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Abstract. Automated plant cover prediction can be a valuable tool for
botanists, as plant cover estimations are a laborious and recurring task in
environmental research. Upon examination of the images usually encom-
passed in this task, it becomes apparent that the task is ill-posed and
successful training on such images alone without external data is nearly
impossible. While a previous approach includes pretraining on a domain-
related dataset containing plants in natural settings, we argue that regu-
lar classification training on such data is insufficient. To solve this prob-
lem, we propose a novel pretraining pipeline utilizing weakly supervised
object localization on images with only class annotations to generate seg-
mentation maps that can be exploited for a second pretraining step. We
utilize different pooling methods during classification pretraining, and
evaluate and compare their effects on the plant cover prediction. For this
evaluation, we focus primarily on the visible parts of the plants. To this
end, contrary to previous works, we created a small dataset containing
segmentations of plant cover images to be able to evaluate the benefit
of our method numerically. We find that our segmentation pretraining
approach outperforms classification pretraining and especially aids in the
recognition of less prevalent plants in the plant cover dataset.

Keywords: Plant cover prediction · Biodiversity monitoring · Plant
segmentation · Computer vision · Deep learning · Transfer learning ·
Neural network pretraining · Weakly supervised learning

1 Introduction

Analyzing the impact of environmental changes on plant communities is an essen-
tial part of botanical research. This way, we can find the causes and effects of such
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changes and ways to counteract them. A prominent example of an environmental
change investigated this way is climate change [22,23,30]. Other environmental
aspects can be monitored like this as well, such as land-use [1,9] and insect
abundance [33]. One possibility to monitor the effects of such changes on plants
is to monitor the species diversity, specifically the species composition of plant
communities. This is commonly done by the biologists directly in the field by
estimating the so-called plant cover, which is defined as the percentage of soil
covered by each plant species, disregarding any occlusion. Performing this task
in an automated way based on automatically collected imagery would reduce the
massive workload introduced by this recurring and laborious task, and enable
an objective analysis of the data in high temporal resolution.

However, developing a correctly working system to perform plant cover pre-
diction (PCP) is a difficult task due to multiple reasons. Firstly, the plant cover
estimates are usually noisy due to human error and subjective estimations. Sec-
ondly, the plant cover is usually heavily imbalanced by nature, as plants always
grow in strongly differing ratios in a natural environment. Thirdly, in addition
to this, PCP is an ill-posed problem. This is primarily due to the fact that in the
plant cover estimations used as annotation, occlusion is ignored. This makes it
near impossible to, for example, train a convolutional neural network (CNN) well
on this data alone, as, contrary to human vision, CNNs usually cannot inherently
deal with occlusion. Therefore, the network often learns arbitrary features in the
images to reduce the error during training in any way possible, which are mostly
not the true features the network should use for a correct prediction. To counter
this problem, Körschens et al. [17], who proposed a first solution for the task
of plant cover prediction, suggested utilizing segmentation maps generated in a
weakly supervised way by the network for visual inspection of the network’s pre-
diction. The segmentation maps make it possible to monitor what the network
learned and which areas it uses to generate a prediction, increasing transparency
of the system and its gathered knowledge. However, Körschens et al. could not
solve the problem entirely in the paper, and their results also showed that, when
the system is only trained on the plant cover data, the predictions are strongly
biased towards the more prevalent plants in the dataset. We argue that these
problems can be further alleviated by strong usage of pretraining on domain-
similar datasets containing isolated plants, as with such datasets, we can directly
control the data balance and have a better influence on the features the network
learns. Using such a domain-similar dataset was also recently investigated by
Körschens et al. [18], who demonstrated the correctness of this assumption on
several standard network architectures.

Pretraining, for example the one in [18], is usually done by utilizing a back-
bone CNN serving as feature extractor, followed by global average pooling and a
fully-connected classification layer. We argue that this training method results in
the network focusing on the most prevalent features in the pretraining dataset,
which might not be optimal since these features are not necessarily contained
in the images of the target dataset. An example of this would be the blossom
of the plants, which are usually the most discriminative features in isolated
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plant images but are comparably rare in simple vegetation images for PCP.
To solve this problem, we suggest that encouraging the network to focus more
on the entire plant instead of only the most discriminative parts by training
on segmentation data would be beneficial. However, to the best of our knowl-
edge, there are no comprehensive plant segmentation datasets publicly available.
Therefore, we propose a system, which generates weakly supervised segmenta-
tions using a classification-trained network. The generated segmentations can
then be used for segmentation-pretraining. To this end, we investigate the class
activation mapping (CAM) method [48], which is often used in tasks like weakly
supervised object localization [5,32,41,45,46,48] and weakly supervised seman-
tic segmentation [12,15,34,37,40,43]. While most of these methods use global
average pooling (GAP) as basis for their classification network, we found that
pooling methods like global max pooling (GMP) or global log-sum-exp pooling
(GLSEP), which is an approximation of the former, in parts generate better
localizations which result in better segmentations. While similar functions have
been investigated before for classification [44], and in another setting in weakly
supervised object localization [28], to the best of our knowledge we are the first
to apply in as feature aggregation method in conjunction with CAMs.

Furthermore, PCP can be viewed as a task effectively consisting of two parts:
analysis of the visual and the occluded parts. Solving occlusion is heavily depen-
dent on a good automated analysis of the visual part, as we can only complete
the partially visible plants correctly if our analysis of the species in the visible
parts is correct as well. Therefore, we will primarily focus on the correctness
of the analysis of the visible parts. Analyzing the visible parts can be done,
for example, by investigating segmentation maps as proposed by Körschens et
al. [17]. However, they merely relied on visual inspection of the segmentations,
as no ground-truth segmentations were available for quantitative evaluation. To
enable the latter, we manually annotated several images from the plant cover
dataset and can therefore also evaluate our approach quantitatively.

Hence, our contributions are the following: We introduce a novel pretraining
pipeline, which converts existing classification data of a plant-domain dataset
into segmentation data usable for pretraining on the plant cover task. Moreover,
we investigate and compare multiple pooling approaches and their differences for
generating the abovementioned segmentations. Lastly, we evaluate the segmen-
tations of the final part of our system on the plant cover dataset quantitatively
by utilizing a small set of manually annotated plant segmentations.

2 Related Work

2.1 Weakly Supervised Object Localization (WSOL)

Weakly supervised object localization is an established field in Computer Vision
research. While there are different kinds of approaches, the most recent ones
are based on the method of Class Activation Mapping of Zhou et al. [48]. In
their paper, the authors propose to utilize the classification weights learned by a
classification layer at the end of the network to generate a map containing class
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activations at each position of the last feature map, also called class activation
map (CAM). To this end, the pooling layer is removed, and the fully connected
layer is converted into a 1 by 1 convolutional layer. The generated CAM can then
be thresholded and weakly supervised bounding boxes or segmentations gener-
ated. Multiple methods based on this approach tackle the problem by utilizing
occluding data augmentation, e.g., by dropping parts of the images [5,32], or
cutting and pasting parts of other images [41]. The aim of such augmentations
is to prevent the network from relying too much on the most discriminative
features and hence distribute the activations in the CAM more equally over
the complete objects. In other approaches, this is done in more sophisticated
ways, for example, by using adversarial erasing [45]. Choe et al. [4], however,
showed recently that methods in this direction primarily gained performance
improvements by indirectly tuning hyperparameters on the test set, resulting in
almost no effective gain in performance on WSOL benchmarks in the last years.
Nevertheless, recently, there have also been other approaches, which tackle the
problem differently, for example, by modifying the way the CAMs are generated
[26] or generating alternative maps for localizing objects [47].

We also base our method on CAMs. However, in contrast to the methods
mentioned above, we also investigate changes to the base method by exchanging
the pooling layer used during training. Specifically, utilizing global max pooling,
or its approximation global log-sum-exp pooling, can potentially yield more ben-
efits during the weakly supervised segmentation. This is because these methods
do not depend on an averaging operation, potentially inhibiting good localization
caused by dilution of activations during training.

2.2 Plant Analysis

The continuous developments of convolutional neural networks (CNNs) have also
encouraged the development of automated plant analysis methods. These reach
from simple plant species identification [2,10,19,39] over the detection of ripe
fruit [7] and counting of agricultural plants [24,38] to the prediction of plant
diseases [3]. However, the number of works concerned with plant cover deter-
mination is still small. The first work in this area was proposed by Kattenborn
et al. [14], who analyzed the plant cover of several woody species, herbs and
shrubs via UAV imagery. In their work, they utilized delineations in the images
as training data for their custom CNN, which is not comparable with the data
analyzed in this work. Nevertheless, previous works on plant cover analysis of
herbaceous plants, specifically on the InsectArmageddon dataset by [36], were
published by Körschens et al. [17,18]. They did several analyses with a custom
network [17], as well as multiple established network architectures with differ-
ent pretraining methods [18]. As the base of their approach, they model the
problem as a weakly supervised segmentation approach, where pixel-wise prob-
abilities for each plant are calculated, which are then aggregated into the final
cover percentages. While we also utilize this basic approach, we go more into
depth regarding the findings in [18]. Körschens et al. found that pretraining on
a related dataset, albeit comparably small, is advantageous when tackling the
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Fig. 1. Example images from the pretraining dataset. The plant species shown are
from left to right: Achillea millefolium (Yarrow), Centaurea jacea (brown knapweed),
Plantago lanceolata (ribwort plantain), Trifolium pratense (red clover), Scorzoneroides
autumnalis (autumn hawkbit) and Grasses, which are not differentiated into different
species. (Color figure online)

PCP problem. We, however, argue that the efficiency of pretraining could be
massively improved when training on segmentation data. For regular classifica-
tion training with global average pooling, the network primarily focuses on the
most discriminative regions [48]. With segmentation data, however, the network
is encouraged to focus on the full extent of the object instead of the few most dis-
criminative parts. For this reason, we investigate a similar approach to [18] with
a strongly different pretraining process, in which we initially generate weakly
supervised segmentations instead of using classification data directly. Moreover,
we also include a numerical evaluation of the prediction quality of the visible
plants in the images.

3 Datasets

In our experiment we utilize two separate datasets: one for pretraining and one
for the actual plant cover training.

3.1 Pretraining Dataset

The pretraining dataset we use in our experiments contains species-specific
randomly selected images from the Global Biodiversity Information Facility1

(GBIF) [8]. The dataset encompasses images of 8 different plant species in nat-
ural settings, which match the ones from the plant cover dataset explained in
Sect. 3.2.

The plant species in the datasets and their respective abbreviations used in
parts of this paper are Achillea millefolium (Ach mil), Centaurea jacea (Cen jac),
Lotus corniculatus (Lot cor), Medicago lupulina (Med lup), Plantago lance-
olata (Pla lan), Scorzoneroides autumnalis (Sco aut) and Trifolium pratense
(Tri pra).

The pretraining dataset comprises 6000 training images and 1200 validation
images, which are evenly distributed across the classes, making the dataset bal-
anced. Example images from the dataset are shown in Fig. 1.
1 http://gbif.org.

http://gbif.org
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Fig. 2. Example images from the InsectArmageddon [17,36] dataset. The growth pro-
cess of the plants, as well as other changes over the time, like the flowering process, are
captured in the images.

Fig. 3. The distribution of plant cover percentages over the different species from
the InsectArmageddon dataset. Trifolium pratense takes almost a third of the dataset
while Achillea millefolium is the least abundant plant with only 3.2% of the total cover.
Figure taken from [18].

3.2 Plant Cover Dataset

We utilize the same dataset introduced by Ulrich et al. in [36] and Körschens et
al. in [17]. As the latter refer to it as InsectArmageddon dataset due to its origin
in the eponymous project2, we will also refer to it this way. The dataset contains
images from nine different plant species collected in enclosed boxes: so-called
EcoUnits. Two cameras collected images in each of the 24 utilized EcoUnits over
multiple months from above with a frequency of one image per day, hence also
capturing the growth process of the plants. However, due to the laboriousness of
the annotation of the images, only weekly annotations are available, leading to
682 images with annotations. Examples of the plants and their state of growth
at different points in time are shown in Fig. 2.

The nine different plant species in the dataset are the same as introduced in
Sect. 3.1 with the addition of Dead Litter. The latter was introduced to designate
dead plant matter, which is usually indistinguishable regarding the original plant

2 https://www.idiv.de/en/research/platforms and networks/idiv ecotron/
experiments/insect armageddon.html.

https://www.idiv.de/en/research/platforms_and_networks/idiv_ecotron/experiments/insect_armageddon.html
https://www.idiv.de/en/research/platforms_and_networks/idiv_ecotron/experiments/insect_armageddon.html
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Fig. 4. Our proposed WSOL pretraining pipeline. The first network is trained on clas-
sification data and generates segmentation maps for the class in question based on
the CAM. The second network is trained on this segmentation data and the trained
weights are then utilized in the network used in plant cover training.

species. As seen in Fig. 3, the plants are in a heavily imbalanced long-tailed
distribution, with Trifolium pratense spearheading the distribution and Achillea
millefolium trailing it.

The plant cover annotations themselves are quantized into the so-called
Schmidt-scale [27], so that the values can be estimated better. The scale con-
tains the percentages 0, 0.5, 1, 3, 5, 8, 10, 15, 20, 25, 30, 40, 50, 60, 70, 75, 80,
90 and 100. For details on the data- and image-collection process, we refer to
[6,17,35,36].

4 Method

In this section we will explain the general workflow of our method, followed by
the pooling methods we use and the network head utilized during plant cover
prediction. For better explainability, in the following we will view the network
as consisting of three different parts: backbone, pooling layer and head. The
backbone represents the feature extractor part of the network, and the head the
task specific layer(s), which, in case of classification, is usually a fully connected
layer that directly follows a pooling layer.

4.1 Pipeline

Our proposed pipeline can be divided into three distinct phases and an overview
is shown in Fig. 4. The first phase consists of a simple classification training on
the pretraining dataset. The network used during this training has the shape of
a typical classification network: a backbone, followed by a pooling operation and
a fully connected layer with softmax activation. Hence, a standard classification
loss like categorical cross-entropy can be applied. After the training, we remove
the pooling layer of the network and convert the fully-connected layer into a
convolutional layer as shown in [48] to generate class activation maps (CAMs).
We isolate the single CAM belonging to the class annotation of the image and
apply a threshold to generate a discrete segmentation map. The threshold is, as
described in [48], a value relative to the maximum activation, e.g., 0.2.
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In the second phase of our method, we utilize the segmentations generated
in the first phase to train another network consisting of only a backbone and a
segmentation head, i.e., a simple pixel-wise classifier with sigmoid activation. For
training this network, a segmentation loss, e.g., a dice loss [25], can be applied.
Upon this network being trained, we can use the weights to initialize the network
from phase three for transfer learning.

In the third phase of our approach, we use the network initialized with the
segmentation weights to fine-tune on the PCP task. This can be done using a
simple regression loss, e.g., the mean absolute error. Finally, the network can be
used to generate plant cover predictions in addition to segmentation maps for
the plants in the image.

4.2 Pooling Methods

As mentioned above, in our experiments, we will investigate three different pool-
ing methods: global average pooling (GAP), global max pooling (GMP), and
global log-sum-exp pooling (GLSEP). GAP is the pooling method usually used
for classification training and, therefore, also in the CAM method. However, as
shown in [48], networks trained in such a way focus primarily on the most dis-
criminative features in the images. Moreover, as the averaging operation encour-
ages the distribution of higher activations over greater areas in the images, the
CAMs dilute and are not optimal for good localization, resulting in worse seg-
mentations. This is not the case for GMP, however, Zhou et al. [48] argue that
GMP is, in contrast, more prone to focusing on single points with high acti-
vations in the images. Therefore, we investigate GLSEP, as log-sum-exp is an
approximation of the maximum function and, due to its sum-part, does not
only focus on a single point in the image. Hence, GLSEP can also be viewed
as a parameter-free compromise between GAP and GMP. While variations of
such a pooling method have been investigated before [28,44], to the best of our
knowledge, none have been investigated for WSOL in conjunction with CAMs.

4.3 Plant Cover Prediction Head

To take into account the relatively complex calculations done during cover pre-
diction, we utilize the already established plant cover prediction head from [17],
with the modification introduced in [18]. To summarize, with this network head
the plant cover prediction is viewed as a pixel-wise classification problem, where
the classes consist of the plant classes in the dataset in addition to a background
class and an irrelevance class. The background class serves as indicator of regions
relevant for the plant cover calculation, while not containing any relevant plants
(e.g., the soil in the images or weeds not monitored in the experiment). The irrel-
evance class indicates regions, which are not relevant for the calculation (e.g.,
the walls of the EcoUnits). Due to possible occlusion between the plants, the
plant classes are modeled as not mutually exclusive, while they are mutually
exclusive with background and irrelevance. For the details on this approach, we
refer to [17,18].
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5 Experiments

5.1 Evaluation and Metrics

We evaluate the our method after the last step: the plant cover training. For
the evaluation, we utilize the metrics introduced by Körschens et al. [17], i.e.,
the mean absolute error (MAE) and the mean scaled absolute error (MSAE).
The latter was considered to enable a fairer comparison of two imbalanced plant
species and is defined as the mean of the species-wise absolute errors divided
by their respective species-wise mean cover percentage. The exact percentages
used during calculation can be found in [17]. To evaluate the quality of the
segmentations, we utilize the mean Intersection-over-Union (mIoU), which is
commonly used to evaluate segmentation and object detection tasks:

mIoU =
1
N

N∑

i=1

P ci
pred ∩ P ci

true

P ci
pred ∪ P ci

true

, (1)

with N being the number of classes, P ci
pred the set of pixels predicted as class i,

and P ci
true the respective ground-truth counterpart. Since the original plant cover

image dataset [17,36] did not contain any segmentations, we annotated 14 images
containing large numbers of plants ourselves and used them for evaluation. It
should be noted that these 14 images had no plant cover annotations, and hence
are not seen during training. Several example images with our annotations can
be found in the supplementary material.

5.2 Plant Cover Prediction

As mentioned above, our training is conducted in three separate phases, and
we explain the setups in the following. In all three phases, we utilize the same
networks architecture, which is a ResNet50 [11] with a Feature Pyramid Net-
work (FPN) using a depth of 512 and the extraction layer P2, as shown in [20].
We choose this architecture because Körschens et al. [18] also investigated this
one, among others. While in [18], a DenseNet121 [13] performed best, in our
experiments we were not able to successfully train a DenseNet in the same set-
ting and hence choose the ResNet50, as it achieved comparable performance in
[18] when using an FPN.

Classification Pretraining. For classification pretraining, we utilize the stan-
dard cross-entropy loss and the Adam optimizer [16] with a learning rate of
1e-4, an L2 regularization of 1e-6, and a batch size of 12. The ResNet50 (with-
out FPN) has been initialized with ImageNet weights [31]. We do not train for
a fixed number of epochs, but monitor the accuracy on the validation set and
reduce the learning rate by a factor of 0.1, if there were no improvements for four
epochs. We repeat this process until there have been no improvements for six
epochs, after which we end the training. Data augmentation is done by random
rotations, random cropping, and random horizontal flipping. During the augmen-
tation process, the images are resized such that the smaller image dimension has
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Table 1. The results of our experiments with segmentation pretraining (SPT) in com-
parison to regular classification pretraining, considering different pooling methods. We
evaluate the MAE, MSAE, total mIoU and the mIoU for plants only (without back-
ground and irrelevance classes). Best results are marked in bold font.

Pooling SPT MAE MSAE mIoU mIoU (plants)

GAP ✗ 5.23% 0.501 0.148 0.161

✓ 5.23% 0.501 0.171 0.179

GMP ✗ 5.23% 0.501 0.144 0.157

✓ 5.17% 0.494 0.165 0.176

GLSEP ✗ 5.24% 0.504 0.156 0.162

✓ 5.23% 0.503 0.161 0.174

a size of 512 pixels, then the images are cropped to a size of 448 × 448 pixels
used for further processing.

Segmentation Pretraining. The setup for our segmentation pretraining is
mostly the same as in the first phase. However, we utilize a dice loss during this
training process and monitor the mIoU instead of the accuracy. It should be
noted that we initialize the network again with ImageNet weights and do not
use the weights from the first pretraining to have a fairer comparison between
training using segmentations and training using class information only.

Plant Cover Training. During the plant cover training, we use the same setup
as in [18], i.e., image sizes of 1536 × 768 px, a batch size of 1, Adam optimizer
with a learning rate of 1e−5, a training duration of 40 epochs, and a simple
horizontal flipping augmentation. For the loss function, we utilize the MAE and
we run our experiments in a 12-fold cross-validation ensuring that images from
the same EcoUnit are in the same subset, as done in [17,18].

Results. In our experiments, we compare the effect of training using the weakly
supervised segmentations with training using only class labels. The latter corre-
sponds to using the weights from the first phase of our method directly in the
third phase, and in case of GAP, this is equivalent to the method shown in [18].
The results of these experiments are summarized in Table 1.

We notice that regarding MAE and MSAE, the results using segmentation
pretraining always perform at least as good as with standard classification pre-
training or even better, albeit often only by small amounts. Moreover, we can
see that the top results for MAE and MSAE do not coincide with the best seg-
mentations, as the top error values have been achieved using GMP segmentation
pretraining (MAE of 5.17% and MSAE of 0.494), while the best segmentations,
measured by mIoU, are achieved when using segmentation pretraining with GAP.
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Table 2. Detailed results for the composition of the mIoU values from Table 1. Abbre-
viations used: SPT = Segmentation pretraining, DL = Dead Litter, BG = Background
(relevant for calculation), IRR = Background (irrelevant for calculation), PO = Value
for plants only (excludes BG and IRR); Top results per species are marked in bold
font.

Pooling SPT Ach mil Cen jac Grasses Lot cor Med lup Pla lan Sco aut

GAP ✗ 0.043
±0.020

0.101
±0.028

0.442
±0.042

0.015
±0.007

0.082
±0.014

0.151
±0.009

0.001
±0.001

GAP ✓ 0.099
±0.033

0.147
±0.007

0.438
±0.021

0.034
±0.014

0.100
±0.010

0.152
±0.017

0.000
±0.001

GMP ✗ 0.024
±0.020

0.097
±0.021

0.435
±0.024

0.010
±0.003

0.062
±0.011

0.151
±0.016

0.001
±0.001

GMP ✓ 0.095
±0.028

0.135
±0.010

0.429
±0.034

0.035
±0.016

0.110
±0.017

0.159
±0.017

0.001
±0.001

GLSEP ✗ 0.024
±0.020

0.102
±0.017

0.447
±0.019

0.019
±0.007

0.079
±0.011

0.155
±0.011

0.001
±0.000

GLSEP ✓ 0.064
±0.032

0.141
±0.017

0.411
±0.034

0.043
±0.011

0.112
±0.016

0.167
±0.015

0.000
±0.000

Pooling SPT Tri pra DL BG IRR Total PO

GAP ✗ 0.528
±0.028

0.083
±0.008

0.122
±0.009

0.062
±0.049

0.148
±0.011

0.161
±0.011

GAP ✓ 0.556
±0.015

0.088
±0.009

0.144
±0.011

0.124
±0.035

0.171
±0.007

0.179
±0.006

GMP ✗ 0.550
±0.013

0.086
±0.006

0.125
±0.010

0.043
±0.031

0.144
±0.004

0.157
±0.005

GMP ✓ 0.543
±0.016

0.077
±0.008

0.125
±0.006

0.109
±0.087

0.165
±0.009

0.176
±0.008

GLSEP ✗ 0.551
±0.016

0.082
±0.010

0.122
±0.006

0.138
±0.097

0.156
±0.013

0.162
±0.006

GLSEP ✓ 0.539
±0.013

0.086
±0.006

0.133
±0.011

0.076
±0.055

0.161
±0.009

0.174
±0.008

5.3 Detailed Analysis of Segmentations

To have a more thorough insight into the effect of the segmentation pretrain-
ing (SPT), we also investigate the different IoU values for each plant species,
shown in Table 2. It should be noted that due to the small size of many plants,
precisely pinpointing their locations with CNNs is a difficult task, leading to
relatively small IoU values overall. We see that the IoU values for the less abun-
dant plants in the dataset, especially Achillea millefolium, Centaurea jacea and
Lotus corniculatus, increase massively when applying SPT compared to only
classification pretraining. Depending on the pooling strategy, the IoU increases
by up to 250% for Achillea millefolium and Lotus corniculatus, and up to 150%
for Centaurea jacea. This indicates that more relevant features for these species
are included during SPT, confirming our intuition. In contrast to this, we also
note that the IoU for Grasses and in parts for Trifolium pratense decreases. For
the former, the reason might be that grasses are hard to segment automatically
due to their thinness, leading to worse pretraining for these classes during SPT.
To counter this problem, it might be possible to utilize a network with a higher
output resolution, e.g., a deeper FPN layer. The decreasing IoU for Trifolium
pratense can be attributed to the balancing effect in the predictions introduced



600 M. Körschens et al.

by the SPT, as a more balanced dataset usually results in worse performance for
the more dominant classes. Regarding the varying pooling strategies used during
the classification pretraining, we notice that they perform differently, depending
on the plant species. We attribute this to the structure of the different plant
species. This means that thinner and smaller objects are more easily recognized
after training with GLSEP, as this presumably generates features that are more
focused on smaller areas. However, plants with large leaf areas are more easily
recognizable by networks using the likely more unfocused features generated by
networks with GAP due to the averaging operation. Finally, it should be noted
that the low IoU for Scorzoneroides autumnalis is caused by the small abundance
of this species in the segmentation dataset. Hence, no conclusion can be drawn
for this plant at this point. Multiple example segmentations using our method
can be found in the supplementary material.

To summarize, the segmentation pretraining proved to be superior to using
only the standard classification pretraining. It consistently improves the MAE
and MSAE over classification pretraining by small amounts and especially
improves the quality of the segmentations in general, with more significant
improvements for the less abundant plants in the dataset.

6 Conclusions and Future Work

In this work, we proposed a novel pretraining pipeline for plant cover prediction
by generating segmentation maps via a weakly supervised localization approach
and using these maps for an additional segmentation pretraining. In general, we
demonstrated superior performance of our approach compared to only standard
classification pretraining for identifying the plants in the visible parts of the
image, with more significant improvements for the less abundant plants in the
dataset. More specifically, we noticed that the recognition of the less abundant
plants improved the most, while the detection of the most prevalent plants, i.e.,
grasses and Trifolium pratense, decreases slightly. This effect is likely caused by
the increased training set balance that the segmentation pretraining introduces.
We also observed that the investigated pooling strategies perform differently
depending on the plant species, which is likely caused by the varying structures
of each plant that are handled differently by the individual aggregation methods
during training of the network.

Our approach offers multiple directions for further improvements. First, the
quality of the segmentation maps generated after the classification pretraining
in the first phase could be improved, for example, by applying further data
augmentation approaches commonly used in weakly supervised object localiza-
tion [5,32,41]. Second, the segmentation pretraining could be altered by using
different kinds of augmentations, losses, or also different kinds of segmentation
networks, e.g., a U-Net [29]. Third, as segmentation maps are generated in the
training process, these maps could also be utilized for applying an amodal seg-
mentation approach [21,42] to better deal with occlusions in the plant cover
images. Lastly, the proposed approach might also potentially be applicable for
fine-grained classification, as well as segmentation tasks, in general.
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