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Abstract. This paper discusses the CATEGORISE framework meant
for establishing a supervised machine learning model without i) the
requirement of training labels generated by experts, but by the crowd
instead and ii) the labor-intensive manual management of crowdsourcing
campaigns. When crowdworking is involved, quality control of results is
essential. This control is an additional overhead for an expert diminish-
ing the attractiveness of crowdsourcing. Hence, the requirement for an
automated pipeline is that both quality control of labels received and the
overall employment process of the crowd can run without the involve-
ment of an expert. To further reduce the number of necessary labels and
by this human labor (of the crowd), we make use of Active Learning.
This also minimizes time and costs for annotation. Our framework is
applied for semantic segmentation of 3D point clouds. We firstly focus
on possibilities to overcome the aforementioned challenges by testing dif-
ferent measures for quality control in context of real crowd campaigns
and develop the CATEGORISE framework for full automation capabili-
ties, which leverages the microWorkers platform. We apply our approach
to two different data sets of different characteristics to prove the feasibil-
ity of our method both in terms of accuracy and automation. We show
that such a process results in an accuracy comparable to that of Pas-
sive Learning. Instead of labeling or administrative responsibilities, the
operator solely monitors the progress of the iteration, which runs and
terminates (using a proper stopping criterion) in an automated manner.

Keywords: Crowdsourcing · Labeling · Automation · Active
Learning · Semantic segmentation · Random Forest · 3D point clouds

1 Introduction

At latest since the emergence of Convolutional Neural Networks (CNNs), it
has become clear that supervised machine learning (ML) systems are severely
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hindered by the lack of labeled training data. To boost the development of such
systems, many labeled benchmark data sets were crafted both in the domain
of imagery [7,17] and 3D point clouds [8,28]. However, these data sets might
be insufficient for new tasks, for instance in remote sensing (e.g., airborne vs.
terrestrial systems). Although labeled data sets are also present in the remote
sensing domain [18,24,27], due to the rapid development of new sensor types
and system design (e.g., for airborne laser scanning (ALS): conventional ALS
[24], UAV laser scanning [18] often enriched by imaging sensors, single photon
LiDAR [23]) labeled data might be quickly out of date requiring new labeling
campaigns. Although transfer learning might help to reduce the amount of task-
specific ground truth data (GT) by building upon GT from another domain, it
is often necessary to generate one’s own training data [25].

Such a labeling process is typically carried out by experts [18,24], which is
both time-consuming and cost-intensive. Hence, the idea is to outsource this
tedious task to others in order to free experts from such duties in the sense of
crowdsourcing. In this context many platforms for carrying out crowd campaigns
(such as Amazon Mechanical Turk [5] or microWorkers [12]) have emerged.
In addition to such crowdsourcing platforms, also services which offer to take
over the complete labeling process come into focus (such as Google’s Data
Labeling Service [9]). Although the expert loses control of the labeling cam-
paign (outsourcing vs. crowdsourcing), the justification of the latter is to avoid
time-consuming campaign management (hiring, instructing, checking and paying
crowdworkers). Hence, for crowdsourcing to remain competitive, the aforemen-
tioned tasks ought to be automated.

Another major challenge of employing crowdworkers is quality control of
results received from the crowd. Walter & Soergel [33] have shown that data
quality varies significantly. Therefore an employer either needs to check results
manually (which might become even more labor-intensive than the actual label-
ing task) or rely on proper means for quality control. This problem is most
pronounced in context of paid crowdsourcing, where often the sole aim of crowd-
workers is to make money as fast as possible and there might be even malicious
crowdworkers. In this regard, motivation and consequently quality of work in
paid crowdsourcing differs significantly from volunteered crowdsourcing (or vol-
unteered geographic information to be precise). In case of the latter, workers are
intrinsically motivated and aim to contribute to a greater cause, which is for
example freely available map data in case of OpenStreetMap [4]. Nevertheless,
paid crowdsourcing could already be successfully used for annotation of airborne
imagery [33], detecting and describing trees in 3D point clouds [32] or labeling of
individual points according to a specified class catalog [15]. To minimize labeling
effort (for the crowd), a common approach is Active Learning (AL).

2 Related Work on Active Learning

AL aims on selecting only most informative instances justifying manual anno-
tation effort [29]. In Mackowiak et al. [22] querying such instances (2D image
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subsets) is accomplished by combining both predictive uncertainty and expected
human annotation effort for deriving a semantic segmentation of 2D imagery.
Luo et al. [21] transferred the AL idea to the semantic segmentation of mobile
mapping point clouds relying on a sophisticated higher order Markov Random
Field. However, only few works focus on ALS point clouds, such as Hui et al. [14],
who apply an AL framework for iteratively refining a digital elevation model.
For semantic segmentation of ALS data, Li & Pfeifer [19] introduce an artificial
oracle by propagating few available class labels to queried points based on their
geometric similarity.

For exceeding the limits of automatically answering the query of the AL loop,
Lin et al. [20] define an AL regime for the semantic segmentation of ALS point
clouds relying on the PointNet++ [26] architecture, where labels are given by
an omniscient oracle. The inherent problem of employing CNN approaches in
AL is that usually the majority of points does not carry a label and cannot
contribute to the loss function. Often, this problem is circumvented by firstly
performing an unsupervised segmentation for building subsets of points, which
are to be completely annotated by the oracle [13,20]. Although such a procedure
drastically reduces the amount of necessary labels, the oracle is still asked to
deliver full annotations (of subsets) requiring a lot of human interaction. In Kölle
et al. [16] this issue is directly addressed by excluding unlabeled points from the
loss computation while still implicitly learning from them as geometric neighbors
of labeled points. Additionally, the authors found that AL loops utilizing the
state-of-the-art SCN [10] architecture can result in more computational effort
due to relearning (or at least refining) features in every iteration step and might
converge slower compared to conventional feature driven classifiers. Hence, a
CNN design might not be optimal for AL.

In most of the aforementioned works it is assumed that labels of selected
primitives are received by an omniscient oracle, which is a naive assumption,
regardless of whether an expert or the crowd is labeling [33]. Consequently,
for fully relieving experts from labeling efforts and to form a feasible hybrid
intelligence [31] or human-in-the-loop system [2], integration of crowdsourced
labeling into the AL procedure in an automated manner is required.

Our contribution can be summarized as follows: We develop a frame-
work referred to as CATEGORISE (Crowd-based Active Learning for Point
Semantics), which is tailored for 3D point annotation, but can be easily trans-
ferred to other tasks as well. This includes a detailed discussion of i) possibilities
for automated quality control tested in various crowd campaigns (Sect. 3.1), ii)
measures for automation of the crowd management (Sect. 3.2) and iii) a suit-
able intrinsic quality measure for the AL loop to enable an operator to monitor
the training progress of the machine (Sect. 3.3). Please note that in contrast to
related work in this domain [15,16], which mainly focuses on how to employ AL
in a crowd-based scenario for semantic segmentation of point clouds, the focus
of this paper lies in the automation and enables running such AL loops incor-
porating real crowdworkers as if the annotation is a subroutine of a program.
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3 The CATEGORISE Framework

As aforementioned the backbone of our framework is to combine crowdsourcing
with AL to iteratively point out only the subset of points worth labeling. Starting
from an initial training data set (see Sect. 5.2), a first classifier C is trained and
used to predict on the remaining training points. In our case, we apply a Random
Forest (RF) classifier [3] (features are adopted from Haala et al. [11]). Predicted
a posteriori probabilities p(c|x) (that point x belongs to class c) are then used to
determine samples the classifier is most uncertain about (i.e., the classifier would
benefit from knowing the actual label). This sampling score can be derived via
entropy E:

xE = argmax
x

(
−

∑
c

p(c|x) · log p(c|x)

)
(1)

In order to also consider imbalanced class occurrences, we further rely on
a weighting function, which is derived based on the total number of points nT

currently present in the training data set and the number of representatives of
each class nc at iteration step i: wc(i) = nT (i)/nc(i). For avoiding sampling
of points which are similar in terms of their representation in feature space
(in context of pool-based AL) and to boost the convergence of the iteration,
we adapt the recommendation of Zhdanov [35]. Precisely, we apply a k-means
clustering in feature space and sample one point from each cluster (number of
clusters equals number of points nAL to be sampled) in each iteration step.

To especially account for the employment of real crowdworkers, we rely on
a sampling add-on proposed by Kölle et al. [16], which aims on reducing the
interpretation uncertainty of points situated on class borders, where the true
class is hard to tell even by experts, referred to as RIU (Reducing Interpreta-
tion Uncertainty). Precisely, in each case, we use a point with highest sampling
score as seed point but select an alternative point within a distance of dRIU (in
object space) instead. Combining these sampling strategies yields to an optimal
selection of points both in context of informativeness and crowd interpretability
crucial for our framework.

3.1 Automation of Quality Control

Such a fully automated framework is only applicable if the operator can trust
labels received from the crowd to be used for training a supervised ML model.
Since results from crowdworkers might be of heterogeneous nature [33], quality
control is of high importance. Although interpretation of 3D data on 2D screens
requires a distinct spatial imagination, in Kölle et al. [15] it was already shown
that crowdworkers are generally capable of annotating 3D points. Within the
present work, we aim to analyze in which way the performance of crowdworkers
for 3D point annotation can be further improved. Quality control measures can
be categorized as i) quality control on task designing and ii) quality improvement
after data collection [34]. In case of labeling specific selected points, which can be
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thought of as categorization task, one realization of the latter can be derived from
the phenomenon of the wisdom of the crowd [30]. This means that aggregating
answers of many yields to a result of similar quality compared to one given by
a single dedicated expert. In our case wisdom of the crowd can be translated to
simple majority vote (MV) of class labels given by a group of crowdworkers (i.e., a
crowd oracle). Consequently, this raises the question of how many crowdworkers
are necessary to get results sufficient to train a ML model of desired quality.
Detailed discussion of experimental set up can be found in Sect. 5.1.

We would like to stress that to clarify this question it is insufficient to run
a labeling campaign multiple times and vary the number n of crowdworkers
employed since results would be highly prone to individual acquisitions, which
might be extraordinary good or bad (especially for small n). To derive a more
general result, we ran the campaign only once and each point was covered by a
total of k crowdworkers (k ≥ n). From those k acquisitions, for each n (i.e., the
number of crowdworkers required; range is [1, k]) we derive all possible combi-
nations:

ncomb =
(
n
k

)
=

n!
(n − k)! · k!

(2)

For each n, acquisitions for each combination were aggregated via MV and
evaluated according to Overall Accuracy (OA) and classwise mean F1-score.
Afterwards, quality measures of each combination (for a specific n) were aver-
aged. Consequently, our quality metrics can be considered as typical result when
asking for labels of n crowdworkers.

However, a drawback of accomplishing quality control by wisdom of the crowd
is increased costs due to multiple acquisitions. Therefore, it is beneficial to also
employ quality control on task designing [34]. In our case, this is realized by
including check points in our tasks. Precisely, in addition to labeling queried AL
points, each crowdworker is asked to label a specific number of check points with
known class label. Those additional data points can then be used to filter and
reject results of low quality. Hence, labels from: i) crowdworkers who did not
understand the task, ii) crowdworkers who are not capable of dealing with this
kind of data or even from iii) malicious crowdworkers (i.e., who try to maximize
their income by randomly selecting labels in order to quickly finish the task)
can be filtered. This poses the question of the right number of check points to
be included and the consequent impact to labeling accuracy (analyzed in Sect.
5.1).

3.2 Automation of Crowd Management

To realize a truly automated process, we need to avoid any engagement between
operator (i.e., employer) and crowdworkers. Within our framework (visualized
in Fig. 1(a)), we draw on the crowd of microWorkers, which also handles the
payment of crowdworkers by crediting salaries to the microWorkers account of
the crowdworker (avoiding to transfer money to individual bank accounts, which
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Fig. 1. Architecture of the CATEGORISE framework (a) and the interface used by
the operator (b). The latter is designed so that the operator may monitor and control
the complete AL run.

would be laborious and would cause fees). Crowd campaigns can be prompted
in an automated manner by leveraging the microWorkers API. Simultaneously,
a respective web tool is set up (by feeding parameters to custom web tool
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blueprints) and input point clouds to be presented to crowdworkers are prepared
(all point cloud data is hosted on the operator’s server). An exemplary tool is
visualized in Fig. 2(a). When a crowdworker on microWorkers accepts a task, he
uses the prepared web tool and necessary point cloud data is transferred to him.
After completion of the task, results are transmitted to the operator’s server (via
php) and the crowdworker receives the payment through microWorkers.

Meanwhile, by usage of our control interface (see Fig. 1(b)) hosted on the
operator’s server, the operator can both request the state of an ongoing crowd
campaign from the microWorkers’ server (e.g., number of jobs completed, respec-
tive ratings and avg. task duration (see Sect. 3.1), etc.) and the current training
progress from the operator’s server in order to monitor the overall progress.
The control interface and web tools are implemented in Javascript (requests are
handled with AJAX). As soon as all points of one iteration step are labeled,
the evaluation routine is called (which is implemented in python) and the AL
iteration continues (provided the stopping criterion is not met).

3.3 Automated Stopping of the AL Loop

When we recall our aim of an automated framework, it is crucial that it not
only runs in an automated manner but also stops automatically when there
is no significant quality gain anymore (i.e., the iteration converges). Therefore,
our aim is to find an effective measure of quality upon which we can build our
stopping criterion for the AL loop and which does not need to resort to GT data.
Inspired by the approach of Bloodgood & Vijay-Shanker [1], we accomplish this
by determining congruence of predicted labels (for the distinct test set) from the
current iteration step to the previous one (i.e., we compute the relative amount
of points for which the predicted class label has not changed). In addition to this
overall congruence Co, to sufficiently account for small classes, we further derive
a classwise congruence value by first filtering points currently predicted as c and
check whether this class was assigned to those points in the previous iteration
step as well. These individual class scores can be averaged to get an overall
measure Cac equally sensitive for each class. For actually stopping the iteration,
we assume that the standard deviation of congruence values of the previous nstop

iteration steps (counted from the current one) converges towards 0, which means
that change in predictions stays almost constant (i.e., only classes of few most
demanding points change).

4 Data Sets

All our tests were conducted on both ISPRS’ current benchmark data sets, one
being the well-known Vaihingen 3D (V3D) data set [24] captured in August 2008
and the other one being the recently introduced Hessigheim 3D (H3D) data set
[18] acquired in March 2018. V3D depicts a suburban environment covering
an area of 0.13 km2 described by about 1.2M points. We colorized the points
by orthogonal projection of colors from an orthophoto received from Cramer
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[6]. Color information is used both for deriving color based features and for
presenting point cloud data to crowdworkers. H3D is an UAV laser scanning
data set and consists of about 126M points covering a village of an area of about
0.09 km2. The class catalog of both data sets can be seen in Table 1. Please note
that in order to avoid labeling mistakes of crowdworkers solely due to ambiguous
class understanding, in case of V3D class Powerline was merged with class Roof
and classes Tree, Shrub and Fence were summarized to class Vegetation. In case
of H3D, class Shrub was merged with Tree (to Vegetation), Soil/Gravel with
Low Vegetation, Vertical Surface with Façade and Chimney with Roof.

5 Results

Within this section, we first discuss our experiments for determining proper
measures for quality control (Sect. 5.1), which constitute the basis for conducting
our crowd-based AL loops presented in Sect. 5.2.

5.1 Impact of Quality Control Measures to Label Accuracy

To determine measures for quality control (see Sect. 3.1) a total of 3 crowd
campaigns were conducted for H3D. These campaigns are dedicated to i) analyze
labeling accuracy w.r.t the number of multiple acquisitions when quality control
is done by MV only, ii) explore the impact of including check points and iii) derive
the optimal number of multiple acquisitions when combining both check points
and MV (i.e., realizing quality control on task designing and quality improvement
after data collection). For each campaign, we randomly selected 20 points per
class and organized those in jobs of 6 points each (one point per class), which
results in a total of 20 jobs. Points were randomly shuffled within each job to
avoid that crowdworkers realize a pattern of point organization. Each job was
processed by k = 20 different crowdworkers, who used the web tool visualized in
Fig. 2(a). In addition to the point to be labeled, we extract a 2.5D neighborhood
having a radius of 20m (trade-off between a large enough subset for feasible
interpretation and required loading time, limited by the available bandwidth) to
preserve spatial context.

Figure 2(b) depicts the labeling accuracy of the crowd w.r.t. the number of
acquisitions used for MV (please note that results are averaged over all ncomb

combinations; see Eq. 2). In addition to the OA and classwise F1-scores, we
further derive entropy from relative class votes to gain a measure of uncertainty
for crowd labels. This first campaign shows that MV leads to almost perfect
results in the long run proving the concept of the wisdom of the crowd. However,
this requires a lot of multiple acquisitions and thus causes increased costs. F1-
scores of most classes converge from about n = 10 acquisitions on. However,
most classifiers are capable to cope with erroneous labels to some extent. In
Kölle et al. [16] it was shown that about 10% of label errors only marginally
harm the performance of a classifier. Considering those findings, a significantly
smaller number for n of about 5 is actually required.
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(a) (b)

(c)

(d)

Fig. 2. Developed web tool used by crowdworkers for labeling 3D points (a) and derived
results. We compare the result of pure MV (b) to the result of the same task when
adding check points (d). The quality improvement by check points is displayed in (c).
(web tool can be tried out at https://crowd.ifp.uni-stuttgart.de/DEMO/index.php).

Nevertheless, we aim to further save costs by introducing check points (see
Sect. 3.1). We dedicated the second campaign to determining the optimal num-
ber of check points. Precisely, we added the same 7 check points to each task and
showed the first and last check point twice in order to check consistency of given
labels. Crowdworkers were informed about presence of check points but with-
out giving further details or resulting consequences. In post-processing, we used
these check points to gradually filter results which do not meet a certain qual-
ity level (see Fig. 2(c)). In this context, quality level consistent means that the
check point presented twice was labeled identically but not necessarily correct.
Correctness however, is assumed for level passed 1 pt (following quality levels
additionally incorporate correctness of more than one check point). We can see
that OA can be improved by about 10 percentage points (pps) when enforcing

https://crowd.ifp.uni-stuttgart.de/DEMO/index.php
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the highest quality level. On the other hand, with this quality level, about 30%
of jobs would not pass our quality control and would have to be rejected. Addi-
tionally, an extra labeling effort of 8 points per job would cause additional costs
(since crowdworkers should be paid fairly proportional to accomplished work).
Therefore, we decided to use quality level passed 3 pts for our future campaigns,
which offers a good trade-off between accuracy gain and number of jobs rejected.

Considering these findings, we posted the third campaign, which differs from
the previous ones as it combines both quality control strategies (MV & check
points). By using a total of 3 check points (one being used twice for consistency),
we aim on receiving only high-quality results as input for MV. As trade-off
between error tolerance and additional incentive, we allowed false annotation of
one point but offered a bonus of 0.05 $ to the base payment of 0.10 $ per job
(which is also the base payment for campaign 1 and 2) when all check points
are labeled correctly. Results obtained are displayed in Fig. 2(d). We observed
that adding check points drastically boosts convergence of accuracy. Using check
points and relying on results from 10 crowdworkers leads to an even better
result than considering 20 acquisitions without check points (see Fig. 2(b) vs.
(d)). This holds true for all classes with class Urban Furniture having the worst
accuracy and class Car having top accuracy (overall trend is identical to the first
campaign). Class Urban Furniture is of course difficult for interpretation since
it actually serves as class Other [18], which makes unique class affiliation hard
to determine. If we again accept a labeling OA of about 90% for training our
classifier, 3 acquisitions are sufficient (2 less than for the first campaign). This
offers to significantly minimize costs in case of larger crowd campaigns where
many hundred points are to be annotated.

5.2 Performance of the AL Loop

Finally, we employ the CATEGORISE framework for conducting a complete
AL loop for both the V3D and H3D data set. For setting up the initial training
set, often random sampling is pursued. Since this might lead to severe undersam-
pling of underrepresented classes (such as Car), we launch a first crowd campaign
where a total of 100 crowdworkers are asked to select one point for each class.
Since this kind of job cannot be checked at first (due to lack of labeled refer-
ence data), we present selected points of each crowdworker to another one for
verification. Points which are tagged false are discarded. For both data sets we
conduct a total of 10 iteration steps, sample nAL = 300 points in each step and
parametrize all RF models by 100 binary decision trees with maximum depth of
18.

Performance of the Crowd within the AL Loop. Figure 3 (top row) visu-
alizes the accuracy of crowd labeling (obtained from MV from 3 acquisitions
using quality level passed 3 pts) throughout the iteration process for both pre-
senting queried points to the crowd oracle OC and points which were selected
by adapting the query function by RIU. Please note that OA is used as quality
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Fig. 3. Results of the AL loop for both the V3D and H3D data set. We compare the
OA achieved by the crowd for labeling (top) to the mean F1-score of the classifier’s
performance (middle). Dotted black line represents the baseline result of PL. As intrin-
sic measure to describe training progress, we rely on predictive congruence (bottom)
evaluated for our crowd-based runs (using OC).

metric since AL tends to sample points in an imbalanced manner w.r.t. class
affiliation, so that the mean F1-score would only poorly represent actual quality.
In both cases, we can observe a negative trend for labeling accuracy (V3D &
H3D). This is due to our AL setting where we start with points easy to interpret
(i.e., points freely chosen by the crowd), for which the crowd yields top accura-
cies consequently. From the first iteration step on, selection of points is handled
by the classifier. In the beginning it might select points which are also easy to
interpret (since such points might just be missing in the training set so far) and
then it continues with points which are more and more special (and typically
harder for interpretation). However, RIU is capable to at least alleviate this
problem. Using dRIU = 1.5m leads to an OA which is about 4 pps higher in
case of V3D and up to 6 pps for H3D. In case of the latter, this effect especially
improves quality for later iteration steps when sampling points more complex
for interpretation.
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Table 1. Comparison of accuracies reached both for V3D and H3D for PL and various
AL approaches using different oracle types and sampling functions.

Method Oracle F1-score [%] [%]

U. Furn. L. Veg. I. Surf. Car Roof Façade Veg. mF1 OA

V3D

PL – – 82.25 91.28 65.64 94.81 62.30 86.24 80.42 88.11

AL OO – 79.35 90.70 66.00 93.14 57.86 83.06 78.35 85.89

OO + RIU – 80.67 91.13 67.80 91.12 55.22 81.83 77.96 85.29

OC – 80.11 90.71 66.05 91.25 49.87 82.91 76.82 85.03

OC + RIU – 81.10 91.24 68.26 88.76 45.39 82.14 76.15 84.19

H3D

PL – 41.14 90.68 85.26 51.63 92.96 83.77 93.05 76.92 88.16

AL OO 33.93 90.31 82.70 56.34 88.33 79.73 92.66 74.86 86.65

OO + RIU 36.97 89.91 83.84 55.42 90.05 79.61 91.91 75.39 86.60

OC 33.37 88.34 78.14 57.40 88.89 79.83 92.07 74.01 85.15

OC + RIU 34.56 89.59 81.81 56.20 89.18 79.35 92.56 74.75 86.26

Forming the training data set within AL (i.e., running a complete iteration)
causes costs for the payment of the crowdworkers of 190 $ (100 pts·0.10 $+100 pts·
3 rep. ·0.15 $+10 it. steps ·(nAL/10 pts per job) ·3 rep. ·0.15 $) and is completed in
about 5 days (approx. 11 h · 10 it. steps + approx. 16 h for initialization = 126 h).
Compared to this, estimating total expenses of Passive Learning (PL) is hard to
conduct since it is on one hand determined by external factors such as the skills
and salary of the annotator, the required software, the required hardware and
on the other hand by the complexity of the scene and the targeted class catalog
etc.

Performance of the Machine within the AL Loop. Our RF classifier
relies on these crowd-provided labels within training. We compare the results of
simulated AL runs using an omniscient oracle OO to the respective runs using a
real crowd oracle OC each with and without RIU and to the baseline result of PL.
Figure 3 (middle row) & Table 1 present the accuracies achieved when predicting
on the unknown and disjoint test set of each data set. For V3D, we achieve a
result (ALRIU (OC)) which only differs by about 4 pps from the result of PL both
in OA and mean F1-score, while this gap is only about 2 pps for H3D. In case of
V3D, relying on ALRIU (OC) results in a significantly higher increase of mean
F1-score in early iteration steps compared to AL(OC) (which is beneficial when
labeling budget is limited) and performs close to the optimal corresponding AL
run relying on ALRIU (OO). For the run without RIU, the performance of the RF
is diminished, which is due to the lower labeling accuracy of the crowd. We would
also like to underline the effectiveness of RIU even when labels are given by OO,
which demonstrates that this strategy also helps to receive a more generalized
training set by avoiding to sample only most uncertain points. In case of H3D,
all AL runs perform similarly well with ALRIU (OC) marginally outperforming
AL(OC). For both data sets, Table 1 demonstrates that while classes with a high
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in-class variance such as Urban Furniture and Façade (note that façade furniture
also belongs to this class) suffer in accuracy whereas underrepresented classes
such as Car yield better results than the PL baseline.

Terminating the AL Loop. As mentioned in Sect. 3.3, we need to provide a
criterion for deciding about stopping the iteration. Congruence values derived for
this purpose are displayed in Fig. 3 (bottom row). For the initialization, congru-
ence is 0 due to the lack of a previous prediction. Generally, congruence curves
correspond well to the test results for our AL iterations. For instance, consider
accuracy values for ALRIU (OC) (V3D), which reach close-to-final accuracy level
in the third iteration step. Therefore, from the fourth iteration step on (one
step offset) intrinsic congruence values Co(ALRIU ) & Cac(ALRIU ) have also
reached a stable level. We would like to stress that AL runs having a close to lin-
ear increase in accuracy (AL(OC) for V3D and AL(OC)/ALRIU (OC) for H3D)
show a similar behavior in congruence. All congruence measures flatten with
increasing number of iteration steps. To avoid early stopping by a too strict
stopping criterion, we set nstop = 5 (Sect. 3.3), which indeed leads to std. dev.
values close to 0 for ALRIU (OC) (V3D), which obviously can be stopped earlier
compared to the other runs (0.4% vs. ca. 1.4% for the other runs at it. step 10).

In case of H3D, the decrease of congruence in the second iteration step is
noteworthy indicating that the predictions have changed significantly. In other
words, we assume that the newly added training points have a positive impact
to the training process, which is rather unstable at this point, i.e., the iteration
should not be stopped here at all. The explanation for this effect is that labels of
the initialization (iteration step 0) lead to a level of prediction which is slightly
improved in iteration step 1 by adding unknown but comparably similar points
(w.r.t. their representation in feature space), which were just missing so far (in
fact mostly façade points were selected). The second iteration step then leads to
the addition of a greater variety of classes so that accuracy increased significantly,
causing changed class labels of many points and by this a drop in congruence.
However, one inherent limitation of our intrinsic congruence measure is that it
can only detect whether a stable state of training was achieved, which does not
necessarily correspond to accuracy.

6 Conclusion

We have shown that the combination of crowdsourcing and AL allows to auto-
matically train ML models by generating training data on the fly. The peculiarity
of our CATEGORISE framework is that although there are humans (i.e., crowd-
workers) involved in the process, the pipeline can be controlled just like any pro-
gram, so that carrying out a labeling campaign can be considered as subroutine
of this program. This requires automated quality control, automation of crowd
management and an effective stopping criterion all addressed within this work.
Although the framework was designed for annotation and semantic segmenta-
tion of 3D point clouds, it can be easily adapted to other categorization tasks



646 M. Kölle et al.

(e.g., for imagery) by i) adapting the web tool used by crowdworkers (mainly
concerning the data viewer) and ii) minor changes for the AL loop (as long as
individual instances such as points or pixels are to be classified).
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