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Abstract. Single-Image Super-Resolution has seen dramatic improvements due
to the application of deep learning and commonly achieved results show impres-
sive performance. Nevertheless, the applicability to real-world images is limited
and expectations are often disappointed when comparing to the performance
achieved on synthetic data. For improving on this aspect, we investigate and
compare two extensions of orthogonal popular techniques, namely plug-and-play
optimization with learned priors, and a single end-to-end deep neural network
trained on a larger variation of realistic synthesized training data, and compare
their performance with special emphasis on model violations. We observe that
the end-to-end network achieves a higher robustness and flexibility than the opti-
mization based technique. The key to this is a wider variability and higher realism
in the training data than is commonly employed in training these networks.
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1 Introduction

Single-image super-resolution (SISR) techniques, in particular, learning based or learn-
ing supported techniques, have evolved to a point where impressive image improve-
ments can be achieved on a wide variety of scenes [8,9,22,32,41]. However, their
applicability in real-world scenarios is reduced by an often inadequate modeling of
the image formation in real imaging systems [25]. In particular, spatially varying blur
is often ignored and the noise characteristics of real sensors, modified by the non-linear
operations of image signal processors, are commonly inadequately treated as Gaussian
processes. This limitation can be traced back to synthesized data being used for train-
ing. The general approach is to use images from existing data sets and to synthesize low
resolution images by using bicubic downsampling.

Supplementary Information The online version contains supplementary material available at
https://doi.org/10.1007/978-3-030-92659-5 20.

c© Springer Nature Switzerland AG 2021
C. Bauckhage et al. (Eds.): DAGM GCPR 2021, LNCS 13024, pp. 313–327, 2021.
https://doi.org/10.1007/978-3-030-92659-5_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92659-5_20&domain=pdf
https://doi.org/10.1007/978-3-030-92659-5_20
https://doi.org/10.1007/978-3-030-92659-5_20


314 S. Z. Taray et al.

This, in conjunction with the required generalizability to different camera and lens
combinations, poses a challenge for the real-world application of SISR techniques.
Our goal is to improve on this situation. For this purpose, we follow two orthogo-
nal approaches: 1) we generalize a method based on the Plug-and-Play (PnP) frame-
work [35] to handle spatially varying blur kernels. 2) we explore the potential of Deep
Neural Networks (DNNs) [8] to model mappings of input images that are subject to a
variety of possible degradations, including different blur kernels of the expected spa-
tial variation due to the lens system, as well as different noise levels and compositions,
i.e. different ratios of Gaussian and Poisson noise as well as correlations introduced
by image processing. We compare the performance of these two approaches and assess
their robustness against model violations.

Common knowledge holds that PnP techniques are more resilient against the out-
lined problems, whereas DNNs quickly deteriorate in performance when run on data
outside the characteristics of the training set. The latter is often assumed to include train-
ing data for a single image formation model and a modest variability in the noise set-
tings. Our investigations show that the training data set can include a sufficient variety
of image formation settings such that the performance of the trained DNN approaches
an effectively blind deconvolution setting.

In summary, our contributions are as follows:

– we generalize PnP optimization techniques for SISR to handle spatially varying blur
kernels,

– we propose a data synthesis approach for generating realistic input data for DNN
training that incorporates the major sources of variation in real-world data,

– we train a state-of-the-art DNN [12,36] on a suitably synthesized training data set
that includes expected real-world image formation variations (varying blur and real-
istic noise distributions),

– experimentally compare the resulting techniques on different scenarios with special
emphasis on a violation of the image formation model.

We find that the end-to-end learning technique yields superior results and robustness
as compared to the extended plug-and-play technique, as well as compared against the
state-of-the-art.

2 Related Work

The goal of SISR is to generate a high-resolution (HR) image from a single low-
resolution (LR) image. Most methods are intended for photographic content and aim
to hallucinate details and textures that fit nicely with the input LR image while produc-
ing a realistic looking higher resolution image.

Example-based methods can be divided into two categories namely Internal and Exter-
nal Example-based methods.

Internal Example-based Methods [13,17] rely on the assumption that a natural
image has repetitive content and exploit this recurrence by replacing each patch within
the LR image with a higher resolution version. Shocher et al. [33] propose Zero Shot
Super-Resolution wherein they train a small CNN using patches taken only from the
test image.
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External Example-based methods rely on an external database of paired LR/HR
images. Freeman et al. [11] first generate a dictionary of LR and HR patches that is
then used similarly to the previously discussed techniques in applications. Chang et
al. [6] extended this method using k nearest dictionary neighbors whereas Zeyde et
al. [38] learn sparse representations of LR and HR patches. Dictionary-based methods
were superseded by Convolutional Neural Network (CNN) based methods which have
been very successful and continue to dominate standard SISR benchmarks.

CNN-based methods were introduced by Dong et al. [8] who proposed the shallow
convolutional network SRCNN. Kim et al. [20] show significant performance gains
by using deeper networks. Shi et al. [32] propose the Efficient Sub-Pixel Convolu-
tion Layer (ESPCN) to include an up-scaling step into the network that had previ-
ously been implemented as a pre-process. Typical training losses are the L1 and L2

losses. These loss functions tend to create unattractive structures in the super-resolved
(SR) images [19,22]. Thus, several recent works [19,22,36] have aimed to devise
loss functions which correlate better with human perception. Ledig et al. [22] propose
SRGAN which uses a combination of three loss functions to achieve photo-realistic
super-resolution. Wang et al. [36] introduce improvements by comprehensively study-
ing the factors affecting the performance of SRGAN, creating the ESRGAN technique.
It should be noted that SRGAN and ESRGAN tend to produce images with textures
even in flat image regions, creating perceptually unpleasing artifacts. To overcome this
problem, Fritsche et al. [12] propose frequency separation, i.e. the GAN cannot synthe-
size in low-frequency image regions. We base our end-to-end technique, Sect. 5 on a
combination of ESRGAN trained with a perceptual loss and frequency separation.

Recently, some algorithms have been proposed to overcome the challenges of real-
world super-resolution mentioned in the introduction [18,21,24,27,31,42]. Zhou and
Süsstrunk [42] construct a synthetic data set by simulating degradation on LR and HR
pairs and train a CNN to perform SR, whereas Lugmayr et al. [24] propose unsupervised
learning for data set generation while employing a supervised network for SR. Some
methods [21,27] exploit blind kernel estimation to generalize better to real images while
maintaining a non-blind general approach, whereas Ji et al. [18] propose to use two
differently trained networks with a final output fusion stage to solve the realistic image
super-resolution problem.

Plug-and-Play (PnP) Approaches are, in contrast, based on an optimization formu-
lation of the SISR problem [7,15,26,34,35,43]. Typically, convex optimization has
been employed for this purpose in image restoration [7,35,43] and, due to its flexi-
bility, the idea has been extended to different applications [15,26,34], including super-
resolution [4,5]. Most of these methods are limited to Gaussian noise assumptions.
Zhang et al. [39] proposed to include a learned CNN prior in the iterative solution using
the MAP framework. We build on their technique in Sect. 4.

3 Overview

The important components of an imaging system are its optics, its sensor and its pro-
cessing unit, respective the algorithm running on this unit. These components work
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together to give images the characteristics that we associate with natural real-world
images, i.e. non-uniform lens blur and non-Gaussian noise afflicts real-world images.
Optimization-based algorithms must properly model this image formation and we
extend the PnP technique DPSR [39] to handle spatially varying blur in Sect. 4. Learn-
ing techniques rely on large amounts of training data that are most suitably generated
synthetically. We describe the generation of suitable data with the outlined real-world
characteristics and give details of the training process of the state-of-the-art network
ESRGAN-FS [12,36] in Sect. 5. In Sect. 6, we compare the performance of the two
approaches, first in synthetic experiments and later on actual real-world images.

4 Plug and Play Framework

Let the observed LR image be denoted by y ∈ RMN . It is related to the desired HR
image x ∈ Rs2MN via blurring, sampling and the addition of noise. Here M and N
are the height and width of the LR image and s ≥ 1 is the scaling factor. The effect
of spatially varying blur is modeled by a linear operator H that operates on x, while
the sampling of the blurred image is modeled by the linear operator D. In this section,
the sampled image is degraded by additive noise denoted by vector n ∈ RMN . In our
implementations, the operators are realized as function evaluations rather than being
discretized as sparse matrices.

According to Zhang et al. [39], it is advantageous, mathematically, to switch the
procedures of blurring and sampling, because it enables a simple algorithmic decompo-
sition that allows neural networks to be used as priors for super resolution.

y = HDx+ n. (1)

The image formation model of Eq. 1, while physically incorrect, is an approximation
that enables network-encoded priors to be easily incorporated into proximal optimiza-
tion algorithms [3].

The resulting optimization problem is

x̂ = argmin
x

1
2σ2

‖y − HDx‖2 + λΦ(x), (2)

where the first term is the data-fidelity term andΦ(x) is the regularization term encoding
the prior information, that is network-encoded in our setting. Solving the optimization
problem via proximal algorithms consists of a variable splitting, that, in the case of the
ADMM method [28] applied to Eq. 2 leads to the following iterative scheme:

xk+1 = argmin
x

λΦ(x) +
ρ

2
‖Dx − zk + uk‖22, (3)

zk+1 = argmin
z

1
2σ2

‖y − Hz‖22 +
ρ

2
‖Dxk+1 − z+ uk‖22, (4)

uk+1 = uk +
(
Dxk+1 − zk+1

)
. (5)

Here, Dx = z is the variable splitting, u is the dual variable, σ is the noise level under a
Gaussian white noise assumption, λ is the regularization parameter and ρ is the penalty



A Comparative Study of PnP and Learning Approaches 317

parameter of the associated augmented Lagrangian Lρ [3]. For a detailed derivation,
please see the supplemental material. Please observe that the linear operators H and
D now appear in different sub-expressions and not, as before, in combination. This
enables the plug-and-play nature of the algorithm.

The first update step, Eq. 3 is a super-resolution scheme with a network-based prior
encoded in Φ(x) as can be seen by ignoring the dual variable u that tends to zero as the
splitting equality Dx = z is approached by the iteration. We follow the procedure of
Zhang et al. [39] to obtain xk+1 via a pre-trained CNN. We use the same architecture
as [39], i.e. SRResnet+, and train it for variable levels of additive white Gaussian noise
in the range [0, 50] for joint denoising and super-resolution. We denote the network
by SRD to note that the network is trained for a fixed downsampling operator D. To
adapt a single network for various noise levels, a noise level map of the same size as
the input image is created and concatenated with the input image. The image and the
noise level map concatenated together become the input to the network which outputs
a super-resolved and denoised image xk+1, i.e. Eq. 3 is replaced by

xk+1 = SRD

(
zk, ρ

)
. (6)

The second update step, Eq. 4 can be interpreted as a deblurring step at the size of
the LR image, which results in an intermediate deblurred LR image z. Previous work
considers the blur to be spatially invariant [39]. However, we consider the more general
problem where the blur is spatially varying. We discuss this minimization problem in
detail in Sect. 4.1 because it contains our extension of the algorithm [39] to spatially
varying blur kernels.

The third update step given in Eq. 5 is simply the update of the dual variable required
in ADMM.

We set λ = 0.3 and vary ρ to affect regularization for all our experiments. In prac-
tice, we increase ρ on an exponential scale from ρ = 1/2500 to ρ = 2/σ, where σ is
the noise level of the image (assumed to be in the range [0, 255]).

4.1 Spatially Varying De-blurring

In this section we describe our approach to tackle the minimization problem of Eq. 4
which can be re-written in the following way:

zk+1 = argmin
z

‖y − Hz‖22 + σ2ρ‖x̃k+1 − z‖22︸ ︷︷ ︸
G(z)

. (7)

For ease of notation, we have used x̃k+1 = Dxk+1 + uk. Recall that y is the input
LR image that we wish to super-resolve and σ is the noise level of each pixel in y. As
mentioned above, H now represents the spatially varying blur operator. The objective
G(z) is smooth and convex. To minimize the objective, we rely on the Gradient Descent
with Momentum [30] method with constant step size and momentum parameters given
by

wt+1 = zt + β(zt − zt−1) (8)

zt+1 = wt+1 − α∇zG(wt+1), (9)
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Algorithm 1. AG solver

Input Operators H and HT . Constant quantities y, x̃k+1, ρ and σ. Parameters α and β and total
iterations NAG
1: Initialize z−1 = y and z0 = 0
2: while t < NAG do
3: wt+1=zt+β(zt−zt−1)

4: zt+1=wt+1−2α(HT Hwt+1+ρσ2wt+1−HT y−ρσ2x̃k+1)

Output zNAG

where ∇z denotes the gradient operator with respect to z and w is an intermediate
vector introduced to shorten the notation. We set α = 0.2 and β = 0.1 for all our
experiments. The details of the solver are given in Algorithm 1.

Note that the solver only relies on matrix vector multiplications of the form Hz and
HT z. We implement these efficiently using the Filter Flow Framework of Hirsch et
al. [16]. Explicit formulas for evaluating H and HT are given in the supplement. For
convenience, let us denote the solver by AG which allows us to write Eq. 4 as:

zk+1 = AG(H,HT , x̃k+1,y, σ, ρ). (10)

The solver AG takes as inputs the operators H and HT along with the vectors y, x̃k

and the constants ρ and σ, and outputs the deblurred image zk+1. Finally, the overall
scheme to solve the original SISR problem of Eq. 2 is presented in Algorithm 2.

Algorithm 2. PnP Optimization with DNN prior for SISR

Input LR image y, noise level σ, operators H and HT total iterations T

1: Initialize z0 = 0 and u0 = 0
2: while k < NSR do
3: xk+1 = SRD

(
zk, ρ

)
[Joint SR and denoising]

4: zk+1 = AG(H, HT ,xk+1,y, σ, ρ)[Deblurring Step]
5: uk+1 = uk +

(
Dxk+1 − zk+1

)
[Dual var. update]

Output xNSR

5 End-to-End Learning with Input Variants

In the above section, we generalize PnP optimization techniques and present a non-
blind learning-supported optimization algorithm to handle spatially varying blur ker-
nels. Our goal in the current section is to train the state-of-the-art SISR end-to-end
network ESRGAN [36] to include variations in expected input data both in terms of
realistic noise models and levels as well as in expected blur variations. We use the
Residual-in-Residual Dense Block Network (RRDBNet) architecture of [36] with 23
RRDBs, and train the network using either L1 loss or the perceptually motivated Lper

loss [22]. We refer to the respective training loss in discussing our experimental results
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in Sect. 6. We also employ the frequency separation technique of Fritsche et al. [12] to
suppress texture generation in smooth image areas. The images are cropped to a size
of 128 × 128 during training and data augmentation consisting of random horizontal
and vertical flips is also applied for better generalization. We implement the network
in PyTorch and use the built in Adam optimizer with β1 = 0.9 and β2 = 0.99 and an
initial learning rate of 2 × 10−4 for optimization. We set the batch size to 24 and train
the network for 500 epochs. Training the network on one Nvidia Quadro 6000 RTX
takes around 10 h.

Fig. 1. Simulated spatially varying blur kernels used for the synthetic experiments (left). Mea-
sured spatially varying blur kernels of the target optical system (right). The spatial layout indi-
cates the image regions affected by the corresponding kernels. The kernels are smoothly blended
across the simulated images.

5.1 Training Data Synthesis

In order to generate a large amount of training data, we rely on LR image synthesis. To
achieve realism, we aim to match the blurring and noise characteristics found in real
world images. We use a data set containing high quality images [1,23] as a basis. Since
the images in these data sets can contain residual noise, we clean these images prior to
the synthesis operation by Gaussian filtering and downsampling, resulting in the clean
HR image. Let this image be denoted by x. The HR image is blurred to obtain a blurred
image denoted by xblurred by convolving x with a filter h. This gives the clean but
blurred image xblurred which is then downsampled by the desired scale factor s giving
the downsampled image denoted by ys where s denotes, as before, the factor by which
we ultimately wish to super-resolve the images. The filter h is obtained by randomly
selecting one filter from a filter bank. The filter bank consists of filters obtained as
explained below.

– We synthesize a set of filters consisting of 9 × 9, 7 × 7 and 5 × 5 Gaussian filters
of different major axes and orientations. A subset of these filters are shown in Fig. 1
(left).

– We also measure PSFs by imaging an illuminated pinhole of 30µm diameter in a
darkened photographic studio and add these to the filter bank. These are shown in
Fig. 1 (right).
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– In order to increase the size and diversity of the filter bank, we extract blur kernels
from real-world images taken with the target optical system1 using KernelGAN [21]
and add them to the filter bank. We extracted around 3000 kernels using this app-
roach and a few of them are shown in Fig. 2.

Fig. 2. Blur kernels extracted using KernelGAN [21] on 24 real-world images.

The next step consists of injecting realistic noise into ys to finally arrive at the
desired low resolution image. To achieve this we first convert ys from sRGB to RAW
space, yielding rs. This is in order to apply noise in the linear response regime of
the sensor rather than in the non-linearly distorted processed image domain. Next, we
generate noise according to the Poisson-Gaussian noise model of Foi et al. [10] by
sampling from a heteroskedastic Gaussian distribution [14], i.e.

n(rs) ∼ N (0, σ2(rs)), (11)

where σ2(rs) denotes the variance of the Gaussian distribution which is a function
of the RAW image and is given by σ2(rs) = ars + b. The parameter a determines the
amount of the Poisson and b the amount of the Gaussian noise component. The values of
a and b are determined by the amount of noise present in the target images that we aim at
super-resolving. As shown by Guo et al. [14], deep convolutional neural networks can
effectively denoise images containing noise with different noise levels if the network
is trained for these different noise levels. Therefore, we generate a variety of images
containing different levels of Poisson and Gaussian noise by sampling a and b from a
sensible range of values [14]. The last step consists of converting the noisy RAW image
back into sRGB space which finally results in the noisy low resolution sRGB image y
corresponding to the high resolution image x. Figures 4 and 5 show examples of ground
truth (GT) HR images and the corresponding synthesized LR images (LR input) with
realistic blur and noise characteristics with this method. For the conversion steps, i.e.
to convert the downsampled sRGB image to RAW space and then back to the sRGB
space, we use CycleISP [37]. We note that our method would work with other methods
for sRGB to RAW conversion.

1 This way the SR scheme is tailored towards a particular type of optical system. In order to
gain generality w.r.t. manufacturing differences for the optical system, the kernels have been
extracted from pictures taken with different lenses of the same model.
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6 Experimental Results

In the following, we evaluate and compare the two methods of Sect. 4 and Sect. 5
in terms of their performance with respect to real-world imperfections, i.e. realistic
noise components and spatially varying blur. We first perform a set of quantitative syn-
thetic experiments on a subset of 10 images taken from the DIV2K [1] validation set
in Sect. 6.1 and finally show the qualitative performance on real-world data where no
ground truth is available in Sect. 6.2.

6.1 Synthetic Experiments

Effect of Noise: To study and understand the effect of noise on the quality of SR we
perform an experiment in which we synthesize test data only with different noise set-
tings of a and b in Eq. 11 including the ISP-simulation (realistic noise, but no image
formation model) and study the performance of the different algorithms. The results are
shown in Fig. 3. Our test candidates are two CNN variants according to Sect. 5, trained
with L1 (red) and with Lper (green) loss and the PnP method of Sect. 4 (blue). We train
the networks with training data up to the noise parameters a = 0.03, b = 0.025. The
maximum training noise is marked by a dashed black vertical bar in Fig. 3. The figure
shows three different performance metrics averaged over 10 test images. PSNR (dot-
ted) and SSIM (dashed) curves refer to the right axis labels of the plots, whereas the
perceptual LPIPS (solid) metric [40] uses the left axis labels. PSNR is plotted as rela-
tive PSNR which is a fraction of the maximum of 32.0 throughout the paper. Figure 4
shows visual examples on one of the test images. The red vertical dashed line in Fig. 3
indicates the noise settings used in Fig. 4.

As expected, with rising noise levels, the performance decreases for all methods
and measures, both for Gaussian and Poissonian noise components. The L1 trained
models dominate the PSNR and SSIM scores in both cases while PnP is outperformed
for PSNR. For SSIM, the Lper trained CNN and PnP compete in performance: for
lower noise levels, the Lper trained model has advantages, whereas for larger levels,
PnP performs better. In terms of Poisson noise, this trend is large, whereas for the
Gaussian part (parameter b), the two methods behave very similarly for larger amounts
of noise. In terms of the perceptual LPIPS score, a lower graph is better. Here, the
Lper trained CNN has the best performance for low to medium noise levels in both
cases, however, a cross-over is observed with the L1 trained model. For the Poisson
component (parameter a), the cross-over occurs, as expected, close to the maximum
trained noise level. For the Gaussian component it occurs much earlier due to unknown
reasons. The PnP method is not competitive in this metric which can be traced to its
generation of flat structures in the images, see also Fig. 4.

Effect of Spatially Varying Blur: In this experiment, we test the importance of model-
ing the spatially varying blur in an imaging system. For this, we synthesize test images
with known spatially varying blur kernels according to the methodology described in
Sect. 4.1. An example of spatially varying blur kernels is provided in Fig. 1. For a
fair comparison, the PnP method should run on Gaussian noise, whereas the CNNs
should run on realistic noise. We solve this problem by fixing a realistic noise level
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Fig. 3. Model performance against noise parameter variations of a Poisson-Gaussian model with
ISP simulation. For PSNR and SSIM, larger values are better, for LPIPS, lower values indicate
better performance. Curves are only to be compared for like scores (same decorator). The details
of the plots are explained in the main text. (Color figure online)

Fig. 4. Visual examples of the noise experiment on one of the test images degraded with the
varying blur kernels shown in Fig. 1 (left) and realistic noise with noise levels given by a =
0.011, b = 0.0001.

Table 1. Numerical results for spatially varying blur. For the experimental setting, see the main
text.

Method Varying blur, Gaussian noise

PSNR↑ SSIM↑ LPIPS↓
PnP 23.20739 0.67589 0.3049

CNN L1 (invariant) 26.3152 0.7699 0.281

CNN L1 26.5405 0.781 0.266

CNN Lper 24.4716 0.7068 0.0955

of (a = 0.01, b = 0.001), synthesizing LR images as input for the CNN technique
and estimating the standard deviation. We then synthesize another set of LR images as
input for the PnP technique that uses this estimated Gaussian noise level. The numerical
performance is shown in Table 1.

We again report averages over 10 test images synthesized with the fixed set of ker-
nels in Fig. 1 (left). In addition to the previous contestants, we add an L1 trained CNN
that was only learned on a spatially invariant kernel (center kernel in Fig. 1 left) to
demonstrate the importance of proper modeling. The PnP method is used with known
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Fig. 5. Qualitative comparison of super-resolved images produced by the PnP approach with the
L1-trained CNN (spatial variation). The results from the CNN have sharper details and more
realistic textures.

blur kernels (non-blind setting). Visual results for this experiment are shown in Fig. 5
for the L1 trained CNN and the PnP method. PnP favors smooth regions with sharp
edges, similar but not as noticable as in a standard Total Variation regularized setting.
The variation-trained CNN recovers meaningful structures, but avoids hallucination of
detail in smooth images regions thanks to frequency separation.

Model Violations. In this numerical experiment, we analyze the effect of mismatches
in model assumptions. The PnP method of Sect. 4 has the strongest assumptions since it
is a non-blind technique and is based on a Gaussian error assumption as well as resting
on a non-physical image formation model, Eq. 1, whereas the network family of Sect. 5
is adjusted by the training set and has blind estimation capabilities due to training on a
variety of kernels and noise settings.

We synthesize test data for two image formation models: space-variant blurring fol-
lowed by downsampling (the physically correct model), and the non-physical inverse
order of operations, Eq. 1. In addition, we compare performance in the assumed Gaus-
sian noise setting vs. the realistic noise setting of Sect. 5.

6.2 Real-World Images

We perform a comparison of our methods (CNN Lper, blind = “Ours ESRGAN-FS”,
PnP with manually tuned kernels and noise settings = “Ours PnP”) with recent state-
of-the-art methods for real-world SR on a variety of real-world images taken using
different cameras, lenses and under different settings. The methods we use for compar-
ison are ESRGAN [36] which is trained on the default DF2K data set, i.e. with clean
LR images. We also use the combination of CycleISP [37] + ESRGAN. CycleISP is the
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Fig. 6. Comparison with state of the art for a variation of scenes. Zoom into the digital version
for details. The test images show a variation of artificial/man made and natural structures as well
as smooth and highly textured imaged regions. We also include structures close to the sampling
limit.

current state-of-the-art method for real-world denoising [29] and we use it to clean up
the LR images first. Then, we use ESRGAN to perform SR. We also compare against
the method of Fritsche et al. [12] (ESRGAN-FS), which is the current state of the art in
real-world SR [25]. Since ground truth HR images are not available for these real-world
images, we have to rely on a qualitative comparison. The results of our experiment are
shown in Fig. 6.

ESRGAN can produce sharp images, however, it also enhances the noise and cannot
effectively deal with blur in real world images. The CycleISP + ESRGAN method, on
the other hand, is able to remove some noise but the resulting images look smooth
and lack detailed textures. The results from the method of Fritsche et al. are sharp and
contain a good amount of detail. However, it also enhances noise in parts of the images
significantly. For “Ours PnP”, we manually tuned the blur kernels and noise settings for
≈1 h per image and show the best result. As in the synthetic test, the contrast is good, but
fine detail is smoothed out. “Ours ESRGAN-FS” produces the best results overall. The
noise is effectively suppressed in all parts of the super-resolved image. The generated
images are sharp and contain a good amount of texture and details. The images from
this method are perceptually the most pleasing out of the methods compared.

7 Discussion and Conclusions

Our experiments show that a single end-to-end CNN for blind SISR trained on a suitably
varied data set can match the performance of a non-blind learning-supported optimiza-
tion algorithm that has full knowledge of both the PSFs and the noise level. In terms
of PSNR and SSIM, the performance is slightly worse, but in the perceptually more
relevant LPIPS metric [40], the blind end-to-end network out-performs the optimiza-
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Table 2. Comparison of results on test images first blurred and then downsampled by a scale
factor of 2. CNN L1 achieves better results for realistic noise, whereas the PnP approach achieves
better results for additive white Gaussian noise in terms of PSNR and SSIM. However, CNN L1

achieves better results in terms of LPIPS score.

Method Realistic noise Gaussian noise

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Blurring followed by downsampling

CNN L1 26.6646 0.7841 0.1212 23.6885 0.6673 0.1681

PnP 23.0467 0.6845 0.3115 25.9489 0.7617 0.1820

Downsampling followed by blurring

CNN L1 25.1422 0.7342 0.1503 24.4181 0.7029 0.1438

PnP 23.3231 0.6706 0.3080 25.8148 0.7408 0.1743

tion algorithm. This observation holds even when the image formation model of the
optimization algorithm is matched exactly in the synthetic experiment.

The optimization scheme of Sect. 4 can, for our purposes, be interpreted as an upper
bound on the performance that a blind learning-supported optimization scheme would
be able to achieve. The conclusion from our experiments is then that the end-to-end
network is more flexible and results in perceptually more meaningful super-resolved
images. This experimental observation suggests that end-to-end networks are competi-
tive for blind denoising, deblurring, and super-resolution tasks (Table 2).

SISR CNNs are mappings from an input manifold of blurred and noisy patches to an
output manifold of clean super-resolved images. Training the network to generalize to a
variation of possible input data involves the approximation of a many-to-one mapping:
differently blurred versions of the same real-world patch (different noise levels being
strictly analogous) are supposed to map to the same clean super-resolved image patch.
This implies that several points that are well separated on the input manifold map to
points that are very close to each other on the output manifold.

This is the defining property of an ill-posed problem, when considering the SISR
network in reverse. In order to analyze this behavior more concretely, future work
could use invertible neural networks [2] to visualize the posterior distribution of blurred
patches that map to a clean patch. Given posterior-sampled blurred and corresponding
clean patches, the associated blur kernels could be visualized and thus analyzed, possi-
bly illuminating the blind super-resolution capabilities of networks as proposed here.

In summary, we have experimentally shown the ability of CNNs to generalize to
blind settings in the context of SISR where they can meet or surpass the performance
of dedicated non-blind schemes, depending on the employed quality measure. We thus
believe that training on data variations can find application in other domains involving
more complex image formation models such as microscopy, light field imaging, com-
puted tomography and more. Key to success is the faithful modeling of the forward
image formation process, including both the optical and the digital parts of the process.
The required large amounts of training data to cover the input and output manifolds
adequately can then be synthesized from commonly available data sources.
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