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Abstract We investigate a special type of cellular automata called elementary trian-
gular partitioned cellular automata (ETPCAs) in which various interesting phenom-
ena emerge. They are quite simple, since each of their local functions is specified by
only four local transition rules. There are 256 ETPCAs in total, and 36 among them
are reversible. Despite their extreme simplicity, some reversible ETPCAs show quite
complex behavior, and they even have universal computing capability. In this survey,
based on the author’s past results, we discuss how complex phenomena appear in
these ETPCAs, and how high-order functions, such as reversible logic gates, are
realized combining useful phenomena.

Keywords Reversible cellular automaton · Elementary triangular partitioned
cellular automaton · Reversible computing · Complex phenomena · Glider ·
Reversible logic gate

1 Introduction

Complex phenomena can emerge even in a system composed of very simple ele-
ments. This fact also holds when we further add the “reversibility constraint” to the
elements. In this survey, we discuss how complex phenomena emerge from a simple
reversible microscopic law, and how these phenomena are utilized to obtain higher-
order functions such as computing. Since reversibility is one of the fundamental
laws of nature, it is important to study this problem. Here, we investigate it using the
framework of reversible elementary triangular partitioned cellular automata.

A three-neighbor triangular cellular automaton (TCA) is one whose cell is trian-
gular and communicates with its three edge-adjacent cells. So far, there have been
several studies on TCAs, though they are not so many. Bays [2] studied a kind of
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TCAs with a similar type of local functions as that of Game-of-Life CA [6, 7].
Gajardo and Goles [5] proposed a three-state TCA, which is defined on a hexago-
nal lattice, and proved its computational universality. Imai and Morita [8] studied a
reversible TCA, and showed that there is an eight-state universal reversible one. An
advantage of using TCAs is that their local function can be simpler than those of
CAs on a square lattice, since each cell has only three neighbor cells. Hence, it is
suited for studying how complex phenomena emerge from a simple local function.

A three-neighbor triangular partitioned cellular automaton (TPCA) is a CAwhere
cells are triangular, and each cell has three parts. A TPCA is called an elementary
TPCA (ETPCA), if it is rotation-symmetric, and each part of a cell has only two
states 0 and 1 (the state 1 is also called a particle). The class of ETPCAs is one of the
simplest subclasses of two-dimensional CAs. This is because the local function of
each ETPCA is described by only four local transition rules. There are 256 ETPCAs
in total as in the case of one-dimensional elementary CAs (ECAs) [16]. It is known
that there are 36 reversibleETPCAs among them.Among36 reversible ones, there are
nine conservative ETPCAs inwhich the total number of symbol 1’s in a configuration
is conserved throughout its evolution process. This property is a similar notion to
that of the conservation law of mass or energy in physics.

A particular conservative ETPCANo. 0157, where 0157 is an identification num-
ber in the class of ETPCAs, was first investigated in [8], and its computational
universality was shown. In [9], it was shown that conservative ETPCA 0137 is also
computationally universal. In [13], a nonconservative reversibleETPCA0347 is stud-
ied. We think ETPCA 0347 is the most interesting one in the class of 256 ETPCAs,
though not all ETPCAs have been fully investigated yet. In spite of its simplicity the
local function, ETPCA 0347 shows quite interesting behavior like the Game-of-Life
CA. In particular, a glider, which is a space-moving pattern, and glider guns exist
in ETPCA 0347. Using gliders to represent signals, computational universality of
ETPCA 0347 was also proved.

In this chapter, we discuss how interesting phenomena emerge in reversible ETP-
CAs 0347, 0157 and 0137, how such phenomena are utilized to realize higher-order
functions such as reversible logic elements, and how reversible computers can be
built from these logic elements. In Sect. 2, after giving definitions on ETPCAs, we
classify 256 ETPCAs by introducing three kinds of dualities. In Sect. 3, a noncon-
servative reversible ETPCA No. 0347 is investigated. In this ETPCA, three kinds
of patterns exist. They are periodic patterns, a space-moving pattern, and expand-
ing patterns. Among them, a space-moving pattern called a glider is interesting and
useful. Here, how to control its flight is explained. By this, a glider can be used as a
signal for composing a reversible computer. In Sect. 4, conservative ETPCAs 0157
and 0137 are investigated. There are many space-moving patterns in both of these
ETPCAs. Though behavior of these patterns is complex and seems interesting, their
periods are vary large. Therefore, it is difficult to control the flying directions and
the timings of the space-moving patterns. Instead, a one-particle pattern, which can
move along a transmission line, is used to represent a signal for computing. Since a
universal reversible logic gate is realizable, computational universality of ETPCAs
0157 and 0137 is derived.
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2 Elementary Triangular Partitioned Cellular Automata

We give several definitions on elementary triangular partitioned cellular automata
(ETPCAs).We also define three kinds of duality among them, bywhich 256 ETPCAs
are classified into 82 equivalence classes.

2.1 Triangular Partitioned Cellular Automata (TPCAs)

A three-neighbor triangular partitioned cellular automaton (TPCA) is a CA defined
on the cellular space shown in Fig. 1. In a TPCA, each cell has three parts, and the next
state of a cell is determined by the states of the adjacent parts of the three neighbor
cells as shown in Fig. 2.

All the cells of a TPCA are identical copies of a finite state machine, and each cell
has three parts, i.e., the left, downward, and right parts, whose state sets are L , D
and R, respectively. However, the directions of the cells are not the same, i.e., there
are up-triangle cells, and down-triangle cells.

We now place cells of a TPCA on Z
2 as shown in Fig. 3. We assume that if the

coordinates of an up-triangle cell is (x, y), then x + y must be even. It should be
noted, if we define an TPCA on Z

2, there arises a problem that the neighborhood

Fig. 1 Cellular space of a three-neighbor TPCA

Fig. 2 Pictorial representations of the local transition rule f (l, d, r) = (l ′, d ′, r ′), where (l, d, r),
(l ′, d ′, r ′) ∈ L×D×R. They are a for up-triangle cells, and b for down-triangle cells
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Fig. 3 The x-y coordinates
in the cellular space of TPCA
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is slightly non-uniform. Namely, for an up-triangle cell, its neighbors are the west,
south and east adjacent cells (Fig. 2a), while for a down-triangle cell, its neighbors
are the east, north and west adjacent cells (Fig. 2b). Though such non-uniformity is
dissolved by defining a TPCA on a Cayley graph, here we define a TPCA on Z2.

Definition 1 A deterministic triangular partitioned cellular automaton (TPCA) is
a system defined by

T = (Z2, (L , D, R), ((−1, 0), (0,−1), (1, 0)), ((1, 0), (0, 1), (−1, 0)), f, (#, #, #)).

Here, Z2 is the set of all two-dimensional points with integer coordinates at which
cells are placed. Each cell has three parts, i.e., the left, downward and right parts,
where L , D and R are non-empty finite set of states of these parts. The state set Q of
each cell is thus given by Q = L × D × R. The triplet ((−1, 0), (0,−1), (1, 0)) is
a neighborhood for up-triangle cells, and ((1, 0), (0, 1), (−1, 0)) is a neighborhood
for down-triangle cells. The item f : Q → Q is a local function, and (#, #, #) ∈ Q
is a quiescent state that satisfies f (#, #, #) = (#, #, #). We also allow a TPCA that
has no quiescent state. A configuration of T is a function α : Z2 → Q. If the set
{(x, y) | α(x, y) �= (#, #, #)} is finite, α is called a finite configuration.

If f (l, d, r) = (l ′, d ′, r ′) holds for (l, d, r), (l ′, d ′, r ′) ∈ Q, then this relation is
called a local transition rule of the TPCA T (Fig. 2). The global function induced
by the local function of a TPCA is defined as below.

Definition 2 Let T be a TPCA. The set of all configurations of T is denoted by
Conf(T ), i.e., Conf(T ) = {α | α : Z2 → Q}. Let prL : Q → L be the projection
function such that prL(l, d, r) = l for all (l, d, r) ∈ Q. The projection functions
prD : Q → D and prR : Q → R are also defined similarly. The global function
F : Conf(T ) → Conf(T ) of T is defined as the one that satisfies the following con-
dition.
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∀α ∈ Conf(T ),∀(x, y) ∈ Z
2 :

F(α)(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

f (prL(α(x − 1, y)), prD(α(x, y − 1)), prR(α(x + 1, y)))
if x + y is even

f (prL(α(x + 1, y)), prD(α(x, y + 1)), prR(α(x − 1, y)))
if x + y is odd

From this definition, we can see that the next state of the up-triangle cell is deter-
mined by the present states of the left part of the west neighbor cell, the downward
part of the south neighbor cell, and the right part of the east neighbor cell. On the
other hand, the next state of the down-triangle cell is determined by the present states
of the left part of the east neighbor cell, the downward part of the north neighbor
cell, and the right part of the west neighbor cell. Therefore, for a local transition rule
f (l, d, r) = (l ′, d ′, r ′), there are two kinds of pictorial representations as shown in
Fig. 2a, b. Namely, Fig. 2a is for up-triangle cells, while Fig. 2b is for down-triangle
cells.

In [14], it is shown injectivity of the global function is equivalent to that of the
local function in one-dimensional PCAs. The following lemma is proved in a similar
manner as this.

Lemma 1 ([14]) Let T be a TPCA, f be its local function, and F be its global
function. Then, F is injective if and only if f is injective.

A reversible TPCA is defined as follows.

Definition 3 Let T be a TPCA. The TPCA T is called reversible if its local (or
equivalently global) function is injective.

We define the notion of rotation-symmetry for a TPCA as follows.

Definition 4 Let

T = (Z2, (L , D, R), ((−1, 0), (0,−1), (1, 0)), ((1, 0), (0, 1), (−1, 0)), f, (#, #, #))

be a TPCA. The TPCA T is called rotation-symmetric (or isotropic) if the conditions
(1) and (2) holds.
(1) L = D = R
(2) ∀ (l, d, r), (l ′, d ′, r ′) ∈ L×D× R : f (l, d, r) = (l ′, d ′, r ′) ⇒ f (d, r, l) = (d ′, r ′, l ′)

2.2 Elementary TPCAs (ETPCAs)

Definition 5 Let

T = (Z2, (L , D, R), ((−1, 0), (0,−1), (1, 0)), ((1, 0), (0, 1), (−1, 0)), f )

be a TPCA. It is called an elementary triangular partitioned cellular automaton
(ETPCA), if L = D = R = {0, 1}, and it is rotation-symmetric.
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Fig. 4 Representing an ETPCA by a four-digit number wxyz, where w, z ∈ {0, 7} and x, y ∈
{0, 1, . . . , 7}. Vertical bars indicate alternatives of a right-hand side of a rule

The set of states of a cell of an ETPCA is L × D × R = {0, 1}3, and thus a cell has
eight states.When drawing figures of T ’s local transition rules and configurations, we
indicate the states 0 and 1 of each part by a blank and a particle (i.e., •), respectively.

Since ETPCA is rotation-symmetric, and each part of a cell has the state set {0, 1},
its local function is defined by only four local transition rules. Hence, an ETPCA can
be specified by a four-digit number wxyz, as shown in Fig. 4, where w, z ∈ {0, 7}
and x, y ∈ {0, 1, . . . , 7}. Thus, there are 256 ETPCAs. Note that w and z must be 0
or 7 because an ETPCA is deterministic and rotation-symmetric. The ETPCA with
the number wxyz is denoted by Twxyz .

A reversible ETPCA is an ETPCAwhose local function is injective (Definition 3).
Thus, it is easy to show the following.

Lemma 2 Let Twxyz be an ETPCA. It is reversible if and only if the following con-
ditions (1) and (2) hold.

(1) (w, z) ∈ {(0, 7), (7, 0)}
(2) (x, y) ∈ {1, 2, 4} × {3, 5, 6} ∪ {3, 5, 6} × {1, 2, 4}

A conservative ETPCA is one such that the total number of particles (i.e., •’s) is
conserved in each local transition rule. Hence, it is defined as follows.

Definition 6 Let Twxyz be an ETPCA. It is called a conservative ETPCA if the
following condition holds.

w = 0 ∧ x ∈ {1, 2, 4} ∧ y ∈ {3, 5, 6} ∧ z = 7

From Lemma 2 and Definition 6, it is clear the following holds.

Lemma 3 Let T be an ETPCA. If T is conservative, then it is reversible.

We can see that there are 36 reversible ETPCAs (by Lemma 2), and among them
there are nine conservative ones (by Definition 6). Hence, in ETPCAs, conservative
ones are a subclass of reversible ones.
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2.3 Dualities in ETPCAs

As seen above, there are 256 ETPCAs. However, there are some “equivalent” ETP-
CAs, and thus the number of essentially different ETPCAs is much smaller. Here,
we introduce three kinds of dualities, and classify the ETPCAs based on them [12].

2.3.1 Duality Under Reflection

Definition 7 Let T and T̂ be ETPCAs, and f and f̂ be their local functions. We
say T and T̂ are dual under reflection, if the following holds, and it is written as
T ←→refl T̂ .

∀(l, d, r), (l ′, d ′, r ′) ∈ {0, 1}3 : f (l, d, r) = (l ′, d ′, r ′) ⇔ f̂ (r, d, l) = (r ′, d ′, l ′)

By this definition, we can see that the local transition rules of T̂ are the mirror
images of those of T . Therefore, an evolution process of T ’s configurations is sim-
ulated in a straightforward manner by the mirror images of the T ’s configurations
in T̂ . For example, T0137←→refl T0467 holds (Fig. 5), and examples of their evolution
processes are shown in Fig. 6.
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Fig. 5 The local functions of T0137 and T0467 that are dual under reflection

Fig. 6 Examples of evolution processes in a T0137, and b T0467
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2.3.2 Duality Under Complementation

For x ∈ {0, 1}, let x denote 1 − x , i.e., the complement of x .

Definition 8 Let T and T be ETPCAs, and f and f be their local functions. We say
T and T are dual under complementation, if the following holds, and it is written
as T ←→comp T .

∀(l, d, r), (l ′, d ′, r ′) ∈ {0, 1}3 : f (l, d, r) = (l ′, d ′, r ′) ⇔ f (l, d, r) = (l ′, d ′, r ′)

By this, we can see that the local transition rules of T are the 0–1 exchange
(i.e., taking their complements) of those of T . Therefore, an evolution process of
T ’s configurations is simulated in a straightforward manner by the complemented
images of the T ’s configurations in T . For example, T0157←→comp T0267 holds (Fig. 7),
and examples of their evolution processes are shown in Fig. 8.

2.3.3 Duality Under Odd-Step Complementation

Definition 9 LetT be anETPCAsuch that its local function f satisfies the following.
(1) ∀(l, d, r), (l ′, d ′, r ′) ∈ {0, 1}3 : f (l, d, r) = (l ′, d ′, r ′) ⇒ f (l, d, r) = (l ′, d ′, r ′)
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Fig. 7 The local functions of T0157 and T0267 that are dual under complementation
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Fig. 8 Examples of evolution processes in a T0157, and b T0267
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Fig. 9 The local functions of T0347 and T7430, which are dual under odd-step complementation

Fig. 10 Examples of evolution processes in a T0347, and b T7430

Let T̃ be another ETPCA, and f̃ be its local function.We say T and T̃ are dual under
odd-step complementation, if the following holds, and it is written as T ←→osc T̃ .

∀(l, d, r), (l ′, d ′, r ′) ∈ {0, 1}3 : f (l, d, r) = (l ′, d ′, r ′) ⇔ f̃ (l, d, r) = (l ′, d ′, r ′)

Since the ETPCA T satisfies the condition (1), we see that for each local transition
rule f (l, d, r) = (l ′, d ′, r ′) of T , there are two local transition rules f̃ (l, d, r) =
(l ′, d ′, r ′) and f̃ (l, d, r) = (l ′, d ′, r ′) of T̃ (hence T̃ also satisfies (1)). Let F and F̃
be the global function of T and T̃ , respectively. If the initial configuration of T is
α : Z2 → {0, 1}3, then we assume α is also given to T̃ as its initial configuration.
Since there is a local transition rule f̃ (l, d, r) = (l ′, d ′, r ′) for each f (l, d, r) =
(l ′, d ′, r ′), the configuration F̃(α) is the complement of the configuration F(α).
Furthermore, since there is a local transition rule f̃ (l, d, r) = (l ′, d ′, r ′) for each
f (l, d, r) = (l ′, d ′, r ′), the configuration F̃2(α) is the same as F2(α). In this way,
at an even step T̃ gives the same configuration as T , while at an odd step T̃ gives
the complemented configuration of T . For example, T0347←→osc T7430 holds (Fig. 9).
Figure10 shows examples of their evolution processes.

Note that, in Definition 9, the ETPCA T must satisfy the condition (1). Therefore,
the relation ←→osc is defined on the ETPCAs of the form Twxyz such that w + z = 7
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and x + y = 7. Hence, only the following 16 ETPCAs have their dual counterparts
under odd-step complementation.

T0077←→osc T7700, T0167←→osc T7610, T0257←→osc T7520,
T0347←→osc T7430, T0437←→osc T7340, T0527←→osc T7250,
T0617←→osc T7160, T0707←→osc T7070

2.3.4 Equivalence Classes of ETPCAs

If ETPCAs T and T ′ are dual under reflection, complementation, or odd-step com-
plementation, then they can be regarded as essentially the same ETPCAs. Here, we
classify the 256 ETPCAs into equivalence classes based on the three dualities. We
define the relation←→ as follows: For any ETPCAs T and T ′,

T ←→ T ′ ⇔ (T ←→refl T ′ ∨ T ←→comp T
′ ∨ T ←→osc T ′)

holds. Now, let←→∗ be the reflexive and transitive closure of←→. Then,←→∗ is
an equivalence relation, since←→ is symmetric. By this, 256 ETPCAs are classified
into 82 equivalence classes. Table1 shows the classification result.

Wolfram classified 256 one-dimensional elementary cellular automata (ECAs)
into 88 equivalence classes, which is given in the Appendix of [16]. It is based
on the two dualities reflection and conjugation that correspond to reflection and
complementation in ETPCAs, respectively. If we consider only these two dualities
inETPCAs, the number of equivalence classes is 88, the same as inECAs.Note that in
[16] the duality corresponding to odd-step complementation is implicitly mentioned,
and if we also use it, the number of equivalence classes of ECAs becomes 82.

ECAs and ETPCAs have very different features in reversibility. In ECAs, there
are six reversible ones: ECAs 15, 51, 85, 170, 204 and 240. They are grouped into
two equivalence classes if we use the three dualities. We can see one class contains
ECA 204 (identity), and the other contains ECA 170 (left shift). Hence, all the six are
trivial ones. On the other hand, there are 36 reversible ETPCAs that are grouped into
12 equivalence classes (Table1). Many of them are nontrivial, and as we shall see
below, at least ten reversible ETPCAs in three classes are computationally universal.

Table 1 Total numbers and numbers of equivalence classes of ETPCAs, reversible ETPCAs and
conservative ETPCAs [12]

Total number Equivalence classes

ETPCAs 256 82

Reversible ETPCAs 36 12

Conservative ETPCAs 9 4
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3 Complex Phenomena in Reversible ETPCA T0347

Here, we focus on a specific nonconservative reversible ETPCA T0347 [13]. Its local
function is given in Fig. 11. Despite its extreme simplicity of the local function, it
exhibits quite interesting behavior similar to the case of the Game-of-Life CA [6, 7].

Though its local function itself is very simple, it is generally hard to follow
evolution processes of configurations of T0347 by hand. So we created a simulator
for it. Simulation movies can be seen in the slide file of [13]. We also created an
emulator for T0347 on the general purpose CA simulator Golly [15]. The file of the
emulator with many examples of configurations is found in [11].

3.1 Patterns in T0347

A pattern is a finite segment of a configuration. Patterns can be defined in any
ETPCA. However, when we consider an evolution process of a finite configuration
that contains pattern(s), it is convenient to restrict ETPCAs to those with an identi-
fication number of the form 0xyz (i.e., to those with a quiescent state). Otherwise,
the initial finite configuration will become an infinite one at the next time step.

In this section, we give various interesting patterns in in T0347. In a reversible
ETPCA there are only three kinds of patterns. They are periodic patterns, space-
moving patterns and expanding patterns. Note that, because of reversibility, there is
no pattern that becomes a periodic (or space-moving) pattern after a positive number
of transient steps.

A periodic pattern is one that satisfy the following condition: Starting from the
finite configuration that contains one copy of it, only one copy of it appears at the
same position after p time steps (p > 0). The number p is the period of the pattern.
If p = 1, it is called a stable pattern.

A block is a stable pattern in T0347 shown in Fig. 12. As we shall see below,
combining several blocks, and appropriately colliding a space-moving pattern with
them, right-turn, left-turn, backward-turn, and U-turn are realized.

A fin is a periodic pattern that simply rotates with period 6 (Fig. 13). Note that
any pattern appearing at t = 0, . . . , 5 of Fig. 13 is a fin. A rotator is a pattern shown
in Fig. 14. Like a fin, it rotates around a point, and its period is 42. Though there are
many periodic patterns in T0347, a block, a fin and a rotator are the most useful ones.

A space-moving pattern is one that satisfy the following: Starting from the finite
configuration that contains one copy of it, only one copy of it appears at a different

0

,
•

••
3

, •• •
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, •
•

• •••
7

Fig. 11 Local function of the nonconservative reversible ETPCA T0347
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Fig. 12 A block in T0347. It is a stable pattern
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Fig. 13 A fin. It rotates around the point ◦ with period 6 in T0347
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Fig. 14 A rotator. It rotates around the point ◦ with period 42 in T0347

position after p time steps (p > 0). The number p is also called the period of the
space-moving pattern. Such a patten is useful for collision-based computing [1].

Figure15 shows a specific space-moving pattern in T0347, which is called a glider.
It is so named after the famous glider in the Game-of-Life [6], but it swims in
the cellular space like a fish or an eel. It travels a unit distance, the side-length of
a triangular cell, in 6 steps. By rotating it appropriately, it can move in any of the
six directions. When constructing a computing machine in T0347, it will be used
as a signal. So far, it is not known whether there is another space-moving pattern
essentially different from a glider (i.e., not composed of two or more gliders).

An expanding pattern is one whose diameter grows indefinitely as it evolves.
Figure16 is an example of an expanding pattern in T0347. By colliding a glider to a
fin (t = 0), we have a glider gun that generates three gliders every 24 steps [13]. In
this case, the total number of particles in a configuration also grows indefinitely.
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Fig. 15 A glider. It is a space-moving pattern of period 6 in T0347
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Fig. 16 A three-way glider gun created by a collision of a glider with a fin in T0347 [13]. It is an
expanding pattern

We can show that an expanding pattern also expands to the negative time direction
because of reversibility [13]. In fact, the distance between the glider and the fin at
t = 0 in Fig. 16 grows larger and larger when we go back to the past (i.e., t < 0).

It is remarkable that there is a glider gun that generates gliders to the negative
time direction (Fig. 17). It is also an expanding pattern. Furthermore, by appropriately
combining two configurations at t = 0 of Fig. 16 and t = 0 of Fig. 17, it is possible
to have a gun that generates gliders in both positive and negative time directions.

Figure18 gives another example of an expanding pattern. If we start with a one-
particle pattern, a chaotic (or disordered) pattern with many gliders is generated, and
the whole pattern grows larger and larger. Also in this case, a similar chaotic pattern
with gliders appears and grows indefinitely to the negative time direction [13].
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Fig. 17 A three-way glider absorber in T0347 [13]. It is a glider gun to the negative time direction

t = 0

•

t = 75

•
• • •• ••

•• • • •• •• ••
• •• ••• •• • •• ••

•• ••• •• • • • • •• • • • ••
• •• •• • •• •• ••

•• •• •

Fig. 18 A chaotic pattern that expands indefinitely appears from the one-particle pattern in T0347

It should be noted that a chaotic pattern often appears even from a configuration
that contains only periodic patterns and gliders. Therefore, if we want to design a
large pattern that perform some intended task, we should carefully do it so that the
whole pattern never generates a chaotic pattern.

3.2 Interactions of Patterns in T0347

It is known that various interesting phenomena emerge by interacting blocks, fins or
gliders with another glider [13]. In this section, we observe what happens when we
collide a glider to a sequence of blocks.

We first collide a glider with two blocks (Fig. 19a). Then, the glider is split into
a rotator and a fin (t = 56). The fin travels around the blocks three times without
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Fig. 19 Turn modules for a glider in T0347 [13]. a Right-turn module composed of two blocks, b
backward-turn module, c U-turn module, and d left-turn module
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interacting with the rotator. At the end of the fourth round, they meet to form a glider,
which goes to the south-west direction (t = 334). Hence, two blocks act as a 120◦-
right-turn module. It is also possible to make a right-turn module with a different
delay time using three or five blocks. If we collide a glider with a single block as
shown in Fig. 19b, then the glider makes backward turn. Hence, a single block acts
as a backward-turn module. Figure19c is a U-turn module, and Fig. 19d is a left-
turn module. By such interactions, the move direction and the timing of a glider is
completely controlled [13].

There are still other interesting interactions of patterns in T0347, e.g., interactions
of a fin and a glider, and those of two or more gliders. See [10–13] for their details.

3.3 Computational Universality of T0347

To prove computational universality of a reversible CA, it is sufficient to show that
any reversible logic circuit composed of switch gates (Fig. 20a), inverse switch gates
(Fig. 20b), and delay elements can be simulated in it (Lemma 8).

Lemma 8 given below can be derived, e.g., in the following way. First, a Fred-
kin gate (Fig. 20c) can be constructed out of switch gates and inverse switch gates
(Lemma 4). Second, any reversible sequential machine (RSM), in particular, a rotary
element (RE), which is a 2-state 4-symbol RSM, is composed only of Fredkin gates
and delay elements (Lemma 5). Third, any reversible Turing machine is constructed
out of REs (Lemma 6). Finally, any (irreversible) Turing machine is simulated by a
reversible one (Lemma 7). Thus, Lemma 8 follows.

Lemma 4 ([4]) A Fredkin gate can be simulated by a circuit composed of switch
gates and inverse switch gates, which produces no garbage signals.

Lemma 5 ([10])AnyRSM(in particularRE) can be simulated by a circuit composed
of Fredkin gates and delay elements, which produces no garbage signals.

Lemma 6 ([10])Any reversible Turingmachine can be simulated by a garbage-less
circuit composed only of REs.

Lemma 7 ([3]) Any (irreversible) Turing machine can be simulated by a garbage-
less reversible Turing machine.

Fig. 20 a Switch gate. b Inverse switch gate, where c = y1 and x = y2 + y3 under the assumption
(y2 → y1) ∧ (y3 → y1). c Fredkin gate
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Fig. 21 Switching operation realized by collision of two gliders in T0347 [13]

Lemma 8 A reversible CA is computationally universal, if any circuit composed
of switch gates, inverse switch gates, and delay elements is simulated in it.

We now show computational universality of T0347. It is possible to implement a
switch gate and an inverse switch gate in T0347 using gliders as signals. The switching
operation (c, x) �→ (c, cx, cx) is realizedby colliding twogliders as shown inFig. 21.
Usingmany turnmodules to adjust the collision timing and the directions of the input
gliders, we can construct a switch gate module as shown in Fig. 22. An inverse switch
gate can be also realized in a similar manner. By above, and by the dualities among
ETPCAs, we have the following.
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Fig. 22 Switch gate module implemented in T0347, whose input-output delay is 2232 [13]
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Theorem 1 ([13]) The nonconservative reversible ETPCAs T0347, T0617, T7430 and
T7160 are computationally universal.

4 Complex Phenomena in Conservative ETPCAs

In this section, we investigate conservative ETPCAs. There are nine such ETPCAs
(Definition 6), which are classified into the following four equivalence classes.

{T0157, T0457, T0237, T0267}, {T0137, T0467}, {T0167, T0437}, {T0257}

Though the total number of particles in a configuration is conserved in them, the six
ETPCAs in the first two classes still show complex behavior. In particular, they were
shown to be computationally universal [8, 9]. On the other hand, those in the last
two classes are trivial ETPCAs, and thus they are non-universal [9].

4.1 Conservative ETPCA T0157

Here we consider the conservative and reversible ETPCA T0157 (Fig. 23). It was first
studied in [8].

There are many periodic patterns in T0157. Among them two are useful. They are
a block and a one-particle pattern. A block is a stable pattern shown in Fig. 24. On
the other hand, a one-particle pattern (Fig. 25) rotates clockwise with period 6 by
the second local transition rule of Fig. 23.

In T0157 there exist a large number of space-moving patterns. On this point, T0157 is
very different from T0347. In fact, it is rather easy to find such patterns by watching an
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, •• ••
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, •
•

• •••
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Fig. 23 Local function of T0157 defined by four local transition rules

Fig. 24 A block in T0157. It
is a stable pattern •• •••••••• ••

Fig. 25 One-particle pattern
in T0157. It simply rotates
with period 6

•
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Fig. 26 A space-moving pattern of period 1016 in T0157

evolution process starting from a randomly given finite pattern with many particles.
In many cases, some space-moving patterns and some periodic patterns will appear
from it. However, periods of space-moving patterns are generally very long. Figure26
shows an example of a space-moving pattern of period 1016. Furthermore, it exhibits
complex behavior in the period. Since the period is long, it is very difficult to control
a space-moving pattern, in particular to adjust its timing. So far, it is not known
whether there is a space-moving pattern with a very short period (say 10 or less).

Since there are space-moving patterns in T0157, expanding patterns also exist in
it. For example, a configuration consisting of two space-moving patterns that go to
different directions is an expanding pattern, though the total number of particles in
a configuration is always constant.

Here we use a one-particle pattern, rather than a space-moving pattern, as a signal.
A signal transmission wire, on which a signal can move, is obtained by connecting
blocks as shown in Fig. 27. Wires can be bent relatively freely, and by this the timing
of a signal is adjusted. In [8, 12], a module for crossing two signals in the two-
dimensional space is given.

The switch gate operation (c, x) �→ (c, cx, cx) is realized by one cell of T0157 as
shown in Fig. 28. Likewise, the inverse switch gate operation is also realized by one
cell. Complete patterns of a switch gate module, and an inverse switch gate module
are given in [8, 12].



378 K. Morita

•• •••••••• ••
•• •••••••• •••• •••••••• •• •• •••••••• ••

•• •••••••• ••

•• •••••••• ••

•
1 2

3
4

5 6
7

89 10
11

1213 14
15
16

17 18
19
20

21 2223
24

25 26
27
28

Fig. 27 Transmission of a signal along a wire consisting of blocks in T0157 [8, 12]. A small number
t (1 ≤ t ≤ 28) shows the position of the signal at time t
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Fig. 28 Switch gate operation realized by one cell of T0157

4.2 Conservative ETPCA T0137

Next, consider the conservative and reversible ETPCA T0137 (Fig. 29).
Among many periodic patterns in T0137, a block and a one-particle pattern are

useful as in the case of T0157. Figure30 shows a block in T0137. Though it is different
from Fig. 24, it is stable in T0137. The one-particle pattern (Fig. 25) rotates clockwise
with period 6 also in T0137.

Similar to the case of T0157, there are many space-moving patterns in T0137. Again,
in this case, their periods are very long. Hence, it is hard to use them as signals in
logic circuits. Figure31 is an example of a space-moving pattern of period 3162.
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Fig. 29 Local function of T0137 defined by four local transition rules

Fig. 30 A block in T0137. It
is a stable pattern • • •• • •
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Fig. 31 A space-moving pattern of period 3162 in T0137
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Fig. 32 Transmission of a signal along a wire in T0137 [9, 12]

Fig. 33 Switch gate
operation realized by one
cell of T0137

x

0

c � cx
c

cx

Figure32 shows a signal transmission wire in T0137 composed of blocks, on which
a particle travels as a signal. The switch gate operation is realized by one cell of T0137
as in Fig. 33. Using these phenomena and operations, a signal crossing module, a
switch gate module and an inverse switch gate module can be constructed (see [9,
12] for the details).
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4.3 Universality of Reversible and Conservative ETPCAs

As seen in Sects. 4.1 and 4.2, any circuit composed of switch gates, inverse switch
gates, and signal delays is embeddable in each of T0157 and T0137. Hence by Lemma 8,
they are computationally universal. Therefore all ETPCAs in the equivalence classes
of {T0157, T0457, T0237, T0267} and {T0137, T0467} are also computationally universal.

On the other hand, it is shown that all configurations of T0257 are of period 2, and
thus it is a trivial ETPCA [12]. In fact, we can interpret the local function of T0257
as the one where every particle moves back and forth between two adjacent cells.
Likewise in T0167 and T0437, all configurations are of period 6 [12]. Hence they are
non-universal.

By above, we have the following theorem, which clarifies universality of all the
nine conservative ETPCAs.

Theorem 2 ([8, 9, 12]) The reversible and conservative ETPCAs T0157, T0457, T0237,
T0267, T0137, and T0467 are computationally universal. On the other hand, T0167, T0437,
and T0257 are non-universal.

5 Concluding Remarks

In this chapter, we saw even quite simple CAs called reversible ETPCAs exhibit
complex behavior. In particular, ten reversible ETPCAs in three equivalence classes
were shown to be computationally universal (Theorems 1 and 2) by a tricky use of
complex phenomena found in them. A further result is given in [10, 11]: Reversible
Turing machines are compactly implemented in the ETPCA 0347 using a special
type of reversible logic element with memory, rather than a reversible logic gate.
Investigation of other universal or interesting ETPCAs is left for the future study.
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