as well as
for chordal graphs.

Keywords: Connected power domination · NP-complete · Graph
algorithm

1 Introduction

A set D ⊆ V is called a dominating set of G, if every vertex v ∈ V \D is adjacent
to at least one vertex in D. The domination and its variations have been widely
studied in the literature (see [7,8]).

c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 653–667, 2021.
https://doi.org/10.1007/978-3-030-92681-6_51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_51&domain=pdf
http://orcid.org/0000-0002-1262-7615
http://orcid.org/0000-0002-0721-5325
https://doi.org/10.1007/978-3-030-92681-6_51

654 P. Goyal and B. S. Panda

A power dominating set (PD-set) D ⊆ V of a graph G = (V,E) is obtained
by considering the following two observation rules:

OR1: if v ∈ D, then v can observe itself and all its neighbors.
OR2: for an already observed vertex whose all neighbors except one are

observed, then the only unobserved neighbor becomes observed as well.

The goal is to get all vertices observed by a minimum number of observers. If
only OR1 is considered, the power dominating set problem is equivalent to the
dominating set problem. The minimum cardinality of a PD-set in a graph G is
known as power domination number of G and is denoted by γp(G). Haynes et
al. [9] introduced the concept of power domination and also studied the problem
from algorithmic point of view. Further, this problem has been studied in [6,12,
13]. The definition of power domination presented here, was defined by Kneis et
al. [12]. Minimum Power Domination Problem is to find a power dominating
set of minimum cardinality and Decide Power Domination Problem is the
decision version of Minimum Power Domination Problem.

A connected power dominating set (CPD-set) of a graph G = (V,E) is a set
D ⊆ V such that D is a power dominating set of G and subgraph induced by
D is connected in G. The minimum cardinality of a CPD-set in a graph G is
known as connected power domination number of G and is denoted by γP,c(G).
We formalize Minimum Connected Power Domination Problem and its
decision version as follows:

Minimum Connected Power Domination Problem
Instance: A graph G = (V,E).
Solution: A connected power dominating set D of G.
Measure: Cardinality of the set D.

Decide Connected Power Domination Problem
Instance: A graph G = (V,E) and a positive integer r.
Question: Deciding γP,c(G) ≤ r?

The Fig. 1 illustrates the difference between the definitions of dominating
set, power dominating set and connected power dominating set. In graph G,
we clearly see that D1 = {v4, v9} forms a minimum power dominating set of G
whereas G[D1] is not connected. Add {v5, v6, v7, v8} to D1 to make it connected.
Thus, D1 ∪ {v5, v6, v7, v8} is a minimum connected power dominating set of G.
However, neither D1 nor D1 ∪ {v5, v6, v7, v8} dominates all the vertices of G. It
can be easily observed that {v2, v5, v8, v11} forms a minimum dominating set of
G.

The concept of connected power domination was introduced by Fan and
Watson [4]. Further, Brimkov et al. [1] studied the connected power domination
from algorithmic point of view and showed that Minimum Connected Power
Domination Problem is polynomial-time solvable for trees, cactus graphs and
block graphs. They also obtained various structural results about connected
power domination. Brimkov et al. [1] proved that Decide Connected Power
Domination Problem is NP-complete for general graphs and posed the fol-
lowing problem.

Hardness Results of Connected Power Domination for Graphs 655

Fig. 1. A graph G.

Problem: Is Decide Connected Power Domination Problem NP-
complete even for bipartite graphs, chordal graphs and split graphs?

In this paper, we answer some of the open problem proposed by Brimkov
et al. [1] and extend the algorithmic study of Minimum Connected Power
Domination Problem. The rest of the paper is organised as follows:

In Sect. 2, we present some pertinent definitions and some preliminary results.
In Sect. 3, we strengthen the NP-completeness result of Decide Connected
Power Domination Problem by showing that this problem remains NP-
complete for perfect elimination bipartite graphs and split graphs. In Sect. 4, we
show that minimum CPD-set of a given chain graph and a threshold graph can be
computed in polynomial time. In Sect. 5, we show that Minimum Connected
Power Domination Problem cannot be approximated within (1 − ε) ln |V |
for any ε > 0 unless P = NP for bipartite graphs as well as chordal graphs.

2 Definitions and Preliminary Results

Let G = (V,E) be a finite, simple, and undirected graph with vertex set V
and edge set E. For a vertex v ∈ V , the open neighborhood and the closed
neighborhood of v in G are defined as NG(v) = {u ∈ V |uv ∈ E} and NG[v] =
NG(v) ∪ {v}, respectively. The degree of a vertex v is |NG(v)| and is denoted by
dG(v). If dG(v) = 1, then v is called pendant vertex or leaf of G and the unique
neighbor of v in G is called support vertex. The number of connected components
of G will be denoted by c(G). If the graph G is clear from the context, then we
often omit it in our notations. For example, we write V and E instead of writing
V (G) and E(G), respectively. For D ⊆ V , let G[D] denote the subgraph of G
induced by D. For any C ⊆ V , if G[C] is a complete subgraph of G, then C
is called a clique of G. For any I ⊆ V , if G[I] has no edge, then I is called an
independent set of G. We use the standard notation [k] = {1, 2, . . . , k}.

A chord of a cycle is an edge joining two non-consecutive vertices of the
cycle. A graph is called a chordal graph if every cycle of length at least 4 has
a chord. A vertex v ∈ V (G) is a simplicial vertex of G if NG[v] is a clique of
G. An ordering σ = (v1, v2, . . . , vn) is a perfect elimination ordering (PEO) of
G if vi is a simplicial vertex of Gi = G[{vi, vi+1, . . . , vn}] for each i ∈ [n]. It is
characterized that a graph G is chordal if and only if it has a PEO [5]. A chordal
graph G = (V,E) is a split graph if V can be partitioned into two sets I and C
such that C is a clique and I is an independent set.

656 P. Goyal and B. S. Panda

A bipartite graph is a graph G = (V,E) whose vertices can be partitioned
into two disjoint sets X and Y such that every edge has one end vertex in X
and other in Y . We denote a bipartite graph with bi-partition X and Y of V as
G = (X ∪ Y,E). Let G = (X ∪ Y,E) be a bipartite graph. An edge e = xy is
called bisimplicial edge if N(x) ∪ N(y) induces a complete bipartite subgraph.
Let σ = (x1y1, x2y2, . . . , xkyk) be a sequence of pairwise non-adjacent edges of
G. Denote Sj = {x1, x2, . . . , xj} ∪ {y1, y2, . . . , yj} and let S0 = ∅. Then σ is said
to be a perfect edge elimination scheme for G if each edge xj+1yj+1 is bisimplicial
in Gj = [(X ∪ Y) \ Sj] for j ∈ {0, 1, . . . , k − 1} and Gk = [(X ∪ Y) \ Sk] has no
edge. A graph for which there exists a perfect edge elimination scheme is called
a perfect elimination bipartite graph.

We now recall some terminology and notation from [1]. Let G = (V,E) be a
connected graph different from path and v be a vertex of degree at least 3. A
pendant path attached to v is a maximal set P ⊂ V such that G[P] is a connected
component of G − v which is a path, one of whose ends is adjacent to v in G.
The neighbor of v in P will be called the base of the path, and p(v) will denote
the number of pendant paths attached to v ∈ V . Finally, for a connected graph
G = (V,E) different from a path, define:

R1(G) = {v ∈ V : c(G − v) = 2, p(v) = 1}
R2(G) = {v ∈ V : c(G − v) = 2, p(v) = 0}
R3(G) = {v ∈ V : c(G − v) ≥ 3}
M(G) = R2(G) ∪ R3(G).

The following observations will be used in the rest of the paper.

Observation 1 [1]. Let G = (V,E) be a connected graph different from a path
and D be an arbitrary connected power dominating set of G. Then M(G) ⊂ D.

Observation 2 [1]. Let G be a graph different from a path. Then, no minimum
connected power dominating set of G contains a leaf of G.

3 NP-completeness Results

It is known that for any graph G, Decide Connected Power Domination
Problem is NP-complete [1]. In this section, we strengthen the NP-completeness
result by showing that problem remains NP-complete for perfect elimination
bipartite graphs and split graphs.

3.1 Result for Perfect Elimination Bipartite Graphs

Theorem 3. Decide Connected Power Domination Problem is NP-
complete for perfect elimination bipartite graphs.

Hardness Results of Connected Power Domination for Graphs 657

Proof. Clearly, Decide Connected Power Domination Problem is in
NP for perfect elimination bipartite graphs. To show the hardness of Decide
Connected Power Domination Problem on perfect elimination bipartite
graphs, we give a polynomial reduction from Decide X3C, which is already
known to be NP-complete (see [10]). Given an arbitrary instance (X, C) of X3C,
X = {x1, x2, . . . , x3q} and C = {C1, C2, . . . , Ct}. We construct a perfect elimi-
nation bipartite graph G = (V,E) from the system (X, C) as follows:

• For each vertex xj ∈ X, add a path of length 4, P4(j) : xjujvjwj .
• For each Ci ∈ C, add two vertices bi and ci. Also join vertex bi with ci.
• Also add 4 more vertices {p, q, r, s} and add edges pq, pr, ps and pci, for every

Ci ∈ C.
• Finally add edges xjci if and only if xj ∈ Ci.

Clearly, G is a bipartite graph and the ordering σ(G) = (v1w1, v2w2, . . . , v3qw3q,
x1u1, x2u2, . . . , x3qu3q, b1c1, b2c2, . . . , btct, pq) is a perfect edge elimination order-
ing of G. We show an example in Fig. 2, perfect elimination bipartite graph
G is obtained from the system (X, C), where X = {x1, x2, x3, x4, x5, x6} and
C = {{x1, x2, x3}, {x2, x4, x5}, {x3, x5, x6}, {x4, x5, x6}}. Now to complete the
proof, it suffices to prove the following claim:

Fig. 2. An illustration of the construction of G from system (X, C) in the proof of
Theorem 3.

Claim. The system (X, C) has an exact cover if and only if G has a connected
power dominating set of cardinality at most q + 1.

Proof. Suppose that the instance (X, C) of Decide X3C has a solution C′.
Define D = {p} ∪ {ci | Ci ∈ C′}. Every element of the set {ci, xj | i ∈ [t], j ∈

658 P. Goyal and B. S. Panda

[3q]} ∪ {p, q, r, s} ∪ {bk | ck ∈ C′} can be observed by applying OR1 to the set
D. Further every uj can be observed by applying OR2 to the corresponding xj ,
every vj can be observed by applying OR2 to uj and every wj can be observed
by applying OR2 to vj . Also, remaining bi’s can be observed by applying OR2
to the corresponding ci’s. Hence, D = {p} ∪ {ci | Ci ∈ C′} is a CPD-set for G of
cardinality q + 1.

Conversely, suppose that G has a CPD-set of cardinality at most q + 1.
Now, we will show that if D is a CPD-set of G, then there is a CPD-set D′

of G with |D′| ≤ |D|, p ∈ D′ and D′ \ {p} ⊆ {ci | i ∈ [t]}. Let us assume
that D is a CPD-set of G. Since vertex p is a cut vertex of G and belongs to
R3(G), by Observation 1, p ∈ D. By Observation 2, we assume that no leaf
vertex of G belongs to D. Hence, D ∩ {q, r, s, b1, b2, . . . , bt, w1, w2, . . . , w3q} = ∅.
Now, if uj ∈ D, then xj ∈ D because G[D] is connected. If uj , xj ∈ D, then
D′ = D\{uj} is a CPD-set of G with |D′| < |D|. So continuing this way, we get a
CPD-set D′ of G with |D′| ≤ |D| such that D′ ∩{u1, u2, . . . , u3q} = ∅. Similarly.
D′ ∩ {v1, v2, . . . , v3q} = ∅. Further if xk ∈ D, then there exists a ci ∈ D where
xk ∈ Ci. Such a ci belongs to D because G[D] is connected. If such xk, ci ∈ D,
then D′ = D \ {xk} is again a CPD-set of G with |D′| < |D|. So continuing this
way, we get a CPD-set D′ of G with |D′| ≤ |D| such that D′ ⊆ {ci | i ∈ [t]}.

Further we will show that each vertex of the set {xj | j ∈ [3q]} will be
observed by applying OR1 to some vertex of D′. On contrary we assume that
there exists at least one vertex xk of G such that xk cannot be observed by
applying OR1 to any vertex of D′. That means T∩D′ = ∅, where T = {ci | xkci ∈
E}. The set T can be observed by some element of D′ and every element of the
set T has at least two unobserved vertices {bi, xk}. Hence we get a contradiction
to the fact that D′ is a CPD-set of G and it is due to our assumption that vertex
xk cannot be observed by applying OR1 to the set D′. Hence, we can conclude
that every vertex of the set {xj | j ∈ [3q]} will be observed by applying OR1 to
some vertex of D′. That means, every vertex xj has a neighbor in D′. Now let
C ′ = {Ci ∈ C | ci ∈ D′} and |C ′| ≤ q. Then C ′ is an exact cover of (X, C). This
completes the proof of the claim.
�

Therefore, Decide Connected Power Domination Problem is NP-
complete for perfect elimination bipartite graphs.
�

3.2 Result for Split Graphs

We next strengthen the NP-completeness result of Decide Connected Power
Domination Problem for chordal graphs by showing that this problem remains
NP-complete for split graphs, a subclass of chordal graphs.

Theorem 4. Decide Connected Power Domination Problem is NP-
complete for split graphs.

Proof. Clearly, Decide Connected Power Domination Problem is in NP
for split graphs. To show the hardness of Decide Connected Power Domi-
nation Problem on split graphs, we give a polynomial reduction from Decide

Hardness Results of Connected Power Domination for Graphs 659

X3C, which is already known to be NP-complete (see [10]). Given an arbitrary
instance (X, C) of X3C, X = {x1, x2, . . . , x3q} and C = {C1, C2, . . . , Ct}. We
construct a split graph G = (V,E) with split partition (K, I), where K is a
clique and I is an independent set, from the system (X, C) as follows:

• For each vertex xj ∈ X, add a vertex xj in I.
• For each Ci ∈ C, we add a vertex ci in K and a vertex ai in I. Add edges ciai

for every i ∈ [t] and cick for every i, k ∈ [t] and i �= k.
• Finally add edges xjci if and only if xj ∈ Ci.

Clearly, G is a split graph with split partition (K, I), where K = {ci | Ci ∈ C}
and I = {ai | Ci ∈ C} ∪ {xj | j ∈ [3q]}. We show an example in Fig. 3, split
graph G is obtained from the system (X, C), where X = {x1, x2, x3, x4, x5, x6}
and C = {{x1, x2, x3}, {x2, x4, x5}, {x3, x5, x6}, {x4, x5, x6}}. Now to complete
the proof, it suffices to prove the following claim:

Fig. 3. An illustration of the construction of G from system (X, C) in the proof of
Theorem 4.

Claim. The system (X, C) has an exact cover if and only if G has a connected
power dominating set of cardinality at most q.

Proof. Suppose that the instance (X, C) of Decide X3C has a solution C′. Define
D = {ci | Ci ∈ C′}. Every element of the set {ci, xj | i ∈ [t], j ∈ [3q]} ∪ {ai | ci ∈
D} can be observed by applying OR1 to the set D and remaining vertices of G
can be observed by applying OR2. Hence, D = {ci | Ci ∈ C′} is a CPD-set for
G of cardinality q.

Conversely, suppose that G has a CPD-set of cardinality at most q. Now,
we will show that if D is a CPD-set of G, then there is a CPD-set D′ of G
with |D′| ≤ |D| and D′ ⊆ {ci | i ∈ [t]}. Suppose that D is a CPD-set of G.
By Observation 2, we assume that no leaf vertex of G belongs to D. Hence,
D ∩ {a1, a2, . . . , at} = ∅. Further if xk ∈ D, then there exists a ci ∈ D where
xk ∈ Ci. Such a ci belongs to D because G[D] is connected. If such xk, ci ∈ D,

660 P. Goyal and B. S. Panda

then D′ = D \ {xk} is again a CPD-set of G with |D′| < |D|. So continuing this
way, we get a CPD-set D′ of G with |D′| ≤ |D| such that D′∩{a1, a2, . . . , at} = ∅
and D′ ∩{x1, x2, . . . , x3q} = ∅. Hence we get a CPD-set D′ of G with |D′| ≤ |D|
and D′ ⊆ {ci | i ∈ [t]}.

Further we will show that each vertex of the set {xj | j ∈ [3q]} will be
observed by applying OR1 to some vertex of D′. On contrary we assume that
there exists at least one vertex xk of G such that xk cannot be observed by
applying OR1 to any vertex of D′. That means T∩D′ = ∅, where T = {ci | xkci ∈
E}. The set T can be observed by some element of D′ and every element of the
set T has at least two unobserved vertices {ai, xk}. Hence we get a contradiction
to the fact that D′ is a CPD-set of G and it is due to our assumption that vertex
xk cannot be observed by applying OR1 to the set D′. Hence, we can conclude
that every vertex of the set {xj | j ∈ [3q]} will be observed by applying OR1 to
some vertex of D′. That means, every vertex xj has a neighbor in D′. Now let
C ′ = {Ci ∈ C | ci ∈ D′} and |C ′| ≤ q. Then C ′ is an exact cover of (X, C). This
completes the proof of the claim.
�

Therefore, Decide Connected Power Domination Problem is NP-
complete for split graphs.
�

4 Algorithms for Chain Graphs and Threshold Graphs

In this section, we show that minimum cardinality CPD-set for chain graph and
threshold graph can be computed in polynomial time.

4.1 Connected Power Domination for Chain Graphs

In this paper, we have shown that Decide Connected Power Domination
Problem remains NP-complete for perfect elimination bipartite graphs. In this
section, we present a positive result by proposing a polynomial-time algorithm to
solve Minimum Connected Power Domination Problem in chain graphs,
a subclass of perfect elimination bipartite graphs.

A bipartite graph G = (X∪Y,E) is called a chain graph if the neighborhoods
of the vertices of X form a chain, that is, the vertices of X can be linearly
ordered, say {x1, x2, . . . , xp}, such that NG(x1) ⊆ NG(x2) ⊆ . . . ⊆ NG(xp).
If G = (X ∪ Y,E) is a chain graph, then the neighborhoods of the vertices
of Y also form a chain [16]. An ordering α = (x1, x2, . . . , xp, y1, y2, . . . , yq) of
X ∪ Y is called a chain ordering if NG(x1) ⊆ NG(x2) ⊆ . . . ⊆ NG(xp) and
NG(y1) ⊇ NG(y2) ⊇ . . . ⊇ NG(yq). It is well known that every chain graph
admits a chain ordering [11,16].

First we prove the following lemma, which will be helpful in proving the main
result of this section.

Lemma 1. Let G = (X ∪ Y,E) is a chain graph. Then γP,c(G) ≤ 2.

Hardness Results of Connected Power Domination for Graphs 661

Proof. Given G = (X ∪ Y,E) be a chain graph, where V = X ∪ Y . It can be
easily observed that vertex xp ∈ X is adjacent to every vertex of the set Y . Thus,
every vertex of the set Y can be observed by xp by applying OR1. Similarly,
vertex y1 ∈ Y is adjacent to every vertex of the set X. Thus, every vertex of the
set X can be observed by y1 by applying OR1. Thus, D = {xp, y1} is a CPD-set
of G. Hence, γP,c(G) ≤ |D| = |{xp, y1}| = 2.
�
Lemma 2. Let G = (X ∪ Y,E) be a chain graph such that |NG(x1)| ≤ 2. For
every i ∈ [p − 1], |NG(xi+1) − NG(xi)| ≤ 1 if and only if D∗

P,c = {y1}, where
D∗

P,c is a minimum CPD-set of G.

Proof. It can be easily observed that vertex y1 ∈ Y is adjacent to every vertex
of the set X. Thus, every vertex of the set X can be observed by y1 by applying
OR1. Now we have to observe every vertex of set Y \ {y1}. Let y2 ∈ NG(x1)
and y2 �= y1. Such a vertex y2 may exist because |NG(x1)| ≤ 2. Then vertex y2
can be observed after applying OR2 to vertex x1. That means every neighbor of
x1 has been observed. Since |NG(xi+1) − NG(xi)| ≤ 1, there can exist at most
one unobserved neighbor of x2 and that can be observed by x2 after applying
OR2. Hence, every neighbor of x2 has been observed. Similarly, x3 can have
at most one unobserved neighbor in Y and that can be observed by x3 after
applying OR2. Hence, every neighbor of x3 has been observed. Continuing this
way, every vertex of Y \ {y1} can be observed. Thus, D∗

P,c = {y1} will be a
minimum CPD-set of G.

Conversely, suppose that D∗
P,c = {y1} is a minimum CPD-set of G. Then

y1 observed every vertex of set X by applying OR1. Let us assume that there
exists a k ∈ [p − 1] such that |NG(xk+1) − NG(xk)| ≥ 2. Let yj , yj+1 be two
consecutive vertices belonging to NG(xk+1)\NG(xk). Then yj , yj+1 are adjacent
to every vertex in the set {xk+1, xk+2, . . . , xp}. Also both yj and yj+1 are not
adjacent to any vertex in the set {x1, x2, . . . , xk}. That means vertex xk+1 has
two unobserved neighbors yj and yj+1. Hence, we get a contradiction to the fact
that D∗

P,c = {y1} is a minimum CPD-set of G. So there does not exist k ∈ [p−1]
such that |NG(xk+1) − NG(yk)| ≥ 2. Hence, |NG(xi+1) − NG(xi)| ≤ 1 for every
i ∈ [p − 1].
�
Lemma 3. Let G = (X ∪ Y,E) be a chain graph such that |NG(yq)| ≤ 2. For
every j ∈ [q − 1], |NG(yj) − NG(yj+1)| ≤ 1 if and only if D∗

P,c = {xp}, where
D∗

P,c is a minimum CPD-set of G.

Proof. The proof is similar as in above lemma.

A chain ordering of a chain graph G = (X ∪Y,E) can be computed in linear
time [15]. Then we checked dG(x1) ≤ 2 and dG(xi+1) − dG(xi) ≤ 1 for every
i ∈ [p − 1]. Also we have to check dG(yq) ≤ 2 and dG(yj) − dG(yj+1) ≤ 1 for
every j ∈ [q−1]. All these can be tested in linear time. Based on above discussion
and lemmas, we present following linear time algorithm to compute a minimum
CPD-set of a chain graph.

Hence, we have the following theorem.
Theorem 5. A minimum CPD-set of a chain graph can be computed in linear
time.

662 P. Goyal and B. S. Panda

Algorithm 1. MIN-CPD-CHAIN(G)
Input: A chain graph G = (X ∪ Y, E) and chain ordering α =
(x1, x2, . . . , xp, y1, y2, . . . , yq) of X ∪ Y .
Output: A minimum CPD-set of graph G.
begin

Set D∗
P,c = ∅;

if (|NG(x1)| ≤ 2) then
set i = 1;
while

(|NG(xi+1) − NG(xi)| ≤ 1 and i ≤ p − 1
)
do

i + +;

if (i == p) then
D∗

P,c = {y1};

if (D∗
P,c = ∅ and |NG(yq)| ≤ 2) then

set j = 1;
while

(|NG(yj) − NG(yj+1)| ≤ 1 and j ≤ q − 1
)
do

j + +;

if (j == q) then
D∗

P,c = {xp};

if (D∗
P,c = ∅) then

D∗
P,c = {y1, xp};

return D∗
P,c

4.2 Connected Power Domination for Threshold Graphs

In this paper, we have shown that Decide Connected Power Domination
Problem remains NP-complete for split graphs. In this section, we present a
positive result by proposing a polynomial-time algorithm to solve Minimum
Connected Power Domination Problem in threshold graphs, a subclass of
split graphs. Firstly, we will define threshold graphs.

A graph G = (V,E) is called a threshold graph if there is a real number T
and a real number w(v) for every v ∈ V such that a set S ⊆ V is independent
if and only if Σv∈Sw(v) ≤ T [2]. Many characterizations of threshold graphs are
available in the literature. An important characterization of threshold graph,
which is used in designing polynomial-time algorithms is following: A graph G
is threshold graph if and only if it is a split graph and, for any split partition
(C, I) of G, there is an ordering (x1, x2, . . . , xp) of the vertices of C such that
NG[x1] ⊆ NG[x2] ⊆ . . . ⊆ NG[xp], and there is an ordering (y1, y2, . . . , yq) of the
vertices of I such that NG(y1) ⊇ NG(y2) ⊇ . . . ⊇ NG(yq) [14].

Theorem 6. Let G = (V,E) be a threshold graph with split partition (C, I) as
defined above, then G has a minimum connected power dominating set D∗

P,c =
{xp}.
Proof. It can be easily observed that vertex xp ∈ C is adjacent to every vertex of
the independent set I. Thus, every vertex of independent set I can be observed
by xp by applying OR1. Since C is clique, vertex xp observed every vertex of C by

Hardness Results of Connected Power Domination for Graphs 663

applying OR1. Hence, D∗
P,c = {xp} is a minimum connected power dominating

set of G.

5 Lower Bound on Approximation Ratio

In this subsection, we obtain lower bounds on the approximation ratio of Min-
imum Connected Power Domination Problem for bipartite graphs and
chordal graphs. To obtain lower bound for bipartite graphs we give an approxi-
mation preserving reduction from Minimum Set Cover. For this, we need the
following theorem proved in [3].

Theorem 7 [3]. Minimum Set cover for set system (U, C) cannot be approx-
imated within (1 − ε) ln |U | for any ε > 0 unless P = NP.

We are ready to prove the inapproximability of Minimum Connected
Power Domination Problem for bipartite graphs.

Theorem 8. Minimum Connected Power Domination Problem for
bipartite graphs cannot be approximated within (1−ε) ln |V | for any ε > 0 unless
P = NP.

Proof. Given an instance (U, C) of Minimum Set Cover, where U =
{u1, u2, . . . , uq}. C = {C1, C2, . . . , Ct}. Now we construct a bipartite graph
G = (X ∪ Y,E) in polynomial time as follows.

• For each element uj in the set U , add two vertices xj and yj in partite set X
of G.

• For each set Ci in the collection C, add a vertex ci in partite set Y of G.
• Add a vertex r in X, a set of vertices {u, v, w} in Y , and set of edges

{ru, rv, rw, rci | i ∈ [t]} in E.
• If an element uj belongs to set Ci, then add edges xjci and yjci in G.

Formally, X = {x1, x2, . . . , xq, y1, y2, . . . , yq, r}, Y = {c1, c2, . . . , ct, u, v, w} and
E = {xjci, yjci | uj ∈ Ci} ∪ {rci, ru, rv, rw | i ∈ [t]}. We show an example
in Fig. 4, where G is a bipartite graph obtained from set system (U, C) with
U = {u1, u2, u3} and C = {{u1, u2}, {u2, u3}, {u3, u1}, {u3}}.

Claim. γP,c(G) = |S∗| + 1, where S∗ is the minimum cardinality set cover of
system (U, C).

Proof. Due to space constraint, we omit the proof of claim.

Now, for the resulting bipartite graph G one can now confine to CPD-set D
consisting of r and a subset S of C corresponding to a set cover, hence we have
|D| = |S| + 1.

Suppose that Minimum Connected Power Domination Problem can
be approximated within a ratio of α, where α = (1 − ε) ln(|V |) for some fixed

664 P. Goyal and B. S. Panda

Fig. 4. An illustration of the construction of G from system (U, C) in the proof of
Theorem 9.

Algorithm 2. A′: Approximation Algorithm for Minimum Set Cover

Input: A set system (U, C)
Output: A minimum set cover S of (U, C).
begin

if (there exists a minimum set cover S of (U, C) of cardinality < l) then
return S;

else
Construct a bipartite graph G as described above;
Compute a CPD-set D of G using algorithm A;
S = {Ci ∈ C | ci ∈ D};
return S;

ε > 0, by some polynomial-time approximation algorithm, say Algorithm A.
Next, we propose an algorithm A′ to compute a set cover of a given set system
(U, C) in polynomial time. Clearly, A′ is a polynomial-time algorithm as A is a
polynomial-time algorithm. Since l is a constant, step 1 of the algorithm can be
executed in polynomial time. Note that if S is computed in Step 1, then S is
optimal. So we analyze the case where |S| ≥ l.

Let D∗ be an optimal CPD-set in G and S∗ be an optimal set cover in (U, C).
It is clear that |S∗| ≥ l. Let S be the set cover computed by algorithm A′. Then
|S| = |D| − 1 ≤ |D| ≤ α|D∗| ≤ α(|S∗| + 1) ≤ α

(
1 + 1

|S∗|
)
|S∗| ≤ α

(
1 + 1

l

)
|S∗|

Hence, algorithm A′ approximates Minimum Set Cover for given set system
(U, C) within the ratio α(1 + 1

l).
Let l be a positive integer such that 1

l < ε
2 . Then algorithm A′ approximates

Minimum Set Cover for given set system (U, C) within the ratio α(1+ 1
l) ≤ (1−

ε)(1+ ε
2) ln |V | = (1−ε′) ln |U | for ε′ = ε2

2 + ε
2 as ln |V | = ln(2|U |+|C|+4) ≈ ln |U |

for sufficiently large value of |U |.
Therefore, the Algorithm A′ approximates Minimum Set Cover within

ratio (1− ε) ln(|U |) for some ε > 0. By Theorem 7, if Minimum Set Cover can
be approximated within ratio (1−ε) ln(|U |) for some ε > 0, then P = NP. Hence,
if Minimum Connected Power Domination Problem can be approximated

Hardness Results of Connected Power Domination for Graphs 665

within ratio (1 − ε) ln(|V |) for some ε > 0, then P = NP. This proves that
Minimum Connected Power Domination Problem for bipartite graphs
cannot be approximated within (1 − ε) ln(|V |) for any ε > 0 unless P = NP.
�

Next, we prove inapproximability of Minimum Connected Power Dom-
ination Problem for chordal graphs by giving an approximation preserving
reduction from Minimum Set Cover. We are ready to prove the inapproxima-
bility of Minimum Connected Power Domination Problem for chordal
graphs.

Theorem 9. Minimum Connected Power Domination Problem for
chordal graph G = (V,E) cannot be approximated within (1 − ε) ln |V | for any
ε > 0 unless P = NP.

Proof. Given an instance (U, C) of Minimum Set Cover, where U =
{u1, u2, . . . , uq} and C = {C1, C2, . . . , Ct}. Now we construct a chordal graph
G = (V,E) in polynomial time as follows.

• For each element uj in the set U , we add two vertices xj and yj , and add
edges xjyj in G.

• For each set Ci in the collection C, we add two vertices ci and di, and add
edges cidi in G. Also, add edges cick for every i, k ∈ [t] and i �= k.

• If an element uj belongs to set Ci, then add an edge between vertices xj and
ci in G.

V = {xj , yj | uj ∈ U} ∪ {ci, di | Ci ∈ C}, and E = {xjyj | uj ∈ U} ∪ {cidi |
Ci ∈ C} ∪ {xjci | uj ∈ Ci} ∪ {cick | i, k ∈ [t], i �= k}. Since |V | = 2(|U | +
|C|), graph G can be constructed in polynomial time. It can be easily veri-
fied that G is a chordal graph with PEO σ(G) = (d1, d2, . . . , dt, y1, y2, . . . ,
yq, x1, x2, . . . , xq, c1, c2, . . . , ct). We show an example in Fig. 5, where G is
obtained from the system (U, C), where U = {u1, u2, u3, u4, u5, u6} and C =
{{u1, u2, u3}, {u3, u5, u6}, {u4, u5}, {u5, u6}}.

Claim. γP,c(G) = |S∗|, where S∗ is the minimum cardinality set cover of system
(U, C).

Proof. Due to space constraint, we omit the proof of claim.

Now, for the resulting chordal graph G one can now confine to CPD-set D
and a subset S of C corresponding to a set cover, hence we have |D| = |S|.

Suppose that Minimum Connected Power Domination Problem can
be approximated within a ratio of α, where α = (1 − ε) ln(|V |) for some fixed
ε > 0, by some polynomial-time approximation algorithm, say Algorithm B.
Next, we propose an algorithm B′ to compute a set cover of the given set system
(U, C) in polynomial time.

Clearly, B′ is a polynomial-time algorithm as B is a polynomial-time algo-
rithm.

666 P. Goyal and B. S. Panda

Fig. 5. An illustration of the construction of G from system (U, C) in the proof of
Theorem 9.

Algorithm 3. B′: Approximation Algorithm for Minimum Set Cover

Input: A set system (U, C)
Output: A minimum set cover S of (U, C).
begin

Construct a chordal graph G as described above;
Compute a CPD-set D of G using algorithm B;
S = {Ci ∈ C | ci ∈ D};
return S;

Let D∗ be an optimal CPD-set in G and S∗ be an optimal set cover in (U, C).
Let S be the set cover computed by algorithm B′. Then |S| = |D| ≤ α|D∗| ≤
α|S∗| Hence, algorithm B′ approximates Minimum Set Cover for given set
system (U, C) within the ratio α = (1 − ε) ln |V | = (1 − ε) ln(2|U | + 2|C|) ≈
(1 − ε) ln |U | for sufficiently large value of |U |.

Therefore, the Algorithm B′ approximates Minimum Set Cover within
ratio (1 − ε) ln(|U |) for some ε > 0. By Theorem 7, if Minimum Set Cover
can be approximated within ratio (1 − ε) ln(|U |) for some ε > 0, then P =
NP. Hence, if Minimum Connected Power Domination Problem can be
approximated within ratio (1 − ε) ln(|V |) for some ε > 0, then P = NP. This
proves that Minimum Connected Power Domination Problem for chordal
graphs cannot be approximated within (1−ε) ln(|V |) for any ε > 0 unless P = NP.

�

6 Conclusion

In this paper, we have shown that Decide Connected Power Domina-
tion Problem is NP-complete for perfect elimination bipartite graphs and split
graphs which answers some of the open question left by Brimkov et al. [1]. On

Hardness Results of Connected Power Domination for Graphs 667

the positive side, we have shown that Minimum Connected Power Domina-
tion Problem can be solved in polynomial time for chain graphs and threshold
graphs. Apart from these, we have then presented inapproximability results of
Minimum Connected Power Domination Problem for bipartite graphs
and chordal graphs. It would be interesting to design an approximation algo-
rithm for Minimum Connected Power Domination Problem with good
approximation ratio.

References

1. Brimkov, B., Mikesell, D., Smith, L.: Connected power domination in graphs. J.
Comb. Optim. 38(1), 292–315 (2019). https://doi.org/10.1007/s10878-019-00380-
7

2. Chvátal, V., Hammer, P.L.: Aggregations of inequalities. Stud. Integer Program.
Ann. Discret. Math. 1, 145–162 (1977)

3. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: Proceedings
of 46th ACM STOC, pp. 624–633 (2014)

4. Fan, N., Watson, J.-P.: Solving the connected dominating set problem and power
dominating set problem by integer programming. In: Lin, G. (ed.) COCOA 2012.
LNCS, vol. 7402, pp. 371–383. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31770-5 33

5. Fulkerson, D., Gross, O.: Incidence matrices and interval graphs. Pac. J. Math. 15,
835–855 (1965)

6. Guo, J., Niedermeier, R., Raible, D.: Improved algorithms and complexity results
for power domination in graphs. Algorithmica 52(2), 177–202 (2008)

7. Haynes, T., Hedetniemi, S., Slater, P.: Domination in Graphs: Advanced Topics.
Marcel Dekker, New York (1998)

8. Haynes, T., Hedetniemi, S., Slater, P.: Fundamentals of Domination in Graphs.
Marcel Dekker, New York (1998)

9. Haynes, T., Hedetniemi, S.M., Hedetniemi, S.T., Henning, M.A.: Domination in
graphs applied to electric power networks. SIAM J. Discrete Math. 15(4), 519–529
(2002)

10. Johnson, D.S., Garey, M.R.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. WH Freeman, New York (1979)

11. Kloks, T., Kratsch, D., Müller, H.: Bandwidth of chain graphs. Inf. Process. Lett.
68(6), 313–315 (1998)

12. Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Parameterized power domination
complexity. Inf. Process. Lett. 98(4), 145–149 (2006)

13. Liao, C.-S., Lee, D.-T.: Power domination problem in graphs. In: Wang, L. (ed.)
COCOON 2005. LNCS, vol. 3595, pp. 818–828. Springer, Heidelberg (2005).
https://doi.org/10.1007/11533719 83

14. Mahadev, N.V.R., Peled, U.N.: Threshold Graphs and Related Topics. Elsevier,
Amsterdam (1995)

15. Uehara, R., Uno, Y.: Efficient algorithms for the longest path problem. In: Fleis-
cher, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 871–883. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30551-4 74

16. Yannakakis, M.: Node-and edge-deletion NP-complete problems. In: Proceedings
of 10th ACM STOC, pp. 253–264 (1978)

https://doi.org/10.1007/s10878-019-00380-7
https://doi.org/10.1007/s10878-019-00380-7
https://doi.org/10.1007/978-3-642-31770-5_33
https://doi.org/10.1007/978-3-642-31770-5_33
https://doi.org/10.1007/11533719_83
https://doi.org/10.1007/978-3-540-30551-4_74

Approximation Algorithm for Min-Max
Correlation Clustering Problem with Outliers

Sai Ji1, Min Li2, Mei Liang3, and Zhenning Zhang4(B)

1 Academy of Mathematics and Systems Science, Chinese Academy of Sciences,
Beijing 100190, People’s Republic of China

2 School of Mathematics and Statistics, Shandong Normal University,
Jinan 250358, People’s Republic of China

3 College of Statistics and Data Science, Beijing University of Technology,
Beijing 100124, People’s Republic of China

4 Department of Operations Research and Information Engineering,
Beijing University of Technology, Beijing 100124, People’s Republic of China

zhangzhenning@bjut.edu.cn

Abstract. In this paper, we investigate the min-max correlation clustering prob-
lem with outliers, which is a combination of the min-max correlation clustering
problem with the robust clustering. We first prove that the problem is NP-hard
to obtain any finite approximation algorithm. Then we design an approximation
algorithm based on LP-rounding technique and receive a bi-criteria guarantee.

Keywords: Min-max clustering · Correlation clustering · Outliers ·
Approximation algorithm · LP-rounding

1 Introduction

Arising from cut problems by Bansal et al. [3] such as min s-t cut and multiway cut,
correlation clustering problem has received much attention recently [12–14,17,24,27],
and has been widely applied in machine learning, computer vision, data mining and
so on.

For given a complete graph G = (V,E), each edge (u, v) is labeled by positive or
negative based on the similarity of the two nodes u and v. The goal of the correlation
clustering problem is to partition the vertex set into several clusters so that the number of
disagreements is minimized. Notice that disagreements are the positive edges between
different clusters and negative edges within clusters based on the partition. Since the
correlation clustering problem is NP-hard, people usually use combinatorial techniques
and LP-rounding techniques to design approximation algorithms [1,2,4,7,16,23]. The
first constant-factor approximation algorithm was provided by Bansal et al. [3] based
on combinatorial technique. Until now, the algorithm with the best 2.06-approximation
ratio was designed by Chawla et al. [8] based on LP-rounding technique algorithm.

There are many interesting variants of correlation clustering problem, such as min-
max correlation clustering problem [6,21], higher-order correlation clustering problem
[10,14], robust correlation clustering problem [15], hierarchical correlation clustering

c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 668–675, 2021.
https://doi.org/10.1007/978-3-030-92681-6_52

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_52&domain=pdf
https://doi.org/10.1007/978-3-030-92681-6_52

Min-Max Correlation Clustering Problem with Outliers 669

[9,25], correlation clustering problem with noisy input [19,20], correlation clustering
with a fixed number of clusters [11], and so on. Here, we mainly concern with the
min-max correlation clustering problem and robust correlation clustering problem.

The min-max correlation clustering problem was first introduced by Puleo and
Milenkovic [21], whose research perspective is essentially different from the traditional
correlation clustering problem. It focuses on individual vertex, and its goal is to min-
imize the number of disagreements at the worst vertex. In the following, Puleo and
Milenkovic [21] gave a 48-approximation algorithm based on LP-rounding technique.
Charikar et al. [6] proposed a 7-approximation algorithm, which is still the best approx-
imation ratio until now.

Robust correlation clustering problem is a generalization of the correlation clus-
tering problem, which was introduced by Krishnaswamy and Rajaraman [15]. Given
a complete graph G = (V,E) with an integer r, the goal of this problem is to find a
deleted set R and partition the vertex set V \R into several clusters such as to minimize
the disagreements generated by the partition. This problem can also be vividly called
as correlation clustering problem with outliers. In [15], Krishnaswamy and Rajaraman
also proved that the problem is NP-hard to obtain any finite approximation factor,
unless the number of deleted vertices is violated. Thus, they gave a bi-criteria (6, 6)-
approximation algorithm. Finally, they provided a bi-criteria (O(log n), O(log2 n))-
approximation algorithm for the correlation clustering problem with outliers on general
graphs, where n is the number of vertices in graph G.

Recently, since a single variant of clustering problem can not accurately describe
some practical problems, the combination of two different variants has attracted much
attention [5,18,22,26]. In present paper, we explore the min-max clustering problem
combining with outliers. The problem is stated as follows. Given a complete graph
G = (V,E) as well as an integer r, the goal is to find a deleted set R and partition the
vertex set V \R into several clusters so that the number of disagreements at the worst
vertex is minimized. There are two contributions of this paper: (1) We prove that the
min-max correlation clustering problem with outliers is NP-hard to obtain any finite
approximation algorithm; (2) We propose a bi-criteria approximation algorithm based
on LP-rounding technique in [6].

The rest of this paper is organized as follows. In Sect. 2, we introduce a detailed
description and the integer programming of the min-max correlation clustering problem
with outliers. In Sect. 3, we present our approximation algorithm and the corresponding
theoretical analysis.

2 Preliminaries

In this section, we introduce some definitions and terminology used throughout this
paper. Meanwhile, we describe the problem we consider here , and transform it into
an integer programming. Moreover, we provide its relaxation LP. For each integer m,
denote [m] = {1, 2, . . . ,m}.
Definition 1 (Min-max correlation clustering problem). Given a labeled complete
graph G = (V,E), the goal of the min-max correlation clustering problem is to find a
partition V1, V2, . . . , Vk(k ∈ [|V |]) of V such that

670 S. Ji et al.

max
v∈Vi,i∈[k]

(|{(u, v) ∈ E+, u ∈ V \Vi}| + |{(u, v) ∈ E−, u ∈ Vi}|)

is minimized, where E+ is the set of positive edges and E− is the set of negative edges.

Definition 2 (Correlation clustering problem with outliers). Given a labeled com-
plete graph G = (V,E) and an integer r. The goal of the correlation clustering
problem with outliers is to find a set R ⊆ V with size r as well as a partition
V1, V2, . . . , Vk, (k ∈ [|V | − r]) of V \R such that

1
2

∑

v∈Vi,i∈[k]

(|{(u, v) ∈ E+, u ∈ V \(Vi ∪ R)}| + |{(u, v) ∈ E−, u ∈ Vi}|)

is minimized, where E+ is the set of positive edges and E− is the set of negative edges.

Definition 3 (Min-max correlation clustering problem with outliers). Given a
labeled complete graph G = (V,E) and an integer r. The goal of the min-max cor-
relation clustering problem with outliers is to find a set R ⊆ V with size r as well as a
partition V1, V2, . . . , Vk, (k ∈ [|V | − r]) of V \R such that

max
v∈Vi,i∈[k]

(|{(u, v) ∈ E+, u ∈ V \(Vi ∪ R)}| + |{(u, v) ∈ E−, u ∈ Vi}|)

is minimized, where E+ is the set of positive edges and E− is the set of negative edges.

From Definition 2 and Definition 3, we can obtain the following property.

Property 1. If algorithm A is an α-approximation algorithm for the min-max correla-
tion clustering problem with outliers, then algorithm A is also an α/2-approximation
algorithm for the correlation clustering problem with outliers.

Combining Theorem 6 of [15] and Property 1, we can obtain Theorem 1.

Theorem 1. It is NP-hard to obtain any finite approximation factor for the min-max
correlation clustering problem with outliers, unless the constraint of the number of
deleted vertices is violated.

Before giving the integer programming formulation for the min-max correlation
clustering problem with outliers, let us first introduce the following three kinds of 0-1
variables:

– For each edge (u, v) ∈ E, variable xuv indicates whether two vertices u and v are
in a same cluster. To be specific, if u and v lie in a same cluster, then xuv = 0;
otherwise xuv = 1.

– For each vertex v ∈ V , variable yv indicates whether the vertex v is deleted, that is,
if vertex v is deleted, then yv = 1; otherwise yv = 0.

– For each edge (u, v) ∈ E, variable zuv indicates whether the edge (u, v) is a dis-
agreement, i.e., if edge (u, v) is a disagreement, then zuv = 1; otherwise zuv = 0.

Min-Max Correlation Clustering Problem with Outliers 671

Thus, the min-max correlation clustering problem with outliers can be formulated
by the following IP:

min max
v∈V

∑

u∈V

zuv

s. t. xuv + xvw ≥ xuw, ∀u, v, w ∈ V,

yu + yv + zuv ≥ 1 − xuv, ∀(u, v) ∈ E−,

yu + yv + zuv ≥ xuv, ∀(u, v) ∈ E+, (1)
∑

u∈V

yu = r,

xuv, zuv, yu ∈ {0, 1}, ∀u, v ∈ V.

The value of the objective function is the number of disagreements. There are four
types of constraints in Programming (1). The first one is the triangle inequality, which
guarantees the solution of Programming (1) to be a feasible solution of the correlation
clustering problem. The second and third constraints ensure the edge to be a disagree-
ment. The fourth one describes that the number of deleted vertices is exactly r. By
relaxing the variables, we can obtain the following LP relaxation of Programming (1):

min max
v∈V

∑

u∈V

zuv

s. t. xuv + xvw ≥ xuw, ∀u, v, w ∈ V,

yu + yv + zuv ≥ 1 − xuv, ∀(u, v) ∈ E−,

yu + yv + zuv ≥ xuv, ∀(u, v) ∈ E+, (2)
∑

u∈V

yu = r,

xuv, zuv, yu ∈ [0, 1], ∀u, v ∈ V.

3 Algorithm and Analysis

In this section, we present our algorithm in Subsect. 3.1 and the theoretical analysis has
been discussed in Subsect. 3.2.

3.1 Algorithm

To obtain an approximation algorithm for the min-max correlation clustering problem
with outliers, we first solve Programming (2) to receive the optimal fractional solution
(x∗, y∗, z∗), where the value x∗

uv is viewed as the distance between the two vertices
u and v. Then we need to consider the following two problems: (i) What criteria are
used to select the deleted vertices? (ii) How do we partition the rest of the vertices?
For the first problem, whether the vertex is deleted is decided by its y∗ value and a
parameter γ. For each vertex v, v is deleted if y∗

v ≥ γ. Otherwise, we remain vertex v.
The number of deleted vertices may be greater than r. However, we can prove that the

672 S. Ji et al.

Algorithm 1
Input: A labeled complete graph G = (V, E), positive integer r, parameter γ ∈ (0, 1/14)
Output: A partition of vertices
1: Let S := V, C := ∅, R := ∅
2: Solve (2) to obtain the optimal fractional solution (x∗, y∗, z∗)
3: Update R := {v ∈ V : y∗

v ≥ γ}, S := S\R
4: while S �= ∅ do
5: for each vertex v ∈ S do
6: Set T ∗

v := {u ∈ S : x∗
uv ≤ 1/7} and Tv := {u ∈ S : x∗

uv ≤ 3/7}
7: end for
8: Choose vertex

v∗ := argmax
v∈S

|T ∗
v |

9: Let Tv∗ be a cluster
10: Update C := C ∪ {v∗}, S := S − Tv∗ .
11: end while
12: return {Tv∗ : v∗ ∈ C} and set R

number is not more than a constant multiple of r. Notice that r is the desired number of
the deleted vertices and γ is just a parameter appeared in Algorithm 1. For the second
problem, we adopt an iterative clustering method. In each iteration, for every vertex v,
we construct two neighbor sets T ∗

v and Tv . They contain all the un-clustered vertices
with the distance to the vertex v no more than 1/7 and 3/7, respectively. We select the
vertex v∗ with the largest |T ∗

v∗ | as a center vertex, and make Tv∗ to be a cluster. Then,
we update the un-clustered set and repeat above iterative processes until all the vertices
in the graph are clustered.

3.2 Theoretical Analysis

In this subsection, we give a theoretical analysis of Algorithm 1. Without loss of gen-
erality, we assume that Algorithm 1 contains exactly k iterations. The center set is
C = {v∗

1 , v
∗
2 , . . . , v

∗
k}, the set of outliers is R, and the corresponding partition of V \R

is {Tv∗
1
, Tv∗

2
, . . . , Tv∗

k
}. From the construction of R, we have the following properties,

which play an important role in the proof of Lemmas 1–5.

(1) For each v ∈ R, y∗
v ≥ γ holds.

(2) For each v ∈ V \R, y∗
v < γ holds.

Lemma 1. There are at most r
γ vertices in set R.

This lemma can be concluded by the fourth constraint of (2) and the construction of set
R, we omit the proof.

As shown in Fig. 1, for each i ∈ [k] and j ∈ [i], let Aj = T ∗
v∗
j
, Bj = {t ∈

V \(∪s∈[j−1]Tv∗
s

∪ R) : x∗
ut ≤ 1/7} ∩ Tv∗

j
,Dj = Tv∗

j
\(Aj ∪ Bj), Fi = {t ∈

V \(∪s∈[i]Tv∗
s
∪R) : x∗

ut ≤ 1/7} and Mi = {t ∈ V \(∪s∈[i]Tv∗
s
∪R) : x∗

ut > 1/7}. The
number of disagreements caused by positive edges is analyzed by Lemma 2–Lemma 4.

Min-Max Correlation Clustering Problem with Outliers 673

Fig. 1. Partition of clustered vertices.

The number of disagreements caused by negative edges is analyzed by Lemma 5.
Finally, the total number of disagreements is shown by Lemma 6. All these proofs
will be presented in journal edition.

Disagreements Caused by Positive Edges. Similar to the proof of [6], for each
u ∈ Tv∗

i
, i ∈ [k], we analyze the upper bound of the number of disagreements in

the following two cases:

(1) (u, v) ∈ E+, v ∈ Tv∗
j
, j ∈ [i − 1].

(2) (u, v) ∈ E+, v ∈ Tv∗
j
, j ∈ [k]\[i].

Lemma 2. For each vertex u ∈ Tv∗
i
, i ∈ [k], the number of disagreement caused by

each edge (u, v) ∈ E+, v ∈ Mi ∪ Dj , j ∈ [i − 1] can be bounded by 7z∗
uv/(1− 14γ).

Lemma 3. For each vertex u ∈ Tv∗
i
, i ∈ [k], the number of disagreements generated

by edges (u, v) ∈ E+, v ∈ Aj ∪ Bj , j ∈ [i − 1] can be bounded by

∑

(u,v)∈E+,v∈Aj

7
1 − 7γ

z∗
uv +

∑

(u,v)∈E−,v∈Aj

7
2 − 14γ

z∗
uv.

Lemma 4. For each vertex u ∈ Tv∗
i
, i ∈ [k], the number of disagreements generated

by edges (u, v) ∈ E+, v ∈ Fi can be bounded by

∑

(u,v)∈E+,v∈Ai

7
1 − 14γ

z∗
uv +

∑

(u,v)∈E−,v∈Ai

7
3 − 14γ

z∗
uv.

Disagreements Caused by Negative Edges. For each vertex u ∈ Tv∗
i
, i ∈ [k], the

number of disagreements caused by negative edges equals |{(u, v) ∈ E− : v ∈ Tv∗
i
}|,

and the upper bound can be bounded by Lemma 5.

674 S. Ji et al.

Lemma 5. For each vertex u ∈ Tv∗
i
, i ∈ [k], the number of disagreements generated

by negative edges (u, v) with v ∈ Tv∗
i
can be bounded by

∑

(u,v)∈E−,v∈Di

7
1 − 14γ

z∗
uv +

∑

(u,v)∈E−,v∈Ai

7
3 − 14γ

z∗
uv.

Total Disagreements. Combining Lemma 2–Lemma 5, we can obtain Lemma 6 to
analyze the upper bound on the total number of disagreements generated by partition
{Tv∗

1
, Tv∗

2
, . . . , Tv∗

k
}.

Lemma 6. For each vertex u ∈ Tv∗
i
, i ∈ [k], the number of disagreements caused by

vertex u can be bounded by

7
1 − 14γ

∑

(u,v)∈E

z∗
uv.

From Lemma 1 and Lemma 6, we can obtain our main result of this paper.

Theorem 2. Algorithm 1 is a (1γ , 7
1−14γ)-bi-criteria approximation algorithm for the

min-max correlation clustering problem with outliers.

4 Conclusions

In this paper, we study the min-max correlation clustering problem with outliers and
give a bi-criteria approximation algorithm. There are two interesting future works for
the min-max correlation clustering problem with outliers. One is to design an algorithm
which can improve the current ratio. The other is to study the generalization of the
problem, such as capacitated min-max correlation clustering problem with outliers and
the lower bounded min-max correlation clustering problem with outliers.

Acknowledgements. The first author is supported by National Natural Science Foundation of
China (No. 12101594) and the Project funded by China Postdoctoral Science Foundation (No.
2021M693337). The second author is supported by Natural Science Foundation of Shandong
Province (No. ZR2020MA029) of China. The third author is supported by Beijing Natural
Science Foundation (No. Z200002). The fourth author is supported by Nationa Natural Science
Foundation of China (Nos. 12131003, 12001025).

References

1. Ailon, N., Avigdor-Elgrabli, N., Liberty, E., Zuylen, A.V.: Improved approximation algo-
rithms for bipartite correlation clustering. SIAM J. Comput. 41(5), 1110–1121 (2012)

2. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and
clustering. J. ACM 55(5), Article No. 23 (2008)

3. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3), 89–113
(2004)

Min-Max Correlation Clustering Problem with Outliers 675

4. Bressan, M., Cesa-Bianchi, N., Paudice, A., Vitale, F.: Correlation clustering with adaptive
similarity queries. In: Proceedings of NeurIPS, pp. 12510–12519 (2019)

5. Byrka, J., Fleszar, K., Rybicki, B., Spoerhase, J.: Bi-factor approximation algorithms for
hard capacitated k-median problems. In: Proceedings of SODA, pp. 722–736 (2014)

6. Charikar, M., Gupta, N., Schwartz, R.: Local guarantees in graph cuts and clustering. In:
Proceedings of IPCO, pp. 136–147 (2017)

7. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. J. Comput.
Syst. Sci. 71(3), 360–383 (2005)

8. Chawla, S., Makarychev, K., Schramm, T., Yaroslavtsev, G.: Near optimal LP rounding algo-
rithm for correlation clustering on complete and complete k-partite graphs. In: Proceedings
of the 47th ACM Symposium on Theory of Computing, pp. 219–228 (2015)

9. Chehreghani, M.H.: Hierarchical correlation clustering and tree preserving embedding
(2020). ArXiv preprint arXiv: 2002.07756

10. Fukunaga, T.: LP-based pivoting algorithm for higher-order correlation clustering. J. Comb.
Optim. 37(4), 1312–1326 (2018). https://doi.org/10.1007/s10878-018-0354-y

11. Giotis, I., Guruswami, V.: Correlation clustering with a fixed number of clusters. In: Pro-
ceedings of SODA, pp. 1167–1176 (2006)

12. Hou, J.P., Emad, A., Puleo, G.J., Ma, J., Milenkovic, O.: A new correlation clustering method
for cancer mutation analysis. Bioinformatics 32(24), 3717–3728 (2016)

13. Jafarov, J., Kalhan, S., Makarychev, K., Makarychev, Y.: Correlation clustering with asym-
metric classification errors. In: Proceedings of ICML, pp. 4641–4650 (2020)

14. Kim, S., Yoo, C.D., Nowozin, S., Kohli, P.: Image segmentation using higher-order correla-
tion clustering. IEEE Trans. Pattern Anal. Mach. Intell. 36(9), 1761–1774 (2014)

15. Krishnaswamy, R., Rajaraman, N.: Robust correlation clustering. In: Proceedings of
APPROX/RANDOM, pp. 33:1–33:18 (2019)

16. Lange, J.H., Karrenbauer, A., Andres, B.: Partial optimality and fast lower bounds for
weighted correlation clustering. In: Proceedings of ICML, pp. 2892–2901 (2018)

17. Li, P., Puleo, G.J., Milenkovic, O.: Motif and hypergraph correlation clustering. IEEE Trans.
Inf. Theory 66(5), 3065–3078 (2019)

18. Lv, W., Wu, C.: An LP-rounding based algorithm for a capacitated uniform facility location
problem with penalties. J. Comb. Optim. 41(4), 888–904 (2021). https://doi.org/10.1007/
s10878-021-00726-0

19. Makarychev, K., Makarychev, Y., Vijayaraghavan, A.: Correlation clustering with noisy par-
tial information. In: Proceedings of COLT, pp. 1321–1342 (2015)

20. Mathieu, C., Schudy, W.: Correlation clustering with noisy input. In: Proceedings of SODA,
pp. 712–728 (2010)

21. Puleo, G.J., Milenkovic, O.: Correlation clustering and biclustering with locally bounded
errors. IEEE Trans. Inf. Theory 64(6), 4105–4119 (2018)

22. Saif, A., Delage, E.: Data-driven distributionally robust capacitated facility location problem.
Eur. J. Oper. Res. 291(3), 995–1007 (2021)

23. Thiel, E., Chehreghani, M.H., Dubhashi, D.: A non-convex optimization approach to corre-
lation clustering. In: Proceedings of AAAI, pp. 5159–5166 (2019)

24. Ukkonen, A.: Crowdsourced correlation clustering with relative distance comparisons. In:
Proceedings of ICDM, pp. 1117–1122 (2017)

25. Vainstein, D., Chatziafratis, V., Citovsky, G., Rajagopalan, A., Mahdian, M., Azar, Y.: Hier-
archical clustering via sketches and hierarchical correlation clustering (2021). ArXiv preprint
arXiv: 2101.10639

26. Vasilyev, I., Ushakov, A.V., Maltugueva, N., Sforza, A.: An effective heuristic for large-scale
fault-tolerant k-median problem. Soft Comput. 23(9), 2959–2967 (2019)

27. Veldt, N., Gleich, D.F., Wirth, A.: A correlation clustering framework for community detec-
tion. In: Proceedings of WWW, pp. 439–448 (2018)

http://arxiv.org/abs/2002.07756
https://doi.org/10.1007/s10878-018-0354-y
https://doi.org/10.1007/s10878-021-00726-0
https://doi.org/10.1007/s10878-021-00726-0
http://arxiv.org/abs/2101.10639

Delay-Constrained Minimum Shortest
Path Trees and Related Problems

Junran Lichen1, Lijian Cai2, Jianping Li2(B), Suding Liu2, Pengxiang Pan2,
and Wencheng Wang2

1 Institute of Applied Mathematics, Academy of Mathematics and Systems Science,
No. 55, Zhongguancun East Road, Beijing 100190, People’s Republic of China

2 Department of Mathematics, Yunnan University, East Outer Ring South Road,
University Town, Kunming 650504, People’s Republic of China

jianping@ynu.edu.cn

Abstract. Motivated by applications in communication networks of
the diameter-constrained minimum spanning tree problem, we consider
the delay-constrained minimum shortest path tree (DcMSPT) problem.
Specifically, given a weighted graph G = (V,E;w, c) and a constant d0,
where length function w : E → R+ and cost function c : E → R+, we
are asked to find a minimum cost shortest path tree among all shortest
path trees (in G) whose delays are no more than d0, where the delay of
a shortest path tree is the maximum distance (depending on w(·)) from
its source to every other leaves in that tree, and the cost of a shortest
path tree is the sum of costs of all edges (depending on c(·)) in that tree.
Particularly, when a constant d0 is exactly the radius of G, we refer to
this version of the DcMSPT problem as the minimum radius minimum
shortest path tree (MRMSPT) problem. Similarly, the maximum delay
minimum shortest path tree (MDMSPT) problem is asked to find a min-
imum cost shortest path tree among all shortest path trees (in G) whose
delays are exactly the diameter of G.

We obtain the following two main results. (1) We design an exact
algorithm in time O(n3) to solve the DcMSPT problem, and we provide
the similar algorithm to solve the MRMSPT problem; (2) We present an
exact algorithm in time O(n3) to solve the MDMSPT problem.

Keywords: Combinatorial optimization · Distances ·
Delay-constrained shortest path trees · Exact algorithms · Complexity

This paper is supported by the National Natural Science Foundation of China [Nos.
11861075, 12101593], Project for Innovation Team (Cultivation) of Yunnan Province
[No. 202005AE160006], Key Project of Yunnan Provincial Science and Technology
Department and Yunnan University [No. 2018FY001014] and Program for Innova-
tive Research Team (in Science and Technology) in Universities of Yunnan Province
[C176240111009]. Jianping Li is also supported by Project of Yunling Scholars Training
of Yunnan Province.

c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 676–686, 2021.
https://doi.org/10.1007/978-3-030-92681-6_53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_53&domain=pdf
https://doi.org/10.1007/978-3-030-92681-6_53

Delay-Constrained Minimum Shortest Path Trees and Related Problems 677

1 Introduction and Problem Description

Many graph optimization problems are motivated from applications in our real-
ity life, for example, the minimum spanning tree problem, the shortest path
problem and the minimum Steiner tree problem [17]. In addition, there exist
several optimization problems which can be regarded as combinations of some
classic graph optimization problems, for example, the single-source shortest path
tree problem, briefly as the shortest path tree (SPT) problem, which was first
raised in 1957 by Dantzig [6], can be regarded as a combination of the shortest
path problem [7] and the minimum arborescence problem [5,9]. In the past five
decades, these problems mentioned-above have been deeply studied in the liter-
ature and have many wide applications in our reality life, and there exist many
polynomial-time exact or approximation algorithms to solve these problems [17].

Spanning trees related problems in weighted graphs have been well studied in
theory and widely applied in our reality life [4,17]. So has the diameter problem
in which the diameter is originally measured in terms of the number of edges,
instead of the total weight of a spanning tree [1,13,17]. In recent decades, the
diameter of a weighted graph G = (V,E;w), however, is defined as the longest
of the shortest paths among all pairs of distinct vertices in G, i.e., diam(G) =
max{∑

e∈Pst
w(e) | Pst is a shortest path connecting every pair s, t of distinct

vertices in G}. In particular, since the path to connect every pair of distinct
vertices in a weighted tree T = (V,E;w) is unique, the diameter of T is the
maximum weight of a path connecting any two leaves of T . What motivates this
investigation is that we want to find a communication network among n vertices,
where the communication delay is measured in terms of the total weight of a
shortest path between them. A desirable communication network is naturally
one tree that has a minimum diameter. Different from studying the minimum
spanning tree problem, Ho et al. [13] in 1991 considered the minimum diameter
spanning tree (MDST) problem which is formally defined as follows.

Problem 1 (the MDST problem [13]). Given a weighted graph G = (V,E;w)
with length function w : E → R+, it is asked to find a spanning tree T of G
such that the objective is to minimize max{∑

e∈P w(e) | P is a path connecting
any two leaves in T}, i.e., T has a minimum diameter among all spanning trees
of G.

Meanwhile, Ho et al. [13] indeed considered the minimum diameter minimum
spanning tree (MDMST) problem which is formally defined as follows.

Problem 2 (the MDMST problem [13]). Given a weighted graph G = (V,E;w)
with length function w : E → R+, it is asked to find a spanning tree T = (V,ET)
of G, the objective is to minimize the total weight

∑
e∈ET

w(e) among the all
spanning trees that have their diameter values as diam(G) of that graph G, i.e.,
the all spanning trees considered in this problem have the diameter diam(G) of
that graph G.

Ho et al. [13] in 1991 design an exact algorithm in time O(n3) to find a
minimum diameter spanning tree (MDST) of a special graph, called an Euclidean

678 J. Lichen et al.

graph, induced by a set of n points in the Euclidean plane, also referred to as
a geometric MDST problem. On the other hand, they proved that the MDMST
problem is NP-complete, using a reduction from the 3SAT problem [10]. Hassin
and Tamir [12] in 1995 observed an important fact that the MDST problem is
identical to the well studied absolute 1-center problem introduced in 1964 by
Hakimi [11], imply that the existing algorithms [8,11], which solves the absolute
1-center problem, also solves the MDST problem on a general graph in time
O(mn + n2 log n).

At present, we may firmly believe that it would be better to describe the min-
imum diameter minimum spanning tree (MDMST) problem using the following
definition, which involves two different functions.

Problem 3 (the MDMST problem). Given a weighted graph G = (V,E;w, c)
with length function w : E → R+ and cost function c : E → R+, it is asked
to find a spanning tree T = (V,ET) of G, the objective is to minimize the
total cost

∑
e∈ET

c(e) among the all spanning trees that have their diameter
values as diam(G) of that graph G, where the distance between any two vertices
depends on computing of length function w(·) and the diameter of G is defined
as mentioned-above.

A similar problem, which is called as the diameter-constrained minimum
spanning tree (DcMST) problem [10], is formally defined as follows.

Problem 4 (the DcMST problem). Given a weighted connected graph G = (V,E;
w) and a positive integer d, where w : E → R+, it is asked to seek a spanning
tree T on G of minimum weight among all the spanning trees in which no path
in T between any two vertices (actually, two leaves) contains more than d edges.

The DcMST problem is sometimes called as the bounded diameter mini-
mum spanning tree problem [14,19,20], and it was shown to be NP-complete by
Garey and Johnson [10]. In the DcMST problem, the measure of the diameter
is in terms of the maximum number of edges in any path of the spanning tree.
It is easy to see that the DcMST problem may roughly be treated as a gener-
alization of the MDMST problem (i.e., Problem 2), where no path in spanning
tree between any two leaves contains more than d edges for the DcMST prob-
lem and the diameter is exactly the longest of a shortest weighted path between
any two leaves in spanning tree for the MDMST problem. The DcMST prob-
lem arises in various contexts in communication network design, and it has also
been given some applications in the area of information retrieval in [2,3]. For the
DcMST problem, Kortsarz and Peleg [16] in 1999 showed that, unless P = NP,
no polynomial-time approximation algorithm can be guaranteed to find a solu-
tion whose weight is within log(n) of the optimum. Although Ho et al. [13] in
1991 proved that the MDMST problem is NP-complete, using a reduction from
the 3SAT problem [10], Seo et al. [18] in 2009 showed that the MDMST problem
specialized to Euclidean graphs remains NP-complete, using a reduction from
the PARTITION problem [10].

Delay-Constrained Minimum Shortest Path Trees and Related Problems 679

In a centralized communication network in which there is a vertex as source,
Ho et al. [13] in 1991 defined the minimum radius spanning tree (MRST) problem
in a similar manner using the radius instead of the diameter of that weighted
graph, the objective is to minimize the maximum communication delay from
a source vertex to other vertices in that weighted graph. The minimum radius
minimum spanning tree (MRMST) problem is similarly defined as the MDMST
problem. The same authors [13] in 1991 proved that the MRMST problem is
NP-complete.

We have known the fact that, given a weighted connected graph G = (V,E;w)
with length function w : E → R+, messages are transmitted along a shortest
path from vertex to other vertex in G, and shortest path trees will play an
important role in such a transmitting system in G. Then we have the following
two facts. (1) When messages are transmitted from a source vertex to any other
vertices by using shortest path trees, we may consider the delay of messages
along a shortest path tree from its source vertex to any other vertices not beyond
the expected time d0, particularly not beyond the radius of that graph G; (2)
When we implement this mechanism in (1), we should consider minimum cost
to construct such a communication network from the original weighted graph G.

Motivated by the problems and related mechanisms mentioned-above to
transmit messages in communication networks, we should consider the following
problem and its related variations.

Problem 5 (the DcMSPT problem). Given a weighted graph G = (V,E;w, c) and
a constant d0, where length function w : E → R+ and cost function c : E → R+,
it is asked to find a minimum cost shortest path tree among all shortest path
trees (in G) whose delays are no more than d0, where the delay of a shortest
path tree is the maximum distance (depending on w(·)) from its source to every
other leaves in that tree, and the cost of a shortest path tree is the sum of costs
of all edges (depending on c(·)) in that tree.

For convenience, we refer to Problem 5 as the delay-constrained minimum
shortest path tree (DcMSPT) problem. Particularly, when a constant d0 is
exactly the radius of a weighted graph G, we refer to this version of the DcM-
SPT problem as the minimum radius minimum shortest path tree (MRMSPT)
problem. Similarly, the maximum delay minimum shortest path tree (MDMSPT)
problem is asked to find a minimum cost shortest path tree among all shortest
path trees (in G) whose delays are exactly the diameter of G.

So far as what we have known, although the DcMSPT problem and its related
variations have many important applications implied in our reality life, where
messages are transmitted along shortest paths from a source vertex to every
other vertices, these optimization problems have not been studied deeply both
in theory and in practice, and there are no exact or approximation algorithms
in polynomial time to solve them. For the DcMST problem (i.e., Problem 4),
Kortsarz and Peleg [16] in 1999 showed that, unless P = NP, no polynomial-time
approximation algorithm can be guaranteed to find a solution whose weight is
within log(n) of the optimum. However, we hope to design some exact algorithms

680 J. Lichen et al.

in polynomial time to optimally solve the DcMSPT problem and its related
variations, respectively.

This paper is organized as follows. In Sect. 2, we present some terminolo-
gies for easily describing our algorithms and provide key lemmas to ensure the
correctness of algorithms. In Sect. 3, we design an exact algorithm to solve the
DcMSPT problem, and the similar algorithm solves the MRMSPT problem,
where this algorithm runs in time O(n3); In Sect. 4, we present an exact algo-
rithm to solve the MDMSPT problem, where that algorithm runs in time O(n3);
In Sect. 5, we provide our conclusion and further work.

2 Terminologies and Key Lemmas

In this section, we present some notations and terminologies to solve the delay-
constrained minimum shortest path tree (DcMSPT) problem and its related
variations, respectively, and other terminologies and notations not defined can
be found in those references [1,15,17].

Given a weighted graph G = (V,E;w, c) with length function w : E → R+

and cost function c : E → R+, for any two vertices s, t ∈ V , the distance between
s and t, denoted by distG(s, t), is the minimum length of a path connecting s and
t if such a path exists, and otherwise distG(s, t) = +∞. Concretely, distG(s, t) =
min{∑

e∈Pst
w(e) | Pst is a path connecting s and t in G}. And if this path

Pst satisfies
∑

e∈Pst
w(e) = distG(s, t), Pst is called as a shortest s-t path or a

shortest path connecting s and t. For each vertex s ∈ V , we define the eccentricity
of s, denoted by eG(s), is the maximum of all distances from s to other vertices
in G, i.e., eG(s, V) = max{distG(s, t) | t ∈ V }. In addition, the diameter of a
weighted graph G, denoted by diam(G), is the maximum of all distances between
pairs of vertices in G, i.e., diam(G) = max{distG(s, t) | s, t ∈ V }, and the radius
of a weighted graph G, denoted by rad(G), is the minimum of eccentricities of
vertices in G, i.e., rad(G) = min{eG(s) | s ∈ V }, meanwhile we refer to this
vertex s as a center of G if this vertex s satisfies eG(s) = rad(G). Furthermore,
if T = (V,ET ;w, c) is a spanning tree of a weighted graph G = (V,E;w, c), then
the diameter of T is the maximum length of a shortest path connecting any two
leaves in T , i.e., diam(T) = max{distT (s, t) | s and t are two leaves of T}, and
meanwhile the cost of T is defined as c(T) =

∑
e∈ET

c(e).
Dantzig [6,17] in 1957 observed the following. Let D = (V,A;w) be a

weighted digraph with a fixed source vertex s ∈ V , where length function
w : E → R+. An arborescence T = (V ′, A′) rooted at s is called a single source
shortest path tree (rooted at s) if V ′ is the set of vertices in D reachable from s
and A′ ⊆ A, such that for each vertex t ∈ V ′, the s-t path in T is a shortest s-t
path in D, depending on computing of length function w(·). In particular, we
call T = (V,A′) as a spanning shortest path tree rooted at s, briefly T = (V,A′)
as a shortest path tree of D if no ambiguity.

With the similar arguments, we define a shortest path tree in a weighted
graph as follows. Let G = (V,E;w) be a weighted graph with a fixed source
vertex s ∈ V , where length function w : E → R+. A spanning tree T = (V,E′)

Delay-Constrained Minimum Shortest Path Trees and Related Problems 681

is called a single source shortest path tree with the source vertex s of G, if
distT (s, t) = distG(s, t) holds for every other vertex t ∈ V , i.e., the s-t path in
T is a shortest s-t path in G, depending on computing of length function w(·).
Briefly, we refer to such a tree T = (V,E′) as a shortest path tree with the source
vertex s of G, simply as a shortest path tree of G if no ambiguity.

Now, we address the minimum shortest path tree (MSPT) problem as follows.

Problem 6 (the MSPT problem). Given a weighted graph G = (V,E;w, c) with a
fixed source s, where length function w : E → R+ and cost function c : E → R+,
it is asked to find a shortest path tree T = (V,ET ;w, c) rooted at s, the objective
is to minimize the cost

∑
e∈ET

c(e) among all shortest path trees T = (V,ET ;w)
rooted at s, where the distance from s to every other vertex t in G depends on
computing of length function w(·).

We call a shortest path tree T as to be a minimum cost shortest path tree T
in G if the cost of T attains the minimum value among all shortest path trees
of G, where distance depends on computing of length function w(·). We present
some remarks to the MSPT problem. For an instance of the MSPT problem,
a weighted graph G = (V,E;w, c) generally involves two different functions,
saying w(·) and c(·), which are with no relationships. We have known the fact
that the MSPT problem originally appeared in the literature [1,6,17], where the
two functions w(·) and c(·) are essentially the same function.

The strategy to solve the MSPT problem (i.e., Problem 6) is executed as
follows. (1) Given a weighted graph G = (V,E;w, c) equipped with a source
vertex s for the MSPT problem, depending on computing of length function
w(·) in G, we can modify the Dijkstra algorithm [7] to construct an auxiliary
acyclic digraph Ds = (V,As;w, c) that consists of the union of all shortest s-t
paths in G for every other vertex t in V \ {s}. (2) Depending on computing of
cost function c(·) in Ds, construct a minimum-cost arborescence at a root s in
Ds = (V,As;w, c). In fact, we can construct a minimum-cost arborescence at a
root s choosing a minimum-cost arc to enter every other vertex in the acyclic
digraph Ds = (V,As;w, c), without executing an algorithm to solve the minimum
arborescence problem specialized to weighted graphs. For convenience, we still
denoted such an algorithm in (1) as the Dijkstra algorithm-modified.

Using the Dijkstra algorithm-modified and the strategy mentioned-above, we
can obtain the following lemma.

Lemma 1. There exists a polynomial-time exact algorithm, denoted by the
MSPT algorithm, to optimally solve the MSPT problem, and it runs in time
O(n2), where n is the order of weighted graph G.

3 An Exact Algorithm to Solve the DcMSPT Problem

In this section, we consider the delay-constrained minimum shortest path tree
(RcMSPT) problem. Modifying the strategy to solve the MSPT problem (see the
Problem 6), we execute the strategy to solve the DcMSPT problem as follows.

682 J. Lichen et al.

(1) For each vertex v in a weighted graph G = (V,E;w, c), depending on com-
puting of length function w(·), use the Dijkstra algorithm-modified [7] to
construct an auxiliary acyclic digraph Dv = (V,Av;w, c) that consists of the
union of all shortest paths in G to connect this vertex v to all other vertices
vi in V \{v}, and in addition, if distDv

(v, vi) ≤ d0 holds for each vertex vi in
V , depending on cost function c(·), we construct a minimum-cost shortest
path tree Tv at the source v in the digraph Dv, otherwise we ignore this
vertex v.

(2) Choose a minimum-cost shortest path tree from all shortest path trees con-
structed in (1).

We describe our algorithm to solve the DcMSPT problem as follows.

Algorithm 1: DcMSPT
Input: a weighted graph G = (V,E;w, c) and a constant d0;
Output: a delay-constrained minimum cost shortest path tree, rooted at a

source v∗ ∈ V .
Begin
Step 1. For each vertex s ∈ V , do

(1.1) Depending on computing of length function w(·), execute the
Dijkstra algorithm-modified [7] to construct an auxiliary acyclic digraph
Ds = (V,As;w, c), where As consists of arcs (x, y) ∈ A that lies on a shortest
(s, vi)-path from s to every other vertex vi ∈ V . For convenience, we may
assume that all vertices in Ds = (V,As) are topologically sorted in the order
vj1 , vj2 , . . ., vjn , where vj1 = s.

(1.2) If (eDs
(s) ≤ r0) then

(1.2.1) For each vertex vjt ∈ V , t = 2, 3, . . . , n, depending on
computing of cost function c(·), choose a minimum cost arc eit = (vit , vjt)
in Ds to enter the vertex vjt , where vit ∈ {vj1 , vj2 , . . . , vjn} (for two distinct
integers t, t′ ∈ {2, 3, . . . , n}, we may have the same vertex vit = vit′).

(1.2.2) Construct a shortest path tree Ts = (V,ATs
) with the edge

set ATs
= {ei2 , ei3 , . . . , ein}.

Step 2. Choose a minimum-cost shortest path tree Tv∗ = (V,ATv∗) from all
shortest path trees constructed at Step (1.2.2), i.e., satisfying c(ATv∗) =
min{c(ATs

) | Ts = (V,ATs
) is a shortest path tree in G, having eTs

(s) ≤ r0}.
Step 3. Output the minimum-cost shortest path tree Tv∗ = (V,ATv∗) obtained

at Step 2.
End

We can use the DcMSPT algorithm to obtain the following result to optimally
solve the DcMSPT problem.

Theorem 1. The DcMSPT algorithm (i.e., Algorithm 1) is an exact algorithm
to solve the DcMSPT problem, and it runs in time O(n3), where n is the order
of weighted graph G.

Delay-Constrained Minimum Shortest Path Trees and Related Problems 683

Proof. We may assume, without loss of generality, that this weighted graph
G = (V,E;w, c) is connected. For each vertex s ∈ V , we shall prove that either
Ts = (V,ATs

) produced at Step 1 of Algorithm 1 is a minimum-cost shortest path
tree at the source vertex s to satisfy eTs

(v) = eG(s) ≤ r0 or this graph G contains
no such shortest path trees. For the former, Ts = (V,ATs

) is a feasible solution
to an instance G = (V,E;w, c) of the DcMSPT problem, and for the latter, there
is no feasible solution at the source vertex s to the instance G = (V,E;w, c) of
the DcMSPT problem.

Given a fixed source vertex s, since this vertex s is the fixed vertex in G
such that each vertex vr is reachable from s, Step 1.1 at Algorithm 1 executes
the Dijkstra algorithm-modified [7] to construct the auxiliary acyclic digraph
Ds = (V,As) to keep dDs

(s, vr) = dG(s, vr) for every other vertex vr ∈ V , then
this subgraph Ds = (V,As) of G contains all shortest path trees at the source
vertex s in Ds plus some other edges in G, satisfying dTs

(s, vr) = dDs
(s, vr) =

dG(s, vr). In the view of the choices of arcs at Step 1.2, when eDs
(s) ≤ r0, we can

indeed prove by induction that the subgraph Ts = (V,ATs
) produced at Step 1.2

is a shortest path tree at the source vertex s in Ds, indeed also in G, satisfying
dTs

(s, vr) = dDs
(s, vr) = dG(s, vr) and distTs

(s, vr) ≤ r0 for every other vertex
vr ∈ V . Thus, this shows that Ts = (V,ATs

) produced at Step 1 of Algorithm 1
is a feasible solution to the instance G = (V,E;w, c).

Using greedy technique at Step 1.2 of Algorithm 1 to choose some suitable
edges from Ds to be added into Ts, we can indeed prove by induction that Ts =
(V,ATs

) is a minimum-cost shortest path tree among all shortest path trees in G
at the source vertex s, where ATs

= {ei2 , ei3 , . . . , ein} and c(Ts) =
∑n

k=2 w(eik).
Now, we may assume that T ∗

s∗ = (V,AT∗
s∗) is a minimum-cost shortest path

tree for an instance G = (V,E;w, c) of the the DcMSPT problem, where some
vertex s∗ ∈ V satisfies rad(T ∗

s∗) ≤ r0. Since the minimum value outputted
at Step 2 is attained by executing the DcMSPT algorithm, enumerating the
all minimum-cost shortest path trees at all distinct source vertices in V , we
can obtain a minimum-cost shortest path tree Ts∗ = (V,ATs∗) at the source
vertex s∗ ∈ V to satisfy w(T ∗

s∗) = w(Ts∗) where rad(T ∗
s∗) ≤ r0, implying that

Ts∗ = (V,ATs∗) is a minimum-cost shortest path tree and rad(T ∗
s∗) ≤ r0 for an

instance G = (V,E;w, c) of the the RMSPT problem.
The complexity of the DcMSPT algorithm (i.e., Algorithm 1) can be deter-

mined as follows. (1) For each vertex s ∈ V , the Dijkstra algorithm-modified [7]
implies that Step 1.1 needs time O(n2) to compute the auxiliary acyclic digraph
Ds = (V,As), and for eDs

(s) ≤ r0, Step 1.2 needs time O(|E|) to find such a
minimum-cost arborescence Ts at the source vertex s in Ds, showing that the
running time at Step 1 is in total O(n3); (2) Step 2 needs at most time O(n).
Hence, the running time of the RMSPT algorithm is in total O(n3).

This establishes the theorem.
Given a weighted graph G = (V,E;w, c), when we add a step that compute

the radius rad(G) of G as the first step in the DcMSPT algorithm, and denoting
d0 = rad(G), we can provide an algorithm to solve the MRMSPT problem. We
only present the following conclusion, no description of the MRMSPT algorithm
in details to to save a room.

684 J. Lichen et al.

Corollary 1. The MRMSPT algorithm is an exact algorithm to solve the MRM-
SPT problem, and it runs in time O(n3), where n is the order of weighted
graph G.

4 An Exact Algorithm to Solve the MDMSPT Problem

In this section, we consider the maximum delay minimum shortest path tree
(MDMSPT) problem, where maximum delay is exactly the diameter of a
weighted graph G = (V,E;w, c).

Using the Dijkstra algorithm [7] for many times and modifying the strategy
to solve the DcMSPT problem (seeing the DcMSPT algorithm), we can design
our algorithm to solve the MDMSPT problem as follows.

Algorithm 2: MDMSPT
Input: a weighted graph G = (V,E;w, c);
Output: a maximum delay minimum shortest path tree, rooted at a source
v∗ ∈ V .

Begin
Step 1. For each vertex x ∈ V , do

(1.1) Depending on computing of length function w(·), use the Dijk-
stra algorithm [7] to compute the eccentricity of x, i.e., eG(x, V) =
max{distG(x, y) | y ∈ V }.

Step 2. Compute the diameter of G as maximum of the eccentricities of all
vertices in G, i.e., diam(G) = max{eG(x, V) | x ∈ V }, and denote the set
Vdiam = {x ∈ V | eG(x, V) = diam(G)}.

Step 3. For each vertex s ∈ Vdiam, do
(3.1) Depending on computing of length function w(·), execute the

Dijkstra algorithm-modified [7] to construct an auxiliary acyclic digraph
Ds = (V,As;w, c), where As consists of arcs (x, y) ∈ A that lies on a short-
est (s, vi)-path from s to all other vertices vi ∈ V . For convenience, we may
assume that all vertices in Ds = (V,As) are topologically sorted in the order
vj1 , vj2 , . . ., vjn , where vj1 = s.

(3.2) For each vertex vjt ∈ V , t = 2, 3, . . . , n, depending on computing
of cost function c(·), choose a minimum cost arc eit = (vit , vjt) in Ds to
enter the vertex vjt , where vit ∈ {vj1 , vj2 , . . . , vjn} (for two distinct integers
t, t′ ∈ {2, 3, . . . , n}, we may have the same vertex vit = vit′).

(3.3) Construct a shortest path tree Ts = (V,ATs
) with the edge set

ATs
= {ei2 , ei3 , . . . , ein}.

Step 4. Choose a minimum-cost shortest path tree Tv∗ = (V,ATv∗) from all
shortest path trees constructed at Step (1.2.2), i.e., satisfying c(ATv∗) =
min{c(ATs

) | Ts = (V,ATs
) is a shortest path tree in G, having eTs

(s) ≤ r0}.
Step 5. Output the minimum-cost shortest path tree Tv∗ = (V,ATv∗) obtained

at Step 4.
End

Delay-Constrained Minimum Shortest Path Trees and Related Problems 685

Using the MDMSPT algorithm, we can obtain the following result, whose
correct proof is similar to the arguments in the proof of Theorem 1, and we omit
the details.

Theorem 2. The MDMSPT algorithm (i.e., Algorithm 2) is a polynomial-time
exact algorithm to solve the MDMSPT problem, and its complexity is O(n3),
where n is the order of weighted graph G.

5 Conclusion and Further Research

In this paper, we consider the delay-constrained minimum shortest path tree
(DcMSPT) problem and its related variations, respectively, then we obtain two
main results

(1) We design an exact algorithm to solve the DcMSPT problem, we provide
the similar algorithm to solve the MRMSPT problem, and both algorithms
run in time O(n3).

(2) We present an exact algorithm to solve the MDMSPT problem, and this
algorithm runs in time O(n3).

A challenging task for further research is to design other exact algorithms in
lower running times to solve the DcMSPT problem and its related variations.

References

1. Bondy, J.A., Murty, U.S.R.: Graph theory. In: Graduate Texts in Mathematics,
vol. 244. Springer, Heidelberg (2008)

2. Bookstein, A., Klein, S.T.: Construction of optimal graphs for bit-vector compres-
sion. In: Proceedings of the 13th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 327–342 (1990)

3. Bookstein, A., Klein, S.T.: Compression of correlated bit-vectors. Inf. Syst. 16,
387–400 (1991)

4. Cheriton, D., Tarjan, R.: Finding minimum spanning trees. SIAM J. Comput. 5,
724–742 (1976)

5. Chu, Y.J., Liu, Z.H.: On the shortest arborescence of a directed graph. Scientia
Sinica 14, 1396–1400 (1965)

6. Dantzig, G.B.: Discrete-variable extremum problems. Oper. Res. 5, 266–277 (1957)
7. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische

Mathematik 1, 269–271 (1959)
8. Dvir, D., Handler, G.Y.: The absolute center of a network. Networks 43(2), 109–

118 (2004)
9. Edmonds, J.: Optimum branchings. J. Res. Natl. Bureau Stand. Sect. B 71, 233–

240 (1967)
10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. Freeman, San Francisco (1979)
11. Hakimi, S.L.: Optimal locations of switching centers and medians of a graph. Oper.

Res. 12, 450–459 (1964)

686 J. Lichen et al.

12. Hassin, R., Tamir, A.: On the minimum diameter spanning tree problem. Inf.
Process. Lett. 53, 109–111 (1995)

13. Ho, J.M., Lee, D.T., Chang, C.H., Wong, C.K.: Minimum diameter spanning trees
and related problems. SIAM J. Comput. 20(5), 987–997 (1991)

14. Julstrom, B.A.: Greedy heuristics for the bounded diameter minimum spanning
tree problem, ACM J. Exp. Algorithmics 14, Article No. 1.1 (2009)

15. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms, 5th
edn. Springer, Berlin (2012)

16. Kortsarz, G., Peleg, D.: Approximating the weight of shallow Steiner trees. Discrete
Appl. Math. 93, 265–285 (1999)

17. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, The
Netherlands (2003)

18. Seo, D.Y., Lee, D.T., Lin, T.-C.: Geometric minimum diameter minimum cost
spanning tree problem. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009.
LNCS, vol. 5878, pp. 283–292. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-10631-6 30

19. Singh, A., Gupta, A.K.: Improved heuristics for the bounded-diameter minimum
spanning tree problem. Soft Comput. 11, 911–921 (2007)

20. Torkestani, J.A.: An adaptive heuristic to the bounded-diameter minimum span-
ning tree problem. Soft Comput. 16, 1977–1988 (2012)

https://doi.org/10.1007/978-3-642-10631-6_30
https://doi.org/10.1007/978-3-642-10631-6_30

On the Feedback Number of 3-Uniform
Linear Extremal Hypergraphs

Zhongzheng Tang1 , Yucong Tang2,3 , and Zhuo Diao4(B)

1 School of Science, Beijing University of Posts and Telecommunications,
Beijing 100876, China

tangzhongzheng@amss.ac.cn
2 Department of Mathematics, Nanjing University of Aeronautics and Astronautics,

Nanjing 211106, China
tangyucong@nuaa.edu.cn

3 Key Laboratory of Mathematical Modelling and High Performance Computing
of Air Vehicles (NUAA), MIIT, Nanjing 211106, China

4 School of Statistics and Mathematics, Central University of Finance
and Economics, Beijing 100081, China

diaozhuo@amss.ac.cn

Abstract. Let H = (V, E) be a hypergraph with vertex set V and edge
set E. S ⊆ V is a feedback vertex set (FVS) of H if H\S has no cycle
and τc(H) denote the minimum cardinality of a FVS of H. Chen et al.
[IWOCA, 2016] has proven if H is a 3-uniform linear hypergraph with
m edges, then τc(H) ≤ m/3. In this paper, we furthermore characterize
all the extremal hypergraphs with τc(H) = m/3 holds.

Keywords: Feedback Vertex Set (FVS) · 3-uniform linear
hypergraph · Extremal hypergraph

1 Introduction

A feedback vertex set (FVS) in a graph G is a vertex subset S such that G\S
is acyclic. In the case of directed graphs, it means G\S is a directed acyclic
graph (DAG). In the (Directed) Feedback Vertex Set ((D)FVS) problem we are
given as input a (directed) graph G, and the objective is to find a minimum
cardinality of FVS S. Both the directed and undirected version of the problem
are NP-complete [19] and have been extensively studied from the perspective
of approximation algorithms [3,15], parameterized algorithms [8,11,23], exact
exponential time algorithms [25,28] as well as graph theory [14,26].

Supported by National Natural Science Foundation of China under Grant No.
11901605, No. 11901292, No. 71801232, No. 12101069, the disciplinary funding of Cen-
tral University of Finance and Economics, the Emerging Interdisciplinary Project of
CUFE, the Fundamental Research Funds for the Central Universities and Innovation
Foundation of BUPT for Youth (500421358).

c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 687–700, 2021.
https://doi.org/10.1007/978-3-030-92681-6_54

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_54&domain=pdf
https://orcid.org/0000-0002-8593-0383
https://orcid.org/0000-0001-9141-146X
https://orcid.org/0000-0003-1729-5960
https://doi.org/10.1007/978-3-030-92681-6_54

688 Z. Tang et al.

There are several reasons why minimizing FVS is the one of the most
central problem in algorithm design and parameterized complexity: First and
foremost, the main point of parameterized complexity, being that in many
instance the parameter k of the FVS’s size is small, is very applicable for FVS:
In the instances arising from e.g. resolving deadlocks in systems of processors [4],
or from Bayesian inference or constraint satisfaction, one is only interested in
whether small FVS’s exist [5,12,27]. Second, minimizing FVS is a very natural
graph modification problem (remove/add few vertices/edges to make the graph
satisfy a certain property) that serves as excellent starting point for many other
graph modification problems such a planarization or treewidth-deletion (see e.g.
[20] for a recent overview). Third, FVS and many of its variants (see e.g. [22])
admit elegant duality theorems such as the Erdös-Pośa property; understanding
their use in designing algorithms can be instrumental to solve many problems
different from FVS faster. The popularity of FVS also led to work on a broad
spectrum of its variations such as Subset, Group, Connected, Simultaneous, or
Independent FVS (see for example [1] and the references therein).

The combinatorial bound on the number of FVS’s is of independent interest.
One of the very natural questions in graph theory is: how many minimal (maxi-
mal) vertex subsets satisfying a given property can be contained in a graph on n
vertices? The trivial bound is O(2n/

√
n) (which is roughly the maximum num-

ber of subsets of an n-set such that none of them is contained in the other). For
general directed graphs, no non-trivial upper bounds on the number of minimal
FVSs are known. For undirected graphs, Fomin et al. [17] showed that any undi-
rected graph on n vertices contains at most 1.8638n minimal FVSs, and that
infinitely many graphs have 105n/10 > 1.5926n minimal FVSs. Lower bounds of
roughly log n on the size of a maximum-size acyclic subtournament have been
obtained by Reid and Parker [21] and Neumann-Lara [24].

The main objective of this paper is a study of FVS on hypergraphs. A hyper-
graph is a set family H with a universe V (H) and a family of hyperedges E(H),
where each hyperedge is a subset of V (H). If every hyperedge in E(H) is of size
at most d, it is known as a d-hypergraph. Observe that if each hyperedge is of
size exactly two, we get an undirected graph. There are many classical books
in hypergraph theory [2,3,6,7,13,14,16,17]. The natural question is, how does
FVS generalize to hypergraphs. Formally, Let H = (V,E) be a hypergraph with
vertex set V and edge set E. S ⊆ V is a feedback vertex set (FVS) of H if H\S
has no cycle and τc(H) denote the minimum cardinality of a FVS in H. However,
there is very little study of FVS on hypergraphs. The only known algorithmic
result is a factor d approximation for FVS on d-hypergraphs [18]. Upper bounds
on minimum FVS in 3-uniform linear hypergraphs are studied in [9,10].

In this paper, we consider the feedback vertex set (FVS) in hypergraphs.
Chen et al. [9,10] has proven if H is a 3-uniform linear hypergraph with m
edges, then τc(H) ≤ m/3. In this paper, we furthermore characterize all the
extremal hypergraphs with τc(H) = m/3 holds (as shown in Fig. 1).

The main content of the article is organized as follows:

– In Sect. 2, the basic concepts and the symbols in hypergraphs are introduced.

Feedback Number of 3-Uniform Linear Extremal Hypergraphs 689

(a) Vertex (b) Triangle (c) Double-Triangle (d) Double-Square

(e) Triangle
Claw 1

(f) Triangle
Claw 2

(g) Triangle
Claw 3

(h) Triangle
Claw 4

(i) Triangle
Claw 5

Fig. 1. Nine possible hypergraphs of every component

– In Sect. 3, we characterize all the extremal hypergraphs with τc(H) = m/3
holds. Actually, it is easy to prove that for any extremal hypergraph, the
maximum degree is no more than 3.

– In Subsect. 3.1, we characterize all the extremal hypergraphs with max-
imum degree smaller than 3 (as shown in Fig. 1(a)–(d)). The basic idea
is as follows: For any extremal hypergraph with maximum degree smaller
than 3, let us do a series of edge deletion operations and keep the proper-
ties of extremal hypergraphs in the process. The edge deletion operations
run recursively and the number of edges is decreasing, thus finally we get
some isolated vertices. Because the extremal hypergraphs are always kept
during the execution of the process, we trace the process back and get all
the extremal hypergraphs with maximum degree smaller than 3.

– In Subsect. 3.2, we characterize all the extremal hypergraphs with max-
imum degree 3 (as shown in Fig. 1). The basic idea is as follows: For
any extremal hypergraph with maximum degree 3, let us do a series of
3-degree vertex deletion operations and keep the properties of extremal
hypergraphs in the process. The 3-degree vertex deletion operations run
recursively and finally we get an extremal hypergraph with maximum
degree smaller than 3 (as shown in Fig. 1(a)–(d)). Then we trace the pro-
cess back and get all the extremal hypergraphs with maximum degree
3. It is worth noting that in the tracing back process, graph theoretical
analysis and numerical calculation are combined.

– In Sect. 4, the conclusions are summarized and some future works are pro-
posed.

2 Hypergraphs

Let H = (V,E) be a hypergraph with vertex set V and edge set E. For each
vertex v ∈ V , the degree d(v) is the number of edges in E that contains v.

690 Z. Tang et al.

We say v is an isolated vertex of H if d(v) = 0. Hypergraph H is k-regular if
each vertex’s degree is k (d(v) = k,∀v ∈ V). Hypergraph H is k-uniform if each
edge contains exactly k vertices (|e| = k,∀e ∈ E). Hypergraph H is called linear
if any two distinct edges have at most one common vertex (|e∩f | ≤ 1,∀e, f ∈ E).

Let k ≥ 2 be an integer. A cycle of length k, denoted as k-cycle, is a vertex-
edge sequence C = v1e1v2e2 · · · vkekv1 with: (1) {e1, e2, . . . , ek} are distinct edges
of H. (2) {v1, v2, . . . , vk} are distinct vertices of H. (3) {vi, vi+1} ⊆ ei for each
i ∈ [k], here vk+1 = v1. We consider the cycle C as a sub-hypergraph of H with
vertex set {vi, i ∈ [k]} and edge set {ej , j ∈ [k]}. For any vertex set S ⊆ V , we
write H\S for the sub-hypergraph of H obtained from H by deleting all vertices
in S and all edges incident with some vertices in S. For any edge set A ⊆ V , we
write H\A for the sub-hypergraph of H obtained from H by deleting all edges in
A and keeping vertices. If S is a singleton set s, we write H\s instead of H\{s}.

We say S ⊆ V is a feedback vertex set (FVS) of H if it intersects every
cycle’s vertex set in H. This is equivalent to say that H\S has no cycle and let
us denote τc(H) as the minimum cardinality of a FVS in H. In this paper, we
consider the feedback vertex set (FVS) in 3-uniform linear hypergraphs.

3 The 3-Uniform Linear Extremal Hypergraphs

Chen et al. [9,10] has proven if H is a 3-uniform linear hypergraph with m edges,
then τc(H) ≤ m/3. In this paper, we furthermore characterize all the extremal
hypergraphs with τc(H) = m/3 holds. Actually, it is easy to prove for any
extremal hypergraph, the maximum degree is no more than 3. In Subsect. 3.1,
we characterize all the extremal hypergraphs with maximum degree smaller than
3. In Subsect. 3.2, we characterize all the extremal hypergraphs with maximum
degree 3.

Theorem 1 [9,10]. Let H be a 3-uniform linear hypergraph with m edges. Then
τc(H) ≤ m/3.

Corollary 1. Let H be a 3-uniform linear hypergraph with m edges and τc(H) =
m/3, then the maximum degree is no more than 3.

Proof. Suppose the corollary fails. Let us take out a counterexample H = (V,E)
with τc(H) = m/3 and there is a vertex v ∈ V, d(v) ≥ 4. Then τc(H\v) ≤
(m − d(v))/3 ≤ (m − 4)/3. Considering a minimum FVS S of H ′ = H\v,
we have S ⊆ V \v and |S| ≤ (m − 4)/3. Thus S ∪ {v} is a FVS for H and
|S ∪ {v}| = |S| + 1 ≤ (m − 1)/3, this is a contradiction with τc(H) = m/3.

3.1 The Extremal Hypergraphs with Maximum Degree Smaller
Than 3

In Subsect. 3.1, we characterize all the extremal hypergraphs with maximum
degree smaller than 3 (as shown in Fig. 1(a)–(d)). The basic idea is as follows: For
any extremal hypergraph H(V,E), we do a series of edge deletion operations and

Feedback Number of 3-Uniform Linear Extremal Hypergraphs 691

keep the properties of extremal hypergraphs in the process. The edge deletion
operations run recursively and the number of edges is decreasing, thus finally
we derive some isolated vertices. Since the extremal hypergraph is always kept
during the execution of the process, then we trace the process back and get all
the extremal hypergraphs with maximum degree smaller than 3.

Our discussion will frequently use the trivial observation that given a hyper-
graph H(V,E) and an edge subset A in E, if no cycle of H contains any edge
in A, then H and H\A have the same FVS set and τc(H) = τc(H\A). Next, we
will state a useful lemma and begin the proof of our main theorem.

Lemma 1. Two triangles are added together to form a connected 3-uniform
linear hypergraph H(V,E) with maximum degree smaller than 3, then H(V,E)
is an extremal hypergraph if and only if H(V,E) is a 2-regular double-triangle
(as shown in Fig. 1(c)).

Proof. H(V,E) is formed by adding two triangles. Let us denote two triangles
in order of addition as T1, T2. Because H(V,E) is a connected 3-uniform linear
hypergraph with maximum degree smaller than 3, there are only 3 possibilities
as shown in Fig. 2. The only extremal hypergraph is a 2-regular double-triangle.

(1) One common vertex (2) Two common vertices (3) Three common vertices

Fig. 2. Three kinds of double-triangles, classified according to the number of vertices
shared by the two triangles

Theorem 2. Let H be a 3-uniform linear hypergraph with m edges and τc(H) =
m/3. If the maximum degree is smaller than 3, then every component of H is
an isolated vertex, a triangle, a 2-regular double-triangle or a 2-regular square
as shown in Fig. 3.

Proof. Let H be a 3-uniform linear hypergraph with m edges and τc(H) = m/3.
The maximum degree is smaller than 3. We will break the proof into a series of
operations.

Observation 1. Every edge in E is contained in some cycle in H.

692 Z. Tang et al.

(a) Vertex (b) Triangle (c) Double-Triangle (d) Double-Square

Fig. 3. Four possible hypergraphs of every component

If there exists e ∈ E which doesn’t belong to any cycle of H. Then τc(H) =
τc(H\e). According to Theorem 1, we have τc(H\e) ≤ (m− 1)/3. Thus τc(H) ≤
(m − 1)/3, this is a contradiction with τc(H) = m/3.

Let us do a series of edge deletion operations recursively and con-
struct a sub-hypergraph H ′ of H, which is also an extremal hypergraph
with τc(H ′) = m′/3.

Operation 1. Deleting triangles.

Let C = v1e1v2e2v3e3v1 be a triangle. Denote H ′ = H\{e1, e2, e3} and
according to Theorem 1, τc(H ′) ≤ (m − 3)/3. Considering a minimum FVS
S of H ′, we have S ⊆ V and |S| ≤ (m − 3)/3. Because every vertex’s degree is
no more than 2, S ∪ {v1} is a FVS for H (as shown in Fig. 4). Thus we have

m/3 = τc(H) ≤ |S ∪ {v1}| ≤ |S| + 1 = τc(H ′) + 1 ≤ (m − 3)/3 + 1 = m/3

This means τc(H ′) = (m − 3)/3 and H ′ is also an extremal hypergraph.

Fig. 4. The schematic diagram in Operation 1

We do Operation 1 on H until the resulting hypergraph contains no trian-
gles. For the convenience of description, we still denote the new triangle-free
hypergraph as H.

Operation 2. Deleting 1-degree vertices.

If there exists v ∈ V with d(v) = 1 in H, we could assume v ∈ e1.
Due to Observation 1 and Operation 1, we can assume there exists C =
v1e1v2e2v3e3v4 · · · ekv1 with k ≥ 4 in H and e1 = {v1, v, v2}. Denote H ′ =

Feedback Number of 3-Uniform Linear Extremal Hypergraphs 693

H\{e1, e2, e3} and according to Theorem 1, τc(H ′) ≤ (m − 3)/3. Considering a
minimum FVS S of H ′ = H\{e1, e2, e3}, we have S ⊆ V and |S| ≤ (m − 3)/3.
Because every vertex’s degree is no more than 2 and d(v) = 1, we have S ∪ {v3}
is a FVS for H (as shown in Fig. 5). Thus we have

m/3 = τc(H) ≤ |S ∪ {v3}| ≤ |S| + 1 = τc(H ′) + 1 ≤ (m − 3)/3 + 1 = m/3

This means τc(H ′) = (m − 3)/3 and H ′ is also an extremal hypergraph.

Fig. 5. The schematic diagram in Operation 2

Operation 2 may be executed repeatedly. When other operations are exe-
cuted, we need to check whether Operation 2 can be executed.

Operation 3. Deleting 4-cycles.

Let C = v1e1v2e2v3e3v4e4v1 be a 4-cycle in H, we have e1 ∩ e3 = e2 ∩ e4 = ∅
due to Operation 1. We can assume e1 = {v1, u1, v2}, e2 = {v2, u2, v3}, e3 =
{v3, u3, v4}, e4 = {v4, u4, v1} and these vertices are distinct. Due to Operation 2,
we can assume u1 ∈ e5 �= e1, u2 ∈ e6 �= e2, u3 ∈ e7 �= e3 and u4 ∈ e8 �= e4. Due
to Operation 1, we have e5 �= e6, e6 �= e7, e7 �= e8, e8 �= e5.

a If e5 = e7 and e6 = e8, there are two edges e5, e6 connecting u1, u3 and
u2, u4 (as shown in Fig. 6). Let us denote H ′ = H\{e1, e2, e3, e4, e5, e6} and
according to Theorem 1, τc(H ′) ≤ (m − 6)/3. Considering a minimum FVS
S of H ′, we have S ⊆ V and |S| ≤ (m − 6)/3. Because every vertex’s degree
is no more than 2, S ∪ {u1, u2} is a FVS for H. Thus we have

m/3 = τc(H) ≤ |S ∪ {u1, u2}| ≤ |S| + 2 = τc(H ′) + 2 ≤ (m − 6)/3 + 2 = m/3

This means τc(H ′) = (m − 6)/3 and H ′ is also an extremal hypergraph.
b If e5 �= e7, there is no edge connecting u1, u3 (as shown in Fig. 7b). Let us

denote H ′ = H\{e1, e2, e3, e4, e5, e7} and according to Theorem 1, τc(H ′) ≤
(m − 6)/3. Considering a minimum FVS S of H ′, we have S ⊆ V and |S| ≤

694 Z. Tang et al.

a1. e5 and e6 are not adjacent a2. e5 and e6 are adjacent

Fig. 6. The schematic diagrams of a in Operation 3

(m − 6)/3. Because every vertex’s degree is no more than 2, S ∪ {u1, u3} is a
FVS for H. Thus we have

m/3 = τc(H) ≤ |S ∪ {u1, u3}| ≤ |S| + 2 = τc(H ′) + 2 ≤ (m − 6)/3 + 2 = m/3

This means τc(H ′) = (m − 6)/3 and H ′ is also an extremal hypergraph.
c If e6 �= e8, there is no edge connecting u2, u4 (as shown in Fig. 7c). Let us

denote H ′ = H\{e1, e2, e3, e4, e6, e8} and according to Theorem 1, τc(H ′) ≤
(m − 6)/3. Considering a minimum FVS S of H ′, we have S ⊆ V and |S| ≤
(m − 6)/3. Because every vertex’s degree is no more than 2, S{∪u2, u4} is a
FVS for H. Thus we have

m/3 = τc(H) ≤ |S ∪ {u2, u4}| ≤ |S| + 2 = τc(H ′) + 2 ≤ (m − 6)/3 + 2 = m/3

This means τc(H ′) = (m − 6)/3 and H ′ is also an extremal hypergraph.

b . e5 �= e7 c . e6 �= e8

Fig. 7. The schematic diagrams of b and c in Operation 3

Let C = v1e1v2e2 · · · vkekv1 be a shortest cycle in H. For each i ∈ [k], suppose
that ei = {vi, ui, vi+1}, where vk+1 = v1. Due to Operation 1 and 3, we have
k ≥ 5. Because C is the shortest cycle, for each index pair {i �= j} ⊆ [k], if ei
and ej are not adjacent in C, we have ei ∩ ej = ∅.

Feedback Number of 3-Uniform Linear Extremal Hypergraphs 695

Operation 4. Deleting k-cycles with k ≡ 0 (mod 3).

This means k = 3t, t ≥ 2. Let us denote H ′ = H\{e1, e2, . . . , ek} and
according to Theorem 1, τc(H ′) ≤ (m − k)/3. Considering a minimum FVS S
of H ′, we have S ⊆ V and |S| ≤ (m − k)/3. Because every vertex’s degree is no
more than 2, S ∪ {v3, v6, . . . , v3t} is a FVS for H as shown in Fig. 8(1). Thus we
have

m/3 = τc(H) ≤ |S ∪ {v3, v6, . . . , v3t}| ≤ |S| + t = τc(H ′) + t ≤ (m − k)/3 + t

= (m − 3t)/3 + t = m/3

This means τc(H ′) = (m − k)/3 and H ′ is also an extremal hypergraph.

Operation 5. Deleting k-cycles with k ≡ 1 (mod 3).

This means k = 3t + 1, t ≥ 2. Due to Operation 1, 2 and 3, we have
u1 ∈ e3t+2 �= e1, u3 ∈ e3t+3 �= e3 and e1, e2, e3, . . . , ek, e3t+2, e3t+3 are distinct.
Let us denote H ′ = H\{e1, e2, . . . , ek, e3t+2, e3t+3} and according to Theorem 1,
τc(H ′) ≤ (m − k − 2)/3. Considering a minimum FVS S of H ′, we have S ⊆ V
and |S| ≤ (m − k − 2)/3. Because every vertex’s degree is no more than 2,
S ∪ {u1, u3, v6, . . . , v3t} is a FVS for H as shown in Fig. 8(2). Thus we have

m/3 = τc(H) ≤ |S ∪ {u1, u3, v6, . . . , v3t}| ≤ |S| + t + 1 = τc(H ′) + t + 1
≤ (m − k − 2)/3 + t + 1 = (m − 3t − 3)/3 + t + 1 = m/3

This means τc(H ′) = (m − k − 2)/3 and H ′ is also an extremal hypergraph.

Operation 6. Deleting k-cycles with k ≡ 2 (mod 3).

This means k = 3t + 2, t ≥ 2. Due to Operation 1, 2 and 3, we have
u1 ∈ e3t+3 �= e1 and e1, e2, e3, . . . , ek, e3t+3 are distinct. Let us denote H ′ =
H\{e1, e2, . . . , ek, e3t+3} and according to Theorem 1, τc(H ′) ≤ (m − k − 1)/3.
Considering a minimum FVS S of H ′, we have S ⊆ V and |S| ≤ (m − k − 1)/3.
Because every vertex’s degree is no more than 2, S ∪{u1, v4, . . . , v3t+1} is a FVS
for H as shown in Fig. 8(3). Thus we have

m/3 = τc(H) ≤ |S ∪ {u1, v4, . . . , v3t+1}| ≤ |S| + t + 1 = τc(H ′) + t + 1
≤ (m − k − 1)/3 + t + 1 = (m − 3t − 3)/3 + t + 1 = m/3

This means τc(H ′) = (m − k − 1)/3 and H ′ is also an extremal hypergraph.
The algorithm runs recursively and the number of edges is decreasing, thus

finally we get some isolated vertices.
Because the extremal hypergraph is always kept during the execution of the

algorithm, now we trace the algorithm process back. The first backtracking step
tells us the extremal hypergraph is a triangle or a 2-regular square(as shown
in Fig. 3(b)(d)). In other cases, The deleting edges do not form an extremal
hypergraph.

696 Z. Tang et al.

(1) k ≡ 0(mod 3) (2) k ≡ 1(mod 3) (3) k ≡ 2(mod 3)

Fig. 8. The schematic diagrams in Operation 4, 5 and 6

a The first backtracking step is a 2-regular square. Because every vertex’s degree
is no more than 2, the 2-regular square is a component of H. The second
backtracking step is the same as the first backtracking step, which tells us
the extremal hypergraph is also a triangle or a 2-regular square(as shown in
Fig. 3(b)(d)).

b The first backtracking step is a triangle. Because the algorithm process
initially deletes all triangles, more backtracking steps are done by
deleting triangles. According to Lemma 1, each component of H is a tri-
angle or a 2-regular double-triangle (as shown in Fig. 3(b)(c)).

After all steps of the backtracking process, the hypergraph H is restored and
every component of H is an isolated vertex, a triangle, a 2-regular double-triangle
or a 2-regular square (as shown in Fig. 3).

Procedure 1 demonstrates the complete process of the above proof. The input
is an extremal hypergraph H(V,E) with maximum degree of no more than 2.
Then, we can repeatedly do six edge deletion operations in the proof of Theorem
2, and finally output some isolated vertices.

3.2 The Extremal Hypergraphs with Maximum Degree of 3

This subsection aims to characterize all possible components of extremal hyper-
graphs with maximum degree of 3.

Due to space limitations, we briefly introduce the proof ideas of the main
theorem and omit the proof. First, we can repeatedly delete the 3-degree ver-
tices and their associated edges until we derive a hypergraph whose maximum
degree does not exceed 2. It is easy to show that the extremal properties of the
resulting hypergraphs are always maintained during the deletion process. Next,
we get an extremal hypergraph with maximum degree smaller than 3 (as shown
in Fig. 3). Furthermore, we trace the process back and get all the extremal hyper-
graphs with maximum degree 3 by using the graph theoretical analysis and the
numerical calculation.

Feedback Number of 3-Uniform Linear Extremal Hypergraphs 697

Procedure 1. Convert to a hypergraph consisting of isolated vertices

Input: A 3-uniform linear hypergraph H with m edges that satisfies

τc(H) = m/3 and has the maximum degree of no more than 2.

Output: A hypergraph consisting of isolated vertices.

1: if H is a hypergraph consisting of isolated vertices then

2: return H

3: while H contains triangles do

4: Do Operation 1 on H.

5: while H contains 1-degree vertices do

6: Do Operation 2 on H.

7: if H contains 4-cycles then

8: Do Operation 3 on H.

9: return Procedure 1(H)

10: if H contains k-cycles (k ≥ 5) then

11: if k ≡ 0(mod 3) then

12: Do Operation 4 on H.

13: else if k ≡ 1(mod 3) then

14: Do Operation 5 on H.

15: else

16: Do Operation 6 on H.

17: return Procedure 1(H)

Theorem 3. Let H(V,E) be a 3-uniform linear hypergraph, H is an extremal
hypergraph if and only if each component is an isolated vertex, a triangle, a
2-regular double-triangle, a 2-regular square or one of 3-degree extremal hyper-
graphs(as shown in Fig. 9).

698 Z. Tang et al.

(a) Vertex (b) Triangle (c) Double-Triangle (d) Double-Square

(e) Triangle
Claw 1

(f) Triangle
Claw 2

(g) Triangle
Claw 3

(h) Triangle
Claw 4

(i) Triangle
Claw 5

Fig. 9. Nine possible hypergraphs of every component

4 Conclusion and Future Work

In this paper, we consider the feedback vertex set (FVS) in 3-uniform linear
hypergraphs. We characterize all the extremal hypergraphs with τc(H) = m/3
holds (as shown in Fig. 9). This is a supplement for the result in [9,10] which
states for any 3-uniform linear hypergraph H,τc(H) ≤ m/3 holds. It is interesting
and worthwhile to consider the similar bounds for k-uniform linear hypergraphs
with k ≥ 4 and also characterize all the extremal hypergraphs.

Acknowledges. The authors are very indebted to Professor Xujin Chen and Professor
Xiaodong Hu for their invaluable suggestions and comments.

References

1. Agrawal, A., Gupta, S., Saurabh, S., Sharma, R.: Improved algorithms and com-
binatorial bounds for independent feedback vertex set. In: Guo, J., Hermelin, D.
(eds.) 11th International Symposium on Parameterized and Exact Computation
(IPEC 2016). LIPIcs, Aarhus, Denmark, vol. 63, pp. 2:1–2:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2016)

2. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley-Interscience Series in
Discrete Mathematics and Optimization, 3rd edn. Wiley, New York (2008)

3. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected
feedback vertex set problem. SIAM J. Discrete Math. 12(3), 289–297 (1999)

4. Bar-Yehuda, R., Geiger, D., Naor, J., Roth, R.M.: Approximation algorithms for
the feedback vertex set problem with applications to constraint satisfaction and
Bayesian inference. SIAM J. Comput. 27(4), 942–959 (1998)

5. Becker, A., Bar-Yehuda, R., Geiger, D.: Randomized algorithms for the loop cutset
problem. J. Artif. Intell. Res. 12, 219–234 (2000)

6. Berge, C.: Hypergraphs - Combinatorics of Finite Sets. North-Holland Mathemat-
ical Library, vol. 45. North-Holland, Amsterdam (1989)

Feedback Number of 3-Uniform Linear Extremal Hypergraphs 699

7. Brualdi, R.A.: Introductory Combinatorics, 5th edn. Pearson Education, London
(2009)

8. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm
for the directed feedback vertex set problem. J. ACM 55(5), 21:1–21:19 (2008)

9. Chen, X., Diao, Z., Hu, X., Tang, Z.: Sufficient conditions for Tuza’s conjecture on
packing and covering triangles. In: Mäkinen, V., Puglisi, S.J., Salmela, L. (eds.)
IWOCA 2016. LNCS, vol. 9843, pp. 266–277. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-44543-4 21

10. Chen, X., Diao, Z., Hu, X., Tang, Z.: Covering triangles in edge-weighted graphs.
Theory Comput. Syst. 62(6), 1525–1552 (2018). https://doi.org/10.1007/s00224-
018-9860-7

11. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Woj-
taszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single
exponential time. In: Ostrovsky, R. (ed.) IEEE 52nd Annual Symposium on Foun-
dations of Computer Science (FOCS 2011), Palm Springs, CA, USA, pp. 150–159.
IEEE Computer Society (2011)

12. Dechter, R.: Enhancement schemes for constraint processing: backjumping, learn-
ing, and cutset decomposition. Artif. Intell. 41(3), 273–312 (1990)

13. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn.
Springer, Heidelberg (2012)

14. Erdös, P., Pósa, L.: On independent circuits contained in a graph. Can. J. Math.
17, 347–352 (1965)

15. Even, G., Naor, J.S., Schieber, B., Sudan, M.: Approximating minimum feedback
sets and multi-cuts in directed graphs. In: Balas, E., Clausen, J. (eds.) IPCO 1995.
LNCS, vol. 920, pp. 14–28. Springer, Heidelberg (1995). https://doi.org/10.1007/
3-540-59408-6 38

16. Festa, P., Pardalos, P.M., Resende, M.G.C.: Feedback set problems. In: Du, D.Z.,
Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, pp. 209–258.
Springer, Boston (1999). https://doi.org/10.1007/978-1-4757-3023-4 4

17. Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback
vertex set problem: exact and enumeration algorithms. Algorithmica 52(2), 293–
307 (2008). https://doi.org/10.1007/s00453-007-9152-0

18. Fujito, T.: Approximating minimum feedback vertex sets in hypergraphs. Theor.
Comput. Sci. 246(1–2), 107–116 (2000)

19. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

20. Gupta, A., Lee, E., Li, J., Manurangsi, P., Wlodarczyk, M.: Losing treewidth by
separating subsets. In: Chan, T.M. (ed.) Proceedings of the Thirtieth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2019), San Diego, California,
USA, pp. 1731–1749. SIAM (2019)

21. Kenneth Brooks, R., Ernest Tilden, P.: Disproof of a conjecture of Erdös and Moser
on tournaments. J. Comb. Theory 9(3), 225–238 (1970)

22. Kim, E.J., Kwon, O.: Erdős-Pósa property of chordless cycles and its applications.
J. Comb. Theory Ser. B 145, 65–112 (2020)

23. Kociumaka, T., Pilipczuk, M.: Faster deterministic feedback vertex set. Inf. Pro-
cess. Lett. 114(10), 556–560 (2014)

24. Neumann-Lara, V.: A short proof of a theorem of Reid and Parker on tournaments.
Graphs Comb. 10(2–4), 363–366 (1994). https://doi.org/10.1007/BF02986686

25. Razgon, I.: Computing minimum directed feedback vertex set in o(1.9977n). In:
Italiano, G.F., Moggi, E., Laura, L. (eds.) 10th Italian Conference on Theoretical
Computer Science (ICTCS 2007), Rome, Italy, pp. 70–81. World Scientific (2007)

https://doi.org/10.1007/978-3-319-44543-4_21
https://doi.org/10.1007/978-3-319-44543-4_21
https://doi.org/10.1007/s00224-018-9860-7
https://doi.org/10.1007/s00224-018-9860-7
https://doi.org/10.1007/3-540-59408-6_38
https://doi.org/10.1007/3-540-59408-6_38
https://doi.org/10.1007/978-1-4757-3023-4_4
https://doi.org/10.1007/s00453-007-9152-0
https://doi.org/10.1007/BF02986686

700 Z. Tang et al.

26. Reed, B.A., Robertson, N., Seymour, P.D., Thomas, R.: Packing directed circuits.
Combinatorica 16(4), 535–554 (1996). https://doi.org/10.1007/BF01271272

27. Wang, C., Lloyd, E.L., Soffa, M.L.: Feedback vertex sets and cyclically reducible
graphs. J. ACM 32(2), 296–313 (1985)

28. Xiao, M., Nagamochi, H.: An improved exact algorithm for undirected feed-
back vertex set. J. Comb. Optim. 30(2), 214–241 (2014). https://doi.org/10.1007/
s10878-014-9737-x

https://doi.org/10.1007/BF01271272
https://doi.org/10.1007/s10878-014-9737-x
https://doi.org/10.1007/s10878-014-9737-x

A Multi-pass Streaming Algorithm
for Regularized Submodular

Maximization

Qinqin Gong1, Suixiang Gao2, Fengmin Wang3, and Ruiqi Yang2(B)

1 Department of Operations Research and Information Engineering,
Beijing University of Technology, Beijing 100124, People’s Republic of China
2 School of Mathematical Sciences, University of Chinese Academy Sciences,

Beijing 100049, People’s Republic of China
{sxgao,yangruiqi}@ucas.ac.cn

3 Beijing Jinghang Research Institute of Computing and Communication,
Beijing 100074, People’s Republic of China

Abstract. In this paper, we consider a problem of maximizing regular-
ized submodular functions with a k-cardinality constraint under stream-
ing fashion. In the model, the utility function f(·) = g(·)−�(·) is expressed
as the difference between a non-negative monotone non-decreasing sub-
modular function g and a non-negative modular function �. In addition,
the elements are revealed in a streaming setting, that is to say, an ele-
ment is visited in one time slot. The problem asks to find a subset of size
at most k such that the regularized utility value is maximized. Most of
the existing algorithms for the submodular maximization heavily rely on
the non-negativity assumption of the utility function, which may not be
applicable for our regularized scenario. Indeed, determining if the max-
imum is positive or not is NP-hard, which implies that no multiplica-
tive factor approximation is existed for this problem. To circumvent this
challenge, several works paid attention to more meaningful guarantees
by introducing a slightly weaker notion of approximation, and any devel-
oped algorithm is aim to construct a solution S satisfying f(S) ≥ ρ ·
g(OPT) − �(OPT) for some ρ > 0. In this work, assume there is a weak
ρ-approximation for the k-cardinality constrained regularized submod-
ular maximization, we develop Distorted-Threshold-Streaming, a multi-
pass bicriteria algorithm for the streaming regularized submodular maxi-
mization with the k-cardinality constraint (SRSMCC), which produces a
(ρ/λ, 1/λ)-bicriteria approximation by making over O(log(λ/ρ)/ε) passes,
consuming O(k) memory and using O(log(λ/ρ)/ε) queries per element,

where λ = 2−(2ρ+2)/(3+
√
5−4ρ)

(3+
√
5−4ρ)/(2ρ+2)−1

and any accuracy parameter ε > 0.

Keywords: Submodular maximization · Stream model · Streaming
algorithms · Threshold-based · Multi-pass

1 Introduction

Submodularity, an intuitive notion of diminishing returns, plays an important
role in set function optimization and has been extensively studied in previous
c© Springer Nature Switzerland AG 2021
D.-Z. Du et al. (Eds.): COCOA 2021, LNCS 13135, pp. 701–711, 2021.
https://doi.org/10.1007/978-3-030-92681-6_55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92681-6_55&domain=pdf
https://doi.org/10.1007/978-3-030-92681-6_55

702 Q. Gong et al.

literature. Data summarization, a central task considered in machine learning,
involves maximizing a utility function, which selects representative subsets of
manageable size out of large data sets. From the optimization perspective, the
data summarization can be turned into the problem of selecting a subset of
data elements that equipped with a submodular utility function that quantifies
representativeness of the selected set.

We investigate the previous works for the constrained submodular maximiza-
tion in this part. Since the unconstrained submodular maximization in mono-
tonic case can be readily implemented, we ignore it in the following sections. In
rest of this paper, we mainly pay attention to the monotonic setting through-
out our context and will not always mention it for clarity. The k-cardinality
constrained submodular maximization has been well studied and has deep the-
oretical and practical results. The submodular maximization subject to a cardi-
nality constraint (SMCC), which can be stated as arg maxS⊆Ω,|S|≤k g(S), where
g : 2Ω → R+ is a non-negative monotone non-decreasing submodular function
and k denotes an input parameter of size. An elegant greedy algorithm was pro-
posed by Nemhauser et al. [16], which starts with an empty set and iteratively
locates the element with maximal marginal benefit. Finally, it returns a (1−e−1)-
approximation in O(nk) time. The hardness was proved by Feige [4], that is to
say, for any ε > 0, there exists no (1−e−1+ε)-approximation algorithm for SMCC
unless P = NP. Knapsack extends the cardinality constraint by encoding each
element with a size and a profit values and the submodular maximization with
a knapsack constraint (SMKC), is formally denoted by arg maxS⊆Ω,c(S)≤K g(S),
where c(S) denotes the size of subset S and K denotes the input parameter of
knapsack budget. Sviridenko [19] combined the enumeration with greedy tech-
nique and novelly presented a tight (1 − e−1)-approximation in O(n5k) time for
SMKC. A more general matroid system is denoted by a two-tuple (Ω, I), which
satisfies the following three properties:

1. I is a collection of subsets chosen from Ω, further ∅ ∈ I.
2. Consider A ∈ I, then any A′ ⊆ A holds A′ ∈ I.
3. For any two A,B ∈ I and |A| < |B|, there must exist an element u ∈ B\A

satisfying A ∪ {u} ∈ I.

Formally, the two-tuple (Ω, I) is defined as an independence system if it
justly holds the first two properties and each subset belong to I is called as an
independent set. The base of an independence system is shortly defined as the
maximal size of independent sets. The k-cardinality is usually described as the
union matroid, since its basis are exactly equal to k. For the submodular maxi-
mization with a matroid constraint (SMMC), it means to say the family of the
feasible solution sets constructing a matroid system. Fisher et al. [8] provided a
greed-based determined 0.5-approximation for the SMMC. Further, Calinescu et
al. [3] developed a continuous greedy algorithm, which produces a randomized
(1−e−1)-approximation. A similar result presented by Lee et al. [12], which built
up a local search by introducing a novelly potential function. Recently, a break-
out work was given by Buchbinder et al. [2], which developed a new split and
derandomization techniques and obtained a determined 0.5008-approximation

A Multi-pass Streaming Algorithm for RSMCC 703

for the SMMC. With the development of the study and the extensive application,
researchers are interesting more general or mixed constraints, such as k-exchange
system [7], k-system [6], knapsack mixing together matroid system [18], k-system
merging with knapsack [14], and just name a few.

Notice that the aforementioned studies are optimized under the non-negativity
assumption. Indeed, with the help of the monotonicity assumption in prior, it may
give rise to a danger of over-fitting to the solution since adding more elements can
never hurt the utility. Kazemi et al. [10] formally defined a version of regularized
submodular maximization by adding a modular penalty or regularizer term, which
is denoted by arg maxS⊆Ω,S∈I g(S) − �(S), where � : 2Ω → R+ denotes a non-
negative modular function and I denotes a some constraint, such as k-cardinality,
knapsack, matroid constraints and so on. Consider the regularized submodular
maximization with a k-cardinality constraint (RSMCC), as the objective loses
non-negativity and monotonicity, the previous algorithms do not readily apply
to this regularized setting. In fact, the maximum can not be determined in poly-
nomial time under the assumption P �= NP, which implies no multiplicative factor
approximation is existed. Then a meaningful weaker notion of approximation was
considered and we say an algorithm gets a weak ρ-approximation for the RSMCC,
if it can construct a solution set S such that

g(S) − �(S) ≥ ρ · g(OPT) − �(OPT),

where OPT ∈ arg maxS⊆Ω,|S|≤k[g(S) − �(S)] denotes an optimum solution. To
incorporate our setting, we consider a bicriteria approximation introduced in [22],
to evaluate the quality of a solution. We restate the definition as follows.

Definition 1 [22]. For any λ1, λ2 > 0, an algorithm is a (λ1, λ2)-bicriteria
approximation for the constrained regularized submodular maximization, if it can
produce a solution S satisfying

g(S) − �(S) ≥ λ1 · g(OPT) − λ2 · �(OPT),

where OPT ∈ arg maxS⊆Ω,S∈I g(S) − �(S) is an optimum solution.

Obviously, the above weak ρ-approximation is (ρ, 1)-bicriteria approxima-
tion in terms of the bicriteria approximation view. In addition, we focus on the
submodular maximization with an another streaming twist. Assuming elements
arrive in a streaming fashion is a popular style in dealing with the submodular
maximization at scale and it also has been extensively studied in literatures. It
is very different from the previous investigated offline centralized scenarios. At
any point of time, one has access only to a small fraction of elements stored in
primary memory. The performance guarantees of any streaming algorithm are
formally introduced in [1], we restate the four basic parameters as following:
pass made by algorithm to access the entire stream, the approximation ratio,
memory and query complexities produced by the algorithm.

Our Contribution. In this work, we consider the streaming regularized sub-
modular maximization with a k-cardinality constraint (SRSMCC), which is

704 Q. Gong et al.

asked to find a subset of size at most k from the stream that maximizes g(·)−�(·),
where g is a non-negative monotone submodular function and � denotes a non-
negative modular function.

Notice that the threshold-based technique has been successfully applied to the
streaming submodular optimization setting. Indeed, most of the existing thresh-
old strategies are determined by the optimum, but which can not be accessed
a prior. To implement the procedures, the previous works found in [1,11,15],
preferred to lazily guess the optimal threshold values, which gave rise to the
increment of memory complexity. In our method, we assume one can access a
weak ρ-approximation for the SRSMCC for some ρ > 0. Namely, we have an
approximate value Γ such that Γ ≥ ρ · g(OPT) − �(OPT), where OPT rep-
resents any optimum solution. We initially set threshold value as Γ/(ρk) and
utilize a threshold decreasing strategy with a (1 − ε) fraction for any ε > 0
during any iteration. In order to ensure the algorithm can be effectively ter-
minated, we also install a lower bound of the thresholds, denoted by Γ/(λk),
where λ is a parameter to be determined in following sections. Based on the
above ideas, we develop a multi-pass streaming algorithm named as Threshold-
Decrease-Streaming, which is summarized as Algorithm 1. Theorem 1 guarantees
the performance of Threshold-Decrease-Streaming.

Theorem 1. Let λ = 2−(2ρ+2)/(3+
√
5−4ρ)

(3+
√
5−4ρ)/(2ρ+2)−1

. Assume there exists a ρ-
approximation A for RSMCC, Threshold-Decrease-Streaming gets a (ρ/λ, 1/λ)-
bicriteria approximation for the SRSMCC. That is to say, there exists a stream-
ing algorithm, which produces a solution S of size at most k such that

g(S) − �(S) ≥ ρ

λ
· g(OPT) − 1

λ
· �(OPT).

We restate the previous studies for SRSMCC and readily derive the following
corollary by the result of Theorem 1.

Corollary 1. Consider ρ = 0.384, presented in [10], then Threshold-Decrease-
Streaming gives a solution S ⊆ Ω of size at most k satisfying

g(S) − �(S) ≥ 0.203 · g(OPT) − 0.529 · �(OPT).

In addition, consider ρ = 0.632, presented in [9], then Threshold-Decrease-
Streaming gives a solution S ⊆ Ω of size at most k satisfying

g(S) − �(S) ≥ 0.199 · g(OPT) − 0.317 · �(OPT).

1.1 Related Work

Streaming model is a popular topic for large scale optimization and has been
extensively studied in submodular maximization. The works developed in prior
crucially depended on the threshold techniques, which usually initiated a proper
(adaptive) threshold for any arriving element and filtered the elements that are
lower than the beforehand threshold values.

A Multi-pass Streaming Algorithm for RSMCC 705

Streaming Submodular Maximization.. For maximizing the streaming sub-
modular with a k-cardinality constraint, Badanidiyuru et al. [1] provided a one
pass (1/2− ε)-approximation with O(k log(k)/ε) memory and O(k log k) queries
per element. In practical, they used a threshold value of 1/(2k) fraction to the
optimum in their threshold-based algorithm. Although the optimum can not
be accessed in advance, they developed a lazily guessing step by increasing a
O(log k) factor to memory complexity. By guessing a more tighter threshold
value, Kazemi et al. [11] presented a streaming algorithm with an improved mem-
ory complexity of O(k/ε) and the other parameters are maintained. Norouzi-Fard
et al. [17] developed a piecewise threshold strategy and yielded a multi-pass
streaming algorithm for this streaming SMCC model.

Regularized Submodular Maximization (RSM). We further consider a
another regularized twist. Most of the existing algorithms for submodular max-
imization emphasized that the utility function to take only non-negative val-
ues, which may not be applicable for the regularized scenario. Now we give
a briefly investigation for the developing of algorithms for the regularized sub-
modular maximization. Following from the fact of the regularized objective func-
tion is potentially negative, there must exist no multiplicative factor approxima-
tion algorithm for the RSM. Researchers mainly pay attention to develop weak
approximation algorithms stated in previous section.

A prior work presented in [20], first studied an equivalent regularized sub-
modular maximization with the matroid constraint. It can be formally restated
as arg maxS⊆Ω,S∈I [g(S) + �(S)], where (Ω, I) constructs a matroid system,
g : 2Ω → R+ denotes a non-negative monotone submodular function, but
� : 2Ω → R+ denotes a modular function that may be negative. They individ-
ually presented two modified continuous greedy and non-oblivious local search,
both of which can attain a same weak (1 − e−1)-approximation with a tail term
of O(ε) for any ε > 0. Feldman [5] provided a distorted continuous greedy that
avoids the guessing step and keeps the same weak (1 − e−1)-approximation.
For the RSMCC, Harshaw et al. [9] introduced a novelty distorted greedy,
which greedily selects elements during iterations with the maximum distorted
marginal gains. The distorted algorithm produced a weak approximation with
ρ = (1 − e−1) in time of O(nk). In addition, they also gave a faster randomized
distorted algorithm which obtains a weak (1−e−1−ε)-approximation in expecta-
tion with time of O(n/ε log2(1/ε)). Further, a hardness result of approximation
was proved, namely, for any ε > 0, there exists no ρ-approximation for some
ρ ≥ 1 − e−1 + ε for RSMCC unless P = NP. Lu et al. [13] studied a regularized
non-monotone submodular maximization with a matroid constraint denoted as
arg maxS⊆Ω,S∈I [g(S) − �(S)], where g : 2Ω → R+ denotes a non-negative non-
monotone submodular function. They presented a continuous greedy which can
construct a weak e−1-approximation in expectation with a tail of O(ε). When the
matroid is reduced to a cardinality constraint, they gave a much faster (e−1−ε)-
approximation in expectation in time of O((n/ε2) ln(1/ε)). In addition, they also
derived a randomized e−1-approximation in expectation with O(n) time. The
aforementioned algorithms were addressed to the non-adaptive setting where

706 Q. Gong et al.

one must select a group of elements all at once, Tang and Yuan [21] introduced
an adaptive regularized submodular under the k-cardinality constraint. They
individually provided (1 − e−1)-approximation policy and e−1-approximation
policy in expectation according to the cases of g(·) is adaptive monotone sub-
modular and g(·) is general adaptive submodular. Kazemi et al. [10] first studied
the streaming submodular maximization with the k-cardinality constraint and
provided a distorted threshold-based streaming algorithm, which derives a weak
approximation with ρ = 0.384. Recently, Wang et al. [22] considered an extended
regularized γ-weakly submodular maximization without any constraint and pre-
sented a series of bicriteria algorithms.

Organization. The rest of the paper is organized as follows. Section 2 gives nec-
essary preliminaries. Section 3 provides Threshold-Decrease-Streaming and the
theoretical analysis are summarized in Sect. 4. In last, Sect. 5 offers a conclusion
for our work.

2 Preliminaries

We consider a ground set Ω, which is a collection of elements. We study a
streaming fashion in this model. Here the input is revealed element-by-element
to an algorithm that has a limited memory capacity. We restate a non-negative
monotone submodular function aforementioned in lots of previous work. For any
two sets A,B ⊆ Ω, the function g : 2Ω → R+ is defined as

g(A) + g(B) ≥ g(A ∪ B) + g(A ∩ B).

In addition, the marginal gain of A with respect to B is denoted by g(B|A) =
g(A∪B)−g(A) and g(u|A) = g(A∪{u})−g(A) for clarity. We say g is monotonic
if for any element u ∈ Ω and any set A ⊆ Ω, it holds that g(u|A) ≥ 0.

Formally, we consider a problem of regularized submodular maximization,
which is casted as

max
S⊆Ω,|S|≤k

g(S) − �(S), (1)

where �(A) =
∑

u∈A �({u}) is a non-negative monotone modular function.
Throughout our paper, we assume that g and � are given in terms of a value

oracle which compute g(A) and �(A) for any set A.

3 Algorithm

In this section, we present our streaming algorithm for SRSMCC. The proposed
algorithm is summarized as Algorithm 1.

Let A be a weak ρ-approximation algorithm for maximizing regular-
ized submodular maximization under a k-cardinality constraint. Threshold-
Decrease-Streaming runs A to construct a solution set A(S) such that Γ =

A Multi-pass Streaming Algorithm for RSMCC 707

Algorithm 1. Threshold-Decrease-Streaming
1: Initialization Evaluation oracles g : 2Ω → R+ and � : 2Ω → R+, integer k,

ρ-approximation A, and an approximation value Γ satisfying Γ ≥ ρ · g(OPT) −
�(OPT). Set parameters of β = 3+

√
5−4ρ

2(ρ+1)
(> 1), λ = 2−(2ρ+2)/(3+

√
5−4ρ)

(3+
√
5−4ρ)/(2ρ+2)−1

.

2: Let S ← ∅, τ ← Γ/(ρk)
3: while τ ≥ (1 − ε)Γ/(λk) do
4: τ ← (1 − ε)τ
5: for each element u ∈ Ω do
6: if g(u|S) − β · �(u) ≥ τ then
7: S ← S + u
8: end if
9: if |S| = k then

10: return S
11: end if
12: end for
13: end while
14: return S

g(A(S))−�(A(S)). As input, the algorithm Threshold-Decrease-Streaming takes
an instance (g, �, k) of Problem (1), a weak approximate value Γ obeying

g(OPT) − �(OPT) ≥ Γ ≥ ρ · g(OPT) − �(OPT),

where OPT ∈ arg maxS⊆Ω,|S|≤k g(S)−�(S) denotes for the regularized submod-
ular maximization under a k-cardinality constraint.

The algorithm works by making one pass through the ground set Ω for each
threshold value τ and any element u with distorted marginal gain

g(u|S) − β · �(u) ≥ τ

will be added to solution set S, where β = 3+
√
5−4ρ

2(ρ+1) . The maximum and min-
imum threshold values are determined by Γ, ρ, and k. The procedure initial-
izes τ = Γ/(ρk) and terminates if τ < (1 − ε)Γ/(λk), where λ is setting by
λ = 2−(2ρ+2)/(3+

√
5−4ρ)

(3+
√
5−4ρ)/(2ρ+2)−1

. The algorithm starts with an empty set S = ∅ and
beaks if |S| = k. Otherwise, the algorithm will terminate and return the solu-
tion S at most O(log(λ/ρ)/ε) passes when the lower bound of the thresholds is
reached.

4 Theoretical Analysis

Our analysis mainly depends on the following two cases. Consider the case that
at termination |S| = k, in which the solution S reaches the maximum possible
size k. In this case, following by submodularity of g, we know that each of these
elements has a large marginal contribution. Now we formally describe this case
as the following lemma.

708 Q. Gong et al.

Lemma 1. If |S| = k, then g(S) − �(S) ≥ 1
λ · [(ρ − ε) · g(OPT) − �(OPT)].

Proof. W.l.o.g., S = {u1, ..., uk}, which is ordered by the addition of elements
to S, and let S0 = ∅. Observe that

g(S) − β · �(S) =
k∑

i=1

[g(ui|Si−1) − β · �(ui)]

≥
k∑

i=1

τi

≥ 1 − ε

λ
· Γ

≥ 1 − ε

λ
· [ρ · g(OPT) − �(OPT)]

≥ 1
λ

· [(ρ − ε) · g(OPT) − �(OPT)],

where τi denotes the threshold encountered by adding element ui. Note that there
may exist many added elements met a same threshold. Since β = 3+

√
5−4ρ

2(ρ+1) ≥ 1,
we now get

g(S) − �(S) ≥ g(S) − β · �(S) ≥ 1
λ

· [(ρ − ε) · g(OPT) − �(OPT)].

The following lemma gives the approximation of Algorithm 1 for the case
|S| < k, in which the solution S dose not reach its maximum size k when the
stream finishes.

Lemma 2. If |S| < k, then g(S) − �(S) ≥ ρ
λ · g(OPT) − 1

λ · �(OPT).

Proof. Consider any arbitrary element u ∈ OPT\S. From the fact that the
element u was not added to S and |S| < k, for any pass, one can conclude that

g(u|Su) − β · �(u) ≤ τ0,

where Su represents the set S at the time of encountering u and τ0 = (1 − ε)[ρ ·
g(OPT) − �(OPT)]/(λk) as the lower bound of thresholds. Following submodu-
larity, we further get

g(u|S) − β · �(u) ≤ τ0.

Adding the above inequality over all elements u ∈ OPT\S implies

g(OPT) − g(S) − β · �(OPT) ≤ g(OPT |S) − β · �(OPT)

≤
∑

u∈OPT\S

g(u|S) − β · �(u)

≤ |OPT\S| · τ0
≤ 1

λ
· [g(OPT) − �(OPT)]. (2)

A Multi-pass Streaming Algorithm for RSMCC 709

The first inequality follows by the monotonicity of g, the second derives by the
submodularity of g and the non-negativity of �. Rearranging the inequality (2),
we obtain

g(S) ≥
(

1 − 1
λ

)

· g(OPT) −
(

β − 1
λ

)

· �(OPT). (3)

In addition, for any τ > 0, we easily yield

g(S) − β · �(S) ≥
|S|∑

i=1

τi ≥ 0. (4)

Adding a fraction 1/β of the inequality (4) to a 1−1/β fraction of the inequality
(3) yields

g(S) − �(S) ≥
(

1 − 1
β

) (

1 − 1
λ

)

· g(OPT) −
(

1 − 1
β

)(

β − 1
λ

)

· �(OPT)

=
ρ

λ
· g(OPT) − 1

λ
· �(OPT),

where the equality holds by the setting of β.

Based on the above two cases presented by Lemmas 1 and 2, we consequently
yield the main result, Theorem 1. In addition, Threshold-Decrease-Streaming will
stop at most O(log(λ/ρ)/ε) passes, consume the O(k) memory, and have at most
O(log(λ/ρ)/ε) queries per element.

5 Conclusion

In this paper, we provided a bicriteria approximation for maximizing a stream-
ing regularized submodular function with a k-cardinality constraint, in which
the utility function was expressed as the difference between a non-negative
monotone non-decreasing submodular function g and a modular function �.
The discussed regularized model has been formally casted as Problem (1).
Utilizing a threshold-based decreasing technique, we developed a multi-pass
streaming algorithm, which produced a bicriteria approximation with a theo-
retical performance guarantee. In our method, we assume there exists a weak
approximate value with ρ-approximation and instigate the threshold values by
the approximate value instead of the optimum discussed in the previous algo-
rithms. And thus we efficiently avoid the guessing steps of the optimum, which
may give rise to the increment of memory complexity. Consider the following
two weak 0.384-approximation and 0.632-approximation, individually presented
in [9] and [10], then there accordingly exist two (0.203, 0.529)-bicriteria and
(0.199, 0.317)-bicriteria approximations for the streaming regularized submodu-
lar maximization with the k-cardinality constraint.

710 Q. Gong et al.

Acknowledgements. The third author is supported by National Natural Science
Foundation of China (No. 11901544). The fourth author is supported by National Nat-
ural Science Foundation of China (No. 12101587), China Postdoctoral Science Founda-
tion (No. 2021M703167) and Fundamental Research Funds for the Central Universities
(No. EIE40108X2).

References

1. Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A., Krause, A.: Streaming sub-
modular maximization: massive data summarization on the fly. In: Proceedings of
SIGKDD, pp. 671–680 (2014)

2. Buchbinder, N., Feldman, M., Garg, M.: Deterministic (1/2+ε)-approximation for
submodular maximization over a matroid. In: Proceedings of SODA, pp. 241–254
(2019)

3. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submod-
ular function subject to a matroid constraint. SIAM J. Comput. 40, 1740–1766
(2011)

4. Feige, U.: A threshold of ln(n) for approximating set cover. J. ACM 45(4), 634–652
(1998)

5. Feldman, M.: Guess free maximization of submodular and linear sums. In: Pro-
ceedings of WADS, pp. 380–394 (2019)

6. Feldman, M., Harshaw, C., Karbasi, A.: Greed is good: near-optimal submodu-
lar maximization via greedy optimization. In: Proceedings of COLT, pp. 758–784
(2017)

7. Feldman, M., Naor, J.S., Schwartz, R., Ward, J.: Improved approximations for k -
exchange systems. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS,
vol. 6942, pp. 784–798. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-23719-5 66

8. Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for
maximizing submodular set functions-II. In: Balinski, M.L., Hoffman, A.J. (eds.)
Polyhedral Combinatorics. MATHPROGRAMM, vol. 8, pp. 73–87. Springer, Hei-
delberg (1978). https://doi.org/10.1007/BFb012119

9. Harshaw, C., Feldman, M., Ward, J., Karbasi, A.: Submodular maximization
beyond non-negativity: guarantees, fast algorithms, and applications. In: Proceed-
ings of ICML, pp. 2634–2643 (2019)

10. Kazemi, E., Minaee, S., Feldman, M., Karbasi, A.: Regularized submodular maxi-
mization at scale. In: Proceedings of ICML, pp. 5356–5366 (2021)

11. Kazemi, E., Mitrovic, M., Zadimoghaddam, M., Lattanzi, S., Karbasi, A.: Sub-
modular streaming in all its glory: tight approximation, minimum memory and
low adaptive complexity. In: Proceedings of ICML, pp. 3311–3320 (2019)

12. Lee, J., Sviridenko, M., Vondrák, J.: Submodular maximization over multiple
matroids via generalized exchange properties. Math. Oper. Res. 35, 795–806 (2010)

13. Lu, C., Yang, W., Gao, S.: Regularized non-monotone submodular maximization.
arXiv:2103.10008

14. Mirzasoleiman, B., Jegelka, S., Krause, A.: Streaming non-monotone submodular
maximization: personalized video summarization on the fly. In: Proceedings of
AAAI, pp. 1379–1386 (2018)

15. Mitrovic, M., Kazemi, E., Zadimoghaddam, M., Karbasi, A.: Data summarization
at scale: a two-stage submodular approach. In: Proceedings of ICML, pp. 3593–
3602 (2018)

https://doi.org/10.1007/978-3-642-23719-5_66
https://doi.org/10.1007/978-3-642-23719-5_66
https://doi.org/10.1007/BFb012119
http://arxiv.org/abs/2103.10008

A Multi-pass Streaming Algorithm for RSMCC 711

16. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations
for maximizing submodular set functions-I. Math. Program. 14, 265–294 (1978).
https://doi.org/10.1007/BF01588971

17. Norouzi-Fard, A., Tarnawski, J., Mitrovic, S., Zandieh, A., Mousavifar, A., Svens-
son, O.: Beyond 1/2-approximation for submodular maximization on massive data
streams. In: Proceedings of ICML, pp. 3826–3835 (2018)

18. Sarpatwar, K.K., Schieber, B., Shachnai, H.: Constrained submodular maximiza-
tion via greedy local search. Oper. Res. Lett. 41(1), 1–6 (2019)

19. Sviridenko, M.: A note on maximizing a submodular set function subject to a
knapsack constraint. Oper. Res. Lett. 32, 41–43 (2004)

20. Sviridenko, M., Vondrák, J., Ward, J.: Optimal approximation for submodular
and supermodular optimization with bounded curvature. Math. Oper. Res. 42(4),
1197–1218 (2017)

21. Tang, S., Yuan, J.: Adaptive regularized submodular maximization. arXiv:2103.
00384

22. Wang, Y., Xu, D., Du, D., Ma, R.: Bicriteria algorithms to balance coverage and
cost in team formation under online model. Theor. Comput. Sci. 854, 68–76 (2021)

https://doi.org/10.1007/BF01588971
http://arxiv.org/abs/2103.00384
http://arxiv.org/abs/2103.00384

Author Index

Belbasi, Mahdi 273
Berend, Daniel 302

Cai, Lijian 676
Cai, Zhipeng 61
Cao, Yan 180
Chakraborty, Sankardeep 416
Chang, Hong 25
Chen, Guangting 111
Chen, Jinmian 180
Chen, Wenping 288
Chen, Ying 456
Chen, Yong 111
Cheng, Yongxi 456
Cheng, Yukun 35, 86, 180
Cui, Chunsheng 46
Cui, Min 96

Davot, Tom 140
Diao, Zhuo 687
Du, Donglei 96
Du, Jingwen 224
Du, Liman 333

Enright, Jessica 152

Feng, Qilong 538, 629
Fürer, Martin 273

Gai, Ling 86, 96
Gaikwad, Ajinkya 579
Gao, Suixiang 333, 701
Gao, Xiangyu 374
Giroudeau, Rodolphe 140
Golan, Shahar 302
Gong, Qinqin 701
Gong, Suning 224
Goyal, Pooja 653
Gu, Ran 318
Guo, Jiong 468
Guo, Longkun 12, 195, 431
Gurski, Frank 615
Gutin, Gregory 318, 641

Han, Xin 512
Henning, Michael A. 247
Hong, Weizhi 527
Huang, Jingui 553

Inkulu, R. 1

Ji, Sai 35, 668
Jo, Seungbum 416

Keikha, Hamidreza 587
Keikha, Vahideh 587
Komander, Dominique 615
König, Jean-Claude 140
Kumar, Pawan 1

Lan, Yan 512
Lee, Duncan 152
Li, Baiqiu 46
Li, Deying 288
Li, Jiangkun 167
Li, Jianping 676
Li, Jianzhong 374
Li, Min 203, 668
Li, Ping 25
Li, Shasha 318
Li, Shuangjuan 12
Li, Wei 61
Li, Weidong 445
Li, Xianyue 389
Li, Yanzhi 25
Li, Yixuan 553
Liang, Mei 668
Liang, Yumei 224
Liao, Kewen 431
Lichen, Junran 602, 676
Liu, Qian 203
Liu, Suding 676
Liu, Xinbo 512
Liu, Yunlong 553
Liu, Zhaohui 400
Liu, Zhicheng 25
Lu, Lingfa 234

714 Author Index

Lu, Xiwen 214
Luo, Wenchang 86

Maity, Soumen 579
Meeks, Kitty 152
Mei, Lili 497
Miao, Dongjing 374
Mohades, Ali 587

Nascimento Silva, Janio Carlos 348
Nong, Qingqin 224

Ochi, Luiz Satoru 348

Pan, Pengxiang 676
Panda, B. S. 653
Pandey, Arti 247
Paranhos, Raffael M. 348
Peng, Huihong 12
Pettersson, William 152

Ran, Yingli 527
Rao, Guoyao 288
Rehs, Carolin 615
Ruangwises, Suthee 262

Sadakane, Kunihiko 416
Satti, Srinivasa Rao 416
Shi, Yongtang 318
Souza, Uéverton S. 348
Sun, Jian 641
Sun, Yuhui 400
Sylvester, John 152

Tan, Jingjing 35, 364
Tang, Yucong 687
Tang, Zhongzheng 687
Taoqiu, Zhenyu 318
Tripathi, Vikash 247
Twitto, Yochai 302

Wang, Fengmin 364, 701
Wang, Liu 46
Wang, Wencheng 676
Wang, Xing 111

Wang, Yijing 75
Wang, Yongcai 288
Wen, Yinghui 468
Wiederrecht, Sebastian 615
Witter, R. Teal 484
Wu, Weili 288
Wu, Xiaoyu 497

Xiao, Di 431
Xiao, Man 445
Xu, Chuchu 25
Xu, Honghui 61
Xu, Xuanming 195
Xu, Yicheng 75
Xu, Zhiqi 180

Yan, Hao 214
Yang, Boting 125
Yang, Jinhua 445
Yang, Ruiqi 96, 701
Yang, Ruowang 389
Yang, Wenguo 333
Yang, Xiaoguang 75
Yang, Yin 224
Yao, Pei 12, 431
Yi, Eunjeong 568
Yu, Wei 400
Yu, Xue 234
Yuan, Yuan 512

Zhang, An 111
Zhang, Guochuan 497
Zhang, Heping 389
Zhang, Liang 111
Zhang, Liqi 234
Zhang, Peng 167
Zhang, Weiwei 86
Zhang, Xiaoqing 364
Zhang, Xiaoyan 25, 641
Zhang, Zhao 389, 527
Zhang, Zhen 538, 629
Zhang, Zhenning 668
Zhao, Shu 445
Zhao, Zhongrui 35
Zhou, Yang 203, 364

	 Preface
	 Organization
	 Contents
	Routing Among Convex Polygonal Obstacles in the Plane
	1 Introduction
	2 A Few Structures
	2.1 Sketch of P
	2.2 Routing Path and Its Stretch
	2.3 Geodesic Cones
	2.4 Piece

	3 Algorithm
	References

	Target Coverage with Minimum Number of Camera Sensors
	1 Introduction
	1.1 Related Work
	1.2 Our Results
	1.3 Organization

	2 Integer Linear Programs
	2.1 Camera Sensor Group
	2.2 Integer Linear Programming Formulation

	3 LP-Rounding Algorithm via Transformation to the Shortest Matching-Path Problem
	3.1 The Construction
	3.2 Linear Programming for Shortest Matching-Path Problem

	4 Numerical Experiments
	4.1 Solution Quality in Comparison
	4.2 Runtime Comparison

	5 Conclusion
	References

	Two-Stage Submodular Maximization Under Curvature
	1 Introduction
	2 Two-Stage Submodular Maximization
	2.1 Algorithm for Two-Stage Submodular Maximization
	2.2 Analysis of the Algorithm

	3 Conclusion
	References

	An Improved Approximation Algorithm for Capacitated Correlation Clustering Problem
	1 Introduction
	2 Preliminaries
	3 Algorithm and Analysis
	3.1 Iterative Clustering Algorithm
	3.2 Theoretical Analysis

	4 Numerical Experiments
	4.1 Datasets
	4.2 Experimental Setup and Results

	5 Conclusions
	References

	The Selection of COVID-19 Epidemic Prevention and Control Programs Based on Group Decision Making
	1 Introduction
	2 Theoretical Basis
	3 General Process of Group Decision Making in Epidemic Prevention and Control Programs
	4 The Realization of Group Decision Making for NAT Solutions in Epidemic Prevention and Control
	5 Conclusions
	References

	Which Option Is a Better Way to Improve Transfer Learning Performance?
	1 Introduction
	2 Related Works
	3 Problem Formulation
	4 Collecting Instances vs. Collecting Attributes
	5 Whether to Collaboration
	6 Collection vs. Collaboration
	7 Conclusion and Future Work
	References

	On Maximizing the Difference Between an Approximately Submodular Function and a Linear Function Subject to a Matroid Constraint
	1 Introduction
	2 Preliminaries
	3 A Bicriteria Algorithm
	4 An Extended Bicriteria Algorithm for Hiigh Volume Data
	5 Conclusion
	References

	On Various Open-End Bin Packing Game
	1 Introduction
	2 Definitions and Terminologies
	3 General Open-End Bin Packing Game
	3.1 Existence of Nash Equilibrium in the General Open-End Bin Packing Game
	3.2 The Upper Bound of Price of Anarchy
	3.3 The Lower Bound of Price of Anarchy

	4 Minimum Open-End Bin Packing Game
	4.1 Existence of Nash Equilibrium in Minimum Open-End Bin Packing Game
	4.2 The Upper Bound of Price of Anarchy
	4.3 The Lower Bound of Price of Anarchy

	5 Open-End Bin Packing Game with Conflict
	5.1 Existence of Nash Equilibrium
	5.2 Open-End Bin Packing Game with a Complete Multipartite Conflict Graph
	5.3 The Upper Bound of the Price of Anarchy
	5.4 Open-End Bin Packing with a Simple Conflict Graph

	6 Conclusion
	References

	A Linear-Time Streaming Algorithm for Cardinality-Constrained Maximizing Monotone Non-submodular Set Functions
	1 Introduction
	2 Preliminaries
	3 The Single-Pass Deterministic Algorithm
	4 Discussion
	References

	Approximation Algorithms for Two Parallel Dedicated Machine Scheduling with Conflict Constraints
	1 Introduction
	2 Problem Statement
	3 The SWC Problem with a Fixed Sequence
	3.1 A 95-Approximation Algorithm
	3.2 Tight Analysis of Approx1 for Two Subproblems
	3.3 An Improved Algorithm for Subproblem 2

	4 The SWC Problem Without Any Fixed Sequence
	5 Conclusions
	References

	Computing the One-Visibility Cop-Win Strategies for Trees
	1 Introduction
	2 Structures of Trees by Copnumbers
	3 Computing Copnumbers and Roadmaps
	4 Computing Optimal Cop-Win Strategies
	References

	Complexity and Approximation Results on the Shared Transportation Problem
	1 Introduction
	2 Problems Description
	2.1 Notation
	2.2 Objective Functions

	3 Polynomial Cases
	4 Computational Hardness
	4.1 Each Color Induces a Path of Bounded Length
	4.2 In Bipartite and Planar Graphs
	4.3 In Paths

	5 Approximation Results
	6 Lower Bounds for Exact Algorithms
	7 Conclusion
	References

	The Complexity of Finding Optimal Subgraphs to Represent Spatial Correlation
	1 Introduction
	1.1 Our Contribution
	1.2 Paper Outline

	2 Background
	2.1 Notation and Definitions
	2.2 The Optimisation Problem
	2.3 Why Common Graph Algorithm Techniques Fail

	3 Hardness on Planar Graphs
	4 Simplifications of the Problem
	4.1 Minimising Neighbourhood Discrepancy
	4.2 Ideal and Near-Ideal Subgraphs

	5 Parameterised Results
	5.1 An Exact XP Algorithm Parameterised by Treewidth and Maximum Degree
	5.2 Parameterisation by k in Low Degree Graphs

	6 Discussion and Conclusions
	References

	New Approximation Algorithms for the Rooted Budgeted Cycle Cover Problem
	1 Introduction
	1.1 Related Work
	1.2 Our Results
	1.3 More Related Work

	2 Single Depot Budgeted Cycle Cover
	2.1 Layering of Vertices and the Algorithm
	2.2 Analysis

	3 Multi-depot Budgeted Cycle Cover
	3.1 The Algorithm
	3.2 Analysis

	4 Experiments
	5 Conclusions
	References

	Evolutionary Equilibrium Analysis for Decision on Block Size in Blockchain Systems
	1 Introduction
	2 System Model and and Mining Pool's Expected Reward
	3 Evolutionary Game Model for Decision on Block Size
	3.1 Analysis Scheme
	3.2 A Case Study of Two Mining Pools

	4 Numerical Experiments and Conclusions
	4.1 Numerical Experiments
	4.2 Conclusion

	References

	Efficient Algorithms for Scheduling Parallel Jobs with Interval Constraints in Clouds
	1 Introduction
	2 Polyhedron and LP-Based Algorithm for MPI-CJ
	2.1 Polyhedron of MPI-CJ
	2.2 LP-Based Algorithm for MPI-CJ
	2.3 Performance Comparison of Our Algorithm with EDF and LLF

	3 Conclusion
	References

	Two-Stage Stochastic Max-Weight Independent Set Problems
	1 Introduction
	2 Preliminaries
	3 The Two-Stage Maximum-Weight Independent Set Problem
	3.1 Main Result and Analysis for Independent Set Problems
	3.2 A 12-Approximation Algorithm for the Discrete Two-Stage Stochastic Maximum-Weight Matroid Independent Set Problem

	References

	Routing and Scheduling Problems with Two Agents on a Line-Shaped Network
	1 Introduction
	2 Problem Without Release Time
	3 Problem with Release Time
	3.1 Special Case
	3.2 General Case

	4 Conclusions
	References

	The Price of Anarchy of Generic Valid Utility Systems
	1 Introduction
	2 Preliminaries
	2.1 Game Theory
	2.2 Submodular Function

	3 Generic Valid Utility Systems
	3.1 Definitions and Properties
	3.2 PoA of a Generic Basic Utility System
	3.3 Mechanism of Generic Valid Utility System

	References

	Single Machine Scheduling with Rejection and Generalized Parameters
	1 Introduction
	1.1 Scheduling with Rejection
	1.2 Scheduling with Generalized Due Dates
	1.3 Scheduling with Rejection and Generalized Due Dates

	2 Problem Formulation
	3 Scheduling with Generalized Release Dates
	3.1 NP-Hardness Proof
	3.2 Dynamic Programming Algorithm
	3.3 Approximation Algorithms

	4 Scheduling with Generalized Processing Times
	5 Scheduling with Generalized Rejection Cost
	6 Conclusions and Future Research
	References

	Approximation Algorithm and Hardness Results for Defensive Domination in Graphs
	1 Introduction
	2 Preliminaries
	3 NP-Completeness Result for Bipartite Graphs
	4 Lower Bounds on Approximation Ratio
	5 Approximation Algorithm
	6 APX-Completeness
	7 Defensive Domination Complete Bipartite Graphs
	8 Conclusion
	References

	An Improved Physical ZKP for Nonogram
	1 Introduction
	1.1 Zero-Knowledge Proof
	1.2 Related Work
	1.3 Our Contribution

	2 Preliminaries
	2.1 Cards
	2.2 Random Cut
	2.3 Pile-Shifting Shuffle
	2.4 Copy Protocol
	2.5 Chosen Cut Protocol

	3 Main Protocol
	3.1 Phase 1: Counting Black Cells
	3.2 Phase 2: Removing White Cells
	3.3 Phase 3: Verifying Order of Blocks
	3.4 Optimization

	4 Proof of Security
	5 Future Work
	References

	Finding All Leftmost Separators of Size k
	1 Introduction
	1.1 Notation
	1.2 Our Contributions

	2 Finding the Leftmost Minimum Size (X, Y, k)G-Separator
	3 Finding All Minimal Leftmost (X, Y, k)-Separators
	4 Application to Treewidth Approximation
	4.1 Our Improvement

	References

	Maximize the Probability of Union-Influenced in Social Networks
	1 Introduction
	2 Related Work
	3 Problems Formulation
	4 The UIS-Based Algorithms Designs
	5 Experiments
	6 Conclusions
	References

	A Novel Algorithm for Max Sat Calling MOCE to Order
	1 Introduction
	2 The Greedy Order MOCE (GO-MOCE)
	2.1 The Concept of Gain and Its Usage in GO-MOCE
	2.2 Efficient Instance Representation and Residualization
	2.3 Efficient Maintenance and Update of Gains
	2.4 Pseudocode

	3 Time Complexity
	3.1 A Linearithmic Time Complexity Implementation
	3.2 A Linear Time Complexity Implementation

	4 Performance Analysis
	5 Improving a State-of-the-Art Solver Using GO-MOCE
	6 Conclusion
	References

	The Smallest Number of Vertices in a 2-Arc-Strong Digraph Without Pair of Arc-Disjoint In- and Out-Branchings
	1 Introduction
	2 Proofs Outline
	2.1 Theorem 2
	2.2 Theorem 3
	2.3 Theorem 4

	3 Preliminaries and Useful Lemmas
	4 Good Pairs in Digraphs of Order 7
	5 Good Pairs in Digraphs of Order 8
	6 Good Pairs in Digraphs of Order 9
	References

	Generalized Self-profit Maximization in Attribute Networks
	1 Introduction
	2 Problem Formulation
	2.1 Attribute Networks
	2.2 Profit Complementary Independent Cascade Model and Diffusion Dynamics
	2.3 Problem Statements

	3 R-GSMA Algorithm
	4 Experiment
	4.1 Experimental Settings
	4.2 Experimental Results

	5 Conclusion and Future Works
	References

	Parameterized Complexity Classes Defined by Threshold Circuits: Using Sorting Networks to Show Collapses with W-hierarchy Classes
	1 Introduction
	2 Satisfiability of Threshold Circuits
	2.1 Preliminaries
	2.2 The Th-hierarchy

	3 W-hierarchy Versus Th-hierarchy
	4 On the Classes Th[t], Th[SAT], and W[SAT]
	4.1 AKS Sorting Networks
	4.2 Th[t] W[SAT]

	References

	Maximization of Monotone Non-submodular Functions with a Knapsack Constraint over the Integer Lattice
	1 Introduction
	1.1 Preliminaries
	1.2 Problem Formulation
	1.3 Organization

	2 Algorithms
	3 Conclusions
	References

	Sublinear-Time Reductions for Big Data Computing
	1 Introduction
	1.1 Our Results

	2 Preliminaries
	3 Pseudo-sublinear-Time Reduction
	4 Pseudo-polylog-Time Reduction
	5 Approximation Preserving Pseudo-sublinear-Time Reduction
	6 Complete Problems in PPL
	7 Conclusion
	References

	Capacitated Partial Inverse Maximum Spanning Tree Under the Weighted l-norm
	1 Introduction
	2 Main Results
	2.1 Algorithm for the Decision Version of CPIMST
	2.2 Algorithm for CPIMST Under the Un-Weighted l-norm
	2.3 CPIMST Under the Weighted l-norm

	3 Conclusion
	References

	Approximation Algorithms for Some Min-Max and Minimum Stacker Crane Cover Problems
	1 Introduction
	2 Preliminaries
	3 Min-Max Stacker Crane (Walk) Cover
	3.1 Min-Max Stacker Crane Cover Problem
	3.2 Min-Max Stacker Crane Walk Cover Problem

	4 Minimum Stacker Crane (Walk) Cover Problem
	5 Conclusions
	References

	Succinct Data Structures for Series-Parallel, Block-Cactus and 3-Leaf Power Graphs
	1 Introduction
	1.1 Previous Work
	1.2 Our Main Contribution

	2 Preliminaries and Main Techniques
	2.1 Tree Covering
	2.2 Graph Representation Using Tree Covering

	3 Series-Parallel Graphs
	4 Block/Cactus/Block-Cactus Graphs
	5 3-leaf Power Graph
	6 Conclusions
	References

	Streaming Submodular Maximization Under Differential Privacy Noise
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 The DP-SS Algorithm
	4.1 DP-SS with Known OPTF
	4.2 The Final DP-SS Under DP Noise

	5 Experiments
	5.1 Experimental Setup
	5.2 Experimental Results

	References

	Online Bottleneck Semi-matching
	1 Introduction
	2 Preliminaries
	3 Online Bottleneck Semi-matching with Arbitrary Number of Servers
	4 Online Bottleneck Semi-matching with Two Servers
	5 Online Bottleneck Semi-matching on a Line with Three Servers
	6 Conclusion
	References

	Optimal Due Date Assignment Without Restriction and Convex Resource Allocation in Group Technology Scheduling
	1 Introduction
	2 Problem Formulation
	3 Preliminary Analysis
	4 The Optimal Schedule
	4.1 Numerical Example

	5 Conclusion
	References

	Constrained Stable Marriage with Free Edges or Few Blocking Pairs
	1 Introduction
	2 Preliminaries
	3 Classical Complexity
	3.1 -SMFE
	3.2 -SMtBP

	4 Parameterized Complexity
	4.1 Tractable Results
	4.2 Intractable Results

	5 Concluding Remarks
	References

	Backgammon Is Hard
	1 Introduction
	2 Backgammon and Its Generalization
	3 NP-Hardness
	4 PSPACE-Hardness
	5 EXPTIME-Hardness
	6 Conclusion
	References

	Two-Facility Location Games with a Minimum Distance Requirement on a Circle
	1 Introduction
	1.1 Related Work
	1.2 Our Results
	1.3 Organization of the Paper

	2 Preliminaries
	3 The Circle
	3.1 Maximizing the Total Utility
	3.2 Maximizing the Minimum Utility

	4 A Line Interval
	5 Conclusions
	References

	Open Shop Scheduling Problem with a Non-resumable Flexible Maintenance Period
	1 Introduction
	2 Preliminaries
	3 A 43-Approximation Algorithm
	3.1 The Greedy Algorithm
	3.2 Approximation Algorithm and Analysis

	4 Conclusion
	References

	Parallel Algorithm for Minimum Partial Dominating Set in Unit Disk Graph
	1 Introduction
	1.1 Related Works
	1.2 Our Contributions

	2 A Constant Approximation Algorithm for MinPDS-UD
	3 An Improved Approximation Algorithm for MinPDS-UD
	4 Conclusion
	References

	An Improved Approximation Algorithm for Squared Metric k-Facility Location
	1 Introduction
	1.1 Our Results

	2 Preliminaries
	3 A Fractional Solution
	4 Rounding
	5 Conclusions
	References

	Parameterized Algorithms for Linear Layouts of Graphs with Respect to the Vertex Cover Number
	1 Introduction
	2 Preliminaries
	3 Mixed s-Stack q-Queue Layout
	3.1 Two Kinds of Vertices in VW
	3.2 An Algorithm Based on Kernelization
	3.3 The Derived Results for Some Related Problems

	4 k-Arch Layout
	4.1 Two Kinds of Vertices in VW
	4.2 An Algorithm Based on Kernelization

	5 Conclusion
	References

	The Fractional k-truncated Metric Dimension of Graphs
	1 Introduction
	2 Some Observations and Bounds on dimk,f(G)
	3 dimk,f(G) of Some Graph Classes
	3.1 Cycles and Graphs G with diam(G)2
	3.2 Grid Graphs
	3.3 Trees

	4 Some Remarks and Open Problems
	References

	On Structural Parameterizations of the Offensive Alliance Problem
	1 Introduction
	1.1 Known Results

	2 Hardness Results
	3 No Polynomial Kernel When Parameterized by Vertex Cover Number
	3.1 Proof of Theorem3

	4 Conclusions
	References

	On the k-colored Rainbow Sets in Fixed Dimensions
	1 Introduction
	2 Preliminaries
	3 MDkCSS is in FPT in Any Fixed Dimension
	3.1 Algorithm
	3.2 Maximum Weight k-rainbow Set

	4 Experimental Studies
	5 Enumerating All MDkCSS of Diameter at Most q
	6 Approximation Algorithms
	7 Discussions and Open Problems
	References

	Cycle-Connected Mixed Graphs and Related Problems
	1 Introduction
	2 Terminologies and Fundamental Lemmas
	3 The Cycle-Connected Mixed Graph Problem
	4 The Circuit-Connected Mixed Graph Problem
	5 Cycle-Connectivity and Strong Cycle-Connectivity
	6 Conclusion and Further Research
	References

	Directed Width Parameters on Semicomplete Digraphs
	1 Introduction
	2 Preliminaries
	3 Directed Width Parameters
	3.1 Directed Cops and Robber Games
	3.2 Directed Path-Width
	3.3 Directed Tree-Width
	3.4 DAG-Width
	3.5 Kelly-Width
	3.6 Directed (Linear) Clique-Width

	4 Comparison of Directed Width Parameters on Semicomplete Digraphs
	4.1 DAG-Width and Directed Path-Width on Semicomplete Digraphs
	4.2 Escaping Pursuit in the Jungle: Directed Path-Width, Directed Tree-Width and Kelly-Width
	4.3 Directed (Linear) Clique-Width and Directed Path-Width on Semicomplete Digraphs

	5 Conclusion
	References

	Improved Parameterized Approximation for Balanced k-Median
	1 Introduction
	1.1 Our Contributions
	1.2 Other Related Work
	1.3 Preliminaries

	2 The Sampling Algorithm
	3 The Connection Algorithm
	4 Conclusions
	References

	A LP-based Approximation Algorithm for generalized Traveling Salesperson Path Problem
	1 Introduction
	2 Preliminaries
	3 Algorithm and Analysis
	3.1 Approximation Algorithm
	3.2 An Improvement on 53
	3.3 Tighter Analysis

	4 Conclusion
	References

	Hardness Results of Connected Power Domination for Bipartite Graphs and Chordal Graphs
	1 Introduction
	2 Definitions and Preliminary Results
	3 NP-completeness Results
	3.1 Result for Perfect Elimination Bipartite Graphs
	3.2 Result for Split Graphs

	4 Algorithms for Chain Graphs and Threshold Graphs
	4.1 Connected Power Domination for Chain Graphs
	4.2 Connected Power Domination for Threshold Graphs

	5 Lower Bound on Approximation Ratio
	6 Conclusion
	References

	Approximation Algorithm for Min-Max Correlation Clustering Problem with Outliers
	1 Introduction
	2 Preliminaries
	3 Algorithm and Analysis
	3.1 Algorithm
	3.2 Theoretical Analysis

	4 Conclusions
	References

	Delay-Constrained Minimum Shortest Path Trees and Related Problems
	1 Introduction and Problem Description
	2 Terminologies and Key Lemmas
	3 An Exact Algorithm to Solve the DcMSPT Problem
	4 An Exact Algorithm to Solve the MDMSPT Problem
	5 Conclusion and Further Research
	References

	On the Feedback Number of 3-Uniform Linear Extremal Hypergraphs
	1 Introduction
	2 Hypergraphs
	3 The 3-Uniform Linear Extremal Hypergraphs
	3.1 The Extremal Hypergraphs with Maximum Degree Smaller Than 3
	3.2 The Extremal Hypergraphs with Maximum Degree of 3

	4 Conclusion and Future Work
	References

	A Multi-pass Streaming Algorithm for Regularized Submodular Maximization
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Algorithm
	4 Theoretical Analysis
	5 Conclusion
	References

	Author Index

