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Abstract. The goal of zero-shot image super-resolution (SR) is to gen-
erate high-resolution (HR) images from never-before-seen image distri-
butions. This is challenging, especially, because it is difficult to model the
statistics of an image that the network has never seen before. Despite
deep convolutional neural networks (CNN) being superior to traditional
super-resolution (SR) methods, little attention has been given to gener-
ating remote sensing scene-based HR images which do not have any prior
ground truths available for training. In this paper, we propose a frame-
work that harnesses the inherent tessellated nature of remotely images
using continuity to generate HR images that tackle atmospheric and
radiometric condition variations. Our proposed solution utilizes self tes-
sellations to fully harness the image heuristics to generate an SR image
from a low resolution (LR) input. The salience of our approach lies in
a two-fold data generation in a self-preservation case and a cascaded
attention sharing mechanism on the latent space for content preserva-
tion while generating SR images. By learning a mapping from LR space
to SR space while keeping the content statistics preserved helps in bet-
ter quality image generation. The attention sharing between content and
tessellations aids in learning the overall big picture for super-resolution
without losing an eye on the main image to be super-resolved. We show-
case our results with the generated images given the low resolution (LR)
input images in zero-shot cases comparable to state-of-the-art results
on EuroSAT and PatternNet datasets with metrics of SSIM and PSNR.
We further show how this architecture can be leveraged for non-remote
sensing (RS) applications.
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1 Introduction

Generating an SR image from a given LR image in a smooth end-to-end fash-
ion is what is expected from an automated super-resolving framework. Such a
framework becomes highly desirable as on-demand detailed image generation
would make efficient storage use by allowing HR images to be downsampled
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Fig. 1. A schematic of our proposed model. A cascade of attention based feature sharing
modules for generating super-resolved images. The attention-sharing-based interaction
helps the content statistics trickle down into the tessellation features.

and stored. Also, it would mean lower bandwidth consumption while transmis-
sion if images at the end-user have access to an SR framework. Apart from
having upsides in traditional computer vision, bringing super-resolution to the
remote sensing domain can attempt to address various problems like generat-
ing high-resolution spectro-spatial bands from a low spatial-high spectral band
configuration (Fig. 1).

Given that multi-spectral images (MSI) are defined by multi-resolution
bands, it is favorable to bring all the bands to a common higher resolution to
better understand the features. Super-resolution in the remote sensing domain
differs from traditional approaches as the objects in the satellite image are very
small compared to the huge scale of a satellite image. Here, we leverage the
fact that most remote sensing scenes are a kind of tessellation by nature in
some sense. Tessellations are those structures whose individual components are
repeated to form a pattern as a representative of a whole sample and can be
found repeating throughout the sample at various scales. If we can learn the
properties of the smaller clusters, the generation of features for larger clusters
would be a simple task. Some of the challenges with satellite images include
different atmospheric conditions for different images, diverse shape generations
from low-resolution images, and various spectral signatures present in the image.

The traditional method of increasing satellite image resolution is by pan-
sharpening where the 1st principal component is replaced by a panchromatic
(PAN) image and then inverse principle component analysis is done which brings
all the bands to the PAN image resolution. Methods like average interpola-
tion, bi-linear, and bi-cubic interpolation are fast methods for upscaling but
they lack behind in generating sharp features while upscaling. Advance deep
learning methods like convolutional neural networks (CNN) based architectures
[3,8,16] and generative adversarial networks [7,13] perform well at hallucinating
the details while upscaling and generating sharp high-resolution images in the
traditional setting.

Super-resolution being an inherently difficult problem, some of the above-
mentioned problems can be tackled if the framework is shifted to zero-shot and
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the learning is based on self patterns [11,12]. The scene-based radiometric cor-
rections can be reduced if the scene stays unchanged in the training phase. Better
robust features can be generated for true context while generating features in
the testing phase. Thus, even though zero-shot has many potential advantages,
it has been hugely neglected in the satellite images domain.

Given that the traditional methods perform well, they miss out on address-
ing a few problems. Pan-sharpening does increase the resolution, but it can’t be
used to generate resolutions higher than the PAN image. It also fails if the bands
have co-related noise as an inherent property. The interpolating methods tend to
generate smooth images as it performs a weighted average of the values depend-
ing on the nature of interpolation and generates the intermediate values. Deep
learning-based models require a huge amount of data and time with the scenes
being from a relatively similar environment to generate comparable results. Also
building a unified model for super-resolution on satellite images is a challenge
as different sensors output images having different configurations and different
image properties.

To this end, we propose a cascaded attention sharing-based model which aims
to address the aforementioned problems faced by the existing architectures. We
use the zero-shot framework on satellite images to increase their resolution. This
eliminates the atmospheric condition problem as it is trained on the same atmo-
spheric conditions as the original image is. And the requirement of huge data for
training models is eliminated as we just require the original image in the train-
ing phase for the super-resolution task. Attention sharing helps robust feature
learning in a bottom-up approach. Also with the reduction in training times, we
can attempt super-resolution as an on-the-fly method. Our contributions in this
paper would be:

– We propose two unique methods based on image continuity, i.e., internal and
external tessellations, using self-image continuity without loss of generality
for data generation in a zero-shot setting.

– We also propose a novel cascade of attention sharing networks on the latent
space that helps trickle-down content statistics into the super-resolution
domain while upsampling to intermediate scales.

– We showcase our model’s performance on popular datasets like UC Merced
land-use, EuroSAT rgb, and PatternNet datasets in terms of PSNR, SSIM
and cosine similarity.

– We propose an extension to a true zero-shot case in terms of internal tessel-
lation for efficient image size invariant scaling of up to 16× and for external
tessellation of up to 8× scaling for generalized uses.

2 Related Works

Apart from the traditional methods, the recent trends for super-resolution are
centred around training on low-high resolution training pairs and testing the
model on a test low-resolution pair. The task being generative, CNN based archi-
tectures, especially generative adversarial networks (GANs) and auto-encoders
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show promising results. Skip connections play a key role in generating a colour
accurate high-resolution image by transferring data between encoder and decoder
is well demonstrated by RedNet [9] and Deep Memory Connected Network [14].
It shows that a better flow of information across the encoder-decoder network
is as important as having a deep convolutional model. Residual connections
enhance the generated feature maps and this is utilized well in the super-
resolution of Sentinel-2 images [6]. The performance of GANs is proved by D-
SRGAN [2]. It shows promising results by generating high-resolution DEMs from
low-resolution DEMs without the need for extra data. However, D-SRGAN does
not perform uniformly on all terrains. Flatter terrains produce better results
than rugged terrains. Super-Resolution increases the performance of detection
tasks by enhancing objects can be seen in vehicle detection algorithm [5] and
object detection algorithm [10].

Given the merits of zero-shot super-resolution, the vision community has been
harnessing its usefulness. [12] demonstrates meta-transfer learning for exploiting
internal image properties for a faster SR method. [1] propose a depth guided
methodology and learning-based downsampling to leverage internal statistics for
producing SR images. [11] uses internal recurrence of information to train the
model. This shows us that internal learning can give us a more robust instance-
based learning for SR tasks. However, these methods don’t effectively utilize the
internal pattern-based tessellations to the fullest extent. This in turn makes the
model miss out on the bigger picture.

3 Methodology

3.1 Tessellation Based Data Generation

Tessellations are patterns generated due to structural repetitive cycles. As tessel-
lations are uniform in all directions, the statistics such as mean and variance of
the tessellated image is largely similar to that of the content image. This comes
to our advantage when used to generate random augmented batches for training
the network as it encourages the model to learn different patterns emerging with
the same statistical distributions. Thus a robust learning approach is established
when mapping an LR image to an HR image. To utilize these properties, we pro-
pose two methods to produce tessellation based HR/LR pairs based on internal
and external cycles.

Internal Cycle: It is an algorithm to build HR/LR pairs using internal pat-
terns. Here we sample smaller scale images from the original images itself to be
tessellated for generation of a larger image. This larger image is then down-scaled
to form a low resolution image. As shown in (Fig. 2. a.), we take a random patch
from the content image and tessellate it to generate a high-resolution image and
use bicubic down-sampling to downscale the generated tessellated image. Loop-
ing through the random patches of the content images generated a set of HR/LR
pairs.
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Fig. 2. The data generation techniques. (a) The internal tessellation based HR and
LR image pair generation. An internal patch is selected and stitched with continual
pattern generating augmentations for required scaling. (b) The external tessellation
based HR-LR pair generation based on sliding window operations on the continued
image.

External Cycle: It is an algorithm to build HR/LR pairs using external pat-
terns. Here we tessellate the original image directly to generate a larger image.
The high resolution images are then sampled from the larger tessellated image
and down-scaled to generate low resolution images. As shown in (Fig. 2. b.), we
take tessellate the content image to generate an 8×/16× image. Then random
HR patches are obtained from this 8×/16× image and bicubic down-sampling
is applied to obtain LR images.

3.2 Proposed Architecture

Super-resolution is a data-driven process and to make the process efficient, it is
highly desirable to understand what features play an important role and how
much its contribution is towards generating the final output. To achieve this, an
advanced mechanism called self-attention can be used with soft weights. This
soft self-attention pushes the weights between 0 and 1 in a continual fashion.

To this end, we propose a cascaded latent space attention sharing network
(Fig. 3) for both the content stream and tessellation stream to model mapping
from LR to HR while learning to super-resolve tessellations as the content fea-
tures are preserved. The continual interaction of the latent space not only helps
joint feature learning but also helps reach a common ground that highlights fea-
ture importance for both content as well as tessellation streams. The highlighting
is done through the lower level feature to the higher level features. This helps in
efficient feature migration while super resolving in the testing phase.

HR and LR images share similar statistical distributions. Thus it is important
to selectively highlight features not only at the deeper levels but also in the ini-
tial levels too. The inter-connectivity of attention weights ensures cross-content
feature preservation. To this end, we propose a cross attention weights based
module at upscaled latent embeddings. In this mechanism (Fig. 4) the attention
weights are self-attention soft weights. For a given feature, the attention is calcu-
lated using Global Max Pooling and Global Average Pooling followed by a dense
layer with ‘sigmoid’ activation. The ‘sigmoid’ activation assigns soft weights ∈
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Fig. 3. The overall architecture of our model. The auto-encoder based building blocks
with attention sharing at the upscaling latent space for increased interactions between
content and tessellation streams.

[0,1]. These self-attention scores are then point-wise multiplied with cross fea-
tures followed by residual self skip connections to enhance cross attention based
self feature highlighting. This sharing mechanism is run in a cascaded manner.
A stack of attention sharing mechanisms ensures attention scores from the lower
level based filters to deeper latent features. In this way, the super-resolution
happens for the tessellation stream, whereas the features of the content stream
are constantly preserved.

The building blocks of the overall architecture are auto-encoder(AE) style
modules with skip connections around a bottleneck. The AE has the initial layers
of 2D Convolutions with activation of ‘relu’ followed by batch normalization. The
internal layers are of 2D convolutions with activation of ‘relu’. The output of AE
module is upscaled using transposed 2D convolutions and AE module is applied
on this upscaled feature. The activation of the bottleneck layer is kept ‘tanh’ for
an even distribution of values in the latent space.

It is in this upscaling space, the attention score sharing happens between
content and tessellation streams. The cascaded connections interaction points
share attention scores from these features to exchange cross-feature information.
The bottleneck ensures relevant information being filtered in due to non-linearity
based dimensionality reduction. The skip connections allow for a smoother gra-
dient flow.

4 Experimental Setup

4.1 Training Protocol

The model is trained for 500 epochs with a learning rate of 5×10−4. The loss for
both the content as well as HR image is mean squared error. Mean squared error
[Eq. 1] takes into account the squared pixel-wise difference between the generated
image and ground truth across all channels. Higher is the mean squared error,
the more dissimilar the generated images and ground truth is. Given ŷ is the
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Fig. 4. The attention sharing mechanism. The soft self-attention weights are gener-
ated using ‘sigmoid’ activation on max and mean pooling. These attention scores are
exchanged and cross-latent features are highlighted.

generated pixel value and y is the ground truth, (m, n) are image height and
image width respectively, we have:

LMSE =
1

mn

m∑

i=1

n∑

j=1

(ŷijk − yijk)2 (1)

We use internal tessellation based image generation for training purposes. For
a given image, we generate tessellation data with a continual sliding window-
based patch which is further extended 3 times with using rotation augmentation
of 90◦, 180◦ and 270◦. The content image is kept constant with data augmenta-
tion with rotation of 90◦, 180◦ and 270◦. After every epoch, the generated data is
shuffled and then fed into the network to randomize learning and lower the mem-
orization of parameters. The model is tested on randomly sampled 100 images
per class and images are generated per instance basis for quality monitoring.

4.2 Accuracy Metrics

We use three standardized accuracy metrics popularly used for super-resolution
tasks: Peak Signal to Noise Ratio (PSNR), Structural Similarity Index Measure-
ment (SSIM) and cosine similarity. These metrics are used to quantify how close
the produced images are to the ground truth in terms of signal quality and visual
perception. Each of the metrics have characteristics that convey image quality.
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PSNR [Eq. 2] is the ratio between the maximum value of a signal to the
strength of distorting noise which affects the quality of its characterization. It is
usually denoted in terms of the logarithmic decibel scale. Higher is the PSNR,
higher is the quality of the generated image. Given MAX is the maximum signal
value, MSE is the pixel-wise mean squared error, we have:

PSNR = 10 log10

(
MAX2

MSE

)
(2)

SSIM [Eq. 3] measures the perceived quality of the generated image as com-
pared to the ground truth. It takes into consideration the standard deviations
along with means of the generated image compared with the ground truth.
Higher is the value of SSIM, higher is the quality of the generated image. Given
ŷ is the generated pixel value and y is the ground truth with μ and σ as mean
and standard deviation, C1 and C2 are constants, we have:

SSIM(ŷ, y) =
(2μŷμy + C1) + (2σŷy + C2)

(μ2
ŷ + μ2

y + C1)(σ2
ŷ + σ2

y + C2)
(3)

Cosine similarity [Eq. 4] computes the angular nearness between the gen-
erated images and the ground truth. The nearer the predicted image is to the
ground truth, the angle (θ) between them tends to zero. Thereby, the angular
similarity, cos(θ)θ→0 → 1. Thus a value closer to 1 is desirable. More closer is
it’s value to 1, higher is the image quality. Given ŷ is the generated pixel value
and y is the ground truth, we have:

cos(ŷ, y) =
ŷ · y

‖ŷ‖‖y‖ =
∑n

i=1 ŷiyi√∑n
i=1 (ŷi)2

√∑n
i=1 (yi)2

(4)

5 Results

5.1 Datasets

We experimentally validate our framework on the of the most popular remote
sensing datasets having high spatial resolution: EuroSAT (MS) [4], PatternNet
[17] and UC Merced land-use [15] dataset. The EuroSAT (MS) dataset consists of
10 classes having 27000 images of 13 spectral channels of the Sentinel-2 satellite.
Each image consists of 3 channels with 64 × 64 pixels per channel. We use the
RGB subset of EuroSAT (MS). The PatternNet dataset is a collection of 30400
images from 38 classes, 800 images per class. The images are collected from
Google earth imagery. UC Merced is a land-use dataset spanning 21 classes
having 100 images per class. It was extracted from large images from the USGS
National Map Urban Area Imagery collection.

As seen in Table 1, our model outperforms other models in terms of PSNR
and cosine similarity and MZSR marginally outperforms us only in the SSIM
domain. One of the causes for this can be diverse changes in color gamut along
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Fig. 5. A visual depiction of comparative model outputs on UC Merced dataset. It can
be clearly seen in the zoomed boxes that our proposed model generates a crisper SR
image as compared to others.

Table 1. Quantitative performance of compared models in terms of PSNR, SSIM and
cosine similarity on the UC Merced dataset for 2× scaling.

Model PSNR SSIM Cosine Similarity

Bi-linear Interpolation 28.10 0.9754 0.9623

Deep internal Learning [11] 30.14 0.9867 0.9806

Meta Transfer ZSR [12] 29.92 0.9916 0.9824

Ours 31.27 0.9911 0.9891

Table 2. Quantitative performance of compared models in terms of PSNR, SSIM and
cosine similarity on the EuroSAT dataset for 2× scaling.

Model PSNR SSIM Cosine Similarity

Bi-linear Interpolation 29.87 0.9777 0.9865

Deep internal Learning [11] 31.34 0.9832 0.9913

Meta Transfer ZSR [12] 31.88 0.9802 0.9932

Ours 32.54 0.9834 0.9941

the edges of the super-resolved images. By basic visual inspection, it can be seen
that our model generates images and acts as a de-blurring model also (Fig. 5).
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Table 3. Quantitative performance of compared models in terms of PSNR, SSIM and
cosine similarity on the PatternNet dataset for 2× scaling.

Model PSNR SSIM Cosine Similarity

Bi-linear Interpolation 28.04 0.9689 0.9733

Deep internal Learning [11] 28.86 0.9721 0.9876

Meta Transfer ZSR [12] 29.78 0.9763 0.9885

Ours 30.27 0.9789 0.9913

Fig. 6. A visual depiction of comparative model outputs on EuroSAT dataset. It can
be clearly seen in the zoomed boxes that our proposed model generates a crisper SR
image as compared to others.

As seen in Table 2, our frame outperforms other models in terms of PSNR
and cosine similarity. Deep internal learning comes closer to our model by a
fraction only in the SSIM domain. In this dataset, our model handles upscaling
and de-blurring in a balanced mode to generate high fidelity images (Fig. 6).

As seen in Table 3, even though our model outperforms other models in terms
of PSNR, cosine similarity and MZSR [12], it proves to be a difficult dataset to
handle. This is due to a large number of high-frequency components present in
considerable classes of urban zones. By basic visual inspection (Fig. 7), it can be
seen that our model generates images and handles high-frequency components
well.
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Fig. 7. A visual depiction of comparative model outputs on PatternNet dataset. It can
be clearly seen in the zoomed boxes that our proposed model generates a crisper SR
image as compared to others.

5.2 Ablation Studies

For ablation studies, we run the network without the attention score sharing to
see its impact. Ablation is also performed on the number of modules used in the
cascade. This is to validate the learning effectiveness of the attention sharing in
the latent space as well as how deep the attention sharing needs to go.

Table 4. Ablation without attention score sharing for 2× scaling.

Dataset PSNR SSIM Cosine Similarity

UC Merced 30.12 0.9807 0.9762

EuroSAT 31.04 0.9719 0.9852

PatternNet 29.20 0.9701 0.9877

From Table 4 and Table 5, we can infer that the attention score sharing plays
a crucial role in generating images that are highly coherent with the ground
truth. The absence of score sharing reduces the performance of the model. Also,
increasing the number of modules in the stack does boost performance. But after
a certain number of modules, the performance reaches a plateau and further
increase of modules.
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Table 5. Ablation on module number in stack for EuroSAT dataset for 2× scaling.

Module No PSNR SSIM Cosine Similarity

4 30.89 0.9763 0.9889

6 32.54 0.9834 0.9941

8 32.50 0.9825 0.9924

6 Extended Application Results

We showcase 8K (Fig. 8) some of the results with no prior SR images available
as reference. To maintain the zero-shot scenario, we train the model on remotely
sensed images and test on a different image, i.e. telescopic image and a person’s
image. The photos are highly scaled to get an 8k image. Given that current
devices have patch-based selective upsampling when being zoomed on, a sliding
window approach is used to generate the SR images from LR images. The arti-
facts arise due to the patch being stitched back to give the whole zoomed-out
picture given the limited size of the window.

Fig. 8. The model that trained on the smaller figure of (a) enhanced (a) as well as
(b) in the testing phase. Similarly, the model that trained on the smaller figure of (c)
enhanced (c) as well as (d) in the testing phase. The artifacts are due to stitching of
grid sampled images in the low resolution input.

7 Conclusion and Future Work

We introduce a tessellation based zero-shot super-resolution framework that uti-
lizes instance-based statistics and image continuity. This helps in the efficient
generation of high fidelity super-resolved images in cases with no prior refer-
ences. The cascaded attention sharing network aids in selective highlighting of
features throughout the feature space interactions which helps in building robust
content-based HR images with superior quality. The auto-encoder style format
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aids in capturing high-frequency signals which in turn outputs crisp and sharp
HR images. We also show extended efficient upscaling results that can be applied
to non RS domains. These tessellations being based on image continuity opens
up new avenues in traditional computer vision areas as well as remotely sensed
domains. It can help in efficient information storage and transmission by utilizing
highly compressed images that can be restored at the consumer end.
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