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Abstract. This paper employs nonlocal operators and the correspond-
ing calculus in order to show that assignment flows for image labeling can
be represented by a nonlocal PDEs on the underlying graph. In addition,
for the homogeneous Dirichlet condition, a tangent space parametriza-
tion and geometric integration can be used to solve the PDE numeri-
cally. The PDE reveals a nonlocal balance law that governs the spatially
distributed dynamic mass assignment to labels. Numerical experiments
illustrate the theoretical results.
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1 Introduction

Overview, Motivation. As in most research areas of computer vision, state of
the art approaches to image segmentation are based on deep networks. A recent
survey [18] reviews a vast number of different network architectures and their
empirical performance on various benchmark data sets. Among the challenges
discussed in [18, Section 6], the authors write: “... a concrete study of the under-
lying behavior/dynamics of these models is lacking. A better understanding of
the theoretical aspects of these models can enable the development of better
models curated toward various segmentation scenarios.”

Among the various approaches towards a better understanding of the mathe-
matics of deep networks, the connection between general continuous-times ODEs
and deep networks, in terms of so-called neural ODEs, has been picked out
as a central them [8,17]. A particular class of neural ODEs derived from first
principles of information geometry, so-called assignment flows, were introduced
recently [3,20]. The connection to deep networks becomes evident by applying
the simplest geometric numerical integration scheme (cf. [22]) to the system of
ODEs (23), which results in the discrete-time dynamical system (see Sect. 3 for
definitions of the mappings involved)

W (t+1)(x) = ExpW (t)(x) ◦ RW (t)(x)

(
h(t)S(W (t))(x)

)
, x ∈ V. (1)

Here, t ∈ N is the discrete time index (iteration counter), x is any vertex of
an underlying graph, and W (t)(x) is the assignment vector that converges for
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t → ∞ to some unit vector ej and thus assigns label j to the data observed at x.
The key observation to be made here is that the right-hand side of (1) comprises
two major ingredients of any deep network: (i) a context-sensitive interaction of
the variables over the underlying graph in terms of the mapping S(·), and (ii) a
pointwise nonlinearity in terms of the exponential map ExpW corresponding to
the e-connection of information geometry [1]. Thus, implementing each iteration
of (1) as layer of a networks yields a deep network.

The aim of this paper is to contribute to the mathematics of deep net-
works by representing assignment flows through a nonlocal PDE on the under-
lying graph. This establishes a link between traditional local PDE-based image
processing [21] to modern advanced nonlocal schemes of image analysis. Regard-
ing the latter nonlocal approaches, we mention the seminal work of Gilboa and
Osher [16], a PDE [6] resulting as zero-scale limit of the nonlocal means neigh-
borhood filter [7], nonlocal Laplacians on graphs for image denoising, enhance-
ment and for point cloud processing [14,15], and variational phase-field models
[5] motivated by both total-variation based image denoising and the classical
variational relaxation of the Mumford-Shah approach to image segmentation
[2]. However, regarding image segmentation, while some of the afore-mentioned
approaches apply to binary fore-/background separation, none of them was
specifically designed for image segmentation and labeling, with an arbitrary num-
ber of labels.

Contribution. Our theoretical paper introduces a nonlocal PDE for image
labeling related to assignment flows on arbitrary graphs. Starting point is the
so-called S-parametrization of assignment flows introduced by [19]. The mathe-
matical basis is provided by the nonlocal calculus developed in [12,13], see also
[11], whose operators include as special cases the mappings employed in the
above-mentioned works (graph Laplacians etc.). We show, in particular, that
the geometric integration schemes of [22] can be used to solve the novel nonlocal
PDE, which additionally generalizes the local PDE derived in [19] correspond-
ing to the zero-scale limit of the assignment flow. In addition, the novel PDE
reveals in terms of nonlocal balance laws the flow of information between label
assignments across the graph.

Organization. Section 2 presents required concepts of nonlocal calculus.
Section 3 summarizes the assignment flow approach. Our contribution is pre-
sented and discussed in Sect. 4, and illustrated in Sect. 5. We conclude in Sect. 6.

2 Nonlocal Calculus

In this section, following [13], we collect some basic notions and nonlocal opera-
tors which will be used throughout this paper. See [11] for a more comprehensive
exposition.

Let (V, E , Ω) be a weighted connected graph consisting of |V| = n nodes with
no self-loops, where E ⊂ V ×V denotes the edge set. In what follows we focus on
undirected graphs with connectivity given by the neighborhoods N (x) = {y ∈
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V : Ω(x, y) > 0} of each node x ∈ V through nonnegative symmetric weights
Ω(x, y) satisfying

0 ≤ Ω(x, y) ≤ 1, Ω(x, y) = Ω(y, x). (2)

The weighting function Ω(x, y) serves as the similarity measure between two
vertices x and y on the graph. We define the function spaces

FV := {f : V → R}, FV×V := {F : V × V → R}, (3a)
FV,E := {F : V → E}, FV×V,E := {F : V × V → E}, (3b)

where E denotes any subset of an Euclidean space. The spaces FV and FV×V
respectively are equipped with the inner products

〈f, g〉V =
∑

x,y∈V
f(x)g(y), 〈F,G〉V×V =

∑

x,y∈V×V
F (x, y)G(x, y). (4)

Given an antisymmetric mapping α ∈ FV×V with α(x, y) = −α(y, x) and V
defined by (5) and (6), and assuming the vertices x ∈ V correspond to points
in the Euclidean space Rd, the nonlocal interaction domain with respect to α is
defined as

Vα
I := {x ∈ Zd \ V : α(x, y) > 0 for some y ∈ V}. (5)

The set (5) serves as discrete counterpart of the nonlocal boundary on a
Euclidean underlying domain with positive measure, as opposed to the tradi-
tional local formulation of a boundary that has measure zero. See Figure 1 for a
schematic illustration of possible nonlocal boundary configuration. Introducing
the abbreviation

V = V∪̇Vα
I (disjoint union), (6)

we state the following identity
∑

x,y∈V
F (x, y)α(x, y) − F (y, x)α(y, x) = 0, ∀F ∈ FV×V . (7)

Based on (5), the nonlocal divergence operator Dα : FV×V → FV and the nonlocal
interaction operator N α : FV×V → FVα

I are defined by

Dα(F )(x) :=
∑

y∈V

(
F (x, y)α(x, y) − F (y, x)α(y, x)

)
, x ∈ V,

N α(G)(x) := −
∑

y∈V

(
G(x, y)α(x, y) − G(y, x)α(y, x)

)
, x ∈ Vα

I .
(8)

Due to the identity (7), these operators (8) satisfy the nonlocal Gauss theorem
∑

x∈V
Dα(F )(x) =

∑

y∈Vα
I

N α(F )(y). (9)
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The operator Dα maps two-point functions F (x, y) to Dα(F ) ∈ FV , whereas N α

is defined on the domain Vα
I given by (5) where nonlocal boundary conditions

are imposed. In view of (4), the adjoint mapping (Dα)∗ is determined by the
relation

〈f,Dα(F )〉V = 〈(Dα)∗(f), F 〉V×V , ∀f ∈ FV , F ∈ FV×V , (10)

which yields the operator (Dα)∗ : FV → FV×V acting on FV by

(Dα)∗(f)(x, y) := −(f(y) − f(x))α(x, y), x, y ∈ V. (11)

The nonlocal gradient operator is defined as

Gα(x, y) := −(Dα)∗(x, y). (12)

For vector-valued mappings, the operators (8) and (11) naturally extend to
FV×V,E and FV,E , respectively, by acting componentwise.

Using definitions (11), (12), the nonlocal Gauss theorem (9) implies for u ∈
FV Greens nonlocal first identity

∑

x∈V
u(x)Dα(F )(x) −

∑

x∈V

∑

y∈V
Gα(u)(x, y)F (x, y) =

∑

x∈Vα
I

u(x)N α(F )(x). (13)

Given a function f ∈ FV and a mapping Θ ∈ FV×V with Θ(x, y) = Θ(y, x),
we define the linear nonlocal diffusion operator as the composition of (8) and
Gα,

Dα
(
ΘGα(f)

)
(x) = 2

∑

y∈V
(Gα)(f)(x, y)

(
Θ(x, y)α(x, y)

)
. (14)

For the particular case with no interactions, i.e. α(x, y) = 0 if x ∈ V and y ∈ Vα
I ,

expression (14) reduces to

Lωf(x) =
∑

y∈N (x)

ω(x, y)
(
f(y) − f(x)

)
, ω(x, y) = 2α(x, y)2, (15)

which coincides with the combinatorial Laplacian [9,10] after reversing the sign.

3 Assignment Flows

We summarize the assignment flow approach introduced by [3] and refer to the
recent survey [20] for more background and a review of related work.

Assignment Manifold. Let (F , dF ) be a metric space and Fn = {f(x) ∈
F : x ∈ V} be given data on a graph (V, E , Ω) with |V| = n nodes and associated
neighborhoods N (x) as specified in Sect. 2. We encode assignment of nodes x ∈ V
to a set F∗ = {f∗

j ∈ F , j ∈ J }, |J | = c of predefined prototypes by assignment
vectors

W (x) = (W1(x), . . . ,Wc(x))� ∈ S, (16)
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Fig. 1. Schematic visualization of a nonlocal boundary : From left to right: A bounded
open domain Ω ⊂ R2 with continuous local boundary ∂Ω overlaid by the grid Z2. A
bounded open domain Ω with nonlocal boundary depicted by light gray color with
nodes and representing the vertices of the graph V and the interaction domain
Vα
I , respectively. Possible decomposition of Vα

I satisfying (6). In contrast to the center
configuration, this configuration enables nonlocal interactions between nodes ∈ Γ .

where S = rintΔc denotes the relative interior of the probability simplex Δc ⊂
Rc
+ that we turn into a Riemannian manifold (S, g) with the Fisher-Rao metric

g from information geometry [1,4] at each p ∈ S

gp(u, v) =
∑

j∈J

ujvj

pj
, u, v ∈ T0 = {v ∈ Rc : 〈1c, v〉 = 0}. (17)

The assignment manifold (W, g) is defined as the product space W = S ×· · ·×S
of n = |V| such manifolds. Points on the assignment manifold have the form

W = (. . . ,W (x)�, . . . )� ∈ W ⊂ Rn×c, x ∈ V. (18)

The assignment manifold has the trivial tangent bundle TW = W × T0 with
tangent space

T0 = T0 × · · · × T0. (19)

The orthogonal projection onto T0 is given by Π0 : Rc → T0, u �→ u − 〈1S , u〉1c,
1S := 1

c1c. We denote also by Π0 the orthogonal projection onto T0, for nota-
tional simplicity.

Assignment Flows. Based on the given data and prototypes, we define the
distance vector field on V by DF (x) =

(
dF (f(x), f∗

1 ), . . . , dF (f(x), f∗
c )

)�
, x ∈ V.

These data are lifted to W to obtain the likelihood vectors

L(x) : S → S, L(W )(x) =
W (x)e− 1

ρ DF (x)

〈W (x), e− 1
ρ DF (x)〉

, x ∈ V, ρ > 0, (20)

where the exponential function applies componentwise. This map is based on
the affine e-connection of information geometry, and the scaling parameter ρ > 0
normalizes the a priori unknown scale of the components of DF (x). Likelihood
vectors are spatially regularized by the similarity map and the similarity vectors,
respectively, given for each x ∈ V by
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S(x) : W → S, S(W )(x) = ExpW (x)

( ∑

y∈N (x)

Ω(x, y)Exp−1
W (x)

(
L(W )(y)

))
, (21)

where Exp: S×T0 → S, Expp(v) = pev/p

〈p,ev/p〉 is the exponential map corresponding
to the e-connection. Hereby, the weights Ω(x, y) determine the regularization of
the dynamic label assignment process (23) and satisfy (2) with the additional
constraint

∑

y∈N (x)

Ω(x, y) = 1, ∀x ∈ V. (22)

The assignment flow is induced on the assignment manifold W by solutions
W (t, x) = W (x)(t) of the system of nonlinear ODEs

Ẇ (x) = RW (x)S(W )(x), W (0, x) = W (x)(0) ∈ 1S , x ∈ V, (23)

where the map Rp = Diag(p) − pp�, p ∈ S turns the right-hand side into the
tangent vector field V 
 x �→ Diag(W (x)) − 〈W (x), S(W )(x)〉W (x) ∈ T0.

S-Flow Parametrization. In the following, it will be convenient to adopt from
[19, Prop. 3.6] the S-parametrization of the assignment flow (23)

Ṡ = RS(ΩS), S(0) = exp1W (−ΩD), (24a)

Ẇ = RW (S), W (0) = 1W , 1W(x) = 1S , x ∈ V, (24b)

where both S and W are points on W and hence have the format (18) and

RS(ΩS)(x) = RS(x)

(
(ΩS)(x)

)
, (ΩS)(x) =

∑

y∈N (x)

Ω(x, y)S(y), (25)

exp1W (−ΩD)(x) =
(
. . . ,Exp1S ◦ R1S (−(ΩD)(x)), . . .

)� ∈ W, (26)

with the mappings Expp, Rp, p ∈ S defined after (21) and (23), respectively.
Parametrization (24) has the advantage that W (t) depends on S(t), but

not vice versa. As a consequence, it suffices to focus on (24a) since its
solution S(t) determines the solution to (24b) by [23, Prop. 2.1.3] W (t) =
exp1W

( ∫ t

0
Π0S(τ)dτ

)
. In addition, (24a) was shown in [19] to be the Rieman-

nian gradient flow with respect to the potential J : W → R given by

J(S) = −1
2
〈S,ΩS〉 =

1
4

∑

x∈V

∑

y∈N (x)

Ω(x, y)||S(x) − S(y)||2 − 1
2
||S||2. (27)

Convergence and stability results for this gradient flow were established by
[23].
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4 Relating Assignment Flows and Nonlocal PDEs

Using the nonlocal concepts from Sect. 2, we show that the assignment flow
introduced in Sect. 3 corresponds to a particular nonlocal diffusion process. This
provides an equivalent formulation of the Riemannian flow (24a) in terms of a
composition of operators of the form (14).

4.1 S-Flow: Non-local PDE Formulation

We begin by first specifying a general class of parameter matrices Ω satisfying
(2) and (22), in terms of an anti-symmetric mapping α ∈ FV×V .

Lemma 1. Let α,Θ ∈ FV×V be nonnegative anti-symmetric and symmetric
mappings, respectively, i.e. α(y, x) = −α(x, y) and Θ(x, y) = Θ(y, x), and
assume α,Θ satisfy

λ(x) =
∑

y∈N (x)

Θ(x, y)α2(x, y) + Θ(x, x) ≤ 1, x ∈ V, (28a)

and α(x, y) = 0, x, y ∈ Vα
I . (28b)

Then, for arbitrary neighborhoods N (x), the parameter matrix Ω given by

Ω(x, y) =

{
Θ(x, y)α2(x, y), if x �= y,

Θ(x, x), if x = y.
x, y ∈ V, (29)

satisfies property (2) and (22) and achieves equality in (28). Additionally, for
each function f ∈ FV with f |Vα

I = 0, the identity

∑

y∈V
Ω(x, y)f(y) =

1
2
Dα(ΘGα(f))(x) + λ(x)f(x), x ∈ V, (30)

holds with Dα,Gα given by (8), (12) and λ(x) by (28a).

Proof. For any x ∈ V, we directly compute using assumption (28) and definition
(29),

∑

y∈V
Ω(x, y)f(y) =

∑

y∈V
Θ(x, y)α(x, y)2

(
f(y)

)
+ Θ(x, x)f(x) (31a)

= −
∑

y∈V
Θ(x, y)α(x, y)2

(
−

(
f(y) − f(x)

))
+ λ(x)f(x) (31b)

(11)
= −

∑

y∈V
Θ(x, y)

(
(Dα)∗(f)(x, y)

)
α(x, y) + λ(x)f(x) (31c)

=
∑

y∈V

1
2

(
Θ(x, y)

(
− 2(Dα)∗(f)(x, y)α(x, y)

))
+ λ(x)f(x). (31d)

Using (12) and (14) yields Eq. (30). ��
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Next, we generalize the common local boundary conditions for PDEs to vol-
ume constraints for nonlocal PDEs on discrete domains. Following [13], given an
antisymmetric mapping α as in (5) and Lemma 1, the natural domains Vα

IN
,Vα

ID

for imposing nonlocal Neumann- and Dirichlet volume constraints are given by
a disjoint decomposition Vα

I = Vα
IN

∪̇Vα
ID

of the interaction domain (5). The
following proposition reveals how the flow (24a) with Ω satisfying the assump-
tions of Lemma 1 can be reformulated as a nonlocal partial difference equation
with Dirichlet boundary condition imposed on the entire interaction domain, i.e.
Vα

I = Vα
ID

. Recall the definition of S in connection with Eq. (16).

Proposition 1 (S-Flow as nonlocal PDE). Let α,Θ ∈ FV×V be as in (28).
Then the flow (24a) with Ω given through (29) admits the representation

∂tS(x, t) = RS(x,t)

(1
2
Dα

(
ΘGα(S)

)
+ λS

)
(x, t), on V × R+, (32a)

S(x, t) = 0, on Vα
I × R+, (32b)

S(x, 0) = S(x)(0), on V∪̇Vα
I × R+, (32c)

where λ = λ(x) is given by (28) and S(x)(0) denotes the zero extension of the
S-valued vector field S ∈ FV,S to FV,S .

Proof. The system (32) follows directly from applying Lemma 1 and
∑

y∈N (x)\Vα
I

S(y)Θ(x, y)α2(x, y) +
(
λ(x) −

∑

y∈N (x)

Θ(x, y)α(x, y)2
)
S(x) = ΩS(x). (33)

��

Proposition 1 clarifies the connection of the potential flow (24a) with Ω satisfying
(22) and the nonlocal diffusion process (32). Specifically, for a nonnegative, sym-
metric and row-stochastic matrix Ω as in Sect. 3, let the mappings α̃, Θ̃ ∈ FV×V
be defined on V × V by

Θ̃(x, y) =

{
Ω(x, y) if y ∈ N (x),
0 else

, α̃2(x, y) = 1, x, y ∈ V. (34)

Further, denote by Θ,α ∈ FV×V the extensions of α̃, Θ̃ to V × V by 0, that is

Θ(x, y) =
(
δV×V(Θ̃)

)
(x, y), α(x, y) :=

(
δV×V(α̃)

)
(x, y) x, y ∈ V, (35)

where δV×V : Zd×Zd → {0, 1} is the indicator function of the set V×V ⊂ Zd×Zd.
Then, for α,Θ as above, the potential flow (24a) is equivalently represented by
the system (32). In particular, Proposition 1 shows that the assignment flow
introduced in Sect. 3 is a special case of the system (32) with an empty interaction
domain (5).
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Now we focus on the connection of (32) and the continuous local formulation
of (24a) on an open, simply connected bounded domain M ⊂ R2, as introduced
by [19], that characterizes solutions S∗ = limt→∞ S(t) ∈ W by the PDE

RS∗(x)
(

− ΔS∗(x) − S∗(x)
)

= 0, x ∈ M. (36)

On the discrete Cartesian mesh Mh with boundary ∂Mh specified by a small
spatial scale parameter h > 0, identify each interior grid point (hk, hl) ∈ Mh

(grid graph) with a node x = (k, l) ∈ V of the graph. As in [19], assume (36) is
complemented by zero local boundary conditions imposed on S∗ on ∂Mh and
adopt the sign convention Lh = −Δh for the basic discretization of the contin-
uous negative Laplacian on Mh by the five-point stencil which leads to strictly
positive entries Lh(x, x) > 0 on the diagonal. Further, introduce the interaction
domain (5) as the local discrete boundary, i.e. Vα

I = ∂Mh and neighborhoods
Ñ (x) = N (x) \ {x}. Finally, let the parameter matrix Ω be defined by (29) in
terms of the mappings α,Θ ∈ FV×V given by

α2(x, y) =

{
1, y ∈ Ñ (x),
0, else,

, Θ(x, y) =

⎧
⎪⎨

⎪⎩

−Lh(x, y), y ∈ Ñ (x),
1 − Lh(x, x), x = y,

0, else.
(37)

Then, for each x ∈ V, the action of Ω on S reads
∑

y∈ ˜N (x)

−Lh(x, y)S(y) +
(
1 − Lh(x, x)

)
S(x) = −

(
− Δh(S) − S

)
(x), (38)

which is the discretization of (36) by Lh multiplied by the minus sign. In par-
ticular due to relation RS(−W ) = −RS(W ) for W ∈ W, the solution to the
nonlocal formulation (32) satisfies Eq. (36). We conclude that the novel app-
roach (32) includes the local PDE (36) as special case and hence provides a
natural nonlocal extension.

4.2 Tangent-Space Parametrization of the S-Flow PDE

Because S(x, t) solving (32) evolves on the non-Euclidean space S, applying some
standard discretization to (32) directly will not work. We therefore work out a
parametrization of (32) on the flat tangent space (19) by means of the equation

S(t) = expS0
(V (t)) ∈ W, V (t) ∈ T0, S0 = S(0) ∈ W. (39)

Applying d
dt to both sides and using the expression of the differential of the map-

ping expS0
due to [19, Lemma 3.1], we get Ṡ(t) = RexpS0

(V (t))V̇ (t)
(39)
= RS(t)V̇ (t).

Comparing this equation and (24a) shows that V (t) solving the nonlinear ODE

V̇ (t) = Ω expS0
(V (t)), V (0) = 0 (40)
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determines by (39) S(t) solving (24a). Hence, it suffices to focus on (40) which
evolves on the flat space T0. Repeating the derivation above that resulted in the
PDE representation (32) of the S-flow (24a), yields the nonlinear PDE repre-
sentation of (40)

∂tV (x, t) =
(1

2
Dα

(
ΘGα(expS0

(V ))
)

+ expS0
(V )

)
(x, t) on V × R+, (41a)

V (x, t) = 0 on Vα
I × R+, (41b)

V (x, 0) = V (x)(0) on V∪̇Vα
I × R+. (41c)

From the numerical point of view, this new formulation (41) has the following
expedient properties. Firstly, using a parameter matrix as specified by (29) and
(35) enables to define the entire system (41) on V. Secondly, since V (x, t) evolves
on the flat space T0, numerical techniques of geometric integration as studied by
[22] can here be applied as well. We omit details due to lack of space.

4.3 Non-local Balance Law

A key property of PDE-based models are balance laws implied by the model;
see [12, Section 7] for a discussion of various scenarios. The following proposition
reveals a nonlocal balance law of the assignment flow based on the novel PDE-
based parametrization (41), that we express for this purpose in the form

∂tV (x, t) + Dα(F (V ))(x, t) = b(x, t) x ∈ V, (42a)

F (V (t))(x, y) = − 1
2

(
ΘGα

(
expS0

(V (t))
))

(x, y), b(x, t) = λ(x)S(x, t), (42b)

where S(x, t) = expS0
(V (x, t)) by (39).

Proposition 2 (nonlocal balance law of S-flows). Under the assumptions
of Lemma 1, let V (t) solve (41). Then, for each component Sj(t) = {Sj(x, t) : x ∈
V}, j ∈ [c], of S(t) = expS0

(V (t)), the following identity holds

1
2

d

dt
〈Sj ,1〉V +

1
2
〈Gα(Sj), ΘGα(Sj)〉V×V + 〈Sj , φS − λSj〉V

+ 〈Sj ,N α(ΘGα(Sj))〉VIα = 0,
(43)

where φS(·) ∈ FV is defined in terms of S(t) ∈ W by

φS : V → R, x �→
〈
S(x),Π0Ω expS0

(
S(x)

)〉
. (44)

Proof. For brevity, we omit the argument t and simply write S = S(t), V =
V (t). In the following, � denotes the componentwise multiplication of vectors,
e.g. (S � V )j(x) = Sj(x)Vj(x) for j ∈ [c], and S2(x) = (S � S)(x).

Multiplying both sides of (42a) with S(x) = expS0
(V (x)) and summing over

x ∈ V yields
∑

x∈V

(
S � V̇

)
j
(x) −

∑

x∈V

1
2

(
S � Dα

(
ΘGα(S)

))

j
(x) =

∑

x∈V

(
λS2

)
j
(x). (45)
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Applying Greens nonlocal first identity (13) with u(x) = Sj(x) to the second
term on the left-hand side yields with (6)

∑

x∈V

(
S � V̇

)
j
(x) +

1
2

∑

x∈V∪Vα
I

∑

y∈V∪Vα
I

(
Gα(S) � (ΘGα(S))

)
j
(x, y) (46a)

+
∑

y∈Vα
I

Sj(y)N α
(
ΘGα(Sj)

)
(y) =

∑

x∈V

(
λS2

)
j
(x). (46b)

Now, using the parametrization (39) of S, with the right-hand side defined anal-
ogous to (26) and componentwise application of the exponential function to the
row vectors of V , we compute at each x ∈ V: Ṡ = S � V̇ − 〈S, V̇ 〉S. Substitution
into (46) gives for each Sj = {Sj(x) : x ∈ V}, j ∈ [c]

1
2

d

dt

( ∑

x∈V
Sj(x)

)
+

1
2
〈Gα(Sj), ΘGα(Sj)〉V×V +

( ∑

x∈V
〈S(x), V̇ (x)〉

)
Sj(x) (47a)

+
∑

y∈VIα

SjN α
(
ΘGα(Sj)

)
(y) =

∑

x∈V

(
λS2

j

)
(x) (47b)

which after rearranging the terms yields (43). ��

We briefly inspect the nonlocal balance law (43) that comprises four terms. Since∑
j∈[c] Sj(x) = 1 at each vertex x ∈ V, the first term of (43) measures the rate

of ‘mass’ assigned to label j over the entire image. This rate is governed by two
interacting processes corresponding to the three remaining terms:

(i) spatial propagation of assignment mass through the nonlocal diffusion pro-
cess including nonlocal boundary conditions: second and fourth term;

(ii) exchange of assignment mass with the remaining labels {l ∈ [c] : l �= j}:
third term comprising the function φS (44).

We are not aware of any other approach, including Markov random fields and
deep networks, that makes explicit the flow of information during inference in
such an explicit manner.

5 Numerical Experiments

In this section, we report numerical results in order to demonstrate two aspects
of the mathematical results presented above:

(1) Using geometric integration for numerically solving nonlocal PDEs with
appropriate boundary conditions;

(2) zero vs. nonzero interaction domain and the affect of corresponding nonlocal
boundary conditions on image labeling.

Numerically Solving Nonlocal PDEs By Geometric Integration.
According to Sect. 4.2, imposing the homogeneous Dirichlet condition via the
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interaction domain (5) makes the right-hand side of (41a) equivalent to (40).
Applying a simple explicit time discretization with stepsize h to (41a) results in
the iterative update formula

V (x, t + h) ≈ V (x, t) + hΠ0 expS0(x)(ΩV (x, t)), h > 0. (48)

By virtue of the parametrization (39), one recovers with any nonnegative sym-
metric mapping Ω as in Lemma 1 the explicit geometric Euler scheme on W

S(t + h) ≈ expS0

(
V (t) + hV̇ (t)

)
= expS(t)

(
hΩS(t)

)
, (49)

where the last equality is due to property expS(V1 + V2) = expexpS(V1)(V2) of
the lifting map expS and due to the equation V̇ = ΩS implied by (39) and
(40). Higher order geometric integration methods [22] generalizing (49) can be
applied in a similar way. This provides new perspective on solving a certain class
of nonlocal PDEs numerically, conforming to the underlying geometry.

Influence of the Nonlocal Interaction Domain. We considered two differ-
ent scenarios and compared corresponding image labelings obtained by solving
(32a) using the scheme (49), uniform weight parameters but different bound-
ary conditions: (i) zero-extension to the interaction domain according to (35)
which makes (32) equivalent to (24a) according to Proposition 1; (ii) uniform
extension in terms of uniform mappings Θ,α ∈ FV ×V given for each x ∈ V by
fixed neighborhood sizes |N (x)| = 7 × 7 and α2(x, y) = 1

72 if y ∈ N (x) and 0
otherwise; Θ(x, y) = 1

72 if x = y and 1 otherwise. We iterated (49) with step size
h = 1 until assignment states (24b) of low average entropy 10−3 were reached.
To ensure a fair comparison and to assess solely the effects of the boundary
conditions through nonlocal regularization, we initialized (32) in the same way
as (24a) and adopted an uniform encoding of the 31 labels as described by [3,
Figure 6].

Figure 2 depicts the results. Closely inspecting panels (c) (zero extension)
and (d) (uniform extension) shows that using a nonempty interaction domain
may improve the labeling near the boundary (cf. close-up views), and almost
equal performance in the interior domain.

Figure 3 shows the decreasing average entropy values for each iteration (left
panel) and the number of iterations required to converge (right panel), for differ-
ent neighborhood sizes. We observe, in particular, that integral label assignments
corresponding to zero entropy are achieved in both scenarios, at comparable
computational costs.

A more general system (32) with nonuniform interaction is defined through
mappings α,Θ ∈ FV×V measuring similarity of pixel patches analogous to [7]

Θ(x, y) = e−Gσp ∗||S(x+·)−S(y+·)||2 , α2(x, y) = e
−|x−y|2

2σ2
s σp, σs > 0, (50)

where Gσp
denotes the Gaussian kernel. Decomposition (34) yields a symmetric

parameter matrix Ω which not necessarily satisfies property (22). Iterating (49)
with step size h = 0.1 and σs = 1, σp = 5 in (50) Fig. 4 visualizes labeling results
for different patch sizes. In particular defining Θ by (50) implies a non-zero
interaction domain Vα

I as depicted by the right image in Fig. 4.
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Fig. 2. Labeling through nonlocal geometric flows. (a) Ground truth with 31 labels.
(b) Noisy input data used to evaluate (24a) and (32). (c) Labeling returned by (24a)
corresponding to a zero extension to the interaction domain. (d) Labeling returned
by (41) with a uniform extension to the interaction domain in terms of Θ, α specified
above. The close-up view show differences close to the boundary, whereas the results
in the interior domain are almost equal.

Fig. 3. Left: Convergence rates of the scheme (49) solving (32) with nonempty inter-
action domain specified by Θ, α above. The convergence behavior is rather insensitive
with respect to the neighborhood size. Right: Number of iterations until convergence
for (32) ( ) and (24a) ( ). This result shows that different nonlocal boundary condi-
tions have only a minor influence on the convergence of the flow to labelings.

Fig. 4. From left to right: Labeling results using (32) for nonuniform interaction
domains of size N (x) = 3 × 3, 7 × 7 and 15 × 15, with close up views indicating
the regularization properties of the nonlocal PDE (32) with zero Dirichlet conditions.
Schematic illustration of the nonlocal interaction domain y ∈ Vα

I (red area) induced
by nodes (blue area) according to (50) with a Gaussian window of size 5 × 5 centered
at x ∈ V. (Color figure online)
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6 Conclusion

We introduced a novel nonlocal PDE motivated by the assignment flow app-
roach. Our results extend established PDE approaches from denoising and image
enhancement to image labeling and segmentation, and to a class of nonlocal
PDEs with nonlocal boundary conditions.

Our future work will study the nonlocal balance law in connection with
parameter learning and image structure recognition.
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