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Abstract. In this work, we focus on outdoor lighting estimation by
aggregating individual noisy estimates from images, exploiting the rich
image information from wide-angle cameras and/or temporal image
sequences. Photographs inherently encode information about the scene’s
lighting in the form of shading and shadows. Whereas computer graphic
(CG) methods target accurately reproducing the image formation pro-
cess knowing the exact lighting in the scene, the inverse rendering is
an ill-posed problem attempting to estimate the geometry, material, and
lighting behind a recorded 2D picture. Recent work based on deep neural
networks has shown promising results for single image lighting estima-
tion despite its difficulty. However, the main challenge remains on the
stability of measurements. We tackle this problem by combining lighting
estimates from many image views sampled in the angular and temporal
domain of an image sequence. Thereby, we make efficient use of the cam-
era calibration and camera ego-motion estimation to globally register the
individual estimates and apply outlier removal and filtering algorithms.
Our method not only improves the stability for rendering applications
like virtual object augmentation but also shows higher accuracy for single
image based lighting estimation compared to the state-of-the-art.

Keywords: Lighting estimation · Spatio-temporal filtering · Virtual
object augmentation

1 Introduction

Deep learning has shown its potential in estimating hidden information like depth
from monocular images [4] by only exploiting learned priors. Accordingly, it has
also been applied for the task of lighting estimation. The shading in a photograph
captures the incident lighting (irradiance) on a surface point. It depends not
only on the local surface geometry and material but also on the global (possibly
occluded) lighting in a mostly unknown 3D scene. Different configurations of
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Fig. 1. Spatio-temporal outdoor lighting aggregation on an image sequence: individ-
ual estimates from each generated subimage are combined in the spatial aggregation
step. Spatial aggregation results for each image in the sequence are then calibrated
using camera ego-motion data and further refined in the temporal aggregation step to
generate the final lighting estimate for the sequence.

material, geometry, and lighting parameters may lead to the same pixel color,
which creates an ill-posed optimization problem without additional constraints.
Hence, blindly estimating the lighting conditions is notoriously difficult, and we
restrict ourselves to outdoor scenes considering only environment lighting where
the incident lighting is defined to be spatially invariant.

Estimating environment lighting can be regarded as the first step towards
holistic scene understanding and enables several applications [1,11,22,28]. It is
essential for augmented reality (seamlessly rendering virtual objects into real
background images) because photo-realistically inserting virtual objects in real
images requires knowing not just the 3D geometry and camera calibration but
also the lighting. The human eye quickly perceives wrong lighting and shadows
as unrealistic, and it has also been shown [27] that shadows are essential for
depth-from-mono estimation using convolutional neural networks.

There have been numerous studies on estimating the lighting from image
data. Those methods mostly focus on estimating sky map textures [5] or locating
the sun position from a single RGB image [6,8,34], calculating sun trajectories
from time-lapse videos [1,19], or utilizing material information to conjecture the
positions of multiple light sources [29].

In this paper, we propose a method to robustly estimate the global environ-
ment’s sun direction by exploiting temporal and spatial coherency in outdoor
lighting. The image cues for resolving the lighting in a scene appear sparsely
(e.g., shadows, highlights, etc.) or very subtle and noisy (e.g., color gradients,
temperature, etc.) and not all images provide the same quality of information
for revealing the lighting parameters. For example, consider an image view com-
pletely covered in shadow. Hence, the predictions for the lighting on individual
images of a sequence are affected by a large amount of noise and many out-
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liers. To alleviate this issue we propose to sample many sub-views of an image
sequence essentially sampling in the angular and temporal domain. This app-
roach has two advantages. First, we effectively filter noise and detect outliers,
and second, our neural network-based lighting estimator becomes invariant to
the imaging parameters like size, aspect ratio, and camera focal length and can
explore details in the high-resolution image content. To this end, the contribu-
tions of this paper are:

1. A single image based sunlight estimation using a deep artificial neural network
that is on par or better than the current state-of-the-art,

2. A two-stage post-processing approach for spatial and temporal filtering with
outlier detection that fully exploits the information from calibrated image
sequences to overcome noisy, outlier-sensitive estimation methods.

2 Related Work

Outdoor lighting condition estimation has been studied in numerous ways
because of its importance in computer graphics and computer vision applica-
tions [12,20]. Related techniques can be categorized into two parts, one that
analyzes a single image [5,9,15,21] and the other that utilizes a sequence of
images [1,16,19,22]. For example, the outdoor illumination estimation method
presented in [23] belongs to the latter as the authors estimated the sun trajectory
and its varying intensity from a sequence of images. Under the assumption that
a static 3D model of the scene is available, they designed a rendering equation-
based [10] optimization problem to determine the continuous change of the light-
ing parameters. On the other hand, Hold-Geoffroy et al. [6] proposed a method
that estimates outdoor illumination from a single low dynamic range image using
a convolutional neural network [14]. The network was able to classify the sun
location on 160 evenly distributed positions on the hemisphere and estimated
other parameters such as sky turbidity, exposure, and camera parameters.

Analyzing outdoor lighting conditions is further developed in [34] where they
incorporated a more delicate illumination model [16]. The predicted parameters
were numerically compared with the ground truth values and examined rather
qualitatively by utilizing the render loss. Jin et al. [8] and Zhang et al. [35]
also proposed single image based lighting estimation methods. While their pre-
decessors [6,34] generated a probability distribution of the sun position on the
discretized hemisphere, the sun position parameters were directly regressed from
their networks. Recently, Zhu et al. [36] combined lighting estimation with intrin-
sic image decomposition. Although they achieved a noticeable outcome in the
sun position estimation on a synthetic dataset, we were unable to compare it
with ours due to the difference in the datasets.

The aforementioned lighting estimation techniques based on a single image
often suffer from insufficient cues to determine the lighting condition, for exam-
ple, when the given image is in a complete shadow. Therefore, several attempts
were made to increase the accuracy and robustness by taking the temporal
domain into account [1,16,22]. The method introduced in [19] extracts a set
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of features from each image frame and utilizes it to estimate the relative changes
of the lighting parameters in an image sequence. Their method is capable
of handling a moving camera and generating temporally coherent augmenta-
tions. However, the estimation process utilized only two consecutive frames and
assumed that the sun position is given in the form of GPS coordinates and
timestamps [25].

Lighting condition estimation is also crucial for augmented reality where
virtual objects become more realistic when rendered into the background image
using the correct lighting. Lu et al. [20], for instance, estimated a directional light
vector from shadow regions and the corresponding objects in the scene to achieve
realistic occlusion with augmented objects. The performance of the estimation
depends solely on the shadow region segmentation and finding related items.
Therefore, the method may struggle if a shadow casting object is not visible in
the image. Madsen and Lal [22] utilize a stereo camera to extend [23] further.
Using the sun position calculated from GPS coordinates and timestamps, they
estimated the variances of the sky and the sun over an image sequence. The
estimation is then combined with a shadow detection algorithm to generate
plausible augmented scenes with proper shading and shadows.

Recently, there have been several attempts utilizing auxiliary information to
estimate the lighting condition [11,33]. Such information may result in better
performance but only with a trade-off in generality. Kán and Kaufmann [11] pro-
posed a single RGB-D image-based lighting estimation method for augmented
reality applications. They utilized synthetically generated scenes for training a
deep neural network, which outputs the dominant light source’s angular coor-
dinates in the scene. Outlier removal and temporal smoothing processes were
applied to make the method temporally consistent. However, their technique
was demonstrated only on fixed viewpoint scenes. Our method, on the other
hand, improves its estimation by aggregating observations from different view-
points. We illustrate the consistency gained from our novel design by augmenting
virtual objects in consecutive frames.

3 Proposed Method

We take advantage of different aspects of previous work and refine them into
our integrated model. As illustrated in Fig. 1, our model is composed of four
subprocesses. We first randomly generate several small subimages from an input
image and upsample them to a fixed size. Since modern cameras are capable of
capturing fine details of a scene, we found that lighting condition estimation can
be done on a small part of an image. These spatial samples obtained from one
image all share the same lighting condition and therefore yield more robustness
compared to a single image view. Then, we train our lighting estimation network
on each sample to obtain the global lighting for a given input image.

After the network estimates the lighting conditions for the spatial samples,
we perform a spatial aggregation step to get a stable prediction for each image.
Note that the estimate for each frame is based on its own camera coordinate
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system. Our third step is to unify the individual predictions into one global
coordinate system using the camera ego-motion. Lastly, the calibrated estimates
are combined in the temporal aggregation step. The assumption behind our
approach is that distant sun-environment lighting is invariant to the location
the picture was taken and that the variation in lighting direction is negligible
for short videos. Through the following sections, we introduce the details of each
submodule.

3.1 Lighting Estimation

There have been several sun and sky models to parameterize outdoor lighting
conditions [7,16]. Although those methods are potentially useful to estimate
complex lighting models consistently, in this work we focus only on the most
critical lighting parameter: the sun direction. The rationale behind this is that
ground-truth training data can easily be generated for video sequences with GPS
and timestamp information (e.g., KITTI dataset [3]). Therefore, the lighting
estimation network’s output is a 3D unit vector �vpred pointing to the sun’s
location in the camera coordinate system.

Unlike our predecessors [6,34], we design our network as a direct regression
model to overcome the need for a sensitive discretization of the hemisphere. The
recent work of Jin et al. [8] presented a regression network estimating the sun
direction in spherical coordinates (altitude and azimuth). Our method, however,
estimates the lighting direction using Cartesian coordinates and does not suffer
from singularities in the spherical parametrization and the ambiguity that comes
from the cyclic nature of the spherical coordinates.

Since we train our network in a supervised manner, the loss function is defined
to compare the estimated sun direction with the ground truth �vgt:

Lcosine = 1 − �vgt · �vpred/||�vpred||, (1)

with the two adjacent unit vectors having their inner product close to 1. To
avoid the uncertainty that comes from the vectors pointing the same direction
with different lengths, we apply another constraint to the loss function:

Lnorm = (1 − ||�vpred||)2. (2)

The last term of the loss function ensures that the estimated sun direction resides
in the upper hemisphere because we assume the sun is the primary light source
in the given scene:

Lhemi = max(0,−zpred), (3)

where zpred is the third component of �vpred, indicating the altitude of the sun.
The final loss function is simply the sum of all terms as they share a similar
range of values:

Llight = Lcosine + Lnorm + Lhemi. (4)
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3.2 Spatial Aggregation

Using our lighting estimator, we gather several lighting condition estimates from
different regions of the image. Some of those estimates may contain larger errors
due to insufficient information in the given region to predict the lighting condi-
tion. We refer to such estimates as outliers. Our method’s virtue is to exclude
anomalies that commonly occur in single image-based lighting estimation tech-
niques and deduce the best matching model that can explain the inliers.

Among various outlier removal algorithms, we employ the isolation forest
(iForest) algorithm [18]. The technique is specifically optimized to isolate anoma-
lies instead of building a model of inliers and eliminate samples not complying
with it. In essence, the iForest algorithm recursively and randomly splits the
feature space into binary decision trees (hence forming a forest). Since the out-
liers are outside of a potential inlier cluster, a sample is classified as an outlier
if the sample’s average path length is shorter than a threshold (contamination
ratio [24]). We determine this value empirically and use it throughout all results.

On the remaining inliers, we apply the mean shift algorithm [2] to conjecture
the most feasible lighting parameters. Unlike naive averaging over all inliers, this
process further refines the lighting estimate by iteratively climbing to the maxi-
mum density in the distribution. Another experimentally discoverable parameter
bandwidth determines the size of the Gaussian kernel to measure the samples’
local density gradient. In the proposed method, we set the bandwidth as the
median of all samples’ pairwise distances. By moving the data points iteratively
towards the closest peak in the density distribution, the algorithm locates the
highest density within a cluster, our spatial aggregation result. We compare
various aggregation methods in the ablation study in Sect. 4.4.

3.3 Calibration

Since our primary goal is to assess the sun direction for an input video, we per-
form a calibration step to align the estimates because the sun direction deter-
mined from each image in a sequence is in its own local camera coordinate sys-
tem. The camera ego-motion data is necessary to transform the estimated sun
direction vectors into the world coordinate system. We assume the noise and
drift in the ego-motion estimation is small relative to the lighting estimation.
Hence, we employ a state-of-the-art structure-from-motion (SfM) technique such
as [26] to estimate the ego-motion from an image sequence. Then there exists a
camera rotation matrix Rf for each frame f and the resulting calibrated vector
�̂vpred is computed as R−1

f · �vpred.

3.4 Temporal Aggregation

Having the temporal estimates aligned in the same global coordinate system,
we consider them as independent observations of the same lighting condition
in the temporal domain. Although the lighting estimates from our regression
network are not necessarily independent for consecutive video frames, natural
image sequences, as shown empirically in our experiments, reveal a large degree
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Table 1. Number of data and subimages for training and test

Dataset SUN360 KITTI

Training Data 16 891 3630

Subimg 135 128 116 160

Test Data 1688 281

Subimg 108 032 17 984

of independent noise in the regression results, which is however polluted with a
non-neglectable amount of outliers. Consequently, we apply a similar aggregation
strategy as in the spatial domain also for the temporal domain. Therefore, the
final output of our pipeline, the lighting condition for the given image sequence,
is the mean shift algorithm’s result on the inliers from all frames of the entire
image sequence.

4 Experiments

4.1 Datasets

One of the common datasets considered in the outdoor lighting estimation meth-
ods is the SUN360 dataset [31]. Several previous methods utilized it in its original
panorama form or as subimages by generating synthetic perspective images [6].
We follow the latter approach since we train our network using square images.
We first divide 20267 panorama images into the training, validation, and test
sets with a 10:1:1 ratio. For the training and the validation sets, 8 subimages
from each panorama are taken by evenly dividing the azimuth range. To increase
the diversity, 64 subimages with random azimuth values are generated from each
panorama in the test set. Note that we introduce small random offsets on the
camera elevation with respect to the horizon in [−10◦, 10◦] and randomly select
a camera field of view within a range [50◦, 80◦]. The generated images are resized
to 256 × 256. In this way, we produced 135128, 13504, and 108032 subimages
from 16891, 1688, and 1688 panoramas for the training, validation, and test sets,
respectively. The ground truth labeling was given by the authors of [34].

The well-known KITTI dataset [3] has also attracted our attention. Since the
dataset is composed of several rectified driving image sequences and provides
the information required for calculating the ground truth sun directions [25], we
utilize it for both training and test. Specifically, since the raw data was recorded
at 10 Hz, we collect every 10th image to avoid severe repetition and split off five
randomly chosen driving scenes for validation and test set. The resulting training
set is composed of 3630 images. If we train our network using only one crop for
each KITTI image, the network is likely to be biased to the SUN360 dataset due
to the heavy imbalance in the amount of data. To match the number of samples,
we crop 32 subimages from one image by varying the cropping location and the
crop size. Each image in the test set is again cropped into 64 subimages and the
cropped images are also resized to 256 × 256. In total, we train our network on
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about 250000 images. The exact numbers of samples are presented in Table 1
and Fig. 2 illustrates examples of the two datasets.

4.2 Implementation Details

Our lighting estimation model is a regression network with convolution layers. It
accepts an RGB image of size 256× 256 and outputs the sun direction estimate.
We borrow the core structure from ResNeXt [32] and carefully determine the
number of blocks, groups, and filters as well as the sizes of filters under exten-
sive experiments. As illustrated in Fig. 3, the model is roughly composed of 8
bottleneck blocks, each of which is followed by a convolutional block attention
module [30]. In this way, our network is capable of focusing on important spa-
tial and channel features while acquiring resilience from vanishing or exploding
gradients by using the shortcut connections. A global average pooling layer is
adopted to connect the convolution network and the output layer and serves as a
tool to mitigate possible overfitting [17]. The dense layer at the end then refines
the encoded values into the sun direction estimate.

We train our model and test its performance on the SUN360 and the KITTI
datasets (see Table 1). In detail, we empirically trained our lighting estimation
network for 18 epochs using early stopping. The training was initiated with the
Adam optimizer [13] using a learning rate of 1 × 10−4 and the batch size was
64. It took 12 h on a single Nvidia RTX 2080 Ti GPU. Prediction on a single
image takes 42 ms. Our single image lighting estimation and spatial aggregation
modules are examined upon 108 032 unobserved SUN360 crops generated from
1688 panoramas. The whole pipeline including the calibration and temporal
aggregation modules is analyzed on five unseen KITTI sequences composed of
281 images.

4.3 Results

We evaluate the angular errors of the spatially aggregated sun direction esti-
mates on the SUN360 test set. At first, single image lighting estimation results

KITTISUN360

Fig. 2. Examples of the two datasets [3,31]. From the original image (top), we generate
random subimages (bottom).
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Fig. 3. The proposed lighting estimation network. The numbers on the Conv2D layer
indicate the number of filters, the filter size, and the stride, whereas the numbers on
each Bottleneck block depict the number of 3× 3 filters, the cardinality, and the stride.
A Bottleneck block is implemented following the structure proposed in [32] except for
a convolutional block attention module [30] attached at the end of each block.
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Fig. 4. The cumulative angular error for spatially aggregated sun direction estimates
on the SUN360 test set. Ours, SUN360 indicates our results when the network was
only trained with the SUN360 dataset.

are gathered using [6,8,35], and our method. Then we compensate the camera
angles and apply our spatial aggregation step on the subimages to acquire the
spatially combined estimate for each panorama. The explicit spatial aggregation
step involves two additional hyperparameters: the contamination ratio and the
mean-shift kernel width. We found those parameters to be insensitive to different
data sets and kept the same values in all our experiments. The contamination
ratio is set to 0.5 because we assume the estimations with angular errors larger
than an octant (22.5◦) as outliers, which is roughly 50% of the data for our
method when observing Fig. 7. As a result, we apply the mean shift algorithm
on 50% potential inliers among the total observations.
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Table 2. Angular errors of each aggregation step (from left to right: single image
(baseline), spatial aggregation, spatio-temporal aggregation). Sequences correspond to
Fig. 5.

Sequence Single Spatial Spatiotemporal

(a) 13.43 6.76 3.54

(b) 26.06 7.81 6.87

(c) 34.68 24.83 13.17

(d) 23.03 10.04 3.27

Figure 4 illustrates the cumulative angular errors of the four methods. Since
the previous methods were trained with only the SUN360 training set, due to the
characteristics of their networks (requiring ground truth exposure and turbidity
information which are lacked in the KITTI dataset), we also report our method’s
performance when it was trained only on SUN360 (see Ours, SUN360 in Fig. 4).
Our method performs better than the previous techniques even with the same
training set. The detailed quantitative comparison is presented in Fig. 7. Note
that all methods are trained and tested with subimages instead of full images.

For the KITTI dataset, we can further extend the lighting estimation to the
temporal domain. Although the dataset provides the ground truth ego-motion,
we calculated it using [26] to generalize our approach. The mean angular error
of the estimated camera rotation using the default parameters was 1.01◦ over
the five test sequences. We plotted the sun direction estimates of each step
in our pipeline for four (out of five) test sequences in Fig. 5. Note that in the
plots all predictions are registered to a common coordinate frame using the
estimated camera ego-motion. Individual estimates of the subimages are shown
with gray dots. Our spatial aggregation process refines the noisy observations
using outlier removal and mean shift (black dots). Those estimates for each frame
in a sequence are finally combined in the temporal aggregation step (denoted
with the green dot). The ground truth direction is indicated by the red dot.
Using the spatio-temporal filtering, the mean angular error over the five test
sequences recorded 7.68◦, which is a reduction of 69.94% (25.56◦ for single image
based estimation). A quantitative evaluation of the performance gain for each
aggregation step is presented in Table 2.

Our model’s stability is better understood with a virtual object augmentation
application as shown in Fig. 6. Note that other lighting parameters, such as
the sun’s intensity are manually determined. When the lighting conditions are
estimated from only a single image on each frame, the virtual objects’ shadows
are fluctuating compared to the ground truth results. The artifact is less visible
on our spatial aggregation results and entirely removed after applying the spatio-
temporally aggregated lighting condition.
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Fig. 5. Scatter plots representing sun direction estimates of individual subimages and
the results of two aggregation steps. Each graph corresponds to an image sequence in
the KITTI test set. Despite numerous outliers in the raw observations (the gray dots),
our two-step aggregation determines the video’s lighting condition with small margins
to the ground truth sun direction (the black dots for spatial aggregation and the green
dot for spatio-temporal aggregation). Angular errors for our spatio-temporal filtering
results are (a) 3.54 (b) 6.87 (c) 13.17 and (d) 3.27◦. (Color figure online)

4.4 Ablation Study

The performance gain of the spatial aggregation process is thoroughly analyzed
by breaking down the individual filtering steps on the SUN360 test set. Figure 7
shows the cumulative angular error for the raw observations and compares the
four lighting estimation methods with four different aggregation strategies:

– Single: unprocessed individual observations,
– Mean all : mean of all estimates from each panorama,
– Mean inliers: mean of inlier estimates,
– Meanshift : mean shift result of inlier estimates.

As illustrated in Fig. 7, the average angular error of each method is decreased
by at most 10◦ after applying the proposed spatial aggregation. This result
demonstrates our method’s generality, showing that it can increase the accuracy
of any lighting estimation method. We observe a slight increase in the average
error for the Mean all metric due to the outlier observations. A similar analysis
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Single Spatial aggregation Spatio-temporal aggregation Ground truth

Fig. 6. Demonstration of a virtual augmentation application. Fluctuations in the
shadow of the augmented object decrease as the estimates are refined through our
pipeline. After applying the spatio-temporal filtering, the results are fully stabilized
and almost indistinguishable from the ground truth. Please also refer to the augmented
video in the supplementary material.

Ours Ours,
SUN360 [6] [8] [35]

Single 32.64 32.57 44.91 34.32 40.75
Mean All 35.11 34.61 49.94 37.21 44.61
Mean Inlier 29.61 30.58 38.03 32.53 31.80
Meanshift 27.63 29.26 32.04 31.32 30.13
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Fig. 7. (left) The cumulative angular error for the single estimates on the SUN360
test set. (right) Comparing average angular error for three methods with different
spatial aggregation strategies. Our method achieved the best result when the mean
shift is applied to the inliers. We outperform previous methods even without the KITTI
dataset.

is done for the KITTI dataset with only our method. The cumulative angular
error graphs for the four steps are presented in Fig. 8.

Our pipeline was also tested as an end-to-end model, but it failed to show
comparable performance. We provide the details of this experiment as well as
additional studies with different combinations of loss functions in the supple-
mentary material.
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Fig. 8. The cumulative angular error on the KITTI test set with different spatial
aggregation strategies. The best result is recorded when the mean shift result of the
inlier estimates is utilized.

5 Conclusion

In this paper, we proposed a single image lighting estimation method and showed
how its performance can be improved using spatial and temporal aggregation.
Our method achieved state-of-the-art performance on outdoor lighting estima-
tion for a given image sequence. We utilized 360◦ panoramas and wide view
images in our work, but our spatial aggregation can be also applied to any image
containing enough details. To this end, our spatio-temporal aggregation can be
extended to different methods of gathering globally shared scene information.

Although we demonstrated noticeable outcomes in augmented reality appli-
cations, intriguing future research topics are remaining. We plan to extend our
model to examine other factors such as cloudiness or exposure as it helps to
accomplish diverse targets, including photorealistic virtual object augmentation
over an image sequence. With such augmented datasets, we could enhance the
performance of other deep learning techniques.
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