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Abstract. Discrete and especially binary random variables occur in
many machine learning models, notably in variational autoencoders with
binary latent states and in stochastic binary networks. When learning
such models, a key tool is an estimator of the gradient of the expected
loss with respect to the probabilities of binary variables. The straight-
through (ST) estimator gained popularity due to its simplicity and effi-
ciency, in particular in deep networks where unbiased estimators are
impractical. Several techniques were proposed to improve over ST while
keeping the same low computational complexity: Gumbel-Softmax, ST-
Gumbel-Softmax, BayesBiNN, FouST. We conduct a theoretical analysis
of bias and variance of these methods in order to understand tradeoffs
and verify the originally claimed properties. The presented theoretical
results allow for better understanding of these methods and in some
cases reveal serious issues.

1 Introduction

Binary variables occur in many models of interest. Variational autoencoders
(VAE) with binary latent states are used to learn generative models with
compressed representations [10,11,22,33] and to learn binary hash codes for
text and image retrieval [6,7,20,30]. Neural networks with binary activa-
tions and weights are extremely computationally efficient and attractive for
embedded applications, in particular pushed forward in the vision research [1–
5,8,12,15,17,25,31,34,36]. Training these discrete models is possible via the
stochastic relaxation, equivalent to training a Stochastic Binary Networks
(SBN) [23,24,26,27,29]. In this relaxation, each binary weight is replaced with
a Bernoulli random variable and each binary activation is replaced with a condi-
tional Bernoulli variable. The gradient of the expected loss in the weight prob-
abilities is well defined and SGD optimization can be applied.
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Fig. 1. Schematic illustration of bias-variance tradeoffs (we do not pretend on exact-
ness, but see experimental evaluations in [28,29]; notice that the Mean Squared Error
(MSE) is the sum of variance and squared bias). Unbiased methods have a prohibitively
high variance for deep models. PSA achieves a significant reduction in variance at a
price of a small bias, but has a limited applicability. According to [29], ST estimator
can be as accurate as PSA in wide deep models. We analytically study methods in the
gray area: GS, DARN and FouST in order to find out whether they can offer a sound
improvement over ST. In particular, for GS estimator the figure illustrates its possible
tradeoffs when varying the temperature parameter according to the asymptotes we
prove.

For the problem of estimating gradient of expectation in probabilities
of (conditional) Bernoulli variables, several unbiased estimators were pro-
posed [9,11,19,32,35]. However, in the context of deep SBNs these methods
become impractical: MuProp [11] and reinforce with baselines [19] have a
prohibitively high variance in deep layers [28, Figs. C6, C7] while other meth-
ods’ complexity grows quadratically with the number of Bernoulli layers. In
these cases, biased estimators were more successful in practice: straight-through
(ST) [28], Gumbel-Softmax (GS) [13,16] and their variants. In order to approx-
imate the gradient of the expectation these methods use a single sample of all
random entities and the derivative of the objective function extended to the real-
valued domain. A more accurate PSA method was presented in [29], which has
low computation complexity, but applies only to SBNs of classical structure1 and
requires specialized convolutions. Notably, it was experimentally reported [29,
Fig. 4] that the baseline ST performs nearly identically to PSA in moderate size
SBNs. Figure 1 schematically illustrates the bias-variance tradeoff with different
approaches.

Contribution. In this work we analyze theoretical properties of several recent
single-sample gradient based methods: GS, ST-GS [13], BayesBiNN [18] and
FouST [22]. We focus on clarifying these techniques, studying their limitations
and identifying incorrect and over-claimed results. We give a detailed analysis of
bias and variance of GS and ST-GS estimators. Next we analyze the application
1 Feed-forward, with no residual connections and only linear layers between Bernoulli

activations.
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of GS in BayesBiNN. We show that a correct implementation would result in
an extremely high variance. However due to a hidden issue, the estimator in
effect reduces to a deterministic straight-through (with zero variance). A long-
range effect of this swap is that BayesBiNN fails to solve the variational Bayesian
learning problem as claimed. FouST [22] proposed several techniques for lowering
bias and variance of the baseline ST estimator. We show that the baseline ST
estimator was applied incorrectly and that some of the proposed improvements
may increase bias and or variance.

We believe these results are valuable for researchers interested in applying
these methods, working on improved gradient estimators or developing Bayesian
learning methods. Incorrect results with hidden issues in the area could mislead
many researchers and slow down development of new methods.

Outline. The paper is organized as follows. In Sect. 2 we briefly review the
baseline ST estimator. In the subsequent sections we analyze Gumbel-Softmax
estimator (Sect. 3), BayesBiNN (Sect. 4) and FouST estimator (Sect. 5). Proofs
are provided in the respective Appendices A to C. As most of our results are
theoretical, simplifying derivation or identifying limitations and misspecifications
of the preceding work, we do not propose extensive experiments. Instead, we
refer to the literature for the experimental evidence that already exists and only
conduct specific experimental tests as necessary. In Sect. 6 we summarize our
findings and discuss how they can facilitate future research.

2 Background

We define a stochastic binary unit x ∼ Bernoulli(p) as x = 1 with probability
p and x = 0 with probability 1 − p. Let f(x) be a loss function, which in
general may depend on other parameters and may be stochastic aside from the
dependence on x. This is particularly the case when f is a function of multiple
binary stochastic variables and we study its dependence on one of them explicitly.
The goal of binary gradient estimators is to estimate

g =
d
dp

E[f(x)], (1)

where E is the total expectation. Gradient estimators which we consider make a
stochastic estimate of the total expectation by taking a single joint sample. We
will study their properties with respect to x only given the rest of the sample
fixed. In particular, we will confine the notion of bias and variance to the condi-
tional expectation Ex and the conditional variance Vx. We will assume that the
function f(x) is defined on the interval [0, 1] and is differentiable on this interval.
This is typically the case when f is defined as a composition of simple functions,
such as in neural networks. While for discrete inputs x, the continuous definition
of f is irrelevant, it will be utilized by approximations exploiting its derivatives.

The expectation Ex[f(x)] can be written as

(1 − p)f(0) + pf(1), (2)
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Its gradient in p is respectively

g =
d
dp

Ex[f(x)] = f(1) − f(0). (3)

While this is simple for one random variable x, it requires evaluating f at two
points. With n binary units in the network, in order to estimate all gradients
stochastically, we would need to evaluate the loss 2n times, which is prohibitive.

Of high practical interest are stochastic estimators that evaluate f only at a
single joint sample (perform a single forward pass). Arguably, the most simple
such estimator is the straight-through (ST) estimator:

ĝst = f ′(x). (4)

For an in-depth introduction and more detained study of its properties we refer
to [28]. The mean and variance of this ST estimator are given by

Ex[ĝst] = (1 − p)f ′(0) + pf ′(1), (5a)

Vx[ĝst] = Ex[ĝ2st] − (Ex[ĝst])2 = p(1 − p)(f ′(1) − f ′(0))2. (5b)

If f(x) is linear in x, i.e., f(x) = hx + c, where h and c may depend on other
variables, then f ′(0) = f ′(1) = h and f(1) − f(0) = h. In this linear case we
obtain

Ex[ĝst] = h, (6a)
Vx[ĝst] = 0. (6b)

From the first expression we see that the estimator is unbiased and from the
second one we see that its variance (due to x) is zero. It is therefore a reasonable
baseline: if f is close to linear, we may expect the estimator to behave well.
Indeed, there is a theoretical and experimental evidence [28] that in typical
neural networks the more units are used per layer, the closer we are to the
linear regime (at least initially) and the better the utility of the estimate for
optimization. Furthermore, [29] show that in SBNs of moderate size, the accuracy
of ST estimator is on par with a more accurate PSA estimator.

We will study alternative single-sample approaches and improvements pro-
posed to the basic ST. In order to analyze BayesBiNN and FouST we will switch
to the ±1 encoding. We will write y ∼ Bin(p) to denote a random variable with
values {−1, 1} parametrized by p = Py(y=1). Alternatively, we will parametrize
the same distribution using the expectation μ = 2p − 1 and denote this dis-
tribution as Bin(μ) (the naming convention and the context should make it
unambiguous). Note that the mean of Bernoulli(p) is p. The ST estimator of
the gradient in the mean parameter μ in both {0, 1} and {−1, 1} valued cases is
conveniently given by the same equation (4).

Proof. Indeed, Ey[f(y)] with y ∼ Bin(μ) can be equivalently expressed as
Ex[f̃(x)] with x ∼ Bernoulli(p), where p = μ+1

2 and f̃(x) = f(2x − 1). The
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ST estimator of gradient in the Bernoulli probability p for a sample x can then
be written as

ĝst = f̃ ′(x) = 2f ′(y), (7)

where y = 2x − 1 is a sample from Bin(μ). The gradient estimate in μ becomes
2f ′(y) ∂p

∂μ = f ′(y). ��

3 Gumbel Softmax and ST Gumbel-Softmax

Gumbel Softmax [13] and Concrete relaxation [16] enable differentiability
through discrete variables by relaxing them to real-valued variables that fol-
low a distribution closely approximating the original discrete distribution. The
two works [13,16] have contemporaneously introduced the same relaxation, but
the name Gumbel Softmax (GS) became more popular in the literature.

A categorical discrete random variable x with K category probabilities πk

can be sampled as

x = arg maxk(log πk − Γk), (8)

where Γk are independent Gumbel noises. This is known as Gumbel
reparametrization. In the binary case with categories k ∈ {1, 0} we can express
it as

x = [[log π1 − Γ1 ≥ log π0 − Γ0]], (9)

where [[·]] is the Iverson bracket. More compactly, denoting p = π1,

x = [[log
p

1 − p
− (Γ1 − Γ0) ≥ 0]]. (10)

The difference of two Gumbel variables z = Γ1 −Γ0 follows the logistic distribu-
tion. Its cdf is σ(z) = 1

1+e−z . Denoting η = logit(p), we obtain the well-known
noisy step function representation:

x = [[η − z ≥ 0]]. (11)

This reparametrization of binary variables is exact but does not yet allow for
differentiation of a single sample because we cannot take the derivative under the
expectation of this function in (1). The relaxation [13,16] replaces the thresh-
old function by a continuously differentiable approximation στ (η) := σ(η/τ) =

1
1+e−η/τ . As the temperature parameter τ > 0 decreases towards 0, the function
στ (η) approaches the step function. The GS estimator of the derivative in η is
then defined as the total derivative of f at a random relaxed sample:

z ∼ Logistic, (12a)
x̃ = στ (η − z), (12b)

d̂f

dη
:=

df(x̃)
dη

= f ′(x̃)
∂x̃

∂η
. (12c)
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Fig. 2. GS Estimator: relaxed samples x̃ are obtained and differentiated as follows.
Noisy inputs, following a shifted logistic distribution (black density), are passed through
a smoothed step function στ (blue). Observe that for a small τ , the derivative is often
(in probability of η − z) close to zero (green) and, very rarely, when |η − z| is small, it
becomes O(1/τ) large (red). (Color figure online)

A possible delusion about GS gradient estimator is that it can be made
arbitrary accurate by using a sufficiently small temperature τ . This is however
not so simple and we will clarify theoretical reasons for why it is so. An intuitive
explanation is proposed in Fig. 2. Formally, we show the following properties.

Proposition 1. GS estimator is asymptotically unbiased as τ → 0 and the bias
decreases at the rate O(τ) in general and at the rate O(τ2) for linear functions.

Proof in Appendix A. The decrease of the bias with τ → 0 is a desirable property,
but this advantage is practically nullified by the fast increase of the variance:

Proposition 2. The variance of GS estimator grows at the rate O( 1
τ ).

Proof in Appendix A. This fast growth of the variance prohibits the use of small
temperatures in practice. In more detail the behavior of the gradient estimator
is described by the following two propositions.

Proposition 3. For any given realization z �= η the norm of GS estimator
asymptotically vanishes at the exponential rate O( 1

τ c1/τ ) with c = e−|x| < 1.

Proof in Appendix A. For small x, where c is close to one, the term 1/τ dominates
at first. In particular for z = η, the asymptote is O(1/τ). So while for the most
of noise realizations the gradient magnitude vanishes exponentially quickly, it
is compensated by a significant grows at rate 1/τ around z = η. In practice it
means that most of the time a value of gradient close to zero is measured and
occasionally, very rarely, a value of O(1/τ) is obtained.

Proposition 4. The probability to observe GS gradient of norm at least ε is
asymptotically O(τ log(1ε )), where the asymptote is τ → 0, ε → 0.

Proof in Appendix A.
Unlike ST, GS estimator with τ > 0 is biased even for linear objectives. Even

for a single neuron and a linear objective it has a non-zero variance. Propositions
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3 and 4 apply also to the case of a layer with multiple units since they just analyze
the factor ∂

∂η στ (η−z), which is present independently at all units. Proposition 4
can be extended to deep networks with L layers of Bernoulli variables, in which
case the chain derivative will encounter L such factors and we obtain that the
probability to observe a gradient with norm at least ε will vanish at the rate
O(τL).

These facts should convince the reader of the following: it is not possible to
use a very small τ , not even with an annealing schedule starting from τ = 1.
For a very small τ the most likely consequence would be to never encounter a
numerically non-zero gradient during the whole training. For moderately small
τ the variance would be prohibitively high. Indeed, Jang et al. [13] anneal τ only
down to 0.5 in their experiments.

A major issue with this and other relaxation techniques (i.e. techniques using
relaxed samples x̃ ∈ R) is that the relaxation biases all the expectations. There is
only one forward pass and hence the relaxed samples x̃ are used for all purposes,
not only for the purpose of estimating the gradient with respect to the given
neuron. It biases all expectations for all other units in the same layer as well
as in preceding and subsequent layers (in SBN). Let for example f depend on
additional parameters θ in a differentiable way. More concretely, θ could be
parameters of the decoder in VAE. With a Bernoulli sample x, an unbiased
estimate of gradient in θ can be obtained simply as ∂

∂θf(x; θ). However, if we
replace the sample with a relaxed sample x̃, the estimate ∂

∂θf(x̃; θ) becomes
biased because the distribution of x̃ only approximates the distribution of x.
If y were other binary variables relaxed in a similar way, the gradient estimate
for x will become more biased because Eỹ[∇x̃f(x̃, ỹ)] is a biased estimate of
Ey[∇x̃f(x̃, y)] desired. Similarly, in a deep SBN, the relaxation applied in one
layer of the model additionally biases all expectations for units in layers below
and above. In practice the accuracy for VAEs is relatively good [13], [28, Fig. 3]
while for deep SBNs a bias higher than of ST is observed for τ = 1 in a synthetic
model with 2 or more layers and with τ = 0.1 for a model with 7 (or more)
layers [29, Fig. C.6]. When training moderate size SBNs on real data, it performs
worse than ST [29, Fig. 4].

ST Gumbel-Softmax. Addressing the issue that relaxed variables deviate from
binary samples on the forward pass, Jang et al. [13] proposed the following empir-
ical modification. ST Gumbel-Softmax estimator [13] keeps the relaxed sample
for the gradient but uses the correct Bernoulli sample on the forward pass:

z ∼ Logistic, (13a)
x̃ = στ (η − z), (13b)
x = [[η − z ≥ 0]], (13c)

ĝst-gs(τ) = f ′(x)
∂x̃

∂η
. (13d)

Note that x is now distributed as Bernoulli(p) with p = σ(η) so the forward pass
is fixed. We show the following asymptotic properties.
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Proposition 5. ST Gumbel-Softmax estimator [13] is asymptotically unbiased
for quadratic functions and the variance grows as O(1/τ) for τ → 0.

Proof in Appendix A.
To summarize, ST-GS is more expensive than ST as it involves sampling from

logistic distribution (and keeping samples), it is biased for τ > 0. It becomes
unbiased for quadratic functions as τ → 0, which would be an improvement over
ST, but the variance grows as 1

τ .

4 BayesBiNN

Meng et al. [18], motivated by the need to reduce the variance of reinforce,
apply GS estimator. However, in their large-scale experiments they use tempera-
ture τ = 10−10. According to the previous section, the variance of GS estimator
should go through the roof as it grows as O( 1

τ ). It is practically prohibitive as the
learning would require an extremely small learning rate and a very long train-
ing time as well as high numerical accuracy. Nevertheless, good experimental
results are demonstrated [18]. We identify a hidden implementation issue which
completely changes the gradient estimator and enables learning.

First, we explain the issue. Meng et al. [18] model stochastic binary weights
as w ∼ Bin(μ) and express GS estimator as follows.

Proposition 6. (Meng et al. [18] Lemma 1). Let w ∼ Bin(μ) and let
f : {−1, 1} → R be a loss function. Using parametrization μ = tanh(λ), λ ∈ R,
GS estimator of gradient dEw[f ]

dμ can be expressed as

δ ∼ 1
2
Logistic, (14a)

w̃ = tanhτ (λ − δ) ≡ tanh(
λ − δ

τ
), (14b)

J =
1 − w̃2

τ(1 − μ2)
, (14c)

ĝ = Jf ′(w̃), (14d)

which we verify in Appendix B. However, the actual implementation of the
scaling factor J used in the experiments [18] according to the published code2

introduces a technical ε = 10−10 as follows:

J :=
1 − w̃2 + ε

τ(1 − μ2 + ε)
. (15)

It turns out this changes the nature of the gradient estimator and of the learning
algorithm. The BayesBiNN algorithm [18, Table 1middle] performs the update:

λ := (1 − α)λ − αsf ′(w̃), (16)

where s = NJ , N is the number of training samples and α is the learning rate.
2 https://github.com/team-approx-bayes/BayesBiNN.

https://github.com/team-approx-bayes/BayesBiNN
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Proposition 7. With the setting of the hyper-parameters τ = O(10−10) [18,
Table 7] and ε = 10−10 (author’s implementation) in large-scale experiments
(MNIST, CIFAR10, CIFAR100), the BayesBiNN algorithm is practically equiv-
alent to the following deterministic algorithm:

w := sign(λ̄); (17a)
λ̄ := (1 − α)λ̄ − αf ′(w). (17b)

In particular, it does not depend on the values of τ and N .

Proof in Appendix B. Experimentally, we have verified, using authors imple-
mentation, that indeed parameters λ (16) grow to the order 1010 during the first
iterations, as predicted by our calculations in the proof.

Notice that the step made in (17b) consists of a decay term −αλ̄ and the
gradient descent term −αf ′(w), where the gradient f ′(w) is a straight-through
estimate for the deterministic forward pass w = sign(λ̄). Therefore the determin-
istic ST is effectively used. It is seen that the decay term is the only remaining
difference to the deterministic STE algorithm [18, Table 1left], the method is
contrasted to. From the point of view of our study, we should remark that the
deterministic ST estimator used in effect indeed decreases the variance (down to
zero) however it increases the bias compared to the baseline stochastic ST [28].

The issue has also downstream consequences for the intended Bayesian learn-
ing. The claim of Proposition 7 that the method does not depend on τ and N
is perhaps somewhat unexpected, but it makes sense indeed. The initial Bayes-
BiNN algorithm of course depends on τ and N . However due to the issue with
the implementation of Gumbel Softmax estimator, for a sufficiently small value
of τ it falls into a regime which is significantly different from the initial Bayesian
learning rule and is instead more accurately described by (17). In this regime,
the result it produces does not dependent on the particular values of τ and N .
While we do not know what problem it is solving in the end, it is certainly not
solving the intended variational Bayesian learning problem. This is so because
the variational Bayesian learning problem and its solution do depend on N in
a critical way. The algorithm (17) indeed does not solve any variational prob-
lem as there is no variational distribution involved (nothing sampled). Yet, the
decay term −αλ stays effective: if the data gradient becomes small, the decay
term implements some small “forgetting” of the learned information and may
be responsible for an improved generalization observed in the experiments [18].

5 FouST

Pervez et al. [22] introduced several methods to improve ST estimators using
Fourier analyzes of Boolean functions [21] and Taylor series. The proposed meth-
ods are guided by this analysis but lack formal guarantees. We study the effect
of the proposed improvements analytically.

One issue with the experimental evaluation [22] is that the baseline ST esti-
mator [22, Eq. 7] is misspecified: it is adopted from the works considering {0, 1}
Bernoulli variables without correcting for {−1, 1} case as in (7), differing by a
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coefficient 2. The reason for this misspecifications is that ST is know rather as
a folklore, vaguely defined, method (see [28]). While in learning with a simple
expected loss this coefficient can be compensated by the tuned learning rate, it
can lead to a more serious issues, in particular in VAEs with Bernoulli latents
and deep SBNs. VAE training objective [14] has the data evidence part, where
binary gradient estimator is required and the prior KL divergence part, which is
typically computed analytically and differentiated exactly. Rescaling the gradi-
ent of the evidence part only introduces a bias which cannot be compensated by
tuning the learning rate. Indeed, it is equivalent to optimizing the objective with
the evidence part rescaled. In [28, Fig. 2] we show that this effect is significant.
In the reminder of the section we will assume that the correct ST estimator (7)
is used as the starting point.

5.1 Lowering Bias by Importance Sampling

The method [22, Sec. 4.1]“Lowering Bias by Importance Sampling”, as noted
by authors, obtains DARN gradient estimator [10, Appendix A] who derived
it by applying a (biased) control variate estimate in the reinforce method.
Transformed to the encoding with ±1 variables, it expresses as

ĝdarn = f ′(x)/p(x). (18)

By design [10], this method is unbiased for quadratic functions, which is straight-
forward to verify by inspecting its expectation

E[ĝdarn] = f ′(1) + f ′(0). (19)

While, this is in general an improvement over ST—we may expect that functions
close to linear will have a lower bias, it is not difficult to construct an example
when it can increase the bias compared to ST.

Example 1. The method [22, Sec. 4.1] “Lowering Bias by Importance Sam-
pling”, also denoted as Importance Reweighing (IR), can increase bias.

Let p ∈ [0, 1] and x ∼ Bin(p). Let f(x) = |x + a|. The derivative of E[f(x)]
in p is

d
dp

((1 − p)f(−1) + pf(1)) = f(1) − f(−1) = f(1) = 2a. (20)

The expectation of ĝst is given by

(1 − p)2f ′(−1) + p2f ′(1) = 2(2p − 1). (21)

The expectation of ĝdarn is given by

f ′(−1) + f ′(1) = 0. (22)

The bias of DARN is 2|a| while the bias of ST is 2|a+1−2p|. Therefore for a > 0
and p > 0.5, the bias of DARN estimator is higher. In particular for a = 0.9 and
p = 0.95 the bias of ST estimator equals 0 while the bias of DARN estimator
equals 1.8.

Furthermore, we can straightforwardly express its variance.
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Fig. 3. Experimental comparison of DARN and ST estimators on MNIST VAE. The
plots show training and test loss (negative ELBO) during training for different learning
rates. After 5000 epochs, an unbiased ARM-10 estimator is applied in order to measure
(and correct) the accumulated bias. At the smaller learning rates, where DARN does
not diverge, it clearly has a much smaller accumulated bias but manages to overfit
significantly.

Proposition 8. The variance of ĝdarn is expressed as

Vz[ĝdarn] =
(f ′(1) − p(f ′(1) + f ′(−1)))2

p(1 − p)
. (23)

It has asymptotes O( f ′(−1)2

1−p ) for p → 1 and O( f ′(1)2

p ) for p → 0.

The asymptotes indicate that the variance can grow unbounded for units
approaching deterministic mode. If applied in a deep network with L lay-
ers, L expressions (18) are multiplied and the variance can grow respectively.
Interestingly though, if the probability p is defined using the sigmoid function
as p = σ(η), then the gradient in η additionally multiplies by the Jacobian
σ′(η) = p(1 − p), and the variance of the gradient in η becomes bounded. More-
over, a numerically stable implementation can simplify p(1 − p)/p(x) for both
outcomes of x. We conjecture that this estimator can be particularly useful with
this parametrization of the probability (which is commonly used in VAEs and
SBNs).

Experimental evidence [11, Fig. 2.a], where DARN estimator is denoted as
“ 1
2” shows that the plain ST performs similar for the structural output prediction

problem. However, [11, Fig. 3.a] gives a stronger evidence in favor of DARN for
VAE. In Fig. 3 we show experiment for the MNIST VAE problem, reproducing
the experiment [11,22] (up to data binarization and implementation details).
The exact specification is given in [28, Appendix D.1]. It is seen that DARN
improves the training performance but needs an earlier stopping and or more
regularization. Interestingly, with a correction of accumulated bias using unbi-
ased ARM [35] method with 10 samples, ST leads to better final training and
test performance.

5.2 Reducing Variance via the Fourier Noise Operator

The Fourier noise operator [22, Sec. 2] is defined as follows. For ρ ∈ [0, 1], let
x′ ∼ Nρ(x) denote that x′ is set equal to x with probability ρ and chosen as
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an independent sample from Bin(p) with probability 1 − ρ. The Fourier noise
operator smooths the loss function and is defined as Tρ[f ](x) = Ex′∼Nρ(x)[f(x′)].
When applied to f before taking the gradient, it can indeed reduce both bias
and variance, ultimately down to zero when ρ = 0. Indeed, in this case x′ is
independent of x and Tρ[f ](x) = E[f(x)], which is a constant function of x.
However, the exact expectation in x′ is intractable. The computational method
proposed in [22, Sec. 4.2] approximates the gradient of this expectation using S
samples x(s) ∼ Nρ(x) as

ĝρ =
1
S

∑
s
ĝ(x(s)), (24)

where ĝ is the base ST or DARN estimator. We show the following.

Proposition 9. The method [22, Sec. 4.2]“Reducing Variance via the Fourier
Noise operator” does not reduce the bias (unlike Tρ) and increases variance in
comparison to the trivial baseline that averages independent samples.

Proof in Appendix C.
This result is found in a sharp contradiction with the experiments [22,

Figure 4], where independent samples perform worse than correlated. We do not
have a satisfactory explanation for this discrepancy except for the misspecified
ST. Since the author’s implementation is not public, it is infeasible to repro-
duce this experiment in order to verify whether a similar improvement can be
observed with the well-specified ST. Lastly, note, that unlike correlated sam-
pling, uncorrelated sampling can be naturally applied with multiple stochastic
layers.

5.3 Lowering Bias by Discounting Taylor Coefficients

For the technique [22, Sec. 4.3.1] “Lowering Bias by Discounting Taylor Coeffi-
cients” we present an alternative view, not requiring Taylor series expansion of
f , thus simplifying the construction. Following [22, Sec. 4.3.1] we assume that
the importance reweighing was applied. Since the technique samples f ′ at non-
binary points, we refer to it as a relaxed DARN estimator. It can be defined
as

g̃darn(x, u) =
f ′(xu)
p(x)

,where u ∼ U [0, 1]. (25)

In the total expectation, when we draw x and u multiple times, the gradient
estimates are averaged out. The expectation over u alone effectively integrates
the derivative to obtain:

Eu

[
g̃darn(x, u)] =

{
1
p

∫ 1

0
f ′(u)du = 1

p (f(1) − f(0)), if x = 1,
1

1−p

∫ 1

0
f ′(−u)du = 1

1−p (f(−1) − f(0)), if x = −1.
(26)
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In the expectation over x we therefore obtain

Ex,u[g̃darn(x, u)] = f(1) − f(−1), (27)

which is the correct derivative. One issue, discussed by [22] is that variance
increases (as there is more noise in the system). However, a major issue similar to
GS estimator Sect. 3, reoccurs here, that all related expectations become biased.
In particular (25) becomes biased in the presence of other variables Pervez et al.
[22, Sec. 4.3.1] propose to use u ∈ U [a, 1] with a > 0, corresponding to shorter
integration intervals around ±1 states, in order to find an optimal tradeoff.

5.4 Lowering Bias by Representation Rescaling

Consider the estimator ĝ of the gradient of function Ex[f(x)] where x ∼ Bin(p).
Representation rescaling is defined in [22, Algorithm 1] as drawing x̃ ∼ 1

τ Bin(p)
instead of x and then using FouST estimator based on the derivative f ′(x̃). It is
claimed that using a scaled representation can decrease the bias of the gradient
estimate. However, the following issue occurs.

Proposition 10. The method [22, Sec. 4.3.2] “Lowering Bias by Representation
Rescaling” compares biases of gradient estimators of different functions.

Proof. Sampling x̃ can be equivalently defined as x̃ = x/τ . Bypassing the anal-
ysis of Taylor coefficients [22], it is easy to see that for a smooth function f , as
τ → ∞, f(x/τ) approaches a linear function of x and therefore the bias of the
ST estimator of Ex[f(x/τ)] approaches zero. However, clearly Ex[f(x/τ)] is a
different function from Ex[f(x)] which we wish to optimize. ��

We explain, why this method nevertheless has effect. Choosing and fixing the
scaling hyper-parameter τ is equivalent to staring from a different initial point,
where (initially random) weights are scaled by 1/τ . At this initial point, the net-
work is found to be closer to a linear regime, where the ST estimator is more
accurate and possibly the vanishing gradient issue is mitigated. Thus the method
can have a positive effect on the learning as observed in [22, Appendix Table 3].

6 Conclusion

We theoretically analyzed properties of several methods for estimation of binary
gradients and gained interesting new insights.

– For GS and ST-GS estimator we proposed a simplified presentation for the
binary case and explained detrimental effects of low and high temperatures.
We showed that bias of ST-GS estimator approaches that of DARN, connect-
ing these two techniques.

– For BayesBiNN we identified a hidden issue that completely changes the
behavior of the method from the intended variational Bayesian learning with
Gumbel-Softmax estimator, theoretically impossible due to the used temper-
ature τ = 10−10, to non-Bayesian learning with deterministic ST estimator
and latent weight decay. As this learning method shows improved experimen-
tal results, it becomes an open problem to clearly understand and advance
the mechanism which facilitates this.
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– In our analysis of techniques comprising FouST estimator, we provided addi-
tional insights and showed that some of these techniques are not well justified.
It remains open, whether they are nevertheless efficient in practice in some
cases for other unknown reasons, not taken into account in this analysis.

Overall we believe our analysis clarifies the surveyed methods and uncovers sev-
eral issues which limit their applicability in practice. It provides tools and clears
the ground for any future research which may propose new improvements and
would need to compare with existing methods both theoretically and experimen-
tally. We hope that this study will additionally motivate such research.
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