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Abstract. We revisit the problem of large-scale bundle adjustment and
propose a technique called Multidirectional Conjugate Gradients that
accelerates the solution of the normal equation by up to 61%. The key
idea is that we enlarge the search space of classical preconditioned con-
jugate gradients to include multiple search directions. As a consequence,
the resulting algorithm requires fewer iterations, leading to a significant
speedup of large-scale reconstruction, in particular for denser problems
where traditional approaches notoriously struggle. We provide a number
of experimental ablation studies revealing the robustness to variations in
the hyper-parameters and the speedup as a function of problem density.

Keywords: Large-scale reconstruction · Bundle adjustment ·
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1 Introduction

The classical challenge of image-based large scale reconstruction is witnessing
renewed interest with the emergence of large-scale internet photo collections [2].
The computational bottleneck of 3D reconstruction and structure from motion
methods is the problem of large-scale bundle adjustment (BA): Given a set
of measured image feature locations and correspondences, BA aims to jointly
estimate the 3D landmark positions and camera parameters by minimizing a
non-linear least squares reprojection error. More specifically, the most time-
consuming step is the solution of the normal equation in the popular Levenberg-
Marquardt (LM) algorithm that is typically solved by Preconditioned Conjugate
Gradients (PCG).

In this paper, we propose a new iterative solver for the normal equation that
relies on the decomposable structure of the competitive block Jacobi precondi-
tioner. Inspired by respective approaches in the domain-decomposition literature,
we exploit the specificities of the Schur complement matrix to enlarge the search-
space of the traditional PCG approach leading to what we call Multidirectional
Conjugate Gradients (MCG). In particular our contributions are as follows:

• We design an extension of the popular PCG by using local contributions of
the poses to augment the space in which a solution is sought for.
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(a) Final-1936 from BAL dataset (b) Alamo from 1dSfM dataset

Fig. 1. (a) Optimized 3D reconstruction of a final BAL dataset with 1936 poses and
more than five million observations. For this problem MCG is 39% faster than PCG
and the overall BA resolution is 16% faster. (b) Optimized 3D reconstruction of Alamo
dataset from 1dSfM with 571 poses and 900000 observations. For this problem MCG
is 56% faster than PCG and the overall BA resolution is 22% faster.

• We experimentally demonstrate the robustness of MCG with respect to the
relevant hyper-parameters.

• We evaluate MCG on a multitude of BA problems from BAL [1] and 1dSfM
[20] datasets with different sizes and show that it is a promising alternative
to PCG.

• We experimentally confirm that the performance gain of our method increases
with the density of the Schur complement matrix leading to a speedup for
solving the normal equation of up to 61% (Fig. 1).

2 Related Work

Since we propose a way to solve medium to large-scale BA using a new iterative
solver that enlarges the search-space of the traditional PCG, in the following we
will review both scalable BA and recent CG literature.

Scalable Bundle Adjustment

A detailed survey of the theory and methods in BA literature can be found in
[17]. Sparsity of the BA problem is commonly exploited with the Schur com-
plement matrix [5]. As the performance of BA methods is closely linked to the
resolution of the normal equations, speed up the solve step is a challenging task.
Traditional direct solvers such as sparse or dense Cholesky factorization [11]
have been outperformed by inexact solvers as the problem size increases and
are therefore frequently replaced by Conjugate Gradients (CG) based methods
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[1,6,18]. As its convergence rate depends on the condition number of the lin-
ear system a preconditioner is used to correct ill-conditioned BA problems [14].
Several works tackle the design of performant preconditioners for BA: [9] pro-
posed the band block diagonals of the Schur complement matrix, [10] exploited
the strength of the coupling between two poses to construct cluster-Jacobi and
block-tridiagonal preconditioners, [7] built on the combinatorial structure of BA.
However, despite these advances in the design of preconditioners, the iterative
solver itself has rarely been challenged.

(Multi-preconditioned) Conjugate Gradients

Although CG has been a popular iterative solver for decades [8] there exist some
interesting recent innovations, e.g. flexible methods with a preconditioner that
changes throughout the iteration [13]. The case of a preconditioner that can be
decomposed into a sum of preconditioners has been exploited by using Multi-
Preconditioned Conjugate Gradients (MPCG) [4]. Unfortunately, with increasing
system size MPCG rapidly becomes inefficient. As a remedy, Adaptive Multi-
Preconditioned Conjugate Gradients have recently been proposed [3,15]. This
approach is particularly well adapted for domain-decomposable problems [12].
While decomposition of the reduced camera system in BA has already been
tackled e.g. with stochastic clusters in [19], to our knowledge the decomposi-
tion inside the iterative solver has never been explored. As we will show in the
following, this modification gives rise to a significant boost in performance.

3 Bundle Adjustment and Multidirectional Conjugate
Gradients

We consider the general form of bundle adjustment with np poses and nl land-
marks. Let x be the state vector containing all the optimization variables. It
is divided into a pose part xp of length dpnp containing extrinsic and eventu-
ally intrinsic camera parameters for all poses (generally dp = 6 if only extrinsic
parameters are unknown and dp = 9 if intrinsic parameters also need to be esti-
mated) and a landmark part xl of length 3nl containing the 3D coordinates of
all landmarks. Let r (x) = [r1 (x) , ..., rk (x)] be the vector of residuals for a 3D
reconstruction. The objective is to minimize the sum of squared residuals

F (x) = ‖r (x)‖2 =
∑

i

‖ri(x)‖2 (1)

3.1 Least Squares Problem and Schur Complement

This minimization problem is usually solved with the Levenberg Marquardt algo-
rithm, which is based on the first-order Taylor approximation of r (x) around
the current state estimate x0 =

(
x0

p, x
0
l

)
:
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r (x) ≈ r0 + JΔx (2)

where

r0 = r
(
x0

)
, (3)

Δx = x − x0, (4)

J =
∂r

∂x
|x=x0 (5)

and J is the Jacobian of r that is decomposed into a pose part Jp and a land-
mark part Jl. An added regularization term that improves convergence gives the
damped linear least squares problem

min
Δxp,Δxl

(
‖r0 +

(
Jp Jl

) (
Δxp

Δxl

)
‖2 + λ‖(

Dp Dl

) (
Δxp

Δxl

)
‖2

)
(6)

with λ a damping coefficient and Dp and Dc diagonal damping matrices for
pose and landmark variables. This damped problem leads to the corresponding
normal equation

H

(
Δxp

Δxl

)
= −

(
bp

bl

)
(7)

where

H =
(

Uλ W
W� Vλ

)
, (8)

Uλ = J�
p Jp + λD�

p Dp, (9)

Vλ = J�
l Jl + λD�

l Dl, (10)

W = J�
p Jl, bp = J�

p r0, (11)

bl = J�
l r0 (12)

As the system matrix H is of size (dpnp + 3nl)
2 and tends to be excessively

costly for large-scale problems [1], it is common to reduce it by using the Schur
complement trick and forming the reduced camera system

SΔxp = −b̃ (13)

with
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S = Uλ − WV −1
λ W�, (14)

b̃ = bp − WV −1
λ bl (15)

and then solving (13) for Δxp and backsubstituting Δxp in

Δxl = −V −1
λ

(−bl + W�Δxp

)
(16)

3.2 Multidirectional Conjugate Gradients

Direct methods such as Cholesky decomposition [17] have been studied for solv-
ing (13) for small-size problems, but this approach implies a high computational
cost whenever problems become too large.

A very popular iterative solver for large symmetric positive-definite system
is the CG algorithm [16]. Since its convergence rate depends on the distribution
of eigenvalues of S it is common to replace (13) by a preconditioned system.
Given a preconditioner M the preconditioned linear system associated to

SΔxp = −b̃ (17)

is

M−1SΔxp = −M−1b̃ (18)

and the resulting algorithm is called Preconditioned Conjugate Gradients (PCG)
(see Algorithm 1). For block structured matrices as S a competitive precondi-
tioner is the block diagonal matrix D (S), also called block Jacobi preconditioner
[1]. It is composed of the block diagonal elements of S. Since the block Smj of
S is nonzero if and only if cameras m and j share at least one common point,
each diagonal block depends on a unique pose and is applied to the part of con-
jugate gradients residual rj

i that is associated to this pose. The motivation of
this section is to enlarge the conjugate gradients search space by using several
local contributions instead of a unique global contribution.

Adaptive Multidirections

Local Preconditioners. We propose to decompose the set of poses into N sub-
sets of sizes l1, . . . , lN and to take into consideration the block-diagonal matrix
Dp (S) of the block-jacobi preconditioner and the associated residual rp that
correspond to the lp poses of subset p (see Fig. 2(a)). All direct solves are per-
formed inside these subsets and not in the global set. Each local solve is treated
as a separate preconditioned equation and provides a unique search-direction.
Consequently the conjugate vectors Zi+1 ∈ R

dpnp in the preconditioned conju-
gate gradients (line 10 in Algorithm 1) are now replaced by conjugate matrices
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Algorithm 1. Preconditioned Conjugate Gradients
1: x0, r0 = −˜b − Sx0, Z0 = D(S)−1r0, P0 = Z0, ε;
2: while i < imax do
3: Qi = SPi;
4: Δi = Q�

i Pi; γi = P �
i ri; αi = γi

Δi
;

5: xi+1 = xi + αiPi;
6: ri+1 = ri − αiQi;
7: if ri+1 < ε ∗ r0 then
8: break
9: end if

10: Zi+1 = D(S)−1ri+1;
11: Φi = Q�

i Zi+1; βi = Φi
Δi

;
12: Pi+1 = Zi+1 − βiPi;
13: end while
14: return xi+1;

(a) Decomposed preconditioned CG residuals (b) Enlarged search-space

Fig. 2. (a) Block-Jacobi preconditioner D (S) is divided into N submatrices Dp (S)
and each of them is directly applied to the associated block-row rp in the CG residual.
(b) Up to a τ -test the search-space is enlarged. Each iteration provides N times more
search-directions than PCG.

Zi+1 ∈ R
dpnp×N whose each column corresponds to a local preconditioned solve.

The search-space is then significantly enlarged: N search directions are gener-
ated at each inner iteration instead of only one. An important drawback is that
matrix-vector products are replaced by matrix-matrix products which can lead
to a significant additional cost. A trade-off between convergence improvement
and computational cost needs to be designed.

Adaptive τ -Test. Following a similar approach as in [15] we propose to use an
adaptive multidirectional conjugate gradients algorithm (MCG, see Algorithm
2) that adapts automatically if the convergence is too slow. Given a threshold
τ ∈ R

+ chosen by the user, a τ -test determines whether the algorithm sufficiently
reduces the error (case ti > τ) or not (case ti < τ). In the first case a global block
Jacobi preconditioner is used and the algorithm performs a step of PCG; in the
second case local block Jacobi preconditioners are used and the search-space is
enlarged (see Fig. 2(b)).
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Algorithm 2. Multidirectional Conjugate Gradients
1: x0, r0 = −˜b − Sx0, Z0 = D(S)−1r0, P0 = Z0, ε;
2: while i < imax do
3: Qi = SPi;
4: Δi = Q�

i Pi; γi = P �
i ri; αi = Δ†

i γi;
5: xi+1 = xi + Piαi;
6: ri+1 = ri − Qiαi;
7: if ri+1 < ε ∗ r0 then
8: break
9: end if

10: ti =
γ�
i αi

r�
i+1D(S)−1ri+1

;

11: if ti < τ then

12: Zi+1 =

⎛

⎜

⎜

⎝

D1(S)−1r1i+1

0
...
0

...

...

0
...
0

DN (S)−1rN
i+1

⎞

⎟

⎟

⎠

;

13: else
14: Zi+1 = D(S)−1ri+1;
15: end if
16: Φi,j = Q�

j Zi+1; βi,j = Δ†
jΦi,j for j = 0, ..., i;

17: Pi+1 = Zi+1 − ∑i
j=0 Pjβi,j ;

18: end while
19: return xi+1;

Optimized Implementation. Besides matrix-matrix products two other
changes appear. Firstly an N × N matrix Δi must be inverted (or pseudo-
inverted if Δi is not full-rank) each time ti < τ (line 4 in Algorithm 2). Secondly
a full reorthogonalization is now necessary (line 16 in Algorithm 2) because of
numerical errors while βi,j = 0 as soon as i �= j in PCG.

To improve the efficiency of MCG we do not directly apply S to Pi (line 3 in
Algorithm 2) when the search-space is enlarged. By construction the block Skj

is nonzero if and only if cameras k and j observe at least one common point. The
trick is to use the construction of Zi and to directly apply the non-zero blocks
Sjk, i.e. consider only poses j observing a common point with k, to the column
in Zi associated to the subset containing pose k and then to compute

Qi = SZi −
i−1∑

j=0

Qjβi,j (19)

To get ti we need to use a global solve (line 10 in Algorithm 2). As the
local block Jacobi preconditioners {Dp(S)}p=1,...,N and the global block Jacobi
preconditioner D (S) share the same blocks it is not necessary to derive all local
solves to construct the conjugates matrix (line 12 in Algorithm 2); instead it is
more efficient to fill this matrix with block-row elements of the preconditioned
residual D (S)−1

ri+1.
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As the behaviour of CG residuals is a priori unknown the best decomposition
is not obvious. We decompose the set of poses into N − 1 subsets of same size
and the last subset is filled by the few remaining poses. This structure presents
the practical advantage to be very easily fashionable and the parallelizable block
operations are balanced.

4 Experimental Evaluations

4.1 Algorithm and Datasets

Levenberg-Marquardt (LM) Loop. Starting with damped parameter 10−4 we
update λ according to the success or failure of the LM loop. Our implementation
runs for at most 25 iterations, terminating early if a relative function tolerance
of 10−6 is reached. Our evaluation is built on the LM loop implemented in [19]
and we also estimate intrinsics parameters for each pose.

Iterative Solver Step. For a direct performance comparison we implement our
own MCG and PCG solvers in C++ by using Eigen 3.3 library. All row-major-
sparse matrix-vector and matrix-matrix products are multi-threaded by using 4
cores. The tolerance ε and the maximum number of iterations are set to 10−6 and
1000 respectively. Pseudo-inversion is derived with the pseudo-inverse function
from Eigen.

Datasets. For our evaluation we use 9 datasets with different sizes and het-
erogeneous Schur complement matrix densities d from BAL [1] and 1dSfM [20]
datasets (see Table 1). The values of N and τ are arbitrarily chosen and the
robustness of our algorithm to these parameters is discussed in the next subsec-
tion.

We run experiments on MacOS 11.2 with Intel Core i5 and 4 cores at 2 GHz.

4.2 Sensitivity with τ and N

In this subsection we are interested in the solver runtime ratio that is defined
as tMCG

tPCG
where tMCG (resp. tPCG) is the total runtime to solve all the linear

systems (12) with MCG (resp. PCG) until a given BA problem converges. We
investigate the influence of τ and N on this ratio.

Sensitivity with τ . We solve BA problem for different values of τ and for a fixed
number of subsets N given in Table 1. For each problem a wide range of values
supplies a good trade-off between the augmented search-space and the additional
computational cost (see Fig. 3). Although the choice of τ is crucial it does not
require a high accuracy. That confirms the tractability of our solver with τ .

Sensitivity with N . Similarly we solve BA problem for different values of N
and for a fixed τ given in Table 1. For each problem a wide range of values
supplies a good trade-off between the augmented search-space and the additional
computational cost (see Fig. 4). That confirms the tractability of our solver with
N .
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Table 1. Details of the problems from BAL (prefixed as: F for final, L for Ladybug) and
1dSfM used in our experiments. d is the density of the associated Schur complement
matrix, N is the number of subsets, τ is the adaptive threshold that enlarges the
search-direction space.

Names Poses Points Projections d N τ

Piazza del Popolo 335 37,609 195,016 0.57 33 10

Metropolis 346 55,679 255,987 0.50 34 6

F-394 394 100,368 534,408 0.94 131 6

Montreal 459 158,005 860,116 0.60 22 3

Notre-Dame 547 273,590 1,534,747 0.77 45 10

Alamo 571 151,085 891,301 0.77 47 10

L-646 646 73,484 327,297 0.25 64 2

F-871 871 527,480 2,785,977 0.40 43 2.5

F-1936 1,936 649,673 5,213,733 0.91 121 3.3

Fig. 3. Robustness to τ . The plots show the performance ratio as a function of τ
for a number of subsets given in Table 1. The wide range of values that give similar
performance confirms the tractability of MCG with τ .
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Fig. 4. Robustness to the number of subsets N . The plots show the performance ratio
as a function of N for τ given in Table 1. The wide range of values that give similar
performance confirms the tractability of MCG with N .

Fig. 5. Density effect on the relative performance. Each point represents a BA problem
from Table 1 and d is the density of the Schur complement matrix. Our solver competes
PCG for sparse Schur matrix and leads to a significant speed-up for dense Schur matrix.

4.3 Density Effect

As the performance of PCG and MCG depends on matrix-vector product and
matrix-matrix product respectively we expect a correlation with the density of
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the Schur matrix. Figure 5 investigates this intuition: MCG greatly outperforms
PCG for dense Schur matrix and is competitive for sparse Schur matrix.

4.4 Global Performance

Figures 6 and 7 present the total runtime with respect to the number of BA
iterations for each problem and the convergence plots of total BA cost for F-
1936 and Alamo datasets, respectively. MCG and PCG give the same error at
each BA iteration but the first one is more efficient in terms of runtime. Table 2
summarizes our results and highlights the great performance of MCG for dense
Schur matrices. In the best case BA resolution is more than 20% faster than
using PCG. Even for sparser matrices MCG competes PCG: in the worst case
MCG presents similar results as PCG. If we restrict our comparison to the linear
system solve steps our relative results are even better: MCG is up to 60% faster
than PCG and presents similar results as PCG in the worst case.

Fig. 6. Global runtime to solve BA problem. The plots represent the total time with
respect to the number of BA iterations. For almost all problems the BA resolution with
MCG (orange) is significantly faster than PCG (blue). (Color figure online)
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(a) Final-1936 from BAL dataset (b) Alamo from 1dSfM dataset

Fig. 7. Convergence plots of (a) Final-1936 from BAL dataset and (b) Alamo from
1dSfm dataset. The y-axes show the total BA cost.

Table 2. Relative performances of MCG w.r.t. PCG. d is the density of the associated
Schur complement matrix. MCG greatly outperforms PCG (up to 61% faster) for dense
Schur matrix and competes PCG for sparse Schur matrix. The global BA resolution is
up to 22% faster.

Name Solver runtime ratio Global runtime ratio d

Notre-Dame 0.39 0.86 0.77

Alamo 0.44 0.78 0.77

F-394 0.55 0.80 0.94

F-1936 0.61 0.84 0.97

Piazza del Popolo 0.66 0.87 0.57

Montreal 0.77 0.96 0.60

Metropolis 0.84 0.92 0.50

F-871 0.93 0.97 0.40

L-646 1.01 1.00 0.25

5 Conclusion

We propose a novel iterative solver that accelerates the solution of the normal
equation for large-scale BA problems. The proposed approach generalizes the
traditional preconditioned conjugate gradients algorithm by enlarging its search-
space leading to a convergence in much fewer iterations. Experimental valida-
tion on a multitude of large scale BA problems confirms a significant speedup
in solving the normal equation of up to 61%, especially for dense Schur matri-
ces where baseline techniques notoriously struggle. Moreover, detailed ablation
studies demonstrate the robustness to variations in the hyper-parameters and
increasing speedup as a function of the problem density.
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