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Preface

The 18th edition of the biennial Institute of Mathematics and its Applications
(IMA) International Conference on Cryptography and Coding took place during
December 14–15, 2021. Due to the continuing global uncertainty arising from the
ongoing COVID-19 pandemic it was held as an online event for the first time in its
history.

The reviewing process was single-blind, and during the review phase each paper was
reviewed independently by at least two reviewers. The reviews and papers were then
considered by the Program Committee in a discussion phase. The Program Committee
selected 14 papers for presentation at the conference.

I am grateful to the Program Committee members and external reviewers for their
efforts in analyzing and discussing the submissions, and to the invited speakers for
providing such interesting talks. I would like to thank the Steering Committee for their
support and guidance in arranging this event. Finally, particular thanks are due to Maya
Everson, Cerys Thompson, and their colleagues for handling all the practical matters of
the conference, especially for managing the many challenges inherent in moving to an
online event.

November 2021 Maura Paterson
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Batch Codes from Affine Cartesian Codes
and Quotient Spaces

Travis Alan Baumbaugh1, Haley Colgate2, Tim Jackman3,
and Felice Manganiello4(B)

1 ToposWare, Shibuya-ku, Tokyo 150-8010, Japan
2 University of Wisconsin - Madison, Madison, WI 53706, USA

3 Boston University, Boston, MA 02215, USA
4 Clemson University, Clemson, SC 29634, USA

manganm@clemson.edu

Abstract. Affine Cartesian codes are defined by evaluating multivariate
polynomials at a cartesian product of finite subsets of a finite field. In this
work we examine properties of these codes as batch codes. We consider
the recovery sets to be defined by points aligned on a specific direction
and the buckets to be derived from cosets of a subspace of the ambient
space of the evaluation points. We are able to prove that under these
conditions, an affine Cartesian code is able to satisfy a query of size
up to one more than the dimension of the ambient space.

1 Introduction

Batch codes may be used in information retrieval when multiple users want to
access potentially overlapping requests from a set of devices while achieving a
balance between minimizing the load on each device and minimizing the number
of devices used. We can view the buckets as servers and the symbols used from
each bucket as the load on each server. In the original scenario, a single user is
trying to reconstruct t bits of information. This definition naturally generalizes
to the concept of multiset batch codes which have nearly the same definition,
but where the indices chosen for reconstruction are not necessarily distinct.

The family of codes known as batch codes was introduced in [9]. They were
originally studied as a scheme for distributing data across multiple devices and
minimizing the load on each device and total amount of storage consumed. In
this paper, we study [n, k, t,m, τ ] batch codes, where n is the code length, k is
the dimension of the code, t is the number of entries we wish to retrieve, m is the
number of buckets, and τ is the maximum number of symbols used from each
bucket for any reconstruction of t entries. We seek to minimize the load on each
device while maximizing the amount of reconstructed data. That is, we want to
minimize τ while maximizing t.

This corresponds to t users who each wish to reconstruct a single element,
among which there may be duplicates. This is similar to private information
retrieval (PIR) codes, which differ in that t duplicates of the same element must
c© Springer Nature Switzerland AG 2021
M. B. Paterson (Ed.): IMACC 2021, LNCS 13129, pp. 3–15, 2021.
https://doi.org/10.1007/978-3-030-92641-0_1
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be reconstructed. Other schemes dealing with multiple requests are addressed
in [15]. For batch and PIR codes where the queries do not all necessarily occur
at the same time, see [16]. Restricted recovery set sizes are considered in [19].
Another notable type of batch code defined in [9] is a primitive multiset batch
code where the number of buckets is m = n.

Much of the related research involves primitive multiset batch codes with a
systematic generator matrix. In [9], the authors give results for some multiset
batch codes using subcube codes and Reed-Muller codes. They use a systematic
generator matrix, which often allows for better parameters. Their goal was to
maximize the efficiency of the code for a fixed number of queries t. The focus
of research on batch codes then shifted to combinatorial batch codes. These
were first introduced by [13]. They are replication-based codes using various
combinatorial objects that allow for efficient decoding procedures. We do not
consider combinatorial batch codes, but some relevant results can be found in
[4,5,13], and [17]. There are other constructions that are already known and are
based on similar codes. In [1] and [8], the authors suggest to construct primitive
multiset batch codes based on multiplicity codes and lifted Reed-Solomon codes.
The work [14] proposes finite geometry designs to construct batch codes. There,
affine subspaces are used as recovery sets. Finally, in [10] the author state the
only known converse bound for linear primitive batch codes.

In order to reduce wait time for multiple users, we may look at locally
repairable codes with availability as noted in [6]. A locally repairable code, with
locality r and availability δ, provides us the opportunity to reconstruct a partic-
ular bit of data using δ disjoint sets of size at most r [18]. When we only need
to reconstruct this one bit multiple times, this gives us properties of the code
as a PIR code. However, the research in this paper covers the scenario in which
some bits may differ.

The Hamming weights of affine Cartesian codes are studied in [3]. This is
a generalization of work in [7], and in a similar fashion, the work in this paper
aims to expand the study of batch properties from Reed-Muller codes as studied
in [2] to the broader class of affine Cartesian codes. In the same manner, we
begin by examining codes with τ = 1. The even broader family of generalized
affine Cartesian codes, specifically those with complementary duals, are studied
in [11].

This work focuses on studying the properties of affine Cartesian codes as
batch codes. In Sect. 2, we formally introduce batch codes and affine Cartesian
codes. In Sect. 3, we define the special recovery sets for affine Cartesian codes
based on the points in the direction of a coordinate. The main body is Sect. 4;
there we define the building blocks of a batch code - the buckets. In this work
we suggest the buckets to be cosets of a subset V of Fμ

q . Under several equivalent
conditions, we show in Theorem 2 that a maximal length affine Cartesian code
can satisfy queries of size up to t = n+1. The specific case with V = 〈(1, 1, . . . , 1)〉
is considered in Subsect. 4.1. We conclude by generalizing the result to any affine
Cartesian code.
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2 Background

Batch codes were introduced in [9]. Throughout this work, by batch codes we
refer specifically to multiset batch codes, defined by [9]. To build up to this def-
inition, we first introduce several notions. For a given linear code C ⊆ F

n
q , where

Fq represents the finite field of q elements, and the index set [n] := {1, . . . , n}
we give the following definitions.

Definition 1. A bucket configuration B1, . . . , Bm is a partition on index set
[n]. For each k ∈ [m], the Bk is referred to as a bucket.

Definition 2. For any index i ∈ [n], a recovery set Ri for the index i is a set
such that, for any codeword c ∈ C, the value of ci may be recovered by reading
the symbols {cj | j ∈ Ri}.
At this point, we note two distinct categories of recovery sets. If Ri = {i}, then
we refer to Ri as direct access. If instead i /∈ Ri, then we refer to Ri as an
indirect recovery set. We also note that while any set containing a recovery set
is technically a recovery set, these shall not be considered proper recovery sets
in the remainder of the paper. Now we deal with multiple recovery sets at the
same time for a query of indices that are not necessarily distinct.

Definition 3. Given a query Q = (i1, . . . , it) ∈ [n]t, we say that a set of recovery
sets RQ = {Ri1 , . . . , Rit

} is a query recovery set with property τ for Q if

1.
∣
∣
∣

(
⋃t

s=1 Ris

)

∩ Bk

∣
∣
∣ ≤ τ ∀ k ∈ [m], and

2. Rir
∩ Ris

= ∅ ∀ r, s ∈ [t] where r 
= s.

Having the above mentioned defined property means that not matter which
query is selected, we have pairwise disjoint recovery sets that all together use at
most τ elements of each bucket.

Definition 4. We say that a bucket configuration B1, . . . , Bm is t, τ valid if,
for all queries Q = (i1, . . . , it) ∈ [n]t, there exists a query recovery set RQ with
property τ .

Now, with the building blocks in place, we may more rigorously define batch
codes.

Definition 5. A [n, k, t,m, τ ] linear batch code C over Fq is a linear code C
of length n and dimension k, together with a t, τ valid bucket configuration
B1, . . . , Bm.

Note that we use k for the dimension of the code. Throughout this work, we
will focus on the case τ = 1. The following lemma, proven in [9], allows us to do
this.

Lemma 1. Any [n, k, t,m, 1] batch code is also an [n, k, t, �m
τ �, τ ] batch code.
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An affine Cartesian code is defined as follows.

Definition 6. Let Fq be an arbitrary finite field, and A1, . . . , Aμ ⊆ Fq be non-
empty subsets. Define X ⊆ F

μ
q to be the cartesian product A1 × . . . × Aμ ⊆ F

μ
q

where |A1 × . . . × Aμ| = n. Let S = Fq[x1, . . . , xμ] be a multivariate polynomial
ring and S≤ρ be the subspace of S of all polynomials with total degree at most
ρ. Let X = {p1, . . . , pn}. The affine Cartesian code CX(ρ) of degree ρ is

CX(ρ) =
{

(f(p1), . . . , f(pn)) | f ∈ S≤ρ
}

,

meaning the image of the evaluation map:

evρ : S≤ρ → F
n
q

f �→ (f(p1), . . . , f(pn)).

The affine Cartesian code CX(ρ) is a linear code of length n which dimension
and minimum distance are studied in [12]. Affine Cartesian codes are a general-
ization of Reed-Muller codes since CF

μ
q
(ρ) is a Reed-Muller code. For these codes,

the index set of the code corresponds X. This is important in the construction
of batch codes based on affine Cartesian codes as the entries of the codewords
correspond to the evaluations polynomials in the points of X.

In the following section, we investigate the recovery sets for an affine Carte-
sian code that arise from using the structure of the set X.

3 Recovery Sets

This section focuses on the characterization of some recovery sets for CX(ρ). It is
well known that a univariate polynomial of degree ρ − 1 is uniquely determined
by ρ of its evaluations. Furthermore, one can find the polynomial starting from
the evaluations by using Lagrange interpolation. The following holds.

Lemma 2. Let X = A1 × · · · × Aμ. For p = (a1, . . . , aμ) ∈ X, and i ∈ [μ], let

Rp,i = {(b1, . . . , bμ) | bi ∈ Ai, bj = aj if j 
= i} \ {p}.

If ρ + 1 < |Ai|, then for any f ∈ S≤ρ, the value of f(p) can be recovered using
the values f(Rp,i).

Proof. Let f ∈ S≤ρ, where ρ + 1 < |Ai|. By evaluating the multivariate poly-
nomial f in all but the ith of the coordinates of p, we obtain the univariate
polynomial fi(xi) = f(a1, . . . , ai−1, xi, ai+1, . . . , aμ) ∈ Fq[xi]. By the construc-
tion of Rp,i, we have that f(Rp,i) = fi(Ai \ {ai}). Since f is a polynomial of
total degree at most ρ, fi(xi) is a polynomial of degree at most ρ in xi. If
ρ + 1 < |Ai|, then ρ ≤ |Ai| − 2, so fi is of degree at most |Ai| − 2. By Lagrange
interpolation, we may find a unique polynomial g(xi) ∈ Fq[xi] of degree at most
|Ai \ {ai}| − 1 = |Ai| − 2 such that g(a) = fi(a) for all a ∈ Ai \ {ai}, and so we
must have g = fi. We find that g(ai) = fi(ai) = f(a1, . . . , aμ) = f(p), and so we
can recover f(p).
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We already recalled that affine Cartesian codes are a generalization of Reed-
Muller codes. For simplicity of notation, the remainder of this section and the
next section focus on Reed-Muller codes. It is only at the end of the paper that
we generalize the results to affine Cartesian codes. We thus initially consider
CF

μ
q
(ρ) and ρ < q − 1.
With ei ∈ F

μ
q being the vector with 1 in position i and 0 in all other entries,

we may take X = F
μ
q and obtain the following characterization of some recovery

sets for CF
μ
q
(ρ).

Corollary 1. For a p ∈ F
μ
q , the sets Rp,i = (p + 〈ei〉) \ {p} for i ∈ [μ] are

recovery sets for p in CF
μ
q
(ρ).

As in Sect. 2, we refer to Rp,i for i ∈ [μ] as an indirect recovery set of p.
These sets are in correspondence with one-dimensional affine spaces of Fμ

q , where
i corresponds to the only index that has varying entries. The direct access of p
is represented by Rp,0 = {p}.

Corollary 2. For any query Q = (p1, . . . , pμ+1) ∈ (Fμ
q )μ+1, using the indices in

a set RQ = {Rp1,i1 , . . . , Rpμ+1,iμ+1}, it is possible to recover f(p1), . . . , f(pμ+1),
where f ∈ S≤ρ.

Proof. For any s ∈ [μ + 1] such that is = 0, we note that Rps,is
= Rps,0 = {ps},

and so this is direct access, and we may simply calculate f(ps). That these are
recovery sets for ps such that is 
= 0 follows from Corollary 1.

Note that for the previous corollary, we make no claims of non-intersection
between the recovery sets. Thus the set RQ may not be a query recovery set,
even for τ > 1, since part 2 of Definition 3 may not be satisfied.

For the rest of the work, we will consider query recovery sets consisting only
of sets of the form Rp,i for some p ∈ F

μ
q and i = 0, . . . , μ. We will leave off the

Q in RQ when the context makes the query unambiguous. To be more precise
about batch properties, we restate the conditions that every query recovery set
must satisfy for a bucket configuration to be valid with t = μ + 1 and τ = 1, the
parameters we will be using in the following section:

∣
∣
∣
∣
∣

(
μ+1
⋃

s=1

Rps,is

)

∩ Bk

∣
∣
∣
∣
∣
≤ 1 ∀k ≤ m, (1)

Rpr,ir
∩ Rps,is

= ∅ ∀r, s ∈ [μ + 1], r 
= s. (2)

The first condition corresponds to using at most τ = 1 indices in any given
bucket, while the second corresponds to having non-overlapping recovery sets.

4 Quotient-Space Bucket Configuration

With requirements for valid bucket configurations addressed, we now define the
bucket configuration used in this paper.



8 T. A. Baumbaugh et al.

Definition 7. For any subspace V of Fμ
q , consider the quotient space F

μ
q /V. The

equivalence classes [p] = p + V partition F
μ
q . We define a quotient-space bucket

configuration to be one where the buckets are these equivalence classes.

Note that the [·] indicates an equivalence in the case that the brackets sur-
round a point p ∈ F

μ
q , and a set of indices if they surround a natural number.

Its use will be clear from context.

Definition 8. We denote by ∼ the equivalence relation on F
μ
q induced by V,

that is, p1 ∼ p2 if and only if p1 − p2 ∈ V.

With this bucket configuration, we have that the number of buckets is
m = qμ−dimV . This configuration provides us with a great deal of symmetry
and structure, which allows us to approach determining the validity of a given
quotient-space bucket configuration with the following tools.

For any p ∈ F
μ
q , the set [p] = p+V is all elements in the same bucket as p by

definition. For any subset U ⊆ F
μ
q , [U ] = {[p] | p ∈ U} is the set of all buckets

corresponding to points in U . With this notation, we now note an important
result with respect to recovery sets for equivalent points.

Lemma 3. With the subspace construction, if p1 ∼ p2, then [Rp1,i] = [Rp2,i] for
all i ∈ [μ].

Proof. For all i ∈ [μ] and any α ∈ Fq, (p1 + αei) − (p2 + αei) = p1 − p2 ∈ V, so
[p1 + αei] = [p2 + αei]. Thus we may write

[Rp1,i] = {[p1 + αei] | α ∈ Fq \ {0}} = {[p2 + αei] | α ∈ Fq \ {0}} = [Rp2,i].

This means that under the equivalence relation, the recovery sets for elements
in the same bucket are the same. This identical use of buckets for the recovery
sets leads to the following:

Corollary 3. Let Q = (p1, . . . , pμ+1) ∈ (Fμ
q )μ+1 be a query such that pi1 ∼ pi2

for some i1 
= i2. Let Q′ = (p′
1, . . . , p

′
μ+1) be a query where p′

i2
= pi1 and p′

i = pi

for i 
= i2. Then R is a query recovery set for Q′ if and only if it is a query
recovery set for Q.

In other words, we may effectively treat recovering multiple equivalent points
in the same bucket as recovering the same point multiple times. This leads
naturally to notation for all recovery sets of a point.

Definition 9. For p ∈ F
μ
q , define Rp = {Rp,0, . . . , Rp,μ} and Ep =

⋃μ
i=0 Rp,i.

We now reach the central theorem which will be used to verify the validity
of quotient-space bucket configurations.

Theorem 1. The following are equivalent:

i) V ∩ 〈ei, ej〉 = {0} ∀i, j ∈ [μ].
ii) For p ∈ F

μ
q , if a, b ∈ Ep are distinct, then [a] 
= [b].

iii) For p ∈ F
μ
q , Rp is a query recovery set for Q = (p, . . . , p).
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Proof. We proceed with proving the equivalences.

i) ⇒ ii) Let a, b ∈ Ep be distinct elements for some p ∈ F
μ
q . Then, a = p + αei

and b = p + βej for some i, j ∈ [μ]. Since a 
= b, it holds that a − b =
αei − βej 
= 0 which implies that a − b 
∈ V as per i), implying that
[a] 
= [b].

ii) ⇒ i) We prove this implication by contraposition. Assume there are α, β ∈
Fq such that αei−βej ∈ V\{0}. For arbitrary p ∈ F

μ
q , define a = p+αei

and b = p+βej . Then a 
= b, but since a− b = αei −βej ∈ V, we have
[a] = [b].

ii) ⇔ iii) Since Ep is the union of the sets in Rp = {Rp,i | 0 ≤ i ≤ μ}, suppose
Rp is a query recovery set. Given that τ = 1, by Condition (1) each
point in the union of these sets must be in a separate bucket. So
for all a, b ∈ Ep, a 
= b =⇒ [a] 
= [b]. Similarly, if each point in
Ep is in a different bucket, then Condition (1) is satisfied, and the
sets Rp,0, . . . , Rp,μ are all disjoint by construction, so Condition (2) is
satisfied. This makes Rp a query recovery set for Q = (p, . . . , p).

Note that for a non-trivial V, the first condition of this lemma implies μ ≥ 3.
These equivalent conditions lead to some important necessary conditions.

Corollary 4. When restricted to recovery sets of the form Rp,i, an affine Carte-
sian code CF

μ
q
(ρ) is a valid batch code with quotient-space bucket configuration

induced by V ⊂ F
μ
q only if V ∩ 〈ei, ej〉 = {0} ∀i, j ∈ [μ].

Next, we specify a way that a batch code over F
μ−1
q may be expanded to a

batch code over Fμ
q . This is then used in constructing a bucket configuration for

affine Cartesian codes by induction.

Theorem 2. Consider the puncturing function φ : F
μ
q → F

μ−1
q defined by

φ((a1, . . . , aμ)) = (a1, . . . , aμ−1) and let C = CF
μ
q
(ρ) and C = C

F
μ−1
q

(ρ). Let
V ⊆ F

μ
q and V ⊆ F

μ−1
q be subspaces such that φ(V) = V and V ∩ 〈ei, ej〉 =

{0} ∀i, j ∈ [μ]. If C is a batch code with quotient-space bucket configuration
induced by V and t = μ, then C is a batch code with quotient-space bucket con-
figuration induced by V and t = μ + 1.

Proof. First, we show that a ∼ b ⇒ φ(a) ∼ φ(b). Due to linearity of φ, we have
φ([a]) = φ(a + V) = φ(a) + V = [φ(a)]. From this, we conclude a ∼ b ⇒ [a] =
[b] ⇒ φ([a]) = φ([b]) ⇒ [φ(a)] = [φ(b)] ⇒ φ(a) ∼ φ(b).

Now consider any query Q = (p1, . . . , pμ, pμ+1) of points in F
μ
q . The multiset

Q′ = (φ(p1), . . . , φ(pμ)) is a query of μ elements in F
μ−1
q . For any a ∈ F

μ
q , let

a = φ(a) ∈ F
μ−1
q . Then we may write Q′ = (p1, . . . , pμ), and since C is a batch

code that can satisfy any query of size t = μ, there exists some query recovery
set R = {Rp1,i1 , . . . , Rpμ,iμ

} such that

1. |(⋃μ
s=1 Rps,is

) ∩ [b]| ≤ 1 ∀ [b] ∈ F
μ−1
q /V

2. Rpr,ir
∩ Rps,is

= ∅ ∀ r, s ∈ [μ] where r 
= s.
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Now let E = ∪μ
s=1Rps,is

. If there exists some z ∈ E such that z ∼ pμ+1, then
let iμ+1 = μ, otherwise let iμ+1 = 0. We claim that

R = {Rp1,i1 , . . . , Rpμ,iμ
, Rpμ+1,iμ+1}

is a valid recovery set for the query Q = (p1, . . . , pμ+1).
First, we check Condition (1) for R. Assume for a contradiction that for some

[c] ∈ F
μ
q /V, there exist distinct a, b ∈ ⋃μ+1

s=1 Rps,is
∩ [c]. Since a, b ∈ [c], we have

a ∼ b. As seen before, this means that φ(a) ∼ φ(b). We consider two cases:
φ(a) = φ(b) or φ(a) 
= φ(b).

If φ(a) = φ(b), then by the definition of φ, we see that a − b ∈ 〈eμ〉. This
means that b ∈ Ea. Since V ∩ 〈ei, ej〉 = {0} ∀i, j ∈ [μ], part ii) of Theorem 1
implies that [a] 
= [b], a contradiction.

Thus, instead, we must have φ(a) 
= φ(b), which we write as a 
= b. This leads
to a few possibilities. We distinguish three cases: either a, b ∈ E =

⋃μ
s=1 Rps,is

,
a, b ∈ Rpμ+1,uμ+1 , or without loss of generality a ∈ E and b ∈ Rpμ+1,iμ+1 .

If a, b ∈ E =
⋃μ

s=1 Rps,is
, then a, b ∈ ⋃μ

s=1 Rps,is
. This leads to a contra-

diction to Condition (1) for R, as a and b are in the same bucket. Whether
iμ+1 = 0 or iμ1 = μ, our construction means that φ(Rpμ+1,iμ+1) = {φ(pμ+1)}, so
a, b ∈ Rpμ+1,iμ+1 implies a, b ∈ φ(Rpμ+1,iμ+1) = {φ(pμ+1)}, or a = b = φ(pμ+1),
and we would have a contradiction to a 
= b.

Thus, we suppose without loss of generality that a ∈ E, and b ∈ Rpμ+1,iμ+1 .
There are two possibilities. If iμ+1 = 0, then by our selection of iμ+1, there is no
z ∈ E such that pμ+1 ∼ z, but b ∈ Rpμ+1,0 = {pμ+1}, so b = pμ+1, which means
a ∼ b = pμ+1, a contradiction. Thus, we may assume iμ+1 = μ, which means
∃z ∈ E such that z ∼ pμ+1. Then there is some r ∈ [μ] such that z ∈ Rpr,ir

, and
since a ∈ E, we also have some s ∈ [μ] such that a ∈ Rps,is

. This again leads to
two possibilities: either s = r or s 
= r.

Suppose s = r. Since b ∈ Rpμ+1,μ, we have that b 
= pμ+1 and also b ∈ Epμ+1 .
We also have pμ+1 ∈ Epμ+1 , so b 
= pμ+1 =⇒ b 
∼ pμ+1 by Theorem 1. Since
z ∼ pμ+1, we must have b 
∼ z, or transitivity of ∼ would break down. Since
a ∼ b, this also means that a 
∼ z, so certainly z 
= a. Since s = r, we have
a, z ∈ Rpr,ir

= Rps,is
, so a − z = αeir

for some α ∈ Fq \ {0}. We also have
b = pμ+1 + βeμ for some β ∈ Fq \ {0}, and we consider that a ∼ b and z ∼ pμ+1.
Since ∼ is a congruence relation, we may combine these as a − z ∼ b − pμ+1,
or αeir

∼ βeμ. But this means that αeir
− βeμ ∈ V. The only way this would

not be a contradiction to V ∩ 〈ei, ej〉 = {0} ∀i, j ∈ [μ] is if αeir
= βeμ, but that

would mean ir = μ, which is impossible given the construction of R.
Thus, we consider s 
= r. If a = z, then a ∈ Rps,is

, and a = z ∈ Rpr,ir
, so

a ∈ Rpr,ir
∩Rps,is

. This is a contradiction to (2) for R. If instead a 
= z, note that
b = pμ+1 ∼ z. This means that a ∼ b ∼ z, so a ∼ z, and this is a contradiction
to Condition (1) for R.

This concludes the proof that Condition (1) holds for R. Next, we show that
Condition (2) holds for R.
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Again, consider the possibilities for a contradiction. If Rpr,ir
∩ Rps,is


= ∅
for some r, s ∈ [μ + 1] such that r 
= s, then there are two possibilities: either
r, s ∈ [μ] or without loss of generality r ∈ [μ] and s = μ + 1.

If r, s ∈ [μ], then this would mean that there exists some p ∈ F
μ
q such that

p ∈ Rpr,ir
∩ Rps,is

. But then p ∈ Rpr,ir
and p ∈ Rps,is

, a contradiction to
Condition (2) for R.

Thus, without loss of generality, we have r ∈ [μ] and s = μ + 1. There are
again two possibilities: either iμ+1 = 0 or iμ+1 = μ.

If iμ+1 = 0, this means Rps,is
= Rpμ+1,0 = {pμ+1}, and so the intersec-

tion must be {pμ+1}. This would mean pμ+1 ∈ Rpr,ir
and so pμ+1 ∈ E. Since

pμ+1 ∼ pμ+1 by the reflexive property of ∼, it is a z ∈ E such that z ∼ pμ+1, a
contradiction to iμ+1 = 0.

If instead iμ+1 = μ, we have some z ∈ E such that z ∼ pμ+1, so z ∈ Rpk,ik

for some k ∈ [μ]. Since Rpr,ir
∩ Rpμ+1,iμ+1 
= ∅, we also have some a ∈ Rpμ+1,μ

such that a ∈ Rpr,ir
. If k = r, we use the same reasoning as in the case s = r

from the proof of Condition (1) above. Since a ∈ Rpμ+1,μ, we have that a 
= pμ+1

and a ∈ Epμ+1 . We also have pμ+1 ∈ Epμ+1 , so a 
= pμ+1 =⇒ a 
∼ pμ+1 by
Theorem 1. Since z ∼ pμ+1, we must have a 
∼ z, so certainly z 
= a. Since
k = r, we have a, z ∈ Rpk,ik

= Rpr,ir
, so a − z = αeir

for some α ∈ Fq \ {0}.
We also have a = pμ+1 + βeμ for some β ∈ Fq \ {0}, so a − pμ+1 = βeμ for
some β ∈ Fq \ {0}. But then a − z ∼ a − pμ+1, so αek ∼ βeμ, which leads to a
contradiction as before.

This leaves k 
= r. Again, if a = z, this leads to a contradiction to (2) for
R, and if a 
= z, we still have a ∈ Rpμ+1,μ, so a ∈ φ(Rpμ+1,μ) = {pμ+1}, which
means a = pμ+1 ∼ z, and so this contradicts Condition (1) for R.

We have once again contradicted all alternatives, so Condition (2) must be
satisfied for R. Because R satisfies both conditions, R is a valid query recovery
set. Since this holds for any query Q = (p1, . . . , pμ+1) of μ + 1 elements in F

μ
q , C

is a batch code that can satisfy t = μ + 1 requests.

4.1 The Case of a Diagonal Subspace

Using the subspace V = 〈(1, . . . , 1)〉 ⊂ F
μ
q , we are able to generate a valid bucket

configuration as long as q ≥ 3 and μ ≥ 3:

Theorem 3. Let q ≥ 3, μ ≥ 3 and V = 〈(1, . . . , 1)〉 ⊂ F
μ
q . Then CF

μ
q
(ρ) is a batch

code with quotient-space bucket configuration induced by V and with properties
m = qμ−1, τ = 1, and t = μ + 1.

Proof. With this configuration, since dim(V) = 1, we have m = qμ−1.
We begin with the base case μ = 3, where V = 〈(1, 1, 1)〉, and t = 4. Since

V ∩ 〈ei, ej〉 = {0} ∀i, j ∈ [μ], recovering four copies of any one point is possible
by Theorem 1, and by Corollary 3, so is recovering any four points in the same
bucket. Recovering four query points in different buckets is trivial using all direct
access. This leaves the cases where the queries belong to either 2 or 3 distinct
buckets. Without loss of generality and by Corollary 3, we need to address the
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queries Q = (a, a, a, b), Q = (a, a, b, c), or Q = (a, a, b, b), where a, b, c ∈ F
3
q such

that [a], [b], and [c] are all distinct. We handle each of these separately:

1. Consider Q = (a, a, a, b). If [b] /∈ [Ea], then any three recovery sets may be
used for a, and b may be directly accessed. Otherwise, suppose that there are
distinct values i, j ∈ [μ] such that [b] ∈ [Ra,i] and [b] ∈ [Ra,j ]. This means that
there are some c ∈ Ra,i and d ∈ Ra,j such that [c] = [b] = [d]. But since i 
= j,
c 
= d. This makes c, d ∈ Ea distinct, and so [c] = [d] is a contradiction to part
ii of Theorem 1. Thus, there is only one value i ∈ [μ] such that [b] ∈ [Ra,i],
and we can satisfy the request using R = {Ra,0, Ra,j1 , Ra,j2 , Rb,0} such that
j1, j2 ∈ [μ] \ i.

2. Recovering Q = (a, a, b, c) is similar to the first case, using Rb,0 and Rc,0.
Since these eliminate at most 2 recovery sets of a through intersection with
[Ea], there will be at least one remaining recovery set of a besides the direct
access.

3. Consider Q = (a, a, b, b). Utilize Ra,0 and Rb,0. If [b] ∈ [Ra,i] for some i ∈ [μ],
let j ∈ [μ] \ i, otherwise let j be any j ∈ [μ]. This means that [b] /∈ [Ra,j ] by
construction. To see that we can use both Ra,j and Rb,j , assume by way of
contradiction that there exists some [p] ∈ [Ra,j ] ∩ [Rb,j ]. Then

[p] = [a + αej ] = [b + βej ],

where α, β ∈ Fq \{0}. This means (a+αej)−(b+βej) = a+(α−β)ej −b ∈ V,
which in turn means [a + (α − β)ej ] = [b]. Either α = β, so [a] = [b], a
contradiction, or [b] ∈ [Ra,j ], also a contradiction. Therefore [Ra,j ]∩[Rb,j ] = ∅.
Thus we may use R = {Ra,0, Ra,j , Rb,0, Rb,j}.

Now, assume that for some μ > 3, V = 〈(1, . . . , 1)〉 ⊂ F
μ−1
q generates a valid

batch code with t = μ. Then by Theorem 2, since V = 〈(1, . . . , 1)〉 ∈ F
μ
q satisfies

V ∩ 〈ei, ej〉 = {0} ∀i, j ∈ [μ], we can extend the batch code with quotient-space
bucket configuration induced by V into a batch code with quotient-space bucket
configuration induced by V that can satisfy any query of t = μ + 1 elements.
By induction, we then have that for any μ ≥ 3, V = 〈(1, . . . , 1)〉 ⊂ F

μ
q generates

buckets for a batch code with t = μ + 1.

5 Affine Cartesian Codes

Finally, we want to apply the techniques we have developed so far to all of the
affine Cartesian codes.

Theorem 4. Let CX(ρ) be an affine Cartesian code with X = A1 × · · · × Aμ

of degree ρ where μ ≥ 3. Let Iρ = {i ∈ [μ] | ρ + 1 < |Ai|} and ν(ρ) := |Iρ|.
If ν(ρ) ≥ 3, then CX(ρ) is a batch code capable of satisfying any t = ν(ρ) + 1
queries.

Proof. For simplicity of notation, let ν := ν(ρ). Without loss of generality, under
a change of variables, we can consider Iρ = {i ∈ [μ] | ρ + 1 < |Ai|} = [ν].
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Consider the puncturing function φ : Fμ
q → F

ν
q that is obtained by puncturing

the coordinates in the subset [μ] \ [ν]. Let V = 〈(1, . . . , 1)〉 ⊆ F
μ
q and define the

buckets for Cφ(X)(ρ) to be the sets [p̃]φ(X) := [p̃] ∩ φ(X) for p̃ ∈ φ(X) and where
[p̃] ∈ F

ν
q/φ(V). Note that since [p̃]φ(X) is defined using the equivalence class, it

is well-defined. We will show that for a query Q = (p1, . . . , pν+1) ∈ Xν+1 ⊆
(Fμ

q )ν+1 for which we wish to recover f(p1), . . . , f(pν+1), there exists a valid
query recovery set {Rp1,i1 , . . . Rpν+1,iν+1} where Rp�,i�

⊆ X with i� ∈ Iρ ∪ {0}
for all 	 ∈ [ν + 1].

Consider the affine Cartesian code Cφ(X)(ρ). We show that this code has the
same batch properties as the code CFν

q
(ρ). Let

φ(Q) = (φ(p1), . . . , φ(pν+1)) ⊆ (φ(X))ν+1 ⊆ (Fν
q )ν+1.

By Theorem 3 there exists a query recovery set Rφ(Q) = {Rφ(p1),i1 , . . . ,
Rφ(pν+1),iν+1} for φ(Q) in CFν

q
(ρ) with Rφ(ps),is

⊆ F
ν
q as in Corollary 1 and

i1, . . . , iν+1 ∈ [ν] ∪ {0}.
For all s ∈ [ν + 1], R

φ(X)
φ(ps),is

= Rφ(ps),is
∩ φ(X) matches the definition in

Lemma 2. Since ρ+1 < |Ai| for all i ∈ [ν], by that lemma the values of f(Rφ(X)
φ(p�),i�

)
are enough to recover f(φ(p�)), for any 	 ∈ [ν+1] and f ∈ Fq[x1, . . . , xν ]≤ρ. This
means that

Rφ(Q) = {R
φ(X)
φ(p1),i1

, . . . , R
φ(X)
φ(pν+1),iν+1

}
is a query recovery set for φ(Q) in Cφ(X)(ρ). Furthermore, we have that by
Condition (1) for CFν

q
(ρ), it holds that

∣
∣
∣
∣
∣

(
μ+1
⋃

s=1

R
φ(X)
φ(ps),is

)

∩ [p̃]φ(X)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

(
μ+1
⋃

s=1

Rφ(ps),is

)

∩ [p̃] ∩ φ(X)

∣
∣
∣
∣
∣
≤ 1

for all p̃ ∈ φ(X) and by Condition (2) for CFν
q
(ρ) it holds that

R
φ(X)
φ(pr),ir

∩ R
φ(X)
φ(ps),is

= Rφ(pr),ir
∩ Rφ(ps),is

∩ φ(X) = ∅
for all r, s ∈ [ν + 1] with r 
= s.

We have thus shown that the query φ(Q) = {φ(p1), . . . , φ(pν+1)} ⊆ φ(X)
can be recovered in Cφ(X)(ρ) using the recovery sets

{R
φ(X)
φ(p1),i1

, . . . , R
φ(X)
φ(pν+1),iν+1

}. (3)

We claim that the set {RX
p1,i1

, . . . , RX
pν+1,iν+1

} is a valid recovery set for Q in
CX(ρ). Let RQ = {Rp1,i1 , . . . , Rpν+1,iν+1} be the set of recovery sets in F

μ
q where

the indices correspond to the ones of Eq. (3). Let Q be a query obtained by
appending μ−ν points of Fμ

q to Q. Using Theorem 2, a query recovery set RQ can
be constructed recursively by starting from Rφ(Q). That is, we first add one point
in F

ν+1
q to the query, and the query recovery set for such a query will contain
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RQ by construction. This process may be continued until we reach the query Q

of points in F
mu
q , and have RQ ⊆ RQ. By taking only the recovery sets for the

points in Q and restricting them to X, we obtain the set {RX
p1,i1

, . . . , RX
pν+1,iν+1

},
which is thus a valid recovery set.

6 Conclusions

The work in this paper focuses on the study of batch properties of affine Carte-
sian codes. For affine Cartesian codes, given a subspace V ⊆ F

μ
q , we define a

bucket configuration where each bucket is a coset of V in the quotient space
F

μ
q /V. We show that when restricted to a certain type of recovery set, for such

bucket configuration to define a batch code, one needs to have that the inter-
section V ∩ 〈ei, ej〉 is trivial for all i 
= j. By choosing V = 〈(1, . . . , 1)〉, we
demonstrate that the affine Cartesian code CF

μ
q
(ρ) can satisfy queries of length

t = μ + 1 for any μ ≥ 3. We are also able to extend the result for any affine
Cartesian code, where the size of the query depends on the total degree and the
sizes of the subsets defining the code.
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Abstract. This article focuses on the self-dual monomial codes that
have an underlying structure of decreasing/weakly decreasing monomial
codes. Having such a property permits an in-depth analysis of their struc-
ture: The permutation group of a subclass is (significantly) bigger than
the affine group. Upon looking at higher powers of the code, we see
that its third power is the entire space, but the dual of the square code
gives information helpful for decoding. Using operations such as short-
ening, puncturing and taking the discrete derivative, we extract the sub-
code generated by the multiples of a certain variable. Recently, self-dual
monomial codes have been proposed for a McEliece public key encryption
scheme. They seem to possess strong security features - they have a large
permutation group, they are self-dual, there are exponentially many of
them by counting the possible monomial bases used in their construc-
tion. A more detailed analysis allows us to identify subclasses where the
square code and shortening methods yield non-trivial results; in these
cases, the security is dominated by the complexity of the Information
Set Decoding, which is exponential in the square root of the length of
the code. This is a solid argument for the security of the McEliece variant
based on self-dual monomial codes.

Keywords: Monomial code · Self-dual code · Schur product ·
McEliece cryptosystem · Reed-Muller code

1 Introduction

Self-dual codes represent an active field of research in algebraic coding the-
ory. The topic was initiated in the early 70’s by Vera Pless, MacWilliams and
Sloane [31,42,43]. Results regarding combinatorial aspects such as enumeration
of self-dual codes are given in [12,15,43]. In the book of Nebe, Rains, and Sloane
[38] one discovers connections between the theory of self-dual codes and invari-
ant theory. In particular, connections with lattices, algebraic combinatorics, and
quantum codes are shown. Recently, self-dual codes were applied to the field of
cryptography. Secret sharing schemes based on self-dual codes were proposed in
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[18], highly secure boolean functions from self-dual codes were given in [11], and
public-key encryption schemes based on binary self-dual codes were constructed
in [24] and more recently analyzed in [33]. In this article, we will focus on the
later construction, namely the McEliece variant [24].

The scheme proposed in [24] is based on the construction of self-dual codes
proposed by Hannusch and Lakatos [26], where [2m, 2m−1, 2m/2] binary self-
dual codes were defined. These are highly related to binary Reed-Muller codes
(R(r,m)). It is well-known that when m is odd the code R(m−1

2 ,m) is a self-
dual [2m, 2m−1,

√
2m+1] code. Currently, there is no self-dual binary Reed-Muller

code when m is even. However, in [26] the authors give a method for construct-
ing complement-free sets I = I≤m

2 −1 ∪ J , where I≤m
2 −1 denotes the set of all

monomials in m variables of degree less than or equal to m/2 − 1. The resulting
code C (I), which is the span of the set of ev(f) for f ∈ I (ev is an evaluation
function), is a self-dual [2m, 2m−1, 2m/2] binary code. As the article [26] focuses
only on the existence and construction of such codes, several questions regarding
the underlying structure of this family of codes are still open. A deeper insight
could reveal properties necessary for understanding the security of the McEliece
variant [24]. Here, we propose to firstly analyze the structural properties of this
family of codes and secondly apply our results on a detailed evaluation of the
security of the McEliece variant [24].

1.1 Structural Properties of the Binary Self-dual Monomial Codes

As any binary self-dual monomial code C can be defined as a subcode of the
R(m

2 ,m), we will use the formalism from [5] to characterize C in terms of weakly
decreasing and decreasing monomial code. More precisely, our first result can be
stated as follows:

Theorem. Let C (I) be a self-dual code defined by a max-complement-free
monomial set I = I≤m

2 −1∪xiI≤m
2 −1. Then C (I) is a weakly decreasing monomial

code defined by

C (I) = C

⎛
⎝⋃

f∈J

[1, f ]�w

⎞
⎠ .

Moreover, ∃π∗ ∈ Sn s.t. ev(xi)π∗
= ev(x0) and C (I)π∗

is a decreasing monomial
code given by

C (I)π∗
= C

(
[1, x0xm

2 +1 . . . xm−1]�
)
.

The fact that C is a decreasing/weakly decreasing monomial code provides
helpful tools for determining

– the structure of the square code C 2 (here, square refers to the Schur product
of C with itself), and higher powers of Schur products C i;

– the shortened and the punctured codes SSupp(ev(1+xi)) (C (I)) and
PSupp(ev(1+xi)) (C (I));
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– the permutation group Perm (C (I)) of some subclasses of self-dual monomial
codes.

The Schur product of two linear codes has recently caught a lot of attention.
The possible applications are connected to decoding strategies (error-correcting
pairs [16,41], power syndrome decoding [46]), the security of the McElice cryp-
tosystem (square code attacks [14,17,40,52]) and oblivious transfer [39]. More
on square and higher powers of linear codes can be found in [45]. Regarding the
square of a self-dual monomial code we demonstrate in this article that with high
probability C (I)2 = R(m − 1,m). The small proportion of C (I) not satisfying
the later condition are those defined by I = I≤m

2 −1 ∪ xiI≤m
2 −1, in case which

we have
(
C (I)2

)⊥ = C ({1, xi}). Our result can also be seen as a constructive
way of taking the square root of a Reed-Muller code. Indeed, for odd m we
have

√
R(m − 1,m) = R(m−1

2 ,m), and for even m taking the square root of
R(m−1,m) can be reduced to choosing a max-complement-free monomial set I
as in [26] (here, the square root is considered with respect to the Schur product
operator).

Next, we will analyze the structure of the shortened and punctured codes.
Informally, we prove that if we shorten/puncture the code C (I) on the support of
ev(1+xi) we obtain a monomial code that is situated in between two consecutive
Reed-Muller codes. More precisely, we have:

Theorem. Let I be a max-complement-free monomial set, I = I≤m
2 −1 ∪ J ,

defined as in [24]. Let L = Supp(ev(1 + xi)) for some xi. Then we have

R(m/2 − 2,m − 1) ⊂ SL(C (I)) ⊂ R(m/2 − 1,m − 1)
R(m/2 − 1,m − 1) ⊂ PL(C (I)) ⊂ R(m/2,m − 1).

In particular, SL (C (I)) = R
(

m
2 − 1,m − 1

)
if and only if I = I≤m

2 −1 ∪
xiI≤m

2 −1.

In order to demonstrate the aforementioned theorem, we will characterize the
shortened code SL(C (I)) in terms of the monomial code generated by the Hasse
derivative of all the monomials f ∈ I with respect to the variable xi. By doing
so, we will be able to recover the subcode of C (I) which is still a monomial code
generated by all the monomials f ∈ I such that xi|f , or equivalently xi �w f . A
short note on the permutation group of self-dual monomial codes is also provided.
We demonstrate that for I = Im

2 −1 ∪ xiIm
2 −1 the permutation group can be

defined as a triple direct product of T(m, 2) (translation group) and Aff(m, 2)
(general affine group).

1.2 Evaluating the Security of the McEliece Variant [24]

Code-based cryptography is an active field of research, as pointed out by the
finalists in the NIST’s post-quantum standardization process. It started with the
work of R. McEliece [36] which gained a lot of attention partly due to complexity
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results regarding the underlying problems, i.e., the decoding problem, which is
NP-complete for random codes [7]. McEliece’s ideea still stands today, as, after
three rounds of reviews in the NIST competition, we are left with one code-
based finalist, Classic McEliece [2], and two code-based alternatives, BIKE [3]
and HQC [1]. The main idea of the generic McEliece scheme is to choose a linear
code for which an efficient decoding strategy exists, set a basis for this code as
the private key and mask the structure of this code in order to create a trapdoor
(change the basis and permute the columns of the private generator matrix in
order to obtain a public key), additional to the usual trapdoor based on the
difficulty of the Syndrome Decoding Problem. Decoding with the knowledge
of the proper basis becomes easy, while decoding with the public basis (which
looks similar to the basis of a random code) becomes difficult. That is the idea
of the security on which the scheme stands, i.e., decoding a random linear code
is NP-complete and hence the cryptosystem should be quantum resistant.

There are several cryptosystems showing several similarities to the McEliece
variant based on self-dual monomial codes [24]. The most sticking ones are
Sidenlnikov’s cryptosystem based on Reed-Muller codes [50] and the McEliece
variant based on polar codes proposed by Shrestha and Kim [49]. These were
successfully cryptanalysed using efficient techniques [14] or subexponential algo-
rithms [4,37]. However, the self-dual monomial codes come with several advan-
tages, such as:

– the complexity of the attacks on the dual code are identical with that of
attacks on the code itself;

– the hull of the code equals the code itself, and hence, generic algorithm for
solving the code equivalence problem are unfitted for this scheme;

– as we shall demonstrate, even for a more structured configuration of the
monomial set I, i.e., I = Im

2 −1∪xiIm
2 −1, applying square code and shortening

only reduces the code equivalence problem to the most difficult instance of
the code equivalence problem on the Reed-Muller codes;

– there is an exponential number of sets I to be considered and hence an expo-
nential number of instances of the code equivalence problem to be solved;

– different choices of I give different permutation groups for C (I) and, implic-
itly, different numbers and structures of minimum weight codewords. Again,
for more structured choices of I the code spanned by the minimum weight
codewords is equivalent to a certain Reed-Muller code for which the attacks
such as [14] do not manage to reduce the complexity of [37].

A thorough security analysis of any variant of the McEliece cryptosystem
should have at least three components: Message Recovery Attacks - MRA (usu-
ally tackled using Information Set Decoding - ISD), Key Recovery Attacks -
KRA (more complex and sometimes using ad-hoc techniques, such as attacks
based on searching minimum weight codewords, attacks of the square code and
filtration type, or generic code equivalence solvers), and distinguishers (weight
distribution, square code techniques, hull dimension etc.). Here, we will propose
a security level estimation for the McEliece variant [24] based on the analysis of
the main cryptanalysis techniques for this type of codes, i.e., square code attacks
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(like those on the Reed-Muller codes [14]) and structural attacks using shorten
and puncture techniques combined with minimum weight codewords search (like
the attack on Polar codes [4]). A slightly different distinguisher from the usual
one (dimension of the square code) is proposed for self-dual monomial codes.

Theorem. Let C = [n, n
2 ] be a self-dual code. Then w.h.p. we have

– dim(c � C ) = n
2 , where c ∈ C and C is random;

– dim(ev(f) � C ) = dim(C (fI)) ∈ [√
n, n

4

]
, where f ∈ I and C = C (I) is

monomial with I = I≤m
2 −1 ∪ J and J ⊂ Im

2
.

As message recovery techniques and minimum weight search are exponential
in

√
n in the case of self-dual monomial codes, they are used to set up the first

security level. Now, going deeper into the analysis, we will identify a particular
subclass of codes for which techniques such as square code reveal some non-
trivial information about the private key. More precisely, we will identify, up to
a permutation, a variable xi when the monomial set defining the code is defined
by I = I≤m

2 −1 ∪ xiI≤m
2 −1. Moving forward we demonstrate that if we shorten

the code on the support of the evaluation of 1 + xi our key recovery problem is
equivalent to a key recovery problem on the R(m

2 −1,m−1) which is the hardest
instance to solve of Sidelnikov’s cryptosystem (the Chishov-Borodin attack does
not decrease the complexity of the Minder-Shokrollahi attack).

Theorem. Let π ∈ S and C (I)π be a permuted self-dual code defined by a
max-complement-free monomial set I. If I = I≤m

2 −1 ∪xiI≤m
2 −1 then there is an

algorithm that outputs a permutation π∗ satisfying C π∗
= C π. Moreover, the

overall complexity is e
√

nc(1+o(1)), where c is a constant.

2 Background on Coding Theory

2.1 General Considerations

Groups. Let n be a positive integer, and denote by [n] = {0, . . . , n − 1}. The
symmetric group on a set of n elements will be denoted by Sn. Groups here are
considered over finite fields, in particular over F2. Let us enumerate other groups
that are going to be used in this paper. T(n, 2) denotes the group of translations
over F

n
2 and GL(n, 2) denotes the general linear group over F2. The semi-direct

product of T(n, 2) and GL(n, 2) is the general affine group denoted by Aff(n, 2).

Error Correcting Codes. C is an [n, k] linear code, over a finite field F if C is
a linear subspace of dimension k of the vector space F

n (0 ≤ k ≤ n). The subject
of this article only refers to binary linear codes, hence we will have F = F2. Any
vector c = (c0, . . . , cn−1) ∈ C is called a codeword. We define the support of a
codeword Supp(c) = {i | ci 	= 0}. Any code C can be represented either by its
generator matrix, G ∈ Mk,n (F2) (rank(G) = k), or by its parity-check matrix,
H ∈ Mn−k,n (F2), (rank(H) = n − k), where HGT = 0 holds. The dual of
a [n, k] linear code C , is a [n, n − k] linear code C⊥ that admits as generator
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matrix the parity check-matrix of C . The Hamming weight of a vector wt(x) is
the number of non-zero components of x. Also, the minimum distance of a code
is the minimum over the set of all Hamming weight except from zero.

Definition 1. Given a code C = [n, k] and a subset J ⊂ [n] define

– the shortened code: SJ (C ) =
{

(ci)i	∈J | ∃ c ∈ C such that ∀i ∈ J , ci = 0
}
,

of length n − |J |;
– the punctured code: PJ (C ) =

{
(ci)i	∈J | c ∈ C

}
, of length n − |J |;

– the extended code: EJ (C ) =
{

(ci)[n+|J |] | PJ (c) ∈ C and ci = 0,∀i ∈ J
}
,

of length n + |J |.
Denote SE

J (C ) = EJ (SJ (C )), which has length n;
– the hull: H(C ) = C ∩ C⊥, of length n.

Example 1. Consider the code C = {(0 0 0 0), (1 0 0 0), (0 1 1 0), (0 0 0 1),
(1 1 1 0), (1 0 0 1), (0 1 1 1), (1 1 1 1)}. Then E{1,3} = {(0 0 0 0 0 0), (1 0 0 0 0 0),
(0 0 1 0 1 0), (0 0 0 0 0 1), (1 0 1 0 1 0), (1 0 0 0 0 1), (0 0 1 0 1 1), (1 0 1 0 1 1)}.

A code C with dimension k ≤ n/2 is called weakly self-dual if H(C ) = C ⊂
C⊥ and self-dual if H(C ) = C = C⊥ (in this case k = n/2). Next, we define
the concept of Schur product of codes, where product refers to component-wise
product (see [45] for more details on the topic).

Definition 2. The component-wise product of two codewords x and y ∈ F
n
2 is

defined as
x � y = (x1y1, . . . , xnyn) ∈ F

n
2 . (1)

The Schur product codes of C1 ([n, k1, d1]) and C2 ([n, k1, d2]) is the binary linear
code defined as

C1 � C2 = Span
F2

{c1 � c2 | c1 ∈ C1 and c2 ∈ C2} . (2)

In this article, any power of a code C l will refer to the Schur product of a code
with itself l times, for a fixed positive integer l. Also, the lth root of a code C 1/l,
if exists, refers to a code C1 s.t. C l

1 = C .

Definition 3 (Permutation group of a code). Let C = [n, k] binary linear
code and π ∈ Sn. We denote by cπ = (cπ−1(i))i∈[n] the vector c permuted by π.
C π = {cπ | c ∈ C } denotes the permuted code of C . The permutation group of a
code is

Perm (C ) = {π ∈ Sn | C π = C } .

2.2 Monomial Codes

– We denote the ring of multivariate polynomials

R[m] = F2[x0, x1, . . . , xm−1]/(x2
0 − x0, . . . , x

2
m−1 − xm−1);
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– Unless it is mentioned the codes that are studied here have length n = 2m;

Let g ∈ R[m] and fix an order on the elements in F
m
2 . For convenience and to stay

in-line with the existing literature, we have chosen the decreasing index order
(see [5]). Now, define

R[m] → F
n
2

g → ev(g) =
(
g(u)

)
u∈F

m
2

.

Notation 1. We denote by xi the monomial xi0
0 · · · xim−1

m−1 , where i ∈ F
m
2 , and

the set of monomials

M[m] =
{
xi | i = (i0, . . . , im−1) ∈ F

m
2

}
.

For any monomial g = xl1 . . . xls ∈ M[m] of degree 1 ≤ s ≤ m we denote
the support of a monomial by ind(g) = {l1 . . . , ls} ⊂ [m]. The subset of all
monomials of degree r will be denoted by Ir = {f ∈ M[m] | deg(f) = r}. We
extend the definition to I≤r = {f ∈ M[m] | deg(f) ≤ r}.

For any monomial set I ⊂ M[m] and f ∈ M[m] we denote fI = {fg | g ∈ I}.
By extension, for I, J ∈ M[m], IJ = {fg | f ∈ I, g ∈ J}.

For any i ∈ [m], we denote by M[m]\{i} the image of M[m−1] under the
isomorphism defined by xj → xj ,∀j < i and xj → xj+1,∀j ≥ i.

Definition 4. Let I ⊆ R[m] be a finite set of polynomials in m variables.
The linear code defined by I is the vector subspace C (I) ⊆ F

n
2 generated by

{ev(f) | f ∈ I}.
These codes are called polynomial codes (see [19]), and when I ⊂ M[m] we

call C (I) a monomial code. The Reed-Muller code R(r,m) is a monomial code
with dimension k =

∑r
i=0

(
m
i

)
, as defined in [32], fact that comes directly from

its definition R(r,m) =
{
ev(g) | g ∈ R[m],deg g ≤ r

}
= C (I≤r).

Example 2. Let m = 3, and consider I = {1, x0, x1, x2, x0x1} a subset of mono-
mials in M[m].

111 011 101 001 110 010 100 000

ev(x0x1) = 1 0 0 0 1 0 0 0

ev(x2) = 1 1 1 1 0 0 0 0

ev(x1) = 1 1 0 0 1 1 0 0

ev(x0) = 1 0 1 0 1 0 1 0

ev(1) = 1 1 1 1 1 1 1 1

C (I) is a [8, 5] monomial code, that admits a generator matrix whose rows are
the vectors ev(f), f ∈ I.
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2.3 Decreasing and Weakly Decreasing Monomial Codes

Definition 5. Let f and g be two monomials in M[m]. Then f �w g if and only
if f |g. Also, when deg(f) = deg(g) = s say that f �sh g if ∀ 1 ≤ � ≤ s i� ≤ j�,
where f = xi1 . . . xis , g = xj1 . . . xjs . These two order relations are combined
into f � g iff ∃g∗ ∈ M[m] s.t. f �sh g∗ �w g.

The notation f �sh g comes the fact that one could obtain g from f by
positively shifting all the variables in f. For example x0x3 �sh x1x6 since x1 is
a shift by one positions of x0 and x6 is a shift by 3 positions of x3. This mainly
comes from the chain relation on the variables, i.e., x0 � x1 � · · · � xm−1.
Notice that � is a partial order relation on the set M[m]. However, subsets
of M[m], such as the set of variables are totally ordered by �. Such sets are
known in the literature as chains in the poset {M[m],�} (see [8] for more on the
properties of this poset). Also notice that in the definition of �, g∗ might be s.t.
g∗ = g. This implies that if f � g and deg(f) = deg(g) we have �=�sh .

Definition 6. Let f and g be two monomials in M[m] such that f �w g and
I ⊂ M[m].

– We define the closed interval [f, g]�w with respect to the partial order �w as
the set of monomials h ∈ M[m] such that f �w h �w g.

– The set I is called a weakly decreasing set if and only if (f ∈ I and g �w f)
implies g ∈ I.

These definitions can be naturally extended to �, and in this case we will
simply call a set I decreasing. We will also call C (I) a weakly decreasing mono-
mial code when I is a weakly decreasing set, respectively a decreasing monomial
code when I is a decreasing set. Notice that, any decreasing set I is a weakly
decreasing set, as f �w g ⇒ f � g.

Example 3. Let m = 3 and I = {1, x0, x1, x0x1, x2}. As 1 � x0 � x1 � x2 and
x1 � x0x1 we have that I is a decreasing monomial set I = [1, x2]� ∪ [1, x0x1]�.
Also I is a weakly decreasing monomial set I = [1, x0x1]�w ∪ [1, x2]�w , since
1 �w x0 �w x0x1, 1 �w x1 �w x0x1 and 1 �w x2.

Theorem 2 ([5]). Reed-Muller codes are decreasing monomial codes

R(r,m) = C ([1, xm−r · · · xm−1]�) = C
(∪deg(g)=r[1, g]�w

)
.

Next, basic properties of monomial and weakly monomial codes will be given. To
do that, we need to define the multiplicative complement of a monomial g ∈ M[m]

as ǧ =
x0 . . . xm−1

g
. By extension, for any I ⊆ M[m], we define Ǐ = {f̌ | f ∈ I}.

Proposition 1 ([5]). Let C (I) be a weakly decreasing monomial code. Then its
dual is a weakly decreasing monomial code given by

C (I)⊥ = C (M[m] \ Ǐ). (3)

In particular, we retrieve the result R(r,m)⊥ = R(m − r − 1,m).



24 V.-F. Drăgoi and A. Szocs

Another consequence of Proposition 1 is that any weakly decreas-
ing/decreasing monomial code C (I) is weakly self-dual as long as ∀f ∈ I , f̌ 	∈ I,
or equivalently, I ⊆ M[m]\Ǐ (see Corollary 3.4.14 in [19]). Hence, in order to con-
struct self-dual monomial codes one needs to define the concept of complement-
free monomial sets, as in the following section.

2.4 Construction of Self-dual Monomial and Weakly Monomial
Codes

Definition 7. A set I ⊆ M[m] is called complement-free if I ∩ Ǐ = ∅ and
max-complement-free if I is complement-free and I ∪ Ǐ = M[m].

From now on the parameter m ∈ N will always be even.

Remark 1. If the maximum degree of the monomials in I is m
2 , then one

only needs to look at the monomials of degree m
2 to determine whether I is

complement-free.

Lemma 1. Let I ∈ M[m] be a complement-free set, s.t., I≤m
2 −1 ⊂ I and |I| =

2m−1. Then I is max-complement-free.

The proof of this lemma is trivial.

Example 4. Let m = 4 and I = {1, x0, x1, x2, x3, x0x1, x0x2, x1x2}. Then I is a
complement-free set satisfying the conditions from Lemma 1. We can easily verify
that I is max-complement-free since Ǐ ∩ I = ∅ and Ǐ ∪ I = M[m]. Take another
example J = {1, x0, x1, x2, x3, x0x1, x2x3, x0x2}. Notice that I≤m

2 −1 ⊂ J and
|J | = 2m−1. However, J is not a complement-free set, as x0x1, x2x3 ∈ J and
x2x3 is the multiplicative complement of x0x1.

Remark 2. Any max-complement-free set can be obtained from another max-
complement-free set I by taking each element of I and placing either the element
or its complement into the new set. There are 22

m−1
such sets.

The authors in [26] provided a method for constructing a max-complement-
free set containing the set I≤m

2 −1. Algorithm 1 describes this procedure.

Proposition 2. Algorithm 1 generates a valid max-complement-free set I =
I≤m

2 −1 ∪ J. The corresponding code C (I) is a [2m, 2m−1, 2
m
2 ] binary self-dual

linear code. Moreover, there are 2(m−1
m
2

) such codes.

Proof. Directly from Lemma 1 and |J | =
(
m−1

m
2

)
, which yields |I| = 2m−1.

Notice that Algorithm 1 can be generalized in a certain manner.

Proposition 3. Algorithm 2 generates a valid max-complement-free set. It is
a generalisation of Algorithm 1, as it can generate all the sets generated by
Algorithm 1 by picking r = 0,∀j ≤ 2

m
2 −1 and r = 1,∀j ≥ 2

m
2 + 1.
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Algorithm 1. Generate max-complement-free set I as per [26]
Require: m even integer, i ∈ [m]
Ensure: I max-complement-free monomial set

I ← I≤ m
2 −1

S = GenerateSubsets([m] \ {i},m
2

) {all subsets of [m] \ {i} of cardinality m
2

}
for j ← 1,

(
m−1
m
2

)
do

r = Random{0, 1}
if r == 0 then

Append(I, S[j])
else

Append(I, ˇS[j])
end if

end for

Algorithm 2. Generate max-complement-free set I

Require: m even integer, i ∈ [m]
Ensure: I max-complement-free monomial set

I = ∅
S = GenerateAllSubsets([m] \ {i}) {all subsets of [m] \ {i}}
for j ← 1, 2m−1 do

r = Random{0, 1}
if r == 0 then

Append(I, S[j])
else

Append(I, ˇS[j])
end if

end for

Proof. Just check that any set I generated by Algorithm 2 is complement-free
and |I| = 2m−1.

Theorem 3. Algorithm 2 can generate any of the 22
m−1

max-complement-free
sets.

Proof. We have that Algorithm 2 can generate 22
m−1

distinct codes; this, by
Remark 2, is the same number as that of all the max-complement-free codes.

2.5 Schur Product and Square Code of Weakly Decreasing
Monomial Codes

Proposition 4 ([20]). Let I and J be two monomial sets. Then we have

C (I) � C (J) = C (IJ).

Proposition 5 ([20]). Let l and s be two positive integers and (fi)1≤i≤l and
(gj)1≤j≤s be two sequences of noncomparable monomials. Let I =

⋃
1≤i≤l

[1, fi]�w

and J =
⋃

1≤j≤s

[1, gj ]�w , be two weakly decreasing sets. Then
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C (I) � C (J) = C

(
∪1≤i≤l
1≤j≤s

[1, figj ]�w

)
.

In particular, R(r1,m) � R(r2,m) = R(r1 + r2,m).

3 Structural Properties of Self-dual Monomial Codes

In what follows, we will only deal with codes generated by Algorithm 1. We
will simply call such codes C (I) self-dual monomial codes defined by a max-
complement-free monomial set I.

3.1 Self-dual Monomial Codes are Decreasing/Weakly Decreasing
Monomial Codes

Theorem 4. Let C (I) be a self-dual code defined by a max-complement-free
monomial set I = I≤m

2 −1 ∪ J. Then C (I) is a weakly decreasing monomial code
given by

C (I) = C

⎛
⎜⎜⎝

⋃
f∈I

deg(f)≥m
2 −1

[1, f ]�w

⎞
⎟⎟⎠ . (4)

Moreover, if ∃i ∈ [m] s.t. ∀f ∈ J we have xi|f , then the following holds

– C (I) is a weakly decreasing monomial code defined by

C (I) = C

⎛
⎝⋃

f∈J

[1, f ]�w

⎞
⎠ . (5)

– Let π ∈ Sn be s.t. π(ev(xi)) = ev(x0). Then C (I)π is a decreasing monomial
code given by

C (I)π = C
(
[1, x0xm

2 +1 . . . xm−1]�
)
. (6)

Proof. We will demonstrate the two qualities by proving the double inclusion of
the monomial bases, instead of taking all linear combinations of monomials from
each basis.

– C (I) is a weakly decreasing monomial code
• The first inclusion: take g ∈ I. Then, either g ∈ J and then g ∈⋃

f∈J [1, f ]�w , or g ∈ I≤m
2 −1 and then g �w xig ∈ J ⊂ ⋃

f∈J [1, f ]�w .
• The second inclusion: take g �w f for an f ∈ J. Then, by definition g|f ,

and either g = f ∈ J ⊂ I, or g 	= f and then deg(g) ≤ m
2 − 1, which

implies that g ∈ Im
2 −1 ⊂ I.
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– C (I)π is a decreasing monomial code
As ∃i ∈ [m] s.t. ∀f ∈ J xi|f , when i = 0 we simply denote such a set by J0.
Notice that C (I≤m

2 −1)π = C (I≤m
2 −1) and C (J)π = C (J0). Hence, we have

C (I)π = C (Im
2 −1 ∪ J0) (7)

= C ([1, xm
2 +1 . . . xm−1]� ∪ [x0x1 . . . xm

2 −1, x0xm
2 +1...xm−1 ]�) (8)

= C
(
[1, x0xm

2 +1 . . . xm−1]�
)
. (9)

Remark 3. Notice that any self-dual code defined by a max-complement-free
monomial set I = I≤m

2 −1 ∪ J satisfies

R
(m

2
− 1,m

)
⊂ C (I) ⊂ R

(m

2
,m
)

. (10)

3.2 Some Notes on the Permutation Group of Self-dual Monomial
Codes

As self-dual monomial codes are weakly decreasing (see Theorem 4), their permu-
tation group contains the subgroup induced by the group of translations T(m, 2)
on the set of variables. This implies that any variable change xi → xi + 1 leaves
the code C (I) globally invariant. In the particular case of I = I≤m

1 −1 ∪xiI≤m
1 −1

(C (I) is decreasing by Theorem 4), the permutation group contains a bigger
subgroup, i.e., the lower triangular affine group (LTA(m, 2), see [5] for details).
Simulations show that, in general (I is generated by Algorithm 1 without any
particular condition), the cardinal of Perm (C (I)) is small compared to the cardi-
nal of Perm (R(r,m)), for any 1 ≤ r ≤ m−2. Also, when I = I≤m

1 −1∪xiI≤m
1 −1,

the size of Perm (C (I)) is significantly greater than in the general case, being
greater than the size of Aff(m, 2). This is mainly due to the particular structure
of I. Our next result characterizes this large subgroup of Perm (C (I)) .

Theorem 5. Let C (I) be a self-dual monomial code with I = I≤m
2 −1∪xiI≤m

2 −1.
Then Perm (C (I)) is defined by {(σ1, σ2, σ3) | σ1 ∈ T(1, 2), σ2, σ3 ∈ Aff(m −
1, 2)}.

Moreover, we have |Perm (C (I))| = 22m−1
m−2∏
i=0

(2m−1 − 2i)2.

Proof. Let us start by splitting the support of our code ([n]) into two disjoint
sets [n] = Supp(ev(xi)) ∪ Supp(ev(1 + xi)). Any translation on the variable xi

induce a permutation between the two sets Supp(ev(xi)) and Supp(ev(1 + xi)).
Let us denote this permutation by σ1, and notice that it leaves the code C (I)
globally invariant as it belongs to T (m, 2) (see Proposition 3.6.4 in [19]). Let us
prove that on each of the two disjoint sets Supp(ev(xi)) and Supp(ev(1 + xi))
the action of the group Aff(m − 1, 2) leaves the code globally invariant. This
is equivalent to showing that ∀f ∈ M[m]\{i},deg(f) ≤ m

2 − 1 the set of all
ev(xiAff(m − 1, 2) · f) ⊂ C (I) and ev((1 + xi)Aff(m − 1, 2) · f) ⊂ C (I). As C (I)
is weakly decreasing we are only left to prove one of the inclusions, for example
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ev(xiAff(m − 1, 2) · f) ⊂ C (I). Any element in xiAff(m − 1, 2) · f can be written
as a sum of monomial xig where g ∈ M[m]\{i} and deg(g) ≤ m

2 − 1. Hence, as
linear combination of monomials from xiI≤m

2 −1 the evaluation of the polynomial
belongs to the linear code C (I), fact that ends the proof.

The order of this group is the product of the order of its group compo-
nents, i.e., 21 for T(1, 2) and 2m−1

∏m−2
i=0 (2m−1 − 2i) for Aff(m − 1, 2). Let

us now prove that this is the entire permutation group. As the properties
we have demonstrated do not depend on the variable xi we might fix it to
xm−1. We can now write C (I) as a juxtaposition of two Reed-Muller codes, i.e.,
C (I) =

(
R(m

2 − 1,m − 1)|R(m
2 − 1,m − 1)

)
. Here, the juxtaposition of two lin-

ear codes C1,C2 is the code C = {(c1|c2), c1 ∈ C1, c2 ∈ C2}. From this, one can
easily deduce the permutations that leave C (I) globally invariant, i.e. we have
Perm

(
R(m

2 − 1,m − 1)
)

= Aff(m − 1, 2) which acts independently on the two
blocks and S2 which permutes the two blocks.

An example related to Theorem 5 is given in Appendix A. Notice that the order
of Perm (C (I)) is much bigger than the order of Aff(m, 2), the permutation group
of Reed-Muller codes. Indeed, the following holds

|Perm (C (I)) |
|Aff(m, 2)| =

(2m − 21) . . . (2m − 2m−2)
2m − 1

.

It would be interesting, but at the same time much more complex, to determine
a characterization of the permutation group of any self-dual monomial code.

3.3 Square and Higher Powers of Self-dual Monomial Codes

The square of a self-dual monomial code can be characterized in general by
means of Proposition 4.

Lemma 2. Let I be a max-complement-free monomial set. Then we have

C (I)2 = C (I≤m−2 ∪ JI≤m
2 −1 ∪ J2). (11)

Moreover,
R(m − 2,m) ⊂ C (I)2 ⊂ R(m,m). (12)

Theorem 6. Let I ⊂ M[m] be a max-complement-free monomial set, I =
I≤m

2 −1 ∪ J . Then C (I)2 is a weakly decreasing monomial code defined by

C (I)2 =
{
C (M[m] \ {1̌, x̌i}) if ∃i,∀f ∈ J, xi|f
C (M[m] \ {1̌}) if not (13)

Proof. Recall from Lemma 2 that C (I)2 = C (I≤m−2 ∪ JI≤m
2 −1 ∪ J2). Since

∃i ∈ [m] such that ∀f ∈ J, xi|f , we deduce that for all f ∈ JI≤m
2 −1 ∪ J2, xi|f .

As xi	 | x̌i, it follows that x̌i 	∈ JI≤m
2 −1∪J2. So, because deg(x̌i) = m−1 > m−2,

we have x̌i 	∈ I2. As J is complement-free with elements of degree m
2 , 1̌ 	∈ J2; and

∀f ∈ JI≤m
2 −1,deg(f) ≤ m−1, so 1̌ 	∈ I2 either. Then C (I)2 ⊆ C (M[m]\{1̌, x̌i}).
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For the reverse inclusion, assume that ∃f ∈ M[m] \ {1̌, x̌i} such that f 	∈ I2.
Then deg(f) = m − 1, equivalent to f = x̌j for some j ∈ [m] \ {i}. As J =
{xig | g ∈ Im

2 −1, xi 	 | g}, one can pick an f1 ∈ J such that xj 	 | f1. Then
f = f1f2, where f2 ∈ I≤m

2 −1. So f ∈ JI≤m
2 −1 ⊂ I2, contradiction. Thus,

C (I)2 = C (M[m] \ {1̌, x̌i}).
Moving on to the second case, assume ∀i ∈ [m],∃g ∈ J such that xi	 | g. Same

as above, as J is complement-free with elements of degree m
2 , 1̌ 	∈ JI≤m

2 −1 ∪J2,
so 1̌ 	∈ I2. Let f ∈ M[m] of degree m − 1. Then ∃j ∈ [m] such that f = x̌j .
Suppose ∀f1 ∈ M[m] with deg(f1) = m

2 and f1|f , have f1 	∈ J . This implies
that xj |g,∀g ∈ J , contradiction. So ∃f1 ∈ J such that f1|f . Write f = f1f2. By
comparing degrees, f2 ∈ Im

2 −1 ⊂ I≤m
2 −1. Therefore, f ∈ JI≤m

2 −1 ⊂ I2. This
gives that I2 = M[m] \ {1̌}.

Corollary 1. Let I ⊂ M[m] be a max-complement-free monomial set. Then

(
C (I)2

)⊥
=
{
C ({1, xi}) if ∃i,∀f ∈ J, xi|f
C ({1}) if not (14)

A direct consequence of Theorem 6 is

Corollary 2. Let I ⊂ M[m] be a max-complement-free monomial set and n =

2m. Then with probability 1−O

(
log(n)

2
n√

log(n)

)
we have that C (I)2 = R(m−1,m).

Moreover, for m even, one constructive way of taking square roots of R(m−
1,m) is using Algorithm 1.

The proof of Corollary 2 follows directly from Theorem 6, combined with
the combinatorial argument regarding the proportion of max-complement-free
monomial sets I satisfying the condition ∃i,∀f ∈ J, xi|f. More exactly, there are

m out of 2(m−1
m
2

) such sets. Using the Stirling approximation for the binomial
coefficient one gets the desired result.

Under the hypothesis that self-dual codes are uniformly distributed within
the set of [n, n

2 ] random linear codes, Corollary 2 holds true if we loosen the
condition and simply consider a self-dual code that is not necessarily also a
decreasing monomial code.

Proposition 6. Let C be a self-dual code. Then, if self-dual codes are uniformly
distributed within the set of [n, n

2 ] random linear codes, w.h.p. C 2 is the space of
even-weight vectors of length n.

In particular, for n = 2m we have that C 2 = R(m − 1,m).

Proof. Since C is a self-dual code, ∀c1, c2 ∈ C , have 0 = c1 · c2 = wt(c1 � c2)
mod 2. So all the codewords in C 2 have even weight. As self-dual codes are
uniformly distributed within the set of [n, n

2 ] linear codes, the probability for
the former to satisfy a property is the same as for the latter. Thus, by [13],
w.h.p. dim

(
C 2
)

= min
{

n,
(n

2 +1
2

)}
= n. Therefore, w.h.p. C 2 is the space of

even-weight vectors of length n.
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Remark 4. In the case that ∃i,∀f ∈ J, xi|f , the set I can be written as I =
I≤m

2 −1 ∪ xiI≤m
2 −1.

Moving forward, we compute higher powers of monomial max-complement-
free sets in the special case where I = I≤m

2 −1 ∪ xiI≤m
2 −1.

Lemma 3. For a max-complemet-free monomial set I = I≤m
2 −1 ∪xiI≤m

2 −1, we
have the following:

– xiI = xiI≤m
2 −1;

– I2 = I≤m−2 ∪ xiI≤m−2;
– xiI

2 = xiI≤m−2 = xiM[m] \ {1̌};
– I3 = M[m].

Proposition 7. The monomial set xiI
2 generates a

[
2m, 2m−1 − 1, 2

]
-code

C (xiI
2).

Proof. The dimension is given by that multiplication by xi halves the number
of monomials and 1̌ is excluded. The minimal distance of the code is given by
any element of the set

⋃
j 	=i

T(m, 2) · x̌j , for example by x̌j for some j 	= i.

Proposition 8. Let D = C (xiI
3). Then D is a

[
2m, 2m−1, 1

]
-code with dual

D⊥ = C
(
(1 + xi)M[m]

)
and basis Wmin(D) = {ev(f) | f ∈ xi (T(m, 2) · x̌i)}.

Proof. Since I3 = M[m], D = C
(
xiM[m]

)
and then it is clear that D⊥ =

C
(
(1 + xi)M[m]

)
. The code has dimension 2m−1 as it consists of the evaluation

of half of the monomials and it has minimum weight 1, as it contains 1̌. The
minimum weight is 1, so

Wmin(D) = Span
({ev(f) | f ∈ xiM[m] with deg(f) = m}) (15)

= {ev(f) | f = xi

∏
j 	=i

(xj + ej), for ej ∈ {0, 1},∀j 	= i} (16)

= {ev(f) | f ∈ xi (T(m, 2) · x̌i)} (17)

As xiT(m, 2) · x̌i is a linearly independent set of size 2m−1, so is Wmin(D). This
makes Wmin(D) a basis for D.

3.4 Shortened Self-dual Monomial Codes

Definition 8. The discrete derivative of a monomial f ∈ M[m] with respect to
a variable xi is a monomial ∂f

∂xi
∈ M[m]\{i} given by

∂f

∂xi
=

⎧⎨
⎩

f

xi
if xi|f

0 if not
(18)
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Let I ⊂ M[m]. The discrete derivative of a monomial set is a monomial set
∂I

∂xi
⊂ M[m]\{i} given by

∂I

∂xi
=
{

∂f

∂xi
| f ∈ I

}
.

Lemma 4. Let I be a monomial set. We have

{f ∈ I | xi|f} = xi · ∂I

∂xi
\ {0}. (19)

Moreover, C
(

xi · ∂I

∂xi

)
is a monomial subcode of C (I).

Theorem 7. Let I ⊂ M[m] and L = Supp(ev(1 + xi)). The code SL (C (I)) is a
monomial code defined over M[m]\{i} and given by

SL (C (I)) = C

(
∂I

∂xi

)
. (20)

Proof. Consider a generator matrix G for the code C (I) given by the evaluation
of the monomials in I. By the definition of the shortened code (see Definition 1),
one can construct a basis for the shortened code starting from G by taking only
those vectors that equal 0 on L. Any monomial f in I such that ev(f)j = 0 for
all j ∈ L has to admit xi as factor, i.e., f = xif

∗ with f∗ ∈ M[m]\{i}. Hence, any
f satisfying the aforementioned condition is sent (by the shortening operator)
onto f∗ = ∂f

∂xi
, which proves the ⊆ inclusion. For the converse, take any element

of the monomial set ∂I
∂xi

. It either equals 0, which implies that xi 	 | f (and the
zero vector belongs to S (C (I))), or it equals f∗ ∈ M[m]\{i}, which implies that
∃ f ∈ I such that f = xif

∗. This gives that ev(f)j = 0,∀j ∈ L, and ends the
proof.

Corollary 3. Let I ∈ M[m] and L = Supp(ev(1 + xi)). The monomial subcode
of C (I) generated by f ∈ I with the property xi|f is

SE
L(C (I)) = C

(
xi · ∂I

∂xi

)
. (21)

Proof. Use Lemma 4 and Theorem 7.

Remark 5. As I = I≤m
2 −1 ∪ xiI≤m

2 −1, we have C

(
xi · ∂I

∂xi

)
= C (xiI). Notice

that the equality

C

(
xi · ∂I

∂xi

)
= C (xiI) does not hold for the general monomial set.

Corollary 4. Let I = I≤m
2 −1 ∪ J ⊂ M[m] be a max-complement-free monomial

set, and L = Supp(ev(1 + xi)). Then

PL(C (I)) = C

(
∂I

∂xi

)⊥
. (22)
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Theorem 8. Let I = I≤m
2 −1 ∪ J ⊂ M[m] be a max-complement-free monomial

set, and L = Supp(ev(1 + xi)). Then

R(m/2 − 2,m − 1) ⊂ SL(C (I)) ⊂ R(m/2 − 1,m − 1) (23)
R(m/2 − 1,m − 1) ⊂ PL(C (I)) ⊂ R(m/2,m − 1). (24)

In particular, SL (C (I)) = PL (C (I)) = R
(

m
2 − 1,m − 1

)
if and only if

I = I≤m
2 −1 ∪ xiI≤m

2 −1.

Proof. Differentiate the inclusions I≤m
2 −1 ⊂ I ⊂ I≤m

2
by xi to get

I≤m
2 −2 � ∂I≤m

2 −1

∂xi
⊂ ∂I

∂xi
⊂ ∂I≤m

2

∂xi
� I≤m

2 −1, (25)

where I≤m
2 −2, I≤m

2 −1 ⊂ M[m−1] and the isomorphisms are given by restricting
the isomorphism M[m−1] → M[m]\{i} from Definition 4 to the respective sets.

Then, by Theorem 7 and considering the codes generated by these monomial
sets, we get

R(m/2 − 2,m − 1) ⊂ SL(C (I)) ⊂ R(m/2 − 1,m − 1). (26)

Taking the dual of the above gives

R(m/2 − 1,m − 1) ⊂ PL(C (I)) ⊂ R(m/2,m − 1). (27)

For the equality, if I = I≤m
2 −1 ∪ xiI≤m

2 −1, then

SL (C (I)) = C

(
∂I≤m

2 −1 ∪ xiI≤m
2 −1

∂xi

)
(28)

= C
(
I≤m

2 −1

)
, where I≤m

2 −1 ⊂ M[m]\{i} (29)

= R
(m

2
− 1,m − 1

)
(30)

Where as, if I 	= I≤m
2 −1 ∪ xiI≤m

2 −1, then ∂I
∂xi

� I≤m
2 −1, where I≤m

2 −1 ⊂
M[m]\{i}. It follows that SL (C (I)) � R

(
m
2 − 1,m − 1

)
.

4 Security of the McEliece Public Key Encryption
Scheme Based on Self-dual Monomial Codes

4.1 The McEliece Encryption Scheme

The McEliece public key encryption scheme [36] is composed of three algorithms:
key generation (KeyGen), encryption (Encrypt) and decryption (Decrypt) (see
Table 1).

Instantiating the McEliece scheme with a different family of codes than the
original proposal (using binary Goppa codes) gives a plethora of alternatives
that were analyzed and some successfully cryptanalyzed [9,48]. The [24] variant
could overcome many of the security problems encountered in the past. The idea
of using self-dual codes comes with several advantages.
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Table 1. McEliece PKE scheme

KeyGen(n, k, t) = (pk, sk) G-generator matrix of C \\ C an
[n, k] that corrects t errors

An n × n permutation matrix P

A k × k invertible matrix S

Compute Gpub = SGP

Return pk = (Gpub, t) sk = (S,G,P )

Encrypt(m, pk) = z Encode m → c = mGpub

Choose e \\ e a vector of weight t

Return z = c + e

Decrypt(z, sk) = m Compute z∗ = zP −1

z∗ = mSG + eP −1

m∗ = Decode(z∗,G)

Return m from m∗S−1

– As the dual equals the code itself, no extra information about the structure
of the code could be revealed via the dual code. Moreover, the complexity of
the attacks on the dual code are identical with that of attacks on the code
itself.

– Generic algorithms for solving the code equivalence problem, such as the
Support Splitting Algorithm [47], are unfitted for such codes. There are two
reasons for that: i) the hull of the code equals the code itself (large dimension)
ii) the permutation group is non-trivial, making the SSA unfeasible.

– The efficient techniques used for distinguishers and structural attacks such as
the square code technique are not able to retreive any non-trivial information
about the code in general (see Theorem 6). Even for more symmetric con-
figurations, e.g., I = Im

2 −1 ∪ xiIm
2 −1, applying square code and shortening

only reduces the code equivalence problem to the most difficult instance of
the code equivalence problem on a certain Reed-Muller code.

– There is an exponential number of monomial sets I to be considered and,
hence, an exponential number of instances of the code equivalence problem
to be solved. On top of that, different choices of I give different permutation
groups for C (I).

In their article [24], the authors do not give a feasible solution to the decoding
problem. Here, we are dealing with a unique decoding problem (up to half the
minimum distance) or a list decoding problem up to the minimum distance, for
subscodes of a certain Reed-Muller code. Known solutions for such scenarios
are the Dummer’s list decoding algorithms [22,23] or a modified version of the
recent recursive projection-aggregation decoding [53]. Notice that we are in a
more particular case, i.e. a code that is situated between two consecutive Reed-
Muller codes. Hence, in this case the work of Jamali et al. is more suitable
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(Section III in [27]). However, there is no clear evidence that such decoders
perform well enough for parameters as in [24].

4.2 Security Analysis

In [24] the authors propose a basic security analysis based only on the ISD
technique. Hence, we propose to explore other techniques of cryptanalysis and
show how these affect the security of the scheme.

Distinguisher. It is known from [13] that with high probability the dimension
of the square code of a random linear code C = [n, k] is

dim
(
C 2
)

= min
{

n,

(
k + 1

2

)}
. (31)

Straightforwardly, one can deduce that with high probability a random linear
self-dual code C = [n, n/2] with n > 2 has a square code that covers the whole
space, i.e., dim(C 2) = n. Now, by Theorem 6 the dimension of a self-dual mono-
mial code C (I) generated by Algorithm 1 has dimension either n − 1 or n − 2.
Even though there is a slight difference between the random case and the struc-
tured monomial case, this difference is too small to be convincing. Hence, we will
propose another distinguisher, as efficient as the former in terms of complexity,
but more relevant to our context.

Theorem 9 ([13]). With high probability, the dimension of the product code of
two random linear codes C1 = [n, k1] and C2 = [n, k2] is

dim (C1 � C2) = min
{

n, k1k2 −
(

dim (C1 ∩ C2)
2

)}
.

Corollary 5. The dimension of the product code between a random code C =
[n, k] and a randomly chosen codeword of C is, with high probability,

dim(c � C ) = k.

The equivalent of Corollary 5 for self-dual monomial codes is more cumber-
some, as the dimension of the product code depends on the degree and make-
up of the polynomial by which the initial code is multiplied. We do however
have results for the extreme cases in which the multiplying codeword is the
evaluation of a monomial; the dimension of the product code in the case of a
polynomial will be a linear combination of the dimensions resulting from mul-
tiplying by monomials. These show a significant difference between the case in
which a code C = [n, n

2 ] is random, where w.h.p. dim(c � C ) = n
2 , and a self-

dual monomial code generated by I = I≤m
2 −1 ∪ J with J ⊂ Im

2
, where w.h.p.

dim(ev(f) � C ) = dim(C (fI)) ∈ [√n, n
4

]
.
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Theorem 10. Let f ∈ M[m], I ⊂ M[m] s.t. I = I≤m
2 −1 ∪ J is a max-

complement-free monomial set. Then for any f with deg(f) ≤ m
2 we have

m
2 −1∑
i=0

(
m − deg(f)

i

)
≤ dim(ev(f) � C ) ≤

m
2∑

i=0

(
m − deg(f)

i

)
. (32)

In particular, the following holds for the extreme cases.

dim(ev(f) � C ) =
{

n
2 if deg(f) = 0√
n − 1 or

√
n if deg(f) = m

2

,

dim(ev(f) � C ) �
{

n
4 if deg(f) = 1
2
√

n if deg(f) = m
2 − 1 .

Proof. Let f and I be as in stated in the theorem and denote Jind(f) = {g ∈
J | ind(g) ∩ ind(f) 	= ∅}, and Jc

ind(f) = J \ Jind(f). Then we have

fI = fI≤m
2 −1 ∪ fJ

= {g ∈ I≤deg(f)+m
2 −1 | f |g} ∪ f{h ∈ J | ind(h) ∩ ind(f) = ∅}

= {g ∈ I≤deg(f)+m
2 −1 | f |g} ∪ fJc

ind(f).

Notice that we have a disjoint decomposition of fI, as deg(g) = deg(f) + m
2 for

any g ∈ fJc
ind(f). So when computing the dimension we obtain dim(ev(f)�C ) =

dim(C (fI)) =
∑m

2 −1
i=0

(
m−deg(f)

i

)
+|Jc

ind(f)|. Now, by definition of Jc
ind(f) we have

that any g ∈ Jc
ind(f) satisfies deg(g) = m

2 and ind(g) ∈ ind(f̌). This implies a

maximum number of choices for g as
(
deg(f̌)

m
2

)
=
(
m−deg(f)

m
2

)
, which leads to (32).

If we plug into (32) the four particular cases we obtain:

1. dim(ev(1) � C ) = dim(C (1 · I)) = dim(C (I)) = dim(C ) = n
2 .

2. dim(ev(xi) � C ) =
∑m

2 −1
j=0

(
m−1

j

)
+ |Jc

{i}| = 2m−2 + |Jc
{i}|, which yields

limm→∞ dim(ev(xi) � C ) = n
4 .

3. If deg(f) = m
2 − 1 we have dim(ev(f) � C ) =

∑m
2 −1

i=0

(m
2 +1

i

)
+ |Jc

ind(f)| =
2

m
2 +1 − (m

2 + 2) + |Jc
ind(f)|. This yields limm→∞ dim(ev(f) � C ) = 2

√
n.

4. If deg(f) = m
2 then 2

m
2 − 1 ≤ dim(ev(f) � C ) ≤ 2

m
2 .

Message Recovery Attacks. Given a chipertext, an adversary is confronted in
this scenario with the well-known decoding problem. More precisely, given pk and
z an adversary is challenged to retrieve m. In most of the cases one would tackle
this problem using ISD [10,21,25,29,30,35,44,51]. In Table 2 the complexity of
some of the variants is computed for three different sets of parameters. If the
weight of the error is set for unique decoding, i.e., t = �d−1

2 � then the only
parameters with a reasonable security level are for m = 14, which give 2245.74

complexity of the ISD variant [6] for t = 128. This would yield a quantum security
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Table 2. Security level given by the complexity of the ISD variants for the McEliece
variant based on self-dual monomial codes for m = 10, 12, 14, as well as the key size of
the cryptosystem.

Parameters [n, k, d] Information Set Decoding variant Key size (Kbytes)

[44] [29] [21] [34] [6]

Unique decoding up to t = � d−1
2

�
[1024, 512, 32] 35.17 28.51 17.07 12.75 6.38 32

[4096, 2048, 128] 87.72 76.98 64.69 59.43 53.53 512

[16384, 8192, 512] 285.92 271.16 256.26 250.34 245.74 8192

Search for minimum weight codewords

[1024, 512, 32] 51.72 42.91 32.97 28.87 22.65 32

[4096, 2048, 128] 153.96 141.11 129.13 123.70 119.44 512

[16384, 8192, 512] 550.89 534.03 514.35 512.15 510.57 8192

of about 2122.87 [28]. Now, if list decoding is used, which could increase the weight
of the error vector up to the minimum distance t = d, the security levels would
be of about 2119.44 and 2510.57 for m = 12, respectively m = 14. In the quantum
scenario the security levels would decrease down to 259.72 and 2255.28. The latter
scenario is probably the most suitable for cryptographic purposes, even though
list decoding comes with an extra computation requirement.

Key Recovery Attacks. Since the generator matrix G for the code C (I) is
generated via Algorithm 1, by Proposition 2 we have an exponential number

of distinct codes C (I) and thus matrices G. More exactly we have 2(m−1
m
2

) dis-
tinct codes, which gives 2126, 2462, 21716 for m ∈ {10, 12, 14}. Some of them are
equivalent, as pointed out in Theorem 4, fact that reduces the factor in the
exponent. However, the quantity remains out-of-reach on any classic computer.
Hence, reducing the key recovery problem to the code equivalence problem seems
unlikely. The best we can hope for is to identify sub-classes of self-dual codes,
which are distinguishable by means of signatures such as dimension of the dual
of the shortened code, the number of minimum weight codewords in the dual
of the shortened code etc. In the case of monomial codes the code equivalece
problem can be defined as follows.

Definition 9 (Code Equivalence Problem for Monomial Codes). Let
I ⊂ M[m] and G = 〈ev(f) | f ∈ I〉 such that the matrix G generates an [n, k]-
code. Let G∗ also be the generating matrix for an [n, k] binary linear code. Find
matrices S ∈ GL(k, 2) and P ∈ Sn such that G∗ = SGP .

Notice that for the Sidelnikov’s scheme and the McEliece based on polar
codes the key recovery problem reduced to the code equivalence problem for
monomial codes. We will demonstrate here that for I = I≤m

2 −1 ∪ xiI≤m
2 −1 the

code equivalence problem can be solved using the following algorithm.
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Algorithm 3. Key Recovery on self-dual monomial McEliece
Require: C (I)π a public self-dual monomial code
Ensure: π∗ a permutation s.t. C π∗

= C π if I = I≤ m
2 −1 ∪ xiI≤ m

2 −1 or ERROR if not

Compute D =
(
(C (I)π)2

)⊥

if dim(D) = 2 then
Retrieve c ∈ D s.t. c 	= ev(0), c 	= ev(1).
Compute SSupp(c)(C (I)π)
Solve π∗ ← CEP(R(m

2
− 1, m − 1), SSupp(c)(C (I)π))

Return π∗

else
Return ERROR

end if

Theorem 11. Let π ∈ Sn and C (I)π be a permuted self-dual code defined by a
max-complement-free monomial set I. If I = I≤m

2 −1∪xiI≤m
2 −1 then Algorithm 3

outputs a permutation π∗ satisfying C π∗
= C π. Moreover, the overall complexity

is dominated by the algorithm that solves CEP(R(m
2 −1,m−1),SSupp(c)(C (I)π)),

having time complexity e
√

nc(1+o(1)), where c is a constant.

Proof. By Theorem 6 if I = I≤m
2 −1 ∪ xiI≤m

2 −1 then dim(D) = 2 and if not
dim(D) = 1. Hence, Algorithm 3 outputs ERROR each time the set I does not
satisfy the condition I = I≤m

2 −1∪xiI≤m
2 −1. Going further, when dim(D) = 2 by

Corollary 1 the code D = C ({1, xi})π. Hence, one can easily choose a random
element c ∈ D and verify that c 	= ev(0) or c 	= ev(1). This implies that either
c = ev(xi)π or c = ev(1+xi)π. As T(m, 2) ⊂ Perm (D) we can set c = ev(1+xi)π.
Next, using Theorem 7 we deduce that the two codes R(m

2 − 1,m − 1) and
SSupp(c)(C (I)π)) are equivalent. Hence, we are left to solve the code equivalence
problem for these two codes. According to [14] there is an efficient algorithm
that transforms a permuted R(r,m)π into R(gcd(r,m − 1),m)π. This resumes
in our case to transforming R(m

2 − 1,m − 1)π into itself as gcd(m
2 − 1,m − 2) =

m
2 − 1. Hence, the best strategy up-to-date for solving the CEP(R(m

2 − 1,m −
1),SSupp(c)(C (I)π)) is given by the algorithm proposed in [37], and having time
complexity e

√
nc(1+o(1)), c being constant. The permutation obtained in solving

the CEP(R(m
2 − 1,m− 1),SSupp(c)(C (I)π)) is a valid permutation for the initial

problem. Indeed, by Theorem 5 any σ ∈ Perm
(
R(m

2 − 1,m − 1)
)

gives a valid
permutation for Perm (C (I)), by setting (σ1, σ, σ) ∈ Perm (C (I)), with σ1 ∈
T(1, 2).
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A Example on the Permutation Group of Self-dual
Monomial Codes

Example 5. Let m = 4. The code defined by

I = I≤m
2 −1 ∪ x0I≤m

2 −1 = {1, x0, x1, x2, x3, x0x1, x0x2, x0x3}

is the code generated by

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Let us first split the set [n] into two disjoint sets, i.e., the sets
Supp(x0) = {1, 3, 5, 7, 9, 11, 13, 15} and Supp(1 + x0) = {2, 4, 6, 8, 10, 12, 14, 16}.
We have that C (I) = C (I)σ1 , where

σ1([n]) = {2, 4, 6, 8, 10, 12, 14, 16, 1, 3, 5, 7, 9, 11, 13, 15},

here the sets are indexed, i.e., the order of the elements matters. One can apply
the same splitting idea to the matrix G and obtain two matrices G1 and G2,
column subtarices of G indexed by Supp(x0), respectively Supp(1 + x0)

G1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, G2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Notice that G1 and G2 generate the same code, namely the code with generator
matrix

G∗ =

⎛
⎜⎜⎝

1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

⎞
⎟⎟⎠

Finally, the code generated by G∗ is the Reed-Muller code R(1, 3) which has
permutation group Aff(3, 2).
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Abstract. In code-based cryptography, the rank metric usually allows
one to have smaller keys and signatures than the traditional Hamming
metric. Recently, a new rank-based signature was proposed: Durandal
[4]. It relies on the use of proofs of knowledge, namely the Schnorr-
Lyubashevsky approach. The authors of the Rank Preserving Signature
(RPS) [9] built upon this approach and proposed even smaller keys and
signatures than Durandal.

In this paper, we describe attacks against the RPS scheme which break
all sets of parameters proposed in [9].

More precisely, our attacks enable us to forge valid signatures in 268

and 247 operations for sets of parameters whose claimed securities are,
respectively, 128 and 192 bits. In addition to this, we give a quantum
adaptation of our attack which yields an attack on the last two sets of
parameters given in [9].

Overall, our attacks highlight weaknesses of the RPS scheme and give
new constraints when designing new parameter sets.

In order to describe the complexities of our attacks, this paper con-
tains theoretical arguments together with experimental results for which
we give the source code of our programs.

Keywords: Rank-metric based cryptography · Post-quantum
cryptography · Signature

1 Introduction

Context. The interest for rank-metric based cryptography has grown rapidly
since the beginning of the NIST post-quantum standardization process in 2017.

While two rank-metric encryption schemes (ROLLO [3] and RQC [1]) were
selected for the second round of the standardization process, designing rank-
metric signature schemes is a more challenging task. Code based signature
schemes, and rank metric schemes in particular, can essentially be split in two
categories: the hash-and-sign schemes and the proof of knowledge ones.

For building a hash-and-sign signature scheme, one needs to be able to find
a low rank error vector associated to a syndrome. Ranksign [8] was built using
this technique together with LRPC (Low Rank Parity Check) codes. However,
it has been shown in [6] that it is possible to recover the secret LRPC matrix
from the public key.
c© Springer Nature Switzerland AG 2021
M. B. Paterson (Ed.): IMACC 2021, LNCS 13129, pp. 45–58, 2021.
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Designing proof of knowledge signature schemes can be done in two ways.
The first one consists in turning a zero-knowledge authentication scheme into
a signature scheme using the Fiat-Shamir transformation. This approach usu-
ally leads to schemes with large signature sizes, since the protocol needs to be
repeated multiple times (depending on the soundness of the underlying authen-
tication scheme) in order to reach an arbitrary security level. Instead of using
zero-knowledge authentication schemes, one can build upon the work of Lyuba-
shevsky [10], which adapts the Schnorr signature scheme [11] to the Euclidian
metric. In this scheme, the public key consists of a random matrix H and a
matrix T = HS where S is a secret matrix of low weight syndromes. To prove
the knowledge of S, the signer outputs a signature consisting of a challenge c
and a vector z = y+cS. The idea is that y acts as a mask that hides the secret
value cS.

In the rank metric, this idea gave rise to the Durandal [4] and RPS [9]
schemes. While the Durandal scheme reuses the same secret matrix S across all
signatures and checks that the techniques used in the decoding algorithm of the
LRPC codes do not leak information, the RPS scheme uses ephemeral keys in
order to randomize this matrix for each signature.

Our Contributions. In this paper, we describe a cryptanalysis of the RPS signa-
ture scheme. It is divided in two attacks: one that uses information leakage in the
signatures, and one that uses the fact that random vectors have a non-negligible
chance to behave like valid signatures for particular parameter values.

The first attack breaks the second set of parameters proposed in [9], i.e. RPS-
C2, using 247 operations whereas the claimed security is 192 bits, and the second
attack breaks RPS-C1 with 268 operations for a claimed security of 128 bits.

We give a complexity formula for both of our attacks, as well as experimental
results to support them, which give new constraints that can be used to design
parameter sets for the RPS scheme.

Then, we show that using a quantum computer yields a quadratic speedup for
both of our attacks, this allows us to break the RPS-P1 and RPS-P2 parameter
sets.

2 Preliminaries

In this section, we recall some definitions on rank metric codes and then present
the RPS signature scheme.

2.1 Rank Metric

Definition 1 (Rank metric over F
n
qm). Let x = (x1, . . . , xn) ∈ F

n
qm and

(β1, . . . , βm) ∈ F
m
qm a basis of Fqm viewed as an m-dimensional vector space

over Fq. Each coordinate xj is associated to a vector of Fm
q in this basis: xj =∑m

i=1 xijβi. The m × n matrix associated to x is given by M(v) = (xij)1�i�m
1�j�n

.
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The rank weight ‖x‖ of x is defined as

‖x‖ def
= RankM(x).

The associated distance d(x,y) between elements x and y in F
n
qm is defined by

d(x,y) = ‖x − y‖.
Definition 2 (Fqm-linear code). An Fqm-linear code C of dimension k and
length n is a subspace of dimension k of Fn

qm embedded with the rank metric. It
is denoted [n, k]qm . Such a code C can be represented in two equivalent ways:

– with a generator matrix G ∈ F
k×n
qm ; each row of G is an element of a basis of

C:
C = {xG,x ∈ F

k
qm}.

– with a parity-check matrix H ∈ F
(n−k)×n
qm ; each row of H determines a parity-

check equation verified by the elements of C:

C = {x ∈ F
n
qm : Hxᵀ = 0}.

Hvᵀ is called the syndrome of v (with respect to H).

We say that G (respectively H) is under systematic form if and only if it is of
the form (Ik|A) (respectively (In−k|B)).

Definition 3 (Support of a word). Let x = (x1, . . . , xn) ∈ F
n
qm , the support

E of x, denoted Supp(x), is the Fq-subspace of Fqm generated by the coordinates
of x:

E = 〈x1, . . . , xn〉Fq
,

note that dim E = ‖x‖.
The RPS scheme uses a particular family of rank metric codes, namely ideal

codes, in order to obtain smaller parameters.
Let P ∈ Fq[X] a polynomial of degree n. We can identify the vector space

F
n
qm with the ring Fqm [X]/〈P 〉, where 〈P 〉 denotes the ideal of Fqm [X] generated

by P .

Ψ :Fn
qm �Fqm [X]/〈P 〉

(v0, . . . , vn−1) �→
n−1∑

i=0

viX
i

For u,v ∈ F
n
qm , we define their product similarly as in Fqm [X]/〈P 〉: w =

uv ∈ F
n
qm is the only vector such that Ψ(w) = Ψ(u)Ψ(v). From now on, in order

to lighten the formulas, we will omit the symbol Ψ .
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To a vector v ∈ F
n
qm , one can associate an n × n square matrix with entries

in F
n
qm corresponding to the product by v. Indeed,

u · v = u(X)v(X) (mod P )

=
n−1∑

i=0

uiX
iv(X) (mod P )

=
n−1∑

i=0

ui(Xiv(X) mod P )

= (u0, . . . , un−1)

⎛

⎜
⎜
⎜
⎝

v(X) mod P
Xv(X) mod P

...
Xn−1v(X) mod P

⎞

⎟
⎟
⎟
⎠

Such a matrix is called the ideal matrix generated by v and P , or simply by
v when there is no ambiguity in the choice of P .

Definition 4 (Ideal Matrix). Let P ∈ Fq[X] be a polynomial of degree n and
v ∈ F

n
qm . The ideal matrix generated by v is the n × n square matrix denoted

IM(v) of the form:

IM(v) =

⎛

⎜
⎜
⎜
⎝

v
Xv mod P

...
Xn−1v mod P

⎞

⎟
⎟
⎟
⎠

As a consequence, the product of two elements of Fqm [X]/〈P 〉 is equivalent
to the usual vector-matrix product:

u · v = uIM(v) = IM(u)ᵀv = v · u.

Definition 5 (Ideal codes). Let P (X) ∈ Fq[X] be a polynomial of degree n.
An [ns, nt]qm code C is an (s, t)-ideal code if its generator matrix under system-
atic form is of the form

G =

⎛

⎜
⎝

IM(g1,1) . . . IM(g1,s−t)

Itn
...

. . .
...

IM(gt,1) . . . IM(gt,s−t)

⎞

⎟
⎠

where (gi,j)i∈[1..s−t]
j∈[1..t]

are vectors of Fn
qm . In this case, we say that C is generated

by the (gi,j).

In the following, we are going to consider only [2n, n] ideal codes, that is
to say codes that can be represented by two vectors x,y ∈ F

n
qm and admit a

generator matrix of the form:
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G =

⎛

⎝IM(x) IM(y)

⎞

⎠ .

2.2 Some Useful Propositions

In this paper, we will need several propositions about vector spaces of Fqm or
vector spaces in general, there are given in this section.

Proposition 1 (Dimension of random vectors). Let X be a vector space
of Fqm of dimension wr and let x be a random vector in Xn.

The probability that ‖x‖ = wr − i can be approximated by:

q−i(max(n,wr)−min(n,wr)+i)

This proposition comes from [5], for a proof of it, reader may refer to [5].

Lemma 1 (Intersection of 2 vector spaces). Let A and B be two vector
spaces of Fqm , their dimensions fulfill the following inequality:

dim(A ∩ B) ≥ dim(A) + dim(B) − m.

Proof. Straightforward using the classic equality dim(A ∩ B) = dim(A) +
dim(B) − dim(A + B) and the fact that A + B has a dimension bounded from
above by m, i.e. the dimension of the whole space Fqm . ��

Lemma 1 can easily be generalized to the intersection of 3 subspaces of Fqm .
The proof is straightforward and only requires to use lemma 1.

Lemma 2 (Intersection of 3 vector spaces). Let A, B, and C, be 3 vector
spaces of Fqm , their dimensions fulfill the following inequality:

dim(A ∩ B ∩ C) ≥ dim(A) + dim(B) + dim(C) − 2m.

Lemma 3 (Random vector in vector space). Let X ⊂ Y be two vector
spaces of Fqm of dimensions x and y, respectively. If one picks at random a
vector v ∈ Y , it will belongs to X with probability qx−y.

Proof. Straightforward by computing the ratio of favorable vectors over all pos-
sible vectors. ��
Proposition 2. Let X ⊂ Y be two vector spaces of Fqm of dimensions x and y,
respectively. If one picks at random x vectors v1, . . . , vx in Y , {v1, . . . , vx} will
be a basis of X with probability

x−1∏

j=0

q−y(qx − qj).
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Proof. When one picks x vectors in the vector space Y , the probability that
these vectors form a basis of a subvector space of dimension x, i.e. that they are
linearly independent, is

x−1∏

j=0

(1 − qj−y) =
x−1∏

j=0

q−y(qy − qj). (1)

There are [
y
x

]

q

:=
x−1∏

j=0

qy − qj

qx − qj

distinct vector spaces of dimension x in the vector space Y . Thus, each time one
picks a random vector space in Y , it will be X with probability

x−1∏

j=0

qx − qj

qy − qj
. (2)

One ends the proof by multiplying the two probabilities given by (1) and (2). ��

2.3 The RPS Scheme

We now present the RPS scheme from [9]. Let us denote the set of vectors of
length n and weight w over Fqm by Sw

n .

Keygen:

– Sample x
$← Srx

k and y
$← Sry

k .
– Let h = x−1y.
– Output (pk = h, sk = (x,y)).

Sign(μ, pk, sk): for 1 � i � l, sample:

– ei
$← Sre

k

– fi
$← Srf

k

– ui
$← Sru

k

– vi
$← Srv

k

Let H be a hash function which outputs values in S1
k and H be the parity-

check matrix generated by (h,h−1). Compute:

– si = (eix,fiy)Hᵀ

– wi = (uix,viy)Hᵀ

– ci = H({wi, si}, μ, pk)
– ai = (ui + ciei)x
– bi = (vi + cifi)y

Then output σ = ({ci,ai, bi, si}1�i�l).
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Verify(σ, μ, pk): for 1 � i � l, we check the rank of the following values:

– ‖ai‖ = (ru + re)rx
– ‖aih‖ = (ru + re)ry
– ‖bi‖ = (rv + rf )ry
– ‖bih‖ = (rv + rf )rx
– ‖si‖ = rery + rfrx
– ‖sih‖ � min(m − 1, k)
– ‖sih−1‖ � min(m − 1, k)

If one of them is not valid, reject the signature. Otherwise, compute wi as
(ai, bi)Hᵀ − cisi. Accept the signature if ci = H({wi, si}, μ, pk) for 1 � i � l.

In [9], the authors proposed the following parameter sets, where rx = ry,
re = rv and ru = rf :

Parameter set (l, q,m, k, rx, re, ru) Security

RPS-C1 (3, 2, 61, 59, 5, 6, 5) 128 (classical)

RPS-C2 (4, 2, 67, 59, 5, 6, 5) 192 (classical)

RPS-P1 (3, 2, 89, 83, 7, 6, 5) 128 (post-quantum)

RPS-P2 (3, 2, 89, 107, 11, 4, 3) 192 (post-quantum)

3 Our Attacks

3.1 Information Leakage Attack

In this section, we present our first attack, which shows that one can exploit
information leakage from the signatures when m is high enough in order to
recover the ephemeral keys eix,uix,viy and fiy.

In what follows, let us assume that q = 2. With a signature σ =
({ci,ai, bi, si}1�i�l) and using the public key h, one can easily compute the
following vectors:

aih = uiy + cieiy,

wi = uiy + vix,

wi + bih
−1 = uiy + cifix.

The weights of those vectors are respectively bounded from above by the
following values: (ru + re)ry, rury + rvrx, rury + rfrx; however, in practice, with
high probability, those inequalities are equalities. Moreover, those 3 vectors have
length k and their weight are bounded from above by values that are always



52 N. Aragon et al.

strictly smaller than k for the given sets of parameters. Thus, using Proposition
1, we can consider that, with high probability:

‖aih‖ = (ru + re)ry, ‖wi‖ = rury + rvrx, ‖wi + bih
−1‖ = rury + rfrx.

Thus, one can easily compute the intersection of the supports of those vectors
and using Lemma 2, one gets the following bound:

dim
(
Supp(aih) ∩ Supp(wi) ∩ Supp(wi + bih

−1)
) ≥ 2(rx(re + 2ru) − m).

(3)
Note that, for the sake of clarity, we considered, like the authors of [9] that

rx = ry, rv = re, and rf = ru. One can get an equality from (3) by replacing m
by

dim(Supp(aih) + Supp(wi) + Supp(wi + bih
−1))

which is exactly m with high probability.

So far, one has computed an intersection of 3 vector spaces, denoted Z in the
following, whose dimension is 2(rx(re+2ru)−m) and which contains Supp(uiy)
of dimension rury = rurx.

Finding uiyi. We then use the knowledge of Z to recover the ephemeral key
uiyi. We use the following procedure:

– Sample a random subspace T of Z of dimension rurx.
– Let A = Supp(aih). Find a vector space T ′ such that A = T + T ′ where T

and T ′ are in direct sum.
– Write aih as t + t′ where t ∈ T k and t′ ∈ T ′k. t is a candidate for uiyi.
– If ‖th−1‖ = ‖t‖, then with overwhelming probability t = uiyi. Otherwise,

start over by sampling an other vector space T .

Finishing the Attack. Once we recover uiyi for 1 � i � l, we can recover the
other ephemeral keys:

– uix = h−1uiyi

– viy = h(wi − uiy)
– eix = c−1

i (ai − uix)
– fiy = c−1

i (bi − viy)

Using these keys and a valid signature σ = ({ci,ai, bi, si}1�i�l) on a message
μ, one can forge a valid signature σ′ = ({c′

i,a
′
i, b

′
i, s

′
i}1�i�l) for a message μ′

using the following procedure for 1 � i � l:

– Compute wi = (ai, bi)Hᵀ − cisi
– Set s′

i = si and w′
i = wi

– Compute c′
i = H({wi, si}, μ, pk)
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– Set a′
i = uix + c′

ieix
– Set b′

i = viy + c′
ifiy

Finally, we derive the complexity of this attack:

Theorem 1. The information leakage attack forges a valid signature using:

l × m × k × min(m, k) ×
rurx−1∏

j=0

qz(qrurx − qj)

operations over Fq, where z is dimension of the recovered vector space Z.

Proof. Using proposition 2, we know that the probability of finding the correct
support of uiy is

∏rurx−1
j=0 q−z(qrurx − qj).

The most costly step in verifying that the sampled support T is the correct
one is checking the rank of th−1, which can be done using a Gaussian elimination
in m × k × min(m, k) operations over Fq.

This process needs to be repeated l times to forge a complete signature, hence
the result. ��

For sets of parameters given in [9], we obtain the following complexities:

Parameter set Claimed security Success probability Complexity

RPS-C1 128 2−327 2347

RPS-C2 192 2−27 247

3.2 Random Low Rank Vectors Attack

We now describe a procedure that can be used to forge valid signatures for the
RPS scheme when the parameters m and k are too close to the weight of the
vectors ai and bi.

On input (pk, μ), our goal is to find a signature σ such that Verify(σ, μ, pk)
accepts it. For each 1 � i � l, we start by computing si, wi and ci as follows:

– Sample si as a random vector of weight rery + rfrx
– Sample wi as a random vector of weight rury + rvrx
– Let ci = H({wi, si}, μ, pk)

Since si is chosen randomly, the following conditions are fulfilled:

– ‖sih‖ � min(m − 1, k)
– ‖sih−1‖ � min(m − 1, k)
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Now we need to find ai and bi such that:

(ai, bi)Hᵀ − cisi = wi

(ai, bi)Hᵀ = wi + cisi

aih + bih
−1 = wi + cisi

Let z = wi + cisi. We start by splitting z into a sum of two vectors z1 and
z2 such that ‖z1‖ = (ru + re)ry and ‖z2‖ = (rv + rf )rx. In order to do so, one
needs to write the vector z as matrix Z in F

m×k
qm using a basis of Fqm seen as an

Fq-vector space. Then, one picks 2 matrices Z1 and Z2 at random in F
m×k
qm and

solves the following linear system:

V × (Z1|Z2)ᵀ = Z

where V is a m × m2 matrix containing unknowns.
Since ‖z1‖ and ‖z2‖ have the same order of magnitude as k, this system

has far more unknowns than equations, thus, it has a lot of solutions. Those
solution are of the form V0 + K where K is a matrix containing random linear
combinations of vectors belonging to the left kernel of (Z1|Z2)ᵀ. Each one of
these solutions yields different matrices Z ′

1 and Z ′
2 which can easily be turned

into vectors z1 and z2 in F
k
qm . The two vectors z1 and z2 will have correct weights

(respectively (ru+re)ry and (rv +rf )rx) with a probability bounded from above
by 0.282 ≈ 8%. This is due to the fact that one is looking for a solution matrix
V0 +K whose two first blocks of size m×m are non-singular. This happens with
probability asymptotically close to 1 when q grows but bounded from above by
0.28 when q = 2.

In order to verify this heuristic, we computed 10.000 solutions for a system
with parameters q = 2,m = 100, k = 90, r1 = r2 = 80, and it appeared that
8.1% of the associated z1 and z2 had the expected weights.

The cost of computing this decomposition is basically the one of performing
linear algebra (solving a system, computing rank, multiplying two matrices, ...)
on matrices of size m2 × k, m × m and m × k.

Most importantly, the number of different decompositions of the form z =
z1 + z2 (with correct weights) that can be found is huge, roughly

[
m

(ru + re)ry

]

q

×
[

m
(rv + rf )rx

]

q

× 0.282 × 2m(2m−k). (4)

The two first terms concern the choice of the two supports of z1 and z2, the
third one the aforementioned probability and the last one the number of possible
choices for the matrix K. This is only a very rough estimation since it does not
consider the probability that the 2 vector spaces have a non trivial intersection
nor the probability that the rank of (Z1|Z2)ᵀ is maximal; however, it gives an
heuristic to grasp the order of magnitude of the number of distinct solutions.

Then we compute ai = z1h
−1 and bi = z2h. By construction, the following

conditions are verified:
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– (ai, bi)Hᵀ − cisi = wi

– ‖aih‖ = (ru + re)ry
– ‖bih‖ = (rv + rf )rx

Applying Proposition 1 with X = Fqm and ai ∈ F
k
qm gives the following result:

Proposition 3. The probability that this procedure outputs ai and bi such that
‖ai‖ = (ru + re)ry and ‖bi‖ = (rv + rf )rx is:

q−i1(max(m,k)−min(m,k)+i1) × q−i2(max(m,k)−min(m,k)+i2)

where i1 = min(m, k) − (ru + re)rx and i2 = min(m, k) − (rv + rf )ry.

Finally, we derive the complexity of this attack:

Theorem 2. The random low rank vectors attack forges a valid signature using:

l × 2(m × k × min(m, k)) × 1
p

operations over Fq, where p is the probability of success given in Proposition 3.

Proof. Checking the rank of ai and bi is done by performing two Gaussian
eliminations on m × k matrices over Fq, and each Gaussian elimination costs
m × k × min(m, k) operations over Fq.

This process needs to be repeated 1
p times on average in order to find a valid

pair of vectors.
Finally, this process needs to be repeated for l times, hence the result. ��
For sets of parameters given in [9], we obtain the following complexities:

Parameter set Claimed security Sucess probability Attack complexity

RPS-C1 128 2−48 268

RPS-C2 192 2−96 2117

4 Implementation Results

We performed simulations for both of our attacks in order to support our
theoretical claims. Our code is available at github.com/nicolas-aragon/
cryptanalysis-RPS, it is based on theRBC (RankBasedCryptography) library [2].

Information Leakage Attack. We realized an implementation of the RPS scheme,
as well as an implementation of the recovery of the vector space Z. Our exper-
iments show that Z has the expected dimension most of the time, and when it
does not, one can simply start the procedure over with another signature.

https://github.com/nicolas-aragon/cryptanalysis-RPS
https://github.com/nicolas-aragon/cryptanalysis-RPS
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Table 1. Implementation results for the random low rank vectors attack.

m k ‖z1‖ P (‖z1‖ = ‖z1h
−1‖) from Proposition 1 Observed P (‖z1‖ = ‖z1h

−1‖)
61 59 57 2−8 2−6.6

61 59 55 2−24 2−22.3

Table 2. Timings (in seconds) for the low rank vectors attack.

m k ‖z1‖ Time to find a correct z1 Time to perform the attack

61 59 57 0.2 4

61 59 55 474 Not performed

Random Low Rank Vectors Attack. We implemented a code that samples vectors
z1 and z2 randomly, and checks the rank of z1h−1 and z2h in order to verify the
probabilities from Propositions 1 and 3. We used m = 61, k = 59 and ‖zi‖ = 55
or 57, results are reported in Table 1.

We measured the time needed to find z1 such that ‖z1‖ = ‖z1h−1‖ as well as
the time needed to perform the attack (i.e. finding z1 and z2 both with the right
property). These results are reported in Table 2. We did not finish the actual
attack with m = 61, k = 59, ‖zi‖ = 55.

These results show that for q = 2, the probability that ‖z1h−1‖ is higher than
stated in Proposition 1, which is favorable for the attacker. Reported timings
were performed using a single core, but the nature of both our attacks make
them easily parallelizable.

5 Quantum Speedup

In [7], the authors described how solving the rank syndrome decoding problem
using a quantum computer gives a quadratic speed-up when considering com-
binatorial algorithms. We will use similar techniques to show that we obtain a
quadratic speedup for both attacks described in Sect. 3.

Theorem 3. [7], Theorem 1.
Let f be a Boolean function f : {0, 1}b → {0, 1} that is computable by a NAND

circuit of size S. Let p be the proportion of roots of the Boolean function

p
def
=

#{x ∈ {0, 1}b : f(x) = 0}
2b

Then there is a quantum algorithm based on iterating a quantum circuit
O

(
1√
p

)
many times that outputs with probability at least 1

2 one of the roots
of the Boolean function. The size of this circuit is O(S).
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Information Leakage Attack. For this attack, we want to speed up the process
of finding the correct vector space Supp(uiy) from the vector space leaked from
the signatures. From Proposition 2 we have:

p =
x−1∏

j=0

q−y(qx − qj)

As explained in Sect. 3.1, checking whether the vector space is the right one
can be done by solving a linear system with rury unknowns, performing a mul-
tiplication in Fqm [X]/P , and checking the rank of the resulting vector, which
is the most costly operation. Hence, there exists a NAND classical circuit that
performs this verification using O (

max(m, k)3
)

gates.

Random Low Rank Vectors Attack. For this attack, we want to speed up the
search of vectors ai = z1h

−1 and bi = z2h with correct weights. Proposition 3
gives the value for p:

p = q−i1(max(m,k)−min(m,k)+i1) × q−i2(max(m,k)−min(m,k)+i2)

where i1 = min(m, k) − (ru + re)rx and i2 = min(m, k) − (rv + rf )ry.
As for the previous attack, checking whether the two resulting vectors

have the desired weight can be performed by a NAND classical circuit using
O (

max(m, k)3
)

gates.

Resulting Complexities. These results show that, for both of our attacks, the
search for, respectively, the correct vector space and vectors with right weight,
can be performed in O

(
1√
p

)
iterations of the circuit when using a quantum

computer. The cost of evaluating this circuit remains unchanged. This yields
the following complexities for the RPS parameters targetting quantum security,
using the random low rank vectors attack against RPS-P1 and the information
leakage attack against RPS-P2:

Parameter set Claimed security Quantum attack complexity

RPS-P1 128 294

RPS-P2 192 2170

6 Conclusion

In this paper, we presented two attacks against the RPS signature scheme: the
information leakage attack, effective when m is high enough, and the random low
rank vectors attack, effective when both m and k are low enough. Using these two
attacks, we broke the RPS-C1 and RPS-C2 parameter sets. We demonstrated
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the effectiveness of both attacks with a complexity analysis and implementation
results. Finally, we showed that our attacks benefit from a quantum speedup,
which allows us to break the RPS-P1 and RPS-P2 parameter sets, targetting
quantum security.

Theses results indicate that, when designing parameters for the RPS scheme,
m must be small enough to avoid information leakage, and k must be significantly
larger in order to avoid forgery using random vectors of low rank.
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Abstract. A privacy-preserving Context-Aware Publish-Subscribe Sys-
tem (CA-PSS) enables an intermediary (broker) to match the content
from a publisher and the subscription by a subscriber based on the cur-
rent context while preserving confidentiality of the subscriptions and
notifications. While a privacy-preserving Ride-Hailing Service (RHS)
enables an intermediary (service provider) to match a ride request with
a taxi driver in a privacy-friendly manner. In this work, we attack a
privacy-preserving CA-PSS proposed by Nabeel et al. (2013), where we
show that any entity in the system including the broker can learn the
confidential subscriptions of the subscribers. We also attack a privacy-
preserving RHS called lpRide proposed by Yu et al. (2019), where we
show that any rider/driver can efficiently recover the secret keys of all
other riders and drivers. Also, we show that any rider/driver will be able
to learn the location of any rider. The attacks are based on our crypt-
analysis of the modified Paillier cryptosystem proposed by Nabeel et al.
that forms a building block for both the above protocols.

Keywords: Privacy · Publish-subscribe system · Ride-hailing service ·
Homomorphic encryption · Modified Paillier cryptosystem · lpRide

1 Introduction

Publish-Subscribe systems (also written as pub/sub systems) are a well-known
paradigm to disseminate information among multiple parties in a distributed
and asynchronous manner. Subscribers subscribe for content from publishers,
who create content and push notifications to the intermediaries’ network (aka.
brokers). Brokers route the content to subscribers based on their subscription. A
Context-Aware Publish-Subscribe System (CA-PSS) extends a pub/sub system
by taking into account the subscriber context. For instance, the context could
be the location of a subscriber in a traffic information service, and the content
from a publisher could correspond to the traffic situation in the neighbourhood
of the subscriber. Hence, the context of a subscriber could change frequently over
time. It is important to protect the confidentially of the context, subscription
and notification. The goal of a Privacy-Preserving CA-PSS (PP-CA-PSS) is
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to protect the above confidential information. The scheme from Nabeel et al.
[NABB13a] is one of the early proposals of a privacy-preserving CA-PSS. There
have many works on this topic and we refer to [Mun18,CBDA+] and references
therein for more details.

On the other hand, a Ride-Hailing Service (RHS) too provides location-
based services. RHSs have become increasingly popular in recent years. Uber,
Ola, Lyft, Didi, Grab, etc. are some popular RHSs. With these services
also comes the risk of misuse of personal data. The Ride matching Service
Providers (RSPs) collect personal information regarding the riders and drivers
along with their ride statistics. There have been many instances of viola-
tion of individual privacy of the users using these RHSs [Nor20]. A Privacy-
Preserving RHS (PP-RHS) aims to provide privacy guarantees to the users of
the RHS, namely, riders and drivers. Recent years have witnessed many proposals
of PP-RHS [PDJ+17,PDE+17,KFZC18,BLM+19,HNW+18,LJFX19,YSJ+19,
WZL+18,YJZ+19]. Recently, the ORide RHS’s [PDE+17] security was revisited
in [KMV21].

The focus of this work is on the PP-CA-PSS from [NABB13a] and the lpRride
PP-RHS proposed by Yu et al. [YSJ+19]. These two seemingly disparate proto-
cols share the following common features: a) both offer or potentially can offer
location-based services, and b) both the protocols are based on the modified Pail-
lier cryptosystem that was proposed in [NABB13a]. The modified Paillier cryp-
tosystem (yet another variant of the Paillier cryptosystem [Pai99]) is an addi-
tively homomorphic (digital signature-like) cryptosystem and both the protocols
use this cryptosystem to blind the subscriptions and notifications (resp. locations
of riders and taxis) but still can perform subscription-notification matching (resp.
ride-matching) on the blinded data using the additive homomorphism property.

1.1 Our Contribution

In this work, we analyse the security of the PP-CA-PSS from [NABB13a] and the
lpRide protocol. For the PP-CA-PSS we demonstrate an attack where any entity
in the system including the broker can fully learn the confidential subscriptions
of the subscribers. This invalidates the claim in [NABB13a] that subscriptions
remain confidential. We would like to note that we do not target notifications
from publishers or the content. Yet, subscriptions can leak confidential informa-
tion such as locations of subscribers.

On the lpRide protocol we exhibit a key recovery attack by any rider or driver
that can efficiently recover the secret keys of all other riders and drivers. Also, we
show that any rider or driver will be able to learn the location of any rider. We
were unable to recover drivers’ locations as they are blinded by random values.

All our adversaries are honest-but-curious. The basis of our attack is our
cryptanalysis of the modified Paillier cryptosystem mentioned above. In partic-
ular, we show that anyone will be able to forge the “signatures” and that these
signatures are deterministic. Hence, this result is of independent interest to the
security of protocols that are based on the modified Paillier cryptosystem. It is
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somewhat surprising that a simple attack on this cryptosystem went unnoticed
despite many follow-up works of [NABB13a].

In Sect. 2, we recall and then cryptanalyse the modified Paillier cryptosys-
tem. In Sect. 3, we briefly recall the PP-CA-PSS, and then describe our attack.
In Sect. 4, we briefly recall the lpRide protocol, and then describe our attack.
Section 5 concludes the paper.

2 Cryptanalysis of Modified Paillier Cryptosystem

2.1 Recall of the Modified Paillier Cryptosystem

As mentioned earlier, the modified Paillier cryptosystem was proposed in the
article [NABB13a]. A preliminary use of this cryptosystem was already made
in [NSB12]. As the name suggests, this cryptosystem is a variant of the Paillier
encryption scheme [Pai99]. It consists of the following three algorithms:

– Key generation: choose two distinct large primes p and q. Compute N = p·q
and λ = lcm(p − 1, q − 1), the Carmichael function of N . Randomly sample

a base gp
$← Z

∗
N2 , such that the order of gp is a multiple of N . The latter

condition can be ensured by checking the condition

gcd(L(gλ
p (mod N2)), N) = 1,

where
L(x) =

x − 1
N

, (1)

for
x ∈ {y | y ∈ Z≥0, y < N2, y ≡ 1 (mod N)}.

Compute
μ =

(
L(gλ

p (mod N2))
)−1

(mod N). (2)

The public “decryption” key is

PK ′ = (N, gp, μ),

and the secret “encryption” key is

SK ′ = λ.

– Encryption. E′(m, r, SK ′): let the plaintext m ∈ ZN . Sample a random

value r
$← Z

∗
N . Compute the “ciphertext”

c = gmλ
p rNλ (mod N2). (3)

When the randomness and the secret key is implicit from the context, we
simply denote the encryption of a message m as E′(m).
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– Decryption. D′(c, PK ′): compute the plaintext

m = L(c (mod N2)) · μ (mod N). (4)

The scheme described above resembles a digital signature scheme more than
an encryption scheme, but we will follow the terminology from the previous
works. Note that in the original Paillier scheme [Pai99], the public key is (N, gp)
and the secret key is (λ, μ). Hence, in the modified scheme described above μ
is made a public parameter in order to make the decryption algorithm a) to
be publicly computable (that is, make it like the verification algorithm of a
digital signature scheme), and b) more efficient. The rationale to make μ public
is the claim in [NABB13a] that it is hard to compute the discrete logarithm of μ
w.r.t. base gp to obtain λ. Also, note that the modified scheme is also additively
homomorphic, i.e.,

E′(m1 + m2, r1r2) = E′(m1, r1) · E′(m2, r2),

and
E′m2(m1, r1) = E′(m1m2, r

m2
1 ).

2.2 Cryptanalysis

We now show that the modified Paillier scheme is insecure. Namely, an adver-
sary having access only to the public key can produce encryptions of messages,
contrary to the claims in [YSJ+19,NABB13a] that only those who possess the
secret key would be able to encrypt. Moreover, we also show that the ciphertexts
are deterministic.

Lemma 1. The ciphertexts of the modified Paillier cryptosystem (see (3)) are
deterministic.

Proof. Since c = gmλ
p rNλ (mod N2), by the properties of the Carmichael func-

tion λ, we have rNλ ≡ 1 (mod N2) (see for e.g., [Pai99, pp. 2]). Hence c =
(
gλ

p

)m

(mod N2) and is independent of r. ��
Next, we show how to efficiently compute gλ

p (mod N2) from the public key.

Lemma 2. gλ
p (mod N2) = N · (μ−1 (mod N)) + 1.

Proof. From (2),

L(gλ
p (mod N2)) ≡ μ−1 (mod N).

Since 1 ≤ L(gλ
p (mod N2)) < N , the lemma follows from the definition of the

L function in (1). ��
From Lemmas 1 and 2 and their proofs, we have
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Corollary 1. E′(m) = (N · (μ−1 (mod N)) + 1)m (mod N2).

Hence, anyone with access to the public key can easily produce the (unique)
ciphertext corresponding to a given message without knowing the secret key
(or equivalently, will be able to forge the signature). Note that we were able
to compute gλ

p (mod N2) without explicitly computing λ. This constitutes a
complete break of the modified Paillier cryptosystem.

3 Attack on the PP-CA-PSS from [NABB13a]

3.1 Recall of the Scheme

For completeness, we briefly recall the relevant steps of the privacy-preserving
context-aware publish-subscribe system from [NABB13a] that are necessary to
understand our attack. For other details, we refer the reader to [NABB13a]
and its full version [NABB13b]. This protocol consists of the following types of
entities:

– Context manager: it is a trusted third party (TTP) responsible for initial-
ising the system and registering other entities. There is a context manager for
each context (e.g. location) and the context could change frequently. It pro-
vides secret keys to publishers (resp. subscribers) to encrypt (resp. decrypt)
the content payload during the initialisation phase and there will be no fur-
ther interaction with publishers/subscribers unless the system must be reini-
tialised.

– Publisher: owner of the messages/content that they like to publish and notify
the subscribers.

– Subscriber: entity interested to subscribe for the content from the publish-
ers.

– Broker: intermediary that matches the blinded/encrypted notifications and
subscriptions, and if there is a match, then forward the encrypted message to
the corresponding subscriber.

The threat model assumed in [NABB13a] is that the context manager is fully
trusted. The brokers are assumed to be honest-but-curious, i.e., they honestly
follow the protocol but are curious to learn the confidential notifications and
subscriptions. Publishers are expected to not collude with any other entity and
to follow the protocol honestly. Subscribers are not trusted. Brokers may collude
with one another and also collude with malicious subscribers.

The steps of the protocol are as follows:

– System initialisation: The context manager generates the parameters of the
modified Paillier cryptosystem. It maintains a set of contexts C. Each context
Ci ∈ C is a tuple Ci = (λi, μi, ti, ri), where λi and μi are modified Paillier
parameters described in Sect. 2. Implicit in the description is the modulus
Ni that is different for each context, and ti, ri

$← ZNi
are random values.

Brokers only match notifications with subscriptions within the same context.
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The parameters λi and ti are private to the context manager but μi (also Ni)
are public.
The context manager also deploys an Attribute-based Group Key Manage-
ment (AB-GKM) scheme [NB14] to manage the secret keys issued to the
subscribers that is used to decrypt the payload message of the notification.
An AB-GKM scheme enables group key management while also enabling fine-
grained access control among a group of users each of whom is identified by
a set of attributes. Subscribers need to provide their identity attributes (in
an oblivious manner) to the context manager and obtain the secrets that is
also shared with the subscribed publishers by the context manager. These
secrets are later used to derive the secret encryption key for the publisher
to encrypt the payload content, and also derive decryption keys for the sub-
scribers. Since in this work we do not target the encrypted payload content,
we omit the details corresponding to the AB-GKM scheme.

– Subscriber registration: every subscriber registers with the context man-
ager. A subscriber with context Ci receives the following parameters during
the registration:

(E′(−ri), E′(−1), g−tiE′(−ri)),

where g
$← Z

∗
N2 . The subscriber uses these parameters to “blind” its sub-

scriptions. Since μi is public, the subscriber may decrypt E′(−ri) using the
decryption procedure D′ to obtain ri. Note that the parameter ri is common
to all the subscribers within a given context. It is claimed in [NABB13a] that
the subscriber can neither recover g−ti nor ti from g−tiE′(−ri). Needless to
say, it was believed until now that the ciphertexts E′(−ri) are randomised.
As briefly mentioned above, the subscribers also receive their secret of the AB-
GKM scheme depending on the identity attributes they possess but without
revealing them to the context manager.

– Publisher registration: every publisher too registers with the context man-
ager. A publisher with context Ci receives the following parameters during
the registration:

(E′(ri), E′(1), gtiE′(ri)).

As in the case of subscribers, the publisher uses these parameters to blind
its notifications. In addition to the modified Paillier parameters, the pub-
lishers also receive the set of secrets for the AB-GKM scheme issued to the
subscribers, from the context manager. The publisher uses these secrets to
derive a secret encryption key to selectively encrypt the payload of the noti-
fication of a subscriber depending on the latter’s subscription.

– Notifications: in this system, every notification and subscription is repre-
sented as a Boolean expression over a set of attribute/value pairs. The pub-
lisher blinds a value v (0 ≤ v < 2� � Ni) for an attribute a as follows:

v′ = gti · E′(ri) · E′(ri(v − 1)) · E′(rv)

= gti · E′(riv + rv), (5)
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where rv is a suitably sampled random value in ZNi
. For reasons that will be

more clear when describing the matching phase, the value rv is chosen such
that 0 ≤ ri(v−x)+rv ≤ Ni/2 for x ∈ {0, 1, . . . , v}, else Ni/2 < ri(v−x)+rv <
Ni for x ∈ {v + 1, v + 2, . . . , 2� − 1}.
The publisher also generates the encryption key k of the AB-GKM scheme
using the secret it received from the context manager for the corresponding
subscriber. The publisher then encrypts the payload (denoted as payload) of
the notification 〈ai = vi〉i∈I as Ek(payload).

– Subscriptions: suppose a subscriber wants to subscribe for the attribute a
with the value x. It blinds x as follows:

x′ = g−ti · E′(−ri) · E′(ri(1 − x))

= g−ti · E′(−rix). (6)

For each such attribute/value pairs (a, x), a tuple (a, x′, α), where α ∈ {<,≥}
is sent to the broker. Each such atomic subscription thus allows a homomor-
phic greater/less than comparison between the value and the notification.
These atomic subscriptions are combined using a Boolean formula to create
the complete subscription.

– Broker matching: the brokers are assumed to know the public parameters
for all the contexts Ci. Suppose a broker receives the blinded subscription
x′ and the blinded notification v′ for the attribute a. It first computes x′ ·
v′ and, since the blinding values gti and g−ti get cancelled, the product is
now a typical modified Paillier ciphertext that can be decrypted using the
public parameters. It then decrypts the ciphertext to obtain the randomised
difference between the original values x and v as follows:

d′ = D′(x′ · v′) = ri(v − x) + rv. (7)

The broker decides v ≥ x if d′ ≤ Ni/2, otherwise v < x. For a full/composite
subscription, the broker evaluates the Boolean formula. After successful
matching, it forwards the encrypted payload Ek(payload) to the subscriber.
The subscriber having valid credentials will be able to derive the secret key
k and decrypt the payload ciphertext.

3.2 Attack on the Scheme

The basis of our attack on the PP-CA-PSS scheme from [NABB13a] is our attack
on the modified Paillier cryptosystem that we presented in Sect. 2. First, we show
that any registered publisher or subscriber will be able to compute the blinding
value gti used to hide notifications and subscriptions, respectively.

Lemma 3. Within a context Ci, any publisher or subscriber will be able to effi-
ciently compute gti .
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Proof. Consider the case of a subscriber who receives the tuple (E′(−ri),
E′(−1), g−tiE′(−ri)) from the context manager during its registration. From
Lemma 1, the value of E′(−ri) is unique and so is the value g−ti ·E′(−ri). Hence
by dividing the latter by the former, the subscriber can easily recover the value
g−ti . Analogously, the publisher too can recover the blinding value. ��
Hence, the claim in [NABB13a] that publishers/subscriber cannot efficiently
recover gti is incorrect.

Corollary 2. Within a context Ci, any broker, by colluding with a subscriber,
will be able to efficiently recover the subscription x from its blinded subscription
x′.

The above corollary follows immediately from the above lemma since a broker
can collude with any subscriber and learn the blinding value gti (and hence g−ti)
and the parameter ri, and then remove the blinds from the blinded subscription
x′ (see (6)) and eventually decrypt the ciphertext E′(−rix) to recover x.

The broker can also attempt to recover the notifications from publishers but
since these values v are blinded by the random values rv (see (5)), we do not
know how to recover the notifications. As already observed in [NABB13a], there
will be a small leakage on the value of v −x leaked by the randomised difference
d′ (see (7)) since rv is not sampled from the uniform distribution. Since we now
know x, this directly translates to a small leakage on the value of the notification
v itself. Also, note that we do not get learn anything about the payload of the
notification.

4 Attack on the LpRide RHS Protocol

4.1 Recall of LpRide

For completeness, we briefly recall the relevant steps of the lpRide RHS proto-
col that are necessary to understand our attack. For other details, we refer to
[YSJ+19]. The lpRide protocol consists of the following entities:

– Authority: responsible for the registration of riders and taxis/drivers.
– RSP: the ride matching service provider that provides the online service of

matching riders’ encrypted locations with the “nearest” taxis whose locations
too are encrypted.

– Rider: a rider u provides the encryption of its location lu to the RSP to
request a nearby taxi.

– Taxi (aka. driver): a taxi tk provides the encryption of its location ltk to the
RSP and waits for a match with its potential client.

The threat model assumed in [YSJ+19] is that the authority is fully trusted
and that its communications with other entities happen over authenticated chan-
nels. The riders and taxis are honest-but-curious so is the RSP. Further, it is
assumed that the RSP will not collude with any rider or taxi.
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The steps of the lpRide protocol are as follows:

– System initialisation: the RSP prepares the road network embedding
[SKS03] and partitions it into zones. The authority initialises the system
parameters (PK,SK) ← Initauth(�, κ), and by using the modified Paillier
cryptosystem generates and broadcasts its public key

PK = (N, gp, g,μ, �, κ), (8)

where � is the bit length of the location coordinates in the road network
embedding, κ − 1 ≤ log2 N − 2 is the size of the random values used to

blind the location coordinates of drivers, and g
$← Z

∗
N2 is a random base, and

μ = 〈μi〉0≤i≤ω is a ω-tuple of modified Paillier cryptosystem public parameter
μ. The secret key is

SK = (λ, ε, ξ),

where λ = 〈λi〉0≤i≤ω is a ω-tuple of modified Paillier cryptosystem secret
parameter λ. The parameters ε = 〈εi〉1≤i≤ω and ξ = 〈ξi〉1≤i≤ω are ω-tuples
of random values from ZN .

Remark 1. In the lpRide protocol, the same modulus N , and the same bases gp

and g are suggested to be used for all the coordinates 1 ≤ i ≤ ω. In this case, λi

are all identical, so are all μi. But the protocol can be easily generalised to use
different moduli and bases (and our attack applies for this variant too).

– Rider and Taxi registration:
• Rider registration: the authority assigns a rider u its secret key sku ←

RiderKeyGen(u, PK, SK). It chooses a set of random integers 〈ri〉0≤i≤ω

from Z
∗
N , and computes

E′(−1) = g−λ0
p rλ0N

0 (mod N2),

g−εiE′(−1) = g−εig−λi
p rλiN

i (mod N2),

g−ξiE′(−1) = g−ξig−λi
p rλiN

i (mod N2).

Then, the secret key of the rider is

sku = (E′(−1), 〈g−εiE′(−1)〉1≤i≤ω, 〈g−ξiE′(−1)〉1≤i≤ω). (9)

Note that g−εi and g−ξi serve as blinding values. It is claimed in [YSJ+19],
as was done in [NABB13a], that the rider can neither recover g−εi (resp.
g−ξi) nor εi (resp. ξi) from g−εiE′(−1) (resp. g−ξiE′(−1)).

• Taxi registration: the authority assigns a taxi tk its secret key sktk ←
TaxiKeyGen(tk, PK, SK). It chooses a set of random integers 〈r′

i〉0≤i≤ω
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from Z
∗
N , and computes

E′(1) = gλ0
p r′λ0N

0 (mod N2),

gεiE′(1) = gεigλi
p r′λiN

i (mod N2),

gξiE′(1) = gξigλi
p r′λiN

i (mod N2).

Then, the secret key of the taxi is

sktk = (E′(1), 〈gεiE′(1)〉1≤i≤ω, 〈gξiE′(1)〉1≤i≤ω). (10)

– Ride request: a rider u generates an encrypted ride request R̂u ← ReqGen
(cu, sku) by computing its location cu = 〈cu[i]〉1≤i≤ω in the embedded road
network encoding, where 0 ≤ cu[i] < 2� is an integer. Then, two vectors of
blinded ciphertexts ĉ+u and ĉ−

u are computed from cu and sku by element-wise
multiplication.

• ĉ+u = 〈ĉ+u [i]〉1≤i≤ω, where

ĉ+u [i] = sku[2] · sku[1]−cu[i]−1 = g−εiE′(cu[i]). (11)

• ĉ−
u = 〈ĉ−

u [i]〉1≤i≤ω, where

ĉ−
u [i] = sku[3] · sku[1]cu[i]−1 = g−ξiE′(−cu[i]). (12)

The rider sends R̂u = (ĉ+u , ĉ−
u , zu) to the RSP, where zu is the identity of the

zone of the rider.
– Taxi location update: a taxi tk computes its encrypted updated location

L̂tk ← TaxiUpdate(ctk , sktk) by computing its location ctk = 〈ctk [i]〉1≤i≤ω in
the embedded road network encoding, where 0 ≤ ctk [i] < 2� is an integer. Two
vectors r1 = 〈r1[i]〉1≤i≤ω and r2 = 〈r2[i]〉1≤i≤ω of κ − 1-bit random integers
are sampled. These random values are used to blind the driver locations and,
eventually, the differences of the distances between rider and drivers. Then,
two vectors of blinded ciphertexts ĉ+tk and ĉ−

tk
are computed from ctk and sktk

by element-wise multiplication.
• ĉ+tk = 〈ĉ+tk [i]〉1≤i≤ω, where

ĉ+tk [i] = sktk [3] · sktk [1]ctk
[i]−1+r1[i]

= gξiE′(ctk [i] + r1[i]). (13)

• ĉ−
tk

= 〈ĉ−
tk

[i]〉1≤i≤ω, where

ĉ−
tk

[i] = sktk [2] · sktk [1]−ctk
[i]−1+r2[i]

= gεiE′(−ctk [i] + r2[i]). (14)

The taxi tk sends L̂tk = (ĉ+tk , ĉ−
tk

, ztk) to the RSP, where ztk is the identity of
the zone of the taxi.
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– Ride matching: the RSP receives the ride request R̂u and the set of taxi
locations {L̂tk}tk∈T and filters the list of taxis based on the zone information
of the rider. Then, it computes the products ĉ+tk [i]ĉ−

u [i] and ĉ−
tk

[i]ĉ+u [i] for all
1 ≤ i ≤ ω. Note that the blinding values gξi or gεi or their inverses that are
present in the individual ciphertexts gets cancelled upon multiplication of the
ciphertexts, and hence the products are typical modified Paillier ciphertexts
that can be decrypted with the public key PK. Note that the resulting differ-
ence of plaintexts is still blinded by the random values r1 and r2. A detailed
procedure to recover the sign of the differences from these decrypted blinded
sums is given [YSJ+19] and we do not recall it here as it is not needed for
the present purpose.

4.2 Attack on LpRide

The basis of our attack on lpRide is again our attack on the modified Paillier
cryptosystem that we presented in Sect. 2. In particular, Corollary 1 shows that
any one with the knowledge of the public key PK of lpRide will be able to
compute the modified Paillier ciphertexts. First, we show that any registered
rider or a taxi will be able to compute the secret keys of all the other riders and
drivers.

Lemma 4. The secret keys of riders (resp. taxis) are identical. Moreover, know-
ing any one secret key will suffice to compute all the remaining secret keys of
riders and drivers.

Proof. The first part of the lemma follows directly from Lemma 1. For the second
part, suppose a rider u has its secret key

sku = (E′(−1), 〈g−εiE′(−1)〉1≤i≤ω, 〈g−ξiE′(−1)〉1≤i≤ω).

From Corollary 1, it can efficiently compute the (unique value of) E′(−1) and
E′(1). Hence, any rider (analogously, any taxi) can easily determine all the values
gεi , gξi . Once these values are obtained, it can compute the (identical) secret
keys of all the taxis. Similarly, any taxi can easily compute the secret keys of all
the riders and other taxis. ��
The above attack effectively makes the role of the trusted authority redundant
as any registered rider or taxi will be able to add others into the system without
the consent of the authority.

Lemma 5. Any rider or taxi will be able to infer the locations of all the riders.

Proof. From the proof of Lemma 4, any rider or taxi can easily determine all the
values gεi and gξi . Using these computed values, it can unmask the ciphertexts
(see (11) and (12)) that correspond to the locations of the riders, and eventually
decrypt them using the public key PK. Note that these location values are not
blinded by the random values r1 and r2 unlike the case of taxi location data. ��
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Remark 2. Note that the RSP will not be able to learn the blinding values gεi or
gξi or the exact locations of the riders since it assumed that it cannot collaborate
with any rider or driver. However, if the RSP is allowed to disguise itself as a
rider or a driver, then it will be able to learn all the secret keys and locations of
the rider.

5 Conclusion

We demonstrated an attack on the PP-CA-PSS from [NABB13a] where any
honest-but-curious entity (publisher/broker/subscriber) can learn the subscrip-
tions of any subscriber. We also exhibited a key recovery attack on the lpRide
RHS protocol of [YSJ+19] by any honest-but-curious rider or driver who can
efficiently recover the secret keys of all other riders and drivers, and also learn
the location of any rider. The basis of our attack is our cryptanalysis of the mod-
ified Paillier cryptosystem. This attack was possible since the reasoning about
the security of this primitive in [NABB13a] is flawed. The weaknesses in the
PP-CA-PSS and the lpRide protocols were direct consequences of the insecurity
of the modified Paillier primitive. We did not exploit any weakness, if at all there
are any, in other parts of the above protocols or their security analysis.

Since the notifications in the case of PP-CA-PSS protocol and the driver
locations in the case of lpRide are blinded by random values, we do not know
how to recover these values, if at all it is possible. It will be interesting to
explore this attack scenario. Also, it will be interesting to explore candidate
constructions that are equivalent to the functionality of the modified Paillier
cryptosystem but offer better security. This way it may possible to prevent our
attacks against these two protocols.

Acknowledgements. This work was funded by the INSPIRE Faculty Award (by
DST, Govt. of India) for the author.
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Abstract. Public key encryption schemes are increasingly being stud-
ied concretely, with an emphasis on tight bounds even in a multi-user
setting. Here, two types of formalization have emerged, one with a single
challenge bit and one with multiple challenge bits. Another modelling
choice is whether to allow key corruptions or not. How tightly the vari-
ous notions relate to each other has hitherto not been studied in detail.
We show that in the absence of corruptions, single-bit left-or-right indis-
tinguishability is the preferred notion, as it tightly implies the other
(corruption-less) notions. However, in the presence of corruptions, this
implication no longer holds; we suggest the use of a more general notion
that tightly implies both existing options. Furthermore, for completeness
we study how the relationship between left-or-right versus real-or-random
evolves in the multi-user PKE setting.

Keywords: Indistinguishability · Public key encryption · Multi-user
security · Adaptive corruptions

1 Introduction

Historically, a primitive like public key encryption (PKE) is often studied in
a setting where a single key-pair is generated for an adversary to attack, often
based on a single challenge ciphertext only [27]. Yet, in reality there will be many
users, each generating their own key pairs, to be used repeatedly. To study the
concrete security risk of having very many keys in play simultaneously, Bellare
et al. [5] introduced the multi-user setting. They considered an adversary with
access to n different public keys and the ability to challenge (in an indistin-
guishability fashion) each of them, and concluded that the security loss is at
worst linear in the total number challenge queries. Loosely speaking, such a
linear security loss implies that a scheme that is believed to offer, say, 128-bit
security in the single user setting, may only guarantee 80-bit security if there are
220 users each receiving 228 messages (based on the same hardness assumption).

Unfortunately, there have been ample examples of schemes where practical
attacks can indeed exploit the increased attack surface, demonstrating that these
theoretical security losses can be realized. Consequently, the generic tightness
losses to move from a single-user, single-challenge setting to a more realistic
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multi-user, multi-challenge setting are problematic as, conservatively, one would
have to increase key sizes to compensate. Alternatively, a growing number of
works have looked at schemes with tighter security guarantees, either if the
number of users goes up, the number of challenge encryptions per key goes up,
or both [2,5,12,16,21,22,28].

Moreover, in a system with many users, it is not inconceivable that some
private keys eventually become available to an adversary, which can be modelled
using key corruptions. An adversary learning a private key can obviously decrypt
all ciphertexts that were encrypted under the corresponding public key, thus
some care has to be taken to avoid trivial wins when allowing key corruptions.
The two simplest mechanisms are either using independent challenge bits for
each key or disallowing an adversary to both challenge and corrupt a single key.
As we detail in Appendix A, both these mechanisms have been used, also in
related contexts such as key encapsulation mechanisms (KEMs), authenticated
encryption (AE), and authenticated key exchange (AKE), raising the inevitable
question which notion should be the preferred one.

In the context of lower bounding tightness losses for multi-user AE, Jager et
al. [25] employed a novel multi-key, multi-challenge-bit notion that generalizes
both mechanisms; however, the main motivation of this generalized mechanism
was universality of their impossibility result, allowing them to side-step the ques-
tion which mechanism to focus on. Recently, in the context of AKE, Jager et
al. [24] argued in favour of the single-bit notion, primarily as it composes more
easily. For KEMs a similar argument holds, yet for PKE composition is arguably
less relevant. Instead, a more direct interpretation of what the various notions
entail might well be preferable.

Our Contribution. Both the single-bit and multi-bit approaches are implied by
the single user notion at the cost of a tightness loss linear in the number of users.
Consequently, the two multi-user notions are also within that linear factor in the
number of user. As our goal is to avoid such tightness losses, we are interested in
identifying the most suitable, general notion as possible, guaranteeing that there
are no “hidden” linear losses in the choice of notion—an issue already pointed
to by Jager et al. [24]

To this end, we adapt the multi-key, multi-bit notion of Jager et al. [25] to
the PKE setting, slightly generalizing it in the process. We show how it tightly
implies, and therefore unifies, the previous multi-user notions, and give novel
interpretations of each (see Sect. 3).

We then shift our focus to how tightly the different notions relate to each
other, with the goal of identifying the strongest, and therefore preferred, multi-
user notions. We find that the answer depends on whether or not corruptions are
present: in the absence of corruptions, we find that the single-challenge-bit notion
is as strong or stronger than any of the other (see Sect. 4.2). Given that this
notion is significantly simpler than the fully general game, this makes the single-
bit notion the preferred one in the absence of corruptions. With corruptions, this
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relation breaks down, and the general “free-bit” game indeed seems the stronger,
and therefore preferred, notion (see Sect. 4.3).

Finally, we fill some holes largely left as folklore until now regarding how
the well-known factor-2 reduction from real-or-random to left-or-right indistin-
guishability, as shown by Bellare et al. [7] for the single-user, single-challenge
setting, generalizes to the multi-user setting. We find that, as expected, the rela-
tion remains intact in the single-bit setting, regardless of whether corruptions are
present (see Sect. 4.4). In contrast, with multiple challenge bits the best-known
reductions turn lossy. Whether these losses are inevitable remains open; however,
it reinforces the by now established notion that left-or-right indistinguishability
is to be preferred over its real-or-random counterpart whenever possible.

The appendices contain much additional material: highlights include
Appendix A giving context to the present work by presenting a more com-
plete history of multi-user indistinguishability than that presented here, and
Appendix F, illustrating the difficulty of achieving tight composition in multi-bit
settings, as alluded to by Jager et al. [24], by giving an overview of how addi-
tional losses can appear in PKE schemes built using the widely used KEM/DEM
paradigm.

2 Preliminaries

2.1 Notation

For an integer n, we will write [n] for the set {1, . . . , n}. We will also use the
abbreviation X

∪←− x for the operation X ← X ∪ {x}. The event of an adversary
A outputting 0 is denoted 0 ← A. We use Pr[Code : Event | Condition ] to
denote the conditional probability of Event occurring when Code is executed,
conditioned on Condition. We omit Code when it is clear from the context and
Condition when it is not needed.

2.2 PKE Syntax

A public key encryption scheme PKE consists of three algorithms: the probabilis-
tic key generation algorithm Pk.Kg, which takes as input some system parameter
pm and outputs a public/private key pair (pk, sk) ∈ (PK,SK); the probabilistic
encryption algorithm Pk.Enc, which on input a public key pk ∈ PK and a mes-
sage m ∈ M, outputs a ciphertext c; and the deterministic decryption algorithm
Pk.Dec, which on input of a secret key sk ∈ SK and a ciphertext c, outputs
either the message m, or a special symbol ⊥ denoting failure.

We allow the message space M to depend on the parameters pm, but insist
it is independent of the public key pk. We furthermore assume that there exists
an equivalence relation ∼ on the message space that partitions M into finite
equivalence classes. For m ∈ M, we let �m� denote its equivalence class, so �m� =
{m̃ ∈ M : m ∼ m̃}. Often M consists of arbitrary length bitstrings, or at least
all bitstrings up to some large length (e.g. 264), and two messages are equivalent
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iff they have the same length, so �m� = {0, 1}|m|; for other cryptosystems, such
as ElGamal, messages are group elements that are essentially all equivalent, so
�m� = M. (Note that the case where �m� = {m} for all m is degenerate and
‘security’ is often trivially satisfied.)

The scheme must satisfy ε-correctness [20], namely that for any pm:

E(pk,sk) ←$Pk.Kg(pm)

[
max
m∈M

Pr[c ←$Pk.Encpk(m)) : Pk.Decsk(c) �= m]
]

≤ ε .

If ε = 0 we speak of perfect correctness; the case ε > 0 is especially useful to
model decryption errors typical to lattice-based schemes.

Remark 1. The system parameters pm are implicitly input to Pk.Enc and Pk.Dec
as well; for concreteness, they can for instance be the description of an elliptic
curve group with generator for an ECDLP-based system or the dimensions and
noise sampling algorithm for an LWE-based system. When one is interested in
re-phrasing our results in an asymptotic setting, the parameters pm will be gen-
erated by a probabilistic, polynomial-time algorithm that only takes the security
parameter as input.

2.3 Concrete Security

Indistinguishability. The standard notion of security for encryption systems
has become that of indistinguishability. Here the adversary is given access to
a challenge encryption oracle implementing one of two “worlds”; the adversary
needs to find out which. Several choices appear regarding the exact nature of
these worlds, leading to different notions of indistinguishability such as real-or-
random and left-or-right. Henceforth we refer to those two notions ROR and
LOR, respectively, and we will refer to them collectively as IND. We will flesh
out the details in Sect. 3.

Security definitions furthermore take into account the POWER given to the
adversary, for example that of chosen plaintext attacks (CPA), or chosen cipher-
text attacks (CCA). The distinguishing advantage of an adversary A against a
scheme relative to some notion will then be IND-POWERPKE(A), see Defini-
tion 1. As randomly guessing a world is correct half of the time, the distinguishing
advantage is of course suitably offset.

Definition 1. The distinguishing advantage of an adversary A against an
encryption scheme PKE is

IND-POWERPKE(A) := 2 · Pr
[
Expind-power

PKE (A) = 1
]

− 1 .

Implications and Separations. Our main focus will be comparing different
notions of security, especially showing that if security is met under one notion,
then it is also met under another one. We will prove these implication using fully
black box reductions [4,31] that are furthermore simple [29]. A fully black box
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reduction works for all schemes and adversaries, and only accesses them in a
black box manner. Moreover, if the reduction only runs its adversary once and
without rewinding, then the reduction is simple.

To allow for black-box access to the scheme, we will add an auxiliary oracle for
the PKE to operate on the message space and the key space. A simple fully-black
box (SFBB) reduction has access to this auxiliary oracle, as well as to the oracles
corresponding to the PKE’s algorithms, the oracles provided to the reduction by
the game it is playing, and finally its single straight copy of the adversary. We
will insist that the overhead of such a reduction, namely the number of oracle
calls it makes more than the adversary it is running, is not undue: it can be
upper bounded in terms of the parameters that define the security game(s) at
hand, such as the number of keys in the system.

Definition 2 (Tightness). Let IND1 and IND2 be two indistinguishability

notions for PKE schemes, let c be a positive real number, then IND1
�c
=⇒ IND2 iff

there exists a simple fully-black box reduction B1 such that for all PKE schemes
PKE and adversaries A2,

IND2(A2) ≤ c · IND1(B
A2,PKE
1 )

and the overhead of A2 is not undue.

Refer also to Jager et al. [25] for a discussion on how to express tightness for
more general reductions. They also formalize the folklore that simple reductions
compose neatly; in our case if IND1

�c
=⇒ IND2 and IND2

�d
=⇒ IND3 then also

IND1
�c·d
==⇒ IND3.

If c = 1, the reduction is called tight; if c > 1 we call the reduction lossy.
Note that our notion of tightness is stricter than in some other works where a
constant factor of say 2 will still be considered tight [18]; our convention has the
benefit of not depending on any (security) parameter. A natural question for
lossy reductions is whether the loss is inevitable or not—if it is, the bound is
called sharp. Questions of sharpness are not the focus of our work, although we
do remark upon it in more detail in Appendix B.

3 A General Definition of PKE Multi-user Security

3.1 A General Game

In order to compare various flavours of multi-user notions for PKE, we take
Jager et al.’s framework for multi-user AE notions [25] and port it to the PKE
setting, using some slightly different game-mechanics in the process. A multi-
user security game is parametrized by the number of keys κ and the number of
bits β. Usually one can imagine β ≤ κ and in fact Jager et al. only considered
β = κ. However, keeping κ and β distinct helps when expressing and interpreting
security losses.
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Fig. 1. The generalised multi-user distinguishing experiment Exp
ind-cca,/κ,β
PKE (A); the

adversary has access to either the left-or-right ELOR or the real-or-random EROR chal-
lenge oracle.

Given a public key encryption scheme PKE, let Exp
ind-cca,/κ,β
PKE (A) be the

experiment given in Fig. 1, where A is the adversary. The corresponding distin-
guishing advantage (see Definition 1) is denoted by IND-CCA/κ,β

PKE(A). The κ
is slashed to denote the presence of a key corruption oracle; the corresponding
notion without corruptions is IND-CCAκ,β

PKE. Without the decryption oracle the
notion becomes a chosen-plaintext attack (CPA) instead. Often our results are
oblivious of whether the power is CPA or CCA; we will then use CXA to refer
to them collectively.

In the game, an adversary is given κ public keys, and a choice of β bits to try
and attack through one of the two challenge oracles depending on the flavour of
indistinguishability: for left-or-right indistinguishability, it gains access to ELOR,
whereas for real-or-random, it instead gains access to EROR. Both oracles have
the usual interface, augmented by a key handle i and a bit handle j. For instance,
for ELOR an adversary picks handles i and j as well as two equivalent messages
m0 and m1 to receive the encryption of mbj under public key pki. For EROR only
a single message m is provided in addition to the two handles and, depending on
the value of bj , A receives the encryption of either the message or of a uniformly
chosen equivalent message.

The adversary has possible access to two additional powers: a decryption
oracle D and a corruption oracle K. The former takes as input a ciphertext c
together with a key handle i, and returns the decryption of c under private key
ski. The latter takes as input a key handle i and directly returns said ski.

The adversary has in principle unlimited adaptive access to the available
oracles, necessitating some admin in the game to deal with trivial wins. Firstly,
if m0 �∼ m1 for ELOR, or if a challenge ciphertext is submitted to the decryption
oracle under its handle of creation, then the adversary receives the special symbol
E instead. Secondly, once the adversary outputs a bit handle j and a guess b̂j ,
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the game checks through IE
j ∩ IK = ∅ whether the challenge bit has become

compromised by virtue of being challenged together with a corrupted key. If
so, the game outputs the uniformly random bit δ, yielding the adversary no
advantage; otherwise, the game outputs whether b̂j = bj .

Unlike Jager et al., we do not consider valid or invalid adversaries, but rather
deal with bad behaviour in-game. Specifically, we want the adversary to be able
to challenge on a key both before and after it becomes corrupted, but trying to
win by attacking any of the corrupted challenge bits must of course be disallowed,
regardless of the order of the queries. Thus, for problematic combinations of chal-
lenge/corrupt/target we necessarily had to wait until the adversary announced
its target j before, if need be, penalizing. For bad decryption queries, penalizing
at the end is discouraged [8], moreover it is easy to check on-the-fly.

Finally, we use qE
i to refer to the number of challenge queries on public key

pki; qE
Σ for the total number of challenge oracle calls; and qE

max for the maximum
number of challenge queries per key. Similarly, qD

i is the number of decryption
calls on private key ski and qK the number of corruption calls.

3.2 Notational Conventions

Jager et al. [25] introduced their unified game in order to show that, for authen-
ticated encryption, tightness losses are inevitable in a multi-key with corruption
setting, irrespective of certain definitional choices. Thus they can avoid having
to choose one notion over the other. We are interested in finding out, for public
key encryption, whether some notion is preferred over the other. To that end, we
will introduce some notation to more easily identify known notions and express
relationships between them.

One can visualize the IND-CXA/κ,β experiment using a binary matrix of
dimension κ × β, where an entry be set wherever a key and a bit may be called
together. For the general game, the matrix has every entry filled (see the leftmost
matrix of Fig. 2). We will refer to this as the free-bit notion. By restricting the
matrix, we can easily express existing notions.

Bellare et al.’s original single-challenge-bit notion [5] corresponds to a κ×β-
matrix (for arbitrary β) with only a single set row to force all challenge queries
to the same bit handle (see the middle matrix of Fig. 2). If β = 1, the notion
matches the free-bit notion, so we may write IND-CXAκ,1, or IND-CXA/κ,1 if
corruptions are present, for the single-bit notion.

On the other hand, for the one-challenge-bit-per-key notion we have that
β = κ and the restriction i = j for all challenge queries. These restrictions
correspond to a square matrix in which only the diagonal is set (see the rightmost
matrix of Fig. 2), inspiring us to refer to this notion as diagonal-bit, or just
diagonal, and denote it by IND-CXAκ,�, or IND-CXA/κ,� with corruptions.

The single-bit and diagonal-bit notions we will collectively refer to as the
simple notions. Our notation and terminology differs from prior art, which is
to some extent inevitable. The distinction between the various notions has only
recently received explicit attention [24,25] and no clear terminology has yet been
set. For instance, we drop the prefix MU (for multi-user, to contrast with the
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Fig. 2. Matrices of allowed key/bit combinations in challenge oracle calls for the free-
bit, single-bit, and diagonal-bit multi-user notion, respectively; circles mark allowed
queries, while crosses mark disallowed ones. The visualization highlights that the free-
bit notion is a strict generalization of the two other, simple notions.

older single user notions) as on the one hand we believe that these days multi-
user security should be the default from which single user notions can be derived
if needed, and on the other hand we wish to maintain a clean GOAL–POWER
nomenclature: having multiple users to target primarily modifies an adversary’s
power, not its goal.

3.3 Interpretation

Both simple notions with corruptions have appeared in the literature, both in a
PKE setting but also in related KEM, AKE, and to a lesser extent AE settings.
One key question is which notion to opt for when. Establishing relationships
between the notions, as in the next section, helps answer this question. Here, we
want to address the meaning and usefulness of the notions as they are.

In the context of AKE, Jager et al. [24] discuss the difference between the
single-bit notion (“single-bit guess”) and the diagonal notion (“multi-bit guess”).
Earlier works on tight security for AKE focused on the diagonal setting [2], yet as
Cohn-Gorden et al. [13, Section 3] point out, that notion does not lend itself very
well for tight composition: when the keys produced by an AKE are subsequently
used, in a proof it is convenient to swap out all keys from real to random in
one fell swoop. The single-bit notion allows such a massive substitution, but the
diagonal notion does not. Moreover, Jager et al. wonder whether the diagonal
notion is meaningful, which would “provide a good intuition of what [it] tries to
model”.

Whereas AKE and KEMs are primarily tools to set up symmetric keys for
subsequent use, the situation for PKE is different as it is much closer to the end
user. The difference is reflected in the kind of indistinguishability as well: for
AKE and KEMs, a ROR-style notion is used where the adversary cannot even
control the real world’s “message”, yet for PKE’s LOR-notion, an adversary
has full control over the left-versus-right challenge messages. Thus, for PKE the
diagonal-LOR notion does seem meaningful, as we explain below.

Suppose we interpret each key to correspond to a user and each challenge
bit to correspond to a conversation. Then the different notions model different
scenarios. For instance, the diagonal notion models a scenario where the users
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take part in independent conversations, and an adversary can decide which hon-
est conversation to target after corrupting a number of other ones. In contrast,
the single-bit notion models a scenario where all users are engaged in the same
conversation. The latter scenario allows an adversary to accumulate information
on the conversation across users, although none of the active parties may be
corrupted.

Finally, the free-bit notion models a situation where there are a number
of independent conversations, each with their own potentially overlapping set
of users. The adversary can adaptively corrupt a number of users, and finally
targets a conversation conducted by honest users only.

Of course, there are already existing notions that study PKE security in the
presence of corruptions, under the term “selective opening attacks” (SOA, [9,
15]). There are various formalizations of SOA, the most relevant ones to our work
are receiver SOA [19] where an adversary can corrupt private keys (as opposed
to sender SOA, where an adversary learns how a ciphertext was created). Most
of these SOA notions are considerably stronger than the notions we consider:
our strongest notion is still implied by the customary single-user single-challenge
LOR–CCA (just rather lossy), yet for SOA strong separations, and in some cases
impossibility results, are known [23]. The link between multi-user security with
corruptions on the one hand and SOA on the other has largely been ignored and
appears worth expanding further.

We remark that the multi-bit notion also occurs naturally when studying
multi-instance security [10], which has been studied in the context of PKE [1].
We leave the adaptation of our work, and specifically the general free-bit game
to that setting as an enticing open problem.

4 Relations Between Indistinguishability Notions

In this section we investigate how tightly the various multi-user notions relate
to each other, and how each relates to single-user notions. Some implications are
known or folklore and others follow quite naturally from the literature, but not
all. As expected, most of the notions are equivalent within a factor linear in the
number of users. Yet, some notions turn out to be more, or less, tightly related.

There is for instance the surprising and completely tight reduction from
LOR-CXAκ,1

PKE to LOR-CXAκ,�
PKE (Theorem 1). However, the proof technique

breaks down for real-or-random indistinguishability and in notions with corrup-
tions. Furthermore, for the latter, there doesn’t seem to be a way of relating the
notions more tightly than by a linear loss. We conjecture this linear loss to be
sharp, yet proving so we leave open.

Shorthand for Unified Implications. Given the large number of notions resulting
from the various orthogonal definitional choices, we use shorthand, as presented
in Table 1, to state various theorems. The shorthand serves as an implicit quanti-
fier, so a theorem statement in shorthand essentially holds for all notions included
in the shorthand. To avoid clutter, we will sometimes abbreviate IND-CXAu,c to
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Table 1. A modular framework for multi-user security notions.

Shorthand Stand-in for Relates to

IND {LOR, ROR} Type of challenge oracle

CXA {CPA, CCA} Presence of decryption oracle

u {κ, /κ} Number of keys; presence of corruption oracle

c {1, �, β} Number of challenge bits; relation with keys

just INDu,c, and let it be implied that the result holds for both CPA and CCA.
We will refer to single-user, multi-challenge notions by dropping the superscripts,
e.g. IND.

As a concrete example, consider the trivial statement

INDu,c =⇒ IND .

This is then to be read as, “Both in the cpa and the cca setting, and regardless
of the nature of the challenge oracle, the presence or absense of corruptions, or
the number and structure of the challenge bits, security under a multi-user notion
implies security under the corresponding single-user notion.” Written out in full,
the statement becomes:

Lemma 1. For all IND ∈ {LOR,ROR}, CXA ∈ {CPA,CCA}, u ∈ {κ, /κ}, and
c ∈ {1,�, β}, there is a reduction B such that, for every adversary A,

IND-CXAPKE(A) ≤ IND-CXAu,c
PKE(B) ,

where B calls A once, with no undue overhead.

Tight Implications From Strict Generalizations. Security under a multi-user
notion tightly implies single-user security under the corresponding notion, and
adding helper oracles (like decryption for CCA, or a corruption oracle) yields
strictly more general notions; as does increasing the parameters (number of
users/number of challenge bits), and for all notions, left-or-right security implies
real-or-random security, as can be seen from Fig. 1. For completeness, we sum-
marize these trivial implications in the full version.

4.1 Simple Multi-user Notions Versus Classical Single-Key Notions

Bellare et al. [5] used a hybrid argument to show that single-user single-challenge
security implies LORκ,1 with a security loss linear in the total number of chal-
lenge encryption queries. They phrased this total as the product of the number
of users and the number of challenges per user. As all our notions are explicitly
multi-challenge, we will ignore the number of challenge queries, meaning the loss
simply becomes linear in the number of users (in line with the original claim).
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Fig. 3. Known relations between single-user (but multi-challenge) indistinguishability
and the two different generalizations to multi-user indistinguishability, with and with-
out corruptions; refer to Table 1 for an overview of the shorthand. Recall that IND
without any superscripts means single-user notions. (Double arrows: trivially tight.)

Bellare et al. did not consider the diagonal notion or corruption, however
later, when Jager et al. [25] introduced the free-bit notion to the setting of AE,
they also showed that the simple notions are implied by the single-user notion,
again with a linear loss, even when corruptions are considered. For completeness,
we reprove the relevant linear losses in our new PKE context in Appendix C.
The resulting relations are summarized in Fig. 3.

As explained in Sect. 3.1, Jager et al. used slightly different game mechanics
by prohibiting certain adversarial behaviour. In contrast, we allow such bad
behaviour and just ignore the adversary’s output instead. We introduce a useful
lemma (Lemma 3) that formalizes that, in the single-key setting, our mechanism
is sound and corrupting that single-key yields no adversarial advantage. This
single-key-with-corruptions game is often easier to use in reductions.

Existing sharpness results can be used to show that linear losses are
inevitable, see Appendix B.2 for details.

4.2 Relationship Between Simple Multi-user Notions

Now that we have affirmed that the single-user notion implies any of the four
simple multi-user notions with a loss linear in the number of users, a natural
question is how the simple multi-user notions relate to each other. As the multi-
user notions all tightly imply the single-user notion, one can always just go via
the single-user notion. As already noted by Jager et al. [25], this strategy will
again lead to a loss linear in the number of users. Lemma 2 formalizes this trivial
loss and Fig. 4 provides an overview of the relations. One notable exception from
the linear losses is the implication from the single-bit notion to the diagonal
notion if there are no corruptions, which is tight for the case of left-or-right
indistinguishability and almost tight for real-or-random indistinguishability. We
will explain why this is in the next paragraph.
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Fig. 4. Relations between the simple multi-user notions, including the non-trivially
tight relation between LORκ,β and LORκ,� as captured by Corollaries 1 and 2 for
LOR and ROR, respectively. (Double arrows: trivially tight.)

Lemma 2 (INDu,c �κ
=⇒ INDu,c′

). Let c′ ∈ {1,�}. Then, there is an SFBB
reduction B such that, for every adversary A,

IND-CXAu′,c′
PKE(A) ≤ κ · IND-CXAu,c

PKE(B) .

Proof (sketch). Trivially, INDκ,c =⇒ IND. Meanwhile, Theorems 3 and 4

together say that IND
�κ
=⇒ IND/κ,c. Combining (in the manner discussed in

Sect. 2) gives INDκ,c =⇒ IND
�κ
=⇒ IND/κ,c′

.

A Tight Relation: From Single-Bit to Multi-bit Without Corruptions.
Surprisingly, left-or-right indistinguishability allows for a ‘bit-hiding’ argument
that lets an adversary playing a single-bit multi-user game simulate the full
free-bit game (and therefore also the diagonal-bit game), by simply exchanging
the order in which it forwards its two messages. We formalize this argument
in Theorem 1 and its proof. Consequently, LORκ,1 tightly implies of LORκ,�

(Corollary 1), whereas the implication in the other direction appears lossy, this
clearly renders LORκ,1 the preferred notion.

Theorem 1 (LORκ,1 =⇒ LORκ,β). There is an SFBB reduction B such that,
for every adversary A,

LOR-CXAκ,β
PKE(A) ≤ LOR-CXAκ,1

PKE(B) ,

where B’s overhead is limited to drawing β uniformly random bits.

Proof. The reduction B, playing Explor-cxa,κ,1
PKE , simulates Explor-cxa,κ,β

PKE for A by
drawing β fresh challenge bits, and simply exchanging the order of m0 and m1
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Fig. 5. The adversary B, playing Explor-cxa,κ,1
PKE while simulating Explor-cxa,κ,β

PKE for A.

in accordance to the value of the simulated challenge bit when forwarding to its
own left-or-right oracle (see Fig. 5). Denoting the challenge bit of Explor-cxa,κ,1

PKE (B)
by b, the ciphertext that A receives upon the query E(i, j,m0,m1) will be an
encryption of the message mb⊕bj under pki; B then simply makes sure to undo
this xor again before returning its final guess. �

Corollary 1 (LORκ,1 =⇒ LORκ,�). There is an SFBB reduction B such
that, for every adversary A,

LOR-CXAκ,�
PKE(A) ≤ LOR-CXAκ,1

PKE(B) .

In the presence of a corruption oracle, the reduction breaks down as it is no
longer able to simulate properly: it cannot both challenge on and corrupt the
same key (a behaviour that is allowed in the diagonal and free-bit games). We
will return to the free-bit game in the presence of corruptions below, but first
we turn our attention to that other indistinguishability notion, real-or-random.

Extending the Argument to Real-or-Random. The proof of Theorem 1 makes use
of the fact that the LOR challenge oracle allows both a left and a right message
to be input, enabling us to hide the bit in the ordering of the two messages. For
ROR, the challenge oracle only accepts a single message, so hiding the bit as
above is no longer possible.

However, when Bellare et al. [6] introduced the distinction between LOR
versus ROR indistinguishability in the context of single-user probabilistic sym-
metric encryption, they also showed a factor-2 loss from ROR to LOR. As we
will show in Theorem 5 (to be presented shortly), their proof technique is readily
adapted to a relation between single-bit multi-user PKE notions. Theorems 1
and 5 can then be combined into the corollary below (which itself implies the
equivalent of Corollary 1 for ROR, again with a factor 2 loss).

Corollary 2 (RORκ,1 �2
=⇒ RORκ,β). There is an SFBB reduction B such that,

for every adversary A,

ROR-CXAκ,β
PKE(A) ≤ 2 · ROR-CXAκ,1

PKE(B) .
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Proof (Sketch). Theorem 5 states that RORκ,1 �2
=⇒ LORκ,1, while trivially

LORκ,β =⇒ RORκ,β . Then, using Theorem 1, we get RORκ,1 �2
=⇒ LORκ,1 =⇒

LORκ,β =⇒ RORκ,β .

4.3 The Free-Bit Game with Corruptions

In the free-bit game, the adversary can both challenge on and corrupt keys,
provided the final targeted bit remains uncorrupted. In the single-bit game,
however, challenging on and corrupting a key are mutually exclusive, causing
the bit-hiding argument, that tightly related LORκ,1 to LORκ,β , to break down
in the presence of corruptions. Seemingly, the best we can do is a standard bit-
guessing argument, suffering a β loss, as formalized in Theorem 2 below (see
Appendix E for a full proof).

Theorem 2 (IND/κ,1 �β
==⇒ IND/κ,β). There is an SFBB reduction B such that,

for any adversary A,

IND-CXA/κ,β
PKE(A) ≤ β · IND-CXA/κ,1

PKE(B) ,

where B’s overhead consists of drawing β uniformly random bits.

Combining with IND
�κ
=⇒ IND/κ,1 (Theorem 3) yields an upper bound on the

free-bit advantage as it relates to single-user advantage, see Corollary 3. Notably,
when Jager et al. [25] introduced the free-bit notion (for AE), they observed that
proving a linear loss was beyond them, yet they did not provide an alternative,
looser bound instead. We therefore plug this gap in the literature. Figure 6 pro-
vides an overview of how the single-user and simple multi-user notions relate to
the free-bit notions.

Corollary 3 (IND
�κβ
==⇒ IND/κ,β). There is a reduction B such that, for any

adversary A,

IND-CXA/κ,β
PKE(A) ≤ κ · β · IND-CXAPKE(B) .

B calls A once, and additionally uses the resources needed to draw κ fresh key-
pairs and β uniformly random bits.

Interestingly, Corollary 3 tightly implies Theorem 3, but not Theorem 4:
setting κ = β in Corollary 3 yields a κ2 loss. This gives some hope that a tighter
relation than that of Corollary 3 might still be possible, one that would imply
both Theorems 3 and 4. We leave this an open problem, although present some
initial thoughts in Appendix B.
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Fig. 6. Relations between different multi-user notions, without corruptions (left), and
with corruptions (right).

4.4 LOR Versus ROR, or When the Challenge Oracle Matters

Until now, we have for the most part treated the two flavours of indistinguishabil-
ity as one. However, as we saw for Theorem 1, the choice of challenge oracle can
sometimes make a difference. Of course, left-or-right indistinguishability always
implies real-or-random indistinguishability. Furthermore, for single-user notions,
it has been long been known that ROR implies LOR with only a factor 2 tight-
ness loss [5]. However, for multi-instance security [10], the loss is known to blow
up exponentially. Thus, it is a priori unclear what losses one should expect for
the multi-user setting, both between corresponding LOR and ROR notions, but
also between the ROR notions themselves.

Jager et al. [26, Theorem 21] showed a general result that a loss L in the
single user setting can be turned into a loss Lκ for the simple notions (for AE);
the free-bit case is not addressed. We complement their results for the PKE
setting, as summarized in Fig. 7 and formalized in Appendix D.

Some relations are worth highlighting. First, note that the same factor 2
reduction still lends itself to the single-bit multi-key setting (with or without
corruptions). The argument is very similar to that of the single-user case: either
the bit is “real”, in which case the simulated game is equivalent to the left-
or-right one, or the bit is “random”, in which case the simulated challenge bit
is information-theoretically hidden from the adversary; the main complication
in going to a multi-key setting with corruptions being dealing with disallowed
guesses. See Theorem 5. This contrasts to the diagonal-bit setting, in which
the tightest known reduction loses a factor 2κ, as achieved via the single-user
relation: RORu,� =⇒ ROR

�2
=⇒ LOR

�κ
=⇒ LORu,�.

Second, note that the fact that LORκ,1 =⇒ LORκ,β (Theorem 1) allows us
to conclude that the factor 2 reduction still holds for the free-bit notion absent
corruptions: RORκ,β =⇒ RORκ,1 �2

=⇒ LORκ,1 =⇒ LORκ,β . Compare with the
situation in the presence of corruptions, where the corresponding implications
yield ROR/κ,β �2β

==⇒ LOR/κ,β .



90 H. Heum and M. Stam

Fig. 7. Relations between lor and ror for the different multi-user notions, without
corruptions (left) and with corruptions (right). The placement of notions roughly
translate to their relative strength, with stronger notions placed higher, (see Fig. 6 for
the implications missing from the figure.) As before, double arrows indicate trivially
tight.

As before, we leave the question of whether there exist tighter reductions,
or these losses really are inevitable, as open questions. Nevertheless, these addi-
tional losses serve to reinforce the folklore that left-or-right notions should be
preferred over real-or-random whenever possible.

5 Conclusion

In this article, we surveyed several possible notions of multi-user security, show-
ing how they relate to each other, and identifying a unified and general free-bit
notion. We also conclusively answered the question of which canonical multi-user
notion is the preferred one in the absence of corruptions, namely the single-bit
left-or-right notion, as it is as strong or stronger than any of the others. In the
presence of corruptions, the situation is less clear, particularly as it is not cur-
rently known whether the ability to both challenge and corrupt a key yields the
adversary any additional power. What is known, however, is that the ability
to challenge the same bit on several keys does give the adversary extra power.
Until these questions have been definitively settled, we therefore suggest aiming
for security under a free-bit notion whenever multi-user security with adaptive
corruptions is to be considered.

A A Brief History of Indistinguishability

The traditional ‘IND-CPA’ security notion for public key encryption (PKE) is
an indistinguishability notion (IND) under adaptively chosen plaintext attacks
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(CPA). Here an adversary receives a challenge ciphertext either for a plaintext
of its choosing or an alternative challenge ciphertext, and needs to decide which
one was received. The alternate challenge ciphertext can be generated in differ-
ent ways, leading to subtly different notions [6]. The two common choices are:
left-or-right (LOR), in which the adversary supplies two messages and receives
the encryption of one of them; and real-or-random (ROR), in which the adver-
sary supplies a message and either receives its encryption or the encryption of
a random bit string. When Bellare et al. [7] considered various PKE security
notions they showed that LOR-security tightly implies ROR-security, whereas
the other direction incurs a modest security loss of a factor 2.

Stronger, more realistic notions are indistinguishability under adaptively cho-
sen ciphertext attacks (CCA), or IND-CCA (historically also called IND-CCA2
to distinguish it from its non-adaptive counterpart IND-CCA1 [7]). Here, in
addition to choosing the plaintexts to be challenged on, the adversary is given
access to a decryption oracle, which it can query on any valid ciphertext receiv-
ing the corresponding plaintext, or the ciphertext-reject symbol ⊥. To avoid
trivial wins, some care needs to be taken when the challenge ciphertext is sub-
mitted to the encryption oracle; there are several mechanisms to deal with
this subtlety [8]. Ignoring the decryption oracle gives back IND-CPA, making
IND-CCA the stronger notion. Moreover, several real-world attacks not covered
by IND-CPA (such as Bleichenbacher’s attack [11]) are captured by IND-CCA,
making the latter the preferred notion to aim for.

We are concerned with the multi-user setting, leading to further definitional
choices. Although it might appear that these choices are largely irrelevant in
an asymptotic context, as they are all polynomially equivalent, a concrete secu-
rity treatment can surface non-trivial differences. These differences are often
amplified with the introduction of multiple users, particularly when considering
adaptive corruptions (see below).

First of all, while the notions above initially only allowed for a single chal-
lenge query, when Bellare et al. [5] investigated multi-user security, they simul-
taneously generalized the single-user notions by giving each user multiple chal-
lenges. Moreover, they showed that security under single-challenge implies secu-
rity under multi-challenge with an (inevitable) loss linear in the number of chal-
lenges (cf. [6]).

In the present work, we consider all notions, including the single-user notions,
to be multi-challenge. To adapt our results to a single-challenge setting, simply
note that our single-user notions imply the corresponding single-challenge notion
with a tightness loss qE , and insert the factor as needed. For instance, writ-
ing SC-IND for single-challenge indistinguishability, the analogue to Corollary 3

becomes SC-IND
�qEκβ
====⇒ IND/κ,β .

Another choice is how to ‘multiplex’ the challenge oracles: should each user
be independent of the others, or should they depend on each other? When multi-
user security was introduced [5], the game only had a single challenge bit shared
across all users for an adversary to guess. This choice intuitively leads to a
stronger notion than if each user was given its own challenge bit as, with a
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single shared bit, an adversary can ‘gather evidence’ for the true value of this
challenge bit across the users (we provide evidence to this intuition in Corol-
lary 1). Yet, the notion feels awkward when introducing corruptions, given that
both corrupting and challenging on the same key would immediately yield a
trivial win. One option is to disallow corrupting ‘challenge’ keys, and vice versa,
leading to the single-bit notion INDκ,1 [3,24,28]. Another option is to introduce
user-specific bits. This was the approach employed by Bader et al. [2] in their
study of authenticated key exchange: they considered a multi-user KEM notion
with corruptions where each user was associated with its own challenge bit and
the adversary had to declare at the end which uncorrupted bit it was guessing.
Thus, even if a user was both challenged on and corrupted, a non-trivial win
would still be possible. In the present work, we refer to this notion as diagonal-
bit (IND/κ,�), as explained in Sect. 3.

Recently, Jager et al. [24] pointed out that this notion is problematic in
the AKE setting, as unlike in the single-bit setting, a KEM secure under the
diagonal-bit notion is not known to tightly compose to an AKE. They went on
to construct a KEM tightly secure under the single-bit notion instead, which
was therefore guaranteed to compose tightly.

Apart from the multi-user setting, the diagonal notion has seen use in the
multi-instance setting [1,10], in which the adversary is asked to make a guess on
every bit; in such settings, single-bit notions make little sense.

When Jager et al. [25] investigated the inevitability of multi-user tightness
losses in the setting of authenticated encryption, they wanted their result to
capture both of the the single-bit and the diagonal-bit notions, without having
to provide separate proofs for the distinct cases. They therefore introduced a
generalized notion, in which an adversary was free to choose the exact relations
between the keys and challenge bits. This notion, which avoids the awkwardness
of not being able to both challenge and corrupt the same key without sacrificing
the ability to “gather evidence” on a bit over several keys, sits at the centre of
much of the present work, and we refer to it as the free-bit notion (IND/κ,β).

B Sharpness or When Tightness Losses are Inevitable

B.1 Sharpness and Inevitably Lossy Reductions

A natural question for lossy reductions is whether the loss is inevitable or not.
To determine inevitability, we only need to ‘invert’ Definition 2, as below in
Definition 3.

Definition 3 (Lossy). Let IND1 and IND2 be two indistinguishability notions

for PKE schemes, and let c be a positive real number, then IND1
�c
=⇒ IND2 iff

for all simple fully-black box reductions B1 there exist PKE schemes PKE and
adversary A2,

IND2(A2) ≥ c · IND1(B
A2,PKE
1 ) .
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If both IND1
�c
=⇒ IND2 and IND1

�c
=⇒ IND2, then the reduction (for the first

term) is sharp and we may write IND1
=c=⇒ IND2.

B.2 Sharpness of Single-to-Simple Reductions

Below we discuss some relevant methods and results regarding the inevitability
of lossy reductions in the context of multi-user PKE, showing that linear losses
(in the number of users) is often sharp. Such results are often called impossibility
results, yet to contrast with impossibility results that show that no constructions
can achieve a notion (irrespective of the lossiness of the reduction), we prefer
the term sharpness result when the impossibility is restricted to tightness only.
The two main techniques are counterexamples and meta-reductions.

Counterexamples. As already pointed out by Bellare et al. [5], a simple coun-
terexample shows that the bounds are generally sharp. They modified a PKE
scheme that was identical to a ‘secure’ one except that with a small probability
its encryption would be trivial and essentially just output the plaintext as the
ciphertext (with some additional modifications to ensure correctness and that
this event is easily recognizable publicly). Thus, when the challenge encryption
oracle hits the trivial encryption, an adversary can trivially win its game; more-
over the probability of this event happening at some point during the game is
roughly linear with the number of challenge encryption queries.

However, given that we consider all our notions to be multi-challenge, we pre-
fer a counterexample whose security degrades linearly in the number of available
keys, not challenges. One might therefore instead consider a scheme for which a
small-but-nonempty subset of the public keyspace returns messages in the clear.
This “weak key” counterexample already works without corruptions for both
of the simple multi-user notions, which implies sharpness for the more general
notions.

Note that a similar critique of Bellare et al.’s original counterexample and
(more refined) link with weak keys was made by Luykx et al. [30].

Meta-reductions. Another line of work has aimed to show sharpness through
meta-reduction, thus ruling out tight reductions for a larger class of PKE
schemes. The gain in generality is however traded for restrictions on the type of
reductions that are ruled out, typically referred to as “simple” reductions (e.g.,
blackbox, no rewinding, etc.).

Bader et al. [3] showed that, for a large class of PKE systems, any sim-
ple reduction from a multi-user notion with corruptions to an underlying non-
interactive hardness assumption must be lossy, with the loss linear in the num-
ber of keys. Meanwhile, Jager et al. [25] showed a similar result in the setting
of authenticated encryption when reducing to single-user notions. In both cases,
though, the proof technique crucially relied on the ability to corrupt keys, mean-
ing that sharpness for the corruptionless notions aren’t covered by their results.
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Meta-reductions also don’t rule out tight reductions for schemes outside the
class considered; in fact, part of the usefulness of these results is the ability
to look for tightly secure constructions outside these classes. This is exactly
what Bader et al. [2] did when they constructed a tightly secure authenticated
key exchange by deliberately breaking the requirement of public–private key
uniqueness.

B.3 Tightening the Single-to-Free Implication?

Corollary 3, IND
�κβ
==⇒ IND/κ,β , tightly implies Theorem 3, but not Theorem 4:

setting κ = β in Corollary 3 yields a κ2 loss. This gives some hope that we might
be able to show a tighter relation than that of Corollary 3, as in order to imply
both Theorem 3 and 4, the statement would have to look something like the
following.

Conjecture 1 (IND
�IE

maxβ
=====⇒ IND/κ,β). Let IE

max be the maximum number of keys
called together with any one challenge bit, (i.e., for any run of the game, we now
require that ∀j, |Ij | ≤ IE

max; see Fig. 1). Then, there is a reduction B such that,
for every adversary A,

IND-CXA/κ,β
PKE(A) ≤ IE

max · β · IND-CXAPKE(B) ,

where B calls A once, and the overhead of B is small.

Then, for IND/κ,1, we would set IE
max = κ and β = 1, while for IND/κ,�,

IE
max = 1 and β = κ. Thus, both theorems are recovered.

To prove the statement, a natural strategy would be to combine the proof
techniques of each of the theorems it is generalising, i.e. by first guessing a
challenge bit, and then doing a hybrid argument over the keys relating to that
bit. However, given that the free-bit game allows the adversary to choose the
relations between keys and bits adaptively, this hybrid argument does not work
without incurring losses larger than that of Corollary 3. We nevertheless present
Conjecture 1 as an interesting open problem.

C Formalization of Single to Simple Implications

A Single-User Notion with Corruptions. First, let us establish the trivial yet
useful Lemma 3. Let Explor-cxa,/1,1

PKE (A) be exactly as the single-key game, except
that the player now has the option to corrupt the key. In other words, the
game will be equivalent to that of Fig. 1, with κ = β = 1 (and with or without
decryption oracle). Given that in this game, an adversary that both challenges
and corrupts will trigger the game to output the uniformly random value δ, the
presence of a corruption oracle should yield it no extra power. We formalize this
intuition next.
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Lemma 3 (IND =⇒ IND/1,1). There is an SFBB reduction B with no addi-
tional overhead such that, for every adversary A,

IND-CXA/1,1
PKE(A) ≤ IND-CXAPKE(B) .

Proof. The following argument works the same whether IND = LOR or ROR,
and whether CXA = CCA or CPA. The reduction B, playing the regular single-
key game, simulates the game with corruptions to A by forwarding every oracle
call and mimicking A’s output, unless at some point A asks to corrupt: in that
case B aborts A and simply returns 0. This works because if A corrupts, either
A also challenges, in which case the advantage will be forced to 0, or it corrupts
the key and outputs a guess without challenging, in which case the challenge bit
will be information-theoretically hidden from it, so that its advantage is 0 by
necessity. Thus, in the event that A corrupts at all, its win advantage will be
exactly 0; the same that B gets from simply aborting A and outputting 0. We
provide a formal derivation below.

Pr
[
Expind-cxaPKE (B) = 1

]
= Pr[A did not corrupt ∧ A wins]

+ Pr[A did corrupt ∧ b = 0]
= Pr[A did not corrupt ∧ A wins]

+ Pr[A did corrupt] · Pr[b = 0 |A did corrupt ]
= Pr[A did not corrupt ∧ A wins]

+ Pr[A did corrupt] · 1/2
= Pr[A did not corrupt ∧ A wins]

+ Pr[A did corrupt] · Pr[A wins |A did corrupt ]
= Pr[A did not corrupt ∧ A wins]

+ Pr[A did corrupt ∧ A wins]
= Pr[A wins] ,

⇒ IND-CXAPKE(B) ≥ IND-CXA/1,1
PKE(A) .

�

Single-Bit Security with Corruptions. We can then show a reduction from
IND-CXA/κ,1

PKE to IND-CXA/1,1
PKE, using exactly same hybrid argument that was

used by Bellare et al. [5] in the absence of corruptions, and let Lemma 3 imply
the result.

Theorem 3 (IND
�κ
=⇒ IND/κ,1). There is a SFBB reduction B such that, for

every adversary A,

IND-CXA/κ,1
PKE(A) ≤ κ · IND-CXAPKE(B) ,

where B’s overhead consists of κ − 1 fresh keypair generations.
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Proof (sketch). Through a standard hybrid argument completely analogous to
that used to prove the corruptionless version, we can show that there is an
adversary B such that for every adversary A,

IND-CXA/κ,1
PKE(A) ≤ κ · IND-CXA/1,1

PKE(B) .

Then, Lemma 3 implies the result.

See the full version for the complete proof.

Diagonal-Bit Security with Corruptions. For the diagonal notion, showing
the relation to the single-user notion is done using a different—and arguably
simpler—proof technique: the reduction B simply guesses which user A is going
to attack, forwarding the oracles called to that user to its own oracles and sim-
ulating the rest; it will guess correctly with probability 1/κ, leading to the κ
security loss.

Theorem 4 (IND
�κ
=⇒ IND/κ,�). There is an SFBB reduction B such that, for

every adversary A,

IND-CXA/κ,�
PKE(A) ≤ κ · IND-CXAPKE(B) ,

where B’s overhead consists of κ − 1 fresh keypair generations.

Proof (sketch). B draws a key handle i∗ ∈ [κ] uniformly at random. Whenever
A calls an oracle using this handle, B will forward the call to its own oracle.
To simulate the rest of the users, B draws fresh keypairs and challenge bits,
simulating the oracles as needed. If A returns a guess on challenge bit i∗, B
forwards the guess, gaining the winning advantage of A. Given that the value
of i∗ is information-theoretically hidden from A, this happens with probability
exactly 1/κ. Otherwise, B returns 0, achieving advantage 0.

The full proof can be found in the full version.

D Formalization of ROR to LOR Implications

Theorem 5 (RORu,1 �2
=⇒ LORu,1). There is a simple, fully black box reduction

B such that, for any adversary A,

LOR-CXAu,1
PKE(A) ≤ 2 · ROR-CXAu,1

PKE(B) ,

where B’s overhead consists of drawing one uniformly random bit.

Proof (Sketch). Essentially, there are only two, equally likely cases: either the
bit is “real”, in which case B is able to simulate the left-or-right game perfectly;
or the bit is “random”, in which case the advantage of A against the simulated
game will be exactly 0—and the addition of corruptions does nothing to change
this fact.
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Fig. 8. The adversary B, playing Exp
ror-cca,/κ,1
PKE while simulating Exp

lor-cca,/κ,1
PKE for A.

Proof. We will show the theorem for the case u = /κ and CXA = CCA; by
inspection, the proof also holds for the cases u = κ (by setting Pr

[
1 ∈ JK]

= 0),
and CXA = CPA.

In the following, let b be the challenge bit of B’s game Exp
ror-cca,/κ,1
PKE (see

Fig. 1, with β = 1). Let JK denote the set of compromised bits; note however
that there is now only one challenge bit per game, meaning its bit handle is 1,
and the event that it was compromised is denoted by 1 ∈ JK. Using the strategy
of Fig. 8, we then get Pr

[
Exp

ror-cca,/κ,1
PKE (B) = 1

]

= Pr
[
1 /∈ JK ∧ d = d̂ ∧ b = 0

]

+ Pr
[
1 /∈ JK ∧ d �= d̂ ∧ b = 1

]

+ Pr
[
1 ∈ JK ∧ δ = 1

]
= Pr[b = 0]

(
Pr

[
1 /∈ JK ∧ d = d̂

∣∣∣ b = 0
]

+ Pr
[
1 ∈ JK ∧ δ = 1

∣∣ b = 0
])

+ Pr[b = 1]
(
Pr

[
1 /∈ JK ∧ d �= d̂

∣∣∣ b = 1
]

+ Pr
[
1 ∈ JK ∧ δ = 1

∣∣ b = 1
])

.

Note that if b = 1, then the value of d is information-theoretically hidden from
A, so we have that Pr

[
d �= d̂

∣∣∣ b = 1
]

= Pr[δ = 1 | b = 1] = 1/2, allowing us to
write

= Pr[b = 0]
(
Pr

[
1 /∈ JK ∧ d = d̂

∣∣∣ b = 0
]

+ Pr
[
1 ∈ JK ∧ δ = 1

∣∣ b = 0
])

+ Pr[b = 1]
(
Pr

[
1 /∈ JK ∧ δ = 1

∣∣ b = 1
]
+ Pr

[
1 ∈ JK ∧ δ = 1

∣∣ b = 1
])

= Pr[b = 0]
(
Pr

[
1 /∈ JK ∧ d = d̂

∣∣∣ b = 0
]

+ Pr
[
1 ∈ JK ∧ δ = 1

∣∣ b = 0
])

+ Pr[b = 1] · Pr[δ = 1 | b = 1]

=
1
2

(
Pr

[
1 /∈ JK ∧ d = d̂

∣∣∣ b = 0
]

+ Pr
[
1 ∈ JK ∧ δ = 1

∣∣ b = 0
]
+

1
2

)

=
1
2

(
Pr

[
Exp

lor-cca,/κ,1
PKE (A) = 1

]
+

1
2

)
.
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Which implies that ROR-CCA/κ,1
PKE(B)

= 2 · Pr
[
Exp

ror-cca,/κ,1
PKE (B) = 1

]
− 1

= 2 · 1
2

(
Pr

[
Exp

lor-cca,/κ,1
PKE (A) = 1

]
+

1
2

)
− 1

=
1
2

(
2 · Pr

[
Exp

lor-cca,/κ,1
PKE (A) = 1

]
− 1

)

=
1
2

· LOR-CCA/κ,1
PKE(A) ,

which is what we aimed to show. �
Taken together with Theorem 1, this implies that the left-or-right free-bit

notion without corruptions is separated from the single-bit real-or-random notion
by at most a factor 2.

Corollary 4 (RORκ,1 �2
=⇒ LORκ,β). There is a reduction B such that, for any

adversary A,

LOR-CXAκ,β
PKE(A) ≤ 2 · ROR-CXAκ,1

PKE(B) .

B calls A once, and additionally uses the resources needed to draw β uniformly
random bits.

Proof (Sketch). Theorem 5 states that RORκ,1 �2
=⇒ LORκ,1, while Theorem 1

states that LORκ,1 =⇒ LORκ,β , allowing us to conclude that RORκ,1 �2
=⇒

LORκ,β .

Given that the free-bit notion generalises the single-bit notion, this in turn
implies that LOR and ROR are separated by at most a factor 2 between the cor-
ruptionless free-bit notions, even if the number of challenge bits varies between
them.

With corruptions, however, any direct simulation would become trivially
recognisable—meaning that in order to do a faithful simulation, the reduction
would have to guess which bit the adversary is going to attack, leading to a loss
linear in β. Instead of reformulating this argument, we let it follow as a corol-
lary to previous results, yielding a slightly tighter statement by letting B play a
single-bit game.

Corollary 5 (ROR/κ,1 �2β
==⇒ LOR/κ,β). For every adversary A, there is an adver-

sary B, such that

LOR-CXA/κ,β
PKE(A) ≤ 2 · β · ROR-CXA/κ,1

PKE(B) .

B calls A once, and additionally uses the resources needed to draw β uniformly
random bits.
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Proof (Sketch). Theorem 5 states that ROR/κ,1 �2
=⇒ LOR/κ,1, while Theorem 2

states that LOR/κ,1 �β
==⇒ LOR/κ,β , allowing us to conclude that ROR/κ,1 �2β

==⇒
LOR/κ,β .

Interestingly, the tightest known relation from the diagonal-bit RORκ,� to
LORκ,� is one that loses a factor 2κ, even in the absense of corruptions. This is
once again achieved going through the single-user notion.

Corollary 6 (ROR
�2κ
==⇒ LORu,�). There is a reduction B such that, for every

adversary A,

LOR-CXAu,�
PKE(A) ≤ 2 · κ · ROR-CXAPKE(B) .

B calls A once, and additionally uses the resources needed to draw κ fresh key-
pairs and κ uniformly random bits.

Proof (Sketch). It is well established [6] that ROR
�2
=⇒ LOR, and we know from

Theorem 4 that LOR
�κ
=⇒ LOR/κ,�, allowing us to conclude that ROR

�2κ
==⇒

LOR/κ,�.

E Deferred Proof of Theorem 2

Theorem 2 (IND/κ,1 �β
==⇒ IND/κ,β). There is an SFBB reduction B such that, for

any adversary A,

IND-CXA/κ,β
PKE(A) ≤ β · IND-CXA/κ,1

PKE(B) ,

where B’s overhead consists of drawing β uniformly random bits.
We will show the result for IND = LOR and CXA = CCA; the proof transfers

directly to the ROR and CPA cases.

Proof. We will prove the statement by constructing an adversary B that achieves
the claimed advantage by leveraging any advantage an adversary A has against
the free-bit game, and making a guess on the bit that A is going to attack. B
will guess correctly with probability 1/β, leading to the β security loss. The proof
is very similar to that of Theorem 4, the main complication being that we now
need to keep track of compromised challenge bits, instead of just which keys are
corrupted.

B is given in Fig. 9. In the following, let b be the challenge bit of B’s
game Exp

lor-cca,/κ,1
PKE (see Fig. 1, with β = 1), let the set of compromised bits

(i.e., bits used by A to challenge a corrupted key) be denoted by JK, and
assume that A returns the guess (j, b̂j). Finally, note that the value of j∗ is
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Fig. 9. The adversary B, playing Exp
lor-cca,/κ,1
PKE while simulating Exp

lor-cca,/κ,β
PKE for A.

information-theoretically hidden from A. Then, B achieves the following advan-
tage, Pr

[
Exp

lor-cca,/κ,1
PKE (B) = 1

]

= Pr
[
j = j∗ ∧ j∗ /∈ J

K ∧ bj∗ = b̂j∗
]

+ Pr
[
j = j∗ ∧ j∗ ∈ J

K ∧ δ = 1
]

+ Pr
[
j �= j∗ ∧ j∗ /∈ J

K ∧ b = 0
]

+ Pr
[
j �= j∗ ∧ j∗ ∈ J

K ∧ δ = 1
]

= Pr[j = j∗]
(
Pr

[
j∗ /∈ J

K ∧ bj∗ = b̂j∗
∣∣∣ j = j∗

]
+ Pr

[
j∗ ∈ J

K ∧ δ = 1
∣∣∣ j = j∗

])

+ Pr[j �= j∗]
(
Pr[b = 0] · Pr

[
j∗ /∈ J

K
∣∣∣ j �= j∗

]
+ Pr[δ = 1] · Pr

[
j∗ ∈ J

K
∣∣∣ j �= j∗

])

=
1

β

(
Pr

[
j /∈ J

K ∧ bj = b̂j

]
+ Pr

[
j ∈ I

K ∧ δ = 1
])

+
1

2

(
1 − 1

κ

) (
Pr

[
j∗ /∈ J

K
∣∣∣ j �= j∗

]
+ Pr

[
j∗ ∈ J

K
∣∣∣ j �= j∗

])

=
1

β
Pr

[
Exp

lor-cca,/κ,β
PKE (A) = 1

]
+

1

2

(
1 − 1

κ

)

=
1

2β

(
2 · Pr

[
Exp

lor-cca,/κ,β
PKE (A) = 1

]
− 1

)
+

1

2

which implies that LOR-CCA
/κ,1
PKE(B)

= 2 · Pr
[
Exp

lor-cca,/κ,1
PKE (B) = 1

]
− 1

= 2 ·
(

1

2β
LOR-CCA

/κ,β
PKE(A) +

1

2

)
− 1

=
1

β
· LOR-CCA

/κ,β
PKE(A) ,

which is what we set out to show. �
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F Multi-bit Composability of Hybrid Encryption

As shown by Cramer and Shoup [14], one can combine the practicality of asym-
metric encryption with the efficiency of symmetric encryption into a highly effi-
cient public key encryption system. The idea is to encrypt the message under an
ephemeral symmetric key, which is itself encapsulated under a public key. This
paradigm, which already saw widespread use at the time, has become known as
the KEM/DEM paradigm, after its constituent Key Encapsulation Mechanism
and Data Encapsulation Mechanism; it is also known as hybrid encryption.

Recently, Lee et al. [28] built on earlier work by Giacon et al. [17] and showed
that a KEM and a DEM tightly compose to a PKE in a single-bit multi-user
setting with corruptions. We paraphrase their result in Theorem 3.

Theorem 3 (Lee, Lee, Park, DCC’20). There are SFBB reductions B and
C such that, for every adversary A,

LOR-CXA/κ,1
PKE(A) ≤ 2 · ROR-CCA/κ,1

KEM(B) + 1LOR-CCADEM(C) .

Here, 1LOR means “one-time left-or-right”; see their paper for definitions
and proof. Combining their result with Theorem 2 yields the following, more
general, corollary.

Corollary 7 (Free-bit composability). There are SFBB reductions B and
C such that, for every adversary A,

LOR-CXA/κ,β
PKE(A) ≤ 2 · β · ROR-CCA/κ,1

KEM(B) + β · 1LOR-CCADEM(C) .

Proof. Immediately follows from Theorems 2 and 3.

While lossy in the number of challenge bits, it matches Lee et al.’s Theorem
for β = 1. However, the implication to the diagonal-bit notion, with β = κ,
results in a rather lossy composition, as made explicit below.

Corollary 8 (Diagonal-bit composability). There are SFBB reductions B
and C such that, for every adversary A,

LOR-CXA/κ,�
PKE(A) ≤ 2 · κ · ROR-CCAKEM(B) + κ · 1LOR-CCADEM(C) .

Proof. Follows from Theorems 4 and 3.

No tighter composition is known for multi-bit security notions, for much the
same reason that no tight composition is known for AKE: as pointed out by
Jager et al. [24], the multi-bit KEM notion does not easily allow for a game
hop in which real keys are exchanged for fake ones, making the resulting game
something in between the ‘real’ and ‘random’ worlds. Any attempt to circumvent
this issue (without specialising to specific constructions) seems to lead to hybrid
or guessing arguments, yielding similar linear losses.
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Abstract. Broadcast Encryption (BE) is a cryptosystem that allows
a sender to specify recipients so that only the specified recipients can
perform decryption. Anonymity, which is one of additional but impor-
tant security requirements of BE, guarantees that no information of the
designated recipients is leaked from ciphertexts, and several BE schemes
with anonymity (ANO-BE) have been proposed so far.

Kiayias and Samari (IH 2013) analyzed a lower bound on the cipher-
text size required for ANO-BE. In their analysis, they derived the lower
bound under the assumption that ANO-BE schemes meets a special
property. However, it is unclear whether the special property holds for
existing ANO-BE schemes. In other words, their analysis is insufficient
to show that the existing ANO-BE schemes achieve the optimal cipher-
text size.

In this paper, we derive a lower bound on the ciphertext size in ANO-
BE, assuming only properties that most existing ANO-BE schemes sat-
isfy. In our analysis, we newly define several properties abstracted from
existing (even non-anonymous) BE schemes and carefully analyze them
to replace the Kiayias–Samari assumption with ours. As a result, we show
that the existing ANO-BE schemes achieve the optimal ciphertext size.
We further show that our analysis can be extended to the authentication
setting. Specifically, we first derive a lower bound on the authenticator
size required for anonymous broadcast authentication.
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1 Introduction

(Anonymous) Broadcast Encryption. Broadcast Encryption (BE) is public-
key encryption in which a sender can choose a set of recipients so that only
designated recipients can decrypt the ciphertext encrypted by the sender. In
BE, the sender specifies a subset S, called a privileged set, from N recipients
when encrypting a message m. Only designated recipients in S can decrypt
the corresponding ciphertexts ctS , and non-designated recipients cannot decrypt
them. Thanks to the functionality, BE has many applications such as pay-TV.
BE is said to satisfy collusion resistance, which is a de-facto standard security
notion of BE, if BE is secure against any number of colluders. To date, many
collusion-resistant BE schemes have been proposed (e.g., [1,2,4,5,7,8,14,15]).

In addition, there are several work [3,9–11] on BEs meeting anonymity,1

which guarantees that no information on the designated set of recipients S is
leaked from ciphertexts ctS . Indeed, anonymity is an important security notion
from a practical perspective. For example, the pay-TV service sometimes requires
users’ privacy as well as the confidentiality of contents. Specifically, there are two
main notions for anonymity, called anonymity and full anonymity, or Anonymous
BE, introduced by Barth et al. [3] and Kiayias and Samari [9], respectively.2 The
differences between them are as follows: anonymity guarantees that no informa-
tion on a set of designated recipients is leaked from ciphertexts except for its
size; full anonymity guarantees that ciphertexts do not leak even the information
on the size of the set. In this paper, we refer to BE meeting anonymity and full
anonymity as ANO-BE and full-ANO-BE, respectively.

Ciphertext Size of Anonymous BE. The existing anonymous BE schemes [3,
10,11] achieve the ciphertext-size being linear in the number of designated recip-
ients or all recipients. Specifically, the ciphertext sizes in the existing schemes
are shown as O (|S| · κ) for ANO-BE and O (N · κ) for full-ANO-BE, where |S|
and N are the numbers of designated recipients and all recipients, respectively,
and κ is a security parameter. Therefore, we see that they are the upper bounds
on ciphertext-sizes of Anonymous BEs.

On the other hand, lower bounds on ciphertext-sizes of Anonymous BEs (i.e.,
ANO-BE and full-ANO-BE) are derived by Kiayias and Samari [9]. More pre-
cisely, they deived lower bounds on the ciphertext-size, Ω (|S| · κ) for ANO-BE
and Ω (N · κ) for full-ANO-BE, for a limited class of (anonymous) BE and listed
several BE schemes in [3,11,12] in the class3. We emphasize that in their analysis
on lower bounds, they implicitly assume a special property for BE schemes in
their main theorem [9, Theorem 1]. Namely, they indeed proved “if a BE scheme

1 The term privacy is often used instead of anonymity (e.g., [3,9]).
2 There is another notion of “outsider anonymity” [6], weaker than both anonymity

and full anonymity. We do not deal with the notion in this paper.
3 Kiayias and Samari also derived lower bounds on the ciphertext sizes Ω (N + κ)

required for any full-ANO-BE [9, Lemma 2]. However, it is unclear whether the
lower bound is asymptotically tight, because no full-ANO-BE construction attains
it.
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is anonymous and satisfies the special property, then the lower bound holds.”
However, it is hard to check whether the existing anonymous BE schemes in
the limited class (e.g., [3,9,11]) satisfy the property (see Sect. 1.2 for details). In
other words, it is not cleary stated that those anonymous BE schemes achieve
asymptotically the optimal ciphertext-size.

1.1 Our Contributions

In this paper, assuming only properties found in most existing (anonymous)
BE schemes, we show that lower bounds on ciphertext size for ANO-BE and
full-ANO-BE are Ω (|S| · κ) and Ω (N · κ), respectively. As a result, we first
show that existing ANO-BE schemes indeed achieve the optimal ciphertext sizes.
Since the properties we assume are applicable for existing (even non-anonymous)
BE schemes, our results also show that extending existing non-anonymous BE
schemes to meet anonymity is impossible unless its ciphertext size attains our
lower bound.

In order to facilitate our analysis, we take a similar approach to Kiayias and
Samari’s one: we consider Atomic BE (AtBE), which covers a broad range of
(both anonymous and non-anonymous) BE schemes. AtBE allows each cipher-
text and decryption key to be divided into multiple sub-elements, called atomic
ciphertexts and decryption keys, respectively. We then derive lower bounds on the
ciphertext sizes by showing lower bounds in the number of atomic ciphertexts
required for any anonymous BE scheme with the properties that most of the
existing anonymous BE schemes have. We summarize the differences between
our and Kiayias and Samari’s analysis as follows.

– As described above, we assume several properties that most of the existing BE
schemes have. To formally describe them, we give a formal syntax of AtBE,
whereas Kiayias and Samari considered an informal syntax of AtBE.

– Our lower bounds hold for most of the existing anonymous BE schemes (i.e.,
BE schemes in [3,10,11]), since we only assume the properties common to
them. Almost all non-anonymous BE schemes in [1,2,4,5,7,8,12,14] also meet
the properties, our results are applicable for their variants. On the other hand,
it is unclear that the special property implicitly assumed in [9] holds for the
existing anonymous BE schemes.

We emphasize that the syntax and properties of AtBE we consider cannot triv-
ially obtained from Kiayias and Samari’s results.

We further extend our results to authentication systems. More specifically,
we derive lower bounds on authenticator-size required for Anonymous Broad-
cast Authentication (ABA) in [13] via the same approach above, and show
that the authenticator-size should be Ω (|S| · κ) and Ω (N · κ) for BA with
anonymity (ANO-BA) or full anonymity (full-ANO-BA), respectively. Interest-
ingly, concrete ABA schemes proposed in [13] asymptotically meet our lower
bounds on authenticator-size tightly, and it is shown that our lower bounds on
authenticator-size in ABA are asymptotically tight.



108 H. Kobayashi et al.

1.2 Technical Overview

Kiayias and Samari’s Analysis [9]. To facilitate an analysis, Kiayias and
Samari introduced AtBE in which ciphertexts and decryption keys can be broken
down to atomic ciphertexts and decryption keys. In their AtBE, ciphertext ctS
consists of ρ atomic ciphertexts ct

(θ)
S (θ ∈ [ρ]), and decryption key of a recipient

id consists of τ atomic decryption keys sk
(γ)
id (γ ∈ [τ ]). If the recipient id is in S,

there exists at least one pair of an atomic ciphertext ct
(θ)
S and decryption key

sk
(γ)
id that produces a message m (i.e., ct(θ)S can be decrypted with sk

(γ)
id ).

They showed lower bounds on ciphertext sizes in any anonymous AtBE
scheme by deriving lower bounds on the number of atomic ciphertexts in each
ciphertext. Specifically, they showed in [9, Theorem 2] that “for any AtBE
scheme, if there exists a set S such that the number of atomic ciphertexts in ctS
is smaller than |S|, then the AtBE scheme does not satisfy anonymity.” However,
they implicitly assumed the following property for AtBE in their proof:

Assumption 1: For all message m, all privileged set S ⊆ ID, let {ct(θ)S }θ∈[ρ] =
ctS ← Enc(pk,m,S), where ID is a set of all recipients. For all id, id′ ∈ S, if
they can decrypt the same atomic ciphertext ct(θ)S contained in ctS to obtain m,

atomic decryption keys sk
(γ)
id and sk

(γ′)
id′ used for the decryption are identical.

Namely, they indeed proved “for any AtBE scheme, if Assumption 1 holds (i.e.,
the AtBE scheme meets the above property) and there exists a set S such that the
number of atomic ciphertexts in ctS is less than |S|, then the AtBE scheme does
not satisfy anonymity.” However, it is difficult to check whether the anonymous
BE schemes meet the above property; in any existing anonymous BE schemes [3,
9–11], a situation where “any two recipients id, id′ ∈ S decrypt the same atomic
ciphertext ct

(θ)
S contained in ctS” never occurs, whereas Kiayias and Samari

considered such a situation and then assumed the above property in their proof.
Since the contraposition of their theorem is “for any AtBE scheme, if it satisfies
anonymity, then Assumption 1 does not hold, or the number of atomic ciphertext
in ctS is greater than or equal to |S| for all privileged set S,” their lower bounds
hold only if an AtBE scheme satisfies anonymity and Assumption 1 holds. Hence,
their lower bounds are insufficient to show that existing anonymous BE schemes
achieve optimal ciphertext sizes, since it is unclear whether Assumption 1 holds
for existing (anonymous) AtBE schemes.

Our Approach. In this paper, we only assume that AtBE scheme satisfies
properties existing BE schemes have, not a special property mentioned above,
and derive lower bounds on ciphertext sizes required for anonymous AtBE with
the properties.

First of all, we give a formal definition of AtBE to describe these proper-
ties. Specifically, we consider AtBE in which a public key pk can be divided
into several sub-elements, called atomic public key pk(δ), in addition to cipher-
texts and decryption keys. We also define Enc-at and Dec-at algorithms as an
encryption and decryption algorithms of AtBE, and they capture encryption
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and decryption procedures for each atomic ciphertext in the Enc and Dec algo-
rithms, respectively. In Enc-at, multiple atomic public keys {pk(δ)}δ∈Δ′ are used
to generate the atomic ciphertext ctS,id corresponding to the recipient id in S. In
Dec-at, an atomic ciphertext ctS,id is decrypted using multiple atomic decryption
keys {sk(γ)id }γ∈Γ ′

id
. Note that almost all (even non-anonymous) BE schemes [1–

5,7–12,14] indeed have the above algorithms inside.
With the formal syntax of AtBE, we formalize the following four properties

of AtBE that we consider in our analysis:

1. When a ciphertext has intended recipient set S, then any recipient in S can
obtain the underlying plaintext by decrypting at least one of the correspond-
ing atomic ciphertexts.

2. A triplet of recipient, recipient set, and message (id,S,m) uniquely determine
the minimum subset of atomic public keys required to generate an atomic
ciphertext ctS,id.

3. A pair of recipient and recipient set (id,S) uniquely determine the minimum
subset of atomic decryption keys required to decrypt a (correctly-generated)
atomic ciphertext ctS,id.

4. If two atomic ciphertexts ctS,id, ctS,id′ are identical, then the two correspond-
ing minimum subsets of atomic public keys generating ctS,id and ctS,id′ are
also identical.

In Sect. 3.2, we show that most existing BE schemes satisfy the above four
properties.

Overview for Derivation of Lower Bounds. First, we analyze conditions
under which BE scheme with the above properties satisfies anonymity. Specif-
ically, we show that “if an AtBE scheme satisfies the four properties and
anonymity, then atomic decryption keys used for decryption is not shared among
different recipients” (see Lemma 2 in Sect. 4). We then additionally assume the
following property that most existing anonymous BE schemes have [3,10,11],
to derive lower bounds for any anonymous AtBE scheme with the above four
properties:

Assumption 2: For any S ⊂ ID, any id ∈ S, and any m, let pk′ be a subset
of atomic public keys that produces ctS,id ← Enc-at(pk′,S,m, id). Then, pk′

uniquely determines a minimum subset of atomic decryption keys to be used to
decrypt ctS,id.

We emphasize that, unlike Assumption 1, one can easily check Assumption 2
holds for all existing anonymous BE schemes [3,10,11].

Finally, we show that for any AtBE scheme with the four properties and
Assumption 2, if there exists a set S such that the number of atomic ciphertexts
in the corresponding ciphertext ctS is smaller than |S|, then it contradicts to
Lemma 2 in Sect. 4.

Notation. For all natural number n ∈ N, { 1, . . . , n } is denoted by [n]. For a
finite set X , we denote by |X | the cardinality of X . For finite sets X ,Y, let X �Y
be the symmetric difference X �Y := (X \Y)∪ (Y \X ). For any finite set X and
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any natural number � ∈ N, let 2X
≤� := {Y ⊂ X | | Y| ≤ � } be a family of subsets

of X such that its cardinality is at most � (i.e., a part of a power set of X ).
For any algorithm A, out ← A(in) means that A takes in as input and outputs
out. For any set X , if we write x

U← X , x is chosen uniformly at random from
X . Throughout the paper, we denote a security parameter by κ and consider
probabilistic polynomial-time algorithms (PPTAs). For any element x ∈ {0, 1}∗,
let |x| be the number of bits of x. We say a function negl(·) is negligible if for any
polynomial poly(·), there exists some constant κ0, such that negl(κ) < 1/poly(κ)
for all κ ≥ κ0.

2 Broadcast Encryption

We begin by defining Broadcast Encryption (BE) and its security notions based
on [11,13]. In this paper, we assume that the maximum number of recipients N
in BE is determined at the time of setup and an arbitrary set of recipients can
be specified at the time of encryption.

Syntax. A BE scheme ΠBE consists of four algorithms (Setup, Join,Enc,Dec).

1. (mk, pk) ← Setup(1κ, N, �): a probabilistic algorithm for setup. It takes a secu-
rity parameter 1κ, the maximum number of recipients N ∈ N, the maximum
number of recipients � designated at once as input, and outputs a master
secret key mk and a public key pk.

2. skid ← Join(mk, id): a decryption key generation algorithm. It takes mk and
an identifier id ∈ ID, as input, and outputs a decryption key skid for id. Here,
ID is a set of all possible identifiers, and |ID| := poly(κ) for some polynomial
poly(·).

3. ctS ← Enc(pk,m,S; r): an encryption algorithm. It takes pk, a message m ∈
M, randomness r ∈ R, and a privileged set S ⊆ ID as input, and outputs a
ciphertext ctS , where M is a message-space and R is a randomness-space. It
is also possible to omit r from the input.

4. m ← Dec(skid, ctS): a decryption algorithm. It takes skid and ctS as inputs,
and outputs m ∈ M ∪ {⊥}.

To describe properties of the existing anonymous BE schemes, we regard Join
as a deterministic algorithm in this paper4.

Correctness. For all κ,N ∈ N, all � such that 1 ≤ � ≤ N , all mk ←
Setup(1κ, N, �), all m ∈ M, all r ∈ R, all S ⊆ ID such that |S| ≤ �, and
all id ∈ S, we have m ← Dec(Join(mk, id),Enc(pk,m,S; r)) with overwhelming
probability.

Collusion Resistance. We define indistinguishability against chosen plaintext
attack (IND-CPA) for BE. Let A be any PPT adversary against IND-CPA secu-
rity. We consider an experiment ExpIND-CPA

ΠBE,A (κ,N, �) between a challenger C and
A as follows.
4 Although Join behaves probabilistically, we can realize Join as a deterministic algo-

rithm by pseudo-random function.
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ExpIND-CPA
,A (κ,N, �) C randomly chooses b ∈ {0, 1}. C runs Setup(1κ, N, �) to get

mk and randomly chooses b ∈ {0, 1}. Let D, CD be a empty sets. We denote D
as a set of recipients currently participating in the protocol, and CD as a set of
identifiers of recipient from which A obtained its decryption key, respectively. A
may adaptively issue the following queries to C.

– Key-generation Query: Upon a query id ∈ ID from A, C adds id to D and
generates skid ← Join(mk, id). Note that A obtains nothing, and that A is
allowed to make this query at most N times.

– Corruption Query: Upon a query id ∈ D from A, C adds id to CD, and returns
skid to A.

– Challenge Query: Upon a query (m0,m1,S) ∈ M2 × (
2D

≤�

)
from A, C runs

ctS ← Enc(pk,mb,S) and returns ctS to A. A is allowed to make this query
only once under the restriction that S ∩ CD = ∅.

At some point, A outputs b′. If b′ = b, C then sets 1 as the output of ExpIND-CPA
ΠBE,A (κ,

N, �). Otherwise, C then sets 0. C terminates the experiment.

Definition 1 (IND-CPA). We say ΠBE is IND-CPA secure if for any PPTA
A, for all sufficiently-large κ ∈ N, all N ∈ N and all � (≤ N), it holds that
AdvIND-CPA

ΠBE,A (κ,N, �) < negl(κ), where AdvIND-CPA
ΠBE,A (κ,N, �) := |Pr[ExpIND-CPA

ΠBE,A (κ,N,

�) → 1] − 1
2 |.

Anonymity. We define two kinds of anonymity for BE, full anonymity (full-
ANO-CPA) and anonymity (ANO-CPA). Let A be any PPT adversary against
Full-ANO-CPA security. We define Full-ANO-CPA by Expfull-ANO-CPA

ΠBE,A (κ,N, �)
which is the same as ExpIND-CPA

ΠBE,A except for the following changes to challenge
query:

– Challenge Query: Upon a query (m,S0,S1) ∈ M × (
2D

≤�

)2 from A, C runs
ctSb

← Enc(pk,m,Sb) and returns ctSb
to A. A is allowed to make this query

only once under the restriction that (S0 � S1) ∩ CD = ∅.

We can also define ANO-CPA with an experiment ExpANO-CPA
ΠBE,A (κ,N, �) which is

the same as Expfull-ANO-CPA
ΠBE,A (κ,N, �) except for the following additional condition

of the restriction for challenge query: |S0| = |S1|.
Definition 2 (Anonymity). We say ΠBE is X-CPA secure (X ∈ {full-ANO,
ANO}) if for any PPTA A, for all sufficiently-large κ ∈ N, all N ∈ N and all
� (≤ N), it holds that AdvX

ΠBE,A(κ,N, �) < negl(κ), where AdvX
ΠBE,A(κ,N, �) :=

|Pr[ExpX
ΠBE,A(κ,N, �) → 1] − 1

2 |.

3 Atomic Broadcast Encryption

In this section, we give a formal syntax of Atomic Broadcast Encryption (AtBE)
to formally describe properties satisfied by existing BE schemes. These properties
are used to formalize properties of existing anonymous BE and derive lower
bounds. We further provide security definitions for BE covered with AtBE.
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3.1 Syntax of AtBE

Our AtBE aims to describe encryption and decryption for each recipient in a
designated set performed inside Enc and Dec algorithms of BE. Towards that
aim, ciphertexts, decryption keys, and public keys are divided into multiple sub-
elements. An AtBE scheme ΠAt-BE consists of four algorithms (Setup-at, Join-at,
Enc-at,Dec-at).

1. (mk, {pk(δ)}δ∈Δ) ← Setup-at(1κ, N, �): a probabilistic algorithm for setup. It
takes a security parameter 1κ, the maximum number of receivers N ∈ N, the
maximum number of receivers � designated at once as input, and outputs a
master secret key mk and a public key pk consisting of |Δ| atomic public keys
{pk(δ)}δ∈Δ.

2. {sk(γ)id }γ∈Γid
← Join-at(mk, id): a decryption key generation algorithm. It takes

mk and an identifier id ∈ ID, as input, and outputs a decryption key skid for
id consisting of |Γid| atomic decryption keys {sk(γ)id }γ∈Γid

.
3. ctS,id ← Enc-at({pk(δ)}δ∈Δ′ ,S,m, id; r): an atomic encryption algorithm. It

takes a subset of the atomic public key {pk(δ)}δ∈Δ′ , a privileged set S ⊆ ID,
a message m ∈ M, an identifier id ∈ ID, and randomness r as input, and
outputs an atomic ciphertext ctS,id, where Δ′ ⊆ Δ.

4. m ← Dec-at({sk(γ)id }γ∈Γ ′
id
, ctS,id): an atomic decryption algorithm. It takes a

subset of atomic decryption keys {sk(γ)id }γ∈Γ ′
id
, and ctS,id as input, and outputs

a message m ∈ M ∪ {⊥}, where Γ ′
id ⊆ Γid.

Setup-at and Join-at are essentially equivalent to Setup and Join in BE respec-
tively, except for difference that public and decryption keys are explicitly divided
into multiple sub-elements. As in the case of Join in BE, we regard Join-at as
being a deterministic algorithm. We require a natural property for AtBE that an
atomic ciphertext ctS,id contained in ciphertext ctS will be correctly decrypted
by a decryption key {sk(γ)id }γ∈Γid

of a recipient id ∈ S as follows:

Atomic Correctness. For all κ,N ∈ N, all � such that 1 ≤ � ≤ N , all
(mk, {pk(δ)}δ∈Δ) ← Setup-at(1κ, N, �), all S ⊆ ID such that |S| ≤ �, all
id ∈ S, all m ∈ M, all {sk(γ)id }γ∈Γid

← Join-at(mk, id), all r
U← R, for some

Δ′ ⊆ Δ,Γ ′
id ⊆ Γid, for all ctS,id ← Enc-at({pk(δ)}δ∈Δ′ , id,m,S; r), we have m ←

Dec-at({sk(γ)id }γ∈Γ ′
id
, ctS,id) with overwhelming probability.

3.2 Properties in Existing BE Schemes

As described in Sect. 1.2, Kiayias and Samari assumed a special property for
anonymous BE in their analysis, and it is difficult to check whether the property
holds for existing anonymous BE schemes. Therefore, our goal is to replace
that property with a natural one that could be checked if it holds for existing
anonymous BE schemes. In order to achieve this, we describe four properties that
holds in most of existing (i.e., both non-anonymous and anonymous) BE schemes
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in this section. In particular, we show that they hold for the pairing-based BE
scheme of Boneh et al. [4]. The four properties are described as follows.

Property 1. Ciphertext ctS output from ΠBE.Enc algorithm consists of atomic
ciphertext ctS,id obtained by ΠAt-BE.Enc-at algorithm, and other elements. 5 In
other words, let a set of atomic ciphertext contained in ctS be {ctS,id}id∈S , and
let union of {ctS,id}id∈S and other elements contained in ctS be {ct(θ)S }θ∈[βS ],
it holds that {ctS,id}id∈S ⊆ {ct(θ)S }θ∈[βS ] ⊆ ctS . Here, a randomness r input to
ΠAt-BE.Enc-at is the same when generating each atomic ciphertext in {ctS,id}id∈S .
Also, inside ΠBE.Dec algorithm, ΠAt-BE.Dec-at algorithm takes atomic ciphertext
and a set of atomic decryption key as input, and outputs a message. If ctS is valid
ciphertext, then there is an atomic ciphertext ct(θ)S in ctS that can be decrypted
using a subset of atomic decryption keys of a recipient id in S. Formally, we
require the following property for BE ΠBE:

For all κ,N ∈ N, all � such that 1 ≤ � ≤ N , all (mk, pk) ← ΠBE.Setup(1κ,

N, �), all m ∈ M, all S ⊆ ID such that |S| ≤ �, all id ∈ ID, all {sk(γ)id }γ∈Γid
←

ΠAt-BE.Join-at(mk, id), all r U← R, all {ct(θ)S }θ∈[βS ] ⊆ ctS ← ΠBE.Enc(pk,m,S; r),
if id ∈ S, then for some Γ ′

id ⊆ Γid, there exists θ ∈ [βS ] such that m ←
Dec-at({sk(γ)id }γ∈Γ ′

id
, ct

(θ)
S ) with overwhelming probability. If id /∈ S, then for all

Γ ′
id ⊆ Γid, there is no θ ∈ [βS ] such that m ← Dec-at({sk(γ)id }γ∈Γ ′

id
, ct

(θ)
S ) with

overwhelming probability.

Property 2. When generating ctS,id such that m ← Dec-at({sk(γ)id }γ∈Γ ′
id
, ctS,id)

for some γ ∈ Γ ′
id, let Δ∗

id,S,m be the minimum subset of atomic public keys
required for input to Enc-at. In this case, for any S ⊂ ID, any id ∈ S, and any
m,∈ M, Δ∗

id,S,m is uniquely determined by pairs of (id,m,S) to input to Enc-at.

Property 3. When m ← Dec-at({sk(γ)id }γ∈Γ ′
id
, ctS,id) holds, let Γ ∗

id,S be the min-
imum subset of atomic decryption keys required for input to Dec-at. In this case,
for any S ⊂ ID and any id ∈ S, Γ ∗

id,S is uniquely determined by pairs of (id,S)
to input to Enc-at when generating ctS,id.

Property 4. For all (mk, {pk(δ)}δ∈Δ) ← Setup(1κ, N, �), id, id′ ∈ ID, all S ⊂
ID such that {id, id′} ⊆ S, all m ∈ M, r ∈ R, all ctS,id ← Enc-at({pk(δ)}δ∈Δ∗

id,S,m
,

id,m,S; r), ctS,id′ ← Enc-at({pk(δ′)}δ′∈Δ∗
id′,S,m

, id′,m,S; r), if ctS,id = ctS,id′ holds,

then we have {pk(δ)}δ∈Δ∗
id,S,m

= {pk(δ′)}δ′∈Δ∗
id′,S,m

with overwhelming probability.

Here, we can see that most of the existing BE schemes satisfy the above
properties. In particular, we show that the BE scheme in [4] meets the prop-
erties described above. The outline of the BE scheme is as follows: Let p be
a prime, g be a random generator chosen randomly from a bilinear group G

whose order is p, Zp := {1, . . . , p − 1}, α, s
U← Zp. Its public key, private key

5 The “other elements” indicate, e.g., signatures for atomic ciphertexts (found in [11]).
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of a recipient id ∈ [N ], and ciphertext with S is as follows: {pk(δ)}δ∈Δ :=
{g, g1, . . . , gN , gN+2, . . . , g2N , v}, {sk(γ)id }γ∈Γid

:= {gs
id}∪{pk(δ)}δ∈Δ, {ct(θ)S }θ∈[βS ]

= ctS := {(gr, (v · Π
j∈S

gN+1−j)r)}, where gi := gαi

(i ∈ [2N ]), v := gs, r
U← Zp.

According to an atomic ciphertext,

ctS,id := {(gr, (v · Π
j∈S

gN+1−j)r)},

{sk(γ)id }γ∈Γ ′
id

:= {gs
id, g, {gN+1−j+id}j∈S

j �=id
, v},

m ← Dec-at({sk(γ)id }γ∈Γ ′
id
, ctS,id).

Hence, Property 1 is satisfied.
According to a public key, a minimum subset of atomic public keys used to

generate ctS,id is uniquely determined as {pk(δ)}δ∈Δ∗
id,S,m

:= {g, {gN+1−j}j∈S , v}.
Therefore, Property 2 is met.

According to a decryption key, a minimum subset of atomic decryption
keys used to decrypt ctS,id, is uniquely determined as {sk(γ)id }γ∈Γ ∗

id,S := {gs
id,

g, {gN+1−j+id}j∈S
j �=id

, v}. Therefore, Property 3 is satisfied.

An atomic ciphertext with id′ is given as ctS,id′ := {(gr, (v · Π
j∈S

gN+1−j)r)},

and if ctS,id = ctS,id′ holds, then we have {pk(δ)}δ∈Δ∗
id,S,m

= {pk(δ′)}δ′∈Δ∗
id′,S,m

with overwhelming probability. Therefore, Property 4 is also satisfied.
From the above, we can see that the BE scheme in [4] meets Properties 1, 2, 3

and 4. In addition, we can similarly show that the existing (both non-anonymous
and anonymous) BE schemes [1–3,5,7,8,10–12,14] satisfy Properties 1, 2, 3 and
4 as well, thus it is reasonable to assume Properties 1, 2, 3 and 4 in this paper.

3.3 Security Definitions for BE Covered with AtBE

We define collusion resistance and anonymity for BE covered with AtBE in the
same way as in BE. In the following, we give definitions of IND-CPA (INDat-
CPA), full anonymity (full-ANOat-CPA) and anonymity (ANOat-CPA).

Security games for BE covered with AtBE are the same as those for BE
except that an attacker obtains decryption keys and a challenge ciphertext is
explicitly devided into multiple sub-elements. Essentially, there is no difference
between IND-CPA and INDat-CPA, also between anonymity for BE and AtBE
in that information attackers obtain. Therefore, we consider INDat-CPA, full-
ANOat-CPA and ANOat-CPA defined below to be the same security as IND-
CPA, full-ANO-CPA and ANO-CPA, respectively.

Indistinguishability for AtBE. Let A be any PPT adversary against INDat-
CPA security. We define INDat-CPA with an experiment ExpINDat-CPA

ΠBE,A which is
the same as ExpIND-CPA

ΠBE,A except for the following changes to Key-generation Query
and Corruption Query:
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– Key-generation Query: Upon a query id ∈ ID from A, C adds id to D and
generates {sk(γ)id }γ∈Γid

← Join-at(mk, id), not skid ← Join(mk, id).
– Corruption Query: Upon a query id ∈ D from A, C adds id to CD, and returns

{sk(γ)id }γ∈Γid
to A, not skid.

Definition 3 (Indistinguishability for AtBE). We say ΠBE is INDat-CPA
secure if for any PPTA A, for all sufficiently-large κ ∈ N, all N ∈ N and all � (≤
N), it holds that |AdvINDat-CPA

ΠBE,A (κ,N, �)| < negl(κ), where AdvINDat-CPA
ΠBE,A (κ,N, �) :=

|Pr[ExpINDat-CPA
ΠBE,A (κ,N, �) → 1] − 1

2 |.
Anonymity for AtBE. Let A be any PPT adversary against full-ANOat-CPA
security. We define full-ANOat-CPA with an experiment Expfull-ANOat-CPA

ΠBE,A (κ,N,

�) which is the same as ExpINDat-CPA
ΠBE,A except for the following changes on challenge

query:

– Challenge Query: Upon a query (m,S0,S1) ∈ M × (
2D

≤�

)2 from A, C runs
ctSb

← Enc(pk,m,Sb) and returns ctSb
to A. A is allowed to make this query

only once under the restriction that (S0 � S1) ∩ CD = ∅.

We also define ANOat-CPA with an experiment ExpANOat-CPA
ΠBE,A (κ,N, �) which

is the same as Expfull-ANOat-CPA
ΠBE,A (κ,N, �) except for the following additional condi-

tion of the restriction for challenge query: |S0| = |S1|.
Definition 4 (Anonymity for AtBE). We say ΠBE is X-CPA secure (X ∈
{full-ANOat, ANOat}) if for any PPTA A, for all sufficiently-large κ ∈ N,
all N ∈ N and all � (≤ N), it holds that |AdvX

ΠBE,A(κ,N, �)| < negl(κ), where
AdvX

ΠBE,A(κ,N, �) := |Pr[ExpX
ΠBE,A(κ,N, �) → 1] − 1

2 |.

4 Lower Bounds on Ciphertext Sizes in BE

We derive lower bounds for BE schemes with ANOat-CPA security and full-
ANOat-CPA security. First, we define a property assumed for BE schemes and
show that it holds for ANO-BE scheme of Libert et al. [11]. Then, we derive
lower bounds for ANO-BE and full-ANO-BE with the property described in
Sect. 4.1. In the following analysis, we assume that BE scheme satisfies INDat-
CPA security, although not explicitly stated.

4.1 A Property of ANO-BE and Full-ANO-BE

In order to derive lower bounds for ANO-BE and full-ANO-BE, we assume a
property that “a minimum subset of atomic decryption keys used to decrypt
ciphertexts is uniquely determined by a subset of public keys used to generate
the ciphertext.” Specifically, we consider the following property for both ANO-
BE and full-ANO-BE:
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Assumption 2: When (mk, {pk(δ)}δ∈Δ) ← Setup(1κ, N, �) is generated, we
denote PK∗ as a set of all atomic public keys, namely PK∗ := {pk(δ)}δ∈Δ.
And, when {sk(γ)id }γ∈Γid

← Join-at(mk, id) is generated, SK∗ denotes a set of
a minimum subset of atomic decryption keys to be input to Dec-at, namely
SK∗ := {{sk(γ)id }γ∈Γ ∗

id,S }id∈ID,S⊆ID. Here, we note that SK∗ is uniquely deter-
mined, since Join-at is a deterministic algorithm. At this time, for all id ∈ ID, all
S ⊆ ID, all m ∈ M, all r ∈ R, all pk′ ∈ 2PK∗

, all ctS,id ← Enc-at(pk′, id,m,S; r),
a set of atomic decryption keys sk′ ∈ SK∗∪{⊥} such that m ← Dec-at(sk′, ctS,id)
is uniquely determined by the set of atomic public keys pk′.

ANO-BE schemes satisfying the above property include Libert et al.’s
scheme [11], which is a generic construction using public key encryption PKE
and one-time signature OTS. Its outline is as follows.

ΠBE.Setup(1κ, N, �) : For all id ∈ [N ], run (pke.pkid, pke.skid) ← PKE.KGen(1κ),
and output pk := {pke.pkid}id∈[N ],mk := {pke.skid}id∈[N ].

ΠBE.Join(mk, id) : Output pke.skid.
ΠBE.Enc(pk,m,S) : Compute (ots.sk, ots.vk) ← OTS.KGen(1κ). Then for all

id ∈ S, run ctS,id ← PKE.Enc(pke.pkid,m||ots.vk) and σ ← OTS.Sign(ots.sk,
{ctS,id}id∈S). Then output ctS := (σ, {ctS,id}id∈S).

ΠBE.Dec(skid, ctS) : Parse ctS as (σ, {ctS,id}id∈S). For all ctS,id ∈ {ctS,id}id∈S ,
compute m′ ← PKE.Dec(pke.skid, ctS,id), and parse m as m′||ots.vk. Then, if
1 ← OTS.Vrfy(ots.vk, σ, {ctS,id}id∈S), output m.

In the above scheme, PKE.Enc executed inside Enc corresponds to Enc-at,
and PKE.Dec executed inside Dec corresponds to Dec-at. Then, PK∗ and
SK∗ indicates {pke.pkid}id∈[N ] and {{pke.sk1}, . . . , {pke.skN}} respectively, and
pke.skid = sk′ such that m′ ← PKE.Dec(pke.skid, ctS,id) is uniquely determined by
pke.pkid ∈ 2PK∗

. Therefore, Libert et al.’s scheme satisfies the above property.
In addition, we can similarly show that all of the existing ANO-BE and

full-ANO-BE schemes in [3,9–11] satisfy Assumption 2.

4.2 Lower Bounds in ANOat-CPA Secure BE

First, we show two lemmas, Lemma 1 and 2, for ANOat-CPA secure BE with
Properties 1, 2, 3 and 4 described in Sect. 3.2. In Lemma 1, we show that “if
BE is ANOat-CPA secure, then for ciphertexts with a set S0,S1 whose size is
equal, sets of atomic decryption keys used by a receipient id for each decryption
is equal.” Then, in Lemma 2, we show that “if BE is ANOat-CPA secure, then
for any set S with more than two elements, recipients id, id′ ∈ S must not share
a set of atomic decryption keys used to decrypt ctS .”

Then, for ANOat-CPA secure BE with the property described in Assump-
tion 2, we will derive a lower bound on ciphertext-size by Theorem 1.

Lemma 1. If BE ΠBE is ANOat-CPA secure, for all id ∈ ID, all S0,S1 such
that id ∈ S0 ∩ S1 and |S0| = |S1|, we have {sk(γ)id }γ∈Γ ∗

id,S0
= {sk(γ)id }γ∈Γ ∗

id,S1
.
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Proof. We show this lemma by contraposition. Suppose {sk(γ)id }γ∈Γ ∗
id,S0

�=
{sk(γ)id }γ∈Γ ∗

id,S1
for some id ∈ ID and some S0,S1 such that id ∈ S0 ∩ S1, |S0| =

|S1|. We will construct PPT adversary against ANOat-CPA security as follows.
Let id∗ be id as above. Initially, the adversary guesses sizes of S0,S1 as �∗ U← [�].
Next, the adversary guesses id∗,S0, and S1. A probability that the adversary

succeeds in guessing is 1
|ID| · 1

� · ( |ID|
�∗−1

)−1 ·
(( |ID|

�∗−1

) − 1
)−1

. The adversary also
issues Key-Generation queries for all id in S0 ∪S1 and Corruption queries for id∗

to obtain decryption key {sk(γ)id∗ }γ∈Γid∗ . Then, the adversary issues a challenge
query (m,S0,S1) to obtain {ct(θ)Sb

}θ∈[βSb
] ⊆ ctSb

. Finally, the adversary outputs

b′ = 0 if there exists θ ∈ [βSb
] such that m ← Dec-at({sk(γ)id∗ }γ∈Γ ∗

id∗,S0
, ct

(θ)
Sb

), and
b′ = 1 otherwise. In this case, the adversary can output b′ such that b = b′

with probability 1
2

(
1

|ID| · 1
� · ( |ID|

�∗−1

)−1 ·
(( |ID|

�∗−1

) − 1
)−1

+ 1
)

. Note that |ID| is

polynomial in κ. ��
Lemma 2. If BE ΠBE is ANOat-CPA secure, for all id, id′ ∈ ID, all S ⊆ ID
such that {id, id′} ⊆ S, |S| ≥ 2, we have {sk(γ)id }γ∈Γ ∗

id,S �= {sk(γ′)
id′ }γ′∈Γ ∗

id′,S
.

Proof. Assume on the contrary that we have {sk(γ)id }γ∈Γ ∗
id,S = {sk(γ′)

id′ }γ′∈Γ ∗
id′,S

for some id, id′ ∈ ID and some S ⊆ ID such that {id, id′} ⊆ S, |S| ≥ 2. Then,
we will show that it contradicts correctness of BE with AtBE structure (see
Sect. 3.2, Property 1). First, we choose S ′ such that id ∈ S ′, id′ /∈ S ′, |S| = |S ′|.
In this case, since id ∈ S ′, we have m ← Dec-at({sk(γ)id }γ∈Γ ∗

id,S′ , ctS′,id). And,

since {sk(γ)id }γ∈Γ ∗
id,S′ = {sk(γ)id }γ∈Γ ∗

id,S from Lemma 1, we have m ← Dec-at(

{sk(γ)id }γ∈Γ ∗
id,S , ctS′,id). Here, since {sk(γ)id }γ∈Γ ∗

id,S = {sk(γ′)
id′ }γ′∈Γ ∗

id′,S
from the

assumption, we have m ← Dec-at({sk(γ′)
id′ }γ′∈Γ ∗

id′,S
, ctS′,id). However, by id′ �∈ S ′,

the above contradicts Property 1. ��
In the following, we derive a lower bound on ciphertext-size in ANOat-CPA

secure BE with the property described in Assumption 2. Specifically, we show the
statement: When there exists a set S such that the number of atomic ciphertexts
ctS contained in ctS is less than |S|, a contradiction occurs for Lemma 2.

Theorem 1. If BE with the property shown in Assumption 2 is ANOat-CPA
secure, the size of ciphertext with any recipient set S ⊆ ID is Ω(|S| · k), where
k = min

S⊆ID,θ∈[βS ]
|ct(θ)S |.

Proof. For some set of recipients S∗, we assume βS∗ < |S∗|, and then show
that this contradicts Lemma 2. Now, from βS∗ ≥ 1, we consider that |S∗| ≥ 2
holds. From βS∗ < |S∗|, for a set of atomic ciphertexts {ct(θ)S∗ }θ∈βS∗ , there exists
at least one atomic ciphertext ct

(θ∗)
S∗ that can be decrypted by two recipients
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id, id′ ∈ S∗. That is, for id, id′ ∈ S∗ and for any m ∈ M, r ∈ R, it holds that
ct

(θ∗)
S∗ = ctS,id = ctS,id′ , when ctS,id, ctS,id′ is generated by

ctS,id ← Enc-at({pk(δ)}δ∈Δ∗
id,S∗,m

, id,m,S∗; r),

ctS,id′ ← Enc-at({pk(δ)}δ∈Δ∗
id′,S∗,m

, id′,m,S∗; r).

Therefore, by Property 4 , we have {pk(δ)}δ∈Δ∗
id,S∗,m

= {pk(δ)}δ∈Δ∗
id′,S∗,m

.
In addition, we have the following by Atomic Correctness:

m ← Dec-at({sk(γ)id }γ∈Γ ∗
id,S∗ , ct

(θ∗)
S∗ ), (1)

m ← Dec-at({sk(γ′)
id′ }γ′∈Γ ∗

id′,S∗ , ct
(θ∗)
S∗ ). (2)

In this case, a set of atomic encryption keys used to encrypt ct
(θ∗)
S∗ is

{pk(δ)}δ∈Δ∗
id,S∗,m

= {pk(δ)}δ∈Δ∗
id′,S∗,m

. Then, by Assumption 2, a set of a minimum

subset of atomic decryption keys used to decrypt ct
(θ∗)
S∗ is uniquely determined

by {pk(δ)}δ∈Δ∗
id,S∗,m

. Therefore, in order that (1) and (2) holds, the following

must hold true: {sk(γ)id }γ∈Γ ∗
id,S∗ = {sk(γ′)

id′ }γ′∈Γ ∗
id′,S∗ . However, the above equality

contradicts Lemma 2. ��

4.3 Lower Bounds in Full-ANOat-CPA Secure BE

First, we show Lemma 3 that states “if BE is full-ANOat-CPA secure, then
for all privileged set S,S ′, βS = βS′ holds , where βS , βS′ are the number of
atomic ciphertexts in ctS , ctS′ , respectively.” Then, we derive a lower bound on
ciphertext size in Theorem 2 for full-ANOat-CPA secure BE with the property
described in Assumption 2, using Lemma 3 and Theorem 1.

Lemma 3. If BE ΠBE is full-ANOat-CPA secure, we have βS = βS′ for all
S,S ′.

Proof. We show the statement: If βS �= βS′ for some set S,S ′, then we can
construct a PPT adversary that breaks the full-ANOat-CPA security.

The adversary guesses the size of S,S ′ as �0
U← [�], �1

U← [�], respectively. We
then randomly select a set whose size is �0, �1. Here, the probability that the
adversary can obtain the set S,S ′ such that βS �= βS′ is �−1 · (|ID|

�0

)−1 · �−1 ·
(|ID|

�1

)−1
. Then, the adversary issues (m,S,S ′) as a challenge query, and obtains

{ct(θ)Sb
}θ∈[βSb

]. If βSb
= �0, the adversary outputs b′ = 0, otherwise b′ = 1. ��

Theorem 2. If BE with the property shown in Assumption 2 is full-ANOat-
CPA secure, the size of ciphertext with an arbitrary recipient set S ⊆ ID is
Ω(N · k), where k = min

S⊆ID,θ∈[βS ]
|ct(θ)S |.
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Proof. We assume βS < N for some S, and show a contradiction. First, if S∗ :=
[N ], then βS∗ = βS < N holds from Lemma 3. On the other hand, since a
full-ANOat-CPA secure BE meets ANOat-CPA security, we have βS∗ ≥ N by
Theorem 1, but it contradicts βS∗ < N . ��

5 Lower Bounds in Anonymous Broadcast Authentication

In recent years, with the spread of IoT devices, a system for safely control-
ling a large number of IoT devices at once is desired. For doing it, Anonymous
Broadcast Authentication (ABA) was proposed in [13]. ABA is an authentica-
tion scheme that allows a sender to specify recipients so that only the specified
recipients can perform verification-process correctly. A sender uses an authen-
tication key ak to generate an authenticated command cmdS from a command
m with a privileged set S. A recipient id can check validity of cmdS using its
verification key vkid. If a designated recipient id ∈ S receives cmdS and it is not
forged, the recipient accepts m. If cmdS is forged or a recipient is not designated,
the recipient rejects it. ABA is also required to satisfy anonymity in addition to
the functionality of broadcast authentication mentioned above, which guarantees
that information of designated recipients S is never leaked from the authenti-
cated command cmdS . Watanabe et al. [13] introduced two anonymity notions,
anonymity and full-anonymity, like anonymity and full-anonymity in anonymous
BA. Syntax and security definitions of ABA is provided in Appendix A. How-
ever, a tight lower bound on authenticator-size of authenticated commands in
ABA is not given in the previous work.

We can derive lower bounds on authenticator-size of authenticated commands
in ABA by extending our analysis in anonymous BE to ABA, and the result-
ing bounds are shown to be asymptotically tight. In fact, lower bounds in ABA
can be obtained in a similar way as in anonymous BE in the previous sections:
First, for simplicity, we define Atomic Broadcast Authentication (AtBA) allow-
ing authenticators, authentication keys and verification keys to be split into
multiple elements (see the syntax provided in Appendix B.1). Also, we define
anonymity notions corresponding to anonymity and full-anonymity for ABA cov-
ered with AtBA and call them as ANOat and full-ANOat, respectively (see also
Appendix B.2). Next, we describe properties that the existing ABA scheme in
[13] has, by which we derive lower bounds in ABA. (see Appendix C). By taking
it into account, we define the property assumed for ABA schemes (see Appendix
D.1). Then, we derive lower bounds on authenticator-size for ABA that sat-
isfy the property (see Appendix D.2). Specifically, we can obtain the following
results:

Theorem 3. If an ABA scheme with the property shown in Appendix D.1 is
ANOat secure, then the size of authenticator with an arbitrary recipient set
S ⊆ ID is Ω(|S| · k), where k = min

S⊆ID,θ∈[βS ]
|cmd

(θ)
S |.

Theorem 4. If an ABA scheme with the property shown in Appendix D.1 is
full-ANOat secure, then the size of the authenticator with an arbitrary recipient
set S ⊆ ID is Ω(N · k), where k = min

S⊆ID,θ∈[βS ]
|cmd

(θ)
S |.
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We note that ABA schemes provided in [13] asymptotically meet the
above bounds tightly. Therefore, we can conclude that our lower bounds on
authenticator-size for ANO-BA and full-ANO-BA are asymptotically tight.
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use of the radio spectrum” among “Research and Development for Expansion of Radio
Wave Resources (JPJ000254),” which was supported by the Ministry of Internal Affairs
and Communications, Japan.

A Anonymous Broadcast Authentication

We define Anonymous Broadcast Authentication (ABA) and its security notions.
In this paper, we assume that the maximum number of recipients N is deter-
mined at the time of setup and an arbitrary set of recipients can be specified at
the time of authentication.

Syntax. An Anonymous Broadcast Authentication scheme ΠABA consists of
four algorithms (Setup, Join,Auth,Vrfy).

1. ak ← Setup(1κ, N, �): a probabilistic algorithm for setup. It takes a security
parameter 1κ, the maximum number of recipients N ∈ N, the maximum
number of recipients � designated at once as input, and outputs authentication
key ak.

2. vkid ← Join(ak, id): a verification key generation algorithm. It takes ak and an
identifier id ∈ ID, as input, and outputs verification key vkid for id. Here, ID
is a set of all possible identifiers, and |ID| := poly(κ) for some polynomial
poly(·).

3. cmdS ← Auth(ak,m,S; r): an authentication algorithm. It takes ak, a message
m ∈ M, a randomness r ∈ R, and a privileged set S ⊆ ID as input, and
outputs ciphertext cmdS , where M is a message space and R is a randomness
space. It is also possible to omit r from the input.

4. m ← Vrfy(vkid, cmdS): a verification algorithm. It takes vkid and cmdS as
inputs, and outputs m ∈ M (accept) or ⊥ (reject).

To describe properties of the existing ABA scheme, we regard Join as a deter-
ministic algorithm in this paper.

Correctness. For all κ,N ∈ N, all � such that 1 ≤ � ≤ N , all ak ←
Setup(1κ, N, �), all m ∈ M, all r ∈ R, and all S ⊆ ID such that |S| ≤ �,
if id ∈ S, then m ← Vrfy(Join(ak, id),Auth(ak,m,S)) holds with overwhelming
probability. Otherwise, ⊥ ← Vrfy(Join(ak, id),Auth(ak,m,S)) holds with over-
whelming probability

Anonymity. We define two kinds of anonymity for ABA, full anonymity (full-
ANO) and anonymity (ANO).

Let A be any PPT adversary against full-ANO security. We consider an
experiment Expfull-ANOΠABA,A (κ,N, �) between a challenger C and A.
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Expfull-ANOΠABA,A (κ,N, �).
C randomly chooses b ∈ {0, 1}. C runs Setup(1κ, N, �) to get ak and randomly
chooses b ∈ {0, 1}. Let D, CD be a empty sets. We denote D as a set of recipients
currently participating in the protocol, and CD as a set of identifiers of recipient
from which A obtained its verification key, respectively. A may adaptively issue
the following queries to C.

– Key-generation Query: Upon a query id ∈ ID from A, C adds id to D and
generates vkid ← Join(ak, id). Note that A obtains nothing, and that A is
allowed to make this query at most N times.

– Corruption Query: Upon a query id ∈ D from A, C adds id to CD, and returns
vkid to A.

– Challenge Query: Upon a query (m,S0,S1) ∈ M × (
2D

≤�

)2 from A, C runs
cmdSb

← Auth(ak,m,Sb) and returns cmdSb
to A. A is allowed to make this

query only once under the restriction that (S0 � S1) ∩ CD = ∅.

At some point, A outputs b′. If b′ = b, C then sets 1 as the output of
Expfull-ANOΠABA,A (κ,N, �). Otherwise, C then sets 0. C terminates the experiment.

We can also define ANO with an experiment ExpANOΠABA,A(κ,N, �) which is the
same as Expfull-ANOΠABA,A (κ,N, �) except for the following additional condition of the
restriction for challenge query: |S0| = |S1|.
Definition 5 (Anonymity). We say ΠABA is X secure (X ∈ {full-ANO, ANO})
if for any PPTA A, for all sufficiently-large κ ∈ N, all N ∈ N and all
� (≤ N), it holds that AdvX

ΠABA,A(κ,N, �) < negl(κ), where AdvX
ΠABA,A(κ,N, �) :=

|Pr[ExpX
ΠABA,A(κ,N, �) → 1] − 1

2 |.

B Atomic Broadcast Authentication

In this section, we give a formal syntax of Atomic Broadcast Authentication
(AtBA) to formally describe properties satisfied by the existing ABA scheme.
These properties are used to formalize existing properties of ABA and derive
lower bounds. We further provide security definitions for ABA covered with
AtBA.

B.1 Syntax of AtBA

Our AtBA describes authentication and verification for each recipient in a desig-
nated set performed inside Auth and Vrfy algorithms of ABA. We define a model
for Atomic BA ΠAt-BA = (Setup-at, Join-at,Auth-at,Vrfy-at) as follows.

1. {ak(δ)}δ∈Δ ← Setup-at(1κ, N, �): a probabilistic algorithm for setup. It takes
a security parameter 1κ, the maximum number of receivers N ∈ N, the maxi-
mum number of receivers � designated at once as input, and outputs authen-
tication key ak consisting of |Δ| atomic authentication keys {ak(δ)}δ∈Δ.
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2. {vk(γ)id }γ∈Γid
← Join-at({ak(δ)}δ∈Δ, id): a verification key generation algo-

rithm. It takes {ak(δ)}δ∈Δ and an identifier id ∈ ID, as input, and out-
puts verification key vkid for id consisting of |Γid| atomic verification keys
{vk(γ)id }γ∈Γid

.
3. cmdS,id ← Auth-at({ak(δ)}δ∈Δ′ ,S,m, id; r): an atomic authenticate algorithm.

It takes {ak(δ)}δ∈Δ′ , a message m ∈ M, a privileged set S ⊆ ID, an identifier
id ∈ ID and randomness r ∈ R as input, and outputs an atomic authenticator
cmdS,id, where Δ′ ⊆ Δ.

4. m/⊥ ← Vrfy-at({vk(γ)id }γ∈Γ ′
id
, cmdS,id): an atomic verification algorithm. It

takes a subset of atomic verification keys {sk(γ)id }γ∈Γ ′
id
, and cmdS,id as input,

and outputs a message m(accept) or ⊥(reject), where Γ ′
id ⊆ Γid.

Setup-at and Join-at are essentially equivalent to Setup and Join in ABA
respectively, except for difference that authentication and verification keys are
explicitly divided into multiple sub-elements. As in the case of Join in BE, we
regard Join-at as being a deterministic algorithm. We require a natural property
for AtBA that an atomic authenticator cmdS,id contained in authenticator cmdS
will be correctly verified by a verification key {vk(γ)id }γ∈Γid

of a recipient id ∈ S
as follows:

Atomic Correctness. For all κ,N ∈ N, all � such that 1 ≤ � ≤ N , all
{ak(δ)}δ∈Δ ← Setup-at(1κ, N, �), all id ∈ ID, all m ∈ M, all r U← R, all S ⊆ ID
such that |S| ≤ �, all {vk(γ)id }γ∈Γid

← Join-at({ak(δ)}δ∈Δ, id), for some Δ′ ⊆ Δ

and Γ ′
id ⊆ Γid, for all cmdS,id ← Auth-at({ak(δ)}δ∈Δ, id,m,S), if id ∈ S, then

m ← Vrfy-at({vk(γ)id }γ∈Γid
, cmdS,id) with overwhelming probability. Otherwise,

⊥ ← Vrfy-at({vk(γ)id }γ∈Γid
, cmdS,id) with overwhelming probability.

B.2 Security Definitions for ABA Covered with AtBA

We define anonymity for ABA covered with AtBA in the same way as in BE. In
the following, we give definitions of full anonymity (full-ANOat) and anonymity
(ANOat).

Security games for ABA covered with AtBA are the same as those for ABA
except that an attacker obtains verification keys and a challenge authenticator is
explicitly devided into multiple sub-elements. Essentially, there is no difference
between anonymity for ABA and AtBA in that information attackers obtain.
Therefore, we consider AnonymityAt defined below to be the same security as
Anonymity.

Let A be any PPT adversary against full-ANOat security. We consider an
experiment Expfull-ANOat

ΠABA,A (κ,N, �) between a challenger C and A. Let Expfull-ANOat
ΠABA,A

be the experiment with the following changes to Key-generation Query and
Corruption Query in experiment Expfull-ANOΠABA,A .

– Key-generation Query: Upon a query id ∈ ID from A, C adds id to D and
generates {vk(γ)id }γ∈Γid

← Join-at(ak, id), not vkid ← Join(ak, id).



Lower Bounds in Anonymous Broadcast Encryption and Authentication 123

– Corruption Query: Upon a query id ∈ D from A, C adds id to CD, and returns
{vk(γ)id }γ∈Γid

to A, not vkid.

We also define ANOat with an experiment ExpANOat
ΠABA,A(κ,N, �) which is the

same as Expfull-ANOat
ΠABA,A (κ,N, �) except for the following additional condition of the

restriction for challenge query: |S0| = |S1|.
Definition 6 (Anonymity for AtBA). We say ΠABA is X secure (X ∈
full-ANOat, ANOat) if for any PPTA A, for all sufficiently-large κ ∈ N, all
N ∈ N and all � (≤ N), it holds that |AdvX

ΠABA,A(κ,N, �)| < negl(κ), where
AdvX

ΠABA,A(κ,N, �) := |Pr[ExpX
ΠABA,A(κ,N, �) → 1] − 1

2 |.

C Properties in An Existing ABA Scheme

In this section, we describe four properties that holds for an existing ABA
scheme. The four properties is as follows.

Property 5. Authenticator cmdS output from ΠABA.Auth algorithm consists of
atomic authenticator cmdS,id obtained by ΠAt-BA.Auth-at algorithm, and other
elements. In other words, let a set of atomic authenticators contained in cmdS
be {cmdS,id}id∈S , and let union of {cmdS,id}id∈S and some elements contained
in cmdS be {cmd

(θ)
S }θ∈[βS ], it holds that {cmdS,id}id∈S ⊆ {cmd

(θ)
S }θ∈[βS ] ⊆

cmdS . Here, a randomness r input to ΠAt-BA.Auth-at is the same when gen-
erating {cmdS,id}id∈S respectively. Also, inside ABA’s ΠABA.Vrfy algorithm,
ΠAt-BA.Vrfy-at algorithm takes atomic authenticator and a set of atomic veri-
fication key as input, and outputs a message. If cmdS is valid authenticator,
then there is an atomic authenticator cmd

(θ)
S in cmdS that can be verified using

a subset of atomic verification keys of a recipient id in S. Formally, we require
the following property for ABA ΠABA:

For all κ,N ∈ N, all � such that 1 ≤ � ≤ N , all ak ← ΠABA.Setup(1κ, N, �),
all m ∈ M, all S ⊆ ID such that |S| ≤ �, all id ∈ ID, all
{vk(γ)id }γ∈Γid

← ΠAt-BA.Join-at(ak, id), all r
U← R, all {cmd

(θ)
S }θ∈[βS ] ⊆ cmdS

← ΠABA.Auth(ak,m,S; r), if id ∈ S, then for some Γ ′
id ⊆ Γid, there exists θ ∈ [βS ]

such that m ← Vrfy-at({vk(γ)id }γ∈Γ ′
id
, cmd

(θ)
S ). If id /∈ S, then for all Γ ′

id ⊆ Γid, there

is no θ ∈ [βS ] such that m ← Vrfy-at({vk(γ)id }γ∈Γ ′
id
, cmd

(θ)
S ).

Property 6. When generating cmdS,id such that m ← Vrfy-at({vk(γ)id }γ∈Γ ′
id
,

cmdS,id) for some γ ∈ Γ ′
id, let Δ∗

id,S,m be a minimum subset of atomic authentica-
tion keys required for the input to Auth-at. In this case, Δ∗

id,S,m is uniquely deter-
mined by pairs of the recipient’s identifier, the message, and the set (id,m,S) to
input to Auth-at.

Property 7. When m ← Vrfy-at({vk(γ)id }γ∈Γ ′
id
, cmdS,id) holds, let Γ ∗

id,S be a min-
imum subset of atomic verification keys required for the input to Vrfy-at. In this
case, Γ ∗

id,S is uniquely determined by pairs of the recipient’s identifier, and the
set (id,S) to input to Auth-at when generating cmdS,id.
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Property 8. For all (ak, {ak(δ)}δ∈Δ) ← Setup(1κ, N, �), id, id′ ∈ ID, all S such
that {id, id′} ⊆ S, all m ∈ M, r ∈ R, all cmdS,id ← Auth-at({ak(δ)}δ∈Δ∗

id,S,m
,

id,m,S; r), cmdS,id′ ← Auth-at({ak(δ′)}δ′∈Δ∗
id′,S,m

, id′,m,S; r), if cmdS,id =

cmdS,id′ holds, then we have {ak(δ)}δ∈Δ∗
id,S,m

= {ak(δ′)}δ′∈Δ∗
id′,S,m

with overwhelm-
ing probability.

Here, we can see that the existing ABA scheme [13] satisfy the above prop-
erties in a similar way in Sect. 3.2.

D Lower Bounds of authenticator Size in ABA

D.1 A Property of ANO-BA and Full-ANO-BA

In order to derive lower bounds for ANO-BA and full-ANO-BA, we assume
a property that “a minimum subset of atomic verification keys used to verify
authenticators is uniquely determined by a subset of authentication keys used
to generate the authenticator.” Specifically, we consider the following property
for ANO-BA and full-ANO-BA:

Assumption 3. When {ak(δ)}δ∈Δ ← Setup(1κ, N, �) is generated, we denote
AK∗ as a set of all authentication keys, namely AK∗ := {ak(δ)}δ∈Δ. And,
when {vk(γ)id }γ∈Γid

← Join(ak, id) is generated, VK∗ denotes a set of a mini-
mum subset of atomic verification keys to be input to Vrfy-at, namely VK∗ :=
{{vk(γ)id }γ∈Γ ∗

id,S }id∈ID,S⊆ID. Here, we note that VK∗ is uniquely determined, since
Join− at is a deterministic algorithm. At this time, for all id ∈ ID, all S ⊆ ID,
all m ∈ M, all r ∈ R, all ak′ ∈ 2AK∗

, all cmdS,id ← Auth-at(ak′, id,m,S; r), a set
of atomic verification keys vk′ ∈ VK∗ ∪ {⊥} such that m ← Vrfy-at(vk′, cmdS,id)
is uniquely determined by the set of atomic authentication keys ak′.

The above property holds for Watanabe et al.’s ANO-BA and full-ANO-BA
schemes [13], which is a generic construction using message authentication code
and pseudo-random function. Since it can be shown that they satisfies the above
property in the same way as ANO-BE scheme of Libert et al. [11], we omit a
detailed discussion here.

D.2 Lower Bounds in ANOat Secure ABA

First, we show two lemmas, Lemmas 4 and 5, for ANOat secure ABA with
Properties 5, 6, 7 and 8 described in Section C. In Lemma 4, we show that “if
ABA is ANOat secure, then for authenticators with a set S0,S1 whose size is
equal, sets of atomic verification keys used by a receipient id for each verification
is equal.” Then, in Lemma 5, we show that “if ABA is ANOat secure, then for
any set S with more than two elements, recipients id, id′ ∈ S must not share a
set of atomic verification keys used to verify cmdS .”
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Then, for ANOat secure ABA with the property described in Assumption 3,
we will derive a lower bound on authenticator-size by Theorem 5.

Lemma 4. If ABA ΠABA is ANOat secure, for all id ∈ ID, all S0,S1 such that
id ∈ S0 ∩ S1 and |S0| = |S1|, we have {vk(γ)id }γ∈Γ ∗

id,S0
= {vk(γ)id }γ∈Γ ∗

id,S1
.

Proof. We show this lemma by contraposition. Suppose {vk(γ)id }γ∈Γ ∗
id,S0

�=
{vk(γ)id }γ∈Γ ∗

id,S1
for some id ∈ ID and some S0,S1 such that id ∈ S0 ∩ S1, |S0| =

|S1|. We will construct PPT adversary against ANOat security as follows. Let id∗

be id as above. Initially, the adversary guesses sizes of S0,S1 as �∗ U← [�]. Next,
the adversary guesses id∗,S0, and S1. A probability that the adversary suc-

ceeds in guessing is 1
|ID| · 1

� · ( |ID|
�∗−1

)−1 ·
(( |ID|

�∗−1

) − 1
)−1

. The adversary also issues
Key-Generation queries for all id in S0 ∪ S1 and Corruption queries for id∗ to
obtain verification key {vk(γ)id∗ }γ∈Γid∗ . Then, the adversary issues a challenge query
(m,S0,S1) to obtain {cmd

(θ)
Sb

}θ∈[βSb
] ⊆ cmdSb

. Finally, the adversary outputs

b′ = 0 if there exists θ ∈ [βSb
] such that m ← Dec-at({vk(γ)id∗ }γ∈Γ ∗

id∗,S0
, cmd

(θ)
Sb

),
and b′ = 1 otherwise. In this case, the adversary can output b′ such that b = b′

with probability 1
2

(
1

|ID| · 1
� · ( |ID|

�∗−1

)−1 ·
(( |ID|

�∗−1

) − 1
)−1

+ 1
)

. ��

Lemma 5. If ABA ΠABA is ANOat secure, for all id, id′ ∈ ID, all S ⊆ ID such

that {id, id′} ⊆ S, |S| ≥ 2, we have {vk(γ)id }γ∈Γ ∗
id,S �= {vk(γ′)

id′ }γ′∈Γ ∗
id′,S

.

Proof. Assume on the contrary that we have {vk(γ)id }γ∈Γ ∗
id,S = {vk(γ′)

id′ }γ′∈Γ ∗
id′,S

for some id, id′ ∈ ID and some S ⊆ ID such that {id, id′} ⊆ S, |S| ≥ 2. Then,
we will show that it contradicts correctness of ABA with AtABA structure (see
Section C, Property 5). First, we choose S ′ such that id ∈ S ′, id′ /∈ S ′, |S| =
|S ′|. In this case, since id ∈ S ′, we have m ← Dec-at({vk(γ)id }γ∈Γ ∗

id,S′ , cmdS′,id).

And, since {vk(γ)id }γ∈Γ ∗
id,S′ = {vk(γ)id }γ∈Γ ∗

id,S from Lemma 4, we have m ← Dec-at(

{vk(γ)id }γ∈Γ ∗
id,S , cmdS′,id). Here, since {vk(γ)id }γ∈Γ ∗

id,S = {vk(γ′)
id′ }γ′∈Γ ∗

id′,S
from the

assumption, we have m ← Dec-at({vk(γ′)
id′ }γ′∈Γ ∗

id′,S
, cmdS′,id). However, by id′ �∈

S ′, the above contradicts Property 5. ��
In the following, we derive a lower bound on authenticator-size in ANOat

secure ABA with the property described in Assumption 3. Specifically, we show
the statement: When there exists a set S such that the number of atomic authen-
ticators cmdS contained in cmdS is less than |S|, a contradiction occurs for
Lemma 5.

Theorem 5. If ABA with the property shown in Assumption 3 is ANOat
secure, the size of authenticator with any recipient set S ⊆ ID is Ω(|S| · k),
where k = min

S⊆ID,θ∈[βS ]
|cmd

(θ)
S |.
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Proof. For some set of recipients S∗, we assume βS∗ < |S∗|, and then show that
this contradicts Lemma 5. Now, from βS∗ ≥ 1, we consider that |S∗| ≥ 2 holds.
From βS∗ < |S∗|, for a set of atomic authenticators {cmd

(θ)
S∗ }θ∈βS∗ , there exists

at least one atomic authenticator cmd
(θ∗)
S∗ that can be verified by two recipients

id, id′ ∈ S∗. That is, for id, id′ ∈ S∗ and for any m ∈ M, r ∈ R, it holds that
cmd

(θ∗)
S∗ = cmdS,id = cmdS,id′ , when cmdS,id, cmdS,id′ is generated by

cmdS,id ← Enc-at({ak(δ)}δ∈Δ∗
id,S∗,m

, id,m,S∗; r),

cmdS,id′ ← Enc-at({ak(δ)}δ∈Δ∗
id′,S∗,m

, id′,m,S∗; r).

Therefore, by Property 8, we have {ak(δ)}δ∈Δ∗
id,S∗,m

= {ak(δ)}δ∈Δ∗
id′,S∗,m

.
In addition, we have the following by Atomic Correctness:

m ← Dec-at({vk(γ)id }γ∈Γ ∗
id,S∗ , cmd

(θ∗)
S∗ ), (3)

m ← Dec-at({vk(γ′)
id′ }γ′∈Γ ∗

id′,S∗ , cmd
(θ∗)
S∗ ). (4)

In this case, a set of atomic authentication keys used to authenticate cmd
(θ∗)
S∗ is

{ak(δ)}δ∈Δ∗
id,S∗,m

= {ak(δ)}δ∈Δ∗
id′,S∗,m

. Then, by Assumption 3, a set of a minimum

subset of atomic verification keys used to verify cmd
(θ∗)
S∗ is uniquely determined

by {ak(δ)}δ∈Δ∗
id,S∗,m

. Therefore, in order that (3) and (4) holds, the following

must hold true: {vk(γ)id }γ∈Γ ∗
id,S∗ = {vk(γ′)

id′ }γ′∈Γ ∗
id′,S∗ . However, the above equality

contradicts Lemma 5. ��

D.3 Lower Bounds in full-ANOat secure ABA

First, we show Lemma 6 that states “if ABA is full-ANOat secure, then for all
privileged set S,S ′, βS = βS′ holds , where βS , βS′ are the number of atomic
authenticators in cmdS , cmdS′ , respectively.” Then, we derive a lower bound on
authenticator size in Theorem 6 for full-ANOat secure ABA with the property
described in Assumption 3, using Lemma 6 and Theorem 5.

Lemma 6. If ABA ΠABA is full-ANOat secure, we have βS = βS′ for all S,S ′.

Proof. We show the statement: If βS �= βS′ for some set S,S ′, then we can
construct a PPT adversary that breaks the full-ANOat security.

the adversary guesses the size of S,S ′ as �0
U← [�], �1

U← [�], respectively. We
then randomly select a set whose size is �0, �1. Here, the probability that the
adversary can obtain the set S,S ′ such that βS �= βS′ is �−1 · (|ID|

�0

)−1 · �−1 ·
(|ID|

�1

)−1
. Then, the adversary issues (m,S,S ′) as a challenge query, and obtains

{cmd
(θ)
Sb

}θ∈[βSb
]. If βSb

= �0, the adversary outputs b′ = 0, otherwise b′ = 1. ��
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Theorem 6. If ABA with the property shown in Assumption 3 is full-ANOat
secure, the size of authenticator with an arbitrary recipient set S ⊆ ID is Ω(N ·
k), where k = min

S⊆ID,θ∈[βS ]
|cmd

(θ)
S |.

Proof. We assume βS < N for some S, and show a contradiction. First, if S∗ :=
[N ], then βS∗ = βS < N holds from Lemma 6. On the other hand, since a full-
ANOat secure ABA meets ANOat security, we have βS∗ ≥ N by Theorem 5,
but it contradicts βS∗ < N . ��

References

1. Agrawal, S., Wichs, D., Yamada, S.: Optimal broadcast encryption from LWE and
pairings in the standard model. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS,
vol. 12550, pp. 149–178. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64375-1 6

2. Agrawal, S., Yamada, S.: Optimal broadcast encryption from pairings and LWE.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 13–43.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1 2

3. Barth, A., Boneh, D., Waters, B.: Privacy in encrypted content distribution using
private broadcast encryption. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006.
LNCS, vol. 4107, pp. 52–64. Springer, Heidelberg (2006). https://doi.org/10.1007/
11889663 4

4. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005). https://doi.org/10.1007/
11535218 16

5. Boneh, D., Waters, B., Zhandry, M.: Low overhead broadcast encryption from
multilinear maps. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8616, pp. 206–223. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44371-2 12

6. Fazio, N., Perera, I.M.: Outsider-anonymous broadcast encryption with sublinear
ciphertexts. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 225–242. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30057-8 14

7. Gay, R., Kowalczyk, L., Wee, H.: Tight adaptively secure broadcast encryption
with short ciphertexts and keys. In: Catalano, D., De Prisco, R. (eds.) SCN 2018.
LNCS, vol. 11035, pp. 123–139. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-98113-0 7

8. Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems (with
short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp.
171–188. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-
9 10

9. Kiayias, A., Samari, K.: Lower bounds for private broadcast encryption. In: Kirch-
ner, M., Ghosal, D. (eds.) IH 2012. LNCS, vol. 7692, pp. 176–190. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-36373-3 12

10. Li, J., Gong, J.: Improved anonymous broadcast encryptions. In: Preneel, B., Ver-
cauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 497–515. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-93387-0 26

https://doi.org/10.1007/978-3-030-64375-1_6
https://doi.org/10.1007/978-3-030-64375-1_6
https://doi.org/10.1007/978-3-030-45721-1_2
https://doi.org/10.1007/11889663_4
https://doi.org/10.1007/11889663_4
https://doi.org/10.1007/11535218_16
https://doi.org/10.1007/11535218_16
https://doi.org/10.1007/978-3-662-44371-2_12
https://doi.org/10.1007/978-3-662-44371-2_12
https://doi.org/10.1007/978-3-642-30057-8_14
https://doi.org/10.1007/978-3-642-30057-8_14
https://doi.org/10.1007/978-3-319-98113-0_7
https://doi.org/10.1007/978-3-319-98113-0_7
https://doi.org/10.1007/978-3-642-01001-9_10
https://doi.org/10.1007/978-3-642-01001-9_10
https://doi.org/10.1007/978-3-642-36373-3_12
https://doi.org/10.1007/978-3-319-93387-0_26


128 H. Kobayashi et al.

11. Libert, B., Paterson, K.G., Quaglia, E.A.: Anonymous broadcast encryption: adap-
tive security and efficient constructions in the standard model. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 206–224.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8 13

12. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 3

13. Watanabe, Y., Yanai, N., Shikata, J.: Anonymous broadcast authentication for
securely remote-controlling IoT devices. In: Barolli, L., Woungang, I., Enokido, T.
(eds.) AINA 2021. LNNS, vol. 226, pp. 679–690. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-75075-6 56

14. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 36

15. Zhang, L., Wu, Q., Mu, Y.: Anonymous identity-based broadcast encryption with
adaptive security. In: Wang, G., Ray, I., Feng, D., Rajarajan, M. (eds.) CSS 2013.
LNCS, vol. 8300, pp. 258–271. Springer, Cham (2013). https://doi.org/10.1007/
978-3-319-03584-0 19

https://doi.org/10.1007/978-3-642-30057-8_13
https://doi.org/10.1007/3-540-44647-8_3
https://doi.org/10.1007/978-3-030-75075-6_56
https://doi.org/10.1007/978-3-030-75075-6_56
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-319-03584-0_19
https://doi.org/10.1007/978-3-319-03584-0_19


Optimizing Registration Based
Encryption

Kelong Cong1 , Karim Eldefrawy2 , and Nigel P. Smart1,3(B)

1 imec-COSIC, KU Leuven, Leuven, Belgium
kelong.cong@esat.kuleuven.be, nigel.smart@kuleuven.be

2 SRI International, Menlo Park, CA, USA
karim.eldefrawy@sri.com

3 Department of Computer Science, University of Bristol, Bristol, UK

Abstract. The recent work of Garg et al. from TCC’18 introduced the
notion of registration based encryption (RBE). The principal motivation
behind RBE is to address the key escrow issue of identity based encryp-
tion (IBE), where an IBE authority is trusted to generate private keys
for all users in the system. Although RBE has excellent asymptotic prop-
erties, it is currently impractical; in our estimate, ciphertext size would
be about 11 TB in an RBE deployment supporting 2 billion users.

Motivated by this observation, our work attempts to reduce the con-
crete communication and computation cost of the current state-of-the-art
construction. Our contribution is two-fold. First, we replace the usage of
Merkle trees in RBE with crit-bit trees, a form of PATRICIA trie, with-
out relaxing any of the original efficiency requirements introduced by
Garg et al. This change reduces the ciphertext size by 15% and the com-
putation cost of decryption by 30%. Second, we observe that increasing
RBE’s public parameters by a few hundred kilobytes could reduce the
ciphertext size by an additional 50%. Overall, our work decreases the
ciphertext size by 57.5%.

1 Introduction

Identity based encryption (IBE), introduced by Shamir [33], allows Alice to
encrypt a message to Bob as long as she knows Bob’s identity, such as his email
address or pseudonym. This notion significantly simplifies the key-management
issue of public key encryption [10,19,31] (PKE) since it removes the need of a
public key infrastructure (PKI). Starting with the first concrete instantiation
by Boneh and Franklin [5], a long line of research has developed many IBE
instantiations from a variety of assumptions. Generalizations of IBE such as
attribute based encryption (ABE) [32] and functional encryption (FE) [6] have
also been recently studied.

Despite the success of the research community in developing practical IBE,
IBE has not replaced public key encryption due to the key escrow problem. In an
IBE scheme, there exists a key-generation authority that generates decryption
keys for every user enrolled in the system. Users must fully trust such an author-
ity to behave honestly, since it has the ability to decrypt every (private) message
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that it captures. In an age where end-to-end encryption is widely deployed1,
requiring a central authority that can eavesdrop on private communication is
considered a major downgrade in security.

An obvious mitigation to this key escrow problem is to homogeneously dis-
tribute the power of the key generation authority, which was already suggested
by Boneh and Franklin [5]. The work of Kate and Goldberg [23], for example,
presented a solution based on distributed key generation. Another approach is to
distribute the authority heterogeneously. In the work of Chow [9], authentication
and key-issuance are performed by two different authorities, identity certifying
authority and key generation authority. This approach ensures that the key gen-
eration authority, which has the master private key, does not know the identities
of users. Without the identities, the key generation authority cannot decrypt
the messages as long as the two authorities do not collude. While these ideas
mitigate the escrow problem, they do not solve it completely since the authority
(or a collective authority) still has the ability to eavesdrop on users.

In another direction, Al-Riyami and Paterson [1] put forward the notion of
Certificateless Public Key Cryptography; there is no escrow problem and there is
no need for certificates in such schemes. Thus, this notion can be seen as a hybrid
between PKE+PKI and IBE. Unfortunately, it does not have the convenient
features of IBE since users cannot encrypt messages using only the identities of
the receivers (assuming some known system-wide public parameter).

1.1 Registration Based Encryption: Prior Work

Motivated by the shortcomings discussed above, Garg et al. [16] initiated the
study of Registration-Based Encryption (RBE) where the authority does not
hold any secret and is fully transparent.

There are three roles in RBE. The key curator (KC), the encryptor and the
decryptor. Of course, a single entity may have multiple roles. Every decryptor
registers their public key and identity with a KC. In contrast to a typical IBE
scheme, the KC does not generate decryption keys nor does it hold any secret
information; it simply acts as an accumulator. Although the KC may sound
like a PKI, it does not answer queries for public keys. Instead, it publishes
a relatively short public parameter that every encryptor can use to perform
encryption. Similar to IBE, the encryptor only needs to know the identity of the
receiver/decryptor and the short public parameter to generate a ciphertext. The
decryptor needs some “supporting information”, that does not need to be kept
secret from the KC, and its own private key to decrypt. The public parameters in
some sense “encode” identities and public keys of all users, in a highly compact
form.

To make RBE more attractive, the formal definition of RBE [16] formulates
the following efficiency requirements:

1. The public parameters must be short, i.e., poly(λ, log n), where n is the num-
ber of registered users and λ is the security parameter.

1 WhatsApp implements end-to-end encryption and has 2 billion users [13].



Optimizing Registration Based Encryption 131

2. The registration process and the generation of supporting information must
be efficient, i.e., they must run in time poly(λ, log n) per user registration.

3. The number of times that a decryptor must request supporting information
must be low, i.e., poly(λ, log n) over the lifetime of the system.

Below we give an overview of the RBE literature. The detailed explanation is
deferred to when we describe our contribution, since all constructions share a
similar blueprint. See Sect. 2 for a gentle introduction to the blueprint which all
constructions follow.

The authors of [16] described a construction based on indistinguishabil-
ity obfuscation (iO) [2,15] and somewhere statistically-binding hash functions
(SSBH) [21] which satisfies all the efficiency requirements. They also proposed a
weakly efficient construction based on standard assumptions but the registration
process must run in time poly(λ, n).

Followup work [17] solved the issue above and introduced the first RBE
scheme that satisfies all the efficiency requirements from standard assumptions.
Their “efficient” RBE construction is achieved via a two-step approach, where
they used the construction of [16] to bootstrap the fully efficient construction.
Further, the authors introduce anonymous RBE which requires that the cipher-
text generated on a uniformly random message looks uniformly random (irre-
spective of the recipient).

An outstanding security issue is that the KC could maliciously register dupli-
cate identities with different public keys where it knows the corresponding secret
key. A malicious user could do the same if the KC does not check for uniqueness.
This behavior essentially gives the attacker a trapdoor, allowing him to read mes-
sages that are encrypted for an honestly registered user. The same attack also
applies to PKI systems. Motivated by the above, the third work on RBE [20]
studied the verifiability aspect and described an efficient construction where the
user who has identity id can ask the KC to prove that id is unique. Further, the
authors introduced the “snapshot trick” that removed the bootstrapping step of
previous constructions [17].

1.2 Our Contributions

As mentioned above, existing RBE constructions already achieve very appealing
asymptotic complexity, i.e., short public parameters, and efficient generation and
requesting of (updated) supporting information, that scale with poly(λ, log n),
where n is the number of registered users and λ is the security parameter. Unfor-
tunately, the requirement to garble public key operations, which is a key building
block in all existing RBE schemes, makes such schemes impractical.

Concretely, suppose this operation is implemented using elliptic curve cryp-
tography, for example based on secp192k1 [8]. One (garbled) curve multiplica-
tion in this case requires 19.2 billion non-XOR gates2 and 366 GB of communi-
cation [22]. Worse, this operation is performed O(log n) times, where n is the
2 Free-XOR [26] is an optimization for garbled circuits which allows the garbler to

create the garbled truth table “for free”, without symmetric key operations.
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number of users. For example, using the most efficient construction [20], Alice
would need to send approximately 11 TB to Bob if there are 2 billion users and
λ is 256 bits. Undoubtedly, for RBE to be of practical use, we need to focus
on reducing the concrete computation and communication cost. To this end, we
make the following contributions that aim to improve the concrete efficiency.

1. We introduce an authenticated version of crit-bit trees [4] (which might be of
independent interest), a form of authenticated PATRICIA trie [29]. It is used
in our RBE construction instead of Merkle trees. This modification reduces
the number of input bits of the circuits that we need to garble, which directly
decreases the number of public key encryption circuits. We estimate a 15%
reduction in computation and communication (ciphertext size) by the encryp-
tor and a 30% reduction in computation by the decryptor. Our construction
preserves the verifiability property introduced in [20].

2. Furthermore, we suggest a modification to the RBE public parameter which
reduces computation and communication of the encryptor by a half, in addi-
tion to the improvement above. However, this modification requires us to relax
the compactness requirement in typical RBE schemes from poly(λ, log n) to
O(λ,

√
n), where n is the number of users registered in the system and λ is the

security parameter. For many applications, we argue that this is a reasonable
assumption since the total number of users would reach a saturation point,
eventually. For example, WhatsApp uses end-to-end encryption and has 2
billion users [13]; with an n of 2 billion our construction would only add 187
kilobytes to the public parameters.

The two optimizations can be combined. Overall, the ciphertext size (communi-
cation cost) can be reduced by 57.5% on average.

Our work follows the original RBE security definition [16] which does not
include a decryption oracle. In other words, we do not handle active attacks,
this limitation is not unique to our scheme, existing RBE constructions in the
literature exhibit the same limitation. Defining and designing an RBE scheme
that is secure under chosen ciphertext attacks is still currently an open question
and left for future work.

2 Registration Based Encryption: a Tutorial

Before giving the formal definitions, we describe the key idea behind all RBE
constructions using a series of strawman constructions so that readers unfamiliar
with RBE can build an intuition of how it works and why the key building block,
hash garbling, is needed. We begin our discussion by considering a fixed set of
(n) users, and only focus on the encryption and decryption functionalities. We
then describe a dynamic setting where new users are allowed to register.

2.1 Encryption and Decryption

Consider three parties, the encryptor Alice, the decryptor Bob and the key cura-
tor (KC). Alice wants to send an encrypted message to Bob using only Bob’s
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identity, e.g., his email address, and a short public parameter pp provided by
the KC. Bob should be able to decrypt the message using his secret key (which
he generated by himself) and some short, non-secret “supporting information”
u, provided by the KC. What follows is a series of strawman constructions that
we will refine one at a time. Eventually, we will arrive at a construction that is
very close to what is described in the literature.

Strawman 1 (RBE from iO): Let the KC store a Merkle tree where inter-
mediate nodes have the form (id∗‖α‖β), where id∗ is the largest identity3 of the
left sub-tree, α is the digest of the left node and β is the digest of the right node.
The digests are computed using some hash function H : {0, 1}∗ → {0, 1}λ, where
λ is the security parameter. For example, α1 = H(id∗

2‖α2‖β2) in Fig. 1. The leaf
nodes store the user identities and their corresponding public keys, i.e., they
have the form (0λ‖id‖pk). For brevity, we assume the tree is perfectly balanced,
i.e., the number of leaves is a power of two. We denote the depth of the tree
with d and the Merkle root by rt. The public parameter is pp ← (rt, d) and we
let the u data of Bob be the authenticating path from the root to the leaf that
contains Bob’s identity.

id∗
1‖α1‖β1

id∗
2‖α2‖β2

0λ‖id‖pk . . .

. . .

. . . . . .

Fig. 1. The Merkle tree structure used for RBE. The leaves are sorted by id. Consider
a node, id∗ is the identity of the largest identity in its left sub-tree.

The reason for storing the identity of the left sub-tree is so that the KC can
search for an identity in O(log n) time, using the binary search algorithm, when
a decryptor asks for his path u. Consequently, the identities stored in the leaves
must be sorted.

Another ingredient we need for encryption and decryption is a circuit P . This
circuit takes Bob’s u as input, checks whether u is a valid path that begins with
rt and ends with a leaf node containing Bob’s identity, and finally outputs ct ←
Enc(pk,m) where pk is Bob’s public key taken from the leaf node. For a path to be
valid we require that, for every node (id∗‖α‖β), the hash of the child node is β if

3 We assume the identities can be ordered.
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Bob’s identity is greater than id∗ otherwise α. We write P (u;m, pp) for the circuit,
where m and pp is hardwired into the circuit and u is the undetermined input.

If Alice wants to send an encrypted message m to Bob using only pp and Bob’s
identity, she creates an obfuscated version of the circuit P̃ ← Obf(P (?;m, pp))
and then sends it to Bob. Upon receiving P̃ , Bob simply evaluates it to obtain
ct and attempts to decrypt it using his secret key sk. Note that anyone who has
the path u, e.g., the KC, can evaluate P̃ , but it is not possible to recover the
underlying message m since they do not have Bob’s secret key.

To achieve ciphertext indistinguishability, we need to argue that two obfus-
cated programs with different hardwired m are indistinguishable. However, indis-
tinguishability obfuscation (iO) only guarantees that the two obfuscated pro-
grams are indistinguishable if they have the same functionality which is not
the case here. Fortunately, [16, Theorem 4.3] states that one can achieve indis-
tinguishability for this particular type of program P . The proof relies on the
semantic security of the PKE scheme used in the program.

Strawman 2 (Replacing iO by Using GC): Strawman 1 already has most
of ingredients of a typical RBE scheme and it is essentially the idea of the very
first RBE construction from [16]. While it works, it needs to assume that iO
exists, which is not a standard assumption.

In the second strawman, we replace the iO idea with a garbling scheme [3,18].
The garbling scheme has two algorithms. The first algorithm, Garble, takes a cir-
cuit (e.g., P ) as input, and then outputs the garbled circuit (GC) P̃ and all the
input labels k, two labels for every bit in the input of P . The evaluation algo-
rithm, Eval, evaluates the GC using the labels that correspond to the evaluator’s
input x (denoted using kx). Everything goes correctly when Eval(P̃ ,kx) = P (x).
A detailed definition is given in Sect. 3.2.

For this construction to be secure, we need to make a modification to the
circuit P . Before the values m and pp are hardwired. But this is not secure
since two garbled circuits with different topologies (different message m) are not
indistinguishable. Thus we need to modify P (u;m, pp) to become P (u,m; pp),
where m is also undetermined.

Using a garbling scheme, Alice creates a GC and input labels (P̃ ,k) ←
Garble(P ) and then sends P̃ to Bob. But we run into a problem when Bob
attempts to evaluate P̃ on the undetermined input (u,m), since he does not
have the input labels. The wire labels corresponding to m can be sent along
with the ciphertext, but for Bob to obtain the wire labels corresponding to his
input u it seems that we require interaction. In the next two strawman construc-
tions we show how to resolve this issue.

Strawman 2.5 (Breaking up the Large Circuit): Removing interaction is
not trivial. Thus, we need to take an intermediate step where we break up one
large circuit P into many smaller ones, one for every level of the tree. Below we
give a description of a circuit that does not work, but it illustrates the idea of
what we want to achieve.
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For every level j ∈ [d] in the Merkle tree, the corresponding circuit Pj will
have the following logic.

1. Take a Merkle tree node uj = (id∗
j‖αj‖βj) as input.

2. Check whether H(uj) = y where y is some hardwired value, if the check fails
then abort.

3. If id∗ = αj , return Enc(βj ,m). Recall that αj stores the identity and βj stores
the corresponding public key in the leaf node.

4. Else, return the labels that correspond to the preimage of αj if id > id∗
j ,

otherwise return the labels that correspond to βj .

If Alice sends these circuits to Bob, and if Bob also has the input labels ku1

then he can evaluate every circuit. That is because the output of every circuit is
the input label for the next circuit. The final output is Enc(βj ,m), which Bob
can decrypt using his secret key.

The reader may have already notice that in Item 2 above, Alice does not
have the digest y to create these circuits. Further, in Item 4, Alice also does
not have the preimage of αj or βj to generate the labels. Nevertheless, this
impossible strawman construction illustrates the idea of “chaining” GCs such
that the output of one is used as the input of the next. This idea is crucial for
understanding the final strawman construction.

Strawman 3 (Putting Everything Together Using Hash Garbling): In
the final strawman, we realise the idea of chaining GCs and remove the need for
interaction using an important primitive called hash garbling, first introduced
in [16].

One can think of hash garbling as an extension to a garbling scheme with
an HG.Input algorithm and a modified evaluation algorithm HG.Eval. HG.Input
outputs encrypted labels, denoted by k̃, given some input y. These encrypted
labels are crafted in a way that the actual labels that represent y are only
revealed if the preimage, under H, of y is known. Next, HG.Eval is a modified
Eval, it still takes the garbled circuit P̃ , but also takes the encrypted labels k̃
and the preimage x. As we noted earlier, it is only possible to evaluate P̃ on
input y if H(x) = y. We formally define hash garbling in Sect. 3.3.

Now we are ready to put everything together in the final strawman. We
modify the circuit Pj as follows.

1. Take a Merkle tree node uj = (id∗
j‖αj‖βj) as input.

2. If id = αj , return Enc(βj ,m).
3. Else, return HG.Input(αj) if id > id∗

j otherwise return HG.Input(βj).

Alice creates a garbled circuits P̃j as before, but she also runs k̃1 ← HG.Input(rt),
and then sends ({P̃j}j∈[d], k̃1) to Bob. Upon receiving the message, Bob begins
to evaluate the first circuit with HG.Eval(P̃1, k̃1, u1). Suppose Bob’s identity is
in the left sub-tree, the output of HG.Eval becomes k̃2 ← HG.Input(α1). Bob
continues the evaluation by running HG.Eval(P̃2, k̃2, u2), and so on. Eventually,
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k̃2 ← HG.Eval(P̃1, k̃1, u1)

k̃3 ← HG.Eval(P̃2, k̃2, u2)

k̃4 ← HG.Eval(P̃3, k̃3, u3)

Enc(pk, m) ← . . . . . .

Fig. 2. Illustration of RBE decryption.

Bob obtains Enc(pk,m) which he can decrypt using his secret key. An illustration
of this process is in Fig. 2.

The construction is complete. To understand why it removes interaction and
correctly checks the Merkle path, we make the following two observations.

1. Interaction is no longer needed in this construction. Alice does not need to
stay online after sending a series of garbled circuits and an encrypted input
label.

2. Due to the properties of hash garbling, the evaluator must input the correct
preimage and encrypted labels to HG.Eval at every step, otherwise the circuits
cannot output the ciphertext at the end. In other words, the evaluator cannot
generate the encrypted labels by himself which forces him to use the correct
preimage x in HG.Eval, i.e. the path provided to the evaluator by the KC.

2.2 Adding Registration

We now turn to registration. Performing registration the naive way, i.e., adding
a new leaf node to the Merkle tree whenever a new user registers, leads to O(n)
updates for the supporting information u, the path that contains his leaf.

A simple idea, first introduced in [16], is to keep multiple Merkle trees. When-
ever a new user registers, a new Merkle tree with a single leaf is created. Then,
trees that have the same number of leaves are merged to form a new tree. Observe
that the sizes of the trees are unique powers of two. The KC needs to publish
O(log n) Merkle roots, so the public parameters are kept small. The encryptor
Alice needs to run the encryption procedure for every tree since she does not
know where Bob’s leaf is. The number of updates that Bob needs to do for u is
reduced to O(log n) due to the following reason. Bob’s identity must be in a tree
with 2i leaves, for some integer i. Bob needs to update u whenever 2i users are
registered in the system after him. When that happens, his identity will be in a
tree with 2i+1 leaves and the process repeats.
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Unfortunately, the registration idea above does not guarantee poly(λ, log n)
computational complexity. Concretely, whenever two Merkle trees are merged,
their leaves need to be re-sorted. As such, it is not possible to merge to trees
in time poly(λ, log n) while keeping the leaves sorted. Subsequent works [17,20]
resolved this issue. We use the same idea in our construction thus we defer the
details to Sect. 4.2.

3 Preliminaries

We first present definitions used throughout this paper.

3.1 Public Key Encryption

A public key encryption (PKE) scheme consists of the following PPT algorithms.

– KGen(1λ) → (pk, sk). The key generation algorithm takes the security param-
eter as input, and then outputs a public key and a private key.

– Enc(pk,m) → ct. The encryption algorithm takes a public key pk and a
message m as input, and then outputs a ciphertext ct. Sometimes we write
Enc(pk,m; r) to explicitly specify the randomness r ∈ {0, 1}λ.

– Dec(sk, ct) → m. The decryption algorithm takes a secret key sk and a cipher-
text ct as input, and then outputs a message m.

Definition 1 (Correctness of PKE). A PKE scheme is correct if for all λ,
m ∈ M and (pk, sk) ← KGen(1λ), it holds that

Pr[Dec(sk,Enc(pk,m)) = m].

Definition 2 (IND-CPA security of PKE). The PKE scheme is IND-CPA
secure if there exists a negligible function negl(λ) such that any PPT adversary
A wins the following game with probability 1

2 + negl(λ).

– The challenger C generates (pk, sk) ← KGen(λ) and sends pk to A.
– A picks two messages m0,m1 and sends them to C.
– C samples b ←$ {0, 1} and sends ct ← Enc(pk,mb) to A.
– A outputs b′ and wins if b = b′.

3.2 Garbled Circuits

To build a hash garbling scheme, we also need garbled circuits (GC). We review
Yao’s GC next using the notation adapted from [7]. A garbling scheme consist
of the following two algorithm.

– Garble(1λ, 1n, 1m, C, state) → (C̃, {ki,b}i∈[n],b∈{0,1}) is a deterministic algo-
rithm that generates the input labels {ki,b}i∈[n],b∈{0,1} as well as all the inter-
mediate labels using state as the seed, and then creates the garbled circuit C̃,
which has an input length of n bits and an output length of m bits.
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– Eval(1λ, C̃, {ki,xi
}i∈[n]) evaluates the garbled circuit using the given input

labels ki,xi
. Each label corresponds to a bit of the desired input x.

Definition 3 (Correctness of garbling). For all circuits C, inputs x and secret
state state ∈ {0, 1}λ, correctness holds when Eval(1λ, C̃,k) = C(x), where
(C̃, {ki,b}i∈[n],b∈{0,1}) ← Garble(1λ, 1n, 1m, C, state) and k ← {ki,xi

}i∈[n].

Definition 4 (Security of garbling). For any circuit C : {0, 1}n → {0, 1}m,
input x ∈ {0, 1}n and secret state state ∈ {0, 1}λ, there exists a simulator Sim
such that the following distributions are computationally indistinguishable:

{(C̃, k̃) : (C̃, {k̃i,b}i∈[n],b∈{0,1}) ← Garble(1λ, 1n, 1m, C, state), k̃ ← {k̃i,xi
}i∈[n]}

c≈{(C̃, k̃) : (C̃, k̃) ← Sim(1λ, 1|C|, 1n, C(x))}.

3.3 Hash Garbling

The main ingredient in RBE is hash garbling; it is first introduced in [16] and
then used in a similar manner in subsequent works on RBE [17,20]. In this
section, we review its definition from the literature. A hash garbling scheme is
defined by the following five algorithms HG.Gen, HG.Hash, HG.Garble, HG.Input,
HG.Eval:

– HG.Gen(1λ, 1n) → hk. This algorithm takes a security parameter λ and an
input length parameter n, and outputs a hash key hk.

– HG.Hash(hk, x) → y. This is a deterministic algorithm that takes a hash key
hk and a preimage x ∈ {0, 1}n as input, and outputs a digest y ∈ {0, 1}λ.

– HG.Garble(hk, C, state) → C̃. This algorithm takes a hash key hk, a circuit C
and a secret state state ∈ {0, 1}λ as input, and outputs a garbled circuit C̃
(without labels).

– HG.Input(hk, y, state) → k̃. This algorithm takes a hash key hk, a value y ∈
{0, 1}λ and a secret state state ∈ {0, 1}λ as input, and outputs encrypted
labels k̃.

– HG.Eval(C̃, k̃, x) → z. This algorithm takes a garbled circuit C̃, encrypted
labels k̃ and a value x ∈ {0, 1}n, and outputs a value z.

Definition 5 (Correctness of Hash Garbling). For all λ, n, hash key hk ←
HG.Gen(1λ, 1n), circuit C, input x ∈ {0, 1}n, state ∈ {0, 1}λ, garbled circuit
C̃ ← HG.Garble(hk, C, state) and k̃ ← HG.Input(hk,HG.Hash(hk, x), state), we
require that

HG.Eval(C̃, k̃, x) = C(x).

Definition 6 (Security of Hash Garbling). There exists a PPT simulator Sim
such that for all λ, n and PPT adversary A we have

(hk, x, k̃, C̃)
c≈ (hk, x,Sim(hk, x, C(x), 1|C|)),

where hash key hk ← HG.Gen(1λ, 1n), (C, x) ← A(hk), state ← {0, 1}λ, garbled
circuit C̃ ← HG.Garble(hk, C, state) and k̃ ← HG.Input(hk,HE.Hash(hk, x), state).
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In the full version we give a construction based on the Decision Diffie–Hellman
(DDH) problem in a finite Abelian group, which may help the reader understand
the specific details.

3.4 Hash Encryption

Hash Encryption is the key building block needed to construct Hash Garbling
schemes. We use the definition from [11, Definition 9].

– HE.Gen(1λ, 1n) → hk. This is the key generation algorithm that takes a secu-
rity parameter and a output length parameter, and then outputs a hash key
hk.

– HE.Hash(hk, x) → y. This algorithm takes a hash key hk and some input
x ∈ {0, 1}n and outputs a digest y.

– HE.Enc(hk, (y, i, b),m) → ct. This is the encryption algorithm that takes a
hash key hk, a value y, an integer i ∈ [n], a bit b and a message m, and then
outputs a ciphertext ct.

– HE.Dec(hk, x, ct) → {m,⊥}. This is the decryption algorithm that takes a
hash key hk, a value x and a ciphertext ct, and then outputs a message m if
the decryption is successful, otherwise it outputs ⊥.

Definition 7 (Correctness of Hash Encryption). For all x ∈ {0, 1}n and i ∈
[n], correctness holds when

Pr[HE.Dec(hk, x,HE.Enc(hk, (HE.Hash(hk, x), i, xi),m)) = m] ≥ 1 − negl(λ),

where hk ← HE.Gen(1λ, 1n) and xi denotes the ith bit of x.

Definition 8 (Security of Hash Encryption). The security is defined using the
game INDHE shown below. The hash encryption scheme is secure when, for any
PPT adversary A = (A1,A2,A3),

∣
∣
∣
1
2

− Pr[INDHE(1λ,A) = 1]
∣
∣
∣ ≤ negl(λ).

INDHE(A)

1 : (x, state1) ← A1(1
λ)

2 : hk ← HE.Gen(1λ, 1n)

3 : (i ∈ [n], m0, m1, state2) ← A2(state1, hk)

4 : b ←$ {0, 1}
5 : ct ← HE.Enc(hk, (HE.Hash(hk, x), i, 1 − xi), mb)

6 : b′ ← A3(state2, ct)

7 : return if b = b′ then 1 else 0

In contrast to witness encryption, where the ciphertext can only be decrypted
if the preimage is known, hash encryption has the extra property that the ith
bit of x must be b. Batch encryption schemes, described in [7], can be used to
construct hash garbling schemes as well. This fact is shown in [17].
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3.5 Registration Based Encryption

We recall the original definition of registration based encryption (RBE) [16]. An
RBE scheme involves two types of parties. The first is the key curator (KC) that
maintains a public parameter pp and some auxillary information aux. The second
is the user which can register with the KC and then communicate privately with
other users using only the identity of the recipient and pp.

RBE consists of six PPT algorithms: RBE.Setup,KGen, RBE.Reg[aux],
RBE.Enc, RBE.Updaux and RBE.Dec. The aux superscript means that the algo-
rithm associated with it has read access to the auxiliary information aux. Having
a bracket around aux means that it is mutable by the associated algorithm.

– RBE.Setup(1λ) → crs. This is the common reference string (CRS) generation
algorithm which outputs a CRS crs based on the security parameter λ.

– KGen(1λ) → (pk, sk). This is the key generation algorithm of the PKE scheme.
– RBE.Reg[aux](crs, pp, id, pk) → pp′. The registration algorithm takes a CRS
crs, a public parameter pp, an identity id and a its corresponding public key
pk as input. It outputs a new public parameter pp′. This algorithm has read
and write oracle access to the auxillary information aux.

– RBE.Enc(crs, pp, id,m) → ct. The encryption algorithm takes as input the
CRS crs, public parameters pp, an identity id of the recipient, and a message
m, and then outputs a ciphertext ct that encrypts m.

– RBE.Updaux(pp, id) → u. The update algorithm takes as input the current
public parameter pp stored at the KC and an identity id, and then outputs
some information u ∈ {0, 1}∗ that would help the user who has the identity
id with decryption. This algorithm has read-only oracle access to aux.

– RBE.Dec(sk, u, ct) → {m,⊥, GetUpd}. The decryption algorithm takes as
input a secret key sk, decryption information u and a ciphertext ct, and
then it outputs either a message m, an error ⊥ or GetUpd which indicates
that u is out of date.

RBE.Reg[aux] and RBE.Updaux are deterministic algorithm executed by the KC.
This property implies that the KC is fully auditable. The other algorithms are
randomized.

We recall the definition of completeness, compactness, and efficiency from
the literature. We use CompRBEA to define the definitions. It is a game where the
adversary A can register non-target identities and a target identity, and then
make encryption and decryption requests.

Definition 9 (Completeness, compactness, and efficiency of RBE). For any
stateful, interactive computationally bounded adversary A that has a poly(λ)
round complexity, consider the following game CompRBEA between A and a chal-
lenger C.

1. Initialization. The challenger C initializes parameters as

(pp, aux, Sid, id
∗, t) = (ε, ε, ε, ∅,⊥, 0),
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samples crs ← RBE.Setup(1λ) and sends crs to A. Sid is the set of registered
identities, id∗ is the target identity and t acts as a counter for the number of
decryption attempts.

2. Query phase. A makes polynomially many queries of the following form,
where each query is considered as a single round of interaction between C and
A.
(a) Registering a non-target identity. On a query of the form (regnew,

id, pk), C checks that id /∈ Sid. It aborts if the check fails. Otherwise, C
registers (id, pk) by running the registration algorithm

pp ← RBE.Reg[aux](crs, pp, id, pk).

It adds id to the set as Sid. After every query, C updates the parameters
pp, aux and Sid.

(b) Registering target identity. On a query of the form (regtgt, id), C first
checks if id∗ =⊥. Again, it aborts if the check fails. Otherwise, C sets
id∗ ← id, samples a challenge key pair (pk∗, sk∗) ← KGen(1λ), updates
the public parameter (and aux) using pp ← RBE.Reg[aux](crs, pp, id∗, pk∗)
and inserts id∗ into Sid. We remark that the challenger stores the secret
key sk∗ in addition to updating all other parameters. Also, note that the
adversary here is restricted to make such a query at most once, since the
challenger would abort otherwise.

(c) Target identity encryption. On a query of the form (enctgt,m), C
checks if id∗ �=⊥. If the check fails, abort. Otherwise, it sets t ← t + 1,
m̃t ← m, and computes ciphertext ctt ← RBE.Enc(crs, pp, id∗, m̃t). It
stores4 the tuple (t, m̃t, ctt) and then sends the ctt to A.

(d) Target identity decryptions. On a query of the form (dectgt, j), C
checks if id∗ �=⊥ and j ∈ [t]. If the check fails, abort. Otherwise,
C computes yj ← RBE.Dec(sk∗, u, ctj). If yj = GetUpd, then it com-
putes u ← RBE.Updaux(p, id∗) and then recomputes yj ← Dec(sk∗, u, ctj).
Finally, C stores the tuple (j, yj).

3. Output Phase. We say that A wins the game if there is some j ∈ [t] for
which m̃j �= yj.

Let n ← |Sid| denote the number of identities registered until a specific round in
the game above. We require the following properties to hold for any A at any
moment during the game CompRBEA .

– Completeness. Pr[A wins CompRBEA (λ)] ≤ negl(λ).
– Compactness. |pp|, |u| are both ≤ poly(λ, log n).
– Efficiency of registration and update. The time complexity of each invo-

cation of RBE.Reg[aux] and RBE.Updaux is at most poly(λ, log n).
– Efficiency of the number of updates. The total number of invoca-

tions of RBE.Updaux for identity id∗ during the decryption phase is at most
poly(λ, log n) for every n.

4 If C stores a tuple, it means appending the tuple to C’s local state so that it can be
accessed later.



142 K. Cong et al.

Definition 10 (Security of RBE). For any interactive PPT adversary A, con-
sider the game SecRBEA (λ) below. The definition is similar to the IND-CPA public
key encryption definition except that A can register one target and polynomially
many non-target identities.

1. Initialization. The challenger C initializes parameters as

(pp, aux, u, Sid, id
∗) = (ε, ε, ε, ∅,⊥),

samples crs ← RBE.Setup(1λ) and sends crs to A.
2. Query Phase. A makes polynomially many queries of the following form.

(a) Registering non-target identity. On a query of the form
(regnew, id, pk), C checks that id /∈ Sid. It aborts if the check fails.
Otherwise, C registers (id, pk) by running the registration algorithm
RBE.Reg[aux](crs, pp, id, pk). It adds id to the set as Sid. Note that pp, aux
and Sid is updated after every query.

(b) Registering target identity. On a query of the form (regtgt, id), C first
checks if id∗ =⊥. Again, it aborts if the check fails. Otherwise, C sets
id∗ ← id, samples a challenge key pair (pk∗, sk∗) ← KGen(1λ), updates
the pp and aux using pp ← RBE.Reg[aux](crs, pp, id∗, pk∗) and inserts id∗

into Sid. Finally, C sends pk∗ to A.
3. Challenge Phase. On a query of the form (chal, id,m0,m1), the chal-

lenger checks whether id /∈ Sid \ {id∗}. If the check fails, abort. Other-
wise, C samples b ∈ {0, 1} and computes the challenge ciphertext ct ←
RBE.Enc(crs, pp, id,mb).

4. Output Phase. A outputs a bit b′ and wins the game if b′ = b.

We say that an RBE scheme is message-hiding secure if for every PPT A and
every λ ∈ N, there exists a negligible function negl(λ) such that

Pr[A wins SecRBEA (λ)] ≤ 1
2

+ negl(λ).

3.6 Crit-Bit Tree

One of the key building blocks in our optimized RBE construction is crit-bit
trees. We describe a crit-bit tree by comparing it to the trie structure. Tries look
like binary trees but the path for searching and inserting an item depends on
the binary encoding of the item. For example to find the value 310 = 0112, the
algorithm would take the path “right, right, left”, assuming 0 represents “left”
and 1 represents “right”. This idea implies that there are at least two types of
nodes, (1) intermediate nodes only hold pointers to their children and (2) leaf
nodes hold the actual values. An example is given in Fig. 3.

PATRICIA Trie [29], also known as radix tree, is a type of trie where some
of the intermediate nodes are “compressed”. The idea is simple: nodes on a
path that do not branch are compressed into one internal node. There are many
varieties of PATRICIA tries. In this work, we use crit-bit trees [4]. The name
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comes from “critical bit”, which is an integer stored in all the internal nodes
that indicates the next bit location where two items differ. Typically, this integer
increases with depth. The main reason behind this choice is that crit-bit trees
have very small node size, using only two pointers and an integer of size at most
the log of bit-length of the leaf size.

An example is given in Fig. 4. Note that the two internal nodes in the standard
trie on Fig. 3 are compressed into one internal node in the crit-bit example.
Suppose we want to find the value 1002, the search algorithm first visits the root
node and sees a critical bit of 0, and then decides to go left since the 0th bit
(the LSB) of 1002 is 0. Then the algorithm reaches an intermediate node with
a critical bit of 2, it would decide to go right since the 2nd bit of 1002 (the
MSB) is 1.

l0‖r0

l1‖r1

l2‖r2

000 100

111

Fig. 3. An example of a trie. Each node
has two pointers ld, rd which refer to the
left or the right child, where d is the
depth.

0‖l0‖r0

2‖l1‖r1

000 100

111

Fig. 4. An example of a crit-bit tree.
In addition to the two pointers which it
inherited from the trie structure, every
node contains a positive integer which
represents the “critical bit”.

Key properties of PATRICIA tries, which also apply to crit-bit trees, include
the following. For random items, the average depth is approximately log n +
0.33279 [25, p. 507]. Szpankowski computed the variance of the depth [34, Eq. 2.9]
which turned out to be a constant for a fixed branching factor. In the binary
case, the variance is 1. We are also interested in the worst-case performance.
In the literature, the maximum depth is called the height. The expected value
of the height is log n +

√
2 log n + O(1) [12,24]. The final O(1) term is small,

typically ranging between 1 and −1 [24]. Many of the results above are confirmed
experimentally in the literature [30].

In Sect. 4.1, we will describe how a crit-bit tree is augmented to be an authen-
ticated crit-bit tree and give algorithms for searching and inserting in such an
authenticated crit-bit tree.

4 Optimizing RBE Using Crit-Bit Trees

In this section we describe our optimized RBE construction based on crit-bit
trees. Before describing the construction, we define the authenticated crit-bit
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tree by drawing inspiration from CONIKS [28] which uses a similar construction
but based on tries.

4.1 Authenticated Crit-Bit Tree

Assume λ is a power of 2, every node in the tree has 1 + log λ + 2λ bits and has
the format

(τ ∈ {0, 1} ‖ σ ∈ {0, 1}log λ ‖ α ∈ {0, 1}λ ‖ β ∈ {0, 1}λ),

where τ represents the node type and σ represents the critical bit index. For
clarity, we let I ← 0 and L ← 1. The tree consists of two types of nodes:

1. the intermediate node has the form (I‖σ‖α‖β), where α and β correspond to
the digest of the left child and the right child, respectively;

2. the leaf node holds the registered user and has the form (L‖0log λ‖id‖pk).
Unlike CONIKS [28], we do not need an “empty” node because having an empty
node implies that there is a path that has no branches, which would be com-
pressed in crit-bit trees.

Authentication is performed in a manner similar to Merkle-tree. Namely, the
pointers described in Sect. 3.6 are replaced by hash pointers. For example, the α
value of an internal node is H(L‖0log λ‖id‖pk) if its left child is a leaf node, where
H is a hash function. In our RBE construction (Sect. 4.2), we use HG.Hash as
the hash function.

Search: The search algorithm follows directly from the crit-bit tree definition.
We give a high level description based on [27]. Before giving the search algorithm,
we define an algorithm that walks down the tree to find the node that is “closest”
to the target identity id. If id exists, then the leaf node containing id is returned.
We call this algorithm the “walk algorithm”.

1. Let id be the input and we use the id[i] notation to access the ith bit, id[0]
represents the LSB of id.

2. Let currNode be the root node, recursively perform the following steps until
currNode is a leaf node.
(a) Determine the traversal direction, i.e., dir ← id[currNode.σ].
(b) Set currNode to the left child if dir = 0, otherwise set it to the right child.

3. Output currNode.

The search algorithm is simply an equality test added to the algorithm above.

1. Run the “walk algorithm” above and obtain a leaf node.
2. Output the leaf node if the leaf node contains id, otherwise output ⊥.
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Insertion: The insertion algorithm is a bit more involved because we need
make sure the critical bits are always increasing with depth. We give a high level
description based on [27] for inserting (id, pk).

1. Create a leaf node newLeaf ← (L‖0log λ‖id‖pk).
2. Find the closest leaf node to id using the “walk algorithm” from above and

call it closestLeaf.
3. Starting at the LSB, let σ∗ be the critical bit between id and closestLeaf.α.
4. From the root, walk the tree in the same way (using id as the target) and

stopping at a node, which we call pNode, if
(a) it is a leaf node, or
(b) the critical bit is greater than σ∗.

5. Compute the direction dir ← id[σ∗].
6. Create a new internal node (I‖σ∗‖α‖β), where α = H(newLeaf) if dir = 0,

otherwise α = H(pNode). The other digest β is set the same way except it’s
the mirror image of α. In essence, the new internal node took the position of
pNode, and pNode and newLeaf are its two children.

7. Traverse back up the tree to the root and recompute the digests.

4.2 Optimized RBE Construction with Compact Public Parameters

Tree Structure: Similar to the work of [20], our construction uses two data
structures, IDTree and CBTree. The first is IDTree, which is a self-balancing
binary tree (e.g., Red–black trees) used for internal book-keeping by the KC.
Concretely, the nodes have the form (id, t) where id is a user identity and t is a
timestamp which always increments by 1. The re-balancing operation is based
on the order of id, thus we assume the identities have an ordering.

The second is CBTree, which are crit-bit trees. These trees have the structure
describe in Sect. 4.1. We use � to denote the total number of such trees at any
moment in time.

Optimized RBE Construction: We detail our RBE construction below. Most
of the algorithms follow a similar idea as [20] but are adapted to use crit-bit trees.
In particular, the registration algorithm is functionally the same as the one in [20]
but the description is simplified using the critical bit idea.

The KC holds public parameters pp = (crs, {rti, di}i∈[�]) and auxillary infor-
mation aux = {IDTree, {(CBTreei, ni)}i}, where rti is the digest of the root node
of CBTreei and di is the maximum depth of CBTreei.

– RBE.Setup(1λ) → crs. Let hk ← HG.Gen(1λ, 11+log λ+2λ). Output hk as crs.
Note that the reason for using 11+log λ+2λ is because the preimage of the hash
function, which is the size of a node, has 1 + log λ + 2λ bits.

– KGen(1λ) → (pk, sk). Generate a public and a secret key pair (pk, sk) using
the public key generation algorithm.

– RBE.Reg[aux](crs, pp, id, pk) → pp′. The registration is described in the steps
below. An example can be found in Fig. 5.
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1. Let (IDTree, {(CBTreei, ni)}i∈[�]) ← aux, and let n =
∑

i∈[�] ni.
2. Insert (id, n + 1) to IDTree and call it IDTree′.
3. Copy the latest tree CBTree� and call it NewTree, and then insert the leaf

(L‖0log λ‖id‖pk) into NewTree.
4. Find the critical bit index σ between n and n + 1 counting from the MSB.
5. Set T ← {(CBTreei, ni) : i ∈ [�], ni > 2σ} ∪ {(NewTree, 2σ)}.
6. Let the new auxillary information be aux′ ← {IDTree′, T}.
7. Finally, the KC sets the new public parameter pp′ ← (crs, {(rt′i, d

′
i)}i∈[|T |]),

where rt′i and d′
i are the new Merkle root and the maximum depth of the

trees in T , respectively.
– RBE.Enc(crs, pp, id,m) → ct. The encryption algorithm uses a program Pi,j

which we describe first. For clarity, we use Greek alphabet symbols to denote
values that are unknown to the encryptor. The others are constants.

Pi,j(τ‖σ‖α‖β) [Constants: crs, statei,j +1, id,m, r]

1 : if τ = I then

2 : if id[σ] = 0

3 : return HG.Input(crs, α, statei,j +1)

4 : else

5 : return HG.Input(crs, β, statei,j +1)

6 : endif

7 : elseif τ = L ∧ id = α then

8 : return Enc(β, m; r)

9 : else

10 : return ⊥
11 : endif

Using the program above, the encryption algorithm works as follows.
1. Sample a random value r ∈ {0, 1}λ.
2. Parse pp as (hk, {(rt1, d1), . . . , (rt�, d�)}).
3. For each tree index i ∈ [�] and each depth j ∈ {1, . . . , di} of the ith tree,

sample statei,j ←$ {0, 1}λ, and then execute

P̃i,j ← HG.Garble(hk, Pi,j , statei,j).

4. For every root rti, compute k̃i,1 ← HG.Input(hk, rti, state1,j).
5. Output the ciphertext ct = (pp, {P̃i,j}i,j , {k̃i,1}i).

– RBE.Updaux(pp, id) → u. Let aux = (IDTree, {(CBTreei, ni)}i∈[�]) and pp =
{(rti, di)}i∈[�], the update algorithm works as follows.
1. The algorithm performs a binary search in IDTree to find the timestamp t

associated with id. If the timestamp does not exist, the algorithm aborts.
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2. Otherwise, the algorithm computes an index i ∈ [�] such that
∑

j∈[i−1]

nj < t ≤
∑

j∈[i]

nj .

The index i represents the smallest tree index that contains id.
3. Finally, traverse CBTreei to find the identity and output the traversed

path as u ← (u1, . . . , udid
). We use did to indicate the depth of the path

containing id which may be less than the maximum depth of CBTreei.
– RBE.Dec(sk, u, ct) → {m,⊥, GetUpd}.

1. Let (u1, . . . , udid
) ← u, where u1 is a root node and udid

should be
(L‖0log2 λ‖id‖pk) and did is the depth of the leaf node udid

. If u does not
exist, output GetUpd.

2. Let (pp, {P̃i,j}i,j , {k̃i,1}i) ← ct.
3. Let i be the tree index such that rti = HG.Hash(hk, u1). If no such i exists

then output GetUpd.
4. For j ∈ [did]:

• Compute k̃i,j +1 ← HG.Eval(P̃i,j , k̃i,j , uj).
• If k̃i,j +1 =⊥ then output ⊥.

5. The final k̃i,did+1 is the ciphertext, so the algorithm decrypts it using the
secret key sk, i.e., Dec(sk, k̃i,did+1) → m, and finally output m.

l1 = 10002, n1 = 23 l2 = 10102, n2 = 21 l3 = 10112, n3 = 20

CBTree1 CBTree2 CBTree3

Fig. 5. There are three crit-bit trees in this example, each tree contains li identities.
Further, every tree has ni users that must use the path in the corresponding CBTreei

to decrypt. The trees can be considered as snapshots where the last one is the latest
snapshot that contains all the users, i.e., n = l3. If a new user registers, there will be
11002 users. The critical bit between 10112 and 11002 is 1st bit from the MSB, which
suggests that CBTree1 will be kept but the two others will be replaced by CBTreenew
that has lnew = 11002 and nnew = 22, according to the registration algorithm.

4.3 Completeness, Efficiency and Compactness

Using the correctness property of PKE (Definition 1) and hash garbling (Def-
inition 5), the completeness of the RBE scheme, from Definition 9, follows by
simply following the construction. We can also prove our scheme is efficient and
compact according to Definition 9.
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– Compactness. There are at most log n roots since there are at most log n
trees in aux, thus the public parameter is compact. The number of nodes from
a root to any leaf is O(log n), thus the path u is also compact.

– Efficiency of registration and update. Our registration algorithm first
inserts an item into the self-balancing IDTree, which takes O(log n) time.
Then we make a copy of CBTree� to produce NewTree and then insert a new
leaf node. Insertion takes time O(log n) for a crit-bit tree, but implementing
the copy operation natively will take O(n) time. Fortunately, we can use
techniques such as copy-on-write and only allocate storage for the O(log n)
nodes in NewTree that are different from CBTree� since the insertion algorithm
(Sect. 4.1) only modifies nodes on a single path. Finally, finding the critical
bit and then selecting which trees to delete takes O(log n) time. Thus, the
overall time complexity for registration is O(log n).
The update algorithm finds the timestamp t of id which takes time O(log n)
since IDTree is balanced. Then, the algorithm computes the tree index that
contains id which also takes O(log n) since there are only log n indices. Finally,
finding the correct leaf and outputting the path to the leaf is O(log n) as well
due to the tree structure. Thus, the overall time complexity for the update
algorithm is O(log n).

– Efficiency of the number of updates. An identity registered at time t is
associated with CBTreei if

∑

j∈[i−1]

nj < t ≤
∑

j∈[i]

nj ,

where ni ≥ 2ni+1. A user needs to fetch a new u, using RBE.Updaux, when-
ever the tree CBTreei containing his identity is removed by the registration
algorithm. Suppose CBTreei exists at a moment in time, the registration algo-
rithm only deletes it after ni new identities are registered after it. In other
words, for a particular identity, the ni value associated to the earliest snap-
shot CBTreei that contains the identity will grow in powers of 2 as new users
are registered. Thus we conclude that the number of updates needed by any
user is log n.

4.4 Security Proof

In this section, we follow the template of [16] and present the security proof.
To build intuition, we begin by presenting a proof for when only one user has
registered. Then we move on to the general case.

Proof for One User: Single-user security is defined below, which is essentially
ciphertext indistinguishability.

Theorem 1 (RBE security for one user). For any identity id we have

ct0 = (HG.Garble(hk, P [id, 0, r], state),HG.Input(hk, rt, state))
c≈

(HG.Garble(hk, P [id, 1, r], state),HG.Input(hk, rt, state)) = ct1,



Optimizing Registration Based Encryption 149

where hk ← RBE.Setup(1λ), state ← {0, 1}λ, rt ← HG.Hash(hk, (L‖0λ‖id‖pk)),
r ∈ {0, 1}λ, (pk, sk) ← KGen(1λ) m ∈ {0, 1} and the circuit P is defined below.
This circuit is an equivalent but simplified version of Pi,j in Sect. 4.2 that works
for only one user. We abuse the notation and use P [id,m, r] to indicate the
constants used in the circuit.

P (τ‖σ‖α‖β) [Constants: id,m, r]

1 : if τ �= L ∧ α �= id

2 : else return Enc(β, m; r)

3 : endif

Proof. For m ∈ {0, 1}, let ctm denote the challenge ciphertext, i.e.,

ctm ← (HG.Garble(hk, P [id,m, r], state),HG.Input(hk, rt, state)).

We show that ct0
c≈ ct1. By simulation security of the hash garbling scheme

(Definition 6), for m ∈ {0, 1}, we have

ctm
c≈ Sim(hk, (L‖0λ‖id‖pk),Enc(pk,m; r), 1|P |).

By semantic security of the public key encryption scheme, we can write

Sim(hk, (L‖0λ‖id‖pk),Enc(pk, 0; r), 1|P |)
c≈ Sim(hk, (L‖0λ‖id‖pk),Enc(pk, 1; r), 1|P |),

which concludes the proof. ��

General Proof: Now we are ready to prove RBE security for the general case.
Without loss of generality, we will only consider one crit-bit tree. Recall that
for encryption, if we have � roots, we create circuits individually for each root.
Suppose at the time of encryption, we have � trees with roots rt1, . . . , rt�. Then,
between the two hybrids which correspond to an encryption of zero and an
encryption of one, we may consider � intermediate hybrids, where under the
ith hybrid we encrypt 0 under the roots rt1, . . . rti and we encrypt 1 under the
roots rti+1, . . . rt�. Thus, using the hybrid argument above, it is enough to only
consider one crit-bit tree.

When only considering one tree, the proof is a straightforward hybrid argu-
ment. Recall that the ciphertext contains d garbled programs, one for every level
of the tree. Starting with the correctly computed ciphertext. We define a series
of hybrids where the garbled program and the garbled input are replaced by the
simulated version one by one. From the security of the hash garbling scheme,
these hybrids are computationally indistinguishable. In the final hybrid, we can
switch the underlying plaintext using Theorem 1.

Theorem 2. Our crit-bit tree based RBE construction is secure with respect to
the standard RBE security definition given in Definition 10.
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Proof. Since we are only considering one tree, we will ignore the tree index. That
is, Pi,j becomes Pj , statei,j becomes statej and so on.

Consider an identity id, the path leading to it is (u1, u2, . . . , ud), where
u1 is the root node and ud = (L‖0λ‖id‖pk). For j > 1, let k̃j ←
HG.Input(hk, uj , statej). Now we are ready to give the hybrids.

– Hybrid 0 (encryption in real game). Let the ciphertext be ct0 ←
(P̃1, . . . , P̃d, k̃1), where every value is sampled from the construction.

– Hybrid 1. Let ct1 ← (P̂1, . . . , P̃d, k̂1), where we use a circumflex to denote
simulated values, i.e.,

(P̂1, k̂1) ← Sim(hk, u1, k̃2, 1|P1|).

The other values are sampled as the construction. Recall that P̃j

is generated using Pj and statej in the construction. But in this hybrid, and
the ones below, we simulate P̃j without Pj or statej .

– Hybrid i ∈ [d − 1]. Let cti ← (P̂1, . . . , P̂i, P̃i+1, . . . , P̃d, k̂1), where for j ∈ [i]
(P̂j , k̂j) ← Sim(hk, uj+1, k̃j+1, 1|Pj |).

– Hybrid d. Let ctd ← (P̂1, . . . , P̂d, k̂1), where all the values are simulated like
the hybrid above for j ∈ [d − 1] and

(P̂d, k̂d) ← Sim(hk, ud,Enc(pk,m; r), 1|Pd|).

From the security of hash garbling (Definition 6), any two adjacent hybrids are
indistinguishable. In the final hybrid, we use the same argument as Theorem 1,
i.e.,

Sim(hk, (L‖0λ‖id‖pk),Enc(pk, 0; r), 1|P |)
c≈ Sim(hk, (L‖0λ‖id‖pk),Enc(pk, 1; r), 1|P |),

to claim that the ciphertexts are indistinguishable. Hence, the security of our
RBE construction is proved. ��

4.5 Performance Improvement over Prior Work

Our main performance improvement comes from reducing the number of bits
stored in the tree node from 1 + 3λ to 1 + log λ + 2λ. The reason this is
important is because HG.Input needs to perform 2 public key operations in the
garbled circuit per bit, which is exceptionally costly.

The tradeoff is that the depth is higher than a balanced Merkle tree which
has �log n� depth. The decryption algorithm RBE.Dec is only affected by the
average depth log n+0.33279 (discussed in Sect. 3.6) so it is a small price to pay
to benefit from crit-bit trees. Suppose n = 231, which is a reasonable number for
popular applications considering WhatsApp has 2 billion users [13], and λ = 256.
Our construction makes 30% fewer public key operations in the garbled circuit
(GC) compared to the best prior work [20] on average.
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The encryption algorithm RBE.Enc, however, is affected by the maximum
depth which is log n +

√
2 log n + O(1). It tends to log n as n tends to infinity.

This property implies that our encryption performance becomes better as the
number of registered user grows. In practice, n is not infinite. Suppose n = 231

and λ = 256 again, the encryption algorithm in our construction makes 15%
fewer public key operations in the GC on average.

The calculations above is purely based on the number of public key operations
that must be performed in the GC. For every circuit, we assume the PKE uses
one pubic key operation and HG.Input uses 2 · λ public key operations. The
circuit that the encryptor needs to garble also contains other operations such as
branching and string comparison. But the cost of these operations are negligible
as they only require a few logic gates, relatively speaking. Naively, a branching
operation can be implemented with a 2-to-1 multiplexer where the input is λ
bits using 3λ + 1 gates compared to billions of gates in the case of one public
key operation.

In Sect. 5 we slightly weaken the compactness requirement of RBE and fur-
ther reduce the number of public key operations in the encryption algorithm.

4.6 Verifiability

The work of [20] introduced verifiable RBE. This property allows users to request
a pre-registration proof and a post-registration proof. The former is a proof of
non-membership. The latter is a proof of unique-membership. While we do not
give the full verification algorithm and prove its soundness and completeness,
we argue that it is possible to add pre/post-registration proofs, which essen-
tially only depend on the authenticity of aux (crit-bit trees in our case), without
changing the underlying construction.

Before presenting our argument, we introduce the notion of adjacent paths.
A pair of adjacent paths in a crit-bit tree is two valid paths5 with leaf nodes
containing id(0) and id(1) such that there does not exist another leaf node with id
such that id(0) < id < id(1). Concretely, the two paths have the following form,

– u(0) = {(I‖σ
(0)
1 ‖α

(0)
1 ‖β

(0)
1 ), . . . , (I‖σ

(0)
k ‖α

(0)
k ‖β

(0)
k ), . . . , (L‖0log λ‖id(0)‖pk(0))},

– u(1) = {(I‖σ
(1)
1 ‖α

(1)
1 ‖β

(1)
1 ), . . . , (I‖σ

(1)
k ‖α

(1)
k ‖β

(1)
k ), . . . , (L‖0log λ‖id(1)‖pk(1))}.

For every i ∈ [k], u
(0)
i = u

(1)
i . That is, the two paths share the same prefix

of length k and σk is the critical bit that distinguishes id(0) and id(1), e.g.,
id(0)[σk] = 0 and id(1)[σk] = 1. Further, for b ∈ {0, 1} and i ∈ [k + 1, d(b)],
we require that id(b)[σ(b)] = 1 − b, where d(b) is the length of the two paths.
Intuitively, the two paths diverge after the kth node. But after this point, the
left path (u(0)) must always follow the right branch and the right path u(1) must
always follow the left branch.

For the non-membership proof in the pre-registration phase, the KC simply
constructs the pair of adjacent paths described above to prove id does not exist.

5 A path is valid when the adjacent nodes obey the hash-pointer constraint.
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That is, constructing a pair of adjacent paths with id(0) and id(1) in the leaves
such that id(0) < id < id(1). The KC can perform this step efficiently and the
prove size is compact, i.e., O(log n). Clearly, verification is also efficient and runs
in time O(log n). This idea generalizes to multiple trees by making one such proof
for every tree.

For the unique-membership proof in the post-registration phase, the KC con-
structs two pairs of adjacent paths. Suppose we want to prove the uniqueness
of id, then the KC constructs one pair of adjacent paths with leaves id(0) and
id, and another with the leaves id and id(1). As a result, for every identity that
is unique registered, the KC is able to create the two pairs of adjacent paths.
Extending this idea to multiple trees is a bit different than the pre-registration
phase above. Similar to [20], we can view the trees as snapshots. Which means
the KC needs to produce non-membership proofs for identities that are not yet
in the snapshots and unique-membership proof for identities that are in the
snapshot.

5 Further Optimization Using Larger Public Parameter

Using even fewer public key operations is possible if we relax the compactness
requirement of RBE. Concretely, the original definition requires pp to have size
poly(λ, log n). However, if we relax the requirement to poly(λ,

√
n), it is possible

to reduce the number of public key operations needed in the GC by a half for
the encryptor. In practice, if there are 231 registered users and the identities of√

231 users are published using a cuckoo filter [14] with a false positive rate of
2−40, then the size of the public parameter is only increased by 187 kilobytes.
We argue that this is a reasonable tradeoff to make to alleviate the bottleneck.

Below we describe the intuition before detailing the modification of the reg-
istration and the encryption algorithm. Starting from the scheme in Sect. 4.2,
recall that aux stores ({CBTreei, ni}i∈[�]), where ni is a power of 2 representing
the number of identities that needs to use a path in CBTreei to decrypt. For
brevity, assume ni = 2 ·ni+1 for all i ∈ [�]. Then majority of the users only need
the first half of the trees {CBTreei}i∈[�/2] to decrypt and only a minority need
the second half. If the encryptor knows whether a user belongs to the first half or
the second half, then he only needs to iterate over half of the trees in the encryp-
tion algorithm. Thus, if we allow the KC to publish the identities that belong
the second half of the trees (there will be O(

√
n) of them), then the number

public key operations in the GC would be halved. The same argument applies
in the general case where ni ≥ 2 · ni+1 since the bit-pattern of n is uniformly
distributed at any moment in time.

5.1 Optimized RBE Construction with Larger Public Parameters

First we describe the new format of the public parameter and then highlight the
changes in the two algorithms. The public parameter now has the form

{IDTree, {(rti, di, ni)}i∈[�], I = {Ii : i ∈ [�], ni <
√

2�log2 n�}},
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where Ii represent the set of identities that need a path in CBTreei to decrypt.
Note that |Ii| = ni and �log2 n� gives the number of bits of n. We view I as
a flattened set to simplify notation but it can be implemented using a cuckoo
filter as mentioned above.

The modified registration and encryption algorithms are shown below. We
copy the algorithms verbatim from Sect. 4.2 and highlight the differences (mod-
ified steps) with the “*” symbol. The other algorithms remain unchanged.

– RBE.Reg[aux](crs, pp, id, pk) → pp′.
1. Let (IDTree, {(CBTreei, ni)}i∈[�]) ← aux, and let n =

∑

i∈[�] ni.
2. Insert (id, n + 1) to IDTree and call it IDTree′.
3. Copy the latest tree CBTree� and call it NewTree, and then insert the leaf

(L‖0log λ‖id‖pk) into NewTree.
4. Find the critical bit index σ between n and n+1 counting from the MSB.
5. Set T ← {(CBTreei, ni) : i ∈ [�], ni > 2σ} ∪ {(NewTree, 2σ)}.
6. Let the new auxillary information be aux′ ← {IDTree′, T}.

*7. Update the set I according to its definition and call it I ′.
*8. Finally, the KC sets the new public parameter

pp′ ← (crs, {(rt′i, d
′
i, n

′
i)}i∈[|T |], I ′),

where rt′i, d′
i and n′

i are the new Merkle root, the maximum depth and
the number of users of the trees in T , respectively.

– RBE.Enc(crs, pp, id,m) → ct. The encryption algorithm uses a program Pi,j

which we describe first. For clarity, we use Greek alphabet sybmols to denote
values that are unknown to the encryptor. The others are constants.

Pi,j(τ‖σ‖α‖β) [Constants: crs, statei,j+1, id,m, r]

1 : if τ = I then

2 : if id[σ] = 0

3 : return HG.Input(crs, α, statei,j+1)

4 : else

5 : return HG.Input(crs, β, statei,j+1)

6 : endif

7 : elseif τ = L ∧ id = α then

8 : return Enc(β, m; r)

9 : else

10 : return ⊥
11 : endif

Using the program above, the encryption algorithm works as follows.
1. Sample a random value r ∈ {0, 1}λ.

*2. Parse pp as (hk, {(rt1, d1, n1), . . . , (rt�, d�, n�)}, I).
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*3. Let L ← {1, . . . , v} if id /∈ I, otherwise let L ← {v + 1, . . . , �}, where v is
an index to a crit-bit tree such that nv <

√
2�log2 n�.

*4. For each crit-bit tree i ∈ L and each depth j ∈ {1, . . . , di} of the ith tree,
sample statei,j ←$ {0, 1}λ, and then execute

P̃i,j ← HG.Garble(hk, Pi,j , statei,j).

5. For every root rti, compute k̃i,1 ← HG.Input(hk, rti, state1,j).
6. Output the ciphertext ct = (pp, {P̃i,j}i,j , {k̃i,1}i).

5.2 Correctness, Security and Efficiency

Correctness and security hold since this construction is similar to the one given
in Sect. 4.2 except that the public parameter has some additional information
to help the encryptor select which trees to use. If id ∈ I, then the encryption
algorithm uses the “smaller” trees, i.e., {CBTreei : i ∈ [�], ni <

√
2�log2 n�}.

Otherwise id must be in the “bigger” trees. The construction guarantees that
the encryptor will always use roots of the trees that contain id.

The time complexity of the new registration algorithm does not change since
updating the set I can be performed at the same time as selecting which trees to
include in the new auxillary information (Item 5). The update algorithm stays
the same so the time complexity does not change as well.

However, our public parameters are not compact anymore since O(
√

n) iden-
tities are included in them. But we argue that this is a good tradeoff, since the
additional data can be stored in a compressed format cuckoo filter as mentioned
in Sect. 5.1.

6 Conclusion

Our work gives two optimizations that reduce the concrete cost of RBE. The
first optimization maintains the excellent asymptotic complexity of existing RBE
schemes while reducing the ciphertext size by 15% and the computation cost,
incurred by the decryptor, by 30%. The second optimization relaxes the public
parameter size from poly(λ, log n) to poly(λ,

√
n). Combining the two optimiza-

tions, the ciphertext size is reduced by 57.5% on average (e.g., from 11 to 4.5 TB
when an RBE deployment supports 2 billion users).

Although our contribution does not make RBE practical, we believe it is
a significant step in the right direction. A promising future work could study
public key operations that are garbled-circuit friendly. The communication cost
could be significantly reduced if such a primitives exist.
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11. Döttling, N., Garg, S., Hajiabadi, M., Masny, D.: New constructions of identity-
based and key-dependent message secure encryption schemes. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 3–31. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-76578-5 1

12. Drmota, M., Fuchs, M., Hwang, H.K., Neininger, R.: External profile of symmet-
ric digital search trees (extended abstract). In: 2017 Proceedings of the Meet-
ing on Analytic Algorithmics and Combinatorics (ANALCO), pp. 124–130 (2017).
https://epubs.siam.org/doi/abs/10.1137/1.9781611974775.12

13. Facebook: Two billion users-connecting the world privately, February 2020.
https://about.fb.com/news/2020/02/two-billion-users/. Accessed 12 Feb 2021

https://doi.org/10.1007/978-3-540-40061-5_29
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://cr.yp.to/critbit.html
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-319-78381-9_20
https://www.secg.org/sec2-v2.pdf
https://doi.org/10.1007/978-3-642-00468-1_15
https://doi.org/10.1007/978-3-319-76578-5_1
https://epubs.siam.org/doi/abs/10.1137/1.9781611974775.12
https://about.fb.com/news/2020/02/two-billion-users/


156 K. Cong et al.

14. Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.D.: Cuckoo filter: practi-
cally better than bloom. In: Proceedings of the 10th ACM International on Confer-
ence on Emerging Networking Experiments and Technologies, pp. 75–88, CoNEXT
2014. Association for Computing Machinery, New York, NY, USA (2014). https://
doi.org/10.1145/2674005.2674994

15. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press, October 2013

16. Garg, S., Hajiabadi, M., Mahmoody, M., Rahimi, A.: Registration-based encryp-
tion: removing private-key generator from IBE. In: Beimel, A., Dziembowski, S.
(eds.) TCC 2018. LNCS, vol. 11239, pp. 689–718. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03807-6 25

17. Garg, S., Hajiabadi, M., Mahmoody, M., Rahimi, A., Sekar, S.: Registration-based
encryption from standard assumptions. In: Lin, D., Sako, K. (eds.) PKC 2019.
LNCS, vol. 11443, pp. 63–93. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17259-6 3

18. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Pro-
ceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp.
218–229, STOC 1987. Association for Computing Machinery, New York, NY, USA
(1987). https://doi.org/10.1145/28395.28420

19. Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker
keeping secret all partial information. In: 14th ACM STOC, pp. 365–377. ACM
Press, May 1982

20. Goyal, R., Vusirikala, S.: Verifiable registration-based encryption. In: Micciancio,
D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 621–651. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-56784-2 21

21. Hubacek, P., Wichs, D.: On the communication complexity of secure function eval-
uation with long output. In: Roughgarden, T. (ed.) ITCS 2015, pp. 163–172. ACM,
January 2015

22. Jayaraman, B., Li, H., Evans, D.: Decentralized certificate authorities (2017).
https://arxiv.org/pdf/1706.03370.pdf

23. Kate, A., Goldberg, I.: Distributed private-key generators for identity-based cryp-
tography. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp.
436–453. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15317-
4 27

24. Knessl, C., Szpankowski, W.: Limit laws for the height in Patricia tries. J. Algo-
rithms 44(1), 63–97 (2002). https://doi.org/10.1016/S0196-6774(02)00212-2

25. Knuth, D.E.: The Art of Computer Programming, vol. 3, 2nd edn. Addison Wesley
Longman, Redwood City (1998)

26. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
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Abstract. In 2005, Nandi presented a class of double-block-length com-
pression functions specified as hπ(x) := (h(x), h(π(x))), where h is
assumed to be a random oracle producing an n-bit output and π is a
non-cryptographic permutation. He showed that the collision resistance
of hπ is optimal if π has no fixed point. This manuscript discusses the
quantum collision resistance of hπ(x). First, it shows that the quantum
collision resistance of hπ is not always optimal even if π has no fixed
point: One can find a colliding pair of inputs for hπ with only O(2n/2)
queries to h by using the Grover search if π is an involution. Second, this
manuscript shows that there really exist cases that the quantum colli-
sion resistance of hπ is optimal. More precisely, a sufficient condition on
π is presented for the optimal quantum collision resistance of hπ, that
is, any collision attack needs Ω(22n/3) queries to find a colliding pair of
inputs. The proof uses the recent technique of Zhandry’s compressed ora-
cle. Finally, this manuscript makes some remarks on double-block-length
compression functions using a block cipher.

Keywords: Hash function · Compression function ·
Double-block-length · Grover’s search · Zhandry’s compressed oracle

1 Introduction

Background. Cryptographic hash functions are important primitives in cryp-
tography and are used in almost all cryptographic schemes. SHS [7] is a stan-
dardized family of cryptographic hash functions, which are called iterated hash
functions from their structure of sequential chaining of a compression function
due to Merkle [18] and Damg̊ard [5]. The hash functions in SHS have their ded-
icated compression functions. The other more classical method to construct a
compression function is to use a block cipher. The examples are MDC-2 and
MDC-4 [19]. MDC-2 is standardized in ISO/IEC 10118-2 [12]. Both MDC-2 and
MDC-4 adopt double-block-length (DBL) construction to achieve sufficient level

This work was supported by JSPS KAKENHI Grant Number JP20K21798.

c© Springer Nature Switzerland AG 2021
M. B. Paterson (Ed.): IMACC 2021, LNCS 13129, pp. 161–175, 2021.
https://doi.org/10.1007/978-3-030-92641-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92641-0_8&domain=pdf
http://orcid.org/0000-0001-6723-722X
https://doi.org/10.1007/978-3-030-92641-0_8


162 S. Hirose and H. Kuwakado

of collision resistance. Namely, the output length of a DBL compression function
is double the output length of its component such as a block cipher.

Nandi [20] defined a class of DBL compression functions hπ : {0, 1}m →
{0, 1}2n such that

hπ(x) := (h(x), h(π(x))),

where h : {0, 1}m → {0, 1}n and π is a non-cryptographic permutation over
{0, 1}m. It was shown by Nandi [20] that the collision resistance of hπ is optimal
if h is a random oracle and π has no fixed point. More precisely, it was shown
that any collision attack on hπ needs Ω(2n) queries to h.

Recently, post quantum cryptography has been attracting much interest. In
accordance with this trend, security analyses of cryptographic schemes against
quantum attacks have become important research topics.

Our Contribution. We analyze the quantum collision resistance of the class of
DBL compression functions hπ assuming that h is a random oracle. We show
that it is not always optimal even if π has no fixed point. First, we show a
quantum collision attack which is able to find a colliding pair of inputs for hπ

with only O(2n/2) queries to h if π is an involution, that is, π ◦ π is the identity
permutation. The attack simply uses the Grover search [9]. Second, we present
a sufficient condition on π for the optimal quantum collision resistance of hπ,
that is, Ω(22n/3) query complexity. The proof uses the technique of Zhandry’s
compressed oracle [23] and it is similar to the proof for the lower bound of quan-
tum collision resistance by Liu and Zhandry [16]. We also give a few examples
of π satisfying the sufficient conditions. They are quite simple and suitable for
instantiation of hπ. Finally, we make some remarks on two DBL compression
functions using a block cipher. Due to the non-optimality result above, the DBL
compression function proposed by Hirose [10] is not optimally collision resistant
against quantum adversaries. A Grover oracle of the collision attack is also pre-
sented, which is similar to that of the quantum exhaustive key search of a block
cipher [8,14]. On the other hand, the DBL compression function proposed by
Jonsson and Robshaw [15] uses a permutation satisfying the sufficient condition
for optimal collision resistance of hπ, though it is still an open question if the
DBL compression function by Jonsson and Robshaw is optimally collision resis-
tant against quantum adversaries.

Other Related Work. Brassard et al. [3] presented an algorithm to find a colliding
pair of inputs for any r-to-one hash function with O((Nd/r)1/3) quantum queries,
where Nd is the cardinality of the domain of the given hash function. Zhandry [22]
showed the Θ(N1/3

r ) quantum query complexity to find a colliding pair of inputs
for any hash function with the cardinality of its range Nr.

Chauhan et al. [4] presented a quantum collision attack on the DBL com-
pression function [10] instantiated with AES-256. Their attack uses a quantum
version [6,11] of the rebound attack [17].

DBL compression functions using a tweakable block cipher are adopted by
a leakage-resilient AEAD mode TEDT [1] and a family of lightweight crypto-
graphic schemes Romulus [13].
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Organization. Section 2 introduces some notations and definitions necessary for
the discussions. Section 3 describes the construction of DBL compression func-
tions proposed by Nandi and its classical collision resistance. Section 4 discusses
the quantum collision resistance of Nandi’s DBL compression functions. Section 5
makes some remarks on the DBL compression functions using a block cipher
related to the results in the previous section. Section 6 gives a brief concluding
remark.

2 Preliminaries

For integers n1 and n2 such that n1 ≤ n2, let [n1, n2] be the set of integers
between n1 and n2 inclusive.

2.1 Collision Resistance

For a hash function, collision resistance means the intractability of finding a
colliding pair of inputs. A pair of inputs to a hash function are called colliding
if they are distinct and mapped to the same output by the hash function.

Let HP be a hash function using P as its component. The collision resistance
of HP is often discussed under the assumption that P is an ideal primitive such
as a random oracle or an ideal block cipher [2]. Let A be an adversary trying to
find a colliding pair of inputs for HP . A is allowed to make queries to P . Then,
the advantage of A is defined as

Advcol
HP (A) := Pr[(x, x′) ← AP : HP (x) = HP (x′) ∧ x �= x′].

The maximum advantage with at most q queries is defined as

Advcol
HP (q) := max

A
Advcol

HP (A),

where AP makes at most q queries. If quantum adversaries are concerned, then
Advcol

HP is denoted by Advqcol
HP .

2.2 Quantum Computation

For quantum computation [21], we assume the quantum circuit model. We fur-
ther assume that any unitary transformation can be implemented by a quantum
circuit. For a unitary transformation U , U† is its Hermitian conjugate.

Some quantum gates are explicit in the remaining parts. I, X, and H are
quantum gates for a single qubit defined as follows:

I := |0〉 〈0| + |1〉 〈1|, X := |1〉 〈0| + |0〉 〈1|,

H :=
|0〉 + |1〉√

2
〈0| +

|0〉 − |1〉√
2

〈1|.
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The controlled NOT is a quantum gate for two qubits defined as

|0〉〈0| ⊗ I + |1〉〈1| ⊗ X.

The Toffoli gate is a quantum gate for three qubits defined as

(I ⊗ I − |11〉〈11|) ⊗ I + |11〉〈11| ⊗ X.

Grover Search. The quantum search algorithm of Grover [9] is usually
described as an algorithm to find a solution x∗ of a given Boolean function
f : {0, 1}m → {0, 1} such that f(x∗) = 1. The Grover search uses a unitary oper-
ator Of called the Grover oracle such that Of (|x〉⊗|z〉) := |x〉⊗|z ⊕ f(x)〉, where
x ∈ {0, 1}m and z ∈ {0, 1}. Let |−〉 := (|0〉 − |1〉)/√

2. Then, Of (|x〉 ⊗ |−〉) =
(−1)f(x)|x〉 ⊗ |−〉.

The Grover search first prepares the state

H⊗(m+1)(I⊗m ⊗ X)(|0m〉 ⊗ |0〉) =
1√
2m

∑

x∈{0,1}m

|x〉 ⊗ |−〉.

Then, it repeatedly applies the Grover operator

G := ((H⊗m(2|0m〉〈0m| − I⊗m)H⊗m) ⊗ I)Of

to the state. Finally, it measures the first m qubits.
Let M be the number of solutions of f , that is, M :=

∣∣{x | f(x) = 1}∣∣. Then,
by applying the Grover operator q times, one can find a solution of f with prob-
ability O(q2M/2m).

Zhandry’s Compressed Oracle [23]. Let F : {0, 1}m → {0, 1}� be a random
oracle. Let A be a quantum adversary with oracle access to F . We assume that a
basis state of A is represented as |x, z, w〉, where x ∈ {0, 1}m is a query register,
z ∈ {0, 1}� is a response register, and w ∈ {0, 1}l is a private working register.
We also assume that a basis state of the random oracle F is represented as |TF 〉,
where TF ∈ {0, 1}�2m

is the table of F . Namely, |TF 〉 := |F (0)〉 ⊗ |F (1)〉 ⊗ · · · ⊗
|F (2m − 1)〉. Then, a query of A to F and the corresponding response can be
represented by a unitary operator StO such that

StO(|x, z, w〉 ⊗ |TF 〉) := |x, z ⊕ F (x), w〉 ⊗ |TF 〉.

Zhandry called it a standard oracle. He also introduced a phase oracle such that

PhO(|x, z, w〉 ⊗ |TF 〉) := |x, z, w〉 ⊗ (
(−1)F (x)·z|TF 〉).

The unitary operator PhO is equivalent to StO in that

PhO = (I⊗m ⊗ H⊗� ⊗ I⊗l ⊗ I⊗�2m

) ◦ StO ◦ (I⊗m ⊗ H⊗� ⊗ I⊗l ⊗ I⊗�2m

).
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For these oracles, the random oracle F is initialized to the uniform superposition
of all the basis states:

1√
2�2m

∑

TF ∈{0,1}�2m

|TF 〉.

Zhandry further presented the compressed standard oracle and the com-
pressed phase oracle which implement the lazy evaluation of a quantum random
oracle. He also confirmed the equivalence of these oracles to the standard oracle
and the phase oracle. Here, we only refer to the compressed phase oracle.

For the compressed phase oracle, the random oracle is simulated by a super-
position of databases. Suppose that A makes at most q quantum queries to the
random oracle. Then, a database D is an element in (({0, 1}m ∪{⊥})×{0, 1}�)q.
Specifically, D is represented as

((x1, y1), (x2, y2), . . . , (xk, yk), (⊥, 0�), . . . , (⊥, 0�)︸ ︷︷ ︸
q elements in ({0,1}m∪{⊥})×{0,1}�

),

where xi �= ⊥ for i ∈ [1, k] and x1 < x2 < · · · < xk. For (xi, yi) ∈ {0, 1}m ×
{0, 1}�, let (xi, yi) ∈ D and D(xi) = yi represent that (xi, yi) appears in D. For
xi ∈ {0, 1}m, let D(xi) = ⊥ represent that (xi, yi) �∈ D for any yi ∈ {0, 1}�.
D(xi) = yi means that the random oracle F is specified to output yi for the
input xi. D(xi) = ⊥ means that the output of the random oracle F is not yet
specified for the input xi. Let |D| represent the number of elements (x, y) in D
such that x �= ⊥.

For a database D such that D(x) = ⊥ and |D| < q, let D ∪ (x, y) represent
that (⊥, 0�) is removed from D and (x, y) is added to D in its appropriate posi-
tion. To describe how the compressed phase oracle processes a query, a unitary
operator StdDecompx over a database is introduced. It works as follows:

– For D such that D(x) = ⊥ and |D| < q,

StdDecompx |D〉 =
1√
2�

∑

y∈{0,1}�

|D ∪ (x, y)〉.

– For D such that D(x) = ⊥ and |D| < q,

StdDecompx

( 1√
2�

∑

y∈{0,1}�

(−1)z·y|D ∪ (x, y)〉
)

=

⎧
⎪⎨

⎪⎩

1√
2�

∑

y∈{0,1}�

(−1)z·y|D ∪ (x, y)〉 if z �= 0�,

|D〉 if z = 0�.

Let StdDecomp be a unitary operator over |x, z, w〉 ⊗ |D〉 defined as follows:

StdDecomp(|x, z, w〉 ⊗ |D〉) := |x, z, w〉 ⊗ (StdDecompx |D〉).
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Let CPhO′ be a unitary operator such that

CPhO′(|x, z, w〉 ⊗ |D〉) := (−1)z·D(x)|x, z, w〉 ⊗ |D〉,

where D(x) �= ⊥. The compressed phase oracle CPhO is defined as follows:

CPhO := StdDecomp ◦CPhO′ ◦ StdDecomp .

Initially, only (⊥, 0�)’s appear in the database.
Zhandry showed the relationship between the output of an adversary on the

random oracle and the entries of compressed standard/phase oracle database:

Lemma 1 ([23]). Let F be a random oracle producing an �-bit output for each
input. Let A be a quantum algorithm making queries to F and outputting a tuple
(x1, . . . , xk; y1, . . . .yk). Let R be a collection of such tuples. Suppose that, with
probability p, A outputs a tuple such that (1) the tuple is in R and (2) F (xi) = yi

for every i ∈ [1, k]. Consider running A with the compressed standard/phase
oracle and suppose that the database D is measured after A produces its output.
Let p′ be the probability that (1) the tuple is in R and (2) D(xi) = yi for every
i ∈ [1, k]. Then,

√
p ≤

√
p′ +

√
k/2�.

3 Nandi’s Class of DBL Compression Functions

Let m and n be positive integers such that m > 2n. Let h : {0, 1}m → {0, 1}n.
Let π be a permutation over {0, 1}m. a ∈ {0, 1}m is called a fixed point of π if
π(a) = a. π is called an involution if π2 := π ◦ π is the identity permutation,
that is, π(π(x)) = x for every x ∈ {0, 1}m.

Nandi [20] defined a class of DBL compression functions hπ : {0, 1}m →
{0, 1}2n such that

hπ(x) := (h(x), h(π(x))).

He discussed the classical collision resistance of hπ on the assumption that h is a
random oracle. He showed that the classical collision resistance of hπ is optimal
if π has no fixed points. Namely, any classical adversary needs Ω(2n) queries to
find a colliding pair of inputs for hπ with some constant probability:

Theorem 1 (Theorem 1 [20]). Suppose that h is a random oracle and that
π has no fixed points. Then,

Advcol
hπ (q) =

{
O(q2/22n) if π2 has no fixed points,
O(q/2n) otherwise.
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4 Quantum Collision Resistance of Nandi’s DBL
Compression Functions

4.1 Result on Non-optimality

It is shown that the quantum collision resistance of hπ is not optimal if π is an
involution:

Theorem 2. Suppose that h is a random oracle and that π is an involution.
Then,

Advqcol
hπ (q) = Ω(q2/2n).

Proof. Since π is an involution,

hπ(π(x)) = (h(π(x)), h(π2(x))) = (h(π(x)), h(x)).

Thus, x and π(x) are a colliding pair of inputs for hπ if h(x) = h(π(x)). Let f :
{0, 1}m → {0, 1} be a Boolean function such that f(x) = 1 if and only if h(x) =
h(π(x)). Then, since h is a random oracle, the expected value of |{x | f(x) = 1}| is
2m−n. Thus, by applying the Grover search to f , the probability that a colliding
pair of inputs for hπ are found with q iterations is Ω(q2/2n). ��

4.2 Result on Optimality

It has been shown that the quantum collision resistance of hπ is not optimal if π
is an involution. If π is an involution with no fixed points, then its domain {0, 1}m

is divided into pairs of elements {x, π(x)}. In the remaining part, permutations
satisfying the following property are considered:

Lemma 2. For π, suppose that π4 is the identity permutation and that, for
any x ∈ {0, 1}m, x, π(x), π2(x), and π3(x) are distinct from each other. For
x ∈ {0, 1}m, let Cπ(x) := {x, π(x), π2(x), π3(x)}. Then,
– Cπ(x) ∩ Cπ(x′) = ∅ if Cπ(x) �= Cπ(x′), and
–

⋃
x∈{0,1}m Cπ(x) = {0, 1}m.

The proof of Lemma 2 is easy and omitted.

Example 1. Let c ∈ {0, 1}m/2 \ {0} be a constant. Then, the following permuta-
tions over {0, 1}m satisfy the condition specified in Lemma 2:

– (x0, x1) �→ (x0 ⊕ x1, x1 ⊕ c);
– (x0, x1) �→ (x1, x0 ⊕ c),

where x0, x1 ∈ {0, 1}m/2. Both of them are quite simple and seem suitable for
instantiation of hπ.

The following theorem implies that the quantum collision resistance of hπ is
optimal if π satisfies the condition given in Lemma 2. Namely, to find a colliding
pair of inputs for hπ with some constant probability, any quantum adversary
needs Ω(22n/3) queries.
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Theorem 3. For π, suppose that π4 is the identity permutation and that, for
every x ∈ {0, 1}m, x, π(x), π2(x), and π3(x) are distinct from each other. Then,

Advqcol
hπ (q) = O(q3/22n).

A pair of colliding inputs x and x′ for hπ are divided into two classes based
on whether x′ ∈ Cπ(x) or x′ �∈ Cπ(x). Lemmas 3 and 4, which are given below,
show the intractability of finding a pair of colliding inputs x and x′ for hπ which
satisfy x′ ∈ Cπ(x) and x′ �∈ Cπ(x), respectively. Thus, Theorem 3 directly follows
from them. The proofs of Lemmas 3 and 4 are similar to that of Theorem 4 by
Liu and Zhandry [16].

Let X π := {x |x ∈ {0, 1}m is the lexicographically first element in Cπ(x)}.
Then, |X π| = 2m−2. Let g : X π → {0, 1}4n be defined as follows:

g(x) := (h(x), h(π(x)), h(π2(x)), h(π3(x))).

Then, g is a random oracle since h is a random oracle.

Lemma 3. For π, suppose that π4 is the identity permutation and that, for any
x ∈ {0, 1}m, x, π(x), π2(x) and π3(x) are distinct from each other. Then, for
any adversary making at most q quantum queries, the probability that it succeeds
in finding a colliding pair of inputs x and x′ for hπ satisfying x′ ∈ Cπ(x) is
O(q2/22n).

Proof. The problem to find a colliding pair of inputs x and x′ for hπ satisfying
x′ ∈ Cπ(x) is equivalent to the problem to find an input x ∈ X π for g satisfying
(1) g0(x) = g1(x) = g2(x), (2) g0(x) = g2(x) and g1(x) = g3(x), or (3) g3(x) =
g0(x) = g1(x), where g(x) = (g0(x), g1(x), g2(x), g3(x)) ∈ ({0, 1}n)4.

Let Yc1 be the sets of y = (y0, y1, y2, y3) ∈ ({0, 1}n)4 satisfying (1) y0 = y1 =
y2, (2) y0 = y2 and y1 = y3, or (3) y3 = y0 = y1. Then, |Yc1| ≤ 3 · 22n.

Let Pc1 be the projection spanned by all the states containing a database D
for g including at least a tuple (x∗, y∗) ∈ X π × Yc1. Let

Dc1 = {D |D has at least an entry (x∗, y∗) ∈ X π × Yc1}.

Then,
Pc1 =

∑

x,z,w

∑

D∈Dc1

|x, z, w,D〉〈x, z, w,D|.

For k ∈ [1, q], let |ψk−1〉 be the state right before the k-th oracle query is
made and |ψ′

k〉 be the state right after the k-th oracle query is made. Let |ψ′
0〉 be

the initial state and |ψq〉 be the state right before the measurement. Let Og be
the operator making an oracle query to g. Then, |ψ′

k〉 = Og|ψk−1〉. For k ∈ [0, q],
let Uk be the operator such that |ψk〉 = Uk|ψ′

k〉. Thus, Uk represents the local
computation on |x, z, w〉 by the adversary and it does not affect the database.

A colliding pair of inputs x and x′ for hπ satisfying x′ ∈ Cπ(x) is found
with probability at most ‖Pc1|ψq〉‖2 := 〈ψq|P †

c1Pc1|ψq〉 = 〈ψq|Pc1|ψq〉. In the
remaining parts, an upper bound of ‖Pc1|ψk〉‖ is evaluated.
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Since Uk does not affect the database,

‖Pc1|ψk〉‖ = ‖Pc1Uk|ψ′
k〉‖ = ‖Pc1|ψ′

k〉‖.

In addition,

‖Pc1|ψ′
k〉‖ = ‖Pc1Og|ψk−1〉‖

= ‖Pc1Og(Pc1 + (I⊗L − Pc1))|ψk−1〉‖
≤ ‖Pc1OgPc1|ψk−1〉‖ + ‖Pc1Og(I⊗L − Pc1)|ψk−1〉‖
≤ ‖Pc1|ψk−1〉‖ + ‖Pc1Og(I⊗L − Pc1)|ψk−1〉‖,

where L is the number of qubits in |ψk−1〉. For the last term, let

|ψk−1〉 =
∑

x,z,w

∑

D

αx,z,w,D|x, z, w〉 ⊗ |D〉.

Then,

‖Pc1Og(I − Pc1)|ψk−1〉‖ =
∥∥∥∥Pc1Og

∑

x,z,w

∑

D 	∈Dc1

αx,z,w,D|x, z, w〉 ⊗ |D〉
∥∥∥∥.

If D(x) �= ⊥, then D(x) �∈ Yc1 since D �∈ Dc1. Thus,
∥∥∥∥Pc1Og

∑

x,z,w

∑

D 	∈Dc1

αx,z,w,D|x, z, w〉 ⊗ |D〉
∥∥∥∥

=
∥∥∥∥Pc1

∑

x,z,w

∑

D 	∈Dc1,D(x)=⊥

1√
24n

∑

y′
(−1)z·y′

αx,z,w,D|x, z, w〉 ⊗ |D ∪ (x, y′)〉
∥∥∥∥

=
∥∥∥∥

1√
24n

∑

x,z,w

∑

D 	∈Dc1,D(x)=⊥

∑

y′∈Yc1

(−1)z·y′
αx,z,w,D|x, z, w〉 ⊗ |D ∪ (x, y′)〉

∥∥∥∥

=
(

1
24n

∑

x,z,w

∑

D 	∈Dc1,D(x)=⊥

∑

y′∈Yc1

|αx,z,w,D|2
)1/2

≤
(

3 · 22n

24n

∑

x,z,w

∑

D 	∈Dc1,D(x)=⊥
|αx,z,w,D|2

)1/2

≤
√

3
2n

.

Thus,
‖Pc1|ψk〉‖ ≤ ‖Pc1|ψk−1〉‖ +

√
3/2n,

which implies ‖Pc1|ψq〉‖ = O(q/2n). This completes the proof together with
Lemma 1. ��
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Lemma 4. For π, suppose that π4 is the identity permutation and that, for any
x ∈ {0, 1}m, x, π(x), π2(x) and π3(x) are distinct from each other. Then, for
any adversary making at most q quantum queries, the probability that it succeeds
in finding a colliding pair of inputs x and x′ for hπ satisfying x′ �∈ Cπ(x) is
O(q3/22n).

Proof. The problem to find a colliding pair of inputs x and x′ for hπ satisfying
x′ �∈ Cπ(x) is equivalent to the problem to find a pair of distinct inputs x, x′ ∈ X π

for g satisfying (gi(x), gi+1 mod 4(x)) = (gj(x′), gj+1 mod 4(x′)) for some i, j ∈
[0, 3], where g(x) = (g0(x), g1(x), g2(x), g3(x)) ∈ ({0, 1}n)4.

Let Pc2 be the projection spanned by all the states containing a database D
for g including at least a pair of tuples (x∗, y∗) and (x∗∗, y∗∗) in X π × ({0, 1}n)4

such that (y∗
i , y∗

i+1 mod 4) = (y∗∗
j , y∗∗

j+1 mod 4) for some i, j ∈ [0, 3], where y∗ =
(y∗

0 , y
∗
1 , y

∗
2 , y

∗
3) and y∗∗ = (y∗∗

0 , y∗∗
1 , y∗∗

2 , y∗∗
3 ). Then,

Pc2 =
∑

x,z,w

∑

D∈Dc2

|x, z, w,D〉〈x, z, w,D|,

where Dc2 is the set of the databases including at least a pair of tuples described
above.

For k ∈ [1, q], let |ψk−1〉 be the state right before the k-th oracle query is
made and |ψ′

k〉 be the state right after the k-th oracle query is made. Let |ψ′
0〉

be the initial state and |ψq〉 be the state just before the measurement. Let Og

be the operator making an oracle query. Then, |ψ′
k〉 = Og|ψk−1〉. For k ∈ [0, q],

let Uk be the operator such that |ψk〉 = Uk|ψ′
k〉. Thus, Uk represents the local

computation on |x, z, w〉 by the adversary and it does not affect the database.
A colliding pair of inputs x and x′ for hπ satisfying x′ �∈ Cπ(x) is found

with probability at most ‖Pc2|ψq〉‖2. In the remaining parts, an upper bound of
‖Pc2|ψk〉‖ is evaluated.

Since Uk does not affect the database,

‖Pc2|ψk〉‖ = ‖Pc2Uk|ψ′
k〉‖ = ‖Pc2|ψ′

k〉‖.

In addition,

‖Pc2|ψ′
k〉‖ = ‖Pc2Og|ψk−1〉‖

= ‖Pc2Og(Pc2 + (I⊗L − Pc2))|ψk−1〉‖
≤ ‖Pc2OgPc2|ψk−1〉‖ + ‖Pc2Og(I⊗L − Pc2)|ψk−1〉‖
≤ ‖Pc2|ψk−1〉‖ + ‖Pc2Og(I⊗L − Pc2)|ψk−1〉‖,

where L is the number of qubits in |ψk−1〉. For the last term, let

|ψk−1〉 =
∑

x,z,w

∑

D

αx,z,w,D|x, z, w〉 ⊗ |D〉.

Then,

‖Pc2Og(I − Pc2)|ψk−1〉‖ =
∥∥∥∥Pc2Og

∑

x,z,w

∑

D 	∈Dc2

αx,z,w,D|x, z, w〉 ⊗ |D〉
∥∥∥∥.
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If D(x) �= ⊥, then D �∈ Dc2 and the database after the application of Og has
no pair of tuples containing a collision for hπ. For D �∈ Dc2, let YD be the set
of y′ = (y′

0, y
′
1, y

′
2, y

′
3) ∈ ({0, 1}n)4 such that there exists (x∗, y∗) ∈ D satisfying

(y∗
i , y∗

i+1 mod 4) = (y′
j , y

′
j+1 mod 4) for some i, j ∈ [0, 3]. Then,

∥∥∥∥Pc2Og

∑

x,z,w

∑

D 	∈Dc2

αx,z,w,D|x, z, w〉 ⊗ |D〉
∥∥∥∥

=
∥∥∥∥Pc2

∑

x,z,w

∑

D 	∈Dc2,D(x)=⊥

1√
24n

∑

y′
(−1)z·y′

αx,z,w,D|x, z, w〉 ⊗ |D ∪ (x, y′)〉
∥∥∥∥

=
∥∥∥∥

1√
24n

∑

x,z,w

∑

D 	∈Dc2,D(x)=⊥

∑

y′∈YD

(−1)z·y′
αx,z,w,D|x, z, w〉 ⊗ |D ∪ (x, y′)〉

∥∥∥∥

=
(

1
24n

∑

x,z,w

∑

D 	∈Dc2,D(x)=⊥

∑

y′∈YD

|αx,z,w,D|2
)1/2

≤
(

16 · 22n(k − 1)
24n

∑

x,z,w

∑

D 	∈Dc2,D(x)=⊥
|αx,z,w,D|2

)1/2

≤ 4
√

k − 1
2n

.

Altogether,
‖Pc2|ψk〉‖ ≤ ‖Pc2|ψk−1〉‖ + 4

√
k − 1/2n.

Thus,

‖Pc2|ψq〉‖ ≤ 1
2n−2

q−1∑

k=1

√
k ≤ (q − 1)

√
q − 1

2n−2
,

which implies ‖Pc2|ψq〉‖ = O(q3/2/2n). This completes the proof together with
Lemma 1. ��

5 Observation on DBL Compression Functions Using
a Block Cipher

5.1 Related to Non-optimality Result

Let E : {0, 1}� × {0, 1}n → {0, 1}n be a block cipher with its key space {0, 1}�

and � > n. Let hE : {0, 1}� × {0, 1}n → {0, 1}n be the function such that
hE(x0, x1) := E(x0, x1)⊕x1. Let � be a permutation over {0, 1}� ×{0, 1}n such
that �(x0, x1) := (x0, x1 ⊕ c), where c ∈ {0, 1}n \ {0} is a constant. Then, h�

E

represents the DBL compression function using the block cipher E proposed by
Hirose [10]. It is depicted in Fig. 1a.

Since � is an involution, the collision attack presented in the proof of The-
orem 2 can be applied to the DBL compression function h�

E . The Grover oracle
of the collision attack is depicted in Fig. 2, which is very similar to that of
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the exhaustive key search for a block cipher by Jaques et al. [14]. The com-
ponents of the oracle is specified in Fig. 3. UE is the unitary operator of E.
For the component to check equality in Fig. 3b, eq is a predicate such that
eq(u, c) = 1 if and only if u = c. The component in Fig. 3b can be constructed,
for example, with a controlled NOT gate, O(n) Toffoli gates, O(n) X gates,
and O(n) additional qubits [21]. Notice that E(x0, x1) = E(x0, x1 ⊕ c) ⊕ c if
hE(x0, x1) = hE(�(x0, x1)). For the Grover oracle in Fig. 2, the plaintext inputs
to UE are fixed constants 0n and c.

Remark 1. It was shown [10] that the collision resistance of the Merkle-Damg̊ard
iterated hash function using h�

E can be reduced only to the intractability of
finding a colliding pair of inputs (x0, x1) and (x′

0, x
′
1) for h�

E such that (x′
0, x

′
1) �=

�(x0, x1).

E

E

x1

x0

c

(a) Hirose

E

E

x1

x0

δ

(b) Jonsson and Robshaw

Fig. 1. DBL compression functions using a block cipher

|ψ
|0n UE U 

†
E |0n

|ψ

|0n

|c
|0n

|ccUE U 
†

E

Fig. 2. Grover oracle for the collision attack

5.2 Related to Optimality Result

Let δ be a permutation over {0, 1}n applying addition of 1 modulo 4 to the
two most significant bits of an input, which is equivalent to addition of 2n−2

modulo 2n. Then, ĥδ
E(x0, x1) := (E(x0, x1) ⊕ x1, E(x0, δ(x1)) ⊕ x1) represents

the DBL compression function using the block cipher E proposed by Jonsson
and Robshaw [15], which is depicted in Fig. 1b.
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UE
key

plaintext ciphertext

(a) Unitary operator of E

c|u
|v

|u
|v⊕eq(u,c)

(b) Equality check

Fig. 3. Components of the Grover oracle in Fig. 2

Addition of 1 modulo 4 to (b1, b0) ∈ {0, 1}2 can be represented by a permuta-
tion shown in Example 1: (b1, b0) �→ (b1⊕b0, b0⊕1). Thus, δ satisfies the sufficient
condition for optimal quantum collision resistance. However, it is still an open
question if ĥδ

E is optimally collision resistant against quantum adversaries.

6 Conclusion

We have analyzed the quantum collision resistance of the compression function
hπ assuming that h is a random oracle. Though our analysis has covered some
permutations π of practical interest, it leaves the quantum collision resistance
for the other permutations as an open question. It is also an open question if
there exists an optimally collision resistant DBL compression function using a
block cipher against quantum adversaries.

Acknowledgements. We would like to thank the reviewers for their valuable com-
ments to improve the presentation of this manuscript. One of the reviewers pointed
out our misunderstanding about Theorem 1 by Nandi [20].
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17. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The rebound attack:
cryptanalysis of reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE 2009.
LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-03317-9 16

18. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, New York (1990). https://doi.org/
10.1007/0-387-34805-0 40

19. Meyer, C.H., Schilling, M.: Secure program load with manipulation detection code.
In: Proceedings of the 6th Worldwide Congress on Computer and Communications
Security and Protection (SECURICOM 1988), pp. 111–130 (1988)

20. Nandi, M.: Towards optimal double-length hash functions. In: Maitra, S., Veni
Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT 2005. LNCS, vol. 3797, pp.
77–89. Springer, Heidelberg (2005). https://doi.org/10.1007/11596219 7

21. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2000)

https://doi.org/10.1007/978-3-030-64834-3_25
https://doi.org/10.1007/978-3-319-29360-8_3
https://doi.org/10.1007/978-3-319-29360-8_3
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1007/11799313_14
https://doi.org/10.1007/978-3-030-45724-2_9
https://csrc.nist.gov/events/2020/lightweight-cryptography-workshop-2020
https://csrc.nist.gov/events/2020/lightweight-cryptography-workshop-2020
https://doi.org/10.1007/978-3-030-45724-2_10
https://doi.org/10.1007/978-3-030-45724-2_10
https://doi.org/10.1007/978-3-540-30580-4_4
https://doi.org/10.1007/978-3-540-30580-4_4
https://doi.org/10.1007/978-3-030-17659-4_7
https://doi.org/10.1007/978-3-642-03317-9_16
https://doi.org/10.1007/978-3-642-03317-9_16
https://doi.org/10.1007/0-387-34805-0_40
https://doi.org/10.1007/0-387-34805-0_40
https://doi.org/10.1007/11596219_7


A Note on Quantum Collision Resistance of Double-Block-Length 175

22. Zhandry, M.: A note on the quantum collision and set equality problems. Quantum
Inf. Comput. 15(7&8), 557–567 (2015). https://doi.org/10.26421/QIC15.7-8-2

23. Zhandry, M.: How to record quantum queries, and applications to quantum indif-
ferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol.
11693, pp. 239–268. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26951-7 9

https://doi.org/10.26421/QIC15.7-8-2
https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/10.1007/978-3-030-26951-7_9


Isogeny-Based Cryptography



An Isogeny-Based ID Protocol Using
Structured Public Keys

Karim Baghery(B), Daniele Cozzo, and Robi Pedersen

imec-COSIC, KU Leuven, Leuven, Belgium
{karim.baghery,daniele.cozzo,robi.pedersen}@kuleuven.be

Abstract. Isogeny-based cryptography is known as one of the promising
approaches to the emerging post-quantum public key cryptography. In
cryptography, an IDentification (ID) protocol is a primitive that allows
someone’s identity to be confirmed. We present an efficient variation of
the isogeny-based interactive ID scheme used in the base form of the CSI-
FiSh signature [BKV19], which was initially proposed by Couveignes-
Rostovtsev-Stolbunov [Cou06,RS06], to support a larger challenge space,
and consequently achieve a better soundness error rate in each execution.
To this end, we prolong the public key of the basic ID protocol with
some well-formed elements that are generated by particular factors of
the secret key. Due to the need for a well-formed (or structured) public
key, the (secret and public) keys are generated by a trusted authority. Our
analysis shows that, for a particular security parameter, by extending a
public key of size 64B to 2.1 MB, the prover and verifier of our ID protocol
can be more than 14× faster than the basic ID protocol which has a
binary challenge space, and moreover, the proof in our case will be about
13.5× shorter. Using standard techniques, we also turn the presented ID
protocol into a signature scheme that is as efficient as the state-of-the-
art CSI-FiSh signature, and is existentially unforgeable under chosen
message attacks in the (quantum) random oracle model. However, in our
signature scheme, a verifier should get the public key of a signer from
a trusted authority, which is standard in a wide range of current uses
of signatures. Finally, we show how to eliminate the need for a trusted
authority in our proposed ID protocol.

Keywords: Isogeny-based cryptography · Identification protocols ·
Digital signatures · Quantum random oracle model

1 Introduction

An IDentification (ID) protocol is an interactive cryptographic protocol between
two parties called Prover and Verifier, that allows to prove the identity of the
former to the latter [Sch89]. At the end of a successful execution of an ID pro-
tocol, the Verifier is convinced that it is interacting with the Prover that knows
the secret key sk corresponding to a particular public key pk. ID protocols are
deployed in a wide range of cryptographic protocols and practical applications,
c© Springer Nature Switzerland AG 2021
M. B. Paterson (Ed.): IMACC 2021, LNCS 13129, pp. 179–197, 2021.
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and above all, they can be used to build digital signatures. Constructions like
Schnorr’s ID protocol and its corresponding signature [Sch89] are known for their
simplicity and efficiency, but rely on the intractability of the discrete logarithm
problem, which is known to be insecure against sufficiently powerful quantum
computers [Sho94].

There are various research areas that are exploring post-quantum crypto-
graphic techniques to design primitives and protocols that can remain secure in
the presence of quantum computers. One of these is isogeny-based cryptography,
which was independently proposed by Couveignes [Cou06] and by Rostovtsev
and Stolbunov [RS06,Sto10]. The security of these isogeny-based constructions
mainly relies on the difficulty of finding an explicit isogeny connecting two isoge-
nous ordinary elliptic curves over a finite field, while the construction of such
isogenies can be efficiently computed as the action of elements of the ideal-class
group of the endomorphism ring of these elliptic curves. In these original works,
the authors also independently proposed an isogeny-based interactive ID proto-
col. In his Ph.D. thesis, Stolbunov [Sto12] further mentioned how to convert the
ID protocol to the first isogeny-based signature scheme using the Fiat–Shamir
transform. However, these constructions have many drawbacks. First, they work
with a binary challenge space, and therefore need to be repeated many times
to achieve a reasonable soundness rate. Second, in order to allow the uniform
sampling and efficiently computable canonical representations of elements in the
class group needed in these protocols, the class group structure has to be known,
which is a difficult problem for quadratic imaginary fields [HM89]. Finally, a
quantum attack by Childs, Jao, and Soukharev [CJS14] pushed the security
parameter sizes of these schemes to an impractical scale. Even with current
optimizations [DFKS18], these schemes are inefficient in practice.

Later works have tried to mitigate these shortcomings. In 2018, Castryck
et al. [CLM+18] proposed CSIDH (Commutative Supersingular Isogeny Diffie-
Hellman) and showed that using supersingular curves over Fp instead of ordinary
ones, combined with the action by Fp-rational ideals, greatly increases the effi-
ciency of isogeny computations and thus makes these schemes again usable in
practice. De Feo and Galbraith [DFG19] used the tools of CSIDH to construct
a signature scheme that does not need the knowledge of the class group, but
rather uses rejection sampling. With later improvements by Decru, Panny, and
Vercauteren [DPV19], Seasign signatures could be performed in a few minutes.
Later that same year Beullens, Kleinjung and Vercauteren [BKV19] performed a
record class-group computation for the CSIDH-512 parameter set (a class group
of size ≈ 2257) that finally allowed class group elements to be uniformly sam-
pled and efficiently represented, leading to a practical signature scheme, called
CSI-FiSh. In its simplest version, using a binary challenge space, a CSI-FiSh sig-
nature takes slightly less than 3 s. Then, with further improvements, the authors
managed to decrease it to a few hundred milliseconds by increasing the public-
key size and using a different Σ-protocol which is an ID protocol for a different
language, but supports a larger challenge space.
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A very different approach to isogeny-based ID protocols and signatures was
taken based on the SIDH scheme proposed by Jao and De Feo [JDF11], which
uses supersingular elliptic curves over Fp2 , where the endomorphism ring is iso-
morphic to an order in a quaternion algebra, rather than a quadratic imaginary
field. The original paper also proposes an ID protocol, based on which later sig-
nature schemes have been proposed [YAJ+17,GPS17], although not very prac-
tical. The work of Galbraith et al. [GPS17] however also introduced a signature
scheme based on the KLPT algorithm [KLPT14], which uses the knowledge of
the endomorphism ring of two supersingular elliptic curves over Fp2 to compute
an isogeny connecting them. In 2020, De Feo et al. [DFKL+20] showed that
with further assumptions, this scheme can be made practical and proposed the
signature scheme SQI-Sign. At the NIST security level 1, SQI-Sign runs in a
few seconds and has public-key sizes a magnitude smaller than any other post-
quantum secure signature scheme.

Our Contributions. Our main contribution is to extend the ID protocol
used in the base form of CSI-FiSh signature [BKV19], which was initially pro-
posed by Couveignes-Rostovtsev-Stolbunov [Cou06,RS06], to work with a larger
challenge space rather than a binary space. By extending the challenge space,
the proposed ID protocol achieves an arbitrarily small soundness error rate in
each execution. To this end, we modify the ID protocol with binary challenge
space [Cou06,RS06,BKV19] and prolong its public key with some new struc-
tured elements. Particularly, each new element in the public key is built from
a distinct specific multiple of the secret key, where the coefficients are taken
from a public exceptional set [BCPS18,DLSV20]. The latter is a crucial require-
ment in the security proof for knowledge soundness. Then, we show that using
the structured public key, we can build an ID protocol that works with a larger
challenge space, and consequently achieves a bigger soundness error rate in each
run. Due to the need for a well-formed or structured public key, in the basic and
more efficient version of our ID protocol, we assume that the (secret and public)
keys are generated by a trusted authority and shared with parties. Our perfor-
mance analysis shows that, in practice, for a particular security parameter, with
an honestly generated public key of size 2.1 MB, the prover and verifier of our
ID protocol can be more than 14× faster than using repetitions of the basic ID
protocol with a binary challenge space and also the proof will be about 13.5×
shorter. In order to apply further optimizations to the soundness security, we
define superexceptional sets (in Definition 3.2) as a particular form of exceptional
sets, which can be of independent interest.

As our second contribution, we use standard techniques to turn the proposed
ID protocol into a signature scheme that has the same efficiency as the state-of-
the-art isogeny-based signature scheme CSI-FiSh [BKV19], constructed to work
in the CSIDH setting. In our signature scheme, the verifier needs to get the
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public key of the signer from a trusted authority rather than from the signer
itself, which is standard in applications like public key certificates. Similar to
CSI-FiSh, our signature scheme would allow to generate and verify a signature
of size less than 400 bytes in less than 0.5 s.

In our basic ID protocol, to guarantee the well-formedness of the public
keys, we assume that these are generated by a trusted authority. As the next
contribution of the paper, we show how this trust can be eliminated by letting
the prover generate the key pair themselves, while appending a proof of well-
formedness to the public key. We also show that in order to increase the efficiency,
this proof can be incrementally generated, i.e. that the correctness of the i-th
public key element can be proven more efficiently by using the fact that elements
1, . . . , i − 1 have already been proven.

Organization. Section 2 presents some preliminaries used in the paper. In
Sect. 3, we present our ID protocol in the setting where a trusted authority
has generated the keys. In Sect. 4, we detail the corresponding signature scheme.
In Sect. 5, we propose two protocols to eliminate the trust on the key genera-
tion and also discuss some applications. We present some benchmarks in Sect. 6.
Finally, we conclude the paper in Sect. 7.

2 Preliminaries

We denote by ZN = Z/NZ the integers modulo N , where we assume that N is
a composite number of known prime factorisation N =

∏m
i=1 qri

i with q1 < · · · <
qm primes and all ri ∈ N. We further say that a function μ(x) is a negligible
function of x, if for any constant c, there exists x0, such that for all x > x0, we
have μ(x) < 1

xc .

2.1 ID Protocols

Sigma-Protocols. Let λ be a security parameter and let X = X(λ) and
W = W (λ) be sets. Let R be a relation on X × W that defines a language
L = {x ∈ X : ∃w ∈ W,R(x,w) = 1}. Given x ∈ L, an element w ∈ W such
that R(x,w) = 1 is called a witness. Let R be a PPT algorithm such that R(1λ)
outputs pairs (x,w) such that R(x,w) = 1.

A sigma-protocol (Σ-protocol) for the relation R is a 3-round interactive
protocol between two PPT algorithms: a prover P and a verifier V. P holds a
witness w for x ∈ L and V is given x. P first sends a value a to V, and then V
answers with a challenge c , and finally P answers with z. V accepts or rejects
the proof. The triple trans = (a, c, z) is called a transcript of the Σ-protocol. A
Σ-protocol is supposed to satisfy Completeness, Honest Verifier Zero-Knowledge
(HVZK), and Special Soundness defined below.
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Definition 2.1 (Completeness). A Σ-protocol Π with parties (P,V) is com-
plete for R, if for all (x,w) ∈ R, the honest V will always accept the honest P.

Definition 2.2 (HVZK). A Σ-protocol satisfies HVZK for R, if there exists
a PPT algorithm Sim that given x ∈ X, can simulate the trans of the scheme,
s.t. for all x ∈ L, (x,w) ∈ R,

trans(P(R, x,w) ↔ V(R, x)) ≈ trans(Sim(R, x) ↔ V(R, x))

where trans(P(·) ↔ V(·)) indicates the transcript of Π with (P,V), and ≈ denotes
the indistinguishability of transcripts.

Definition 2.3 (Special Soundness). The Σ-protocol Π with parties (P,V)
is special sound for R, if there exists a PPT extractor Ext, such that for any
x ∈ L, given two valid transcripts (a, c, z) and (a, c′, z′) for the same message a
but c �= c′, then Ext(a, c, z, c′, z′) outputs a witness w for the relation R.

Identification Protocols. An ID protocol is a special case of a Σ-protocol
between two parties (P,V), with respect to a hard relation defined by a key
generator KGen, as (pk, sk) ← KGen(1λ), where one thinks of sk as a witness for
the public key pk.

2.2 Building NIZK ID Protocols and Signatures

An HVZK Σ-protocol Π can be transformed to a Non-Interactive Zero-
Knowledge (NIZK) argument ΠNIZK in the Random Oracle Model (ROM) via
the Fiat–Shamir (FS) transformation [FS87]. The transformation also allows
to build signatures from an ID protocol [AABN02]; we describe this procedure
in Appendix A. Next we define strong existential unforgeability under chosen
message attacks, the primary security notion for signatures.

Definition 2.4 (Strong Existential Unforgeability under Chosen Mes-
sage Attacks). A signature scheme ΠSign = (KGen,Sign,Vf) is said to be strong
Existentially Unforgeable under adaptive Chosen-Message Attacks (sEU-CMA)
if for all PPT adversaries A,

∣
∣
∣
∣
∣
Pr

[
(pk, sk) ← KGen(1λ), σi ← Sign(sk,mi) for 1 ≤ i ≤ k;

(m,σ) ← ASign(.)(pk, (mi, σi)k
i=1) : Vf(m,σ, pk) = 1 ∧ (m,σ) �∈ Q

]∣
∣
∣
∣
∣

is negligible in the security parameter λ, where Q := {(m1, σ1) · · · , (mk, σk)}
is the set of the messages requested by A and the signatures returned from the
signing oracle.
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2.3 CSI-FiSh

The digital signature scheme CSI-FiSh [BKV19] is based on the ID proto-
col with binary challenge space initially proposed by Couveignes-Rostovtsev-
Stolbunov [Cou06,RS06], that closely follows the lines of the Schnorr identifi-
cation protocol as introduced in [Sch89]. We will introduce it in the notation
of hard homogeneous spaces, a notion introduced by Couveignes [Cou06], which
generalizes group actions that contain hard computational problems.

Definition 2.5 (Hard homogeneous space [Cou06]). A Hard Homogeneous
Space (HHS) is a pair of a finite Abelian group G acting on a finite set E with
a free and transitive map � : G × E → E, that is efficiently computable.
Furthermore, operations, sampling and membership checks in G, as well as mem-
bership and equality checks in E are efficiently computable. Given an element of
G, one can also efficiently compute a unique representation. The following are
hard algorithmic problems:

– Vectorization: Given E1, E2 ∈ E, find a ∈ G, such that a � E1 = E2.
– Parallelization: Given E1, E2, F1 ∈ E with E2 = a � E1, compute F2 = a � F1.

When G is cyclic of order N and g is a given generator of G, we can also define
the group action [ ] : ZN × E → E as [a]E = ga � E for a ∈ ZN , E ∈ E . It holds
[a][b]E = [a + b]E.

The ID protocol underlying CSI-FiSh allows to prove knowledge of a secret
group action [a] connecting two given set elements (E0, E1 = [a]E0), where
E0 ∈ E is a public starting element. Similar to the Schnorr protocol, the prover
first commits to a random b ∈ ZN via Eb = [b]E0, then after receiving a random
bit c from the verifier, sends the response r = b − ca mod N . The verifier
checks whether [r]Ec = Eb. While in Schnorr protocols, the soundness error
can be increased by choosing challenges as bit-strings of length k, computing
[r]Ec = [r][ca]E0 for non-binary c is not directly possible in the more restrictive
HHS setting, since there is no way for the verifier to compute the action of ca
without knowing a.

In order to decrease the soundness error of their ID protocol, the authors
rather increase the challenge space by using larger keys: the secret key is a set
a1, . . . , aS−1 which defines the corresponding public key E1, . . . , ES−1. Then the
prover proves knowledge of any isogeny connecting two elements of its public
key, which results in a Σ-protocol with soundness error rate 1

S . We note at this
point, that this protocol cannot be used as an identification protocol for the
knowledge of the secret key, in that an extractor can only extract a difference
ai − aj of secret keys. The purpose of the next sections is to construct such an
identification protocol.

The authors of [BKV19] instantiate the HHS by identifying E with the set
of supersingular elliptic curves defined over a prime field Fp with log2 p ≈ 512.
The class group Cl(O) of the Fp-rational endomorphism ring O acts freely and
transitively on these elements by isogenies, which allows the identification G with
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Cl(O). The full class group structure has also been determined in [BKV19]. It
has size

#Cl(O) = 3 · 37 · 1407181 · 51593604295295867744293584889
· 31599414504681995853008278745587832204909

and is cyclic with generator g = (3, π−1). The starting element E0 : y2 = x3 +x
enjoys the special symmetry, that the twist of [a]E0 is [−a]E0. Since twisting can
be performed efficiently, the authors implicitly include twists in the public key
and thus double the challenge space, reducing the soundness error rate to 1

2S−1 .
For the sake of generality, we also describe this concept for HHS by introducing
the following notion of a symmetric HHS. In this setting, we generally use the
index notation to identify the “twists”, i.e. we write Ea = [a]E0 and E−a =
[−a]E0 for the twists.

Definition 2.6 (Symmetric hard homogeneous space). We call a hard
homogeneous space symmetric around E0 ∈ E, if, given an element a � E0, one
can efficiently compute a−1 � E0 without any extra information.

3 An Efficient ID Protocol

Next, we generalize the ID scheme with binary challenge space used in the basic
version of CSI-FiSh [BKV19] to support a larger challenge space. Their protocol
allows to prove the knowledge of secret key x for the public key E1 = [x]E0, but
works with a binary challenge space. As a consequence, this construction requires
a large number of parallel executions and large communication to achieve a
reasonable soundness error rate. In order to extend the ID protocol to support
a larger challenge space, we assume that there exists a trusted authority in the
protocol that generates the pair of secret and (structured) public keys. The
trusted authority sends both keys to the prover, while only the public key to the
verifier. We later discuss how to eliminate the need for a trusted authority.

3.1 Construction and Security Proofs

To efficiently prove the knowledge of x in E1 = [x]E0, our key idea is to ask
a trusted authority to generate k − 2 new curves E2, E3, · · · , Ek−1 using other
multiples of x, say Ei = [cix]E0 for i = 2, · · · , k−1, where ci are public integers.

The Issue with Composite N . In order to achieve special soundness and build
an efficient extraction algorithm that can extract the witness from two acceptable
transcripts of our construction, we need to assume that the difference of any two
challenge values is always invertible. Since N can be composite, we need to define
the challenge set to only contain elements, whose pairwise difference is invertible.
To this end we use exceptional sets [BCPS18,DLSV20].
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Definition 3.1 (Exceptional set). An exceptional set (modulo N) is a set
C = {c0, . . . , ck−1} ⊆ ZN , where the pairwise difference ci − cj of all elements
ci �= cj is invertible modulo N .

Given k and particular N with smallest prime factor q1 ≥ k, there exists an
efficient algorithm XSGen that outputs an exceptional set of size k with integer
elements, C = {c0 = 0, c1 = 1, c2, · · · , ck−1}.1 In order for the exceptional set
to have a specific target size k ≥ q1, we need to work in a subgroup ZN ′ , where
N ′ | N has smallest prime factor q′

1 ≥ k. To do this we factor out the smaller
primes. The only restriction this puts on N is that it is not k-smooth, which is
a reasonable assumption for arbitrary composite numbers and k  N .

The ID-Protocol. We now describe the steps of our ID-protocol. Given a secu-
rity parameter and the system parameters, the trusted authority samples a secret
key x ← ZN , generates an exceptional set C = {c0 = 0, c1 = 1, c2, · · · , ck−1}
using XSGen and then generates the public key (E0, E1, . . . , Ek−1), where
Ei = [cix]E0 for i = 1 . . . , k − 1. Note that we see E0 as part of the public-
key for simplicity and that [0] denotes the neutral element of the group action.
The trusted authority then sends the secret key to the prover, and the public key
to both the prover and the verifier. Then, the prover can use the Σ-protocol in
the figure below to convince the verifier about its knowledge of the secret key x.

The Main ID Protocol Under a Trusted Setup with an Arbitrary N

Trusted Authority

Use XSGen to obtain C, where

C = {c0 = 0, c1 = 1, c2, · · · , ck−1}
x ← ZN , set {Ei = [cix]E0}k−1

i=1

(x, (E0, E1, · · · , Ek−1)) (E0, E1, · · · , Ek−1)

Prover: Verifier:

b ← ZN , Eb ← [b]E0
Eb

d d ← {0, . . . , k − 1}

r ← b − cd · x mod N r return Eb
?
= [r]Ed

The following theorem proves the security of the proposed ID protocol.

Theorem 3.1. Assuming the existence of an exceptional set C = {c0 = 0, c1 =
1, c2, c3, · · · , ck−1}, the described ID-protocol is complete, HVZK, and special
sound with soundness error rate 1

k .

1 An easy approach is just to generate k− 2 distinct elements from {2, . . . , q1}. In its
simplest form, we have C = {0, 1, 2, · · · , k − 1}.
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Proof. For the completeness, the honest prover follows the protocol and addi-
tionally knows a secret x such that Ei = [cix]E0 for i = 1, . . . , k − 1. The honest
verifier checks whether Eb = [r]Ed = [b − cdx]Ed = [b − cdx][cdx]E0 = [b]E0

which holds given the assumptions on the prover.
For the HVZK, we construct a simulator that given the honestly generated

challenge d, samples r randomly from ZN , then sets Eb = [r]Ed and returns the
transcript (Eb, d, r). In both the real and the simulated transcripts, r and Eb are
sampled uniformly at random, yielding indistinguishable distributions.

For special soundness, given two valid transcripts of the protocol, we build
an efficient extraction algorithm that extracts the witness x. Let (Eb, d, r) and
(Eb, d

′, r′) be two acceptable transcripts of the protocol, where d �= d′, conse-
quently r �= r′ (for non-zero x). From the verification equation, one can conclude
that [r]Ed = [r′]Ed′ , and from the (trusted) key generation we know that Ei =
[cix]E0 for i = 1, . . . , k − 1. These imply that we have [r][cdx]E0 = [r′][cd′x]E0,
which implies that r − r′ ≡ x(cd′ − cd) (modN). Considering the fact that both
cd and cd′ are sampled from the exceptional set C, cd′ − cd is invertible modulo
N , this allows the extraction of x as x = r−r′

cd′−cd
mod N. ��

Soundness Error Rate. In its current form, our protocol has soundness error rate
1/k. To achieve a target soundness error of 2−λ for a given security parameter
λ, we therefore have to repeat our protocol at least �λ logk 2� times.

Making the Construction Non-interactive. The described ID protocol is a
public-coin Σ-protocol, therefore can be turned into a non-interactive ID proto-
col using the Fiat–Shamir transform [FS87]. To do so, let t = t(k) = �λ logk 2�.
The prover generates t distinct elements b1, . . . , bt ← ZN and commits to t
elliptic curves Ebi = [bi]E0 for i = 1, . . . , t. Then the challenge is deter-
mined by hashing the commitments and the statements using a hash function
H : {0, 1}∗ → {0, 1}t�log2 k�, modeled as a random oracle, and parsing it into t
challenges:

d = d1|| . . . ||dt = H(E0, . . . , Ek−1||Eb1 , . . . , Ebt).

The response is given as r = (r1, . . . , rt) ≡ (b1 − cd1x, . . . , bt − cdt
x) (mod N).

The prover publishes (d, r) as its proof. The verifier then checks, whether

H(E0, . . . , Ek−1||[r1]Ed1 , . . . , [rt]Edt
) ?= d .

Lemma 3.1. The non-interactive version of our ID-protocol is a NIZK quantum
proof of knowledge in the quantum random oracle model.

Proof. The freeness of the group action implies that, if [b]E0 = [b′]E0, then b =
b′. This immediately implies that our scheme has unique responses. Furthermore,
the freeness of the group action also implies superlogarithmic collision-entropy
of the commitments, since commitments will only collide if they are generated
using the same b, which is a negligible function of the security parameter. Finally,
the challenge space is of size 2t�log2 k� ≥ 2λ, thus superpolynomial in λ. Using
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our results for completeness, special soundness and HVZK from Theorem 3.1
this implies that our protocol is a quantum proof of knowledge using [DFMS19,
Th. 25] and zero-knowledge against quantum adversaries [Unr17]. ��

3.2 Optimizations and Efficiency

Similar to the proposal used in CSI-FiSh [BKV19], we can double our challenge
space using twists. To this end, we assume that the underlying HHS is symmetric
as by Definition 2.6. Defining E−i = [c−ix]E0 = [−cix]E0 allows challenges to be
sampled from the set d ← {−(k−1), . . . , k−1} of size 2k−1, while the response
and verification steps proceed in exactly the same way as in the ID-protocol:
In the case d < 0, the response is simply r = b − c−dx = b + cdx and for the
verification step, the verifier needs to compute E−d = [−cdx]E0 via the efficient
map from Ed, and check if Eb = [r]E−d = [b + cdx][−cdx]E0.

By this extension, our protocol achieves soundness error rate 1
2k−1 , and thus

has to be repeated t(2k − 1) = �λ log2k−1 2� times to achieve a target soundness
error of at least 2−λ. Note that in the non-interactive case, the hash function
needs to be redefined to have the output domain {0, 1}t(2k−1)�log2(2k−1)�.

However, there is another problem. To guarantee the special soundness
proven in Theorem 3.1, we used exceptional sets (Definition 3.1), that guar-
antee that any pair of challenges allows the extraction of the secret x by an
extractor. Since we are implicitly extending our challenge space to also include
negative values of the factors ci, we have to guarantee that their pairwise sums
are invertible too. We therefore define the notion of superexceptional sets.

Definition 3.2 (Superexceptional set). A superexceptional set (modulo N)
is a set C = {c0, . . . , ck−1}, where the pairwise difference ci − cj of all distinct
elements ci �= cj and the pairwise sum ci + cj of all elements ci, cj (including
ci = cj) is invertible modulo N .

Similarly to exceptional sets, we can define an efficient algorithm SXSGen for
generating superexceptional sets modulo N of size k ≤ 1

2 (q1 + 1). By letting the
trusted authority in our ID-protocol generate a superexceptional set instead of
an exceptional one, and by assuming the underlying hard homogeneous space is
symmetric around E0, we have the following lemma.

Lemma 3.2. Assuming the existence of a superexceptional set C = {c0 =
0, c1 = 1, c2, . . . , ck−1}, the described ID-protocol is complete, HVZK, and special
sound with soundness error rate 1

2k−1 .

Proof. We have already shown completeness. HVZK and special soundness
closely follow the proof in Theorem 3.1. Note that because we also allow nega-
tive challenges, we can end up with three different scenarios for challenges d, d′:
They can either be both positive, both negative or one positive and one negative.
In the first two cases, the extractor will need to invert an element of the form
±(c|d′| − c|d|) mod N , which is guaranteed to be possible in exceptional sets. In
the third case, the extractor will end up with needing to invert an element of the
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form ±(c|d′| + c|d|) mod N , which is only guaranteed to be possible by using a
superexceptional set C. ��
Computational Cost. We establish the computational costs in terms of Group
Actions (GAs) of our proposed protocol in the standard and in the symmetric
case. We assume that we want to reach a target soundness error of 2−λ. Given a
soundness error rate of 1/s per round, we need to repeat the underlying protocol
t(s) = �λ logs 2� times. In both protocols, the prover and the verifier only need
to compute a single GA per step thus, for both, the total cost in GAs is also
expressed by t(s). We find the following total costs:

– Standard ID-protocol: t(k) = �λ/ log2 k� GAs,
– Symmetric ID-protocol: t(2k − 1) = �λ/ log2(2k − 1)� GAs.

Assuming k = 2κ, this implies t(2) ≈ κt(k) ≈ (κ + 1)t(2k − 1).

Public Key Size. Instead of a single set element, the public key now consists
of k−1 set elements, generated using the secret key x and elements of the excep-
tional set C.

Proof Size. We further establish the proof size of the non-interactive version
of the ID-protocol in the standard and symmetric cases. To that end, we real-
ize that the prover publishes the challenge-response pair (d, r). The total chal-
lenge size is simply the size of the output domain of the hash function, which is
t(s)�log2 s� bits. The responses are t(s) elements in ZN , thus have total size at
most t(s)�log2 N�. This gives the total proof size of

– Standard ID-protocol: �λ/ log2 k�(�log2 k� + �log2 N�) bits,
– Symmetric ID-protocol: �λ/ log2(2k − 1)�(�log2(2k − 1)� + �log2 N�) bits.

4 Signatures from the Proposed ID Protocol

The ID protocol in Sect. 3 can be turned into a signature scheme using the Fiat–
Shamir transform [FS87]. Let again t = t(s) = �λ logs 2�, then the challenges are
obtained by hashing the commitments Eb1 , . . . , Ebt and the message m to sign
using a hash function H : {0, 1}∗ → {0, 1}t�log2 s�

, modeled as a random oracle.
The challenge is obtained as d = d1 ‖ · · · ‖ dt = H(Eb1 , . . . , Ebt ‖ m).

The signature on m consists of (m; (r1, d1), . . . , (rt, dt)). The verifier recom-
putes the E′

bi
= [ri]Ei and checks that indeed d = H(E′

b1
, . . . , E′

bt
‖ m). The

description of the trusted key generation, signing and verification of the signa-
ture scheme is presented in Fig. 1.

Theorem 4.1. When the hash function H is modelled as a (quantum) random
oracle, then the signature scheme in Fig. 1 is sEUF-CMA secure.

Proof. In Lemma 3.1, we proved that the ID-protocol from Sect. 3 has special
soundness and unique responses. Then by Theorem 25 of [DFMS19] the protocol
enjoys the Quantum Proof of Knowledge property. This along with the fact that
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The signature scheme based on our standard (resp. symmetric) ID protocol

KGen(1λ): To generate the keys, a trusted authority acts as follows,
1. Sample x ← Z/NZ.
2. Run algorithm XSGen (resp. SXSGen) and obtain an exceptional (resp.

superexceptional) set C = {0, c1 = 1, c2, · · · , ck−1}
3. For each ci ∈ C set Ei = [cix]E0.
4. Return sk = x, pk = (E0, E1, . . . , Ek−1).

Sign(sk,m): To sign a message m, the signer performs
1. For i = 1, 2, . . . , t:

(a) bi ← Z/NZ.
(b) Ebi = [bi]E0.

2. Set (d1, . . . , dt) = H(Eb1 , . . . , Ebt ‖ m).
3. For i = 1, 2, . . . , t:

(a) set ri = bi − cdi · x (mod N).
4. Return {(ri, di)}t

i=1.
Vf({(ri, di)}t

i=1,m, pk): To verify a signature {(ri, di)}t
i=1 on m, one performs:

1. For i = 1, 2, . . . , t: compute E′
bi

= [ri]Ei.
2. (d′

1, d
′
2, . . . , d

′
t) = H(E′

b1 , . . . , E
′
bt‖m).

3. If (d1, d2, . . . , dt) = (d′
1, d

′
2, · · · , d′

t) then return valid, else output invalid.

Fig. 1. The signature scheme based on our standard (resp. symmetric) ID protocol

the protocol has λ bits of min entropy (Lemma 3.1) implies by Theorem 22
of [DFMS19] that the resulting signature scheme obtained via Fiat–Shamir is
sEUF-CMA in the QROM. ��

Computational Cost and Signature Size. We notice that the number of
group actions to be performed in the signature and verification process are the
same as in the proof and verification of the non-interactive ID protocol, respec-
tively. Similarly, the size of the signature on m is given by the size of the output
domain of the hash function, which depends on inverse the soundness error rate
s and is therefore also equal to the proof size of the non-interactive ID protocol.

5 Eliminating the Trusted Setup

In the presented ID protocol (in Sect. 3), the need for a trusted authority mainly
was for ensuring the well-formedness of the public key pk. We call a public
key pk := (E0, E1, . . . , Ek−1) well-formed, if for a secret key x ∈ ZN and a set
C = {c0, . . . , ck−1} it holds that Ei = [cix]E0 for i = 1, . . . , k − 1 and that C is
a (super-)exceptional set for the case of a (symmetric) HHS.

The proof of special soundness in the main protocol relies on the fact that
the elements of pk are well-formed and each one contains a particular multiple of
sk. In practice, this trust can be eliminated if the prover generates the keys and
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proves their well-formedness. This proof2 needs to be generated only once, and
a verifier can eliminate the need for a trusted party by verifying it and checking
that C is a (super-)exceptional set (which can be done in polynomial time).

We present two Σ-protocols for a well-formedness proof. The first protocol
is more general and proves that a given pk has the correct structure simply
by showing that a single commitment-response pair applies to all elements of it.
The second protocol, on the other hand, uses an incremental approach, where the
correctness of an element Ei of the pk is proven by using elements E0, . . . , Ei−1.
By starting from (E0, E1), which is well-formed by definition, we can then prove
the well-formedness of the entire key incrementally. This approach will turn
out to be much more efficient, but only works for exceptional sets of the form
{0, 1, 2, . . . , k − 1}. This protocol also allows for a pk to be upgraded, i.e. to add
a new element to a pk with a short proof, that the element is also well-formed.

Both protocols can be made non-interactive using the Fiat–Shamir transform.

5.1 First Approach: General Well-Formedness Proof

We present a Σ-protocol of the following well-formedness (WF) relation for a
given E0 and a particular k.

LWF
k−1 := {((E0, E1, . . . , Ek−1), x,C = {c1, . . . , ck−1}) :

k−1∧

i=1

Ei = [cix]E0}.

Namely, P needs to prove in zero-knowledge that all the elements of the pk
are computed using the same secret key x but with different public coefficients
c1, . . . , ck−1. This can be achieved in a straightforward fashion by sampling b ←
ZN and committing to Êi = [cib]E0 for i = 1, . . . , k − 1. The challenge d is
binary, or ternary if we assume a symmetric HHS, and the prover can respond
with r = b − dx mod N . Finally, the verifier checks if all Êi

?= [cir]Edi.

Theorem 5.1. The above Σ-protocol is correct, HVZK, and special sound with
soundness error rate 1

3 .

Proof. For completeness, we simply realize that [cir]Edi = [cib−dcix][dcix]E0 =
[cib]E0 = Êi, which shows that the honest verifier will return accept.

For special soundness, given two transcripts ((Ê1, . . . , Êk−1), d, r) and
((Ê1, . . . , Êk−1), d′, r′) where d �= d′, and consequently r �= r′ (for non-zero
x), we have [cir]Edi = [cir

′]Ed′i for all i = 1, . . . , k − 1. Thus an extractor can
extract the secret by computing x = r−r′

d′−d mod N .
For the HVZK, given d, a simulator samples r ← ZN , then for i = 1, . . . , k−1

sets Êi = [cir]Edi. In both the real and the simulated transcripts, r and Êi are
sampled uniformly at random, leading to indistinguishable distributions. ��
2 Note that the proof does not need to be a proof of knowledge, rather a sound proof.

Our presented protocol achieves special soundness, which is stronger than what
we need. We consider constructing a sound proof system based on isogenies as an
interesting future research direction.
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5.2 Second Approach: Incremental Well-Formedness Proof

We present our second approach as an algorithm for upgrading a well-formed
public key: To this end, assume a prover holds a well-formed public-key
PKk−1 = (E0, E1, . . . , Ek−1) of size k, where Ec = [cx]E0 for c = 1, . . . , k − 1.3

Now, assume the prover wants to add a new element Ek = [kx]E0 to upgrade
its public-key to PKk = (E0, E1, . . . , Ek−1, Ek). Instead of repeating the full
well-formedness proof of Sect. 5 for PKk, the prover can create the following
proof increment to show, that indeed Ek = [kx]E0. Throughout this section, we
denote Ck = {0, . . . , k}. We define the language of correct public-key increments

LIncr.
k = {(PKk−1, Ek) : the new set {PKk−1 ∪ Ek} is well-formed} .

A Σ-protocol for LIncr.
k

PKk−1 = (E0, E1, · · · , Ek−1), Ek

Prover, x Verifier

b ← Z/NZ,

Ê0 ← [−b]E0, Êk ← [b]Ek
Ê0, Êk

d d ← Ck

r ← b + (k − d) · x mod N r return: [−r]Êk
?
= Ed

∧ [r]Ê0
?
= Ek−d

Theorem 5.2. The above Σ-protocol is correct, HVZK, and special sound with
soundness error rate 1

k .

Proof. For completeness, we have that [−r]Êk = [−b − (k − d)x + b + kx]E0 =
[dx]E0 = Ed and [r]Ê0 = [b + (k − d)x − b] = [(k − d)x]E0 = Ek−d.

For special soundness, given two accepting transcripts ((Ê0, Êk), d, r) and
((Ê0, Êk), d′, r′) with d �= d′, and consequently r �= r′, we have [r]Ed = [r′]Ed′

and [−r]Ek−d = [−r′]Ek−d′ , which implies that we can extract x = r−r′
d′−d mod N

from either equation.
Finally, for the HVZK, given a honestly generated d ← Ck, the simulator

samples r ← ZN , then computes Êk = [r]Ed and Ê0 = [−r]Ek−d. Finally, it
outputs ((Ê0, Êk), d, r) as a simulated transcript. ��

5.3 Efficiency and Applications

In order to reach a soundness error of ≤ 2−λ, a protocol with soundness error
1/s needs to be repeated at least t(s) = �λ logs 2� times.
3 Note that this protocol does not work for general exceptional sets, only for sets of

the form {0, 1, . . . , k}.
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– The first protocol has soundness error 1/3. For a public key PKk, at each
step, both the prover and verifier compute k group actions, so that the full
protocol results in Cb(k, λ) = kt(3) group actions per party.

– The second protocol has soundness error 1/(k + 1). At every step, the prover
and verifier have to compute 2 group actions, yielding the total cost cI(k, λ) =
2t(k + 1) for the proof of the increment PKk−1 → PKk. If we want to create
the well-formedness proof using only incremented public keys, we find the
total cost CI(k, λ) =

∑k
j=2 cI(j, λ) .

It is easy to see, that cI(2, λ) = Cb(2, λ) and that cI(k, λ) < Cb(k, λ) for k > 2.
Numerically, we also find, that CI(k, λ) < Cb(k, λ) for k > 16, independent of λ.
Finally, we can optimize well-formedness proofs by combining the two approaches
and finding l < k, such that a combination of the full well-formedness proof and
the incremental proof has minimal cost C(k, l, λ) := Cb(l, λ) +

∑k
j=l+1 cI(j, λ) .

Numerically, we find l = 7, 8 to be optimal. Note that this is independent of λ.
For k < 7, l = k is optimal and equal to Cb(k, λ). Asymptotically for k → ∞,
we have C(k, l = 7, λ) ≈ CI(k, λ).

Applications. We realize that the cost of the well-formedness proofs established
in the previous section are quite high for large public keys, which would allow a
more efficient ID protocol as presented in Sect. 3.1. Note that the well-formedness
proofs are not meant to be added to the ID-protocol at every invocation, since
this would completely defeat the purpose of having a large public key to increase
the efficiency in the first place.

Rather, the idea is to reduce the trust in comparison to our initial proposal
in Sect. 3.1. There are many applications, where having a third party generating
your private key is not an option. In such a case, a prover could simply gener-
ate its own key pair and send a proof of well-formedness to the trusted party.
The trusted party verifies it and can then publish, that the well-formedness is
accepted for that particular public key, by e.g. signing it. Thus, the expensive
proof and verification have to be performed only once. An example of such an
application could for instance be in TLS, where a certificate authority could
verify the well-formedness of the public key, before issuing a certificate.

6 Instantiation with CSIDH-512

We instantiate our protocol using the known class-group and relation lattice of
the CSIDH-512 parameter set, established in [BKV19]. In order to allow public-
keys with more than 36 elements (k ≥ 37), we work in the subgroup generated
by g111 and identify N = #Cl(O)/111, which has smallest prime divisor q1 =
1407181 (cf. Sect. 2.3). We note that, log2(q1) ≈ 220.4, which allows our public
key sizes to have that same size in case we work with exceptional sets, or up to
≈219.4, if we work with superexceptional sets. Since the CSIDH-512 parameters
set provides an instantiation of a symmetric HHS, we can choose the latter.

Table 1 summarizes different computational and communication costs related
to our ID protocol. We use the complexity results established in Sect. 3.2. In our
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instantiation, we have the parameters �log2 N� = 251, �log2 p� = 511 and choose
λ = 128. For simplicity, we bound the elements in C by q1 and can express the
public-key size as (k − 1)�log2 p� + (k − 2)�log2 q1� = 532k − 553. In order to
give more descriptive examples for the runtime of our protocol, we further use
the estimate of 35 ms per GA from [BDPV20], which uses the optimizations
from [MR18].

Table 1. Public-key size, computational cost and estimated time of proof generation
and verification, non-interactive proof size (or signature size), and computational cost
of the optimal well-formedness proof established in Sect. 5 for various values of k for
standard HHS and symmetric HHS (SHHS). The row with k = 2, shows the efficiency
of the basic ID protocol which has a binary challenge space. Runtimes are expressed
in Group Actions (GA) and also using the estimate that each GA takes 35 ms for
demonstration purposes.

k Public-key size Computational cost and run time

of prover and verifier

Proof size Well-formedness

proof

HHS SHHS HHS SHHS Cost (GA) Time

21 64 B 128 GA 4480 ms 81 GA 2835 ms 4032 B 2552 B – –

22 197 B 64 GA 2240 ms 46 GA 1610 ms 2024 B 1455 B 566 19.8 s

25 2.0 KB 26 GA 910 ms 22 GA 770 ms 832 B 704 B 2082 72.8 s

28 16.6 KB 16 GA 560 ms 15 GA 525 ms 518 B 486 B 10377 6.1min

210 66.4 KB 13 GA 455 ms 12 GA 420 ms 424 B 392 B 31761 18.5min

212 265.9 KB 11 GA 385 ms 10 GA 350 ms 362 B 329 B 101996 59.5min

215 2.1 MB 9 GA 315 ms 9 GA 315 ms 299 B 299 B 628528 6.1 h

218 16.6 MB 8 GA 280 ms 7 GA 245 ms 269 B 235 B 4093141 1.7 days

7 Conclusion

The ID protocol underlying CSI-FiSh [BKV19] allows one to prove knowledge of
a secret isogeny, but suffers from a low constant soundness error rate. We were
able to arbitrarily decrease the soundness error per round by sampling challenges
from exceptional sets, namely sets having certain algebraic properties needed
for the extraction. At the same time, this came at the cost of introducing new
(structured) public keys that are indexed by the elements of the exceptional set.
In the basic form of the protocol, we assumed that both the (structured) public
key and the exceptional set were honestly generated by e.g. a trusted authority.
We showed that with a 2.1 MB public key, this ID protocol generates proofs of
size 299 bytes, and its prover and verifier can generate and verify a proof both in
315 milliseconds. Our ID protocol would allow to prove knowledge of the secret
key sk of any CSIDH-based primitive with public-key pk := (E0, E1), where
E1 := [sk]E0.

We also showed how to get rid of the need for a trusted authority by present-
ing a protocol that allows the prover to convince the verifier that the keys have
the required form. This proof takes a combined approach, by first proving the
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well-formedness of a small subset of the public key, and then iteratively using
this to more efficiently prove the well-formedness of further elements.

We also presented the NIZK version of our ID protocol along with the result-
ing signature scheme obtained by the Fiat–Shamir transform [FS87]. We devote
future work to improve the efficiency of the proof of well-formedness of the public
keys, as this is the main bottleneck of the trustless version of our protocol. A pos-
sible improvement might come from designing sound-only proofs as this would
not impose strong algebraic conditions on the challenge space for extraction.
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A Building Signatures from ID protocols

In order to build a signature scheme from a secure ID protocol, the Fiat–Shamir
transformation [FS87] acts as follows. In nutshell, it makes an interactive ID
protocol Π = (KGen,P,V) with c-bit challenges for some integer c ≥ 1, non-
interactive using an RO to generate the challenges. Assume the ID protocol
must be run in parallel t times to achieve the soundness error rate 1

2tc . Let H be
an RO that outputs a bit string of length c. Then, the resulting signature can
be expressed as follows,

– (pk, sk) ← KGen(1λ): as in the setup phase of the ID protocol, given the
security parameter, the key generation algorithm KGen returns the public
key and secret key.

– σ ← Sign(sk,m): given the secret key sk and a message m to be signed, the
signing algorithm Sign first computes the commitments ai ← P(sk, ri) for
1 ≤ i ≤ t. Then computes h = H(m,a1, · · · , at). Parses h as the t values
ci ∈ {0, 1}c. Computes zi ← P(sk, ri, ai, ci) for 1 ≤ i ≤ t. Outputs the
signature σ = (a1, · · · , a2, z1, · · · , zt).

– {1, 0} ← Vf(m,σ, pk): Given a signature, a message and the public key, it
compute h = H(m,a1, · · · , at). Parse h as the t values ci ∈ {0, 1}c. Using the
verifier of the ID protocol, checks that V(pk, ai, ci, zi) = 1 for all 1 ≤ i ≤ t. If
V returns 1 for all i then outputs 1, else outputs 0.

It is proven that, starting from a secure ID protocol, the above signature
scheme derived by the Fiat–Shamir transform, is unforgeable against chosen-
message attacks in the ROM [AABN02].
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Abstract. The hardness of the learning with errors (LWE) problem
supports the security of modern lattice-based cryptography. Ring-based
LWE is the analog of LWE over univariate polynomial rings that includes
the polynomial-LWE and the ring-LWE, and it is useful to construct
efficient and compact LWE-based cryptosystems. Any ring-based LWE
instance can be transformed to an LWE instance, which can also be
reduced to a particular case of the shortest vector problem (SVP) on a
certain lattice by Kannan’s embedding. In this paper, we extend Kan-
nan’s embedding for solving the search version of the ring-based LWE
problem. Specifically, we propose a new extended lattice to include mul-
tiple short errors that are amplified by rotation operations for the coef-
ficient vector of an error polynomial. Since multiple short errors have
the same length and are embedded in our extended lattice, our exten-
sion could increase the success probability of solving the ring-based LWE
problem by using the Block Korkine-Zorotarev (BKZ) algorithm that is
widely used in cryptanalysis. We demonstrate the efficacy of our exten-
sion by experiments for solving various ring-based LWE instances.

Keywords: Ring-based LWE · Embeddings · Rotations · Lattices ·
BKZ

1 Introduction

The LWE problem is conjectured hard to be solved, and it is useful to construct
various cryptosystems such as post-quantum cryptography and high-functional
encryption. Informally, the (search) LWE problem asks us to find a solution
s = (s1, . . . , sn) over Zq of an approximate linear system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

t1 ≡ a11s1 + a21s2 + · · · + an1sn + e1 (mod q)
t2 ≡ a12s1 + a22s2 + · · · + an2sn + e2 (mod q)
...

...
td ≡ a1ds1 + a2ds2 + · · · + andsn + ed (mod q)

c© Springer Nature Switzerland AG 2021
M. B. Paterson (Ed.): IMACC 2021, LNCS 13129, pp. 201–219, 2021.
https://doi.org/10.1007/978-3-030-92641-0_10
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for an odd prime q, where the aij ’s are chosen uniformly at random from Zq

and the ei’s are small error terms in Z. This system can be simply represented
as a pair (A, t) satisfying t ≡ sA + e (mod q), where A = (aij) ∈ Z

n×d
q ,

t = (t1, . . . , td) ∈ Z
d
q , and e = (e1, . . . , ed) ∈ Z

d. We call such a pair an LWE
instance of size n×d with a secret s and an error e. The condition d > n is at least
required to recover s uniquely, and the ei’s are often sampled from the discrete
Gaussian distribution. Any LWE instance (A, t) can be naturally regarded as an
instance of the bounded distance decoding (BDD), a particular case of the closest
vector problem (CVP), over a q-ary lattice Λq(A) generated by A with a target t
(see [19] for q-ary lattices). Furthermore, Kannan’s embedding [15] can transform
any BDD instance to an instance of the unique-SVP, a particular case of SVP.
Specifically, the lattice of Kannan’s embedding includes ±e as unusually short
lattice vectors, which can be recovered by using the BKZ algorithm [25]. Once
the error is recovered, the secret can be also recovered by Gaussian elimination
for the linear equation t − e ≡ sA (mod q). This strategy for solving an LWE
instance is referred to as the primal attack [4]. In addition, an improvement of
Kannan’s embedding was proposed by Bai and Galbraith [7] for a small secret.

Ring-based LWE is a generalization of LWE over univariate polynomial rings,
and its setting includes the polynomial-LWE and the ring-LWE (see [10] for
details). We focus on a ring R = Z[x]/(xn +1) for a 2-power integer n. (This ring
is commonly used in structured lattice-based cryptography.) We let Rq = R/qR
for an odd prime q. Informally, the (search) ring-based LWE problem asks us to
find a solution s(x) over Rq of a system

⎧
⎪⎪⎨

⎪⎪⎩

t1(x) = s(x)a1(x) + e1(x),
...

tm(x) = s(x)am(x) + em(x),

(1)

where the ai(x)’s are chosen uniformly at random from Rq and the ei(x)’s are
‘small’ elements of R. For every ring element f(x) = f0 + f1x + · · · + fn−1x

n−1,
we write its coefficient vector as f = (f0, f1, . . . , fn−1). When we express every
ring element as its coefficient vector, every ring-based LWE sample (ai(x), ti(x))
can be rewritten as an LWE instance (Ai, ti) of size n×n with a secret s and an
error ei, where the matrix Ai is constructed from the coefficient vector ai of ai(x)
like Eq. (2) below. Furthermore, we concatenate m LWE instances to obtain an
LWE instance (Ã, t̃) of size n×d with a secret s and an error ẽ = (e1 | · · · | em),
where d = mn, Ã = (A1 | · · · | Am) and t̃ = (t1 | · · · | tm).

In this paper, we propose an extension of Kannan’s embedding for solving an
LWE instance (Ã, t̃), constructed from ring-based LWE samples. A key ingredi-
ent is the rotation operation that is defined as rot(f) = (−fn−1, f0, f1, . . . , fn−2),
which equals to the coefficient vector of xf(x). We construct a new lattice includ-
ing multiple short vectors roti(ẽ) that are amplified by rotation operations for ẽ,
where roti(ẽ) denotes the rotated vector for blocks as (roti(e1) | · · · | roti(em)).
(We note that our extended lattice is similar to the NTRU lattice [14] that
includes a short vector (f ,g) and all of its rotated vectors

(
roti(f), roti(g)

)
. We
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also note that our extension is applicable to Bai-Galbraith’s embedding [7].)
Specifically, since roti(t̃) ≡ roti(s) ·Ã+roti(ẽ) (mod q), we append rotated vec-
tors roti(t̃) to a basis of the lattice constructed in Kannan’s embedding. Since
multiple target vectors roti(ẽ) have the same norm and they are embedded in
our extended lattice, our extension could increase the success probability of solv-
ing the ring-based LWE problem by using BKZ. We show several experimental
results to demonstrate the efficacy of our extended Kannan’s embedding for solv-
ing various ring-based LWE instances. We also discuss trade-offs of our extension
based on experimental results.

Notation. The symbols Z and R denote the ring of integers and the field of real
numbers, respectively. For an odd prime q, let Zq denote a set of representatives
of integers modulo q such as Zq = Z∩ [− q

2 , q
2

)
. For two vectors v = (v1, . . . , vd),

w = (w1, . . . , wd) ∈ R
d, let 〈v,w〉 denote the inner product

∑d
i=1 viwi. We let

‖v‖ denote the Euclidean norm defined as ‖v‖ =
√〈v,v〉. We write by A�

(resp., v�) the transpose of a matrix A (resp., a vector v).

2 Preliminaries: Ring-Based LWE and Lattices

In this section, we recall a setting of ring-based LWE problem, and describe how
to reduce it to lattice problems such as CVP and SVP (see [1,2,4] for details).
We also recall lattice basis reduction such as the BKZ algorithm that is a strong
tool to solve lattice problems (e.g., see [9,21] for lattice basis reduction).

2.1 Ring-Based LWE

Here we follow the ring-based LWE framework of [10] that contains the
polynomial-LWE by Stehlé et al. [26] and the ring-LWE by Lyubashevsky et al.
[18]. We focus on a ring R = Z[x]/(xn + 1) for a 2-power integer n, which is
commonly used in structured lattice-based cryptography (e.g., see [1]). We let
Rq = R/qR for a prime q, and χ an error distribution on R outputting ‘small’
elements.

Definition 1 (Search ring-based LWE). Fix an element s(x) in Rq that is
called a “secret”. The ring-based LWE distribution As,χ samples a pair

(a(x), t(x)) ∈ Rq × Rq, t(x) = s(x)a(x) + e(x),

where a(x) is uniformly chosen at random from the quotient ring Rq and e(x)
is sampled from the distribution χ. Then the search ring-LWE problem asks us
to find the secret s(x) given any independent samples from As,χ.

Rotation. Any element of R (resp., Rq) can be expressed as a polynomial of
degree n − 1 with coefficients in Z (resp., Zq). For any element f(x) = f0 + f1 +
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· · · + fn−1x
n−1 of R (resp., Rq), we write its coefficient vector in Z

n (resp., Zn
q )

as f = (f0, f1, . . . , fn−1). We define the rotation operation for f as

rot(f) = (−fn−1, f0, f1, . . . , fn−2).

This is just the coefficient vector of the element xf(x) in R. Similarly, for each
1 ≤ i ≤ n, the i times rotated vector roti(f) is the coefficient vector of xif(x) in
R. In particular, we have rotn(f) = −f since xn = −1 in R.

Reduction to LWE. We take a ring-based LWE sample (a(x), t(x))
from the ring-based LWE distribution As,χ. For the coefficient vector a =
(a0, a1, . . . , an−1) of a(x), we set the n × n matrix

A =

⎛

⎜
⎜
⎜
⎝

a
rot(a)

...
rotn−1(a)

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

a0 a1 · · · an−1

−an−1 a0 · · · an−2

...
...

. . .
...

−a1 −a2 · · · a0

⎞

⎟
⎟
⎟
⎠

. (2)

Then it holds t ≡ sA + e (mod q), where t, s, e are coefficient vectors of three
polynomials t(x), s(x), e(x), respectively. Indeed, the ring-based LWE relation
t(x) = s(x)a(x) + e(x) can be rewritten as

tx� = t(x) = s(x)a(x) + e(x)

= sx�a(x) + ex�

= s

⎛

⎜
⎜
⎜
⎝

a(x)
xa(x)

...
xn−1a(x)

⎞

⎟
⎟
⎟
⎠

+ ex� = s

⎛

⎜
⎜
⎜
⎝

a
rot(a)

...
rotn−1(a)

⎞

⎟
⎟
⎟
⎠

x� + ex�

= (sA + e)x�,

(3)

where x = (1, x, x2, . . . , xn−1) gives a basis of the ring R (resp., Rq) as a Z-
module (resp., Zq-module). In other words, a ring-based LWE sample generates
an LWE instance (A, t) of size n × n with a secret s and an error e.

In Definition 1, we consider the number of given samples from As,χ as an
additional parameter of ring-based LWE. For an integer m ≥ 1, we take m inde-
pendent ring-based LWE samples (a1(x), t1(x)) , . . . , (am(x), tm(x)) from As,χ

(see the system (1) over Rq). Let Ai denote the n × n matrix corresponding
to ai(x) like (2) for each 1 ≤ i ≤ m. Then we have m relations ti ≡ sAi + ei

(mod q) for 1 ≤ i ≤ m from the previous paragraph. We can concatenate the m
relations to obtain an LWE instance of size n × d as

(
Ã, t̃

)
, t̃ ≡ sÃ + ẽ (mod q), (4)

where d = mn, Ã = (A1 | · · · | Am), t̃ = (t1 | · · · | tm) and ẽ = (e1 | · · · | em).
We note that the system (1) should be overdetermined, that is m ≥ 2 (or d > n),
to recover the secret s(x) (or its coefficient vector s) uniquely.



An Extension of Kannan’s Embedding for Ring-Based LWE 205

2.2 q-ary Lattices

Basics on Lattices. A lattice is a discrete additive subgroup of the Euclidean
space R

d. Any lattice L is spanned over Z by some linearly independent vectors
b1, . . . ,bh in R

d as

L = L(b1, . . . ,bh) =

{
h∑

i=1

vibi : v1, v2, . . . , vh ∈ Z

}

.

The set of vectors [b1, . . . ,bh] is called a basis of L, and the (maximal) number
of linearly independent vectors spanning L is called the dimension (or rank) of
L, denoted by dim(L). In particular, a lattice L in R

d is said to be full-rank
when dim(L) = d. There exist infinitely many bases of a lattice L if dim(L) ≥ 2.
The volume of L is defined as vol(L) =

√
det(G), where G = (〈bi,bj〉)1≤i,j≤h

denotes the Gram matrix of a basis [b1, . . . ,bh] of L. The volume of a lattice
is independent of the choice of bases of the lattice. Let λ1(L) denote the first
successive minimum of a lattice L that is equal to the norm of a shortest non-zero
vector in L (see [9,21] for the definition of other successive minima λi(L)).

q-ary Lattices from LWE. A full-rank lattice L in R
d is said of q-ary for

an odd prime q if it satisfies qZd ⊆ L ⊆ Z
d. Given an LWE instance, the

construction of several q-ary lattices is shown in [19] for reducing the instance
to lattice problems such as SVP and CVP. We apply it to the LWE instance (4)
to obtain a q-ary lattice

Λq(Ã) =
{
z̃ ∈ Z

d | z̃ ≡ sÃ (mod q),∃s ∈ Z
n
}

. (5)

We see that the rows of the (d+n)×d matrix
(

Ã
qId

)

spans the q-ary lattice, where

Id denotes the identity matrix of size d. In addition, we can obtain a basis of the
lattice by computing the Hermite normal form (or LLL which we shall present
below) of such a generating matrix. It is known that it holds vol(Λq(Ã)) = qd−n

for most matrices Ã.

Reduction of LWE to CVP. We can naturally regard the LWE instance (4) as
a CVP instance over the q-ary lattice Λq(Ã) with a target vector t̃. In particular,
the minimum distance between the target t̃ and the lattice vector sÃ in Λq(Ã)
is equal to the length of the error ẽ by if the error is sufficiently short. (In a
general setting of LWE, the error is considerably shorter than the modulus prime
q.) Technically speaking, this is an instance of the bounded distance decoding
(BDD) problem, a particular case of CVP with a promise about the minimum
distance of a target from a lattice. (See [4] for other attacks against LWE.)

2.3 Lattice Basis Reduction

Given a basis of a lattice L, the goal of reduction is to seek a new basis
[b1, . . . ,bd] of L with short and nearly orthogonal basis vectors bi’s in each
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other. Such algorithms give a strong tool for solving lattice problems such as
CVP and SVP. To introduce reduction algorithms, we recall some basic defini-
tions below.

The Gram-Schmidt orthogonalization of a basis [b1, . . . ,bd] is the set of
orthogonal vectors b∗

1, . . . ,b
∗
d defined recursively by

⎧
⎪⎪⎨

⎪⎪⎩

b∗
1 := b1,

b∗
i := bi −

i−1∑

j=1

μijb∗
j , μij :=

〈bi,b∗
j 〉

‖b∗
j‖2

(i > j)
(6)

for 2 ≤ i ≤ d. Let B (resp., B∗) denote the matrix whose rows are basis vectors
bi’s (resp., Gram-Schmidt vectors b∗

i ’s). Let U = (μij) denote the lower trian-
gular matrix given by (6) with diagonal entries μii = 1. Then we have B = UB∗,
and hence vol(L) =

∏d
i=1 ‖b∗

i ‖ for the lattice L = L(B) = L(b1, . . . ,bd). For
each 1 ≤ k ≤ d, define an orthogonal projection map as

πk : Rd −→ 〈b∗
k, . . . ,b∗

d〉R, πk(v) =
d∑

i=k

〈v,b∗
i 〉

‖b∗
i ‖2

b∗
i (v ∈ R

d),

where 〈b∗
k, . . . ,b∗

d〉R is the sub-vector space spanned by Gram-Schmidt vectors
b∗

k, . . . ,b∗
d. The lattice in R

d spanned by projected vectors πk(bk), . . . , πk(bd) is
denoted by πk(L) and called a projected lattice. The projected lattice πk(L) is
of dimension n − k + 1 and its volume is equal to

∏d
i=k ‖b∗

i ‖.
Below we recall two major algorithms of lattice basis reduction (e.g., see [28]

for details of reduction algorithms).

Lenstra-Lenstra-Lovász (LLL). We say a basis B = [b1, . . . ,bd] to be δ-
LLL-reduced for a parameter 1

4 < δ < 1 if (i) (Size-reduced) it holds |μij | ≤ 1
2 for

all i > j, and (ii) (Lovász’ condition) δ‖b∗
k−1‖2 ≤ ‖πk−1(bk)‖2 for all k, where

μij ’s and b∗
k’s are Gram-Schmidt coefficients and vectors of B. For a δ-LLL-

reduced basis B, it holds both ‖b1‖ ≤ α
d−1
2 λ1(L) and ‖b1‖ ≤ α

d−1
4 vol(L)

1
d for

L = L(B) and α = 4
4δ−1 . To find an LLL-reduced basis, the LLL algorithm [17]

calls size-reduction as a subroutine, and it also swaps adjacent basis vectors that
do not satisfy Lovász’ condition. The LLL algorithm has complexity polynomial
in d, and it is also useful to get rid of the linear dependency of vectors.

Block Korkine-Zolotarev (BKZ). For a basis B = [b1, . . . ,bd] of a lattice
L, we set B[j:k] = [πj(bj), πj(bj+1), . . . , πj(bk)] and L[j:k] = L(B[j:k]) for j < k.
For a blocksize β ≥ 2, a basis B is said to be β-BKZ-reduced if it is size-reduced
and ‖b∗

j‖ = λ1(L[j:k]) for every 1 ≤ j ≤ d − 1 and k = min(j + β − 1, d). In
the particular case β = n, it is called to be Hermite-Korkine-Zolotarev (HKZ)

reduced. For a β-BKZ-reduced basis B, it holds ‖b1‖ ≤ γ
d−1
β−1
β λ1(L) [23], where

γβ denotes Hermite’s constant of dimension β (see [21] for Hermite’s constants).
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A β-BKZ-reduced basis can be found by the BKZ algorithm [25], in which LLL
is called to reduce each block B[j:k] before calling an exact-SVP algorithm (e.g.,
ENUM) over L[j:k]. Since larger β decreases γ

1/(β−1)
β , BKZ finds short lattice

vectors, but its computational cost is much more expensive. The complexity of
BKZ depends on that of an SVP algorithm over blocks L[j:k].

3 Extension of Kannan’s Embedding for Ring-Based
LWE

Kannan’s embedding [15] is a method to transform CVP into SVP. In this
section, we propose an extension of Kannan’s embedding for solving the search
ring-based LWE problem. We also give an application of our idea to Bai-
Galbraith’s embedding [7]. In addition, we describe how to solve the ring-based
LWE problem in our extended Kannan’s embedding by using the BKZ algorithm.

3.1 New Extended Lattices

We consider the LWE instance (4), constructed from ring-based LWE samples
in Subsect. 2.1. We shall extend a basis C of the q-ary lattice (5) to define a new
lattice. Specifically, we consider the (d + k) × (d + k) matrix

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

C 0 0 · · · 0
t̃ η 0 · · · 0

rot(t̃) 0 η · · · 0
...

...
...

. . .
...

rotk−1(t̃) 0 0 · · · η

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(7)

for an extension parameter k and a small constant η, where roti(t̃) denotes the
rotated vector of t̃ for blocks as roti(t̃) =

(
roti(t1) | · · · | roti(tm)

)
. We let Λ̄k

denote the lattice of dimension d + k generated by the rows of B. Similarly to
Eqs. (3), m relations xitj(x) = xis(x) · aj(x) + xiej(x) in Rq for 1 ≤ j ≤ m,
ring-based LWE relations multiplied by xi, can be rewritten as

roti(t̃) ≡ roti(s) · Ã + roti(ẽ) (mod q) (8)

in Z
d
q for 1 ≤ i < k, where roti(ẽ) denotes the rotated vector of ẽ for blocks like

roti(t̃). By Eq. (8) and the construction of B (note that L(C) = Λq(Ã)), the
extended lattice Λ̄k includes k short lattice vectors

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ē = (ẽ | η, 0, . . . , 0) ,

rot (ē) = (rot (ẽ) | 0, η, . . . , 0) ,

...

rotk−1 (ē) =
(
rotk−1 (ẽ) | 0, . . . , 0, η

)
.

(9)
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These lattice vectors have the same length since the rotation operation does not
change the length of a vector. In particular, the position of η in the latter block
in (4) indicates the number of rotation operations of the error vector ē.

Remark 1. The case k = 1 is just the original Kannan’s embedding [15]. In the
original Kannan’s embedding, the search ring-based LWE problem is reduced
to the unique-SVP in which the unique unusual short lattice ẽ is included. On
the other hand, our extension is no longer a reduction of the unique-SVP for
k ≥ 2 like a reduction of the NTRU problem (e.g., see [1,2,4,14] for the NTRU
lattice). In contrast, the extension parameter k controls the number of rotated
vectors roti(ẽ) included in our extended lattice Λ̄k for the search ring-based LWE
problem. As another remark, in the particular case k = n, the lattice Λ̄n admits
the rotation operation like ideal lattices.

Remark 2. In a case of using large k such as k = n, some combination of vectors
in (9) with small integers can be a shortest non-zero vector in the lattice Λ̄k. If
we find such a shortest non-zero vector, then the positions of scalers of η help us
to construct a system of linear equations to recover the non-rotated error ẽ. But
in a case of using small k, any combination of vectors in (9) is rarely shorter than
vectors in (9) in practice. (Indeed, the vectors in (9) seem to be the shortest in
Λ̄k \ {0} in our experiments for 1 ≤ k ≤ 5 below.)

Remark 3. Equation (8) can also be rewritten as

roti(t̃) ≡ roti−j(s) · rotj(Ã) + roti(ẽ) (mod q)

for any integer j, where rotj(Ã) the rotated matrix of Ã with respect to blocks as
rotj(Ã) =

(
rotj(A1) | · · · | rotj(Am)

)
. Here rotj(Ah) denotes the n × n matrix

whose rows are the j times rotated rows of Ah. Indeed, similarly to Eqs. (3), the
relation xith(x) = xi−js(x) · xjah(x) + xieh(x) in Rq can be rewritten as

roti(th)x� = xith(x) = xi−js(x) · xjah(x) + xieh(x)
= roti−j(s)x�xjah(x) + roti(eh)x�

=
(
roti−j(s) · rotj(Ah) + roti(eh)

)
x�

for each 1 ≤ h ≤ m. In addition, it follows from the construction of Ã that any
rotation operation for Ã is just a permutation over the rows of Ã. Hence the
q-ary lattice Λq(rotj(Ã)) is equal to the q-ary lattice (5) for any j.

Remark 4. The lower-right block of B is a diagonal matrix, and the volume of
the lattice Λ̄k is given by ηk · vol(Λq(Ã)). We here modify the lower-right block
of B to construct a lattice of the same dimension as Λ̄k with a larger volume
without increasing the length of embedded error vectors. (A large lattice volume
is effective in solving LWE problems, see the next subsection.) For k ≥ 3, we
consider
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B′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C 0 0 0 0 · · · 0 0 0
t̃ η η 0 0 · · · 0 0 −η

rot(t̃) −η η η 0 · · · 0 0 0
rot2(t̃) 0 −η η η · · · 0 0 0

...
...

...
. . . . . . . . .

...
...

...
...

...
...

...
. . . . . . . . .

...
...

...
...

...
...

...
. . . . . . . . .

...
rotk−2(t̃) 0 0 0 0 · · · −η η η

rotk−1(t̃) η 0 0 0 · · · 0 −η η

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We let Λ̄′
k denote the lattice spanned by the rows of B′. By determinant formulas

of (ordinary) tridiagonal matrices (e.g., see [20]), the determinant of the lower-
right block of B′ is given by

tk = ηk · {
tr(Mk) + (−1)k+1 − 1

}
, M =

(
1 1
1 0

)

.

In particular, the trace values fk = tr(Mk) form a kind of the Fibonacci sequence
fk = fk−1 + fk−2 starting with f1 = 1 and f2 = 3. Then the volume of the
modified lattice Λ̄′

k is given by tk ·vol(Λq(Ã)), and it is considerably larger than
the volume of the original lattice Λ̄k for large k. In addition, from the same
discussion as above, the modified lattice Λ̄′

k contains k short vectors
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ē′ = (ẽ | η, η, 0, . . . , 0,−η) ,

rot (ē′) = (rot (ẽ) | −η, η, η, 0 . . . , 0) ,

...

rotk−1 (ē′) =
(
rotk−1 (ẽ) | η, 0 . . . , 0,−η, η

)
.

These lattice vectors have the same length, whose size is slightly larger than the
length of vectors (9). (The difference is that two more components with value
±η are added to the latter block.)

Application to Bai-Galbraith’s Embedding. Bai-Galbraith’s embedding [7]
is an improvement of Kannan’s embedding for solving LWE problems with a
small secret. Similar to the case of Kannan’s embedding, we shall extend Bai-
Galbraith’s embedding by using rotated vectors of t̃. For the LWE instance (4),
we consider the (d + n + k) × (d + n + k) matrix

B′′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

qId 0 0 0 · · · 0
− Ã In 0 0 · · · 0
t̃ 0 η 0 · · · 0

rot(t̃) 0 0 η · · · 0
...

...
...

...
. . .

...
rotk−1(t̃) 0 0 0 · · · η

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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with an extension parameter k and a small constant η. We let Λ̄′′
k be the lattice

of dimension d + n + k spanned by the rows of B′′. The case k = 1 is just the
original Bai-Galbraith’s embedding. By Eq. (8), the extended lattice Λ̄′′

k includes
k short vectors

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ē′′ = (ẽ | s | η, 0, . . . , 0),
rot(ē′′) = (rot(ẽ)) | rot(s) | 0, η, . . . , 0),

...

rotk−1(ē′′) = (rotk−1(ẽ)) | rotk−1(s) | 0, 0, . . . , η).

Like in Remark 4, we can modify this extended Bai-Galbraith’s embedding to
increase the lattice volume.

3.2 Recovering Short Lattice Vectors by BKZ

We recall the principle of finding any of short lattice vectors in (9) by using the
BKZ reduction algorithm for a basis B of the lattice Λ̄k of dimension d + k. Let
v = roth(ē) ∈ Λ̄k be any of the vectors in (9) for some 0 ≤ h ≤ k − 1. Note that
if we find v, then we can recover the error ẽ and also the secret s by Gaussian
elimination. (In particular, the position of η in v helps to recover the non-rotated
error ẽ.) We write the rows of B as [b1, . . . ,bd+k], and let [b∗

1, . . . ,b
∗
d+k] denote

its Gram-Schmidt vectors. Assume that B is almost β-BKZ-reduced for β ≥ 50
before any of short vectors in (9) does not appear as a basis vector of B. We
also assume from [2,11,29] that the Gram-Schmidt lengths of B roughly hold

‖b∗
i ‖ ≈ δd+k−1−2i

β vol(Λ̄k)
1

d+k , δβ =
(

β

2πe
(πβ)

1
β

) 1
2(β−1)

for every 1 ≤ i ≤ d + k, under the geometric series assumption (GSA) [24].
Precisely, the GSA does not hold for the last β Gram-Schmidt lengths. Indeed,
the last β Gram-Schmidt lengths follow the HKZ shape. See also [2] for details.
(We expect that the GSA approximations in [2,11,29] hold for our extended
lattice Λ̄k with small k.) It follows from the construction of B that the volume
of the extended lattice is equal to vol(Λ̄k) = ηkqd−n in most cases. As mentioned
in [2,5], if the projected vector of v at index d + k − β satisfies

‖πd+k−β(v)‖ < ‖b∗
d+k−β‖ ≈ δ2β−d−k−1

β vol(Λ̄k)
1

d+k , (10)

then the projected vector πd+k−β(v) is a shortest non-zero vector in the last β-
dimensional block of B[d+k−β:d+k]. Therefore the projected vector can be found
by (pruned) ENUM for the last block, and then it is inserted at index d + k −
β. After that, our target vector v can be restored from the projected vector
πd+k−β(v) by ENUM over the other block projected lattices (the vector v will
appear as the first basis vector of B, see Fig. 1 for an image of this principle).
In particular, there are k candidates of v in our extended lattice Λ̄k. Therefore
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Indices 

BKZ iterates to perform ENUM over 
local blocks of dimension 

Find  the projec tion of v at index d+k-
(There are k candidates in our extension)

Rec overy of v
(Lifting from its 

p rojec tion)

Fig. 1. An image of the GSA shape of a BKZ-reduced basis B = [b1, . . . ,bd+k] and
the principle of recovering any of short vector v = roth(ē) ∈ Λ̄k in (9) for 0 ≤ h ≤ k−1

as k increases, it would increase the probability that the projected vector of v
at index d + k − β is found by ENUM for the last block B[d+k−β:d+k].

The above discussion is referred to as “the 2016 estimate” by [5] in the
literature, and it was experimentally confirmed in [3] that a target vector can
be recovered with ‘good’ probability by BKZ with a blocksize β satisfying the
condition (10). However, the condition (10) on β is sufficient to recover a target
lattice vector, but not always necessary (e.g., see [22] for the success probability
of the 2016 estimate). Hence we note that the condition (10) gives a just guide
of choosing a blocksize β of BKZ to recover a target vector.

4 Experiments

In this section, we show our experimental results for solving various ring-based
LWE instances in our extended Kannan’s embedding. We also discuss trade-offs
of our extension based on experimental results.

4.1 Implementation

We implemented our extended Kannan’s embedding for solving a ring-based
LWE instance in SageMath [12], the Sage mathematics software (see Appendix A
for a sample code). For our experiments, we used the ring-LWE oracle generator
in SageMath to generate m ring-LWE samples {(ai(x), ti(x)}m

i=1 with a common
secret s(x) and m errors ei(x) (that is, they satisfy ti(x) = s(x)ai(x) + ei(x) in
Rq). In particular, we chose every coefficient of s(x) uniformly from Zq, and used
the discrete Gaussian sampler in SageMath for Z[x] to generate errors ei(x) whose
coefficients are sampled independently from the discrete Gaussian distribution
over Z with mean 0 and standard deviation σ for a given constant σ > 0. In our
implementation, we transform m ring-LWE samples to an LWE instance (4) of
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size n× d with d = mn, and then construct a basis B of the (d+ k)-dimensional
lattice Λ̄k (see Eq. (7) for the form of B). We also set η = 1, �σ� or 2�σ� as
the diagonal entries of the lower right part of B. After that, we reduce B by the
BKZ reduction algorithm to recover any of k short vectors (9) in the lattice Λ̄k.
Specifically, we judged that it is successful to recovery such a short vector if the
first basis vector of a BKZ-reduced basis has the norm less than 1.2σ

√
d and all

the entries less than 4σ in absolute. (The length of the short vectors in (9) is
estimated as σ

√
d in our experimental setting.) In particular, we used BKZ 2.0

implemented in fpylll [27] for BKZ with a large blocksize β ≥ 50. (We also used
the loop max option as the maximum number of full loop iterations of BKZ.)

4.2 Experimental Results

In Table 1, we show experimental results on the success probability of solving
various ring-based LWE problems in our extended Kannan’s embedding with an
extension parameter k with 1 ≤ k ≤ 5. (Recall that the case k = 1 is the original

Table 1. Experimental results on the success probability of solving various ring-based
LWE instances by our extended Kannan’s embedding using BKZ with blocksizes β ≥ 50
(Note that ‘loop max’ denotes the maximum number of full loop iterations of BKZ)

Experimental parameters Extension parameter k in our extension

of ring-based LWE and BKZ k = 1 k = 2 k = 3 k = 4 k = 5

n = 32 σ = 6.0 η = 1 36% 20% 23% 19% 10%

q = 257 β = 50 η = �σ� 20% 44% 38% 32% 34%

d = 96 loop max = 2 η = 2�σ� 6% 13% 20% 34% 28%

(m = 3) σ = 8.0 η = 1 10% 9% 4% 0% 1%

β = 65 η = �σ� 10% 19% 14% 12% 10%

loop max = 2 η = 2�σ� 5% 11% 10% 17% 10%

n = 32 σ = 10.0 η = 1 35% 27% 22% 13% 3%

q = 577 β = 50 η = �σ� 38% 53% 46% 46% 37%

d = 96 loop max = 2 η = 2�σ� 15% 20% 29% 37% 39%

(m = 3) σ = 11.0 η = 1 55% 60% 39% 33% 11%

β = 65 η = �σ� 69% 75% 75% 69% 65%

loop max = 2 η = 2�σ� 62% 67% 78% 76% 79%

n = 64 σ = 1.7 η = 1 19% 20% 18% 19% 11%

q = 257 β = 50 η = �σ� 21% 21% 27% 18% 21%

d = 128 loop max = 4 η = 2�σ� 0% 0% 0% 0% 1%

(m = 2) σ = 2.0 η = 1 28% 28% 24% 20% 14%

β = 60 η = �σ� 24% 36% 38% 20% 17%

loop max = 4 η = 2�σ� 10% 27% 26% 29% 22%

n = 64 σ = 4.0 η = 1 19% 20% 14% 9% 4%

q = 1153 β = 55 η = �σ� 18% 22% 21% 19% 17%

d = 128 loop max = 4 η = 2�σ� 7% 10% 18% 9% 15%

(m = 2) σ = 4.6 η = 1 24% 26% 14% 6% 4%

β = 65 η = �σ� 24% 32% 26% 24% 21%

loop max = 4 η = 2�σ� 13% 23% 26% 27% 24%
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Kannan’s embedding.) Each success probability in Table 1 was obtained by per-
forming 100 times experiments for each parameter setting. For each parameter
setting, we selected β ≥ 50 smaller than the minimum blocksize satisfying the
condition (10) (the left-hand side of (10) is estimated as σ

√
β from [3]). We see

from Table 1 that the highest success probability is obtained in k ≥ 2 for every
parameter setting. In particular, cases k = 2, 3 with η = �σ� give higher success
probability than the case k = 1. This is due to that as the extension parameter k
increases, the number of target errors in (9) increases, but the right-hand side of
Eq. (10) decreases, and hence a large blocksize β of BKZ is required for success.
Similarly, larger η increases the right-hand value of Eq. (10), but it also increases
the length of embedded errors v, and hence around η ≈ σ seems the best for our
extended Kannan’s embedding as in the original embedding.

In Fig. 2, we give an experimental comparison of success probabilities of our
extended Kannan’s embedding with extension parameters 1 ≤ k ≤ 5 by using
BKZ with blocksizes β = 50–64. Experimental parameters are from Table 1,
and each success probability in Fig. 2 was obtained by performing 100 times
experiments for each parameter as in Table 1. We see from Fig. 2 that success
probabilities in cases k = 2, 3, 4 are higher than that of the case k = 1 (that
is, the original Kannan’s embedding) for each blocksize β. The condition (10)
of the 2016 estimate indicates that around β = 56 is required for success with
good probability for both parameters (a) and (b) in Fig. 2. Nevertheless, success
probabilities in cases of k = 2, 3, 4 are still high even for smaller blocksizes such
as β = 52 and 54.

(a) Experimental parameters: n = 32, q =
257, d=96, σ=6.0, η= σ , loop max=2

(b) Experimental parameters: n = 64, q =
257, d=128, σ=1.7, η= σ , loop max=4

Fig. 2. Comparison of success probabilities of our extended Kannan’s embedding with
extension parameters k = 1–5 by using BKZ with blocksizes β = 50–64
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4.3 Discussion on Trade-Offs of Our Extension

Our extended Kannan’s embedding has a trade-off between a required blocksize
β of BKZ and the success probability for solving a ring-based LWE problem.
Specifically, larger extension parameter k increases the number of target short
vectors (9) in the lattice Λ̄k, and it increases the success probability of find-
ing any of target vector. On the other hand, Eq. (10) indicates that a larger
extension parameter k requires a larger blocksize β for the success of recovering
a target short vector. According to experimental results, extension parameters
k = 2, 3 are suitable for blocksizes around β = 50–60 from the perspective of
success probability. (In particular, Table 1 showed that η ≈ σ is suitable for our
extension.) In contrast, we predict that larger k would be suitable for larger β.
Indeed, in using a large block (e.g., β ≥ 80) for BKZ, the search tree of ENUM
on β-dimensional blocks in BKZ should be pruned for good performance (see
[13] for pruning of ENUM). As the number of target short vectors increases,
it increases the probability of finding a target vector by pruned ENUM. For
example, in the progressive BKZ of [6] with large blocksizes β > 50, the success
probability of finding a short lattice vector by pruned ENUM is set as p = 2.0

αβ

for some constant α such as α = 1.05. In the setting for our extension, a target
projected lattice vector πd+k−β(v) can be recovered by pruned ENUM for the
last block B[d+k−β:d+k] with success probability k × p.

From the construction of a basis B of the lattice Λ̄k (see Eq. (7)), we can
add the vector (rotk(t̃) | 0, · · · , 0, η) of length d + k + 1 to construct a basis
of the (d + k + 1)-dimensional lattice Λ̄k+1 even during a processing of BKZ
for reducing B. The lattice Λ̄k+1 includes the k times rotated error rotk (ē). By
repeating this procedure, we can increase the success probability for solving a
ring-based LWE instance. On the other hand, the processing time of BKZ would
increase since the lattice dimension increases.

Remark 5 (Application to module-LWE). Module-LWE is the analogue of LWE
over modules, introduced in [8,16], which is between LWE and ring-based LWE.
Specifically, module-LWE uses a free Rq-module of rank m for a positive integer
m. Like in the case of standard LWE, a module-LWE sample is a pair of (a, t) ∈
Rm

q × Rq with a = (a1, . . . , am) satisfying t =
∑m

i=1 aisi + e over the ring Rq,
where s = (s1, . . . , sm) ∈ Rm

q is a secret and e ∈ Rq is an error. The particular
case m = 1 corresponds to ring-based LWE. From the same discussion as in
Subsect. 2.1, a module-LWE sample can be rewritten as an LWE instance

t ≡ (s1 | · · · | sm)

⎛

⎜
⎝

A1

...
Am

⎞

⎟
⎠ + e (mod q),

where t, e and the si’s are coefficient vectors of ring elements t, e and the si’s,
respectively, and the Ai’s are corresponding matrices of the ai’s like Eq. (2).
From this form, we can extend Kannan’s embedding (or Bai-Galbraith’s embed-
ding) for any module-LWE instance as in Sect. 3.
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5 Conclusion

We presented an extension of Kannan’s embedding [15] specific to the ring-based
LWE problem. We also applied our extension to Bai-Galbraith’s embedding [7]
for ring-based LWE with a small secret polynomial. Specifically, for an extension
parameter k, we constructed a new extended lattice to embed k short errors
that are amplified by rotation operations for the coefficient vector of an error
polynomial. We demonstrated by experiments that our extension can increase the
success probability of Kannan’s embedding by using BKZ for solving a ring-based
LWE instance (see Table 1 and Fig. 1). Our experiments showed that parameters
k = 2, 3 are suitable for blocksizes around β = 50–60 of BKZ from the perspective
of success probability. (Our extension does not increase the running time of BKZ
so much for small k.) As discussed in Subsect. 4.3, we predict that larger k would
be suitable for larger β.

A A Sample Code for Our Extended Kannan’s
Embedding

Here we give a sample Python code in SageMath [12] of our extended Kannan’s
embedding for solving a ring-based LWE instance. (We use the ring-LWE oracle
generator in SageMath to generate ring-LWE samples, and also BKZ 2.0 in fpylll
for BKZ. See also Subsect. 4.1 for details.)

1 from sage . crypto . lwe import RingLWE
2 from sage . crypto . lwe import

DiscreteGaussianDistributionPolynomialSampler , RingLWE,
RingLWEConverter

3 from sage . stats . distributions . discrete gaussian polynomial import
DiscreteGaussianDistributionPolynomialSampler

4 from fpyl l l import ∗
5
6 # Rotation operation
7 def rot(v, l ) :
8 w = copy(v)
9 for i in range(1 , l ) :

10 w[ i ] = v[ i−1]
11 w[0] = −v[ l−1]
12 return w
13 #=======================
14 # Setting of parameters
15 #=======================
16 n = 64; N = 2∗n # security parameter
17 q = 1153 # modulus parameter
18 sigma = 4.0 # standard deviation of the discrete Gaussian

distribution
19 m = 2 # number of ring−LWE samples
20 d = m∗n # number of LWE samples
21 k = 5 # extension parameter for Kannan’ s embedding
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22 # t = 1
23 # t = round(sigma)
24 t = 2∗round(sigma)
25
26 #===============================
27 # Generation of ring−LWE samples
28 #===============================
29 D = DiscreteGaussianDistributionPolynomialSampler(ZZ[ ’x ’ ] , euler phi

(N) , sigma)
30 ringlwe = RingLWE(N, q, D, secret dist=’uniform ’ )
31 a = Matrix(m, n)
32 b = Matrix(m, n)
33 for i in range(m) :
34 Sample = ringlwe()
35 a[ i ] = copy(Sample[0 ])
36 b[ i ] = copy(Sample[1 ])
37
38 #================================
39 # Contruction of a q−ary lattice
40 #================================
41 A = Matrix(n, d)
42 for i in range(m) :
43 v = copy(a[ i ] )
44 for j in range(n) :
45 for l in range(n) :
46 A[ j , n∗ i + l ] = v[ l ]
47 v = rot(v, n)
48 C = Matrix(n+d, d)
49 for i in range(n) :
50 C[ i ] = copy(A[ i ] )
51 for i in range(d) :
52 C[ i+n, i ] = q
53 C = C.LLL()
54
55 #=============================
56 # Extended Kannan’ s embedding
57 #=============================
58 B = Matrix(ZZ, d+k, d+k)
59 for i in range(d) :
60 for j in range(d) :
61 B[ i , j ] = C[ i+n, j ]
62 for i in range(k) :
63 B[d+i , d+i ] = t
64 for j in range(m) :
65 v = copy(b[ j ] )
66 for l in range(n) :
67 B[d+i , n∗ j + l ] = v[ l ]
68 b[ j ] = rot(b[ j ] , n)
69
70 #============================================
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71 # Lattice basis reduction (BKZ 2.0 in fpyl l l )
72 #============================================
73 flags = BKZ.AUTOABORT|BKZ.MAXLOOPS|BKZ.GHBND
74 par = BKZ.Param(55, strategies=BKZ.DEFAULTSTRATEGY, max loops=4,

flags=flags )
75 A = IntegerMatrix(d+k, d+k)
76 for i in range(d+k) :
77 for j in range(d+k) :
78 A[ i , j ] = B[ i , j ]
79 BB = BKZ. reduction(A, par)
80
81 tmp = 0
82 i f BB[0 ] .norm() >= 1.2∗sigma∗sqrt(d) :
83 tmp = 1
84 else :
85 v = BB[0]
86 for i in range(d) :
87 i f abs(v[ i ] ) > 4∗sigma:
88 tmp = 1
89 i f tmp == 0:
90 print(”Success : ” , BB[0])
91 else :
92 print(”Failure”)
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3. Albrecht, M.R., Göpfert, F., Virdia, F., Wunderer, T.: Revisiting the expected cost
of solving uSVP and applications to LWE. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10624, pp. 297–322. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70694-8 11

4. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)
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Abstract. Black-box accumulation (BBA) is a cryptographic protocol
that allows users to accumulate and redeem points, e.g. in payment
systems, and offers provable security and privacy guarantees. Loosely
speaking, the transactions of users remain unlinkable, while adversaries
cannot claim a false amount of points or use points from other users.
Attempts to spend the same points multiple times (double spending)
reveal the identity of the misbehaving user and an undeniable proof of
guilt. Known instantiations of BBA rely on classical number-theoretic
assumptions, which are not post-quantum secure. In this work, we pro-
pose the first lattice-based instantiation of BBA, which is plausibly post-
quantum secure. It relies on the hardness of the Learning with Errors
(LWE) and Short Integer Solution (SIS) assumptions and is secure in the
Random Oracle Model (ROM).

Our work shows that a lattice-based instantiation of BBA can be real-
ized with a communication cost per transaction of about 199MB if built
on the zero-knowledge protocol by (CRYPTO 2019) and the CL-type sig-
nature of (ASIACRYPT 2017). Without any zero-knowledge overhead,
our protocol requires 1.8 MB communication.

Keywords: Lattice-based cryptography · Black-box Accumulation
(BBA) · Electronic funds transfer · Security and privacy · Learning
with errors (LWE) · Short Integer Solution (SIS)

1 Introduction

Black-box accumulation (BBA), introduced in [24], allows the anonymous col-
lection and redemption of points. BBA protocols feature two roles: users and
operators. The users can accumulate and spend points on a cryptographic token
issued by the operators, via the respective interactive protocols. In real-world sce-
narios like loyalty programs in shops or prepayment systems for public transport,
users can collect incentives or bonus points. For the operators, the secure trans-
fer of points is of paramount importance, whereas users want to protect their
privacy. BBA offers a provably secure solution to both concerns. It allows users
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to collect and redeem points in an unlinkable manner and it protects operators
from malicious users trying to claim more points than collected.

Several works have extended the framework of BBA. BBA+ [22] added
stronger notions of both security and privacy as well as offline-transactions (in
the sense that no permanent connection to a central database is required). More
recently, [6,7,23] improved several aspects of BBA+. However, all of the pro-
posed instantiations are based on classical cryptographic building blocks whose
security guarantees rely on number-theoretic assumptions which are broken by
Shor’s algorithms [33], rendering them insecure against quantum adversaries.

In contrast, lattice-based hardness assumptions have so-far withstood
attempts to break them with quantum algorithms and allow to construct an
extensive variety of cryptographic primitives, including commitments, public-
key encryption [20,25,31,32] and fully homomorphic encryption (FHE) [19], and
are hence considered an ideal candidate to achieve post-quantum (PQ) security.
Moreover, lattice-based protocols usually feature good asymptotic efficiency, par-
allelism, and security under worst-case intractability assumptions. The downside
is an increase in communication costs for certain important building blocks, such
as zero-knowledge (ZK) proofs. As all known BBA constructions are heavily
based on ZK proofs, it gives rise to the difficult question of how to instantiate
BBA from lattice-based assumptions, while remaining relatively efficient.

Contribution. In this work, we propose the first lattice-based instantiation of
BBA, called BABL (Black-Box Accumulation Based on Lattices). It relies on
the LWE and SIS problems, and is proven secure in the ROM. We follow the
security framework of [23], refered to as BBW in the following.

Moreover, we give a concrete instantiation, together with a suitable choice of
lattice parameters, and evaluate the scheme’s communication complexity. With-
out any zero-knowledge overhead, our protocol requires 1.8 MB communication,
which shows that the efficiency baseline of our general approach/construction
is low. When using the popular ZK proof system by Yang et al. [36], an opti-
mized version requires 199 MB communication, too much to be practically usable.
However, lattice-based ZK proofs are improving rapidly, see e.g. [35] for some
performance comparisons. Thus, it is plausible that the added computation and
communication cost shrinks to an actually practical level in the near future. Our
construction is the most efficient lattice-based payment system (BBA or E-Cash,
cf. Sect. 1) to date. The closest competitor, E-Cash, needs 262 MB per transac-
tion, using the same ZK protocol. While this does not yet make our protocol fit
for practice, it places lattice-based BBA schemes into the range of practicality,
where a further round of optimizations could likely allow its real-world use.

Our Construction in a Nutshell. On a high level, our construction follows
the approach of BBW [23], but it requires care to translate it to lattices, without
reaching a giga-/terabyte range of communication cost per transaction. In BBW,
the user holds a token which is basically a commitment whose contents are
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signed by the operator. This commitment contains a serial number for double-
spending detection, a secret key uniquely identifying the user, and the amount
of points. (For simplicity, we omit double-spending tags for now.) An update
of the number of points (e.g. in a purchase) works as follows. The user sends a
fresh (rerandomized) commitment to the operator, reveals the serial number, and
proves in zero-knowledge that the commitment’s contents are signed and that the
new balance lies within admitted bounds. Using a property of the commitment
scheme, the operator updates the balance while keeping the committed content
intact. A serial number is chosen by a two-party coin-toss, to ensure it cannot
be used to track users. Finally, the operator provides a signature for the new
token.

To implement this strategy, [23] uses group-based commitments, ZK proofs,
and so-called CL-type signatures [10,11], which have practically efficient ZK
proofs for proving possession of a signature on a commitment or committed
value. To replace Multi-Pedersen commitments, we use the lattice-based multi-
block commitment scheme of [25], called KTX commitment in the following. We
make use of a structural property of these commitments, which allows to “add
blocks” to the committed message later, without knowing the messages in the
other blocks, similar to Multi-Pedersen commitments. Finally, to replace the
group-based CL-type signatures and ZK proofs, we rely on the ZK protocol of
Yang et al.[36] combined with the CL-type signatures of Libert et al. [28].

Related Work. The previous BBA protocols by Blömer et al. [6], Bobolz et al.
[7], Hartung et al. [22], Hoffmann et al. [23], and Jager and Rupp [24] are all
based on number-theoretic hardness assumptions. While this allows them to
be much more efficient, it also makes them insecure when quantum comput-
ers become available. We think that future privacy issues regarding payments
made today, and the security of a users’ collected points in the future are rea-
son enough to switch to post-quantum payment systems in the long term. The
closest relatives to BBA are Electronic Cash (E-Cash) cryptosystems [14]. The
first compact E-Cash scheme was given in [9], where compact means that the
complexity of withdrawal and spending is logarithmic in the size of an (elec-
tronic) wallet. In (compact) E-Cash, there exist three parties, namely a bank,
a user, and a merchant. The bank allows withdrawing a wallet containing coins
and depositing coins. The wallet is signed by the bank, to make it possible for
a user to prove the legitimacy of their wallet. Further, the user can spend the
coins from their withdrawn wallet in a privacy-preserving way at a merchant.
This is achieved by proving in zero-knowledge the legitimacy of the origin of the
coin. The merchant can then deposit the received coin at the bank. The bank
can detect double-spenders and prove their guilt, if and only if they are guilty.
There are two lattice-based versions of compact E-Cash in the literature: The
work of Libert et al. [28] – which propose (implicit) CL-type signatures, and an
abstraction of Stern-type ZK protocols [34] – and Yang et al. [36]’s system, which
applies their ZK argument system and further optimizations to construct a more
efficient system similar to [28]. [8] showed some major issues with the double-
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spending in compact E-Cash. [15] solved these problems with their lattice-based
version of E-Cash.

We stress that E-Cash and BBA are quite different. Most importantly, BBA
allows payments in both directions, i.e., points can be accumulated and spent.
E-Cash does allow to deposit points but only at the bank, which means that
a wallet cannot be “refilled”. Instead, a new wallet with fresh coins has to be
generated. Additionally, E-Cash and BBA have different assumptions on the
involved parties. On the one hand, it is not possible in BBA to separate issuer and
accumulator – such as when the issuer is an E-Cash bank, and the accumulator a
merchant. Issuer and accumulator have the same secret key. On the other hand,
a merchant and bank must not collude in E-Cash, as this can break privacy. A
BBA issuer and an accumulator can collude without breaking privacy. This is
necessary due to an impossibility result, cf. [12]. Further, E-Cash only allows
the transferal of a single coin per transaction. The transaction value in BBA
is an integer in a certain range (e.g. 32-bit integers). Hence, when payments
for products with different prices are made, BBA requires just one transaction,
whereas many E-Cash transactions would be necessary.

2 Preliminaries

Notation. We use λ ∈ N as security parameter. Vectors and matrices are in bold.
For n ∈ N we write In for the identity matrix of dimension n. We denote by log
the binary logarithm. ‖·‖ denotes the Euclidean norm and ‖·‖∞ the maximum
norm. For q ∈ N we denote by Zq = {−�(q − 1)/2�, . . . , �(q − 1)/2�} the ring of
congruence classes of integers modulo q. We denote by x← S that x is drawn
uniformly at random from set S and by y ← D that y is drawn according to
distribution D. We denote by ·‖· the concatenation of vectors, i.e., for x,y ∈ Z

n
q

we have (x‖y) ∈ Z
2n
q . For x ∈ Z

m
q , we denote by bin(x) ∈ Z

m�log q�
2 the binary

decomposite of x ∈ Z
m
q , i.e. xj =

∑�log q�−1
i=0 bin(x)�log q�·j+i · 2i. Inversely, for a

y ∈ Z
�log q�
2 , we denote by toInt(y) :=

∑�log q�−1
i=0 yi · 2i ∈ Zq the integer (modulo

q) represented by y. For a full-rank matrix M ∈ Z
n×m
q , we denote by M̃ the

Gram–Schmidt orthogonalization of M’s columns.

2.1 Black-Box Accumulation

In this section, we give an overview of the BBW framework defined in [23], which
we base this work on. It allows a user to anonymously collect (and redeem) points
from the operators, which cover the following three roles: i) the issuer issues new
tokens to the users of the system, ii) the accumulator adds points to a token, and
iii) the verifier subtracts points from a token and verifies that a user’s balance is
large enough to perform that transaction. As these roles share the same key pair,
we do not distinguish them within the paper and refer to them as the operator.

The protocols are offline, meaning transactions can be performed without a
permanent connection of the operator to a database. Nonetheless, regular access
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to a shared database to store the double-spending tags is needed. We require
a common reference string which is set-up by a Trusted Third Party (TTP).1

Next, let us give the formal definition of a BBW scheme.

Definition 2.1 (BBW Scheme). A black-box wallet scheme BBW = (Setup,
OGen, UGen, Issue, Update, UVer, IdentDS, VerifyGuilt) consists of probabilistic
polynomial time (PPT) algorithms Setup, OGen and UGen, interactive protocols
Issue and Update and deterministic polynomial time algorithms UVer, IdentDS
and VerifyGuilt:

– CRS ← Setup(1λ): On input 1λ, returns a common reference string CRS. All
following algorithms always receive CRS (implicitly) as input.

– (pkO, skO) ← OGen(CRS): Returns a public and secret key for operator O.
– (pkU , skU ) ← UGen(CRS): Returns a public and secret key for user U .
– ((T , bU ), bO) ← Issue〈U(pkO, pkU , skU ),O(pkO, skO, pkU )〉: User U commu-

nicates with operator O, who produces a new token T for U with balance 0.
The user’s input is their key pair (pkU , skU ), and O’s public key pkO, while
O’s input is its key pair (pkO, skO), and the user’s public key pkU . The bits
bO and bU indicate whether O and U “accept” the protocol run, respectively.

– ((T ∗, bU ), (dstag, bO)) ← Update〈U(pkO, pkU , skU , T , v), O(pkU , skO, v)〉:
User U updates the token by interacting with the operator O. Both get as
inputs the public keys pkO and pkU and their respective secret key, and the
(possibly negative) value v to be added to the token’s balance. U addition-
ally gets their token T (with balance w) as input. In the end, U outputs an
updated token T ∗ with balance w + v, and a bit bU indicating acceptance
of the execution. The operator outputs an acceptance bit bO and a so-called
double-spending tag dstag (which later allows detection of reuses of the same
token).2

– b ← UVer(pkO, pkU , skU , T , w): User U verifies a token T , given the operator’s
public key pkO, the user’s key pair (pkU , skU ), and a value w, and outputs 1
if T is a valid token of U with balance w, or 0 otherwise.

– (pkU ,Π) ← IdentDS(pkO, dstag1, dstag2): Takes as input the operator’s public
key pkO and two double-spending tags dstag1, dstag2. If dstag1, dstag2 come
from a transaction with the same token, then IdentDS outputs the public key
pkU of the user U that “double-spent” their token and a proof of guilt Π. (Π
can later be verified by a third party, using the VerifyGuilt algorithm described
next). Otherwise, it outputs an error symbol ⊥.

– b ← VerifyGuilt(pkO, pkU ,Π): Given a proof of guilt Π, O’s and U ’s public
keys pkO, and pkU , it outputs 1 if U is guilty of double-spending, 0 otherwise.

1 Our setup only requires a uniform random string (URS), also called transparent
setup. In practice, it can be heuristically chosen, e.g. as a hash image.

2 Note, that [22–24] distinguish between an Add and a Sub transaction for updating
the token, where the first one hides the user’s balance and the latter one reveals it
(or hides it via expensive range proofs). As we will discuss in Sect. 3 there is no need
for us to distinguish those cases, as the balance is always hidden in our construction.
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We say a BBW scheme is correct if the two interactive protocols Issue and Update
and the algorithms UVer, IdentDS, and VerifyGuilt are correct. For Issue this
means, if both parties follow the protocol, Issue outputs a valid token T (as veri-
fied by UVer) and both parties accept the execution. Similarly, Update is correct
if both parties accept the execution and the output is a valid (as above) updated
token (with new balance w + v) if the parties follow the protocol. Correctness of
UVer, IdentDS, and VerifyGuilt are defined in the canonical way.

Privacy and Security Properties. We give an informal description of the
security properties and refer to App. B for the full definitions.

On the system side we formalize security by three properties: i) a scheme is
owner-binding if a token is bound to a unique user, and can only be used by it,
ii) a scheme is balance-binding if no false balance can be claimed, i.e., one can
only claim a certain (overall) balance for a token if this balance equals the exact
amount of points that have been legitimately collected with this token up to this
point in time, and iii) a scheme features double-spending detection if a user that
presents an already used token in a transaction can be (provably) identified.

For the privacy of the user, we demand the following properties: i) the scheme
is privacy preserving, i.e., an adversary is not able to link any transactions of the
user, even with corrupt operators, ii) the scheme offers false-accusation protec-
tion, if no malicious operator can falsely produce a proof of guilt for an honest
user, and iii) a scheme should feature post-compromise security, i.e., that after a
temporary compromise of the user, the unlinkability (but not the false-accusation
property) can be recovered (by introducing new randomness into the token).

A difference in the description of BBW and our framework is that BBW allows
embedding attributes in the token, i.e., the token’s expiration date or data for
age verification. Including such attributes is direct, but omitted for simplicity.

2.2 Lattices

We recall the basics of lattice-based cryptography required for our construction.

Definition 2.2. A lattice L is the group of all integer linear combinations of k
linearly independent vectors B = {b1, . . . ,bk} ⊆ R

n, for k ∈ N: L = L(B) :={∑k
i=1 zi · bi | zi ∈ Z

}
. Let m ≥ n ≥ 1, a prime number q > 2, A ∈ Z

n×m
q and

u ∈ Z
n
q . We write:

Λ⊥
q (A) := {e ∈ Z

m | Ae = 0n mod q}, Λu
q (A) := {e ∈ Z

m | Ae = u mod q}.

Definition 2.3 (Discrete Gaussian Distribution). For a lattice L, a vector
c ∈ R

m, and a real number σ > 0, define ρσ,c(x) = exp(−−π‖x−−c‖2/σ2). The
discrete Gaussian distribution of support L, center c and parameter σ is defined
as DL,σ,c(y) = ρσ,c(y)/ρσ,c(L) for any y ∈ L, where ρσ,c(L) =

∑
x∈L ρσ,c(x).

We denote by DL,σ(y) the distribution centered in c = 0m and exploit the fact
that samples from DL,σ have small maximum norm with high probability.
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Lemma 1 ([5], Lemma 1.5). For any lattice L ⊂ R
n and positive real number

σ > 0, we have Prb←DL,σ
[‖b‖ ≤ √

nσ] ≥ 1 − 2Ω(n).

The following lemmas specify how one can sample an (almost) random lattice
basis of Λ⊥

q (A), together with a short trapdoor basis, and how to extend a basis:

Lemma 2 ([4], Theorem 3.2). There is a PPT algorithm TrapGen, that takes
as input 1n, 1m and an integer q > 2 with m ≥ Ω(n log q), and outputs a matrix
A ∈ Z

n×m
q and a basis TA of Λ⊥

q (A) such that A is within statistical distance
2−Ω(n) to the uniform distribution over Z

n×m
q and ‖T̃A‖ ≤ O(

√
n log q).

Lemma 3 ([13], Lemma 3.2). For m′ > m, there exists a PPT algorithm
ExtBasis that takes as inputs a matrix B ∈ Z

n×m′
q whose first m columns span

Z
n
q , and a basis TA of Λ⊥

q (A) where A is the left n × m submatrix of B, and
outputs a basis TB of Λ⊥

q (B) with ‖T̃B‖ ≤ ‖T̃A‖.

2.3 Instantiation of Building Blocks

KTX-Commitments. In our construction, we use the commitment scheme of [25].
Let n ∈ O(λ), q ∈ O(n4), m0,m1 ∈ Θ(n log q), 0 < σCom ∈ R, where m0 is the
size of the randomness vector r, m1 is the size of the message vector m and
σCom is the parameter of the Gaussian distribution for the randomness. In the
simplest case, one can commit to one message block m ∈ Z

m1
2 by computing:

Gen(1λ) : D0 ←Z
n×m0
q ,D1 ←Z

n×m1
q , output (D0,D1, σCom).

Com(params,m; r) := D0 · r + D1 · m ∈ Z
n
q ,

where params = (D0,D1, σCom) are the public parameters.
The matrices D0,D1 are drawn uniformly at random. For each new commit-

ment the randomness r ← D
Z

m0
q ,σCom

is chosen according to the discrete Gaus-
sian distribution D

Z
m0
q ,σCom

. Usually, we set m0 = 2m1. A commitment c can be
opened by showing m and r. If it holds that m ∈ Z

m1
2 , ‖r‖ ≤ σCom

√
m0 and

c = D0 · r+D1 ·m, the commitment is valid. This scheme is statistically hiding.
It is computationally binding, which can be seen by a straightforward reduction
on SISn,q,2σCom

√
m0,m0+m1 . For N ∈ N, the scheme can be extended to a commit-

ment scheme on N messages by using N matrices. For the security proof of our
construction, we require our commitment scheme to be equivocal. The scheme
presented above can easily be turned into an equivocal commitment scheme, by
using lattice trapdoor gadgets, as discussed in the full version [17] of this paper.
It is necessary in the construction of the trapdoor to have m0 > n�log q�.

Signature Scheme by Libert et al. The scheme for obliviously signing committed
messages by Libert et al. [27] consists of the two algorithms Gen,Vfy, and the
interactive protocol OblSign (described in 1). It allows the signing of N -block
messages msg = (m1, . . . ,mN ), for N = poly(λ). In our construction we will
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Gen(1λ, 1N ) :

Choose n := O(λ), q := O(Nn
4
) prime,

m := 2�n log q�, l := Θ(λ),

σ := Ω(
√

n log q log n)

(A,TA) ← TrapGen(1n
, 1

m
, q)

where TA is a short basis of

Λ
⊥
q (A) = {e ∈ Z

m
q | A · e = 0 mod q}.

A0,A1, . . . ,Al ←Z
n×m
q

B←Z
n×(m/2)
q ,u←Z

n
q

B0 ←Z
n×2m
q ,B1, . . . ,BN ←Z

n×m
q ,

params := {n, m, l, q, σ,Bi}N
i=0

sk := TA, pk := (A, {Aj}l
j=0,B,u)

return (params, pk, sk)

Verify(params, pk,msg, sig) :

parse: (A, {Aj}l
j=0,B,u) := pk

parse: (τ,v, s) := sig

if ¬(‖v‖ < σ
√
2m ∧ ‖s‖ < σ

√
2m)

return ⊥
B̃ = B0 · s +

∑N

k=1
Bk · msgk

if Aτ · v = u + B · bin(B̃) mod q

return 1

else return 0

OblSign :

U(params, pk,msg) S(params, pk, sk)

s
′ ← DZm

q ,σ

cU = B0 · s′
+

∑N

k=1
Bk · msgk ∈ Z

n
q

Choose τ ←Z
l
2

Aτ := [A|A0 +
l∑

j=1

τ [j]Aj ] ∈ Z
n×2m
q

Compute a short delegated basis

Tτ ← ExtBasis(Aτ , sk).

s
′′ ← DZm

q ,σ

uU = u + B · bin(cU ) ∈ Z
n
q

Use Tτ to sample a short vector

v ← D
Λ
uU
q (Aτ ),σ

Set s := (s
′�

, s
′′�

)
�

and sig := (τ,v, s)

if Verify(params, pk,msg, sig) = 1

return sig

else return ⊥

(cU )

(τ,v, s′′)

Fig. 1. Gen, Verify and OblSign algorithms of the signature scheme.

use the notation OblSign.S(pk, sk, cU ) → (τ,v, s′′) to denote the part of the
protocol, which is executed by the signer, where params is derived from the
relevant parts of the implicitly given CRS. The algorithm takes a key pair (pk, sk)
and a commitment cU and outputs the signer’s part of the signature (τ,v, s′′)
on the content of the commitment cU . See the full version [17] of this paper for
a proof sketch or [28, Theorem 2] for a full proof of Lemma 4. In the full-version,
we additionally give a formal definition of the security, which was only implicit
in [27,28].

Lemma 4 ([28], Theorem 2). Let β′ := σ2m
√

2m(l + 2) + σm
√

m and
β′′ = σ2m

√
2m +

√
2m + 4σm

√
2m log q. Then the above scheme is secure if

the SISn,q,β′,m and SISn,q,β′′,m assumptions hold.

3 Our Construction of BABL

We denote by S the signature scheme of [28] (cf. Section 2.3) and by C the
commitment scheme of [25] used in Issue and Update (cf. Sect. 2.3). The two zero-
knowledge proof systems P1 and P2 are instantiations of the ZK scheme from
[36] and are used in Issue and Update, respectively. (For a general description of
the building blocks and their security notions, see Appendix A.2).
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System Setup and Key Generation. We describe the choice of moduli,
(matrix) dimensions, and their relation for the building blocks (as defined in
Sect. 2.3). The parameter generation for both parties is described in Fig. 2.
Setup(1λ):

– Choose a prime modulus q0 = O(λ4).
– For the signature scheme, set the modulus to q = qe

0 for some e > 0. Let
dimensions nS = O(λ) and mS = 2nS�log q�, and tag length lτ = Θ(λ).

– The Gaussian parameter is set to σ = Ω(
√

nS log q log nS).
– Choose nsk = O(λ), msk = nsk log q0 and draw F←Z

nsk×msk
q0 (for pkU later).

– For the commitment scheme, let dimension nC = nS. Let mr = 2nC�log q�
be the size of commitment randomness, let mnr = O(λ) be the size of serial
numbers, and let mb = O(λ) be the size of balance vectors. We require 2mb <
q/4 for the balance space V, and choose V = {0, . . . , 2mb − 1}. Thus, for all
x, y ∈ V, there is no wrap-around for x+ y. Draw D0 = (D0

0,D
1
0)←Z

nC×2mr
q ,

D1 ←Z
nC×msk
q , D2 ←Z

nC×mb
q , D3,D4 ←Z

nC×mnr�log q0�
q , D5 ←Z

nC×msk�log q0�
q

and set N = 5.3 Choose a Gaussian parameter σCom > 0 and use the same
modulus q, as for the signature scheme.

– Let HFRD : Zmsk
q0 → Z

msk×msk
q0 be a full-rank difference function, (see App.

A.2).
– return CRS := (1λ, q0, q, nS,mS, nC,mr, nsk,msk,mb,

mnr, σ, σCom,F,HFRD , {Di}5i=0).

OGen(CRS)

Generate (params′, pkS, skS) ← S.Gen(1λ
, 1

5
)

return (skO := skS, pkO := pkS)

UGen(CRS)

Draw skU ←Z
msk
2

return (pkU := F · skU , skU )

Fig. 2. Generation algorithms OGen, UGen for operators and user, respectively

Issuing a New Token. In this protocol, the user U interacts with the operator
O (in the issuer role) to get a fresh token with balance b = 0. The token is
a tuple of the form T = (c, r, skU ,b, sU , sO,uU , sig), where c is a multi-block
commitment to the values skU ,b, sU , sO, and uU with randomness r. Here, skU
is the user’s secret key, and the vectors sU and sO are the two shares of the token’s
serial number, chosen by U and O, respectively. The vector uU is randomly drawn
by the user and is used in the generation of the t-part of the double-spending
tag (to be explained below). Finally, sig is a signature on the commitment c.

The Issue protocol is the only protocol in which the operator sees pkU , the
public key of the user. In subsequent transactions of Update, possession of skU
(and thus, of pkU ) is proven via ZK proof.
3 We will use these matrices for the signature, too. We ignore params′, output by
S.Gen.
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U(pkO, pkU , skU ) O(pkO, skO, pkU )

sU ←Z
mnr
q0

uU ←Z
msk
q0

r
′ ← D

Z
mr
q ,σCom

r := (r
′�

, 0
�
)
� ∈ Z

2mr
q

cnew = C.Com(skU , 0, bin(sU ), 0, bin(uU ); r)

π := P1.Prove()

if P1.Vfy(π) = 0

return 0

sO ←Z
mnr
q0

c = cnew + D4 · bin(sO)

(τ,vsig, r
′′
) := OblSign.S(pkO, skO, c)

r := (r
′�

, r
′′�

)
� ∈ Z

2mr
q

sig := (τ,vsig, r)

T = (c, r, skU , 0, sU , sO,uU , sig)

if UVer(pkO, pkU , skU , T , 0) = 1

return (T , 1)

else return (⊥, 0) return 1

(cnew, π)

(c, (τ,vsig, r′′), sO)

U(pkO, pkU , skU , T , v) O(pkO, skO, v)

parse:

(cold, r, skU ,b, sU , sO,uU , sig) := T
uO ←Z

msk
q

s = sU + sO mod q0
t = HFRD (uO) · skU + uU
bnew = bin(toInt(b) + v mod q)

s
′
U ←Z

mnr
q0

u
′
U ←Z

msk
q0

r
′′ ← D

Z
mr
q ,σCom

r
′ := (r

′′�
, 0

�
)
� ∈ Z

2mr
q

cnew = C.Com(skU ,bnew, bin(s′
U ), 0, bin(u′

U ); r
′
)

π := P2.Prove()

if P2.Vfy(π) = 0
return (⊥, 0)

dstag = (s, t,uO)
s

′
O ←Z

mnr
q

c := cnew + D4 · bin(s′
O)

(τ,vsig, r
′′′

) := OblSign.S(skO, c)

r
′ := (r

′′�
, r

′′′�
)
� ∈ Z

2mr
q

sig′ := (τ,vsig, r
′
)

T ∗
= (c, r

′
, skU ,bnew, s

′
U , s

′
O,u

′
U , sig′

)

if UVer(pkO, pkU , skU , T ∗
,bnew) = 1

return (T ∗
, 1) return (dstag, 1)

uO

(cnew, s, t, π)

(c, (τ,vsig, r
′′′), s′

O)

Fig. 3. Protocols for issuing (left) and updating (right) a token T .

Figure 3 (left) shows the Issue protocol in detail. First, the user U draws their
part of the serial number sU ←Z

mnr
q0 , the vector uU ←Z

msk
q0 for the computation

of the double-spending tag, and a random vector for the commitment r′ ←
DZ

mr
q ,σCom

. The other half of the randomness vector r ∈ Z
2mr
q is set to 0, so the

randomness chosen by O can later be added (after U received r′′ from O). U then
commits (using randomness r′) on a five-block message, containing the secret key
skU , sU and uU , with the second and fourth message block of the commitment
being initialized to 0. This is because the second block represents the balance
of the token, and is supposed to be 0 after issuance of the token, and the fourth
block is zero for the operator to later add their share sO of the serial number
to the block. Afterwards, the user sends the commitment to O, together with
a ZK proof π that ensures that the commitment contains the secret key which
belongs to the user’s public key.

After verification of π, O proceeds by adding their share sO of the serial
number (sU , sO) to the commitment. Then, the operator signs the committed
message obliviously and sends the final commitment and the signature back to
the user. The user verifies if the token is correct and accepts if this is the case.
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We denote the used ZK proof system by P1. With P1, the user proves the
following relations to the operator:

1. pkU = F · skU mod q0
2. cnew = D0

0 · r′ + D1
0 · 0 + D1 · skU + D2 · 0 + D3 · s̄U + D4 · 0 + D5 · ūU

3. ‖r′‖ ≤ σCom
√

mr

4. skU , s̄U , ūU are binary and bin(sU ) = s̄U , bin(uU ) = ūU

In the full-version [17] of this paper, we show how these equations can be proven
via the ZK protocol of [36]. We denote this proof by π := P1.Prove(). We note
here, that the “actual” serial number of the token will be s = sU +sO mod q0 ∈
Z

mnr
q0 . Thus, s is uniformly random in Z

mnr
q0 if one of the parties was honest. Hence,

the collision probability is negligible if q−mnr
0 is negligible, which must be ensured

by parameter choices.

Updating the Balance of a Token. We start with an overview of the update
protocol, and then a detailed explanation. See Fig. 3 (right). The user starts with
a token from a run of Issue or Update. Showing the token to the operator in the
plain would make transactions linkable – we hence use ZK proofs for this.

First, the operator sends a “challenge” uO. From this, the user generates a
double-spending tag dstag = (s, t,uO), where s is the serial number, computed
as s = sU + sO, and t is a masking of skU , effectively a one-time pad encryption
of skU with uU . Given two values t, t′ with distinct “challenges” uO, u′

O, one
can easily compute skU . Since the user is bound to s and skU by the token
(and the commitment), this ensures that a double-spending user must reuse a
serial number s, and, since with overwhelming probability uO �= u′

O, is caught
and deanonymized when doing so. This implements double spending detection.
(Note, that a benign user can not be deanonymized).

The user also sets up a new (partial) token cnew, analogous to the Issue
protocol, but with balance set toInt(b) + v, according to the transaction. Then
it proves that cnew is a valid token (analogous to Issue) with correct balance, its
connection and the validity of the “old” token (and its balance), and also, that
the double spending tag dstag = (s, t,uO) was correctly computed.

As in Issue, the operator first verifies the proof. It then chooses its part s′
O of

the new serial number and obliviously signs the adapted commitment c. Also as
in Issue, the user verifies the commitment and signature. After the transaction,
the user has a freshly updated token, and the operator a double-spending tag.

Now, we describe the relevant parts in more detail. Update is defined as an
interactive protocol between user U and operator O. Both parties take as inputs
their key pairs, and the transaction value v ∈ V. Additionally, the user gets as
input the operator’s public key and the old token T containing their current
balance toInt(b) ∈ V. The protocol outputs for U and O consist of a new token
T ∗ and a double-spending tag dstag, respectively, as well as the output bits
bU , bO, respectively, indicating a party accepts the execution of the protocol.

The user’s token is T = (cold, r, skU ,b, sU , sO,uU , sig). As explained above,
the protocol generates a new token, but with a different balance and additional
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consistency proofs and double-spending detection. This is reflected by the vari-
ables with an additional prime, corresponding to those of Issue. The updated
balance is bnew := bin(toInt(b) + v mod q). The partial commitment is of the
form

cnew = D0
0 · r′ + D1 · skU + D2 · bnew + D3 · bin(s′

U ) + D5 · bin(u′
U ), (1)

which differs from Issue in the term D2 · bnew, where bnew = 0. As in Issue,
the new serial number is calculated from (s′

U , s′
O) chosen by user and operator,

respectively. Also note the user only adds by D0
0 · r′ the first half of the random-

ness to the commitment. The second half will be chosen by the operator. For
double-spending detection, O sends uO ←Z

msk
q0 . The user calculates the vector

s := sU + sO mod q0, and t := HFRD(uO) · skU +uU . Recall that HFRD denotes
the full-rank difference function from Appendix A.2. Also note, that uU perfectly
masks HFRD(uO) · skU , as it is a uniformly random value (chosen when cold was
issued). Hence, t reveals nothing about skU . However, if the user double-spends
by reusing an old token, given uO �= u′

O in these two executions (which happens
with overwhelming probability), then (HFRD(uO)−HFRD(u′

O))−1(t′−t′′) = skU .
Thus, the identity of the misbehaving user is revealed. We denote by P2 a non-
interactive ZK proof system, and by π := P2.Prove() its output. P2 proves fol-
lowing equations:

1. Vfy(pkO, sig, (skU ,b, s̄U , s̄O, ūU )) = 1
2. s = sU + sO mod q0
3. t = HFRD(uO) · skU + uU mod q0
4. cnew = D0

0 · r′′ + D1
0 · 0 + D1 · skU + D2 · bnew + D3 · s̄′

U + D5 · ū′
U

5. bnew = bin(toInt(b) + v mod q))
6. ‖r′‖ ≤ σCom

√
mr

7. skU , s̄U , s̄O, ūU , ū′
U , bnew, s̄′

U are binary, bin(sU ) = s̄U , bin(sO) = s̄O,
bin(uU ) = ūU , bin(u′

U ) = ū′
U , and bin(s′

U ) = s̄′
U

The equations prove that the old token was valid, and its contents were used
to compute bnew, dstag and cnew. Items 2 and 3 are for showing that the serial
number s and tag t were computed correctly (from these values). The remaining
equations prove the well-formedness of the new token, similar to Issue. In the
full-version [17] of this paper, we show how the equations can be transformed
into the generic form A ·x = y mod q, where A is a public matrix, y is a public
vector and x is the secret witness. Once the equations are in this form, the ZK
protocol from [36] can be leveraged.

The user sends (cnew, s, t, π) to O, who checks the validity of the proof. The
remainder of the protocol is essentially as in Issue, i.e. O picks their share sO of
the serial number, obliviously signs the extended commitment c, and sends the
respective values to U . The double-spending tag dstag = (s, t,uO) is stored in
a database of the operator, after the transaction ended successfully. If an entry
(s, t′) is already recorded, IdentDS can be used to identify the offending user.
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Security of the Construction. We give an intuition on why the protocol is secure
(see App. B.3 for the formal version of the argument): the commitment binds
the user to the values in a token. The ZK property of the proof system protects
the user’s actions from being linked between executions. Its soundness ensures
that the user cannot cheat. Thus, at the end of the protocol, the user has a new
token with an updated balance. The operator only learns that the old and new
token are valid, the value v of the transaction, and the double-spending tag.

Discussion. We point out a difference between our construction of BBA and
previous ones [22–24]. There, range proofs were expensive and therefore optional.
However, going without range proofs was only possible if the user revealed the
balance when spending points, leaking a lot of information. Due to the lattice-
based setting, our ZK proofs implicitly ensure that the balance is within the
allowed range V. This is because our proofs rely on bit decomposition. That is,
we prove toInt(x) =

∑mb−1
i=0 xi · 2i ∈ {0, . . . , 2mb − 1} = V and x ∈ {0, 1}mb .

Consequently, toInt(x) is a positive integer. (Recall that 2mb < q/4, so the unique
representative of the congruence class in Zq is positive.) More precisely, we prove
that bnew is of the form bnew = bin(toInt(b) + v mod q). Now, if toInt(b) + v
mod q would be negative or bigger than 2mb − 1, the user could not generate a
ZK proof which would be accepted by the operator.

Detecting Double-Spending. To identify a double-spender, in other words, a
user who tries to spend the same token twice, the operator runs the IdentDS algo-
rithm (see Fig. 4). For double-spending detection, the operator requires access
to the database of double-spending tags. When the user did double-spend, the
operator can calculate the user’s secret-key skU from the double-spending tags.

UVer(pkO, pkU , skU , T ,b)

parse: (c, r, skU ,b, sU , sO,uU , sig) := T
parse: (τsig,vsig, r) := sig

msg := skU ,b, bin(sU ), bin(sO), bin(uU )

if c = C.Com(msg; r)

∧ S.Verify(pkO, sig,msg) = 1

return 1

else return 0

IdentDS(pkO, (s, z1), (s′, z2))

parse: (t,uO) := z1, (t
′
,u

′
O) := z2

if s 
= s
′ ∨ uO = u

′
O return ⊥

else

skU := (t − t
′
)

· (HFRD (uO) − HFRD (u
′
O))

−1
mod q0

pkU := F · skU
return (pkU , Π = skU )

Fig. 4. UVer for token verification, and IdentDS to handle double-spending.

The VerifyGuilt algorithm takes the users public key pkU and a proof Π of
double-spending. The algorithm outputs 1 if F · Π = pkU mod q0 ∧ ‖Π‖∞ ≤ 1.
Note, that it is not possible to generate a proof of guilt for benign user, as our
construction offers false-accusation protection.
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User-Verify Algorithm. The UVer algorithm (see Fig. 4) checks if the com-
mitment c contained in the token is truly a commitment on the messages
skU ,b, bin(sU ), bin(sO) and bin(uU ) with randomness r. Further the algorithm
checks if sig is a valid signature on the commitment c under the operator’s secret
key. The algorithm outputs 1 if both conditions are fulfilled, otherwise 0.

4 Efficiency Evaluation

In this section, we evaluate the efficiency of our construction. We concentrate
on the communication cost, as this is the main bottleneck for mobile payments.
Therefore, we first analyze the communication cost of an Update transaction.
Next, we briefly explain our choice of parameters and calculate the concrete
communication cost of Update and Issue given those parameters. We also compare
the efficiency of our instantiation to similar protocols.

Communication Cost. From Fig. 3 (right) we can derive the cost of Update.
We denote the communication cost by CUpdate and we write |vec| for the number
of bits needed to represent a vector vec.

CUpdate = |uO| + |cnew| + |s| + |t| + |π| + |c| + |(τ,vsig, r′′)| + |s′
O|

The biggest part of this sum is |π|. Therefore, we will further analyze the size
of the proof. According to Yang et al. [36] the size of this proof is

|π| = (log(2p + 1) + κ + (3l1 + 2l2 + 2mUpdate

+ 2lUpdate) · log q) · N + (l1 + mUpdate) · log q, (2)

where p, κ, l1, l2, N are parameters of the zero-knowledge protocol, mUpdate is the
length of the witness and lUpdate is the size of the set M.

Using the fast mode [36] to prove the norm bounds on r and v we arrive at
the size mUpdate := |τ |+2nS|τ |+2mS+nC log q+2mr+msk+2mb+3mnr log q0+
2msk log q0+mr+bλ(log (10mSβ/b)+1) for the witness and lUpdate := |τ |+nS|τ |+
nC log q + 2mb log q0 + 3mnr log q0 + 2msk + bλ(log (10mSβ/b) + 1) for M, where
b allows for a trade-off between proof size and tightness of the proven bound.

Next, we look at the signature |sig|. By definition, we have sig = (τ,v, s),
where τ ∈ Z

l
2,v ∈ Z

2mS
q and s ∈ Z

2mS
q . Hence, we get |sig| = l +4mS · log(β) bits.

Choice of Parameters. To provide practical parameters for our scheme, we
follow the heuristic approach of setting parameters high enough to withstand
best-known attacks instead of deriving them from a reduction to a hard lattice
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problem such as SVP. For the sake of comparison we choose parameters for 80-
bit security. In real-world scenarios, a higher level of security is desirable. To do
so, we examine the root Hermite factor (RHF) [18] of our SIS/LWE problems.
According to [36], to achieve 80-bit security a RHF of at most 1.0048 is required.
We follow [36] and estimate the required RHF as

RHF(SISn,q,β) ≈ 2
log2 β
4n log q resp. RHF(LWEn,q,α) ≈ 2

log2 α
5.31

4n log q

see [26], resp. [3]. BABL relies on the the following assumptions:

– SISnsk,q,
√

msk
so it is infeasible to derive the secret key from the public key.

– SISnC,q,2σCom

√
2mr

mr
b

for the commitment scheme to be binding.
– SISnS,q,β′ mS

b
, SISnS,q,β′′ mS

b
for the signature to be secure.

– SIS l1,q,β1 , SIS l2,q,β2 and LWE l2,q,α for the zero-knowledge protocol [36].

where factors mr
b , mS

b are due to the soundness loss from the fast mode of [36].
From the ZK argument we have the constraints that q0 > p and q > max(β1, β2),
where we repeat the proof �280/p� times to achieve a soundness error of 2−80.

Table 1. Concrete choices of parameters and resulting values for the underlying
assumptions of the zero-knowledge proof (left), the signature scheme (middle), the
commitment scheme (right) and for the secret keys (bottom right).

Param. Value Param. Value Param. Value

p 280 log q0 100 log q 200

l1 7050 nS 880 nC 880

l2 7000 mS 352 000 mr 352 000

σ3 67 lτ 80 σCom 4195.0

σ4 5.96 × 1030 σ 671.0 mnr 1

β1 1.75 × 1059 β 8055.0 mb 32

β2 8 × 1058 β′ 9.6 × 1020

α 1.05 × 10−58 β′′ 1.29 × 1019

b 16 nsk 9

κ 128 msk 900

RHF RHF RHF

SIS l1,q,β1 1.0048 SISnS,q,β′ 1.0048 SISnC,q,2
√
2mrσCom

mr
b

1.0014

SIS l2,q,β2 1.0048 SISnS,q,β′′ 1.004 SISnsk,q,
√

msk
1.0046

LWE l2,q,α 1.0047

We tested for values of p = 210 up to p = 280 and arrived at the smallest
proof size for p = 280. Then we set q0 such that q = q20 is just big enough. Finally
we set all dimensions n just high enough to achieve the desired RHF of 1.0048.
This resulted in the parameters shown in Table 1. The size of the proof π is 197
MB. Overall, the communication cost for Update is 199MB and for Issue 70 MB.
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Comparison with Similar Protocols. In Table 2, we compare the result for
our instantiation with other protocols. The given values for our construction, and
E-Cash of [36] and of [28] are theoretical estimations, while the values for BBA+
[24] and BBW [22] are results of empirical experiments on a software implemen-
tation (the benchmarks are described in [22]). Therefore, the comparison should
be taken with a grain of salt. However, it suffices to illustrate the efficiency
gap between the lattice-based constructions and the elliptic curve-based ones.
Note, that our construction is slightly more efficient than the construction of
[36]. Even though we used the same zero-knowledge proof, we do not need to
prove statements about the correct evaluation of weak pseudorandom functions.

Table 2. Comparison of the efficiency of similar protocols with our work

Protocol Issuance Transaction Token/Wallet Based on

Our work 70 MB 199MB 11 MB Lattices

E-Cash [28] 33 TB 720 TB 4 MB Lattices

E-Cash [36] 53 MB 262 MB 4 MB Lattices

BBA+ [24] 1 kB 14 kB <1 kB Elliptic curves

BBW [22] 1 kB 5 kB <1 kB Elliptic curves

5 Future Work

Post-Quantum Security. Despite recent progress in proving Fiat–Shamir trans-
formations of Σ-protocols secure in the quantum random oracle model [16,30]
none of the results seems to apply to our setting. That is, even if we assume
that the results apply to [36], the resulting notion of security is not sufficient for
our proofs. We essentially require witness-extended emulation (WEE) [21,29],
i.e., except with negligible probability an accepting proof can be extracted. This
is a stronger notion than the knowledge soundness, which [16,30] use. In the
classical setting, the difference is small since amplification (via rewinding) can
be used to obtain WEE from knowledge soundness [29]. In the quantum setting,
this is unclear. A possible remedy would be a transformation which allows online
extraction of the witness, e.g. by (additionally) committing to the witness with
an extractable commitment scheme or a dual-mode commitment scheme. Knowl-
edge of the extraction trapdoor allows to prove “operator soundness”, while the
hiding property still ensures the “privacy notions”. However, this would further
increase proof sizes and introduce a global system trapdoor (which is undesir-
able).

Efficiency. As seen in Sect. 4, our construction requires a high amount of network
traffic. For real-world scenarios this cost is still unacceptably high. Basing a con-
struction on the stronger assumptions of Ring-LWE and Ring-SIS should allow



236 S. H. Faller et al.

more efficient schemes. However, while more efficient zero-knowledge proofs are
known in the ring setting, we are not aware of more efficient CL-type signatures.
Thus, this remains the most important open question.
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A Hardness Assumptions and Cryptographic Building
Blocks

A.1 Lattice-based Hardness Assumptions

Definition A.1 (Short Integer Solution). Given a modulus q ∈ N, m ∈ N

uniformly random vectors ai ∈ Z
n
q (written as a matrix A ∈ Z

n×m
q ), and a

uniformly random vector u ∈ Z
n
q , the Inhomogeneous Short Integer Solution

(ISIS) problem is to find a non-zero integer vector z ∈ Z
m of norm ‖z‖ ≤ β such

that

Az =
m∑

i=1

ai · zi = u ∈ Z
n
q ,

where β ∈ R is a parameter with β < q.
In the case where u is not uniform but fixed to 0, the problem is called Short

Integer Solution (SIS). We write SISn,q,β,m, if we want to emphasize the respec-
tive parameters.

For typical parameter choices, SIS and ISIS are equivalent. Ajtai showed in his
seminal work [2] that the average-case SIS problem can be reduced in polyno-
mial time to the short integer vector problem (SIVP), a worst-case problem on
lattices.

Regev [32] introduced the LWE problem and gave a quantum reduction to
SIVP. We define the decisional variant of the respective hardness assumption.

Definition A.2 (Learning with Errors). LWEn,q,χ,m: For a secret vector
s ∈ Z

n
q and a probability distribution χ over Z

m
q , sample a matrix A ∈ Z

n×m
q

uniformly at random and a vector e ← χ. Given (A,b∗) where b∗ is either b0 or
b1, where b�

0 = s�A+ e mod q and b1 is chosen uniformly at random. Decide
whether b∗ = b0 or b∗ = b1.

A.2 Building Blocks

We give a brief overview of the used building blocks. In Sect. 2.3, we give instan-
tiations of these building blocks based on the hardness of SIS and LWE.
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Commitments. A commitment scheme allows one to commit to (i.e., fix) a value,
without revealing it immediately. At a later point, the commitment can be opened
and the committed value is revealed. A commitment scheme consists of two
PPT algorithms: The parameter generation Gen(1λ) outputs public parameters
params, and the commitment algorithm Com(params,m; r) → c outputs, for a
given message m, some explicit randomness r and the public parameters params,
a commitment c on that value m. We often omit the input of the public param-
eters.

To open the commitment c, one can reveal the randomness r, to check, if
Com(params,m; r) = c holds. Informally, we want a commitment scheme to be
hiding, i.e. no (efficient) adversary can learn anything about the message m in
a commitment, prior to opening. Furthermore, a commitment should be binding
which means it should be (computationally) infeasible to open a commitment
on m to any other value than m. A commitment scheme is equivocal, if there
exist an additional trapdoor generation algorithm EqGen(1λ) that outputs the
public parameters params, together with a trapdoor td. With the trapdoor td,
it is possible to open a commitment c on the value m to another value m′ with
m′ �= m, by running a second algorithm, called Equiv(td, c,m′) that outputs a
randomness value r′ for opening c to m′. We require the two setups via Gen and
EqGen to be computationally indistinguishable.

Oblivious Signing of Committed Messages. In our construction, we use the sig-
nature scheme of Libert et al. [28]; in particular, their protocol for obliviously
signing a committed message (see Sect. 2.3). A signature scheme for oblivious
signing of committed messages consists of the following algorithms/protocols:

– A key-generation algorithm Gen(1λ) that outputs (params, pk, sk), namely
public parameters params, and a pair consisting of a public and a secret key.

– OblSign〈U(params, pk,m),S(params, pk, sk)〉, an interactive protocol, where a
user U interacts with a signer S to obtain a signature on a message m inside
of a commitment. In this protocol, U sends a commitment c ← Com(m; r) on
m to the signer S and eventually U outputs a valid signature on m.

– a verification algorithm Vfy(params, pk,m, sig) → b that allows to check,
whether sig is a valid signature on message m public key pk.

The signer does not learn anything about m, as the commitment scheme is
hiding. This protocol offers a security notion that is almost identical to common
EUF-CMA security but takes into account that the user sends commitments and
not plain messages. Libert et al. forgo an abstract definition of the signature’s
security as they directly apply the signature scheme to their E-Cash. We give a
formal definition in the full-version [17] of this paper.

Zero-Knowledge Proofs. A proof system allows a party, called prover, to prove to
another party, called verifier, that some statement is true. It is a zero-knowledge
(ZK) protocol, if (informally) the verifier gains no additional knowledge, except
for the truth of the statement. More precisely, the prover can convince the verifier
that a word x belongs to a certain NP-language L, while even a malicious verifier
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learns nothing about x except for the truth of x ∈ L. The protocol is a proof
of knowledge (PoK), or extractable, if a convincing prover must know an NP-
witness w. For example, if x = m, w = σ, and the language is “I know a signature
σ on message m”, then a ZK-PoK guarantees that a convincing prover knows
a signature σ, yet, the verifier learns nothing about σ. A ZK-PoK is correct,
if an honest execution with correct statement always accepts. It has soundness
error p ∈ [0, 1], if the probability that the verifier accepts a false statement is at
most p.

Full-Rank Difference Function. We define full-rank differences as introduced by
Agrawal, Boneh, and Boyen [1], and refer to them for a concrete instantiation.
We use this in the calculation of the double-spending tag. Let q ∈ N be a
prime and n ∈ N. A full-rank difference function is an efficiently computable
function HFRD : Zn

q → Z
n×n
q satisfying that for all distinct u, v ∈ Z

n
q , the matrix

HFRD(u) − HFRD(v) ∈ Z
n×n
q is full rank.

B Security and Privacy Notions

In this section we render the precise definitions of the security and privacy
notions as defined by [23].

Definition B.1 (Correctness of BABL). Similar to [22] the BABL scheme is
called correct if the following holds: If the system is set up by the Setup algorithm,
the keys are generated by UGen and OGen, all parties follow the protocol honestly,
then, the following properties hold: (1) Correctness of the Issue protocol: Both
parties return as acceptance bit 1. (2) Correctness of the Update protocol: For
all valid tokens and balances, after adding a value the user always returns as
acceptance bit 1.

Definition B.2 (Oracles, from [23] Def. 3.2). MalIssue lets the adversary
initiate the Issue protocol with an honest issuer O provided that there is no
pending MalIssue call for pkU and pkU has also not been used in a successful call
to MalIssue before. MalUpdate lets the adversary initiate the Update protocol
with an honest operator O for an input value v. We say that a call to an oracle
is successful if the honest party represented by the oracle accepts the run.

B.1 System Security

We denote by T Update
λ,CRS the set of all transcripts of Update transactions, meaning

all exchanged messages from the beginning, until both parties terminate.

Definition B.3. A scheme is called simulation-linkable if it satisfies the follow-
ing conditions:

Completeness: Let n ∈ N,CRS ← Setup(1λ) and tr ∈ T Update
λ,CRS be a transcript.

Then there exist inputs pkU , skU , T ,b and random choices for an honest user
U and honest operator O such that a run of the Update protocol between U
and O with those inputs leads to the same transcript tr.
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Extractability: There exists a PPT algorithm ExtractUID that, given two related
transcripts tr1, tr2 ∈ T Update

λ,CRS produced by the interaction of a honest user U
with public key pkU with a honest operator O outputs the public key pkU .
Two transcripts tr1, tr2 are called related if they are identical except for the
zero-knowledge challenges, output by the Random Oracle.

Additionally, there exists an expected PPT algorithm GenerateTranscripts
that, given access to a transcript oracle O = 〈U ,O〉 which outputs transcripts
between a user and an operator, outputs two related transcripts tr1, tr2 ∈ T Update

λ,CRS

with overwhelming probability. GenerateTranscripts is allowed to rewind O
and reprogram the Random Oracle.

Definition B.4. A simulation-linkable scheme is called owner-binding if for
any PPT adversary A in the experiments Expob-issueBABL,A(λ) and Expob-updateBABL,A (λ) from
Fig. 5 the advantages of A defined by

Advob-issueBABL,A(λ) = Pr
[
Expob-issueBABL,A(λ) = 1

]

Advob-updateBABL,A (λ) = Pr
[
Expob-updateBABL,A (λ) = 1

]

are negligible in λ.

Experiment Expob-issueBABL,A(λ)
CRS ← Setup(1λ)
(pkO, skO) ← OGen(CRS)
(pkU , skU ) ← UGen(CRS)
b ← AMalIssue,MalUpdate(CRS, pkO, pkU )
The experiment outputs 1 iff A made a successful call to MalIssue(pkU ).

Experiment Expob-updateBABL,A (λ)
CRS ← Setup(1λ)
(pkO, skO) ← OGen(CRS)
b ← AMalIssue,MalUpdate(pkO)
The experiment outputs 1 iff A made a successful call to MalUpdate
such that ExtractUID applied to that call outputs a public key pkU ,
for which MalIssue has never been called before.

Fig. 5. Owner-binding experiment

Definition B.5. A simulation-linkable scheme ensures doubles-spending detec-
tion if for any PPT adversary A in the experiments ExpdsdBABL,A(λ) from Fig. 6
the advantage of A defined by

AdvdsdBABL,A(λ) = Pr
[
ExpdsdBABL,A(λ) = 1

]

is negligible in λ.
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Experiment ExpdsdBABL,A(λ)
CRS ← Setup(1λ)
(pkO, skO) ← OGen(CRS)
b ← AMalIssue,MalUpdate(pkO)
The experiment outputs 1 iff A did two successful MalUpdate calls
resulting in two double-spending tags dstag1 = (s, z1) and dstag2 =
(s, z2) with extracted public keys pk(1)U and pk(2)U such that at least
one of the following conditions is satisfied:

– pk(1)U �= pk(2)U or
– IdentDS(pkO, dstag1, dstag2) �= (pk(1)U , π) or
– IdentDS(pkO, dstag1, dstag2) = (pk(1)U , π) but

VerifyGuilt(pkO, pk(1)U , π) �= 0.

Fig. 6. Double-spending experiment

Definition B.6. A simulation-linkable scheme is called balance-binding if for
any PPT adversary A in the experiments ExpbbBABL,A(λ) from Fig. 7 the advantage
of A defined by

AdvbbBABL,A(λ) = Pr
[
ExpbbBABL,A(λ) = 1

]

is negligible in λ.

Experiment ExpbbBABL,A(λ)
CRS ← Setup(1λ)
(pkO, skO) ← OGen(CRS)
b ← AMalIssue,MalUpdate(pkO)
The experiment outputs 1 iff A made a successful call to MalUpdate
with extracted user public-key pkU , s.t.

– all successful MalIssue / MalUpdate calls produce unique token
version numbers,

– the claimed balance w ∈ V does not equal the sum of previously
collected accumulation values v for pkU , i.e. w �=

∑
v∈VpkU

v where
VpkU is the list of all accumulation values v ∈ V that appeared
in previous successful calls to MalUpdate for which pkU could be
extracted using ExtractUID.

Fig. 7. Balance-binding experiment

B.2 User Security and Privacy

User security is defined using the real/ideal world paradigm. The adversary can
query the HonUser oracle to spawn new users. In the real world, the adversary
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interacts with oracles RHonIssue and RHonUpdate implementing the real user
protocols. In the ideal world, the adversary interacts with a simulator. The sim-
ulator has to play the role of the oracles, but without receiving any private
user information. We denote this by SHonIssue,SHonUpdate. In both worlds, the
adversary can query RCorrupt or SCorrupt, respectively, to corrupt a user. By
this, they learn all private information of the respective user.

Definition B.7. A scheme is called privacy-preserving if there exist PPT algo-
rithms SimSetup and SCorrupt as well as PPT protocols SHonIssue,SHonUpdate
that receive no private user information, such that for all PPT adversaries
A = (A1,A2) in the experiment depicted in Fig. 8, the advantage AdvprivBABL,A(λ)
of A defined by

∣
∣
∣Pr

[
Exppriv-realBABL,A(λ) = 1

]
− Pr

[
Exppriv-idealBABL,A (λ) = 1

]∣
∣
∣

is negligible in λ.

Experiment Exppriv-realBABL,A(λ)
CRS ← Setup(1λ)
(pkO, state) ← A1(CRS)
b ← AHonUser,RHonIssue,RHonUpdate,RCorrupt

2 (pkO, state)
return b

Experiment Exppriv-idealBABL,A(λ)
(CRS, tdsim) ← SimSetup(1λ)
(pkO, state) ← A1(CRS)
b ← AHonUser,SHonIssue,SHonUpdate,SCorrupt

2 (pkO, state)
return b

Fig. 8. Real/Ideal world privacy experiment

Definition B.8. A simulation-linkable scheme ensures false-accusation protec-
tion if for any PPT adversary A = (A1,A2) in the experiments ExpfacpBABL,A(λ)
from Fig. 9 the advantage of A defined by

AdvfacpBABL,A(λ) = Pr
[
ExpfacpBABL,A(λ) = 1

]

is negligible in λ. (Note, that this does not guarantee anything, once the user was
compromised.)

B.3 Security and Privacy

Our construction fulfills the desired security and privacy properties mentioned
in Sect. 2.1. We formulate the theorems and give proof sketches. Note, that the
proofs follow closely the proofs from [23]. Only small changes were necessary to
adopt the proofs to the lattice-setting:
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Experiment ExpfacpBABL,A(λ)
CRS ← Setup(1λ)
(pkO, skO) ← A1(CRS)
(pkU , skU ) ← UGen(CRS)
π ← ARHonIssue,RHonUpdate

2 (pkO, pkU )
Return 1 iff VerifyGuilt(pkO, pkU , π) = 1.

Fig. 9. False-accusation experiment

Theorem B.1 (Simulation-Linkability). Suppose BABL is correct, S is
secure and P1,P2 are sound. Then BABL is simulation-linkable.

Proof Sketch (Simulation-Linkability (Theorem B.1)). As by definition, a scheme
is called simulation-linkable when it is complete and extractable, we have to show
that BABL fulfills these properties.

Completeness requires, that for every accepted transcript, there is a choice
of parameters, such that the transcript is the result of an honest protocol run.
This is given in our case, as the sum of the serial number and the t-part of the
double-spending tag are indistinguishable from random values. Further, as the
transcript is accepted, the soundness property of the zero-knowledge protocol
from [36] guarantees that a commitment is well-formed. It remains to show that
the signature is honestly generated, but as the token is accepted by the user and
the signature is secure, this is given.

To prove the extractability property we can rely on the fact that the protocol
from [36] is extractable, because it is a proof of knowledge.

Theorem B.2 (Owner-Binding w.r.t. Issue). Suppose the SISnsk,q,
√

msk

assumption holds and P1 is extractable. Then BABL is owner-binding w.r.t. Issue.

Proof Sketch (Owner-Binding wrt. Issue (Theorem B.2)). Proving this property
is a straightforward reduction on SISnsk,q,

√
msk

.

Theorem B.3 (Owner-Binding w.r.t. Update). Suppose BABL is
simulation-linkable, P2 is extractable and S is secure. Then BABL is owner-
binding w.r.t. Update.

Proof Sketch (Owner-Binding wrt. Update (Theorem B.3)). To prove the owner-
binding property for the Update protocol we define a series of games for a hybrid
argument. In these games, we test the required properties for the owner-binding
property step by step. Finally, we show that the advantage of the adversary to
win in the original game differs only negligibly from the other games.

First, we show that it is indeed possible to extract the user’s secret key
by reducing this problem on the already proven simulation-linkability prop-
erty of our scheme. Then it is possible to extract witnesses for all occurred
zero-knowledge proofs as the zero-knowledge argument from [36] is extractable.
Finally, as there are extracted witnesses, the only way left for the adversary to
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win the owner-binding game is to forge a signature. This is prevented by the
security of our signature. Note here, that the security of the signature is not
exactly the usual EUF-CMA security, as the user sends commitments and the
signer signs the committed messages (and not the commitment itself). However,
the notion of security given in the full-version [17] of this paper suffices for our
proofs.

Theorem B.4 (Double-Spending Detection). Suppose BABL is simulation-
linkable, the SISnsk,q,

√
msk

assumption holds, P2 is extractable and S is secure.
Then BABL ensures double-spending detection.

Proof Sketch (Double-Spending Detection (Theorem B.4)). Similar to the last
theorem, we prove this property with a hybrid argument. In particular, we con-
sider all ways in which IdentDS (Fig. 4) could be tricked into not recognizing
an actual act of double-spending. We show that an adversary would therefore
either be able to find a collision on the serial number, or they were was able to
manipulate the double-spending tag in a specific way. The former happens only
with negligible probability, as the serial number is chosen in a coin-toss-like man-
ner. The latter happens only with negligible probability, as the double-spending
certainly includes values that the operators drew at random, and as the zero-
knowledge proof is sound.

Theorem B.5 (Balance-Binding). Suppose P1 and P2 are extractable and
sound and C is statistically hiding, and S is secure Then BABL is balance-binding.

Proof Sketch (Balance-Binding (Theorem B.5)). Similar to the proofs for the
previous properties, we prove the balance-binding property by defining several
games, where we show step by step, that the probability for an adversary to
break the balance-binding property of BABL is negligible. More precisely, we
interpret every transaction as a node in a graph. Two nodes are connected if
the output serial number of the first transaction is the input serial number of
the last. We ensure through the game hops, that all nodes have an indegree of
exactly one (except for the issuance of the token) and outdegrees of at most one.
If this was not the case, there would be collisions on the serial number, double-
spendings, or forged signatures. Additionally, every such chain of transactions
must be started by the issuance of a token and the balance must only change
according to the transaction values of the nodes.

Theorem B.6 (Privacy-Preserving). Suppose P1 and P2 are zero-
knowledge and C is equivocal. Then BABL is privacy-preserving.

Proof Sketch (Privacy-Preserving (Theorem B.6)). We prove this property by
defining several games, where the oracles of the real experiment are step-by-step
replaced by oracles that hold no personal information of the user, called the ideal
world. By showing that an adversary is only with negligible probability able to
tell apart the real from the ideal world, we prove that BABL is indeed privacy-
preserving. In more detail, we make use of the fact that the zero-knowledge proof
from [36] is indeed zero-knowledge and the commitment scheme is equivocal. We
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use the equivocality property to replace the real values in the token with random
ones, which makes it impossible to extract personal information from the user
in the ideal world.

Theorem B.7 (False-Accusation Protection). Suppose the SISnsk,q,
√

msk

assumption holds and the scheme ensures double-spending detection. Then BABL
ensures false-accusation protection.

Proof Sketch (False-Accusation Protection (Theorem B.7)). Just like in the
privacy-preserving proof we use the real/ideal world paradigm. Now, if the adver-
sary is able to output a false proof of guilt for an honest user, one can directly
construct an adversary breaking the SISnsk,q,

√
msk

assumption. If the adversary
is not able to output a proof of guilt for a guilty user, this can be leveraged to
distinguish the real world from the ideal world.
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Abstract. Let As = b+e mod q be an LWE-instance with ternary keys
s, e ∈ {0, ±1}n. Let s be taken from a search space of size S. A standard
Meet-in-the-Middle attack recovers s in time S0.5. Using the representa-
tion technique, a recent improvement of May shows that this can be low-
ered to approximately S0.25 by guessing a sub-linear number of Θ( n

log n
)

coordinates from e. While guessing such an amount of e can asymptot-
ically be neglected, for concrete instantiations of e.g. NTRU, BLISS or
GLP the additional cost of guessing leads to complexities around S0.3.

We introduce a locality sensitive hashing (LSH) technique based on
Odlyzko’s work that avoids any guessing of e’s coordinates. This LSH
technique involves a comparably small cost such that we can signifi-
cantly improve on previous results, pushing complexities towards the
asymptotic bound S0.25. Concretely, using LSH we lower the MitM com-
plexity estimates for the currently suggested NTRU and NTRU Prime
instantiations by a factor in the range 220 −249, and for BLISS and GLP
parameters by a factor in the range 218 − 241.

Keywords: Ternary LWE · Combinatorial attack · Representations ·
LSH

1 Introduction

The LWE problem is currently without a doubt the richest source for construct-
ing efficient quantum-resistant cryptography. Let (A, b) ∈ F

n×n
q × F

n
q be an

LWE public key with secret key s ∈ F
n
q satisfying As = b + e mod q for some

error e ∈ F
n
q . The unknown vectors s, e have entries significantly smaller than

q. For efficiency reasons, many modern LWE variants even use ternary secrets
s, e ∈ {0,±1}n. Thus, it is of uttermost interest to understand the complexity
of ternary key LWE – also called NTRU-type – schemes.
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A standard Meet-in-the-Middle algorithm (MitM) splits s = s1 + s2 with
s1 ∈ {0,±1}n/2 × 0n/2 and s2 ∈ 0n/2 × {0,±1}n/2. Therefore, we obtain the
identity

As1 = −As2 + b + e mod q. (1)

One then computes for all potential s1, s2 the values As1 and −As2 + b. With
high probability only for the correct pair s1, s2 these values are apart by a
ternary error e ∈ {0,±1}n. The correct pair is efficiently identified by a locality
sensitive hash function proposed by Odlyzko, mentioned in the original NTRU
paper [HPS98].

Recently, the above MitM attack has been improved by May [May21], based
on the representation techniques that was developed in [HJ10,BCJ11,BJMM12].
The key idea in [May21] is to search over all s1, s2 ∈ {0,±1}n that satisfy Eq. (1)
on k = Θ( n

log n ) coordinates exactly, and on the remaining n−k coordinates up to
the entries of e (using Odylzko’s hashing). This in turn implies that we have to
initially guess k coordinates of e to realize the exact matching.

Our Contribution. We show that a suitable modification of Odylzko’s locality
sensitive hash function (LSH) allows to avoid any error guessing in [May21].
Since the cost of our LSH function is comparatively small, in turn we significantly
improve over the MitM complexities given in [May21], see Table 1.1

Table 1. Results of our LSH meet-in-the-middle attack.

(n, q, w) S
[bit]

[May21]

[bit]

Our
[bit]

[DDGR20]

Core-SVP

NTRU IEEE [IEE08] (659, 2048, 76) 408 146 135 151

(761, 2048, 84) 457 166 162 176

(1087, 2048, 126) 680 243 221 260

(1499, 2048, 158) 877 315 283 358

NTRU [CDH+20] (509, 2048, 254) 754 227 191 124

(677, 2048, 254) 891 273 226 167

(821, 4096, 510) 1286 378 358 197

(701, 8192, 468) 1101 327 295 155

NTRU Prime [BBC+20] (653, 4621, 288) 925 272 228 148

(761, 4591, 286) 1003 301 268 174

(857, 5167, 322) 1131 338 315 196

BLISS I+II [DDLL13] (512, 12289, 154) 597 187 159 102

GLP I [GLP12] (512, 8383489, 342) 802 225 184 60

In comparison to the results in [May21], for the encryption schemes NTRU
and NTRU Prime we gain a run time factor between 220 for NTRU-821 and 249

1 The scripts to reproduce the tables are available at https://github.com/Elena
Kirshanova/ntru with lsh.

https://github.com/ElenaKirshanova/ntru_with_lsh
https://github.com/ElenaKirshanova/ntru_with_lsh
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for NTRU-677. For the signatures schemes we gain a 218 factor for BLISS I+II,
and a 241-factor for GLP I.

In terms of the search space size S for the secret key, we obtain attacks in the
range S0.23 for GLP-I and S0.28 for NTRU-821. These exponents in the range
[0.23, 0.28] are close to the asymptotic exponents achieved in [May21], and thus
indicate the optimality of our LSH approach.

Another direction of improvement is the use of the representation technique
not only for the enumeration of s as in [May21], but also for the error vector
e. This approach yields comparable improvements to our LSH technique: we
provide more details in Appendix A of the full version [KM21]. Since LSH and
representations of e are somewhat orthogonal techniques to exploit the structure
of e, we currently do not see a way to combine both approaches.

In comparison to the (highly optimized) lattice attacks in the Core-SVP
metric from [DDGR20], our estimates are still a tad bit away. However, we beat
current lattice estimates for a selection of the NTRU IEEE 1363-2008 stan-
dard [IEE08], see Table 1. For instance, for the ees1499ep1 parameter set we
further improve the attack of [May21] by another 32 bits, now beating current
lattice estimates by 75 bits.

This demonstrates that our purely combinatorial attack shows its strength
in the small weight regime, e.g. for ees1499ep1 with only w = 158 non-zero
secret key coefficients. We would like to point out that current cold-boot attack
scenarios such as [ADP18] live in the (really) small weight regime. We provide
cold-boot applications of our attack in Sect. 6.

On the technical level, we have to construct an LSH approach that realizes
an approximate hashing over many levels of a search tree. This is not straightfor-
ward, since Odlyzko’s original LSH function does not provide linearity. We realize
an LSH hashing over search trees via suitable combinations of projections. Given
the importance of search tree constructions optimizations with LSH [MO15], we
hope that our projection technique will find more applications.

Notations. We denote by Zq the ring of integers modulo q ≥ 2. Vectors are
denoted by lowercase letters, matrices by uppercase letters. The n × n identity
matrix is denoted by In. The �∞-norm of vector x, denoted by ‖x‖∞, is maxi |xi|.
For a set S, we denote by |S| its size.

We shall also make use of multinomial coefficients: for positive integers n,
{ni}i≤k such that n = n1 + . . . + nk, the multinomial coefficient, denoted by(

n
n1,...,nk−1,·

)
, is the product

(
n
n1

)
·
(
n−n1

n2

)
· . . . ·

(
n−∑

i<k ni

nk

)
.

2 Generalizing Odlyzko’s LSH

In order to generalize Odlyzko’s LSH to search trees, we consider the following
problem abstraction that we face for every node of our search tree constructions.

Definition 1 (Close pairs problem in �∞-norm). Given two equal-sized lists
L1, L2 of iid. uniform random vectors from Z

n
q , find an (1 − o(1))-fraction of all
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pairs (x1, x2) ∈ L1 × L2 that satisfy ‖(x1 − x2) mod q‖∞ = 1. Any such pair is
called 1-close.

This is an average-case version of the close pairs problem and we shall make
use of the distribution in our analysis. In particular, we assume that elements
from the lists L1, L2 do not cluster, i.e., there is no subset of vectors with small
diameter. For the worst-case version of the problem, an algorithm is given by
Indyk in [Ind01]. Note also that we are in the special case of the �∞ norm on the
torus Zq = {0, . . . , q − 1}, i.e., it holds that ‖0 − (q − 1)‖∞ = 1. Furthermore,
the lists L1, L2 are assumed to be of exp(n)-size.

The close pairs problem is solved using the so-called locality-sensitive hash
functions (LSH) [IM98,AI06]. Informally, such a hash function has higher colli-
sion probability for elements that are close than for those that are far apart.

For the �∞-norm over Zq, Odlyzko proposed a construction of a locality-
sensitive hash (LSH) function [HPS98]. Odlyzko’s LSH splits Zq into two halves:
[0, �q/2� − 1] and [�q/2�, q − 1], and assigns the 0-label to the first half and
the 1-label to the second half. It is extended to vectors coordinate-wise thus
mapping Z

n
q to {0, 1}n. It is likely that close vectors have the same label under

this mapping. In order to avoid losing close pairs, Odlyzko suggests to assign
both 0- and 1-labels to the “border” values �q/2� − 1 and �q/2�. We do not
perform such a double assignment, but instead we re-randomize the function as
we explain below.

The choice to split Zq into two halves works particularly well when there
is a unique close pair in the sense that the other pairs have a different label
under Odlyzko’s mapping. In our average case setting non-close pairs differ by
label with probability 1 − 2−n, since the probability that two uniform random
elements from Zq are in the same half wrt. to �q/2� is 1/2.

In our applications we will be in the setting where a solution may not be
unique and thus we require in Definition 1 to output (almost) all close pairs.
Odlyzko’s LSH generalises to this setting by

1. dividing the Zq torus into more than 2 parts, and
2. re-randomizing the hash function (see also [Ngu21]) so that we can handle

border values in a more elegant way than assigning multiple labels2.

More precisely, consider the following straightforward generalisation of Odlyzko’s
LSH. For a fixed bound B ∈ {1, . . . , q} and a uniformly chosen shift-vector
u ∈ Z

n
q define

hu,B : Zn
q →

[
0, . . . ,

⌈ q

B

⌉
− 1

]n

(x1, . . . , xn) �→
(⌊

x1 + u1

B

⌋
, . . . ,

⌊
xn + un

B

⌋)
.

2 In fact, the ‘multiple’ labels assignment is what is done in [Ind01] to handle worst-
case inputs. We could also use this algorithm but it turns out to be less memory-
efficient than what we propose for the average-case setting.
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In the original Odlyzko’s LSH, B is set to q/2. We choose a uniform random
function from the family HB = {hu,B | u ∈ Z

n
q }. For a list L1 ⊂ Z

n
q , the shift

L1 + u is just a rotation of all the elements on the Zq torus. Any function hu,B

can be evaluated in O(n) operations over Zq.

Algorithm 1. Our LSH-Odlyzko algorithm for finding 1-close pairs
Input: L1, L2 – list of iid. uniform vectors from Z

n
q , each of size |L|.

Output: (1 − o(1))-fraction of all pairs (x1, x2) ∈ L1 × L2 such that
‖(x1 − x2) mod q‖∞ = 1

1: Choose B ≥ q

|L|1/n ∈ {1, . . . , q} suitably. Choose u
$←− Z

n
q .

2: Apply hu,B to L1, L2. Sort L1, L2 according to the hash values.
3: Merge the sorted lists according to their hash labels. Output only those pairs

(x1, x2) ∈ L1 × L2 that satisfy ‖(x1 − x2) mod q‖∞ = 1
4: Repeat Steps 1–3 N times, where

N =

(
B

B − 1

)n

· n log n (2)

Let us now provide our algorithm LSH-Odylzko (Algorithm 1) that solves
the close pairs problem from Definition 1. For our NTRU-type applications,
we later solve close pairs problems on suitably chosen projections of all n
coordinates. Notice that hu,B can easily applied on projections, since it works
coordinate-wise.

Theorem 1 (Adapted from [IM98]). Given two lists L1, L2 of equal size |L|
with iid. Elements taken from the uniform distribution on Z

n
q , LSH-Odlyzko

(Algorithm 1) solves the close pairs problem from Definition 1 in space and time
complexities

S = max
{

|L| , |L|2 ·
(

3
q

)n}
· poly(n),

TLSH(|L|, n,B) = max
{

S, |L|2
(

B2

(B − 1)q

)n

· poly(n)
}

.

Proof. The proof is an adaptation of [IM98, Theorem 5] to the average-case
�∞-norm setting.

We start with the analysis of Steps 1–3 of Algorithm 1.
In Step 2, hashing and sorting can be performed within time and memory

complexity Õ(|L|) = |L| · poly(n).

Notice that our choice of B in Step 1 implies |L|
(

B
q

)n

≥ 1, which is the
expected number of elements from L1 (or L2) that receive the same hash label.

Thus the number of elements in L1 ×L2 that match by hash label is |L|2
(

B
q

)n

,
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and these pairs can be found in Step 3 in time |L|2
(

B
q

)n

· poly(n) time. Among
the pairs (x1, x2) ∈ L1 × L2 we filter out all those that are not 1-close in �∞
norm.

Notice that in total we expect |L|2 ·
(

3
q

)n

1-close pairs. However, since we
consider only those pairs with matching LSH-label, in each iteration we only
obtain a certain fraction of all 1-close pairs. It remains to show that by our
choice of N repetitions in Step 4 we eventually find almost all 1-close pairs.

Let (x1, x2) ∈ L1 × L2 be a solution to the close pairs problem, and consider
the event E that hu,B(x1) = hu,B(x2), i.e., x1, x2 receive the same hash label
for a random hash function. Then

Pr[E] =

n∏

i=1

(
1 − Pr

hu,B

[⌊
xi + ui

B

⌋
�=

⌊
x′

i + ui

B

⌋])
=

(
1 − q/B

q

)n

= (1 − 1/B)n .

Thus, E happens after N = (Pr[E])−1n log n repetitions with probability

1 − (1 − Pr[E])N ≤ 1 − e−n log n.

Taking the union bound over all exp(n)-many potentially 1-close pairs (x1, x2) ∈
L1 × L2 ensures that we find with high probability an (1 − o(1))-fraction of all
1-close pairs. ��

Notice that Algorithm 1 requires some optimization of B. The larger B, the
larger is the number of 1-close pairs that we find per iteration, and the smaller
the required number N of iterations. In our applications, we found the optimal
value B that minimizes TLSH(|L|, n) in Theorem 1 by an exhaustive search.

Combining Approximate with Exact Matching. Algorithm 1 can be easily
adapted to exact matching by setting B = q, N = 0, and the whole process
will correspond to simple merge sort. Now, assume we need to combine approx-
imate matching on some k1 coordinates and exact matching on some other k2
coordinates. A hash label is then a concatenation of an approximate label of
dimension k1 and an exact label of dimension k2. Then the number of elements

in L1 × L2 that have the same label is |L|2
(

B
q

)k1
(

1
q

)k2

. The space and time
complexity of this combined LSH+Exact algorithm are up to poly(n) terms

S = max

{

|L| , |L|2 ·
(

3
q

)k1
(

1
q

)k2
}

,

TLSH+Exact(|L|, k1, k2, B) = max

{

S, |L|2
(

B

q

)k1
(

1
q

)k2

· N

}

.

(3)

3 Our LSH-Based MitM with Rep-0 Representations

Since our algorithm builds on top of the representation technique-based Meet-
LWE algorithm of [May21], let us briefly sketch the idea of representations, how
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they are used inside Meet-LWE, and how our LSH-technique for 1-close pairs
from Sect. 2 leads to an improved LSH-Meet-LWE algorithm. As a warm-up,
for didactical reasons we describe in this section the idea how to use our LSH
technique with depth-2 search trees, where our technique is only used once to
construct the level-1 lists L

(1)
1 and L

(1)
2 (the upper index denotes the level of

the lists in Fig. 1). In the subsequent sections, we show how to generalize the
technique to larger depth.

s
(2)
1 ∈ T n

2 (w
8 ) × 0

n
2

L
(2)
1

s
(2)
2 ∈ 0

n
2 × T n

2 (w
8 )

L
(2)
2

s
(2)
3 ∈ T n

2 (w
8 ) × 0

n
2

L
(2)
3

s
(2)
4 ∈ 0

n
2 × T n

2 (w
8 )

L
(2)
4

s1 = s
(2)
1 + s

(2)
2 ∈ T n(w

4 )

L
(1)
1

|As1|∞:
0 1

n − k k
2

k
2

s2 = s
(2)
3 + s

(2)
4 ∈ T n(w

4 )

L
(1)
2

|As2 − b|∞:
1 0

n − k k
2

k
2

s ∈ T n(w/2)

|As− b|∞:
±1, 0

Fig. 1. LSH-Meet-LWE algorithm with Rep-0 representations

Reprentations and Meet-LWE. Let T n = {0,±1}n ∩ F
n
q denote the set of

ternary vectors. Moreover we denote by T n(w/2) the set of ternary vectors
having weight w with exactly w/2 1-entries and w/2 (−1)-entries.

Let As = b + e mod q be the LWE key equation with e ∈ T n and s ∈
Tn(w/2). We represent s = s1 + s2 where s1, s2 ∈ Tn(w/4), i.e. s1, s2 have

exactly w/4 1- and (−1)-entries each. Notice that there are R =
(
w/2
w/4

)2
ways to
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represent s as a sum of two weight w/2-vectors s1, s2. We call each such a tuple
(s1, s2) a Rep-0-representation of s.

Choose k maximal such that qk < R. Assume that on level 1 of the search
tree, we first match on k coordinates, and on level 0 we match on the remaining
n − k coordinates. Further let πk : Fn

2 → F
k
2 denote the projection on the first k

coordinates.
We rewrite the LWE MitM identity from Eq. (1) as

πk(As1+e1) = πk(b−As2+e2) for some e1 ∈ 0k/2×T k/2, e2 ∈ T k/2×0k/2. (4)

Since qk < R, we expect that for each target value t ∈ F
k
q there exists a repre-

sentation (s1, s2) such that πk(As1 + e1) = t = πk(b − As2 + e2). Meet-LWE
guesses e1, e2 to realize the exact matching to target t on these k coordinates.

High-Level Idea of LSH-Meet-LWE. Using our LSH approach, one finds all
s1 such that πk(As1) in Eq. (4) matches t on the first k/2 coordinates exactly,
and on the remaining coordinates up to some ternary vector. By contrast, we
construct all s2 such that πk(b − As2) matches t on the last k/2 coordinates
exactly, and on the first k/2 coordinates up to some ternary vector.

The approximate matching on the remaining n−k coordinates is again done
via LSH-Odlyzko. Notice that by construction we eventually construct s =
s1 + s2 such that As = b up to some ternary error vector e ∈ T n, as desired.

Let us state our LSH-based algorithm more precisely.

Description of our LSH-Meet-LWE Algorithm.

1. Enumerate the following 4 level-2 lists:

L
(2)
1 = {(s(2)1 ∈ T n

2

(w

8

)
× 0

n
2 )},

L
(2)
2 = {(s(2)2 ∈ 0

n
2 × T n

2

(w

8

)
)},

L
(2)
3 = {(s(2)3 ∈ T n

2

(w

8

)
× 0

n
2 )},

L
(2)
4 = {(s(2)4 ∈ 0

n
2 × T n

2

(w

8

)
)}.

(5)

2. Let R =
(
w/2
w/4

)2
. Choose a positive even integer k < n that satisfies

k =
⌊

log2(R)
log2 q − 0.5 log2 3

⌋
.

This choice of k allows to expect one solution to survive during the merge
of L

(2)
1 with L

(2)
2 and L

(2)
3 with L

(2)
4 as we find exact matches on k/2 coor-

dinates and all 1-close pairs on another k/2 coordinates, hence we expect

R ≈ q
k
2

(
q
3

) k
2 .

3. Find all (As
(2)
1 , As

(2)
2 ) that

(a) match (sum to 0) on the coordinates [k/2 + 1, k], and are
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(b) 1-close on the coordinates [1, k/2].
Analogously, find all (As

(2)
3 , As

(2)
4 ) that

(a) match (sum to 0) on the coordinates [1, k/2], and are
(b) 1-close on the coordinates [k/2 + 1, k].
Use our LSH-Odlyzko (Algorithm 1) with optimal B to find 1-close pairs.
This gives us two lists

L
(1)
1 = {(s1 ∈ T n

(w

4

)
: As1 ∈ Z

n−k
q × 0k/2 × {±1, 0}k/2)}

L
(1)
2 = {(s2 ∈ T n

(w

4

)
: As2 ∈ Z

n−k
q × {±1, 0}k/2 × 0k/2)}.

4. Use LSH-Odlyzko again to find pairs from L
(1)
1 , L

(1)
2 that are 1-close on the

remaining n − k coordinates.

Let |L(j)| denote the common length of all level-j lists. Notice that on level
1 we obtain expected list length

∣
∣
∣L(1)

1

∣
∣
∣ =

∣
∣
∣L(2)

1

∣
∣
∣
2

·
(

3
q

)k/2

·
(

1
q

)k/2

.

Using Theorem 1 and ignoring polynomial factors, the running time of LSH-
Meet-LWE with Rep-0 representations is (here N is given in Eq (2))

TRep-0 = max
{

|L(2)|, TLSH+Exact

(
|L(2)|, k

2
,
k

2
, B

)
, TLSH(|L(1)|, n − k, q/2)

}

= max

{

|L(2)|,
∣
∣
∣L(2)

∣
∣
∣
2

·
(

B

q
· 1
q

)k/2

· N,
∣
∣
∣L(2)

∣
∣
∣
4

·
(

3
q2

)k

· N · 2−(n−k)

}

.

Table 1 gives concrete values of TRep-0. For all of them the optimal value of
the LSH-Odlyzko parameter is B = 3. For concrete parameters, B can be
found using a brute-force search.

4 Generalizing Our LSH-Based MitM to Rep-1
Representations

The algorithm from the previous section can be generalised and improved by

1. representing weight-w secrets s = s1 + s2 with s1, s2 having weight larger
than w/2. As opposed to Sect. 3 this allows to represent 0-coordinates of s
not only by 0 + 0, but also as −1 + 1 or as 1 + (−1). These are called Rep-
1 representations in [May21]. Notice that Rep-1 in comparison to Rep-0
increases the search space.

2. by constructing a deeper search tree to amortize the increased search space
over many levels.
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Table 2. Comparison bit complexities for Rep-0 using our LSH-Meet-LWE and
Meet-LWE.

(n, q, w) LSH-Meet-LWE Meet-LWE

Rep-0 log2(N), k [May21]

NTRU-Enc (509, 2048, 254) 299 16, 24 305

(677, 2048, 254) 360 18, 24 364

(821, 4096, 510) 509 27, 44 520

(701, 8192, 468) 449 22, 36 461

NTRU-Prime (653, 4621, 288) 370 17, 24 370

(761, 4591, 286) 407 18, 24 408

(857, 5167, 322) 473 20, 26 459

BLISS I+II (512, 12289, 154) 267 7, 10 247

GLP I (512, 8383489, 342) 326 9, 14 325

Let us describe the depth-3 version of our LSH-Meet-LWE with Rep-1.
The reader is advised to follow Fig. 2. We implicitly assume that all fractions
that appear are integers by appropriate rounding. We count the levels from
bottom to top starting with 0, e.g., on level 3 we have 8 lists. The upper index of
the elements refers to the level. In Fig. 2, we also visualize how we define suitable
projections such that our LSH-Odlyzko eventually finds 1-close pairs.

LSH-Meet-LWE for Rep-1 with Depth 3. The eight top-most lists are of the
form

L
(3)
i =

{
s
(3)
i ∈ T n

2

(
w

16
+

ε[1]
4

+
ε[2]
2

)
× 0

n
2

}
for odd i,

L
(3)
i =

{
s
(3)
i ∈ 0

n
2 × T n

2

(
w

16
+

ε[1]
4

+
ε[2]
2

)}
for even i,

where ε[i] describes the number of additional 1’s we add in the representation
of the secret s on level i. More precisely, on the bottom level, we target the
solution s of weight w, i.e., s ∈ T n(w/2). We split s into s = s

(1)
1 + s

(1)
2 , where

each s
(1)
1 , s

(1)
2 ∈ T n(w/4+ε[1]) for some ε[1] ≥ 0. This gives us, as in the previous

section,
(
w/2
w/4

)2
ways to represent 1’s and −1’s in s, and in addition

(
n−w

ε[1],ε[1],·
)

ways to represent 0’s in s. The total number of representations for s on level 1
is therefore

R(1) =
(

w/2
w/4

)2

·
(

n − w

ε[1], ε[1], ·

)
.

Next, we go one level up by splitting s
(1)
1 (analogously for s

(1)
2 ) into two

vectors s
(2)
1 , s

(2)
2 , each from T n(w

8 + ε[1]
2 + ε[2]). Therefore, the 1’s and −1’s
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(2)
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(3)
1 + s

(3)
2

∣
∣
∣As
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∣
∣
∣
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∣
∣
∣
∞
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s
(2)
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(3)
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(3)
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∣
∣
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(2)
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∣
∣
∣
∞

:

0100

s
(2)
4 = s

(3)
7 + s

(3)
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∣
∣
∣As

(2)
4 − b

∣
∣
∣
∞

:

1000

s
(1)
1 = s

(2)
1 + s

(2)
2

∣
∣
∣As

(1)
1

∣
∣
∣
∞

:

001110

k[1]
2

k[2]
4

s
(1)
2 = s

(2)
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(2)
4

∣
∣
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(1)
2 − b

∣
∣
∣
∞

:

110001

s = s
(1)
1 + s

(1)
2

|As − b|∞ :

1

Fig. 2. LSH-Meet-LWE algorithm using Rep-1 with depth 3

in s
(1)
1 can be represented in

(
w/4+ε[1]

w/8+ε[1]/2

)2
ways, while for 0’s of s

(1)
1 we have

(
n−w/2−2ε[1]

ε[2],ε[2],·
)

representations. In total, the number of level-2 representations is

R(2) =
(

w/4 + ε[1]
w/8 + ε[1]/2

)2

·
(

n − w/2 − 2ε[1]
ε[2], ε[2], ·

)
.

If we wanted to construct a tree of depth larger than 3, we would continue
with representations for s

(2)
1 , s

(2)
2 . Instead, our depth-3 algorithm enumerates

s
(2)
1 , s

(2)
2 a standard Meet-in-Middle way by considering s

(2)
1 = s

(3)
1 + s

(3)
2 , where

s
(3)
i ∈ T n/2( w

16 + ε[1]
4 + ε[2]

2 ).
The cost of building the top-level lists is determined by their sizes, i.e.,

T [3] =
∣
∣
∣L(3)

i

∣
∣
∣ .
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Having constructed the top-most lists L
(3)
i , we merge them into the lists L

(2)
i

leaving only a 1/R(2)-fraction of pairs L
(3)
i ×L

(3)
i+1. To this end, we consider only

those pairs (s(3)i , s
(3)
i+1) ∈ L

(3)
i × L

(3)
i+1 for which

1. As
(3)
i = As

(3)
i+1 on certain 3

4k[2]-coordinates, and

2.
∣
∣
∣As

(3)
i − As

(3)
i+1

∣
∣
∣
∞

≤ 1 on certain 1
4k[2]-coordinates (see Fig. 2 for our projec-

tions).

Here, k[2] satisfies

k[2] =
⌊

log2(R(2))
log2 q − 0.52 log2 3

⌋
.

More generally, we have

k[i] =
⌊

log2(R(i))
log2 q − 0.5i log2 3

⌋
.

For concrete parameters we must further assure that k[i] is divisible by 2i for
realizing our projections.

As before, let |L(j)| denote the common length of all level-j lists. The approx-
imate merging on 1

4k[2] coordinates is performed using LSH-Odlyzko with LSH
parameter B[2]. This is combined with exact merging on 3

4k[2] coordinates. This
implies that we expect on level 2 list size

∣
∣
∣L(2)

i

∣
∣
∣ =

∣
∣
∣L(3)

i

∣
∣
∣
2

·
(

1
q

) 3
4k[2]

·
(

3
q

) 1
4k[2]

.

The complexity of constructing level-2 lists is

T [2] = max
{

TLSH+Exact

(
|L(3)|, 1

4
k[2],

3
4
k[2], B[2]

)
, |L(2)

i |
}

= N [2] · (q
3
4k[2] · �(q/B[2])� 1

4k[2]) ·
(∣

∣
∣L(3)

i

∣
∣
∣ ·

(
1
q

) 3
4k[2] (

B[2]
q

) 1
4k[2]

)2

.

Level-1 lists are constructed in a similar way to level-2 lists. Concretely, L
(1)
1 , L

(1)
2

are constructed via approximate matching on 1
2k[1] coordinates and exact match-

ing on 1
2k[1] coordinates. Note that by our construction the elements from

L
(1)
1 , L

(1)
2 are already 1-close on k[2]/2 coordinates. The expected level-1 list

size is therefore

∣
∣
∣L(1)

i

∣
∣
∣ =

∣
∣
∣L(2)

i

∣
∣
∣
2

·
(

1
q

) 1
2k[1]− 1

2k[2] (3
q

) 1
2k[1]− 1

2k[2]

.
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The complexity of constructing level-1 lists is

T [1] = max

{
TLSH+Exact

(
L(2),

1

2
(k[1] − k[2]), B[1]

)
, |L(1)|

}

= N [1]

⎛
⎝q

k[1]
2 − k[2]

2 ·
⌈

q

B[1]

⌉ k[1]
2 − k[2]

2

⎞
⎠

⎛
⎝∣∣∣L(2)

i

∣∣∣ ·
(

1

q

) k[1]
2 − k[2]

2
(

B[1]

q

) k[1]
2 − k[2]

2

⎞
⎠

2

.

In order to construct the final list and determine the solution s, we use LSH-
Odylzko once again on the remaining n − k[1] coordinates with parameter
B[0] = q/2 in time

T [0] = |L(1)
i | · 2n−k[1].

Overall, the asymptotic time and memory complexities of LSH-Meet-LWE
on Rep-1 with depth 3 are respectively

T = max
0≤i≤3

{T [i]} and S = max
0≤i≤3

{L[i]}.

5 Results: LSH-Meet-LWE (Rep-1) Compared to Lattices

Let us compare the performance of LSH-Meet-LWE to lattice attacks on
NTRU-type cryptosystems. Concrete bit securities of proposed NTRU parame-
ter sets are shown in Table 3.

The estimates for lattice attacks are computed with the help of the
“leaky-LWE-Estimator” available at https://github.com/lducas/leaky-LWE-
Estimator3. We used this estimator in the so-called Probabilistic-simulation
regime, which gives slightly more accurate figures than, e.g., predictions
from [ACD+18].

The estimator, based on the results from [DDGR20], produces bit securities
for the so-called primal lattice attack. This attack runs a BKZ-reduction algo-

rithm on the 2n-dimensional lattice Λ = {(x, y) ∈ Z
2n : [A|In]

[
x
y

]
= 0 mod q},

where [A|In] is the column-wise concatenation of matrices A and In.
The estimator, given the NTRU parameters, produces a block-size parameter

β, which determines the hardness of the BKZ reduction. In particular, we con-
servatively assume that the lattice attack will run in time 20.292β+16.4 [BDGL16]
(the constant 16.4 replaces o(β) in the asymptotic SVP complexity 20.292β+o(β),
see [APS15]). The values for β as well as the bit complexities of the primal attack
are given in the last column of Table 3.

Parameter Sets. In Table 3 we consider three different NTRU encryption
schemes: the IEEE-2008 NTRU standard from [IEE08] with 12 different
parameter sets, 4 parameter sets from the NIST standardisation candidate

3 We used commit 4027151 of the branch NTRU keygen, https://github.com/lducas/
leaky-LWE-Estimator/tree/NTRU keygen.

https://github.com/lducas/leaky-LWE-Estimator
https://github.com/lducas/leaky-LWE-Estimator
https://github.com/lducas/leaky-LWE-Estimator/tree/NTRU_keygen
https://github.com/lducas/leaky-LWE-Estimator/tree/NTRU_keygen
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Table 3. Bit complexities for our LSH-Meet-LWE using Rep-0, Rep-1 from Sects. 3
and 4 with depths-{2 − 4} search trees. We give the optimized values of ε in square
brackets. The last column provides the complexity of lattice-based attacks relying on
the results of [DDGR20].

(n, q, w) Rep-0
[bit]

Rep-1
depth 2
[bit], ε

Rep-1
depth 3
[bit], ε

Rep-1
depth 4
[bit], ε

Lattices
[DDGR20]
β, 0.292β + 16.4

NTRU IEEE-2008 [IEE08]

(401, 2048, 226) 260 237, [2] 179, [11,2] 180, [39,18,3] 273, 96

(449, 2048, 268) 290 271, [2] 208, [13,4] 180, [31,13,3] 318, 109

(677, 2048, 314) 414 362, [4] 287, [25,6] 242, [31,13,2] 522, 169

(1087, 2048, 240) 445 375, [10] 289, [28,8] 306, [38,13,3] 835, 260

(541, 2048, 98) 213 177, [8] 144, [13, 3] 160, [27,8,1] 372, 126

(613, 2048, 110) 221 192, [6] 160, [10,3] 174, [26,11,1] 435, 143

(887, 2048, 162) 342 287, [12] 231, [19,6] 230, [26,13,4] 677, 214

(1171, 2048, 212) 427 365, [12] 300, [23,6] 283, [35,14,3] 945, 292

(659, 2048, 76) 191 156, [6] 135, [13,4] 167, [27,11,1] 460, 151

(761, 2048, 84) 221 179, [6] 162, [12,1] 181, [37,17,5] 545, 176

(1087, 2048, 126) 311 251, [8] 221, [16,4] 230, [38,17,4] 835, 260

(1499, 2048, 158) 389 324, [12] 286, [26,7] 283, [28,10,0] 1170, 358

NTRU [CDH+20]

(509, 2048, 254) 299 282, [6] 203, [12, 4] 191, [27, 16,
3]

369, 124

(677, 2048, 254) 360 322, [6] 244, [20, 6] 226, [27, 16,
3]

517, 167

(821, 4096, 510) 509 501, [2] 374, [18, 5] 358, [27, 8, 1] 619, 197

(701, 8192, 468) 449 441, [0] 336, [27, 4] 295, [23, 14,
2]

474, 155

NTRU Prime [BBC+20]

(653, 4621, 288) 370 333, [4] 265, [22, 3] 228, [26, 15,
4]

449, 148

(761, 4591, 286) 407 359, [6] 276, [24, 6] 268, [24, 6, 5] 539, 174

(857, 5167, 322) 473 413, [8] 317, [27, 8] 315, [27, 10,
4]

615, 196

BLISS I+II [DDLL13]

(512, 12289, 154) 267 216, [6] 166, [15, 3] 159, [23, 11,
1]

292, 102

GLP I [GLP12]

(512, 8383489, 342) 326 326, [0] 262, [10, 0] 184, [27, 11,
2]

148, 60
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NTRU [CDH+20], and 3 parameter sets from the alternative NIST standardisa-
tion candidate NTRU Prime [BBC+20]. We also consider two signature schemes
based on ternary LWE: BLISS with parameter sets I and II from [DDLL13] and
GLP [GLP12]. Except BLISS, all these schemes the weight of e is chosen to
be 2 · �n/3�. Note that the exact value of the error weight is relevant only for
the lattice attack, while our LSH-Meet-LWE’s complexity algorithm is inde-
pendent of e’s weight, but highly sensitive to the weight of the secret s. Both
LSH-Meet-LWE and lattice reduction require memory exponential in n.

Conclusions. From Table 3 we observe that our combinatorial LSH-Meet-LWE
attack highly profits from small weight. For example, the third package of NTRU
IEEE-2008 parameters (speed optimized according to the specification [IEE08])
has smallest weight relative to n. For all four instances of this package, our
estimates outperform the lattice estimates.

The decision to choose larger weights in recent standardization proposals
such as NTRU [CDH+20] and NTRU Prime [BBC+20] appears to be a wise
decision in light of our new combinatorial attack results. For these instances, we
cannot compete with current lattice estimates.

We note that the figures in Table 3 both for lattices and LSH-Meet-LWE
are likely to underestimate actual costs. For lattices, the 20.292β+16.4 Core-SVP
model does not include several SVP calls within the BKZ reduction, and also
hides the complexity of decoding random spherical codes of length O(

√
β). For

LSH-Meet-LWE, we omit polynomial factors for LSH-Odlyzko and sorting.

6 Cold Boot Attack

Our combinatorial Rep-1 attack performs best when the secret is sparse. In some
cases, see Table 3, it even outperforms lattice-based attacks. Sparse secrets also
naturally appear in the so-called cold boot attack scenario [HSH+09]. Belonging
to the class of side-channel attacks, in an cold-boot attack one has read-access
to RAM where the secret key is stored, but some small fraction of bits in this
RAM is flipped (after power shut-down).

Thus an attacker obtains a noisy version s′ of the secret key s. Concretely,
let s′ = s + Δ, where Δ is of small Hamming weight wΔ. With this noisy secret
s′, the attacker produces from the original ternary LWE instance (A, b) a new
instance (A, b′), where

b′ = b − As′ = A · Δ + e,

i.e., we replace the secret s by Δ.
Following [HSH+09,ADP18], let us assume a typical average bit flip rate

of 0.55%. In order to estimate wΔ, we notice that a ternary NTRU secret key
requires 2n bits of storage, since each coefficient occupies 2 bits. Therefore, we
expect wΔ = �2n · 0.55

100 �. For the concrete cryptographic parameters in Table 4
this translates to wΔ in a range between 6 and 10.
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Table 4. Bit complexities for the cold boot attack on NTRU-type encryption schemes
and signatures. Lattice-based attacks are estimated using the results from [ACD+18].

(n, q, w, wΔ) Rep-1
[bit], ε

Lattices [ACD+18]
0.292β + 16.4

NTRU [CDH+20]

(509, 2048, 254, 6) 40, [0] 41

(677, 2048, 254, 8) 42, [0] 48

(821, 4096, 510, 10) 60, [2] 56

(701, 8192, 468, 8) 43, [0] 47

NTRU Prime [BBC+20]

(653, 4621, 288, 8) 42, [0] 47

(761, 4591, 286, 9) 57, [2] 48

(857, 5167, 322, 10) 60, [2] 55

BLISS I+II [DDLL13]

(512, 12289, 154, 6) 41, [0] 38

GLP I [GLP12]

(512, 8383489, 342, 6) 40, [0] 33

We note that some implementations may choose to store the secret keys dif-
ferently than just two bits per coefficient, and this will impact the efficiency of
our cold boot attack. For example, [CDH+20] describes a compression mecha-
nism of ternary keys to bit-strings. Thus, flipping one bit of the bit-string may
impact many entries in the ternary key. For simplicity of exposition, we ignore
such implementation subtleties here.

Let us now apply our Rep-1 attack to this new extremely sparse secret LWE
setup. Concrete figures are given in Table 4. Since the secret is very sparse, we do
not have to construct deep search trees to outperform lattice attacks. It is suffices
to the consider depth-2 Rep-1 (or even sometimes Rep-0) algorithm. To estimate
lattice-based attacks for sparse secret we use the estimator from [ACD+18] since
it incorporates the so-called ‘drop-and-solve’ guessing technique for sparse secret,
see [ACW19].

This ‘drop-and-solve’ technique can be applied as well to our algorithm: we
guess that a certain c coordinates of s′ are 0 and remove these columns from
the matrix A. The probability of guessing the 0’s correctly is p0 =

(
wΔ

n−c

)
/
(
wΔ

n

)
.

The LWE problem becomes easier as the dimension is now n− c, but the overall
runtime has to take the guessing into account. We find the optimal choice for
c by exhaustive search. For our attack, the total saving is around a factor of 2
(i.e., one bit in the security level). For the parameter sets from Table 4 our Rep-1
attack performs similar to or even better than lattice-based attacks.
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Abstract. We demonstrate how to reduce the memory overhead of
somewhat homomorphic encryption (SHE) while computing on numeri-
cal data. We design a hybrid SHE scheme that exploits the packing algo-
rithm of the HEAAN scheme and the variant of the FV scheme by Bootland
et al. The ciphertext size of the resulting scheme is 3–18 times smaller
than in HEAAN to compute polynomial functions of depth 4 while pack-
ing a small number of data values. Furthermore, our scheme has smaller
ciphertexts even with larger packing capacities (256–2048 values).

1 Introduction

Homomorphic encryption (HE) [21] is a family of encryption schemes that allow
computation on encrypted messages without decryption. Several types of such
schemes have been proposed in the last 40 years, including partially homomor-
phic encryption (e.g. [11,15,19,22]), which can perform either addition or multi-
plication, somewhat homomorphic encryption (SHE), which supports functions
of a limited multiplicative depth, and fully homomorphic encryption (FHE) [14]
capable to compute any function on encrypted data.

Despite their universality, SHE/FHE schemes have a significant disadvan-
tage in practice. In particular, they introduce a huge memory overhead per
encrypted bit value, which makes even simple arithmetic operations on numerical
data impractically slow. To mitigate this overhead various encoding algorithms
have been proposed that exploit the structure of typical plaintext spaces used
in SHE/FHE [2–4,6,7,10]. They deviate from bit-wise encryption to so-called
‘word-wise’ encryption where one (or even several) data values can be encrypted
per ciphertext. Unfortunately, these algorithms perform correctly only if the
ciphertext modulus grows exponentially with the depth of the circuit.

A more efficient approach was proposed by Cheon et al. [5], who introduced
a new type of HE schemes, called approximate HE (AHE). The crucial idea
is to allow an additional error while performing homomorphic operations. For
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example, multiplication of two encrypted plaintexts ct1 = Encrypt(pt1) and
ct2 = Encrypt(pt2) results in another ciphertext ct3, which is decrypted to
Decrypt(ct3) = pt1 · pt2 + e where e is a so-called ‘noise’. The size of e defines
the approximation ‘closeness’ between decrypted and expected results.

AHE is suitable for handling non-integer data types such as real, rational or
complex numbers. Computation on such numerical types in computer systems
is inherently prone to numerical errors. Thus, the results of such computation
are only correct up to a certain precision. Approximation errors introduced by
AHE can be treated as a part of these numerical errors.

The drawback of the first AHE scheme from [5], called HEAAN, is that its
ciphertext size should be set quite large to be able to compute even simple poly-
nomial functions with a decent precision. This problem is mitigated by packing,
which is an encoding technique that allows to encrypt several data values into one
ciphertext. In addition, computations on these packed values can be performed
in the Single-Instruction Multiple-Data (SIMD) manner.

The packing method of HEAAN permits thousands of data values to be
encrypted into a single ciphertext, thus significantly reducing the amortized
ciphertext expansion per data value. However, various applications do not require
such a large packing capacity and assume modest computational resources, espe-
cially in the use cases where embedded devices are used [12,16,18].

For example, such a device can collect data about vital organs (e.g. heart,
blood pressure) and constantly sends it to a special service that runs a private
prediction model of a heart attack in a privacy-preserving manner. Each message
from the device contains a smaller amount of values (dozens, maybe a hundred
of measurements) in comparison to the dimension of plaintexts in FHE schemes
(thousands). In addition, each message should be as small as possible to fit
constraints of the device, but at the same time it should be large enough to let
the service perform homomorphic computations of certain depth.

To reduce ciphertext size, one can resort to so-called ‘high-precision’ SHE
schemes [3,4] that trade packing capacity for additional homomorphic opera-
tions. Thus, relatively deep computations can be performed with modest encryp-
tion parameters of these schemes. The known high-precision SHE schemes are
variants the FV scheme [13]. FV is not AHE, but its encryption function is very
similar to the one of HEAAN. Furthermore, the variant of FV by Bootland et al. [3]
supports complex-number arithmetic as HEAAN.

Our Contribution. In this work, we design a new SHE scheme that can perform
computations on numerical data with smaller ciphertexts than in HEAAN.

The core idea is to exploit the recent variant of the FV scheme [13] due
to Bootland et al. [3], where the integer plaintext modulus is replaced by a
polynomial Xm + b for some m and b. The plaintext space of this scheme is
Z[X]/(Xn + 1,Xm + b), which is isomorphic to the ring of cyclotomic integers
Z[ζ2m]/(bn/m + 1) if n and m are powers of 2 and b is an mth power modulo
bn/m + 1. This FV variant natively supports homomorphic computation on large
cyclotomic integers Z[ζ2m] with small encryption parameters.
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We combine this scheme with the HEAAN packing algorithm, which maps
complex-valued vectors into cyclotomic integers. More precisely, it encodes ele-
ments of Cm/2 into the aforementioned ring Z[ζ2m], which can be easily embed-
ded into Z[ζ2m]/(bn/m + 1), the plaintext space of Bootland’s variant of FV.

As a result we obtain a hybrid SHE scheme which follows the following dia-
gram

C
m/2 HEAAN packing−−−−−−−−→ Z[ζ2m]/(bn/m + 1)

FV encryption−−−−−−−−→ R2
q = (Z[X]/(Xn + 1))2 ,

where R2
q is the ciphertext space. This hybrid leverages the advantages of both

schemes: the small memory overhead of Bootland’s FV variant and the large
packing capacity of HEAAN. Furthermore, since our technique only changes the
way how the plaintext space of Bootland’s scheme is used, the security analysis
of our hybrid scheme is exactly the same as for the FV scheme.

We describe a family of arithmetic circuits where our scheme have a smaller
memory and running time overhead than HEAAN. In addition, we illustrate the
difference between these schemes by computing several important analytic func-
tions.

2 Preliminaries

For any a ∈ N, we denote the set of integers {1, . . . , a} by [a]. Vectors and
matrices are denoted by boldface lower- and upper-case letters, respectively.
Vectors are written in column form.

Let n be a positive power of 2. Let K be a cyclotomic number field constructed
by adjoining a primitive complex 2n-th root of unity to the field of rational
numbers. We denote this root of unity by ζ2n, so K = Q(ζ2n). The ring of
integers of K, denoted by R, is isomorphic to Z[X]/(Xn + 1).

For any a ∈ K its coefficient vector (a0, . . . , an−1) in the power basis is
denoted by a. The infinity norm of a is equal to |a|∞ = |a|∞ = maxn−1

i=0 |ai|.
The product of any a, b ∈ K satisfies the following bound |ab|∞ ≤ n · |a|∞ · |b|∞,
see [9] for more details.

Let Ra be the quotient of R modulo an ideal (a). If a is a natural number,
we take representatives of Z/aZ from the half-open interval [−a/2, a/2).

The semantic security of encryption schemes presented in this paper is based
on the RLWE problem introduced in [17].

Definition 1 (RLWE problem). Let q > 2 be an integer. Let s ∈ Rq be a
random secret element, a, a′, b′ ∈ Rq be uniformly random elements and e ∈ Rq

be a random element sampled from some known distribution over Rq. The RLWE
problem is to distinguish between (a, b = as + e) and (a′, b′).

The hardness of the RLWE problem implies that the above pair (a, b) is pseu-
dorandom. Thus, it can be exploited as a random mask in encryption and key
generation (see more details in [17]).
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3 HEAAN Packing Method

In this section, we describe the HEAAN method for packing complex-valued vectors
as presented in [5]. This packing method exploits the canonical embedding of
cyclotomic fields.

Let K ′ = Q (ζ2m), where m is a power of two and m divides n. Clearly, K ′ is
a subfield of K. We denote the ring of integers of K ′ by R′. Since [K ′ : Q] = m,
there exist m field homomorphisms σ′

i : K ′ → C with i ∈ [m] that fix every
element of Q. In particular, each σ′

i is a complex embedding that maps ζ2m to
ζ2i−1
2m . These are the only field homomorphisms from K ′ to C.

Let H ′ be a vector subspace of Cm such that H ′ = {(x1, . . . , xm)ᵀ : xm−j+1 =
x̂j ,∀j ∈ [m/2]}. This space is equipped with a projection map π : H ′ → C

m/2

that discards either of complex conjugate components. Conversely, the inverse
map π−1 appends a vector from C

m/2 with the conjugates of its coordinates in
the order compliant with H ′.

The canonical embedding of K ′ is the map σ′ : K ′ → H ′ defined as σ′(a) =
(σ′

1(a), . . . , σ′
m(a)). By analogy, we can define the canonical embedding of K

denoted by σ, which endows K with the canonical norm via ‖a‖can = |σ(a)|∞
for any a ∈ K. Since n is a power of two, |a|∞ ≤ ‖a‖can as shown in [9].
In addition, ‖ab‖can ≤ ‖a‖can ‖b‖can for any a, b ∈ K.

Let a = (a0, a1, . . . , am−1) be the coefficient vector of a ∈ K ′ in the power
basis of K ′. Then, the canonical embedding σ′ transforms a into

Σ ·

⎛
⎜⎝

a0

...
am−1

⎞
⎟⎠ =

⎛
⎜⎝

σ′
1(a)
...

σ′
m(a)

⎞
⎟⎠

where Σ = (ζj(2i+1)
2m )i,j is a Vandermonde matrix. Since Σ is nonsingu-

lar, the inverse of the canonical embedding is correctly defined by Σ−1 =(
1
mζ

−i(2j+1)
2m

)
i,j

. Thus, the composition map σ′−1 ◦ π−1 encodes vectors from

C
m/2 into K ′.

To finish packing, elements of K ′ should end up in the ring of cyclotomic
integers R′. This can be done using discretization to the lattice σ′(R′), which
boils down to coefficient-wise rounding with relation to the power basis of R′

over Z. However, this rounding introduces an error that might damage significant
bits of input values. To eliminate this error, an input vector is scaled up by some
value Δ. To summarize, the complete packing pipeline consists of the following
map chain

• Pack(Δ) : Cm/2 ·Δ−→ C
m/2 π−1

−−→ H ′ σ′−1

−−−→ K ′ �·�−−→ R′.

The unpacking algorithm is the inverse map of Pack without the rounding step,
namely

• Unpack(Δ′) : R′ σ′
−→ H ′ π−→ C

m/2 ·Δ′−1

−−−−→ C
m/2.
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The size of Δ is defined by the input precision p and the input dimension m
according to the following lemma.

Lemma 1. Given an input vector z ∈ C
m/2 and a positive integer p, the vector

z′ = Unpack(Δ, Pack(Δ, z)) satisfies |z − z′|∞ < 1
p , if Δ > pm

2 .

Proof. Let u ∈ H ′ be the output of the first two steps of the Pack algorithm,
namely u = π−1(Δ · z). Then, the final output a ∈ R′ can be represented in
matrix notation as

a =
⌊
Σ−1 · u⌉ = Σ−1 · u + e

with |e|∞ ≤ 1/2. Computing Unpack(Δ, a), we obtain

z′ =
1
Δ

π (Σa) =
1
Δ

π(u + Σe) = z +
1
Δ

π(Σe) .

Hence, the difference between the input z and its packed approximation z′ sat-
isfies the following bound

|z − z′|∞ = max
i∈[m/2]

∣∣∣∣∣∣
1
Δ

m−1∑
j=0

ej · ζ
j(2i−1)
2m

∣∣∣∣∣∣
≤ m

2Δ
,

which immediately leads to the desired lower bound on Δ.

4 FV Scheme with a Polynomial Plaintext Modulus

In this section we describe the variant of the FV scheme given by Bootland et al.
in [3], which is based on the work of Chen et al. [4]. The main difference of this
variant from the original FV scheme [13] consists in switching from an integer
plaintext modulus t to a polynomial Xm + b.

Let q be an integer. The ciphertext space is defined as Rq = R/(q). Take
an integer b such that 2 ≤ |b| � q. Let m be a positive integer dividing n. The
quotient ring RXm+b = R/(Xm + b) serves as the plaintext space. We define the
encryption scaling factor Δb as follows

Δb =
⌊

q

Xm + b
mod (Xn + 1)

⌉
=

⎢⎢⎢⎣− q

bn/m + 1

n/m∑
i=1

(−b)i−1 · Xn−im

⎤
⎥⎥⎥

.

Let χe be the error distribution on R, which is a coefficient-wise discrete Gaussian
distribution with respect to the power basis. The standard deviation of χe is σ.
The key distribution χk generates uniformly random elements of R with ternary
coefficients (again, with respect to the power basis). We also set an integer w > 1
and call it the decomposition base. Let � = 	logw q
.

Given this set-up, the basic FV scheme with polynomial plaintext modulus is
defined as follows.
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• KeyGen(1n): Let s ← χk and e, e0, . . . e� ← χe. Generate uniformly random
a, a0, . . . , a� ∈ Rq and compute bi =

[−(ai · s + ei) + wi · s2
]
q
. Output

– the secret key sk = s,
– the public key pk =

(
[−(a · s + e)]q , a

)
,

– the evaluation key rlk = {(bi, ai)}�
i=0.

• Encrypt (pk,msg ∈ RXm+b): Sample u ← χk and e0, e1 ← χe. Set p0 = pk[0]
and p1 = pk[1]. Output ct = (c0, c1), where

c0 = [Δb · msg + p0 · u + e0]q , c1 = [p1 · u + e1]q

• Decrypt (sk, ct): Return

msg′ =
⌊

Xm + b

q
[c0 + c1 · s]q

⌉
mod (Xm + b) .

As shown in [17], this encryption scheme is semantically secure assuming the
hardness of the RLWE problem.

4.1 Homomorphic Operations

It is easy to adapt the homomorphic operations of FV to the new plaintext
modulus as shown below.

• Add(ct0, ct1): Return ctAdd =
(
[ct0[0] + ct1[0]]q , [ct0[1] + ct1[1]]q

)
.

• BasicMul(ct0, ct1): Return ctBasicMul = (c0, c1, c2), where

c0 =
[⌊

Xm + b

q
· ct0[0] · ct1[0]

⌉]

q

, c2 =
[⌊

Xm + b

q
· ct0[1] · ct1[1]

⌉]

q

,

c1 =
[⌊

Xm + b

q
· (ct0[0] · ct1[1] + ct0[1] · ct1[0])

⌉]

q

.

• Relin(ctBasicMul, rlk): Writing ctBasicMul = (c0, c1, c2), expand c2 in base w

such that c2 =
∑�

i=0 c2,i · wi with |c2,i|∞ ≤ w/2. Compute

c′
0 = c0 +

�∑
i=0

rlk[i][0] · c2,i, c′
1 = c1 +

�∑
i=0

rlk[i][1] · c2,i

and output cRelin = (c′
0, c

′
1).

• Mul(ct0, ct1, rlk): Return cMul = (c′
0, c

′
1) = Relin(BasicMul(ct0, ct1), rlk) .

4.2 Ciphertext Size

In this section we describe the memory overhead of FV with a polynomial plain-
text modulus.



When HEAAN Meets FV 271

The memory overhead is defined by two encryption parameters: the cipher-
text modulus q and the ring dimension n. Furthermore, the same parameters
and the standard deviation σ determine the security level of an HE scheme. In
practice, n and σ are usually fixed whereas q is chosen according to the desired
security level and homomorphic operations to be performed. If no appropriate q
is found, then this search is repeated for a larger n.

The security level of the parameter triple (q, n, σ) can be computed via the
LWE-estimator of Albrecht et al. [1]. To find q that guarantees decryption cor-
rectness for the output of a given homomorphic circuit, one can use the following
heuristic analysis with fixed n and σ.

The decryption correctness is closely related to the size of the ciphertext
invariant noise. The invariant noise of a ciphertext ct = (c0, c1) encrypting a
plaintext msg ∈ RXm+b is an element v ∈ K with the smallest canonical norm
such that

Xm + b

q
· [c0 + c1 · s]q = msg + v + g · (Xm + b)

for some g ∈ R. It is easy to see that Decrypt returns msg if |v|∞ < 1/2, i.e. the
rounding step removes v. Since |v|∞ ≤ ‖v‖can, one can switch to the heuristic
analysis of the canonical norm to show that ‖v‖can < 1/2.

Fresh Noise Heuristic [3]. Let ct be a fresh ciphertext ct = Encrypt(pk,msg),
then the invariant noise v of ct is bounded with very high probability by

‖v‖can ≤ b + 1
q

(
‖msg‖can · n

√
3n + 2σ

√
12n2 + 9n

)
. (1)

Since the right-hand side should be smaller than 1/2, the minimal ciphertext
modulus supporting the decryption correctness should satisfy q ∈ Ω

(
b2n

√
n
)
.

Homomorphic arithmetic operations increase the invariant noise. It can be
easily seen that homomorphic addition results in an additive noise growth,
whereas homomorphic multiplication induces a linear growth as shown below.

Multiplication Noise Heuristic [3]. Let ct(msg, v) be a ciphertext encrypting
message msg ∈ RXm+b with invariant noise v. Given two ciphertexts ct1 =
ct(msg1, v1) and ct1 = ct(msg2, v2), the function Mul(ct1, ct2, rlk) outputs a
ciphertext ctMul = ct(msg1 · msg2, vMul) with

‖vMul‖can ≤ (b + 1)
√

3n + 2n2 (‖v1‖can + ‖v2‖can) + 3 ‖v1‖can ‖v2‖can
b + 1

q

√
3n + 2n2 + 4n3/3 +

b + 1
q

σnw
√

3(� + 1)
(2)

with very high probability. Let vL
Mul be an invariant noise after L multiplicative

levels. If L = 0, then it follows from (1) and the additive noise growth after
homomorphic addition that

∥∥v0
Mul

∥∥can ∈ O
(
b2n

√
n/q

)
. Computing

∥∥v1
Mul

∥∥can,
one can notice that the first term of the right-hand side in (2) is dominant and
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thus
∥∥v1

Mul

∥∥can ∈ O
(
bnv0

Mul

)
, or

∥∥v1
Mul

∥∥can ∈ O
(
b3n2

√
n/q

)
. By induction, we

obtain ∥∥vL
Mul

∥∥can ∈ O

(
bL+2nL+1

√
n

q

)
.

Given that
∥∥vL

Mul

∥∥can should be less than 1/2 to guarantee the decryption cor-
rectness, the ciphertext modulus should satisfy

q ∈ Ω
(
bL+2nL+1

√
n
)
. (3)

5 Encoding of Packed Values into FV

To employ the HEAAN packing method in the FV scheme, we need to map elements
of R′ to the plaintext ring RXm+b. For this purpose, we resort to the encoding
algorithm of Bootland et al. [3], which maps cyclotomic integers from R′ =
Z[ζ2m] to the plaintext space RXm+b isomorphic to Z[X]/(Xn + 1,Xm + b).
A similar technique was given by Chen et al. [4] for the plaintext modulus X + b.

Let â ∈ Z/(bn/m +1)Z be the representative of an integer a modulo bn/m +1
in the symmetric interval

[−(bn/m + 1)/2, (bn/m + 1)/2
)
. Assume that b̂ = α̂m

for some α. This assumption might seem too strong for the reader but there
exist special forms of b such that α̂ is efficiently computable; we discuss them
later in this section. Since b is co-prime to bn/m+1, there exist the multiplicative
inverse of α̂, denoted β̂. This implies that βX is a primitive 2m-th root of unity
in RXm+b, namely (β̂X)m = α̂−mXm = b̂−1Xm = −1. Therefore, the map
ζ2m → β̂X induces the following ring homomorphism

Z[ζ2m] → RXm+b :
m−1∑
i=0

aiζ
i
2m →

m−1∑
i=0

âiβ̂
iXi. (4)

This map outputs polynomials of degree less than m with coefficients exponential
in b. Such large coefficients drastically increase the invariant noise as you can see
in (1). Therefore, the next step is to switch to another representative modulo
Xm + b by spreading this polynomial across the power range 1,X, . . . ,Xn−1

while making the plaintext coefficients smaller. It can be done by computing the
balanced b-ary expansion of each coefficient and then mapping powers of b to
corresponding powers of −Xm. The result is then lifted to R = Z[X]/(Xn + 1)
and fed to the FV scheme.

The homomorphism (4) is surjective with kernel
(
bn/m + 1

)
. Therefore, it

induces an isomorphism between cyclotomic integers from Z[ζ2m]/
(
bn/m + 1

)
and RXm+b; thus, the encoding and the decoding maps are well defined. To
decode an element c ∈ RXm+b, we first compute c′ = c mod (Xm + b) and then
map X to α̂ · ζ2m, which results in

c′ =
m−1∑
i=0

ĉ′
iX

i →
m−1∑
i=0

ĉ′
iα̂

iζi
2m.
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As a result, the homomorphism defined by (4) serves as an encoding map from
cyclotomic integers to the plaintext space RXm+b. Using this map together with
the Pack function from Sect. 3, we can encrypt m/2 complex numbers into
FV without using previously known packing techniques based on the Chinese
Remainder Theorem [24].

The advantage of this encoding technique is that the unused part of the
plaintext space coming from the large dimension n is transformed into a larger
integral modulus, reflected in the exponent n/m. However, the encoding algo-
rithm of HEAAN, where ζ2m is mapped to Xn/m, is not surjective as plaintexts
belong to an m-dimensional subspace of the plaintext space. Thus, a large part
of the plaintext space remains unused.

5.1 Choice of b

As mentioned earlier, the encoding algorithm assumes that b is an m-th power
residue modulo bn/m + 1. Moreover, its m-th root α is efficiently computable.
When m is a positive power of 2, finding α is at least as hard as finding a square
root of b. Since factoring bn/m + 1 and extracting square roots modulo bn/m +
1 are computationally equivalent [20], an efficient algorithm for computing α
implies the existence of an efficient factoring algorithm for generalized Fermat
numbers of the form b2

k

+ 1. Unfortunately, no efficient prime factorization
algorithm for these numbers is found.

There exists a specific b whose m-th roots are efficiently computable. In par-
ticular, if b = 2m/2 then α must be congruent to the square root of 2 modulo
bn/m + 1 = 2n/2 + 1. In this case, it is easy to verify that α = 2n/8

(
2n/4 − 1

)
.

Unfortunately, such b is exponential in m, so invariant noise grows exponentially
faster as the number of packing slots increases. Therefore, fewer homomorphic
operations are affordable when the packing capacity increases.

Another interesting choice of b is when b < 2m/2 and bn/m + 1 becomes a
generalized Fermat prime. Thus, α can be efficiently computed by the Tonelli-
Shanks algorithm [23]. Note that in this case b must be even, or b = 2kc for some
k > 0 and odd c. It follows from [3, Lemma 1] that if b is an m-th power residue,
then 2n divides bn/m = 2kn/mcn/m. As a result, n should divide 2kn/m−1. Since
n is a power of two, we obtain that log2 n ≤ kn/m − 1. Given this constraint
and the fact that n/m is at most 216 in practice, we can find numerous suitable
bases b of generalized Fermat primes, see Table 6 in Appendix A.

To be decoded correctly, a cyclotomic integer a from Z[ζ2m] should have an
infinity norm bounded as follows

|a|∞ <
bn/m + 1

2
. (5)

Let ai ∈ Z[ζ2m] be output values of Pack(zi) for complex vectors zi ∈ C
m/2 with

|zi|∞ ≤ B for some B. According to Sect. 3, the infinity norm of ai represented
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in the power basis of Z[ζ2m] is bounded by

|ai|∞ =
∣∣∣∣
⌊

Δ

m
· Σ−1zi

⌉∣∣∣∣
∞

≤ ΔB +
1
2
. (6)

It follows from Lemma 1 that the packing scale Δ must be at least pm
2 + ε

for small ε > 0 to pack zi with precision p. Hence, the infinity norm of ai

has the following upper bound |ai|∞ ≤ V =
(

pm
2 + ε

) · B + 1
2 . For any ai, aj

it holds |aiaj |∞ ≤ mV 2. It follows by induction that after L multiplicative
levels the infinity norm increases up to m2L−1V 2L

. From the decoding require-
ment (5) we obtain that m2L−1V 2L

must be smaller than bn/m+1
2 , which leads to

b ∈ Ω
(
m

m
n (2L+1−1) · (pB)

m
n ·2L

)
. Substituting this estimation into (3), we can

see how the ciphertext modulus depends on the ring dimension n, the packing
capacity m, the input precision p, the input bound B and the circuit depth L,
namely

q ∈ Ω
(
m

m
n (2L+1−1)(L+2) · (pB)

m
n 2L(L+2) · nL+1

√
n
)

. (7)

6 Asymptotic Comparison with HEAAN

We start the comparison of our scheme with HEAAN by estimating how large
should be the ciphertext modulus in this scheme to support correct evaluation
of given circuits. Let us first describe the HEAAN scheme as defined in [5].

Let qL > · · · > q� > · · · > q0 be a ladder of ciphertext moduli. Take a
large integer P � qL. Let h be a positive integer. The key distribution χk draws
random elements from R with ternary coefficients and Hamming weight h.

The basic encryption functions of HEAAN are the following:

• KeyGen(1n): Let s ← χk and e, e′ ← χe. Sample uniformly random a ∈ RqL

and a′ ∈ RP ·qL
. Output

– the secret key sk = s,
– the public key pk =

(
[−a · s + e]qL

, a
)
,

– the evaluation key rlk =
([−a′ · s + e′ + P · s2

]
P ·qL

, a′
)
.

• Encrypt (pk,msg ∈ RqL
): Sample u ← χk and e0, e1 ← χe. Set p0 = pk[0],

p1 = pk[1] and output ct = (c0, c1) where

c0 = [msg + p0 · u + e0]qL
, c1 = [p1 · u + e1]qL

.

• Decrypt (sk, ct): Return msg′ = [c0 + c1 · s]qL
.

To encode a cyclotomic integer a ∈ Z[ζ2m] with |a|∞ < qL/2, we embed
a to RqL

using the map ζ2m → Xn/m and the reduction modulo qL. Notice
that the decryption algorithm outputs msg′ = msg + e′ with a noisy compo-
nent e′ = e0 + e1s + ue. Therefore, to encrypt a complex vector z ∈ C

m/2

with the input precision p in HEAAN, the packing scale Δ must be larger
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than in Lemma 1 to compensate a precision loss induced by this noise. Let
z′ = Unpack(Decrypt(Encrypt(Pack(z)))), then, following the reasoning of
Lemma 1, we obtain

|z − z′|∞ = max
i

∣∣∣∣∣
1
Δ

m−1∑
k=0

(ek + e′
k) · ζik

2m

∣∣∣∣∣ ≤ m

2Δ
+

mr

Δ

where |e′|∞ ≤ r ∈ O(n). To have |z − z′|∞ < 1/p, the packing scale Δ must
then satisfy the following bound

Δ > mp

(
1
2

+ r

)
, (8)

which results in Δ ∈ Ω(mpn).

6.1 Homomorphic Operations

In HEAAN, homomorphic operations can output ciphertexts with a smaller cipher-
text modulus in comparison to their input. Therefore, ciphertext moduli of input
ciphertexts lie between q0 and qL. Below we assume that ciphertexts ct1 and
ct2 are given modulo q�. The basic homomorphic operations such as addition
and multiplication are defined as follows.

• Add(ct0, ct1): Return ctAdd =
(
[ct0[0] + ct1[0]]q�

, [ct0[1] + ct1[1]]q�

)
.

• BasicMul(ct0, ct1): Return ctBasicMul = (c0, c1, c2) where

c0 = [ct0[0] · ct1[0]]q�
, c1 = [ct0[0] · ct1[1] + ct0[1] · ct1[0]]q�

,

c2 = [ct0[1] · ct1[1]]q�
.

• Relin(ctBasicMul, rlk): Output cRelin = (c′
0, c

′
1) where

c′
0 =

[
c0 +

⌊
P−1 · c2 · rlk[0]

⌉]
q�

, c′
1 =

[
c1 +

⌊
P−1 · c2 · rlk[1]

⌉]
q�

• Mul(ct0, ct1, rlk): Return ctMul = (c′
0, c

′
1) = Relin(BasicMul(ct0, ct1),

rlk).

In addition, HEAAN has a special function called rescaling, which imitates round-
ing. Rescaling discards least significant bits of a given ciphertext and reduces
the ciphertext modulus.

• Rescale(ct, �, �′): Output ctRescale =
(⌊

q�′
q�

c0

⌉
,
⌊

q�′
q�

c1

⌉)
∈ R2

q�′ .

Note that if the input ciphertext ct encrypts a plaintext msg, then ctRescale
is a valid encryption of (q�′/q�) · msg. Hence, rescaling can help to control the
coefficient size of plaintexts, especially after multiplication. Let ct0 and ct1 be
ciphertexts of two complex vectors z1 and z2 packed with scale Δ. The product
of these ciphertexts is an encryption of the Hadamard product z = z1 � z2 with
scale Δ2. If q�/q�′ � Δ, then Rescale(ct) outputs a ciphertext, which again
encrypts z but with packing scale Δ. As a result, the unpacking scale Δ′ in
HEAAN can be equal to Δ for any circuit, whereas in our scheme the depth of a
circuit should be known to set Δ′ to a correct power of Δ.
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6.2 Ciphertext Size

Let msgi be plaintext messages encoding complex vectors zi ∈ C
m/2 with |zi|∞ ≤

B for some B. To be decrypted and then decoded correctly, a plaintext should
have an infinity norm smaller than q0/2. As in Sect. 4, we switch to the canonical
norm in order to analyze how plaintexts approach this bound. The canonical
norm of each msgi is bounded by |Δzi|∞ + ‖e‖can = ΔB + m/2 where e is the
rounding error. Let V = ΔB + m/2.

Assume that q�/q�−1 � Δ for any � ∈ [L]. After multiplication and rescal-
ing we obtain a ciphertext encrypting a plaintext msg such that ‖msg‖can ≤
(V +‖Ee‖can)2

Δ + ‖Er‖can where Ee is the encryption noise and Er is the noise
introduced by Relin and Rescale. Since ‖Ee‖can , ‖Er‖can ∈ O(n) accord-
ing to [5, Lemmas 1–3], it follows from (8) that ‖msg‖can ∈ O(ΔB2). Hence,
after L multiplicative levels the canonical norm of a resulting plaintext satisfies
‖msg‖can ∈ O

(
ΔB2L

)
. As ‖msg‖can should be smaller than q0/2, we obtain

that q0 ∈ Ω
(
ΔB2L

)
. Since rescaling decreases the ciphertext modulus L times

to reach q0, the initial ciphertext modulus should be set to qL � q0 · ΔL. Thus,
qL ∈ Ω

(
ΔL+1B2L

)
and (8) yields qL ∈ Ω

(
mL+1 · pL+1 · B2L · nL+1

)
. Com-

paring the above estimation with its analog for our scheme, we can see that if
m
n = 1

2L+1 , then (7) turns into q ∈ Ω
(
m(L+2)(1− 1

2L+1 ) · (pB)
L+2
2 · nL+1

√
n
)

. It

implies that when B > (m
√

n)1/2L−1

, our scheme requires a smaller ciphertext
modulus. More specifically, our approach results in a smaller memory overhead
in comparison to HEAAN in the following cases:

– in shallow circuits with large ratios between the packing capacity and the
dimension of R, namely m/n ≤ 1/4;

– in deep circuits with a small packing capacity, i.e. m = n/2L+1.

7 Practical Comparison with HEAAN

In this section we demonstrate the efficiency of our scheme in comparison to
the HEAAN scheme. In particular, we homomorphically computed the functions
presented in [5, Section 5] including power functions, the exponential function
and the logistic regression function. In addition, we performed experiments with
the sine function.

We implemented our scheme and two versions of HEAAN in SageMath [25].
The implementation script can be found at https://github.com/iliailia/heaan-
vs-fv-sage. One version of HEAAN corresponds to the original scheme given in [5]
with sparse secret keys and the relinearization method described in Sect. 6.1.
While these features can speed up computations, they introduce a larger memory
overhead than in our scheme as larger encryption parameters are needed to
support the same security level. To perform a fair comparison with our scheme,
we implemented a second variant of HEAAN, denoted HEAAN∗, without sparse

https://github.com/iliailia/heaan-vs-fv-sage
https://github.com/iliailia/heaan-vs-fv-sage
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secret keys and with the same relinearization method (see Sect. 4.1) as in our
scheme.

For all the implemented schemes we found minimal encryption parameters
that support both correct computation of the above functions and a security
level of at least 128 bits. To achieve this security level we set the parameters of
the original HEAAN scheme according to the recent recommendations for sparse-
secret RLWE [8]. Namely, we set the sparsity parameter h = 128. The standard
deviation σ of the error distribution χe is set to 3.19.

7.1 Non-polynomial Functions: Logistic Regression, Sine and
Exponential Function

Table 1. The ciphertext size and the running time to compute the logistic function in
the interval [−2.1, 2.1].

#slots 1 2 22 23 24 25 26 27 28 29

Our scheme

Size, KB 94 97 104 228 238 238 238 244 334 704

Time, sec 6.04 6.75 6.21 13.52 12.92 12.76 12.80 12.99 18.16 38.81

HEAAN

Size, KB 448 464 476 492 512 528 548 568 584 604

Time, sec 18.22 18.18 17.61 17.97 18.76 18.97 18.24 18.09 18.28 18.89

HEAAN∗

Size, KB 274 284 292 302 312 322 332 342 352 362

Time, sec 14.48 14.45 14.28 14.46 14.52 16.98 18.07 18.14 18.00 18.24

Table 2. The ciphertext size and the running time to compute the sine in the interval
[−π, π].

#slots 1 2 22 23 24 25 26 27 28 29 210 211

Our scheme

Size, KB 94 97 104 228 238 238 238 264 380 796 1292 2680

Time, sec 5.85 6.52 6.25 12.34 13.22 12.83 12.70 14.63 18.75 43.48 73.84 155.66

HEAAN

Size, KB 564 580 600 620 640 660 680 1400 1440 1480 1520 1560

Time, sec 18.14 18.13 18.25 18.55 19.67 19.58 19.56 40.21 40.40 44.57 47.20 50.27

HEAAN∗

Size, KB 310 320 330 340 350 360 370 380 390 400 410 420

Time, sec 14.52 16.79 16.93 17.07 17.62 17.58 16.80 17.23 17.49 19.20 19.89 21.74
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Table 3. The ciphertext size and the running time to compute ex in the interval
[−2.3, 2.3].

#slots 1 2 22 23 24 25 26 27 28 29 210

Our scheme

Size, KB 87 89 95 105 105 105 107 224 310 652 1044

Time, sec 6.42 6.00 5.83 6.92 6.85 6.68 7.07 14.73 18.23 43.88 68.05

HEAAN

Size, KB 480 500 520 540 560 580 600 620 640 660 680

Time, sec 19.63 20.02 20.20 20.30 20.25 20.41 20.53 20.76 21.50 21.87 23.74

HEAAN∗

Size, KB 290 300 310 320 330 340 350 360 370 380 390

Time, sec 15.57 15.43 15.66 18.22 18.64 18.67 18.74 18.78 18.65 19.71 20.76

As in [5], we approximate the logistic function 1/(1 + e−x) and the sine with
Maclaurin series of degree 9. The exponential function ex is evaluated via its
Maclaurin series of degree 8. These approximations are accurate up to 7 bits
of binary precision in [−2.1, 2.1] for the logistic regression, [−π, π] for the sine
function and [−2.3, 2.3] for the exponential function.

We conducted experiments with encryption and packing parameters that
support homomorphic evaluation of the above series within 7 bits of binary
precision. More detailed description of these parameters is given in Appendix B.
The results of our experiments are presented in Tables 1–2. In particular, our
scheme needs 4–6 times and around 3 times less memory than HEAAN and HEAAN∗,
respectively, to perform computations on a small number of data slots. This
advantage is declining with an increasing number of slots as predicted by the
theoretical estimations of Sect. 6. Starting from only 512–2048 packing slots both
versions of HEAAN need less memory than our scheme.

7.2 Power Functions

We also computed two simple polynomial functions x16 and x2 with input values
taken from [−2.1, 2.1] and (−215, 215), respectively. As for non-linear functions
we aim to achieve 7 bits of binary precision for output values.

As seen in Tables 5 and 4, our scheme with a small number of slots requires
around 18 and 4 times less memory than HEAAN and HEAAN∗, respectively. How-
ever, the memory overhead of our method grows exponentially with the number
of slots. The maximal number of slots where our scheme still outperforms HEAAN
is 512 for x16 and 2048 for x2. Comparing with HEAAN∗, these numbers are 256
for x16 and 1024 for x2.
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Table 4. The ciphertext size and the running time to compute x2 in the interval
(−215, 215).

#slots 1 2 22 23 24 25 26 27 28 29 210 211 212

Our scheme

Size, KB 24 24.5 25.5 25.5 25.5 25.5 26 54 66 102 212 360 740

Time, sec 0.22 0.20 0.19 0.19 0.19 0.19 0.20 0.44 0.62 0.80 1.71 2.57 4.93

HEAAN

Size, KB 388 396 404 412 420 428 436 444 452 460 468 476 484

Time, sec 1.47 1.41 1.39 1.47 1.47 1.48 1.42 1.49 1.47 1.50 1.58 1.68 1.98

HEAAN∗

Size, KB 97 99 101 103 105 107 109 222 226 230 234 238 242

Time, sec 0.60 0.61 0.61 0.61 0.61 0.60 0.61 1.33 1.32 1.35 1.43 1.60 1.79

Table 5. The ciphertext size and the running time to compute x16 in the interval
[−2.1, 2.1].

#slots 1 2 22 23 24 25 26 27 28 29 210

Our scheme

Size, KB 95 98 105 230 242 242 260 360 756 1176 2496

Time, sec 2.88 3.08 3.13 6.53 6.37 6.56 7.70 8.88 19.15 33.42 70.72

HEAAN

Size, KB 1672 1712 1752 1792 1832 1872 1912 1952 1992 2032 2072

Time, sec 20.76 20.38 20.57 20.70 20.45 20.96 21.02 21.91 22.06 23.56 23.70

HEAAN∗

Size, KB 408 418 428 876 896 916 936 956 976 996 1016

Time, sec 8.42 8.43 8.66 18.45 18.98 19.73 19.53 20.29 20.95 20.33 22.46

8 Conclusion

While the HEAAN scheme has achieved significant success in recent years, espe-
cially in privacy-preserving machine learning applications, in many cases com-
putations are not as highly parallelizable as would be optimal for the HEAAN
scheme. In this work we have demonstrated how in these cases an approach
generalizing that of Bootland et al. and Chen et al. can yield significant perfor-
mance improvements in terms of encryption parameter sizes and subsequently
in ciphertext sizes. This can be particularly important when using homomorphic
encryption in low-latency applications, where communication complexity quickly
becomes a bottleneck.
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A Examples of b

As shown in Sect. 5, the plaintext space parameter b must be an mth power
residue modulo bn/m + 1 and its m root must be efficiently computable to allow
the HEAAN encoding of complex numbers. Here we present a collection of these
parameters for given practical choices of the ring dimension n and the packing
capacity m.

Table 6. Examples of b such that b is an m-th power residue modulo bn/m + 1 for

practical choices of m and n. Numbers in parentheses are equal to
⌊
log2(b

n/m + 1)
⌋
,

which is the maximal coefficient size of HEAAN encodings. For each b we precomputed its
m-th root using several calls of the Tonelli-Shanks algorithm (square root mod prime)
in SageMath.

m n

211 212 213 214 215 216

2 2 2 2 2 2 2

(1024) (2048) (4096) (8192) (16384) (32768)

22 4 4 4 4 4 4

(1024) (2048) (4096) (8192) (16384) (32768)

23 16 16 16 16 16 16

(1024) (2048) (4096) (8192) (16384) (32768)

24 120 256 46 256 150 256

(884) (2048) (2828) (8192) (14804) (32768)

25 274 120 278 46 824 150

(518) (884) (2078) (2828) (9918) (14804)

26 884 274 120 278 46 824

(313) (518) (884) (2078) (2828) (9918)

27 984 884 274 120 278 46

(159) (313) (518) (884) (2078) (2828)

28 1028 984 884 274 120 278

(80) (159) (313) (518) (884) (2078)

29 9872 1028 984 884 274 120

(53) (80) (159) (313) (518) (884)

210 9600 9872 1028 984 884 274

(26) (53) (80) (159) (313) (518)

211 215 9600 9872 1028 984 884

(16) (26) (53) (80) (159) (313)

212 x 215 9600 9872 1028 984

(16) (26) (53) (80) (159)
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B Results of experiments

The following tables present the detailed encoding and encryption parameters
used in the experiments conducted in Sect. 7. This data is the full version of
Tables 1, 2, 3, 4 and 5 from Sect. 7. In all the tables, Δ denotes the packing
scale, n is the dimension of the cyclotomic ring R and b is the constant term of
the plaintext modulus. The total running time is averaged over 10 runs (Tables
7, 8, 9, 10 and 11).

Table 7. Encryption parameters to compute the logistic function in the interval
[−2.1, 2.1]. The (*) symbol indicates that the maximal number of slots supported by
the plaintext space is 26 for our scheme.

#slots 1 2 22 23 24(*) 25(*) 26 27 28 29

Our scheme

Δ 216 217 218 219 220 221 222 223 224 225

n 212 212 212 213 213 213 213 213 213 214

log q 94 97 104 114 119 119 119 122 167 176

b 2 4 16 46 102 102 102 156 3.3e4 5.1e4

Size, KB 94 97 104 228 238 238 238 244 334 704

Time, sec 6.04 6.75 6.21 13.52 12.92 12.76 12.80 12.99 18.16 38.81

HEAAN

Δ 221 222 223 224 225 226 227 228 229 230

n 214 214 214 214 214 214 214 214 214 214

log qL 112 116 119 123 128 132 137 142 146 151

Size, KB 448 464 476 492 512 528 548 568 584 604

Time, sec 18.22 18.18 17.61 17.97 18.76 18.97 18.24 18.09 18.28 18.89

HEAAN∗

Δ 227 228 229 230 231 232 233 234 235 236

n 213 213 213 213 213 213 213 213 213 213

log qL 137 142 146 151 156 161 166 171 176 181

Size, KB 274 284 292 302 312 322 332 342 352 362

Time, sec 14.48 14.45 14.28 14.46 14.52 16.98 18.07 18.14 18.00 18.24
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Table 8. Encryption parameters to compute the sine in the interval [−π, π]. The (*)
symbol indicates that the maximal number of slots supported by the plaintext space
is 26 for our scheme.

#slots 1 2 22 23 24(*) 25(*) 26 27 28 29 210 211

Our scheme

Δ 223 224 225 226 227 228 229 230 231 232 233 234

n 212 212 212 213 213 213 213 213 213 214 214 215

b 2 4 16 46 102 102 102 562 4.6e5 7.1e5 1.1e12 2.6e12

log q 94 97 104 114 119 119 119 132 190 199 323 335

Size, KB 94 97 104 228 238 238 238 264 380 796 1292 2680

Time, sec 5.85 6.52 6.25 12.34 13.22 12.83 12.70 14.63 18.75 43.48 73.84 155.66

HEAAN

Δ 227 228 229 230 231 232 233 234 235 236 237 238

n 214 214 214 214 214 214 214 215 215 215 215 215

log qL 141 145 150 155 160 165 170 175 180 185 190 195

Size, KB 564 580 600 620 640 660 680 1400 1440 1480 1520 1560

Time, sec 18.14 18.13 18.25 18.55 19.67 19.58 19.56 40.21 40.40 44.57 47.20 50.27

HEAAN∗

Δ 230 231 232 233 234 235 236 237 238 239 240 241

n 213 213 213 213 213 213 213 213 213 213 213 213

log qL 155 160 165 170 175 180 185 190 195 200 205 210

Size, KB 310 320 330 340 350 360 370 380 390 400 410 420

Time, sec 14.52 16.79 16.93 17.07 17.62 17.58 16.80 17.23 17.49 19.20 19.89 21.74

Table 9. Encryption parameters to compute ex in the interval [−2.3, 2.3]. The (*)
symbol indicates that the maximal number of slots supported by the plaintext space
is 25 for our scheme.

#slots 1 2 22 23(*) 24(*) 25 26 27 28 29 210

Our scheme

Δ 218 219 220 221 222 223 224 225 226 227 228

n 212 212 212 212 212 212 212 213 213 214 214

b 2 4 16 102 102 102 132 156 2.9e4 4.3e4 4.1e9

log q 87 89 95 105 105 105 107 112 155 163 261

Size, KB 87 89 95 105 105 105 107 224 310 652 1044

Time, sec 6.42 6.00 5.83 6.92 6.85 6.68 7.07 14.73 18.23 43.88 68.05

HEAAN

Δ 223 224 225 226 227 228 229 230 231 232 233

n 214 214 214 214 214 214 214 214 214 214 214

log qL 120 125 130 135 140 145 150 155 160 165 170

Size, KB 480 500 520 540 560 580 600 620 640 660 680

Time, sec 19.63 20.02 20.20 20.30 20.25 20.41 20.53 20.76 21.50 21.87 23.74

HEAAN∗

Δ 228 229 230 231 232 233 234 235 236 237 238

n 213 213 213 213 213 213 213 213 213 213 213

log qL 145 150 155 160 165 170 175 180 185 190 195

Size, KB 290 300 310 320 330 340 350 360 370 380 390

Time, sec 15.57 15.43 15.66 18.22 18.64 18.67 18.74 18.78 18.65 19.71 20.76
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Table 10. Encryption parameters to compute x16 in the interval [−2.1, 2.1]. The (*)
symbol indicates that the maximal number of slots supported by the plaintext space
is 25 for our scheme.

#slots 1 2 22 23(*) 24(*) 25 26 27 28 29 210

Our scheme

Δ 225 226 228 229 230 231 232 233 234 235 236

n 212 212 212 213 213 213 213 213 214 214 215

b 2 4 16 46 120 120 412 1.4e5 1.9e5 3.8e10 1.5e11

log q 95 98 105 115 121 121 130 180 189 294 312

Size, KB 95 98 105 230 242 242 260 360 756 1176 2496

Time, sec 2.88 3.08 3.13 6.53 6.37 6.56 7.70 8.88 19.15 33.42 70.72

HEAAN

Δ 238 239 240 241 242 243 244 245 246 247 248

n 215 215 215 215 215 215 215 215 215 215 215

log qL 209 214 219 224 229 234 239 244 249 254 259

Size, KB 1672 1712 1752 1792 1832 1872 1912 1952 1992 2032 2072

Time, sec 20.76 20.38 20.57 20.70 20.45 20.96 21.02 21.91 22.06 23.56 23.70

HEAAN∗

Δ 237 238 239 240 241 242 243 244 245 246 247

n 213 213 213 214 214 214 214 214 214 214 214

log qL 204 209 214 219 224 229 234 239 244 249 254

Size, KB 408 418 428 876 896 916 936 956 976 996 1016

Time, sec 8.42 8.43 8.66 18.45 18.98 19.73 19.53 20.29 20.95 20.33 22.46

Table 11. Encryption parameters to compute x2 in the interval (−215, 215). The (*)
symbol indicates that the maximal number of slots supported by the plaintext space
is 25 for our scheme.

#slots 1 2 22 23(*) 24(*) 25 26 27 28 29 210 211 212

Our scheme

Δ 221 223 224 225 226 227 228 229 230 231 232 233 234

n 211 211 211 211 211 211 211 212 212 212 213 213 214

b 2 4 16 30 30 30 44 74 2.9e3 1.0e7 1.4e7 4.0e14 8.0e14

log q 48 49 51 51 51 51 52 54 66 102 106 180 185

Size, KB 24 24.5 25.5 25.5 25.5 25.5 26 54 66 102 212 360 740

Time, sec 0.22 0.20 0.19 0.19 0.19 0.19 0.20 0.44 0.62 0.80 1.71 2.57 4.93

HEAAN

Δ 233 234 235 236 237 238 239 240 241 242 243 244 245

n 214 214 214 214 214 214 214 214 214 214 214 214 214

log qL 97 99 101 103 105 107 109 111 113 115 117 119 121

Size, KB 388 396 404 412 420 428 436 444 452 460 468 476 484

Time, sec 1.47 1.41 1.39 1.47 1.47 1.48 1.42 1.49 1.47 1.50 1.58 1.68 1.98

HEAAN∗

Δ 233 234 235 236 237 238 239 240 241 242 243 244 245

n 212 212 212 212 212 212 212 213 213 213 213 213 213

log qL 97 99 101 103 105 107 109 111 113 115 117 119 121

Size, KB 97 99 101 103 105 107 109 222 226 230 234 238 242

Time, sec 0.60 0.61 0.61 0.61 0.61 0.60 0.61 1.33 1.32 1.35 1.43 1.60 1.79
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Abstract. Most cryptography is based on assumptions such as factoring
and discrete log, which assume an adversary has bounded computational
power. With the recent development in quantum computing as well as
concern with everlasting security, there is an interest in coming up with
information-theoretic constructions in the bounded storage model.

In this model, an adversary is computationally unbounded but has
limited space. Past works have constructed schemes such as key exchange
and bit commitment in this model. In this work, we expand the function-
alities further by building a semi-honest MPC protocol in the bounded
storage model. We use the hardness of the parity learning problem
(recently shown by Ran Raz (FOCS ’16) without any cryptographic
assumptions) to prove the security of our construction, following the
work by Guan and Zhandry (EUROCRYPT ’19).

1 Introduction

Many schemes in cryptography rely on various computational assumptions such
as factoring, discrete log and Learning with Errors. Even though these assump-
tions are well-believed to be true, recent advances in quantum computing show
that factoring and discrete log problems could be solved efficiently by quan-
tum computers [10,23]. It, therefore, could be dangerous to base the security of
global user information on these assumptions. An adversary can store cipher-
text and attempt to decrypt it later when his computational power increases
or quantum computers come into existence. The current systems, therefore, do
not provide everlasting security. Alternately, one could construct schemes in the
information-theoretic model, where no computational power of the adversary is
assumed. However, many of these information-theoretic systems such as one-time
pad are impractical to use.

In the face of the above issues, Maurer proposed bounded storage model [17]
in which we do not assume any computational restrictions on the adversary.
Rather, we assume that the adversary has bounded storage and is unable to
store a long conversation. In this model, [17] constructed a key exchange protocol
assuming a publicly accessible long random stream of bits. In his protocol, Alice
and Bob respectively record a private random subset of n bits from a stream of
n2 random bits. They later send their recorded positions to each other, and the
c© Springer Nature Switzerland AG 2021
M. B. Paterson (Ed.): IMACC 2021, LNCS 13129, pp. 289–325, 2021.
https://doi.org/10.1007/978-3-030-92641-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92641-0_14&domain=pdf
https://doi.org/10.1007/978-3-030-92641-0_14


290 J. Liu and S. Vusirikala

secret key is set as the bit at their commonly recorded position in the stream.
Note that they will record at least one-bit position in common with a constant
probability according to the birthday paradox. An eavesdropping adversary with
Cn2 (for some constant C < 1) storage can only obtain the secret key with 1/C
probability.

Many sequence of works [1–7,12,16–18,21,22] have given increasingly secure
and efficient protocols for key exchange, oblivious transfer, commitments and
timestamping in this model. Most of these works rely on the birthday para-
dox. Unfortunately, this has several disadvantages. For example, in the above
protocol, (1) The honest parties can succeed with only constant probability. To
achieve high success probability, the protocol has to be repeated several times.
(2) The adversary can succeed with constant probability. To achieve statistical
security, a randomness extractor has to be applied to the obtained secret key.
(3) The birthday paradox does not have a rich structure that can be exploited
to construct advanced protocols.

Recently, Ran Raz et al. [15,19,20] proposed a new class of techniques that
can be used to construct cryptographic schemes in the bounded storage model.
Specifically, they studied the hardness of solving parity learning problem in
bounded space. In this problem, a secret string k is sampled uniformly at ran-
dom from {0, 1}n. A learner has to compute the secret k when given a stream of
samples (a1, b1), (a2, b2), · · · , where each ai is sampled uniformly at random from
{0, 1}n, and bi is the inner product of ai and k mod 2. Roughly speaking, [19]
proved that any (computationally unbounded) learner that uses less than n2/20
space requires either an exponential number of samples or has an exponentially
small probability of outputting the correct answer. [19] used the hardness of
solving the parity learning problem to construct a simple secret key encryption
protocol – The secret key k is randomly sampled from {0, 1}n. To encrypt a
bit b, sample x ← {0, 1}n and output (x, x · k + b mod 2). In this protocol, the
honest users require only O(n) space, whereas a dishonest user requires more
than n2/20 space to break security.

Guan and Zhandry [11] used the hardness of solving parity learning problem
to construct key exchange, oblivious transfer, and bit commitment protocols in
the bounded storage model.

Even after 28 years after the introduction of the bounded storage model,
constructing a general multi-party computation protocol in this model using
any techniques is still an open problem. To the best of our knowledge MPC
in the bounded storage model has not yet been defined in any past work. In
this work, we define semi-honest secure MPC in the bounded storage model and
construct it based on the hardness of solving parity learning in bounded space.

1.1 Our Results and Technical Overview

In a multi-party computation scenario, there are k parties Pi (i ∈ [k]) each holding
a private input xi. The parties would like to know the output of a joint function
y = f(x1, · · · xk) without leaking any information about its private input to the
other parties. We would like to develop a protocol, where the parties can send
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messages to each other in rounds and finally compute y based on the transcript.
To enable the communication between parties, we model the parties as interactive
Turing machines that have additional read and write communication tapes. Many
MPC protocols have been proposed in the computational model [9,13,14,24] pre-
dominantly based on oblivious transfer (OT). As [11] showed how to build oblivi-
ous transfer in the bounded storage model based on the hardness of parity learn-
ing [19], one simple idea could be to directly substitute Guan Zhandry’s OT con-
struction in any of the existing MPC constructions.

However, there are few subtleties here. First, as we base our MPC protocol
on the hardness of parity learning, we would like to show that if an adversary
can break the security of our MPC protocol in bounded space, then he can solve
the parity learning problem in bounded space. To model the adversarial behav-
iors in MPC properly, we model the adversaries as interactive Turing machines.
However, the notion of bounded storage for interactive Turing machines is not
well-defined in this context. We therefore need to first give a formal charac-
terization of bounded-storage interactive Turing machines and show the parity
learning hardness in the setting.

Review of Parity Learning for Branching Programs [19]. We first give a brief
overview on the branching program adversary model used in [19] and why we
need to properly remodel the problem when it comes to Turing machines.

When proving the hardness of parity learning, [19] modeled the learning algo-
rithm as a deterministic branching program and not as a probabilistic interactive
Turing machine.

At a high level, a branching program is a graph, with vertices arranged
in layers, and edges between the vertices in adjacent layers marked by parity
learning samples (a, b) ∈ {0, 1}n × {0, 1}. Intuitively, each layer of the graph
represents a time step and the vertices in each layer represent the possible states
of the learning algorithm at that time step. The learner initializes his state with
the vertex in the first layer. When the learner receives a stream of parity learning
samples (a1, b1), (a2, b2), · · · , the learner follows the edges corresponding to the
samples. When it reaches a vertex in the last layer, it outputs a key k ∈ {0, 1}n

depending on the vertex. [19] showed that either the width of the branching
program (number of vertices in a layer) has to be 2cn2

or the length of the
branching program (total number of layers which also represents the number of
samples) has to be exponential in n in order to solve the parity learning problem
with non-negligible advantage. This implies any learner with access to an only
polynomial number of samples should have space at least cn2 (for some constant
c) to store the state. Intuitively, [19] defined the notion of the learner’s space
as the amount of storage required to store the state of the learner and did not
include the amount of space required to store the transition function.

Parity Learning Hardness for Bounded-Storage Turing Machines. In
the Turing machine model, we let the learner receive a stream of parity learning
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samples via its read communication tape1 and has to write its output key on
the output tape. The learner can additionally sample randomness via its ran-
dom tape, interact with other Turing machines using its other communication
tapes, and additionally take an advice string on its input tape.2 What should
be an analogous definition of space in case of (probabilistic interactive) Turing
machines?3 Should we include the space required to store the transition func-
tion? What about the space required to store the advice string on input tape,
or the space required to store the output?

To address these questions, we first define a notion called “space characteris-
tic” for Turing machines. We then prove that any Turing machine with bounded
space characteristic has an exponentially small probability of solving the parity
learning problem with a polynomial number of samples.

In order to prove the hardness result, we show that for every Turing machine
that solves the parity learning problem, there exists a corresponding branching
program that solves the problem with the same advantage. For simplicity, let us
first consider the case of deterministic Turing machines which do not interact
with other parties. Roughly speaking, we define a configuration of the Turing
machine to be a tuple containing (state of the TM, input tape pointer, work
tape contents, work tape pointer, output tape contents, output tape pointer). In
this case, the vertices of the constructed branching program correspond to all
possible configurations of the Turing machine, and the edges between the ver-
tices correspond to how the Turing machine configuration changes when given a
parity learning sample on its read comm. tape. We define the space characteristic
of the TM to be the space required to store a configuration. Note that this does
not include the storage required for input tape contents or state transition func-
tion. We give a more general definition of “space characteristic” for non-uniform
probabilistic interactive TMs in Definition 1, and extend the hardness result to
these general Turing machine learners in Sect. 3.

MPC in Bounded Storage Model. In this work, we construct a semi-honest
secure k-party MPC protocol secure against k − 1 corruptions in the bounded
storage model. In this model, the corrupted parties try to learn more information
from the union of their protocol transcripts but do not deviate from the protocol.
As we base our security on the hardness of parity learning problem, the honest

1 The Turing machine has only read once access to this tape and thereby cannot move
its tape head to the left.

2 Looking forward, given an adversary that breaks the security of our MPC protocol,
we build a reduction algorithm that solves the parity learning problem. In this case,
the reduction algorithm interacts with the adversary. The reduction algorithm uses
the circuit C and input tuple (x1, · · · xk) for which the adversary has a high advantage
as an advice string written on its input tape.

3 We note that [11] built various protocols where the parties are modeled as Tur-
ing machines. Unfortunately, they ignored the gap between Raz’s theorem [19] and
Turing machines, and used the traditional space complexity definition to define the
space of a Turing machine.
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parties can run the protocol in O(n) space, whereas the dishonest parties need
at least Ω(n2) space to break the protocol.

At a high level, we follow the GMW semi-honest MPC protocol approach [9].
The functionality is first represented as a circuit C containing only XOR and
AND gates. When the circuit C is evaluated on input (x1, · · · , xk), let the bit
value obtained at each wire w be vw. The goal is to enable all the parties Pi

to hold a secret share ri,w of vw (i.e.,
∑

i ri,w = vw mod 2) for each wire w. In
order to do this, each party Pi first secret shares its private input xi with all
the other parties. Now, each party holds a secret share of vw for all the input
wires w.

The parties now proceed to process gate by gate in a logical order. If a gate
is an XOR gate, the parties simply XOR the shares of their input wires locally
to obtain a share of the output wire i.e., perform ri,c = ri,a + ri,b mod 2, where
a, b are input wires and c is the output wire of the gate. If the gate is an AND
gate, then the parties would like to obtain secret shares of the bit va ∗ vb =
(
∑

i ri,a)∗ (
∑

i ri,b) = (
∑

i ri,a ∗ri,b)+
∑

i<j(ri,a ∗rj,b +ri,b ∗rj,a). Each party Pi

could locally compute ri,a ∗ ri,b term. To secret share the (ri,a ∗ rj,b + ri,b ∗ rj,a)
term, the party Pi first samples a bit α ← {0, 1}, and sets m(p,q) = α + p ∗
ri,b + q ∗ ri,a for each p, q ∈ {0, 1}. The parties Pi and Pj now run an 1-out-of-4
oblivious transfer protocol4, where Pi acts as the sender with input messages
(m(0,0),m(0,1),m(1,0),m(1,1)), and Pj acts as the receiver with (rj,a, rj,b) as its
choice. The party Pj adds the OT output α + (ri,a ∗ rj,b + ri,b ∗ rj,a) to its share
of output wire rj,c. The party Pi adds α to its share of the output wire ri,c.
After processing all the gates, each party sends their secret share corresponding
to all the output wires to the other parties. Each party can compute the desired
output by summing up the received secret shares.

1-Out-of-4 Oblivious Transfer Protocol. In order for the above construction
to work, we need a semi-honest secure 1-out-of-4 bit oblivious transfer protocol
in the bounded storage model. However, [11] built only a 1-out-of-2 bit oblivious
transfer based on the hardness of parity learning. In this work, we provide a
generic way to transform any 1-out-of-2 OT to 1-out-of-4 OT in the bounded
storage model. Let the sender’s input messages be (m0,m1,m2,m3) and the
receiver’s choice be d. At a high level, the sender samples 3 uniformly random
mask bits ri,1, ri,2, ri,3 for each message mi. For each pair (i, j) ∈ [3] × [3],
the receiver chooses to obtain either a mask bit of mi or a mask bit of mj by
performing a 1-out-of-2 OT with the sender. At the end, the sender masks each
message mi with the corresponding mask bits and sends yi = mi+ri,1+ri,2+ri,3

(for each i ∈ [3]) to the receiver. Clearly, during the 1-out-of-2 OT invocations,
if the receiver always chooses to obtain the mask bit corresponding to md, then
the receiver can decrypt yd and obtain md.

The above transformation is secure because the receiver cannot obtain infor-
mation about other messages as for each i �= d, the receiver does not know a
4 In 1-out-of-t oblivious transfer protocol, the sender takes t messages (m1, · · · mt) as

input. The receiver chooses an index c and obtains the message mc, without letting
the sender know about the choice c and without gaining any information about the
other messages.
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mask bit corresponding to mi. The sender cannot obtain any information about
the choice d because the only messages he receives are part of the underlying
1-out-of-2 OT protocol. As the underlying 1-out-of-2 OT is secure, the sender
cannot obtain any more information throughout the protocol. The above trans-
formation can be extended to a general 1-out-of-k case by running 1-out-of-2 OT
protocol

(
k
2

)
times.

1.2 Related Works

A recent concurrent work [?] achieves simulation-based security for MPC based
on the method from [7], but in the slightly different streaming BSM, compared
to the traditional BSM used in [7]: the honest parties are less restricted and
meanwhile the adversary is given less power. The protocols built in [11](and thus
ours) can be viewed as similar to the streaming BSM, but the honest parties only
use a single or very limited number of “long” rounds where they stream long
messages to each other and therefore achieve better in terms of communication
complexity.

2 Preliminaries

In this section, we first recall the definition of interactive turing machines and
define a new parameter of ITMs called “space characteristic”. We then define
the notions of multiparty computation and oblivious transfer in the bounded
storage model.

2.1 Interactive Turing Machines

An interactive turing machine (ITM) is a multi-tape turing machine. The func-
tionality and access restrictions of each tape are described below.

– Space Parameter tape (read-only): This tape stores a value of the form 1n.
Here n is called the “space parameter” which determines the upper bound on
the space that could be used by the turing machine. This is analogous to the
security parameter typically used in the computational model.

– Input tape (read-only): The ITM receives its input on this tape.
– Output tape (write only): The ITM places its final output on this tape.
– Work tape (read & write): The ITM uses this for its internal storage during

the computation.
– Random tape (read once): The ITM receives random bits on this tape.
– r read communication tapes (read once): These tapes are used to receive

messages from other turing machines in an interactive protocol. Each tape is
given a unique identifier in the set [r].

– w write communication tapes (write-once): These tapes are used to send
messages to other turing machines in an interactive protocol. Each tape is
given a unique identifier in the set [w].
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For the tapes with read once (or write-once) access, the state machine can access
each bit on the tape only once i.e., the head pointer of the turing machine is
only allowed to move in the forward direction. In this paper, we assume that
a uniformly random bit is sampled and placed on a cell of the random tape
only at the time step at which the cell is accessed by the turing machine. In an
interactive protocol, we can connect write tape i of an ITM A to a read tape j
of a different ITM B. In such a case, every bit written by A on it’s ith write tape
is copied immediately to the first blank cell of ITM B’s jth read tape. At every
time step, if an ITM has a non-blank cell at any of its read tape heads, then the
ITM has to definitely read the cell and move its head to right.5 For any turing
machine A, we denote A(1n) to be the turing machine obtained by fixing the
space parameter tape to 1n.

We now define a new parameter for an ITM called “space characteristic”.
Looking ahead, we construct a multi-party computation protocol and show that
no (computationally unbounded) adversary with small space characteristic can
break the security of the protocol.

Definition 1 (SpaceCharacteristic).Consider any interactive turingmachine
M with r read comm. tapes,w write comm. tapes, alphabet size a, andQ states in its
state machine. Suppose for every random string on the random tape, the execution
of M on an input x (of length ip) and space parameter n uses at most T work tape
cells, rnd random tape cells6 and outputs a string of length at most op on its output
tape. Then the space characteristic of M on the input x is given by

(T + op + 2(r + w)) · log2 a + log2(n · Q · T · ip · op · rnd).

Intuitively, the first term (T +op+2(r+w))·log2 a is the total amount of stor-
age (in bits) required to store work tape, output tape and few symbols of each
of the communication tapes. The second term intuitively represents the space
required to store the current state, work tape pointer, input tape pointer, output
tape pointer, space tape pointer and random tape pointer locations. The neces-
sity for the second term would be more clear in Sect. 3. Note that the definition
of space characteristic is different from that of space complexity. Space complex-
ity typically does not include the space required to store the output, whereas
the definition of space characteristic includes op term. Moreover, the definition
of space characteristic includes log Q term, which is typically not included in the
space complexity.

Definition 2 (s-space bounded ITM). For any function s : N → N, we
say that an interactive turing machine M is s-space bounded for an input class

5 Note that a turing machine could have multiple read tapes and all the tapes could
receive messages from other turing machines at the same time. The turing machine
has to read all the read tape cells at once, but can only copy one symbol to its work
tape at a timestep. We solve this by problem by allowing our work tape to use large
alphabet size.

6 In case the turing machine does not use randomness, we fix rnd = 1.
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{Xn}n∈N, if for all space parameters n ∈ N, and inputs x ∈ Xn, the turing
machine M has a space characteristic s(n).

When the input class is clear from the context, we simply call an ITM to be
s-space bounded.

2.2 Secure Multiparty Computation

In this section, we define Multiparty Computation protocols in the Bounded
Storage Model. In this scenario, we have k parties Pi (i ∈ [k]) each holding a
private input xi. Each party Pi would like to know the output of a joint function
yi = fi(x1, · · · xk) without leaking any information about its private input to the
other parties. This is represented using a k-party functionality f = (f1, f2, · · · fk).
To compute (y1, · · · yk), we would like to develop a protocol, where the parties
can send messages to each other in rounds. In each round, the message sent by
Pi to Pj (for any i, j ∈ [k]) depends on Pi’s input, its random coins and all the
messages it received in the previous rounds. At the end of the protocol, each
party Pi computes yi = fi(x1, x2, · · · , xk). As we are working in the bounded
storage model, we are only interested in protocols where the algorithm used by
each party Pi has small space characteristic. More formally,

Definition 3 (MPC protocol). A k-party MPC protocol Π is described by
ITMs (Πi)i∈[k] and a simulator Sim7. The ith ITM is used by party Pi. Each
ITM has k read communication tapes and k write communication tapes. The
simulator has k write tapes. For every j �= i ∈ [k], the jth write communication
tape of Πi is connected to the ith read communication tape of Πj i.e., this tape
is used by the party Pi to send messages to the party Pj. To initiate the protocol
for a functionality f , each party Pi first places (f , xi) on the input tape of its
ITM Πi and then runs the turing machine.

Definition 4 (s-Correctness). For any function s : N → N, we say that a
k-party MPC protocol Π = (Πi)i∈[k] s-correctly computes a class of k-party
functionalities {Fn}n∈N if for every space parameter n ∈ N, every functionality
f = (f1, · · · , fk) ∈ Fn, for every input vector (x1, · · · , xk) of the functionality,
every set of random coins used by Π, when each party Πi is run on input (f , xi)
and space parameter 1n, the output tape of each Πi at the end of the protocol
is equal to fi(x1, · · · , xk), and each ITM Πi has a space characteristic at most
s(n).

Semi-honest Security. We now provide a security definition for MPC protocols
against semi-honest adversaries in the bounded storage model. Intuitively, a semi-
honest adversary can corrupt any subset of parties I before starting the protocol
and then obtain their inputs {xi}i∈I , random coins and transcript of the messages
received by the parties. However, the adversary cannot force the corrupted parties
to deviate from the protocol. Let the view of the adversary be all the information
7 The simulator is used only in the security definition but not in the real protocol.
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obtained by the adversary. The folklore definition says that an MPC protocol Π
for some functionality f is semi-honest secure if there exists a simulator such that
no semi-honest adversary can distinguish between the following two distributions:
(1) view obtained by running the protocol Π on input {xi}i∈[k], and (2) the output
of the simulator on input f , I, {xi}i∈I , {fi(x1, x2, · · · , xk)}i∈I . Intuitively, if an
MPC protocol satisfies such a security definition, it guarantees that the adversary
cannot learn any more information by looking at the random coins and transcript
of the messages other than what he can learn based on the inputs and outputs of
the corrupted parties.

However, such a security definition would not work in bounded storage model.
This is because the adversary and the simulator can only have bounded space
s, and the view generated by the protocol execution could be much larger than
s. As a result, the simulator may not be able to generate the complete view on
its output tape and send it to the adversary. Therefore, we model the adversary
and the simulator as bounded space interactive turing machines that exchange
stream of bits via their read and write communication tapes. Formally,

Definition 5 (Semi-honest Security). For any functions s1 : N → N, s2 :
N → N and ε : N → [0, 1], we say that a k-party protocol Π = {Πi}i∈[k] (s1, s2, ε)-
securely computes a class of k-party functionalities {Fn}n∈N if

(1) The simulator Sim is s1-space bounded, and
(2) For every s2-space bounded adversary A with k read tapes there exists an

integer N0 s.t. for every space parameter n > N0, for any functionality
f = (f1, f2, · · · fk) ∈ Fn, all input tuples x = (x1, · · · , xk) belonging to the
domain of f , and for every subset I ⊂ [k], we have

|Pr[GameSHA
1n,f ,I,x(0) = 1] − Pr[GameSHA

1n,f ,I,x(1) = 1]| ≤ ε(n),

where GameSH is described in Fig. 1 and the probability is taken over the
random coins used by the simulator, the adversary and the challenger.

2.3 Oblivious Transfer

In this section, we define 1-out-of-k oblivious transfer in bounded storage model.
In our scenario, we have 2 parties – a sender and a receiver. The sender takes as
input k message bits {mi}i∈[k] and the receiver takes as input a selector c ∈ [k].
The goal is to enable the receiver to obtain the message mc. At the same time, we
do not want the receiver to learn anything about the other messages, and we do
not want the sender to learn anything about the selector c. To that end, we model
the sender and the receiver as interactive turing machines (Πsender,Πreceiver) each
with 1 read and 1 write tape. The parties receive their input on input tape, send
messages to each other using their read and write communication tapes, and
finally write their output to the output tape. In the bounded storage model, we
assume both the sender and the receiver have bounded space characteristic. We
require that an honest sender and receiver can run the protocol using at most



298 J. Liu and S. Vusirikala

GameSHA
1n,f ,I,x(b)

If b = 0: For each i I, the challenger connects the ith write tape of the simulator
Sim to the ith read tape of the adversary A. The challenger then runs the simulator
Sim(1n, (f , I, (xj)j I , (fj(x))j I)) and the adversary A(1n, (f , I,x)).
Else if b = 1: The challenger runs the adversary A(1n, (f , I,x)). It then places
(Input, (f , xi)) on the ith read tape of A for each i I. The challenger runs the real
protocol on input (f ,x) and space parameter n. At each step of the protocol ,
if any party i I,

reads a bit c on its random tape, then the challenger places (sample, c) on the
ith read tape of the adversary A.
receives a bit c from jth read tape (j = i), then the challenger places
(receive, j, c) on the ith read tape of the adversary A.

At the end of the protocol, the adversary A writes a guess bit b on its output tape,
which is considered as the output of the game.

Fig. 1. Security game for MPC against semi-honest adversary A

space s1, and any dishonest (computationally unbounded) sender and receiver
with space less than s2 cannot break the protocol. For the sake of security
definition, we add two additional ITMs SenderSim and ReceiverSim, each having
1 write tape, to the protocol description. We first define the correctness of an
OT protocol.

Definition 6 (s-Correctness). We say that a protocol Π = (Πsender,Πreceiver)
s-correctly performs a 1-out-of-k OT if for every input vector (m1, · · · ,mk) ∈
{0, 1}k, every set of random coins used by the ITMs, the output tape of Πsender

is empty and the output tape of Πr is mc at the end of the protocol, and both
Πsender and Πreceiver uses at most s space through out the protocol.

Semi-honest Security. In this section, we define the notion of semi-honest
security of oblivious transfer in the bounded storage model. In the semi-honest
model, the parties run the protocol honestly but try to deduce more informa-
tion than what is described by the functionality from the view of the protocol.
The security definition is analogous to the general semi-honest security of MPC
protocols for the functionality f({mi}i∈[k], c) = (φ,mc), where φ denotes the
empty string. To be more concrete, the semi-honest OT protocol has to 2 secu-
rity requirements – security against a semi-honest sender, and security against a
semi-honest receiver. When the sender is semi-honest, we require that the view
of the sender (which constitutes its input, sampled randomness and set of all
messages received) can be simulated by a space bounded ITM which takes as
input {mi}i∈[k]. We require that any space-bounded sender (adversary) cannot
distinguish between the real view and the simulated view. As we allow the size
of the protocol’s view to be more than the bound on the space of the turing
machines, the simulator does not send the entire view at once. Rather, the sim-
ulator sends the view to the adversary as a stream of bits via a communication
tape. The adversary has only read once access to this stream of bits. If the adver-
sary needs to access any of the bits multiple times, it can copy onto its (bounded
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space) work tape. Similarly, when the receiver is semi-honest, we require that
the view of the receiver can be simulated by a space bounded ITM which takes
as input (c,mc). Formally,

Definition 7 (Security against Semi-honest Sender). For any functions
s1 : N → N, s2 : N → N and ε : N → [0, 1], we say that a 1-out-of-k obliv-
ious transfer (OT) protocol Π = (Πsender,Πreceiver,SenderSim,ReceiverSim) is
(s1, s2, ε)-secure against a semi-honest sender if
(1) The simulator SenderSim has space characteristic at most s1, and
(2) For every s2-space bounded adversary A with 1 read tape, there exists an inte-
ger N0 s.t. for all space parameters n > N0, for all message bit tuples {mi}i∈[k]

and for every selector bit d ∈ [k], we have

|Pr[GameSHSenderA1n,{mi}i∈[k],d
(0) = 1] − Pr[GameSHSenderA1n,{mi}i∈[k],d

(1) = 1]| ≤ ε(n),

where the game GameSHSender is described in Fig. 2 and the probability is taken
over the random coins used by the simulator, adversary and challenger.

GameSHA
1n,{mi}i [k],d

( )

If = 0: The challenger connects the write communication tape of the sim-
ulator SenderSim to the read communication tape of the adversary A. The
challenger then runs the simulator SenderSim(1n, {mi}i [k]) and the adversary
A(1n, ({mi}i [k], d)).
Else if = 1: The challenger runs the adversary A(1n, ({mi}i [k], d)). It then runs
the protocol with sender s input {mi}i [k] and receiver s input d. The challenger
then places (input, d) on the read tape of the adversary. Whenever sender reads
a bit b on its random tape, the challenger places (sample, b) on the read tape of
the adversary A. Similarly, whenever sender receives a bit b from receiver, then the
challenger places (receive, b) on the read tape of the adversary A.
At the end of the protocol, the adversary A writes on its output tape, which is
considered as the output of the game.

Fig. 2. Security game for OT against Semi-honest Sender A

Definition 8 (Security against Semi-honest Receiver). For any func-
tions s1 : N → N, s2 : N → N and ε : N → [0, 1], we say that a 1-out-of-k
oblivious transfer (OT) protocol Π = (Πsender,Πreceiver,SenderSim,ReceiverSim)
is (s1, s2, ε)-secure against a semi-honest receiver if
(1) The simulator ReceiverSim has space characteristic at most s1, and
(2) For every s2-space bounded adversary A with 1 read tape, there exists an inte-
ger N0 s.t. for all space parameters n > N0, for all message bit tuples {mi}i∈[k]

and for every selector bit d ∈ [k], we have

|Pr[GameSHReceiverA1n,{mi}i∈[k],d
(0) = 1]−Pr[GameSHReceiverA1n,{mi}i∈[k],d

(1) = 1]| ≤ ε(n),

where GameSHReceiver is described in Fig. 3 and the probability is taken over the
random coins used by the simulator, adversary and challenger.
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GameSHReceiverA1n,{mi}i [k],d
( )

If = 0: The challenger connects the write communication tape of the sim-
ulator ReceiverSim to the read communication tape of the adversary A. The
challenger then runs the simulator ReceiverSim(1n, (d,md)) and the adversary
A(1n, ({mi}i [k], d)).
Else if = 1: The challenger runs the adversary A(1n, ({mi}i [k], d)). It then runs
the protocol with sender s input {mi}i [k] and receiver s input d. The challenger
then places (input, d) on the read tape of the adversary. Whenever receiver reads
a bit b on its random tape, the challenger places (sample, b) on the read tape of
the adversary A. Similarly, whenever receiver receives a bit b from sender, then the
challenger places (receive, b) on the read tape of the adversary A.
At the end of the protocol, the adversary A writes on its output tape, which is
considered as the output of the game.

Fig. 3. Security game for OT against Semi-honest Receiver A

3 Time-Space Lower Bound for Parity Learning
for Turing Machines

In this section, we recall the time-space lower bounds for the parity learning
problem proved in [19] and adapt the theorems in the context of turing machines.
In the parity learning problem, a secret string k is sampled uniformly at random
from {0, 1}n. A learner has to compute the secret k when given a stream of
samples (a1, b1), (a2, b2), · · · , where each ai is sampled uniformly at random from
{0, 1}n, and bi is the inner product of ai and k mod 2. Roughly speaking, Raz [19]
proved that any (computationally unbounded) learner that uses less than n2/20
space requires either an exponential number of samples or has an exponentially
small probably of outputting the correct answer.

To prove the theorem, Raz modeled the learning algorithm as a branching
program. A branching program of length � and width d is a directed acyclic
graph with vertices arranged as � + 1 layers, each layer containing at most d
vertices. Roughly speaking, each layer represents a time step and a vertex in
each layer represents the state of the learning algorithm. Vertices with out-
degree 0 are called leaf vertices. The first layer has only one vertex, representing
the initial state of the learner. Every non-leaf vertex in the first � layers has 2n+1

outgoing edges connected to the vertices in the next layer. Each of the outgoing
edges is labelled with an n + 1-bit string (a, b), where a ∈ {0, 1}n, b ∈ {0, 1}.
Intuitively, an edge labelled by (a, b) represents how the learner modifies its
state after processing the sample (a, b). Every leaf vertex is associated with a
subspace S ⊆ {0, 1}n. Given a stream of samples (a1, b1), (a2, b2), · · · , the learner
follows the computation path defined by the branching program and outputs
the subspace S associated with the final vertex. We interpret the output as
the learner guessing that the secret k ∈ S. Formally, [19] proves the following
theorem.
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Theorem 1 ([19]). For any c < 1/20, there exists α > 0, such that for any
m ≤ 2αn, and a branching program A of width at most 2cn2

and length m, that
takes a stream of samples (a1, b1), (a2, b2), · · · (am, bm), where k, ai are sampled
uniformly from {0, 1}n and bi = ai · k mod 2 for every i, outputs k̃ ∈ {0, 1}n,
then Pr[k̃ = k] ≤ O(2−αn).

The [20] theorem states the lower bound only for deterministic branching
programs, whereas we need to model our adversary as a probabilistic interactive
turing machine. Therefore, we now prove an analogous time-space lower bound
for the parity learning problem modeling the learner as a probabilistic ITM.

Time-Space Lower Bound for Deterministic Turing Machines. For the sake of
simplicity, we first prove lower bounds for deterministic ITMs without the ran-
dom tape. We later reduce the lower bounds for probabilistic ITMs to the lower
bounds for deterministic ITMs.

In this model, the learner has a space parameter tape storing 1n, an input
tape, an output tape, and one read comm. tape on which he receives a stream
of samples (a1, b1), (a2, b2), · · · . At the end of the stream, a special symbol #
is given as input to denote the end. The learner has to halt by outputting an
n-bit string k on its output tape and moving its read comm. tape pointer to the
cell next to #. Note that we do not input the stream of samples via the input
tape because the ITM has read-only access to the input tape, and the input
tape pointer is allowed to move in both directions. As we consider non-uniform
learners, the ITM is allowed to have any advice string written on its input tape.

We will present the theorem statement and the proof as below.

Theorem 2. For any c < 1/20, there exists α > 0, such that for every non-
uniform deterministic turing machine A with 1 read comm. tape and space char-
acteristic sc, where sc(n) = cn2, for every space parameter n ∈ N, if A(1n) is
run with any advice string x of length at most 2cn2/4 on its input tape, and
a stream of samples (a1, b1), (a2, b2), · · · (am, bm) on its read comm. tape, where
m ≤ 2αn, k, ai are sampled uniformly from {0, 1}n and bi = ai ·k mod 2 for every
i, then if A outputs k̃ ∈ {0, 1}n, the success probability Pr[k̃ = k] ≤ O(2−αn).

Proof. For the sake of contradiction, suppose there exists a constant c < 1/20
s.t. for any α > 0, there exists a non-uniform deterministic sc-space bounded
ITM Aα, a space parameter n and an advice string x s.t. Aα(1n, x) solves parity
learning problem with m ≤ 2αn samples and success probability ε > O(2−αn).
Using this, we show a contradiction to Raz’s lower bound. Specifically, for any
such Aα, space parameter n and advice string x, we construct a correspond-
ing branching program B that solves the parity learning problem with success
probability more than O(2−αn).

At any time step during the execution of a turing machine, let us define
its configuration to be a tuple containing (state, work tape content, work tape
pointer, output tape content, output tape pointer, input tape pointer, space tape
pointer). Note that we do not include input tape content as part of the configu-
ration as it does not change during the execution. In the constructed branching
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program B vertices in every layer correspond to the possible configurations in
the turing machine. As per our definition of space characteristic (Definition 1),
the number of possible configurations of A is 2sc(n) and therefore the width of
the branching program B is 2sc(n). We now describe how the edges are connected
between adjacent layers. Consider any vertex v of the branching program and
let its corresponding configuration be con. Consider any n + 1-bit string (a, b),
where a ∈ {0, 1}n, b ∈ {0, 1}. We run the turing machine A(1n) starting from
this configuration con by placing x on its input tape, (a, b) on read comm. tape
and placing pointer for read comm. tape at the starting cell of (a, b). When the
read comm. tape pointer first reaches the cell next to b, let its configuration be
con′. Note that there exists only one possible configuration con′ as A is deter-
ministic.8 In B, we place a directed edge from vertex v to the vertex w in the
next layer which corresponds to the configuration con′. We now describe how
to associate any vertex v in the final layer with an n-bit string k. Let the con-
figuration corresponding to v be con. Run the turing machine A(1n) from this
configuration con by placing x on its input tape, # on read comm. tape and
placing the pointer for read comm. tape at #. When A runs and places its read
comm. tape pointer to the cell next to #, let the output written on its output
tape be y. We associate the vertex v with the string y. Note that the branching
program B has length m, width 2cn2

and solves parity learning with success
probability ε which is more than O(2−αn), thereby violating Raz’s time-space
lower bound.

Time-Space Lower Bound for Probabilistic Turing Machines. We now give an
analogous time-space lower bound theorem for probabilistic ITMs.

Theorem 3. For any c < 1/20, there exists α > 0, such that for every non-
uniform probabilistic turing machine A with 1 read comm. tape and space char-
acteristic sc, where sc(n) = cn2, for every space parameter n ∈ N, if A(1n) is
run with any advice string x on its input tape, and a stream of samples (a1, b1),
(a2, b2), · · · (am, bm) on its read comm. tape, where m ≤ 2αn, k, ai are sam-
pled uniformly from {0, 1}n and bi = ai · k mod 2 for every i, then if outputs
k̃ ∈ {0, 1}n, the success probability Pr[k̃ = k] ≤ O(2−αn).

Proof. For the sake of contradiction, suppose there exists a constant c < 1/20
s.t. for any α > 0, there exists a non-uniform probabilistic sc-space bounded
ITM Aα, a space parameter nα and an advice string xα s.t. Aα(1nα , xα) solves
parity learning problem with success probability ε > O(2−αnα) using at most
m ≤ 2αnα samples. Using this, we show a contradiction to Raz’s lower bound.
Specifically, for any α > 0, we construct a non-uniform deterministic sc′-space
bounded ITM Bα and an advice string x′

α that solves parity learning problem
with success probability more than O(2−αnα).

8 Observe that the transition function in the resulting branching program is determin-
istic even if the output tape contents are not included in the configuration definition.
We include the output tape contents in the configuration so that every vertex in the
final layer corresponds to an output key as defined by the turing machine.
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For any α > 0, let the success probability of Aα(1nα , xα) in solving the
parity learning problem be ε, where the probability is taken over the random
coins used to create samples (ai, bi) and the random coins used by Aα. Let rnd
be the upper bound on the random coins used by Aα

9. We know that there
exists a bit r1 ∈ {0, 1} s.t. Aα(1nα , xα) solves the parity learning problem with
success probability at least ε, when the first cell of Aα’s random tape is fixed
to be r1. Extending this argument, we know that there exists a rnd-bit string
rα s.t. Aα(1nα , xα) solves the parity learning problem with success probability
at least ε, when the entire random tape is fixed to rα. For any α > 0, let us
now construct the ITM Bα along with an advice string x′

α. At a high level, we
let x′

α be equal to xα concatenated with rα i.e., the random coins on which Aα

has high success probability are given as part of advice string to Bα. Bα(1nα , x′
α)

emulates Aα(1nα , xα) with random coins hardcoded to rα. Whenever Aα reads a
bit from its random tape, Bα reads the corresponding bit from its advice string.

We now analyze the space characteristic of Bα. Clearly, Bα uses the same
number of work tape and output tape cells as Aα. The space characteristic of
Aα has log(|xα| · rnd) term in it, whereas the space characteristic of Bα has only
log(|x′

α|) = log(|xα| + rnd) term in it. The number of states of B is only a small
constant times the number of states in A. Therefore, Bα is sc-space bounded
ITM. Moreover, the success probability of Bα is at least ε, and thereby breaks
the time-space lower bound for deterministic ITMs.

Time-Space Lower Bound for Interactive Turing Machines. In the above the-
orems, we restricted the learner to receive only the stream of parity learning
samples and not interact with any other ITMs. Looking forward, we construct
an OT protocol based on parity learning and prove that if there exists an adver-
sary A that breaks OT security, then there exists a reduction algorithm B that
solves parity learning problem within low space characteristic. In the proof, B
has to interact with A to solve the parity learning problem. In the standard
model where the adversary is computationally bounded, this is not an issue
because B can internally interact with A in poly time. However, in the bounded
storage model, we need to be careful as we need to ensure B can internally run
the conversation with A in bounded space. As similar scenario occurs in every
proof where we need to construct a reduction algorithm, we present a general
theorem which roughly states that if B solves a problem by interacting with A,
then there exists another TM C which can solve the problem without interacting
with any other ITMs. At a high level, C runs both A and B internally, emulates
their interaction using its work tape, and finally outputs whatever B outputs.

Formally, in this model, we have two ITMs – A and B. B has t1+1 read comm.
tapes and t2 write comm. tapes for some integers t1, t2. Similarly, A has t2 read
comm. tapes and t1 write comm. tapes. B receives a stream of bits sampled from
some distribution D from a challenger on its first read comm. tape, and uses the
rest of its tapes to send and receive messages from A. Both A,B are allowed to
be randomized and have any advice string on their input tapes. At the end of

9 Note that Aα can use only at most 2sc(n) bits of randomness as it is sc-space bounded.
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the execution, the string written by B on its output tape is considered to be the
output of (A,B) pair. We now show that there exists an ITM C with only 1 read
tape using which C receives a stream of bits sampled from the challenger, s.t.
for any distribution of D used by the challenger, the output distribution of C is
same as that of (A,B).

Theorem 4. For any pair of ITMs (A,B) described above with space charac-
teristic sA and sB respectively, there exists another ITM C with 1 read comm.
tape and space characteristic 2(sA +sB)+Δ, where Δ is a constant that depends
only number of tapes in (A,B), s.t. for any pair of advice strings xA, xB given to
A,B respectively, there exists an advice string xC , s.t. for any space parameter n
and any distribution D used by the challenger, the output distribution of (A,B)
is same as the output distribution of C.
Proof. Let us first construct the ITM C along with its advice string xC . For each
symbol β present in the alphabet of A,B, we include the symbol β along with
a fresh symbol β in the alphabet of C. We also include a fresh symbol $ which
we call ‘tape separator’. Intuitively, C internally runs both A,B by maintaining
many of the A,B’s tapes on its work tape. Specifically, the work tape of C is
divided into many sections separated by the symbol $. Each of the sections is
used to simulate one of the following – work tape of A, work tape of B, output
tape of A, communication tapes between A and B. Let the total number of
communication tapes between A and B be t.10 The work tape of C looks as
follows.

A′s work tape $ B′s work tape $ A′s output tape $ comm. tape 1 $ · · · $ comm. tape t $

The sections reserved for internal communication tapes store only last cell that
is not yet read by the other turing machine. The input tape of C is also divided
into 2 sections to simulate the input tapes of A and B. So, the advice string xC

is given by xA||$||xB , where || denotes concatenation. The output tape of C is
used to store the output tape of B. The random tape of C is used to provide
randomness required to run both A and B internally. At any time step, the fresh
symbols with an underscore are used to mark the tape heads for each of these
internal tapes.

At a high level, C first runs the transition function of A internally for one
step and then runs the transition function of B internally for another step and
repeats. C internally runs the transition function of A (similarly for B) in multiple
steps – (1) C first scans the entire work tape and input tape. For each section
of the tapes, C stores the symbol at the internal tape head (the symbols with
an underscore) in its state. (2) C then runs the transition function of A and
stores the set of actions to be performed (such as moving internal tapes heads
to left or right) in its state. (3) Finally, C scans the entire work tape, input tape,
and output tapes and performs the required actions. (4) C finally switches its

10 Note that B has 1 additional read communication tape to receive a stream of bits
from the challenger.



Secure Multiparty Computation in the Bounded Storage Model 305

state to perform the next transition for B. In order to enable C to perform these
actions, we design the state space of C in the following way. A state of C is a
tuple consisting of

(A′s state, B′s state, mode, tape head contents/actions to be performed, current section)

Here, the mode indicates, whether C is currently reading contents of internal
tape heads, or performing a transition for A or B. Current section indicates the
internal section at which the tape head of C is currently located at.

Let us now analyze the space characteristic of ITM C. Let the num-
ber of states, number of work tape cells, number of input tape cells, num-
ber of output tape cells, alphabet size and total number of communication
tapes A be QA,WA, ipA, opA, αA, t Let the corresponding values for ITM B be
QB ,WB , ipB , opB , αB , t + 1 respectively. The number of work tape cells of C
including the tape separators is given by WC = (WA + WB + opA + 2t + 3). For
the sake of simplicity, let us assume both A,B use alphabet of same size α.11

The number of input tape, output tape cells, and alphabet size of C is given by
ipC = ipA + ipB +1, opC = opB , αC = 2∗α respectively12. The number of states
in C is given by QC = QA · QB · (2αC)t · (log t) · K, for some constant K. C has
only one read communication tape to receive inputs from the challenger. The
amount of randomness uses by C is rndC = rndA + rndB . Therefore, the space
characteristic of C is given by

(WC + opC + 3) log2 αC + log2(n · QC · WC · ipC · opC · rndC)
≤ 2[(WA + opA + 2t) log2(α) + log2(n · QA · WA · ipA · opA · rndA)]

+ 2[(WB + opB + 2t + 2) log2(α) + log(n · QB · WB · ipB · opB · rndB)] + Δ

= 2(sA + sB) + Δ

for some constant Δ that depends only on t.

3.1 Indistinguishability Parity Learning

The Guan-Zhandry 1-out-of-2 OT construction [11] is based on indistinguisha-
bility version of the Raz’s parity learning space lower bound so that they can give
indistinguishability security proofs for the construction. To extend the hardness
result for the computational problem to the hardness result for the indistin-
guishability problem, they use the Goldreich-Levin algorithm, denoted as GL for
the rest of the paper.
11 If A uses an alphabet of size αA and B uses an alphabet of size αB , then we can first

convert them into turing machines A′, B′ both using an alphabet of size two, and
then apply the Theorem 4. Each symbol of A is represented using log αA symbols
in A′. A′ internally runs the transition function of A in multiple stages. It reads
a sequence of log αA bits from each tape and stores as part of the state, and then
apply the transition function of A by writing log αA symbols to each tape.

12 We could eliminate the need of introducing a new symbol for the tape separator by
reusing the other fresh symbols introduced in C.
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Theorem 5 (Goldreich-Levin Algorithm [8]). Assume that there exists a
function f : {0, 1}n → {0, 1} s.t. for some unknown x ∈ {0, 1}n, we have

Pr
r∈{0,1}n

[f(r) = 〈x, r〉] ≥ 1
2

+ ε

Then there exists an algorithm that runs in time O(n2ε−4 log n), makes
O(n2ε−4 log n) oracle queries to the function f , and outputs x with probability
Ω(ε2).

Importantly, the GL algorithm also has O(n) space characteristic so that we
can use it during reduction.

We review the definition for the indistinguishability security game of parity
learning, denoted as PLA,δ(n, �).

Definition 9. (Indistinguishability Parity Learning PLA,δ(n, �)). The
challenger’s input is (1n, 1�)

1. The challenger chooses a random k ∈ {0, 1}n.
2. For i = 1, · · · , �:

– The challenger writes (ai, bi) on the communication tape, where ai ←
{0, 1}n is uniformly random and bi = ai · k.

3. The challenger writes (a�, b�) on the communication tape, where a� ← {0, 1}n

is uniformly random and chooses a random bit δ ∈ {0, 1}:
– If δ = 0, b� = a� · k.
– If δ = 1, b� is a random bit.

4. Finally, A outputs a guess δ′ for δ. A’s advantage is defined as (Pr[δ′ =
δ] − 1/2) .

Next, we give a security proof in the ITM setting so that we can use the
indistinguishability parity learning lower bound in later sections.

Theorem 6. For any c < 1/20, there exists α > 0 such that for all ITM adver-
sary A with cn2-space characteristic and that receives at most 2αn parity learning
tuples, A has advantage O(2−αn/2) in PLA,δ(n, 2αn), for all n ∈ N.

Proof. For the sake of contradiction, suppose there is some c < 1/40 such that
for all α > 0, there exists an ITM adversary A with cn2-space characteristic
and using at most 2αn parity learning tuples solves the above PL problem with
advantage β = Ω(2−αn/2) in PLA,δ(n, 2αn). We show that there exists an ITM
adversary A′ with (2cn2 + O(n))-space characteristic, which uses at most 2αn

parity learning tuples and solves the parity learning problem with advantage
β′ = Ω(2−αn), which would contradict Theorem 3. There exists some N0, such
that for all n > N0, there exists some c′ < 1/20 such that c′n2 ≥ 2cn2 + O(n).

As a first step, we show that if an adversary can distinguish between (a�, b� ←
{0, 1}) and (a�, b� = a� ·k) with large probability, then we can have an algorithm
that outputs f(a�) = a� · k on input a� with large probability.
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Claim. If there exists some c1 < 1/20, we have an ITM A with space charac-
teristic c1n

2 that can distinguish between (a�, b� ← {0, 1}) and (a�, b� = a� · k)
with probability p, given {(ai, bi = a1 · k)}i=1,··· ,�−1 in a stream; then we can
have an ITM B with space characteristic c2n

2 for some c2 < 1/20, B outputs
a� · k, with probability p.

Proof. Let A output (d, b�) where d is a bit indicating A’s guess. If A thinks
b� = a� · k, then d = 0; if it thinks b� ← {0, 1}, then d = 1. B outputs (b� + d)
as its guess for the value a� · k. Since A is correct with probability p, then B
outputs the correct value a� · k with probability p.

Let the challenger in PLA,δ(n, �) be an adversary A′ in a modified parity
learning game. a tuple in which b� can be a real inner product or uniformly
random described as below.

Definition 10 (Modified Parity Learning MPLA,δ(n,m, �)). The chal-
lenger’s input is (1n, 1m, 1�).

1. The challenger chooses a random k ∈ {0, 1}n.
2. For i = 1, · · · ,m:

If i < �:
– The challenger writes (ai, bi) on the communication tape, where ai ←

{0, 1}n is uniformly random and bi = ai · k.
Else if i ≥ �:
– The challenger writes (ai, bi) on the communication tape, where ai ←

{0, 1}n is uniformly random and chooses a random bit λ ← {0, 1}:
• If λ = 0, bi = ai · k.
• If λ = 1, bi is a random bit.

3. Finally, A outputs a guess k′ for k and wins if k′ = k.

A′ receives parity learning tuples (ai, bi)i=1,··· ,� from the MPLA,δ(n,m, �)
challenger and writes it on the communication tape to A. The first (�−1) tuples
are used as the stream of parity learning tuples in PLA,δ(n, �) and the rest (m−�)
tuples each is used as a challenge tuple in PLA,δ(n, �).

The advantage of A is β = |Pr[PLA,0(n, �) = 0] − Pr[PLA,1(n, �) = 1]|.
In other words, we have an ITM A that given (a1, b1), · · · , (a�−1, b�−1) on the
read tape, can distinguish between (a�, b� ← {0, 1}) and (a�, b� = a� · k) with
probability (1 + β)/2. According to Sect. 3.1, given unknown k ∈ {0, 1}n and
a� ∈ {0, 1}n the function f(a�) = 〈a�,k〉 can be computed with probability
(1 + β)/2.

After receiving every � tuples from the MPLA,δ(n,m, �) challenger, A′ can
obtain f(ai) = 〈ai,k〉 for each ai with probability (1 + β)/2, where i ≥ l, ;
A′ runs the GL algorithm from Theorem 5 along with obtaining O(n2β4 log n)
number of inner products of k with ai by invoking A. By Theorem 5 A′ can
output correct k with probability Ω(β2) in the end. A′ simulates A using cn2

space and running GL algorithm takes O(n) space; A’s space characteristic is
(2cn2 + O(n)) ; according to Theorem 3, A′’s advantage is O(2−αn) and we
must have Ω(β2) ≤ O(2−αn). Hence, using cn2 space and at most 2αn tuples,
adversary A’s advantage is at most β = O(2−αn/2).
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4 1-Out-of-4 Semi-honest OT Construction

In this section, we describe our 1-out-of-4 oblivious transfer based on 1-out-of-2
oblivious transfer in the bounded storage model. In summary, we perform six
1-out-of-2 oblivious transfer with random input bits.

1. Let the sender’s input be (m0,m1,m2,m3), and the receiver’s input be t ∈
{0, 1, 2, 3}.

2. For each pair (a, b) ∈ {0, 1, 2, 3}2 s.t a < b,
Sender samples uniformly random bits denoted by ra

a,b, r
b
a,b ← {0, 1}. If

t = a, receiver sets c = 0, else if t = b receiver sets c = 1, else receiver samples
c ← {0, 1}. The sender and the receiver performs 1-out-of-2 OT with sender’s
input (ra

a,b, r
b
a,b) and receiver’s input c.

3. The Sender sends the following 4 bits (y0, y1, y2, y3) to the receiver.

y0 = m0 + r00,1 + r00,2 + r00,3

y1 = m1 + r10,1 + r11,2 + r11,3

y2 = m2 + r20,2 + r21,2 + r22,3

y3 = m3 + r30,3 + r31,3 + r32,3

4. The receiver computes mt from yt as he has all the 3 mask bits from the
1-out-of-2 oblivious transfers.

We will leave the proofs for correctness and security to Appendix A. We also
review the 1-of-2 OT construction from [11] in Sect. B.

5 MPC Protocol in Bounded Storage

In this section, we describe our k-party semi-honest secure MPC protocol (for
any integer k) in the bounded storage model from semi-honest secure 1-out-4
OT protocol in the bounded storage model.

Consider any functionality f = (f1, f2, · · · fk). Let the private input of each
party Pi be xi. The party Pi intends to compute fi(x1, x2, · · · xk). We first
represent the functionality as a circuit C containing only XOR and AND gates,
which takes the inputs of all the parties and computes the output of all the
parties. Let us denote the space parameter used by the protocol to be n, and let
Cn be the set of all n-gate circuits. We describe our MPC protocol for the class
of functionalities {Cn}n∈N. We show that an honest party can run the protocol
within O(n) space characteristic, whereas any dishonest set of parties require at
least O(n2) space characteristic to break the security.

Notations. Let us first introduce some notations. We order the gates of the
circuit in such a way that g1, g2 < g3 if the output wires of gates g1, g2 are used
as input wires for gate g3. We call such an order as a logical order. We denote
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the set of input wires and output wires of the circuit that belong to the party Pi

be Input(i) and Output(i) respectively. Also for any input wire w, let the party
that holds the private input corresponding to the wire be Party(w). Similarly,
for any output wire w, let the party that is entitled to receive output from the
wire be Party(w). Let the input of the circuit C on input x = (x1, · · · , xk) be
y = (y1, · · · , yk). For any input wire w that belongs to the party Pi, let Pi’s
input bit corresponding to the wire w be xi[w]. Similarly, for any output wire
w that belongs to the party Pi, let Pi’s output bit corresponding to the w be
yi[w]. When the circuit C is run on the input (x1, · · · , xk), let the value at any
wire w be vw.

At a high level, the algorithm is similar to the GMW protocol [9]. Each party
Pi first secret shares its input xi with all the parties. Each of the parties now
holds a secret share of vw for each input wire w. The parties now run a 1-out-of-4
OT protocol to compute secret shares of vw for each of the internal and output
wires. Finally, for each output wire w, each party sends its secret share of vw

to the party that is entitled to receive the value of wire w (i.e., Party(w)). Each
party Pi now computes its output from the received shares.

Let OT4 = (Πsender,Πreceiver,SenderSim,ReceiverSim) be a 1-out-of-4 obliv-
ious transfer protocol secure in the bounded storage model. For the sake of
simplicity, we assume that the receiver’s choice in the OT4 protocol is chosen
from {(0, 0), (0, 1), (1, 0), (1, 1)} intead of {0, 1, 2, 3}. The algorithm used by each
party Pi is formally described in Fig. 4. Note that all the computations over bits
are done over GF(2).

5.1 Security Proof for MPC Protocol

We present the proof of security and correctness for the MPC protocol in Sect. 5
here.

Correctness. Throughout the protocol, we maintain an invariant that the values
{ri,w}i for any wire w form a secret sharing of the bit vw i.e.,

∑
i∈[k] ri,w = vw.

We can prove this via induction. Clearly, the invariant is satisfied if w is an input
wire. Suppose the invariant is satisfied for the input wires a, b of any gate g. If g is
an XOR gate, then

∑
i ri,c =

∑
i ri,a +

∑
i ri,b = va +vb = vc and the invariant is

satisfied for the output wire. Suppose g is an AND gate, each pair of parties (i, j)
perform 1-out-4 OT and obtain a secret sharing of ri,a∗rj,b+ri,b∗rj,a. Therefore,∑

i ri,c =
∑

i ri,a ∗ ri,b +
∑

i�=j(ri,a ∗ rj,b + ri,b ∗ rj,a) = (
∑

i ri,a) ∗ (
∑

i ri,b) =
va ∗ vb = vc.

We now argue that if OT4 is s-correct for some function s : N → N, then all
the parties in the above protocol have space characteristic at most O(s + n) for
the class of n-gate functionalities. Observe that work tape of each party needs
to store at most 1 bit per each wire, along with work tape contents needed for
oblivious transfer. Both the input and output tapes need to store at most n bits,
as we are dealing with n-gate functionalities. Moreover, the number of states
required by the protocol is only constant times that of the number of states
in OT4. Therefore, the above MPC protocol has space characteristic O(s + n).
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i(1n, C, xi)

Input Phase:

For each input wire w Input(i):
For j = 1 to k s.t. j = i:

Sample random bit rj,w and send it to party Pj .
Set ri,w = xi[w] + j=i rj,w.

For each input wire w / Input(i):
Receive bit ri,w from other parties. This corresponds to the party Pi s share of the
input at wire w.

Eval Phase:
For each gate g in logical order:

Let a, b be the input wires and c be the output wire of gate g.
If g is XOR gate, set ri,c = ri,a + ri,b.
If g is AND gate:

For j = 1 to i 1:
Run OT4. receiver algorithm with (ri,a, ri,b) as input and party Pj as the

OT sender.
Let the received message bit be j .

For j = i+ 1 to k:
Sample bit j {0, 1}.
For each (x, y) {0, 1}2, compute message m(x,y) = j +x ri,b + y ri,a.
Run OT4. sender algorithm with input messages

(m(0,0),m(0,1),m(1,0),m(1,1)) and Pj as the OT receiver.
Set the party Pi s share for wire c as ri,c = ri,a ri,b + i 1

j=1 j + k
j=i+1 j .

Output Phase:
For each output wire w:

If w / Output(i), send the party Pi s share ri,w to the party Party(w).
If w Output(i), receive secret shares of the wire w from the other parties i.e.,

For j = 1 to k s.t. j = i:
Receive bit rj,w from party Pj .

Compute the output bit y[w] = k
j=1 rj,w and write it to the output tape.

Fig. 4. The algorithm used by the party Pi in the MPC protocol.

If OT4 scheme presented in the Sect. 4 is used, the space characteristic of the
protocol is O(n).

5.2 Proof of Security

We now prove that the above scheme is semi-honest secure against adversaries
that have space characteristic less than n2/80. Formally, we prove the following
theorem.
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Theorem 7. For any functions s1, s2, s3 : N → N, and ε : N → [0, 1], assuming
OT4 is s1-correct (as per Definition 6), (s2, s3, ε)-secure against semi-honest
sender and (s2, s3, ε)-secure against semi-honest receiver (as per Definitions 7
and 8),13 the above k-party MPC protocol is (O(s1 + s2 + kn), s2/2 − (s1 + s3 +
O(n)), ε · n · k2) semi-honest secure for the class of the n-gate functionalities
{Cn}n∈N.

Proof. To prove security, we first build a simulator Sim which given a circuit
C, a set of parties I along with their input-output pairs, outputs a view of the
parties in the set I. We then argue that the simulator has O(s1 + s2 +kn) space
characteristic, and prove that any adversary with space characteristic at most
1/2 · s3 − (s1 + s2 + O(n)) cannot distinguish between the views generated by
the simulator, and the views generated during the real execution of the protocol
with advantage more than ε · n · k2 probability.

At a high level, the simulator works as follows. The simulator has k write
communication tapes, each indexed by an integer in [k]. The simulator writes
the view of the ith party to its ith communication tape, which we hereby denote
WriteTapei. We present a formal description of the algorithm used by the simula-
tor in Fig. 5. Observe that the simulator has to internally run an OT4 protocol,
run ReceiverSim and SenderSim algorithms and store at most k bits per each
gate. Therefore, the Sim can be run within space characteristic O(s1 + s2 + kn).

We now prove that the distribution of the views generated by the real protocol
and the simulator are indistinguishable for any space bounded adversary via a
hybrid argument. The hybrids are indexed by a tuple (t, �,m), where t is an
integer in [1, n], and �,m are integers in [k] s.t. � < m. In any hybrid Ht,�,m,
the hybrid simulator HSimt,�,m (described in Fig. 6) is used to generate a view of
the parties in the set I. Unlike the simulator Sim, this hybrid simulator is given
access to inputs xj of all the k parties.

At a high level, the hybrid simulator HSimt,�,m algorithm first secret shares
the input during the input phase just like the simulator Sim. The hybrid sim-
ulator, therefore, knows the secret shares ri,w for all the parties Pi in the set
I and all the input wires w. Then during the eval phase, the hybrid simulator
HSimt,�,m processes all the gates g < t just like the simulator Sim, and pro-
cesses gates g > t by internally running the real protocol. For the gate g = t,
for all party pairs (i, j) s.t. (i, j)  (�,m)14, the hybrid simulator internally run
a real oblivious transfer protocol, whereas for the party pairs (i, j) ≺ (�,m)15,
the hybrid simulator simulates the view of the oblivious transfer. We formally
describe the sequence of hybrids described in Fig. 6. The differences from the
Sim algorithm are marked in red color.

13 For the sake of simplicity, we assume OT4 is (s2, s3, ε)-secure against semi-honest
receiver. A similar proof works even if we assume OT4 is (s4, s5, ε

′) for some other
functions s4, s5, ε

′.
14 We say that (i, j) � (�, m) iff (i > �) ∨ (i = � ∧ j >= m).
15 We say that (i, j) ≺ (�, m) if (i < �) ∨ (i = � ∧ j < m).
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Sim(1n, C, I, (xj)j I , (yj)j I)

Input Phase:

For each party i I:
Include the input in the party Pi s view i.e., Write (input, (C, xi)) to WriteTapei.

For each party i I and each input wire w Input(i):
For j = 1 to k s.t. j = i:

Sample party Pj s share of the input at wire w as rj,w {0, 1}. Write
(sample, rj,w) to WriteTapei. Set the party Pi s share of wire w to be ri,w =
xi[w] + j=i rj,w.

For each i I and each input wire w / Input(i):
If Party(w) / I, sample bit ri,w {0, 1}.
Write (receive,Party(w), ri,w) to WriteTapei.

Eval Phase:
For each gate g in the logical order:

Let a, b be the input wires and c be the output wire of gate g.
If g is XOR gate, for each i I, set ri,c = ri,a + ri,b.
If g is AND gate:

For each i I, set ri,c = ri,a ri,b.
For each i = 1 to k 1 & j = i+ 1 to k:

If both Pi and Pj are in the set I (i I & j I),
Sample bit {0, 1}.
For each (x, y) {0, 1}2, compute the message bit m(x,y) = + x
ri,b + y ri,a.
Perform 1-out-of-4 OT internally with (m(0,0),m(0,1),m(1,0),m(1,1)) as
sender s input and (rj,a, rj,b) as receiver s input.
During the OT protocol, write the sender s transcript on tape
WriteTapei and receiver s transcript on WriteTapej .
Set ri,c = ri,c + and rj,c = rj,c + + ri,a rj,b + ri,b rj,a.

Else if only Pi is in the set I (i I & j / I),
Sample bit {0, 1} and set ri,c = ri,c + .
For each (x, y) {0, 1}2, compute the message bit m(x,y) = + x
ri,b + y ri,a.
Internally, run SenderSim(1n) on input (m(0,0),m(0,1),m(1,0),m(1,1))
using WriteTapei as its write comm. tape.

Else if only Pj is in the set I (i / I & j I),
Sample bit {0, 1} and set rj,c = rj,c + .
Internally, run ReceiverSim(1n) on input ( , (rj,a, rj,b)) using
WriteTapei as its write comm. tape.

Output Phase:
For each output wire w s.t. Party(w) I,

For each i / I, sample ri,w {0, 1} under the constraint k
i=1 ri,w = y[w].

For each j = i, write (receive, j, rj,w) on tape WriteTapei.

Fig. 5. Algorithm used by simulator to generate the view of parties in set I. The
simulator writes the view of party Pi on WriteTapei.

Throughout the execution, the hybrid simulator maintains an invariant that
it knows secret share ri,w for any party i ∈ I and wire w. For any gate g < t
and its output wire c, the hybrid simulator HSimt,�,m has no information about
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The algorithm used by HSimt, ,m(I, C, (xj)j [k]):

Input Phase: The input phase runs similar to the Sim algorithm. Additionally, for each
input wire w, set vw = x[w].
Eval Phase:
For each gate g in the logical order:

Let a, b be the input wires and c be the output wire of gate g.
If g is XOR gate, set vc = va + vb. For each i I, ri,c = ri,a + ri,b.
If g is AND gate, set vc = va vb.

For each i I, set ri,c = ri,a ri,b.
For each i = 1 to k 1 & j = i+ 1 to k:

If (g, i, j) (t, ,m) and one of the parties i, j is in I:
For any party p {i, j} and wire w {a, b}, if bit rp,w is not set, then
sample rp,w uniformly at random subject to constraint k

q=1 rq,w =
vw, and set rp,c = rp,a rp,b.
Sample bit {0, 1}.
For each (x, y) {0, 1}2, compute the message bit m(x,y) = + x
ri,b + y ri,a.
Perform 1-out-of-4 OT internally with (m(0,0),m(0,1),m(1,0),m(1,1)) as
sender s input and (rj,a, rj,b) as receiver s input.
During the OT protocol, write the sender s transcript on tape
WriteTapei and receiver s transcript on WriteTapej .
Set ri,c = ri,c + and rj,c = rj,c + + ri,a rj,b + ri,b rj,a.

Else if both Pi and Pj are in the set I (i I & j I), run similar to the
Sim algorithm
Else if only Pi is in set I (i I & j / I), run similar to the Sim algorithm
Else if only Pj is in set I (i / I & j I), run similar to the Sim algorithm.

If there exists a party Pi not in the set I, and some other party Pj s.t. either
(i, j) ( ,m) or (j, i) ( ,m), then delete the bit ri,c.

Output Phase:
For each output wire w s.t. Party(w) I,

For each i / I s.t. ri,w is not set, sample ri,w {0, 1} under the constraint
k
i=1 ri,w = vw.
For each j = i, write (receive, j, rj,w) on tape WriteTapei.

Fig. 6. Algorithm used by the hybrid simulator HSimt,�,m (t ∈ [n], � ∈ [k], m > �) to
generate the view of set of parties I. The simulator writes the view of party Pi on
WriteTapei (Color figure online).

shares ri,c for parties Pi /∈ I after processing the gate g. In case the wire c is the
output wire of the circuit or if c is used as input wire to another gate g′ for which
the real OT protocol is used to process the gate, then ri,c is sampled at that
point. When processing the gate g = t, suppose the oblivious transfer for party
pair (i, j) is simulated and the party Pi is not in the set I. Then the party Pi’s
share ri,c of the output wire c that is computed by HSimt,�,m is not complete,
as the party Pi’s output of the OT between (i, j) parties is not included in the
share ri,c. Therefore, HSimt,�,m deletes the share ri,c in such a case. The hybrid
simulator acts similarly if the oblivious transfer for party pair (i, j) is simulated
and Pj is not the set I.
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Let us introduce some notations. For any set of integers (g1, i1, j1, g2, i2, j2),
we say that (g1, i1, j1) ≺ (g2, i2, j2) if g1 < g2 or (g1 = g2 ∧ i1 < i2)
or (g1 = g2 ∧ i1 = i2 ∧ j1 < j2). We say that (g1, i1, j1)  (g2, i2, j2) if
(g2, i2, j2) ≺ (g1, i1, j1) ∨ (g2, i2, j2) = (g1, i1, j1). For any tuple of integers
(g, i, j) ∈ [n] × [k] × [k] s.t. j > i, we define the function Next(g, i, j) =⎧
⎪⎨

⎪⎩

(g + 1, 1, 2) if i = k − 1 ∧ j = k

(g, i + 1, i + 2) if i < k − 1 ∧ j = k

(g, i, j + 1) if j < k

. Consider any adversary A which has

k read tapes. Let Pr[HA
t.�.m(1n, C, I, (xi)i∈[k]) = 1] be the probability that

A outputs 1 when its read tapes are connected to the write tapes of
HSim(1n, (C, I, (xi)i∈[k])). We now prove that each adjacent pair of hybrids are
indistinguishable to a space bounded adversary.

Lemma 1. For any space parameter n ∈ N, any circuit C ∈ Cn, any input tuple
(x1, · · · , xk) belonging to the domain of C and any set I ⊂ [k], the distribution
of views of parties in the set I generated by the real protocol is identical to the
views generated by HSim1,1,2.

Proof. This follows from the definition of the hybrids.

Lemma 2. For any functions s1, s2, s3 : N → N and ε : N → [0, 1], assuming
OT4 is s1-correct (as per Definition 6), (s2, s3, ε)-secure against semi-honest
sender and (s2, s3, ε)-secure against semi-honest receiver (as per Definitions 7
and 8), then for every s3/2 − (s1 + s2 + kn)-space bounded adversary A, there
exists an integer N0 s.t. for every space parameter n > N0, for every circuit
C ∈ Cn, every set of parties I ⊂ [k], every input tuple (x1, · · · , xk) belonging to
the circuit’s domain, any indices (t, �,m) ∈ [n]×[k]×[k] s.t. � < m, the advantage
|Pr[HA

t.�.m(1n, C, I, (xi)i∈[k]) = 1] − Pr[HA
t′.�′.m′(1n, C, I, (xi)i∈[k]) = 1]| ≤ ε(n),

where (t′, �′,m′) = Next(t, �,m).

Proof. For the sake of contradiction, let us assume there exists an s2/2 − (s1 +
s3 + kn)-space bounded adversary A s.t. for every integer N0, there exists an
n > N0, circuit C ∈ Cn, set of parties I ⊂ [k], input tuple (x1, · · · , xk), indices
(t, �,m) ∈ [n]× [k]× [k] s.t. � < m, the advantage |Pr[HA

t.�.m(1n, C, I, (xi)i∈[k]) =
1]−Pr[HA

t′.�′.m′(1n, C, I, (xi)i∈[k]) = 1]| > ε(n), where (t′, �′,m′) = Next(t, �,m).
We now show how to break the semi-honest security of the underlying OT4

scheme.
We know that the Hybrids Ht.�.m and Ht′.�′.m′ are identical if (1) the gate t

is an XOR gate or (2) t is an AND gate and both the parties P�,Pm are in the set
I or (3) t is an AND gate and both P�,Pm are not in the set I. As the adversary
A can distinguish between these hybrids, we know that t is an AND gate and
exactly one of the parties P�,Pm is not in the set I. Suppose P� /∈ I and Pm ∈ I,
we break the security of OT4 scheme against semi-honest receiver16. Specifically,
we show that there exists an s3-space bound adversary A′ s.t. for every N ′

0, there
16 In case, P� ∈ I and Pm /∈ I, we can break the security of OT4 scheme against

semi-honest sender. This case can be handled analogously.
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exists a space parameter n′ > N ′
0, message bits (m(0,0),m(0,1),m(1,0),m(1,1)) and

receiver’s choice (d1, d2) s.t. the advantage in GameSHReceiver is atleast ε(n′).
We prove the argument in two steps – We first show that there exists a pair of

ITMs (A1,A2) s.t. A1 is 1/2·s3−(s1+s2+kn)-space bounded, A2 is (kn+s1+s2)-
space bounded, A2 receives oblivious transfer challenge view on one of its read
tapes, interacts with A1 using its other tapes and finally solves the oblivious
transfer game GameSHReceiver with ε advantage. We then invoke Theorem 4 to
construct an s3-space bounded adversary A′ that solves game GameSHReceiver
with ε advantage. At a high level, we simply set A1 to be equal to the adversary A
which can distinguish between the hybrids (t, �,m) and (t′, �′,m′) with advantage
more than ε. The algorithm A2 takes (C, I, (x1, · · · , xk), t, �,m) on its input tape
as an advice string. The algorithm A2 has k write tapes that are connected to the
k read tapes of A1. A2 runs similar to the HSimt.�.m algorithm to generate the
views for each oblivious transfer corresponding to the pairs (g, i, j) �= (t, �,m).
When processing the gate t and oblivious transfer for party pair (�,m), A2

samples a random bit α ← {0, 1} and invokes OT challenger with the sender’s
input sampled similar to HSimt.�.m, and the receiver’s input as (α, rj,a, rj,b). The
OT challenger samples a bit b ← {0, 1}. If β = 0, the OT challenger sends the
real view of party Pj in the oblivious transfer to A2. If β = 1, the OT challenger
sends the simulated view of party Pj in the oblivious transfer to A2. A2 copies
this message onto its jth write tape i.e., includes party Pj ’s view. At the end of
the game, A1 sends a guess bit to A2, which A2 outputs as its guess in the OT
game.

We now analyze the advantage of (A1,A2) pair in the OT game. If β = 0, the
messages received by A1 is identical to hybrid Ht.�.m. Otherwise, it is identical to
hybrid Ht′.�′.m′ . Therefore, the pair (A1,A2) has advantage ε(n) in distinguishing
between the two cases.

Corollary 1. For any c < 1/80, there exists an α s.t. the above k-party MPC
protocol is (O(kn), cn2 − O(n), O(2−αn)) semi-honest secure for the class of n-
gate functionalities {Cn}n∈N.

Supplementary Material

A Security Proof for 1-Out-of-4 OT in Bounded-Storage
Model

In this section we present proof for correctness and security for the OT protocol
in Sect. 4.

Correctness. We now prove the correctness property of the scheme in Sect. 4.

Claim 1. If the underlying 1-out-of-2 OT scheme is O(n)-correct, then the 1-
out-of-4 OT scheme described above is O(n)-correct.
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Proof. By the correctness property of the 1-out-of-2 scheme, after step 2, the
receiver will correctly compute rt

t,b for all b > t and rt
a,t for all a < t, which

are the 3 masking bits it needs to decrypt the message yt. The receiver can
then correctly decrypt yt to get mt. The sender and reciever runs six 1-out-of-2
OT protocols. If the underlying 1-out-of-2 OT scheme run within O(n) space
characteristic, then both the receiver and sender can run within O(n) space.

A.1 Proof of Security

Now we prove that the construction is semi-honest secure in the bounded storage
model as per Definitions 7 and 8, assuming the underlying 1-out-of-2 OT protocol
is semi-honest secure in the bounded storage model. For simplicity, we denote
the underlying 1-out-of-2 OT scheme by OT2 and the 1-out-of-4 OT scheme
constructed above by OT4.

At a high level, the OT4 scheme is secure against a semi-honest sender with
bounded space, because all the message that the sender receives are part of one of
the underlying OT2 invocations. As any bounded space semi-honest sender can-
not extract more information from the 1-out-of-2 protocol transcript, he cannot
extract more information from the 1-out-of-4 OT protocol transcript as well.

In order to argue that the OT4 scheme is secure against a semi-honest receiver
with bounded space, let us consider an example when the receiver’s choice t is 1.
By the security of the OT2 scheme, the receiver does not have any information
about the bits r0(0,1), r

2
(1,2), r

3
(1,3). As these bits are used to mask the messages

m0,m2,m3. The receiver cannot distinguish y0, y2, y3 from uniformly random
bits.

Security Against Semi-honest Sender

Theorem 8. For any constants c, α, if OT2 scheme is O(n)-correct and
(O(n), cn2, O(2−αn))-secure against semi-honest sender, then there exists cor-
responding constants c′, α′ s.t. the above OT4 scheme is (O(n), c′n2, O(2−α′n))-
secure against semi-honest sender.

Proof. We first construct a simulator OT4.SenderSim4 which outputs a simulated
view of the sender in OT4 protocol, given input {mj}j∈[3]. The simulator outputs
the view via its write communication tape.

SenderSim4(1n, (m0,m1,m2,m3)) :
Write (Input, (m0,m1,m2,m3)) on the write communication tape.
For each pair (a, b) ∈ {0, 1, 2, 3}2 s.t. a < b:

– Sample uniformly random (ra
a,b, r

b
a,b) ← {0, 1}2, and write

(sample, ra
a,b), (sample, rb

a,b) to the write tape.
– Run OT2.SenderSim2(1n, (ra

a,b, r
b
a,b)), and write the generated view on

the write tape.
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The OT4 simulator internally invokes OT2 simulator 6 times sequentially.
As the OT2 simulator has space characteristic O(n), the OT4 simulator also has
space characteristic O(n). We now prove that a space bounded adversary cannot
distinguish between the views generated by the real protocol and the simulator
via a hybrid argument. First let us order the six tuples (a, b) ∈ {0, 1, 2, 3}2 s.t.
a < b in any order from 1 to 6. Let the order of any tuple (a, b) be Order(a, b).

At a high level, in the hybrid Hi, for the tuples with order less than or equal
to i, a real OT2 protocol is run internally to generate the corresponding view,
whereas for the tuples with order more than i, OT2.SenderSim2 is used to gener-
ate the view of the corresponding 1-out-of-2 OT. The description of the algorithm
used in Hi is formally described below. Note that unlike the SenderSim4, these
intermediate hybrids additionally take the receiver’s choice t as input.

Hi(1n, (m0,m1,m2,m3), t) (0 ≤ i ≤ 6) :
Write (Input, (m0,m1,m2,m3)) on the write communication tape.
For each (a, b) ∈ {0, 1, 2, 3}2 s.t. a < b,

– Sample uniformly random (ra
a,b, r

b
a,b) ← {0, 1}2, and write

(sample, ra
a,b), (sample, rb

a,b) to the write tape.
– If Order(a, b) ≤ i, If t = a, set c = 0. If t = b, set c = 1. Otherwise,

sample c ← {0, 1}. Internally run the OT2 protocol with sender’s
input (ra

a,b, r
b
a,b), and the receiver’s input c. Throughout the protocol,

write the sender’s transcript on the write tape.
– If Order(a, b) > i, run OT2 simulator SenderSim2(1n, (ra

a,b, r
b
a,b)), and

write the generated view on the write tape.

Clearly, the distribution of the view generated by Hybrid H0 is identical to the
view generated in the real protocol. Similarly, the distribution of the view gen-
erated by final hybrid H6 is identical to the view generated by the simulator
OT4.SenderSim4. We now show that if a space-bounded adversary can distin-
guish between the hybrids Hi and Hi+1 with an ε advantage, then there exists
a space-bounded reduction algorithm that can break the 1-out-of-2 OT security
with ε advantage. Formally we state the lemma below. Consider any adversary A
with 1 read-tape. For any hybrid Hi, we let Pr[HA

i (1n, (m0,m1,m2,m3), t) = 1]
to be the probability that the adversary outputs 1 when the write tape of
Hi(1n, (m0,m1,m2,m3), t) algorithm is connected to the read tape of the adver-
sary.

Lemma 3. For any constants c, α, if the underlying OT2 scheme is O(n)-correct
and (O(n), cn2, O(2−αn))-secure against semi-honest sender, then there exists
corresponding constants c′, α′ s.t. for every c′n2-space bounded adversary A,
there exists an integer N0 s.t. for any space parameter n > N0, any sender’s input
tuple (m0,m1,m2,m3), receiver’s choice t, any index 0 ≤ i < 6, |Pr[HA

i (1n,

(m0,m1,m2,m3), t) = 1] − Pr[HA
i+1(1

n, (m0,m1,m2,m3), t) = 1]| ≤ O(2−α′n).

Proof. We show that if for all c′, α′ s.t. there is a c′n2-space bounded adversary
A, for all integer N0 s.t. there exists space parameter n > N0, some sender’s
input tuple (m0,m1,m2,m3), some receiver’s choice t, some index 0 ≤ i < 6,
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|Pr[HA
i (1n, (m0,m1,m2,m3), t) = 1] − Pr[HA

i+1(1
n, (m0,m1,m2,m3), t) = 1]| ≥

Ω(2−α′n); then there exists constants c, α, such that there is a cn2-space charac-
teristic semi-honest sender adversary A′ that breaks the underlying OT2 scheme
with Ω(2−αn) advantage.

Let the challenger in hybrid Hi be an adversary A′ in an OT2 security game
against the semi-honest sender. In the reduction during Hi, for all ordered tuples
(a, b) where Order(a, b) < i, A′ runs a real OT2 protocol as described above and
writes the sender’s view on the read tape of adversary A; for k = i+1, A′ receives
the sender adversary’s view from the challenger in GameSHSenderA(ra

a,b,rb
a,b),c

against semi-honest sender, where Order(a, b) = i + 1; A′ writes this view on
the read tape of A; for k > i + 1, A′ runs SenderSim2 as described above for Hi.

At the end of the game, A outputs a bit b′ ∈ {0, 1} and A′ passes
it as its own output to the challenger in GameSHSenderA(ra

a,b,rb
a,b),c

, where

Order(a, b) = i + 1. A′ has advantage |Pr[HA
i (1n, (m0,m1,m2,m3), t) = 1] −

Pr[HA
i+1(1

n, (m0,m1,m2,m3), t) = 1]|. Hence if there exists A that has Ω(2−α′n)
advantage difference between two hybrids, A′ has Ω(2−α′n) advantage in winning
GameSHSenderA(ra

a,b,rb
a,b),c

against semi-honest sender.

By triangle inequality, the advantage of adversary A in the OT4 game
GameSHA

{mj}j∈[3],t
is

|Pr[HA
0 (1n, (m0, m1, m2, m3), t) = 1] − Pr[HA

6 (1n, (m0, m1, m2, m3), t) = 1]|

≤
5∑

i=0

|Pr[HA
i (1n, (m0, m1, m2, m3), t) = 1] − Pr[HA

i+1(1
n, (m0, m1, m2, m3), t) = 1]|

If there exists A that has Ω(2−αn) advantage in GameSHSenderA{mj}j∈[3],t
,

then there must exist some α′ such that some adversary A′ has advantage
Ω(2−α′n) = Ω(2−αn/6) in OT2 semi-honest sender security game on some input
((ra

a,b, r
b
a,b), c), which contradicts the proved security of OT2.

Corollary 2. For any c < 1/40, there exists α > 0 such that the above 1-out-of-
4 OT construction is (O(n), c · n2, O(2−αn))-secure against semi-honest sender.

The corollary follows when the above OT4 scheme is used with the OT2 con-
struction described in Sect. B.

Security Against Semi-honest Receiver

Theorem 9. If the underlying OT2 scheme is O(n)-correct and (O(n),∞,
O(2−n))-secure against semi-honest receiver, then the above 1-out-of-4 OT con-
struction is (O(n),∞, O(2−n))-secure against semi-honest receiver.

Proof. We first construct a receiver simulator for OT4,ReceiverSim4 which out-
puts a simulated view of the receiver in the OT4 protocol, given the receiver’s
choice t ∈ {0, 1, 2, 3} and the receiver’s output bit mt. The simulator outputs
the view via its write communication tape.
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ReceiverSim4(1n, (t,mt)) :
– Write (Input, (t,mt)) to the write communication tape.
– For each pair (a, b) ∈ {0, 1, 2, 3}2 s.t. a < b:

If t = a, sample ra
a,b ← {0, 1}, run OT2.ReceiverSim2(1n, (0, ra

a,b)).
If t = b, sample rb

a,b ← {0, 1}, run OT2.ReceiverSim2(1n, (1, rb
a,b)).

Else, sample c ← {0, 1} and write (sample, c) to the write tape.
If c = 0, sample ra

a,b ← {0, 1} and run OT2.ReceiverSim2(1n,
(0, ra

a,b)).
If c = 1, sample rb

a,b ← {0, 1} and run OT2.ReceiverSim2(1n,

(1, rb
a,b)).

In all the cases, copy the view generated by OT2 simulator to the write
tape.

– Sample yj ← {0, 1} for j �= t. Compute yt by encrypting mt as in the real
game. Write (receive, (y0, y1, y2, y3)) on the write tape.

The OT4 simulator internally invokes OT2 simulator 6 times sequentially. As
the OT2 simulator has space characteristic O(n), the OT4 simulator also has
space characteristic O(n), the OT4 simulator also has space characteristic O(n).
We now prove that a space bounded adversary cannot distinguish between the
views generated by the real protocol and the simulator via a hybrid argument.
Recall that we order all possible tuples in {0, 1, 2, 3}2 by numerical order and
denote that the k-th tuple has Order(a, b) = k.

At a high level, in the hybrid Hi, for the tuples with order less than or
equal to i, a real OT2 protocol is run internally to generate the corresponding
view; whereas for the tuples with order more than i, OT2.ReceiverSim2 is used
to generate the view of the corresponding 1-out-of-2 OT.

The distribution of the view generated by Hybrid H0 is identical to the
view generated in the real protocol. Similarly, the distribution of the view gen-
erated by the final hybrid H6 is identical to the view generated by the sim-
ulator OT4.ReceiverSim4. We now show that if an adversary can distinguish
between the hybrids Hi and Hi+1 with an ε advantage, then there exists a
space-bounded reduction algorithm that can break the 1-out-of-2 OT security
against semi-honest receiver with ε advantage. Formally we state the lemma
below. Consider any adversary A with 1 read-tape. For any hybrid Hi, we let
Pr[HA

i (1n, (m0,m1,m2,m3), t) = 1] to be the probability that the adversary out-
puts 1 when the write tape of Hi(1n, (m0,m1,m2,m3), t) algorithm is connected
to the read tape of the adversary.

Lemma 4. If the underlying OT2 scheme is O(n)-correct and (O(n),∞,
O(2−n))-secure against semi-honest receiver, then for every adversary A, there
exists an integer N0 s.t. for any space parameter n > N0, any sender’s input
tuple (m0,m1,m2,m3), receiver’s choice t, for any index 0 ≤ i < 6, Pr[HA

i (1n,
(m0,m1,m2,m3), t) = 1] − Pr[HA

i+1(1
n, (m0,m1,m2,m3), t) = 1]| ≤ O(2−n).
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Proof. We show that if there is some adversary A, for all integer N0 s.t.
there exists space parameter n > N0, some sender’s input tuple (m0,m1,
m2,m3), some receiver’s choice t, some index 0 ≤ i < 6, |Pr[HA

i (1n, (m0,m1,

m2,m3), t) = 1]−Pr[HA
i+1(1

n, (m0,m1,m2,m3), t) = 1]| ≥ Ω(2−α′n); then there
exists some semi-honest receiver adversary A′ that breaks the underlying OT2

scheme with Ω(2−n) advantage.
Let the challenger in hybrid Hi be an adversary A′ in an OT2 security game

against the semi-honest receiver. In the reduction during Hi, for all ordered
tuples (a, b) where Order(a, b) ≤ i, A′ runs a real OT2 protocol as described
above; for Order(a, b) = i + 1, A′ gets the adversary’s view from the challenger
in GameSHReceiverA(ra

a,b,rb
a,b),c

against semi-honest receiver, and then A′ writes
this view on the read tape of A; for Order(a, b) > i + 1, A′ runs ReceiverSim2 as
described above for Hi.

At the end of the game, A outputs a bit b′ ∈ {0, 1} and A′

passes it as its own output to the challenger in GameSHReceiverA(ra
a,b,rb

a,b),c
,

Order(a, b) = i + 1. A′ has advantage |Pr[HA
i (1n, (m0,m1,m2,m3), t) = 1] −

Pr[HA
i+1(1

n, (m0,m1,m2,m3), t) = 1]|. Hence if there exists A that can distin-
guish between two hybrids with probability Ω(2−n) , A′ has Ω(2−n) advantage
in winning GameSHReceiverA(ra

a,b,rb
a,b),c

against semi-honest receiver.

Conclusion. By triangle inequality, the advantage of adversary A in the OT4

game GameSHA
{mj}j∈[3],t

is given by

|Pr[HA
0 (1n, (m0,m1,m2,m3), t) = 1] − Pr[HA

6 (1n, (m0,m1,m2,m3), t) = 1]|

≤
5∑

i=0

|Pr[HA
i (1n, (m0, m1, m2, m3), t) = 1] − Pr[HA

i+1(1
n, (m0, m1, m2, m3), t) = 1]|

If there exists A that has Ω(2−n) advantage in GameSHReceiverA{mj}j∈[3],t
, then

there must exist some adversary A′ has advantage Ω(2−n) = Ω(2−n/6) in OT2

semi-honest receiver security game on some input ((ra
a,b, r

b
a,b), c), which contra-

dicts the proved security of OT2.

B Review of 1-Out-of-2 Semi-honest OT Protocol

In this section, we recall the 1-out-of-2 OT construction by Guan and
Zhandry [11] and prove its security. [11] proposed an indistinguishability based
security definition for 1-out-of-2 OT, whereas we need simulation-based secure
OT in our construction of MPC protocol. We thereby prove the security of their
construction as per Definitions 7 and 8.

At a high level, the OT construction proceeds as follows. Let (x0, x1) be the
sender’s input message bits, and let d be the receiver’s choice bit. The receiver
sends a randomly sampled stream of parity learning tuples (a1, b1), · · · (a�, b�)
to the sender. The sender stores two random linear combinations (L0, q0) and
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(L1, q1) of these samples. For a sufficiently large m, these samples stored by
the sender statistically resemble a fresh parity learning samples. The receiver
then encrypts its choice bit d i.e., creates a fresh parity learning sample (a, b)
and sends (a, b + d) to the sender. The sender then computes encryptions of
(1 − d) · x0 and d · x1, rerandomizes these by adding (L0, q0) and (L1, q1) and
sends them to the receiver. The receiver can decrypt (1 − d) · x0 and d · x1 using
its secret key and obtain xd.

We now describe the protocol formally. The construction is parameterized by
a space parameter n. Intuitively, the honest parties can run the protocol within
space characteristic O(n), whereas the dishonest parties with space characteristic
O(n2) cannot break the security of the protocol.

1. The receiver samples a random key k ← {0, 1}n. The sender sets L = {0}2×n

and q ← [0, 0]�. Let � = 2n.
2. For i = 1 to �,

The receiver samples ai ← {0, 1}n and sends (ai,ai ·k mod 2) to the sender.
Upon receiving (ai, bi), the sender first samples Mi ← {0, 1}2 and updates

L ← L + Mi · ai and q ← q + Mi · bi, where ai is interpreted as a row
vector and Mi is interpreted as a column vector.

3. The receiver then samples a random y ← {0, 1}n and sends a tuple (y,y·k+d)
to the sender.

4. Let us denote L0,L1 as the first and second rows of L, and denote q0, q1 to be
the first and second element in q. The sender sends the following encryptions
of (1 − d)x0, dx1 to the receiver:

(L0, q0) + x0 · (y,y · k + 1 − d) = (L + x0 · y, (L + x0 · y) · k + x0(1 − d))

and

(L1, q1) + x1 · (y,y · k + d) = (L + x1 · y, (L + x1 · y) · k + x1d).

5. Let the values received by the receiver be (c0, c′
0) ∈ {0, 1}n × {0, 1} and

(c1, c′
1) ∈ {0, 1}n ×{0, 1}. The receiver computes c′

0−c0 ·k mod 2 and c′
1−c1 ·

k mod 2. If both values are 0, the receiver outputs 0. Otherwise, the receiver
outputs 1.

Correctness. Note that in the last step, c′
0 − c0 ·k mod 2 evaluates to x0 · (1−d),

and c′
1 − c1 ·k mod 2 evaluates to x1 ·d. In case the chosen message xd = 0, then

both the values are 0 and the receiver outputs 0. Whereas if xd = 1, then one of
these values is 1, and the receiver outputs 1.

The above protocol can be run within O(n) space characteristic. This is
because, at each step of the protocol, the receiver has to store the key k and
at most two other n-bit messages. The sender only maintains L, q which also
requires only O(n) space.



322 J. Liu and S. Vusirikala

B.1 Proof of Security

Theorem 10. For any c < 1/40, there exists α > 0 such that the above 1-
out-of-2 OT construction is (O(n), c · n2, O(2−αn))-secure against semi-honest
sender.

Proof. We first build a simulator SenderSim which outputs the simulated view
of the sender given its input messages (x0, x1). The simulator outputs the view
via its write communication tape.

SenderSim(1n, (x0, x1)):
– Place (Input, (x0, x1)) on the write comm. tape.
– Sample k ← {0, 1}n.
– For i = 1 to 2n,

Sample ai ← {0, 1}n, compute bi = ai · k mod 2, and write
(receive, (ai, bi)) on the write tape.

Sample Mi ← {0, 1}2, and write (sample,Mi) on the write tape.
– Sample y ← {0, 1}n and a bit r ← {0, 1}, and write (receive, (y, r)) on

the write tape.

To prove Theorem 10, we prove that if there exists a space bounded semi-
honest sender that can break the security defined above, then we can construct
a space bounded adversary that breaks the indistinguishability version of parity
learning, defined in 9 in this paper.

For the sake of contradiction, suppose there exists some c < 1/40, for all
α > 0, there exists a cn2-space bounded adversary such that for all N0 ∈ N,
there is some n > N0, {xi}i∈[k] ⊆ M, d ∈ {0, 1} where A has advantage Ω(2−αn)
in the GameSHSenderA{xi}i∈[1],c

security game; then for all α′ > 0, there is a

(2cn2 +O(n))-space bounded adversary A′ where A′ has advantage Ω(2−α′n) in
the indistinguishability parity learning security game. There exists some N0, such
that for all n > N0, there exists some c′ < 1/20 such that c′n2 ≥ 2cn2 + O(n).

The challenger in the semi-honest sender security game
GameSHSenderA{xj}j∈[1],c

is an adversary A′ in the indistinguishability parity learn-
ing security game denoted asPLA′,δ(n, 2n+1), where the secret key of parity learn-
ing has length n and the adversary will receive 2n parity learning tuples plus one
challenge tuple.

If A′’s coin flip is b = 1, A′ runs the real-world OT2 protocol, regardless of the
PLA′,δ(n, 2n + 1) challenger. If A′’s coin it flips b = 0, then A′ writes the parity
learning tuples from PLA′,δ(n, 2n+1) on communication tape of the simulator. In
the reduction, the simulator in GameSHSenderA{xj}j∈[1],d

does not sample k, ri,y
by itself but instead gets (ri, ai), i ∈ [2n + 1] from the PLA,δ(n, 2n + 1) game.
For the first 2n tuples (ai, bi), i ∈ [2n], the simulator uses them as the tuples in
protocol step 2; when i = 2n + 1, the sender simulator sets y = a2n+1 and sets
r = b2n+1.

Recall that when i = 2n + 1, the PLA′,b(n, 2n + 1) challenger flips a coin
δ ← {0, 1}; it sends b2n+1 = a2n+1 ·k to A′ if δ = 0 and sends uniformly random
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b2n+1 ← {0, 1} to the A′ if δ = 1. At the end of the game, A outputs a bit b′; A′

passes A’s output b′ to the the PLA′,b(n, 2n+1) challenger as its own output δ′.
A′ has space characteristic (cn2+O(n)) where cn2 space is used to simulate the A
and O(n) for interaction with challenger. Suppose A has advantage ε = Ω(2−αn),
then A′ has advantage ε/2 = Ω(2−α′n) in PLA′,b(n, 2n + 1), which forms a
contradiction with 6.

Theorem 11. The above 1-out-of-2 OT construction is (O(n),∞, O(2−n))-
secure against semi-honest receiver.

Proof. We first build a simulator ReceiverSim which outputs the simulated view
of the receiver given the choice bit d and the receiver’s output xd. The simulator
outputs the view via its write communication tape.

ReceiverSim(1n, (d, xd)) :
– Write (Input, (d, xd)) to the write comm. tape.
– Sample key k ← {0, 1}n, and place (sample,k) on the write tape.
– For i = 1 to 2n, sample key ai ← {0, 1}n, and write (sample,ai) on the

write tape.
– Sample y ← {0, 1}n, and place (sample,k) on the write tape.
– Sample uniformly random U ← {0, 1}2∗n. Let U0,U1 be the first and

second row vectors.
– If d = 0:

Write (receive, (U0,U0 · k + x0)) and (receive, (U1,U1 · k)) on the write
tape.

else if d = 1:
Write (receive, (U0,U0 · k)) and (receive, (U1,U1 · k + x1)) on the write

tape.

Notice that other than the final step, rest of the view generated by the
simulator is identical to the view of the receiver in the real protocol. Suppose
d = 0. In the final step, the receiver in the real protocol receives (L0 + x0 ·
y, (L0 + x0 · y) · k + x0), (L1 + x1 · y, (L1 + x1 · y) · k + 0), where L0,L1 are
random linear combinations of ai vectors. Note that the stream of randomness
{ai}i∈[2n] can be viewed as a 2n × n matrix, and with all but exponentially
small probability, the matrix has rank n. Therefore, a random linear combination
of these rows (L0,L1) are statistically indistinguishable from uniform sampled
vectors in {0, 1}n. Consequently, (L0 + x0 · y, (L0 + x0 · y) · k + x0), (L1 + x1 ·
y, (L1 + x1 · y) · k + 0) are statistically indistinguishable from (U0,U0 · k + x0)
and (U1,U1 · k). Similar analysis works even when d = 1.
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