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Abstract. We investigate the ability to detect slag formations in images
from inside a Grate-Kiln system furnace with two deep convolutional neu-
ral networks. The conditions inside the furnace cause occasional obstruc-
tions of the camera view. Our approach suggests dealing with this prob-
lem by introducing a convLSTM-layer in the deep convolutional neural
network. The results show that it is possible to achieve sufficient perfor-
mance to automate the decision of timely countermeasures in the indus-
trial operational setting. Furthermore, the addition of the convLSTM-
layer results in fewer outlying predictions and a lower running variance
of the fraction of detected slag in the image time series.

Keywords: Image segmentation · Deep neural network · Iron ore
pelletising plant · Furnace slag-detection

1 Introduction

The mining industry is an ancient industry, with the first recognition of under-
ground mining dating back to approximately 40,000 BC [5]. Historically, mining
consisted of heavy labour without the aid of modern technology, but today the
industry portrays a different story. Large machines and production lines are
responsible for carrying out the mining process more efficiently and at scale.
This is evident in the process of transforming raw iron ore into iron ore pellets
– small iron ore “balls” used as the core component in steel production.

Iron ore pellets are produced in large pelletising plants, where iron ore con-
centrate is mixed with bentonite, a clay mineral acting as a binder. The ore and
bentonite mix is then formed into pellets in a rotating drum. At the final stage of
this process, the wet iron ore pellets are pre-heated and dried in a large furnace
called the Grate-Kiln system. The Grate-Kiln system [14] consists of three main
units: 1. Drying and pre-heating (Grate), 2. Heating (Kiln) and 3. Cooling.

When the pellets flow between the Grate and the Kiln, a common challenge
in pelletising plants is that an unwanted by-product known as slag slowly builds
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up over time. The slag gets attached to the base (slas) of the Kiln and restricts
the flow of the pellets, worsening the quality of the end-product and, if it breaks
loose, it can potentially damage the equipment. Thus, it is of vital importance
to track the slag build-up over time, as timely countermeasures have to be taken
to remove the slag before it grows too large.

One solution used to track the build-up is to attach a video camera positioned
to record the slag inside the furnace. The video stream is then manually and
visually analysed by employees at the plant. While this process enables plant
operators to get an instant snapshot of the current state of the slag, the process
is not only labour-intensive but also prone to inconsistencies due to individual
human biases. Moreover, it does not provide a historical systems-level overview
of how the amount of slag has changed over time.

Fig. 1. Sample images with varying conditions from within the Kiln. The two images
to the left are occlusion-free and the two images to the right contain occlusions.

Our aim is to research the possibility of measuring the amount of slag that has
accumulated in the Kiln through image segmentation with deep convolutional
neural networks (DCNNs). Furthermore, we want to assess the effects of utilising
consecutive pairs of images in the time series of images when segmenting possibly
occluded images (e.g. flames and smoke in the third and fourth images of Fig. 1).
This will be done by introducing a convLSTM-layer in the DCNN. Our work
contributes with the following novel findings:

1. We show that it is possible to measure the amount of slag that has accumu-
lated in a Grate-Kiln system through image segmentation with DCNNs.

2. We show that it is possible to reduce variance in the predicted slag fraction by
using consecutive pairs of images through a convLSTM-layer in the DCNN.

3. We demonstrate an approach for handling images containing occlusion in the
video stream from the Grate-Kiln system. We believe that this approach can
be applied to other applications where occasional obstructions of the camera
view are considered problematic.

4. We have developed image segmentation models to predict slag formation
through a scalable [24] delta lake architecture [2] and deployed in produc-
tion, thus showing that our work is not only sufficient in theory, but also
brings value in practise.
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In Sect. 3, we describe the raw dataset and models used for conducting our
experiments. In Sect. 4, we describe the first of our experiments which compares
two DCNNs at the task of identifying slag formations in images. We show that it
is possible to detect slag formations with both models, which to our knowledge
has not been shown in the literature before. In Sect. 5, we analyse how utilising
temporal information might be beneficial for lowering prediction variance and
handling images with occlusions in them. Finally, we summarise our results and
findings in Sect. 6.

2 Related Work

Image segmentation has been used successfully in a vast number of applications
such as medical image analysis, video surveillance, scene understanding and oth-
ers [17]. The most significant model and architecture contributions within the
image segmentation field have been reviewed and evaluated by Minaee et al. [17],
whose article covers more than 100 state-of-the-art algorithms for segmentation
purposes, many of which are evaluated on image dataset benchmarks.

The use of image segmentation models in the field of mining is limited in
the literature, but some research has been conducted on measuring the size of
pellets and other mining-related particles through computer vision. Hamzeloo,
et al. used a combination of Principal Component Analysis (PCA) and neural
networks to estimate particle size distributions on industrial conveyor belts [8].
Support Vector Machines (SVMs) have been successfully used to estimate iron
ore green pellet size distributions in a steel plant [10] and a DCNN (U-Net
architecture) has been proposed for the same purpose [6].

To our knowledge, no research has been conducted on detecting slag forma-
tion through computer vision within furnaces used in the mining industry. A
reason for this might be due to the Grate-Kiln system previously being regarded
as a black-box process [26]. Gathering data through measuring devices that can
withstand temperatures above 1000 ◦C has been difficult historically.

When evaluating videos or sequences of images, where potential insights from
temporal information can be obtained, there are multiple approaches that can be
used. For example, one can concatenate the current frame with the previous N
frames to a common input and process these frames with an ordinary CNN. How-
ever, Karpathy et al. [12] showed that this only results in a slight improvement
and that the use of a temporal model proved to be a more successful approach.
Multiple authors have since then proposed the use of recurrent neural networks
(RNNs) when performing image segmentation on videos or sequences of images.
For example, Valipour et al. [22] proposed a modification of a Fully Convolu-
tional Network (FCN) [15] with an added RNN unit between the encoder and
decoder, achieving a higher performance on the Moving MNIST dataset [20] and
other popular benchmarks. Yurdakul et al. [7] researched different combinations
of convolutional and recurrent structures, finding that an additional convLSTM
cell yielded the best result. Pfeuffer et al. [18] investigated where to place the
convLSTM cell in the DCNN model architecture, finding that the largest increase
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in performance was achieved by placing it just before the final softmax layer.
We use insights from such recent work on image segmentation, but with novel
adaptations to our problem of slag detection above 1300 ◦C.

3 Raw Dataset and Models

In this section, the raw dataset and the deep convolutional neural network
(DCNN) models for image segmentation used in our experiments are introduced.

3.1 Raw Dataset

All the data used in this report was supplied by LKAB (a Swedish mining
company) and collected from one of their pelletising plants located in Kiruna,
Sweden. The dataset at our disposal consisted of a stream or time series of
640 × 480 pixel RGB images. Each image was captured inside the Kiln with a
10-second time lag, and included metadata about when each image had been
taken. The state of the furnace as well as the angle and position of the camera
affect the characteristics of the images. For example, the furnace might be in its
initial stages of heating causing a different lighting than when it has just been
turned off. Furthermore, the camera sometimes had its position moved due to the
vibrations within the furnace, causing the previous landscape to change. Lastly,
the images captured sometimes contain a flame, used for heating the Kiln, with
subsequent smoke. Both flame and smoke can occlude the view of the slag in the
image. The images were ingested into a delta lake [2] to easily train our models.

3.2 Models

U-Net. The first model implemented in this project was the U-Net [19]. The
U-Net is an early adaptation of the encoder-decoder architecture outperforming
other state-of-the-art architectures of that time and field by a large margin.
The U-Net produces high accuracy segmentation while only requiring a small
training dataset. By utilising the feature maps of the encoder combined with the
up-sampled feature maps of the decoder, localisation of features can be made in
a higher resolution, thus increasing performance.

PSPNet. The second model implemented for our experiments was the Pyramid
Scene Parsing Network (PSPNet) [25]. The PSPNet is a network that aims to
utilise the global prior of a scene by downsampling the image into different
sized sub-regions through average pooling. By doing this, both global and local
information of each pixel can be exploited.

The network uses a backbone of a Residual Network (ResNet) [9] with a
dilated strategy, i.e., replacing some of its convolutional operations with dilated
convolutions and a modified stride setting, as described in [4,23]. ResNets are
based on the idea of a residual learning framework that allows training of sub-
stantially deeper networks than previously explored [9]. Following the backbone,
the architecture uses its proposed pyramid pooling module, a concatenating step,
and finally a convolutional layer to create the final predicted feature maps.
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4 Detecting Slag Accumulation with Deep Neural
Networks

Here, we discuss the experiment with the aim of researching the potential of
measuring slag accumulation using image segmentation with the U-Net and the
PSPNet, two DCNN models.

4.1 Dataset

To train the DCNN models, a subset of the raw images was extracted. These
images were manually and carefully chosen to ensure a high variance that is
representative of the full distribution of images. Furthermore, the images chosen
did not contain any occlusions to reduce interference and noise in the training
process. Finally, the subset of images were manually labelled into four classes
using the COCO-annotator tool [3]: background, slag, camera edge and wall (see
Fig. 2). The classes were chosen based on discussions with domain experts at
LKAB. Background and slag were needed to compute the percentage of slag
stuck on the flat surface of the Kiln (i.e. the slas). Camera edge was needed
to alert local plant maintenance when the camera hole needed cleaning. Wall
simply represented the rest of the pixels. This resulted in a dataset consisting of
530 images, with 339 used for training, 85 for validation, and 106 for testing.

4.2 Implementation Details

U-Net. The U-Net implemented in our work was built as described in the orig-
inal paper, with the exception of using less filters in its layers. The number of
filters used was reduced by a factor of 16 in comparison to the original archi-
tecture, e.g., the first layer of the original architecture used 64 filters and our
implementation used 4 filters in the same layer. The decision of using fewer filters
in the implementation was made since no significant improvement in performance
was observed by using the full-scale U-Net.

PSPNet. The PSPNet was built with a backbone of ResNet-50, a version of
the ResNet model [9] with 50 convolutional layers. This was done by utilising the
pre-built ResNet-50 model available in TensorFlow [21], with slight modifications
to suit the dilated approach of the PSPNet, as described in [4,23]. The weights
of the backbone ResNet-50 was initialised using pre-trained weights, trained on
the ImageNet dataset.

Loss Functions and Class-Weighting Schemes. When analysing the class
distribution of the dataset defined in Sect. 4.1, it became evident that some
classes were under-represented, causing a class imbalance problem; see Fig. 2.
Class imbalance within a dataset has been shown to decrease performance for
some classifiers, including deep neural networks, causing the model to be more
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Fig. 2. Visualisation of the skewed class distribution present in the dataset used for
training the models in experiment 1. The classes in the image are background (purple),
slag (blue), camera edge (green) and wall (yellow). (Left): Class distribution of the data.
(Right): Example ground truth image showing the skewed distribution of pixels. (Color
figure online)

biased towards the more frequently seen classes [11]. To tackle this problem,
we experimented with three loss functions; the Tanimoto loss [5], the dice loss
[16], and the cross-entropy loss. We also experimented with two class-weighting
schemes; the inverse square volume weighting (ISV) and the inverse square root
volume weighting (ISRV), in comparison to no class-weighting scheme. The ISV
weighting scheme was calculated by wc = 1/f2

c and the ISRV weighting scheme
was calculated by wc = 1/

√
fc, for each segmentation class c, where fc denotes

the frequency of pixels labelled as class c in the dataset used for training the
model. The ISV weighting scheme together with the Tanimoto loss as well as
the ISRV weighting scheme together with the cross-entropy loss function have
been successfully used for class imbalance problems [1,5]. We found that the
best performance in our trials was achieved by the dice loss with ISV and the
cross-entropy loss with ISRV for the U-Net and the PSPNet models, respectively.
For more details on ablation studies please see Sect. 5.2 of [13].

4.3 Evaluation Metrics

Pixel Accuracy. The most common evaluation metric used for classification
problems is accuracy. For image segmentation tasks, pixel accuracy is frequently
used. It is defined as the proportion of correctly classified pixels, as follows:

accuracy :=
TP + TN

TP + FP + TN + FN
, (1)

where TP, FP, TN and FN refer to the true positives, false positives, true nega-
tives and false negatives, respectively.

Intersection over Union. One of the most commonly used metrics for image
segmentation is the intersection over union, denoted by IoU [17]. This metric
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measures the overlap of pixel classifications, making it less sensitive to class
imbalances within the image, in comparison to accuracy. The equation for IoU
for each class c is defined below, where A denotes the predicted segmentation
map over the classified pixels and B denotes the ground truth segmentation map.

IoUc :=
|A ∩ B|
|A ∪ B| (2)

The IoU of the class labelled slag was used for validation since this was the class
of interest in this problem.

Mean Intersection over Union. The mean intersection over union metric,
denoted by mIoU, averages over the IoU metric for each of the classes and is
defined as follows:

mIoU :=
1

|C|
∑

c∈C

IoUc , (3)

where |C| is the number of classes in set C and IoUc is the IoU for class c.

4.4 Results and Analysis

Table 1. Class-wise IoUc scores of the slag detection experiment with mIoU and
accuracy calculated over all classes. All metrics are computed on the test set.

Model Class c IoUc(%) mIoU(%) accuracy(%)

PSPNet background 94.06 87.72 97.32

slag 65.33

camera edge 94.63

wall 96.85

U-Net background 92.54 85.37 96.38

slag 62.67

camera edge 91.61

wall 94.67

The results of this experiment are presented in Table 1. The results show that
both models are able to segment the images in the test set, especially for the
more frequent class labels: background, camera edge and wall. Both the U-Net
and PSPNet are also able to segment slag at an IoU of 62.67% and 65.33%,
respectively, thus showing that it is possible to utilise image segmentation when
detecting slag. This was also visually verified by domain experts at LKAB, ver-
ifying that the achieved IoU of slag was sufficient in an industry setting.

The lower IoU for the class slag in comparison to the other classes we believe
is due to the class imbalance problem, mentioned in Sect. 4.2. Another reason
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could be an effect of the manual labelling process, as it is sometimes difficult for
the human eye to detect the slag islands due to their small size and sometimes
indistinguishable edges. This is evident in the worst prediction yielded by the
PSPNet visualised in Fig. 3, which also shows that even though the prediction
of the model yielded a low IoU score in this case, the amount of slag predicted
can be fairly accurate.

Fig. 3. Two examples of predictions yielded by the PSPNet with weighted loss. (Top):
The best prediction, yielding 86.8% IoU of slag. (Bottom): The worst prediction, yield-
ing 8.4% IoU of slag. (Left): The input images. (Middle): The ground truth images.
(Right): The predictions made by the PSPNet.

Although both of the models showed potential in segmenting the images, the
superiority of the PSPNet over the U-Net in this particular context is evident
from looking at the results in Table 1, as it outperforms the U-Net in all of
the metrics measured. Figure 3 displays some example predictions made by the
PSPNet which we believe shows, together with the results presented in Table 1,
that it is possible to measure the amount of slag that has accumulated in a
Grate-Kiln system through image segmentation with a DCNN. We will in the
next experiment look into whether the better performing PSPNet is consistent in
its predictions by analysing its performance on unlabelled images over a longer
time-frame.

5 Variance and Occlusion Experiment

Here, we present the experiment with the aim of researching the performance in
a productionised setting. It includes analysing the prediction variance and the
ability to deal with occluded images hindering the view of the camera.
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5.1 Datasets

Training Dataset. The training dataset, used in Sect. 4, was extended by
adding the subsequently captured images, captured with a 10 s time lag. This
resulted in a time series dataset containing consecutive pairs of images. As the
images captured in the Kiln sometimes include flames and subsequent smoke
obstructing the view, the resulting dataset only contained 420 pairs of images,
i.e., 110 out of the 530 subsequent images were discarded due to the presence of
an occlusion. The newly added images were labelled in the same manner as was
described in the first experiment; see Sect. 4.1. Out of the 420 pairs of images,
269 pairs were used for training, 67 used for validation, and 84 used for testing.
After testing the performance of the models on unseen data, we retrained the
models prior to evaluation on the following evaluation datasets, using 336 pairs
for training and 84 for validation.

Evaluation Datasets. To evaluate the robustness of the models in a produc-
tionised setting, raw consecutive images taken in sequence from two separate
days were extracted into two datasets, containing 7058 and 8632 images respec-
tively. The two days were chosen because of their different characteristics. One
of the days contained images that showed a slow and gradual slag build-up,
whereas the other day contained images where it was known beforehand that
slag had been removed throughout the day, resulting in a varying slag build-up.
These images were not labelled.

5.2 Implementation Details

Occlusion Discriminator. In order to evaluate the DCNN models on the
unlabelled evaluation datasets, the images input to the models needed to be
occlusion-free. To replicate a production setting and to reduce the manual work
of removing images containing occlusions, an occlusion discriminator model was
implemented and trained. The model was a DCNN classifier of three convolu-
tional blocks, each block containing two convolutional layers each of which was
followed by a batch normalisation and ReLU activation functions. Each convo-
lutional block was then followed by a max pooling and dropout layer. Finally,
a dense layer was followed by a sigmoid function, yielding binary predictions
on whether the image contains occlusions or not. After training the model, it
achieved a precision and recall score of 99.7% and 83.7% respectively. This model
was used to filter the evaluation datasets.

Two PSPNet Models. The best performing hyperparameters of the PSPNet
from the previous experiment, described in Sect. 4, was used in this experiment.
It was trained using the cross-entropy loss with the ISRV class-weighting scheme,
and is referred to as the PSPNet. The PSPNet was evaluated in comparison to a
modified version of the same PSPNet model, referred to as the PSPNet-LSTM.
The PSPNet-LSTM was modified by replacing the final convolutional layer with
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a convLSTM-layer with two cells, with shared weights, to enable the model to
process pairs of images. Furthermore, the layers prior to the convLSTM-layer
were implemented to ensure that both of the input images were processed by
the same weights.

The convLSTM-layer utilised information from a sequence of images. When
predicting a segmentation mask of an image It of time step t, it used information
from both It and the hidden state of the previous LSTM cell utilising information
from It−Δ, with Δ set to 10 s in our experiments. The output of the PSPNet-
LSTM was a segmentation mask prediction of the image It. See a visualisation of
the model in Fig. 4. In summary, these modifications enabled the PSPNet-LSTM
to train on pairwise images.

Fig. 4. Visualisation of the PSPNet-LSTM, our modified PSPNet with convLSTM
cells. The images It and It−Δ, seen in (a), are both processed by the same weights in
the network. The feature maps produced from It are fed into the convLSTM unit at
time step t, and the feature maps produced from It−Δ are fed into the convLSTM unit
at time step t − Δ. Finally, a segmentation map prediction of the image It is made.

To be able to compare the performance of the two models, the PSPNet
model was retrained using the images (only It) defined in Sect. 5.1. The weights
of PSPNet-LSTM were then initialised using the frozen pre-trained weights from
the PSPNet. By using the same weights in both models and only training the
additional convLSTM-layer in PSPNet-LSTM (using both It and It−Δ), a com-
parison between the predictive ability of the two models on the images, with and
without temporal information, could be made.

5.3 Evaluation Metrics

IoU, Fraction of Classified Slag and Running Variance. The IoU of the
class slag, defined in (2), was used for validation and testing, when training the
PSPNet. Since the purpose of this experiment was to evaluate the stability of
the models in a productionised setting, raw images from two days were used
for evaluation, defined in Sect. 5.1. These images were not labelled, thus the
IoU could not be used. As a measurement of stability over time, the fraction of
classified slag was used for evaluation:

ft =
n
(t)
s

H × W
(4)
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where n
(t)
s is the number of pixels classified as slag and H and W represent the

dimensions of the image at time t.
The running variance was calculated for each measurement of the fraction

of classified slag at time t, i.e., ft, over a fixed window of size k, prior to t. We
set k to 60 amounting to 600 s or 10 min of the natural operational window for
counter-measures..

Variance(ft−k+1 + ft−k+2 + ... + ft) (5)

5.4 Results and Analysis

When comparing the best performing PSPNet with the best performing PSPNet-
LSTM, evaluated on the unseen test data held out during training (Sect. 5.1),
the PSPNet outperformed the PSPNet-LSTM with a small margin in terms of
the IoU for the class slag, yielding 62.39% and 61.76% respectively. The mod-
els were then evaluated on the two days of images to measure their robustness
in a productionised setting by using the running variance of slag fraction—a
domain-specific metric that can highlight discrepancies in performance by man-
ual examination before operational countermeasures.

Figure 5 shows the predicted fraction of slag on the raw evaluation dataset
(two full days of unlabelled images) and the corresponding running variance. The
figures show that the predictions yielded by the PSPNet-LSTM has fewer outliers
and is more consistent compared to the PSPNet predictions. Furthermore, the
running variance is consistently lower for the PSPNet-LSTM during the period
when the slag is slowly accumulating. A low and stable running variance is
preferred since it should resemble the slow process of slag build-up.

We believe that the reason for the more stable predictions made by the
PSPNet-LSTM is its ability to produce an adequate segmentation map surround-
ing one occluded image where it can partly disregard an occlusion obstructing
the view. Even with an occlusion discriminator in production filtering out most
occlusions, false negatives are likely to occur when used over longer periods of
time. Figure 6 shows an image that was wrongly classified and passed through
the trained occlusion discriminator filter (Sect. 5.2). Looking at the predictions
made by the two models, combined with the fewer outlying predictions of the
PSPNet-LSTM in Fig. 5, we arrive at the conclusion that the PSPNet-LSTM is
more robust in its predictions and manages to predict slag regions behind the
smoke, which obstructs the view, even though it has not been trained on images
containing occlusions.
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Fig. 5. Predicted fraction of slag and running variance on the evaluation dataset filtered
by the occlusion discriminator.

Fig. 6. (Top row): Image, It−Δ, with no visible occlusion. (Bottom row): Consecutive
image, It, with a visible occlusion that passed through the occlusion discriminator.
(Left): The input image. (Middle): The prediction made by the PSPNet. (Right): The
prediction made by the PSPNet-LSTM.
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6 Conclusions

In this paper, we have researched the possibilities of measuring slag accumulation
with the use of two DCNNs, the U-Net and the PSPNet. Furthermore, we have
looked into how to handle images containing occlusions and proposed a novel
approach to tackle this problem. We have shown that it is possible to measure
slag accumulation in a Grate-Kiln system using a DCNN. The best performing
model, the PSPNet, yielded an IoU of slag of 65.33%, an mIoU of 87.72% and
an accuracy of 97.32%, all measured on test data. Finally, we have shown that
a DCNN with an additional convLSTM-layer with two cells can increase the
stability and lower the variance of the predictions by exploiting temporal infor-
mation in consecutive images, thus making it more suitable for a production
environment.

Based on interviews with domain experts at LKAB, having access to con-
tinuous measurement of slag formation will support their effort in putting in
timely countermeasures to remove slag, as well as getting a better understand-
ing of when enough slag has been removed. Additionally, having a historical and
systemic view of slag formation will enable LKAB to correlate the slag build-up
with other parts of the Grate-Kiln system – an important step towards under-
standing the root cause of the slag build-up. Such a view can be obtained by
LKAB due to the raw images over multiple years being made readily available
in a delta lake house to quickly build new AI models over GPU-enabled Apache
Spark [24] clusters, and by integrating image data with other data sources.

Future work will focus on how to further enhance the ability of the model to
deal with occluded images. We believe that this could be done by utilising longer
sequences of images when making predictions. This will increase the probability
of having multiple consecutive images without any occlusion, thus hopefully
aiding the model in making accurate predictions. Moreover, our image delta
lake architecture, over long time scales, allows to take a systems-level approach
to the problem by incorporating other dependent variables.

Acknowledgements. This research was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program funded by Knut and Alice Wallenberg
Foundation and Databricks University Alliance with AWS credits. We thank Gustav
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