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Abstract. Training neural networks with binary weights and activa-
tions is a challenging problem due to the lack of gradients and difficulty of
optimization over discrete weights. Many successful experimental results
have been achieved with empirical straight-through (ST) approaches,
proposing a variety of ad-hoc rules for propagating gradients through
non-differentiable activations and updating discrete weights. At the same
time, ST methods can be truly derived as estimators in the stochastic
binary network (SBN) model with Bernoulli weights. We advance these
derivations to a more complete and systematic study. We analyze proper-
ties, estimation accuracy, obtain different forms of correct ST estimators
for activations and weights, explain existing empirical approaches and
their shortcomings, explain how latent weights arise from the mirror
descent method when optimizing over probabilities. This allows to rein-
troduce ST methods, long known empirically, as sound approximations,
apply them with clarity and develop further improvements.

1 Introduction

Neural networks with binary weights and activations have much lower compu-
tation costs and memory consumption than their real-valued counterparts [18,
26,45]. They are therefore very attractive for applications in mobile devices,
robotics and other resource-limited settings, in particular for solving vision and
speech recognition problems [8,56].

The seminal works that showed feasibility of training networks with binary
weights [15] and binary weights and activations [27] used the empirical straight-
through gradient estimation approach. In this approach the derivative of a step
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Fig. 1. The sign function and different proxy functions for derivatives used in empirical
ST estimators. Variants (c-e) can be obtained by choosing the noise distribution in our
framework. Specifically for a real-valued noise z with cdf F , in the upper plots we show
Ez[sign(a − z)] = 2F − 1 and, respectively, twice the density, 2F ′ in the lower plots.
Choosing uniform distribution for z gives the density p(z) = 1

2
1lz∈[−1,1] and recovers

the common Htanh proxy in (c). The logistic noise has cdf F (z) = σ(2z), which recovers
tanh proxy in (d). The triangular noise has density p(z) = max(0, |(2 − x)/4|), which
recovers a scaled version of ApproxSign [34] in (e). The scaling (standard deviation)
of the noise in each case is chosen so that 2F ′(0) = 1. The identity ST form in (b) we
recover as latent weight updates with mirror descent.

function like sign, which is zero, is substituted with the derivative of some other
function, hereafter called a proxy function, on the backward pass. One possible
choice is to use identity proxy, i.e., to completely bypass sign on the backward
pass, hence the name straight-through [5]. This ad-hoc solution appears to work
surprisingly well and the later mainstream research on binary neural networks
heavily relies on it [2,6,9,11,18,34,36,45,52,60].

The de-facto standard straight-through approach in the above mentioned
works is to use deterministic binarization and the clipped identity proxy as pro-
posed by Hubara et al. [27]. However, other proxy functions were experimentally
tried, including tanh and piece-wise quadratic ApproxSign [18,34], illustrated
in Fig. 1. This gives rise to a diversity of empirical ST methods, where various
choices are studied purely experimentally [2,6,52]. Since binary weights can be
also represented as a sign mapping of some real-valued latent weights, the same
type of methods is applied to weights. However, often a different proxy is used
for the weights, producing additional unclear choices. The dynamics and inter-
pretation of latent weights are also studied purely empirically [51]. With such
obscurity of latent weights, Helwegen et al. [24] argues that “latent weights do
not exist” meaning that discrete optimization over binary weights needs to be
considered. The existing partial justifications of deterministic straight-through
approaches are limited to one-layer networks with Gaussian data [58] or bina-
rization of weights only [1] and do not lead to practical recommendations.

In contrast to the deterministic variant used by the mainstream SOTA,
straight-through methods were originally proposed (also empirically) for stochas-
tic autoencoders [25] and studied in models with stochastic binary neurons [5,44].
In the stochastic binary network (SBN) model which we consider, all hidden units
and/or weights are Bernoulli random variables. The expected loss is a truly dif-
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ferentiable function of parameters (i.e., weight probabilities) and its gradient
can be estimated. This framework allows to pose questions such as: “What is
the true expected gradient?” and “How far from it is the estimate computed by
ST?” Towards computing the true gradient, unbiased gradient estimators were
developed [20,55,57], which however have not been applied to networks with
deep binary dependencies due to increased variance in deep layers and complex-
ity that grows quadratically with the number of layers [48]. Towards explaining
ST methods in SBNs, Tokui & Sato [54] and Shekhovtsov et al. [48] showed
how to derive ST under linearizing approximations in SBNs. These results how-
ever were secondary in these works, obtained from more complex methods. They
remained unnoticed in the works applying ST in practice and recent works on its
analysis [13,58]. They are not properly related to existing empirical ST variants
for activations and weights and did not propose analysis.

The goal of this work is to reintroduce straight-through estimators in a prin-
cipled way in SBNs, to formalize and systematize empirical ST approaches for
activation and weights in shallow and deep models. Towards this goal we review
the derivation and formalize many empirical variants and algorithms using the
derived method and sound optimization frameworks: we show how different
kinds of ST estimators can occur as valid modeling choices or valid optimization
choices. We further study properties of ST estimator and its utility for opti-
mization: we theoretically predict and experimentally verify the improvement
of accuracy with network width and show that popular modifications such as
deterministic ST decrease this accuracy. For deep SBNs with binary weights we
demonstrate that several estimators lead to equivalent results, as long as they
are applied consistently with the model and the optimization algorithm.

More details on the related work, including alternative approaches for SBNs
we discuss in Appendix A.

2 Derivation and Analysis

Notation. We model random states x ∈ {−1, 1}n using the noisy sign mapping:

xi = sign(ai − zi), (1)

where zi are real-valued independent noises with a fixed cdf F and ai are (input-
dependent) parameters. Equivalently to (1), we can say that xi follows {−1, 1}
valued Bernoulli distribution with probability p(xi=1) = P(ai−zi ≥ 0) = P(zi ≤
ai) = F (ai). The noise cdf F will play an important role in understanding
different schemes. For logistic noise, its cdf F is the logistic sigmoid function σ.

Derivation. Straight-through method was first proposed empirically [25,32] in
the context of stochastic autoencoders, highly relevant to date [e.g. 16]. In con-
trast to more recent works applying variants of deterministic ST methods, these
earlier works considered stochastic networks. It turns out that in this context it
is possible to derive ST estimators exactly in the same form as originally pro-
posed by Hinton. This is why we will first derive, using observations of [48,54],
analyze and verify it for stochastic autoencoders.
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Algorithm 1:
Straight-Through-Activations
/* a: preactivation */

/* F: injected noise cdf */

/* x ∈ {−1, 1}n */

1 Forward( a )
2 p = F (a);
3 return

x ∼ 2Bernoulli(p) − 1;

4 Backward( dL
dx

)

5 return
dL
da

≡ 2diag(F ′(a)) dL
dx

;

Algorithm 2:
Straight-Through-Weights
/* η: latent weights */

/* F: weight noise cdf */

/* w ∈ {−1, 1}d */

1 Forward( η )
2 p = F (η);
3 return

w ∼ 2Bernoulli(p) − 1;

4 Backward( dL
dw

)
5 return dL

dη
≡ 2 dL

dw
;

Let y denote observed variables. The encoder network, parametrized by φ,
computes logits a(y;φ) and samples a binary latent state x via (1). As noises
z are independent, the conditional distribution of hidden states given observa-
tions p(x|y;φ) factors as

∏
i p(xi|y;φ). The decoder reconstructs observations

with pdec(y|x;θ)—another neural network parametrized by θ. The autoencoder
reconstruction loss is defined as

Ey∼data

[
Ex∼p(x|y ;φ)[− log pdec(y|x;θ)]

]
. (2)

The main challenge is in estimating the gradient w.r.t. the encoder parameters
φ (differentiation in θ can be simply taken under the expectation). The problem
for a fixed observation y takes the form

∂
∂φEx∼p(x;φ)[L(x)] = ∂

∂φEz [L(sign(a − z))], (3)

where p(x;φ) is a shorthand for p(x|y;φ) and L(x) = − log pdec(y|x;θ). The
reparametrization trick, i.e., to draw one sample of z in (3) and differentiate
L(sign(a − z)) fails: since the loss as a function of a and z is not continuously
differentiable we cannot interchange the gradient and the expectation in z1. If we
nevertheless attempt the interchange, we obtain that the gradient of sign(a−z)
is zero as well as its expectation. Instead, the following steps lead to an unbiased
low-variance estimator. From the LHS of (3) we express the derivative as

∂
∂φ

∑
x

(∏
i p(xi;φ)

)L(x) =
∑

x

∑
i

( ∏
i′ �=i p(xi′ ;φ)

)(
∂

∂φ p(xi;φ)
)L(x). (4)

Then we apply derandomization [40, ch.8.7], which performs summation over xi

holding the rest of the state x fixed. Because xi takes only two values, we have
∑

xi

∂p(xi;φ)
∂φ L(x) = ∂p(xi;φ)

∂φ L(x) + ∂(1−p(xi;φ))
∂φ L(x↓i)

= ∂
∂φ p(xi;φ)

(L(x) − L(x↓i)
)
, (5)

1 The conditions allow to apply Leibniz integral rule to exchange derivative and inte-
gral. Other conditions may suffice, e.g., when using weak derivatives [17].
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where x↓i denotes the full state vector x with the sign of xi flipped. Since this
expression is now invariant of xi, we can multiply it with 1 =

∑
xi

p(xi;φ) and
express the gradient (4) in the form:

∑
i

∑
x¬i

( ∏
i′ �=i p(xi′ ;φ)

) ∑
xi

p(xi;φ)∂p(xi;φ)
∂φ

(L(x)−L(x↓i)
)

∑
x

( ∏
i′ p(xi′ ;φ)

)∑
i

∂p(xi;φ)
∂φ

(L(x)−L(x↓i)
)

= Ex∼p(x;φ)

∑
i

∂p(xi,φ)
∂φ

(L(x)−L(x↓i)
)
, (6)

where x¬i denotes all states excluding xi. To obtain an unbiased estimate, it
suffices to take one sample x ∼ p(x;φ) and compute the sum in i in (6). This
estimator is known as local expectations [53] and coincides in this case with
go-gradient [14], ram [54] and psa [48].

However, evaluating L(x↓i) for all i may be impractical. A huge simplification
is obtained if we assume that the change of the loss L when only a single latent
bit xi is changed can be approximated via linearization. Assuming that L is
defined as a differentiable mapping R

n →R (i.e., that the loss is built up of
arithmetic operations and differentiable functions), we can approximate

L(x) − L(x↓i) ≈ 2xi
∂L(x)
∂xi

, (7)

where we used the identity xi − (−xi) = 2xi. Expanding the derivative of con-
ditional density ∂

∂φ p(xi;φ) = xiF
′(ai(φ)) ∂

∂φ ai(φ), we obtain

∂p(xi,φ)
∂φ (L(x)−L(x↓i)) ≈ 2F ′(ai(φ))∂ai(φ)

∂φ
∂L(x)
∂xi

. (8)

If we now define that ∂xi

∂ai
≡ 2F ′(ai), the summation over i in (6) with the

approximation (8) can be written in the form of a chain rule:
∑

i 2F ′(ai(φ))∂ai(φ)
∂φ

∂L(x)
∂xi

=
∑

i
∂L(x)
∂xi

∂xi

∂ai

∂ai(φ)
∂φ . (9)

To clarify, the estimator is already defined by the LHS of (9). We simply want
to compute this expression by (ab)using the standard tools, and this is the sole
purpose of introducing ∂xi

∂ai
. Indeed the RHS of (9) is a product of matrices that

would occur in standard backpropagation. We thus obtained ST algorithm Algo-
rithm1. We can observe that it matches exactly to the one described by Hinton
[25]: to sample on the forward pass and use the derivative of the noise cdf on
the backward pass, up to the multiplier 2 which occurred due to the use of ±1
encoding for x.

2.1 Analysis

Next we study properties of the derived ST algorithm and its relation to empir-
ical variants. We will denote a modification of Algorithm 1 that does not use
sampling in Line 3, but instead computes x = sign(a), a deterministic ST; and a
modification that uses derivative of some other function G instead of F in Line
5 as using a proxy G.
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Invariances. Observe that binary activations (and hence the forward pass) stay
invariant under transformations: sign(ai − zi) = sign(T (ai) − T (zi)) for any
strictly monotone mapping T . Consistently, the ST gradient by Algorithm 1 is
also invariant to T . In contrast, empirical straight-through approaches, in which
the derivative proxy is hand-designed, fail to maintain this property. In partic-
ular, rescaling the proxy leads to different estimators.

Furthermore, when applying transform T = F (the noise cdf), the backprop-
agation rule in line 5 of Algorithm1 becomes equivalent to using the identity
proxy. Hence we see that a common description of ST in the literature as “to
back-propagate through the hard threshold function as if it had been the iden-
tity function” is also correct, but only for the case of uniform noise in [−1, 1].
Otherwise, and especially so for deterministic ST, this description is ambiguous
because the resulting gradient estimator crucially depends on what transforma-
tions were applied under the hard threshold.

ST Variants. Using the invariance property, many works applying randomized
ST estimators are easily seen to be equivalent to Algorithm 1: [16,44,49]. Fur-
thermore, using different noise distributions for z, we can obtain correct ST ana-
logues for common choices of sign proxies used in empirical ST works as shown
in Fig. 1 (c–e). In our framework they correspond to the choice of parametrization
of the conditional Bernoulli distribution, which should be understood similarly
to how a neural network can be parametrized in different ways.

If the “straight-through” idea is applied informally, however, this may lead
to confusion and poor performance. The most cited reference for the ST esti-
mator is Bengio et al. [5]. However, [5, Eq. 13] defines in fact the identity ST
variant, incorrectly attributing it to Hinton (see Appendix A). We will show this
variant to be less accurate for hidden units, both theoretically and experimen-
tally. Pervez et al. [42] use ±1 binary encoding but apply ST estimator without
coefficient 2. When such estimator is used in VAE, where the gradient of the
prior KL divergence is computed analytically, it leads to a significant bias of
the total gradient towards the prior. In Fig. 2 we illustrate that the difference
in performance may be substantial. We analyze other techniques introduced in
FouST in more detail in [47]. An inappropriate scaling by a factor of 2 can be
as well detrimental in deep models, where the factor would be applied multiple
times (in each layer).

Bias Analysis. Given a rather crude linearization involved, it is indeed hard to
obtain fine theoretical guarantees about the ST method. We propose an analysis
targeting understanding the effect of common empirical variants and understand-
ing conditions under which the estimator becomes more accurate. The respective
formal theorems are given in Appendix B.

I) When ST is unbiased? As we used linearization as the only biased approx-
imation, it follows that Algorithm 1 is unbiased if the objective function L is
multilinear in x. A simple counter-example, where ST is biased, is L(x) = x2.
In this case the expected value of the loss is 1, independently of a that deter-
mines x; and the true gradient is zero. However the expected ST gradient is
E[2F ′(a)2x] = 4F ′(a)(2F (a) − 1), which may be positive or negative depend-
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Fig. 2. Training VAE on MNIST, closely following experimental setup [42]. The plots
show training loss (negative ELBO) during epochs for different learning rates. The
variant of ST algorithm used [42] is misspecified because of the scaling factor and
performs substantially worse at for all learning rates. Full experiment specification is
given in Appendix D.1.

ing on a. On the other hand, any function of binary variables has an equivalent
multilinear expression. In particular, if we consider L(x) = ‖Wx−y‖2, analyzed
by Yin et al. [58], then L̃(x) = ‖Wx−y‖2−∑

i x2
i ‖W:,i‖2+

∑
i ‖W:,i‖2 coincides

with L on all binary configurations and is multilinear. It follows that ST applied
to L̃ gives an unbiased gradient estimate of E[L], an immediate improvement
compared to [58]. In the special case when L is linear in x, the ST estimator is
not only unbiased but has a zero variance, i.e., it is exact.

II) How does using a mismatched proxy in Line 5 of Algorithm 1 affect the
gradient in φ? Since diag(F ′) occurs in the backward chain, we call estimators
that use some matrix Λ instead of diag(F ′) as internally rescaled. We show that
for any Λ � 0, the expected rescaled estimator has non-negative scalar product
with the expected original estimator. Note that this is not completely obvious as
the claim is about the final gradient in the model parameters φ (e.g., weights of
the encoder network in the case of autoencoders). However, if the ST gradient
by Algorithm 1 is biased (when L is not multi-linear) but is nevertheless an
ascent direction in expectation, the expected rescaled estimator may fail to be
an ascent direction, i.e., to have a positive scalar product with the true gradient.

III) When does ST gradient provide a valid ascent direction? Assuming that
all partial derivatives gi(x) = ∂L(x)

∂xi
are L-Lipschitz continuous for some L, we

can show that the expected ST gradient is an ascent direction for any network if
and only if

∣
∣Ex [gi(x)]

∣
∣ > L for all i.

IV) Can we decrease the bias? Assume that the loss function is applied to
a linear transform of Bernoulli variables, i.e., takes the form L(x) = �(Wx). A
typical initialization uses random W normalized by the size of the fan-in, i.e.,
such that ‖Wk,:‖2 = 1 ∀k. In this case the Lipschitz constant of gradients of L
scales as O(1/

√
n), where n is the number of binary variables. Therefore, using

more binary variables decreases the bias, at least at initialization.
V) Does deterministic ST give an ascent direction? Let g∗ be the determin-

istic ST gradient for the state x∗ = sign(a) and p∗ = p(x∗|a) be its proba-
bility. We show that deterministic ST gradient forms a positive scalar product
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with the expected ST gradient if |g∗
i | ≥ 2L(1 − p∗) and with the true gradient if

|g∗
i | ≥ 2L(1−p∗)+L. From this we conclude that deterministic ST positively cor-

relates with the true gradient when L is multilinear, improves with the number
of hidden units in the case described by IV and approaches expected stochastic
ST as units learn to be deterministic so that the factor (1 − p∗) decreases.

Deep ST. So far we derived and analyzed ST for a single layer model. It turns
out that simply applying Algorithm1 in each layer of a deep model with con-
ditional Bernoulli units gives the correct extension for this case. We will not
focus on deriving deep ST here, but remark that it can be derived rigorously
by chaining derandomization and linearization steps, discussed above, for each
layer [48]. In particular, [48] show that ST can be obtained by making addi-
tional linearizations in their (more accurate) PSA method. The insights from the
derivation are twofold. First, since derandomization is performed recurrently, the
variance for deep layers is significantly reduced. Second, we know which approx-
imations contribute to the bias, they are indeed the linearizations of all condi-
tional Bernoulli probabilities in all layers and of the loss function as a function
of the last Bernoulli layer. We may expect that using more units, similarly to
property IV, would improve linearizing approximations of intermediate layers
increasing the accuracy of deep ST gradient.

3 Latent Weights Do Exist!

Responding to the work “Latent weights do not exist: Rethinking binarized
neural network optimization” [24] and the lack of formal basis to introduce
latent weights in the literature (e.g., [27]), we show that such weights can be
formally defined in SBNs and that several empirical update rules do in fact
correspond to sound optimization schemes: projected gradient descent, mirror
descent, variational Bayesian learning.

Let w be ±1-Bernoulli weights with p(wi=1) = θi, let L(w) be the loss func-
tion for a fixed training input. Consistently with the model for activations (1),
we can define wi = sign(ηi − zi) in order to model weights wi using parameters
ηi ∈ R which we will call latent weights. It follows that θi = Fz(ηi). We need to
tackle two problems in order to optimize Ew∼p(w |θ)[L(w)] in probabilities θ: i)
how to estimate the gradient and ii) how to handle constraints θ ∈ [0, 1]m.

Projected Gradient. A basic approach to handle constraints is the projected
gradient descent:

θt+1 := clip(θt − εgt, 0, 1), (10)

where gt = ∇θEw∼p(w |θt)[L(w)] and clip(x, a, b) := max(min(x, b), a) is the
projection. Observe that for the uniform noise distribution on [−1, 1] with F (z) =
clip( z+1

2 , 0, 1), we have θi = p(wi=1) = F (ηi) = clip(ηi+1
2 , 0, 1). Because this F

is linear on [−1, 1], the update (10) can be equivalently reparametrized in η as

ηt+1 := clip(ηt − ε′ht,−1, 1), (11)



Reintroducing Straight-Through Methods 119

where ht = ∇ηEw∼p(w |F (η))[L(w)] and ε′ = 4ε. The gradient in the latent
weights, ht, can be estimated by Algorithm 1 and simplifies by expanding
2F ′ = 1. We obtained that the emperically proposed method of Hubara et al.
[27, Alg.1] with stochastic rounding and with real-valued weights identified with
η is equivalent to PGD on η with constraints η ∈ [−1, 1]m and ST gradient
by Algorithm 1.

Mirror Descent. As an alternative approach to handle constraints θ ∈ [0, 1]m,
we study the application of mirror descent (MD) and connect it with the identity
ST update variants. A step of MD is found by solving the following proximal
problem:

θt+1 = minθ

[〈gt,θ − θt〉 + 1
εD(θ,θt)

]
. (12)

The divergence term 1
εD(θ,θt) weights how much we trust the linear approx-

imation 〈gt,θ−θt〉 when considering a step from θt to θ. When the gradi-
ent is stochastic we speak of stochastic mirror descent (SMD) [3,59]. A com-
mon choice of divergence to handle probability constraints is the KL-divergence
D(θi, θ

t
i) = KL(Ber(θi),Ber(θt

i)) = θi log( θi

θt
i
) + (1 − θi) log( 1−θi

1−θt
i
). Solving for a

stationary point of (12) gives

0 = gt
i + 1

ε

(
log( θi

1−θi
) − log( θt

i

1−θt
i
)
)
. (13)

Observe that when F = σ we have log( θi

1−θi
) = ηi. Then the MD step can be

written in the well-known convenient form using the latent weights η (natural
parameters of Bernoulli distribution):

θt := σ(ηt); ηt+1 := ηt − ε∇θL(θt). (14)

We thus have obtained the rule where on the forward pass θ = σ(η) defines
the sampling probability of w and on the backward pass the derivative of σ,
that otherwise occurs in Line 5 of Algorithm 1, is bypassed exactly as if the
identity proxy was used. We define such ST rule for optimization in weights
as Algorithm 2. Its correctness is not limited to logistic noise. We show that for
any strictly monotone noise distribution F there is a corresponding divergence
function D:

Proposition 1. Common SGD in latent weights η using the identity straight-
through-weights Algorithm2 implements SMD in the weight probabilities θ with
the divergence corresponding to F .

Proof in Appendix C. Proposition 1 reveals that although Bernoulli weights
can be modeled the same way as activations using the injected noise model
w = sign(η − z), the noise distribution F for weights correspond to the choice
of the optimization proximity scheme.

Despite generality of Proposition 1, we view the KL divergence as a more
reliable choice in practice. Azizan et al. [3] have shown that the optimization
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with SMD has an inductive bias to find the closest solution to the initialization
point as measured by the divergence used in MD, which has a strong impact
on generalization. This suggests that MD with KL divergence will prefer higher
entropy solutions, making more diverse predictions. It follows that SGD on latent
weights with logistic noise and identity straight-through Algorithm2 enjoys the
same properties.

Variational Bayesian Learning. Extending the results above, we study the
variational Bayesian learning formulation and show the following:

Proposition 2. Common SGD in latent weights η with a weight decay and
identity straight-through-weights Algorithm2 is equivalent to optimizing a fac-
torized variational approximation to the weight posterior p(w|data) using a com-
posite SMD method.

Proof in Appendix C.2. As we can see, powerful and sound learning techniques
can be obtained in a form of simple update rules using identity straight-through
estimators. Therefore, identity-ST is fully rehabilitated in this context.

4 Experiments

Stochastic Autoencoders. Previous work has demonstrated that Gumbel-
Softmax (biased) and arm (unbiased) estimators give better results than ST
on training variational autoencoders with Bernoulli latents [16,29,57]. However,
only the test performance was revealed to readers. We investigate in more detail
what happens during training. Except of studying the training loss under the
same training setup, we measure the gradient approximation accuracy using arm
with 1000 samples as the reference.

We train a simple yet realistic variant of stochastic autoencoder for the
task of text retrieval with binary representation on 20newsgroups dataset. The
autoencoder is trained by minimizing the reconstruction loss (2). Please refer
to Appendix D.2 for full specification of the model and experimental setup.

For each estimator we perform the following protocol. First, we train the
model with this estimator using Adam with lr = 0.001 for 1000 epochs. We
then switch the estimator to arm with 10 samples and continue training for
500 more epochs (denoted as arm-10 correction phase). Figure 3 top shows the
training performance for different number of latent bits n. It is seen (esp. for
8 and 64 bits) that some estimators (esp. st and det st) appear to make no
visible progress, and even increase the loss, while switching them to arm makes
a rapid improvement. Does it mean that these estimators are bad and arm is
very good? An explanation of this phenomenon is offered in Fig. 5. The rapid
improvement by arm is possible because these estimators have accumulated a
significant bias due to a systematic error component, which nevertheless can be
easily corrected by an unbiased estimator.

To measure the bias and alignment of directions, as theoretically analyzed
in Sect. 2.1, we evaluate different estimators at the same parameter points located
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Fig. 3. Comparison of the training performance and gradient estimation accuracy for a
stochastic autoencoder with different number of latent Bernoulli units (bits). Training
Loss: each estimator is applied for 1000 epochs and then switched to arm-10 in order to
correct the accumulated bias. Expected improvement: lower is better (measures expected
change of the loss), the dashed line shows the maximal possible improvement knowing
the true gradient. Cosine similarity: higher is better, close to 1 means that the direction
is accurate while below 0 means the estimated gradient is not an ascent direction; error
bars indicate empirical 70% confidence intervals using 100 trials.

along the learning trajectory of the reference arm estimator. At each such point
we estimate the true gradient g by arm-1000. To measure the quality of a can-
didate 1-sample estimator g̃ we compute the expected cosine similarity and the
expected improvement, defined respectively as:

ECS = E

[
〈g, g̃〉/(‖g‖‖g̃‖)

]
, EI = −E[〈g, g̃〉]/√

E[‖g̃‖2], (15)

The expectations are taken over 100 trials and all batches. A detailed expla-
nation of these metrics is given in Appendix D.2. These measurements, dis-
played in Fig. 3 for different bit length, clearly show that with a small bit length
biased estimators consistently run into producing wrong directions. Identity ST
and deterministic ST clearly introduce an extra bias to ST. However, when we
increase the number of latent bits, the accuracy of all biased estimators improves,
confirming our analysis IV, V.

The practical takeaways are as follows: 1) biased estimators may perform
significantly better than unbiased but might require a correction of the sys-
tematically accumulated bias; 2) with more units the ST approximation clearly
improves and the bias has a less detrimental effect, requiring less correction;
3) Algorithm 1 is more accurate than other ST variants in estimating the true
gradient.
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Fig. 4. Stochastic Binary Network: first and last layer have real-valued weights. BN
layers have real-valued scale and bias parameters that can adjust scaling of activations
relative to noise. Z are independent injected noises with a chosen distribution. Binary
weights Wij are random ±1 Bernoulli(θij) with learnable probabilities θij . In experi-
ments we consider SBN with a convolutional architecture same as [15,27]: (2×128C3)−
MP2 − (2×256C3) − MP2 − (2×512C3) − MP2 − (2×1024FC) − 10FC − softmax.

Classification with Deep SBN. In this section we verify Algorithm 1 with
different choice of noises in a deep network and verify optimization in binary
weight probabilities using SGD on latent weights with Algorithm2. We con-
sider CIFAR-10 dataset and use the SBN model illustrated in Fig. 4. The SBN
model, its initialization and the full learning setup is detailed in Appendix D.3.
We trained this SBN with three choices of noise distributions corresponding to
proxies used by prior work as in Fig. 1 (c–e). Table 1 shows the test results in
comparison with baselines.

We see that training with different choices of noise distributions, correspond-
ing to different ST rules, all achieves similar results. This is in contrast to empir-
ical studies advocating specific proxies and is allowed by the consistency of the
model, initialization and training. The identity ST applied to weights, imple-
menting SMD updates, works well. Comparing to empirical ST baselines (all
except Peters & Welling), we see that there is no significant difference in the
‘det’ column indicating that our derived ST method is on par with the well-
guessed baselines. If the same networks are tested in the stochastic mode (‘10-
sample’ column), there is a clear boost of performance, indicating an advantage
of SBN models. Out of the two experiments of Hubara et al., randomized train-
ing (rand.) also appears better confirming advantage of stochastic ST. In the
stochastic mode, there is a small gap to Peters & Welling, who use a differ-
ent estimation method and pretraining. Pretraining a real valued network also
seem important, e.g., [19] report 91.7% accuracy with VGG-Small using pre-
training and a smooth transition from continuous to binarized model. When
our method is applied with an initialization from a pretrained model, improved
results (92.6% 10-sample test accuracy) can be obtained with even a smaller net-
work [35]. There are however even more superior results in the literature, e.g.,
using neural architecture search with residual real connections, advanced data
augmentation techniques and model distillation [10] achieve 96.1%.

The takeaway message here is that ST can be considered in the context
of deep SBN models as a simple and robust method if the estimator matches
the model and is applied correctly. Since we achieve experimentally near 100%
training accuracy in all cases, the optimization fully succeeds and thus the bias
of ST is tolerable.
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Table 1. Test accuracy for differ-
ent methods on CIFAR-10 with the
same/similar architecture. SBN can be
tested either with zero noises (det) or
using an ensemble of several samples (we
use 10-sample). Standard deviations are
given w.r.t. to 4 trials with random initial-
ization. The two quotations for Hubara et
al. [27] refer to their result with Torch7
implementation using randomized Htanh
and Theano implementation using deter-
ministic Htanh, respectively.

Method det 10-sample

Stochastic training

Our SBN, logistic noise 89.6 ± 0.1 90.6 ± 0.2

Our SBN, uniform noise 89.7 ± 0.2 90.5 ± 0.2

Our SBN, triangular noise 89.5 ± 0.2 90.0 ± 0.3

Hubara et al. [27] (rand.) 89.85 -

Peters & Welling [43] 88.61 16-sample: 91.2

Deterministic training

Rastegari et al. [45] 89.83 -

Hubara et al. [27] (det.) 88.60 -

Fig. 5. Schematic explanation of the opti-
mization process using a biased estimator
followed by a correction with an unbiased
estimator. Initially, the biased estimator
makes good progress, but then the value
of the true loss function may start grow-
ing while the optimization steps neverthe-
less come closer to the optimal location in
the parameter space.

5 Conclusion

We have put many ST methods on a solid basis by deriving and explaining them
from the first principles in one framework. It is well-defined what they estimate
and what the bias means. We obtained two different main estimators for propa-
gating activations and weights, bringing the understanding which function they
have, what approximations they involve and what are the limitations imposed by
these approximations. The resulting methods in all cases are strikingly simple,
no wonder they have been first discovered empirically long ago. We showed how
our theory leads to a useful understanding of bias properties and to reasonable
choices that allow for a more reliable application of these methods. We hope that
researchers will continue to use these simple techniques, now with less guesswork
and obscurity, as well as develop improvements to them.
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