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Abstract. Part-based approaches for fine-grained recognition do not
show the expected performance gain over global methods, although
explicitly focusing on small details that are relevant for distinguishing
highly similar classes. We assume that part-based methods suffer from a
missing representation of local features, which is invariant to the order
of parts and can handle a varying number of visible parts appropriately.
The order of parts is artificial and often only given by ground-truth anno-
tations, whereas viewpoint variations and occlusions result in not observ-
able parts. Therefore, we propose integrating a Fisher vector encoding of
part features into convolutional neural networks. The parameters for this
encoding are estimated by an online EM algorithm jointly with those of
the neural network and are more precise than the estimates of previous
works. Our approach improves state-of-the-art accuracies for three bird
species classification datasets.

Keywords: End-to-end learning · Fisher vector encoding · Part-based
fine-grained recognition · Online EM algorithm

1 Introduction

Part- or attention-based approaches [9,10,15,48,49,51] are common choices for
fine-grained visual categorization because they explicitly focus on small details
that are relevant for distinguishing highly similar classes, e.g., different bird
species. Quite surprisingly, methods that perform the categorization with global
image features [7,27,33,34,41,52] also achieve excellent results. It is hard to
tell from the empirical results reported in the literature which general app-
roach (global or part-based) is superior, given that all of them show comparable
results in terms of recognition performance. We hypothesize that part-based algo-
rithms cannot exploit their full potential due to the problems that arise from
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Fig. 1. When some parts can not be detected because they are not visible, the resulting
gaps of missing features need to be filled when features are concatenated. Furthermore,
the semantic meaning of extracted part features is not clear when applying unsuper-
vised part detection algorithms that do not preserve a consistent order of part features.
With our approach, we compute a Fisher vector encoding as a unified representation
of fixed length for an arbitrary number of unordered part features, which can be used
by any type of classifier, including simple linear classifiers and fully-connected layers
in a deep neural network.

the initial detection of parts, especially regarding a unified representation of
individual part features after the detection. Since learning individual part detec-
tors requires part annotations and thus additional, time-consuming efforts by
domain experts, methods for unsupervised part detection have been developed
that already obtain remarkable classification results [10,24,49]. However, unsu-
pervised part detection faces various challenges, such as missing parts caused
by different types of occlusions and parts with ambiguous semantic meaning, as
shown in Fig. 1. Hence, it remains unclear whether detected parts are reasonable
and semantically consistent. Furthermore, part-based classifiers usually require
a fixed number of parts to be determined for each image and a pre-defined order
of the extracted part features. These are strong restrictions for the application,
especially when considering varying poses and viewpoints that lead to hidden
parts. We believe that a common way for representing a varying number of
unordered part features obtained from every single image is rarely used in the
context of fine-grained classification.

Fisher vector encoding (FVE) [30,31] is a well-known feature transformation
method typically applied to local descriptors of key points. When applied to
part features, it allows for computing a unified representation of fixed length for
each image, independent of the number of detected parts (Fig. 1). Note that the
problem of missing parts can also be observed for ground-truth part annotations
of fine-grained bird species datasets [3,42,44]. Due to various poses and occlu-
sions, some bird parts are not visible and cannot be annotated. These datasets
are often used to evaluate the performance of classifiers without taking the part
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detection into account, and this requires a proper gap-filling strategy for missing
parts. In contrast, no gap-filling is needed when using the FVE. Furthermore,
FVE allows for neglecting an artificial order of parts since there is usually no
natural order of parts, and each part should be treated equally.

Applying FVE together with CNNs has been done differently in the past:
either GMM and FVE are computed after training the CNN model [6,36,50] such
that only FVE parameters are adapted to the CNN features and not vice versa,
or the FVE has been realized as a trainable layer [1,11,40,45]. Although the
latter allows for end-to-end training of GMM parameters, artificial constraints
are required to obtain reasonable values (e.g., positive variances). Furthermore,
only the classification loss influences the mixture estimations, and there is no
objective involved for modeling the data distribution correctly. In contrast, we
propose to realize the FVE as a differentiable feature transformation based on
a GMM estimated with an iterative EM algorithm using mini-batch updates of
the parameters. First, the differentiable transformation allows end-to-end train-
ing of the feature extraction and classification weights. Next, the FVE directly
influences the feature extraction within the CNN such that the features adapt
to the encoding. Finally, since the parameters of the GMM are estimated with
an EM algorithm instead of gradient descent, the resulting GMM describes the
input data more precisely.

In our experiments, we show that the FVE outperforms other feature aggre-
gation methods and that our approach estimates the GMM parameters more
precisely than gradient descent methods. Furthermore, our approach described
in Sect. 3 improves state-of-the-art accuracies for three fine-grained bird species
categorization datasets: CUB-200-2011 [44] (from 90.3% to 91.1%), NA-Birds
[42] (from 89.2% to 90.3%), and Birdsnap [3] (from 84.3% to 84.9%).

2 Related Work

First, we discuss related work on FVE in the context of deep neural networks.
Some of these approaches either do not allow for learning the GMM parameters
end-to-end but rather estimate parameters separately after neural network train-
ing. Others treat GMM parameters as conventional network parameters learned
without any clustering objective by artificially enforcing reasonable values for
the mixture parameters. Second, we review existing algorithms for iterative EM
algorithms since we borrow ideas from these approaches. Surprisingly, none of
these iterative approaches has been integrated in a CNN yet. Third, we list
current state-of-the-art techniques for fine-grained categorization, mainly focus-
ing on part-based methods. Some approaches [6,50] use FVE in fine-grained
approaches, but all of them deploy the encoding in an offline manner, i.e., the
FVE is used after learning CNN parameters for feature extraction.

2.1 Variants of Deep Fisher Vector Encoding (Deep FVE)

Simonyan et al. [35] presented a Fisher vector layer for building deep networks.
They encode an input image or pre-extracted SIFT features in multiple lay-
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ers with an FVE, but the entire network is trained greedily layer-by-layer and
not end-to-end due to some restrictions. Sydorov et al. [37] suggested another
deep architecture that learns an FVE by updating GMM parameters based on
gradients that are backpropagated from a Hinge loss of an SVM classifier. Cim-
poi et al. [6] proposed a CNN together with an FVE for local CNN features, and
the resulting feature representation is used by a one-vs-rest SVM. Song et al. [36]
improved this approach, but still without end-to-end learning.

In contrast to the methods above, Wieshollek et al. [45] and Tang et al. [40]
deploy the FVE directly in a neural network. As a result, features are learned
jointly with the classification and mixture model parameters. However, although
GMM parameters are estimated jointly with other network parameters using
gradient descent, the training procedure has some drawbacks. First, artificial
constraints have to be applied to obtain reasonable mixture parameters, e.g.,
positive variances. Next, due to the formulas for the FVE, the resulting gradi-
ents cause numerically unstable computations. Finally, these approaches require
a proper initialization of the mixture parameters, which implies the computation
of the features of the entire dataset. Performing such an initialization on large
dataset results in an unreasonable computation and storage overhead. Arand-
jelovic et al. [1] employ a simplified version of the FVE, called Vector of Locally
Aggregated Descriptors (VLAD) [20], and rewrite its computation in terms of
trainable network parameters that are optimized end-to-end via gradient descent.
However, for this NetVLAD-Layer [1] as well as for [40,45], it is arguable whether
estimated GMM parameters are reasonable due to gradient-based optimization
with back-propagation. In contrast, our proposed method does not require any
preliminary initialization since it uses an iterative EM algorithm to estimate the
mixture parameters end-to-end, leading to meaningful cluster representations.

2.2 EM Algorithms and GMM Estimation

The standard technique for estimating GMM parameters is the EM algorithm.
It is an iterative process of alternating between maximum likelihood estima-
tion of mixture parameters and computing soft assignments of samples to the
mixture components. In the default setting, all samples are used in both steps,
but this leads to an increased runtime for large-scale datasets. To reduce the
computational costs, one can only use a subset of samples for the parameter
estimation or rely on existing online versions of the EM algorithm [4,29]. For
example, Cappé and Moulines [4] approximate the expectation over the entire
dataset with an exponential moving average over batches of the data. Based on
this work, Chen et al. [5] propose a variance reduction of the estimates in each
step, which results in faster and more stable convergence. A comparison of these
algorithms is carried out by Karimi et al. [21], who also introduce a new esti-
mation algorithm. Further approaches [2,13,26] propose similar solutions with
different applications and motivations for the iterative parameter update.

In our work, we employ the ideas of iterative parameter update coupled with
a bias correction. Furthermore, we demonstrate how to integrate these ideas in
a neural network and estimate the parameters jointly with the network weights.
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2.3 Fine-grained Visual Categorization

In the literature, two main directions can be observed for fine-grained recogni-
tion: global and part-based methods. Global methods use the input image as
a whole and employ clever strategies for pre-training [7], augmentation [25,41],
or pooling [27,33,34,52]. In contrast, part- or attention-based approaches apply
sophisticated detection techniques to determine interesting image regions and to
extract detailed local features from these patches. It results in part features as
an additional source of information for boosting the classification performance.

He et al. [15] propose a reinforcement learning method for estimating how
many and which image regions are helpful for the classification. They use multi-
scale image representations for localizing the object and afterward estimate
discriminative part regions. Ge et al. [10] present the current state-of-the-art
approach on the CUB-200-2011 dataset. Based on weakly supervised instance
detection and segmentations, part proposals are generated and constrained by a
part model. The final classification is performed with a stacked LSTM classifier
and context encoding. The method of Zhang et al. [49] also yields good results on
the CUB-200-2011 and the NA-Birds dataset. Expert models arranged in mul-
tiple stages predict class assignments and attention maps that the final expert
uses to crop the image and refine the observed data. Finally, a gating network
is used to weigh the decisions of the individual experts.

Compared to the previous approaches, we use a different part detection
method described at the beginning of the next section before presenting the
details of our proposed FVE for part features.

3 Fisher Vector Encoding (FVE) of Part Features

In this section, we present our approach for an FVE of part features, which
allows for joint end-to-end learning of all parameters, i.e., the parameters of
the underlying GMM and the parameters of the CNN that computes the part
features. It can be applied to any set of extracted parts from an image. Hence it
is possible to combine it with different part detection algorithms. In this paper,
we use the code1 for a part detection method provided by Korsch et al. [24]. The
authors use an initial classification of the entire input image to identify features
used for this classification. Then, the pixels in the receptive field of these features
are clustered and divided into candidate regions. Bounding boxes are estimated
around these regions and used as parts in the final part-based classification.

As shown in Fig. 2, given a set of parts specified by their corresponding image
regions, we propose the computation of a set of local features for each part with
a CNN. We denote the output of a CNN as a ConvMap C ∈ R

H×W×D, that
consists of N = H · W local D-dimensional features X = {�x1, . . . , �xN}. Usually,
CNNs contain global average pooling (GAP) to reduce X to a single feature
representation: GAP (X ) = 1

N

∑N
n=1 �xn. Common part-based approaches [10,

24,46,47] extract a set of ConvMaps C = {C1, . . . , CT } from a single image
1 https://github.com/cvjena/l1 parts.

https://github.com/cvjena/l1_parts
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Fig. 2. Overview of our proposed method. During training, we estimate the parameters
of the GMM that leads to the FVE using an EM-algorithm with mini-batch updates
described in Sect. 3.2. The resulting FVE-Layer, which is explained in Sect. 3.3, can be
integrated in any deep network architecture. We use this new layer for computing a
unified part representation that aggregates local features extracted from ConvMaps of
a CNN. Our approach enables joint end-to-end learning of both CNN parameters and
GMM parameters for the FVE.

I by processing T image regions and use GAP for each ConvMap followed by
concatenation of the resulting T part features. Since each part t is represented by
N local features of the corresponding ConvMap Ct, an image I can be described
by a set of N · T local ConvMap features XI = {�x1,1, . . . , �xn,t, . . . , �xN,T }. We
then use FVE to transform this set into a single feature: FV E(XI) = �f ∈ R

D̂.
Note that the set XI is just another representation for the set of ConvMaps C,
and we can also directly write FV E(C) instead of FV E(XI) to indicate that the
FVE is a transformation of the ConvMaps C.

3.1 Fisher Vector Encoding

First, we assume that the CNN computes local features i.i.d. from an input
image. We further assume that all local descriptors XI of the extracted
ConvMaps C come from the same distribution with density function p(�xn,t),
represented by a finite mixture model with K components: p(�xn,t|Θ) =
∑K

k=1 αkpk(�xn,t|θk) with mixture weights αk that add up to 1 (
∑K

k=1 αk = 1),
and model parameters Θ = {α1, θ1, . . . , αK , θK}. Without any prior knowl-
edge, let the density function of each component be a Gaussian distribu-
tion with mean vector �μk and diagonal covariance matrix �σk: pk(�xn,t|θk) =
N (�xn,t|�μk, �σk) leading to a Gaussian Mixture Model (GMM) with parameters
Θ = {α1, �μ1, �σ1 . . . αK , �μK , �σK}.

Following Jaakola and Haussler [19], and Perronnin et al. [30,31], the FVE
is derived by considering the gradients of the log-likelihood with respect to the
GMM parameters Θ and assuming independence of the part features: FΘ(C) =
∑N,T

n,t=1 ∇Θ log p(�xn,t|Θ). These gradients, also called Fisher scores, describe how
parameters contribute to the process of generating a particular feature. We use
the approximated normalized Fisher scores introduced by [30,31]:
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F�μk
(C) =

1√
NTαk

N,T∑

n,t=1

wn,t,k

(
�xn,t − �μk

�σk

)

, (1)

F�σk
(C) =

1√
2NTαk

N,T∑

n,t=1

wn,t,k

(
(�xn,t − �μk)2

�σ2
k

− 1
)

(2)

as feature encoding with wn,t,k = αkp(�xn,t|θk)∑K
l=1 αlp(�xn,t|θl)

denoting the soft assignment
of the feature �xn,t to a component k.

Finally, these scores can be computed for all parameters �μk and �σk of the
estimated GMM. We use the concatenation of the scores as FVE of the part
features, which results in a unified representation of dimension D̂ = 2KD that
is independent of the number of part features T .

3.2 Estimation of the Mixture Model Parameters

The computations of the FVE require a GMM, and we illustrate two ways for
estimating its parameters from data jointly with the CNN parameters. In our
experiments, we use both methods and compare them by the classification accu-
racy and quality of the estimated GMM parameters.

Gradient-Based Estimation. This idea is covered in different works [1,40,45]:
since all of the operations in Eqs. (1) and (2) are differentiable, it is straight-
forward to implement the FVE as a differentiable FVE-Layer such that the
parameters Θ are estimated via gradient descent. However, the GMM constraints
(positive variances and prior weights adding up to one) need to be enforced.
Wieschollek et al. [45] propose to model the variances σ2

k = ε + exp(sk) and the
mixture weights αk = sigm(ak)∑

j sigm(aj)
by estimating sk and ak instead of σ2

k and αk.

Online-EM Estimation. Different variants for an online EM algorithm can
be found in the literature [2,4,5,21,26,29]. The main idea is to approximate the
expectations over the entire dataset with exponential moving averages (EMAs)
over batches of the data: Θ[t] = λ ·Θ[t−1]+(1−λ) ·Θnew with λ ∈ (0, 1) and [t]
indicating the training step t. We follow this approach and propose an FVE-Layer
with online parameter estimation via EMAs. It is worth mentioning that the
parameters of the widely used batch-normalization layer [18] are also estimated
with EMAs. However, our FVE-Layer differs from a batch-normalization layer
in two ways. First, we estimate a mixture of Gaussians and not only the mean
and variance of the inputs. Second, we encode the input according to Eqs. (1)
and (2) instead of whitening the inputs. Additionally, we perform bias correction
via Θ̂[t] = Θ[t]

1−λt since plain EMAs are biased estimators. Similar bias correction
is also done in the Adam optimizer [23].

Finally, we have observed that some of these D-dimensional local feature
vectors (H·W vectors for each of the T parts) have low L2-norm, especially
if the corresponding receptive field mainly contains background pixels. How-
ever, since we are only interested in using local features that exceed a certain
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activation level, i.e., that carry important information, we include an additional
filtering step for the local feature vectors before both the estimation of the GMM
parameters and the computation of the FVE. We only use local features with
an L2-norm greater than the mean L2-norm of all local features obtained from
the same image. We found that this filtering leads to more stable and balanced
estimates for the GMM parameters during our experiments.

3.3 Training with the FVE-Layer

We implement the proposed FVE-Layer utilizing the calculations from Eqs. (1)
and (2) as well as the online parameter estimation introduced in the previous
section. For end-to-end training of the CNN layers preceding the FVE-Layer, we
estimate the gradients of the encoding w.r.t. the inputs similar to [45]:

∂Fμk,d
(C)

∂xn,t,d∗
=

1√
NTαk

[
∂wn,t,k

∂xn,t,d∗

(
xn,t,d − μk,d

σk,d

)

+ δd,d∗
wn,t,k

σk,d∗

]

, (3)

∂Fσk,d
(C)

∂xn,t,d∗
=

1√
2NTαk

[
∂wn,t,k

∂xn,t,d∗

(
(xn,t,d − μk,d)2

(σk,d)2
− 1

)

==
1√

2NTαk

+δd,d∗
2wn,t,k(xn,t,d∗ − μk,d∗)

(σk,d∗)2

]

. (4)

In both equations, we use δd,d∗ to denote the Kronecker delta being 1 if d = d∗
and 0 else, as well as the derivative of wn,t,k w.r.t. xn,t,d∗ that is given by
∂wn,t,k

∂xn,t,d∗
= wn,t,k

(
− (xn,t,d∗−μk,d∗ )

(σk,d∗ )2
+

∑K
	=1 wn,t,	

(xn,t,d∗−μ�,d∗ )
(σ�,d∗ )2

)
. Further details

for the derivation of these gradients can be found in the supplementary material.
Though these gradients are computed within the deep learning framework

by the autograd functionality, it is important to mention that we observed some
numerical instabilities during the training, especially with high dimensional mix-
ture components. To circumvent this issue, we perform an auxiliary classification
on the inputs of the FVE-Layer, similar to Szegedy et al. [38]. The auxiliary clas-
sification branch consists of a global average pooling and a linear layer. Finally,
we combine the resulting auxiliary loss with the loss computed from the predic-
tion on the encoded part features: Lparts = β · Laux + (1 − β) · LFV E . We set β
to 0.5 and multiply it by 0.5 after 20 epochs, such that the effect of the auxiliary
classification decreases over time. Our motivation behind the initial value of β
is to give both losses equal impact at the beginning and to increase the impact
of the encoded part features as the training goes on. We tested other initial
values, but they had minor effects on the classification performance, except that
disabling the auxiliary loss resulted in degraded training stability, as mentioned
before. Hence, we have chosen the β value that matches best the arithmetic mean
of the losses. Furthermore, we omit the auxiliary branch for the final classifica-
tion and perform the part classification entirely on the features encoded by the
FVE.
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The final loss, consisting of the losses computed from the global and the
part predictions, is computed in a similar way: Lfinal = 1

2 (Lparts + Lglobal). For
cross-entropy, this combination is equivalent to computing the final prediction
as a geometric mean of the class probabilities or the arithmetic mean of the
normalized log-likelihoods (see Sect. S2 in the supplementary material for more
details).

4 Experimental Results

4.1 Datasets

We evaluate our method on widely used datasets for fine-grained categorization.
First, we use three datasets for bird species recognition: CUB-200-2011 [44],
NA-Birds [42], and Birdsnap [3], since this is the most challenging domain when
considering current state-of-the-art results with accuracies of around 90 % or less
(see Table 1). For other fine-grained domains like aircraft, cars, or flowers, the
methods already achieve accuracies above 95 %. The three bird datasets contain
between 200 and 555 different species. CUB-200-2011 is the most popular fine-
grained dataset for benchmarking because of its balanced sample distribution,
but it is also the smallest one with only 5994 training and 5794 test images.
The other two datasets are more imbalanced but contain much more training
images: 23929 and 40871, respectively. Besides class labels, bounding boxes and
part annotations are available for all three datasets.

Additionally, we evaluate our method on datasets for dogs and moths species
to show the applicability of our approach for other domains. Stanford Dogs [22]
consists of 120 classes and 20580 images with class labels and bounding box
annotations. Since the entire dataset is part of the ImageNet dataset [8], we
only use neural networks pre-trained on the iNaturalist 2017 dataset [43] to
avoid pre-training on the test images. The EU-Moths dataset2 contains 200
moth species common in Central Europe. Each of the species is represented by
approximately 11 images. The insects are photographed manually and mainly on
a relatively homogeneous background. We manually annotated bounding boxes
for each specimen and used the cropped images for training. We trained the
CNN on a random balanced split of 8 training and 3 test images per class.

4.2 Implementation Details

As a primary backbone of the presented method, we take the InceptionV3 CNN
architecture [39]. We use the pre-trained weights proposed by Cui et al. [7].
They have pre-trained the network on the iNaturalist 2017 dataset [43] and
could show that this is more beneficial for animal datasets than pre-training on
ImageNet. For some experiments (Sect. 4.4 and 4.5), we also use a ResNet-50
CNN architecture [14] pre-trained on the ImageNet dataset [32].

2 https://www.inf-cv.uni-jena.de/eu moths dataset.

https://www.inf-cv.uni-jena.de/eu_moths_dataset
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Table 1. Comparison of our proposed FVE for part features with various state-of-the-
art methods on three bird datasets (bold = best per dataset).

Method CUB-200-2011 NA-Birds Birdsnap

Cui et al. [7] 89.3 87.9 –

Stacked LSTM [10] 90.3 – –

FixSENet-154 [41] 88.7 89.2 84.3

CS-Parts [24] 89.5 88.5 –

MGE-CNN [49] 89.4 88.6 –

WS-DAN [16] 89.4 – –

PAIRS [12] 89.2 87.9 –

API-Net [53] 90.0 88.1 –

No Parts (baseline) 89.5 ± 0.2 86.9 ± 0.1 81.9 ± 0.5

GAP (parts of [24]) 90.9 ± 0.1 89.9 ± 0.1 84.0 ± 0.2

Gradient-based FVE (parts of [24]) 91.2 ± 0.3 90.4 ± 0.1 85.3 ± 0.2

EM-based FVE (parts of [24]) 91.1 ± 0.2 90.3 ± 0.1 84.9 ± 0.2

For a fair comparison, we use fixed hyperparameters for every experiment.
We train each model for 60 epochs with an AdamW optimizer [28], setting the
learning rate to 2e-3 and α to 0.01. Due to limited GPU memory, we apply the
gradient accumulation technique. We use a batch size of 12 and accumulate the
gradients over four training iterations before we perform a weight update, which
results in an effective batch size of 48. Furthermore, we repeat each experiment
at least 5 times to observe the significance and robustness of the presented
approach. The source code for our approach is publicly available on GitHub3.

4.3 Fine-grained Classification

In our first experiment, we test our proposed FVE-Layer together with an unsu-
pervised part detector that provides classification-specific parts (CS-Parts) [24].
However, in contrast to Korsch et al. [24], we use a separate CNN for calcu-
lating part features. This part-CNN is fine-tuned on the detected parts, and
the extracted features are adapted to the FVE. Besides the part-CNN, we also
extract features from the global image with another CNN. For the part-CNN,
the prediction is performed based on the FVE of the part features, whereas
the prediction on the global image is made based on standard CNN features.
Both predictions are then weighted equally and summed up to the final pre-
diction. The GMM parameters are either estimated via gradient descent or by
our proposed online EM algorithm. After investigating the effect of both the
number and dimension of the mixture components (see Sect. S3.2 in supplemen-
tary material), we use one component with a dimension of 2048. We select these
hyperparameters since (1) this setup introduces the least number of additional
3 https://github.com/cvjena/fve experiments.

https://github.com/cvjena/fve_experiments
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Table 2. Results on the Stanford Dogs and EU-Moths datasets. For Stanford Dogs, we
only compare to methods that do not use ImageNet pre-training. Similar to our work,
they utilize a pre-training on the iNaturalist 2017 dataset. This kind of pre-training
results in a more fair comparison, since the training set of ImageNet contains the test
set of Stanford Dogs.

Method Stanford Dogs EU-Moths

Cui et al. [7] 78.5 –

DATL [17] (with [16]) 79.1 –

No Parts (baseline) 77.5 ± 0.5 90.5 ± 0.5

GAP (parts of [24]) 77.8 ± 0.4 91.0 ± 0.5

Gradient-based FVE (parts of [24]) 79.1 ± 0.3 93.0 ± 1.2

EM-based FVE (parts of [24]) 79.2 ± 0.1 92.0 ± 0.9

parameters and (2) favors both GMM parameter estimation methods equally.
We also compare the FVE method with results based on concatenated part fea-
tures and GAP and with a baseline using only the prediction obtained from the
global image (no parts). In our preliminary experiments (see Sect. S3.1 in sup-
plementary material), we also showed the superiority of the joint training of the
GMM parameters and the CNN weights against the conventional pipeline that
is for example used in [6,36].

For bird species classification, Table 1 contains our results as well as accu-
racies reported in previous work. Our proposed FVE for part features performs
best on all three datasets. The results for NA-Birds stand out, since our app-
roach is the only one reaching an accuracy greater than 90 % on this challenging
dataset Accuracies for dogs and moth species are shown in Table 2. Again, our
FVE approach performs best, showing its suitability beyond the bird species
domain.

Nevertheless, it is worth mentioning that the GMM parameter estimation
method has a minor effect on classification accuracy. We observed in our prelim-
inary experiments that the GMM parameters have little effect on the expressive-
ness of the final encoded feature. Even if the GMM parameters are initialized
randomly and are not further adapted to the data, the classification perfor-
mance remains equally high compared to the reported values in Table 1. This
also explains why the Gradient-based estimation of the parameters performs on
a par with the EM-based estimation, even though the GMM parameters do not
change much from their initialization values (see Sect. S5 in supplementary mate-
rial). Finally, we think the observation of why the randomly initialized GMM
parameters perform as well as the trained parameters is out of the scope of this
paper, and we would investigate this in the future.
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Fig. 3. Comparison of the weighted normalized Euclidean distance (see Eq. (5)) on a
generated dataset. The dataset consist of five classes and the experiment was performed
with one and five GMM components.

4.4 Quality of the Estimated GMM Parameters

We now investigate the quality of the estimated GMM parameters with respect
to the two proposed approaches (gradient-based vs. EM-based). For this purpose,
we first compare them on a generated dataset consisting of feature vectors for
five classes sampled from different normal distributions. The corresponding mean
vectors (class centroids) are arranged on the unit sphere, and we set the variance
of the class distributions to 1

5 such that the features do not overlap. We trained
a simple neural network consisting of the FVE-Layer and a linear layer as a
classifier. The data dimension has been varied, using powers of two in the range 2
to 256, which also defines the dimensions of the mixture components. Each setup
was repeated five times. As a baseline, we also estimated the GMM parameters
with a standard EM algorithm independent of neural network training.

In Fig. 3, we visualize the normalized Euclidean distance of the estimated
parameters averaged over the entire dataset. The normalized Euclidean distance
for a single feature vector can be computed via:

D(�xn,t|θ) =
∑

k

wn,t,k ·
√
√
√
√

∑

d

(xn,t,d − μk,d)
2

(σk,d)
2 . (5)

It is the sum of distances to the mean vectors of the mixture components, normal-
ized by the corresponding variances and weighted by the soft-assignments wn,t,k.
Furthermore, we estimate the same distances for the CUB-200-2011 dataset,
shown in Table 3. Both evaluations on synthetic and real data show that GMMs
estimated by our proposed online EM algorithm fit the data much better, result-
ing in more precise clusters due to lower normalized Euclidean distances. More-
over, we show in the supplementary material that the gradient-based method
changes the GMM parameters only slightly for two-dimensional data, whereas
the online EM algorithm estimates parameters as good as the offline EM algo-
rithm such that the mixtures match the data distributions well.
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Table 3. Comparison of weighted normalized Euclidean distances (see Eq. (5)) for the
three birds datasets, evaluated for two CNN architectures.

GMM Estimation for ResNet50 GMM Estimation for InceptionV3

EM-based Gradient-based EM-based Gradient-based

CUB-200-2011 21.49 (±0.68) 46.85 (±0.18) 33.21 (±0.13) 37.15 (±0.18)

NA-Birds 18.36 (±1.00) 45.35 (±0.18) 36.62 (±0.38) 35.50 (±0.15)

Birdsnap 11.08 (±2.01) 46.75 (±0.23) 32.75 (±0.31) 35.62 (±0.30)

Table 4. Ablation study on the CUB-200-2011 dataset with two different CNNs.

Method ResNet50 InceptionV3

Baseline CNN 84.4 ± 0.3 89.5 ± 0.2

Parts [24] + GAP 79.7 ± 0.3 88.8 ± 0.2

Parts [24] + FVE 82.6 ± 0.4 89.1 ± 0.2

Baseline CNN + Parts [24] + GAP 85.9 ± 0.2 90.9 ± 0.1

Baseline CNN + Parts [24] + FVE 86.4 ± 0.2 91.1 ± 0.2

4.5 Ablation Study

In an ablation study, we investigate the impact of the FVE in the proposed
approach. As seen in Fig. 2, our method consists of two branches: classification
of the global image and classification based on estimated parts. In Table 4, we
show accuracies achieved by the individual branches as well as by the combined
classification for two CNN architectures. We see that part features with FVE
result in better classification accuracies compared to GAP. This effect propagates
to the final accuracy, resulting in improved classification performance.

5 Conclusions

In this paper, we have proposed a new FVE-Layer for aggregating part features
of a CNN in the context of fine-grained categorization, which uses an online
EM algorithm for estimating the underlying GMM jointly with other network
parameters. With this layer, we are able to compute a unified fixed-length repre-
sentation for a varying number of local part features, which allows a deep neural
network to cope with missing parts as well as with an arbitrary order of part fea-
tures, e.g., given by an unsupervised part detector. In our experiments, we have
achieved state-of-the-art recognition accuracies on three fine-grained datasets
for bird species classification: CUB-200-2011 (91.1 %), NA-Birds (90.3 %), and
Birdsnap (84.9 %). Furthermore, we have shown that compared to existing deep
FVE implementations, our online EM-based approach results in more accurate
estimates of the mixture model.
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