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Abstract. Most of the existing Zero-Shot Learning (ZSL) methods
focus on learning a compatibility function between the image representa-
tion and class attributes. Few others concentrate on learning image rep-
resentation combining local and global features. However, the existing
approaches still fail to address the bias issue towards the seen classes.
In this paper, we propose implicit and explicit attention mechanisms
to address the existing bias problem in ZSL models. We formulate the
implicit attention mechanism with a self-supervised image angle rota-
tion task, which focuses on specific image features aiding to solve the
task. The explicit attention mechanism is composed with the considera-
tion of a multi-headed self-attention mechanism via Vision Transformer
model, which learns to map image features to semantic space during the
training stage. We conduct comprehensive experiments on three popular
benchmarks: AWA2, CUB and SUN. The performance of our proposed
attention mechanisms has proved its effectiveness, and has achieved the
state-of-the-art harmonic mean on all the three datasets.

Keywords: Zero-shot learning · Attention mechanism ·
Self-supervised learning · Vision transformer

1 Introduction

Most of the existing Zero-Shot Learning (ZSL) methods [38,44] depend on pre-
trained visual features and necessarily focus on learning a compatibility function
between the visual features and semantic attributes. Recently, attention-based
approaches have got a lot of popularity, as they allow to obtain an image rep-
resentation by directly recognising object parts in an image that correspond to
a given set of attributes [50,53]. Therefore, models capturing global and local
visual information have been quite successful [50,51]. Although visual attention
models quite accurately focus on object parts, it has been observed that often
recognised parts in image and attributes are biased towards training (or seen)
classes due to the learned correlations [51]. This is mainly because the model
fails to decorrelate the visual attributes in images.

Therefore, to alleviate these difficulties, in this paper, we consider two alter-
native attention mechanisms for reducing the effect of bias towards training
c© Springer Nature Switzerland AG 2021
C. Bauckhage et al. (Eds.): DAGM GCPR 2021, LNCS 13024, pp. 467–483, 2021.
https://doi.org/10.1007/978-3-030-92659-5_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92659-5_30&domain=pdf
http://orcid.org/0000-0001-6695-2504
http://orcid.org/0000-0002-1667-2245
https://doi.org/10.1007/978-3-030-92659-5_30


468 F. Alamri and A. Dutta

classes in ZSL models. The first mechanism is via the self-supervised pretext
task, which implicitly attends to specific parts of an image to solve the pretext
task, such as recognition of image rotation angle [27]. For solving the pretext
task, the model essentially focuses on learning image features that lead to solv-
ing the pretext task. Specifically, in this work, we consider rotating the input
image concurrently by four different angles (0◦, 90◦, 180◦, 270◦) and then pre-
dicting the rotation class. Since pretext tasks do not involve attributes or class-
specific information, the model does not learn the correlation between visual
features and attributes. Our second mechanism employs the Vision Transformer
(ViT) [13] for mapping the visual features to semantic space. ViT having a rich
multi-headed self-attention mechanism explicitly attends to those image parts
related to class attributes. In a different setting, we combine the implicit with the
explicit attention mechanism to learn and attend to the necessary object parts
in a decorrelated or independent way. We attest that incorporating the rotation
angle recognition in a self-supervised approach with the use of ViT does not
only improve the ZSL performance significantly, but also and more importantly,
contributes to reducing the bias towards seen classes, which is still an open chal-
lenge in the Generalised Zero-Shot Learning (GZSL) task [43]. Explicit use of
attention mechanism is also examined, where the model is shown to enhance the
visual feature localisation and attends to both global and discriminative local fea-
tures guided by the semantic information given during training. As illustrated in
Fig. 1, images fed into the model are taken from two different sources: 1) labelled
images, which are the training images taken from the seen classes, shown in green
colour, and 2) other images, which could be taken from any source, shown in
blue. The model is donated as (F(.)), in this paper, we implement F(.) either by
ViT or by ResNet-101 [22] backbones. The first set of images is used to train the
model to predict class attributes leading to the class labels via nearest search.
However, the second set of images is used for rotation angle recognition, guiding
the model to learn visual representations via implicit attention mechanism.

To summarise, in this paper, we make the following contributions: (1) We
propose the utilisation of alternative attention mechanisms for reducing the bias
towards the seen classes in zero-shot learning. By involving self-supervised pre-
text task, our model implicitly attends decorrelated image parts aiding to solve
the pretext task, which learns image features independent of the training classes.
(2) We perform extensive experiments on three challenging benchmark datasets,
i.e. AWA2, CUB and SUN, in the generalised zero-shot learning setting and
demonstrate the effectiveness of our proposed alternative attention mechanisms.
We also achieve consistent improvement over the state-of-the-art methods. (3)
The proposed method is evaluated with two backbone models: ResNet-101 and
ViT, and shows significant improvement in the model performances, and reduces
the issue of bias towards seen classes. We also show the effectiveness of our model
qualitatively by plotting the attention maps.
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Fig. 1. Our method maps the visual features to the semantic space provided with two
different input images (unlabelled and labelled data). Green represents the labelled
images provided to train the model to capture visual features and predict object classes.
Blue represents the unlabelled images that are rotated and attached to the former set
of images to recognise rotated image angles in a self-supervised task. The model learns
the visual representations of the rotated images implicitly via the use of attention.
(Best viewed in colour)

2 Related Work

In this section we briefly review the related arts on zero-shot learning, Vision
Transformer and self-supervised learning.

Zero-Shot Learning (ZSL): Zero-Shot Learning (ZSL) uses semantic side
information such as attributes and word embeddings [4,14,16,32,36,47] to pre-
dict classes that have never been presented during training. Early ZSL mod-
els train different attribute classifiers assuming independence of attributes and
then estimate the posterior of the test classes by combining attribute prediction
probabilities [28]. Others do not follow the independence assumption and learn
a linear [2,3,17] or non-linear [45] compatibility function from visual features
to semantic space. There are some other works that learn an inverse mapping
from semantic to visual feature space [39,55]. Learning a joint mapping func-
tion for each space into a common space (i.e. a shared latent embedding) is also
investigated in [20,23,45]. Different from the above approaches, generative mod-
els synthesise samples of unseen classes based on information learned from seen
classes and their semantic information, to tackle the issue of bias towards the
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seen classes [38,44,58]. Unlike other models, which focus on the global visual
features, attention-based methods aim to learn discriminative local visual fea-
tures and then combine with the global information [53,59]. Examples include
S2GA [53] and AREN [50] that apply an attention-based network to incorporate
discriminative regions to provide rich visual expression automatically. In addi-
tion, GEN [49] proposes a graph reasoning method to learn relationships among
multiple image regions. Others focus on improving localisation by adapting the
human gaze behaviour [30], exploiting a global average pooling scheme as an
aggregation mechanism [52] or by jointly learning both global and local features
[59]. Inspired by the success of the recent attention-based ZSL models, in this
paper, we propose two alternative attention mechanisms to capture robust image
features suitable to ZSL task. Our first attention mechanism is implicit and is
based on self-supervised pretext task [27], whereas the second attention mecha-
nism is explicit and is based on ViT [13]. To the best of our knowledge, both of
these attention models are still unexplored in the context of ZSL. Here we also
point out that the inferential comprehension of visual representations upon the
use of SSL and ViT is a future direction to consider for ZSL task.

Vision Transformer (ViT): The Transformer [41] adopts the self-attention
mechanism to weigh the relevance of each element in the input data. Inspired
by its success, it has been implemented to solve many computer vision tasks
[5,13,25] and many enhancements and modifications of Vision Transformer
(ViT) have been introduced. For example, CaiT [40] introduces deeper trans-
former networks, Swin Transformer [31] proposes a hierarchical Transformer cap-
turing visual representation by computing self-attention via shifted windows, and
TNT [21] applies the Transformer to compute the visual representations using
both patch-level and pixel-level information. In addition, CrossViT [9] proposes
a dual-branch Transformer with different sized image patches. Recently, Trans-
GAN [24] proposes a completely free of convolutions generative adversarial net-
work solely based on pure transformer-based architectures. Readers are referred
to [25], for further reading about ViT based approaches. The applicability of
ViT-based models is growing, but it has remained relatively unexplored to the
zero-shot image recognition tasks where attention based models have already
attracted a lot of attention. Therefore employing robust attention based models,
such as ViT is absolutely timely and justified for improving the ZSL performance.

Self-Supervised Learning (SSL): Self-Supervised Learning (SSL) is widely
used for unsupervised representation learning to obtain robust representations
of samples from raw data without expensive labels or annotations. Although the
recent SSL methods use contrastive objectives [10,19], early works used to focus
on defining pretext tasks, which typically involves defining a surrogate task on
a domain with ample weak supervision labels, such as predicting the rotation of
images [27], relative positions of patches in an image [11,33], image colours [29,
56] etc. Encoders trained to solve such pretext tasks are expected to learn general
features that might be useful for other downstream tasks requiring expensive
annotations (e.g. image classification). Furthermore, SSL has been widely used
in various applications, such as few-shot learning [18], domain generalisation [7]
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etc. In contrast, in this paper, we utilise the self-supervised pretext task of image
rotation prediction for obtaining implicit image attention to solve ZSL.

Fig. 2. IEAM-ZSL architecture. IEAM-ZSL consists of two pipelines represented in
Green and Blue colours, respectively. The former takes images from the ZSL datasets
with their class-level information input to the Transformer Encoder for attributes pre-
dictions. Outputs are compared with semantic information of the corresponding images
using MSE loss as a regression task. The latter, shown in Blue colour, is fed with images
after generating four rotations for each (i.e. 0◦, 90◦, 180◦, and 270◦), to predict the
rotation angle. At inference, solely the ZSL test datasets, with no data augmentation,
are inputted to the model to predict the class-level attributes. A search for the nearest
class label is then conducted.

3 Implicit and Explicit Attention for Zero-Shot Learning

In this work, we propose an Implicit and Explicit Attention mechanism-based
Model for solving image recognition in Zero-Shot Learning (IEAM-ZSL). We
utilise self-supervised pretext tasks, such as image rotation angle recognition,
for obtaining image attention in an implicit way. Here the main rational is for
predicting the correct image rotation angle, the model needs to focus on image
features with discriminative textures, colours etc., which implicitly attend to
specific regions in an image. For having explicit image attention, we utilise the
multi-headed self-attention mechanism involved in Vision Transform model.

From ZSL perspective, we follow the inductive approach for training our
model, i.e. during training, the model only has access to the training set (seen
classes), consisting of only the labelled images and continuous attributes of the
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seen classes (S = {x,y|x ∈ X ,y ∈ Ys}). An RGB image in image space X is
denoted as x, where y ∈ Y is the class-level semantic vector annotated with M
different attributes. As depicted in Fig. 2, a 224 × 224 image x ∈ R

H×W×C with
resolution H × W and C channels is fed into the model. Addition to S, we also
use an auxiliary set of unlabelled images A = {x ∈ X} for predicting the image
rotation angle to obtain implicit attention. Note, here the images from S and A
may or may not overlap, however, the method does not utilise the categorical or
semantic label information of the images from the set A.

3.1 Implicit Attention

Self-supervised pretext tasks provide a surrogate supervision signal for feature
learning without any manual annotations [1,12,27] and it is well known that this
type of supervision focuses on image features that help to solve the considered
pretext task. It has also been shown that these pretext tasks focus on meaningful
image features and effectively avoid learning correlation between visual features
[27]. As self-supervised learning avoids considering semantic class labels, spuri-
ous correlation among visual features are not learnt. Therefore, motivated by
the above facts, we employ an image rotation angle prediction task to obtain
implicitly attended image features. For that, we rotate an image by 0◦, 90◦, 180◦

and 270◦, and train the model to correctly classify the rotated images. Let g(·|a)
be an operator that rotates an image x by an angle 90◦×a, where a ∈ {0, 1, 2, 3}.
Now let ŷa be the predicted probability for the rotated image xa with label a,
then the loss for training the underlying model is computed as follows:

LCE = −
4∑

a=1

log(ŷa) (1)

In our case, the task of predicting image rotation angle trains the model to focus
on specific image regions having rich visual features (for example, textures or
colours). This procedure implicitly learns to attend image features.

3.2 Explicit Attention

For obtaining explicit attention, we employ Vision Transformer model [13], where
each image x ∈ R

H×W×C with resolution H × W and C channels is fed into
the model after resizing it to 224 × 224. Afterwards, the image is split into a
sequence of N patches denoted as xp ∈ R

N×(P 2.C), where N = H.W
P 2 . Patch

embeddings (small red boxes in Fig. 2) are encoded by applying a trainable 2D
convolution layer with kernel size = (16, 16) and stride = (16, 16)). An extra
learnable classification token (z00 = xclass) is appended at the beginning of the
sequence to encode the global image representation, which is donated as (∗).
Position embeddings (orange boxes) are then attached to the patch embeddings
to obtain the relative positional information. Patch embeddings (z) are then
projected through a linear projection E to D dimension (i.e. D = 1024) as in
Eq. 2. Embeddings are then passed to the Transformer encoder, which consists
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of Multi-Head Attention (MHA) (Eq. 3) and MLP blocks (Eq. 4). A layer nor-
malisation (Norm) is applied before every block, and residual connections after
every block. The image representation (ŷ) is then produced as in Eq. 5.

z0 = [xclass;x1
pE;x2

pE; . . . ;xN
p E] + Epos, E ∈ R

(P 2.C)×D,Epos ∈ R
(N+1)×D

(2)

z′
� = MHA(Norm(z�−1)) + z�−1, � = 1 . . . L (L = 24) (3)

z� = MLP(Norm(z′
�)) + z′

�, � = 1 . . . L (4)

ŷ = Norm(z0L) (5)

Below we provide details of our multi-head attention mechanism within the ViT
model.

Multi-Head Attention (MHA): Patch embeddings are fed into the trans-
former encoder, where the multi-head attention takes place. Self-attention is per-
formed for every patch in the sequence of the patch embeddings independently;
thus, attention works simultaneously for all the patches, leading to multi-headed
self-attention. This is computed by creating three vectors, namely Query (Q),
Key (K) and Value (V ). They are created by multiplying the patch embeddings
by three trainable weight matrices (i.e. WQ, WK and WV ) applied to compute
the self-attention. A dot-product operation is performed on the Q and K vec-
tors, calculating a scoring matrix that measures how much a patch embedding
has to attend to every other patch in the input sequence. The score matrix is
then scaled down and converted into probabilities using a softmax. Probabilities
are then multiplied by the V vectors, as in Eq. 6, where dk is the dimension
of the vector K. Multi-headed self-attention mechanism produces a number of
self-attention matrices which are concatenated and fed into a linear layer and
passed sequentially to 1) regression head and 2) classification head.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (6)

The multi-headed self-attention mechanism involved in the Vision Transformer
guides our model to learn both the global and local visual features. It is worth
noting that the standard ViT has only one classification head implemented by
an MLP, which is changed in our model to two heads to meet the two different
underlying objectives. The first head is a regression head applied to predict M
different class attributes, whereas the second head is added for rotation angle
classification. For the former task, the objective function employed is the Mean
Squared Error (MSE) loss as in Eq. 7, where yi is the target attributes, and ŷi is
the predicted ones. For the latter task, cross-entropy (Eq. 1) objective is applied.

LMSE =
1
M

M∑

i=1

(yi − ŷi)2 (7)
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The total loss used for training our model is defined in Eq. 8, where λ1 = 1 and
λ2 = 1.

LTOT = λ1LCE + λ2LMSE (8)

During the inference phase, original test images from the seen and unseen classes
are inputted. Class labels are then determined using the cosine similarity between
the predicted attributes and every target class embeddings predicted by our
model.

4 Experiments

Datasets: We have conducted our experiments on three popular ZSL datasets:
AWA2, CUB, and SUN, whose details are presented in Table 1. The main aim
of this experimentation is to validate our proposed method IEAM-ZSL, demon-
strating its effectiveness and comparing it with the existing state-of-the-art meth-
ods. Among these datasets, AWA2 [47] consists of 37, 322 images of 50 categories
(40 seen + 10 unseen). Each category contains 85 binary as well as continuous
class attributes. CUB [42] contains 11, 788 images forming 200 different types
of birds, among them 150 classes are considered as seen, and the other 50 as
unseen, which is split by [2]. Together with images CUB dataset also contains
312 attributes describing birds. Finally, SUN [35] has the largest number of
classes among others. It consists of 717 types of scene images, which divided
into 645 seen and 72 unseen classes. The SUN dataset contains 14, 340 images
with 102 annotated attributes.

Table 1. Dataset statistics: the number of classes (seen + unseen classes shown within
parenthesis), the number of attributes and the number of images per dataset.

Datasets AWA2 [47] CUB [42] SUN [35]

Number of classes 50 200 717

(seen + unseen) (40 + 10) (150 + 50) (645 + 72)

Number of attributes 85 312 102

Number of images 37, 322 11, 788 14, 340

Implementation Details: In our experiment, we have used two different back-
bones: (1) ResNet-101 and (2) Vision Transformer (ViT), both of which are
pretrained on ImageNet and then finetuned for the ZSL tasks on the datasets
mentioned above. We resize the image to 224 × 224 before inputting it into the
model. For ViT, the primary baseline model employed uses an input patch size
16×16, with 1024 hidden dimension, and having 24 layers and 16 heads on each
layer, and 24 series encoder. We use the Adam optimiser for training our model
with a fixed learning rate of 0.0001 and a batch size of 64. In the setting where
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we use self-supervised pretext task, we construct the batch with 32 seen training
images from set S and 32 rotated images (i.e. eight images, where each image is
rotated to 0◦, 90◦, 180◦ and 270◦) from set A. We have implemented our model
with PyTorch1 deep learning framework and trained the model on a GeForce
RTX 3090 GPU on a workstation with Xeon processor and 32 GB of memory.

Evaluation: The proposed model is evaluated on the three above mentioned
datasets. We have followed the inductive approach for training our model, i.e.
our model has no access to neither visual nor side-information of unseen classes
during training. During the evaluation, we have followed the GZSL protocol.
Following [46], we compute the top-1 accuracy for both seen and unseen classes.
In addition, the harmonic mean of the top-1 accuracies on the seen and unseen
classes is used as the main evaluation criterion. Inspired by the recent works
[8,50,52], we have used the Calibrated Stacking [8] for evaluating our model
under GZSL setting. The calibration factor γ is dataset-dependent and decided
based on a validation set. For AWA2 and CUB, the calibration factor γ is set to
0.9 and for SUN, it is set to 0.4.

Table 2. Generalised zero-shot classification performance on AWA2, CUB and SUN.
Reported models are ordered in terms of their publishing dates. Results are reported
in %.

Models
AWA2 CUB SUN

S U H S U H S U H

DAP [28] 84.7 0.0 0.0 67.9 1.7 3.3 25.1 4.2 7.2

IAP [28] 87.6 0.9 1.8 72.8 0.2 0.4 37.8 1.0 1.8

DeViSE [17] 74.7 17.1 27.8 53.0 23.8 32.8 30.5 14.7 19.8

ConSE [34] 90.6 0.5 1.0 72.2 1.6 3.1 39.9 6.8 11.6

ESZSL [37] 77.8 5.9 11.0 63.8 12.6 21.0 27.9 11.0 15.8

SJE [3] 73.9 8.0 14.4 59.2 23.5 33.6 30.5 14.7 19.8

SSE [57] 82.5 8.1 14.8 46.9 8.5 14.4 36.4 2.1 4.0

LATEM [45] 77.3 11.5 20.0 57.3 15.2 24.0 28.8 14.7 19.5

ALE [2] 81.8 14.0 23.9 62.8 23.7 34.4 33.1 21.8 26.3

*GAZSL [58] 86.5 19.2 31.4 60.6 23.9 34.3 34.5 21.7 26.7

SAE [26] 82.2 1.1 2.2 54.0 7.8 13.6 18.0 8.8 11.8

*f-CLSWGAN [44] 64.4 57.9 59.6 57.7 43.7 49.7 36.6 42.6 39.4

AREN [50] 79.1 54.7 64.7 63.2 69.0 66.0 40.3 32.3 35.9

*f-VAEGAN-D2 [48] 76.1 57.1 65.2 75.6 63.2 68.9 50.1 37.8 43.1

SGMA [59] 87.1 37.6 52.5 71.3 36.7 48.5 – – –

IIR [6] 83.2 48.5 61.3 52.3 55.8 53.0 30.4 47.9 36.8

*E-PGN [54] 83.5 52.6 64.6 61.1 52.0 56.2 – – –

SELAR [52] 78.7 32.9 46.4 76.3 43.0 55.0 37.2 23.8 29.0

ResNet-101 [22] 66.7 40.1 50.1 59.5 52.3 55.7 35.5 28.8 31.8

ResNet-101 with Implicit Attention 74.1 45.9 56.8 62.7 54.5 58.3 36.3 31.9 33.9

Our model (ViT) 90.0 51.9 65.8 75.2 67.3 71.0 55.3 44.5 49.3

Our model (ViT) with Implicit Attention 89.9 53.7 67.2 73.8 68.6 71.1 54.7 48.2 51.3

S, U, H denote Seen classes (Ys), Unseen classes (Yu), and the Harmonic mean, respectively. For each scenario,

the best is in red and the second-best is in blue. * indicates generative representation learning methods.

1 Our code is available at: https://github.com/FaisalAlamri0/IEAM-ZSL.

https://github.com/FaisalAlamri0/IEAM-ZSL
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4.1 Quantitative Results

Table 2 illustrates a quantitative comparison between the state-of-the-art meth-
ods and the proposed method using two different backbones: (1) ResNet-101 [22]
and (2) ViT [13]. The baseline models performance without the employment of
the SSL approach is also reported. The performance of each model is shown in
% in terms of Seen (S) and Unseen (U) classes and their harmonic mean (H). As
reported, the classical ZSL models [2,17,28,34,34,45] show good performance
in terms of seen classes. However, they perform poorly on unseen classes and
encounter the bias issue, resulting in a very low harmonic mean. Among the
classical approaches, [2] performs the best on all the three datasets, as it over-
comes the shortcomings of the previous models and considers the dependency
between attributes. Among generative approaches, f-VAEGAN-D2 [48] performs
the best. Although f-CLSWGAN [44] achieves the highest score on AWA2 unseen
classes, it shows lower harmonic means on all the datasets than [48]. As noticed,
the first top scores for the AWA2 unseen classes accuracy are obtained by gen-
erative models [44,48], which we assume is because they include both seen and
synthesised unseen features during the training phase. Moreover, attention-based
models, such as [50,59] are the closest to our proposed model, perform better
than the other models due to the inclusion of global and local representations.
[50] outperforms all reported models on the unseen classes of the CUB dataset,
but still has low harmonic means on all the datasets. SGMA [59] performs poorly
on both AWA2 and CUB, and it clearly suffers from the bias issue, where its
performance on unseen classes is considered deficient compared to other models.
Recent models such as SELAR [52] uses global maximum pooling as an aggre-
gation method and achieves the best scores on CUB seen classes, but achieves
low harmonic means. In addition, its performance is seen to be considerably
impacted by the bias issue.

ResNet-101: For a fair evaluation of the robustness and effectiveness of our
proposed alternative attention-based approach, we consider the ResNet-101 [22]
as one of our backbones, which is also used in prior related arts [2,17,26,52,
54]. We have used the ResNet-101 backbone as a baseline model, where we
only consider the global representation. Moreover, we also use this backbone
with implicit attention, i.e. during training, we simultaneously impose a self-
supervised image rotation angle prediction task for training the model. Note, for
producing the results in Table 2, we only use the images from the seen classes as
set A, which is used for rotation angle prediction task. As presented in Table 2,
our model with ResNet-101 backbone has performed inferiorly compared to our
implicit and explicit variant, which will be discussed in the next paragraph.
However, even with the ResNet-101 backbone, the contribution of our implicit
attention mechanism should be noted, which provides a substantial boost to
the model performance. For example, on AWA2, a considerable increment is
observed on both seen and unseen classes, leading to a significant increase in the
harmonic mean (i.e. 50.1% to 56.8%). The performance of the majority of the
related arts seems to suffer from bias towards the seen classes. We argue that
our method tends to mitigate this issue on all the three datasets. Our method
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enables the model to learn the visual representations of unseen classes implicitly;
hence, the performance is increased, and the bias issue is alleviated. Similarly,
on the SUN dataset, although this dataset consists of 717 classes, the proposed
implicit attention mechanism illustrates the capability of providing ResNet-101
with an increase in the accuracy in terms of both seen and unseen classes, leading
to an increase of ≈2 points in the harmonic mean, i.e. from 31.8% to 33.9%.

Vision Transformer (ViT): We have used Vision Transformer (ViT) as
another backbone to enable explicit attention in our model. Similar to the
ResNet-101 backbone, we use the implicit attention mechanism with ViT back-
bone as well. During training, we simultaneously impose self-supervised image
rotation angle prediction task for training the model. Here also we only use the
images from the seen classes for image rotation angle task. As shown in Table 2,
consideration of explicit attention performs very well on all the three datasets
and it outperforms all the previously reported results with a significant margin.
Such results are expected due to the involvement of self-attention employed in
ViT. It captures both the global and local features explicitly guided by the class
attributes given during training. Furthermore, attention focuses to each element
of the input patch embeddings after the image is split, which effectively weigh
the relevance of different patches, resulting in more compact representations.
Although explicit attention mechanism is seen to provide better visual under-
standing, the effectiveness of the implicit attention process in terms of recognis-
ing the image rotation angle is also quite important. It does not only improve
the performance further but also reduces the bias issue considerably, which can
be seen in the performance of the unseen classes. In addition, it allows the model
via an implicit use of self-attention to encapsulate the visual features and regions
that are semantically relevant to the class attributes. Our model achieves the
highest harmonic mean among all the reported models on all the three datasets.
In terms of AWA2, our approach scores the third highest accuracy on both seen
and unseen classes, but the highest harmonic mean. Note that on AWA2 dataset,
our model still suffers from bias towards seen classes. We speculate that is due
to the lack of the co-occurrence of some vital and identical attributes between
seen and unseen classes. For example, attributes nocturnal in bat, longneck in
giraffe or flippers in seal score the highest attributes in the class-attribute vec-
tors, but rarely appear among other classes. However, on CUB dataset, this
issue seems to be mitigated, as our model scores the highest harmonic mean (i.e.
H = 71.1%), where the performance on unseen classes is increased compared to
our model with explicit attention. Finally, our model with implicit and explicit
attention achieves the highest scores on classes on the SUN dataset, resulting
in the best achieved harmonic mean. In summary, our proposed implicit and
explicit attention mechanism proves to be very effective across all the three con-
sidered datasets. Explicit attention using the ViT backbone with multi-head
self-attention is quite important for the good performance of the ZSL model.
Implicit attention in terms of self-supervised pretext task is another important
mechanism to look at, as it boosts the performance on the unseen classes and
provides better generalisation.
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Fig. 3. Examples of implicit and explicit attention. First column: original images, Sec-
ond and third: attention maps without and with SSL, respectively, Four and fifth:
attention fusions without and with SSL, respectively. Our model benefits from using
the attention mechanism and can implicitly learn object-level attributes and their dis-
criminative features.

Attention Maps: Figure 3 presents some qualitative results, i.e. attention maps
and fusions obtained by our proposed implicit and explicit attention-based
model. For generating these qualitative results, we have used our model with
explicit attention mechanism, i.e. we have used the ViT backbone. Attention
maps and fusions are presented on four randomly chosen images from the con-
sidered datasets. Explicit attention with ViT backbone seems to be quite impor-
tant for the ZSL tasks as it can perfectly focus on the object appearing in the
image, which justifies the better performance obtained by our model with ViT
backbone. Inclusion of implicit attention mechanism in terms of self-supervised
rotated image angle prediction further enhances the attention maps and particu-
larly focuses on specific image parts important for that object class. For example,
as shown in the first row of Fig. 3, our model with implicit and explicit attention
mechanism focuses on both global and local features of the Whale (i.e. water,
big, swims, hairless, bulbous, flippers, etc.). Similarly, on the CUB dataset, the
model pays attention to objects’ global features, and more importantly, the dis-
criminative local features (i.e. loggerhead shrike has a white belly, breast and
throat, and a black crown forehead and bill). For natural images taken from the
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SUN dataset, our model with implicit attention is seen to focus on the ziggurat
paying more attention to its global features. Furthermore, as in the airline image
illustrated in the last row, our model considers both global and discriminative
features, leading to precise attention map that focuses accurately on the object.

Table 3. Ablation performance of our model with ResNet-101 and ViT backbone
on AWA2, CUB and SUN datasets. Here we use the training images from the seen
classes as S and varies A as noted in the first column of the following table. S, U and
PASCAL respectively denote the training images from the seen classes, test images
from the unseen classes, and PASCAL VOC2012 training set images.

Source of rotated

Images (A)

Backbone

(implicit attention)

AWA2 CUB SUN

S U H S U H S U H

S & U
ResNet-101 79.9 44.2 56.4 60.1 56.0 58.0 35.0 33.1 33.7

ViT 87.3 56.8 68.8 74.2 68.9 71.1 54.7 50.0 52.2

PASCAL
ResNet-101 72.0 44.3 54.8 62.5 53.1 57.4 35.6 30.3 33.1

ViT 88.1 51.8 65.2 73.4 68.0 70.6 55.2 46.3 50.6

PASCAL & U
ResNet-101 75.1 46.5 57.4 62.9 54.4 58.4 33.7 32.7 33.2

ViT 89.8 53.2 66.8 73.02 69.7 71.3 53.9 51.0 52.4

PASCAL & S
ResNet-101 73.1 44.5 55.4 62.5 53.2 57.5 36.6 30.1 33.1

ViT 91.2 51.6 65.9 73.7 68.8 71.1 54.19 46.9 50.9

4.2 Ablation Study

Our ablation study evaluates the effectiveness of our proposed implicit and
explicit attention-based model for the ZSL tasks. Here we mainly analyse the
outcome of our proposed approach if we change the set A which we use for sam-
pling images for self-supervised image angle prediction task during training. In
Sect. 4.1, we have only used the seen images for this purpose; however, we have
also noted important observation if we change the set A. Note, here we can use
any collection of images as A, since it does not need any annotation regarding
its semantic class, because in this case, the only supervision used is the class cor-
responds to image angle rotation which can be generated online during training.
In Table 3, we present results on all three considered datasets with the above
mentioned evaluation metric, where we only vary A as noted in the first col-
umn of Table 3. Note, in all these settings S remains fixed, and it is set to the
set of images from the seen classes. In all the settings, we observe that explicit
attention in terms of ViT backbone performs significantly better than the clas-
sical CNN backbone, such as ResNet-101. We also observe that the inclusion of
unlabelled images from unseen classes (can be considered as transductive ZSL
[2]) significantly boosts the performance on all the datasets (see rows 1 and 3 in
Table 3). Moreover, we also observe that including datasets that contain diverse
images, such as PASCAL [15] improve the performance on unseen classes and
increase generalisation.
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5 Conclusion

This paper has proposed implicit and explicit attention mechanisms for solv-
ing the zero-shot learning task. For implicit attention, our proposed model has
imposed self-supervised rotated image angle prediction task, and for the purpose
of explicit attention, the model employs the multi-head self-attention mechanism
via the Vision Transformer model to map visual features to the semantic space.
We have considered three publicly available datasets: AWA2, CUB and SUN, to
show the effectiveness of our proposed model. Throughout our extensive exper-
iments, explicit attention via the multi-head self-attention mechanism of ViT is
revealed to be very important for the ZSL task. Additionally, the implicit atten-
tion mechanism is also proved to be effective for learning image representation
for zero-shot image recognition, as it boosts the performance on unseen classes
and provides better generalisation. Our proposed model based on implicit and
explicit attention mechanism has provided very encouraging results for the ZSL
task and particularly has achieved state-of-the-art performance in terms of har-
monic mean on all the three considered benchmarks, which shows the importance
of attention-based models for ZSL task.
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