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Abstract. In this article, robust control schemes are presented for time-varying
trajectory tracking control of Wheeled Mobile Robots (WMRs) in the presence
of disturbance. First, the robust model predictive control (RMPC) is imple-
mented for the kinematic subsystem by solving the modified optimization
problem with the fixed starting point. Second, the robust control is extended for
the dynamic subsystem by the Backstepping technique and additional observer.
This paper shows how to ensure the stability of the closed-loop tracking error
system. The performance of the proposed robust control is verified through
simulation studies using Casadi tool.
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1 Introduction

As an important branch of general robotics, wheeled mobile robots (WMRs) have been
intensely studied with many remarkable results in many fields, such as industrial
automation, space research, etc. Based on the property of non-holonomic constraint, it
is necessary to separate the model of WMR into two subsystems, including the kine-
matic subsystem and dynamic subsystem [1–7]. This method can obtain an easier
control design for each control loop because less difficulties than the kinematic sub-
system influence each subsystem is an under-actuated system, and the dynamic sub-
system is influenced by disturbance, uncertainties. Moreover, the Backstepping
technique is usually investigated for this cascade model by considering the Lyapunov
function candidate sequentially from the kinematic subsystem to the whole system [1–
4, 7]. Several developments have been mentioned in investigating control law, such as
using the modified transform matrix and observer in [1], disturbance observer [2],
extending to WMR model under slip [4], etc.

Furthermore, it should be verified that the model-based control in [3] utilized the
Kronecker product to achieve control structure without considering the cascade model.
On the other hand, authors in [7] proposed the MPC law to design the outer loop with
theoretical analysis to be discussed. As we all know, the difficulties of investigating
MPC in mobile robotic systems are solving the optimization problem and guaranteeing
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the stability of the MPC method. In order to solve these challenges, Lyapunov stability
theory is still employed with an appropriate Lyapunov function candidate [5–13].
Thanks to the optimization problem is given in the MPC method. We can utilize this
optimal function to be the Lyapunov function candidate is considering the stability
problem. However, comparing the Lyapunov function in two sampling times should be
investigated using the terminal controller, feasible region, feasibility problem [5–13].
There are two main approaches to implement this comparison. First, the Linear Matrix
Inequalities (LMIs) technique is used as in [5, 13]. It can be seen that the LMIs are
achieved after implementing the comparison. Second, the intermediate function is
pointed out by the intermediate control scheme using a terminal controller [6–12]. It is
worth noting that MPC law is almost applied for the kinematic subsystem in robotics
[6–12].

In this paper, several robust control schemes are proposed for a perturbed WMR
system with non-holonomic constraints. With the proposed optimization problem in the
MPC approach, the controller is easier implemented with the fixed starting point of an
optimization problem. On the other hand, the observer is discussed in the second robust
control method. Furthermore, the solution of a two-time scale-based filter is also dis-
cussed in estimating the disturbance. The rest of this paper is organized as follows.
Section 2 introduced the mathematical model of WMRs and the control objective. Two
control designs are presented in Sect. 3. In Sect. 4, the simulation studies are carried out
to confirm the proposed control schemes. Finally, the conclusion is given in Sect. 5.

2 Problem Formulations

As we all have known in traditional Euler-Lagrange theory, the mathematical model of
Wheeled Mobile Robotics (WMRs) is written by the following dynamic equations [1–
4]:

MðgÞ€gþCðg; _gÞ _gþBðgÞ Fð _gÞþ sdð Þ ¼ BðgÞsþ JTðgÞk
JðgÞ _g ¼ 0

�
ð1Þ

g ¼ x y h½ �T ð2Þ

where g is the joint variables vector with x and y, h to be defined the position, and
orientation of the WMR in term of the x axis. The matrices MðqÞ 2 <3�3;Cðq; _qÞ 2
<3�3;BðqÞ 2 <3�2 are the system inertia matrix, the centripetal, Corriolis torques
vector, the input transformation matrix, respectively. It is similar to the work in [1–4],
we achieve the two subsystems of WMRs to be described in (1), as follows:

_g ¼ S gð Þr ð3Þ

D gð ÞS gð Þ _rþC1 g; _gð Þr ¼ B gð Þs ð4Þ

where S gð Þ solutions in the equation ST gð ÞJT gð Þ ¼ 0.
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Remark 1: It is worth noting that the consideration of WMRs as a cascade system (3,
4) is able to achieve an easier controller. However, due to eliminating the constraint
coefficient k in the model (3, 4), it follows that the implementation of motion/force
control is impossible.

The control task in this paper is to find the vector of torque s with robust model
predictive control (MPC) to ensure optimality principle and the tracking of trajectory.
Moreover, this work is extended to output feedback control by adding more an
appropriate observer. Thanks to the creation of separating this WMR model, we can
establish the general cascade controller of WMR systems as described in Fig. 1.

3 Robust Control Design for WMRs

As we all have known in traditional Euler-Lagrange theory, In this section, several
approaches to implementing robust controllers are introduced to guarantee the trajec-
tory tracking problem. First, we employ robust model predictive control (RMPC) for
the kinematic model to eliminate disturbance. Therefore, the MPC algorithm is
established easily with the fixed starting point to be described in the optimization
problem. Second, we handle the dynamic subsystem continuously with the develop-
ment of an observer to obtain an output feedback control scheme. Third, a solution of
estimating the disturbance by a two-time scale filter [2] is also mentioned to compare.

3.1 Robust Model Predictive Control for WMRs

The Model Predictive Control (MPC) approach is developed for the tracking error
model of the kinematic subsystem. Due to the effect of the trigonometric operator in (3)
in establishing the control design, the transformation matrix is used to obtain the
following model:

xe tð Þ
ye tð Þ
he tð Þ

2
64

3
75 ¼

cosh sin h 0
� sin h cosh 0

0 0 1

2
4

3
5 xr tð Þ � x tð Þ

yr tð Þ � y tð Þ
hr tð Þ � h tð Þ

2
64

3
75 ð5Þ

where xr tð Þ; yr tð Þ; hr tð Þ½ �T is the desired trajectory vector.

Fig. 1. The cascade control scheme of WMR systems
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According to (5) and (3), the model can be written as:

d
dt

xe tð Þ
ye tð Þ

" #
¼ 0 x

�x 0

� �
xe tð Þ
ye tð Þ

" #
þ �tþ trð Þ cos he

tr sin he

" #
ð6Þ

d
dt

xe tð Þ
ye tð Þ

" #
¼ 0 x

�x 0

� �
xe tð Þ
ye tð Þ

" #
þ ue tð Þ ð7Þ

where ue tð Þ is given by

ue tð Þ ¼ �tþ trð Þ cos he
tr sin he

� �
ð8Þ

For the purpose of obtaining tracking problem, an MPC algorithm with a fixed
starting point in the optimization problem can be shown as follows:

Algorithm 1:

1. At time tk ¼ kd, collecting the actual state;
2. Solving the modified Optimization Problem to achieve the controller ue tð Þ

argmin
u s tkjð Þ

J xe; ye; ueð Þ ¼
Ztk þ T

tk

L xe s tkjð Þ; ye s tkjð Þ; ue s tkjð Þð Þds

þ g xe tk þ T tkjð Þ; ye tk þ T tkjð Þð Þ; T ¼ Nd

min
u s tkjð Þ

J xe; ye; ueð Þ

¼
Ztk þ T

tk

xTe s tkjð Þ; yTe s tkjð Þ� �
Q

xe s tkjð Þ
ye s tkjð Þ

" #
þ uTe s tkjð ÞRue s tkjð Þ

( )
ds

þ 1
2

xTe s tkjð Þ; yTe s tkjð Þ� � xe s tkjð Þ
ye s tkjð Þ

" #

ð9Þ

u s tkjð Þ 2 Utube ¼ t;x½ �T : tj j
a þ xj j

b � ktube ¼ 1ffiffi
2

p
n o

Subject to xe tk þ T tkjð Þ&ye tk þ T tkjð Þ
2 Xtube ¼ xe; ye½ �T : k1 xej j þ k2 yej j � aktube

� 	 ð10Þ

where k1; k2 are selected from the matrix Q;R in cost function as described in
Remark 3.

3. Apply this control input t;x½ �T to WMR system during the sampling time interval
tk; tkþ 1½ Þ.

4. Updating the time instant tk ! tkþ 1 and coming back step 1.
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Theorem 1: The control input under Algorithm 1 guarantee the ISS stability in the
outer loop error subsystem.

Remark 3: The key idea of Proof is utilizing the Lyapunov Candidate function being
the minimum cost function in Algorithm 1. It enables us to compare Lyapunov function
candidate in the sequent two steps with intermediate control input obtained from the
terminal controller as above.

3.2 Robust Output Feedback Control for WMRs

In this section, the control design is realized from outer model to modified inner model
with the first Lyapunov function being chosen as:

V0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2e þ y2e

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ/

2
e

q
� 2: ð11Þ

The modified inner model is use a new variable as:

/e ¼ /e þ arcsin
k tð Þyeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2e þ y2e
p
 !

: ð12Þ

Therefore, we obtain the modified inner model as:

_xe
_ye
_/e

2
4

3
5 ¼

xye þ mþ f1
�xxe � k tð Þmrye

C1
þ f2

x k tð Þxe
C1


 �
þ f3 � m k tð Þxeye

C2
1C2

2
64

3
75 ð13Þ

By using the observer in [1], we obtain the derivative of Lyapunov function V2 as:

_V2 ¼� k1
x2e
C2
1

� k tð Þmry2e
C2
1

� k2
/
2
e

C2
3

þ yef2
C1

� ~-T DR þK þCð Þ~-� a~m _̂mþ û1m
^


 �
� b~n _̂nþ û2x

^

 �

� ~HTK _̂HþK�1YT
c -

^

 �

þ a~m û1v
^ � u1~v

h i
þ b~n û2x

^ � u2 ~x
h i

þ ~HT ŶT
c -

^ � Yc ~-
h i

þ ~-T Ŷc � Yc
� 


Ĥþ ~-TK ~-� -^

 �

þ a~m u1 � û1ð Þ~v
þ b~n u2 � û2ð Þ~x

ð14Þ

Remark 2: The computation in (14) is different from the work in [1] with three
additional terms:

1) �~-TC~-;

2) þ ~-TK ~-� -^

 �

;

3) þ a~m u1 � û1ð Þ~vþ b~n u2 � û2ð Þ~x;
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The fact is the output feedback control input Û -̂ð Þ ¼ �K-^ þ ŶcĤ � X. The sta-
bility of the closed system is UUB because of the tracking effectiveness of the observer.

A. Two Time-Scale Tracking Control for WMRs

With the cascade controller (Fig. 1) and the transforming method (5) in tracking
error model, the work in [2] proposed the control structure (15) with disturbance
observer (16). It should be noted that, the proposed controller in section B is different
from [2] considering the State observer to develop output feedback controller.

u ¼ u� þ l

u� ¼ e1 cos hc þ e2 sin hc � _tr þ _td � Q2~t
e3 � _xr þ _xd � Q3 ~x

� �
ð15Þ

l ¼ 1
e ẑ� zð Þ

d
dt ẑ ¼ � 1

e ẑ� zð Þþ uþ _zd

�
ð16Þ

4 Simulation Studies

The mathematical model of Wheeled Mobile Robotics (WMRs) is written by the
following dynamic equations [1–4]:

The simulation studies is demonstrated by Casadi tool for Algorithm 1 with
modified optimization in the kinematic subsystem of a WMR:

vr ¼ 0:015ðm=sÞ;xr ¼ 0:04ðrad=sÞ; nrð0Þ ¼ 0 0 p=3½ �T ;
nf ð0Þ ¼ 0:4 �0:2 �p=2½ �T ;
T ¼ 1; d ¼ 0:1;P ¼ diagf 0:4; 0:4g;R ¼ diagf0:2; 0:2g; ~k1 ¼ ~k2 ¼ 1:2;
ktube ¼ 0:6636, Xtube ¼ ~pe : ~xej j þ ~yej j\0:0542f g, Pfe ¼ pfeðtÞ : pfe

�� ��� 0:0017½�
0:0017�Tg.
The results show good behavior as described in the following Figs. 2 and 3.

Moreover, the simulations are developed by two-time scale based robust control in
Section C with the parameters as follows:

r = 0.098 m, b = 0.2 m, d ¼ 0:3m, mw ¼ 22 kg, mM ¼ 2 kg, IM ¼ 0:02 kg:m2,
ID ¼ 0:005 kg:m2.

And the desired trajectory is chosen as
xr tð Þ ¼ t; yr tð Þ ¼ sinxt, with x ¼ p

180; hr tð Þ ¼ tan�1 p
180 cos p

180 tð Þ� 
� 

.

The disturbance is inserted into WMRs: sd ¼ sin 1
20 t
� 


; 2sin 1
20 t
� 
� �

In this case, it can be seen that the good responses are shown in Figs. 4, 5, 6, 7, 8
and 9, with the improvement by a filter to be considered in two cases (Figs. 4 and 5).
Finally, the proposed robust output feedback controller is implemented with high
effectiveness in Figs. 10 and 11.
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Fig. 2. The trajectory of a WMR using Robust MPC Law
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Fig. 3. The control inputs of a WMR

Fig. 4. The response by two-time scale based
robust control (no filter)
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Fig. 5. The response by two-time scale
based robust control (using filter)
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Fig. 6. The response of trajectory (axis X) by
two-time scale based robust control

Fig. 7. The response of trajectory (axis Y) by
two-time scale based robust control

Fig. 8. The response of Trajectory (Direction
Angle) by two-time scale based robust control

Fig. 9. The Tracking Error by two-time scale
based robust control

Fig. 10. The response of Trajectory in
Cartesian Coordinate by two-time scale based
robust control (Circle)

Fig. 11. The response of Trajectory in Carte-
sian Coordinate by two-time scale based robust
control (Rectangle)
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5 Conclusion

We have proposed robust control schemes for WMRs, including robust MPC for the
kinematic subsystem and output feedback control for the cascade model with distur-
bance. The MPC algorithm is presented with a modified optimization problem, and the
extension for cascade controller is considered with an additional observer. The theo-
retical analysis is carried out as well as simulation studies are verified to show the
efficiency of the proposed algorithm.
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