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Abstract. Conditional image synthesis from layout has recently
attracted much interest. Previous approaches condition the generator
on object locations as well as class labels but lack fine-grained control
over the diverse appearance aspects of individual objects. Gaining con-
trol over the image generation process is fundamental to build practical
applications with a user-friendly interface. In this paper, we propose a
method for attribute controlled image synthesis from layout which allows
to specify the appearance of individual objects without affecting the rest
of the image. We extend a state-of-the-art approach for layout-to-image
generation to additionally condition individual objects on attributes. We
create and experiment on a synthetic, as well as the challenging Visual
Genome dataset. Our qualitative and quantitative results show that our
method can successfully control the fine-grained details of individual
objects when modelling complex scenes with multiple objects. Source
code, dataset and pre-trained models are publicly available (https://
github.com/stanifrolov/AttrLostGAN).
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1 Introduction

The advent of Generative Adversarial Networks (GANs) [8] had a huge influence
on the progress of image synthesis research and applications. Starting from low-
resolution, gray-scale face images, current methods can generate high-resolution
face images which are very difficult to distinguish from real photographs [20].
While unconditional image synthesis is interesting, most practical applications
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Fig. 1. Generated images using a reconfigurable layout and attributes to control the
appearance of individual objects. From left to right: add tree [green], add plane [metal,
orange], add sheep [white], add horse [brown], add person, add jacket [pink], grass →
grass [dry]. (Color figure online)

require an interface which allows users to specify what the model should generate.
In recent years, conditional generative approaches have used class labels [3,27],
images [17,50], text [34,43,46], speech [4,42], layout [37,48], segmentation masks
[6,41], or combinations of them [15], to gain control over the image generation
process. However, most of these approaches are “one-shot” image generators
which do not allow to reconfigure certain aspects of the generated image.

While there has been much progress on iterative image manipulation,
researchers have so far not investigated how to gain better control over the
image generation process of complex scenes with multiple interacting objects.
To allow the user to create a scene that reflects what he/she has in mind, the
system needs to be capable of iteratively and interactively updating the image.
A recent approach by Sun and Wu [37] takes a major step towards this goal by
enabling reconfigurable spatial layout and object styles. In their method, each
object has an associated latent style code (sampled from a normal distribution)
to create new images. However, this implies that users do not have true control
over the specific appearance of objects. This lack of control also translates into
the inability to specify a style (i.e., to change the color of a shirt from red to blue
one would need to sample new latent codes and manually inspect whether the
generated style conforms to the requirement). Being able to not just generate,
but control individual aspects of the generated image without affecting other
areas is vital to enable users to generate what they have in mind. To overcome
this gap and give users control over style attributes of individual objects, we pro-
pose to extend their method to additionally incorporate attribute information.
To that end, we propose Attr-ISLA as an extension of the Instance-Sensitive and
Layout-Aware feature Normalization (ISLA-Norm) [37] and use an adversarial
hinge loss on object-attribute features to encourage the generator to produce
objects reflecting the input attributes. At inference time, a user can not only
reconfigure the location and class of individual objects, but also specify a set
of attributes. See Fig. 1 for an example of reconfigurable layout-to-image gen-
eration guided by attributes using our method. Since we continue to use latent
codes for each object and the overall image, we can generate diverse images
of objects with specific attributes. This approach not only drastically improves
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the flexibility but also allows the user to easily articulate the contents of his
mind into the image generation process. Our contributions can be summarized
as following:

– we propose a new method called AttrLostGAN, which allows attribute con-
trolled image generation from reconfigurable layout;

– we extend ISLA to Attr-ISLA thereby gaining additional control over
attributes;

– we create and experiment on a synthetic dataset to empirically demonstrate
the effectiveness of our approach;

– we evaluate our model on the challenging Visual Genome dataset both qual-
itatively and quantitatively and achieve state-of-the-art performance.

2 Related Work

Class-Conditional Image Generation. Generating images given a class label
is arguably the most direct way to gain control over what image to generate.
Initial approaches concatenate the noise vector with the encoded label to con-
dition the generator [27,30]. Recent approaches [3,33] have improved the image
quality, resolution and diversity of generative models drastically. However, there
are two major drawbacks that limit their practical application: they are based
on single-object datasets, and do not allow reconfiguration of individual aspects
of the image to be generated.

Layout-to-Image. The direct layout-to-image task was first studied in Lay-
out2Im [48] using a VAE [21] based approach that could produce diverse 64×64
pixel images by decomposing the representation of each object into a specified
label and an unspecified (sampled) appearance vector. LostGAN [37,38] allows
better control over individual objects using a reconfigurable layout while keeping
existing objects in the generated image unchanged. This is achieved by provid-
ing individual latent style codes for each object, wherein one code for the whole
image allows to generate diverse images from the same layout when the object
codes are fixed. We use LostGAN as our backbone to successfully address a fun-
damental problem: the inability to specify the appearance of individual objects
using attributes.

Scene-Graph-to-Image. Scene graphs represent a scene of multiple objects
using a graph structure where objects are encoded as nodes and edges represent
the relationships between individual objects. Due to their convenient and flexible
structure, scene graphs have recently been employed in multiple image generation
approaches [1,11,18,39,45]. Typically, a graph convolution network (GCN) [10]
is used to predict a scene layout containing segmentation masks and bounding
boxes for each object which is then used to generate an image. However, scene
graphs can be cumbersome to edit and do not allow to specify object locations
directly on the image canvas.

Text-to-Image. Textual descriptions provide an intuitive way for conditional
image synthesis [7]. Current methods [14,34,43,46,51] first produce a text
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Fig. 2. Illustration of our proposed method for attribute controlled image synthesis
from reconfigurable layout and style. Given a layout of object positions, class labels
and attributes, we compute affine transformation parameters γ and β to condition
the generator. Using separate latent codes Zobj and zimg for individual objects and
image, respectively, enables our model to produce diverse images. The discriminator
minimizes three adversarial hinge losses on image features, object-label features, and
object-attribute features.

embedding which is then input to a multi-stage image generator. In [13,14],
additional layout information is used by adding an object pathway to learn the
features of individual objects and control object locations. Decomposing the
task into predicting a semantic layout from text, and then generate images con-
ditioned on both text and semantic layout has been explored in [15,25]. Other
works focus on disentangling content from style [23,49], and text-guided image
manipulation [24,29]. However, natural language can be ambiguous and textual
descriptions are difficult to obtain.

Usage of Attributes. Early methods used attributes to generate outdoor scene
[5,19], human face and bird images [44]. In contrast, our method can generate
complex scene images containing multiple objects from a reconfigurable layout.
Most similar to our work are the methods proposed by Ke Ma et al. [26] as an
extension of [26] using an auxiliary attribute classifier and explicit reconstruction
loss for horizontally shifted objects, and [31] which requires semantic instance
masks. To the best of our knowledge, [26] is currently the only other direct
layout-to-image method using attributes. Our method improves upon [26] in
terms of visual quality, control and image resolution using a straightforward, yet
effective approach built on [37,38].

3 Approach

LostGAN [37,38] achieves remarkable results and control in the layout-to-image
task, but it lacks the ability to specify the attributes of an object. While an
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object class label defines the high-level category (e.g., “car”, “person”, “dog”,
“building)”, attributes refer to structural properties and appearance variations
such as colors (e.g., “blue”, “yellow”), sentiment (e.g., “happy”, “angry”), and
forms (e.g., “round”, “sliced”) which can be assigned to a variety of object classes
[22]. Although one could randomly sample many different object latent codes to
generate diverse outputs, it does not allow to provide specific descriptions of the
appearance to enable users to generate “what they have in mind”. To address
this fundamental problem, we build upon [37] and additionally condition individ-
ual objects on a set of attributes. To that end, we create an attribute embedding,
similar to the label embedding used in [37], and propose Attr-ISLA to compute
affine transformation parameters which depend on object positions, class labels
and attributes. Furthermore, we utilize a separate attribute embedding to com-
pute an additional adversarial hinge loss on object-attribute features. See Fig. 2
for an illustration of our method.

3.1 Problem Formulation

Given an image layout L = {(li, bi, ai)mi=1} of m objects, where each object is
defined by a class label li, a bounding box bi, and attributes ai, the goal of our
method is to generate an image I with accurate positioned and recognizable
objects which also correctly reflect their corresponding input attributes. We use
LostGAN [37,38] as our backbone, in which the overall style of the image is con-
trolled by the latent zimg, and individual object styles are controlled by the set of
latents Zobj = {zi}mi=1. Latent codes are sampled from the standard normal dis-
tribution N (0, 1). Note, the instance object style codes Zobj are important even
though attributes are provided to capture the challenging one-to-many map-
ping and enable the generation of diverse images (e.g., there are many possible
images of a person wearing a blue shirt). In summary, we want to find a genera-
tor function G parameterized by ΘG which captures the underlying conditional
data distribution p = (I|L, zimg, Zobj) such that we can use it to generate new,
realistic samples. Similar to [37], the task we are addressing in this work can
hence be expressed more formally as in Eq. 1

I = G(L, zimg, Zobj;ΘG), (1)

where all components of the layout L (i.e., class labels li, object positions bi and
attributes ai) are reconfigurable to allow fine-grained control of diverse images
using the randomly sampled latents zimg and Zobj. In other words, our goals are
1) to control the appearance of individual objects using attributes, but still be
able to 2) reconfigure the layout and styles to generate diverse objects corre-
sponding to the desired specification.

3.2 Attribute ISLA (Attr-ISLA)

Inspired by [3,20,28], the authors of [37] extended the Adaptive Instance Normal-
ization (AdaIN) [20] to object Instance-Sensitive and Layout-Aware feature Nor-
malization (ISLA-Norm) to enable fine-grained and multi-object style control.
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In order to gain control over the appearance of individual objects, we propose to
additionally condition on object attributes using a simple, yet effective enhance-
ment to the ISLA-Norm [37]. On a high-level, the channel-wise batch mean μ
and variance σ are computed as in BatchNorm [16] while the affine transforma-
tion parameters γ and β are instance-sensitive (class labels and attributes) and
layout-aware (object positions) per sample. Similar to [37], this is achieved in a
multi-step process:

1) Label Embedding: Given one-hot encoded label vectors for m objects with
dl denoting the number of class labels, and de the embedding dimension, the
one-hot label matrix Y of size m × dl is transformed into the m × de label-to-
vector matrix representation of labels Y = Y · W using a learnable dl × de size
embedding matrix W .
2) Attribute Embedding: Given binary encoded attribute vectors for m objects,
an intermediate MLP is used to map the attributes into an m×de size attribute-
to-vector matrix representation A.
3) Joint Label, Attribute & Style Projection: The sampled object style noise
matrix Zobj of size m × dnoise is concatenated with the label-to-vector matrix Y

and attribute-to-vector matrix A to obtain the m×(2·de+dnoise) size embedding
matrix S

∗ = (Y, A, Zobj). The embedding matrix S
∗, which now depends on

the class labels, attributes and latent style codes, is used to compute object
attribute-guided instance-sensitive channel-wise γ and β via linear projection
using a learnable (2 · de + dnoise) × 2C projection matrix, with C denoting the
number of channels.
4) Mask Prediction: A non-binary s × s mask is predicted for each object by a
sub-network consisting of up-sample convolutions and a sigmoid transformation.
Next, the masks are resized to the corresponding bounding box sizes.
5) ISLA γ, β Computation: The γ and β parameters are unsqueezed to their
corresponding bounding boxes, weighted by the predicted masks, and finally
added together with averaged sum used for overlapping regions.

Because the affine transformation parameters depend on individual objects in
a sample (class labels, bounding boxes, attributes and styles), our AttrLostGAN
achieves better and fine-grained control over the image generation process. This
allows the user to create an image iteratively and interactively by updating the
layout, specifying attributes, and sampling latent codes. We refer the reader
to [37] for more details on ISLA and [38] for an extended ISLA-Norm which
integrates the learned masks at different stages in the generator.

3.3 Architecture and Objective

We use LostGAN [37,38] as our backbone without changing the general archi-
tecture of the ResNet [9] based generator and discriminator. The discriminator
D(·;ΘD) consists of three components: a shared ResNet backbone to extract
features, an image head classifier, and an object head classifier. Following the
design of a separate label embedding to compute the object-label loss, we create a
separate attribute embedding to compute the object-attribute loss to encourage
the generator G to produce objects with specified attributes. Similar to [37,38],
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the objective can be formulated as follows. Given an image I, the discriminator
predicts scores for the image (simg), and average scores for the object-label (sl)
and object-attribute (sa) features, respectively:

(simg, sl, sa) = D(I, L;ΘD) (2)

We use the adversarial hinge losses

Lt(I, L) =
{

max (0, 1 − st) ; if I is real
max (0, 1 + st) ; if I is fake (3)

where t ∈ {img, l, a}. The objective can hence be written as

L(I, L) = λ1Limg(I, L) + λ2Ll(I, L) + λ3La(I, L), (4)

where λ1, λ2, λ3 are trade-off parameters between image, object-label, and
object-attribute quality. The losses for the discriminator and generator can be
written as

LD = E
[L (

Ireal, L
)

+ L (
I fake, L

)]
LG = −E

[L (
I fake, L

)] (5)

We set λ1 = 0.1, λ2 = 1.0, and λ3 = 1.0 to obtain our main results in Table 1,
and train our models for 200 epochs using a batch size of 128 on three NVIDIA
V100 GPUs. Both λ1, and λ2 are as in [37]. We use the Adam optimizer, with
β1 = 0, β2 = 0.999, and learning rates 10−4 for both generator and discriminator.

4 Experiments

Since we aim to gain fine-grained control of individual objects using attributes,
we first create and experiment with a synthetic dataset to demonstrate the effec-
tiveness of our approach before moving to the challenging Visual Genome [22]
dataset.

4.1 MNIST Dialog

Dataset. We use the MNIST Dialog [36] dataset and create an annotated layout-
to-image dataset with attributes. In MNIST Dialog each image is a 28×28 pixel
MNIST image with three additional attributes, i.e., digit color (red, blue, green,
purple, or brown), background color (cyan, yellow, white, silver, or salmon),
and style (thick or thin). Starting from an empty 128 × 128 image canvas, we
randomly select, resize and place 3–8 images on it thereby creating an annotated
layout-to-image with attributes dataset, where each “object” in the image is an
image from MNIST Dialog. While randomly placing the images on the canvas,
we ensure that each image is sufficiently visible by allowing max. 40% overlap
between any two images.
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Fig. 3. Iterative reconfiguration example on the MNIST Dialog based dataset (all
images are generated by our model). In a) and b), we reconfigure various aspects
of the (not shown) input layout to demonstrate controlled image generation. Our app-
roach allows fine-grained control over individual objects with no or minimal changes to
other parts of the image. During reconfiguration, we can sometimes observe small style
changes, indicating partial entanglement of latent codes and specified attributes. In c),
we horizontally shift one object showing that nearby and overlapping objects influence
each other which might be a desirable feature to model interactions in more complex
settings.

Results. In Fig. 3, we depict generated images using a corresponding layout.
Our model learned to generate sharp objects at the correct positions with corre-
sponding labels and attributes, and we can successfully control individual object
attributes without affecting other objects. When reconfiguring one object we
can sometimes observe slight changes in the style of how a digit is drawn, indi-
cating that the variation provided by the object latent codes is not fully dis-
entangled from the attribute specification. However, we also observe that other
objects remain unchanged, hence providing fine-grained control over the individ-
ual appearance. We further show how two nearby or even overlapping objects
can influence each other which might be necessary to model interacting objects
in more complex settings. We hypothesize this is due to the weighted average
pool in ISLA which computes an average style for that position.

4.2 Visual Genome

Dataset. Finally, we apply our proposed method to the challenging Visual
Genome [22] dataset. Following the setting in [18,37], we pre-process and split
the dataset by removing small and infrequent objects, resulting in 62,565 train-
ing, 5,062 validation, and 5,096 testing images, with 3 to 30 objects from 178
class labels per image. We filter all available attributes to include only such that
appear at least 2,000 times, and allow up to 30 attributes per image.
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Fig. 4. Our model can control the appearance of generated objects via attributes. From
left to right: add bus [red]; bus [red → white], add car [black]; sky [blue → cloudy],
add pant [black]; bus [white → yellow], pant [black → white]; remove person, remove
pant [white], reposition bus [yellow], reposition and resize car [black]; car [black] →
bush [green]; road → water, bus [yellow] → elephant [gray]. (Color figure online)
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Fig. 5. More reconfiguration examples. First pair: sign [green → blue], skateboard
[wooden → yellow]. Second pair: water → ground [grassy], zebra → horse [brown],
repositioned horse [brown], resized elephant, added car [metal]. Third pair: boat [gray
→ red], resized boat [green]. Fourth pair: sky [blue → gray], ground [grassy → dry],
resized both giraffes. (Color figure online)
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Fig. 6. Generating images from a linear interpolation between attribute embeddings
produces smooth transitions. From left to right, we interpolate between the following
attribute specification: sky [white → blue], umbrella [purple → orange], surfboard [blue
→ red]. (Color figure online)

Metrics. Evaluating generative models is challenging because there are many
aspects that would resemble a good model such as visual realism, diversity,
and sharp objects [2,40]. Additionally, a good layout-to-image model should
generate objects of the specified class labels and attributes at their corresponding
locations. Hence, we choose multiple metrics to evaluate our model and compare
with baselines.

To evaluate the image quality and diversity, we use the IS [35] and FID
[12]. To assess the visual quality of individual objects we choose the SceneFID
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[39] which corresponds to the FID applied on cropped objects as defined by the
bounding boxes. Similarly, we propose to apply the IS on generated object crops,
denoted as SceneIS. As in [37], we use the CAS [32], which measures how well
an object classifier trained on generated can perform on real image crops. Note,
this is different to the classification accuracy as used in [26,48], which is trained
on real and tested on generated data, and hence might overlook the diversity of
generated images [38]. Additionally, and in the same spirit as CAS, we report
the micro F1 (Attr-F1) by training multi-label classification networks to evaluate
the attribute quality by training on generated and test on real object crops. As
in [26,37,38,48], we adopt the LPIPS metric as the Diversity Score (DS) [47] to
compute the perceptual similarity between two sets of images generated from
the same layout in the testing set.

Table 1. Results on Visual Genome. Our models (in italics) achieve the best scores
on most metrics, and AttrLostGANv2 is considerably better than AttrLostGANv1.
When trained on higher resolution, our model performs better in terms of object and
attribute quality, while achieving similar scores on image quality metrics. Note, a lower
diversity (DS) is expected due to the specified attributes. Models marked with �, †, �
are trained with an image resolution of 64×64, 128×128, and 256×256, respectively.

Method IS ↑ SceneIS ↑ FID ↓ SceneFID ↓ DS (↑) CAS ↑ Attr-F1 ↑
Real images† 23.50 13.43 11.93 2.46 - 46.22 15.77

Layout2Im [48]� 8.10 - 40.07 - 0.17 - -

LostGANv1 [37]† 10.30 9.07 35.20 11.06 0.47 31.04 -

LostGANv2 [38]† 10.25 9.15 34.77 15.25 0.42 30.97 -

Ke Ma et al. [26]† 9.57 8.17 43.26 16.16 0.30 33.09 12.62

AttrLostGANv1† 10.68 9.24 32.93 8.71 0.40 32.11 13.64

AttrLostGANv2 † 10.81 9.46 31.57 7.78 0.28 32.90 14.61

Real images� 31.41 19.58 12.41 2.78 - 50.94 17.80

LostGANv2 [38]� 14.88 11.87 35.03 18.87 0.53 35.80 -

AttrLostGANv2� 14.25 11.96 35.73 14.76 0.45 35.36 14.49

Qualitative Results. Figure 1 and Fig. 4 depict examples of attribute con-
trolled image generation from reconfigurable layout. Our model provides a novel
way to iteratively reconfigure the properties of individual objects to generate
images of complex scenes without affecting other parts of the image. Figure 5
shows more examples in which we reconfigure individual objects by changing
attributes, class labels, object position and size. In Fig. 6, we linearly interpolate
between two sets of attributes for the same layout. Our model learns a smooth
transition between attributes. In Fig. 7 we compare generated images between
our AttrLostGANv1 and [26] using layouts from the testing set. As can be seen,
generating realistic images of complex scenes with multiple objects is still very
difficult. Although the images generated by our model look more realistic, indi-
vidual objects and details such as human faces are hard to recognize. In terms
of attribute control, our images better depict the input specifications in general.
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Fig. 7. Visual comparison between images generated by our AttrLostGANv1 and Ke
Ma et al. [26] using the layouts shown in the first row. Our images are consistently
better at reflecting the input attributes and individual objects have more details and
better texture. For example, a) bus [white], b) jacket [black, red], c) shirt [purple], d)
plate [white, large], e) pant [orange], f) jacket [blue]. (Color figure online)

Quantitative Results. Table 1 shows quantitative results. We train two vari-
ants of our approach: AttrLostGANv1 which is based on [37], and AttrLost-
GANv2 which is based on [38]. We compare against the recent and only other
direct layout-to-image baseline proposed by Ke Ma et al. [26], which is an exten-
sion of Layout2Im [48] that can be conditioned on optional attributes. Since
no pre-trained model was available at the official codebase of [26], we used the
open-sourced code to train a model. For fair comparison, we evaluate all mod-
els trained by us. Our models achieve the best scores across most metrics, and
AttrLostGANv2 is considerably better than AttrLostGANv1. [26] reaches a com-
peting performance on attribute control, but inferior image and object quality.
For example, our method increases the SceneIS from 8.17 to 9.46, and lowers
the FID from 43.26 to 31.57. Furthermore, our method is better at generating
the appearance specified by the attributes as indicated by the improvement of
Attr-F1 from 12.62 to 14.61. In terms of CAS, our model performs slightly worse
than [26], which might be due to the explicit attribute classifier used in [26] dur-
ing training. Building upon [38] our method can also generate higher resolution
images (256×256 compared to 128×128). By specifying attributes, a decreased
DS is expected but we include it for completeness.
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Ablation Study. We also perform ablations of our main changes to the Lost-
GAN [37] backbone, see Appendix C. Starting from LostGAN we add attribute
information to the generator and already gain an improvement over the baseline
in terms of image quality, object discriminability, as well as attribute informa-
tion. We ablate the additional adversarial hinge loss on object-attribute features
λ3. A higher λ3 leads to better Attr-F1, but decreased image and object quality.
Interestingly, a high λ3 = 2.0 achieves the best SceneFID on object crops, while
the image quality in terms of FID is worst. Although we only have to balance
three weights, our results show that there exists a trade-off between image and
object quality. We choose λ3 = 1.0 for all remaining experiments and ablate the
depth of the intermediate attribute MLP which is used to compute the attribute-
to-vector matrix representation for all objects. While a shallow MLP leads to a
decreased performance, a medium deep MLP with three hidden layers achieves
the best overall performance.

4.3 Discussion

Our approach takes an effective step towards reconfigurable, and controlled
image generation from layout of complex scenes. Our model provides unprece-
dented control over the appearance of individual objects without affecting the
overall image. Although the quantitative as well as visual results are promising
current approaches require attribute annotations which are time-consuming to
obtain. While the attribute control is strong when fixing the object locations, as
demonstrated in our results, the object styles can change when target objects
are nearby or overlap. We hypothesize that this might be due to the average pool
in ISLA when combining label and attribute features of individual objects and
might hence lead to entangled representations. At the same time, such influence
might be desirable to model object interactions in complex settings. Despite
clearly improving upon previous methods both quantitatively and qualitatively,
current models are still far from generating high-resolution, realistic images of
complex scenes with multiple interacting objects which limits their practical
application.

5 Conclusion

In this paper, we proposed AttrLostGAN, an approach for attribute controlled
image generation from reconfigurable layout and style. Our method successfully
addresses a fundamental problem by allowing users to intuitively change the
appearance of individual object details without changing the overall image or
affecting other objects. We created and experimented on a synthetic dataset
based on MNIST Dialog to analyze and demonstrate the effectiveness of our
approach. Further, we evaluated our method against the recent, and only other
baseline on the challenging Visual Genome dataset both qualitatively and quan-
titatively. We find that our approach not only outperforms the existing method in
most common measures while generating higher resolution images, but also that
it provides users with intuitive control to update the generated image to their
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needs. In terms of future work, our first steps are directed towards enhancing
the image quality and resolution. We would also like to investigate unsupervised
methods to address the need of attribute annotations and whether we can turn
attribute labels into textual descriptions.
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