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Abstract. Generating images according to natural language descrip-
tions is a challenging task. Prior research has mainly focused to enhance
the quality of generation by investigating the use of spatial attention
and/or textual attention thereby neglecting the relationship between
channels. In this work, we propose the Combined Attention Genera-
tive Adversarial Network (CAGAN) to generate photo-realistic images
according to textual descriptions. The proposed CAGAN utilises two
attention models: word attention to draw different sub-regions condi-
tioned on related words; and squeeze-and-excitation attention to cap-
ture non-linear interaction among channels. With spectral normalisation
to stabilise training, our proposed CAGAN achieves state-of-the-art FID
and comparative IS scores on the CUB dataset and on the more challeng-
ing COCO dataset. Furthermore, we demonstrate that judging a model
by a single evaluation metric can be misleading by developing an addi-
tional model adding local self-attention which scores a higher IS than our
other model, but generates unrealistic images through feature repetition.

Keywords: Text-to-image synthesis · Generative adversarial network
(GAN) · Attention

1 Introduction

Generating images according to natural language descriptions spans a wide range
of difficulty, from generating synthetic images to simple and highly complex real-
world images. It has tremendous applications such as photo-editing, computer-
aided design, and may be used to reduce the complexity of or even replace
rendering engines [28]. Furthermore, good generative models involve learning new
representations. These are useful for a variety of tasks, for example classification,
clustering, or supporting transfer among tasks.

Although generating images highly related to the meanings embedded in
a natural language description is a challenging task due to the gap between
text and image modalities, there has been exciting recent progress in the field
using numerous techniques and different inputs [3–5,12,18–21,29,38,39,45,46,
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Fig. 1. Example results of the proposed CAGAN (SE). The generated images are of
64 × 64, 128 × 128, and 256 × 256 resolutions respectively, bilinearly upsampled for
visualization.

49] yielding impressive results on limited domains. A majority of approaches are
based on Generative Adversarial Networks (GANs) [8]. Zhang et al. introduced
Stacked GANs [47] which consist of two GANs generating images in a low-to-
high resolution fashion. The second generator receives the image encoding of the
first generator and the text embedding as input to correct defects and generate
higher resolution images. Further research has mainly focused to enhance the
quality of generation by investigating the use of spatial attention and/or textual
attention thereby neglecting the relationship between channels.

In this work, we propose Combined Attention Generative Adversarial Net-
work (CAGAN) that combines multiple attention models, thereby paying atten-
tion to word, channel, and spatial relationships. First, the network uses a deep
bi-directional LSTM encoder [45] to obtain word and sentence features. Then,
the images are generated in a coarse to fine fashion (see Fig. 1) by feeding the
encoded text features into a three stage GAN. Thereby, we utilise local-self
attention [27] mainly during the first stage of generation; word attention at the
beginning of the second and the third generator; and squeeze-and-excitation
attention [13] throughout the second and the third generator. We use the pub-
licly available CUB [41] and COCO [22] datasets to conduct the experimental
analysis. Our experiments show that our network generates images of similar
quality as previous work while either advancing or competing with the state
of the art on the Inception Score (IS) [35] and the Fréchet Inception Distance
(FID) [11].

The main contributions of this paper are threefold:

(1) We incorporate multiple attention models, thereby reacting to subtle dif-
ferences in the textual input with fine-grained word attention; modelling
long-range dependencies with local self-attention; and capturing non-linear
interaction among channels with squeeze-and-excitation (SE) attention. SE
attention can learn to learn to use global information to selectively empha-
sise informative features and suppress less useful ones.
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(2) We stabilise the training with spectral normalisation [24], which restricts
the function space from which the discriminators are selected by bounding
the Lipschitz norm and setting the spectral norm to a designated value.

(3) We demonstrate that improvements on single evaluation metrics have to be
viewed carefully by showing that evaluation metrics may react oppositely.

The rest of the paper is organized as follows: In Sect. 2, we give a brief
overview of the literature. In Sect. 3, we explain the presented approach in detail.
In Sect. 4, we mention the employed datasets and experimental results. Then,
we discuss the outcomes and we conclude the paper in Sect. 5.

2 Related Work

While there has been substantial work for years in the field of image-to-text
translation, such as image caption generation [1,7,44], only recently the inverse
problem came into focus: text-to-image generation. Generative image models
require a deep understanding of spatial, visual, and semantic world knowledge.
A majority of recent approaches are based on GANs [8].

Reed et al. [32] use a GAN with a direct text-to-image approach and have
shown to generate images highly related to the text’s meaning. Reed et al. [31]
further developed this approach by conditioning the GAN additionally on object
locations. Zhang et al. built on Reed et al.’s direct approach developing Stack-
GAN [47] generating 256×256 photo-realistic images from detailed text descrip-
tions. Although StackGAN yields remarkable results on specific domains, such as
birds or flowers, it struggles when many objects and relationships are involved.
Zhang et al. [48] improved StackGAN by arranging multiple generators and dis-
criminators in a tree-like structure, allowing for more stable training behaviour
by jointly approximating multiple distributions. Xu et al. [45] introduced a novel
loss function and fine-grained word attention into the model.

Recently, a number of works built on Xu et al.’s [45] approach: Cheng et al. [5]
employed spectral normalisation [24] and added global self-attention to the first
generator; Qiao et al. [30] introduced a semantic text regeneration and alignment
module thereby learning text-to-image generation by redescription; Li et al. [18]
added channel-wise attention to Xu et al.’s spatial word attention to generate
shape-invariant images when changing text descriptions; Cai et al. [3] enhanced
local details and global structures by attending to related features from relevant
words and different visual regions; Tan et al. [38] introduced image-level semantic
consistency and utilised adaptive attention weights to differentiate keywords
from unimportant words; Yin et al. [46] focused on disentangling the semantic-
related concepts and introduced a contrasive loss to strengthen the image-text
correlation; Zhu et al. [49] refined Xu et al.’s fine-grained word attention by
dynamically selecting important words based on the content of an initial image;
and Cheng et al. [4] enriched the given description with prior knowledge and
then generated an image from the enriched multi-caption.

Instead of using multiple stages or multiple GANs, Li et al. [20] used one
generator and three independent discriminators to generate multi-scale images
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conditioned on text in an adversarial manner. Tao et al. [39] discarded the
stacked architecture approach, proposing a GAN to directly synthesize images
without extra networks. Johnson et al. [14] introduced a GAN that receives a
scene graph consisting of objects and their relationships as input and generates
complex images with many recognizable objects. However, the images are not
photo-realistic. Qiao et al. [29] introduced LeicaGAN which adopts text-visual
co-embeddings to convey the visual information needed for image generation.

Other approaches are based on autoencoders [6,36,42], autoregressive mod-
els [9,26,33], or other techniques such as generative image modelling using an
RNN with spatial LSTM neurons [40]; multiple layers of convolution and decon-
volution operators trained with Stochastic Gradient Variational Bayes [17]; a
probabilistic programming language for scene understanding with fast general-
purpose inference machinery [16]; and generative ConvNets [43].

We propose to expand the focus of attention to channel, word, and spatial
relationships instead of a subset of these thereby enhancing the quality of gen-
eration.

3 The Framework of Combined Attention Generative
Adversarial Networks

3.1 Combined Attention Generative Adversarial Networks

The proposed CAGAN utilises three attention models: word attention to draw
different sub-regions conditioned on related words, local self-attention to model
long-range dependencies, and squeeze-and-excitation attention to capture non-
linear interaction among channels.

The attentional generative model consists of three generators, which receive
image feature vectors as input and generate images of small-to-large scales. First,
a deep bidirectional LSTM encoder encodes the input sentence into a global
sentence vector s and a word matrix. Conditioning augmentation FCA [47] con-
verts the sentence vector into the conditioning vector. A first network receives
the conditioning vector and noise, sampled from a standard normal distribu-
tion, as input and computes the first image feature vector. Each generator is a
simple 3x3 convolutional layer that receives the image feature vector as input
to compute an image. The remaining image feature vectors are computed by
networks receiving the previous image feature vector and the result of the ith

attentional model F attn
i (see Fig. 2), which uses the word matrix computed by

the text encoder.
To compute word attention, the word vectors are converted into a common

semantic space. For each subregion of the image a word-context vector is com-
puted, dynamically representing word vectors that are relevant to the subregion
of the image, i.e., indicating the weight the word attention model attends to
the lth word when generating a subregion. The final objective function of the
attentional generative network is defined as:
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Fig. 2. The architecture of the proposed CAGAN with word, SE, and local attention.
When omitting local attention, local attention is removed from the F attn

n networks. In
the upsampling blocks it is replaced by SE attention.

L = LG + λLDAMSM, where LG =
m−1∑

i=0

LGi
. (1)

Here, λ is a hyperparameter to balance the two terms. The first term is the GAN
loss that jointly approximates conditional and unconditional distributions [48].
At the ith stage, the generator Gi has a corresponding discriminator Di. The
adversarial loss for Gi is defined as:

LGi = −1

2
Eŷi∼PGi

[
log(Di(ŷi))

]

︸ ︷︷ ︸
unconditional loss

− 1

2
Eŷi∼PGi

[
log(Di(ŷi, s))

]

︸ ︷︷ ︸
conditional loss

, (2)

where ŷi are the generated images. The unconditional loss determines whether
the image is real or fake while the conditional loss determines whether the image
and the sentence match or not. Alternately to the training of Gi, each discrimina-
tor Di is trained to classify the input into the class of real or fake by minimizing
the cross-entropy loss.

The second term of Eq. 1, LDAMSM, is a fine-grained word-level image-text
matching loss computed by the DAMSM [45]. The DAMSM learns two neural
networks that map subregions of the image and words of the sentence to a
common semantic space, thus measuring the image-text similarity at the word
level to compute a fine-grained loss for image generation. The image encoder
prior to the DAMSM is built upon a pretrained Inception-v3 model [37] with
added perceptron layers to extract visual feature vectors for each subregion of
the image and a global image vector.

3.2 Attention Models

Local Self-attention. Similar to a convolution, local self-attention [27] extracts
a local region of pixels ab ∈ Nk(i, j) for each pixel xij and a given spatial extent
k. An output pixel yij computes as follows:
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yij =
∑

a,b∈Nk(i,j)

softmaxab(qTijkab)vab. (3)

qij = WQxij denotes the queries, kab = WKxab the keys, and vab = WV xab

the values, each obtained via linear transformations W of the pixel ij and their
neighbourhood pixels. The advantage over a simple convolution is that each
pixel value is aggregated with a convex convolution of value vectors with mixing
weights (softmaxab) parametrised by content interactions.

Squeeze-and-Excitation (SE) Attention. Instead of focusing on the spatial
component of CNNs, SE attention [13] aims to improve the channel compo-
nent by explicitly modelling interdependencies among channels via channel-wise
weighting. Thus, they can be interpreted as a light-weight self-attention function
on channels.

First, a transformation, which is typically a convolution, outputs the feature
map U . Because convolutions use local receptive fields, each entry of U is unaware
of contextual information outside its region. A corresponding SE-block addresses
this issue by performing a feature recalibration.

A squeeze operation aggregates the feature maps of U across the spatial
dimension (H × W ) yielding a channel descriptor. The proposed squeeze oper-
ation is mean-pooling across the entire spatial dimension of each channel. The
resulting channel descriptor serves as an embedding of the global distribution of
channel-wise features.

A following excitation operation Fex aims to capture channel-wise dependen-
cies, specifically non-linear interaction among channels and non-mutually exclu-
sive relationships. The latter allows multiple channels to be emphasized. The
excitation operation is a simple self-gating operation with a sigmoid activation
function:

Fex(z,W ) = σ(g(z,W )) = σ(W2δ(W1z)), (4)

where δ refers to the ReLU activation function, W1 ∈ R
C
r ×C , and W2 ∈ R

C×C
r .

To limit model complexity and increase generalisation, a bottleneck is formed
around the gating mechanism: a Fully Connected (FC) layer reduces the dimen-
sionality by a factor of r. A second FC layer restores the dimensionality after the
gating operation. The authors recommend an r of 16 for a good balance between
accuracy and complexity (∼10% parameter increase on ResNet-50 [10]). Ideally,
r should be tuned for the intended architecture.

The excitation operation Fex computes per-channel modulation weights.
These are applied to the feature maps U performing an adaptive recalibration.

4 Experiments

Dataset. We employed CUB [41] and COCO [22] datasets for the experiments.
The CUB dataset [41] consists of 8855 train and 2933 test images. To perform
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evaluation, one image per caption in the test set is computed since each image
has ten captions. The COCO dataset [22] with the 2014 split consists of 82783
train and 40504 test images. We randomly sample 30000 captions from the test
set for the evaluation.

Evaluation Metric. In this work, we utilized the Inception Score (IS) [35]
and The Fréchet Inception Distance (FID) [11] to evaluate the performance of
proposed method. The IS [35] is a quantitative metric to evaluate generated
images. It measures two properties: highly classifiable and diverse with respect
to class labels. Although the IS is the most widely used metric in text-to-image
generation, it has several issues [2,25,34] regarding the computation of the score
itself and the usage of the score. According to the authors of [2] it: “fails to
provide useful guidance when comparing models”.

The FID [11] views features as a continuous multivariate Gaussian and com-
putes a distance in the feature space between the real data and the generated
data. A lower FID implies a closer distance between the generated image dis-
tribution and the real image distribution. The FID is consistent with human
judgment and more consistent to noise than the IS [11] although it has a slight
bias [23]. Please note that there is some inconsistency in how the FID is cal-
culated in prior work, originating from different pre-processing techniques that
significantly impact the score. We use the official implementation1 of the FID.
To ensure a consistent calculation of all of our evaluation metrics, we replace
the generic Inception v3 network with the pre-trained Inception v3 network we
used for computing the IS of the corresponding dataset. We re-calculate the FID
scores of papers with an official model to provide a fair comparison.

Implementation Detail. We employ spectral normalisation [24], a weight nor-
malisation technique to stabilise the training of the discriminator, during train-
ing. To compute the semantic embedding for text descriptions, we employ a
pre-trained bi-direction LSTM encoder by Xu et al. [45] with a dimension of 256
for the word embedding. The sentence length was 18 for the CUB dataset and
12 for the COCO dataset.

All networks are trained using the Adam optimiser [15] with a batch size
of 20, a learning rate of 0.0002, and β1 = 0.5 and β2 = 0.999. We train for
600 epochs on the CUB and for 200 epochs on the COCO dataset. For the
model utilising squeeze-and-excitation attention we use r = 1, and λ = 0.1
and λ = 50.0, respectively for the CUB and the COCO dataset. For the model
utilising local self-attention as well we use r = 4, and λ = 5.0 and λ = 50.0.

4.1 Results

Quantitative Results. As Table 1 and Fig. 3 show, our model utilising squeeze-
and-excitation attention outperforms the baseline AttnGAN [45] in both metrics

1 https://github.com/bioinf-jku/TTUR.

https://github.com/bioinf-jku/TTUR
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Table 1. Fréchet Inception Distance (FID) and Inception Score (IS) of state-of-the-art
models and our two CAGAN models on the CUB and COCO dataset with a 256× 256
image resolution. The unmarked scores are those reported in the original papers, note
that the reported FID scores may be inconsistent (see Sect. 4 Evaluation Metric). Scores
marked with ✝ were re-calculated by us using the pre-trained model provided by the
respective authors. ↑ (↓) means the higher (lower), the better.

Model CUB dataset COCO dataset

IS↑ FID↓ IS↑ FID↓
Real data 25.52 ± .09 0.00 37.97 ± .88 0.00

AttnGAN [45] 4.36 ± .04 47.76✝ 25.89 ± .47 31.05✝

PPAN [20] 4.38 ± .05 - - -

HAGAN [5] 4.43 ± .03 - - -

MirrorGAN [30] 4.56 ± .05 - 26.47 ± .41 -

ControlGAN [18] 4.58 ± .09 49.18✝ 24.06 ± .60 -

DualAttn-GAN [3] 4.59 ± .07 - - -

LeicaGAN [29] 4.62 ± .06 - - -

SEGAN [38] 4.67 ± .04 - 27.86 ± .31 32.28

SD-GAN [46] 4.67 ± .09 - 35.69 ± .50 -

DM-GAN [49] 4.75 ± .07 43.20✝ 30.49 ± .57 22.84✝

DF-GAN [39] 5.10 − − 21.42

RiFeGAN [4] 5.23 ± .09 − 31.70 -

Obj-GAN [19] - - 30.29 ± .33 25.64

OP-GAN [12] - - 27.88 ± .12 23.29✝

CPGAN [21] - - 52.73 ± .61 49.92✝

CAGAN SE (ours) 4.78 ± .06 42.98 32.60 ± .75 19.88

CAGAN L+SE (ours) 4.96 ± .05 61.06 33.89 ± .69 27.40

on both datasets. The IS is improved by 9.6% ± 2.4% and 25.9% ± 5.3% and
the FID by 10.0% and 36.0% on the CUB and the COCO dataset, respectively.
Our approach also achieves the best FID on both datasets though not all listed
models could be fairly compared (see Sect. 4 Evaluation Metric).

Our second model, utilising squeeze-and-excitation attention and local self-
attention, shows better IS scores than our other model. However, it generates
completely unrealistic images through feature repetitions (see Fig. 4) and has
a major negative impact on the FID throughout training (see Fig. 3). This
behaviour is similar to [21] on the COCO dataset and demonstrates that a single
score can be misleading and thus the importance of reporting both scores.

In summary, according to the experimental results, our proposed CAGAN
achieved state-of-the-art results on both the CUB dataset and COCO dataset
based on the FID metric and comparative results on the IS metric. All these
results indicate how our CAGAN model is effective for the text-to-image gener-
ation task.
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Fig. 3. IS and FID of the AttnGAN [45], our model utilising squeeze-and-excitation
attention, and our model utilising squeeze-and-excitation attention and local self-
attention on the CUB and the COCO dataset. The IS of the AttnGAN is the reported
score and the FID was re-evaluated using the official model. The IS of the AttnGAN on
the COCO dataset is with 25.89± .47 significantly lower than our models. We omitted
the score to highlight the distinctions between our two models.

Qualitative Results: Figure 4 shows images generated by our models and by
several other models [12,45,49] on the CUB dataset and on the more challenging
COCO dataset. On the CUB dataset, our model utilising SE attention generates
images of vivid details (see 1st, 4th, 5th, and 6th row), demonstrating a strong
text-image correlation (see 3th, 4th, and 5th row), avoiding feature repetitions
(see double beak, DM-GAN 6th row), and managing the difficult scene (see 7th

row) best. Cut-off artefacts occur in all presented models.
Our model incorporating local self-attention fails to produce realistic looking

image, despite scoring higher ISs than the AttnGAN and our model utilising SE
attention. Instead, it draws repetitive features manifesting in the form of multiple
birds, drawn out birds, multiple heads, or strange patterns. The drawn features
mostly match the textual descriptions. This provides a possible explanation why
the model has a high IS despite scoring poorly on the FID: the IS cares mainly
about the images being highly classifiable and diverse. Thereby, it presumes
that highly classifiable images are of high quality. Our network demonstrates
that high classify-ability and diversity and therefore a high IS can be achieved
through completely unrealistic, repetitive features of the correct bird class. This
is further evidence that improvements solely based on the IS have to be viewed
sceptically.

On the more challenging COCO dataset, our model utilising SE attention
demonstrates semantic understanding by drawing features that resemble the
object, for example, the brown-white pattern of a giraffe (1st row), umbrellas
(4th row), and traffic lights (5th row). Furthermore, our model draws distinct
shapes for the bathroom (2nd row), broccoli (3rd row), and is the only one
that properly approximates a tower building with a clock (7th row). Generally
speaking, the results on the COCO dataset are not as realistic and robust as
on the CUB dataset. We attribute this to the more complex scenes coupled
with more abstract descriptions that focus rather on the category of objects
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Fig. 4. Comparison of images generated by our models (CAGAN SE and
CAGAN SE L) with images generated by other current models [12,45,49] on the CUB
dataset (left) and on the more challenging COCO dataset (right).

Fig. 5. Example results of our SE attention model with r = 1, λ = 0.1 trained on the
CUB dataset while changing some most attended, in the sense of word attention, words
in the text descriptions.
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than detailed descriptions. In addition, although there are a large number of
categories, each category only has comparatively few examples thereby further
increasing the difficulty for text-to-image-generation.

For our SE attention model we further test its generalisation ability by testing
how sensitive the outputs are to changes in the most attended, in the sense of
word attention, words in the text descriptions (see Fig. 5). The test is similar to
the one performed on the AttnGAN [45]. The results illustrate that adding SE
attention and spectral normalisation do not harm the generalisation ability of the
network: the images are altered according to the changes in the input sentences,
showing that the network retains its ability to react to subtle semantic differences
in the text descriptions.

5 Conclusion

In this paper, we propose the Combined Attention Generative Adversarial Net-
work (CAGAN) to generate photo-realistic images according to textual descrip-
tions. We utilise attention models such as, word attention to draw different
sub-regions conditioned on related words; squeeze-and-excitation attention to
capture non-linear interaction among channels; and local self-attention to model
long-range dependencies. With spectral normalisation to stabilise training, our
proposed CAGAN achieves state-of-the-art FID and comparative IS scores on
the CUB dataset and on the more challenging COCO dataset. Furthermore, we
demonstrate that judging a model by a single evaluation metric can be mislead-
ing by developing an additional model adding local self-attention which scores a
higher IS than our other model, but generates unrealistic images through feature
repetition.
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