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Abstract. Event-based vision sensors encode local pixel-wise brightness
changes in streams of events rather than full image frames and yield
sparse, energy-efficient encodings of scenes, in addition to low latency,
high dynamic range, and lack of motion blur. Recent progress in object
recognition from event-based sensors has come from conversions of suc-
cessful deep neural network architectures, which are trained with back-
propagation. However, using these approaches for event streams requires a
transformation to a synchronous paradigm, which not only loses computa-
tional efficiency, but also misses opportunities to extract spatio-temporal
features. In this article we propose a hybrid architecture for end-to-end
training of deep neural networks for event-based pattern recognition and
object detection, combining a spiking neural network (SNN) backbone for
efficient event-based feature extraction, and a subsequent classical analog
neural network (ANN) head to solve synchronous classification and detec-
tion tasks. This is achieved by combining standard backpropagation with
surrogate gradient training to propagate gradients inside the SNN layers.
Hybrid SNN-ANNs can be trained without additional conversion steps,
and result in highly accurate networks that are substantially more compu-
tationally efficient than their ANN counterparts. We demonstrate results
on event-based classification and object detection datasets, in which only
the architecture of the ANN heads need to be adapted to the tasks, and no
conversion of the event-based input is necessary. Since ANNs and SNNs
require different hardware paradigms to maximize their efficiency, we envi-
sion that SNN backbone and ANN head can be executed on different pro-
cessing units, and thus analyze the necessary bandwidth to communicate
between the two parts. Hybrid networks are promising architectures to
further advance machine learning approaches for event-based vision, with-
out having to compromise on efficiency.
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1 Introduction

Fig. 1. Hybrid SNN-ANN models consist of an SNN backbone to compute features
directly from event camera outputs which are accumulated and processed by an ANN
head for classification and object detection. Using sparse, binary communication (dots)
instead of dense tensors (arrows) to process events enables efficient inference. SNN and
ANN can be on completely different devices.

Event-based vision sensors address the increasing need for fast and energy-
efficient visual perception [10,22,24,33,41], and have enabled new use cases such
as high-speed navigation [7], gesture recognition [26], visual odometry and SLAM
[28,46,48]. These sensors excel at very low latency and high dynamic range, while
their event-based encoding creates a sparse spatio-temporal representation of
dynamic scenes. Every event indicates the position, precise time, and polarity of
a local brightness change.

In conventional frame-based computer vision deep learning-based methods
have led to vastly improved performance in object classification and detection,
so it is natural to expect a boost in performance also from applying deep neural
networks to event-based vision. However, such an approach has to overcome
the incompatibility of machine learning algorithms developed for a synchronous
processing paradigm, and the sparse, asynchronous nature of event-based inputs.
Recent successful approaches for processing event data have therefore relied on
early conversions of events into filtered representations that are more suitable to
apply standard machine learning methods [1,32,44]. Biologically inspired spiking
neural networks (SNNs) in principle do not require any conversion of event data
and can process data from event-based sensors with minimal preprocessing.

However, high performing SNNs rely on conversion from standard deep net-
works [38,40], thereby losing the opportunity to work directly with precisely
timed events. Other approaches like evolutionary methods [30] or local learning
rules like STDP [2,16] are not yet competitive in performance.

Here we describe a hybrid approach that allows end-to-end training of neural
networks for event-based object recognition and detection. It combines sparse
spike-based processing of events in early layers with off-the-shelf ANN layers to



Hybrid SNN-ANN: Energy-Efficient Event-Based Vision 299

process the sparse, abstract features (see Fig. 1 for an illustration). This is made
possible by combining standard backpropagation with recently developed surro-
gate gradient methods to train deep SNNs [4,21,29,35,42,47]. The advantage of
the hybrid approach is that early layers can operate in the extremely efficient
event-based computing paradigm, which can run on special purpose hardware
implementations [3,5,9,27,34,39]. The hybrid approach is also optimized for run-
ning SNN parts and conventional neural networks on separate pieces of hardware
by minimizing the necessary bandwidth for communication. In our experiments
we demonstrate that the hybrid SNN-ANN approach yields very competitive
accuracy at significantly reduced computational costs, and is thus ideally suited
for embedded perception applications that can exploit the advantages of the
event-based sensor frontend.

Our main contributions are as follows:

– We propose a novel hybrid architecture that efficiently integrates information
over time without needing to transform input events into other representa-
tions.

– We propose the first truly end-to-end training scheme for hybrid SNN-ANN
architectures on event camera datasets for classification and object detection.

– We investigate how to reduce communication bandwidths for efficient hard-
ware implementations that run SNNs and ANNs on separate chips.

– We analyze how transfer learning of SNN layers increases the accuracy of our
proposed architecture.

2 Related Work

A variety of low level representations for event-based vision data have been
explored: The HOTS method [19] defines a time surface, i.e., a two-dimensional
representation of an event stream by convolving a kernel over the event stream.
This method was improved in [44] by choosing an exponentially decaying kernel
and adding local memory for increased efficiency. In [12], a more general take on
event stream processing is proposed, utilizing general kernel functions that can be
learned and project the event stream to different representations. Notably, using
a kernel on event camera data and aggregating the result is the same as using a
spiking neural network layer. Our approach allows learning a more general low
level representation by using a deep SNN with an exponentially decaying kernel,
compared to only one layer in [12] and learnable weights compared to [19,44].

Conversion approaches such as [38,40] transform trained ANNs into SNNs for
inference, and so far have set accuracy benchmarks for deep SNNs. Conversion
methods train on image frames and do not utilize the membrane potential or
delays to integrate information over time. In [18] networks are unrolled over
multiple time steps, which allows training on event camera datasets. However,
temporal integration is only encoded in the structure of the underlying ANN,
but not in the dynamics of spiking neurons. In their formulation, the efficiency
of the SNN is limited by the rate coding of the neurons, which is potentially
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Fig. 2. Training a hybrid network with a DenseNet backbone. a) Compact representa-
tion. b) Network rolled out over time steps. The SNN backbone computes sparse fea-
tures from event camera data that are accumulated at time intervals ΔTi. The ANN
head integrates features from multiple outputs (2, in this example) for a prediction
(classification or object detection). We use a time step of 1 ms to integrate information
over small time scales. During inference, the SNN backbone runs asynchronously with-
out a time-stepped rollout, enabling potential savings in computation. Layers with the
same name share weights.

more inefficient than encodings learned via end-to-end training in our hybrid
SNN-ANN approach. In addition, conversion methods typically do not optimize
for energy-efficiency.

SNN training with variants of backpropagation has been demonstrated in
[21,42,47], albeit on simpler architectures (e.g., only one fully-connected layer in
[21]) and, in general, without delays during simulation. A mixed approach is used
in [35], first training and converting an ANN and then training the converted
SNN. Our approach uses synaptic delays and skip connections, exploring how
complex ANN architectures translate to SNN architectures. The closest archi-
tecture to ours is from [20], which is trained from scratch to predict optical flow.
Their U-Net with an SNN encoder transmits information from all SNN layers,
leading to a high bandwidth from SNN to ANN. We improve on this by using
only a single layer to transmit information from SNN to ANN, and extend to
applications in classification and object detection tasks.

Conventional ANN architectures are used in [36] to solve the task of image
reconstruction from events with a recurrent U-Net, and they subsequently show
that classification and object detection are possible on the reconstructed images.
No SNN layers are used in this case, resulting in a computationally expensive
network and the need to preprocess the event camera data. Faster and more
efficient training and inference for object detection is presented in [32], who
propose a recurrent convolutional architecture that does not need to explicitly
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reconstruct frames. As the sparsity of the event stream is not utilized, it is
expected that gains in energy-efficiency are possible with SNN approaches.

3 Methods

This section introduces the proposed hybrid SNN-ANN architecture and
describes training, inference and metrics we used to evaluate our method. Our
hybrid network consists of two parts: An SNN backbone that computes features
from raw event camera inputs, and an ANN head that infers labels or bounding
boxes at predefined times (see Fig. 2). The overall task is to find an efficient
mapping from a sequence of event camera data E in a time interval T to a pre-
diction P , which can be a label l or a set of bounding boxes B. Our approach
consists of three stages: First, continuously in time, an intermediate representa-
tion I = S(E) is generated using the SNN backbone. Second, this intermediate
representation is accumulated at predefined points in time. Third, when all accu-
mulators are filled, the accumulated intermediate representations are mapped via
the ANN head A to the final prediction P = A(Acc(I)) = A(Acc(S(E))). The
following sections describe all three parts in more detail.

3.1 SNN Backbone

Spiking neural networks (SNNs) are biologically inspired neural networks, where
each neuron has an internal state. Neurons communicate via spikes, i.e. binary
events in time, to signal the crossing of their firing thresholds. Upon receiving
a spike i, the synaptic current I changes proportionally to the synaptic weight
w, which in turn leads to a change of the neuron’s internal state V . Because of
the binary and sparse communication, these networks can be significantly more
energy-efficient than dense matrix multiplications in conventional ANNs (see
also [37]).

The task of the SNN backbone S is to map a sequence of raw event camera
inputs E into a compressed, sparse, and abstract intermediate representation
I = S(E) in an energy-efficient way. More concretely, the input is a stream of
events ei = (ti, xi, yi, pi), representing the time ti and polarity pi of an input
event at location (xi, yi). Polarity is a binary {−1, 1} signal that encodes if
the brightness change is positive (brighter) or negative (darker). This stream is
processed by the SNN without further preprocessing. In our implementation, the
first layer has two input channels representing the two polarities. In contrast to
previous work such as [20] and [18], the input events are never transformed into
voxel grids or rate averages, but directly processed by the SNN to compute the
intermediate representation S(E). The spiking neuron model we use is the leaky
integrate-and-fire model [13], simulated using the forward Euler method,

Ii = αIi−1 +
∑

j wjSj (1)

Vi = βVi−1 + Ii (2)
Si = Θ(Vi − Vth) (3)
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where V is the membrane potential, I is the presynaptic potential, Sj,i are the
binary input and output spikes, Vth is the threshold voltage, and td = ti− ti−1 is
an update step. The membrane leakage β and the synaptic leakage α are given
as exp (−td/τmem) and exp (−td/τsyn), respectively. To simulate the membrane
reset, we add a term to Eq. (2) which implements the reset-by-subtraction [38]
mechanism,

Vi = Vi − VthSi−1. (4)

The threshold is always initialized as Vth = 1 and trained jointly with the weights
(see appendix for details).

We simulate our network by unrolling it in time with a fixed time step td.
Figure 2b shows the training graph for a rollout of 7 time steps. Our simulation
allows choosing arbitrary delays for the connections of different layers, which
determines how information is processed in time. Inspired by recent advances,
we choose to implement streaming rollouts [8] in all our simulations. This means
that each connection has a delay of one time step, in accordance with the mini-
mum delay of large-scale simulators for neuroscience [45]. This allows integrating
temporal information via delayed connections, in addition to the internal state.

The SNN backbone S(E) outputs a set of sequences of spikes in predefined
time intervals Tout,i: I = (ej)tj∈Tout,i . An example is shown in the dashed box
of Fig. 2. Details about the backbones used can be found in Sect. 3.8. The figure
shows an unrolled DenseNet backbone with two blocks (SC0 to SP0 and SP0
to SP1, respectively), where two output intervals are defined as ΔT0 = [t2, T0]
and ΔT1 = [t5, T1]. This structure is used during training, where a time-stepped
simulator approximates the continuous-time SNN. During inference, the SNN
backbone runs asynchronously, enabling savings in computation.

3.2 Accumulator

Our model connects the sparse, continuous representation of the SNN with the
dense, time-stepped input of the ANN with an accumulator layer for each output
interval ΔTi (Acc in Fig. 2). The task of this layer is to transform the sparse data
to a dense tensor. We choose the simple approach of summing all spikes in each
time interval ΔTi to get a dense tensor with the feature map shape (cf , hf , wf).

3.3 ANN Head

The ANN head processes the accumulated representations from the accumulators
to predict classes or bounding boxes. The general structure of the ANN head
can be described with three parameters: the number of SNN outputs nout, the
number of stacks ns and the number of blocks per stack nl. The exemplary
graph in Fig. 2 has nout = 2, ns = 2 and nl = 2. Having multiple outputs
and stacks allows to increase the temporal receptive field, i.e., the time interval
the ANN uses for its predictions (for details see appendix). All blocks with
the same name share their weights to reduce the number of parameters. The
number of blocks can be different for each stack. In most experiments we use
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two stacks with 1 and 3 blocks, respectively. The dense representation for each
ΔTi is then further processed by each stack, where results are summed at the
end of a stack and used as input for the next stack. Each block in a stack consists
of batch normalization BN, convolution C, dropout Drop, ReLU and pooling P,
e.g., B0(x) = P(ReLU(Drop(C(BN(x))))). We use a convolutional layer with
kernel size 2, stride 2, learnable weights and ReLU activation as pooling layer.
Whenever we use dropout in conjunction with weight sharing, we also share
the dropout mask. In the case of classification, a linear layer is attached to the
last block in the last stack (see Sect. 3.6). For object detection, an SSD head is
attached to selected blocks in the last stack (see Sect. 3.7).

3.4 Energy-efficiency

We use the same metric as [38], i.e., we count the number of operations of our
network. Due to the sparse processing and binary activations in the SNN, the
number of operations is given by the synaptic operations, i.e., the sum of all post-
synaptic current updates. For ANN layers, we count the number of multiply-add
operations, as the information is processed with dense arrays. For this metric, it
is assumed that both SNN and ANN are run on dedicated hardware. Then the
total energy is proportional to the number of operations plus a constant offset.
We discuss benefits, drawbacks and alternatives to this metric in the appendix.
To regularize the number of spikes we utilize an L1 loss on all activations of the
SNN backbone

Ls =
∑

l,b,i,x,y

λs

LBTWlHl
|Sl,i,b,x,y|. (5)

with a scaling factor λs, the number of layers L, the batch size B, total simulation
time T , and width Wl and height Hl of the respective layer. This also reduces
the bandwidth, as discussed in Sect. 3.5.

3.5 Bandwidth

As we expect that special hardware could be used to execute at least the SNN
backbone during inference, we want to minimize the bandwidth between SNN
and ANN to avoid latency issues. We design our architectures such that only
the last layer is connected to the ANN and use L1 loss on the activations to
regularize the number of spikes. This is in contrast to [20], where each layer has
to be propagated to the ANN. We report all bandwidths in MegaEvents per sec-
ond (MEv/s) and MegaBytes per second (MB/s). One event equals 6.125 Bytes,
because we assume it consists of 32 bit time +16 bit spatial coordinates +1 bit
polarity.

3.6 Classification

To classify, we attach a single linear layer to the last block in the last stack
of our hybrid network. We use the negative log-likelihood loss of the output of
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Fig. 3. The different backbones in compact representation with spiking convolu-
tional (SC) and pooling (SP) layers. a) VGG. b) DenseNet. c) DenseSep (DenseNet
with depthwise separable convolutions). Depthwise separable convolutions consist of
a depthwise convolution (dw) and a convolution with kernel size 1 × 1. Shades of
blue mark different blocks. All depicted networks have 2 blocks and 2 layers per block.
Multiple inputs are concatenated.

this layer. Additionally, we use L2-regularization (weight decay) with a factor of
0.001. We use the Adam optimizer [17] with a learning rate of η = 0.01 and a
learning rate schedule to divide it by 5 at 20%, 80% and 90% of the total number
of epochs ne = 100.

3.7 Object Detection

We use the SSD (single shot detection) architecture [25], which consists of a
backbone feature extractor and multiple predictor heads. Features are extracted
from the backbone at different scales and for each set of features, bounding boxes
and associated classes are predicted, relative to predefined prior boxes. In the
appendix, we present a novel, general way to tune the default prior boxes in a
fast and efficient way. During inference, non-maximum suppression is used on
the output of all blocks to select non-overlapping bounding boxes with a high
confidence. The performance of the network is measured with the VOC mean
average precision (mAP) [6]. If not otherwise denoted, we use the same learning
hyperparameters as in Sect. 3.6 but a smaller learning rate of 0.001.

3.8 Backbone Architectures

Three different architecture types are used in our experiments: VGG [43],
DenseNet [15] and DenseSep. A VGG network with Nb blocks and Nl layers
per block is a feed-forward neural network with Nb · Nl layers, where each out-
put channel is given by g ·l with l the layer index (starting from 1). The DenseNet
structure consists of Nb blocks, where each block consists of Nl connected lay-
ers per block. DenseSep is a combination of the depthwise separable block of
MobileNet [14] and the DenseNet structure (see Fig. 3).
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Fig. 4. a) Accuracy on the N-MNIST test set vs. number of operations for different
architectures. Hybrid SNN-ANN architectures (green) overcome the efficiency limit of
conversion-based architectures (blue diamond) with only a minor drop in accuracy.
SNN-ANN architectures are more efficient than almost all ANNs (purple). Compared
to the SNN and ANN baseline, our hybrid networks increase accuracy and energy-
efficiency. b) Relative accuracy on the N-MNIST test set vs. relative number of opera-
tions. The VGG backbone has the highest gain in energy-efficiency, while losing signif-
icantly in accuracy. Other backbones show a minor decrease with a significant gain in
energy-efficiency. We report the mean and error of the mean over 6 repetitions. (Color
figure online)

4 Results

4.1 Classification on N-MNIST

We train a hybrid SNN-ANN network for classification on the N-MNIST dataset
[31]. In N-MNIST, each MNIST digit is displayed on an LCD monitor while an
event camera performs three saccades within roughly 300 ms. It contains the
same 60 000 train and 10 000 test samples as MNIST at a resolution of 34 × 34
pixels. Here we compare the performance of our hybrid network to networks
where the SNN backbone is replaced with ANN layers (ANN-ANN), two base-
lines and two approaches from the literature: A conversion approach [18], where
a trained ANN is converted to a rate-coded SNN and an ANN that reconstructs
frames from events and classifies the frames [36]. The first baseline is a feed-
forward ANN with the same structure as our VGG SNN-ANNs, but where all
time steps are concatenated and presented to the network as different channels.
The second baseline is an SNN of the same structure, where we accumulate the
spikes of the last linear layer and treat this sum as logits for classification. The
SNN is unrolled over the same number of time steps than the SNN-ANNs. We
report results for multiple network sizes and configurations to show that hybrid
SNN-ANNs generally perform better in terms of energy-efficiency and bandwidth
(detailed architecture parameters can be found in the appendix). Mean values
of accuracy and number of operations are reported together with the error of
the mean over 6 repetitions, using different initial seeds for the weights. For one
DenseSep network only 5 iterations are reported, because training of one trial did
not converge, resulting in a significant outlier compared to the performance of all
other networks. In Fig. 4a, we show the accuracy on the N-MNIST test set vs. the
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number of operations for our architectures, baselines and related approaches from
the literature. Our hybrid networks (green, SNN) reach similar accuracies to the
ANNs (purple), while being consistently more energy-efficient. The best hybrid
architecture is a DenseNet with g = 16, Nl = 3 and nout = 1. Compared to
[18], it performs slightly worse ((99.10 ± 0.09) % vs. (99.56 ± 0.01) %) in accu-
racy, but improves significantly on the number of operations ((94 ± 17) MOps
vs. (460 ± 38) MOps) despite having more parameters (504 025 vs. 319 890).
The average bandwidth between SNN and ANN is (0.250 ± 0.044) MEv/s for
this architecture, or approximately 1.53 MB/s. Our smallest DenseNet with
64 875 parameters (g = 8, Nl = 2, nout = 1) is even more efficient, need-

ing only (15.9 ± 2.5) MOps at a bandwidth of (0.144 ± 0.034) MEv/s to reach
(99.06 ± 0.03) % accuracy. Our results are mostly above [36] in terms of accu-
racy, although our networks are much smaller (their networks have over 10 M
parameters). Due to the large parameter size, we also estimate that we should
be more energy-efficient, although the authors do not provide any numbers in
their publication.

In Fig. 4b, we plot the average per backbone over all architectures in Fig. 4a,
relative to the averages of the ANN-ANN architectures. All hybrid SNN-ANNs
improve the number of operations significantly over ANN-ANN implementa-
tions with at most a minor loss in accuracy. Hybrid DenseNets provide the best
accuracy-efficiency trade-off with an average improvement of about a factor of 56
in energy-efficiency while also increasing accuracy by approximately 0.2%. For
VGG architectures, the energy-efficiency is increased by a factor of roughly 65
at a loss in accuracy of 0.4 between hybrid and ANN-ANN architectures. Hybrid
DenseSep architectures lose approximately 0.2 accuracy points, but gain a factor
of about 28 in energy-efficiency. We assume that the DenseSep architectures per-
form the worst in comparison for two reasons: First, they are already the most
efficient ANN architectures, so improving is harder than for less optimized archi-
tectures. Second, as the effective number of layers is higher in this architecture
compared to the other two, optimizing becomes more difficult and gradient defi-
ciencies (vanishing, exploding, errors of surrogate gradient) accumulate more.
Hyperparameter optimization (learning rate, dropout rates, regularization fac-
tors for weights and activations) was not performed for each network separately,
but only once for a DenseNet with Nl = 2, g = 16, nout = 1 on a validation set
that consisted of 10% of the training data, i.e., 6000 samples.

4.2 Classification on N-CARS

N-CARS is a binary car vs. background classification task, where each sample has
a length of 100 ms. We train the same networks as in Sect. 4.1 with a growth
factor g = 16 and compare to the same baselines and two results from the litera-
ture. We see the same trend in energy-efficiency improvements over ANNs, with
factors ranging from 15 (DenseSep) to 110 (VGG). Relative accuracy decreases
significantly for DenseSeps by 1.5 points, but is 0.75 points higher for VGG.
These results, together with the results in Fig. 4b suggest, that the more effi-
cient an architecture already is, the less can be gained from training an equiva-



Hybrid SNN-ANN: Energy-Efficient Event-Based Vision 307

2 3 4 5 6 7
operations [GOps]

0.850

0.875

0.900

0.925

0.950
m
A
P

a)

SNN-DN (s)
SNN-DS (s)
SNN-VGG (s)
ANN (s)

SNN-DN (p)
SNN-DS (p)
SNN-VGG (p)

1 2 3 4 5 6 7
operations [GOps]

0.6

0.7

0.8

0.9

m
A
P

b)

SNN-DN (s)
SNN-DS (s)
SNN-VGG (s)
ANN (s)

SNN-DN (p)
SNN-DS (p)
SNN-VGG (p)
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translation-30/90 (a/b, mean over 4 trials). The architectures with the best results
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weights from the training (pretrained, p). Pretrained architectures improve over ran-
dom initialization (VGG, DenseSep) or are on par with it (DenseNet).

lent hybrid SNN, although the gains of at least a factor of 15 in energy-efficiency
is still significant. In comparison to our ANN and SNN baselines, our SNN-ANNs
perform better in terms of accuracy and number of operations. Two out of four
SNN runs could not go beyond chance level and were therefore excluded from
the validation. In conclusion, using hybrid SNN-ANNs saves energy compared
to SNNs and ANNs of similar structure. In this experiment, our architecture
is not competitive to state-of-the-art [18] in accuracy, but has a similar energy
demand with approximately double the number of parameters. Detailed results
and figures can be found in the appendix.

4.3 Object Detection on shapes translation

The shapes translation dataset [28] contains frames, events, IMU measure-
ments and calibration information of a scene of different shapes pinned to a
wall. As training data for event-based vision object detection is scarce [11], we
labelled bounding boxes for each of the 1356 images and 10 shapes, resulting
in 9707 ground truth bounding boxes. A detailed description and an example
of the dataset can be found in the appendix. We provide two train/test splits:
shapes translation-90 where 90% of the data is randomly assigned to the
train set and a more difficult split shapes translation-30, where only 30% of
the data is used in the train set. In section Sect. 4.4 and Sect. 4.5, we present the
results on shapes translation-30/90.

4.4 Results on shapes translation-90

For all backbones, we take the architecture parameters from the best network in
the N-MNIST task. See the appendix for details. We want to compare hybrid net-
works trained from scratch with networks where the SNN backbone is initialized
with network weights trained on N-MNIST. This allows investigating the effect of
transfer learning during training. Results are shown in Fig. 5. The networks with
pretrained weights always converge to higher mAP than their non-pretrained
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counterpart. The DenseNet and DenseSep backbones perform better than VGG.
This is in agreement with the results for classical ANNs, where DenseNet archi-
tectures outperform VGG on image-based datasets like ImageNet. Our best net-
work is a pretrained SNN-ANN DenseSep with a mean average precision of
(87.37 ± 0.51) %, (1398.9 ± 2.3) MOps operations and a bandwidth of 11.0 MB/s.
A comparable ANN backbone would require a bandwidth of 1210 MB/s. A regu-
lar SSD architecture with the same backbone as our VGG network, where all time
steps are concatenated over the channels outperforms our networks in terms of
mAP, but also needs significantly more operations. We report the detailed results
in the appendix.

4.5 Results on shapes translation-30

We do the same evaluation as in Sect. 4.4, but with a 30/70% training/test data
split (Fig. 5). The mAP is higher for networks with pretrained weights for Dens-
eSep and VGG and on par with DenseNet. As with shapes translation-90, the
backbones with skip connections perform better than the VGG backbone. One of
the four VGG experiments did not fully converge, explaining the high standard
deviation. Our best network is an SNN-ANN DenseNet trained from scratch
with (2790 ± 50) MOps operations, a mean average precision of (82.0 ± 1.0) %,
and a bandwidth of 2.68 MB/s. A comparable ANN backbone would have a
bandwidth of 864 MB/s. As in Sect. 4.4 the regular SSD architecture is better in
mAP but worse in the number of operations. We report the detailed results in
the appendix.

5 Conclusion

In this paper, we introduced a novel hybrid SNN-ANN architecture for efficient
classification and object detection on event data that can be trained end-to-end
with backpropagation. Hybrid networks can overcome the energy-efficiency limit
of rate-coded converted SNN architectures, improving by up to a factor of 10.
In comparison to similar ANN architectures, they improve by a factor of 15 to
110 on energy-efficiency with only a minor loss in accuracy. Their flexible design
allows efficient custom hardware implementations for both the SNN and ANN
part, while minimizing the required communication bandwidth. Our SNN-ANN
networks learn general features of event camera data, that can be utilized to
boost the object detection performance on a transfer learning task.

We expect that the generality of the features can be improved when learning
on larger and more diverse datasets. Our work is particularly suited for datasets
where temporal integration happens on a short time interval, but struggles for
longer time intervals, e.g., multiple seconds due to the immense number of roll-
out steps needed. Recent advances in deep learning, particularly C-RBP [23] can
potentially help to overcome this by using recurrent backpropagation that has
a constant memory complexity with number of steps (compared to backprop-
agation, where the memory-complexity is linear). This also would ensure that
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our networks converge to a fixed point over time, potentially making predictions
more stable. More work on surrogate gradients and methods to stabilize training
can further help to increase both energy-efficiency and performance of hybrid
networks. Our work is a first step towards ever more powerful event-based per-
ception architectures that are going to challenge the performance of image-based
deep learning methods.
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