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Abstract. Standard supervised learning breaks down under data distri-
bution shift. However, the principle of independent causal mechanisms
(ICM, [31]) can turn this weakness into an opportunity: one can take
advantage of distribution shift between different environments during
training in order to obtain more robust models. We propose a new
gradient-based learning framework whose objective function is derived
from the ICM principle. We show theoretically and experimentally that
neural networks trained in this framework focus on relations remaining
invariant across environments and ignore unstable ones. Moreover, we
prove that the recovered stable relations correspond to the true causal
mechanisms under certain conditions, turning domain generalization into
a causal discovery problem. In both regression and classification, the
resulting models generalize well to unseen scenarios where traditionally
trained models fail.

Keywords: Domain generalization · Principle of independent causal
mechanisms

1 Introduction

Standard supervised learning has shown impressive results when training and
test samples follow the same distribution. However, many real world applications
do not conform to this setting, so that research successes do not readily translate
into practice [20]. Domain Generalization (DG) addresses this problem: it aims
at training models that generalize well under domain shift. In contrast to domain
adaption, where a few labeled and/or many unlabeled examples are provided for
each target test domain, in DG absolutely no data is available from the test
domains’ distributions making the problem unsolvable in general.

In this work, we view the problem of DG specifically using ideas from causal
discovery. This viewpoint makes the problem of DG well-posed: we assume that
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there exists a feature vector h�(X) whose relation to the target variable Y
is invariant across all environments. Consequently, the conditional probability
p(Y | h�(X)) has predictive power in each environment. From a causal perspec-
tive, changes between domains or environments can be described as interven-
tions; and causal relationships – unlike purely statistical ones – remain invariant
across environments unless explicitly changed under intervention. This is due to
the fundamental principle of “Independent Causal Mechanisms” which will be
discussed in Sect. 3. From a causal standpoint, finding robust models is therefore
a causal discovery task [4,24]. Taking a causal perspective on DG, we aim at
identifying features which (i) have an invariant relationship to the target vari-
able Y and (ii) are maximally informative about Y . This problem has already
been addressed with some simplifying assumptions and a discrete combinatorial
search by [22,35], but we make weaker assumptions and enable gradient based
optimization. The later is attractive because it readily scales to high dimen-
sions and offers the possibility to learn very informative features, instead of
merely selecting among predefined ones. Approaches to invariant relations sim-
ilar to ours were taken by [10], who restrict themselves to linear relations, and
[2,19], who consider a weaker notion of invariance. Problems (i) and (ii) are quite
intricate because the search space has combinatorial complexity and testing for
conditional independence in high dimensions is notoriously difficult. Our main
contributions to this problem are the following: First, by connecting invariant
(causal) relations with normalizing flows, we propose a differentiable two-part
objective of the form I(Y ;h(X))+λILI , where I is the mutual information and
LI enforces the invariance of the relation between h(X) and Y across all environ-
ments. This objective operationalizes the ICM principle with a trade-off between
feature informativeness and invariance controlled by parameter λI . Our formu-
lation generalizes existing work because our objective is not restricted to linear
models. Second, we take advantage of the continuous objective in three important
ways: (1) We can learn invariant new features, whereas graph-based methods as
in e.g. [22] can only select features from a pre-defined set. (2) Our approach does
not suffer from the scalability problems of combinatorial optimization methods
as proposed in e.g. [30] and [35]. (3) Our optimization via normalizing flows, i.e.
in the form of a density estimation task, facilitates accurate maximization of the
mutual information. Third, we show how our objective simplifies in important
special cases and under which conditions its optimal solution identifies the true
causal parents of the target variable Y . We empirically demonstrate that the
new method achieves good results on two datasets proposed in the literature.

2 Related Work

Different types of invariances have been considered in the field of DG. One type is
defined on the feature level, i.e. features h(X) are invariant across environments
if they follow the same distribution in all environments (e.g. [5,8,27]). How-
ever, this form of invariance is problematic since the distribution of the target
variable might change between environments, which induces a corresponding
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change in the distribution of h(X). A more plausible and theoretically justi-
fied assumption is the invariance of relations [22,30,35]. The relation between
a target Y and features h(X) is invariant across environments, if the condi-
tional distribution p(Y | h(X)) remains unchanged in all environments. Exist-
ing approaches exhaustively model conditional distributions for all possible fea-
ture selections and check for the invariance property [22,30,35], which scales
poorly for large feature spaces. We derive a theoretical result connecting nor-
malizing flows and invariant relations, which enables gradient-based learning
of an invariant solution. In order to exploit our formulation, we also use the
Hilbert-Schmidt-Independence Criterion that has been used for robust learning
by [11] in the one environment setting. [2,19,38] also propose gradient-based
learning frameworks, which exploit a weaker notion of invariance: They aim to
match the conditional expectations across environments, whereas we address
the harder problem of matching the entire conditional distributions. The con-
nection between DG, invariance and causality has been pointed out for instance
by [24,35,39]. From a causal perspective, DG is a causal discovery task [24]. For
studies on causal discovery in the purely observational setting see e.g. [6,29,36],
but they do not take advantage of variations across environments. The case
of different environments has been studied by [4,9,15,16,22,26,30,37]. Most of
these approaches rely on combinatorial optimization or are restricted to linear
mechanisms, whereas our continuous objective efficiently optimizes very general
non-linear models. The distinctive property of causal relations to remain invari-
ant across environments in the absence of direct interventions has been known
since at least the 1930s [7,13]. However, its crucial role as a tool for causal dis-
covery was – to the best of our knowledge– only recently recognized by [30].
Their estimator – Invariant Causal Prediction (ICP) – returns the intersection
of all subsets of variables that have an invariant relation w.r.t. Y . The output is
shown to be the set of the direct causes of Y under suitable conditions. Again,
this approach requires linear models and exhaustive search over all possible vari-
able sets XS . Extensions to time series and non-linear additive noise models were
studied in [14,33]. Our treatment of invariance is inspired by these papers and
also discusses identifiability results, i.e. conditions when the identified variables
are indeed the direct causes, with two key differences: Firstly, we propose a
formulation that allows for a gradient-based learning and does not need strong
assumptions on the underlying causal model. Second, while ICP tends to exclude
features from the parent set when in doubt, our algorithm prefers to err towards
best predictive performance in this situation.

3 Preliminaries

In the following we introduce the basics of this work as well as the connection
between DG and causality. Basics on causality are presented in AppendixA. We
first define our notation as follows: We denote the set of all variables describing
the system under study as ˜X = {X1, . . . , XD}. One of these variables will be sin-
gled out as our prediction target, whereas the remaining ones are observed and
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may serve as predictors. To clarify notation, we call the target variable Y ≡ Xi

for some i ∈ {1, . . . , D}, and the remaining observations are X = ˜X\{Y }. Real-
izations of a random variable (RV) are denoted with lower case letters, e.g. xi.
We assume that observations can be obtained in different environments e ∈ E .
Symbols with superscript, e.g. Y e, refer to a specific environment, whereas sym-
bols without refer to data pooled over all environments. We distinguish known
environments e ∈ Eseen, where training data are available, from unknown ones
e ∈ Eunseen, where we wish our models to generalize to. The set of all environ-
ments is E = Eseen ∪ Eunseen. We assume that all RVs have a density pA with
probability distribution PA (for some variable or set A). We consider the envi-
ronment to be a RV E and therefore a system variable similar to [26]. This
gives an additional view on causal discovery and the DG problem. Indepen-
dence and dependence of two variables A and B is written as A ⊥ B and
A �⊥ B respectively. Two RVs A,B are conditionally independent given C if
P (A,B | C) = P (A | C)P (B | C). This is denoted with A ⊥ B | C. It means A
does not contain any information about B if C is known (see e.g. [31]). Similarly,
one can define independence and conditional independence for sets of RVs.

3.1 Invariance and the Principle of ICM

DG is in general unsolvable because distributions between seen and unseen envi-
ronments could differ arbitrarily. In order to transfer knowledge from Eseen to
Eunseen, we have to make assumptions on how seen and unseen environments
relate. These assumptions have a close link to causality. We assume certain
relations between variables remain invariant across all environments. A subset
XS ⊂ X of variables elicits an invariant relation or satisfies the invariance
property w.r.t. Y over a subset W ⊂ E of environments if

∀e, e′ ∈ W : P (Y e | Xe
S = u) = P (Y e′ | Xe′

S = u) (1)

for all u where both conditional distributions are well-defined. Equivalently, we
can define the invariance property by Y ⊥ E | XS and I(Y ;E | XS) = 0 for E
restricted to W . The invariance property for computed features h(X) is defined
analogously by the relation Y ⊥ E | h(X). Although we can only test for Eq. 1 in
Eseen, taking a causal perspective allows us to derive plausible conditions for an
invariance to remain valid in all environments E . In brief, we assume that envi-
ronments correspond to interventions in the system and invariance arises from
the principle of independent causal mechanisms [31]. We specify these conditions
later in Assumption 1 and 2. At first, consider the joint density p

˜X(˜X).The chain
rule offers a combinatorial number of ways to decompose this distribution into
a product of conditionals. Among those, the causal factorization

p
˜X(x1, . . . , xD) =

∏D
i=1pi(xi | xpa(i)) (2)

is singled out by conditioning each Xi onto its direct causes or causal parents
Xpa(i), where pa(i) denotes the appropriate index set. The special properties of
this factorization are discussed in [31]. The conditionals pi of the causal factor-
ization are called causal mechanisms. An intervention onto the system is defined
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by replacing one or several factors in the decomposition with different (condi-
tional) densities p. Here, we distinguish soft-interventions where pj(xj | xpa(j)) �=
pj(xj | xpa(j)) and hard-interventions where pj(xj | xpa(j)) = pj(xj) is a density
which does not depend on xpa(j) (e.g. an atomic intervention where xj is set to
a specific value x). The resulting joint distribution for a single intervention is

p
˜X(x1, . . . , xD) = pj(xj | xpa(j))

∏D
i=1,i �=jpi(xi | xpa(i)) (3)

and extends to multiple simultaneous interventions in the obvious way. The prin-
ciple of independent causal mechanisms (ICM) states that every mechanism acts
independently of the others [31]. Consequently, an intervention replacing pj with
pj has no effect on the other factors pi�=j , as indicated by Eq. 3. This is a crucial
property of the causal decomposition – alternative factorizations do not exhibit
this behavior. Instead, a coordinated modification of several factors is generally
required to model the effect of an intervention in a non-causal decomposition.
We utilize this principle as a tool to train robust models. To do so, we make two
additional assumptions, similar to [30] and [14]:

Assumption (1) Any differences in the joint distributions pe
˜X

from one envi-
ronment to the other are fully explainable as interventions: replacing factors
pe

i (xi | xpa(i)) in environment e with factors pe′
i (xi | xpa(i)) in environment e′

(for some subset of the variables) is the only admissible change. (2) The mech-
anism p(y | xpa(Y )) for the target variable Y is invariant under changes of
environment, i.e. we require conditional independence Y ⊥ E | Xpa(Y ).

Assumption 2 implies that Y must not directly depend on E. Consequences in case
of omitted variables are discussed in AppendixB. If we knew the causal decom-
position, we could use these assumptions directly to train a robust model for Y –
we would simply regress Y on its parents Xpa(Y ). However, we only require that
a causal decomposition with these properties exists, but do not assume that it is
known. Instead, our method uses the assumptions indirectly – by simultaneously
considering data from different environments – to identify a stable regressor for
Y . We call a regressor stable if it solely relies on predictors whose relationship to
Y remains invariant across environments, i.e. is not influenced by any interven-
tion. By assumption 2, such a regressor always exists. However, predictor vari-
ables beyond Xpa(Y ), e.g. children of Y or parents of children, may be included
into our model as long as their relationship to Y remains invariant across all envi-
ronments. We discuss this and further illustrate Assumption 2 in AppendixB. In
general, prediction accuracy will be maximized when all suitable predictor vari-
ables are included into the model. Accordingly, our algorithm will asymptotically
identify the full set of stable predictors for Y . In addition, we will prove under
which conditions this set contains exactly the parents of Y .

3.2 Domain Generalization

To exploit the principle of ICM for DG, we formulate the DG problem as follows

h� := arg max
h∈H

{

min
e∈E

I(Y e;h(Xe))
}

s.t. Y ⊥ E | h(X) (4)
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The optimization problem in Eq. 4 asks to find features h(X) which are maxi-
mally informative in the worst environment subject to the invariance constraint.
where h ∈ H denotes a learnable feature extraction function h : R

D → R
M where

M is a hyperparameter. This optimization problem defines a maximin objective:
The features h(X) should be as informative as possible about the response Y
even in the most difficult environment, while conforming to the ICM constraint
that the relationship between features and response must remain invariant across
all environments. In principle, our approach can also optimize related objectives
like the average mutual information over environments. However, very good per-
formance in a majority of the environments could then mask failure in a single
(outlier) environment. We opted for the maximin formulation to avoid this. On
the other hand there might be scenarios where the maxmin formulation is lim-
ited. For instance when the training signal is very noisy in one environment, the
classifier might discard valuable information from the other environments. As it
stands, Eq. 4 is hard to optimize, because traditional independence tests for the
constraint Y ⊥ E | h(X) cannot cope with conditioning variables selected from
a potentially infinitely large space H. A re-formulation of the DG problem to
circumvent these issues is our main theoretical contribution.

3.3 Normalizing Flows

Normalizing flows form a class of probabilistic models that has recently received
considerable attention, see e.g. [28]. They model complex distributions by means
of invertible functions T (chosen from some model space T ), which map the den-
sities of interest to latent normal distributions. Normalizing flows are typically
built with specialized neural networks that are invertible by construction and
have tractable Jacobian determinants. We represent the conditional distribution
P (Y | h(X)) by a conditional normalizing flow (see e.g. [1]). The literature typ-
ically deals with Structural Causal Models restricted to additive noise. With
normalizing flows, we are able to lift this restriction to the much broader setting
of arbitrary distributions (for details see AppendixC). The corresponding loss
is the negative log-likelihood (NLL) of Y under T , given by

LNLL(T, h) := Eh(X),Y

[

‖T (Y ;h(X)‖2/2 − log |det ∇yT (Y ;h(X))|
]

+ C (5)

where det ∇yT is the Jacobian determinant and C = dim(Y ) log(
√

2π) is a
constant that can be dropped [28]. Equation 5 can be derived from the change
of variables formula and the assumption that T maps to a standard normal
distribution [28]. If we consider the NLL on a particular environment e ∈ E ,
we denote this with Le

NLL. Lemma 1 shows that normalizing flows optimized by
NLL are indeed applicable to our problem:

Lemma 1. (proof in Appendix C) Let h�, T � := arg minh∈H,T∈T LNLL(T, h) be
the solution of the NLL minimization problem on a sufficiently rich function
space T . Then the following properties hold for any set H of feature extractors:

(a) h� also maximizes the mutual information, i.e. h� = arg maxg∈H I(g(X);Y )
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(b) h� and the latent variables R = T �(Y ;h�(X)) are independent: h�(X) ⊥ R

Statement (a) guarantees that h� extracts as much information about
Y as possible. Hence, the objective (4) becomes equivalent to optimiz-
ing (5) when we restrict the space H of admissible feature extractors to
the subspace H⊥ satisfying the invariance constraint Y ⊥ E | h(X):
arg minh∈H⊥ maxe∈E minT∈T Le

NLL(T ;h) = arg maxh∈H⊥ mine∈E I(Y e;h(Xe))
(AppendixC). Statement (b) ensures that the flow indeed implements a valid
structural equation, which requires that R can be sampled independently of the
features h(X).

4 Method

In the following we propose a way of indirectly expressing the constraint in Eq. 4
via normalizing flows. Thereafter, we combine this result with Lemma 1 to obtain
a differentiable objective for solving the DG problem. We also present important
simplifications for least squares regression and softmax classification and discuss
relations of our approach with causal discovery.

4.1 Learning the Invariance Property

The following theorem establishes a connection between invariant relations, pre-
diction residuals and normalizing flows. The key consequence is that a suitably
trained normalizing flow translates the statistical independence of the latent
variable R from the features and environment (h(X), E) into the desired invari-
ance of the mechanism P (Y | h(X)) under changes of E. We will exploit this for
an elegant reformulation of the DG problem (4) into the objective (7) below.

Theorem 1. Let h be a differentiable function and Y,X, E be RVs. Further-
more, let R = T (Y ;h(X)) be a continuous, differentiable function that is a diffeo-
morphism in Y . Suppose that R ⊥ (h(X), E). Then, it holds that Y ⊥ E | h(X).

Proof. The decomposition rule for the assumption (i) R ⊥ (h(X), E) implies (ii)
R ⊥ h(X). To simplify notation, we define Z := h(X). Because T is invertible
in Y and due to the change of variables (c.o.v.) formula, we obtain

pY |Z,E(y | z, e)
(c.o.v.)

= pR|Z,E(T (y, z) | z, e)
∣

∣

∣

∣

det
∂T

∂y
(y, z)

∣

∣

∣

∣

(i)
= pR(r)

∣

∣

∣

∣

det
∂T

∂y
(y, z)

∣

∣

∣

∣

(ii)
= pR|Z(r | z)

∣

∣

∣

∣

det
∂T

∂y
(y, z)

∣

∣

∣

∣

(c.o.v.)
= pY |Z(y | z).

This implies Y ⊥ E | Z. The theorem states in particular that if there exists
a suitable diffeomorphism T such that R ⊥ (h(X), E), then h(X) satisfies the
invariance property w.r.t. Y . Note that if Assumption 2 is violated, the con-
dition R ⊥ (h(X), E) is unachievable in general and therefore the theorem is
not applicable (see AppendixB). We use Theorem 1 in order to learn features
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h that meet this requirement. In the following, we denote a conditional nor-
malizing flow parameterized via θ with Tθ. Furthermore, hφ denotes a feature
extractor implemented as a neural network parameterized via φ. We can relax
condition R ⊥ (hφ(X), E) by means of the Hilbert Schmidt Independence Cri-
terion (HSIC), a kernel-based independence measure (see Appendix D for the
definition and [12] for details). This loss, denoted as LI , penalizes dependence
between the distributions of R and (hφ(X), E). The HSIC guarantees that

LI

(

PR, Phφ(X),E

)

= 0 ⇐⇒ R ⊥ (hφ(X), E) (6)

where R = Tθ(Y ;hφ(X)) and PR, Phφ(X),E are the distributions implied by the
parameter choices φ and θ. Due to Theorem 1, minimization of LI(PR, Phφ(X),E)
w.r.t. φ and θ will thus approximate the desired invariance property Y ⊥ E |
hφ(X), with exact validity upon perfect convergence. When R ⊥ (hφ(X), E) is
fulfilled, the decomposition rule implies R ⊥ E as well. However, if the differences
between environments are small, empirical convergence is accelerated by adding
a Wasserstein loss which enforces the latter (see Appendix D and Sect. 5.2).

4.2 Exploiting Invariances for Prediction

Equation 4 can be re-formulated as a differentiable loss using a Lagrange multi-
plier λI on the HSIC loss. λI acts as a hyperparameter to adjust the trade-off
between the invariance property of hφ(X) w.r.t. Y and the mutual information
between hφ(X) and Y . See AppendixF for algorithm details. In the following,
we consider normalizing flows in order to optimize Eq. 4. Using Lemma 1(a),
we maximize mine∈E I(Y e;hφ(Xe)) by minimizing maxe∈E{LNLL(Tθ;hφ)} w.r.t.
φ, θ. To achieve the described trade-off between goodness-of-fit and invariance,
we therefore optimize

arg min
θ,φ

(

max
e∈E

{

Le
NLL(Tθ, hφ)

}

+ λILI(PR, Phφ(X),E)
)

(7)

where Re = Tθ(Y e, hφ(Xe)) and λI > 0. The first term maximizes the mutual
information between hφ(X) and Y in the environment where the features are
least informative about Y and the second term aims to ensure an invariant
relation. In the special case that the data is governed by additive noise, Eq. 7
simplifies: Let fθ be a regression function, then solving for the noise term gives
Y −fθ(X) which corresponds to a diffeomorphism in Y , namely Tθ(Y ;X) = Y −
fθ(X). Under certain assumptions (see Appendix E) we obtain an approximation
of Eq. 7 via

arg min
θ

(

max
e∈Eseen

{

E
[

(Y e − fθ(Xe))2
]

}

+ λILI(PR, Pfθ(X),E)
)

(8)

where Re = Y e − fθ(Xe) and λI > 0. Here, arg maxθ I(fθ(Xe), Y e) corresponds
to the argmin of the L2-Loss in the corresponding environment. Alternatively we
can view the problem as to find features hφ : R

D → R
m such that I(hφ(X), Y )

gets maximized under the assumption that there exists a model fθ(hφ(X))+R =
Y where R is independent of hφ(X) and is Gaussian. In this case we obtain the
learning objective
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arg min
θ,φ

(

max
e∈Eseen

{

E
[

(Y e − fθ(hφ(Xe)))2
]

}

+ λILI(PR, Phφ(X),E)
)

(9)

For the classification case, we consider the expected cross-entropy loss

−EX,Y

[

f(X)Y − log
(

∑

c

exp
(

f(X)c

)

)]

(10)

where f : X → R
m returns the logits. Minimizing the expected cross-entropy

loss amounts to maximizing the mutual information between f(X) and Y [3,34,
Eq. 3]. We set T (Y ; f(X)) = Y ·softmax(f(X)) with component-wise multiplica-
tion. Then T is invertible in Y conditioned on the softmax output and therefore
Theorem 1 is applicable. Now we can apply the same invariance loss as above in
order to obtain a solution to Eq. 4.

4.3 Relation to Causal Discovery

Under certain conditions, solving Eq. 4 leads to features which correspond to the
direct causes of Y (identifiability). In this case we obtain the causal mechanism
by computing the conditional distribution of Y given the direct causes. Hence
Eq. 4 can be seen as an approximation of the causal mechanism when the iden-
tifiability conditions are met. The following Proposition states the conditions
when the direct causes of Y can be found by exploiting Theorem 1.

Proposition 1. We assume that the underlying causal graph G is faithful with
respect to P

˜X,E. We further assume that every child of Y in G is also a child
of E in G. A variable selection h(X) = XS corresponds to the direct causes
if the following conditions are met: (i) T (Y ;h(X)) ⊥ E, h(X) is satisfied for a
diffeomorphism T (·;h(X)), (ii) h(X) is maximally informative about Y and (iii)
h(X) contains only variables from the Markov blanket of Y .

The Markov blanket of Y is the only set of vertices which are necessary to predict
Y (see Appendix A). We give a proof of Proposition 1 as well as a discussion in
AppendixG. To facilitate explainability and explicit causal discovery, we employ
the same gating function and complexity loss as in [17]. The gating function hφ

is a 0-1 mask that marks the selected variables, and the complexity loss L(hφ)
is a soft counter of the selected variables. Intuitively speaking, if we search
for a variable selection that conforms to the conditions in Proposition 1, the
complexity loss will exclude all non-task relevant variables. Therefore, if H is
the set of gating functions, then h� in Eq. 4 corresponds to the direct causes of
Y under the conditions listed in Proposition 1. The complexity loss as well as
the gating function can be optimized by gradient descent.

5 Experiments

The main focus of this work is on the theoretical and methodological improve-
ments of causality-based domain generalization using information theoretical
concepts. A complete and rigorous quantitative evaluation is beyond the scope
of this work. In the following we demonstrate proof-of-concept experiments.
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5.1 Synthetic Causal Graphs

Fig. 1. (a) Detection accuracy of the direct causes for baselines and our gating architec-
tures, broken down for different target variables (left) and mechanisms (right: Linear,
Tanhshrink, Softplus, ReLU, Multipl. Noise) (b) Logarithmic plot of L2 errors, nor-
malized by CERM test error. For each method (ours in bold) from left to right: training
error, test error on seen environments, domain generalization error on unseen environ-
ments.

To evaluate our methods for the regression case, we follow the experimental
design of [14]. It rests on the causal graph in Fig. 2. Each variable X1, ...,X6 is
chosen as the regression target Y in turn, so that a rich variety of local configu-
rations around Y is tested. The corresponding structural equations are selected
among four model types of the form f(Xpa(i), Ni) =

∑

j∈pa(i) mech(ajXj) + Ni,
where mech is either the identity (hence we get a linear Structural Causal Model
(SCM)), Tanhshrink, Softplus or ReLU, and one multiplicative noise mechanism
of the form fi(Xpa(i), Ni) = (

∑

j∈pa(i) ajXj) · (1 + (1/4)Ni) + Ni, resulting in
1365 different settings. For each setting, we define one observational environment
(using exactly the selected mechanisms) and three interventional ones, where soft
or do-interventions are applied to non-target variables according to Assumptions
1 and 2 (full details in AppendixH). Each inference model is trained on 1024
realizations of three environments, whereas the fourth one is held back for DG
testing. The tasks are to identify the parents of the current target variable Y ,
and to train a transferable regression model based on this parent hypothesis.
We measure performance by the accuracy of the detected parent sets and by the
L2 regression errors relative to the regression function using the ground-truth
parents. We evaluate four models derived from our theory: two normalizing flows
as in Eq. 7 with and without gating mechanisms (FlowG, Flow) and two additive
noise models, again with and without gating mechanism (ANMG, ANM), using
a feed-forward network with the objective in Eq. 9 (ANMG) and Eq. 8 (ANM).
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X1 X2

X3

X4

X5

X6

Fig. 2. Directed
graph of our SCM.
Target variable Y
is chosen among
X1, . . . , X6 in turn.

For comparison, we train three baselines: ICP (a causal
discovery algorithm also exploiting ICM, but restricted
to linear regression, [30]), a variant of the PC-Algorithm
(PC-Alg, see Appendix H.4) and standard empirical-risk-
minimization ERM, a feed-forward network minimizing
the L2-loss, which ignores the causal structure by regress-
ing Y on all other variables. We normalize our results with
a ground truth model (CERM), which is identical to ERM,
but restricted to the true causal parents of the respective
Y . The accuracy of parent detection is shown in Fig. 1a.
The score indicates the fraction of the experiments where
the exact set of all causal parents was found and all non-
parents were excluded. We see that the PC algorithm per-
forms unsatisfactorily, whereas ICP exhibits the expected
behavior: it works well for variables without parents and for linear SCMs, i.e.
exactly within its specification. Among our models, only the gating ones explic-
itly identify the parents. They clearly outperform the baselines, with a slight edge
for ANMG, as long as its assumption of additive noise is fulfilled. Figure 1b and
Table 1 report regression errors for seen and unseen environments, with CERM
indicating the theoretical lower bound. The PC algorithm is excluded from this
experiment due to its poor detection of the direct causes. ICP wins for linear
SCMs, but otherwise has largest errors, since it cannot accurately account for
non-linear mechanisms. ERM gives reasonable test errors (while overfitting the
training data ), but generalizes poorly to unseen environments, as expected. Our
models perform quite similarly to CERM. We again find a slight edge for ANMG,
except under multiplicative noise, where ANMG’s additive noise assumption is
violated and Flow is superior. All methods (including CERM) occasionally fail in
the domain generalization task, indicating that some DG problems are more dif-
ficult than others, e.g. when the differences between seen environments are too
small to reliably identify the invariant mechanism or the unseen environment
requires extrapolation beyond the training data boundaries. Models without
gating (Flow, ANM) seem to be slightly more robust in this respect. A detailed
analysis of our experiments can be found in AppendixH.

5.2 Colored MNIST

To demonstrate that our model is able to perform DG in the classification
case, we use the same data generating process as in the colored variant of the
MNIST-dataset established by [2], but create training instances online rather
than upfront. The response is reduced to two labels – 0 for all images with digit
{0, . . . , 4} and 1 for digits {5, . . . 9} – with deliberate label noise that limits the
achievable shape-based classification accuracy to 75%. To confuse the classifier,
digits are additionally colored such that colors are spuriously associated with the
true labels at accuracies of 90% resp. 80% in the first two environments, whereas
the association is only 10% correct in the third environment. A classifier naively
trained on the first two environments will identify color as the best predictor,
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Table 1. Medians and upper 95% quantiles for domain generalization L2 errors (i.e.
on unseen environments) for different model types and data-generating mechanisms
(lower is better).

Models Linear Tanhshrink Softplus ReLU Mult. Noise

FlowG (ours) 1.05...4.2 1.08...4.8 1.09...5.52 1.08...5.7 1.55...8.64

ANMG (ours) 1.02...1.56 1.03...2.23 1.04...4.66 1.03...4.32 1.46...4.22

Flow (ours) 1.08...1.61 1.14...1.57 1.14...1.55 1.14...1.54 1.35...4.07

ANM (ours) 1.05...1.52 1.15...1.47 1.14...1.47 1.15...1.54 1.48...4.19

ICP (Peters et al. 2016) 0.99...25.7 1.44...20.39 3.9...23.77 4.37...23.49 8.94...33.49

ERM 1.79...3.84 1.89...3.89 1.99...3.71 2.01...3.62 2.08...5.86

CERM (true parents) 1.06...1.89 1.06...1.84 1.06...2.11 1.07...2.15 1.37...5.1

but will perform terribly when tested on the third environment. In contrast, a
robust model will ignore the unstable relation between colors and labels and
use the invariant relation, namely the one between digit shapes and labels, for
prediction. We supplement the HSIC loss with a Wasserstein term to explicitly
enforce R ⊥ E, i.e. LI = HSIC + L2(sort(Re1), sort(Re2)) (see Appendix D).
This gives a better training signal as the HSIC alone, since the difference in
label-color association between environments 1 and 2 (90% vs. 80%) is delib-
erately chosen very small to make the task hard to learn. Experimental details
can be found in Appendix I. Figure 3a shows the results for our model: Naive
training (λI = 0, i.e. invariance of residuals is not enforced) gives accuracies
corresponding to the association between colors and labels and thus completely
fails in test environment 3. In contrast, our model performs close to the best
possible rate for invariant classifiers in environments 1 and 2 and still achieves
68.5% in environment 3. This is essentially on par with preexisting methods. For
instance, IRM achieves 71% on the third environment for this particular dataset,
although the dataset itself is not particularly suitable for meaningful quantita-
tive comparisons. Figure 3b demonstrates the trade-off between goodness of fit in
the training environments 1 and 2 and the robustness of the resulting classifier:
the model’s ability to perform DG to the unseen environment 3 improves as λI

increases. If λI is too large, it dominates the classification training signal and
performance breaks down in all environments. However, the choice of λI is not
critical, as good results are obtained over a wide range of settings.

6 Discussion

In this paper, we have introduced a new method to find invariant and causal
models by exploiting the principle of ICM. Our method works by gradient descent
in contrast to combinatorial optimization procedures. This circumvents scalabil-
ity issues and allows us to extract invariant features even when the raw data
representation is not in itself meaningful (e.g. we only observe pixel values). In
comparison to alternative approaches, our use of normalizing flows places fewer
restrictions on the underlying true generative process. We have also shown under
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Env. 1 Env. 2 Env. 3
ERM 90.3 79.9 10.2
L0 + λILI 74.8 74.7 68.5

Fig. 3. (a) Accuracy of a standard classifier and our model (b) Performance of the
model in the three environments, depending on the hyperparameter λI .

which circumstances our method guarantees to find the underlying causal model.
Moreover, we demonstrated theoretically and empirically that our method is
able to learn robust models w.r.t. distribution shift. Future work includes abla-
tions studies in order to improve the understanding of the influence of single
components, e.g. the choice of the maxmin objective over the average mutual
information or the Wasserstein loss and the HSIC loss. As a next step, we will
examine our approach in more complex scenarios where, for instance, the invari-
ance assumption may only hold approximately.
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Appendix

A Causality: Basics

Structural Causal Models. (SCM) allow us to express causal relations on a func-
tional level. Following [31] we define a SCM in the following way:

Definition 1. A Structural Causal Model (SCM) S = (S, PNNN ) consists of a
collection S of D (structural) assignments

Xj := fj(˜Xpa(j), Nj), j = 1, . . . , D (11)
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where pa(j) ⊂ {1, . . . , j−1} are called parents of Xj. PNNN denotes the distribution
over the noise variables NNN = (N1, . . . , ND) which are assumed to be jointly
independent.

An SCM defined as above produces an acyclic graph G and induces a probability
distribution over P

˜X which allows for the causal factorization as in Eq. 3 [31].
Children of Xi in G are denoted as ch(i) or ch(Xi). An SCM satisfies the causal
sufficiency assumption if all the noise variables in Definition 1 are indeed jointly
independent. A random variable H in the SCM is called confounder between two
variables Xi,Xj if it causes both of them. If a confounder is not observed, we call
it hidden confounder. If there exists a hidden confounder, the causal sufficiency
assumption is violated.

The random variables in an SCM correspond to vertices in a graph and the
structural assignments S define the edges of this graph. Two sets of vertices AAA,BBB
are said to be d-separated if there exists a set of vertices CCC such that every path
between AAA and BBB is blocked. For details see e.g. [31]. The subscript ⊥d denotes
d-separability which in this case is denoted by AAA ⊥d BBB. An SCM generates a
probability distribution P

˜X which satisfies the Causal Markov Condition, that
is AAA ⊥d BBB | CCC results in AAA ⊥ BBB | CCC for sets or random variables AAA,BBB,CCC ⊂ ˜X.
The Causal Markov Condition can be seen as an inherent property of a causal
system which leaves marks in the data distribution.

A distribution P
˜X is said to be faithful to the graph G if AAA ⊥ BBB | CCC results

in A ⊥d BBB | CCC for all A,B,C ⊂ ˜X. This means from the distribution P
˜X

statements about the underlying graph G can be made.
Assuming both, faithfulness and the Causal Markov condition, we obtain

that the d-separation statements in G are equivalent to the conditional indepen-
dence statements in P

˜X. These two assumptions allow for a whole class of causal
discovery algorithms like the PC- or IC-algorithm [29,36].

The smallest set MMM such that Y ⊥d X \ ({Y }∪MMM) is called Markov Blanket.
It is given by MMM = Xpa(Y ) ∪ Xch(Y ) ∪ Xpa(ch(Y )) \ {Y }. The Markov Blanket of
Y is the only set of vertices which are necessary to predict Y .

B Discussion and Illustration of Assumptions

B.1 Causal Sufficiency and Omitted Variables

Assumption 2 implies that Y must not directly depend on E. In addition, it has
important consequences when there exist omitted variables W, which influence
Y but have not been measured. Specifically, if the omitted variables depend on
the environment (hence W �⊥ E) or W contains a hidden confounder of Xpa(Y )

and Y while Xpa(Y ) �⊥ E (the system is not causally sufficient and Xpa(Y )

becomes a “collider”, hence W �⊥ E | Xpa(Y )), then Y and E are no longer
d-separated by Xpa(Y ) and Assumption 2 is unsatisfiable. Then our method will
be unable to find an invariant mechanism.
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B.2 Using Causal Effects for Prediction

Our estimator might use predictor variables beyond Xpa(Y ) as well, e.g. children
of Y or parents of children, provided their relationships to Y do not depend on
the environment. The case of children is especially interesting: Suppose Xj is a
noisy measurement of Y , described by the causal mechanism P (Xj | Y ). As long
as the measurement device works identically in all environments, including Xj

as a predictor of Y is desirable, despite it being a child.

B.3 Examples

Domain generalization is in general impossible without strong assumptions (in
contrast to classical supervised learning). In our view, the interesting question is
“Which strong assumptions are the most useful in a given setting?”. For instance,
[14] use Assumption 2 to identify causes for birth rates in different countries. If all
variables mediating the influence of continent/country (environment variable) on
birth rates (target variable) are included in the model (e.g. GDP, Education),
this assumption is reasonable. The same may hold for other epidemiological
investigations as well. [33] suppose Assumption 2 in the field of finance.

Another reasonable example are data augmentations in computer vision.
Deliberate image rotations, shifts and distortions can be considered as environ-
ment interventions that preserve the relation between semantic image features
and object classes (see e.g. [25]), i.e. verify assumption 2. In general, assumption
2 may be justified when one studies a fundamental mechanism that can reason-
ably be assumed to remain invariant across environments, but is obscured by
unstable relationships between observable variables.

B.4 Robustness Example

To illustrate the impact of causality on robustness, consider the following exam-
ple: Suppose we would like to estimate the gas consumption of a car. In a suffi-
ciently narrow setting, the total amount of money spent on gas might be a simple
and accurate predictor. However, gas prices vary dramatically between countries
and over time, so statistical models relying on it will not be robust, even if they
fit the training data very well. Gas costs are an effect of gas consumption, and
this relationship is unstable due to external influences. In contrast, predictions
on the basis of the causes of gas consumption (e.g. car model, local speed limits
and geography, owner’s driving habits) tend to be much more robust, because
these causal relations are intrinsic to the system and not subjected to external
influences. Note that there is a trade-off here: Including gas costs in the model
will improve estimation accuracy when gas prices remain sufficiently stable, but
will impair results otherwise. By considering the same phenomenon in several
environments simultaneously, we hope to gain enough information to adjust this
trade-off properly.

In the gas example, countries can be considered as environments that “inter-
vene” on the relation between consumed gas and money spent, e.g. by applying
different tax policies. In contrast, interventions changing the impact of motor
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properties or geography on gas consumption are much less plausible - powerful
motors and steep roads will always lead to higher consumption. From a causal
standpoint, finding robust models is therefore a causal discovery task [24].

C Normalizing Flows

Normalizing flows are a specific type of neural network architecture which are by
construction invertible and have a tractable Jacobian. They are used for density
estimation and sampling of a target density (for an overview see [28]). This
in turn allows optimizing information theoretic objectives in a convenient and
mathematically sound way.

Similarly as in the paper, we denote with H the set of feature extractors
h : R

D → R
M where M is chosen a priori. The set of all one-dimensional (condi-

tional) normalizing flows is denoted by T . Together with a reference distribution
pref , a normalizing flow T defines a new distribution νT = (T (·;h(x)))−1

# pref

which is called the push-forward of the reference distribution pref [23]. By draw-
ing samples from pref and applying T on these samples we obtain samples from
this new distribution. The density of this so-obtained distribution pνT

can be
derived from the change of variables formula:

pνT
(y | h(x)) = pref (T (y;h(x)))|∇yT (y;h(x))| (12)

The KL-divergence between the target distribution pY |h(X) and the flow-
based model pνT

can be written as follows:

Eh(X)[DKL(pY |h(X)‖pνT
)]

=Eh(X)

[

EY |h(X)

[

log
(pY |h(X)

pνT

)

]]

= − H(Y | h(X)) − Eh(X),Y [log pνT
(Y | h(X))]

= − H(Y | h(X)) + Eh(X),Y [− log pref (T (y;h(x))
− log |∇yT (y;h(x))|] (13)

The last two terms in Eq. 13 correspond to the negative log-likelihood (NLL) for
conditional flows with distribution pref in latent space. If the reference distribu-
tion is assumed to be standard normal, the NLL is given as in Sect. 3.

We restate Lemma 1 with a more general notation. Note that the argmax or
argmin is a set.

Lemma 1. Let X, Y be random variables. We furthermore assume that for each
h ∈ H there exists one T ∈ T with Eh(X)[DKL(pY |h(X)‖pνT

)] = 0. Then, the
following two statements are true

(a) Let

h�, T � = arg min
h∈H,T∈T

−Eh(X),Y [log pνT
(Y | h(X))]

then it holds h� = g� where g� = arg maxg∈H I(g(X);Y )
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(b) Let

T � = arg min
T∈T

Eh(X)[DKL(pY |h(X)‖pνT
)]

then it holds h(X) ⊥ T �(Y ;h(X))

Proof. (a) From Eq. 13, we obtain −Eh(X),Y [log pνT
(Y | h(X))] ≥ H(Y | h(X))

for all h ∈ H, T ∈ T . We furthermore have minT∈T −Eh(X),Y [log pνT
(Y |

h(X))] = H(Y | h(X)) due to our assumptions on T .
Therefore, minh∈H,T∈T −Eh(X),Y [log pνT

(Y | h(X))] = minh∈H H(Y |
h(X)). Since we have I(Y ;h(X)) = H(Y ) − H(Y | h(X)) and only the sec-
ond term depends on h, statement (a) holds true.

(b) For convenience, we denote T (Y ;h(X)) = R and h(X) =
Z. We have EZ [DKL(pY |Z‖pνT � )] = 0 and therefore pY |Z(y | z) =
pref (T (y; z))|∇yT−1(y; z)|.

Then it holds

pR|Z(r | z) = pY |Z(T−1(r; z)|z) · |∇yT−1(r; z)|
= pref (T (T−1(r; z); z)) · |∇yT (y; z)|

· |∇yT−1(r; z)|
= pref (r) · 1

Since the density pref is independent of Z, we obtain R ⊥ Z which concludes
the proof of (b)

Statement (a) describes an optimization problem that allows to find features
which share maximal information with the target variable Y . Due to statement
(b) it is possible to draw samples from the conditional distribution P (Y | h(X))
via the reference distribution.

Let H⊥ the set of features which satisfy the invariance property, i.e. Y ⊥ E |
h(X) for all h ∈ H⊥. In the following, we sketch why

arg minh∈H⊥ maxe∈E minT∈T Le
NLL(T ;h)=arg maxh∈H⊥mine∈E I(Y e;h(Xe))

follows from Lemma 1.
Let h ∈ H⊥. Then, it is easily seen that there exists a T � ∈

T with (1) LNLL(T �;h) = minT∈T LNLL(T, h) and (2) Le
NLL(T �, h) =

minT∈T Le
NLL(T, h) for all e ∈ E since the conditional densities p(y | h(X))

are invariant across all environments. Hence we have H(Y e | h(Xe)) =
Le
NLL(T �;h) for all e ∈ E . Therefore, arg minh∈H⊥ maxe∈E minT∈T Le

NLL(T ;h) =
arg maxh∈H⊥ mine∈E I(Y e;h(Xe)) due to I(Y e;h(Xe)) = H(Y e) − H(Y e |
h(Xe)).

C.1 Normalizing Flows and Additive Noise Models

In our case, we represent the conditional distribution P (Y | h(X)) using a
conditional normalizing flow (see e.g. [1]). In our work, we seek a mapping
R = T (Y ;h(X)) that is diffeomorphic in Y such that R ∼ N (0, 1) ⊥ h(X) when
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Y ∼ P (Y | h(X)). This is a generalization of the well-studied additive Gaussian
noise model R = Y − f(h(X)), see AppendixE. The inverse Y = F (R;h(X))
takes the role of a structural equation for the mechanism p(Y | h(X)) with R
being the corresponding noise variable.1

D HSIC and Wasserstein Loss

The Hilbert-Schmidt Independence Criterion (HSIC) is a kernel based measure
for independence which is in expectation 0 if and only if the compared random
variables are independent [12]. An empirical estimate of HSIC(A,B) for two
random variables A,B is given by

ĤSIC({aj}n
j=1, {bj}n

j=1) =
1

(n − 1)2
tr(KHK ′H) (14)

where tr is the trace operator. Kij = k(ai, aj) and K ′
ij = k′(bi, bj) are kernel

matrices for given kernels k and k′. The matrix H is a centering matrix Hi,j =
δi,j − 1/n.

The one dimensional Wasserstein loss compares the similarity of two dis-
tributions [18]. This loss has expectation 0 if both distributions are equal. An
empirical estimate of the one dimensional Wasserstein loss for two random vari-
ables A,B is given by

LW = ‖sort({aj}n
j=1) − sort({bj}n

j=1)‖2
Here, the two batches are sorted in ascending order and then compared in the
L2-Norm. We assume that both batches have the same size.

Fig. 4. Illustration of Architecture of Conditional Invertible Neural Network (Condi-
tional INN) which implements Eq. 7. h is a feature extractor implemented as feed for-
ward neural network. LI is the invariance loss that measures the dependence between
residuals R and (E, h(X)) and LNLL is the negative log-likelihood as in Eq. 5.

1 F is the concatenation of the normal CDF with theinverse CDF of P (Y | h(X)), see
[32].
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E Additive Noise Models and Robust Prediction

Let fθ be a regression function. Solving for the noise term gives R = Y − fθ(X)
which corresponds to a diffeomorphism in Y , namely Tθ(Y ;X) = Y − fθ(X). If
we make two simplified assumptions: (i) the noise is Gaussian with zero mean
and (ii) R ⊥ fθ(X), then we obtain

I(Y ; fθ(X)) = H(Y ) − H(Y | fθ(X)) = H(Y ) − H(R | fθ(X))
(ii)
= H(Y ) − H(R)

(i)
= H(Y ) − 1/2 log(2πeσ2)

where σ2 = E[(Y − fθ(X))2]. In this case maximizing the mutual information
I(Y ; fθ(X)) amounts to minimizing E[(Y − fθ(X))2] w.r.t. θ, i.e. the standard
L2-loss for regression problems. From this, we obtain an approximation of Eq. 7
via

arg min
θ

(

max
e∈Eseen

{

E
[

(Y e − fθ(Xe))2
]

}

+ λILI(PR, Pfθ(X),E)
)

(15)

where Re = Y − fθ(Xe) and λI > 0. Under the conditions stated above, the
objective achieves the mentioned trade-off between information and invariance.

Alternatively we can view the problem as to find features hφ : R
D → R

m

such that I(hφ(X), Y ) gets maximized under the assumption that there exists a
model fθ(hφ(X)) + R = Y where R is independent of hφ(X) and R is gaussian.
In this case we obtain similarly as above the learning objective

arg min
θ,φ

(

max
e∈Eseen

{

E
[

(Y e − fθ(hφ(Xe)))2
]

}

+ λILI(PR, Phφ(X),E)
)

(16)

F Algorithm

In order to optimize the DG problem in Eq. 4, we optimize a normalizing flow Tθ

and a feed forward neural network hφ as described in Algorithm 1. There is an
inherent trade-off between robustness and goodness-of-fit. The hyperparameter
λI describes this trade-off and is chosen a priori.

If we choose a gating mechanisms hφ as feature extractor similar to [17],
then a complexity loss is added to the loss in the gradient update step. The
architecture is illustrated in Fig. 4. Figure 5 shows the architecture with gating
function.

In case we assume that the underlying mechanisms elaborates the noise in an
additive manner, we could replace the normalizing flow Tθ with a feed forward
neural network fθ and execute Algorithm 2.

If we choose a gating mechanism, minor adjustments have to be made to
Algorithm 2 such that we optimize Eq. 9. The classification case can be obtained
similarly as described in Sect. 4.
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Data: Samples from PXe,Y e in different environments e ∈ Eseen.
Initialize: Parameters θ, φ;
for number of training iterations do

for e ∈ Eseen do
Sample minibatch {(ye

1,x
e
1), . . . , (y

e
m,xe

m)} from PY,X|E=e for e ∈ Eseen;;
Compute re

j = Tθ(y
e
j ; hφ(xe

j));;

end
Update θ, φ by descending alongside the stochastic gradient

∇θ,φ

(
max

e∈Eseen

{ m∑
i=1

[
1
2
‖Tθ(y

e
i ; hφ(xe

i ))‖2

− log ∇yTθ(y
e
i ; hφ(xe

i ))
]}

+ λILI({re
j}j,e, {hφ(xe

j), e}j,e)
)
;

end
Result: In case of convergence, we obtain Tθ� , hφ� with

θ�, φ� =

arg min
θ,φ

(
max

e∈Eseen

{
EXe,Y e

[
1
2
‖Tθ(Y

e; hφ(Xe))‖2

− log ∇yTθ(Y
e; hφ(Xe))

]}

+ λILI(PR, Phφ(X),E)
)

Algorithm 1: DG training with normalizing flows

Fig. 5. Illustration of Architecture of Conditional Invertible Neural Network (Condi-
tional INN) model which implements Eq. 7 where the feature extractor h is a gating
mechanism. Architecture is depicted for three input variables. LI is the invariance loss
that measures the dependence between residuals R and (E, h(X)), LNLL is the negative
log-likelihood as in Eq. 5 and LC is the complexity loss as described in Sect. 4.3.
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Data: Samples from PXe,Y e in different environments e ∈ Eseen.
Initialize: Parameters θ, φ;
for number of training iterations do

for e ∈ Eseen do
Sample minibatch {(ye

1,x
e
1), . . . , (y

e
m,xe

m)} from PY,X|E=e for e ∈ Eseen;;
Compute re

j = ye
j − fθ(x

e
j);;

end
Update θ by descending alongside the stochastic gradient

∇θ

(
max

e∈Eseen

{ m∑
i=1

|re
j |2

}

+ λILI({re
j}j,e, {fθ(x

e
j), e}j,e)

)
;

end
Result: In case of convergence, we obtain fθ� with

θ� = arg min
θ

(
max

e∈Eseen

{
EXe,Y e

[|Y e − fθ(X
e)|2]

}

+ λILI(PR, Pfθ(X),E)
)

Algorithm 2: DG training under the assumption of additive noise

G Identifiability Result

Under certain conditions on the environment and the underlying causal graph,
the direct causes of Y become identifiable:

Proposition 1. We assume that the underlying causal graph G is faithful with
respect to P

˜X,E. We further assume that every child of Y in G is also a child
of E in G. A variable selection h(X) = XS corresponds to the direct causes if
the following conditions are met: (i) T (Y ;h(X)) ⊥ E, h(X) are satisfied for a
diffeomorphism T (·;h(X)), (ii) h(X) is maximally informative about Y and (iii)
h(X) contains only variables from the Markov blanket of Y .

Proof. Let S(Eseen) denote a subset of X which corresponds to the variable
selection due to h. Without loss of generality, we assume S(Eseen) ⊂ M where
M is the Markov Blanket. This assumption is reasonable since we have Y ⊥
X \ M | M in the asymptotic limit.

Since pa(Y ) cannot contain colliders between Y and E, we obtain that Y ⊥
E | S(Eseen) implies Y ⊥ E | (S(Eseen) ∪ pa(Y )). This means using pa(Y ) as
predictors does not harm the constraint in the optimization problem. Due to
faithfulness and since the parents of Y are directly connected to Y , we obtain
that pa(Y ) ⊂ S(Eseen).

For each subset XS ⊂ X for which there exists an Xi ∈ XS ∩ Xch(Y ), we
have XS �⊥ Y | E. This follows from the fact that Xi is a collider, in particular
E → Xi ← Y . Conditioning on Xi leads to the result that Y and E are not
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d-separated anymore. Hence, we obtain Y �⊥ XS | E due to the faithfulness
assumption. Hence, for each XS with Y ⊥ E | XS we have XS ∩Xch(Y ) = ∅ and
therefore Xch(Y ) ∩ S(Eseen) = ∅.

Since Xpa(Y ) ⊂ S(Eseen), we obtain that Y ⊥ Xpa(ch(Y )) | Xpa(Y ) and there-
fore the parents of ch(Y ) are not in S(Eseen) except when they are parents of
Y .

Therefore, we obtain that S(Eseen) = Xpa(Y ).

One might argue that the conditions are very strict in order to obtain the
true direct causes. But the conditions set in Proposition 1 are necessary if we do
not impose additional constraints on the true underlying causal mechanisms, e.g.
linearity as done by [30]. For instance if E → X1 → Y → X2, a model including
X1 and X2 as predictor might be a better predictor than the one using only X1.
From the Causal Markov Condition we obtain E ⊥ Y | X1,X2 which results in
X1,X2 ∈ S(Eseen). Under certain conditions however, the relation Y → X2 might
be invariant across E . This is for instance the case when X2 is a measurement
of Y . In this cases it might be useful to use X2 for a good prediction.

G.1 Gating Architecture

We employ the same gating architecture as in [17] which was first proposed in [21]
as a Bernoulli reparameterization trick. They use this reparameterization trick
in their original work in order to train neural networks with L0-Regularization in
a gradient based manner. [17] apply the L0-Regularization on the input to learn
a gating mechanism. Similarly we use the L0-Regularization to learn a gating
mechanism.

The gating architecture hφ is parameterized via φ = (ααα,βββ) where ααα =
(α1, . . . , αD) and βββ = (β1, . . . , βD). Let γ < 0 and ζ > 0 be fixed. Then
we map uuu ∼ U [0, 1]D via sss(uuu) = Sigmoid((loguuu − log(1 − uuu) + ααα)/βββ), to
zzz = min(1,max(0, sss(uuu)(ζ − γ) + γ)). This is how we sample the gates for each
batch during training. The gates are then multiplied element-wise with the input
zzz � X. In principle we could sample many u ∼ U [0, 1], but we observe that one
sample of u ∼ U [0, 1] per batch suffices for our examples. At test time we use
the following estimator for the gates:

ẑzz = min(1,max(0,Sigmoid(ααα)(ζ − γ) + γ))

Similarly as during training time, we multiply ẑzz with the input. After sufficient
training ẑzz is a hard 0-1 mask. The complexity loss is defined via

L(hθ) =
D

∑

j=1

Sigmoid
(

αj − βj log
−γ

ζ

)

. (17)

For a detailed derivation of the reparameterization and complexity loss, see [21].
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H Experimental Setting for Synthetic Dataset

H.1 Data Generation

In Sect. 5 we described how we choose different Structural Causal Models (SCM).
In the following we describe details of this process.

We simulate the datasets in a way that the conditions in Proposition 1 are
met. We choose different variables in the graph shown in Fig. 2 as target vari-
able. Hence, we consider different “topological” scenarios. We assume the data
is generated by some underlying SCM. We define the structural assignments in
the SCM as follows

(a) f
(1)
i (Xpa(i), Ni) =

∑

j∈pa(i)

ajXj + Ni [Linear]

(b) f
(2)
i (Xpa(i), Ni) =

∑

j∈pa(i)

ajXj − tanh(ajXj) + Ni

[Tanhshrink]

(c) f
(3)
i (Xpa(i), Ni) =

∑

j∈pa(i)

log(1 + exp(ajXj)) + Ni

[Softplus]

(d) f
(4)
i (Xpa(i), Ni) =

∑

j∈pa(i)

max{0, ajXj)} + Ni

[ReLU]

(e) f
(5)
i (Xpa(i), Ni) =

(

∑

j∈pa(i)

ajXj

)

· (1 +
1
4
Ni) + Ni

[Mult. Noise]

with Ni ∼ N (0, c2i ) where ci ∼ U [0.8, 1.2], i ∈ {0, . . . , 5} and ai ∈ {−1, 1}
according to Fig. 6. Note that the mechanisms in (b), (c) and (d) are non-linear
with additive noise and (e) elaborates the noise in a non-linear manner.

We consider hard- and soft-interventions on the assignments fi. We either
intervene on all variables except the target variable at once or on all parents
and children of the target variable (Intervention Location). We consider three
types of interventions:

– Hard-Intervention on Xi: Force Xi ∼ e1+e2N (0, 1) where we sample for each
environment e2 ∼ U([1.5, 2.5]) and e1 ∼ U([0.5, 1.5] ∪ [−1.5,−0.5])

– Soft-Intervention I on Xi: Add e1+e2N (0, 1) to Xi where we sample for each
environment e2 ∼ U([1.5, 2.5]) and e1 ∼ U([0.5, 1.5] ∪ [−1.5,−0.5])

– Soft-Intervention II on Xi: Set the noise distribution Ni to N (0, 22) for E = 2
and to N (0, 0.22) for E = 3
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Per run, we consider one environment without intervention (E = 1) and two
environments with either both soft- or hard-interventions (E = 2, 3). We also
create a fourth environment to measure a models’ ability for out-of-distribution
generalization:

– Hard-Intervention: Force Xi ∼ e + N (0, 42) where e = e1 ± 1 with e1 from
environment E = 1. The sign {+,−} is chosen once for each i with equal
probability.

– Soft-Intervention I: Add e + N (0, 42) to Xi where e = e1 ± 1 with e1 from
environment E = 1. The sign {+,−} is chosen once for each i with equal
probability as for the do-intervention case.

– Soft-Intervention II: Half of the samples have noise Ni distributed due to
N (0, 1.22) and the other half of the samples have noise distributed as N (0, 32)

We randomly sample causal graphs as described above. Per environment, we
consider 1024 samples.

H.2 Training Details

X1 X2

X3

X4

X5

X6

+

+ -

-
+ +

-

Fig. 6. The signs of the
coefficients aj for the
mechanisms of the differ-
ent SCMs

All used feed forward neural networks have two inter-
nal layers of size 256. For the normalizing flows we use
a 2 layer MTA-Flow described in AppendixH.3 with
K=32. As optimizer we use Adam with a learning rate
of 10−3 and a L2-Regularizer weighted by 10−5 for all
models. Each model is trained with a batch size of 256.
We train each model for 1000 epochs and decay the
learning rate every 400 epochs by 0.5. For each model
we use λI = 256 and the HSIC LI employs a Gaus-
sian kernel with σ = 1. The gating architecture was
trained without the complexity loss for 200 epochs and
then with complexity loss weighted by 5. For the Flow
model without gating architecture we use a feed for-
ward neural network hφ with two internal layers of size
256 mapping to an one dimensional vector. In total,
we evaluated our models on 1365 created datasets as
described in H.1.

Once the normalizing flow T is learned, we pre-
dict y given features h(x) using 512 normally distributed samples ui which are
mapped to samples from p(y|h(x)) by the trained normalizing flow T (ui;h(x)).
As prediction we use the mean of these samples.

H.3 One-Dimensional Normalizing Flow

We use as one-dimension normalizing flow the More-Than-Affine-Flow (MTA-
Flow), which was developed by us. An overview of different architectures for one-
dimensional normalizing flows can be found in [28]. For each layer of the flow,
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a conditioner network C maps the conditional data h(X) to a set of parameters
a, b ∈ R and w,v, r ∈ R

K for a chosen K ∈ N. It builds the transformer τ for
each layer as

z = τ(y | h(X))

:= a

(

y +
1

N(w,v)

K
∑

i=1

wif(viy + ri)

)

+ b, (18)

where f is any almost everywhere smooth function with a derivative bounded
by 1. In this work we used a gaussian function with normalized derivative for f .
The division by

N(w,v) := ε−1

(

K
∑

i=1

|wivi| + δ

)

, (19)

with numeric stabilizers ε < 1 and δ > 0, assures the strict monotonicity of
τ and thus its invertibility ∀x ∈ R. We also used a slightly different version
of the MTA-Flow which uses the ELU activation function and – because of its
monotonicity – can use a relaxed normalizing expression N(w,v).

H.4 PC-Variant

Since we are interested in the direct causes of Y , the widely applied PC-
Algorithm gives not the complete answer to the query for the parents of Y .
This is due to the fact that it is not able to orient all edges. To compare the
PC-Algorithm we include the environment as system-intern variable and use a
conservative assignment scheme where non-oriented edges are thrown away. This
assignment scheme corresponds to the conservative nature of the ICP.

For further interest going beyond this work, we consider diverse variants of
the PC-Algorithm. We consider two orientation schemes: A conservative one,
where non-oriented edges are thrown away and a non-conservative one where
non-oriented edges from a node Xi to Y are considered parents of Y .

We furthermore consider three scenarios: (1) the samples across all environ-
ments are pooled, (2) only the observational data (from the first environment) is
given, and (3) the environment variable is considered as system-intern variable
and is seen by the PC-Algorithm (similar as in [26]). Results are shown in Fig. 7.
In order to obtain these results, we sampled 1500 graphs as described above and
applied on each of these datasets a PC-Variant. Best accuracies are achieved
if we consider the environment variable as system-intern variable and use the
non-conservative orientation scheme (EnvIn).
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Fig. 7. Detection accuracies of direct causes for different variants of the PC-Algorithm.
EnvOut means we pool over all environments and EnvIn means the environment is
treated as system intern variable E. The suffix Cons means we us the conservative
assignment scheme. OneEnv means we only consider the observational environment
for inference.

H.5 Variable Selection

We consider the task of finding the direct causes of a target variable Y . Our
models based on the gating mechanism perform a variable selection and are
therefore compared to the PC-Algorithm and ICP. In the following we show the
accuracies of this variable selection according to different scenarios.

Figure 8 shows the accuracies of ICP, the PC-Algorithm and our models
pooled over all scenarios. Our models perform comparably well and better than
the baseline in the causal discovery task.

In the following we show results due to different mechanisms, target variables,
intervention types and intervention locations. Figure 9a shows the accuracies
of all models across different target variables. Parentless target variables, i.e.
Y = X4 or Y = X0 are easy to solve for ICP due to its conservative nature. All
our models solve the parentless case quite well. Performance of the PC-variant
depends strongly on the position of the target variable in the SCM indicating that
its conservative assignment scheme has a strong influence on its performance.
As expected, the PC-variant deals well with with Y = X6 which is a childless
collider. The causal discovery task seems to be particularly hard for variable
Y = X6 for all other models. This is the variable which has the most parents.

The type of intervention and its location seem to play a minor role as shown
in Fig. 9a and Fig. 9a.

Figure 9b shows that ICP performs well if the underlying causal model is
linear, but degrades if the mechanism become non-linear. The PC-Algorithm
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Fig. 8. Accuracies for different models across all scenarios. FlowG and ANMG are our
models.

Fig. 9. Comparison of models across different scenarios in the causal discovery task

performs under all mechanisms comparably, but not well. ANMG performs quite
well in all cases and even slightly better than FlowG in the cases of additive noise.
However in the case of non-additive noise FlowG performs quite well whereas
ANMG perform slightly worse – arguably because their requirements (additive
noise) on the underlying mechanisms are not met.
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H.6 Transfer Study

In the following we show the performance of different models on the training set,
a test set of the same distribution and a set drawn from an unseen environment
for different scenarios. As in Sect. 5, we use the L2-Loss on samples of an unseen

Fig. 10. Logarithmic plot of L2 errors, normalized by CERM test error. For each
method (ours in bold) from left to right: training error, test error on seen environ-
ments, domain generalization error on unseen environments. Scenarios for different
mechanisms are shown.
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Fig. 11. Logarithmic plot of L2 errors, normalized by CERM test error. For each
method (ours in bold) from left to right: training error, test error on seen environ-
ments, domain generalization error on unseen environments. Scenarios for different
target variables are shown.

environment to measure out-of-distribution generalization. Figure 10, 11 and 12
show results according to the underlying mechanisms, target variable or type of
intervention respectively. The boxes show the quartiles and the upper whiskers
ranges from third quartile to 1.5 · IQR where IQR is the interquartile range.
Similar for the lower whisker.
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Fig. 12. Logarithmic plot of L2 errors, normalized by CERM test error. For each
method (ours in bold) from left to right: training error, test error on seen environ-
ments, domain generalization error on unseen environments. Scenarios for different
intervention types are shown.

I Experimental Details Colored MNIST

For the training, we use a feed forward neural network consisting of a feature
selector followed by a classificator. The feature selector consists of two convolu-
tional layers with a kernel size of 3 with 16 respectively 32 channels followed by
a max pooling layer with kernel size 2, one dropout layer (p = 0.2) and a fully
connected layer mapping to 16 feature dimensions. After the first convolutional
layer and after the pooling layer a PReLU activation function is applied. For the
classification we use a PReLU activation function followed by a Dropout layer
(p = 0.2) and a linear layer which maps the 16 features onto the two classes
corresponding to the labels.

We use the data generating process from [2]. 50 000 samples are used for
training and 10 000 samples as test set. For training, we choose a batch size of
1000 and train our models for 60 epochs. We choose a starting learning rate of
6 · 10−3. The learning rate is decayed by 0.33 after 20 epochs. We use an L2-
Regularization loss weighted by 10−5. After each epoch we randomly reassign the
colors and the labels with the corresponding probabilities. The one-dimensional
Wasserstein loss is applied dimension-wise and the maximum over dimensions is
computed in order to compare residuals. For the HSIC we use a cauchy kernel
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with σ = 1. The invariance loss LI is simply the sum of the HSIC and Wasserstein
term. For Fig. 3a we trained our model with λI ≈ 13. This hyperparameter is
chosen from the best run in Fig. 3b. For stability in the case of large λI , we
divide the total loss by λI during training to produce the results in Fig. 3b. For
the reported accuracy of IRM, we train with the same network architecture on
the dataset where we created training instances online.
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