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Abstract. Reasoning over multiple modalities, e.g. in Visual Question Answer-
ing (VQA), requires an alignment of semantic concepts across domains. Despite
the widespread success of end-to-end learning, today’s multimodal pipelines by
and large leverage pre-extracted, fixed features from object detectors, typically
Faster R-CNN, as representations of the visual world. The obvious downside is
that the visual representation is not specifically tuned to the multimodal task at
hand. At the same time, while transformer-based object detectors have gained
popularity, they have not been employed in today’s multimodal pipelines. We
address both shortcomings with TxT, a transformer-based crossmodal pipeline
that enables fine-tuning both language and visual components on the down-
stream task in a fully end-to-end manner. We overcome existing limitations of
transformer-based detectors for multimodal reasoning regarding the integration
of global context and their scalability. Our transformer-based multimodal model
achieves considerable gains from end-to-end learning for multimodal question
answering.
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1 Introduction

Vision and language tasks, such as Visual Question Answering (VQA) [2,11,44], are
inherently multimodal and require aligning visual perception and textual semantics.
Many recent language models are based on BERT [6], which is based on transform-
ers [45] and pre-trained solely on text. The most common strategy to turn such a lan-
guage model into a multimodal one is to modify it to reason additionally over image
embeddings, which are typically obtained through some bottom-up attention mech-
anism [1] and pre-extracted. The consequence is that the visual features cannot be
adjusted to the necessities of the multimodal reasoning task during training. Jiang et
al. [17] recently showed that fine-tuning the visual representation together with the lan-
guage model can benefit the accuracy in a VQA task. Pre-trained image features are
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thus not optimal for the multimodal setting, even when pre-training with semantically
diverse datasets, e.g. Visual Genome [20]. In this work, we follow [17] to ask how the
visual representation can be trained end-to-end within a multimodal reasoning pipeline.
In contrast, however, we focus on recent transformer-based architectures [5,6] with their
specific requirements.

Multimodal pipelines typically [44] rely on visual features from the popular Faster
R-CNN object detector [37]. As Faster R-CNN makes heavy use of subsampling to
balance positive and negative examples during training and needs non-maximum sup-
pression to select good predictions, it is not easily amenable to end-to-end training as
desired here. Therefore, [17] remodels Faster R-CNN into a CNN that produces dense
feature maps, which are combined with an LSTM-based model [48] and trained end-
to-end. It is difficult though to combine such dense features with the latest transformer-
based language models, e.g. [5,22,29,43], as the large number of image features causes
scalability issues in the underlying pairwise attention mechanism. We thus follow a
different route, and instead propose to employ an alternate family of object detectors,
specifically the recent Detection Transformers (DETR) [4] and variants, which treat the
detection task as a set-prediction problem. DETR produces only a small set of object
detections that do not need any treatment with non-maximum suppression as its trans-
former decoder allows for the interaction between the detections. We are thus able to
employ the full object detector and only need to reason over a comparatively small set
of image features in the BERT model. However, a number of technical hurdles have to
be overcome.

Specifically, we make the following contributions: (i) We introduce alternative
region features for image embeddings produced by DETR [4] and Deformable-DETR
[49], two modern, transformer-based approaches to object detection. Out of the box
and despite their competitive accuracy for pure object detection, these transformer-
based detectors deteriorate the VQA accuracy compared to the common Faster R-
CNN bottom-up attention mechanism [1]. (ii) We show that this accuracy loss stems
from the global context of the detected objects not being sufficiently represented in
the bottom-up features. We mitigate this effect through additional global context fea-
tures, which bring the VQA accuracy much closer to the baseline. While transformer-
based detectors, such as DETR, are powerful, they are also very computationally heavy
to train; faster to train alternatives, i.e. Deformable-DETR [49], are less efficient at
test time, which is also undesirable. (iii) We address this using a more scalable vari-
ant of Deformable-DETR that still leverages multi-scale information by querying the
multi-scale deformable attention module with only one selected feature map instead
of a full multi-scale self-attention. This allows retaining the training efficiency of [49],
yet is comparably fast at test time as DETR. (iv) Our analysis shows that Deformable-
DETR, while being a stronger object detector than DETR, also modifies the empirical
distribution of the number of detected objects per image. We find that this negatively
impacts the VQA accuracy and trace this effect to the use of the focal loss [24] within
Deformable-DETR. (v) Our final transformer-based detection pipeline enables compet-
itive VQA accuracy when combined with transformer-based language models despite
having a shorter CNN backbone compared to [37]. More importantly, the full model
including the visual features can be trained end-to-end, leading to accuracy gains of
2.3% over pre-extracted DETR features and 1.1% over Faster R-CNN features on the
VQAv2 dataset [11].
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2 Related Work

With the advancement of transfer learning, the current modus operandi for multimodal
learning is to combine pre-trained models of the respective modality by learning a
shared multimodal space. We thus review approaches for single modalities before turn-
ing to crossmodal reasoning.

2.1 Learning to Analyze Single Modalities

Language Understanding. Recently, transfer learning has dominated the domain of
natural language processing, where pre-trained models achieve state-of-the-art results
on the majority of language tasks. These models are predominantly trained with self-
supervised objectives on large unlabeled text corpora, and are subsequently fine-tuned
on a downstream task [14,31]. Most recent language models leverage the omnipresent
transformer architectures [45] and are trained predominantly with Masked-Language-
Modelling (MLM) objectives as encoders [6,27], with next-word prediction objectives
as generative/decoder models [21,35], or as sequence-to-sequence models [3,33,34].

Visual Scene Analysis. Convolutional neural networks (e.g., ResNet [12]) are widely
used to encode raw image data. While originating in image classification tasks on
datasets like ImageNet [38], they are much more broadly deployed with transfer learn-
ing as backbone for other tasks like object detection [10] or semantic segmentation
[41].

The dominant methods for object detection are Faster R-CNN [37] and variants
like Feature Pyramid Networks (FPN) [23] due to their high accuracy [15]. Faster R-
CNN has a two stage architecture with a shared backbone: First, a region proposal
network suggests regions by a class-agnostic distinction between foreground and back-
ground. After non-maximum suppression, the highest scoring regions are fed to the
region-of-interest (RoI) pooling layer. RoI pooling extracts fixed-sized patches from
the feature map of the shared backbone, spanning the respective regions. These are
sent to the second stage for classification and bounding box regression. A final non-
maximum suppression step is necessary to filter out overlapping predictions. Single-
stage object detectors, e.g. SSD [26] and YOLO [36], offer an alternative, but still need
sampling of positive and negative examples during training, hand-crafted parts for e.g.
anchor generation, and a final non-maximum suppression step. More recently, Detec-
tion Transformers (DETR) [4] were proposed with a transformer-based architecture,
which is conceptually much simpler and can be trained without any hand-crafted com-
ponents. Deformable-DETR [49] introduced a multi-scale deformable attention module
to address DETR’s long training time and its low accuracy for small objects.

2.2 Learning Multimodal Tasks

Overview. Most recent work on crossmodal learning relies on combining pre-trained
single-modality models to learn a shared multimodal space. To do so, both image and
text representations are passed into a transformer model [5,22,29,43], where a multi-
head attention mechanism reasons over the representations of both modalities. The
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transformer model is initialized with the weights of a pre-trained language model. While
word-embeddings represent the text input, raw images are passed through pre-trained
vision models that generate encoded representations, which are passed into the trans-
former. While ResNet encodings of the entire image can be leveraged [19], it has been
shown that utilizing object detection models (i.e. Faster R-CNN [37]), which provide
encoded representations of multiple regions of interest [1], benefits the downstream task
[29,43, inter alia]. Here, the image features are passed through an affine-transformation
layer, which learns to align the visual features with the pre-trained transformer. Simi-
larly, the pixel offsets1 are used to generate positional embeddings. By combining these
two representations, each object region is passed into the transformer separately.2

Datasets. To learn a shared multimodal representation space, image captioning datasets
such as COCO [25], Flicker30k [32], Conceptual Captions (CC) [40], and SBU [30])
are commonly utilized. The self-supervised objectives are largely the same among all
approaches: next to MLM on the text part, masked feature regression, masked object
detection, masked attribute detection, and cross-modality matching.

Transformer Approaches. Recent multimodal models initialize the transformer param-
eters with BERT [6] weights and leverage the Faster R-CNN object detection model:
LXMERT [43] and ViLBERT [29] propose a dual-stream architecture, which provides
designated language and vision transformer weights. A joint multi-head attention com-
ponent attends over both modalities at every layer. UNITER [5] and Oscar [22] propose
a single-stream architecture, which shares all transformer weights among both modali-
ties. Oscar additionally provides detected objects as input to the transformer, and argues
that this allows for better multimodal grounding. VILLA [8] proposes to augment and
perturb the embedding space for improved pre-training.

End-to-End Training. Above approaches combine pre-trained vision and language mod-
els, however, they do not back-propagate into the vision component. Thus, no capacity
is given to the vision model to reason over the raw image data in terms of the down-
stream task; the assumption is that the pre-encoded representations are sufficient for
the downstream crossmodal task. Kamath et al. [18] avoid this by incorporating multi-
modality into a transformer-based object detector. It is end-to-end trainable but needs
computationally heavy pre-training. Jiang et al. [17] address this by proposing to extract
the Faster R-CNN weights from [1] into a CNN. They are able to leverage multimodal
end-to-end training, but use a model based on long short-term memory (LSTM) [13].
The sequential processing of LSTM models hinders parallelization and thus limits the
sequence length. Pixel-BERT [16] proposes to embed the image with a CNN and rea-
sons over all resulting features with a multimodal transformer. As such their model is
end-to-end trainable, but very heavy on computational resources because of the pair-
wise attention over these dense features. For VL-BERT [42], a Faster R-CNN is used

1 Depending on the model, this includes relative position, width, and height of the original
image.

2 Different approaches for combining pixel offsets with object features have been proposed, such
as adding the representation (e.g., used by LXMERT [43]) or transforming them jointly (e.g.,
used by Oscar [22]).
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to pre-extract object bounding boxes. The region proposal network of Faster R-CNN is
then excluded in the further training process and the language model is jointly trained
with the object detector in a Fast R-CNN [9] setting. This separates region proposals
from object classification and localization for test time, hence multi-stage inference is
necessary and no full end-to-end training is possible.

To mitigate this, we propose TxT, a transformer-based architecture that combines
transformer-based object detectors with transformer-based language models and can be
trained end-to-end for the crossmodal reasoning task at hand.

3 Transformers for Images and Text

Transformers [45] not only quickly developed into a standard architecture for language
modeling [6], but their benefits have recently been demonstrated also in visual scene
analysis [4,7,49]. We aim to bring these two streams of research together, which aside
from conceptual advantages will allow for end-to-end learning of multimodal reasoning.

3.1 Transformer-Based Object Detection

DETR. The Detection Transformer (DETR) [4] is a recent transformer-based object
detector, which treats object detection as a set-prediction problem and, therefore, obvi-
ates the need for non-maximum suppression. It outperforms the very widely used Faster
R-CNN [37] for object detection on standard datasets like COCO [25]. DETR first
extracts a feature map from the input image using a standard CNN backbone. The fea-
tures are then projected to a lower dimensionality through 1 × 1 convolutions. A sub-
sequent transformer encoder uses multi-head self-attention layers and pointwise feed-
forward networks to encode the features. These are then passed to the decoder, where a
fixed set of learned object queries is used to embed object information by cross-attention
with the encoder output. Finally, feed-forward networks predict classes and bounding
boxes. The predictions are connected by bi-partite matching with the ground truth and
a set-based loss is used for training. As such, DETR is completely end-to-end trainable
without hand-crafted parts.

Deformable-DETR. Deformable-DETR [49] addresses two important drawbacks of the
original DETR architecture: The long required training time (500 epochs are needed for
full training) and its relatively low detection accuracy for small objects. Deformable-
DETR replaces the standard multi-head attention layers with multi-scale deformable
attention modules in its transformer layers. Instead of a pairwise interaction between
all queries and keys, they only attend to a small set of sampling points around each ref-
erence point, interpolated at learned position offsets. To incorporate multi-scale infor-
mation, the attention modules work on a set of feature maps of different scales and each
query feature attends across all scales. Additionally, in Deformable-DETR the focal
loss [24] is used for matching between predictions and ground truth as well as scoring
the classification. Deformable-DETR is not only able to reduce the total training time to
only one 10th of that of DETR, but even outperforms it for object detection on standard
datasets [25].
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Table 1. Comparison of object detector architectures on the COCO validation set [25] in terms of
average precision (AP, higher is better) using the COCO detection evaluation metrics. The results
for DETR, DETR-DC5, and Faster R-CNN are quoted from [4] and the multi-scale Deformable-
DETR evaluation is taken from [49]. The (+) in Faster R-CNN indicates that the models were
trained with an additional GIoU loss. The GFLOPs are measured over the first 100 images of
the COCO validation set. Deviating from [4,49], which estimate the number of floating point
operations and omit part of the model, we log all CUDA calls with NVIDIA Nsight Compute,
therefore recording higher – but more reliable – numbers.

Model GFLOPs #params Epochs AP AP50 AP75 APS APM APL

Faster R-CNN-FPN+ 253 41M 109 42.0 62.1 45.5 26.6 45.4 53.4

Faster R-CNN-R101-FPN+ 360 60M 109 44.0 63.9 47.8 27.2 48.1 56.0

DETR 161 41M 500 42.0 62.4 44.2 20.5 45.8 61.1

DETR-DC5 490 41M 500 43.3 63.1 45.9 22.5 47.3 61.1

Deformable-DETR query stride 16 177 40M 50 42.9 62.9 45.9 24.2 46.1 60.4

Deformable-DETR multi-scale 337 41M 50 45.4 64.7 49.0 26.8 48.3 61.7

3.2 Global Context for DETR Models

Before we can bring together transformer architectures for object detection and lan-
guage modeling in an end-to-end fashion, we first need to assess whether transformer-
based detectors yield a competitive baseline. To that end, we use pre-extracted features
from pre-trained detectors in visual question answering.

Surprisingly, we find that replacing Faster R-CNN features by those from DETR
leads to a noticeable 2.5% accuracy loss in terms of VQAv2 [11], even if DETR is a
stronger detector on standard object detection benchmarks [25]. Looking at this more
closely, we find that in contrast to Faster R-CNN, DETR and Deformable-DETR encode
the semantic information in a single feature vector for each query in the transformer-
based decoder. We posit that their transformer encoder-decoder structure leads to learn-
ing more object-specific information in its feature vectors and global scene context not
being captured. As this global scene context is arguably important for VQA and other
crossmodal tasks, we compensate for the loss in global context by augmenting each
output feature vector with context information from global average pooling. We ana-
lyze different positions for extracting this contextual information and find a substantial
gain of 1.3% accuracy for VQAv2 from the global context. Full details are described in
Sect. 4.4. While not completely closing the accuracy gap to Faster R-CNN features, we
note that these are more high-dimensional and not amenable to end-to-end crossmodal
training. Also note that adding the same contextual information to Faster R-CNN fea-
tures, in contrast, does not aid VQA accuracy. Consequently, we conclude that global
contextual information about the scene is important for using transformer-based detec-
tors for VQA.

3.3 Scalable Deformable-DETR

Another significant impediment in the deployment of transformer-based architectures
for multimodal tasks are the very significant training times of DETR [4]. This has been
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Fig. 1. Number of extracted objects per image for COCO validation. Only predictions with a con-
fidence exceeding a threshold are extracted, but a minimum of 10 and a maximum of 100 objects
are selected per image. Thresholds are chosen such that the total number of extracted regions
is the same for all methods. Deformable-DETR with focal loss produces a skewed distribution
while using a cross-entropy loss resembles the detection distribution of Faster R-CNN and DETR.

very recently addressed with Deformable-DETR [49], which is much faster to train, but
is slower at test time, requiring more than double the computations compared to DETR.
We address this through a more scalable Deformable-DETR method, which can still
use the multi-scale information but is computationally more lightweight. Deformable-
DETR extracts the features maps of the last three ResNet blocks with strides of 8,
16, and 32. It also learns an additional convolution with stride 2 to produce a fourth
feature map with stride 64. Those four feature maps are then fed to the multi-scale
deformable attention layers of the encoder. In the deformable self-attention, each fea-
ture then attends to a fixed number of interpolated features of each of the feature maps,
incorporating multi-scale information in the process.

Instead of performing a full self-attention, where query and keys are the same set,
we use the feature maps of all scales as keys but propose to query only with the feature
map of one chosen scale. This results in a single feature map that still incorporates
multi-scale information, because the query features attend to the keys across all scales.
All further attention layers then work on this single feature map, reducing the amount
of computational operations needed. By choosing feature maps of different strides as
the query, we can scale the computational complexity and accuracy corresponding to
our task. See Appendix A in the supplemental material for detailed results.

For a good trade-off between computational cost and AP to be used for our cross-
modal architecture, we query with feature maps of stride 16. In Table 1 we compare
our model to Faster R-CNN with ResNet-50 and ResNet-101 backbones [12], DETR,
DETR-DC5 (with dilated convolutions in the last ResNet block), and multi-scale
Deformable-DETR. Compared to the standard DETR model, our proposed scalable
Deformable-DETR maintains a comparable number of model parameters and reaches
a 0.9% higher AP with only 10% more computational expense while still being trained
in only 50 instead of 500 epochs. It is also faster at test time than Faster R-CNN, while
being more accurate when compared with the same backbone. Our approach thus pro-
vides a favorable trade-off as a detector basis.

3.4 Detection Losses for Crossmodal Tasks

Deformable-DETR not only aims to address the lacking training efficiency of DETR,
but also its limitations for hard-to-detect objects, e.g. small objects or objects with rare
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Fig. 2. Overview of our proposed TxT model: A transformer-based object detector [4,49] pro-
duces feature representations and bounding box coordinates for its predictions (left). Following
[5], each feature and position pair is combined by fully connected (FC) layers. The aggregated
representations are passed through a layer norm (LN) and utilized as object embeddings; con-
catenated with the sequence of text embeddings, the multimodal instance is passed into the
transformer-based language model (right). A task specific head (here for VQA) predicts the
answer. The model is end-to-end trainable, including both the vision and language components.

classes. To that end, a focal loss [24] is employed. To assess if this impacts its use
in downstream tasks, such as VQA, we analyze both the detection output as well as
its use as pre-extracted feature for VQA. To compare the suitability of the features
extracted by different object detectors, we only extract the features of objects with a
confidence above a certain threshold. A minimum of 10 objects and a maximum of
100 objects per image are extracted following Anderson et al. [1]. The thresholds of
DETR and Deformable-DETR are chosen such that all models produce the same total
number of objects on the COCO validation set. When we plot the distribution of the
number of objects per image across the validation dataset, shown in Fig. 1, we see that
DETR, which is also trained with a cross-entropy loss, produces a distribution with
a peak at a similar position as Faster R-CNN, although a little broader. Deformable-
DETR trained with a focal loss to improve on difficult objects, on the other hand, has
a distribution shifted to a lower number of regions and notably more spread out and
skewed. Since small or rarely occuring objects (currently) do not play a significant
role in VQA,3 this property may not necessarily benefit the crossmodal task. Indeed,
as shown in Table 2, the focal loss degrades the VQAv2 performance. Since we are
less interested in pure detection accuracy, but rather in crossmodal performance, we
therefore train our Deformable-DETR with a cross-entropy loss for the class labels. As
can be seen in Fig. 1 (right), this makes the detection statistics more closely resemble
those of Faster R-CNN and DETR, and leads to a clear increase of 0.6% on VQAv2
test-dev (cf . Table 2).

3 Verified by measuring object sizes via gradient backtracing in UNITER [5] using the Grad-
CAM [39] approach and selecting image regions with normalized activations greater than 0.9.
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3.5 The TxT Model

With the proposed TxT model, we now combine transformer-based object detection (T)
and transformer-based language models (T) in a crossmodal approach (x). It enables us
to bridge the information gap between language and vision models and perform cross-
modal end-to-end training while avoiding computationally heavy dense features [16].
We base the language model on BERT-base, pre-trained with MLM on text corpora
only [6]. For the object detector, we employ either DETR or Deformable-DETR mod-
els as described in Sects. 3.1 to 3.4. The structure of TxT is shown in Fig. 2. In the object
detector a CNN backbone (ResNet-50 [12]) computes feature representations from the
input image. They are passed to the transformer encoder, where they interact in its
multi-head attention layers. In the decoder, the encoded feature map gets queried for
objects and for each object the feature representation and the bounding box coordinates
are extracted [4] (see Sect. 3.3 for details). The global average-pooled encoder output
is concatenated to the feature representation of each object to provide global context
(cf . Sect. 3.2). We use the complete set of predictions generated by the object detector
for TxT. Following [5], features and bounding box coordinates are projected by fully
connected layers to the dimension of the BERT model and combined. After passing a
normalization layer, they are used as object embeddings in the language model.

The text input is run through a tokenizer and both embeddings, visual and textual,
are concatenated to a sequence so that the self-attention of the transformer encoder is
able to reason over both modalities. The encoder output is passed through a task-specific
head, in our case a VQA head, consisting of a small multi-layer perceptron (MLP) to
produce the answer predictions, again following [5]. The TxT model is trained fully
end-to-end with a binary cross-entropy loss across the border between the vision and
the language part. Thus, we are able to fine-tune the object detector specifically for the
crossmodal task.

4 Experiments

To evaluate our TxT model, we perform experiments on a visual questioning answering
task. Specifically, we use the VQAv2 training set [11] and add additional question and
answer pairs from Visual Genome [20] for augmentation, following [1,5], but omit
using the validation split for training. We follow standard practice and only classify for
the 3129 most frequent answers [1,5,47]. All results are evaluated with the standard
VQA accuracy metrics [2] on the test-dev set from the 2021 challenge for VQAv2 [11].

4.1 Technical Details

Object Detector. The transformer-based object detectors in our TxT model employ a
ResNet-50 [12] backbone. The extracted features are projected to a hidden dimension of
256 of the transformer layers and then passed to an encoder consisting of 6 transformer
layers. The transformer layers consist of multi-head attention layers with 8 heads and
feed-forward networks with a dimension of 2048 for DETR and 1024 for Deformable-
DETR, as described in [45]. Learned object queries generate 100 object features with
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an alternation of self-attention and cross-attention in the 6 transformer layers of the
decoder. A linear projection is used to classify the object and a 3-layer perceptron is
used to generate bounding box coordinates [4]. Deformable-DETR uses 300 queries
in its default configuration. For end-to-end learning in TxT, we use a variant with 100
object queries. Deformable-DETR uses multi-scale deformable attention in its trans-
former layers, which employs 4 keys interpolated around each reference point of the
query. We use Deformable-DETR with iterative bounding box refinement [49]. Both
DETR and Deformable-DETR use global context as discussed in Sect. 3.2.

Pre-training. Following Anderson et al. [1], we pre-train all object detectors on the
Visual Genome dataset [20] with a maximum input image size of 600 × 1000 and add
an additional head for the prediction of object attributes. We train DETR for 300 epochs
on 8 NVIDIA V100 GPUs with 4 images per GPU. We use a learning rate of 1e−4 for
DETR and a learning rate of 1e−5 for the ResNet backbone. After 200 epochs, we drop
the learning rate by a factor of 10. For all other settings, we follow [4]. The training
protocol for Deformable-DETR follows [49].

Language Model. The language model of TxT is based on BERT-base [6] with 12 trans-
former layers and 768 hidden dimensions. BERT is pre-trained on the combination of
the BooksCorpus [50] and the entire English Wikipedia corpus, consisting of 3.3 billion
words in total. A WordPiece tokenizer [46] is trained on the entire corpus, amounting to
a vocabulary size of 30k, with each token corresponding to a position in the designated
word-embedding matrix. Positional embeddings are trained to preserve the sentence
order, and segment embeddings are trained to indicate if a token belongs to sentence A
or B. The embedding representation, which is passed into the transformer, thus amounts
to the sum over word-, positional-, and segment-embedding of each respective token.
BERT is pre-trained with an MLM,4 as well as a next-sentence prediction objective.5

VQA Training. The TxT model is trained for 10k iterations on 4 GPUs and a learning
rate of 8e−5. We employ a binary cross-entropy loss and the AdamW [28] optimizer.
We use a linear warmup of 600 iterations and a linear decay of the learning rate after-
wards. In case of pre-extracted, fixed object features, we train the TxT model similar to
[5] with 5120 input tokens and for each iteration we accumulate the gradients over 5
steps. For end-to-end training, we pre-train the TxT model with fixed features for 4k iter-
ations for DETR and 6k iterations for Deformable-DETR with the above settings. Then,
we train the model fully end-to-end for 10k iterations with 8 images and questions per
batch and accumulate the gradients for 32 steps for each iteration to maintain the effec-
tive batch size of the fixed-feature setting. When we employ TxT with DETR as the
object detector, we initialize the learning rate for the DETR and CNN backbone compo-
nents with 3e−4 and 3e−5, respectively. Deformable-DETR is trained with a learning

4 Input tokens are randomly masked, with the objective of the model being to predict the missing
token given the surrounding context.

5 Two sentences A and B are passed into the model, where 50% of the time B follows A in the
corpus, and 50% of the time B is randomly sampled. The objective is to predict whether or not
B is a negative sample.
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Table 2. Comparison of VQA accuracy on pre-extracted features from different object detectors
evaluated on VQAv2 test-dev [11] (higher is better). Deformable-DETR refers to our variant,
where we query the attention module with a feature map of stride 16 (see Sect. 3.3 for details).
The best results in each column are bold, the 2nd best underlined.

Method number yes/no other overall

Faster R-CNN 51.18 85.04 59.00 68.84

DETR 49.49 83.88 57.81 67.60

Deformable-DETR (focal loss) 47.59 83.87 57.18 67.09

Deformable-DETR (cross-entropy loss) 48.66 84.46 57.62 67.66

rate of 6e−4 and 6e−5 for the backbone. When TxT is used with DETR and threshold-
ing the predictions, we apply a factor of 10 to the learning rate of the class-prediction
layer of DETR. For end-to-end training of TxT, the learning rates and training schedule
were determined with a coarse grid search over the hyperparameters.

4.2 Representational Power of Visual Features

In a first step, we investigate if DETR and Deformable-DETR are able to produce object
feature descriptors whose representational power for VQA tasks is comparable to the
widely used Faster R-CNN; we assess this through the VQA accuracy. We pre-extract
object features and bounding box coordinates with all object detectors. Following stan-
dard practice (e.g. [1,5,42]), all objects with a class confidence above a certain threshold
are extracted, but a minimum of 10 and a maximum of 100 objects are used per image.
We calibrate the confidence threshold of DETR and Deformable-DETR on COCO val-
idation so that the total number of extracted object features is 1.3 million, comparable
to Faster R-CNN. The TxT model is then trained with the pre-extracted features. When
used with Faster R-CNN features, this is equivalent to the UNITER-base model [5] with
only MLM pre-training, i.e. initalized with BERT weights. We note that the numbers
differ slightly from those in [5], because we omit the validation set when training for
test-dev submission and use the most recent VQA challenge 2021.

The results in Table 2 show that DETR and Deformable-DETR are able to produce
object features with a representational power that competitively supports VQA tasks,
especially considering their low dimensionality of 256 (compared to 2048 dimensions
of Faster R-CNN features). Also, these results are achieved with only a ResNet-50
backbone (compared to ResNet-101 for Faster R-CNN). While DETR leads to a ∼1.2%
loss in VQA accuracy compared to Faster R-CNN, it is more efficient at test time (see
Table 1) and, more importantly, allows for end-to-end training (cf . Sect. 4.3).

Moreover, we find that Deformable-DETR (with query stride 16) as the object detec-
tor for VQA performs less well than DETR, about 0.5% worse in VQA accuracy. As
analyzed in Sect. 3.4, this is traceable to the focal loss. We find that a cross-entropy
loss is a more suitable pre-training objective for Deformable-DETR as object detec-
tor for the VQA task, leading to ∼ 0.6% higher accuracy on VQA while maintaining
the same total number of predictions. With these modifications, Deformable-DETR per-
forms comparatively with DETR, yet is still much faster to train.
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Table 3. Results of the multimodal end-to-end trainable TxT model on VQAv2 test-dev [11]
(higher is better). e2e denotes end-to-end training. In the upper part of the table, we show the
results of counterparts with pre-extracted features and Faster R-CNN features. The best results in
each column are bold, the 2nd best underlined.

Method e2e number yes/no other overall

Faster R-CNN 51.18 85.04 59.00 68.84

DETR 49.49 83.88 57.81 67.60

DETR (all predictions) 52.33 85.57 59.84 69.59

Deformable-DETR (100 queries) 47.19 84.05 56.92 66.99

Deformable-DETR (100 q., all predictions) 48.54 83.79 57.82 67.47

TxT-DETR (thresholded) � 50.59 85.66 59.23 69.14

TxT-DETR � 51.73 86.33 60.04 69.93

TxT-Deformable-DETR � 49.70 85.76 59.19 69.06

4.3 Multimodal End-to-End Training

As a preliminary experiment, referred to as TxT-DETR (thresholded), we only pass
objects to the multimodal transformer layers where the class confidence exceeds a
threshold of 0.5. To accomplish this, we generate a mask from thresholding the class
confidence. We then multiply the object features with the mask, thus allowing the gra-
dient to backpropagate to the class prediction layer of DETR. Only features and related
bounding box coordinates according to the mask are then passed from the DETR part
of TxT to its language model. At the beginning of training, DETR selects around 30
objects per image, equivalent to the setting of pre-extracted features. During training,
the TxT model learns to select more objects, saturating at around 80 per image. This
suggests that more objects are beneficial for solving the VQA task, which confirms an
empirical observation of Jiang et al. [17], who showed that the accuracy starts to sat-
urate between 100 and 200 regions. As Table 3 shows, including all predicted objects
in the multimodal reasoning (DETR all predictions) without end-to-end training indeed
leads to a ∼0.5% higher accuracy than TxT-DETR (thresholded), which leverages the
end-to-end training.

For multimodal end-to-end training of our TxT model, we therefore employ all 100
object predictions, eliminating the need to threshold and enabling a gradient for object
predictions that would be discarded otherwise. In order to alleviate the computational
and memory cost of multimodal self-attention, we pre-train Deformable-DETR with
only 100 object queries (instead of the standard 300), which reduces the VQA accuracy
by ∼0.7% when evaluating in the pre-extracted features setup. To make the effect of the
higher object number distinguishable from the end-to-end benefit, we also show results
for pre-extracted features training with all object predictions in Table 3. With DETR as
object detector, the gain from using all predictions is ∼2% and for Deformable-DETR
it is less pronounced with a benefit of ∼0.5%.

Finally, we assess our full end-to-end trainable model. We find that multimodal
end-to-end training substantially improves the accuracy of TxT: The TxT model with
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Table 4. Global context features for DETR [4] and Faster R-CNN [37] from different locations
in the network. The results on a VQA task are evaluated on VQAv2 [11] test-dev (in %, higher is
better). We also report the total dimensionality d of the extracted features.

Model d number yes/no other overall

DETR (no context) 256 47.65 82.67 56.61 66.33

DETR (backbone context) 2304 48.80 83.68 57.38 67.24

DETR (projected backbone context) 512 48.69 83.43 57.36 67.12

DETR (encoder context) 512 49.49 83.88 57.81 67.60

Faster R-CNN (no context) 2048 51.18 85.04 59.00 68.84

Faster R-CNN (backbone context) 3072 49.86 84.29 58.37 68.08

Deformable-DETR improves by ∼2.1% from 66.99% for pre-extracted Deformable-
DETR features to 69.06% accuracy on VQAv2 test-dev. The TxT model in combina-
tion with DETR achieves an overall gain in accuracy of ∼2.3% from 67.60% accuracy
for pre-extracted DETR features to 69.93% accuracy for multimodal end-to-end train-
ing, thus improving by ∼1.1% over the Faster R-CNN features. While our results are
competitive with current models on an equal footing, they could be improved further
with pre-training tasks like image-text matching and word-region alignment [5] at the
expense of significant computational overhead.

4.4 Ablation Study

As discussed in Sect. 3.2, adding global context is helping DETR [4] to produce visual
features that are better suited for VQA. We now investigate the suitable position from
which to source this global information. We consider three positions at which to apply a
global average pooling of the feature map in the DETR network: (i) pooling the feature
map produced by the CNN backbone, (ii) after the backbone feature map is projected to
the lower dimensions of the transformer layers, and (iii) pooling the encoder output. As
we can see in Table 4, all variants with added global context lead to a gain in accuracy.
We obtain the best results when using the encoder output, leading to a gain of ∼1.3%
in terms of VQAv2 [11] accuracy over using no global context. Pooling the feature
map produced by the CNN backbone gives a slightly lower gain of ∼0.9% and requires
2304-dimensional features compared to only 512 dimensions for the encoder output.
Projecting the backbone feature map first to the transformer dimension also gives 512-
dimensional features, but yields only a ∼0.8% gain.

To ensure a fair comparison, we also verify if Faster R-CNN [37] features similarly
benefit from global context. To that end, we concatenate the Faster R-CNN features
with global average-pooled features of its shared backbone. In contrast to DETR, this
does not lead to better VQA results, rather to a slight degradation in accuracy of ∼0.7%.
We conclude that global context is important for VQA, yet is sufficiently represented in
the common Faster R-CNN features. Transformer-based detectors, in contrast, benefit
significantly from the added context.
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5 Conclusion

In this paper we proposed TxT, an end-to-end trainable transformer-based architecture
for crossmodal reasoning. Starting from the observation that transformer-based archi-
tectures have not only been successfully used for language modeling, but more recently
also for object detection, we investigated the use of Detection Transformers and vari-
ants as source of visual features for visual question answering. We found that global
context information as well as an adaptation of the loss function are needed to yield
rich visual evidence for crossmodal tasks. We also proposed a speed-up mechanism for
multi-scale attention. Our final end-to-end trainable architecture yields a clear improve-
ment in terms of VQA accuracy over standard pre-trained visual features and paves
the way for a tighter integration of visual and textual reasoning with a unified network
architecture.

Acknowledgement. This work has been funded by the LOEWE initiative (Hesse, Germany)
within the emergenCITY center.
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