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3 Saab, Bröderna Ugglas gata, 582 54 Linköping, Sweden
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Abstract. Video instance segmentation is one of the core problems in
computer vision. Formulating a purely learning-based method, which
models the generic track management required to solve the video instance
segmentation task, is a highly challenging problem. In this work, we pro-
pose a novel learning framework where the entire video instance seg-
mentation problem is modeled jointly. To this end, we design a graph
neural network that in each frame jointly processes all detections and
a memory of previously seen tracks. Past information is considered and
processed via a recurrent connection. We demonstrate the effectiveness
of the proposed approach in comprehensive experiments. Our approach,
operating at over 25 FPS, outperforms previous video real-time meth-
ods. We further conduct detailed ablative experiments that validate the
different aspects of our approach.

1 Introduction

Video instance segmentation (VIS) is the task of simultaneously detecting, seg-
menting, and tracking object instances from a set of predefined classes. This
task has a wide range of applications in autonomous driving [14,32], data anno-
tation [4,19], and biology [10,26,33]. In contrast to image instance segmenta-
tion, the temporal aspect of its video counterpart poses several additional chal-
lenges. Preserving correct instance identities in each frame is made difficult by
the presence of other, similar instances. Objects may be subject to occlusions,
fast motion, or major appearance changes. Moreover, the videos can include wild
camera motion and severe background clutter.
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Fig. 1. Illustration of the proposed approach. An instance segmentation method is
applied to each frame. The set of detections is, together with a maintained memory
of tracks, used to construct a graph. Each node and each edge is represented with
an embedding. These are processed by a graph neural network and directly used to
predict assignment and track initialization (see Sect. 3.1). The track embeddings are
further processed by a recurrent module, producing final track embeddings (Sect. 3.3).
These are used to predict track confidences and class memberships (Sect. 3.4), masks
(Sect. 3.4), and updated appearance descriptors (Sect. 3.2). Last, the final track embed-
dings are propagated to the next frame via the recurrent connection.

Prior works have taken inspiration from the related areas of multiple object
tracking, video object detection, instance segmentation, and video object seg-
mentation [1,6,30]. Most methods adopt the tracking-by-detection paradigm
popular in multiple object tracking [9]. In this paradigm, an instance segmenta-
tion method provides detections in each frame, reducing the task to the forma-
tion of tracks from these detections. Given a set of already initialized tracks, one
must determine for each detection whether it belongs to one of the tracks, is a
false positive, or if it should initialize a new track. Most approaches [6,11,21,30]
learn to match pairs of detections and then rely on heuristics to form the final
output, e.g., initializing new tracks, predicting confidences, removing tracks, and
predicting class memberships.

The aforementioned pipelines suffer from two major drawbacks. (i) The learnt
models lack flexibility, and are for instance unable to reason globally over all
detections or access information temporally [11,30]. (ii) The model learning stage
does not closely model the inference, for instance by utilizing only pairs of frames
or ignoring subsequent detection merging stages [6,11,21,30]. This means that
the method never gets the chance to learn many of the aspects of the VIS problem
– such as dealing with false positives in the employed instance segmentation
method or handling uncertain detections.

We address these two drawbacks by proposing a novel spatiotemporal learn-
ing framework for video instance segmentation that closely models the inference
stage during training. Our network proceeds frame by frame, and is in each
frame asked to create tracks, associate detections to tracks, and score existing
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tracks. We use this formulation to train a flexible model, that in each frame
processes all tracks and detections jointly via a graph neural network (GNN),
and considers past information via a recurrent connection. The model predicts,
for each detection, a probability that the detection should initialize a new track.
The model also predicts, for each pair of an existing track and a detection, the
probability that the track and the detection correspond to the same instance.
Finally, it predicts an embedding for each existing track. The embedding serves
two purposes: (i) it is used to predict confidence and class for the track; and (ii)
it is via the recurrent connection fed as input to the GNN in the next frame.

Contributions: Our main contributions are as follows. (i) We propose a new
framework for training video instance segmentation methods. The methods pro-
ceed frame-by-frame and are in each, given detections from an instance seg-
mentation network, trained to match detections to tracks, initialize new tracks,
predict segmentations, and score tracks. (ii) We present a suitable and flexible
model based on Graph Neural Networks and Recurrent Neural Networks. (iii)
We show that the GNN successfully learns to propagate information between
different tracks and detections in order to predict matches, initialize new tracks,
and predict track confidence and class. (iv) A recurrent connection permits us
to feed information about the tracks to the next time step. We show that while
a näıve implementation of such a connection leads to highly unstable training,
an adaption of the long short-term memory effectively solves this issue. (v) We
model the instance appearance as a Gaussian distribution and introduce a learn-
able update formulation. (vi) We analyze the effectiveness of our approach in
comprehensive experiments. Our method outperforms previous near real-time
approaches with a relative mAP gain of 9.0% on the YouTubeVIS dataset [30].

2 Related Work

The video instance segmentation (VIS) problem was introduced by Yang et
al. [30]. With it, they proposed several simple and straightforward approaches to
tackle the task. They follow the tracking-by-detection paradigm and first apply
an instance segmentation method to provide detections in each frame, and then
form tracks based on these detections. They experiment with several approaches
to matching different detections, such as mask propagation with a video object
segmentation method [27]; application of a multiple object tracking method [29]
in which the image-plane bounding boxes are Kalman filtered and targets are
re-detected with a learnt re-identification mechanism; and similarity learning of
instance-specific appearance descriptors [30]. Additionally, they experiment with
the offline temporal filtering proposed in [16].

Cao et al. [11] propose to improve the underlying instance segmentation
method, obtaining both better performance and computational efficiency. Luiten
et al. [21] propose (i) to improve the instance segmentation method by applying
different networks for classification, segmentation, and proposal generation; and
(ii) to form tracks with the offline algorithm proposed in [22]. Bertasius et al. [6]
also utilize a more powerful instance segmentation method [7], and propose a
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novel mask propagation method based on deformable convolutions. Both [21]
and [6] achieve strong performance, but at a very high computational cost.

All of these approaches follow the tracking-by-detection paradigm and try
various ways to improve the underlying instance segmentation method or the
association of detections. The latter relies mostly on heuristics [21,30] and is
often not end-to-end trainable. Furthermore, the track scoring step, where the
class and confidence is predicted, has received little attention and is in exist-
ing approaches calculated with a majority vote and an averaging operation, as
pointed out in the introduction. The work of Athar et al. [1] instead proposes an
end-to-end trainable approach that is trained to predict instance center heatmaps
and an embedding for each pixel. A track is constructed from strong responses in
the heatmap. The embedding at that location is matched with the embeddings
of all other pixels, and sufficiently similar pixels are assigned to that track.

Our approach is closely related to two works on multiple object tracking
(MOT) [9,28] and a work on feature matching [25]. These works associate detec-
tions or feature points by forming a bipartite graph and applying a Graph Neural
Network. The strength of this approach is that the neural network simultaneously
reasons about all available information. However, the setting of these works dif-
fers significantly from video instance segmentation. MOT is typically restricted
to a specific type of scene, such as automotive, and usually with only one or two
classes. Furthermore, for both MOT and feature matching, no classification or
confidence is to be provided for the tracks. This is reflected in the way [9,25,28]
utilizes their GNNs, where only either nodes or edges are of interest, not both.
The other part exists solely for the purpose of passing messages. As we explain
in Sect. 3, we will instead utilize both edges and nodes: the edges to predict
association and the nodes to predict class membership and confidence.

3 Method

We propose an approach for video instance segmentation, consisting of a single
neural network. Our model proceeds frame by frame, and performs the following
steps: (i) predict tentative single-image instance segmentations, (ii) associate
detections to existing tracks, (iii) initialize new tracks, (iv) score existing tracks,
(v) update the states of each track.

The instance segmentations together with the existing tracks are fed into
a graph neural network (GNN). The GNN processes all tracks and detections
jointly to produce output embeddings that are used for association and scoring.
These output embeddings are furthermore fed as input to the GNN in the next
time step, permitting the GNN to process both present and previous information.
An overview of the approach is provided in Fig. 1.

3.1 Track-Detection Association

We maintain a memory of previously seen objects, or tracks, which is updated
over time. In each frame, an instance segmentation method produces tentative
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Fig. 2. Overview of the node and edge initialization during graph construction.

detections. The aim of our model is to associate detections with tracks, determin-
ing whether or not track m corresponds to detection n. In addition, the model
needs to decide, for each detection n, whether it should initialize a new track.

Motivation. Most existing methods [11,21,30] associate tracks to detections
by training a network to extract appearance descriptors. The descriptors are
trained to be similar if they correspond to the same object, and dissimilar if
they correspond to different objects. The issue with such an approach is that
appearance descriptors corresponding to visually and semantically similar, but
different instances, will be trained to be different. In such scenarios it might
be better to let the appearance descriptors be similar, and instead rely on for
instance spatial information. The network should therefore assess all available
information before making its decision.

Further information is obtained from track-detection pairs other than the
one considered. It may be difficult to determine whether a track and a detection
match in isolation, for instance with cluttered scenes or when visibility is poor.
In such scenarios, the instance segmentation method might provide multiple
detections that all overlap the same object to some extent. Another difficult
scenario is when there is sudden and severe camera motion, in which case we
might need global reasoning in order to either disregard spatial similarity or
treat it differently. We therefore hypothesize that it is important for the network
to reason about all tracks and detections simultaneously.

The same is true when determining whether a detection should initialize a
new track. How well a detection matches existing tracks must influence this
decision. Previous works [11,30] achieve this observation with a hard decision.
In these, a new track will be initialized for each detection that does not match
an existing track. We avoid this heuristic and instead let the network process all
tracks and detections simultaneously and jointly predict track-detection assign-
ment and track initialization. It should be noted, however, that the detections
are noisy in general. Making the correct decision may be outright impossible. In
such scenarios we would expect the model to create a track, and over time as
more information is accumulated, re-evaluate whether the track is novel, previ-
ously seen, or from a false positive in the detector.

Graph Construction. For each detection n we construct an embedding δn. It
is initialized as the concatenation of the bounding box and classification scores
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output by the detector. Each track in memory has an embedding τm, that was
produced by our model in the previous time step via the recurrent connection. We
represent the relationship between each track-detection pair with an embedding
emn. This embedding will later be used to predict the probability that track
m matches detection n. It is initialized as the concatenation of (i) the spatial
similarity between them, based on the Jaccard index between their bounding
boxes (see [30]); and (ii) the appearance similarity between them, as described in
Sect. 3.2. This construction is illustrated in Fig. 2. Further, we let the relationship
between each detection and a corresponding potential new track be represented
with an embedding e0n, and let τ0 represent an empty track embedding. We
treat e0n and τ0 the way we treat other edges and tracks, but they are processed
with their own set of weights. The initialization of the edges e0n is done without
the spatial similarity and only with the appearance similarity. We maintain a
separate appearance model for the empty track, based on the appearance of
the entire scene. The elements τm, δn, and emn constitute a bipartite graph, as
illustrated in Fig. 1.

GNN-Based Association. The idea is to propagate information between the
different embeddings in a learnable way, providing us with updated embeddings
that we can directly use to predict the quantities needed for video instance
segmentation. To this end we use layers that perform updates of the form

ei+1
mn = fe

i ([ei
mn, τ i

m, δi
n]) , (1a)

τ i+1
m = fτ

i ([τ i
m,

∑

j

gτ
i (ei

mj)e
i
mj ]) , (1b)

δi+1
n = fδ

i ([δi
n,

∑

i

gδ
i (ei

in)ei
in]) . (1c)

Here, i enumerates the network layers. The functions fe
i , fτ

i , and fδ
i are linear

layers followed by a ReLU activation. The gating functions gτ
i and gδ

i are multi-
layer perceptrons ending with the logistic sigmoid. [·, ·] denotes concatenation.

The aforementioned formulation has the structure of a Graph Neural Net-
work (GNN) block [2], with both τm and δn as nodes, and emn as edges. These
layers permit information exchange between the embeddings. The layer deviates
slightly from the literature. First, we have two types of nodes and use two differ-
ent updates for them. This is similar to the work of Brasó et al. [9] where message
passing forward and backward in time uses two different neural networks. Second,
the accumulation in the nodes in (1b) and (1c) uses an additional gate, permit-
ting the nodes to dynamically select from which message information should be
accumulated. This is sensible in our setting, as for instance class information
should be passed from detection to track if and only if the track and detection
match well.

We construct our graph neural network by stacking GNN blocks. For added
expressivity at small computational cost, we interleave them with residual
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blocks [17] in which there is no information exchange between different graph
elements. That is, for these blocks the f ·

i rely only on their first arguments. Note
that these blocks use fully connected layers instead of 2D convolutions. The GNN
will provide us with updated edge embeddings which we use for association of
detections to tracks, and updated node embeddings which will be used to score
tracks and as input to the GNN in the next frame.

Association Prediction. We predict the probability that the track m matches
the detection n by feeding the edge embeddings emn through a logistic model

Pr(m matches n) = sigmoid(w · emn + b). (2)

If the probability is high, they are considered to match and the track will obtain
the segmentation of that detection. New tracks are initialized in a similar fashion.
The edge embeddings e0n are fed through another logistic model to predict the
probability that the detection n should initialize a new track. If the probability
is beyond a threshold, we initialize a new track with the embedding of that
detection δn. This threshold is intentionally selected to be quite low. This leads
to additional false positives, but our model can mark them as such by giving
them low class scores and not assigning any segmentation pixels to them.

Note that we treat the track-detection association as multiple binary classifi-
cation problems. This may lead to a single detection being assigned to multiple
tracks. An alternative would be to instead consider the classification of a single
detection as a multiclass classification problem. We observed, however, that this
led to slightly inferior results and that it was uncommon for a single detection
to be assigned to more than one track.

3.2 Modelling Appearance

In order to accurately match tracks and detections, we create instance-specific
appearance models for each tracked object. To this end, we add an appearance
network, comprising a few convolutional layers, and apply it to feature maps
of the backbone ResNet [17]. The output of the appearance network is pooled
with the masks provided by the detections, resulting in an appearance descriptor
for each detection. The tracks gather appearance from the detections and over
time construct an appearance model of that track. The similarity in appearance
between a track and a detection will serve as an important additional cue during
matching. The aim for the appearance network is to learn a rich representation
that allows us to discriminate between visually or semantically similar instances.

Our initial experiments of integrating appearance information directly into
the GNN, similar to [9,25,28], did not lead to noticeable improvement. This is
likely due to differences between the problems. The video instance segmenta-
tion problem is fairly unconstrained: there is significant variation in scenes and
objects considered, and compared to its variation, there are quite few labelled
training sequences available. In contrast, multiple object tracking typically works
with a single type of scene or a single category of objects and feature matching is
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learnt with magnitudes more training examples than what is available for video
instance segmentation.

In order to sidestep this issue, we treat appearance separately and allow the
GNN to observe only the appearance similarity, and not the actual appearance.
Each track models its appearance as a multidimensional Gaussian distribution
with diagonal covariance. When the track is initialized, we use the appearance
vector of the initializing detection as mean μ and a fixed covariance Σ. We
feed appearance information into the GNN via the track-detection edges. The
edge between track m and detection n is initialized with the loglikelihood of
the detection appearance given the track distribution. The GNN is able to uti-
lize this information when calculating the matching probability of each track-
detection pair. Afterwards, the appearance (μ,Σ) of each track is updated with
the appearance x of the best matching detection. The update is based on the
Bayesian update of a Gaussian under a conjugate prior. We use a normal-inverse-
chi-square prior [23],

μ+ = κx + (1 − κ)μ , (3a)

Σ+ = νΣ̃ + (1 − ν)Σ +
κ(1 − ν)
κ + ν

(x − μ)2 . (3b)

The term Σ̃ corresponds to the sample variance and the update rates κ and
ν would usually be the number of samples in the update relative the strength
of the prior. For added flexibility we predict these values based on the track
embedding, permitting the network to learn a good update strategy.

3.3 Recurrent Connection

In order to process object tracks, it is crucial to propagate information over time.
We achieve this with a recurrent connection, which brings the benefit of end-
to-end training. However, näıvely adding recurrent connections leads to highly
unstable training and in extension, poor video instance segmentation results.
Even with careful weight initialization and low learning rate, both activation
and gradient spikes arise. This is a well-known problem when training recur-
rent neural networks and is usually tackled with the Long Short-Term Memory
(LSTM) [18] or Gated Recurrent Unit [13]. These modules use a system of mul-
tiplicative sigmoid-activated gates, and have been repeatedly shown to be able
to well model sequential data while avoiding aforementioned issues [13,15,18].

We adapt the LSTM to our scenario. Typically, the output of the LSTM is
fed as its input in the next time step. We instead feed the output of the LSTM
as input to the GNN in the next time step, and the output of the GNN as input
to the LSTM. First, denote the output of the GNN as

{τ̃ t
m}, {δ̃t

n}, {ẽt
mn} = GNN({τ t−1

m }, {δt
n}, {et

mn}) , (4)
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where superscript t denotes time. Next, we feed each track embedding τ̃ t
m through

the LSTM system of gates

αforget
m = σ(hforget(τ̃ t

m)) , (5a)

αinput
m = σ(hinput(τ̃ t

m)) , (5b)

αoutput
m = σ(houtput(τ̃ t

m)) , (5c)

c̃t
m = tanh(hcell(τ̃ t

m)) , (5d)

ct
m = αforget

m � ct−1
i + αinput

m � c̃t
m , (5e)

τ t
m = αoutput

m � tanh(ct
m) . (5f)

The functions hforget, hinput, houtput, hcell are linear neural network layers. � is
the element-wise product, tanh the hyperbolic tangent, and σ the logistic sig-
moid.

3.4 VIS Output Prediction

Track scoring. For the VIS task, we need to constantly assess the validity
and class membership of each active track τm. To this end, we predict a confi-
dence value and the class of existing tracks in each frame. The confidence reflects
our trust about whether or not the track is a true positive. It is updated over
time together with the class prediction as more information becomes available.
This provides the model with the option of effectively removing tracks by reduc-
ing their scores. Existing approaches [6,11,21,30] score tracks by averaging the
detection confidence of the detections deemed to correspond to the track. Class
predictions are made with a majority vote. The drawback is that other available
information, such as how certain we are that each detection indeed belongs to
the track or the consistency of the detections, is not taken into account.

We address the problem of track scoring and classification using the GNN
introduced in Sect. 3.1 together with a recurrent connection (Sect. 3.3). The track
embeddings {τm}m gather information from all detections via the GNN, and
accumulate this information over time via the recurrent connection. We then
predict the confidence and class for each track based on its embedding. This is
achieved via linear layer followed by softmax.

Segmentation. In each frame, we report a segmentation. This segmentation is
based on both the track embeddings and the masks provided with the detections.
Each track that matches sufficiently well with a detection claims the mask of that
detection. This mask together with the track embedding are then fed through a
small CNN that reweights and refines the mask. This permits our model to not
assign pixels to tracks that it believes are false positives.

3.5 Training

We train the network by feeding a sequence of T frames through it as we would
during inference at test-time. In each frame t, the neural network predicts track-
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detection match probabilities, track initialization probabilities, track class prob-
abilities, and track segmentation probabilities

ymatch
t ∈ [0, 1]Mt×Nt , (6a)

yinit
t ∈ [0, 1]Nt , (6b)

yscore
t ∈ [0, 1]Mt+1×C , (6c)

yseg
t ∈ [0, 1]Mt+1×H×W . (6d)

Here, Mt denotes the number of tracks in frame t prior to initializing new tracks;
Nt the number of detections obtained from the detector in frame t; C the number
of object categories, including background; and H ×W the image size. The four
components in (6) permits the model to conduct video instance segmentation.
We penalize each with a corresponding loss component

L = λ1Lscore + λ2Lseg + λ3Lmatch + λ4Linit . (7)

The component Lscore rewards the network for correct prediction of the class
scores; Lseg for segmentation refinement; Lmatch for assignment of detections to
tracks; and Linit for initialization of new tracks. We weight the components with
constants (λ1, λ2, λ3, λ4).

In order to compute the loss, we determine the identity of each track and each
detection. The identity is either one of the annotated objects or background.
First, for each frame, the detections are matched to the annotated objects in
that frame. Detections can claim the identity of an annotated object if their
bounding boxes overlap by at least 50%. If multiple detections overlap with
the same object, only the best matching detection claims its identity. Detections
that do not claim the identity of an annotated object are marked as background.
Thus, each annotated object will correspond to a maximum of one detection in
each frame. Next, the tracks are assigned identities. Each track was initialized
by a single detection at some frame and the track can claim the identity of
that detection. However, if multiple tracks try to claim the identity of a single
annotated object, only the first initialized of those tracks gets that identity. The
others are assigned as background. Thus, each annotated object will correspond
to a maximum of one track.

Using the track and detection identities we compute the loss components.
Each component is normalized with the batchsize and video length, but not with
the number of tracks or detections. Detections or tracks that are false positives
will therefore not reduce the loss for other tracks or detections, as they otherwise
would.
Lmatch is the binary cross-entropy loss. The target for ymatch

t,m,n is 1 if track m and
detection n has the same identity and that identity corresponds to an annotated
object. If their identities differ or if the identity is background, the target is 0.
Linit is the binary cross-entropy loss. The target for yinit

t,n is 1 if detection n
initializes a track with the identity of an annotated object. Otherwise, the target
is 0.
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Lscore is the cross-entropy loss. If track m corresponds to an annotated object,
the target for yscore

t,m is the category of that object. Otherwise the target is the
background class. We found that it was difficult to score tracks early on in some
scenarios and therefore we weight the loss over the sequence, giving higher weight
to later frames.
Lseg is the Lovasz loss [5]. The target for yseg

t is obtained by mapping the anno-
tated object identities in the ground-truth segmentation to the track identities.
In scenarios where a single annotated object gives rise to multiple tracks, the net-
work is rewarded for assigning pixels only to the track that claimed the identity
of that object.

4 Experiments

We evaluate the proposed approach for video instance segmentation on YouTube-
VIS [30] (2019), a benchmark comprising 40 object categories in 2k training
videos and 300 validation videos. Performance is measured in terms of video
mean average precision (mAP). We first provide qualitative results, showing
that the proposed neural network learns to tackle the video instance segmen-
tation problem. Next, we quantitatively compare to the state-of-the-art. Last,
we analyze the different components and aspects of our approach in an ablation
study.

4.1 Implementation Details

We implement the proposed approach in PyTorch [24] and will make code avail-
able upon publication. We aim for real-time performance and therefore select
YOLACT [8] as base instance segmentation method. We use the implementation
publicly provided by the authors. The detector and our ResNet50 [17] backbone
are initialized with weights provided with the YOLACT implementation. We
fine-tune the detector on images from YouTubeVIS and OpenImages [3,20] for
120 epochs à 933 iterations, with a batch size of 8. Next, we freeze the back-
bone and the detector, and train all other modules: the appearance network, the
GNN, and the recurrent module. We train for 150 epochs à 633 iterations with
a batch of 4 video clips, each 10 frames sampled randomly from YouTubeVIS.
During training, 200 sequences of YouTubeVIS are held-out for hyperparameter
selection. For additional model and training details, see Supplementary material.

4.2 Qualitative Results

In Fig. 3 we show the output of the detector and the tracks predicted by our
approach. The detector may provide noisy class predictions. Our model learns
to filter these predictions and accurately predict the correct class. When the
detector fails to detect an object, our approach pauses the corresponding track
until the detector again finds the object. If the detector provides a false positive,
our approach initializes a track that is later marked as background and rendered
inactive. The proposed model has learnt to deal with mistakes made by the
detector. For additional qualitative results, see the Supplementary material.
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background, 0.94
background, 0.97
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Fig. 3. Track score plots (top) and detections (3 bottom rows) for three videos. The
plot colour is the ground-truth class for that track and the value is the confidence for
that class, ideally 1.00. In the left video, the detector makes noisy class predictions,
but our approach learns to filter this noise. In the center, there is a missed detection.
Our method renders the track inactive and resumes it in subsequent frames where the
detector finds both objects. To the right, a false positive in the detector leads to a false
track. This track is, however, quickly marked as background with high confidence.

4.3 Quantitative Comparison

Next, we compare our approach to the state-of-the-art, including the baselines
proposed in [30]. The results are shown in Table 1a. Our approach, running at
30 fps, outperforms all near real-time methods. DeepSORT [29], which relies on
Kalman-filtering the bounding boxes and a learnt appearance descriptor used for
re-identification, obtains an mAP score of 26.1. MaskTrack R-CNN [30] gets a
score of 30.3. SipMask [11] improves MaskTrack R-CNN by changing its detector
and reach a score of 33.7. Using a ResNet50 backbone, we run at similar speed
and outperform all three methods with an absolute gain of 9.2, 5.0, and 1.6
respectively.

While [6,21] obtain higher mAP, those methods are more than a magni-
tude slower, and thus infeasible for real-time applications or for processing large
amounts of data. STEm-Seg [1] reports results using both a ResNet50 and a
ResNet101 backbone. We show a gain of 4.7 mAP with ResNet50. We also try
with a ResNet101 backbone, retraining our base detector and approach. This
leads to a performance of 37.7 mAP, an absolute gain of 3.1.

4.4 Ablation Study

Last, we analyze the different aspects of the proposed approach, with results
provided in Table 1b. For additional experiments, see Supplementary material.
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Table 1. (a) State-of-the-art comparison on the YouTubeVIS validation dataset [30].
The proposed approach outperforms all near real-time approaches. †: No speed reported
in [21] or [6], but each utilize components ([22] and [12]) with a reported speed of 1 fps
and 2 fps respectively. (b) Performance under different configurations on the YouTube-
VIS validation set. Each experiment corresponds to a single alteration to the final
approach. The first set of experiments seeks to simplify the different modules in the
final approach. The second set of experiments tackles the association and scoring tasks
of the video instance segmentation problem using the mechanism proposed by Yang et
al. [11,30].

Method fps mAP

OSMN MaskProp [31] 23.4

FEELVOS [27] 26.9

IoUTracker+ [30] 23.6

OSMN [31] 27.5

DeepSORT [29] 26.1

SeqTracker [30] 27.5

MaskTrack R-CNN [30] 20 30.3

SipMask [11] 30 32.5

SipMask ms-train [11] 30 33.7

STEm-Seg ResNet50 [1] 30.6

STEm-Seg ResNet101 [1] 7 34.6

VIS2019 Winner [21] < 1† 44.8

MaskProp [6] < 2† 46.6

Ours (ResNet50) 30 35.3

Ours (ResNet101) 25 37.7

(a)

Configuration mAP

Our final approach 35.3

No GNN 28.6

No LSTM-like gating Diverges

Simple recurrent gate 31.5

No appearance 34.5

Appearance baked into embedding 34.4

Association from [11,30] 29.2

Scoring from [11,30] 31.5

(b)

No GNN. We first analyze the benefit of processing tracks and detections jointly
using our GNN. This is done by restricting the GNN module. First, a neural
network predicts the probability that each track-detection pair matches, based
only on the appearance and spatial similarities. Next, new tracks are initialized
from detections that are not assigned to any track. Last, each track embedding is
updated with the best matching edge and detection. This leads to a substantial
6.7 drop in mAP, demonstrating the importance of our GNN.

Simpler Recurrent Module. We experiment with the LSTM-like gating mech-
anism. We first try to remove it, directly feeding the track embeddings output
from the GNN as input in the subsequent frame. We found that this configu-
ration leads to unstable training and in all attempts diverge. We therefore also
try a simpler mechanism, adding only a single gate and a tanh activation. This
setting leads to more stable training, but provides deteriorated performance.

Simpler Appearance. We measure the impact of the appearance by removing
it. We also experiment with removing its separate treatment. The appearance is
instead baked into the detection node embeddings. Both of these configurations
lead to performance drops.
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Association or Scoring from [30]. The proposed model is trained to (i) asso-
ciate detections to tracks and (ii) score tracks. We try to let each of these two
tasks instead be performed by the simpler mechanisms used in [11,30]. This leads
to performance drops of 6.1 and 3.8 mAP respectively.

5 Conclusion

We introduced a novel learning formulation together with an intuitive and flexi-
ble model for video instance segmentation. The model proceeds frame by frame,
uses as input the detections produced by an instance segmentation method, and
incrementally forms tracks. It assigns detections to existing tracks, initializes new
tracks, and updates class and confidence in existing tracks. We demonstrate via
qualitative and quantitative experiments that the model learns to create accurate
tracks, and provide an analysis of its various aspects via ablation experiments.
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