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Abstract. Semi-supervised video object segmentation is a challenging task that
aims to segment a target throughout a video sequence given an initial mask at
the first frame. Discriminative approaches have demonstrated competitive per-
formance on this task at a sensible complexity. These approaches typically for-
mulate the problem as a one-versus-one classification between the target and the
background. However, in reality, a video sequence usually encompasses a target,
background, and possibly other distracting objects. Those objects increase the
risk of introducing false positives, especially if they share visual similarities with
the target. Therefore, it is more effective to separate distractors from the back-
ground, and handle them independently.

We propose a one-versus-many scheme to address this situation by separating
distractors into their own class. This separation allows imposing special atten-
tion to challenging regions that are most likely to degrade the performance. We
demonstrate the prominence of this formulation by modifying the learning-what-
to-learn [3] method to be distractor-aware. Our proposed approach sets a new
state-of-the-art on the DAVIS 2017 validation dataset, and improves over the
baseline on the DAVIS 2017 test-dev benchmark by 4.6% points.

1 Introduction

Semi-supervised video object segmentation (VOS) aims to segment a target through-
out a video sequence, given an initial segmentation mask in the first frame. This task
can be very challenging due to camera motion, occlusion, and background clutter.
Several deep learning based methods have been proposed recently to address these
challenges [3,8,9,11,12,15]. Among those, discriminative methods [3,11] have shown
competitive performance at a reasonable computational cost, making them suitable for
real-time applications, e.g., enhancing visual object tracking in crowded scenes, remov-
ing or replacing the background in video sequences or live conference calls, for privacy
masking in surveillance videos, or as an attention mechanism in downstream vision
tasks such as action recognition.

The majority of the discriminative approaches formulate the problem as a one-
versus-one classification between the target and the background. Based on this, they
attempt to construct a robust representation of the target that is as distinct as possi-
ble from the background. However, the background usually includes other objects that
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LWL [3] Ours Ground truth

Fig.1. The impact of incorporating distractor-awareness into the baseline (LWL [3]). Our
distractor-aware approach produces more accurate predictions than the baseline in highly ambigu-
ous regions, where objects share visual similarities.

could be visually similar to the target. In this case, it might be challenging to find a
good representation that discriminates the target from those distracting objects. This can
produce false positives as the classifier is likely to fail given the underlying coarse rep-
resentation between the target and the background. Figure 1 shows an example where
a top-performing discriminative approach fails to discriminate between the target and
other objects of the same type.

In this paper, we address this aforementioned challenge by reformulating the prob-
lem as a one-versus-many classification. We propose to separate the distracting objects
from the background, and handle them as a distinct class. As a result, making the net-
work aware of these distractors during training, promotes the learning of a robust rep-
resentation of the target that is more discriminative against both the background and
distractors.

We demonstrate the effectiveness of our approach by modifying the learning-what-
to-learn (LWL) approach [3] to become distractor-aware. First, we modify the learning
pipeline to incorporate information about the distractors. In case of videos with multiple
objects, we initialize other objects in the scene as distractors.

Second, to enhance the discriminative power of the network, we integrate high-
resolution features to the target model. Finally, we introduce the use of adaptive refine-
ment and upsampling [13] as a regularization to enforce local consistency at uncertain
regions such as edges, and object-to-object boundaries.

Experiments show that our proposed framework sets a new state-of-the-art result
on the DAVIS 2017 val dataset [10]. Moreover, we improve the results over the base-
line on the DAVIS 2017 fest-dev benchmark by a large margin. On the YouTube-VOS
2018 dataset [14], which is characterized by limited annotation accuracy at object-to-
distractor boundaries, our method still shows significant improvement over the baseline.

The remainder of the paper is organized as follows: we start by providing an
overview of existing discriminative VOS approaches in the literature, distractor-
awareness in other vision tasks, and existing upsampling and refinement methods in
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VOS. Next, we briefly describe the baseline approach, Learning-what-to-learn [3], fol-
lowed by our proposed distractors modelling. Finally, we provide quantitative and qual-
itative results for our proposed approach in comparison with the baseline, and existing
state-of-the-art methods as well as an ablation study.

2 Related Work

The video object segmentation (VOS) task can be tackled in a semi-supervised or an
unsupervised manner, but we only consider the former in this paper. Semi-supervised
approaches from the literature can usually be categorized as either generative or dis-
criminative. Generative approaches such as [6], focus on constructing a robust model
of the target of interest ignoring other objects in the scene. In contrast, discriminative
approaches [11, 12] attempt to solve the task as a classification problem between the tar-
get and the background. A more recent method [3] follows an embedding approach to
learn features that are as discriminative as possible. With the emergence of deep learn-
ing, the robustness of feature representations has significantly improved, boosting the
performance of most variants of VOS approaches. However, the current top-performing
semi-supervised VOS methods are mainly discriminative, taking into account both the
target and the background when solving the task. Therefore, we focus on discriminative
approaches in this paper.

Discriminative Video Object Segmentation. Discriminative VOS methods were
introduced quite recently. Yang et al. [15] proposed to build a target model from sepa-
rate target and background feature embeddings, extracted from past images and target
masks. For test frames, extracted features are matched against the two pretrained mod-
els of the target and the background. STM [9] incorporates a feature memory, encoding
past images and segmentation masks. Similarly, Lu et al. [7] introduce an episodic
graph memory unit to mine newly available features, and update the model accord-
ingly. In contrast to Yang et al., both methods [7,9] produce the final target mask using
a dedicated decoder network, from concatenated memory features and new image fea-
tures. Seong et al. [12] extended STM [9] further with a soft Gaussian-shaped attention
mask to limit confusion with distant objects. Robinson et al. [11] introduced the use
of discriminative correlation filters to construct a target model that produces a coarse
segmentation mask. This coarse mask is then enhanced and refined through a decoder
network. Learning-what-to-learn [3] improved it further by learning to produce target
embeddings that are more reliable for training the target model. All of these aforemen-
tioned papers adopt a one-vs-one classification between the target and the background,
where other objects in the sequence are considered as background. In contrast, our
approach reduces the likelihood of predicting false positives when some background
objects share visual similarities with the target.

Distractor-Aware Modelling. Distractor-aware modeling can be realized as a kind of
hard-example mining when training a model. The general concept is to identify inputs
that are more likely to confuse a given model and emphasis them during training, One
of the earliest uses of this concept is found in the classical human detection algorithm,
histograms of oriented gradients [4]. A more recent example [5] proposed marking
flickering object detections in a video as hard-negatives, assigning them higher prior-
ity during training. A recent visual object tracking method [2] ranks target proposals
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based on their signal strength, where the strongest is assumed to be the target and the
rest are distractors. The method tracks the complete scene state in a dense vector field
over all spatial locations, using it to classify regions as either target, distractor or back-
ground. A similar Siamese-based approach [16] also classifies a target and any distrac-
tors through ranking of detection strengths. In both approaches, distractors are provided
as hard examples during online training their respective tracker target models. Zhu et
al. [16] also introduced distractor awareness to Siamese visual tracking networks as
they noticed that the standard trackers posses imbalanced distribution of training data
leading to less discriminative features. They propose an effective sampling strategy to
make the model more discriminative towards semantic distractors. In this paper, we fol-
low the strategy adopted by these approaches, and we introduce distractor-awareness to
the task of video object segmentation.

Segmentation Mask Upsampling and Refinement. Existing VOS CNNs employ dif-
ferent upsampling and refinement approaches to provide the final segmentation mask
at the full resolution. RGMP and STM [8,9] employ two residual blocks with a bilin-
ear interpolation in between for refinement and upsampling. Seong et al. [12] used a
residual block followed by two refinement modules with skip connections. In contrast,
Robinson et al. and Bhat ef al. [3,11] replace the residual blocks with standard con-
volution, and employ bicubic rather than bilinear interpolation. All these approaches
provide spatially independent prediction with no regularization to enforce local consis-
tency, especially at uncertain regions such as edges and object boundaries. We employ
the convex upsampler [13] to jointly upsample the final mask while enforcing spatial
consistency.

3 Method

Ideally, in video object segmentation, it is desired to produce pixel-wise predictions
y either as target 7 or background B. In a probabilistic sense, we are interested in
maximizing the posterior probability for the target given an input embedding X:

B _P(X,Y=T) P(X,Y =T)
P =T1X) = P(X)  P(X,Y=T)+PX,Y=B)
1 1
- L PXY =B - | PXY =B)P(Y=8)" b
"rxy=7) 'TPxy=T)PY=7)

The ratio in the denominator determines the posterior probability. If a pixel belongs
to the target, the ratio becomes small and the posterior probability tends to 1. Contrar-
ily, if a pixel belongs to the background and is quite distinct from the target, the ratio
becomes large and the posterior probability goes to 0. However, if the target prior is
large, and the background and target likelihoods are similar because X contains features
of a distractor, the posterior can easily be larger than 0.5 and produce false positives.
We propose splitting the non-target into two classes, background B and distractor D:

P(X,Y #T)=P(X,Y = B) + P(X,Y = D)
= P(X|Y =B)P(Y =B)+ P(X|Y =D)P(Y =D). (2
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Consequently, the ratio in (1) will have two terms in the numerator as denoted by
(2). This modification limits the occurrences of false positives as it models ambiguous
pixels from the first frame and propagates them. As an example, if the likelihood of a
certain pixel is similar between the target and the distractor at an intermediate frame,
the propagated prior from previous frames will cause the ratio to be large, and the prob-
ability to drop. In the following sections, we will describe how to modify an existing
baseline to be distractor-aware.

Update the distractor prior

Update the target prior

Target Mask

W P =7)"

P(Y = T|X)t

Mask Few-Shot

Encoder Learner Merge Results

Distractors

P(Y =D|X)*
Mask

Refinement &

Upsampling
P(X|Y =T)t
. Target -
— -
Frame t
Backbone Encoder Segmentation Decoder P(X|Y =D)*

Fig. 2. An overview of our distractor-aware approach. We extend the baseline LWL to incorpo-
rate information about distractors throughout its mask encoder, target model, and segmentation
decoder stages, and replace its upsampler with a joint refinement and upsampling approach, act-
ing as local regularization.

3.1 Baseline Approach

We base our approach on the recently published method learning-what-to-learn [3]
(LWL). In the LWL baseline, a target segmentation mask is encoded by a mask encoder
into an multi-channel embedding at one sixteenth of the original image resolution. At
the same time, a standard backbone encoder network (ResNet-50) is used to extract fea-
tures from the whole image (see Fig. 2). At the first frame, both the mask embeddings
and the image features are utilized as training data for a target model Ty () = x * 6 that
is trained with a few-shot learner. In subsequent video frames, this target model gener-
ates new multi-channel embeddings from the corresponding image features. A decoder
network finally recovers segmentation masks at full resolution from these embeddings.
Eventually, the newly predicted masks and deep features are added to the training data,
so that the target model can be tuned, adapting it to the changing target appearance.
Note that multiple objects are tracked independently and individual target models do
not interact with each other. In other words, the target model is not aware of any objects
in the scene since everything other than the target is treated as background.
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3.2 Introducing Distractor-Awareness

As describe in the related work section, there are several ways to detect distractors.
Here, we consider other objects in the scene as potential distractors. More specifically,
under the assumption that segmentation masks are binary, given a target masks 1,,, we
generate a distractor mask as:

14, = Ul Vj el 3)

togA

where I = {1...N} is the set of target IDs in the current video sequence. Both the target
and the distractor masks are set to the ground truth in the first frame, and updated with
the previous predictions in later frames. To accommodate the distractor, we add a second
input channel to the mask encoder and a second output channel to the segmentation
decoder (see Fig. 2).

As the segmentation of frames progresses, we merge the decoded and upsampled
target masks to form new distractors. However, in this case, the propagated masks are
no longer binary and (3) needs to be replaced. For this, we develop a per-pixel winner-
take-all (WTA) function.

Let py, (z) € RE*W be the target segment probability map, i.e. the network decoder
output after a sigmoid activation, of the target with index . Now let

prnax(x) = bupptj (Jf) \V/j S Ha (4)
J

Pmin () = inf py, (x)Vjel, (5)

merging the highest and lowest probabilities (per pixel), into ppyax and Ppin.
Now let, L(z) € (I U {0})7*" be the map of merged segmentation labels (after
softmax-aggregation, as introduced in [8]), with O the background label.

Also let
1 if L(z) >0,
1 = 6
(@) {0 if L(z) = 0. ©
indicate regions with any foreground pixel, and
1¢(x) if L(z i,
1d,»,(:v>{ s ) 7 @

0 otherwise.

indicate distractors of target ¢. A new probability map of distractor ¢ is generated as

Pa; () = 1a,(2)Pmax(2) + (1 = 17(2))pmin (2). ®)

In less formal terms, we let the the most certain predictions of target and background
“win” in every pixel. pg, takes information from every p;; except that of target i.

In the ablation study, we compare the performance of this function to that of feeding
back the decoded distractor to the few-shot learner without modification.
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Fig. 3. An overview of the refinement and upsampling module. The final decoder features are first
projected into target and distractor logit maps. A weights estimation network then predicts a SD
tensor of weights in 3 x 3 windows around each pixel in the logit maps (shown in green), as well as
interpolation data (shown in yellow). The weights are mapped to normalized probability vectors
with the softmax function and then used refine the target and the distractor logits with weighted
summation. The refined logits are finally upsampled to full resolution with the interpolation data.
(Color figure online)

3.3 Joint Refinement and Upsampling for Local Consistency

The majority of existing VOS methods adopt a binary classification scheme between the
foreground and the background. It is typically challenging to produce accurate predic-
tions at uncertain regions such as target boundaries due to multi-modality along edges.
This problem is aggravated when we introduce a new class for distractors, as the deci-
sion is now made between three classes instead of two. We tackle this problem by
introducing two modifications to the baseline encoder and decoder, respectively.

First, we provide high-resolution feature maps from the backbone when training the
target model in the few-shot learner. Unlike the baseline, we employ backbone features
with a 1/8th of the full resolution instead of 1/16th. These higher-resolution features
provide finer details to the target model, especially along edges, to help resolving ambi-
guities in uncertain regions. Second, we replace the baseline upsampler on the decoder
output, with a joint refinement and upsampling unit based on the convex combination
module of [13]. This is originally employed to upsample flow fields, while we adopt it
to produce consistent selections between the target and distractors in logit space.

The proposed joint refinement/upsampling approach is illustrated in Fig. 3. First,
the output from the decoder is projected using two convolution layers to two channels
resembling the likelihoods of the target and the distractor. Then, the likelihoods are
unfolded into 3 x 3 patches around each pixel for computational efficiency. In parallel,
we employ a weights estimation network that jointly perform likelihoods refinement,
and mask upsampling. The former allows modifying the likelihoods of the target and
the distractor based on their neighbors to enforce some local consistency, while the
latter produces pixel values needed for upsampling.
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For the refinement, the weights estimation network predicts a local coefficients vec-
tor c,, for a 3 x 3 window centered around each pixel z € X:

Cy = [Co4y...,C_1C_1,C0,C1,...,Cq), 9

where cg is the coefficient on top of . However, these coefficients are not normalized,
and to preserve likelihood ratios we first map c, to a normalized vector ¢, using the
softmax function. To modify the likelihoods, we subsequently apply the coefficients to
the likelihoods using a weighted sum resembling convolution:

PX|Y) xezfz] = Y P(X|Y)[z—m]&[m]. (10)
me[—4:4]

For the upsampling, we need to predict pixel values for 4 x 4 patches around
each pixel for a scaling of 4. Those values are also predicted using the weights-
estimation network and are needed to produce the full resolution prediction. This com-
bined refinement-and-upsampling feature volume takes the shape of a local 3D tensor
A, € R for each pixel z € X.

4 Experiments

In this section, we provide implementation details including the training procedure and
loss function. We compare against state-of-the-art approaches on DAVIS 2017 [10], and
YouTube-VOS 2018 [14]. In addition, we provide an extensive ablation analysis.

4.1 Implementation Details

Training Procedure. Similar to the baseline, our training setup imitates the segmen-
tation processing during inference. Each training sample is a mini-video of four frames
with one main target object to segment. The few-shot learner is provided the first frame
to train a target model. The target model and the decoder then predicts segmentation
masks from the subsequent three frames. The predictions in turn, are both used to update
the target model and compute the network training loss.

To extend this procedure for distractors, we replicate the segmentation process for
all other objects that are present in the ground-truth label map. These additional seg-
ments are then merged and provided as distractors to the main target. However, we set
the network into evaluation mode when processing these targets to conserve memory.

We employ the same data augmentation and first two training phases as the base-
line [3]. The proposed refinement and upsampling module is trained in a third phase for
6,000 iterations on DAVIS 2017, with learning rate 10~%, all other weights frozen.

Loss Function. LWL was trained with the Lovasz-softmax loss [1], a differentiable
relaxation of the Jaccard similarity measure, and we continue to do so here. However,
in the SOTA experiments, we did initially not see any improvements with our method
on YouTube-VOS. We hypothesize that this is due to large size-differences between
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objects in the same sequence in YouTube-VOS. To counter this, we split the loss into
two terms, or a balanced loss:

L = Lovasz(T) + w(T, D)Lovasz(D) (11)

where T" and D are the output batch from the decoder network, separated into target and
distractor channels. w(T , f)) reduces the influence of large objects as a function of the
number of ground-truth target pixels |7'| and ground-truth distractor pixels |D| across
the training batch:

w(T, D) = min(|T|/|D|,1.0) (12)

In other words, when the distractors jointly occupy a larger region than the target, their
influence on the loss is reduced.

Relaxed Distractor Loss. Some sequences have only one target. This implies that no
distractors exist, since we derive them from every other target. To not unnecessarily
over-constrain the training, we partially disable the computation of the loss in training
samples in these cases. Specifically, we require the distractor output to be zero in the
area under the target, but allow it to take any value elsewhere.

We also train a variant with a “hard” loss, requiring that no distractor is output when
no distractor is given, and compare them in the experiments.

4.2 State-of-the-Art Comparisons

Table 1. Results on DAVIS 2017 and YouTube-VOS 2018, comparing our method to the LWL
baseline and the state-of-the-art. The LWL scores are from our own run with the official code.

Method DAVIS’17 val | DAVIS’17 test-dev | YouTube-VOS’18 valid

Name g J |\F |G |J |F G |\Js |Ju |Fs [ Fu
CFBI [15] 81.9/79.1|84.6/74.8|71.1|78.5 81.4/81.1|75.3/85.8/83.4
CFBI-MS [15] 83.3/80.5/86.0|77.5|73.8 |81.1 82.782.2/76.9 86.8|85.0
KMN [12] 82.8/80.0|85.6/77.2|74.180.3 81.4/81.4|75.3/85.6/83.3
STM [9] 81.8/79.2184.3/72.2169.3|75.2 79.4|79.7/72.8/84.2|80.9
GMVOS [7] 82.8/80.2{852 — |— |— 80.2/80.7|74.0/85.1/80.9
LWL [3] 80.1/77.4|82.8/70.8/68.0/73.7 80.7/79.5|75.6/84.0/83.5
Ours 83.7 81.1 86.2|74.1/71.2|77.1 79.8/79.8/74.0/84.1|81.3
Ours (Balanced loss) | 82.6/80.8|85.3|75.4|72.5|78.2 81.5/80.4/76.0|85.1|84.5

We compare against the most recent state-of-the-art approaches for video object seg-
mentation: CFBI [15], STM [9], KMN [12], GMVOS [7], and the baseline LWL [3].
CFBI-MS is a multi-scale variant operating on three different scales. Our method in
contrast, is single scale and thus more comparable to the plain CFBI. Running the offi-
cial LWL implementation we noticed that our results do not coincide exactly with those
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reported in [3]. Therefore, we use these newly obtained scores to accurately compare
the baseline to our method.

Table 1 summarizes the quantiative results on DAVIS 2017 and the YouTube-VOS
2018 validation split. On DAVIS val, our proposed approach without the balanced loss
sets a new state-of-the-art on DAVIS val, while improving over the baseline on test-
dev by 3.6% points. With the balanced loss however, test-dev surprisingly improves
4.6% points, while reducing the gain on val to 2.5% points. On the YouTube-VOS 2018
validation split, our approach improves the baseline by 0.8% points when trained with
the balanced loss, while scoring similarly to other state-of-the-art approaches.

Some qualitative results are found in the supplement.

4.3 Ablation Study

Table 2. Ablation study on DAVIS 2017. See Sect. 4.3 for details. Interesting scores are printed
in bold type.

Parameters DAVIS’17 val | DAVIS’17 test-dev
r2bpuvB|¢6 J F |6 J F
80.1 77.4 82.8/70.8 68.0 73.7
v 80.7 779 83.4|71.0 67.7 74.2
v v 80.7 78.2 83.371.7 68.7 74.8

v 81.9 789 84.9|72.7 69.5 759
v v 81.6 789 84.3|71.6 68.5 74.7
v v 81.3 78.8 83.9 732 70.0 76.4
v vV 83.7 81.1 86.2/74.1 71.2 77.1
Hard loss 80.2 77.5 82.8|74.9 72.4 774
No Distractors | 81.1 78.7 83.4|71.2 68.0 74.4
No WTA 83.0 80.5 85.5/71.8 68.4 75.2

v v v v 826 808 853|754 725 78.2

In this section, we analyze the impact of different components of our method on the
overall performance. We use the DAVIS 2017 dataset [10] for this purpose, where we
include both val and test-dev splits for diversity. The results are shown in Table 2. Since
LWL [3] is our baseline method, we reevaluate their official pretrained model. As men-
tioned above, there is a discrepancy between our obtained scores and the published
ones. This could be due to several factors, e.g. hardware/software differences and driver
variations. However, we use the scores that we obtained for a valid comparison.

We first enable or disable various combinations of these components: the high-
resolution features from ResNet block/layer 2 (L2), the distractor-awareness (D), the
refinement/upsampling module (U). Enabling D alone causes a slight improvement.
Adding U to this improves the test-dev split further. We believe that the lack of high-
resolution features prevents further gains. Similarly, introducing L2 alone, causes a
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marginal improvement on both splits and enabling U at the same time, shows no
improvement on the valdiation set, and hurts the performance on the test-set. This can be
explained by our argument in Sect. 3.3: When the decision is made between two classes
(target and background), there is no need for the upsampler to resolve ambiguities. As
to why this combinatios hurts test-dev performance, is unclear. However, enabling all
three (L2+D+U) at the same time, yields significantly better results over the baseline.

With L2, D and U included, we then separately replace the relaxed distractor loss
with the “hard” loss (Hard loss). The results then drops back to the baseline for DAVIS
validation split, but oddly improves on the test-dev split.

We also test a pair of inference-time modifications. First, we zero out the distrac-
tor masks so that the few shot learner do not use them. Second, we replace the WTA
distractor-merging function with a simple pass-through; Distractors are directly routed
from the decoder output back to the few-shot learner, bypassing the merging step. As
one would expect, the results drop in both cases, proving that WTA is important. Sur-
prisingly though, disabling the WTA function hits DAVIS test-dev split much harder
than the validation split.

Finally, we add the balanced loss (B) to the L2+D+U variant. This clearly damages
the DAVIS validation scores but improves the test-dev results. However, at the same
time it also improves the YouTube-VOS results in Table 1.

These results suggest that the method works, but also reveal differences between the
DAVIS dataset splits that we cannot explain at this time.

4.4 A Note on WTA vs. Softmax Aggregation

The softmax aggregation introduced in [8], and used to merge estimations of multiple
targets, was introduced as a superior alternative to a winner-take-all approach. In our
case however, we found that to merge distractors, WTA performs better. We hypothesize
that lacking a dedicated background channel is beneficial to the refinement and upsam-
pling module, as the decoder may output low activations on both target and distractors
when the classification is uncertain.

4.5 Emergent Distractors

An essential question is how our framework would behave when there is only one
labeled object in the scene. Interestingly, the model learns to identify ambiguous
regions. Figure 4 shows an example where our approach learns to identify the camel
in the background without any explicit supervision (if columns 2+3 from the left). We
attribute this to the relaxed distractor loss described in Sect. 4.1. To test this, we modify
the loss to be “hard” (H). As suspected, this suppresses the behaviour greatly, while
increasing the decoders’ certainty in both the target and background (columns 4+5).
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(R) Target (R) Distractor (H) Target (H) Distractor

Fig. 4. Frames 40, 50 60 (from top to bottom) from the ‘camel’ sequence, with target/distractor
score maps. Our model can learn to identify distractors in case they were not explicitly pro-
vided, provided it is trained with the relaxed distractor loss. Red/yellow indicates positive log-
likelihoods, blue/cyan negative. The colors represent the same value range in all columns. (R) and
(H) indicate results from models trained with the relaxed and hard distractor losses, respectively.
(Color figure online)

5 Conclusion

We have proposed a distractor-aware, discriminative video object segmentation app-
roach. In contrast to existing methods, our proposed method encodes distractors into
a separate class, to exploit information about other objects in the scene that are likely
to be confused with the target. Moreover, we propose the use of joint refinement and
upsampling to regularize the likelihoods for highly uncertain regions with their neigh-
borhoods. We demonstrated the effectiveness of our approach by modifying an exist-
ing state-of-the-art approach to be distractor-aware. Our modification sets a new state-
of-the-art on the DAVIS 2017 val dataset, while improving over the baseline with a
remarkable margin on the DAVIS 2017 fest-dev dataset. These results clearly indicate
the efficacy of explicitly modelling distractors when solving video object segmentation.
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