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Abstract. Identifying meaningful and independent factors of variation
in a dataset is a challenging learning task frequently addressed by means
of deep latent variable models. This task can be viewed as learning sym-
metry transformations preserving the value of a chosen property along
latent dimensions. However, existing approaches exhibit severe draw-
backs in enforcing the invariance property in the latent space. We address
these shortcomings with a novel approach to cycle consistency. Our
method involves two separate latent subspaces for the target property
and the remaining input information, respectively. In order to enforce
invariance as well as sparsity in the latent space, we incorporate seman-
tic knowledge by using cycle consistency constraints relying on property
side information. The proposed method is based on the deep information
bottleneck and, in contrast to other approaches, allows using continuous
target properties and provides inherent model selection capabilities. We
demonstrate on synthetic and molecular data that our approach identi-
fies more meaningful factors which lead to sparser and more interpretable
models with improved invariance properties.

Keywords: Sparsity · Cycle consistency · Invariance · Deep
variational information bottleneck · Variational autoencoder · Model
selection

1 Motivation

Understanding the nature of a generative process for observed data typically
involves uncovering explanatory factors of variation responsible for the obser-
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vations. But the relationship between these factors and our observation usu-
ally remains unclear. A common assumption is that the relevant factors can be
expressed by a low-dimensional latent representation Z [25]. Therefore, popular
machine learning methods involve learning of appropriate latent representations
to disentangle factors of variation. Learning disentangled representations is often
considered in an unsupervised setting which does not rely on the prior knowledge
about the data such as labels [7,8,13,17,24]. However, it was shown that induc-
tive bias on the dataset and learning approach is necessary to obtain disentangle-
ment [25]. Inductive biases allow us to express assumptions about the generative
process and to prioritise different solutions not only in terms of disentanglement
[5,13,21,35,44], but also in terms of constrained latent space structures [15,16],
preservation of causal relationships [40], or interpretability [45].

We consider a supervised setting where semantic knowledge about the input
data allows structuring the latent representation in disjoint subspaces Z0 and
Z1 of the latent space Z by enforcing conditional invariance. In such supervised
settings, disentanglement can be viewed as an extraction of level sets or sym-
metries inherent to our data X which leave a specified property Y invariant.
An important application in that direction is the generation of diverse molecu-
lar structures with similar chemical properties [44]. The goal is to disentangle
factors of variation relevant for the property. Typically, level sets Ly are defined
implicitly through Ly(f) = {(x1, ..., xd)|f(x1, ..., xd) = y} for a property y which
implicitly describes the level curve or surface w.r.t. inputs (x1, ..., xd) ∈ R

d. The
topic of this paper is to identify a sparse parameterisation of level sets which
encodes conditional invariances and thus selects a correct model. Several tech-
niques have been developed to steer model selection by sparsifying the number
of features, e.g. [38,39], or compressing features into a low-dimensional feature
space, e.g. [4,33,42]. These methods improve generalisation by focusing on only
a subset of relevant features and using these to explain a phenomenon. Exist-
ing methods for including such prior knowledge in the model usually do not
include dimensionality reduction techniques and perform a hand-tuned selection
[15,21,44].

In this paper, we introduce a novel approach to cycle consistency, relying
on property side information Y as our semantic knowledge, to provide con-
ditional invariance in the latent space. With this we mean that conditioning
on part of the latent space, i.e. Z0, allows property-invariant sampling in the
latent space Z1. By ensuring that our method consistently performs on gener-
ated samples when fed back to the network, we achieve more disentangled and
sparser representations. Our work builds on [42], where a general sparsity con-
straint on latent representations is provided, and on [21,44], where conditional
invariance is obtained through adversarial training. We show that our approach
addresses some drawbacks in previous approaches and allows us to identify more
meaningful factors for learning better models and achieve improved invariance
performance. Our contributions may thus be summarised as follows:

– We propose a novel approach for supervised disentanglement where condi-
tional invariance is enforced by a novel cycle consistency on property side
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information. This facilitates the guided exploration of the latent space and
improves sampling with a fixed property.

– Our model inherently favours sparse solutions, leading to more interpretable
latent dimensions and facilitates built-in model selection.

– We demonstrate that our method improves on the state-of-the-art perfor-
mance for conditional invariance as compared to existing approaches on both
synthetic and molecular benchmark datasets.

2 Related Work

2.1 Deep Generative Latent Variable Models and Disentanglement

Because of its flexibility, the variational autoencoder (VAE) [20,34] is a popu-
lar deep generative latent variable model in many areas such as fairness [27],
causality [26], semi-supervised learning [19], and design and discovery of novel
molecular structures [11,22,28]. The VAE is closely related to the Information
Bottleneck (IB) principle [4,39]. Various approaches exploit this relation, e.g. the
deep variational information bottleneck (DVIB) [2,4]. Further extensions were
proposed in the context of causality [9,29,30] or archetypal analysis [15,16].

The β-VAE [13] extends the standard VAE approach and allows unsuper-
vised disentanglement. In unsupervised settings, there exists a great variety
of approaches based on VAEs and generative adversarial networks (GANs) to
achieve disentanglement such as FactorVAE [17], β-TCVAE [7] or InfoGAN
[8,24]. Partitioning the latent space into subspaces is inspired by the multi-
level VAE [5], where the latent space is decomposed into a local feature space
that is only relevant for a subgroup and a global feature space. In supervised
settings, several approaches such as [10,21,23,44] achieve disentanglement by
applying adversarial information elimination to select a model with partitioned
feature and property space. In such a setting, different to unsupervised disen-
tanglement, our goal is supervised disentanglement with respect to a particular
target property.

Another important line of research employs the idea of cycle consistency
for learning disentangled representations. Presumably the most closely related
work to this study is conducted by [14,43,44]. Here, the authors employ a cycle-
consistent loss on the latent representations to learn symmetries and disentangled
representations in weakly supervised settings, respectively. Moreover, in [44],
the authors use adversarial training and mutual information estimation to learn
symmetry transformations instead of explicitly modelling them. In contrast, our
work replaces adversarial training by using cycle consistency.

2.2 Model Selection via Sparsity

Several works perform model selection by introducing sparsity constraints which
penalise the model complexity. A common sparsity constraint is the Least Abso-
lute Shrinkage and Selection Operator (LASSO) [38]. Extensions of the LASSO
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propose a log-penalty to obtain even sparser solutions in the compressed IB
setting [33] and generalise it further to deep generative models [42]. Further-
more, the LASSO has been extended to the group LASSO, where combinations
of covariates are set to zero, the sparse group LASSO [36], and the Bayesian
group LASSO [32]. Perhaps most closely related to our work is the oi-VAE [3],
which incorporates a group LASSO prior in deep latent variable models. These
methods employ a general sparsity constraint to achieve a sparse representation.
Our model extends these ideas and imposes a semantic sparsity constraint in the
form of cycle consistency that performs regularisation based on prior knowledge.

3 Preliminaries

3.1 Deep Variational Information Bottleneck

We focus on the DVIB [4] which is a method for information compression based
on the IB principle [39]. The objective is to compress a random variable X into
a random variable Z while being able to predict a third random variable Y . The
DVIB is closely related to the VAE [20,34]. The optimal compression is achieved
by solving the parametric problem

min
φ,θ

Iφ(Z;X) − λIφ,θ(Z;Y ), (1)

where I is the mutual information between two random variables. Hence, the
DVIB objective balances maximisation of Iφ,θ(Z;Y ), i.e. Z being informative
about Y , and minimisation of Iφ(Z;X), i.e. compression of X into Z. We assume
a parametric form of the conditionals pφ(Z|X) and pθ(Y |Z) with φ and θ repre-
senting the parameters of the encoder and decoder network, respectively. Param-
eter λ controls the degree of compression and is closely related to β in the β-VAE
[13]. The relationship to the VAE becomes more apparent with the definition of
the mutual information terms:

Iφ(Z;X) = Ep(X)DKL(pφ(Z|X)‖p(Z)), (2)
Iφ,θ(Z;Y ) ≥ Ep(X,Y )Epφ(Z|X) log pθ(Y |Z) + h(Y ), (3)

with DKL being the Kullback-Leibler divergence, and h(Y ) the entropy. Note
that we write Eq. (3) as an inequality which uses the insight of [41] that the
RHS is in fact a lower bound to Iθ(Z;Y ); see [41] for details.

3.2 Cycle Consistency

We use the notion of cycle consistency similar to [14,46]. The CycleGAN [46]
performs unsupervised image-to-image translation, where a data point is mapped
to its initial position after being transferred to a different space. For instance,
suppose that domain X consists of summer landscapes, while domain Y consists
of winter landscapes (see Appendix Fig. A1). A function f(x) may be used to



380 M. Samarin et al.

Fig. 1. Model illustration. (a) Firstly, we learn a sparse representation Z from our
input data X which we separate into a property space Z0 and an invariant space Z1.
Given this representation, we try to predict the property Ŷ and reconstruct our input
X̂. Grey arrows indicate that Ŷ = decY (Z0) instead of Z0 is used for decoding X̂ (see
Sect. 4.3). (b) Secondly, we sample new data in two ways: (i) uniformly in Z to get new
data points X̃ and Ỹ (orange data), (ii) uniformly in Z1 with fixed Z0 to get X̃� at
fixed Ŷ (cyan data). We concatenate the respective decoder outputs. (c) Lastly, we feed
the concatenated input batch Xc into our model and calculate the cycle consistency
loss between the properties. (Color figure online)

transform a summer landscape x to a corresponding winter landscape y. Simi-
larly, function g(y) maps y back to the domain X. The goal of cycle consistency
is to learn a mapping to x̂, which is close to the initial x. In most cases, there is
a discrepancy between x and x̂ referred to as the cycle consistency loss. In order
to obtain an almost invertible mapping, the loss ‖(g(f(x)) − x‖1 is minimised.

4 Model

Our model is based on the DVIB to learn a compact latent representation. The
input X and the output Y may be complex objects and take continuous values,
such as molecules with their respective molecular properties. Unlike the standard
DVIB, we do not only want to predict Y from an input X, but also want to
generate new X̃ by sampling from our latent representation. As a consequence,
we add an additional second decoder that reconstructs X from Z (similar to [11]
for decoder Y in the VAE setting), leading to the adjusted parametric objective

min
φ,θ,τ

Iφ(Z;X) − λ
(
Iφ,θ(Z;Y ) + Iφ,τ (Z;X)

)
, (4)

where φ are the encoder parameters, and θ and τ describe network parameters
for decoding Y and X, respectively.
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4.1 Learning a Compact Representation

Formulating our model as a DVIB allows leveraging properties of the mutual
information with respect to learning compact latent representations. To see this,
first assume that X and Y are jointly Gaussian-distributed which leads to the
Gaussian Information Bottleneck [6] where the solution Z can be found analyt-
ically and proved to be Gaussian. In particular, for X ∼ N (0, ΣX), the optimal
Z is a noisy projection of X: Z = AX + ξ, where ξ ∼ N (0, I). The mutual
information between X and Z is then equal to

I(X;Z) = 1
2 log |AΣXA� + I|. (5)

If we now assume A to be diagonal, the model becomes sparse [33]. This is
because a full-rank projection AX ′ of X ′ does not change the mutual information
since I(X;X ′) = I(X;AX ′). A reduction in mutual information can only be
achieved by a rank-deficient matrix A. In general, the conditionals Z|X and
Y |Z in Eq. (1) may be parameterised by neural networks with X and Z as
input. The diagonality constraint on A does not cause any loss of generality of
the DVIB solution as long as the neural network encoder fφ makes it possible to
diagonalise Afφ(X)fφ(X)�A� (see [42] for more details). In the following, we
consider A to be diagonal and define the sparse representation as the dimensions
of the latent space Z selected by the non-zero entries of A. Recalling Eq. (5),
this allows us to approximate the mutual information for the encoder in Eq. (2)
in a sparse manner

Iφ(X;Z) = 1
2 log |diag(fφ(X)fφ(X)�) + 1|, (6)

where 1 is the all-one vector and the diagonal elements of A are subsumed in
the encoder fφ.

4.2 Conditional Invariance and Informed Sparsity

A general sparsity constraint is not sufficient to ensure that latent dimensions
indeed represent independent factors. In a supervised setting, our target Y
conveys semantic knowledge about the input X, e.g. a chemical property of
a molecule. To incorporate semantic knowledge into our model, we require a
mechanism that partitions the representation such that it encodes the semantic
meaning not only sparsely but preferably independently of other information
concerning the input.

To this end, the central element of our approach is cycle consistency with
respect to target property Y , which is illustrated in steps (b) and (c) in Fig. 1.
The idea is, that reconstructed X̂ or newly sampled X̃ with associated prediction
Ŷ and Ỹ are expected to provide matching predictions Ŷ ′ and Ỹ ′ when X̂ and
X̃ are used as an input to the network. This means, if we perform another
cycle through the network with sampled or reconstructed inputs, the property
prediction should stay consistent. The partitioning of the latent space Z in the
property subspace Z0 and the invariant subspace Z1 is crucial. The property
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Y is predicted from Z0, while the input is reconstructed from the full latent
space Z. Ensuring cycle consistency with respect to the property allows putting
property-relevant information into the property subspace Z0. Furthermore, the
latent space is regularised by drawing samples which adhere to cycle consistency
and provide additional sparsity. If information about Y is encoded in Z1, this
will lead to a higher cycle consistency loss. In this way, cycle consistency enforces
invariance in subspace Z1. By fixing coordinates in Z0, and thus fixing a property,
sampling in Z1 results in newly generated X̃ with the same property Ỹ . More
formally, fixing Z0 renders random variables X and Y conditionally independent,
i.e. X ⊥⊥ Y |Z0 (see Appendix Fig. A2). We ensure conditional invariance with
a particular sampling: We fix the Z0 coordinates and sample in Z1 to obtain
generated X̃� all with a fixed property Ŷ . Using these inputs allows to obtain
a new prediction Ỹ � which should be close to the fixed target property Ŷ . We
choose the L2 norm for convenience and define the full cycle consistency loss by

Lcycle = ‖Ŷ − Ŷ ′‖2 + ‖Ỹ − Ỹ ′‖2 + ‖Ŷ − Ỹ �‖2. (7)

4.3 Proposed Framework

The resulting model in Eq. (8) combines sparse DVIBs with partitioned latent
space and a novel approach to cycle consistency, which drives conditional invari-
ance and informed sparsity in the latent structure. This allows latent dimensions
in Z0 relevant for prediction of Y to disentangle of latent dimensions in Z1 which
encode remaining input information of X.

L = Iφ(X;Z) − λ
(
Iφ,τ (Z0, Z1;X) + Iφ,θ(Z0;Y )

−β
(‖Ŷ − Ŷ ′‖2 + ‖Ỹ − Ỹ ′‖2 + ‖Ŷ − Ỹ �‖2

))
(8)

The proposed model performs model selection as it inherently favours sparser
latent representations. This in turn facilitates easier interpretation of latent fac-
tors because of the built-in conditional independence between property space
Z0 and invariant space Z1. These adjustments address some of the issues of the
STIB [44] relying on adversarial training, mutual information estimation (which
can be difficult in high-dimensions [37]) and bijective mapping which can make
the training challenging. In contrast to the work of [14], we impose a novel cycle
consistency loss on the predicted outputs Y instead of the latent representation
Z. A reason to consider rather Y than Z is that varying latent dimensionality
leads to severe problems in the optimisation process as it requires an adaptive
rescaling of the different loss weights. To overcome this drawback, we close the
full cycle and define the loss on the outputs. Appendix Sec. A.3 and Algorithm
A.1 provide more information on the implementation.1 As an implementation
detail, we choose to concatenate the decoded Z0 code with Z1 in order to decode
X̂, i.e. X̂ = decX(Z1, Ŷ = decY (Z0)). This is an additional measure to ensure
that Z0 contains information relevant for property prediction Y and prevent
superfluous remaining information about the input X in property space Z0.
1 Implementation [1,18]: https://github.com/bmda-unibas/CondInvarianceCC.

https://github.com/bmda-unibas/CondInvarianceCC
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5 Experimental Evaluation

We evaluate the effectiveness of our proposed method w.r.t. (i) selection of a
sparse representation with meaningful factors of variation (i.e. model selection)
and (ii) enforcing conditional independence in the latent space between these
factors. To this end, we conduct experiments on a synthetic dataset with knowl-
edge about appropriate parameterisations to highlight the differences to existing
models. Additionally, we evaluate our model on a real-world application with a
focus on conditional invariance and generation of novel samples. To assess the
performance of our model, we compare our approach to two state-of-the-art base-
lines: (i) the β-VAE [13] which is a typical baseline model in disentanglement
studies and (ii) the symmetry-transformation information bottleneck (STIB)
[44] which ensures conditional invariance through adversarial training and is the
direct competitor to our model. We adapt the β-VAE by adding a decoder for
property Y (similar to [11]) which takes only subspace Z0 as input. The latent
space of the adapted β-VAE is split into two subspaces as in the STIB and our
model, but has no explicit mechanisms to enforce invariance. This setup can
be viewed as an ablation study in which the β-VAE is the basis model of our
approach without cycle consistency and sparsity constraints. The STIB provides
an alternative approach for the same goal but with a different mechanism.

The objective of the supervised disentanglement approach is to ensure disen-
tanglement of a fixed property with respect to variations in the invariant space
Z1. This is a slightly different setting than in standard unsupervised disentangle-
ment and therefore standard disentanglement metrics might be less insightful.
Instead, in order to test the property invariance, we first encode the inputs of
the test set and fix the coordinates in the property subspace Z0 which pro-
vides prediction Ŷ . Then we sample uniformly at random in Z1 (plus/minus one
standard deviation), decode the generated X̃ and perform a cycle through the
network to obtain Ỹ . This provides the predicted property for the generated X̃.
If conditional invariance between X and Y at a fixed Z0 is warranted, the mean
absolute error (MAE) between Ŷ and Ỹ should be close to zero. Thus, all mod-
els are trained to attain similar MAEs for reconstructing X and, in particular,
predicting Y , to ensure a fair comparison.

5.1 Synthetic Dataset

In the first experiments, we focus on learning level sets of ellipses and ellipsoids
mapped into five dimensions. We consider these experiments as they allow a clear
interpretation and visualisation of fixing a property, i.e. choosing the ellipse curve
or ellipsoid surface, and known low-dimensional parameterisations are readily
available. To this end, we sample uniformly at random data points Xoriginal

from U([−1, 1]dX) and calculate as the corresponding one-dimensional properties
Yoriginal the ellipse curves (dX = 2) and ellipsoid surfaces (dX = 3) rotated by 45◦

in the X1X2-plane. In addition, we add Gaussian noise to the property Yoriginal.
In a real-world scenario, we typically do not have access to the underlying gener-
ating process providing Xoriginal and property Yoriginal but a transformed view on
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these quantities. To reflect this, we map the input Xoriginal into a five dimensional
space (d′

X = 5), i.e. Xoriginal ∈ [−1, 1]N×dX → X ∈ R
N×5, and property Yoriginal

into three dimensional space (d′
Y = 3), i.e. Yoriginal ∈ R

N×1
+ → Y ∈ R

N×3, with
N data points and dimensions dX = {2, 3}. See Appendix Sec. A.4 for more
details and Fig. A3 for an illustration of the dataset.

Level sets are usually defined implicitly (see Appendix Eq. (A.9)). Common
parameterisations consider polar coordinates (x, y) = (r cos ϕ, r sin ϕ) for the
ellipse and spherical coordinates (x, y, z) = (r cos ϕ sin θ, r sin ϕ sin θ, r cos θ) for
the ellipsoid, with radius r ∈ [0,∞), (azimuth) angle ϕ ∈ [0, 2π) in the X1X2-
plane, and polar angle θ ∈ [0, π] measured from the X3 axis. The goal of our
experiment is to identify a low-dimensional parameterisation which captures the
underlying radial and angular components, i.e. identify latent dimensions which
correspond to parameters (r, ϕ) and (r, ϕ, θ).

Details on the architecture and training can be found in Appendix Sec. A.4.
We use fully-connected layers for our encoder and decoder networks. Note that
in our model, the noise level is fixed at σnoise = 1 w.l.o.g. (see Sect. 4.1). We
choose an 8-dim. latent space, with 3 dimensions reserved for property subspace
Z0 and 5 dimensions for invariant subspace Z1. We consider a generous latent
space with dZ1 = d′

X = 5 and dZ0 = d′
Y = 3 to evaluate the sparsity and model

selection.

Results: All models attain similar MAEs for X reconstruction and Y prediction
but differ in the property invariance as summarised in Table 1. Our model learns
more invariant representations with several factors difference w.r.t. the property
invariance in both experiments. In Fig. 2(a), signal vs. noise for the different
models is presented. The standard deviation σsignal is calculated as the sample
standard deviation of the learned means in the respective latent dimension. The
sampling noise σnoise is optimised as a free parameter during training. We con-
sider a latent dimension to be informative or selected if the signal exceeds the
noise. The sparest solution is obtained in our model with one latent dimension
selected in the property subspace Z0 and one in the invariant subspace Z1. In
Fig. 2(b), we examine the obtained solution more closely in the original data
space by mapping back from d′

X = 5 to dX = 2 dimensions. We consider ten
equidistant values in the selected Z0 dim. 1 and sample points in the selected Z1

dim. 8. The different colours represent fixed values in Z0, with latent traversal
in Z1 dim. 8 reconstructing the full ellipse. This means, the selected latent dim.
8 contains all relevant information at a given coordinate in Z0, while dim. 4 to
7 do not contain any relevant information. We can relate the selected dim. 1 in
Z0 to the radius r and dim. 8 in Z1 to the angle ϕ. For the ellipsoid (dX = 3)
we obtain qualitatively the same results as for the ellipse. Again, only our model
selects the correct number of latent factors with one in Z0 and two in Z1 (see
Fig. 2(c)). The latent traversal results in Fig. 2(d) are more intricate to inter-
pret. For latent dim. 6, we obtain a representation which can be interpreted
as encoding the polar angle θ. Traversal in latent dim. 8 yields closed curves
in three dimensions which can be viewed as on orthogonal representation to
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Fig. 2. Results for ellipse and ellipsoid in original input space (dX = {2, 3}). (a, c)
Illustration of standard deviation in the different latent dimensions, where property
subspace Z0 spans dimensions 1–3 and invariant subspace Z1 spans dimensions 4–8.
Grey bars indicate the sampling noise σnoise and orange bars the sample standard
deviation σsignal in the respective dimension. We consider a latent dimension to be
selected if the signal exceeds the noise, i.e. orange bars are visible. Only our model
selects the expected numbers of parameters. (b, d) Illustration of latent traversal in
our model in latent dimensions 4 to 8 in our model in the original input space for
fixed values in the property space dimension 1 (different colours). (b) The selected
dimension 8 represents the angular component ϕ and reconstructs the full ellipse curves.
(d) The selected dimension 6 represents the polar angle θ, while dimension 8 can
be related to the azimuth angle ϕ. (b, d) The last plot (red borders) samples in all
selected dimensions, which reconstructs the full ellipse and ellipsoid, respectively. We
intentionally did not sample the ellipsoid surfaces completely to allow seeing surfaces
underneath. (Color figure online)
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Table 1. Mean absolute errors (MAE) for reconstruction of input X, prediction of
property Y , and property invariance. Ellipse/Ellipsoid: MAEs on 5-dim. input X and
3-dim. property Y are depicted. Molecules: MAEs on input X and property Y as the
band gap energy in kcal mol−1.

Model Ellipse Ellipsoid Molecules

X Y Invar. X Y Invar. X Y Invar.

β-VAE 0.03 0.25 0.058 0.02 0.25 0.153 0.01 4.01 5.66

STIB 0.03 0.25 0.027 0.03 0.25 0.083 0.01 4.08 3.05

Ours 0.04 0.25 0.006 0.05 0.25 0.006 0.01 4.06 1.34

dim. 6 and be interpreted as an encoding of the azimuth angle ϕ. In both Fig. 2(b)
and 2(d), the last plot shows sampling in the selected Z1 dimensions for fixed Z0

(i.e. property Y ) and reconstructs the full ellipse and ellipsoid. Although β-VAE
and STIB perform equally well on reconstructing and predicting on the test set,
these models do not consistently lead to sparse and easily interpretable repre-
sentations which allow direct traversal on the level sets as shown for our model.
The presented results remain qualitatively the same for reruns of the models.

5.2 Small Organic Molecules (QM9)

As a more challenging example, we consider the QM9 dataset [31] which includes
133,885 organic molecules. The molecules consist of up to nine heavy atoms (C,
O, N, and F), not including hydrogen. Each molecule includes corresponding
chemical properties computed with the Density Functional Theory methods. In
our experiments, we select a subset with a fixed stoichiometry (C7O2H10) which
consists of 6,093 molecules. We choose the band gap energy as the property.

Details on the architecture and training can be found in Appendix Sec. A.5.
We use fully-connected layers for our encoder and decoder. For the input X we
use the bag-of-bonds [12] descriptor as a translation, rotation, and permutation
invariant representation of molecules, which involves 190 dimensions. The latent
space size is 17, where Z0 is 1-dimensional and Z1 is 16-dimensional. To evaluate
the invariance, we first adjust the regularisation loss weights for a fair compar-
ison of the models. The weights for the irrelevance loss in the STIB and the
invariance loss terms in our model were increased until a drop in reconstruction
and prediction performances compared to the β-VAE results was noticeable.

Results: Table 1 summarises the results. On a test set of 300 molecules, all
models achieve similar MAE of 0.01 for the reconstruction of X. For prediction
of the band gap energies Y a MAE of approx. 4 kcal mol−1 is achieved. The
invariance is computed on the basis of 25 test molecules and 400 samples gen-
erated for each reference molecule. Similarly to the synthetic experiments, the
STIB model performs almost twice as well as the β-VAE, while our model yields
a distinctly better invariance of 1.34 kcal mol−1 among both models. With this
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(a) (b)

Fig. 3. Illustration of the generative capability of our model for two reference molecules
(rows). (a) The first molecule is the reference molecule with a fixed reference band gap
energy. We display three samples and their predicted band gap energies out of 2,000
samples. (b) Boxplots for distribution of predicted property. The star symbol marks
the fixed reference band gap energy. The shaded background depicts the prediction
error range of the model. (Color figure online)

result, we can generate novel molecules which are very close to a fixed property.
This capability is illustrated in Fig. 3. For two reference molecules in the test
set, we generate 2,000 new molecules by sampling uniformly at random with one
standard deviation in the invariant subspace Z1 and keeping the reference prop-
erty value, i.e. fixed Z0 coordinates. We show three such examples in Fig. 3a and
select the nearest neighbours in the test set for visualisation of the molecular
structure. For all samples, the boxplots in Fig. 3b illustrate the distribution in
the predicted property values. The spread of predicted property values is gener-
ally smaller than the model prediction error of 4.06 kcal mol−1 and the predicted
property of a majority of samples is close to the target property value.

6 Discussion

Sparsity constraints and cycle consistency lead to sparse and inter-
pretable models facilitating model selection. The results in Fig. 2(a, c)
demonstrate that our method identifies the sparsest solution in comparison to
the standard disentanglement baseline β-VAE and the direct competitor STIB,
which do not address sparsity explicitly. Furthermore, the experiments on ellipses
and ellipsoids show that only our model also identifies a correct parameterisa-
tion. It correctly learns the radius r in the property subspace Z0 as it encodes
the level set, i.e. the ellipse curve or ellipsoid surface given by property Y . The
angular components ϕ and θ are correctly – and in particular independently –
learned in the invariant subspace Z1 (see Fig. 2(b, d)). This is a direct conse-
quence of the cycle consistency on the property Y . It allows for semantically
structuring the latent space on the basis of the semantic knowledge on property
Y . Finally, these results highlight that our method is able to inherently select the
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correct model. Although the β-VAE and STIB are capable of attaining similar
reconstruction and prediction errors, a reconstruction of level sets in these mod-
els requires a more complicated combination of latent dimensions and hinders
interpretation. Therefore, only our model makes an interpretation of the learned
latent representation feasible.

Cycle Consistency Enforces Conditional Invariance. Table 1 shows that
for all experiments, our model exhibits the best property invariance at otherwise
similar reconstruction and prediction errors. The β-VAE has no mechanisms to
ensure invariance and thus performs worst. But although the STIB relies on
adversarial training to minimise mutual information (MI) between Z1 and Y ,
the alternating training and MI estimation can pose practical obstacles, espe-
cially in cases with high-dimensional latent spaces. Our cycle-consistency-based
approach has the same benefits and is more feasible. In particular, our approach
can operate on arbitrarily large latent spaces in both Z0 and Z1, because of the
inherent sparsity of the solution. Typically, an upper limit for the size of property
subspace Z0 and invariant subspace Z1 can be defined by the dimensionality of
the property Y and input X (see Fig. 2). Noteworthy – although our model is
trained and tested on data in the interval [−1, 1]dX , dX = {2, 3} – the results
generalise well beyond this interval, as long as a part of the level curve or surface
was encountered during training (see Fig. 2(b)). This can be directly attributed
to the regularisation of the latent space through additional sampling and cycle
consistency of generated samples. These mechanisms impose conditional invari-
ance which, in turn, facilitates generalisation and exploration of new samples by
sharing the same level set or symmetry-conserved property.

Conditional Invariance Improves Targeted Molecule Discovery. Con-
ditional invariance is of great importance for the generative potential of our
model. In Fig. 3 we exemplary explored the molecular structures for two refer-
ence molecules. By sampling in the invariant space Z1, we discover molecular
structures with property values which are very close to the fixed targets, i.e. the
mean absolute deviation is below the model prediction error. Our experiment
demonstrates the ability to generate molecules with self-consistent properties
which rely on the improved conditional invariance provided by our model. This
facilitates the discovery of novel molecules with desired chemical properties.

In conclusion, we demonstrated on synthetic and real-world use cases that our
method allows selecting a correct model and improve interpretability as well as
exploration of the latent representation. In our synthetic study, we focused on
simple cases of connected and convex level sets. To generalise these findings,
more general level sets are interesting to be investigated in order to relate to
more real-world scenarios. In addition, our approach could be applied to medical
applications where a selection of interpretable models is of particular relevance.

Acknowledgements. This research was supported by the Swiss National Science
Foundation through projects No. 167333 within the National Research Programme 75
“Big Data” (M.S.), No. P2BSP2 184359 (S.P.) and the NCCR MARVEL (V.N., M.W.,
A.W.). Furthermore, the authors would like to thank the anonymous reviewers for their
valuable comments and suggestions.



Learning Conditional Invariance Through Cycle Consistency 389

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems (2015). https://www.tensorflow.org/. Software available from tensorflow.org

2. Achille, A., Soatto, S.: Information dropout: learning optimal representations
through noisy computation. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2897–
2905 (2018)

3. Ainsworth, S.K., Foti, N.J., Lee, A.K.C., Fox, E.B.: oi-VAE: output interpretable
VAEs for nonlinear group factor analysis. In: Proceedings of the 35th International
Conference on Machine Learning (2018)

4. Alemi, A.A., Fischer, I., Dillon, J.V., Murphy, K.: Deep variational information
bottleneck. In: 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, 24–26 April 2017, Conference Track Proceedings. OpenRe-
view.net (2017). https://openreview.net/forum?id=HyxQzBceg

5. Bouchacourt, D., Tomioka, R., Nowozin, S.: Multi-level variational autoencoder:
learning disentangled representations from grouped observations. In: AAAI Con-
ference on Artificial Intelligence (2018)

6. Chechik, G., Globerson, A., Tishby, N., Weiss, Y.: Information bottleneck for Gaus-
sian variables. J. Mach. Learn. Res. 6, 165–188 (2005)

7. Chen, R.T., Li, X., Grosse, R., Duvenaud, D.: Isolating sources of disentanglement
in variational autoencoders. arXiv preprint arXiv:1802.04942 (2018)

8. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Info-
GAN: interpretable representation learning by information maximizing generative
adversarial nets. arXiv preprint arXiv:1606.03657 (2016)

9. Chicharro, D., Besserve, M., Panzeri, S.: Causal learning with sufficient statistics:
an information bottleneck approach. arXiv preprint arXiv:2010.05375 (2020)

10. Creswell, A., Mohamied, Y., Sengupta, B., Bharath, A.A.: Adversarial information
factorization (2018)
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