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Abstract. Public key encryption schemes are increasingly being stud-
ied concretely, with an emphasis on tight bounds even in a multi-user
setting. Here, two types of formalization have emerged, one with a single
challenge bit and one with multiple challenge bits. Another modelling
choice is whether to allow key corruptions or not. How tightly the vari-
ous notions relate to each other has hitherto not been studied in detail.
We show that in the absence of corruptions, single-bit left-or-right indis-
tinguishability is the preferred notion, as it tightly implies the other
(corruption-less) notions. However, in the presence of corruptions, this
implication no longer holds; we suggest the use of a more general notion
that tightly implies both existing options. Furthermore, for completeness
we study how the relationship between left-or-right versus real-or-random
evolves in the multi-user PKE setting.

Keywords: Indistinguishability · Public key encryption · Multi-user
security · Adaptive corruptions

1 Introduction

Historically, a primitive like public key encryption (PKE) is often studied in
a setting where a single key-pair is generated for an adversary to attack, often
based on a single challenge ciphertext only [27]. Yet, in reality there will be many
users, each generating their own key pairs, to be used repeatedly. To study the
concrete security risk of having very many keys in play simultaneously, Bellare
et al. [5] introduced the multi-user setting. They considered an adversary with
access to n different public keys and the ability to challenge (in an indistin-
guishability fashion) each of them, and concluded that the security loss is at
worst linear in the total number challenge queries. Loosely speaking, such a
linear security loss implies that a scheme that is believed to offer, say, 128-bit
security in the single user setting, may only guarantee 80-bit security if there are
220 users each receiving 228 messages (based on the same hardness assumption).

Unfortunately, there have been ample examples of schemes where practical
attacks can indeed exploit the increased attack surface, demonstrating that these
theoretical security losses can be realized. Consequently, the generic tightness
losses to move from a single-user, single-challenge setting to a more realistic
c© Springer Nature Switzerland AG 2021
M. B. Paterson (Ed.): IMACC 2021, LNCS 13129, pp. 75–104, 2021.
https://doi.org/10.1007/978-3-030-92641-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92641-0_5&domain=pdf
http://orcid.org/0000-0003-0527-2999
http://orcid.org/0000-0002-5319-4625
https://doi.org/10.1007/978-3-030-92641-0_5


76 H. Heum and M. Stam

multi-user, multi-challenge setting are problematic as, conservatively, one would
have to increase key sizes to compensate. Alternatively, a growing number of
works have looked at schemes with tighter security guarantees, either if the
number of users goes up, the number of challenge encryptions per key goes up,
or both [2,5,12,16,21,22,28].

Moreover, in a system with many users, it is not inconceivable that some
private keys eventually become available to an adversary, which can be modelled
using key corruptions. An adversary learning a private key can obviously decrypt
all ciphertexts that were encrypted under the corresponding public key, thus
some care has to be taken to avoid trivial wins when allowing key corruptions.
The two simplest mechanisms are either using independent challenge bits for
each key or disallowing an adversary to both challenge and corrupt a single key.
As we detail in Appendix A, both these mechanisms have been used, also in
related contexts such as key encapsulation mechanisms (KEMs), authenticated
encryption (AE), and authenticated key exchange (AKE), raising the inevitable
question which notion should be the preferred one.

In the context of lower bounding tightness losses for multi-user AE, Jager et
al. [25] employed a novel multi-key, multi-challenge-bit notion that generalizes
both mechanisms; however, the main motivation of this generalized mechanism
was universality of their impossibility result, allowing them to side-step the ques-
tion which mechanism to focus on. Recently, in the context of AKE, Jager et
al. [24] argued in favour of the single-bit notion, primarily as it composes more
easily. For KEMs a similar argument holds, yet for PKE composition is arguably
less relevant. Instead, a more direct interpretation of what the various notions
entail might well be preferable.

Our Contribution. Both the single-bit and multi-bit approaches are implied by
the single user notion at the cost of a tightness loss linear in the number of users.
Consequently, the two multi-user notions are also within that linear factor in the
number of user. As our goal is to avoid such tightness losses, we are interested in
identifying the most suitable, general notion as possible, guaranteeing that there
are no “hidden” linear losses in the choice of notion—an issue already pointed
to by Jager et al. [24]

To this end, we adapt the multi-key, multi-bit notion of Jager et al. [25] to
the PKE setting, slightly generalizing it in the process. We show how it tightly
implies, and therefore unifies, the previous multi-user notions, and give novel
interpretations of each (see Sect. 3).

We then shift our focus to how tightly the different notions relate to each
other, with the goal of identifying the strongest, and therefore preferred, multi-
user notions. We find that the answer depends on whether or not corruptions are
present: in the absence of corruptions, we find that the single-challenge-bit notion
is as strong or stronger than any of the other (see Sect. 4.2). Given that this
notion is significantly simpler than the fully general game, this makes the single-
bit notion the preferred one in the absence of corruptions. With corruptions, this
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relation breaks down, and the general “free-bit” game indeed seems the stronger,
and therefore preferred, notion (see Sect. 4.3).

Finally, we fill some holes largely left as folklore until now regarding how
the well-known factor-2 reduction from real-or-random to left-or-right indistin-
guishability, as shown by Bellare et al. [7] for the single-user, single-challenge
setting, generalizes to the multi-user setting. We find that, as expected, the rela-
tion remains intact in the single-bit setting, regardless of whether corruptions are
present (see Sect. 4.4). In contrast, with multiple challenge bits the best-known
reductions turn lossy. Whether these losses are inevitable remains open; however,
it reinforces the by now established notion that left-or-right indistinguishability
is to be preferred over its real-or-random counterpart whenever possible.

The appendices contain much additional material: highlights include
Appendix A giving context to the present work by presenting a more com-
plete history of multi-user indistinguishability than that presented here, and
Appendix F, illustrating the difficulty of achieving tight composition in multi-bit
settings, as alluded to by Jager et al. [24], by giving an overview of how addi-
tional losses can appear in PKE schemes built using the widely used KEM/DEM
paradigm.

2 Preliminaries

2.1 Notation

For an integer n, we will write [n] for the set {1, . . . , n}. We will also use the
abbreviation X

∪←− x for the operation X ← X ∪ {x}. The event of an adversary
A outputting 0 is denoted 0 ← A. We use Pr[Code : Event | Condition ] to
denote the conditional probability of Event occurring when Code is executed,
conditioned on Condition. We omit Code when it is clear from the context and
Condition when it is not needed.

2.2 PKE Syntax

A public key encryption scheme PKE consists of three algorithms: the probabilis-
tic key generation algorithm Pk.Kg, which takes as input some system parameter
pm and outputs a public/private key pair (pk, sk) ∈ (PK,SK); the probabilistic
encryption algorithm Pk.Enc, which on input a public key pk ∈ PK and a mes-
sage m ∈ M, outputs a ciphertext c; and the deterministic decryption algorithm
Pk.Dec, which on input of a secret key sk ∈ SK and a ciphertext c, outputs
either the message m, or a special symbol ⊥ denoting failure.

We allow the message space M to depend on the parameters pm, but insist
it is independent of the public key pk. We furthermore assume that there exists
an equivalence relation ∼ on the message space that partitions M into finite
equivalence classes. For m ∈ M, we let �m� denote its equivalence class, so �m� =
{m̃ ∈ M : m ∼ m̃}. Often M consists of arbitrary length bitstrings, or at least
all bitstrings up to some large length (e.g. 264), and two messages are equivalent
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iff they have the same length, so �m� = {0, 1}|m|; for other cryptosystems, such
as ElGamal, messages are group elements that are essentially all equivalent, so
�m� = M. (Note that the case where �m� = {m} for all m is degenerate and
‘security’ is often trivially satisfied.)

The scheme must satisfy ε-correctness [20], namely that for any pm:

E(pk,sk) ←$Pk.Kg(pm)

[
max
m∈M

Pr[c ←$Pk.Encpk(m)) : Pk.Decsk(c) �= m]
]

≤ ε .

If ε = 0 we speak of perfect correctness; the case ε > 0 is especially useful to
model decryption errors typical to lattice-based schemes.

Remark 1. The system parameters pm are implicitly input to Pk.Enc and Pk.Dec
as well; for concreteness, they can for instance be the description of an elliptic
curve group with generator for an ECDLP-based system or the dimensions and
noise sampling algorithm for an LWE-based system. When one is interested in
re-phrasing our results in an asymptotic setting, the parameters pm will be gen-
erated by a probabilistic, polynomial-time algorithm that only takes the security
parameter as input.

2.3 Concrete Security

Indistinguishability. The standard notion of security for encryption systems
has become that of indistinguishability. Here the adversary is given access to
a challenge encryption oracle implementing one of two “worlds”; the adversary
needs to find out which. Several choices appear regarding the exact nature of
these worlds, leading to different notions of indistinguishability such as real-or-
random and left-or-right. Henceforth we refer to those two notions ROR and
LOR, respectively, and we will refer to them collectively as IND. We will flesh
out the details in Sect. 3.

Security definitions furthermore take into account the POWER given to the
adversary, for example that of chosen plaintext attacks (CPA), or chosen cipher-
text attacks (CCA). The distinguishing advantage of an adversary A against a
scheme relative to some notion will then be IND-POWERPKE(A), see Defini-
tion 1. As randomly guessing a world is correct half of the time, the distinguishing
advantage is of course suitably offset.

Definition 1. The distinguishing advantage of an adversary A against an
encryption scheme PKE is

IND-POWERPKE(A) := 2 · Pr
[
Expind-power

PKE (A) = 1
]

− 1 .

Implications and Separations. Our main focus will be comparing different
notions of security, especially showing that if security is met under one notion,
then it is also met under another one. We will prove these implication using fully
black box reductions [4,31] that are furthermore simple [29]. A fully black box
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reduction works for all schemes and adversaries, and only accesses them in a
black box manner. Moreover, if the reduction only runs its adversary once and
without rewinding, then the reduction is simple.

To allow for black-box access to the scheme, we will add an auxiliary oracle for
the PKE to operate on the message space and the key space. A simple fully-black
box (SFBB) reduction has access to this auxiliary oracle, as well as to the oracles
corresponding to the PKE’s algorithms, the oracles provided to the reduction by
the game it is playing, and finally its single straight copy of the adversary. We
will insist that the overhead of such a reduction, namely the number of oracle
calls it makes more than the adversary it is running, is not undue: it can be
upper bounded in terms of the parameters that define the security game(s) at
hand, such as the number of keys in the system.

Definition 2 (Tightness). Let IND1 and IND2 be two indistinguishability

notions for PKE schemes, let c be a positive real number, then IND1
�c
=⇒ IND2 iff

there exists a simple fully-black box reduction B1 such that for all PKE schemes
PKE and adversaries A2,

IND2(A2) ≤ c · IND1(B
A2,PKE
1 )

and the overhead of A2 is not undue.

Refer also to Jager et al. [25] for a discussion on how to express tightness for
more general reductions. They also formalize the folklore that simple reductions
compose neatly; in our case if IND1

�c
=⇒ IND2 and IND2

�d
=⇒ IND3 then also

IND1
�c·d
==⇒ IND3.

If c = 1, the reduction is called tight; if c > 1 we call the reduction lossy.
Note that our notion of tightness is stricter than in some other works where a
constant factor of say 2 will still be considered tight [18]; our convention has the
benefit of not depending on any (security) parameter. A natural question for
lossy reductions is whether the loss is inevitable or not—if it is, the bound is
called sharp. Questions of sharpness are not the focus of our work, although we
do remark upon it in more detail in Appendix B.

3 A General Definition of PKE Multi-user Security

3.1 A General Game

In order to compare various flavours of multi-user notions for PKE, we take
Jager et al.’s framework for multi-user AE notions [25] and port it to the PKE
setting, using some slightly different game-mechanics in the process. A multi-
user security game is parametrized by the number of keys κ and the number of
bits β. Usually one can imagine β ≤ κ and in fact Jager et al. only considered
β = κ. However, keeping κ and β distinct helps when expressing and interpreting
security losses.
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Fig. 1. The generalised multi-user distinguishing experiment Exp
ind-cca,/κ,β
PKE (A); the

adversary has access to either the left-or-right ELOR or the real-or-random EROR chal-
lenge oracle.

Given a public key encryption scheme PKE, let Exp
ind-cca,/κ,β
PKE (A) be the

experiment given in Fig. 1, where A is the adversary. The corresponding distin-
guishing advantage (see Definition 1) is denoted by IND-CCA/κ,β

PKE(A). The κ
is slashed to denote the presence of a key corruption oracle; the corresponding
notion without corruptions is IND-CCAκ,β

PKE. Without the decryption oracle the
notion becomes a chosen-plaintext attack (CPA) instead. Often our results are
oblivious of whether the power is CPA or CCA; we will then use CXA to refer
to them collectively.

In the game, an adversary is given κ public keys, and a choice of β bits to try
and attack through one of the two challenge oracles depending on the flavour of
indistinguishability: for left-or-right indistinguishability, it gains access to ELOR,
whereas for real-or-random, it instead gains access to EROR. Both oracles have
the usual interface, augmented by a key handle i and a bit handle j. For instance,
for ELOR an adversary picks handles i and j as well as two equivalent messages
m0 and m1 to receive the encryption of mbj under public key pki. For EROR only
a single message m is provided in addition to the two handles and, depending on
the value of bj , A receives the encryption of either the message or of a uniformly
chosen equivalent message.

The adversary has possible access to two additional powers: a decryption
oracle D and a corruption oracle K. The former takes as input a ciphertext c
together with a key handle i, and returns the decryption of c under private key
ski. The latter takes as input a key handle i and directly returns said ski.

The adversary has in principle unlimited adaptive access to the available
oracles, necessitating some admin in the game to deal with trivial wins. Firstly,
if m0 �∼ m1 for ELOR, or if a challenge ciphertext is submitted to the decryption
oracle under its handle of creation, then the adversary receives the special symbol
E instead. Secondly, once the adversary outputs a bit handle j and a guess b̂j ,
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the game checks through IE
j ∩ IK = ∅ whether the challenge bit has become

compromised by virtue of being challenged together with a corrupted key. If
so, the game outputs the uniformly random bit δ, yielding the adversary no
advantage; otherwise, the game outputs whether b̂j = bj .

Unlike Jager et al., we do not consider valid or invalid adversaries, but rather
deal with bad behaviour in-game. Specifically, we want the adversary to be able
to challenge on a key both before and after it becomes corrupted, but trying to
win by attacking any of the corrupted challenge bits must of course be disallowed,
regardless of the order of the queries. Thus, for problematic combinations of chal-
lenge/corrupt/target we necessarily had to wait until the adversary announced
its target j before, if need be, penalizing. For bad decryption queries, penalizing
at the end is discouraged [8], moreover it is easy to check on-the-fly.

Finally, we use qE
i to refer to the number of challenge queries on public key

pki; qE
Σ for the total number of challenge oracle calls; and qE

max for the maximum
number of challenge queries per key. Similarly, qD

i is the number of decryption
calls on private key ski and qK the number of corruption calls.

3.2 Notational Conventions

Jager et al. [25] introduced their unified game in order to show that, for authen-
ticated encryption, tightness losses are inevitable in a multi-key with corruption
setting, irrespective of certain definitional choices. Thus they can avoid having
to choose one notion over the other. We are interested in finding out, for public
key encryption, whether some notion is preferred over the other. To that end, we
will introduce some notation to more easily identify known notions and express
relationships between them.

One can visualize the IND-CXA/κ,β experiment using a binary matrix of
dimension κ × β, where an entry be set wherever a key and a bit may be called
together. For the general game, the matrix has every entry filled (see the leftmost
matrix of Fig. 2). We will refer to this as the free-bit notion. By restricting the
matrix, we can easily express existing notions.

Bellare et al.’s original single-challenge-bit notion [5] corresponds to a κ×β-
matrix (for arbitrary β) with only a single set row to force all challenge queries
to the same bit handle (see the middle matrix of Fig. 2). If β = 1, the notion
matches the free-bit notion, so we may write IND-CXAκ,1, or IND-CXA/κ,1 if
corruptions are present, for the single-bit notion.

On the other hand, for the one-challenge-bit-per-key notion we have that
β = κ and the restriction i = j for all challenge queries. These restrictions
correspond to a square matrix in which only the diagonal is set (see the rightmost
matrix of Fig. 2), inspiring us to refer to this notion as diagonal-bit, or just
diagonal, and denote it by IND-CXAκ,�, or IND-CXA/κ,� with corruptions.

The single-bit and diagonal-bit notions we will collectively refer to as the
simple notions. Our notation and terminology differs from prior art, which is
to some extent inevitable. The distinction between the various notions has only
recently received explicit attention [24,25] and no clear terminology has yet been
set. For instance, we drop the prefix MU (for multi-user, to contrast with the
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Fig. 2. Matrices of allowed key/bit combinations in challenge oracle calls for the free-
bit, single-bit, and diagonal-bit multi-user notion, respectively; circles mark allowed
queries, while crosses mark disallowed ones. The visualization highlights that the free-
bit notion is a strict generalization of the two other, simple notions.

older single user notions) as on the one hand we believe that these days multi-
user security should be the default from which single user notions can be derived
if needed, and on the other hand we wish to maintain a clean GOAL–POWER
nomenclature: having multiple users to target primarily modifies an adversary’s
power, not its goal.

3.3 Interpretation

Both simple notions with corruptions have appeared in the literature, both in a
PKE setting but also in related KEM, AKE, and to a lesser extent AE settings.
One key question is which notion to opt for when. Establishing relationships
between the notions, as in the next section, helps answer this question. Here, we
want to address the meaning and usefulness of the notions as they are.

In the context of AKE, Jager et al. [24] discuss the difference between the
single-bit notion (“single-bit guess”) and the diagonal notion (“multi-bit guess”).
Earlier works on tight security for AKE focused on the diagonal setting [2], yet as
Cohn-Gorden et al. [13, Section 3] point out, that notion does not lend itself very
well for tight composition: when the keys produced by an AKE are subsequently
used, in a proof it is convenient to swap out all keys from real to random in
one fell swoop. The single-bit notion allows such a massive substitution, but the
diagonal notion does not. Moreover, Jager et al. wonder whether the diagonal
notion is meaningful, which would “provide a good intuition of what [it] tries to
model”.

Whereas AKE and KEMs are primarily tools to set up symmetric keys for
subsequent use, the situation for PKE is different as it is much closer to the end
user. The difference is reflected in the kind of indistinguishability as well: for
AKE and KEMs, a ROR-style notion is used where the adversary cannot even
control the real world’s “message”, yet for PKE’s LOR-notion, an adversary
has full control over the left-versus-right challenge messages. Thus, for PKE the
diagonal-LOR notion does seem meaningful, as we explain below.

Suppose we interpret each key to correspond to a user and each challenge
bit to correspond to a conversation. Then the different notions model different
scenarios. For instance, the diagonal notion models a scenario where the users
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take part in independent conversations, and an adversary can decide which hon-
est conversation to target after corrupting a number of other ones. In contrast,
the single-bit notion models a scenario where all users are engaged in the same
conversation. The latter scenario allows an adversary to accumulate information
on the conversation across users, although none of the active parties may be
corrupted.

Finally, the free-bit notion models a situation where there are a number
of independent conversations, each with their own potentially overlapping set
of users. The adversary can adaptively corrupt a number of users, and finally
targets a conversation conducted by honest users only.

Of course, there are already existing notions that study PKE security in the
presence of corruptions, under the term “selective opening attacks” (SOA, [9,
15]). There are various formalizations of SOA, the most relevant ones to our work
are receiver SOA [19] where an adversary can corrupt private keys (as opposed
to sender SOA, where an adversary learns how a ciphertext was created). Most
of these SOA notions are considerably stronger than the notions we consider:
our strongest notion is still implied by the customary single-user single-challenge
LOR–CCA (just rather lossy), yet for SOA strong separations, and in some cases
impossibility results, are known [23]. The link between multi-user security with
corruptions on the one hand and SOA on the other has largely been ignored and
appears worth expanding further.

We remark that the multi-bit notion also occurs naturally when studying
multi-instance security [10], which has been studied in the context of PKE [1].
We leave the adaptation of our work, and specifically the general free-bit game
to that setting as an enticing open problem.

4 Relations Between Indistinguishability Notions

In this section we investigate how tightly the various multi-user notions relate
to each other, and how each relates to single-user notions. Some implications are
known or folklore and others follow quite naturally from the literature, but not
all. As expected, most of the notions are equivalent within a factor linear in the
number of users. Yet, some notions turn out to be more, or less, tightly related.

There is for instance the surprising and completely tight reduction from
LOR-CXAκ,1

PKE to LOR-CXAκ,�
PKE (Theorem 1). However, the proof technique

breaks down for real-or-random indistinguishability and in notions with corrup-
tions. Furthermore, for the latter, there doesn’t seem to be a way of relating the
notions more tightly than by a linear loss. We conjecture this linear loss to be
sharp, yet proving so we leave open.

Shorthand for Unified Implications. Given the large number of notions resulting
from the various orthogonal definitional choices, we use shorthand, as presented
in Table 1, to state various theorems. The shorthand serves as an implicit quanti-
fier, so a theorem statement in shorthand essentially holds for all notions included
in the shorthand. To avoid clutter, we will sometimes abbreviate IND-CXAu,c to
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Table 1. A modular framework for multi-user security notions.

Shorthand Stand-in for Relates to

IND {LOR, ROR} Type of challenge oracle

CXA {CPA, CCA} Presence of decryption oracle

u {κ, /κ} Number of keys; presence of corruption oracle

c {1, �, β} Number of challenge bits; relation with keys

just INDu,c, and let it be implied that the result holds for both CPA and CCA.
We will refer to single-user, multi-challenge notions by dropping the superscripts,
e.g. IND.

As a concrete example, consider the trivial statement

INDu,c =⇒ IND .

This is then to be read as, “Both in the cpa and the cca setting, and regardless
of the nature of the challenge oracle, the presence or absense of corruptions, or
the number and structure of the challenge bits, security under a multi-user notion
implies security under the corresponding single-user notion.” Written out in full,
the statement becomes:

Lemma 1. For all IND ∈ {LOR,ROR}, CXA ∈ {CPA,CCA}, u ∈ {κ, /κ}, and
c ∈ {1,�, β}, there is a reduction B such that, for every adversary A,

IND-CXAPKE(A) ≤ IND-CXAu,c
PKE(B) ,

where B calls A once, with no undue overhead.

Tight Implications From Strict Generalizations. Security under a multi-user
notion tightly implies single-user security under the corresponding notion, and
adding helper oracles (like decryption for CCA, or a corruption oracle) yields
strictly more general notions; as does increasing the parameters (number of
users/number of challenge bits), and for all notions, left-or-right security implies
real-or-random security, as can be seen from Fig. 1. For completeness, we sum-
marize these trivial implications in the full version.

4.1 Simple Multi-user Notions Versus Classical Single-Key Notions

Bellare et al. [5] used a hybrid argument to show that single-user single-challenge
security implies LORκ,1 with a security loss linear in the total number of chal-
lenge encryption queries. They phrased this total as the product of the number
of users and the number of challenges per user. As all our notions are explicitly
multi-challenge, we will ignore the number of challenge queries, meaning the loss
simply becomes linear in the number of users (in line with the original claim).
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Fig. 3. Known relations between single-user (but multi-challenge) indistinguishability
and the two different generalizations to multi-user indistinguishability, with and with-
out corruptions; refer to Table 1 for an overview of the shorthand. Recall that IND
without any superscripts means single-user notions. (Double arrows: trivially tight.)

Bellare et al. did not consider the diagonal notion or corruption, however
later, when Jager et al. [25] introduced the free-bit notion to the setting of AE,
they also showed that the simple notions are implied by the single-user notion,
again with a linear loss, even when corruptions are considered. For completeness,
we reprove the relevant linear losses in our new PKE context in Appendix C.
The resulting relations are summarized in Fig. 3.

As explained in Sect. 3.1, Jager et al. used slightly different game mechanics
by prohibiting certain adversarial behaviour. In contrast, we allow such bad
behaviour and just ignore the adversary’s output instead. We introduce a useful
lemma (Lemma 3) that formalizes that, in the single-key setting, our mechanism
is sound and corrupting that single-key yields no adversarial advantage. This
single-key-with-corruptions game is often easier to use in reductions.

Existing sharpness results can be used to show that linear losses are
inevitable, see Appendix B.2 for details.

4.2 Relationship Between Simple Multi-user Notions

Now that we have affirmed that the single-user notion implies any of the four
simple multi-user notions with a loss linear in the number of users, a natural
question is how the simple multi-user notions relate to each other. As the multi-
user notions all tightly imply the single-user notion, one can always just go via
the single-user notion. As already noted by Jager et al. [25], this strategy will
again lead to a loss linear in the number of users. Lemma 2 formalizes this trivial
loss and Fig. 4 provides an overview of the relations. One notable exception from
the linear losses is the implication from the single-bit notion to the diagonal
notion if there are no corruptions, which is tight for the case of left-or-right
indistinguishability and almost tight for real-or-random indistinguishability. We
will explain why this is in the next paragraph.
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Fig. 4. Relations between the simple multi-user notions, including the non-trivially
tight relation between LORκ,β and LORκ,� as captured by Corollaries 1 and 2 for
LOR and ROR, respectively. (Double arrows: trivially tight.)

Lemma 2 (INDu,c �κ
=⇒ INDu,c′

). Let c′ ∈ {1,�}. Then, there is an SFBB
reduction B such that, for every adversary A,

IND-CXAu′,c′
PKE(A) ≤ κ · IND-CXAu,c

PKE(B) .

Proof (sketch). Trivially, INDκ,c =⇒ IND. Meanwhile, Theorems 3 and 4

together say that IND
�κ
=⇒ IND/κ,c. Combining (in the manner discussed in

Sect. 2) gives INDκ,c =⇒ IND
�κ
=⇒ IND/κ,c′

.

A Tight Relation: From Single-Bit to Multi-bit Without Corruptions.
Surprisingly, left-or-right indistinguishability allows for a ‘bit-hiding’ argument
that lets an adversary playing a single-bit multi-user game simulate the full
free-bit game (and therefore also the diagonal-bit game), by simply exchanging
the order in which it forwards its two messages. We formalize this argument
in Theorem 1 and its proof. Consequently, LORκ,1 tightly implies of LORκ,�

(Corollary 1), whereas the implication in the other direction appears lossy, this
clearly renders LORκ,1 the preferred notion.

Theorem 1 (LORκ,1 =⇒ LORκ,β). There is an SFBB reduction B such that,
for every adversary A,

LOR-CXAκ,β
PKE(A) ≤ LOR-CXAκ,1

PKE(B) ,

where B’s overhead is limited to drawing β uniformly random bits.

Proof. The reduction B, playing Explor-cxa,κ,1
PKE , simulates Explor-cxa,κ,β

PKE for A by
drawing β fresh challenge bits, and simply exchanging the order of m0 and m1
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Fig. 5. The adversary B, playing Explor-cxa,κ,1
PKE while simulating Explor-cxa,κ,β

PKE for A.

in accordance to the value of the simulated challenge bit when forwarding to its
own left-or-right oracle (see Fig. 5). Denoting the challenge bit of Explor-cxa,κ,1

PKE (B)
by b, the ciphertext that A receives upon the query E(i, j,m0,m1) will be an
encryption of the message mb⊕bj under pki; B then simply makes sure to undo
this xor again before returning its final guess. �

Corollary 1 (LORκ,1 =⇒ LORκ,�). There is an SFBB reduction B such
that, for every adversary A,

LOR-CXAκ,�
PKE(A) ≤ LOR-CXAκ,1

PKE(B) .

In the presence of a corruption oracle, the reduction breaks down as it is no
longer able to simulate properly: it cannot both challenge on and corrupt the
same key (a behaviour that is allowed in the diagonal and free-bit games). We
will return to the free-bit game in the presence of corruptions below, but first
we turn our attention to that other indistinguishability notion, real-or-random.

Extending the Argument to Real-or-Random. The proof of Theorem 1 makes use
of the fact that the LOR challenge oracle allows both a left and a right message
to be input, enabling us to hide the bit in the ordering of the two messages. For
ROR, the challenge oracle only accepts a single message, so hiding the bit as
above is no longer possible.

However, when Bellare et al. [6] introduced the distinction between LOR
versus ROR indistinguishability in the context of single-user probabilistic sym-
metric encryption, they also showed a factor-2 loss from ROR to LOR. As we
will show in Theorem 5 (to be presented shortly), their proof technique is readily
adapted to a relation between single-bit multi-user PKE notions. Theorems 1
and 5 can then be combined into the corollary below (which itself implies the
equivalent of Corollary 1 for ROR, again with a factor 2 loss).

Corollary 2 (RORκ,1 �2
=⇒ RORκ,β). There is an SFBB reduction B such that,

for every adversary A,

ROR-CXAκ,β
PKE(A) ≤ 2 · ROR-CXAκ,1

PKE(B) .
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Proof (Sketch). Theorem 5 states that RORκ,1 �2
=⇒ LORκ,1, while trivially

LORκ,β =⇒ RORκ,β . Then, using Theorem 1, we get RORκ,1 �2
=⇒ LORκ,1 =⇒

LORκ,β =⇒ RORκ,β .

4.3 The Free-Bit Game with Corruptions

In the free-bit game, the adversary can both challenge on and corrupt keys,
provided the final targeted bit remains uncorrupted. In the single-bit game,
however, challenging on and corrupting a key are mutually exclusive, causing
the bit-hiding argument, that tightly related LORκ,1 to LORκ,β , to break down
in the presence of corruptions. Seemingly, the best we can do is a standard bit-
guessing argument, suffering a β loss, as formalized in Theorem 2 below (see
Appendix E for a full proof).

Theorem 2 (IND/κ,1 �β
==⇒ IND/κ,β). There is an SFBB reduction B such that,

for any adversary A,

IND-CXA/κ,β
PKE(A) ≤ β · IND-CXA/κ,1

PKE(B) ,

where B’s overhead consists of drawing β uniformly random bits.

Combining with IND
�κ
=⇒ IND/κ,1 (Theorem 3) yields an upper bound on the

free-bit advantage as it relates to single-user advantage, see Corollary 3. Notably,
when Jager et al. [25] introduced the free-bit notion (for AE), they observed that
proving a linear loss was beyond them, yet they did not provide an alternative,
looser bound instead. We therefore plug this gap in the literature. Figure 6 pro-
vides an overview of how the single-user and simple multi-user notions relate to
the free-bit notions.

Corollary 3 (IND
�κβ
==⇒ IND/κ,β). There is a reduction B such that, for any

adversary A,

IND-CXA/κ,β
PKE(A) ≤ κ · β · IND-CXAPKE(B) .

B calls A once, and additionally uses the resources needed to draw κ fresh key-
pairs and β uniformly random bits.

Interestingly, Corollary 3 tightly implies Theorem 3, but not Theorem 4:
setting κ = β in Corollary 3 yields a κ2 loss. This gives some hope that a tighter
relation than that of Corollary 3 might still be possible, one that would imply
both Theorems 3 and 4. We leave this an open problem, although present some
initial thoughts in Appendix B.
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Fig. 6. Relations between different multi-user notions, without corruptions (left), and
with corruptions (right).

4.4 LOR Versus ROR, or When the Challenge Oracle Matters

Until now, we have for the most part treated the two flavours of indistinguishabil-
ity as one. However, as we saw for Theorem 1, the choice of challenge oracle can
sometimes make a difference. Of course, left-or-right indistinguishability always
implies real-or-random indistinguishability. Furthermore, for single-user notions,
it has been long been known that ROR implies LOR with only a factor 2 tight-
ness loss [5]. However, for multi-instance security [10], the loss is known to blow
up exponentially. Thus, it is a priori unclear what losses one should expect for
the multi-user setting, both between corresponding LOR and ROR notions, but
also between the ROR notions themselves.

Jager et al. [26, Theorem 21] showed a general result that a loss L in the
single user setting can be turned into a loss Lκ for the simple notions (for AE);
the free-bit case is not addressed. We complement their results for the PKE
setting, as summarized in Fig. 7 and formalized in Appendix D.

Some relations are worth highlighting. First, note that the same factor 2
reduction still lends itself to the single-bit multi-key setting (with or without
corruptions). The argument is very similar to that of the single-user case: either
the bit is “real”, in which case the simulated game is equivalent to the left-
or-right one, or the bit is “random”, in which case the simulated challenge bit
is information-theoretically hidden from the adversary; the main complication
in going to a multi-key setting with corruptions being dealing with disallowed
guesses. See Theorem 5. This contrasts to the diagonal-bit setting, in which
the tightest known reduction loses a factor 2κ, as achieved via the single-user
relation: RORu,� =⇒ ROR

�2
=⇒ LOR

�κ
=⇒ LORu,�.

Second, note that the fact that LORκ,1 =⇒ LORκ,β (Theorem 1) allows us
to conclude that the factor 2 reduction still holds for the free-bit notion absent
corruptions: RORκ,β =⇒ RORκ,1 �2

=⇒ LORκ,1 =⇒ LORκ,β . Compare with the
situation in the presence of corruptions, where the corresponding implications
yield ROR/κ,β �2β

==⇒ LOR/κ,β .



90 H. Heum and M. Stam

Fig. 7. Relations between lor and ror for the different multi-user notions, without
corruptions (left) and with corruptions (right). The placement of notions roughly
translate to their relative strength, with stronger notions placed higher, (see Fig. 6 for
the implications missing from the figure.) As before, double arrows indicate trivially
tight.

As before, we leave the question of whether there exist tighter reductions,
or these losses really are inevitable, as open questions. Nevertheless, these addi-
tional losses serve to reinforce the folklore that left-or-right notions should be
preferred over real-or-random whenever possible.

5 Conclusion

In this article, we surveyed several possible notions of multi-user security, show-
ing how they relate to each other, and identifying a unified and general free-bit
notion. We also conclusively answered the question of which canonical multi-user
notion is the preferred one in the absence of corruptions, namely the single-bit
left-or-right notion, as it is as strong or stronger than any of the others. In the
presence of corruptions, the situation is less clear, particularly as it is not cur-
rently known whether the ability to both challenge and corrupt a key yields the
adversary any additional power. What is known, however, is that the ability
to challenge the same bit on several keys does give the adversary extra power.
Until these questions have been definitively settled, we therefore suggest aiming
for security under a free-bit notion whenever multi-user security with adaptive
corruptions is to be considered.

A A Brief History of Indistinguishability

The traditional ‘IND-CPA’ security notion for public key encryption (PKE) is
an indistinguishability notion (IND) under adaptively chosen plaintext attacks
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(CPA). Here an adversary receives a challenge ciphertext either for a plaintext
of its choosing or an alternative challenge ciphertext, and needs to decide which
one was received. The alternate challenge ciphertext can be generated in differ-
ent ways, leading to subtly different notions [6]. The two common choices are:
left-or-right (LOR), in which the adversary supplies two messages and receives
the encryption of one of them; and real-or-random (ROR), in which the adver-
sary supplies a message and either receives its encryption or the encryption of
a random bit string. When Bellare et al. [7] considered various PKE security
notions they showed that LOR-security tightly implies ROR-security, whereas
the other direction incurs a modest security loss of a factor 2.

Stronger, more realistic notions are indistinguishability under adaptively cho-
sen ciphertext attacks (CCA), or IND-CCA (historically also called IND-CCA2
to distinguish it from its non-adaptive counterpart IND-CCA1 [7]). Here, in
addition to choosing the plaintexts to be challenged on, the adversary is given
access to a decryption oracle, which it can query on any valid ciphertext receiv-
ing the corresponding plaintext, or the ciphertext-reject symbol ⊥. To avoid
trivial wins, some care needs to be taken when the challenge ciphertext is sub-
mitted to the encryption oracle; there are several mechanisms to deal with
this subtlety [8]. Ignoring the decryption oracle gives back IND-CPA, making
IND-CCA the stronger notion. Moreover, several real-world attacks not covered
by IND-CPA (such as Bleichenbacher’s attack [11]) are captured by IND-CCA,
making the latter the preferred notion to aim for.

We are concerned with the multi-user setting, leading to further definitional
choices. Although it might appear that these choices are largely irrelevant in
an asymptotic context, as they are all polynomially equivalent, a concrete secu-
rity treatment can surface non-trivial differences. These differences are often
amplified with the introduction of multiple users, particularly when considering
adaptive corruptions (see below).

First of all, while the notions above initially only allowed for a single chal-
lenge query, when Bellare et al. [5] investigated multi-user security, they simul-
taneously generalized the single-user notions by giving each user multiple chal-
lenges. Moreover, they showed that security under single-challenge implies secu-
rity under multi-challenge with an (inevitable) loss linear in the number of chal-
lenges (cf. [6]).

In the present work, we consider all notions, including the single-user notions,
to be multi-challenge. To adapt our results to a single-challenge setting, simply
note that our single-user notions imply the corresponding single-challenge notion
with a tightness loss qE , and insert the factor as needed. For instance, writ-
ing SC-IND for single-challenge indistinguishability, the analogue to Corollary 3

becomes SC-IND
�qEκβ
====⇒ IND/κ,β .

Another choice is how to ‘multiplex’ the challenge oracles: should each user
be independent of the others, or should they depend on each other? When multi-
user security was introduced [5], the game only had a single challenge bit shared
across all users for an adversary to guess. This choice intuitively leads to a
stronger notion than if each user was given its own challenge bit as, with a
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single shared bit, an adversary can ‘gather evidence’ for the true value of this
challenge bit across the users (we provide evidence to this intuition in Corol-
lary 1). Yet, the notion feels awkward when introducing corruptions, given that
both corrupting and challenging on the same key would immediately yield a
trivial win. One option is to disallow corrupting ‘challenge’ keys, and vice versa,
leading to the single-bit notion INDκ,1 [3,24,28]. Another option is to introduce
user-specific bits. This was the approach employed by Bader et al. [2] in their
study of authenticated key exchange: they considered a multi-user KEM notion
with corruptions where each user was associated with its own challenge bit and
the adversary had to declare at the end which uncorrupted bit it was guessing.
Thus, even if a user was both challenged on and corrupted, a non-trivial win
would still be possible. In the present work, we refer to this notion as diagonal-
bit (IND/κ,�), as explained in Sect. 3.

Recently, Jager et al. [24] pointed out that this notion is problematic in
the AKE setting, as unlike in the single-bit setting, a KEM secure under the
diagonal-bit notion is not known to tightly compose to an AKE. They went on
to construct a KEM tightly secure under the single-bit notion instead, which
was therefore guaranteed to compose tightly.

Apart from the multi-user setting, the diagonal notion has seen use in the
multi-instance setting [1,10], in which the adversary is asked to make a guess on
every bit; in such settings, single-bit notions make little sense.

When Jager et al. [25] investigated the inevitability of multi-user tightness
losses in the setting of authenticated encryption, they wanted their result to
capture both of the the single-bit and the diagonal-bit notions, without having
to provide separate proofs for the distinct cases. They therefore introduced a
generalized notion, in which an adversary was free to choose the exact relations
between the keys and challenge bits. This notion, which avoids the awkwardness
of not being able to both challenge and corrupt the same key without sacrificing
the ability to “gather evidence” on a bit over several keys, sits at the centre of
much of the present work, and we refer to it as the free-bit notion (IND/κ,β).

B Sharpness or When Tightness Losses are Inevitable

B.1 Sharpness and Inevitably Lossy Reductions

A natural question for lossy reductions is whether the loss is inevitable or not.
To determine inevitability, we only need to ‘invert’ Definition 2, as below in
Definition 3.

Definition 3 (Lossy). Let IND1 and IND2 be two indistinguishability notions

for PKE schemes, and let c be a positive real number, then IND1
�c
=⇒ IND2 iff

for all simple fully-black box reductions B1 there exist PKE schemes PKE and
adversary A2,

IND2(A2) ≥ c · IND1(B
A2,PKE
1 ) .
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If both IND1
�c
=⇒ IND2 and IND1

�c
=⇒ IND2, then the reduction (for the first

term) is sharp and we may write IND1
=c=⇒ IND2.

B.2 Sharpness of Single-to-Simple Reductions

Below we discuss some relevant methods and results regarding the inevitability
of lossy reductions in the context of multi-user PKE, showing that linear losses
(in the number of users) is often sharp. Such results are often called impossibility
results, yet to contrast with impossibility results that show that no constructions
can achieve a notion (irrespective of the lossiness of the reduction), we prefer
the term sharpness result when the impossibility is restricted to tightness only.
The two main techniques are counterexamples and meta-reductions.

Counterexamples. As already pointed out by Bellare et al. [5], a simple coun-
terexample shows that the bounds are generally sharp. They modified a PKE
scheme that was identical to a ‘secure’ one except that with a small probability
its encryption would be trivial and essentially just output the plaintext as the
ciphertext (with some additional modifications to ensure correctness and that
this event is easily recognizable publicly). Thus, when the challenge encryption
oracle hits the trivial encryption, an adversary can trivially win its game; more-
over the probability of this event happening at some point during the game is
roughly linear with the number of challenge encryption queries.

However, given that we consider all our notions to be multi-challenge, we pre-
fer a counterexample whose security degrades linearly in the number of available
keys, not challenges. One might therefore instead consider a scheme for which a
small-but-nonempty subset of the public keyspace returns messages in the clear.
This “weak key” counterexample already works without corruptions for both
of the simple multi-user notions, which implies sharpness for the more general
notions.

Note that a similar critique of Bellare et al.’s original counterexample and
(more refined) link with weak keys was made by Luykx et al. [30].

Meta-reductions. Another line of work has aimed to show sharpness through
meta-reduction, thus ruling out tight reductions for a larger class of PKE
schemes. The gain in generality is however traded for restrictions on the type of
reductions that are ruled out, typically referred to as “simple” reductions (e.g.,
blackbox, no rewinding, etc.).

Bader et al. [3] showed that, for a large class of PKE systems, any sim-
ple reduction from a multi-user notion with corruptions to an underlying non-
interactive hardness assumption must be lossy, with the loss linear in the num-
ber of keys. Meanwhile, Jager et al. [25] showed a similar result in the setting
of authenticated encryption when reducing to single-user notions. In both cases,
though, the proof technique crucially relied on the ability to corrupt keys, mean-
ing that sharpness for the corruptionless notions aren’t covered by their results.
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Meta-reductions also don’t rule out tight reductions for schemes outside the
class considered; in fact, part of the usefulness of these results is the ability
to look for tightly secure constructions outside these classes. This is exactly
what Bader et al. [2] did when they constructed a tightly secure authenticated
key exchange by deliberately breaking the requirement of public–private key
uniqueness.

B.3 Tightening the Single-to-Free Implication?

Corollary 3, IND
�κβ
==⇒ IND/κ,β , tightly implies Theorem 3, but not Theorem 4:

setting κ = β in Corollary 3 yields a κ2 loss. This gives some hope that we might
be able to show a tighter relation than that of Corollary 3, as in order to imply
both Theorem 3 and 4, the statement would have to look something like the
following.

Conjecture 1 (IND
�IE

maxβ
=====⇒ IND/κ,β). Let IE

max be the maximum number of keys
called together with any one challenge bit, (i.e., for any run of the game, we now
require that ∀j, |Ij | ≤ IE

max; see Fig. 1). Then, there is a reduction B such that,
for every adversary A,

IND-CXA/κ,β
PKE(A) ≤ IE

max · β · IND-CXAPKE(B) ,

where B calls A once, and the overhead of B is small.

Then, for IND/κ,1, we would set IE
max = κ and β = 1, while for IND/κ,�,

IE
max = 1 and β = κ. Thus, both theorems are recovered.

To prove the statement, a natural strategy would be to combine the proof
techniques of each of the theorems it is generalising, i.e. by first guessing a
challenge bit, and then doing a hybrid argument over the keys relating to that
bit. However, given that the free-bit game allows the adversary to choose the
relations between keys and bits adaptively, this hybrid argument does not work
without incurring losses larger than that of Corollary 3. We nevertheless present
Conjecture 1 as an interesting open problem.

C Formalization of Single to Simple Implications

A Single-User Notion with Corruptions. First, let us establish the trivial yet
useful Lemma 3. Let Explor-cxa,/1,1

PKE (A) be exactly as the single-key game, except
that the player now has the option to corrupt the key. In other words, the
game will be equivalent to that of Fig. 1, with κ = β = 1 (and with or without
decryption oracle). Given that in this game, an adversary that both challenges
and corrupts will trigger the game to output the uniformly random value δ, the
presence of a corruption oracle should yield it no extra power. We formalize this
intuition next.
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Lemma 3 (IND =⇒ IND/1,1). There is an SFBB reduction B with no addi-
tional overhead such that, for every adversary A,

IND-CXA/1,1
PKE(A) ≤ IND-CXAPKE(B) .

Proof. The following argument works the same whether IND = LOR or ROR,
and whether CXA = CCA or CPA. The reduction B, playing the regular single-
key game, simulates the game with corruptions to A by forwarding every oracle
call and mimicking A’s output, unless at some point A asks to corrupt: in that
case B aborts A and simply returns 0. This works because if A corrupts, either
A also challenges, in which case the advantage will be forced to 0, or it corrupts
the key and outputs a guess without challenging, in which case the challenge bit
will be information-theoretically hidden from it, so that its advantage is 0 by
necessity. Thus, in the event that A corrupts at all, its win advantage will be
exactly 0; the same that B gets from simply aborting A and outputting 0. We
provide a formal derivation below.

Pr
[
Expind-cxaPKE (B) = 1

]
= Pr[A did not corrupt ∧ A wins]

+ Pr[A did corrupt ∧ b = 0]
= Pr[A did not corrupt ∧ A wins]

+ Pr[A did corrupt] · Pr[b = 0 |A did corrupt ]
= Pr[A did not corrupt ∧ A wins]

+ Pr[A did corrupt] · 1/2
= Pr[A did not corrupt ∧ A wins]

+ Pr[A did corrupt] · Pr[A wins |A did corrupt ]
= Pr[A did not corrupt ∧ A wins]

+ Pr[A did corrupt ∧ A wins]
= Pr[A wins] ,

⇒ IND-CXAPKE(B) ≥ IND-CXA/1,1
PKE(A) .

�

Single-Bit Security with Corruptions. We can then show a reduction from
IND-CXA/κ,1

PKE to IND-CXA/1,1
PKE, using exactly same hybrid argument that was

used by Bellare et al. [5] in the absence of corruptions, and let Lemma 3 imply
the result.

Theorem 3 (IND
�κ
=⇒ IND/κ,1). There is a SFBB reduction B such that, for

every adversary A,

IND-CXA/κ,1
PKE(A) ≤ κ · IND-CXAPKE(B) ,

where B’s overhead consists of κ − 1 fresh keypair generations.
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Proof (sketch). Through a standard hybrid argument completely analogous to
that used to prove the corruptionless version, we can show that there is an
adversary B such that for every adversary A,

IND-CXA/κ,1
PKE(A) ≤ κ · IND-CXA/1,1

PKE(B) .

Then, Lemma 3 implies the result.

See the full version for the complete proof.

Diagonal-Bit Security with Corruptions. For the diagonal notion, showing
the relation to the single-user notion is done using a different—and arguably
simpler—proof technique: the reduction B simply guesses which user A is going
to attack, forwarding the oracles called to that user to its own oracles and sim-
ulating the rest; it will guess correctly with probability 1/κ, leading to the κ
security loss.

Theorem 4 (IND
�κ
=⇒ IND/κ,�). There is an SFBB reduction B such that, for

every adversary A,

IND-CXA/κ,�
PKE(A) ≤ κ · IND-CXAPKE(B) ,

where B’s overhead consists of κ − 1 fresh keypair generations.

Proof (sketch). B draws a key handle i∗ ∈ [κ] uniformly at random. Whenever
A calls an oracle using this handle, B will forward the call to its own oracle.
To simulate the rest of the users, B draws fresh keypairs and challenge bits,
simulating the oracles as needed. If A returns a guess on challenge bit i∗, B
forwards the guess, gaining the winning advantage of A. Given that the value
of i∗ is information-theoretically hidden from A, this happens with probability
exactly 1/κ. Otherwise, B returns 0, achieving advantage 0.

The full proof can be found in the full version.

D Formalization of ROR to LOR Implications

Theorem 5 (RORu,1 �2
=⇒ LORu,1). There is a simple, fully black box reduction

B such that, for any adversary A,

LOR-CXAu,1
PKE(A) ≤ 2 · ROR-CXAu,1

PKE(B) ,

where B’s overhead consists of drawing one uniformly random bit.

Proof (Sketch). Essentially, there are only two, equally likely cases: either the
bit is “real”, in which case B is able to simulate the left-or-right game perfectly;
or the bit is “random”, in which case the advantage of A against the simulated
game will be exactly 0—and the addition of corruptions does nothing to change
this fact.
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Fig. 8. The adversary B, playing Exp
ror-cca,/κ,1
PKE while simulating Exp

lor-cca,/κ,1
PKE for A.

Proof. We will show the theorem for the case u = /κ and CXA = CCA; by
inspection, the proof also holds for the cases u = κ (by setting Pr

[
1 ∈ JK]

= 0),
and CXA = CPA.

In the following, let b be the challenge bit of B’s game Exp
ror-cca,/κ,1
PKE (see

Fig. 1, with β = 1). Let JK denote the set of compromised bits; note however
that there is now only one challenge bit per game, meaning its bit handle is 1,
and the event that it was compromised is denoted by 1 ∈ JK. Using the strategy
of Fig. 8, we then get Pr

[
Exp

ror-cca,/κ,1
PKE (B) = 1

]

= Pr
[
1 /∈ JK ∧ d = d̂ ∧ b = 0

]

+ Pr
[
1 /∈ JK ∧ d �= d̂ ∧ b = 1

]

+ Pr
[
1 ∈ JK ∧ δ = 1

]
= Pr[b = 0]

(
Pr

[
1 /∈ JK ∧ d = d̂

∣∣∣ b = 0
]

+ Pr
[
1 ∈ JK ∧ δ = 1

∣∣ b = 0
])

+ Pr[b = 1]
(
Pr

[
1 /∈ JK ∧ d �= d̂

∣∣∣ b = 1
]

+ Pr
[
1 ∈ JK ∧ δ = 1

∣∣ b = 1
])

.

Note that if b = 1, then the value of d is information-theoretically hidden from
A, so we have that Pr

[
d �= d̂

∣∣∣ b = 1
]

= Pr[δ = 1 | b = 1] = 1/2, allowing us to
write

= Pr[b = 0]
(
Pr

[
1 /∈ JK ∧ d = d̂

∣∣∣ b = 0
]

+ Pr
[
1 ∈ JK ∧ δ = 1

∣∣ b = 0
])

+ Pr[b = 1]
(
Pr

[
1 /∈ JK ∧ δ = 1

∣∣ b = 1
]
+ Pr

[
1 ∈ JK ∧ δ = 1

∣∣ b = 1
])

= Pr[b = 0]
(
Pr

[
1 /∈ JK ∧ d = d̂

∣∣∣ b = 0
]

+ Pr
[
1 ∈ JK ∧ δ = 1

∣∣ b = 0
])

+ Pr[b = 1] · Pr[δ = 1 | b = 1]

=
1
2

(
Pr

[
1 /∈ JK ∧ d = d̂

∣∣∣ b = 0
]

+ Pr
[
1 ∈ JK ∧ δ = 1

∣∣ b = 0
]
+

1
2

)

=
1
2

(
Pr

[
Exp

lor-cca,/κ,1
PKE (A) = 1

]
+

1
2

)
.
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Which implies that ROR-CCA/κ,1
PKE(B)

= 2 · Pr
[
Exp

ror-cca,/κ,1
PKE (B) = 1

]
− 1

= 2 · 1
2

(
Pr

[
Exp

lor-cca,/κ,1
PKE (A) = 1

]
+

1
2

)
− 1

=
1
2

(
2 · Pr

[
Exp

lor-cca,/κ,1
PKE (A) = 1

]
− 1

)

=
1
2

· LOR-CCA/κ,1
PKE(A) ,

which is what we aimed to show. �
Taken together with Theorem 1, this implies that the left-or-right free-bit

notion without corruptions is separated from the single-bit real-or-random notion
by at most a factor 2.

Corollary 4 (RORκ,1 �2
=⇒ LORκ,β). There is a reduction B such that, for any

adversary A,

LOR-CXAκ,β
PKE(A) ≤ 2 · ROR-CXAκ,1

PKE(B) .

B calls A once, and additionally uses the resources needed to draw β uniformly
random bits.

Proof (Sketch). Theorem 5 states that RORκ,1 �2
=⇒ LORκ,1, while Theorem 1

states that LORκ,1 =⇒ LORκ,β , allowing us to conclude that RORκ,1 �2
=⇒

LORκ,β .

Given that the free-bit notion generalises the single-bit notion, this in turn
implies that LOR and ROR are separated by at most a factor 2 between the cor-
ruptionless free-bit notions, even if the number of challenge bits varies between
them.

With corruptions, however, any direct simulation would become trivially
recognisable—meaning that in order to do a faithful simulation, the reduction
would have to guess which bit the adversary is going to attack, leading to a loss
linear in β. Instead of reformulating this argument, we let it follow as a corol-
lary to previous results, yielding a slightly tighter statement by letting B play a
single-bit game.

Corollary 5 (ROR/κ,1 �2β
==⇒ LOR/κ,β). For every adversary A, there is an adver-

sary B, such that

LOR-CXA/κ,β
PKE(A) ≤ 2 · β · ROR-CXA/κ,1

PKE(B) .

B calls A once, and additionally uses the resources needed to draw β uniformly
random bits.
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Proof (Sketch). Theorem 5 states that ROR/κ,1 �2
=⇒ LOR/κ,1, while Theorem 2

states that LOR/κ,1 �β
==⇒ LOR/κ,β , allowing us to conclude that ROR/κ,1 �2β

==⇒
LOR/κ,β .

Interestingly, the tightest known relation from the diagonal-bit RORκ,� to
LORκ,� is one that loses a factor 2κ, even in the absense of corruptions. This is
once again achieved going through the single-user notion.

Corollary 6 (ROR
�2κ
==⇒ LORu,�). There is a reduction B such that, for every

adversary A,

LOR-CXAu,�
PKE(A) ≤ 2 · κ · ROR-CXAPKE(B) .

B calls A once, and additionally uses the resources needed to draw κ fresh key-
pairs and κ uniformly random bits.

Proof (Sketch). It is well established [6] that ROR
�2
=⇒ LOR, and we know from

Theorem 4 that LOR
�κ
=⇒ LOR/κ,�, allowing us to conclude that ROR

�2κ
==⇒

LOR/κ,�.

E Deferred Proof of Theorem 2

Theorem 2 (IND/κ,1 �β
==⇒ IND/κ,β). There is an SFBB reduction B such that, for

any adversary A,

IND-CXA/κ,β
PKE(A) ≤ β · IND-CXA/κ,1

PKE(B) ,

where B’s overhead consists of drawing β uniformly random bits.
We will show the result for IND = LOR and CXA = CCA; the proof transfers

directly to the ROR and CPA cases.

Proof. We will prove the statement by constructing an adversary B that achieves
the claimed advantage by leveraging any advantage an adversary A has against
the free-bit game, and making a guess on the bit that A is going to attack. B
will guess correctly with probability 1/β, leading to the β security loss. The proof
is very similar to that of Theorem 4, the main complication being that we now
need to keep track of compromised challenge bits, instead of just which keys are
corrupted.

B is given in Fig. 9. In the following, let b be the challenge bit of B’s
game Exp

lor-cca,/κ,1
PKE (see Fig. 1, with β = 1), let the set of compromised bits

(i.e., bits used by A to challenge a corrupted key) be denoted by JK, and
assume that A returns the guess (j, b̂j). Finally, note that the value of j∗ is
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Fig. 9. The adversary B, playing Exp
lor-cca,/κ,1
PKE while simulating Exp

lor-cca,/κ,β
PKE for A.

information-theoretically hidden from A. Then, B achieves the following advan-
tage, Pr

[
Exp

lor-cca,/κ,1
PKE (B) = 1

]

= Pr
[
j = j∗ ∧ j∗ /∈ J

K ∧ bj∗ = b̂j∗
]

+ Pr
[
j = j∗ ∧ j∗ ∈ J

K ∧ δ = 1
]

+ Pr
[
j �= j∗ ∧ j∗ /∈ J

K ∧ b = 0
]

+ Pr
[
j �= j∗ ∧ j∗ ∈ J

K ∧ δ = 1
]

= Pr[j = j∗]
(
Pr

[
j∗ /∈ J

K ∧ bj∗ = b̂j∗
∣∣∣ j = j∗

]
+ Pr

[
j∗ ∈ J

K ∧ δ = 1
∣∣∣ j = j∗

])

+ Pr[j �= j∗]
(
Pr[b = 0] · Pr

[
j∗ /∈ J

K
∣∣∣ j �= j∗

]
+ Pr[δ = 1] · Pr

[
j∗ ∈ J

K
∣∣∣ j �= j∗

])

=
1

β

(
Pr

[
j /∈ J

K ∧ bj = b̂j

]
+ Pr

[
j ∈ I

K ∧ δ = 1
])

+
1

2

(
1 − 1

κ

) (
Pr

[
j∗ /∈ J

K
∣∣∣ j �= j∗

]
+ Pr

[
j∗ ∈ J

K
∣∣∣ j �= j∗

])

=
1

β
Pr

[
Exp

lor-cca,/κ,β
PKE (A) = 1

]
+

1

2

(
1 − 1

κ

)

=
1

2β

(
2 · Pr

[
Exp

lor-cca,/κ,β
PKE (A) = 1

]
− 1

)
+

1

2

which implies that LOR-CCA
/κ,1
PKE(B)

= 2 · Pr
[
Exp

lor-cca,/κ,1
PKE (B) = 1

]
− 1

= 2 ·
(

1

2β
LOR-CCA

/κ,β
PKE(A) +

1

2

)
− 1

=
1

β
· LOR-CCA

/κ,β
PKE(A) ,

which is what we set out to show. �
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F Multi-bit Composability of Hybrid Encryption

As shown by Cramer and Shoup [14], one can combine the practicality of asym-
metric encryption with the efficiency of symmetric encryption into a highly effi-
cient public key encryption system. The idea is to encrypt the message under an
ephemeral symmetric key, which is itself encapsulated under a public key. This
paradigm, which already saw widespread use at the time, has become known as
the KEM/DEM paradigm, after its constituent Key Encapsulation Mechanism
and Data Encapsulation Mechanism; it is also known as hybrid encryption.

Recently, Lee et al. [28] built on earlier work by Giacon et al. [17] and showed
that a KEM and a DEM tightly compose to a PKE in a single-bit multi-user
setting with corruptions. We paraphrase their result in Theorem 3.

Theorem 3 (Lee, Lee, Park, DCC’20). There are SFBB reductions B and
C such that, for every adversary A,

LOR-CXA/κ,1
PKE(A) ≤ 2 · ROR-CCA/κ,1

KEM(B) + 1LOR-CCADEM(C) .

Here, 1LOR means “one-time left-or-right”; see their paper for definitions
and proof. Combining their result with Theorem 2 yields the following, more
general, corollary.

Corollary 7 (Free-bit composability). There are SFBB reductions B and
C such that, for every adversary A,

LOR-CXA/κ,β
PKE(A) ≤ 2 · β · ROR-CCA/κ,1

KEM(B) + β · 1LOR-CCADEM(C) .

Proof. Immediately follows from Theorems 2 and 3.

While lossy in the number of challenge bits, it matches Lee et al.’s Theorem
for β = 1. However, the implication to the diagonal-bit notion, with β = κ,
results in a rather lossy composition, as made explicit below.

Corollary 8 (Diagonal-bit composability). There are SFBB reductions B
and C such that, for every adversary A,

LOR-CXA/κ,�
PKE(A) ≤ 2 · κ · ROR-CCAKEM(B) + κ · 1LOR-CCADEM(C) .

Proof. Follows from Theorems 4 and 3.

No tighter composition is known for multi-bit security notions, for much the
same reason that no tight composition is known for AKE: as pointed out by
Jager et al. [24], the multi-bit KEM notion does not easily allow for a game
hop in which real keys are exchanged for fake ones, making the resulting game
something in between the ‘real’ and ‘random’ worlds. Any attempt to circumvent
this issue (without specialising to specific constructions) seems to lead to hybrid
or guessing arguments, yielding similar linear losses.
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