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Abstract. While common image object detection tasks focus on bound-
ing boxes or segmentation masks as object representations, we consider
the problem of finding objects based on four arbitrary vertices. We pro-
pose a novel model, named TetraPackNet, to tackle this problem. Tetra-
PackNet is based on CornerNet and uses similar algorithms and ideas.
It is designated for applications requiring high-accuracy detection of
regularly shaped objects, which is the case in the logistics use-case of
packaging structure recognition. We evaluate our model on our specific
real-world dataset for this use-case. Baselined against a previous solu-
tion, consisting of an instance segmentation model and adequate post-
processing, TetraPackNet achieves superior results (9% higher in accu-
racy) in the sub-task of four-corner based transport unit side detection.

1 Introduction

While common image recognition tasks like object detection, semantic segmen-
tation or instance segmentation are frequently investigated in literature, some
applications could greatly benefit from more specialized approaches. In this work,
we investigate how such specialized algorithms and neural network designs can
improve the performance of visual recognition systems. For this purpose, we
consider the use-case of logistics packaging structure recognition.

Fig. 1. Illustration of the use-case of packaging structure recognition (taken from [2])

The use-case of logistics packaging structure recognition aims at inferring the
number, type and arrangement of standardized load carriers in uniform logistics
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transport units from a single image of that unit. It is illustrated in Fig. 1. In an
approach to design a robust solution to this task, we identified the recognition
of two visible transport unit side faces, by finding the exact positions of their
four corner points, as a reasonable sub-task [2]. Notably, our objects of interest,
i.e. transport unit side faces, are of rectangular shape in real world. As the per-
spective projection is the main component of the imaging transformation, we can
assume, that transport unit side faces can be accurately segmented by four image
pixel coordinates in regular images of logistics transport units. Such assumptions
are also valid in other logistics use-cases such as package detection or transport
label detection. The same holds for non-logistics applications like license plate or
document recognition and other cases where objects of regular geometric shapes
need to be segmented accurately to perform further downstream processing, like
image rectifications or perspective transforms.

To solve the challenge of detecting an object by finding a previously known
number of feature points (e.g. four vertices), various approaches are thinkable.
For instance, the application of standard instance segmentation methods and
adequately designed post-processing algorithms, simplifying the obtained pixel
masks, may be a viable solution. We aim to incorporate the geometrical a-priori
knowledge into a deep-learning model by designing a convolutional neural net-
work (CNN) detecting objects by four arbitrary feature points. To achieve that,
we build upon existing work by Law et al. [7,8], enhancing the ideas of Corner-
Net. CornerNet finds the two bounding box corners to solve the task of classic
object detection. We extend this idea to design a model detecting the four ver-
tices of tetragonal shaped objects. Figure 2 illustrates the difference between
common bounding box object representations and our four-point based repre-
sentations. The example image is taken from our use-case specific dataset. The
objects indicated are transport unit faces which need to be precisely localized.

Fig. 2. Sample annotations. Left: Bounding box. Right: Four vertices.

In this paper, we present a redesigned version of CornerNet, namely Tetra-
PackNet, which segments objects by four object vertices instead of bounding
boxes or pixel-masks. We evaluate the approach on data concerning the use-case
of logistics packaging structure recognition. Notably, TetraPackNet cannot be
baselined against its role model CornerNet, as it solves a fundamentally differ-
ent task on differently annotated data. Baselined against an existing solution to
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the sub-task of transport unit side corner detection, we show that TetraPackNet
achieves improved results. We observe that TetraPackNet is able to predict and
localize tetragonal objects accurately.

The rest of the paper is organized as follows: We summarize related work in
Sect. 2. The model itself is explained in Sect. 3. Section 4 concerns the example
application of logistics packaging structure recognition and the corresponding
dataset. We evaluate our approach in Sect. 5. Finally, Sect. 6 concludes our work
with a summary and outlook.

2 Related Work

The primary use-case pushing our work is the one of logistics packaging structure
detection, which is introduced in [2]. Apart from that work, we are not aware of
any other publications considering the same use-case.

As the number and frequency of publications regarding image object detec-
tion is enormous, we refer to dedicated survey papers as introductory material.
For instance, Wu et al. [14] or Liu et al. [10] give comprehensive overviews.

Our work builds on CornerNet [7], a recent work by Law et al., which aims
to perform object detection without incorporating anchor boxes or other object
position priors. Instead, corner positions of relevant objects’ bounding boxes
are predicted using convolutional feature maps as corner heat maps. Corners
of identical objects are grouped based on predicted object embeddings. This
approach, which outperformed all previous one-stage object detection methods
on COCO [9], was further developed and improved by Duan et al. [4] and Zhou et
al. [15]. The follow-up work by Law et al. [8], CornerNet-Lite, introduced faster
and even more accurate variations of the original CornerNet method. These
advancements of the original CornerNet are not in our scope, we build upon the
original work [7].

Another approach relevant for this work, is the deep learning based cuboid
detection by Dwibedi et al. [5]. In this work in the context of 3D-reconstruction,
cuboid shaped, class agnostic objects are detected and their vertices are pre-
cisely localized. We refrain from comparing to this work for several reasons, one
of which is the requirement for richer image annotations (cuboid based, eight
vertices per object). Further, we do not aim to reconstruct 3D-models from our
images but aim to classify and interpret intra-cuboid information.

3 Method

We present a novel method for four-corner based object detection based on Cor-
nerNet [7], a recent work of Law et al. Whereas in traditional object detection,
object locations are referenced by bounding boxes (i.e. top left and bottom right
corner position), we work with more detailed locations described by four inde-
pendent corner points. The resulting shapes are not limited to rectangles but
comprise a large variety of tetragons, i.e. four-cornered polygons. In this work,
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we focus on such tetragonal shapes where the four vertices can be identified as
“top left”, “top right”, “bottom left”, and “bottom right” corners respectively.

We use model, ground-truth and loss function designs very similar to those
proposed in CornerNet [7]. These components, and especially our modifications
for TetraPackNet, targeting tetragon-based object detection, are explained in
the following sections.

3.1 Backbone Network

As suggested and applied by Law et al. [8], we use an hourglass network [12],
namely Hourglass-54, consisting of 3 hourglass modules and 54 layers, as back-
bone network. Hourglass networks are fully convolutional neural networks. They
are shaped like hourglasses in that regard, that input images are downsampled
throughout the first set of convolutional and max pooling layers. Subsequently,
they are upsampled to the original resolution in a similar manner. Skip layers
are used to help conserve detailed image features, which may be lost by the
network’s convolutional downsampling. In TetraPackNet’s network design, two
instances of the hourglass network are stacked atop each other to improve result
quality.

3.2 Corner Detection and Corner Modules

Following the backbone network’s hourglass modules, so-called corner modules
are applied to predict precise object corner positions. CornerNet utilizes two such
corner modules to detect top-left and bottom-right corners of objects’ bounding
boxes. Our architecture includes four corner detection modules for the four object
corner types top-left, top-right, bottom-left and bottom-right. It is important to
note that we do not detect corners of bounding boxes, but vertices of tetragon-
shaped objects.

Analogously to the original CornerNet approach, each corner module is fully
convolutional and consists of specific corner pooling layers as well as a set of out-
put feature maps of identical dimensions. These outputs are corner heat maps,
offset maps and embedding. They each work in parallel on identical input infor-
mation: the corner-pooled convolutional feature maps.

We shortly revisit CornerNet’s specific pooling strategy. It is based on the
idea that important object features can be found when starting at a bounding
box top left corner and moving in horizontal right or vertical bottom direction.
More precisely, by this search strategy and directions, object boundaries will be
found by bounding box definition. In CornerNet, max pooling is performed in the
corresponding two directions for both bounding box corner types. The pooling
ouputs are added to one another and the results are used as input for corner
prediction components. The authors show the benefits of this approach in several
detailed evaluations. In our case, where precise object corners are predicted,
instead of bounding box corners, one may argue that pooling strategies should
be reconsidered. Still, for our first experiments, we retain this pooling approach.
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3.3 Ground-truth

Required image annotations are object positions described by the object’s four
corner points, i.e. top left, top right, bottom left, bottom right corner. It is
required that both right corners are further right as their counterparts and,
equivalently, both top corners are further up as the corresponding bottom cor-
ners. For each ground-truth object one single positive location is added to each of
the four ground-truth heatmaps. To allow for minor deviations of corner detec-
tions from these real corner locations, the ground-truth heatmaps’ values are set
to positive values in a small region around every corner location. As proposed
by CornerNet, we use a Gaussian function centered at the true corner position
to determine ground-truth heatmap values in the vicinity of that corner.

In Fig. 3 ground-truth and detected heatmaps, and embeddings are illus-
trated. The top row shows, cross-faded on the original input image, the ground-
truth heatmaps for the four different corner types. There are two Gaussian circles
in each corner type heatmap as there are two annotated ground-truth objects,
i.e. two transport unit sides, in the image. The bottom row shows TetraPack-
Net’s detected heatmaps (for object type transport unit side) and embeddings in
a single visualization: Black regions indicate positions where the predicted heat
is smaller than 0.1. Wherever the detected heat value exceeds this threshold,
the color indicates the predicted embedding value. To map embedding values
to colors, the range of all embeddings for this instance was normalized to the
interval from 0 to 1. Afterward Open CV’s Rainbow colormap was applied [1].

Top-Left Top-Right Bottom-Left Bottom-Right

Fig. 3. Example heatmaps. Top row: Groundtruth. Bottom row: Detected heats and
color-encoded embeddings.
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3.4 Loss Function

The loss function used in training of our TetraPackNet model is structurally
identical to that of CornerNet and consists of several components:

L = Ldet + woff · Loff + (wpull · Lpull + wpush · Lpush) (1)

The first component is the focal loss Ldet, which aims to optimize heatmap
corner detections by penalizing high heatmap values at points where there is
no ground-truth corner location. Analogously, low heat values at ground-truth
positive locations are penalized. Secondly, the offset loss component Loff is used
to penalize corner offset predictions which do not result in accurate corner posi-
tions. Both focal loss and offset loss are adopted as proposed by CornerNet.

The only loss components we slightly modified to transition from CornerNet
to TetraPackNet are the pull and push losses Lpull and Lpush. These components
are used to optimize the embedding values predicted at each potential corner
location. Modifications were made to account for the increased number of feature
points to be detected. Our version of pull and push loss are computed as follows

Lpull =
1
N

N∑

k=1

∑

i∈{tl,tr,bl,br}
(e(i)

ki
− ek)2 (2)

Lpush =
1

N(N − 1)

N∑

k=1

N∑

j=1

j �=k

max {0, 1 − |ek − ej |} (3)

where {1, ..., N} enumerates the ground-truth objects and i = {tl, tr, bl, br}
indicate the four corner types top left, top right, bottom left, bottom right. The
position of corner i of ground-truth object k is denoted by ki. Further e

(i)
ki

∈ R

is the embedding value for corner i at position ki, i.e. at the position of ground-
truth object k’s corresponding vertex. The average value of the embedding values
of all four corners of a ground-truth object k is given by ek = 1

4

∑
i∈{tl,tr,bl,br} e

(i)
ki

.
In our experiments, the loss component weights were set to wpull = wpush = 0.1
and woff = 1.0, as proposed by Law et al.

3.5 Assembling Corner Detections to Objects

Once corner positions and their embeddings are predicted, these predictions need
to be aggregated to form tetragon object detections. Compared to the CornerNet
setup, this task is slightly more complex as each object is composed of four
vertices instead of only two. However, the original grouping implementation is
based on Associative Embeddings [11], which is suitable for multiple data points
in general, i.e. more than two. The same approach can be applied in our case.

To obtain an overall ranking for all detected and grouped objects, the four
corner detection scores as well as the similarity of their embeddings, i.e. the
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corresponding pull loss values, are considered. This final score for a detection p
of class c consisting of four corners ptl, ptr, pbl, pbr is computed as

1
4

∑

i∈{tl,tr,bl,br}
h(i,c)
pi

· max {0, 1 − (e(i)
pi

− ep)2} (4)

with ep being the average embedding for a set of four corners as before.
Further, h(i,c)

pi denotes the predicted heat value for class c and corner type i ∈
{tl, tr, bl, br} at position pi.

Additionally, we only allow corners to be grouped which comply with the
condition, that right corners are further right in the image as their left counter-
parts. Analogously bottom corners are required to be further down in the image
as corresponding top corners.

4 Use-Case and Data

4.1 Logistics Unit Detection and Packaging Structure Analysis

Our work was developed in context of the logistics task of automated packag-
ing structure recognition. The aim of logistics packaging structure recognition
is to infer the number and arrangement of a well standardized logistics trans-
port unit by analyzing a single RGB image of that unit. Figure 1 illustrates
this use-case. To infer a transport unit’s packaging structure from an image, the
target unit, the unit’s two visible faces and the faces of all contained load carri-
ers are detected using learning-based detection models. Several restrictions and
assumptions regarding materials, packaging order and imaging are incorporated
to assure feasibility of the task: First of all, all materials like load carriers and
base pallets are known. Further, transport units must be uniformly and regularly
packed. Each image shows relevant transport units in their full extend and in an
upright orientation and in such a way, that two faces of each transport unit are
visible. The use-case and its setting, as well as limitations and assumptions are
thoroughly explained in [2] and [3].

We designed a multi-step image processing pipeline to solve the task of logis-
tics packaging structure recognition. The process’ individual steps can be sum-
marized as follows:

1. Transport unit detection
2. Transport unit side and package unit face segmentation
3. Transport unit side analysis
4. Information consolidation

In step 1), whole transport units are localized within the image and input
images are cropped correspondingly. (see Fig. 4 (a)). As a result, the input for
step 2) is an image crop showing exactly one transport unit to be analyzed.
Subsequently, transport unit sides (and package units) are detected precisely.
This is illustrated in Fig. 4 (b). Step 3) aims to analyze both transport unit
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sides within the image. This involves a rectification of the image’s transport
unit side region, in such a way to reconstruct a frontal, image boundary aligned
view of each transport unit side. To perform such a rectification, the precise
locations of the side’s four corner points are required. Figure 4 (c) shows the
rectified image patch of one transport unit side and illustrates package pattern
analysis. Each transport unit side is analyzed independently and its packaging
pattern is determined. In a last step, the information of both transport unit
sides are consolidated. The pipeline’s overall results are the precise number and
arrangement of packages for each transport unit within an image.

Fig. 4. Method Visualization. (a) Transport unit identification. (b) Transport unit side
face segmentation. (c) Side detection post-processing: Approximation of segmentation
mask by four corner points. (d) Rectified transport unit side.

In the context of this work, we focus on step 2) of our overall packaging
structure recognition pipeline. Importantly, the simple detection and localiza-
tion of these components represented by bounding boxes is not sufficient. As
we aim to rectify transport unit face image patches in a succeeding step, the
precise locations of the four corners of both transport unit faces are required. In
our previous solution to this task, which was introduced in [2], a standard Mask
R-CNN model [6] is used to segment the transport unit faces in the image. After-
wards, in a post-processing step, the segmentation masks, described by arbitrary
polygons, are simplified to consist of four points only. These points are refined
by solving an optimization problem in such a way that the tetragon described
by these four points has the highest possible overlap with the originally detected
region. Figure 4 (c) illustrates this four-corner approximation of segmentation
masks.

In this work, we aim to replace the previously described procedure by Tetra-
PackNet. Instead of taking the detour via overly complex mask representations,
we employ our specialized method TetraPackNet, which directly outputs the
required four-corner based object representations.

4.2 Specific Dataset

For training and evaluation of our TetraPackNet model, a custom use-case spe-
cific dataset of 1267 images was used. The dataset was acquired in a German



TetraPackNet: Four-Corner-Based Object Detection in Logistics Use-Cases 553

industrial plant of the automotive sector. Each image shows one or multiple
stacked transport units in a logistics setting. The rich annotations for each image
also include four-corner based transport unit side annotations. The dataset was
split in three sub-sets: training, validation and test data. The test data set con-
tains a handpicked selection of 163 images. For a set of images showing identical
transport units it was ensured that either all or none of these images was added
to the test data set. The remaining 1104 images were split into train and vali-
dation data randomly, using a train-validation ratio of 75–25.

5 Experiments

In this section, we examine the performance of TetraPackNet. We evaluate Tetra-
PackNet on our use-case data and compare the results to baseline models and
procedures, using standard and use-case specific metrics. In a standard metric
evaluation, the four-point regions found by TetraPackNet are compared to seg-
mentation mask regions found by a baseline instance segmentation model. This
is done using the standard metric for the task of instance segmentation: mean
Average Precision (mAP). To evaluate TetraPackNet more specifically for our
use-case, we compare its performance for the task of transport unit side detec-
tion with our previously implemented solution. The previous solution, which
was introduced in [2] and described in Sect. 4.1, consists, again, of an instance
segmentation model and adequate post-processing steps. In this evaluation, four-
point represented regions are compared using use-case specific metrics.

Setup. Both models, TetraPackNet and the instance segmentation model, were
trained for the single-class problem of transport unit side detection, as described
in Sect. 4.1. In both cases, the same dedicated training, validation and tests
splits were used. Training and evaluation were performed on an Ubuntu 18.04
machine on a single GTX 1080 Ti GPU unit. Two different training scenarios are
evaluated for both models: First, the models are trained to localize transport unit
sides within the full images. In a second scenario, the cropped images are used
as input instead: as implemented in our packaging structure recognition pipeline
(see Sect. 4.1), all images are cropped in such ways that each crop shows exactly
one whole transport unit. For each original image, one or multiple such crops
can be generated, depending on the number of transport units visible within
the image. This second scenario is comparatively easier as exactly two transport
unit sides are present in each image and the variance of the scales of transport
units within the image is minimal.

Training Details. In both trainings, we tried to find training configurations
and hyperparameter asssignments experimentally. However, due to the high com-
plexity of CNN training and its time consumption, an exhaustive search for
ideal configurations could not be performed. To achieve fair preconditions for
both training tasks, the following prerequisites were fixed. Both models were
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trained for the same amount of epochs: The training of the Mask R-CNN base-
line model included 200.000 training steps using a batch size of 1, whereas the
TetraPackNet training included 100.000 training steps with a batch size of 2. As
backbone network, the Mask R-CNN model uses a standard Inception-ResNet-
v2 [13] architecture. Input resolution for both models was limited to 512 pixels
per dimension. Images are resized such that the larger dimension measures 512
pixels and aspect ratio is preserved. Subsequently, padding to quadratic shape is
performed. In both trainings, we considered similar image augmentation meth-
ods: random flip, crop, color distortions and conversion to gray values. Of these
options, only the ones yielding improved training results were retained.

5.1 Standard Metric Results

First of all, we compare TetraPackNet to a model performing classic image
instance segmentation, a more complex task than is solved by our novel model
TetraPackNet. Note that such a comparison only makes sense on data regard-
ing four-point based object detection as TetraPackNet does not aim to solve
the general task of instance segmentation. Still this comparison is meaningful as
instance segmentation models are capable of detecting arbitrary shapes, includ-
ing tetragonal ones. Additionally, we are not aware of other models performing
four-point object detection which could be used as baseline methods.

As standard evaluation metric, the COCO dataset’s [9] standards are used.
We report average precision (AP) at intersection over union (IoU) threshold of
0.5 (AP0.5), 0.75 (AP0.75) and averaged for ten equidistant IoU thresholds from
0.5 to 0.95 (AP ). Evaluations are performed on our dedicated 163-image test
dataset. Table 1 shows the corresponding results.

Table 1. Evaluation results for the whole image scenario.

Model AP AP0.5 AP0.75 AP0.9

Mask R-CNN 61.5 89.6 70.3 19.4

TetraPackNet 75.6 83.6 83.5 66.7

Table 2. Evaluation results for the cropped image scenario.

Model AP AP0.5 AP0.75 AP0.9

Mask R-CNN 80.0 98.9 92.3 55.8

TetraPackNet 91.1 96.0 95.0 85.2

Considering only the values at the lowest IoU threshold examined (0.5), the
baseline Mask R-CNN outperforms TetraPackNet by visible margins: Mask R-
CNN’s AP0.5-value is 6 points higher than that of TetraPackNet (89.6 vs. 83.6).
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However, as the IoU threshold for detections to be considered correct increases,
TetraPackNet gains the advantage. When regarding performance values at IoU
threshold 0.75 instead, TetraPackNet achieves a significantly higher precision
of 83.5, compared to 70.3 for Mask R-CNN. This observation can be expanded
for the average precision scores at higher IoU thresholds: TetraPackNet begins
to gain advantage over our baseline method as detection accuracy requirements
increase. This is illustrated and visible in the top-part of Fig. 5, which visualizes
the same evaluation results shown in Table 1.

Fig. 5. Average precisions at different IoU thresholds for TetraPackNet and Mask R-
CNN baseline model. Left: Whole image scenario. Right: Cropped image scenario.

Very similar observations can be made for the cropped image scenario: Tetra-
PackNet clearly outperforms the reference model Mask R-CNN when high accu-
racy is required. The corresponding evaluation results are shown in Table 2, and
in the bottom part of Fig. 5.

Overall, the results suggest that TetraPackNet does not detect quite as many
ground-truth transport unit sides as our Mask R-CNN baseline model on a low
accuracy basis. At the same time, the predictions made by TetraPackNet appear
to be very precise as average precision steadily remains on a high level as IoU
accuracy requirements are increased. For our use-case of packaging structure
recognition, these are desirable conditions, as our processing pipeline requires
very accurate four-point based transport unit side predictions.

5.2 Use-Case Specific Results

Within our use-case of packaging structure detection, we aim to localize each
transport unit side by four corner points. In this section, we baseline our results
against our previous approach to transport unit side detection, which consists of
a segmentation model and a succeeding post-processing procedure. The former
is a Mask R-CNN model with an Inception-ResNet-v2 backbone network, as
described above. The latter is necessary to obtain the required four-point object
representations from the segmentation model’s output masks. This is performed
by solving a suitable optimization model, which outputs four vertices giving the
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best approximation of a segmentation masks in terms of region overlap. Input to
the task in our image processing pipeline, and for these evaluation, are cropped
images showing exactly one full transport unit. In these evaluations, only the two
highest-ranked detections of each method are considered, as there are exactly
two transport unit sides in each image.

First of all, we report average precision values for the tetragonal detection
of the baseline model (Mask R-CNN with post-processing), and compare them
to TetraPackNet’s average precision values (as already reported in the previous
evaluation). The results can be found in the corresponding columns of Table 3. It
shows that the mask-based average precision of the Mask R-CNN baseline model
is slightly decreased due to the application of the necessary post-processing steps.

To further investigate the performance of TetraPackNet for our specific use-
case, other metrics (than standard COCO Average Precision) are considered
additionally. To this end, two different metrics are computed, both based on the
standard value of intersection over union (IoU). For each ground-truth transport
unit side, the IoUs with its assigned detection, represented by four vertices,
is computed. Detections are assigned to ground-truth annotations from left to
right, based on the a-priori knowledge, that one transport unit side is clearly
positioned further left than the other one. Only for cases where only one instead
of two transport unit sides are detected by the methods under consideration, the
detected side is assigned to that ground-truth side with which it shares a greater
IoU. If no detection was matched to a ground-truth object, the IoU value for
this side is set to 0.

The first custom metric we compute is an overall accuracy value. We assume
a ground-truth transport unit side to be detected correctly if it has an IoU
of at least 0.8 with its assigned detection. The accuracy of transport unit side
detection is equal to the percentage of annotated sides detected correctly.

Additionally, the average IoU for correctly assigned detections is evaluated.
For the use-case at hand this is a reasonable and important assessment, as
the succeeding packaging structure analysis steps rely on very accurate four-
corner based transport unit side segmentations [2]. The two rightmost columns
of Table 3 show the corresponding results.

Overall, the use-case specific evaluation requiring a high detection accuracy is
dominated by our novel approach TetraPackNet. The latter achieves higher rates
of high-accuracy transport unit side detections: TetraPackNet correctly detects
95.7% of transport unit sides, whereas the baseline method only achieves 86.6%
in this metric. Additionally, if only considering sufficiently accurate detections
of both models, the average IoU of the detections output by TetraPackNet was
significantly higher (0.05 IoU points on average) than for those of our baseline
method. We deduce the suitability of TetraPackNet for our application.
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Table 3. Use-case specific evaluation results on our 163-image test dataset.

Model AP AP0.5 AP0.75 AP0.9 Accuracy Average IoU
(Positives only)

Mask R-CNN & post-processing 78.9 99.0 92.1 50.7 86.6 0.908

TetraPackNet 91.1 96.0 95.0 85.2 95.7 0.958

6 Summary and Outlook

6.1 Results Summary

We presented TetraPackNet, a new detection model outputting objects based
on a novel four-vertex representation. We showed that the use of such a special-
ized model, instead of an instance segmentation model employing more complex
object representations, can lead to superior results in cases where corresponding
object representations are reasonable and necessary. This is the case in our pre-
sented use-case of logistics packaging structure recognition, but may also apply
to numerous other tasks, as for instance document or license plate detection.

We trained and evaluated TetraPackNet on our own use-case specific dataset.
For the dedicated task, the observed results indicate a higher accuracy (superior
by 9% points) compared to a previous approach involving a standard Mask R-
CNN model and suitable post-processing.

6.2 Future Work

The applicability of TetraPackNet to our use-case of logistics packaging structure
recognition will be evaluated further. First of all, we plan to apply the model
to package unit detection. This task is additionally challenging as, in general, a
large number of densely arranged package faces of very similar appearance need
to be detected. On the other hand, a-priori knowledge about the regular package
arrangement might allow for specific corner detection interpretations and even
interpolations (e.g. in case of single missing corner detections). Additionally,
we plan to extend TetraPackNet to specialized detection tasks including even
more than four corner or feature points. In our case of logistics transport unit
detections, a lot of a-priori knowledge about object structure, shape and posture
is given. This can be exploited by integrating specific transport unit templates
into the detection model: one can define multiple additional characteristic points
(e.g. base pallet or packaging lid corners) which are to be detected by a highly
specialized deep learning model.

Further, we will investigate different algorithmic and architectural choices. As
mentioned before, corner pooling strategies adopted from CornerNet might not
be ideal for TetraPackNet and its applications. Thus, for instance, experiments
with different corner pooling functions will be performed.

At the same time, TetraPackNet is not necessarily limited to the use-case
of packaging structure recognition or logistics in general. We plan to affirm our
positive results by evaluating TetraPackNet on additional datasets of different
use-cases.
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