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Abstract. 6D pose estimation is the task of predicting the transla-
tion and orientation of objects in a given input image, which is a cru-
cial prerequisite for many robotics and augmented reality applications.
Lately, the Transformer Network architecture, equipped with multi-head
self-attention mechanism, is emerging to achieve state-of-the-art results
in many computer vision tasks. DETR, a Transformer-based model,
formulated object detection as a set prediction problem and achieved
impressive results without standard components like region of interest
pooling, non-maximal suppression, and bounding box proposals. In this
work, we propose T6D-Direct, a real-time single-stage direct method
with a transformer-based architecture built on DETR to perform 6D
multi-object pose direct estimation. We evaluate the performance of our
method on the YCB-Video dataset. Our method achieves the fastest
inference time, and the pose estimation accuracy is comparable to state-
of-the-art methods.
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1 Introduction

6D object pose estimation in clutter is a necessary prerequisite for autonomous
robot manipulation tasks and augmented reality. Given the complex nature of
the task, methods for object pose estimation—both traditional and modern—are
multi-staged [7,19,26,35]. The standard pipeline consists of an object detection
and/or instance segmentation, followed by the region of interest cropping and
processing the cropped patch to estimate the 6D pose of an object. Convolutional
neural networks (CNNs) are the basic building blocks of the deep learning models
for computer vision tasks. CNN’s strength lies in the ability to learn local spatial
features. Motivated by the success of deep learning methods for computer vision,
in a strive for end-to-end differentiable pipelines, many of the traditional com-
ponents like non-maximum suppression (NMS) and region of interest cropping
(RoI) have been replaced by their differentiable counterparts [4,8,24]. Despite
these advancements, the pose estimation accuracy still heavily depends on the
initial object detection stage.
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Recently, Transformer, an architecture based on self-attention mechanism,
is achieving state-of-the-art results in many natural language processing tasks.
Transformers are efficient in modeling long-range dependencies in the data, which
is also beneficial for many computer vision tasks. Some recent works achieved
state-of-the-art results in computer vision tasks using the Transformer architec-
ture to supplement CNNs or to completely replace CNNs [1,3,12,30,34,37].

Carion et al. introduced DETR [1], an object detection pipeline using Trans-
former in combination with a CNN backbone model and achieved impressive
results. DETR is a simple architecture without any handcrafted procedures like
NMS and anchor generation. It formulates object detection as a set prediction
problem and uses bipartite matching and Hungarian loss to implement an end-
to-end differentiable pipeline for object detection.

In this paper, we present T6D-Direct, an extension to the DETR architecture
to perform multi-object 6D pose direct regression in real-time. T6D-Direct enables
truly end-to-end pipeline for 6D object pose estimation where the accuracy of the
pose estimation is not reliant on object detection and the subsequent cropping.
In contrast to the standard methods of 6D object pose estimation that are multi-
staged, our method is direct single-stage and estimates the pose of all the objects
in a given image in one forward pass. In short, our contributions include:

1. An elegant real-time end-to-end differentiable architecture for multi-object
6D pose direct regression.

2. Evaluation of different design choices for implementing multi-object 6D pose
direct regression as a set prediction problem.

2 Related Work

In this section, we review the state-of-the-art methods for 6D object pose esti-
mation and DETR, the transformer architecture our proposed method is based
on, in detail.

2.1 Pose Estimation

Like most other computer vision tasks, the state-of-the-art methods for 6D object
pose estimation from RGB images are predominantly convolutional neural net-
work (CNN)-based. The standard CNN architectures for object pose estimation
are multi-staged. The first stage is object detection and/or instance segmenta-
tion. In the second stage, using the object bounding boxes, predicted an image
patch containing the target object, is extracted and the 6D pose of the object
is estimated. The common methods for object pose estimation can be broadly
classified into three categories: direct, indirect, and refinement-based.

Direct methods regress for the translation and orientation components of the
object pose directly from the RGB images [9,21,35]. Kehl et al. [11], Sundermeyer
et al. [28] discretized the orientation component of the 6D pose and performed
classification instead of regression.

Indirect approaches aim to recover the 6D pose from the 2D-3D correspon-
dences using the PnP algorithm, where PnP is often used in combination with
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the RANSAC algorithm to increase the robustness against outliers in correspon-
dence prediction [10,20,23,29]. Although indirect methods outperform direct
methods in the recent benchmarks [7], indirect models are significantly larger,
and the model size grows exponentially with the number of objects. One com-
mon solution to keep the model size small is to train one lighter model for
each object. This approach, however, introduces significant overhead for many
real-world applications. Direct models, on the other hand, are lighter, and their
end-to-end differentiable nature is desirable in many applications [32]. Li et al.
[33], Wang et al. [15] unified direct regression and dense estimation methods by
introducing a learnable PnP module.

Refinement-based methods formulate 6D pose estimation as an iterative
refinement problem where in each step given the observed image and the ren-
dered image according to the current pose estimate, the model predicts a pose
update that aligns the observed and the rendered image better. The process is
repeated until the estimated pose update is negligibly small. Refinement-based
methods are orthogonal to the direct and indirect methods and are often used in
combination with these methods [13,14,18,22,27], i.e., direct or indirect meth-
ods produce initial pose estimate and the refinement-based methods are used to
refine the initial pose estimate to predict the final accurate pose estimate.

2.2 DETR

Carion et al. [1] introduced DETR, an end-to-end differentiable object detection
model using the Transformer architecture. They formulated object detection, the
problem of estimating the bounding boxes and class label probabilities, as a set
prediction problem. Given an RGB input image, the DETR model outputs a set
of tuples with fixed cardinality. Each tuple consists of the bounding box and class
label probability of an object. To allow an output set with a fixed cardinality,
a larger cardinality is chosen, and a special class id Ø is used for padding the
rest of the tuples in addition to the actual object detections. The tuples in the
predicted set and the ground truth target set are matched by bipartite matching
using the Hungarian algorithm. The DETR model achieved competitive results
on the COCO dataset [16] compared to standard CNN-based architectures.

3 Method

In this section, we describe our approach of formulating 6D object pose esti-
mation as a set prediction problem and describe the extensions we made to the
DETR model and the bipartite matching process to enable the prediction of a
set of tuples of bounding boxes, class label probabilities, and 6D object poses.
Figure 1 provides an overview of the proposed T6D-Direct model.

3.1 Pose Estimation as Set Prediction

Inspired by the DETR model, we formulate 6D object pose direct regression
as a set prediction problem. We call our method T6D-Direct. In the following
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Fig. 1. T6D-Direct overview. Given an RGB image, we use a CNN backbone to extract
lower-resolution image features and flatten them to create feature vectors suitable for
a standard Transformer model. The Transformer model generates a set of predictions
with a fixed cardinality N . To facilitate the prediction of a varying number of objects
in an image, we choose N to be much larger than the expected number of objects in an
image and pad the rest of the tuples in the set with Ø object predictions. We perform
bipartite matching between the predicted and ground truth sets to find the matching
pairs and train the pipeline to minimize the Hungarian loss between the matched pairs.

sections, we describe the individual components of the T6D-Direct model in
detail.

Set Prediction. Given an RGB input image, our model generates a set of
tuples. Each tuple consists of a bounding box, represented as center coordinates,
height and width, class label probabilities, translation and orientation compo-
nents of the 6D object pose. The height and width of the bounding boxes are
proportional to the size of the image. For the orientation component, we opt
for the 6D continuous representation as shown to yield the best performance in
practice [36]. To facilitate the 6D pose prediction of a varying number of objects
in an image, we fix the cardinality of the predicted set to N , which is a hyper-
parameter, and we chose it to be larger than the expected maximum number
of objects in the image. In this way, the network has enough options to embed
each object freely. The T6D-Direct model is trained to predict the tuples corre-
sponding to the objects in the image and predict Ø class to pad the rest of the
tuples in the fixed size set.

Bipartite Matching. Given n ground truth objects y1, y2, ..., yn, we pad Ø
objects to create a ground truth set y of cardinality N . To match the predicted
set ŷ, generated by our T6D-Direct model, with the ground truth set y, we
perform bipartite matching. Formally, we search for the permutation of elements
between the two sets σ ∈ SN that minimizes the matching cost:

σ̂ = arg min
σ∈SN

N∑

i

Lmatch(yi, ŷσ(i)), (1)

where Lmatch(yi, ŷσ(i)) is the pair-wise matching cost between the ground truth
tuple yi and the prediction at index σ(i). DETR model included bounding boxes
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bi and class probabilities pi in their cost function. In the case of T6D-Direct
model, we have two options for defining Lmatch(yi, ŷσ(i)). One option is to use
the same definition used by the DETR model, i.e., we include only bounding
boxes and class probabilities and ignore pose predictions in the matching cost.
We call this variant of matching cost as Lmatch object.

Lmatch object(yi, ŷσ(i)) = −1ci �=Øp̂σ(i)(ci) + 1ci �=ØLbox(bi, b̂σ(i)). (2)

The second option is to include the pose predictions in the matching cost as
well. We call this variant Lmatch pose.

Lmatch pose(yi, ŷσ(i)) = Lmatch object(yi, ŷσ(i))+

Lrot(Ri, R̂σ(i)) + Ltrans(ti, t̂σ(i)), (3)

where Lrot is the angular distance between the ground truth and predicted
rotations, and Ltrans is the �2 loss between the ground truth and estimated
translations. We experimented with both variants, and we opted for the former
method.

Hungarian Loss. After establishing the matching pairs using the bipartite
matching, the T6D-Direct model is trained to minimize the Hungarian loss
between the predicted and ground truth target sets consisting of probability
loss, bounding box loss, and pose loss:

LHungarian(y, ŷ) =
N∑

i

[−logp̂σ̂(i)(ci) + 1ci �=ØLbox(bi, b̂σ̂(i))+

λpose1ci �=ØLpose(Ri, ti, R̂σ̂(i), t̂σ̂(i))]. (4)

Class Probability Loss. The first component in the Hungarian loss is the
class probability loss. We use the standard negative log-likelihood loss as the
class probabilities loss function. Additionally, the number of Ø classes in a set is
significantly larger than the other object classes. To counter this class imbalance,
we weight the log probability loss for the Ø class by a factor of 0.4.

Bounding Box Loss. The second component in the Hungarian loss is bounding
box loss Lbox(bi, b̂σ(i)). We use a weighted combination of generalized IOU [25]
and �1 loss.

Lbox(bi, b̂σ(i)) = αLiou(bi, b̂σ(i)) + β||bi − b̂σ(i)||, (5)

Liou(bi, b̂σ(i)) = 1 −
(

|bi ∩ b̂σ(i)|
|bi ∪ b̂σ(i)|

− |B(bi, b̂σ(i)) \ bi ∪ b̂σ(i)|
|B(bi, b̂σ(i))|

)
, (6)

where α, β are hyperparameters and B(bi, b̂σ(i)) is the largest box containing
both the ground truth bi and the prediction b̂σ(i).
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Pose Loss. The third component of the Hungarian loss is the pose loss. Inspired
by Wang et al. [33], we use the disentangled loss to individually supervise the
translation t and rotation R via employing symmetric aware loss [35] for the
rotation, and �2 loss for the translation.

Lpose(Ri, ti, R̂σ(i), t̂σ(i)) = LR(Ri, R̂σ(i)) + ||ti − t̂σ(i)||, (7)

LR =

⎧
⎪⎪⎨

⎪⎪⎩

1
|M|

∑

x1∈M
min
x2∈M

||(Rix1 − R̂σ(i)x2)|| if symmetric,

1
|M|

∑

x∈M
||(Rix − R̂σ(i)x)|| otherwise,

(8)

where M indicates the set of 3D model points. Here, we subsample 1500 points
from provided meshes. Ri is the ground truth rotation and ti is the ground
truth translation. R̂σ(i) and t̂σ(i) are the predicted rotation and translation,
respectively.

3.2 T6D-Direct Architecture

The proposed T6D-Direct architecture for 6D pose estimation is largely based
on DETR architecture. We use the same backbone CNN (ResNet50), positional
encoding, and the transformer encoder and decoder components of the DETR
architecture. The only major modification is adding feed-forward prediction
heads to predict the translation and rotation components of 6D object poses
in addition to the bounding boxes and the class probabilities. We discuss the
individual components of the T6D-Direct architecture in detail in the following
sections.

CNN Feature Extraction and Positional Encoding. We use ResNet50 [5]
model pretrained on ImageNet [2] with frozen batch normalization layers to
extract features from the input RGB image. Given an image of height H and
width W , the ResNet50 backbone model extracts a lower-resolution feature maps
of dimension 2048×H/32×W/32. We reduce the dimension of the feature maps
to d using 1 × 1 convolution and vectorize the features into d × HW feature
vectors. Transformer architecture is permutation-invariant and while processing
the feature vectors, the spatial information is lost. To tackle this, similar to
Transformer architectures for NLP problems, we use fixed positional encoding.

Transformer Encoder. The supplemented feature vector with the fixed sine
positional encoding [31] is provided as input to each layer of the encoder. Each
encoder layer consists of multi-headed self-attention with 256-dimensional query,
key, and value vectors and a feed-forward network (FFN). The self-attention
mechanism equipped with positional encoding enables learning the spatial rela-
tionship between pixels. Unlike CNNs which model the spatial relationship
between pixels in a small fixed neighborhood defined by the kernel size, the
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Fig. 2. T6D-Direct architecture in detail. Flattened positional encoded image features
from a backbone model are made available to each layer of the transformer encoder.
The output of the encoder is provided as input to the decoder along with positional
encoding. But, unlike the encoder that takes fixed sine positional encoding, we provide
learned positional encoding to the decoder. We call these learned positional encoding
object queries. Each output of the decoder is processed independently in parallel by
shared prediction heads to generate a set of N tuples each containing class probabilities,
bounding boxes and translation and orientation components of the 6D object pose.
Since the cardinality of the set is fixed, after predicting all the objects in the given
image, we train the model to predict Ø object for the rest of the tuples.

self-attention mechanism enables learning spatial relationships between pixels
over the entire image (Fig. 2).

Transformer Decoder. On the decoder part, from the encoder output embed-
ding and N positional embedding inputs, we generate N decoder output embed-
dings using standard multi-head attention mechanism. N is the cardinality of
the set we predict. Unlike the fixed sine positional encoding used in the encoder,
we use learned positional encoding in the decoder. We call this encoding object
queries. From the N decoder output embeddings, we use feed-forward predic-
tion heads to generate set of N output tuples. Note that each tuple in the set
is generated from a decoder output embedding independently—lending itself for
efficient parallel processing.

Prediction Heads. For each decoder output (object query), we use four feed
forward prediction heads to predict the class probability, bounding box mod-
eled as the center and scale, translation and orientation components of 6D pose
independently. Prediction heads are straightforward three-layer MLPs with 256
neurons in each hidden layer.

4 Experiments

4.1 Dataset

The YCB-Video (YCB-V) dataset [35] is a benchmark dataset for the 6D pose
estimation task. The dataset consists of 92 video sequences of random subset of
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objects from a total of 21 objects arranged in random configurations. In total,
the dataset consists of 133,936 images in 640×480 resolution with segmentation
masks, depths, bounding boxes, and 6D object pose annotations. Twelve video
sequences are held out for the test set with 20,738 images, and the rest images
are used for training. Additionally, PoseCNN [35] provides 80K synthetic images
for training. For the validation set, we adopt the BOP test set of YCB-V [7], a
subset of 75 images from each of the 12 test scenes totaling 900 images. For the
final evaluation, we follow the same approach as [35] and report the results on
the subset of 2,949 key frames from 12 test scenes.

4.2 Metrics

For the model evaluation, the average distance (ADD) metric is employed
from [6]. Given the predicted R̂ and t̂ and their corresponding ground-truths,
ADD calculates the mean pairwise distance between transformed 3D model
points (M). If the ADD is below 0.1 m we consider the pose prediction to be
correct.

ADD =
1

|M|
∑

x∈M
‖(Rx + t) − (R̂x + t̂)‖ (9)

For symmetric objects, instead of using ADD metric, the average closest
pairwise distance (ADD-S) metric is computed as follows:

ADD-S =
1

|M|
∑

x1∈M
min

x2∈M
‖(Rx1 + t) − (R̂x2 + t̂)‖ (10)

Following [35], we aggregate all results and measure the area under the
accuracy-threshold curve (AUC) for distance thresholds of maximum 0.1 m.

4.3 Training

The DETR architecture suffers from the drawback of having a slow conver-
gence [37]. To tackle this issue, we initialize the model using the provided pre-
trained weights on the COCO dataset [16] and then train the complete T6D-
Direct model on the YCB-V dataset. After initializing our model with the pre-
trained weights, there are two possible strategies while training for the pose
estimation task. In the first approach, we train the complete model for both
object detection and pose estimation tasks simultaneously; therefore, the total
loss function is the Hungarian loss brought in Eq. (4). In the second approach, we
employ a multi-stage scheme to train only the pose prediction heads and freeze
the rest of the network. Investigation on these methods are conducted in Sect. 5.

To further understand the behavior of the mentioned approaches, we visu-
alize the decoder attention maps for the object queries corresponding to the
predictions. In Fig. 3, the top row consists of the object predictions. The middle
and bottom rows consist of the attention maps from the complete and partial
trained models, respectively, corresponding to the object predictions in the top
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row. The partial trained model has higher activations along the object bound-
aries. These activations are the result of training the partial model only on the
object detection task. When freezing the transformer model and training only
the prediction heads, the prediction heads have to rely on the features already
learned, whereas the complete trained model has denser activations compared to
the partial trained model and the activations are spread over the whole object
and not just the object boundaries. Thus, training the complete model helps
learn features more suitable for pose estimation than the features learned for
object detection.

Hyperparameters. α and β hyperparameters in computing Lbox (Eq. (5)) are
set to 2 and 5, respectively. The λpose hyperparameter in computing LHungarian

(Eq. (4)) is set to 0.05, and the cardinality of the predicted set N is set to 20.
The model takes the image of the size 640 × 480 as input and is trained using
the AdamW optimizer [17] with an initial learning rate of 10−4 and for 78K
iterations. The learning rate is decayed to 10−5 after 70K iterations, and the
batch size is 32. Moreover, gradient clipping with a maximal gradient norm of
0.1 is applied. In addition to YCB-V dataset images, we use the synthetic dataset
provided by PoseCNN for training our model.

4.4 Results

In Table 1, we present the per object quantitative results of T6D-Direct on the
YCB-V dataset. We compare our results with PoseCNN [35], PVNet [20] and
DeepIM [14]. In terms of the approach, T6D-Direct is comparable to PoseCNN;
both are direct regression methods, whereas PVNet is an indirect method, and
DeepIM is a refinement-based approach. In terms of both the AUC of ADDS and
AUC of ADD(-S) metrics, T6D-Direct outperforms PoseCNN and outperforms
the AUC of ADD(-S) results of PVNet. For a fair comparison, we follow the
same object symmetry definition and evaluation procedure described by the
YCB-Video dataset [35].

Some qualitative results are shown in Fig. 5. To demonstrate the ability of the
Transformer architecture to model dependencies between pixels over the whole
image instead of a just small local neighborhood, in Fig. 4, we visualize the self-
attention maps for three pixels belonging to three objects in the image. All three
pixels lie on the same horizontal line but attend to different parts of the image.

4.5 Inference Time Analysis

Since the prediction heads generate N predictions in parallel, the inference of our
model is not dependent on the number of objects in an image. However, having a
smaller cardinality of the prediction set requires estimating fewer object queries
and facilitates faster inference time. Thus, we set N to 20. On an NVIDIA 3090
GPU and Intel 3.70 GHz CPU, our model runs at 58 fps which makes our model
ideal for real-time applications.
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Fig. 3. Object predictions of a given image (first row) and decoder attention maps
for the object queries (second and third rows). Training the complete model for both
object detection and pose estimation tasks (second row). Training the model first on
the object detection task, and then training the frozen model on the pose estimation
task (third row). Attention maps are visualized using the jet color map (shown above
for reference).

5 Ablation Study

In this section, we explore the effect of various training strategies, different loss
functions, and egocentric vs. allocentric rotation representations on the T6D-
Direct model performance for the YCB-V dataset.

Effectiveness of Loss Functions. In Table 3, we examine the performance
of our model using the symmetry aware version of Point Matching loss with �2
norm [14,35] which, in contrast to the disentangled loss presented in Sect. 3.1,
couples the rotation and translation components. This loss function results in
the best AUC of ADD(-S) metric. Moreover, since the symmetry aware SLoss
component of the Point Matching loss is computationally expensive, we experi-
mented with training our model using only the PLoss component. Interestingly,
the ADD(-S) result of the model trained using only the PLoss component (row 5)
is only slightly worse than the model trained using the both components (row 1)
(Table 2).
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Table 1. Pose prediction results on the YCB-V Dataset. The symmetric objects are
denoted by *.

Metric AUC of ADD-S AUC of ADD(-S)

Object PoseCNN T6D-Direct DeepIM PoseCNN PVNet T6D-Direct DeepIM

master chef can 84.0 91.9 93.1 50.9 81.6 61.5 71.2

cracker box 76.9 86.6 91.0 51.7 80.5 76.3 83.6

sugar box 84.3 90.3 96.2 68.6 84.9 81.8 94.1

tomato soup can 80.9 88.9 92.4 66.0 78.2 72.0 86.1

mustard bottle 90.2 94.7 95.1 79.9 88.3 85.7 91.5

tuna fish can 87.9 92.2 96.1 70.4 62.2 59.0 87.7

pudding box 79.0 85.1 90.7 62.9 85.2 72.7 82.7

gelatin box 87.1 86.9 94.3 75.2 88.7 74.4 91.9

potted meat can 78.5 83.5 86.4 59.6 65.1 67.8 76.2

banana 85.9 93.8 72.3 91.3 51.8 87.4 81.2

pitcher base 76.8 92.3 94.6 52.5 91.2 84.5 90.1

bleach cleanser 71.9 83.0 90.3 50.5 74.8 65.0 81.2

bowl* 69.7 91.6 81.4 69.7 89.0 91.6 81.4

mug 78.0 89.8 91.3 57.7 81.5 72.1 81.4

power drill 72.8 88.8 92.3 55.1 83.4 77.7 85.5

wood block* 65.8 90.7 81.9 65.8 71.5 90.7 81.9

scissors 56.2 83.0 75.4 35.8 54.8 59.7 60.9

large marker 71.4 74.9 86.2 58.0 35.8 63.9 75.6

large clamp* 49.9 78.3 74.3 49.9 66.3 78.3 74.3

extra large clamp* 47.0 54.7 73.2 47.0 53.9 54.7 73.3

foam brick* 87.8 89.9 81.9 87.8 80.6 89.9 81.9

MEAN 75.9 86.2 88.1 61.3 73.4 74.6 81.9

0 0.2 0.4 0.6 0.8 1

Fig. 4. Encoder self-attention. We visualize the self-attention maps for three pixels
belonging to three objects in the image. All three pixels lie on the same horizontal line
but attend to different parts of the image. Attention maps are visualized using the jet
color map (shown above for reference).

Effectiveness of Training Strategies. As discussed in Sect. 4.3, there are
two training schemes: single-stage and multi-stage. In the multi-stage scheme,
we train the Transformer model for object detection and only train the FFNs
for pose estimation, whereas in the single-stage scheme, we train the complete
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Fig. 5. Qualitative examples from the YCB-V Dataset. Top row: PoseCNN [35]. Bot-
tom row: our predictions.

Table 2. Comparison with state-of-the-art methods on YCB-V. In terms of the ADD
(-S) 0.1d metric, we achieve the state-of-the-art result. † indicates that the method is
refinement-based. Inference time is the average time taken for processing all objects in
an image.

Method ADD(-S) AUC of ADD-S AUC of ADD(-S) Inference Time [s]

CosyPose† [13] – 89.8 84.5 0.395

PoseCNN [35] 21.3 75.9 61.3 –

SegDriven [10] 39.0 – – –

Single-Stage [9] 53.9 – – –

GDR-Net [33] 49.1 89.1 80.2 0.065

T6D-Direct (Ours) 48.7 86.2 74.6 0.017

model in one stage. In our experiments, as shown in Table 3, multi-stage training
(row 2) yielded inferior results, although both schemes were pretrained on the
COCO dataset. This demonstrates that the Transformer model is learning the
features specific to the 6D object pose estimation task on YCB-V, and COCO
fine-tuning mainly helps in faster convergence during training and not in more
accurate pose estimations. We thus believe that most large-scale image datasets
can serve as pretraining data source. We also provide the results of including
the pose component in the bipartite matching cost mentioned in Eq. (3). Includ-
ing the pose component (row 3) does not provide any considerable advantage;
thus, we include only the class probability and bounding box components in the
bipartite matching cost in all further experiments. Further, egocentric rotation
representation (row 1) performed slightly better than allocentric representation
(row 4). We hypothesize that supplementing RGB images with positional encod-
ing allows the Transformer model to learn spatial features efficiently. Therefore,
the allocentric representation does not have any advantage over the egocentric
representation.
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Table 3. Ablation study on YCB-V. We provide results of our method with different
loss functions and training schemes.

Row Method ADD(-S) AUC of ADD(-S)

1 T6D-Direct with Point Matching loss 47.0 75.6

2 1 + multi-stage training 20.5 59.1

3 1 + pose matching cost component 42.8 71.7

4 1 + allocentric R6d 42.9 74.4

5 T6D-Direct with PLoss 45.8 74.4

6 T6D-Direct 48.7 74.6

6 Conclusion

We introduced T6D-Direct, a transformer-based architecture for multi-object
6D pose estimation. Equipped with multi-head attention mechanism, our model
obtains competitive results in the task of direct 6D pose estimation without any
dense features. Unlike the standard multi-staged methods, our formulation of
multi-object 6D pose estimation as a set prediction problem allows estimating
the 6D pose of all the objects in a given image in one forward pass. Furthermore,
our model is real-time capable. In the future, we plan to explore the possibilities
of incorporating dense estimation features into our architecture and improve the
performance further.
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7. Hodaň, T., et al.: BOP challenge 2020 on 6d object localization. In: Bartoli, A.,
Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12536, pp. 577–594. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-66096-3 39

8. Hosang, J., Benenson, R., Schiele, B.: Learning non-maximum suppression. In:
CVPR, pp. 4507–4515 (2017)

9. Hu, Y., Fua, P., Wang, W., Salzmann, M.: Single-stage 6d object pose estimation.
In: CVPR (2020)

10. Hu, Y., Hugonot, J., Fua, P., Salzmann, M.: Segmentation-driven 6D object pose
estimation. In: CVPR, pp. 3385–3394 (2019)

11. Kehl, W., Manhardt, F., Tombari, F., Ilic, S., Navab, N.: SSD-6D: making RGB-
based 3D detection and 6D pose estimation great again. In: CVPR, pp. 1521–1529
(2017)

12. Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah, M.: Transformers
in vision: A survey. arXiv:2101.01169 (2021)
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