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Preface

Eric Goles is one of the world leaders in the field of automata and complexity. His
made groundbreaking discovering theory and analysis of complex systems, particu-
larly in the field of discrete systems dynamics such as neural networks, automata
networks, majority networks, bootstrap percolation models, cellular automata,
computational complexity theory, discrete mathematics and theoretical computer
science. This book commemorates Eric Goles’s achievements in science and engi-
neering. The chapters are authored by world leaders in computer science, physics,
mathematics and engineering.

The book will be a pleasure to explore for readers from all walks of life, from
undergraduate students to university professors, from mathematicians, computers
scientists and engineers to chemists and biologists.

Bristol, UK
July 2021

Andrew Adamatzky
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Eric Goles

Andrew Adamatzky

Eric Goles, son of a theatre actress and a musician, was born in Antofagasta, in
northern Chile, between the Pacific Ocean and the desert of Atacama. In 1970, he
joined the University of Chile and graduated with a degree in mathematical engi-
neering in 1975. He later went to the University of Grenoble, France, to carry out
doctoral studies which culminated in 1980 with his thesis “Comportement oscil-
latoire d’une famille d’automates cellulaires non uniformes” where he proved the
nowadays famous theorem that symmetric threshold automaton oscillates only with
period one (fixed points) or two [12, 30, 57, 58, 62]. A nice review of this theorem
can be found in [16]. In 1982, Eric joined the prestigious CNRS (French National
Centre for Scientific Research) and moved to France. First to the Institute of Applied
Mathematics, IMAG, at the University of Grenoble and later to the Laboratory on
Network dynamics and Epistemology at the Polytechnic Institute in Paris. During
this period, he carried out a state thesis in Mathematics, also in the field of automata
networks [31]. After moving back to Chile to join the Engineering School of the
Universidad de Chile, where he worked as a Professor till 2006. He thenmoved to the
Faculty of Engineering and Sciences at the University Adolfo Ibáñez where he is still
working. In 2004 he also founded the Institute of Complex Systems at Valparaiso,
the first-ever Chilean research establishment devoted to complex systems. In 1993
he was honoured with the main scientific award of his country, the National Science
Price. He has written more than two hundred articles and ten books. Further, he has
trained a huge number of young scientists both in Chile and abroad. Eric excels
in numerous fields like theoretical computer science, discrete mathematics, neural
and Boolean networks, cellular automata and mathematical modelling in physics,

A. Adamatzky (B)
Unconventional Computing Laboratory, University of the West of England,
Bristol BS16 1QY, UK
e-mail: andrew.adamatzky@uwe.ac.uk
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biology, and social sciences. Here we provide just a few examples of his and his
colleagues’ outstanding research results.

Sand Piles and Chip Firing Game
The sand piles model, closely related to Spencer’s chip firing game [75], was intro-
duced as a tool to study self-organised criticality [2]. Eric analysed this model from
complexity and computational universality points of view [38, 55, 56]. Results of
the analysis were impressive. In 1992, Eric determines the lattice structure of the
sand pile automata [33] and in Goles and Kiwi provided bounds for the transient
time length of the sand pile modules, characterised the fixed points to which they
converge and gave closed formulas for the sequential transient time [36, 37]. In the
same year Bitar and Goles determined the two-cycle behaviour of the parallel chip
firing game on trees and demonstrated that the chip firing game belongs to Wolfram
class 4 automata [3]. In series of influential papers Eric and colleagues demonstrated
that sand pile and chip firing game are universal computers. That is by representing
logical truth by presence of a sand grain or a chip and logical false by absence of
the grain/chip one route information as avalanches and implement logical gates via
interaction of avalanches in an appropriate geometrical structure [23, 42, 43]. Other
impressive results related to sand pile model, developed by Eric and colleagues,
include estimation of computational complexity of sandpile avalanches [21], anal-
ysis of sandpile dynamical responses to reversal of the avalanche’s source position
[59], determination of non-polynomial (almost exponential) periods for the parallel
chip firing game [65].

Sakoda and Schelling Models
In 1943 Sakoda developed a model of attitude-based social interaction of discrete
agents, which was only published thirty years later in 1971 [73] at the same time
as the similar model proposed by Schelling [74]. The models laid a foundation for
studies of spatial mechanisms of social dynamics and economy. When Schelling
was awarded a Nobel Prize in Economy “his models of segregation” was cited in an
official documents as one reasons for the award [63]. In 2011Goles et al. [17] studied
exhaustively the behaviour of a generalized Schelling model in a two and three-
dimensional grid with several neighbourhoods and they establish an energy operator
associated with the model’s dynamics. Other developments concerning the Schelling
model can be seen in a combinatorial game developed by Eric and colleagues: a line
(or cycle) graph with white and black tokens and an empty site where two players
move alternately one of its colour’s token to the hole trying to reach a connected
configuration of its tokens [35]. Eric’s interest in social models continued to develop
precisely in the almost forgotten model of Sakoda through the characterization of the
dynamics of all aptitude rules in one and two-dimensional grids [69]. More recently
a generalisation of Schelling’s model to other local functions in a two-dimensional
grid has been done in [78].

Communication Complexity
This topic of computer science research attractedEric’s interest for a number of years.
In 2008 Eric and colleagues proposed to define cellular automata via their commu-
nication protocols: “if we are able to give a protocol describing a cellular automaton,
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then we can understand its behaviour” [46]. In the same paper they proposed a
hierarchy of complexity classes in cellular automata, based on their communication
complexity of the automata. In [64] the same authors determine complexity equiva-
lences between one round communication protocols and intrinsic cellular automata
universality. Analysis of communicating protocols emerging from cellular automa-
ton dynamics has been continued in [39] where authors developed a non-trivial
communication protocol describing dynamics of elementary cellular automaton rule
218. In [28] Eric and colleagues have given protocols, and lower bounds of the same
order, that together solve the one-round communication complexity of the prediction
problem for nearly one-third of all elementary cellular automata, corresponding to
the family of monotone rules. Most recent results of Eric’s team have been about
communication complexity of number-conserving cellular automata [28, 54].

Computational Complexity and Universality
These two topics usually go a pair in Eric and colleagues’ works because the com-
putational complexity of a system is typically estimated by embedding a relevant
Boolean circuit in the system. In 1993 Eric and colleagues constructed a simulation
of a Turing machine by cellular automata based on the equivalence between pro-
grammable machines and Turing machines [41]. They proved that for this class of
cellular automata the associated limit language is regular. In paper [22] Gajardo and
Goles present designs of Boolean circuits embedded in the space-time evolution of
the two-dimensional three-state automaton. To enhance their proof of the universal-
ity of the automaton they also simulate a Turing machine in the reaction-diffusion
automaton. Later, Goles and Montealegre analysed computational complexity of
majority automata networks (the state of a vertex being the most represented in its
neighbour). One of the first to study the relationship between the dynamics of the
majority automata and its computational complexity was C. Moore proving in [6]
that the majority automaton is P-Complete in three or more dimensions, leaving open
the complexity characterization in a two-dimensional grid. Later, in [53] Eric and his
colleagues characterize the complexity of the frozen majority (i.e., state 1 remains
invariant): if the maximum degree of the network is 5 or more then the problem is
P-complete, otherwise (maximum degree less than 5) the problem is in the class NC.
Further, the same authors proved in [49] that themajority automaton in planar graphs
is P-complete. To achieve that they used the two periodic behaviour of the majority
automaton [12, 57, 62] as traffic lights to cross information. Further, by consider-
ing other iteration schemes they proved that the majority automaton iterated under
a block sequential updating scheme is NP-Hard [48]. Result which is improved in
[52] by proving that the problem is PSPACE-Complete. Previous results are obtained
for the usual majority automata, i.e., the networks admit weights 0 or 1, say to sites
are friends if they are connected (i.e., the weight in the incidence matrix is 1). In [50]
they studied the more general case where the weights in the matrix may be−1, 0, 1.
Other problems related to dynamics and computational complexity are related to the
diffusion limited segregation studied recently in [4]. Their most recent results deal
with the complexity boundaries of the graphs with polynomially growing treewidth
[51].
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Neural and Boolean Automata Networks
First Eric’s works on these subjects are dated back to his thesis in 1980, where he
characterizes the dynamical behaviour of disjunctive networks and also proved his
very well know theorem about the periodicity of symmetric neural networks [12,
57, 58, 62] . But that was only the beginning, in [32], where he obtained bounds on
the cycle and transient length for parallel iterations of antisymmetric sign functions.
Later in Cosnard et al. [15] studied and derived formalism related to the thresh-
old neural automata with memory: bounds on transient periods, and characterised
reversibility versus the coupling coefficients. From 1985 Goles and colleagues intro-
duced decreasing energy functions as a tool for analyses a huge class of neural
automata networks [8, 29, 45, 62]. This tool has been successfully applied in study-
ing various types of continuous state and discrete state neural networks [13, 14, 20,
61]. Other notable results in Boolean and neural networks include but not limited
to the following: (1) necessary and sufficient conditions for the existence of fixed
points in discrete neural networks and an upper bound for the number of fixed points
[1], (2) exponential transient classes of symmetric neural networks for synchronous
and sequential updating [44] (3) complexity of high-order neural networks [9], (4)
characterisation of attractor space of neural networks over undirected graphs [11]
(5) universality, via embedding Boolean circuits and simulating Turing machine, of
discrete neural networks [10, 27]. One of Eric’s recent works [11] characterizes
completely the existence of cycles for symmetric network iterated both in parallel or
block-sequentially. The authors define an index to the graphs of the automaton such
that there exist cycles other than fixed points (period two or more) if and only if such
index is non-negative.

Discrete Ants
Advances of Langton’s ant model [66] have been done in several directions. Eric
and collaborators developed a generation of Langton’s ant model and analysed the
complexity of the ants’ behaviour on the graphs. They shown a high degree of unpre-
dictability in general case, especially in the families of finite graphs where the period
of the system growth exponentially with the size of the graph. They also shown that
a prediction of the dynamics of the generalised ants on finite graphs is P-hard [25].
In paper [26] they constructed Boolean circuits with the trajectory of a single ant.
They prove P-hardness of the ants system. Further studies dealt with detailed char-
acterisaton of space-time dynamics of 64 ant’s rules [24] and analyses of complex
pattern formation and sensitivity of traces of two-dimensional ants [67].

Tiling
Eric and colleagues contribution to the tiling theory has been manifested in three key
results. First, they demonstrated the existence of coding that allows for an efficient
transformation of an arbitrary degrees of freedom tiling problem into a restricted four
degrees of freedom problem (the tiling with rotation) [60]. Second, they provided
solution to the following problem: to tile a rectangle or a torus with only vertical and
horizontal bars of a given length such that the number of bars in every column and
row equals to some given numbers [18]. Third, they established a bridge between
tiling and folding. Namely, given a finite word coding vertical and horizontal folds
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they provided a necessary and sufficient condition in order to tile the plane with a
set of tiles constructed with copies of the unfold surface [34].

Analysis of Natural Systems
From the beginning, during his doctoral studies, Eric was interested in Boolean
networks and its applications. Actually, he told me that one of the first articles that
he read seriously was Stuart Kauffman’s paper, Metabolic stability and epigenesis
in randomly constructed genetic nets [64]. From that Eric and colleagues continue
to apply Boolean networks in modelling and analysis of natural systems. The results
included characterisation of two-dimensional Boolean dynamics in a grid such that
each Boolean rule has only two inputs [19], representation of microbial interactions
in a human microbiome as threshold Boolean networks [76], modelling the immune
control of macrophages and the genetic control of the floral morphogenesis [40,
70], the analysis of cell cycle models [47] bacterium quorum sensing [72], a novel
framework to study the influence of minimal cognitive mechanisms on the formation
and evolution of languages [77], plants response to salt stress [71] and contagion
phenomena in a two-dimensional grid [6].

Decision Making and Social Science
One of Eric’s first works in this subject was to characterize the behaviour of a
population to choose an opinion among several [61]. In paper [7] Eric and col-
leagues analyzed two simple dynamical models of decision that represent the school
choice problem under two views: (1) individual expectations when deciding for a
school, without major consideration of the social environment, and (2) focused on
social expectations modelled by the neighbourhood preferences when deciding for
a school. The computational experiments demonstrated that the social expectations
model represents a more socially efficient situation that may help families to stay
informed about accessibility, information, social capital, and improved school per-
formances. Recently in [5] Eric and colleagues present amodel of competing activist
and political polarization and in [68] a model related to social crisis. Other key top-
ics of Eric Goles and colleagues research include block invariance and reversibility
of one-dimensional linear cellular automata, Lyapunov operators to study the con-
vergence of extreme automata, properties of positive functions and the dynamics
of associated automata networks, effects of firing memory in the dynamics of con-
junctive networks, the complexity of asynchronous freezing cellular automata, on
the robustness of update schedules in Boolean networks, naming game automata
networks, complexity of the majority rule on planar graphs, learning gene regula-
tory networks using the bees algorithm, a sequential operator for filtering cycles in
Boolean networks, prime number selection of cycles in a predator-prey model.
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Seven Things I Know About Them

Jacques Demongeot

Abstract In this paper, we intend to present a series of 7 application examples
inspired by the work of Eric Goles with his numerous collaborators, while remaining
focused on thefield ofBoolean automata. This constitutes a sort of anthology showing
the extent of the mathematical domain defined by the study of Boolean automata
dynamics, showing the relevance of open paths and results obtained by Eric Goles
and the high explanatory power of the models which arise from his work during
45 years.

Keywords Boolean automata · Automata gradient dynamics · Automata
Hamiltonian dynamics · Updating schedule

1 Introduction

A discrete dynamical system has the same definition that the continuous ones. It
involves a flow function f defined on ExT, where T is a discrete time space (in general
N) and E a discrete state space ({0, 1}n in the Boolean case and more generally a
finite subset ofR +

n), f (x, t) representing for each state x and time t, the state reached
after time t by the trajectory starting in state x at time 0. We denote in general f (x(0),
t) by x(t) = (xi(t))i=1,…,n, which permits to have a coherent notation for all the states
of a trajectory. The set of such states is called the orbit of x(0). Following [1], we
can now define the discrete time derivative for the state vector (xi(t))i = 1, …,n by:

�xi/�t = (xi (t + �t) − xi (t))/�t,

which reduces to xi(t + 1) − xi(t), if Δt = 1. By using the same formula, we can
also define:
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– the space derivative: �g(x)/�i = (g(xi+�i) − g(xi))/�i = g(xi + 1) − g(xi), if i is
1-dimensional and �i = 1. If i is n-dimensional, it is possible to partially derive
in each dimension.

– the partial state derivative: �g(x)/�xi = [g(x1,…, xi + �xi,…, xn) − g(x1,…,
xi,…, xn)]/�xi.

A discrete automaton is defined by a transition function F:

�xi/�t = (xi (t + �t) − xi (t))/�t = Fi (x(t)),

where Fi depends only on coordinates (xj(t))j∈V(i), V(i) being a neighbourhood of i
in the space set (in general the Manhattan—or L1—unit ball of E ∩ R+

n centred on i
and having a radius equal to 1), with conditions defining V on the boundary of E (e.g.
periodic) and with constraints on the discrete velocity ensuring that flow remains in
E.

We will first define a discrete analogous of a potential (or gradient) continuous
dynamical system (called here potential automaton). A continuous potential differ-
ential equation on R

n is defined by: ∀i = 1,…,n, dxi/dt = − ∂P/∂xi, where P is a
real continuously differentiable function (e.g., a polynomial with real coefficients)
onRn. In the same way, a potential automaton on the discrete state space E is defined
by:

xi (t + 1) = h(−�P/�xi + xi (t)), (1)

where P is a real function (e.g., a polynomial with real coefficients) on E and h a
function from R to E, with boundary conditions ensuring that the flow remains in E.
For example, in the Boolean case, we will choose for h the Heaviside function H:
H(s) = 1, if s > 0, and H(s) = 0, if s ≤ 0. In the integer case (E subset of Nn), h can
be the identity, if P has integer coefficients and if ∀i = 1,…,n, Δxi∈ {−1, 0, 1}.

Provided by the above definitions, we will give now some examples of application
ofBooleannetworks inspired by theworkofEricGoles andhis numerous co-workers.

2 Seven Remarks About Boolean Automata Theory

2.1 Potential Boolean Automata (Inspired by Cosnard
and Goles [2])

Proposition 1 In the Boolean case, let suppose that A = 0, P(x) = txAx + Bx, with
aii = 0 and each sub-matrix on any subset J of indices in {1, …,n} of A is non
positive and less than the linear operator -B restrained on J. Then P decreases on the
trajectories of the potential automata defined by xi(t + 1) = H(−ΔP/Δxi + xi(t))
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for any mode of implementation of the dynamics (sequential, block sequential and
parallel). These Boolean automata constitute a Hopfield-like network whose weights
are wii = 1 and wij = − aij − aji, ∀ j �= i, thresholds are the bi’s, and stable fixed
configurations correspond to the minima of P.

Proof It is easy to check that: ΔP/Δxi = �j�=i (aij + aji) xj + bi and: xi (t+1) = H
(−P/xi + x i(t)) = H (−[j �= i (aij + aji) xj(t) + bi] + xi(t)) = H (j wijxj(t) − bi)

We can calculate for the block sequential iteration at any step of block J:

xi (t + 1) = H(−�P/�xi + xi (t)) = H(−[
∑

j �=i

(
ai j + a ji

)
x j (t) + bi ] + xi (t))

= H(
∑

j
wi j x j (t) − bi )

P(x(t + 1)) − P(x(t)) =
∑

(i, j)∈J×J
ai j�xi�x j +

∑
i∈J

bi�xi ≤ 0,

the result coming from the hypothesis on the sub-matrices J of W or from [2] �

The interest of the Proposition 1 is to show that the Hopfield-like network defined
by:

∀i = 1, ..., n, xi (t + 1) =H
(∑

j
wi j x j (t) − bi

)
, with

wi i =1, wi j < 0, bi ≥ e > 0,

has not only P as Lyapunov function as proved in [2], but more it can be considered
as a potential automaton with a potential equal to P, because the opposite of the
gradient of P is related to the velocity of the automaton, what is quite different in
general for a system with simply a Lyapunov function (Fig. 1) [3].

Another example of potential Boolean automata is given by the n-switch often
used in morphogenesis modelling [4, 5], for example in dorsal somites (Fig. 2) [6]
or skin appendages [7, 8] models. It is easy to show that its Hopfield-like dynamics
with all weights wij equal to −1, except wii = 1 and all bi ≥ e > 0, is gradient for any
updating mode and its attractors are the 6 fixed points (10,000), (01,000), (00,100),

Fig. 1 Potential automaton
with �x = -gradP (on the
left) and an automaton with a
Lyapunov function
decreasing on its trajectories
(on the right) (after [3])

Gradient system Lyapunov system
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Fig. 2 “Metatron” interaction graph of a 5-switch (after [4, 5])

(00,010) and (00,001) and (00,000). The equivalent continuous model [5] has the
same property.

2.2 Hamiltonian Boolean Automata

Proposition 2 Let us consider a deterministic Hopfield-like network of size n, which
is a circuit sequentially or synchronously updated with constant absolute value w for
its non-zero interactionweights. Then, its dynamics is conservative, keeping constant
on the trajectories the Hamiltonian function L defined by:

L(x(t)) =
∑

i=1,n

(xi (t) − xi (t − 1))2

2

=
∑

i=1,n

H
(
wi(i−1)modnxi−1(t − 1) − xi (t − 1)

)2

2

whereH denotes the classical Heaviside function. L(x(t)) is the total discrete kinetic
energy of the network, equal to the half of the global dynamic frustration:

F(x(t)) =
∑

i=1−n
Fi,(i−1)modn(x(t)),

with Fi, (i − 1) modn is the local dynamic frustration defined between nodes (i − 1) and
i by:Fi, (i − 1) (x(t)) = 1, if {sign(wi(i − 1)) = 1, xi(t) �= xi−1(t −1)} {sign(wi(i − 1)) =
− 1, xi(t) = xi− 1(t − 1)}, = 0, if not.
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Fig. 3 On the left: calculation of the global frustration F for circuits of length 8 with only identities
and negations as local transitions. On the right: “Arabidopsis” interaction graph with eight nodes
and two circuits of length 2 (after [4, 5]), one frustrated (in red) and the other not frustrated (in blue)

Proposition 2 still holds if the network is a circuit whose transition functions
are Boolean identity or negation [10], on which it is easy to calculate the global
frustration F and show that it characterizes attractors by remaining constant along
them (Fig. 3).

A general program of characterizing potential andHamiltonian Boolean automata
could extend the energetic notion of dissipative (potential) and conservative (Hamil-
tonian) energy, from theHopfield-like Boolean networks to themost general Boolean
automata. This work would be in the direct continuation of the pioneering work of
the two PhD students of François Robert, Eric Goles and Françoise Fogelman [11].

2.3 Social Choice and Majority Rule

In the spirit of the games theory of the seventies [12], Eric Goles and Maurice
Tchuente considered in [13] a society of n persons {P1,…,Pn} having at time t
opinions {x1(t),…, xn(t)} with interaction coefficient aij = aji between Pi and Pj. Let
{θ1,… ,θp} be the set of possible opinions which may be assumed by any person,
with a local hierarchy hi adopted by each person Pi (a reordering of opinion indices
without ex-æquo, that is a permutation of {1,…, p}). The dynamical behaviour of
such a society depends on local majority rules, where, if a(k) denotes the global
weight of the opinion θk, the change of opinion is made as follows:

xi(t + 1) = k,with

k = sup

{
i/∀r = 1, . . . , p, a(i)

∑
j/x j (t)=k

ai j ≥ a(r)
∑

j/x j (t)=r
ai j

}

Then, the main result is the following.

Proposition 3 In such a society the opinion of anymemberPi, after a certain number
of steps, either remains constant or oscillates between two values.
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This work inspired general studies on social choices as those described in [14, 15].

2.4 Eberhard-Robert Scholia

Recently, François Robert has established in collaboration with André Eberhard a
very interesting result we can call a “scholia”, because it is an original explana-
tory comment opening a new domain of research concerning interactions between
automata networks. The example treated in [16] concerns cross interactions between
two Boolean automata of size 2, one with transition F0 and the other with transition
G0, evolving in time with the following rules, where symbol ¬ denotes Boolean
complementary (negation):

– Sequential dependence: G1(x1, x2) = G0(F0(x1, x2), x2), F1(x1, x2) = F0(x1,
G1(x1, x2)),…, Gi(x1, x2) = Gi-1(F i-1(x1, x2), x2), Fi (x1, x2) = Fi-1 (x1, Gi(x1,
x2)),…

– Parallel dependence: G1(x1, x2) = G0(F0(x1, x2), x2), F1(x1, x2) = F0(x1, G0(x1,
x2)),…,

Gi(x1, x2) = Gi-1(F i-1(x1, x2), x2), Fi (x1, x2) = Fi-1 (x1, Gi-1(x1, x2)),…
– Sequential opposition: G1(x1, x2) = G0(¬F0(x1, x2), x2), F1(x1, x2) = F0(x1,

¬G1(x1, x2)),…,Gi(x1, x2)=Gi-1(¬F i-1(x1, x2), x2),Fi (x1, x2)=Fi-1 (x1, ¬Gi(x1,
x2)),…

– Parallel opposition:G1(x1, x2)=G0(¬F0(x1, x2), x2),F1(x1, x2)=F0(x1, ¬G0(x1,
…….x2)),…,

Gi(x1, x2) = Gi-1(¬F i-1(x1, x2), x2), Fi (x1, x2) = Fi-1 (x1, ¬Gi-1(x1, x2)),…

Then, the Eberhard-Robert scholia says:

Proposition 4

(i) Sequential and parallel dependence (resp. opposition) rules give same fixed
points.

(ii) The transform by sequential (resp. parallel) opposition of (¬F, ¬G) is the
complementary of the transform by sequential (resp. parallel) dependence of
(F, G).

Such a result can be applied to situations in which two groups of actors (political,
ethnic, social, neural, genetic, etc.) or two age classes evolve by taking social choices
with cross interactions. It could serve namely to revisit and interpret the asymptotic
properties of complex Boolean biological networks as those studied in [17, 18].
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2.5 Arabesques

A close friend of Eric Goles, René Thomas, invented the notion of arabesques
systems, and studied their dynamics both in discrete and continuous framework
[17, 19, 20]. The Boolean equations of such a system of size n is given by:

∀i = 1, . . . , n, xi = H
(
wi i Xi − wX j+1(modn) + wXi−1(modn)

)

The weights verify: 0 ≤ wii < w. If n = 2 and w22 = 0, the arabesque is called
regulon [17]. It is the smallest network containing one positive and one negative
circuit (Fig. 4). The dynamics of the arabesque of size 2, with w11 = w22 > 0, has
been used for representing for example the functioning of the hippocampus [19, 20].
The asymptotic behaviour of the arabesque of size 3 in sequential updating (Fig. 4)
is represented by two unstable fixed points (000), (111), and a stable cycle of order
6 (010*, 0*11, 01*1, 001*, 0*01, 10*1, 101*, 1*00, 10*0, 110*, 1*10, 01*0), *
denoting the node to update, with (011*, 0*10, 01*0), (00*1, 001*), (1*01, 0*01),
(100*, 1*00) and (11*0, 110*) as attraction basin trajectories.

In parallel updating mode, (000) and (111) are unstable fixed point and there is a
cycle of order 6 (010, 011, 001, 101, 100, 110). This cycle exists in the continuous
analog (useful to interpret the mechanism of memory evocation [19]) and both in
discrete parallel and in continuous case withwii = 0, the system is Hamiltonian, with
conservation of the kinetic energy, independently of the number of tangent circuits
in the arabesque. A deeper study of such intersecting circuits can be found in [20].

Fig. 4 On the left, regulon of size 3. On the right, arabesque of size 3. The positive interactions
(activations) are represented by green arrows, the negative (inhibitions) by red ones
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E. Goles
F. Robert
N. Gastinel
J. Kuntzmann
G. Valiron (also advisor of L. Schwartz, himself advisor of J.L. Lions)
E. Borel
G. Darboux (also advisor of H. Lebesgue)
E. Borel
M. Chasles
S.D. Poisson
J.L. Lagrange (also advisor of J. Fourier) P.S. Laplace
L. Euler  J. Le Rond d'Alembert
Johann Bernoulli (also advisor of D. Bernoulli)
Jacob Bernoulli  N. Eglinger
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E. Reinhold  J. Toussain
J. Milich G. Budé
D. Erasmus

Fig. 5 Mathematical genealogy of Eric Goles. A mathematician under another is his PhD advisor

2.6 Block Parallel Updating

The problem of the influence of the updating rule has been emphasized since the
start of the team “Iteration behaviours”, whose members were brought together
by François Robert and Roger Maynard at University Joseph Fourier of Grenoble
(IMAG) in 1983 [22]. A great progress has been done by our PhD students Julio
Aracena, Adrien Elena, Lilian Salinas and Andrès Moreira, when they searched to
escape the classical parallel and sequential updating modes for finding more realistic
schedules [23, 24].

A good example of application for a new updating mode is the nuclear and
mitochondrial genetic expression in which the combination of cellular repressors
(microRNAs and circular RNAS), mitochondrial genes (relative to the cell respira-
tion) and nuclear genes under the control of the chromatin clock, present a dynamical
schedule close to a new updating mode called block-parallel in [22], for which the
updating is sequential inside blocks, these blocks being updated parallelly with not
necessary the same internal clock. The problems linked to the search for asymp-
totic behavior of such updated Boolean automata are very hard, but will be surely
extensively studied in the future by the Goles’ school.
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2.7 Discrete Convolution (to Regularize, We Convolve, L.
Schwartz)

Yann Le Cun (PhD student of a friend of Eris Goles, Maurice Milgram) has defined
in 1983 at a Colloquium held at Les Houches (University J. Fourier of Grenoble)
and co-organized by J. Demongeot and B. Lacolle from the IMAG team “Iteration
behaviours”, the notion of learning process [25] and then, he used for the deep
learning [26, 27] several discrete convolution operators, useful in writing or image
processing [29]. The Boolean automata z(t) resulting from the discrete convolution
between two Boolean automata x(t) and y(t) (called the kernel filter) can be defined
as follows:

zi (t) =
∑

i−k∈v(i)
xi−k(t)yk(t)

where the size of the neighbourhood V (i) equals p and the positive kernel filter of
size p, y(t), verifies: for any t, k= 1,…, p yk(t)= 1. If xi(t) has a regular derivative (in
the sense of F. Robert [1]), that is, for any spatial derivative and any t, �xi(t)/�i ≤
1, then zi(t) is also regular, because we have: �zi(t)/�i ≤ k

∑
V(i)�xi − k (t)/�k yk(t)

≤ 1.

3 Mathematical Genealogy of Eric Goles as a Conclusion

Eric Goles has a prestigious mathematical genealogy starting with François Robert
and ending with the two most renowned philomaths (like him) of the Renaissance,
Guillaume Budé and Desiderius Erasmus both born in 1467, 584 years before him.
This genealogy is described in Fig. 5 (after [29]).

The first ancestor of Eric Goles intends to end this genealogy with the following
tribute:

«Mon billet pour Éric», by François Robert.
«Éric, la scène se passe à Grenoble quelques années après ta soutenance de thèse.

Retour d’Israël via Paris, et avant de rentrer à Santiago, tu débarques impromptu ce
matin-là dans mon bureau de la Tour IRMA au Campus. Nous sommes contents de
nous revoir, et tu commences à m’expliquer au tableau ce qui préoccupe ton esprit
en ce moment. S’agissait-il du tas de sable qui s’effondre sur lui-même ? Je crois
que oui. Et tu me montres la relation mathématique que tu as écrite au tableau: « Tu
vois, cette expression, eh bien elle ne me plaît pas, elle n’est pas casher !» Devant
mon air d’incompréhension, tu corriges immédiatement: « Disons qu’elle n’est pas
très catholique !», ce qui n’a pas amélioré ma compréhension pour autant, mais j’ai
alors saisi en un éclair le concept de mathématicien international que tu commençais
à incarner alors.
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J’ai par ailleurs été très sensible au témoignage chaleureux que tu as rendu récem-
ment à Jacques Demongeot [30], dans lequel tu insistes beaucoup pour rendre effec-
tivement sensible cette part d’éternité et de globalité de vos échanges dînatoires,
mathématiques ou non, que ce soit au Bar national de Santiago ou ailleurs: une carac-
téristique importante qui vous situe bien. Et de plus, ce témoignage m’a redonné
comme instantanément aussi la vive perception du compagnonnage artisanal qui
animait les membres de notre groupe « Comportement d’Itérations». Quelle équipe,
en effet, d’excellents chercheurs ! Je les cite par ordre d’entrée en scène: Michel
Cosnard, Maurice Tchuente, toi Eric, Françoise Fogelman, Houcine Snoussi, Yves
Robert, les premiers couteaux en quelque sorte, tous chercheurs C.N.R.S. (sauf
Françoise, universitaire, et Houcine, boursier marocain) et une huitaine de jeunes
en troisième cycle. Jacques Demongeot entretenait des relations suivies avec tout
ce petit monde. Nous partagions chaque semaine notre conviction dans la dimen-
sion intemporelle de notre réalité mathématique en cours d’élaboration, assidûment
méditée et travaillée, et c’était là que résidait le ciment du groupe.

En ce qui te concerne, ta façon très spécifique de « faire des maths» est maintenant
largement connue: fougueux, jovial, parfois brouillon et fâché de l’être, tu déploies
au tableau une puissante séduction mathématique qui jaillit de ta très forte conviction
personnelle, manipulant un maelström de notions entrelacées… Tu convaincs, car tu
es habité, et spécifiquement toi !

Il n’empêche: les deux théorèmes de Golès-Martinez sur les cycles de longueur
deux dans les réseaux d’automates à seuils symétriques (il y a trente-cinq ans !)
resteront pour moi le signal fort d’un accomplissement à venir, qui s’est grandement
réalisé depuis. J’ai même vu récemment que tu avais contribué à faire, de la fourmi
de Langton, la brique de base d’un calculateur universel, dans la ligne de ce que vous
élaboriez à l’époque avec Maurice Tchuente et Yves Robert sur d’autres modèles.

Cher Éric, bon et heureux 70, et longue vie ! Avec toute mon amitié, François
Robert.»
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Distortion in Automorphisms of
Expansive Systems

Nicolas Bitar, Sebastian Donoso, and Alejandro Maass

Abstract In this work we study the role distortion plays on automorphisms groups
of expansive dynamical systems. We begin by generalizing results from subshifts,
linking distortion and non-expansivity, to arbitrary expansive systems, and explore
the subset of symmetrically distorted automorphisms. Due to the generalization, we
are able to determine that expansive automorphisms can never be distorted.

1 Introduction

In symbolic dynamics and group theory, distortion generally refers to an object that
grows or moves sub-linearly. In particular, we say that a cellular automaton or an
endomorphism acting on a symbolic space is range distorted if the local radius of
the iterated applications grows at the aforementioned rate. Examples of this behav-
ior can be constructed from Turing machines when viewed as endomorphisms or
automorphisms of a symbolic space. Indeed, Guillon and Salo showed in [7] that
any aperiodic Turing machine is range distorted. Also, using the so-called conveyor
belt technique one can show that on any sofic shift one can define a non-trivial range
distorted automorphism.

Analogously, an element of a finitely generated group is said to be distorted if
its minimal expression on the generating set grows sub-linearly with successive iter-
ations of the element. The two mentioned concepts are related: a group distorted
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automorphism is always range distorted (here we are considering the group of auto-
morphisms). This prompts the fundamental question: does the converse hold?

To address this question, several notions of discrete Lyapunov exponents have
been introduced. These objects are closely related to range distortion due to the fact
that they quantify the average rate at which any kind of endomorphism on a symbolic
space moves information. One recent example are the exponents introduced by Cyr,
Franks and Kra in [6], that quantify the rate at which information is moved asymp-
totically. The novelty of these exponents is that they relate distortion to geometrical
properties of the space-time defined by endomorphisms.

In this article, we will show that the phenomenon of distortion is not exclusive
to the realm of symbolic systems. This is achieved through the use of M. Boyle
and D. Lind’s work on expansive dynamical systems [2]. We generalize both the
notions of local radius and asymptotic Lyapunov exponents to endomorphisms of
arbitrary expansive dynamical systems. Furthermore, the connections between dis-
tortion and geometry are preserved. We exemplify this generalization by considering
automorphisms of the n-torus.

There is a second question we want to address in this article. Since Boyle and
Lind introduced the notions of expansive and non-expansive directions for the study
of directional dynamics of an action, there has been one persistent question: which
sets can occur as sets of non-expansive directions?

In [2] they showed that this set is closed and, if the domain is infinite, non-empty.
Furthermore, they showed that any closed set of directions,with twoormore elements
is the set of non-expansive directions for some action. Later, Hochman showed in
[9] that for every direction, there exists an automorphism of a subshift such that its
unique non-expansive direction is the selected one, effectively solving the realization
problem. Nevertheless, the subshift built to achieve this result lacks of many natural
dynamical properties onewould like to get, as transitivity orminimality. Thismotives
the author to ask the following, still open, question: Does any closed non-empty set of
directions arise as the set of non-expansive directions of a Z2-action that is transitive
or minimal?

Webegin by introducing the necessary concepts from the field of symbolic dynam-
ics from the theory of expansive dynamical systems. We then proceed to generalize
the concept of radius to the context of expansive systems, introducing the concept of
distorted automorphism. Next, we introduce alternative notions of distortion through
the generalization of discrete Lyapunov exponent to the realm of expansive systems.
This allows us to establish a connection between non-expansive directions and the
asymptotic behavior of an automorphism. In addition, we establish that no expansive
automorphism can be distorted.We continue by addressing the question of group dis-
tortion in relation to range distortion by studying the set of distorted automorphisms
with distorted inverse. Finally, we look at examples of distorted automorphisms,
first in the context of subshifts through the use of Turing Machines and then in a
non-symbolic example through the study of automorphisms of the torus.
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2 Definitions

2.1 Symbolic Spaces

Let � be a finite set, which we will henceforth call the alphabet. A full-shift is the
dynamical systemgiven by the space�Z, endowedwith the product topology, and the
shift function σ : �Z → �Z given by σ(x)i = xi+1, for all x = (xi )i∈Z and i ∈ Z.
A σ -invariant and closed subset X of a full-shift �Z is called a subshift. Usually we
denote a subshift by (X, σ ) or X indistinctly.

Given a configuration x ∈ X , for i < j we denote the finite word composed by
the symbols in x from index i up to j , xi xi+1 . . . x j−1x j , by x[i, j].

The set of finite words appearing in points or configurations of �Z is denoted
by �∗. Define the language of a subshift X ⊆ �Z, as the set of all finite words that
appear on configurations in X ,

L(X) = {w ∈ �∗ : w = x[n,m], for some integers n ≤ m and x ∈ X}

Definition 1 A subshift X ⊆ �Z is said to be a shift of finite type (SFT), if there
exists a finite set of (forbidden) words F ⊆ �∗ such that x ∈ X if and only if no
word in F appears as a subword of x .

A subshift X ⊆ �Z is said to be mixing if there exists N ∈ N such that for every
pair of words u, v ∈ L(X) and n ≥ N there exists w ∈ L(X) such that |w| ≥ n and
uwv ∈ L(X).

2.2 Endomorphisms of a Shift Space

A map f : X → Y between two subshifts X and Y is called a morphism if it is
continuous and shift commuting, that is, f ◦ σ = σ ◦ f . One says the function is an
endomorphism if X = Y and an automorphism if it is also bijective. We will denote
the set of all automorphisms of a subshift X by Aut(X).

Due to the Curtis–Hedlund–Lyndon Theorem [8] we know that every endomor-
phism φ : X → X , with X ⊆ �Z, is determined by a local function� : �2N+1 → �

such that φ(x)i = �(x[−N+i,N+i]). In other words, for two configurations x, y ∈ X ,

x[−N ,N ] = y[−N ,N ] =⇒ φ(x)0 = φ(y)0.

The minimum N ∈ N such that the previous property is satisfied is called the
range of φ, and is denoted by range(φ).

We can further classify automorphisms according to how they act on specific
configurations.
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Definition 2 Let (X, σ ) be a subshift andφ ∈ Aut(X). Given a configuration x ∈ X ,
we say φ is weakly periodic on x if there exists p ∈ N and q ∈ Z such that φ p(x) =
σ q(x).

If φ is not weakly periodic for any configuration, then we say it is aperiodic.

2.3 Algebraic Distortion

Let us briefly introduce the classical notion of distortion in group theory.

Definition 3 LetG be a finitely generated group and S ⊆ G a symmetric generating
set. Given g ∈ G, we define the length of g with respect to S, �S(g), as the smallest
non-negative integer n such that g can be written as a product of n elements of S.
We write,

�S(g) = n.

By convention, we use that �S(e) = 0.

We note that the function �S depends on the generating set S only up to a multi-
plicative constant.

Lemma 1 ([4], Lemma 2.4) If S1 and S2 are two generating sets of G, then there
exists a constant c ≥ 1 such that

1

c
�S2(g) ≤ �S1(g) ≤ c�S2(g), ∀g ∈ G.

Definition 4 Let G be a finitely generated group and S a symmetric generating set.
The translation length of an element g ∈ G is defined as the limit:

‖g‖S := lim
n→∞

�S(gn)

n
.

We say g is a distorted element if ‖g‖S = 0.

Remark 1 It is important to note that due toLemma1, the property of being distorted
is independent of the generating set.

2.4 Expansive Dynamical Systems

Let (X, ρ) be a compact metric space with metric ρ, which we assume to be infinite.
A Z

d -action � on X is a homomorphism from the additive group Z
d to the group

Homeo(X) (homeomorphisms of X with composition). Given a subset F ⊆ R
d we

define:
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ρF
�(x, y) = sup{ρ(�n(x),�n(y)) : n ∈ F ∩ Z

d},

where �n is the element in Homeo(X) associated to n ∈ Z
d . If F ∩ Z

d = ∅, we
write ρF

�(x, y) = 0.

In this context, an automorphismφ : X → X for the action of � is a bi-continuous
function such that it commutes with the Z

d -action, that is, φ ◦ �n = �n ◦ φ,
∀n ∈ Z

d . The group of all automorphisms for the action of � will be denoted by
Aut(X, �). In the sequel, if there is no ambiguity on the action �, we will just speak
about automorphisms of X .

Definition 5 A Z
d -action � on X is expansive if there exists c > 0 such that

ρR
d

� (x, y) ≤ c =⇒ x = y.

In such a case, c is called the expansivity constant of �.
When d = 1, we say � is positively expansive if there exists c > 0 such that

ρ
R0,+
� (x, y) ≤ c =⇒ x = y.

For a subset F ⊆ R
d and v ∈ R

d , we define

dist(v, F) = inf{‖v − w‖ : w ∈ F},

where ‖ · ‖ denotes the Euclidean norm on R
d . For t > 0 we define the thickening

of F by t as Ft = {v ∈ R
d : dist(v, F) ≤ t}.

Definition 6 Let � be a Zd -action on X and F ⊆ R
d . Then, F is expansive for �

if there exists ε > 0 and t > 0 such that

ρFt

� (x, y) ≤ ε =⇒ x = y.

If F does not satisfy this condition, it is said to be non-expansive.

When a Zd action � is expansive, the following lemma allows us to consider a
uniform ε in Definition6.

Lemma 2 ([2], Lemma 2.3) Let� be an expansiveZd -action on X, with expansivity
constant c. Then, for each expansive subset F ⊆ R

d for � there exists s > 0 such
that

ρFs

� (x, y) ≤ c =⇒ x = y.
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3 Generalizing the Range

We are interested in defining a notion of distortion for an automorphism on an
arbitrary expansive system. With this in mind, we present the following general
lemma.

Lemma 3 Let� be an expansiveZd -action on X, with expansivity constant c. Then,
for all ε > 0 there exists M ∈ N such that ∀x, y ∈ X,

ρ
B∞(0,M)
� (x, y) ≤ c =⇒ ρ(x, y) ≤ ε,

where B∞(0, M) = {v ∈ R
d : ||ν||∞ = max1≤i≤d |vi | ≤ M}.

Proof We proceed by contradiction. Let ε be such that for all m ∈ N, there are
xm, ym ∈ X such that ρ

B∞(0,m)
� (xm, ym) ≤ c and ρ(xm, ym) > ε. Since X is com-

pact, we have a subsequence (mi )i∈N such that the sequences (xmi )i∈N and (ymi )i∈N
converge to x̄ and ȳ respectively.

Let us consider η > 0, n ∈ Z
d and I ∈ N such that ∀i ≥ I ,mi ≥ max{‖n‖∞,mI }

ρ(�nxmi , �
n x̄) ≤ η

2
and ρ(�n ymi , �

n ȳ) ≤ η

2
.

Then,

ρ(�n x̄, �n ȳ) ≤ ρ(�nxmi , �
n x̄) + ρ(�nxmi , �

n ymi ) + ρ(�n ymi , �
n ȳ)

≤ η + c.

By taking η → 0 (mi is always greater than ‖n‖∞) we obtain

ρ(�n x̄, �n ȳ) ≤ c, ∀n ∈ Z
d .

Thus, using that � is expansive with constant c, we get that x̄ = ȳ. Therefore, for a
sufficiently large i

ρ(xmi , ymi ) ≤ ρ(xmi , x̄) + ρ(ymi , ȳ)

≤ ε,

which is a contradiction.

3.1 Automorphisms on Expansive Systems

From this point onward, we will work in the following context. Let T : X → X
be a homeomorphism on the compact metric space (X, ρ). In this setting we write
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Aut(X, T ) for the group of automorphisms of X commuting with T . Observe that T
defines a Z-action on X , so we can use the previously defined notations. Recall that
given a subset F ⊆ R

ρF
T (x, y) = sup{ρ(T nx, T n y) : n ∈ F ∩ Z},

and that the system (X, T ) is expansive if there exists a constant c > 0 such that

ρR

T (x, y) ≤ c =⇒ x = y.

Definition 7 Let (X, T ) be an expansive system of constant c > 0 and φ ∈ Aut
(X, T ). We call range of φ to the minimum M ∈ N such that ∀x, y ∈ X ,

ρ
[−M,M]
T (x, y) ≤ c =⇒ ρ(φ(x), φ(y)) ≤ c,

and we denote it by range(φ).

It is clear that if (X, T ) is a subshift, with T being the shift map, the previous
definition coincides with the usual notion of the radius of an automorphism, as this
space is expansive of constant c = 1/2.

In the general case where (X, T ) is an expansive system of constant c > 0, the
existence of M is ensured by the following. Since φ ∈ Aut(X, T ) is continuous over
the compact set X , then it is uniformly continuous. Therefore, we have that there
exists δ > 0 such that for all x, y ∈ X :

ρ(x, y) ≤ δ =⇒ ρ(φ(x), φ(y)) ≤ c.

By applying Lemma3, we have that there exists M ∈ N such that for all x, y ∈ X :

ρ
[−M,M]
T (x, y) ≤ c =⇒ ρ(x, y) ≤ δ,

and therefore,
ρ

[−M,M]
T (x, y) ≤ c =⇒ ρ(φ(x), φ(y)) ≤ c.

Now consider φ ∈ Aut(X, T ). With both φ and T we can construct aZ2-action�

defined by: if n = (n1, n2) ∈ Z
2 then�n = φn2 ◦ T n1 . We also denote the dynamical

system defined by the action � by (X, T, φ).

Definition 8 Let E, F ⊆ R
2, and� an expansiveZ2-action on X .We say E codifies

F if for all v ∈ R
2,

ρE+v
� (x, y) ≤ c =⇒ ρF+v

� (x, y) ≤ c.
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Using this terminology, the range of φ ∈ Aut(X, T ) can be understood as the
minimumM ∈ N such that [−M, M] × {0} codifies {(0, 1)} for theZ2-action (X, �)

induced by T and φ as defined above.

Lemma 4 Let (X, T )bean expansive systemof constant c > 0, and considerφ,ψ ∈
Aut(X, T ). Then,

range(φ ◦ ψ) ≤ range(φ) + range(ψ).

In particular, the sequence (range(φn))n∈N is subadditive.

Proof Let M = range(φ) and N = range(ψ). If we have ρ
[−(M+N ),M+N ]
T (x, y) ≤ c,

then
∀t ∈ [−(M + N ), M + N ] : ρ(T t x, T t y) ≤ c.

If we fix m ∈ [−M, M] and define x̄ = Tmx , ȳ = Tm y, from the previous
inequality we obtain that:

∀n ∈ [−N , N ] : ρ(T n x̄, T n ȳ) ≤ c.

By definition of range, this means that ρ(ψ(x̄), ψ(ȳ)) ≤ c. Since this is possible for
any m ∈ [−M, M], we have:

∀m ∈ [−M, M] : ρ(Tmψ(x), Tmψ(y)) ≤ c,

which implies that ρ(φ ◦ ψ(x), φ ◦ ψ(y)) ≤ c, and therefore, range(φ ◦ ψ) ≤ N +
M .

Since (range(φn))n∈N is a subadditive sequence, by Fekete’s Lemma, we have
that the following definition makes sense.

Definition 9 Let (X, T ) be an expansive system of constant c > 0. The asymptotic
range of φ ∈ Aut(X, T ) is defined by

range∞(φ) := lim
n→∞

range(φn)

n
.

If range∞(φ) = 0we sayφ is range distorted, and denote the set of all range distorted
automorphisms in Aut(X, T ) by RD(X, T ).

The following simple proposition can be deduced from definition and previous
lemma.

Proposition 1 Let φ,ψ ∈ Aut(X, T ). We have,

1. range∞(ψ ◦ φ ◦ ψ−1) = range∞(φ),
2. range∞(φ p) = p · range∞(φ) for p ∈ N,
3. if ψ and φ commute, then range∞(ψ ◦ φ) ≤ range∞(ψ) + range∞(φ).
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4 Alternative Notion of Distortion

The definition of asymptotic range defined in previous section concerns the average
evolution of the symmetric window with which an automorphism of an expansive
system (X, T ) is computed. To complement this analysis, we introduce an alternative
notion of distortion through the use of the Lyapunov exponents presented by Cyr et
al. in [6]. These exponents serve to study the average speed at which information
asymptotically propagates through the automorphism.This notionwill later be shown
to be very important because of their connection to some kind of geometry associated
to the automorphism.

In what follows we fix an expansive dynamical system (X, T ) of expansive con-
stant c > 0. Recall (X, ρ) is a compact metric space and T is a homeomorphism of
X .

Lemma 5 Let (X, T ) be an expansive system with expansivity constant c > 0 and
φ ∈ Aut(X, T ). Then,

ρ
[0,+∞)
T (x, y) ≤ c =⇒ ρ

[range(φ),+∞)

T (φ(x), φ(y)) ≤ c.

That is, [0,+∞) × {0} codifies [range(φ),+∞) × {1} in (X, T, φ).

Proof We begin by simplifying the notation by writing r = range(φ). Let x, y ∈ X
be such that ρ[0,+∞)

T (x, y) ≤ c. Then, in particular, we have that

ρ
[−(r+k),r+k]
T (T r+k x, T r+k y) ≤ c, ∀k ≥ 0.

By the definition of range, we have that

ρ(φ(T r+k x), φ(T r+k y)) ≤ c, ∀k ≥ 0,

which, by taking supremum over k, can be re-written as

ρ
[r,+∞)
T (φ(x), φ(y)) ≤ c.

This finishes the proof. �

We recall from the previous section that we can apply the notion of coding to the
Z
2-action� defined by the expansive action T and an automorphismφ ∈ Aut(X, T ).

We consider the following sets:

C−(φ) = {k ∈ Z : (−∞, 0] × {0} codifies (−∞, k] × {1}},

C+(φ) = {k ∈ Z : [0,∞) × {0} codifies [k,∞) × {1}}.

Due to Lemma5, both sets are non-empty. This allows us to define the quantities:
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W−(n, φ) = supC−(φn),

W+(n, φ) = inf C+(φn).

By definition, we have that for n ≥ 1, W±(n, φ) = W±(1, φn). In addition,

Lemma 6 Let (X, T )be an expansive systemand considerφ,ψ ∈ Aut(X, T ). Then,

W+(n, φψ) ≤ W+(n, φ) + W+(n, ψ) and W−(n, φψ) ≥ W−(n, φ) + W−(n, ψ).

In particular, the sequences (W+(n, φ))n∈N and (−W−(n, φ))n∈N are subadditive.

Again, Fekete’s Lemma allows us to make the following definition:

Definition 10 ([6], Definition 3.12) Let (X, T ) be an expansive system. Given
φ ∈ Aut(X, T ), we define the exponents of Cyr, Franks and Kra by:

α−(φ) = lim
n→∞

W−(n, φ)

n
,

α+(φ) = lim
n→∞

W+(n, φ)

n
.

Definition 11 We say an automorphism φ ∈ Aut(X, T ) of an expansive system
(X, T ) is Lyapunov distorted if α±(φ) = 0. We denote the set of all Lyapunov dis-
torted automorphisms in Aut(X, T ) by

AD(X, T ) = {φ ∈ Aut(X, T ) : α±(φ) = 0}.

These exponents satisfy some very useful properties.

Proposition 2 Let (X, T ) be an expansive system and consider φ ∈ Aut(X, T ). We
have the following properties:

1. For all k ∈ Z, α±(T kφ) = α±(φ) + k.
2. For all m ∈ N, α±(φm) = mα±(φ).
3. If ψ ∈ Aut(X, T ) commutes with φ, then:

α+(φψ) ≤ α+(φ) + α+(ψ) and α−(φψ) ≥ α−(φ) + α−(ψ).

4. α+(φ) + α+(φ−1) ≥ 0 and α−(φ) + α−(φ−1) ≤ 0.
5. If X is an infinite subshift, then α−(φ) ≤ α+(φ).

Proof The first property follows directly from the fact that W±(n, T kφ) = nk +
W±(n, φ). The second one comes from:

lim
n→∞

W±(nm, φ)

n
= m · lim

n→∞
W+(nm, φ)

nm
.
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Next, for property 3, we see that if φ,ψ ∈ Aut(X, T ) commute, then

W+(n, φψ) = W+(1, (φψ)n) = W+(1, φnψn) ≤ W+(n, φ) + W+(n, ψ).

Property 4 follows from property 3 and the fact that α±(id) = 0.
The last property was proved in Proposition 3.15 of [6]. �

Using the following lemmawe can see that, in the case of subshifts, Lyapunov dis-
tortion is weaker than range distortion. Given φ ∈ Aut(X, T ) we denote the interval
[−W+(n, φ),−W−(n, φ)] by I (n, φ).

Lemma 7 Let (X, T ) be an expansive system and consider φ ∈ Aut(X, T ). If J is
an interval that φn-codes {0}, then I (n, φ) ⊆ J .

Proof Let J = [a, b] be an interval that φn-codes {0}. Then, (−∞, 0] must φn-code
(−∞,−b] and [0,∞) must φn-code [−a,∞). We conclude by using the definition
of I (n, φ).

�

Lemma 8 Let (X, T ) be an expansive system and consider φ ∈ Aut(X, T ). Then,
range∞(φ) ≥ max

{
α+(φ),−α−(φ)

}
.

Proof The result follows from previous lemma by noting that the interval
[−range(φn), range(φn)] φn-codes {0}. �

Proposition 3 Let (X, σ ) be an infinite subshift. Then, RD(X, σ ) ⊆ AD(X, σ ).

Proof For φ ∈ Aut(X, σ ), due to (5) on Proposition2 and Lemma8, we know that

range∞(φ) ≥ α+(φ) ≥ α−(φ) ≥ −range∞(φ),

which concludes the proof. �

We can see that in the context of SFTs, the two notions are in fact equivalent. To
see this, we first need an auxiliary result.

Lemma 9 ([6], Lemma 3.21) Let (X, σ ) be an SFT and φ ∈ Aut(X, σ ). Then, there
is a constant C(φ) such that

|I (n, φ)| − 1

2
≤ range(φn) ≤ |I (n, φ)| + C(φ).

If X is a full-shift we can take C(φ) = 0.

Theorem 1 Let (X, σ ) be an SFT. Then, AD(X, σ ) = RD(X, σ ).

Proof By diving by n and taking limit on the expression given by Lemma9, we
conclude. �
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5 Geometry and Distortion

In [6], Cyr, Franks and Kra showed that there is a connection between discrete Lya-
punov exponents and the geometry of theZ2-system (X, σ, φ), where φ ∈ Aut(X, σ )

and X is a subshift. This connection was first explored by Hochman in [9] through
the notion of prediction shapes.We generalize these result to the context of expansive
systems (X, T ). Finally, in the context of subshifts, we connect the newly introduced
direction exponents to the standard ones.We relate the fact of having these exponents
equal to zero to having non-expansive directions.

The following theorems connect the geometry of the space-time of the automor-
phisms with its asymptotic behavior.

Theorem 2 Let (X, T ) be an expansive system and consider φ ∈ Aut(X, T ). Then,
the lines defined by x = α+(φ)y and x = α−(φ)y are not expansive.

The proof of this fact is very technical and can be retraced step by step from [6].

Proof Let c > 0 be the expansive constant of (X, T ). We will only look at the case
where there exists a constant D > 0 such that

0 ≤ W+(k, φ) − kα+(φ) < D, ∀k ≥ 0.

It is possible to see that due to the definitions at play, if we have two elements
x, y ∈ X , such that

ρ
[0,∞)
T (x, y) ≤ c,

then for all j ≥ 0 and i ≥ D + α+(φ) j ,

ρ(T iφ j x, T iφ j y) ≤ c.

We see that this can be interpreted as x and y coinciding on the lower half space of
the line i = D + α+(φ) j .

For every n, because of the definition of W+(n, φ), we have xn, yn ∈ X such that

ρ
[0,∞)
T (xn, yn) ≤ c,

but,ρ(TW+(n)−1φnxn, TW+(n)−1φn yn) > c. By defining x̂n := TW+(n)φnxn and ŷn :=
TW+(n)φn yn , we can see that,

ρ(T−1 x̂n, T
−1 ŷn) > c,

and for all j ≥ −n and i ≥ D + α+(φ) j ,

ρ(T iφ j x̂n, T
iφ j ŷn) ≤ c.



Distortion in Automorphisms of Expansive Systems 33

Next, we use the compactness of X to find a convergent subsequences, that con-
verge to x̂ = lim x̂n and ŷ = lim ŷn .

Let us have an arbitrary ε > 0. Then, due to the continuity of T and φ, for suffi-
ciently large n,

c < ρ(T−1 x̂n, T
−1 ŷn),

≤ ρ(T−1 x̂n, T
−1 x̂) + ρ(T−1 x̂, T−1 ŷ) + ρ(T−1 ŷ, T−1 ŷn),

≤ 2ε + ρ(T−1 x̂, T−1 ŷ).

Therefore, c < ρ(T−1 x̂, T−1 ŷ). Analogously, for an arbitrary ε > 0, sufficiently
large n and (i, j) such that i > D + α+(φ) j ,

ρ(T iφ j x̂, T iφ j ŷ) ≤ ρ(T iφ j x̂n, T
iφ j x̂) + ρ(T iφ j x̂, T iφ j ŷ) + ρ(T iφ j ŷ, T iφ j ŷn),

≤ 2ε + c.

In other words, for i > D + α+(φ) j ,

ρ(T iφ j x̂, T iφ j ŷ) ≤ c.

This proves that the line defined by x = α+y is not expansive. �
Theorem 3 Let (X, T ) be an expansive dynamical system, φ ∈ Aut(X, T ) and L
a line in R2 given by x = my. If m > max{α+(φ),−α−(φ−1)} or m < min{α−(φ),

−α+(φ−1)}, then L is expansive.

Proof Let us first show that if m > α+(φ), then L is left-expansive.
We take x, y ∈ X such that:

ρ(T nφk(x), T nφk(y)) ≤ c, ∀(n, k) ∈ Z
2 such that n > mk.

Because m > α+(φ), the vector defined by (α+(φ), 1) is not parallel to L .
By Definition10, for sufficiently large n, the vector (W+(n), n) is not parallel to

L .
Next, let us have (u0, v0), an arbitrary point to the left of L (that is, u0 < mv0).

There exists n0 > 0 such that if u1 = u0 − W+(n0) and v1 = v0 − n0, then (u1, v1)
is to the right of L . Therefore, the line given by {(t, v1) : u1 ≤ t} is to the right of L
and codifies (u0, v0) by definition of W+(n0). This shows that L is left expansive.

Analogously, if m < α−(φ) then L is right expansive.
Lastly, we can see that the transformation r(x, y) = (x,−y) allows us to move

between the Z
2-systems (X, T, φ) and (X, T, φ−1). Consequently, L is right-

expansive (left) on the first system if and only if r(L) is left-expansive (right) one
the second one. This fact concludes the proof �

By combining these results, we arrive at the fundamental connection between
distortion and non-expansive subspaces.
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Corollary 1 Let (X, T ) be an expansive system and consider φ ∈ Aut(X, T ). Then,
φ, φ−1 ∈ AD(X, T ) if and only if x = 0 is the only non-expansive direction of φ.

A first consequence of this connection is the fact that expansive automorphisms
can not be Lyapunov distorted.

Theorem 4 Let (X, T ) be an expansive system of constant c > 0 and consider an
expansive automorphism φ ∈ Aut(X, T ) of constant δ > 0. Then, φ /∈ AD(X).

Proof Let us call� the jointZ2-action of T and φ. Due to Lemma3 on the expansive
system (X, T ), we know that there exists M ∈ N such that:

∀x, y ∈ X : ρ
[−M,M]
T (x, y) ≤ c =⇒ ρ(x, y) ≤ δ.

Now, let us see that L0, defined by x = 0, is an expansive direction. If we have
x, y ∈ X such that

ρ
LM
0

� (x, y) ≤ c,

in particular we have that,

∀n ∈ Z : ρ
[−M,M]
T (φn(x), φn(y)) ≤ c.

This implies that,
∀n ∈ Z : ρ(φn(x), φn(y)) ≤ δ.

Given that φ is expansive, this means that x = y. We conclude by using Theorem2.
�

6 Symmetric Distortion Subset

Let (X, T ) be an expansive system. We denote the subset of range distorted auto-
morphisms of (X, T ) with a range distorted inverse by:

D(X, T ) = {φ ∈ Aut(X, T ) : range∞(φ) = range∞(φ−1) = 0},

and the subgroup of distorted elements in Aut(X, T ) (in the algebraic sense) by
GD(X, T ).

Proposition 4 GD(X, T ) ⊆ D(X, T ).

Proof Let φ be a distorted element of Aut(X, T ). This means that there exists a
finitely generated subgroup G of Aut(X, T ) such that ‖φ‖S = 0, for a symmetric
generating set S. Then, by Lemma4,

range(φn) ≤ �S(φ
n) · max

s∈S {range(s)}.
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Dividing the expression by n and taking limit, φ is range distorted. We conclude by
noting that if φ is group distorted, its inverse also is. �

For the next Lemma, we recall that a map f : X → X is said to be equicontinuous
if for all ε > 0 there exists δ > 0 such that

ρ(x, y) ≤ δ =⇒ ρ( f n(x), f n(y)) ≤ ε, ∀n ∈ Z.

Lemma 10 Let φ ∈ Aut(X, T ) be an equicontinuous automorphism of the expan-
sive system (X, T ). Then φ ∈ D(X, T ).

Proof Because φ is equicontinuous, for all ε > 0 there exists a δ > 0 such that

ρ(x, y) ≤ δ =⇒ ρ(φn(x), φn(y)) ≤ ε, ∀n ∈ Z.

By picking ε = c, Lemma3 tells us that there exists M > 0 such that

ρ
[−M,M]
T (x, y) ≤ c =⇒ ρ(x, y) ≤ δ.

This implies that,

ρ
[−M,M]
T (x, y) ≤ c =⇒ ρ(φn(x), φn(y)) ≤ c, ∀n ∈ Z,

that is, range(φn) ≤ M for alln ∈ Z.Weconclude that range∞(φ) = range∞(φ−1) =
0. �

Remark 2 As a consequence of theArzelà–Ascoli Theorem, any compact subgroup
K of Aut(X, T ) satisfies K ⊆ D(X, T ).

We are interested in understanding the structure ofD(X, T ). In the general setting,
this set is not a subgroup of Aut(X, T ), as is shown in Remark3 below, where we
show an automorphism which is not distorted, but is a composition of two distorted
automorphisms through an example due to Schmieding [12].

Remark 3 Let X = {0, 1, 2}Z be the full-shift on 3 symbols. Let φ1 be the marker
automorphism that permutes 000111 with 002111, and φ2 the marker automorphism
that permutes 000111 with 002111 (marker automorphisms are presented in great
detail in [3]). If we define φ = φ2 ◦ φ1, it is possible to see φ is not distorted even
though both φ1 and φ2 are symmetrically distorted.

The next lemma follows directly from Proposition1.

Lemma 11 Let (X, T ) be an expansive system and consider φ,ψ ∈ D(X, T ). We
have the following properties:

1. If [φ,ψ] = id, then φ ◦ ψ ∈ D(X, T ), where [φ,ψ] = φψφ−1ψ−1.
2. For all ϕ ∈ Aut(X, T ), ϕ ◦ φ ◦ ϕ−1 ∈ D(X, T ).
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3. φ p ∈ D(X, T ), for all p ∈ N.

Proposition 5 Let (X, σ ) be a mixing SFT. Then,D(X, σ ) contains an isomorphic
copy of every finite group.

Proof This result follows from the fact that every finite order automorphism is
equicontinuous and the Kim and Roush Theorem [10], that states that the automor-
phism group of a mixing SFT contains an isomorphic copy of the automorphisms
group of any n-full shift for n ≥ 2. �

Finally, let us generalize the fact that the subgroup generated by the action T has
a trivial intersection withD(X, T ).

Lemma 12 Let (X, T ) be an expansive system of expansive constant c > 0. If X is
infinite, then range∞(T ) = 1.

To prove this result we make use of a following result by Schwartzman about infinite
systems.

Theorem 5 ([2], Theorem 3.9) Let T be a homeomorphism of an infinite compact
metric space (X, ρ) and δ > 0. Then, there exists two distinct x, y ∈ X such that
ρ(T nx, T n y) ≤ δ for all n ≥ 0.

Proof (of Lemma12) It is evident that range(T n) ≤ n. To obtain the other bound,
by applying Theorem5 to T−1, we obtain two distinct points x, y ∈ X such that
ρ

(−∞,0]
T (x, y) ≤ c. Given that T is expansive and the points are different, we choose

the smallest m > 0 such that ρ(Tmx, Tm y) > c.
For n ∈ N, we define x̄ = Tm−nx and ȳ = Tm−n y. Then, ρ[−n+1,n−1]

T (x̄, ȳ) ≤ c,
with ρ(T n x̄, T n ȳ) > c. This means that range(T n) > n − 1, and as a consequence
range(T n) = n. �

Corollary 2 Let (X, T ) be an infinite expansive system. Then we have D(X, T ) ∩
〈T 〉 = {id}.

7 Turing Machines as Dynamical Systems

Let us briefly look at a particular type of automorphisms in the subshift case. Specif-
ically, we will take a look at automorphisms coming from Turing machines to better
understand how the asymptotic range is related to the rate at which information is
transmitted. These examples also serve to establish the existence of non-trivial (that
is, of infinite order) range distorted automorphisms on a broad class of SFTs.

We assume some knowledge about the basics of complexity theory and Turing
Machines (TM), for a complete reference see [13]. In the context of dynamical
systems, there are several ways of representing a Turing Machine as a dynamical
system. In this section we will use a model where the head moves presented in [11].
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We will denote the set of states of the TM by Q, the alphabet by A and δ : Q × A →
Q × A × {−1, 0, 1} its transition function.

For n ≥ 0 we define the subshift,

Xn = {x ∈ (Q ∪ A)Z : |{i ∈ Z : xi ∈ Q}| ≤ n}.

It is possible to show that Xn is a sofic subshift. That is, can be obtained as a factor
of a subshift of finite type. We do not need to be more precise in this article.

Definition 12 We define a moving head Turing Machine (TMH) as g ∈ End(X1),
where the head (given by the coordinate xi ∈ Q) points to the site in its right and
g executes the machine given by the transition function δ : Q × A → Q × A ×
{−1, 0, 1}. It is easy to see that for all TMH g, range(g) = 2. See next figure for an
illustration of this definition.

a2a1 q′ b... ...a4

a4 ...... a3a2a1 q

a4 ...... ba2a1 q′

a4 ...... q′a2a1 b

x

g(x)

δ(q, a3) = (q′, b, −1)

δ(q, a3) = (q′, b, 0)

δ(q, a3) = (q′, b, 1)

Definition 13 The position function p : X1 → Z ∪ {∞} of a TMH g is defined by
p(x) = n if xn ∈ Q and p(x) = ∞ on the other case.

The furtherest site the machine visits up to time t by the machine on configuration
x ∈ X1 is:

st (x) := max{|p(gs(x))| : 0 ≤ s ≤ t}.

Then, we define the movement function of the machine at time t as:

m(t) = max
x∈X1

st (x).

It is clear that range(gt) = m(t). To carefully examine the possible growth rates
of m(t), we introduce the following asymptotic growth notation.
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Definition 14 Let κ, η : N → N \ {0}. We write κ(n) = O(η(n)) if there exists
a constant K such that κ(n) ≤ Kη(n) for all sufficiently large n. Similarly, we
write κ(n) = �(η(n)) if η(n) = O(κ(n)). Furthermore, we write κ(n) = �(η(n))

if κ(n) = O(η(n)) and κ(n) = �(η(n)).

There exists a trichotomy with respect to the velocity that machines can have,

Theorem 6 ([7], Theorem 1) Let g be a TMH with movement function m. Then,
exactly one of the following holds:

• m is bounded,
• m(t) = �(log(t)) and m(t) = O(t/ log(t)),
• m(t) = �(t).

In addition, it is possible to establish a connection between the periodicity of the
function and its asymptotic speed rate.

Theorem 7 ([7], Theorem 2) Every TMH with no weakly periodic configurations
on X1 \ X0 is range distorted.

An example of an aperiodic machine is constructed in [5]. Called the SMART
machine, this reversible TMH is among other properties, aperiodic, which given the
previous theorem implies that it is distorted. To find distorted automorphisms on the
full-shift, we can embed this and other TMH’s into its automorphism group through
the use of conveyor belts. By slightly modifying Lemma 3 from [7] we obtain the
following result:

Proposition 6 Let g be a TMH. Then, by defining

� = (�2 × {<,>}) ∪ (Q × �) ∪ (� × Q),

there exists an endomorphism f : �Z → �Z such that if m : N → N is the movement
function of g, then range( f t ) ≤ m(t) for all t ∈ N. Furthermore, f is reversible if
and only if g is.

Because the conveyor belt method allows us to see every reversible TMH within
the automorphism group of a full-shift, we can conclude the following:

Theorem 8 Let (X, σ ) be amixing SFT. Then, the set of reversible TMH is contained
in Aut(X, σ ). In particular, it contains an infinite order distorted automorphism.

The proof of this fact follows directly from the previous proposition and the
Kim-Roush Theorem for automorphisms groups of mixing shifts of finite type [10].
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8 Non-shift Examples

Let us look at an example of the presented results for an expansive system that is not
a subshift. Let Tn = R

n/Zn be the n-dimensional torus. We endow this space with a
metric induced by the 2-norm on R

n:

ρ(x, y) = inf
k∈Zn

‖x − y − k‖2.

To find expansive homeomorphisms on this space, we use the following result
about automorphisms of the torus.

Proposition 7 Let TA be an automorphismof the n-torus, with n ≥ 2 and A its corre-
spondingmatrix onGL(n,Z) overR2. Then, the following statements are equivalent:

1. TA is expansive,
2. A ∈ GL(n,Z) is expansive in Rn,
3. A has no eigenvalue of modulus 1.

A matrix A ∈ GL(n,Z) is said to be expansive if there exists a constant c > 1
such that ‖Ax‖ ≥ c‖x‖ for all x ∈ R

n .

We note that n must be grater or equal than two, due to the fact that there are no
expansive automorphisms on the 1-torus. The proof of this fact and of the proposition
is outlined in [14]. By following its procedure, we can obtain the following lemma.

Lemma 13 Let TA be an expansive automorphism of the n-torus, where n ≥ 2.
Then, if we define L ′(A) = max{‖A‖, ‖A−1‖}, the expansive constant for the auto-
morphism is given by

c = min

{
1

2L ′(A)
,
1

4

}
.

Proof Due to the previous Proposition, we know that if TA is expansive, A is expan-
sive. This in turn means that the set {‖Amx‖ : m ∈ Z} is unbounded.

Because TA is linear, we only have to prove the following: for x ∈ T
n such that

x �= 0, then there exists m ∈ Z such that ρ(Tm
A x, 0) > c. We do this in two cases. If

‖x‖ > c, it is evident that:

ρ(T 0
Ax, 0) = ‖x‖2 > c.

If ‖x‖ ≤ c, due to the aforementioned set being unbounded we can define:

k = inf{|m| : ‖Amx‖ > c, m ∈ Z}.

Let us suppose without loss of generality that ‖Akx‖ > c. Then we have that
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c < ‖Akx‖ ≤ ‖A‖‖Ak−1x‖ ≤ L ′(A)c ≤ 1

2
,

which means that Akx ∈ (−1, 1)n . Finally, ρ(T k
Ax, 0) = ‖Akx‖ > c. �

Let us see how everything works by taking the matrix

A =
[
1 1
2 1

]
.

For simplicity’s sake we will use the same notation for A and TA.

Its eigenvalues are λ1 = 1 + √
2 and λ2 = 1 − √

2, which due to Proposition7
means that it defines an expansive homeomorphism. It is possible to see that its
expansive constant is in fact c = 1

4 .
Furthermore, by examining at the matrices that commute with A, we find that

Aut(T2, A) =
{[

a b
2b a

]
: a2 �= 2b2, a, b ∈ Z

}
.

It is possible to observe that a matrix such as

M =
[
0 1
2 0

]
∈ Aut(T2, A)

satisfies range(M) = 1, due to the fact that for x, y ∈ T
2

ρ(Ax, Ay) ≤ 1

4
=⇒ ρ(Mx, My) ≤ 1

4
.

Finally, we notice that the eigenvalues of matrices in Aut(T2, A) are given by
λ1 = a + √

2b and λ2 = a − √
2b. By Theorem4, we have that

AD(T2, A) = {I,−I },

where I is the identity matrix.

9 Conclusion

Throughout thisworkwehave seen anddeveloped the connections betweendistortion
and non-expansivity. First, by generalizing the concept of range to general expansive
systems, we have seen the aforementioned connection is not exclusive to subshifts.
This ultimately led to the fact that expansive automorphisms cannot be distorted.
What the obtained results suggest, is that a non-expansive direction is one inwhich the
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rate at which information propagates with sub-linear speed. Also, this generalization
allows us to use concepts and tools from the study of automorphisms on symbolic
systems to general expansive ones.

Nevertheless, the greatest question concerning distortion on automorphismgroups
remains open: is every range distorted automorphism group distorted? Even though
there seems to be a direct path for solving this question, constructing a Turing
machine-like automorphism that is range distorted but not group distorted, it is not
clear how the construction of this automorphism can be achieved. It is possible that
the study of the group generated by symmetrically distorted automorphisms, 〈d(X)〉,
can shed some light on this mystery. It can also be possible to answer the question
by studying the group distorted Turing machines on the group of reversible Turing
machines presented by Barbieri, Kari and Salo in [1]. There also remains to see if it is
possible to have an automorphismwith a unique non-expansive direction of irrational
slope over a domain which is transitive or minimal. A possible approach consists
on codifying a subshift suspension in a way that the non-expansive directions of the
suspension are preserved.
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Periods in the Q2R, X2R and
Kawasaki-Q2R Cellular Automata

Lidia Stocker and Hans J. Herrmann

Abstract We study global and local periods of the cellular automaton Q2R, the
equivalent model on a triangular grid (X2R) and a Kawasaki-Q2R update. The first
two show similar results in both the global and local periods.We find a critical energy
Ecp = −0.8700 ± 0.0006 for Q2R and Ecp = −0.88408 ± 0.0004 for X2R. In the
Kawasaki-Q2R automaton dynamics finite global periods are present exclusively
at very low energies and no critical energy is found. However, in all three cellular
automata there is an evident formation of clusters of finite cycles. Ergodicity is
violated.

1 Introduction

Cellular automata are defined by a set of deterministic rules where the dynamics of a
configuration depends on the neighbourhood of each cell [1, 8]. A famous example is
Q2R, which has been studied under different points of view. Vichniac first proposed
this model and suggested its potential for simulating magnetism [7]. He also raised
the issue about its ergodicity. Later, Pomeau argued how Q2R could be seen as
a simulation of the Ising model [5]. Herrmann et al. investigated the ergodicity,
concluding that at low energies the system is locked into dynamical clusters with
finite periodicity [2]. Also more recently, new results about Q2R have been obtained:
Urbina andRica considered amaster equation for reversible and conservative discrete
systems [6]. Montava-Medel et al. presented a phase space classification of their
topological space [4].

Here, we aim to improve and further investigate the results of Herrmann et al.
[2], studying three cellular automata. We observe that only limited regions of the
phase space of Q2R are visited. We compare the results of Q2R to the same cellular
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automaton on a triangular, instead of a square, lattice. We name it, inspired by the
classification discussed in [7], the X2R automaton. We also consider a Kawasaki-
Q2Rdynamics by imposing additionally conservation of themagnetisation. The three
cellular automata studied are characterised by discrete space, time and spin variables
±1. They are completely deterministic and reversible. Their energy is conserved
in time and the change of a spin is determined by the configuration of its nearest
neighbours, conferring a local character to the dynamics.

The structure of our contribution is the following: we first discuss the meth-
ods used in Sect. 2, the theoretical framework and the implementations. Next, in
Sects. 3–5, we treat the three cellular automata separately identifying their differ-
ences and interpreting the results. Finally, in Sect. 6, we summarize the latter points
by giving a broader overview.

2 Methods

In this section, we introduce the methods and notation used, as well as the main
theoretical concepts. Our work focuses on binary 2D systems with L × L sites and
periodic boundary conditions. Each site i is singly occupied by a spin pointing up or
down: si = ±1. In Q2R and Kawasaki-Q2R we work on a square lattice, thus each
site has four nearest neighbours, notated by 〈〉. The X2R automaton is defined on a
triangular lattice leading to six nearest neighbours per site.We define the normalised
Ising energy of these systems as

E = − 2

kL2

∑

〈i, j〉
si s j (1)

where k is the number of nearest neighbours in the grid. With this normalisation a
comparison between square and triangular grid is achievable.

In Q2R and X2R a spin is flipped when the Ising energy is conserved. This occurs
if the number of its nearest neighbours with spin pointing up is equal the number
of nearest neighbours with spin down (two or three respectively). In Kawasaki-
Q2R, a neighbouring pair 〈i, i ′〉 exchanges its spin si ↔ si ′ if they point in opposite
directions and, again, energy is conserved. In other words, they exchange their spin
if the number of spin-up nearest neighbour of the lattice site i , excluding i ′, is equal
the number of spin-up nearest neighbour of i ′ excluding i . Conventionally, during
time evolution, flips or exchanges of single spins should not depend on the dynamics
of other sites during the same time step. For this reason, we performed a partition
of the grid into different sublattices. During a time step each site is updated once.
The choice of partitions is based on the condition that no nearest neighbour of a site
should belong to the same sublattice of the site itself. This is because the nearest
neighbour spins determine if a flip, respectively an exchange occurs. The partition
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of the grid is different for each of the cellular automata studied and will be discussed
in the next sections.

According to the definition of the Ising energy, Eq. (1), we have E = −1 if
si = −1 ∀i on both the square and triangular grid. This convention differs from
the one used in [2] by a factor two. E is easily computable, constant under the
dynamics of our cellular automata and is thus chosen as the reference parameter to
characterise a configuration. To get a configurationwith a given energy, we first set all
si = −1 and then randomly flip single sites until we reach the desired value. Ourmain
interest is the dynamics of these configurations, in particular, their global and local
periodicity as discussed in [2]. We first study the global periods treating systems
of different size 32 ≤ L ≤ 6400. A configuration has global period tg if it comes
back to its initial state after tg time steps. As the cellular automata are completely
deterministic and reversible, this occurs after maximal tmax = 2L×L steps. Because
tmax increases exponentially with L , the computational time required to determine
the global period of a lattice can be very large, even for system with relatively small
size. We are interested in short global periods and therefore define any t > 1000 as
infinity. We determine the fraction p(E) of configurations at a fixed energy E having
a global period tg > tg,max = 1000. We also calculate the average period among
the configurations with tg ≤ 1000 for the energies with p(E) < 0.9. The data with
higher fractions are not considered, because of the too-small number of statistical
samples.

After having studied the global properties, we examine the period of each single
lattice site (local periods) in systems with L = 1280. In [2], it was was shown that
Q2R is not ergodic: clusters of periodic cycles tend to appear in a “sea” of static sites.
Two sites belong to the same clusters if they are nearest neighbour, their spins change
in time and the local period of one is a multiple of the other. To calculate the local
periods we evolve the system during 2 · tmax time steps storing the configurations
each time. The time evolution of each single lattice site is extracted from these data.
We are then able to determine its period t by starting with t = 1. If this guess results
to be wrong, we increase t by one and check if the periodicity of the site is two.
In the opposite case, t is again increased until having found the correct value or
reached tmax . We observe the fraction of sites with a “finite” period for different
tmax = 32, 80, 160, 320 and calculate the average local period. For the calculation
of the average local periods, sites with t > tmax are defined to have local period t = 0.

Finally, we analyse the cluster size distribution of local periods of different config-
urations. This was done with an implementation of the Hoshen-Kopelman algorithm,
which determines clusters and their size [3]. We also study the cluster period distri-
bution. The period of a cluster is defined as the maximal local period among the sites
belonging to it. As for each cellular automaton different neighbours are involved,
the cluster identification method must be adapted respectively. The value of the local
period of two neighbouring sites is a multiple of both periods. Consequently, the
algorithm is the following: we first go through the configuration and label the sites
having their local period t > 1. We then join neighbouring labelled sites with the
Hoshen-Kopelman algorithm. During this process, we also store the maximal local
period within each cluster.
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All global averages are calculated over n = 1000 different configurations. Local
averages are performed over n = 100 configurations. It is not possible to determine
reliable error bars for the mean periods (local and global) because of the large fluc-
tuations. The data do not seem to be self-averaging.

3 Q2R: The Square Lattice Cellular Automaton

Q2R is defined on the square lattice, and a single site flips if two of its nearest
neighbour point up and the other two point down. We split the system into two
sublattices as defined by a checker-board. We first update the “white” sites and then
the “black” ones. It is easy to prove that no spin does belong to the same sublattice
of any of its nearest neighbours, fulfilling the requirement just explained.

To determine the global period, we implement the following algorithm: we first
store the initial configuration andmagnetisation M0 of the configuration. At any time
step i with Mi = M0, the initial configuration is compared to the one at time i . If
the two are equal, the global period t = i is found. Otherwise, the time evolution
continues, stopping at tmax = 1000 and labelling configurations as infinite for which
no smaller period is found.

Our outcome for local and global periods coincides with the results of [2], see
Fig. 1. With higher energies, the probability that a configuration has a finite period
decreases. Correspondingly, the average period of the finite configurations steadily
increases.

The local results also reproduce the previous work, as shown in Fig. 2. A central
point is the presence of a critical energy Ecp for the local average periods.With larger
tmax , we get a higher mean local period at the critical point, which diverges for larger
tmax . Thus, we perform a finite size analysis. Ecp is then determined as follows:

Ecp(tmax ) = Ecp(1 − bt xmax ) (2)

Fig. 1 Fraction of configurations (left) p(E)with global period t > 1000 and average period (right)
as a function of their energy E for Q2R. L = •32, �64, ⬟128, �640, ×1280, �6400
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Fig. 2 Fraction of sites with local finite period (left) and average local period (right) in systems of
L = 1280 for Q2R. tmax = •32, �80, ×160, �320. There is a critical energy at Ecp = −0.8700 ±
0.0006

where Ecp(tmax ) is the energy with maximal local period for tmax = 32, 80, 160, 320
and b a constant. A numerical fit using Eq. (2) leads to Ecp = −0.8700 ± 0.0006
and x = 0.34 ± 0.09. Next, we calculate the z exponent in the relation tmax (L) = Lz .
Defining z = −γ /x it is possible to determine the critical exponent γ . This exponent
characterizes the mean local period t ∝ |E − Ecp|−γ . According to our definition
we have t = 1 for E 	 Ecp and t = 0 for E 
 Ecp. In order to adjust to these two
limiting cases, we add one constant for E < Ecp and another for E > Ecp. In fact,
we make a fit

t = c|E − Ecp|−γ + a± (3)

where a± denotes a constant which is different below and above the critical energy.
We obtain γ = 1.2 ± 0.3, which agrees well with the fit to the tmax = 320 curve.
The fit is represented in the plot by the dashed grey line.

At the critical energy Ecp, we determine the cluster size distribution, shown in
Fig. 3. Among 1000 simulations we find a maximal cluster size Smax = 179. We
observe that, even at the critical energy, the clusters are rather small (in our grid there
are 12802 sites!). Nevertheless, at the critical energy the cluster size distribution
seems to follow a power-law nS ∝ S−a , where nS is the number of clusters with size
S. With a numerical fit we calculate a = 1.112 ± 0.004. The maximal local period
observed is tmax = 320 (the maximal possible value according to our choice). In
this case, the number nt of clusters found with period t behaves like nt = t−b with
b = 1.35 ± 0.03. In Fig. 4. we show some local period configurations, observing that
clusters have a typical rectangular shape. This is not surprising, as the flip function
stabilizes rectangular spin up clusters in a spin down environment (or vice-versa).

4 X2R: Q2R on Triangular Lattice

X2R is like Q2R because except that it is defined on the triangular- instead of a square
lattice. In this case, the spin of a single site is, again, flipped if energy is conserved.
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Fig. 3 Log plot of the cluster size distribution (left) and log-log plot of the cluster period distribution
(right) of Q2R at the critical energy Ecp � 0.874 for 100 configurations of size L = 1280

Fig. 4 Local periods in a configuration with L = 32 at the critical energy Ecp � −0.87 for Q2R.
◦ denotes period 1, colours distinguish local periods. We observe clusters of rectangular shape
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This occurs if the spin of exactly three of its six nearest neighbours point up. The
system is divided into three sublattices for the same reasons argued before and as
sketched in Fig. 5. Possible global and local periods are established and calculated in
the same way as for the square lattice. We modify the Hoshen-Kopelman algorithm,
accounting as nearest neighbour each of the six adjacent sites.

For the global periods, we obtain a very similar behaviour as for Q2R (Fig. 6). We
observe that the curves representing the fraction of configurations with an infinite
period are shifted to the right. This can be justified, as in this case a flip occurs if
exactly three, not two, nearest neighbours have s = 1. This arrangement occurs with
a lower probability than in the case of four nearest neighbours. Also, in this case, the
mean global period increases monotonously.

In the analysis of the local periods, we observe a similarity with Q2R, see Fig. 7.
Weperform, as described for theQ2Rautomaton case, a finite size analysis. In the first
step, for the relation of Eq.2we find Ecp = −0.8408 ± 0.0004 and x = 0.92 ± 0.04.
The critical point is slightly higher than for Q2R. This is again probably due to large
number of nearest neighbours. Also in this case, we have a phase transition charac-

Fig. 5 Division in sublattices A, B,C required for a consistent update of X2R on the triangular
grid

Fig. 6 Fraction of configurations (left) p(E)with global period t > 1000 and average period (right)
as a function of their energy E for X2R. L = •32, �64, ⬟128, �640, ×1280, �6400
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Fig. 7 Fraction of sites with local finite period (left), and average local period (right) in systems of
L = 1280 for X2R. tmax = •32, �80, ×160, �320. A critical energy at Ecp = −0.8408 ± 0.0004
is observed

Fig. 8 Log plot of the cluster size (left) and period (right) distribution for 100 configurations at
Ecp � −0.848 for X2R

terised by Eq. (3). We find γ = 0.28 ± 0.05 which is much smaller than for Q2R.
As described in Sect. 3, c and a± are constants. We represent the scaling behaviour
by the dashed grey line in Fig. 7.

For X2R, we observe (see Fig. 8) less and smaller clusters than for Q2R. Themax-
imal cluster size, again among 1000 simulations, is only Smax = 44. Their number
decays as nS ∝ S−a , although with more fluctuations as compared to Q2R. We find
a = 1.35 ± 0.05. The maximal local period is also chosen in this case tmax = 320.
We can see that the cluster period distribution exhibits very strong fluctuations mask-
ing the expected decrease. More precisely, we observe that there is a high probability
to find clusters with specific periods. For example, multiples of four are particularly
recurrent. In Fig. 9, we represent the clusters of a configuration at the critical energy
for L = 32. Contrarily to the Q2R automaton, a typical cluster shape can not be
identified.
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Fig. 9 Example of local periods for X2R. The system is of size L = 32 at the critical energy
Ecp � −0.848. No apparent typical cluster shape can be identified

5 Kawasaki-Q2R with Energy Conservation

The dynamics of this cellular automaton consists of an exchange between neigh-
bouring sites. If the two spins si , s ′

i of a neighbouring pair are anti-parallel, the spin
of both of them can flip. This occurs if the two involved sites have an equal number
of “spin up” nearest neighbour, excluding the other site of the pair. As we deal with
pairs, we have to distinguish between horizontal and vertical direction. Additionally
to the energy, we have another conserved quantity: the magnetisation M .

Any pair of spins has six nearest neighbours, and for this reason, the partition into
sublattices is more challenging. We treat, for both vertical and horizontal direction,
the two possible combinations of pairing for each site (right and left nearest neigh-
bour, upper and lower nearest neighbour respectively). Each of the two different
combinations has to be split into four sublattices, as shown in Fig. 10 for the horizon-
tal exchanges. The vertical case is equivalent. We have two time steps T and T ′. In T
we treat each couple of neighbours of the first sublattice in the horizontal direction,
performing exchanges in the sequence A, B, C, D. The same procedure is repeated
for the second pairing combination (A’, B’, C’, D’). Then, we anagously implement
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Fig. 10 Partition in sublattices implemented tomaintain energy conservation of the Kawasaki-Q2R
automaton for a system with L = 8. The two images correspond to the two different possibilities
of pairing in the horizontal direction. For vertical exchange the division is analogous

updates in the vertical direction. In T ′ we update the configuration similarly, but
first in the vertical and then in the horizontal direction. This definition is chosen for
the following reasons. Assume, for example, we have a system with si = −1 every-
where, except for one single lattice site j with s j = 1. An exchange with a nearest
neighbour will occur first horizontally and later vertically. Focus now, without loss
of generality, on the case (this depends on the initial j , see sublattice partition) when
s j = 1 first exchanges with its right neighbour, and then with its vertical neighbour.
The dynamics repeats the next steps continuously. Thus due to periodic boundary
conditions, the system would come back to its initial configuration after t = 4L time
steps. We want to establish global periods for t ≤ 1000 and compare the average to
the value for different sizes (up to 6400). For these reasons, we introduce the previ-
ously defined even and odd time steps and implement the sequence T T ′T T ′. In fact,
with this definition, most of the sites will have t = 2. This behaviour can be seen
as some oscillating blinkers. It is also important to note that, again in the case of a
singular spin-up site s j , after a single time step, the cell with s ′

j = 1 will be its fifth
nearest neighbour. This is a consequence of the definition of our time step. We have
to modify the Hoshen-Kopelman algorithm previously used by taking in account the
fifth nearest neighbour belonging to the same cluster for consistency. This effect can
be observed in Fig. 11, where we show the local periods for a random configuration
with L = 32 and E � −0.97.

For the calculation of the global periods,we cannot rely on the algorithmpresented
for Q2R, as the latter is based on a comparison with the magnetisation Mi at each
time step. In theKawasaki-Q2R automatonM is constant.We therefore implemented
a straightforward algorithm comparing the configuration after each time step with
the initial one. This process requires more computational time.
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Fig. 11 Local periods for a configuration at energy E � −0.97 and size L = 32. ◦ indicates a site
of period 1, orange clusters are of period 2 and blue of period 4

The behaviour for the Kawasaki automaton dynamics is quite different from Q2R
and X2R. Configurations with finite periods are only present at low energies (see
Fig. 12). Additionally, finite configurations have a lower average global period and
this value does not systematically increase with energy but exhibits strong fluctua-
tions. We can observe and conclude that either a configuration has a short period, or
we will observe an important motion, especially for large systems.

Analysing the local periods, we observe additional differences. Also in this case,
for all tmax between 32 and 320, we have an increase in the fraction of lattice sites,
but with an infinite local period in a smaller energy range compared to the previously
studied cellular automata (see Fig. 13). For tmax ≤ 160 themean local period steadily
decreases: No critical point can be detected. As shown in Fig. 13, however, for tmax =
320we observe, after a short decrease, an unexpected jump at E = 0.9669 ± 0.0003.
With a simulation for tmax = 640, we obtain essentially the same values as for tmax =
320. Also a different number generator leads to the same results. Observing the
cluster period distribution for the energy at the jump (see Fig. 14), we can extract
a possible explanation. In fact, most of the clusters have either low 2 ≤ t < 8 or
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Fig. 12 Fraction of configurations (left) p(E) with global period t > 1000 and average period
(right) as a function of their energy E for the Kawasaki-Q2R automaton. L = •32, �64, ⬟128,
�640, ×1280, �6400

Fig. 13 Fraction of sites with local finite period (left) and average local period (right) in systems
of L = 1280 and different tmax for Kawasaki-Q2R automaton. tmax = •32, �80, ×160, �320. We
do not observe any critical point opposed to the previous cellular automata

Fig. 14 Cluster size (left) and cluster period (right) distribution of Kawasaki-Q2R at the jump
energy E � −0.97 on 100 systems of size L = 1280
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large t > 128 period. We have a possible interpretation of this substantial difference
encountered between tmax ≤ 160 and tmax = 320. Contrarily to Q2R and X2R, in
the Kawasaki-Q2R automaton, we have three different possibilities for the number
of spin-up nearest neighbour to flip a pair of spins. An increase in energy could then
lead to configurations in which less pairs of spins undergo an exchange: Less sites
will have an infinite period, resulting in an average value closer to one.

6 Discussion and Conclusion

The similarities in the definition of Q2R and X2R lead to analogous behaviour. In
both cellular automata, we observe a comparable evolution of the finite global period
as a function of the energy. Additionally, we have a critical energy characterized by a
divergence of mean local periods. Although the probability of finding a configuration
with global period t ≤ 1000 steadily decreases for higher energies, we verify (as
observed by Herrmann et al. [2]) that dynamical sites arrange in clusters and have a
limited periodicity. These clusters lie in a “sea” of siteswithfixed spin.Configurations
in both Q2R and X2R at low energy are thus clearly not ergodic. The Kawasaki-Q2R
automaton exhibits very different results. In this case, the probability of finding
an infinite global configuration increases more rapidly and reaches its maximum
for very low energies. Also in this case, we can observe the formation of clusters
with finite periods, but for smaller energies compared to Q2R and X2R. No critical
point is observed and the mean local period steadily decreases with the energy.
We can not provide an explication for the disappearance of the maximum in the
mean local period, although we suspect that the larger number of possibilities under
which an exchange takes place could play an important role. The unexpected jump
at tmax = 320 can be partially justified by the cluster period distribution: this value
results to be either less than 10, or larger than 200 at the jump energy E j � −0.97.
The configurations are not ergodic, instead there are dynamical sites arranging in
clusters with finite periodicity in all Q2R, X2R and Kawasaki-Q2R.
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The Mirage of Universality in Cellular
Automata

Guillaume Theyssier

Abstract This note is a survey of examples and results about cellular automata with
the purpose of recalling that there is no ‘universal’ way of being computationally
universal. In particular, we show how some cellular automata can embed efficient
but bounded computation, while others can embed unbounded computations but not
efficiently.We also study two variants of Boolean circuit embedding, transient versus
repeatable simulations, and underline their differences. Finally we show how strong
forms of universality can be hidden inside some seemingly simple cellular automata
according to some classical dynamical parameters.

1 Eric, the Collector

The present note responds to an invitation to contribute to a book at the occasion of
Eric Goles 70th birthday. Before diving into the scientific content, I should say a few
words about Eric and the motivation behind this note.

Anyone knowing Eric certainly had the pleasure to listen to some of his colorful
anecdotes (I certainly did). He owns a large collection, large enough to adapt to a
wide variety of listeners and circumstances. The collection is in fact twice as large,
because each anecdote, usually told to an international audience, is doubled with
a more confidential Chilean version full of slang words. Eric’s pleasure of telling
stories is obvious, he has generously shared his collection, but nobody has listened
to the same sequence of anecdotes and we all end up with a different global picture,
much like the adventurous readers of the antinovel of Cortázar.

The collection of models and systems studied by Eric in its numerous scientific
publications is equally striking. It abounds in small examples that are carefully ana-
lyzed and shown to capture important phenomena. It connects different points of view
and different communities of researchers. It seems to never end up in the exact same
theoretical framework and invites us to think about details that make a difference. In
short, there is an anti-Bourbakist quality to it.
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At the heart of this scientific collection (at least from what I can tell from my
collaboration with Eric), there is the question of the computational universality of
small dynamical systems, and how it manifests itself in the complexity of various
associated decision problems. Computational universality of dynamical systems is
a topic that might seem boring to the classical computer scientist (after all Turing
showed the existence of a universal machine in the 1930s) and not serious for the
dynamical systems community (this is not real maths1). Part of the problem is that
this kind of research is endangered by what I would call the mirage of universality:
the illusion that there must be universal consequences to the fact of being “compu-
tationally universal” independently of the precise definition used, and that such a
statement, even given without technical details, gives information by itself. Pursu-
ing this mirage, one is tempted to put forward vague theorem statements and hide
the concrete mathematical result in the proofs (or sketch of). To make an analogy,
no paper in computational complexity would use theorem statements like “Problem
X is hard” and then, hidden in the proof details, unveil the definition of “hard”.
On the contrary, computational complexity theory has been extremely fruitful by
putting forward a vast “zoo” of precisely defined complexity classes, often with a
corresponding notion of reduction.

Of course, there is a lot to say and a lot as already been said about themathematical
formalization of computational universality in dynamical systems, but my intention
here is clearly not to start a comprehensive survey on the topic [7, 21]. Instead, I
would like to invite the reader to a quick tour of examples and properties breaking
this mirage of universality. Most of them were encountered or established during my
collaboration with Eric, and I hope this note can give a clue about the richness of
Eric’s scientific collection.

Content of the note: To simplify exposition, I chose to restrict to (classical) cellular
automata and tackle three main topics in three separate sections. Each topic shows
examples of “computationally universal” cellular automata that, in some sense, do
not behave as expected, or pair of examples that behave differently with respect to
some parameter:

• efficient versus unbounded computations: how some cellular automata are able to
embed one type of computations but not the other;

• transient versus repeatable circuit simulations: about the existence of (at least) two
fundamentally different ways to simulate Boolean circuits in cellular automata,
and their consequences;

• hidden universality: how cellular automatamight seem ‘simple’ according to some
parameter despite being actually universal.

Before starting, some standard definition are given below to set up our framework.

1 It should be noted however that a growing trend in symbolic dynamics has shown the importance
of computability considerations. Some of these results were even published in real math journals.
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2 Standard Definitions and Notations

For any finite set Q (the alphabet) and positive integer d (the dimension), we consider
the space of configurations QZ

d
, i.e. the set of maps giving a state from Q to each

position in the lattice Zd . The state of configuration c ∈ QZ
d
at position z ∈ Z

d will
be denoted either c(z) or cz .

For n ∈ N, let B(n) be the set of positions of Zd of maximum norm at most n:

B(n) = {z ∈ Z
d : ‖z‖∞ ≤ n}.

Then for any u ∈ QB(n), we define the cylinder set [u] centered on cell 0 by:

[u] = {c ∈ QZ
d : ∀z ∈ B(n), cz = uz}.

These cylinder sets can be chosen as a base of open sets of the space QZ
d
endowing

it with a compact topology [17]. Equivalently, the same topology can be defined by
the Cantor distance:

δ(c, c′) = 2−min{‖z‖∞:cz �=c′
z}.

A cellular automaton of dimension d and state set Q is a map F acting continu-
ously on configurations and translation invariant way. Equivalently (Curtis-Lyndon-
Heldund theorem [14]), it can be defined locally by a neighborhood V (a finite subset
of Zd ) and a local transition map f : QV → Q as follows:

∀z ∈ Z
d , F(c)z = f

(
c
∣∣
z+V

)

where c
∣∣
z+V denotes the map z′ ∈ V 
→ cz+z′ .

The radius of F is the smallest integer r such that V ⊆ B(r) where V is some
neighborhood for which there is a local map fV : QV → Q defining F as above. F
induces an action on finite patterns as follows. For any n ∈ N and any u ∈ QB(n+r),
F(u) is the finite pattern v ∈ QB(n) obtained by application of f on u at each position
from B(n), i.e. such that

∀c ∈ [u], F(c) ∈ [v].

We are now going to define a notion of universality for cellular automata. We
choose this one for two reasons: first it is one of the strongest form of universality
and will serve us as a benchmark in the following, and second, it is intrinsic to the
model of cellular automata and make no reference to other models of computation
(for more details, see [5, 6, 22]).

This notion, called intrinsic universality, is based on a notion of (intrinsic) simu-
lation that is defined through two ingredients [5, 6].

The first ingredient is a notion of cell-wise simulation that works by restriction
to a sub alphabet and then projection onto the target alphabet. To be more pre-
cise let F and G be cellular automata of dimension d. We denote by F � G the



60 G. Theyssier

fact that F is obtained from G by cell-wise restriction and projection, formally:
∃π : Q ⊆ QG → QF surjective such that for all c ∈ QZ

d

π ◦ G(c) = F ◦ π(c)

whereπ : QZ
d → QZ

d

F is the cell-wise application ofπ . In the language of dynamical
systems, (F, QZ

d

F ) is a factor of (G, QZ
d
) which is a sub-system of (G, QZ

d

G ).
Now we add the second ingredient, rescaling, that allows to turn a cell-wise

simulation into a simulation that works by blocks: blocks of cell of the first CA
are simulated by blocks of cell of the second CA. Given a rectangular shape
m = (m1, . . . ,md) and some alphabet Q we define the bloc recoding map Bm from

QZ
d
to

(
Qm1m2···md

)Zd

by:

Bm(x)(z1, . . . , zd) = (
x(m1z1, . . . ,mdzd), . . . ,

x(m1z1 + m1 − 1,m2z2, . . . ,mdzd),

x(m1z1,m2z2 + 1,m3z3, . . . ,mdzd), . . .

x(m1z1 + m1 − 1, . . . ,mdzd + md − 1)
)

It is a bijection that recodes any configurations by blocks of shape m. Now if t is a
positive integer and z ∈ Z

d , we define the rescaling of F of parameters m and t as
the CA F<m,t> = Bm ◦ Ft ◦ B−1

m .
We finally say that G simulates F , denoted F ≤ G, if there are parameters m, t ,

m′ and t ′ such that F<m,t> � G<m′,t ′>. We also say that G strongly simulates F if
there are parameters m and t such that F � G<m,t>. Then, a CA G is intrinsically
universal if for any CA F we have F ≤ G. It can be shown that an intrinsically
universal CA can in fact strongly simulate any CA [6].

Finally, we assume the reader is familiar with basic notions and results of com-
putability and complexity theory. We will use the following standard classes of
decision problems:

• P is the set of problems which can be solve be a deterministic Turing machine in
polynomial time;

• NLOGSPACE is the set of problems which can be solve be a non-deterministic
Turing machine in logarithmic space;

• �0
1 is the set of recursively enumerable problems (which contains the halting

problem).

Without explicit mention and when speaking about P-completeness we consider
LOGSPACE reductions.When speaking about�0

1 -completenesswe usually consider
many-one reductions.
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3 Efficient Versus Unbounded Computations

It is well-known that, besides the reference model of Turing machines, there are
other ones that fundamentally differ because they either only allow efficient but
bounded computation (like Boolean circuits) or unbounded but slow computations
(likeMinsky machines) [19]. We would like to illustrate this aspect in the framework
of cellular automata in a precise manner. To simplify, we restrict to dimension 1
in this section. We first define two classical problems associated to any CA which
will serve as canonical indicators for both aspects mentioned above: efficiency and
unboundedness of computations.

The first one is about short-term predictability within a bounded time range and
provides a fine-grained complexity measurement within class P.

Definition 1 Let F be any CA of radius r and alphabet Q. The prediction problem
PREDF is defined as follows:

• input: t > 0 and u ∈ QB(r t)

• output: Ft (u) ∈ Q.

The second one asks for a prediction about an unbounded future and provides a
coarse-grained complexity measure allowed to cross the decidable barrier. It could
be refined in many ways as in the definition of universality for dynamical symbolic
systems from [7]. We prefer to keep it simple for the clarity of exposition. We say a
configuration c ∈ QZ is eventually bi-periodic if it is eventually periodic to the left
and eventually periodic to the right, said differently if it is of the form ∞uL · u · u∞

R
where uL , u and uR are finite words.

Definition 2 Let F be anyCAof radius r and dimension 1. The reachability problem
UBPREDF is defined as follows:

• input: an eventually bi-periodic configuration c = ∞uL · u · u∞
R and a state q.

• output: decide whether there is t ∈ N such that Ft (c)0 = q .

One of the well-know results of computational universality in cellular automata
is about elementary rule 110 given by the local rule δ : {0, 1}3 → {0, 1} with

δ(x, y, z) = (1 − xyz) · max(y, z).

It is interesting to note that the first proof of computational universality of this cel-
lular automaton due toCook [3]was enough to prove undecidability ofUBPREDδ but
did not give information about problem PREDδ . It is only later, by a strong improve-
ment in one step the the reduction, that PREDδ was proven to be P-complete [20].
The purpose of this section is precisely to make clear that there is generally no impli-
cation in either direction between the P-hardness of PRED and the undecidability of
UBPRED.
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Definition 3 A CA F is a freezing CA if, for some (partial) order ≤ on states, the
state of any cell can only decrease, i.e.

F(c)z ≤ cz

for any configuration c and any cell z.

The definition abovewas introduced in [9] in studiedmore in depth in [23]. Similar
cellular automata corresponding to bounded changes or bounded communications
were also considered in the literature with the point of view language recognizers
[2, 18, 24]. Under the hypothesis that NLOGSPACE �= P, the following results show
examples of cellular automata that can embed arbitrary unbounded computation, but
not in an efficient way.

Theorem 1 (Sect. 4.3 of [23]) For any freezing CA F of dimension 1, the problem
PREDF is in NLOGSPACE. There exists a 1D freezing CA F such that UBPREDF

is �0
1 -complete.

We are now going to build an example with the opposite computation embedding
properties: as hard as it can be in the short term (it can embed efficiently bounded
computations), but decidable in the long term (it can not embed unbounded com-
putations). It is inspired from [23, Example 7] and consists in a simulation of some
P-complete cellular automaton inside finite zones, with some head controlling the
simulation and forced to move back and forth inside the zone and shrink it by one cell
at each bounce on a boundary. The simulation is such that one step of the simulated
cellular automaton is done at each pass so that there is only a quadratic slowdown
(see Fig. 1).

Let F be any 1D CA on alphabet Q with radius 1 and local map δ : Q3 → Q.
We define ZF on alphabet R = {b, b+, e} ∪ Q′ with Q′ = Q × Q × {←,→, l, r}
and radius 1 as follows:

Fig. 1 The shrinking zone
trick behind the construction
of ZF (time goes from
bottom to top)
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• e, the error state, is a spreading state: any cell with e in its neighborhood turns
into state e; a configuration c is valid if e never appears in its orbit;

• b, the blank state, never changes except in presence of the error state; b+ becomes
b except in presence of the error state; a maximal connect component of cells in
state Q′ is a working zone;

• in a working zone, patterns of the form (x, y, r)(x ′, y′, l), or (x ′, y′, l)(x, y, r),
or (x, y, z)(x ′, y′, z′) with {z, z′} ⊆ {←,→}, or (x, y, r)(x ′, y′, z) or (x, y, z)
(x ′, y′, l) with z ∈ {←,→}, are forbidden and generate an e state when detected;
therefore in a valid configuration and in each working zone there is at most one
occurrence of a state of the form (x, y, {←,→}) called the head;

• a cell without forbidden pattern (from previous item) and without head in its
neighborhood doesn’t change its state;

• the movements and actions of the heads are as follows:

– inside aworking zone, the head in state←moves left, the head in state→moves
right; the local map δ is only applied the head moves left to right; precisely we
have the following transitions:

(x, y, l), (x ′, y′,←), (x ′′, y′′, r) 
→ (x ′, y′, r)
(x, y, l), (x ′, y′, l), (x ′′, y′′,←) 
→ (x ′, y′,←)

(x, y, l), (x ′, y′,→), (x ′′, y′′, r) 
→ (x ′, y′, l)
(x, y,→), (x ′, y′, r), (x ′′, y′′, r) 
→ (δ(y, x ′, x ′′), x ′,→)

– when a boundary of the working zone is reached, the head bounces, changes of
direction and the working zone get shrinked by one cell; precisely we have the
following transitions:

b, (x, y, l), (x ′, y′,←) 
→ (x, y,←)

b, (x, y,←), (x ′, y′, r) 
→ (x, y,→)

b, (x, y,→), (x ′, y′, r) 
→ (y, x, l)

b, (x, y, l), (x ′, y′,→) 
→ b+
(x, y,→), (x ′, y′, r), b 
→ (x ′, y′,→)

(x, y, l), (x ′, y′,→), b 
→ (x ′, y′,←)

(x, y, l), (x ′, y′,←), b 
→ (x ′, y′, r)
(x, y,←), (x ′, y′, r), b 
→ b+

(note the swap between x and y in the third transition above to initialize the
sequential application of δ)

– finally the head disappears in a working zone of size 1, precisely:

b′, (x, y, z), b′′ 
→ (x, y, r)

for any {b′, b′′} ⊆ {b, b+}.
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Theorem 2 For any F, the problem UBPREDZF is decidable in polynomial time.
If F is chosen so that PREDF is P-complete, then PREDZF is P-complete.

Proof For the first part of the Theorem, let us consider an eventually bi-periodic
configuration c = ∞uL · u · u∞

R . There are four cases:

• c is not a valid configuration, which means that it contains a working zone with a
forbidden pattern. Since the forbidden pattern are locally detectable, such a forbid-
den pattern must be detected inside the finite word uLuLuLuuruRuR (considering
the worst case where uL or uR is of size 1). Therefore, in time t which is linear in
the sizes of uL , u and uR we have Zt

F (c)0 = e;
• c is a valid configuration and position 0 belong to a finite working zone in c. Since
the left and right boundary of this zone must belong either to u, or uL or uR , the
zone is of linear size and it gets completely shrinked in quadratic time, meaning
that the state of position 0 will no longer change after a quadratic time;

• c is a valid configuration and position 0 belongs to an infinite zone in c. In this
case, the position of the head must belong to either u, uL or uR and the same for
the eventual (unique) boundary of the zone. Therefore, after a linear time in the
worst case, cell 0 will never change again (for instance, the head comes from the
right, bounces to the left boundary, crosses once more position 0, but never comes
back again);

• c is a valid configuration but position 0 does not belong to some working zone,
then for any t ≥ 1 we have Zt

F (c)0 = b.

We deduce that that after a quadratic time the state of cell 0 does not change any
more, so it is sufficient to simulateZF on c for this number of states to solve problem
UBPREDZF .

For the second part of the Theorem, see [23, Lemma 1 and Proposition 5]. �

4 Transient Versus Repeatable Circuit Simulation

In this section we focus on dimension 2 and simulation of Boolean circuit and logical
gates by cellular automata. Showing how a cellular automaton can embed Boolean
circuits is one of the common methods used to claim its Turing universality (see for
instance [1, 8, 21]).

We are now going to describe twomodes of simulation of a set of logical gates by a
cellular automaton, which were formalized in [11]. The basic simulation mechanism
behind both simulationmodes uses square blocks concatenated in a grid-like fashion.
Each such square block represents a part of a concrete Boolean circuit (either a node
or wire). The definition doesn’t require any specific way of representing information
inside the blocks, just that the family of blocks use coherent representation of infor-
mation so that the Boolean logic works when assembling them. More concretely,
they communicate information with their four neighbors (north, east, south, west) in
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such a way that each one implements a Boolean function with at most 2 inputs and
at most 2 outputs.

In the sequel all considered blocks will compute one of the following maps (we
represent them using type {0, 1}4 → {0, 1}4 in order to make explicit the position of
inputs and outputs among the neighbors in the order north, east, south, west):

AND(x, ∗, ∗, y) = (
0,min(x, y), 0, 0

)

OR(x, ∗, ∗, y) = (
0,max(x, y), 0, 0

)

CROSS(x, ∗, ∗, y) = (
0, y, x, 0

)

NOP(∗, ∗, ∗, ∗) = (
0, 0, 0, 0

)

FORK(∗, ∗, ∗, x) = (
0, x, x, 0

)

WIREi,o
(
c ∈ {0, 1}4) = k ∈ {0, . . . , 3} 
→

{
c(i) if k = o

0 else

for any i �= o ∈ {0, . . . , 3}. Note that any function f above is such that

f (0, 0, 0, 0) = (0, 0, 0, 0).

We denote by Img( f ) the set of 4-uple that can be obtained as an image of f . The
WIREi,o functions are just all the possible ways to read a bit on one side and transmit
it to another side. Together with the NOP and FORK function they represent the
basic planar wiring toolkit denoted W in the sequel. The NOP gate is special in that
one considers it has 4 inputs and 4 outputs.

The two circuit simulation modes share the same block representation of circuit
and information, but they differ in their requirement about the dynamical evolution of
blocks. In the first mode, called transient mode, the gates can be used only once and
nothing is granted concerning their evolution afterwards. The second mode, called
repeatable mode, asks for each gate to go back to some acceptable state each time
they are used so that they can be used again. Both modes require the simulation to
work in constant time.

Let G ⊆ {AND, OR, CROSS} be a set of gates. Let F be a CA with states set Q
and N > 0 be an integer. Consider a set V ⊆ QN×N of patterns, the valid blocks,
each of which as a type fu where f ∈ G ∪ W and u ∈ Img( f ) and such that, for
any fu , there is some block of V of type fu . If a block B ∈ V has type f(a,b,c,d) for
some f , we say it has north value a, east value b, south value c and west value d.
Finally let� > 0 be some constant. A configuration is valid if it is a concatenation of
valid blocks where output sides of a block must face input sides of its corresponding
neighbors. Given a block B ∈ V of type fu in a valid configuration, we say that it
makes the correct transition if it becomes a block of type fv after � steps where
v = f (n, e, s,w) is the output of f on the input read from surrounding blocks,
precisely: the block at the north of B has south value n, the block at the east of B
has west value e, etc.
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Transient simulation. We say that F simulates the set of gates G in transient mode
with delay � and valid blocks V if for any valid configuration c, the configuration
F�(c) is valid and for any f ∈ G ∪ W , any block of type f(0,0,0,0) in c makes the
correct transition.

Repeatable simulation. The simulation is repeatable if any block in any valid con-
figuration makes the correct transition.

Before stating some theorems, let us define a decision problem associated to any
2D cellular automaton that will serve as a benchmark to separate the two kinds of
circuit simulation above.

Definition 4 Let F be any 2DCAof radius r and alphabet Q, andφ a non-decreasing
function such that 1 ≤ φ(n) ≤ 2O(n). The prediction problem CYCLEφ

F is defined
as follows:

• input: a periodic configuration c of period n × n
• output: is the length of the temporal cycle reached from c strictly greater than

φ(n)?

The first mode of simulation (the repeatable mode) is the strongest one, and is
actually equivalent to intrinsic universality even if we use only monotone gates. In
this case, although the definition does not explicitly provide crossing gates, it is
always possible to realize a dynamical crossing and build arbitrary reusable bloc
elements leading to intrinsic universality.

Theorem 3 ([11]) A 2D CA F is intrinsically universal if and only if it can simu-
late a AND,OR circuitry in a repeatable way. In this case PREDF is P-complete,
UBPREDF is �0

1 -complete and CYCLEφ

F is PSPACE-complete for some φ.

To illustrate the difference between the two modes we shall use the symmetric
signed majority cellular automaton: it is essentially a majority rule where the state
of each neighboring cell can be inverted or not before evaluating majority, this being
done according to a local invariant sign vector and in a symmetric way: if cell z
inverts the value of its neighbor z′, then z′ will also invert the value of z. We use the
vonNeumann neighborhood V = {(0, 0), (0, 1), (1, 0), (0,−1), (−1, 0)}. The sym-
metric signed majority cellular automaton F1 is defined over state set Q = {−1, 1}6.
To simplify notation, we will see each state q ∈ Q as a pair (I (q), S(q)) where
I (q) ∈ {0, 1} represent the inner state and S(q) ∈ {−1, 1}V is a sign vector associ-
ating a sign to each neighbor of the von Neumann neighborhood. For any configu-
ration c ∈ QZ

2
, any cell z and any cell z′ ∈ z + V we define the symmetric weight

wzz′ ∈ {−1, 1} as wzz′ = (S(cz)(z′ − z))(S(cz′)(z − z′)). We note that wzz′ = wz′z ,
hence the name symmetric. F1 is then defined as follows.

F1(c)z = (α, S(cz))
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where

α =
{
1 if

∑
z′∈z+V wzz′ I (cz′) > 0,

−1 otherwise.

The following theorem shows that transient simulations are strictly weaker than
repeatable simulations, F1 being an example capable of the former, but not the latter.

Theorem 4 ([11]) If a 2D CA F can simulate a {AND,OR,CROSS} circuitry in
transient mode, then its associated problem PREDF is P-complete. F1 defined above
can simulate a {AND,OR,CROSS} circuitry in transient mode. However, F1 is not
intrinsically universal and such that the problem CYCLEφ

F1
is in P if φ ≡ 1 and

trivial else.

5 Hidden Universality

When proving that some cellular automaton is computationally universal, it can be
acceptable to avoid a precise definition of universality if the construction makes
it clear enough. However, a precise definition seems necessary when ones want to
show that some cellular automaton is not universal. To avoid formalism, one could be
tempted to use a shorter path: prove that, according to some well-chosen parameter,
the considered cellular automaton is too simple to be universal. The intuition is that
a universal cellular automaton should have roughly the highest complexity for the
parameter. This approach can be made precise and yield some proof tools of non-
universality in some contexts [12]. The purpose of this section is to recall that things
can get counter-intuitive and such a parameter must be chosen carefully.

5.1 Hidden Minsky Machines Simulation

The limit set of a cellular automaton F is the nonempty closed subset

�F =
⋂

t∈N
Ft (X).

It represents the set of configurations that may appear arbitrarily far in the evolution
and the restriction of F to �F is often considered as the asymptotic dynamics of F .
The limit language is the set of finite patterns that occur in some configuration of�F .
It is not difficult to see that the limit language is always co-recursively enumerable.
However, there are known examples of non-recursive ones [15]. The attentive reader
of [4] has probably spotted the affirmation that universal cellular automata have a
non-recursive limit set. Depending on the definition of universality, this affirmation
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can be false. The following theorem shows that arbitraryMinskymachine simulations
can be realize while maintaining a simple limit set (see [10] for the precise definition
of simulation).

Theorem 5 ([10]) For any Minsky machine M there exists a CA of dimension 1 that
simulates M but whose limit language is regular.

5.2 Hidden Intrinsic Universality

Following Theorem 5, one can go one step further and hide intrinsic universality
behind a simple limit set (at the price of a complexity increase from regular to
NLOGSPACE). The main trick of the next theorem is inspired from [16]: adding to
a given cellular automaton F on alphabet Q, a firing squad component (see Fig. 2)
that is able to fill-in the limit set restricted to the Q component, and therefore make
it simple independently of F .

Fig. 2 J. Kari’s firing squad trick: a synchronous apparition of γ can be triggered arbitrarily far in
time, thus allowing to complete the limit set on some component of states to the full-shift
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Theorem 6 ([13]) There exists an intrinsically universal CA whose limit language
is NLOGSPACE.

Given n ∈ N, the column factor of width n of F , �n(F), is the set of columns
that can appear in space-time diagrams of F :

�n(F) = {
(ut )t∈N : ut ∈ Qn, ut = Ft (c)[1,n], c ∈ QZ

d}
.

To �n(F) we associate its language of finite patterns L(�n(F)) defined as the set of
words ut · · · ut+k for some (ut )t∈N ∈ �n(F) and t, k ∈ N.

The approach of [7] to define universality for general dynamical systems translates
into the following in our settings. To F we associate the model checking problem:

• input: n and a regular language Ln over alphabet Qn ,
• question: decide whether Ln intersects L(�n(F)).

F is BDK-universal if its associated model checking problem is r.e.-complete.
Like for limit sets, column factors can be filled up and thus simplified by increasing
the alphabet starting from an arbitrarily complex cellular automaton.

Theorem 7 ([13]) There exists an intrinsically universal CA F such that L(�n(F))

are regular languages computable fromn. In particular, such F is not BDK-universal.
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Connectivity and Connected
Components in the Number-in-Hand
Computation Model

Antonio Lizama and Ivan Rapaport

Abstract We study the multiparty communication model where players are the
nodes of a graph G and each of these nodes knows his/her own identifier together
with the identifiers of his/her neighbors. The nodes simultaneously send a unique
message to a refereewhomust give the output (which is a fiunction ofG). In this paper
we prove that counting the numbers of connected components of G and deciding the
connectivity of G are equivalent problems (in terms of the size of the messages).

1 Introduction

In the number-in-hand multiparty communication model there are k players. Each
of these k players receives an n-bit input string xi and they all need to collaborate in
order to compute some function f (x1, . . . , xk). Despite its simplicity, the case k > 2
started to be studied very recently [1–9].

There are different communication modes for the number-in-hand model. In this
paper we focus on the simultaneous message communication mode, in which all
players simultaneously send a unique message to a referee. The referee collects the
messages and computes the function f . The computational power of both the players
and the referee is unlimited.When designing a protocol for a function f , the goal is to
minimize the size of the longest message generated by the protocol. This minimum,
usually depending on n, is called themessage size complexity of f . Typical questions
in communication complexity consist in designing protocols with small messages,
and proving lower bounds on the size of such messages.

Several authors considered the case where the data distributed among the players
is a graph [1, 3, 4, 8, 9]. Informally, each player knows a set of edges of the graph
and together they must compute some function that depends on the graph. Again we
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can observe two different settings. In one of them, the edges are distributed among
the players in an adversarial way [1, 9]. In this work, following [1, 3], we consider
the setting where each player corresponds to a node of the graph, and thus each
player knows the identifier of this node together with the identifiers of its neighbors,
represented as an n-bit vector (in the vector xi of the i-th node, the bit number j is
set to 1 if and only if the i-th and the j-th nodes are adjacent).

Formally, an n-node network is represented by a graph G = (V, E), where V =
{v1, . . . , vn} and E = {e1, . . . , em}. It is assumed that the identifier of each node
vi ∈ V is I D(vi ) = i . The entry of vi is xi ∈ {0, 1}n , where xi ( j) = 1 if and only if
vi v j ∈ E .

The goal is to compute a function f (x1, . . . , xn). In order to achieve this, every
processors vi sends a message outi to an external entity, called the referee. With these
messages, the referee should be able to decide the value of function f . This process
is called a protocol. The internal computing power of each node and the referee is
unbounded.

It is clear that, if there is no restriction on the size of the messages that each node
sends to the referee, then it is enough for each one to send the entire neighborhood.
With those messages, each of size O(n), computing the value of f (x1, . . . , xn)
becomes trivial. The challenge is to find non-trivial lower bounds on C( f ), the
message size complexity of f .

In problem connected-components the goal is to compute the number of
connected components of the graph. On the other hand, in problem connec-
tivity the goal is to decide whether the graph is connected. It is obvious that
C(connectivity) ≤ C(connected − components). The goal of this paper is to
show that C(connected − components) = O(connectivity).

2 The Reduction

In this section we show that, if there is a protocol P that solves connectivity, then
there is another protocol P ′, with complexity of the same order, that solves con-
nected-components. The following theoremshows the existence of such reduction.

Theorem 1 C(connected − components) = O(connectivity).

Proof We are going to prove that, if connectivity can be solved with messages
of size �(n), then connected-components can be solved using messages of size
2�(n + 2).

Let G = (V, E) be a graph and P a protocol that decides the problem connec-
tivity using �(n) bits. That is, themaximum length of themessages is �(n). Consider
the following family of graphs F , which is built from G, as follows.

F := {G′
A = (V ′, E ′) | A ⊆ V, V ′ = V ∪ {a, b}, E ′ = E ∪ {au, bw | u ∈ A,w ∈ V \A}}.
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Fig. 1 Graph that results
from the reduction

In words, we add two new vertices a and b, and connect every v ∈ V to either a
ar b according to the set A. Thus, each graph G ′

A in F is defined by fixing the set
A ⊆ V (see Fig. 1).

We define now the new protocol P ′ that computes the number of connected com-
ponents inG. The new protocolP ′ is as follows. Each node v ∈ V sends the message
mv = m1

vm
2
v , wherem

1
v corresponds to the message it would have sent in P if v ∈ A,

while m2
v is the message it would have sent if v ∈ V \A.

It follows that, inP ′, themessage length sent by each node is 2 f (n + 2).With this
information the referee is able to infer whether each graph G ′

A ∈ F is connected.
Indeed, as previously mentioned, a graph G ′

A ∈ F is determined uniquely by the
choice of A ⊆ V . Then, the refereemust consider all possible subsets A in the graph
G. With this sequence of messages, and thanks to the existence of protocol P , it is
possible to determine whether G ′

A is connected or not for every A.
Analyzing the answer on all the graphs of the familyF , it is possible to determine

the number of connected components of the original graph G. For this, it is enough
to note that, if G is a graph with k connected components V1, ..., Vk , then G ′

A is not
connected if and only if A = {∪i∈I Vi | I ⊆ {1, ..., k}}. �
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Contagion Dynamics in Complex
Networks

Lucas Böttcher

Abstract Models of spreading processes in networks can help to provide insights
into phenomena such as epidemic outbreaks, opinion formation, and failure propa-
gation. Many contagion models are based on the idea that spreading occurs from an
“infected” source to “non-infected” components, which may recover. In the case of
social opinion formation, external factors such as media influence have to be taken
into account, and in some cases multiple infectious sources are necessary to sustain
spreading (complex contagion). In this chapter, I provide a brief overview of com-
mon models of contagious processes and show that many of them can be treated as
special cases of a general contagion model. Interestingly, despite its general formu-
lation, the stationary behavior of the model is characterized by only three distinct
classes. As an application of the general contagion model, I discuss its ability to
describe activist-voter interactions in election campaigns.

1 Introduction

Mathematical models of epidemic processes [1–3] contributed to a better under-
standing of disease outbreaks and their control. Traditional spreading models have
been complemented with results from the study of complex networks [4, 5] to also
account for the influence of different interaction networks. One possible classifica-
tion of spreading processes is based on the number of contacts to “infected” sources,
which are necessary to sustain spreading. In the case of a so-called simple contagion
(i.e., contact process [6, 7]) such as a “flu-like” epidemic, a disease may spread
from one single infected source to non-infected components. On the other hand,
complex contagions describe phenomena such as the diffusion of innovations [8, 9],
political mobilization [10, 11], viral marketing [12], and coordination games [13],
where individuals may change their opinion/state if they are connected to multiple
“infected” sources [14, 15]. In addition to the direct transmission of certain attributes
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from one individual/component to another, external factors such as media influence
and spontaneous failure have to be also taken into account [16, 17].

In the first part of this chapter, I provide a brief overview of some commonmodels
of contagious processes and show that they are specific cases of a general contagion
model, which exhibits hysteresis effects [16, 18] and limit cycles [16, 19]. Despite
its general formulation, the mean-field critical behavior of the model is restricted to
only three possible regimes: (a) uncorrelated spontaneous transition dynamics, (b)
contact process dynamics, and (c) cusp catastrophes. Cusp catastrophes [17, 20, 21]
can entail abrupt transitions and hysteresis effects. Such phenomena may complicate
the control of networked systems, because small variations in the system’s control
parameters (e.g., transmission rates) may cause abrupt transitions from a seemingly
well-functioning state to global malfunction [5, 17, 20, 22, 23]. In the second part
of this chapter, I outline the application of general contagion dynamics in the context
of activist-voter interactions during election campaigns [24, 25].

2 General Contagion Model

A simple epidemic process may be described by so-called susceptible-infected-
suscpetible (SIS) dynamics [1]. In statistical physics, this model is better known
under the names contact process or Schlögl’s first model [6, 7]. In SIS dynamics,
infected nodes in a network can transmit a disease to their susceptible neighbors
with rate r . In addition to induced transitions, susceptible nodes may change their
state spontaneously with rate p. Infected nodes can then recover with rate q. The
corresponding transitions on a square lattice are shown in Fig. 1. Some characteristic
features of SIS dynamics such as epidemic threshold effects can be captured with a
mean-field approach:

di(t)

dt
= 〈k〉r i(t)(1 − i(t)) + p(1 − i(t)) − qi(t) , (1)

where 〈k〉 is the mean degree of the underlying network structure. A generalization
of the SIS model that describes complex contagions with two sources is Schlögl’s
second model, also known as quadratic contact process [26]. Instead of Eq. (1), the
corresponding mean-field approximation is

di(t)

dt
= 〈k〉r i(t)2(1 − i(t)) + p(1 − i(t)) − qi(t) . (2)

Complex contagions that require more than two contacts to “infected” sources can be
describedwith threshold rules. In the following description of such general contagion
dynamics, the components of a network are regarded as either active or inactive
and change their state according to three fundamental processes: (i) an active node
becomes spontaneously inactive in a time interval dt with probability p dt , (ii) if
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Fig. 1 Simple epidemic on a square lattice. Possible transitions for SIS dynamics on a square
lattice (spatial rotation-invariance of the reactions is assumed). Orange nodes are infected and green
nodes are susceptible

fewer than or equal to m nearest neighbors of an active node are active, this node
becomes inactive due to external causes with probability r dt , and (iii) inactive states
spontaneously become active with probability q dt (if inactive due to process (i)) or
probability q ′ dt (if inactive due to process (ii)). The threshold m determines if the
neighborhood of a node is able to induce a transition from an active to an inactive
state. A low value ofm describes the case where a large number of inactive neighbors
is required to sustain the spread of failure, an innovation or opinion. The resulting
dynamics of processes (i–iii) is particularly rich owing to the coexistence of limit
cycles, random phase switching, and hysteresis [16, 18]. Before further discussing
these phenomena, I will give an overview of the corresponding mean-field equations.

Let a(t) ∈ [0, 1] and z(t) = 1 − a(t) denote the total fractions of inactive and
active nodes, respectively. The fraction of inactive nodes is the sum of the fractions
of nodes uspon(t) and uind(t) that failed spontaneously and in an inducedmanner (i.e.,
a(t) = uspon(t) + uind(t)). The total fraction of inactive nodes in the stationary state
is ast. For the derivation of the mean-field rate equations, I assume perfect mixing
and first concentrate on the spontaneous dynamics:

duspon(t)

dt
= p (1 − a(t)) − quspon(t) , (3)

where the first term accounts for spontaneous “failure” with rate p and the second
term describes recovery of spontaneously failed nodes with rate q.

The probability that a node of degree k is located in a neighborhood where the
number of active neighbors is smaller thanor equal tom is Ek = ∑m

j=0

( k
k− j

)
ak− j (1 −

a) j . Consequently, the time evolution of nodes that become inactive in an induced
way is described by:
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Fig. 2 Phase-switching and phase space of the general contagion model. (left) The general
contagion model exhibits phase-switching for p = 0.24, r = 10, q = q ′ = 1 in a regular random
graphwith N = 256 nodes and k = 4. (right) The phase space for k = 2,m = 0, q = q ′ = 1 (mean-
field) is related to Schlögl’s second model [27], cusp catastrophes, and imperfect bifurcations [17,
19]. Two spinodals (black solid lines) enclose the hysteresis region where two states coexist (low
density and high density failure phases). These bifurcation lines merge at the cusp point (r0, p0) =
(27/8, 1/8)

duind(t)

dt
= r

∑

k

fk Ek (1 − a(t)) − q ′uind(t) , (4)

where fk is the degree distribution. The first term describes transitions of nodes from
an active to an inactive state with rate r if their neighborhoods contain a sufficient
number of inactive nodes, and the second term accounts for recovery of these nodes
with rate q ′. An interesting feature of the general contagionmodel is the possibility of
phase-switching between two stationary states as illustrated in Fig. 2 (left) for a regu-
lar random graph with N = 256 nodes. The switching phenomenon is a consequence
of the occurrence of two fixed points that are stable in the thermodynamic limit.
However, fluctuations in finite networks allow the dynamics to stochastically switch
between the two coexisting states. These unpredictable and potentially unintended
switching effects are restricted to a bifurcation region as shown in Fig. 2 (right). Two
bifurcation lines enclose this region and merge at the cusp point, where [17]

a0(k,m) = k − 1 − m

k + 1
, (5)

r0(k,m) = 1

S(a0) + S′(a0)(1 − a0)
, (6)

p0(k,m) = S′(a0)a0 − S(a0)

S(a0) + S′(a0)(1 − a0)
, (7)

with S(a) = (1 − a)Ek . At the cusp point, the (mean-field) fraction of failed nodes
scales as a(r) ∝ r1/3 and a(p) ∝ p1/3 [17]. Hysteresis effects within the bifurcation
region lead to apath dependenceof the dynamics—following a closed trajectory in the
phase space that crosses this region may lead to a final state that differs substantially
from the initial one. The smaller the hysteresis region, the less likely it is for the
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Table 1 Examples of models and processes that are related to the classes (a–c)

(a) m = k (b) m = k − 1 (c) m < k − 1

Exogenous factors influencing
adoption of innovations [28]∗

Schlögl I [27, 30] Schlögl II [27, 30]∗

Social response to exogenous
factors [29]†

Contact process [6, 7, 31]∗ Quadratic contact
process [26]∗

SIS model [1, 4]∗ General contact process [35]∗

Reggeon field theory [32]∗ Behavioral adoption [36]†

Directed percolation [33]∗ Threshold models of complex
contagions [9, 12, 14, 15,
37–39]∗† and coordination
games [13]†

Bass model [28, 34]∗
∗Exact mean-field correspondence
†Phenomenological correspondence

system to end up in this uncontrollable situation. Interestingly, the Euclidean lattice
is characterized by an extremely narrow metastable domain compared to random
networks [16].

Despite the general formulation of processes (i–iii) and the resulting rich dynamics
resulting, the stationary behavior of the general contagion model is characterized by
only three distinct classes. For a regular network with degree k the model’s critical
behavior can be classified as follows: (a) a parameter space characterized by purely
spontaneous dynamics if m = k, (b) contact process, SIS or Schlögel’s first model’s
dynamics [6, 7] form = k − 1, and (c) cusp catastrophes [19, 21] ifm < k − 1 [17].
In particular, the occurrence of cusp catastrophes (see inset in Fig. 2 (right)) implies
the possibility of abrupt transitions for all m < k − 1. In other words, if the contact
to two or more (inactive) neighbors is necessary to sustain spreading, the phase space
always corresponds to a cusp catastrophe [17]. More general degree distributions fk
can be treated as a weighted sum over regular networks with different degrees [17].
Table1 summarizes some common spreading models and their relation to classes
(a–c).

3 Campaign Dynamics

One possible application of the general contagion model is to model activist-voter
interactions in election campaigns with two competing parties [24, 25]. Political
activists A+ and B+ respectively target persuadable nodes B0 and A0 and their k
neighbors (see Fig. 3 (left)). During a persuasion attempt, activists try convince these
k + 1 nodes. Let a0 and b0 = 1 − a0 be the fractions of persuadable nodes in states
A0 and B0, respectively. Since ḃ0 = −ȧ0, the dynamics of b0 is determined by the
time evolution of a0 and vice versa:
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Fig. 3 Activist-voter interactions and campaign dynamics. The left panel shows an illustration
of a campaign model where nodes and their corresponding edges are represented by colored circles
and black lines respectively. Activists A+ and B+ can target neighborhoods with a sufficiently
large number of persuadable voters A0 and B0 (see Eq. (8)). Blue and red curves in the right panel
represent the poll results for Hillary Clinton and Donald Trump during the 2016 US presidential
election campaign. We compare the poll results with simulations (grey lines). See Ref. [24], for
further details

ȧ0 (t) = ρAa
+

∑k+1
j=�τA(k+1)	 j

(k+1
j

)
b0 (t)

j
a0 (t)

k+1− j

∑k+1
j=�τA(k+1)	

(k+1
j

)
b0 (t) j a0 (t)k+1− j

︸ ︷︷ ︸
gain: fB0→A0 (t)

− ρBb
+

∑k
j=�τB (k+1)	 j

(k+1
j

)
a0 (t)

j
b0 (t)

k+1− j

∑k+1
j=�τB (k+1)	

(k+1
j

)
a0 (t) j b0 (t)k+1− j

︸ ︷︷ ︸
loss: f A0→B0 (t)

,

(8)

Note the similarity of Eq. (8) to the threshold model of Eq. (4). The first term
in Eq. (8) describes the gain (loss) of “voters” and the second the loss (gain) of
“voters” for party A (B). The prefactor ρA (ρB) is the probability that a voter changes
the opinion as result of an activist persuasion attempt. Moreover, the proportion
of A (B) activists in the population is a+ (b+). The two fractions represent the
expected numbers of voters that are contacted by corresponding activists. According
to the lowest index �τA (k + 1)	 (�τB (k + 1)	) in the sums, the parameter τA (τB)
constrains the set of nodes with the neighborhood the activists will visit. One can
interpret τA and τB as different technological advantages that result from different
microtargeting approaches [25]. According to Eq. (8), an activist A+ (B+) will only
visit neighborhoods with at least �τA (k + 1)	 (�τB (k + 1)	) nodes in state B0 (A0).
An application of Eq. (8) to the 2016 US presidential election campaign is shown in
Fig. 3 (right).
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4 Conclusions and Outlook

In this chapter, I briefly described different models for simple and complex contagion
phenomena and outlined that they can be treated as a special case of a more gen-
eral (threshold-based) formulation of contagion dynamics. The stationary behavior
of the general contagion model is characterized by only three distinct classes: (a)
purely spontaneous dynamics, (b) contact process dynamics, and (c) cusp catastro-
phes. I discussed the application of the general contagion model in the context of
activist-voter dynamics during election campaigns, where a threshold can be seen as
a model for different “technological” advantages of campaign groups. In addition to
the characterization of the stationary behavior of the general contagion model, future
studies may focus on corresponding ageing (i.e., universal dynamical) effects [40,
41]. Furthermore, it would be interesting to connect these models to the research on
societal polarization phenomena [42–44].
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On Birth, Death and Symmetry: Some
Principles of Complex Ecological Systems

Pablo A. Marquet

Abstract For quite apparent reasons, much of the phenomenology of what we call
life can be described by a birth and death process. Less apparent, however, is how
symmetry comes into play. In this chapter we briefly summarize some of the finding
that come about by putting together birth and death processes in the context of a
symmetric system, or one where its components have identical per capita rates of
birth anddeath, being in practical term identical.Wewill illustrate this process of birth
and death in symmetric systems using a one dimensional diffusion model to account
for the proportional abundance ecological entities. We show that the first principles
of birth death and symmetry are fundamental to our understanding of ecological
dynamics and the emergence of patterns in ecological systems. They represent first
principles, that can be useful to generating theory, and their integration, in ecology.

1 Introduction

Uponhis return fromSpain in 1921 JorgeLuisBorges publishes his first book, entitled
Fervor de Buenos Aires, a collection of poems that, he will later state, contained the
basic ideas that he repeated ever after. Indeed, in the prologue to his CompleteWorks
[2] he says that the man that wrote that first book in 1923 and the man that is now
correcting it for the compilation were essentially the same men and adds...” we
both disbelieve in the failure and success of literary schools and their dogmas; we
are both devotee of Schopenhauer, of Stevenson and of Whitman. For me, Fervor
de Buenos Aires prefigures everything I would do later.” Life, Borges’s included,
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is the quintessential phenomenon, the quintessential question and mistery. Borges
captures all these features in his poem La Recoleta, which alludes to the Paris style
neighborhood in Buenos Aires famous for the Recoleta Cemetery. He says:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

...only life exists.

Space and time are forms of it;

they are magical instruments of the soul,

and when life is extinguished,

space, time and death will be extinguished with it...

(1)

How it comes that Borges literary lifemay have been prefigured in his first book? thus
making him to be eternally returning to the same concepts in an endless recurrence
of the same theme like Golberg’s variations or an ergodic system that fills the whole
phase space of narrative with the same basic themes? Was this what made Borges
different? Is all life the same recurrent dynamics of the same, albeit different, themes?

Part of the answers to these questions are provided by Borges himself. Indeed
Borges warns us at the beginning of his book, in a sort of prologue or introduction,
saying:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

TO WHOMEVER WOULD READ

If the pages of this book consent to a happy

verse, forgive me the reader the discourtesy of having

usurped I, previously. Our nothingness differs little;

it is trivial and fortuitous that

you were the reader of these exercises, and I the writer.

(2)

While poem (1) deals with the issue of birth and death, poem (2) deals with ergodicity
in the sense of the equiprobability of visiting all possible available state to a system
(being the poet or the reader for example) and also the fundamental symmetry and
equality of all possible trajectories. These two poems are in fact poetic theorems
that capture three fundamental first principles of biology, that is birth, death and
symmetry, which I will elaborate on in the rest of this contribution.

2 On Symmetry

Before talking about symmetry and birth and death processes it is important to
provide a more precise definition of our subject of study, and the special stance from
where we will try to analyze it. In general terms, life is a different state of matter,
to which physicist usually refer to as activated matter, but I rather use the word
adaptive matter [15], as it interacts with its environment in a fast and adaptive way,
establishing a “dialog” where both parties (the being and its environment) modify
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each other through natural selection and niche construction respectively. Further,
the nature of the biological game is to transform the environment, in terms on the
materials and energy it contains, into copies of itself, the faster you can do that, the
higher your fitness. It is important to bear in mind that what we call the environment,
it is usually understood as composed of a biotic interaction and a abiotic components
associated to physical and chemical processes with which whatever the being or
focal system we consider, interacts. For a long part of its history, ecology have tried
to understand the relative importance of biotic and abiotic components and their
interactions in affecting species and populations [1, 21].

One of the most earlier realizations regarding interactions among living entities
(e.g., biotic interactions) was that entities too alike, in terms of habits and resource
use where unlikely to coexist in the long-run, as shown by Lotka and Volterra [10,
23], because even minute differences in growth rate would amplify and one species
would always win at the expenses of the other, and since species are different in
many subtle ways the difference is axiomatic, sort to speak (see Hardin 1970). This
result became to be known and the “competitive exclusion principle”, which is a
mathematical truth that provides a standars against which to compare reality [5]. The
fascinating fact is that when you compare it to reality one finds that coexistence is the
rule! eventhough we known than more than 99% of all species that have existed are
extinct. Ever since this principle was born (sensu [5]), scientists have been pondering
the question of what are the processes that foster coexistence. Modern coexistence
theory (e.g., [3]) recognize several biotic and abiotic mechanisms that reduce fitness
differences among species and/or foster differences in species resource use through,
for example, niche partitioning (by eating different food items or in different places
or times). Among fitness equalizing mechanisms are tradeoffs between dispersal
capacity and competitive ability, which is usually associated with a fugitive species
or one that can move quickly and exploit the resources found in areas where the
competitive dominant species have not yet reached (see the recent stochastic model
of Tejo et al. [20] for an example), this differences or asymmetry in the scale at which
organisms perceive and interact with their environment is paradoxically the source of
fitness symmetry that allows them to coexist, by retarding competitive exclusion [7].
Thus, species become in practice identical in terms of their percapita rates of birth
and death and thus a symmetric world emerges and the fitness landscape becomes
flat and, as Borges stated in Poem (2), there is a fundamental symmetry between enti-
ties performing different roles; between writer and reader and, we can add, among
species within trophic levels. Organisms satisfying this symmetry would according
to Van Valen [21] constitute a “homogeneous” group of entities inhabiting the same
adaptive zone, and showing a constant extinction rate nomatter the age or duration of
this homogeneous group in the fossil record, implying that ([21], p. 16) “The effective
environment of the members of any homogenous group of organisms deteriorates at
a stochastically constant rate.” This implies that, irrespective of geological duration,
young and old taxa go extinct at the same rate, implying that the environment dete-
riorates in a similar way for every species within the homogeneous group and that,
irrespective of longevity, they have to keep adapting to stay in the same place. This
evidence gave raise to the now famous Red Queen hypothesis, which ([18], p. 612)
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implies that “...all taxa are running on a treadmill powered by an environment which
deteriorates at a stochastically constant rate. The result is that an ancient taxon is no
better adapted than a younger one; it has just been running in place longer.” The name
Red Queen is taken from a character in Alice’s adventures in wonderland, a 1865
novel by Lewis Carroll -pen name of british mathematician Charles Dogson-, which
has to keep running in order to stay in the same place. Interestingly, the reason for
this constancy, is heterogeneity; taxa differ in many traits correlated with extinction,
which seems to be present in any adaptive zone, such as variations in size, density,
and distribution (see Van Valen 1978 cited in McCune [18]), and, the same as with
the fitness equalizing mechanisms fostering coexistence, differences among species
level traits render them similar regarding to extinction rates, irrespective of dura-
tion. So, paradoxically, it seems that symmetry with regard to fitness among species,
requires asymmetry or differentiation in other traits that may affect fitness.

2.1 Symmetric Models

One of themost fundamentalmodels in ecologywas developed in order to understand
changes in species richness in a community composed by S species. The model is
relatively simple and coarse, as it includes processes that tend to decrease the number
of species (i.e. extinction) and those that tend to increase it (i.e. colonization and
speciation). This stochastic model was inspired by empirical regularities associated
to the observed increase in the number of species found in islands, as the area of
the island increases and to the “Equilibrium model of island biogeography” [11,
12], which tries to understand the driver of species richness in insular or insular-like
habitats. MacArthur and Wilson’s stochastic model for the number of species found
on a focal island, corresponds to a birth-death process whose time evolution follows
the master equation:

dPs(t)

dt
= Ps−1(t)λs−1 + Ps+1(t)μs+1 − Ps(t)[λs + μs], (3)

for s = 0, 1, . . . , S, where Ps is the probability of observing s species in a focal
island, S is the pool of species, λs is the birth (i.e. colonization) rate associated to the
transition from s to s + 1 species and μs is the death (i.e. extinction) rate associated
to the transition between s to s − 1 species.

It is quite puzzling that MacArthur and Wilson, did not provide a formal solution
for this equation, which would have entailed solving for the invariant density of
the stochastic process, which would have been the Species Richness Distribution
(SRD, see Marquet et al. [17]). The invariant distribution was obtained by Goel and
Richter-Dyn [4]. To solve Eq. (3) one needs to specify an initial condition P0 and
some boundary conditions, which in this case can be deduced by noticing that when
there are no species present in the island, μ0 = 0 and λ0 �= 0, and when the island is
saturated with species, that is, the number of species is equal to the number of species
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in the pool K , thenμK �= 0 and λK = 0. Thus, the stochastic process associated with
the number of species is confined between the two reflecting states 0 and K . Now the
task is to define the functional form of the extinction and colonization rates. Goel and
Richter-Dyn [4] considered two scenarios for these rates. The first scenario reasons
that because the area and hence the amount of resources present on the island are
fixed, as the number of species in the island increases, the average population size
of any given species decreases, hence the probability of extinction of a species can
be hypothesized to monotonically increase with the number of species present in
the island, hence μ = μs. Similarly, it is reasonable to assume that the probability
for a new species to become present in the island depends upon the species already
present there, because the more species that become established on the island the
lower the chances that a new immigrant individual will belong to a new species,
hence the immigration rate should decrease monotonically as the number of species
established on the island increases λs = λ(K − λ), and λK= 0 when the number of
species present on the island is equal to the number of species in the pool (K ). Under
these assumption the invariant distribution of the process is a binomial distribution.

The symmetric model of MacArthur and Wilson [11] was very influential and
generated several applications and further developments (e.g., [9]) and provided
the cornerstone of the Island Biogeography Theory. One of those developments,
exposed one of its major weaknesses. I am referring to The Unified Neutral Theory
of Biodiversity and Biogeography (UNTB) by Hubbell [6]. This theory basically
takes MacArthur and Wilson’s theory to the level of individuals and proposes that
all individual are equal (or become equal as we discussed above) in their per capita
rate of birth and death. Then, we can write the individual level equivalent of Eq. (3)
(see [22])

dPn,k(t)

dt
= Pn−1,k(t)bn−1,k + Pn+1,k(t)dn+1,k − Pn,k(t)[bn,k + dn,k], (4)

where n corresponds to the number of individuals and b is the birth rate and d the
death rate. If this are assumed density independent (i.e., if bn = nb and dn = dn)
then one obtains an equilibrium distribution that is the called the Fisher’s Log Series
([8, 22]). Unfortunately, Eqs. (3) and (4) cannot be true at the same time, since given
that each species is now represented by a given number of individuals, the transition
between number of species are no longer markovian [17]. There are two solutions to
this problem. The first or the weak one, it to make the number of species to become
an observable on the abundance distribution, which corresponds to the state defining
the system. If this is done we get a binomial distribution for the species richness. A
more radical solution implies abandoning master equations and move to diffusion
approximations. This entails to work on proportional abundances and richness or
frequencies instead of numbers of individuals or species. As pointed out in Marquet
et al. [16] this is the approximation taken by population geneticists back in the 30s
(e.g., [24]) where it was shown that the equilibrium frequency of a gene in a local
population follows a Beta distribution.
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2.2 Diffusion Approximation

Under this approximation we envision ecological systems as open system whose
boundaries are defined by the observer. The system could be, for example, a 50
ha plot in a tropical forest or a 1m2 plot in the intertidal. What is important is to
realize that once the observer defines the spatial scale of the system, it defines a
boundary or an inside and an outside, where the focal system is embedded. We call
this observer defined scale the focal community that is embedded into a bath or
environment with which it interacts. The focal community dynamics is driven by
birth and death processes and by immigration from the outside. Indeed the spatial
scale of analysis is to some extent dictated by which is the dominant process adding
new entities to the focal community; immigrations of individuals from species not
yet found in the focal community but somewhere else in the bath, or new species
arising through speciation within the focal community. If the later is the dominant
process, then the spatial scale is likely to be large, since all species in the potential
pool are already present and the only way a new species can arrive would be through
speciation. Similarly, the processes that remove individuals and species from the
focal community include death and emigration towards the bath or environment.

To model the dynamics of this focal community we used the diffusion approxi-
mation of birth and death processes independent of a focal community size J (see
details in Marquet et al. [16]). By community size we mean the total number of
individuals regardless of species identity.

Let NJ (t) denote the number of living individuals of a given species within a
focal community of size J , at time t ≥ 0 (so that NJ (t) is less or equal to J for all
t). This is assumed to be a birth and death process, with transition matrix P(t) =
(Pn,m(t); n,m = 0, . . . , J ) (n andm denotes the number of individuals). For a small
time increment h, this matrix satisfies as h → 0 for n ≥ 0

Pn,n+1(h) = BJ (n)h + o(h), forn ≥ 0, (5)

Pn,n−1(h) = DJ (n)h + o(h), forn ≥ 1, (6)

Pn,n(h) = 1 − (BJ (n) + DJ (n))h, forn ≥ 0, (7)

Pn,m(0) = δn,m, (8)

where BJ (n) and DJ (n) are the birth and death rates, respectively, DJ (0) = 0,
BJ (0) > 0, δn,m is the customary Kronecker delta, and o(h) denotes the Landau-
symbol, which satisfies limh→0

o(h)

h = 0. Here, in addition, we assume that these
rates are decomposed as follows

BJ (n) = bJ (n) + cJ (n) (9)

DJ (n) = dJ (n) + cJ (n). (10)

The terms bJ and dJ represent birth and death rates in the focal community, respec-
tively, which will be asymptotically independent of J , while cJ takes into account the
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variations on the above rates due to the interaction between the focal system and the
environment wherein it is embedded, proper to an open system approach, and which
as we will see later are associated to the noise term of the corresponding stochas-
tic differential equation. Since we are interested in proportions n/J , we introduce
the variable x = n/J , which takes values in {0, 1/J, 2/J, . . . , 1}, and analyze the
behavior of the system as the size of the population grows indefinitely: J → ∞. At
this stage it is important to state meaningful hypotheses for the previous rates for
large J , as all changes of scales in the dynamics of the open system are driven by
this community size.

We first assume that b j and dJ will lead, respectively, to the J -invariant (or
endogenous) birth and death rates of the focal system, that satisfy

lim
J→∞ bJ (x J ) = b(x); lim

J→∞ dJ (x J ) = d(x), (x ∈ [0, 1]). (11)

On the contrary, the rate cJ , should vary significantly with J , however, we require
that it satisfies

lim
J→∞

cJ (x J )

J
= c(x), (x ∈ [0, 1]). (12)

We can now define the stochastic process ZJ = (ZJ (t) = N (t J )/J ; t ≥ 0) that
we call the stochastic proportional abundance. This family of processes has a limit
Z = (Z(t); t ≥ 0) as J → ∞, that corresponds to a diffusion process satisfying the
stochastic differential equation [16]

dZ(t) = (b(Z(t)) − d(Z(t)))dt + √
2c(Z(t))dW (t), (13)

where W (t) denotes a Brownian motion.
It isworth noticing that the process ZJ = (ZJ (t); t ≥ 0) converges in distribution

towards a diffusion process Z = (Z(t); t ≥ 0) as proven in Rebolledo [19], and so,
any continuous functional F(ZJ ) of the trajectory of ZJ converges in distribution to
F(Z).

Correspondingly, the Fokker-Planck equation associated with the probability den-
sity ρt (x) of Z(t), is given by

∂

∂t
ρt (x) = ∂2

∂x2
(c(x)ρt (x)) − ∂

∂x
([b(x) − d(x)]ρt (x)) , (14)

with the additional condition that
∫

ρt (x)dx = 1. The stationary solution ρ∞ is deter-
mined as the solution to the equation

∂2

∂x2
(c(x)ρ∞(x)) − ∂

∂x
([b(x) − d(x)]ρ∞(x)) = 0 (15)

In order to find the stationary distribution we need to make a hypothesis for each
of the rates b(x), d(x) and c(x), the simplest ones are that



90 P. A. Marquet

b(x) = b0 + b1x (16)

d(x) = d0 + d1x (17)

c(x) = γ x(1 − x), (18)

where bi , di , (i = 0, 1), and γ are positive constants. Under these hypotheses the
stationary solution takes the form of a typical Beta distribution

ρ∞(x) = �(α + β)

�(α)�(β)
xα−1(1 − x)β−1. (19)

which under the assumption of neutrality becomes [16]

ρ∞(x) = 1

B(α, α(S − 1))
xα−1(1 − x)α(S−1)−1, (20)

where B(α, α(S − 1)) =
∫ 1

0
xα−1(1 − x)α(S−1)−1 (normalization constant) andα =

m
S(1−m)λ

.

Thus, we have shown that diffusion approximations predict an equilibrium pro-
portional abundance of species that also corresponds to the equilibrium distribution
describing the frequencies of genes within local populations, showing that both pro-
ceses are deeply connected. Further, as shown in Marquet et al. [16] Eq. (20) has a
strong empirical support, and does not have the problem of incompatibility shown
for the master equation approach and thus can be applied to any level of organization
from genes to individuals to species.

3 Concluding Remarks

The Beta distribution arise only if birth and death rates are additive, implying that
entities are equal and independent. We know species are different, but what we
have tried to show here is that to assume that they are, provides a good enough
approximation since difference is associated to symmetry. To put it in a different
way, different entities can be think of variations on same theme, as it is suggested
by the existence of scaling or power law within ecological systems (e.g. [13]). The
same as Borges was prefigured in his first poetry book, life may haven prefigured in
its origin, everything we have been seen after that, are just variations and expansions
on the same theme.

We showed that the first principles of birth death and symmetry are fundamental to
our understanding of ecological dynamics and the emergence of patterns in ecology.
They represent first principles, that can be useful to generating ecological theory
using the language of mathematics [14]. But more fundamentally, their generality
across levels of organization provide evidence that the dynamics of different levels
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may be more similar that we thought. Many biological phenomena remain to be
understood using simple concepts such as birth, death and symmetry and the power
of open systems analysis.
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A Spectral Outlook on the Elementary
Cellular Automata with Cyclic
Configurations and Block-Sequential
Asynchronous Updates

P. P. Balbi, G. S. Etchebehere, and E. L. P. Ruivo

Abstract Spectral analysis has been used previously in the literature to analyse the
space-time diagrams of the elementary cellular automata in the frequency domain,
as it allows for a distinct perspective on the dynamics and limit behaviour of the
rules. Asynchronous cellular automata are variants of cellular automata whose cells
have their states updated at different time steps, either stochastically or determin-
istically. Here, by relying on the latter – the block-sequential update scheme – the
entire elementary rule space is computationally probed, over cyclic configurations,
according to their discrete Fourier spectra. The rule space is accounted for in its
compact description, which became possible after we introduced a characterisation
of dynamically equivalent rules under asynchronous updates. Since the number of
possible update schemes depends on the configuration size, a reasoned choice had
to be made in order to define an appropriate set of updates, which led us to three
distinct families, each one with ten updates. Analysis of the spectra obtained was
then carried out by means of a proposed measure of asynchronism of the updates,
and by grouping the rules into similarity classes, according to the Fourier spectra
entailed by each update.
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1 Introduction

Cellular automata (CAs) are fully discrete dynamical systems capable of universal
computation, based on the concept that complexity may emerge from local actions,
even simple ones. Structurally, they consist of a regular lattice, of arbitrary dimension
and size, with predefined boundary conditions, and made up of finite state machines
(the cells), each one with an identical pattern of connection with its neighbours. The
dynamics of cellular automata derives from the action of a state transition rule, which
locally defines the state of each cell according to the state of its neighbourhood,
usually in a synchronous fashion [6, 14]. Although such a characterisation is the
standard, any of its aspects may be modified, such as the update scheme, changing
to asynchronous, stochastically or deterministically [4].

Here we rely on the deterministic asynchronism variant, by which the lattice is
partitioned in cell blocks and each one is assigned a priority of being updated, with
the relative orders remaining fixed throughout the space-time (or temporal, for short)
evolution. This kind of asynchronism, known as block-sequential [1], has had an
increasing attention in the literature, both as a theoretical object [2, 3, 7, 12, 13] and
as new framework for modelling [17].

The study of the dynamical behaviour of cellular automata has been traditionally
carried out by analysing aspects of the temporal evolution entailed by the rules
over finite or infinite initial configurations. However, the possibility of analysing the
rules in the frequency domain allows for a completely new perspective on the rules’
dynamics. For this, the Discrete Fourier Transform provides the natural way for the
transposition between the temporal to the frequency domains. Curiously, not much
has happened along this line since the first developments in [16]; among them we
should mention [8, 10, 11], all of them with standard, synchronous updates.

Most significantly for present purposes is the work discussed in [11], where the
authors computationally analysed all elementary cellular automata rules by their
Fourier spectra and managed to prove the existence of a partition of the space into
classes of spectral equivalence, obtained via refinement of the partition of the dynam-
ical equivalence classes. What we do in the present work is a first extension to the
latter, this time analysing the same space with block-sequential updates. But due to
the computational impossibility of an exhaustive analysis out of all possible asyn-
chronous update schemes, three special families of update were defined, in a total
of 30 update schemes. This led us to the characterisation of the elementary space in
various spectral similarity classes, according to the distinct updates employed, whose
intrinsic level of asynchrony we tried to define by means of a measure of asynchrony
degree herein proposed. The determination of which rules in a similarity class are
also equivalent in terms of their spectra is yet to be properly investigated, beyond
present purposes.

Inwhat follows, the next two sections provide the formal definitions of all concepts
needed in the presentation, initially the basic definitions, and then others, related to
the notions we propose here, namely, the asynchrony degree and a precise character-
isation of the notion of dynamical equivalence under block-sequential updates. The
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two subsequent sections discuss the methodological aspects of the work, firstly those
related to spectral analysis of cellular automata, and then, to the definition of the asyn-
chrony families of update employed. The following sections, respectively, discuss
aspects of the similarity classes obtained and provide some concluding remarks.

2 Basic Definitions

2.1 Cellular Automata

In general terms, a (synchronous) cellular automaton is a quadruple (S, N , f, d),
where S = {0, 1, . . . , k − 1}, k ∈ Z+ is the set of states; N = (

−→x1 ,−→x2 , . . . ,−→xn ), with−→xi ∈ Z
d and n ∈ N, is the neighbourhood vector; f : Sn → S is the local transition

function (or local rule); and d ∈ Z+ is the dimension [6].
For one-dimensional cellular automata (d = 1), at each time step the value of each

cell is updated according to the cell’s values within a neighbourhood radius r ∈ N,
with 2r + 1 cells, according to the local rule f : S2r+1 → S.

The elementary cellular automata (ECAs) are those that make up the space com-
prised by the binary (S = {0, 1}) one-dimensional local rules f : {0, 1}3 → {0, 1}.
The rules in this space can be described as a binary sequence (s7s6s5s4s3s2s1s0),
where s0 is the new state of cell xi given by neighbourhood 000, s1 by 001, and so
on, up to s7, which is given by neighbourhood 111. The elementary space has a total
of 22

3 = 256 distinct rules, each one being referred to by its unique rule Wolfram,
which is the decimal number corresponding to the binary sequence (s7s6s5s4s3s2s1s0)
[15].

2.2 Cyclic Configurations

A configuration c is a function c : Z −→ {0, 1}. For convenience, for any i ∈ Z

we denote c(i) by ci . In this context, i is a cell and ci ∈ {0, 1} is its state. If there
is L ∈ Z+, L ≥ |N |, such that ci = ci+L for any cell i , c is said to be a cyclic
configuration of length L . In that case, the configuration may be regarded as a vector
c = (c1, c2, . . . , cL) ∈ SL , as ci = c j whenever i ≡ j mod L .

Aone-dimensional radius-r CAwith local rule f induces aglobal rule F : SZ −→
SZ over the set of configurations given by

(F(c))i = f (ci−�r�, . . . , ci , . . . , ci+�r	)
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2.3 Asynchronous Cellular Automata with Block-Sequential
Updates

For present purposes, an asynchronous cellular automaton over configurations of
length L is a quintuple (S, N , f, d, σL ), inwhich (S, N , f, d) is a cellular automaton,
and σL : {1, 2, . . . , L} −→ {1, 2, . . . ,m} is a surjective function for some 1 ≤ m ≤
L , which is is the update schedule of the asynchronous CA.

The update schedule basically tells about the update priority of each cell. There-
fore, a synchronous CA would have σ(i) = 1 for all 1 ≤ i ≤ L , since every cell
would be updated simultaneously. On the other hand, for σ(i) = i , for all 1 ≤ i ≤ L
(the sequential update schedule), cell 1 would be updated first, then cell 2, cell 3
and so on. In general, since the cell positions in the configuration can be grouped in
arbitrary blocks, the kind of asynchronism of interest here is usually referred to as
block-sequential [1].

More precisely, given an update schedule σL , such that σ({1, 2, . . . , L}) =
{1, 2, . . . ,m}, and c a configuration of length L , let Ik = {i ∈ {1, . . . , L} : σ(i) = k}
for all 1 ≤ k ≤ m and define

(
F(σ,k)(c)

)
i =

{
(F(c))i , if i ∈ Ik
ci , otherwise

.

The asynchronous global rule defined by σ is given by

Fσ = F(σ,m) ◦ · · · ◦ F(σ,1).

For convenience, we define F(σ,1,k) = F(σ,k) ◦ · · · ◦ F(σ,1) for all 1 ≤ k ≤ m.
An example of the changes that the deterministic asynchrony causes in the evolu-

tion of cellular automata is depicted in Fig. 1, where the updating sequence consists
in alternating the update of odd and even cell positions.

3 Specific Conceptual Proposals

3.1 Average Asynchrony Degree

Given an update schedule σ over configurations of length L , we introduce the asyn-
chrony degree of cell i , 1 ≤ i ≤ L , denoted by d(σ,i), as the number of times, minus
1, the local function f appears in the expression of (Fσ (c))i , for any configuration
c. The quantity is taken “−1” because f appears exactly once in the synchronous
update, in which case d(σ,i) = 0.

For instance, if σ8 : [1, 8] −→ [1, 8] is given by σ(i) = i and f is a radius-1 local
rule, for cell 3 in a configuration c, we have
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Fig. 1 Temporal evolution
of the elementary rule 110
under synchronous update
(on the left) and under
asynchronous blocks with
alternating odd and even cell
positions (on the right), with
time flowing downwards

(
Fσ8(c)

)
3 = f ( f ( f (c8, c1, c2), c2, c3), c3, c4).

Therefore, d(σ8,3) = 3 − 1 = 2.
Now, given an update schedule σ over configurations of length L , we define the

average asynchrony degree of σ , denoted by dσ , by

dσ = 1

L
·

L∑

i=1

d(σ,i) ·

For instance, the average asynchrony of σ8 in the example above is

dσ8 =
∑8

i=1 dσ8,i

8
= 0 + 1 + 2 + 3 + 4 + 5 + 6 + 8

8
= 29

8
= 3.625.

3.2 Dynamical Equivalence for Asynchronous Updates

It is well known that symmetries in the state transition table of synchronous cellular
automata lead to the definition of rule classes of dynamical equivalence [9, 14]. In
the case of the elementary space, for instance, in order to analyse the dynamics of
its rules it suffices to look at only 88 rules, instead of the 256 of the entire space.
Figure2 illustrates the matter for ECA 110, under synchronous update.

However, it turns out that the notion of dynamical equivalence classes is more
restricted in the context of block-sequential asynchronous CAs; this is what we
discuss and formalise below.
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Fig. 2 Temporal evolutions of the dynamical equivalence class of elementary rule 110 under
synchronous update, with time flowing downwards; from left to right: the original rule; its conjugate;
its reflected equivalent; and the conjugate-reflected equivalent

3.2.1 Conjugacy

Given an elementary cellular automaton local rule f , the conjugate of f is the local

rule f such that f (x1, x2, x3) = f (x1, x2, x3), where b = 1 − b, for any binary value
b. Analogously, given a configuration c with length L , the conjugate of c is the
configuration c given by ci = ci ,∀1 ≤ i ≤ L . Notice that (c) = c.

For synchronous update, the image of a configuration c by F is exactly the con-
jugate of the image of c by F , that is

F(c) = (F(c)). (1)

Proposition 1 Given an elementary cellular automaton local rule f , a configuration

c and an update schedule σ , both of length L, Fσ (c) = (Fσ (c)) holds.

Proof Let cσ,k
i be the state of cell

(
F(σ,1,k)(c)

)
i .

For all i ∈ I1, we have (ci−1, ci , ci+1) = (ci−1, ci , ci+1), from the definition of c.
Sinceno cellswere updated, (cσ,1

i−1, c
σ,1
i , cσ,1

i+1) = (ci−1, ci , ci+1) and (cσ,1
i−1, c

σ,1
i , cσ,1

i+1) =
(ci−1, ci , ci+1). Hence

(cσ,1
i−1, c

σ,1
i , cσ,1

i+1) = (cσ,1
i−1, c

σ,1
i , cσ,1

i+1) (2)

and
f (cσ,1

i−1, c
σ,1
i , cσ,1

i+1) = ( f (cσ,1
φ(i−1), c

σ,1
φ(i), c

σ,1
φ(i+1))). (3)

Therefore,
F(σ,1,1)(c) = (F (σ,1,1)(c)). (4)
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Now, suppose that for all 1 ≤ j ≤ k we have F(σ,1,k)(c) = (F (σ,1,k)(c)). We will

show that F(σ,1,k+1)(c) = (F (σ,1,k+1)(c)).

Let i ∈ Ik+1. If σ(i − 1) ≥ (k + 1), then cσ,(k+1)
i−1 = ci−1 = ci−1 = cσ,(k+1)

i−1 , since
such cells have not been updated and c = (c). On the other hand, if σ(i − 1) < (k +
1), by the induction hypothesis F(σ,1,k)(c) = (F (σ,1,k)(c)) we also have cσ,(k+1)

i−1 =
cσ,(k+1)
i−1 . Analogously, cσ,(k+1)

i+1 = cσ,(k+1)
i+1 .

Hence,

(cσ,(k+1)
i−1 , cσ,(k+1)

i , cσ,(k+1)
i+1 ) = (cσ,(k+1)

(i−1) , cσ,(k+1)
i , cσ,(k+1)

i+1 ) (5)

and
f (cσ,(k+1)

i−1 , cσ,(k+1)
i , cσ,(k+1)

i+1 ) = ( f (cσ,(k+1)
i−1 , cσ,(k+1)

i , cσ,(k+1)
i+1 )). (6)

Therefore,
F(σ,1,(k+1))(c) = (F (σ,1,(k+1))(c)). (7)

By induction on k, Fσ (c) = (Fσ (c)).

Proposition 1 allows us to define the notion of a conjugate rule for asynchronous
updates and shows that such a rule is the same one for the synchronous case. More
precisely:

Definition 1 Given an elementary cellular automaton local rule f , the conjugate
of f is the rule f such that, for any update schedule s and any configuration c,

Fσ (c) = (Fσ (c)).

Now, regarding the sensibility of a rule and of its conjugate to update schedules,
we have the following result:

Corollary 1 Given an elementary cellular automaton local rule f , σ1 and σ2 two
update schedules, and a configuration c, such that Fσ1(c) = Fσ2(c), there is a con-
figuration c̃ such that Fσ1(c̃) = Fσ2(c̃). Moreover, c̃ = c.

Proof Take c̃ = c. By Proposition 1, Fσ1(c) = (Fσ1(c)) and Fσ2(c) = (Fσ2(c)).
Since by hypothesis Fσ1(c) = Fσ2(c), we have

(Fσ1(c)) = (Fσ2(c)) ⇒ Fσ1(c) = Fσ2(c). (8)

Corollary 2 Both f and f have the same number of different dynamics.

3.2.2 Reflection

Given f an elementary cellular automaton local rule, the reflection of f is the local
rule f ′ such that f (x1, x2, x3) = f ′(x3, x2, x1).
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Analogously, given a configuration c with length L , the reflection of c is the
configuration c′ given by c′

i = cL−i+1,∀1 ≤ i ≤ L .
Given L ∈ Z+, let φL : 1, 2, . . . , L −→ 1, 2, . . . , L be given by φL(i) = L −

i + 1. With such a notation, we may write c′
i = cφL (i). Notice that φ2

L = I d, hence
(c′)′ = c.

For synchronous update, the image of a configuration c by F is exactly the reflec-
tion of the image of c′ by F ′, that is

F(c) = (F ′(c′))′. (9)

In order to generalise the notion of a reflected rule for asynchronous updates, we
must first define the reflection of an update schedule. Given σ and update schedule
of length L , define σ ′ the reflection of σ as σ ′(i) = σ(φL(i)).

Proposition 2 Given an elementary cellular automaton local rule f , a configuration
c and an update schedule s, both of length L, we have Fσ (c) = (F ′

σ ′(c′))′.

Proof Let I j = {i ∈ N : 1 ≤ i ≤ L , σ (i) = j} and I ′
j = {i ∈ N : 1 ≤ i ≤

L , σ ′(i) = j}, for 1 ≤ j ≤ L . That is, I j is the set of indices who are updated at
timestep j in σ and I ′

j is the analogous for σ ′. Notice that I ′
j = φL(I j ).

For all i ∈ I1, we have (ci−1, ci , ci+1) = (c′
φ(i−1), c

′
φ(i), c

′
φ(i+1))

′, from the
definition of c′. Since no cells were updated, (cσ,1

i−1, c
σ,1
i , cσ,1

i+1) = (ci−1, ci , ci+1) and
(c′σ ′,1

φ(i−1), c
′σ ′,1
φ(i) , c′σ ′,1

φ(i+1)) = (c′
φ(i−1), c

′
φ(i), c

′
φ(i+1)). Hence

(cσ,1
i−1, c

σ,1
i , cσ,1

i+1) = (c′σ ′,1
φ(i−1), c

′σ ′,1
φ(i) , c′σ ′,1

φ(i+1))
′ (10)

and
f (cσ,1

i−1, c
σ,1
i , cσ,1

i+1) = f ′(c′σ ′,1
φ(i−1), c

′σ ′,1
φ(i) , c′σ ′,1

φ(i+1)). (11)

Therefore,
F(σ,1,1)(c) = (F ′

(σ ′,1,1)(c
′))′. (12)

Now, suppose that for all 1 ≤ j ≤ k we have F(σ,1,k)(c) = (F ′
(σ ′,1,k)(c

′))′. We will
show that F(σ,1,k+1)(c) = (F ′

(σ ′,1,k+1)(c
′))′.

Let i ∈ Ik+1. If σ(i − 1) ≥ (k + 1), then σ ′(φL(i − 1)) ≥ (k + 1) and cσ,(k+1)
i−1 =

ci−1 = c′
φ(i−1) = c′σ ′,(k+1)

φL (i−1) , since such cells have not been updated and c = (c′)′. On
the other hand, if σ(i − 1) < (k + 1), σ ′(φL(i − 1)) < (k + 1) and by the induction
hypothesis Fσ,k(c) = (F ′

σ ′,k(c
′))′, we also have cσ,(k+1)

i−1 = c′σ ′,(k+1)
φL (i−1) . Analogously,

cσ,(k+1)
i+1 = c′σ ′,(k+1)

φL (i+1) .
Hence,

(cσ,(k+1)
i−1 , cσ,(k+1)

i , cσ,(k+1)
i+1 ) = (c′σ ′,(k+1)

φL (i−1) , c′σ ′,(k+1)
φL (i) , c′σ ′,(k+1)

φL (i+1) )′ (13)

and
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f (cσ,(k+1)
i−1 , cσ,(k+1)

i , cσ,(k+1)
i+1 ) = f ′(c′σ ′,(k+1)

φ(i−1) , c′σ ′,(k+1)
φ(i) , c′σ ′,(k+1)

φ(i+1) ). (14)

Therefore,

F(σ,1,(k+1))(c) = (F ′
(σ ′,1,(k+1))(c

′))′. (15)

By induction on k, Fσ (c) = (F ′
σ ′(c′))′.

Proposition 2 allows us to define the notion of a reflected rule for asynchronous
updates and shows that such a rule is the same one for the synchronous case. More
precisely:

Definition 2 Given an elementary cellular automaton local rule f , the reflection
of f is the rule f ′ such that, for any update schedule s and any configuration c,
Fσ (c) = (F ′

σ ′(c′))′.

Now, regarding the sensibility of a rule and of its reflection to update schedules,
the following result holds:

Corollary 3 Given an elementary cellular automaton local rule f , σ1 and σ2 two
update schedules, and a configuration c, such that Fσ1(c) = Fσ2(c), there is a con-
figuration c̃ such that F ′

σ ′
1
(c̃) = F ′

σ ′
2
(c̃). Moreover, c̃ = c′.

Proof Take c̃ = c′. By Proposition 2, Fσ1(c) = (F ′
σ ′
1
(c′))′ and Fσ2(c) = (F ′

σ ′
2
(c′))′.

Since by hypothesis Fσ1(c) = Fσ2(c), we have

(F ′
σ ′
1
(c′))′ = (F ′

σ ′
2
(c′))′ ⇒ F ′

σ ′
1
(c′) = F ′

σ ′
2
(c′). (16)

Corollary 4 Both f and f ′ have the same number of different dynamics.

3.2.3 Reflected Conjugacy (or Conjugate Reflection)

As a consequence of Corollaries 2 and 4, the reflected conjugate (or the conjugate
reflection) of f , f ′ (or ( f )′) has the same number of different dynamics as f .

Therefore, when studying the different dynamics of a rule over all possible update
schedules, one may consider a single representative of each dynamical equivalence
class in the space at issue, instead of all the rules in the space, which, for the elemen-
tary space would mean the 88 rules already mentioned, usually taking the represen-
tative rule as the one with the smallest number in the class.

Nevertheless, when not all updates are taken into account – which is the present
case, since specific families of updates will be used – only conjugacy always holds,
meaning the necessity of analysing 136 elementary rules, out of the 256 that make
up the space.
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Fig. 3 Temporal evolution of the elementary rule 184 (on the left) and the rule’s corresponding
discrete Fourier spectrum, worked out over a sample of initial configurations with 40% of 1s

4 Spectral Analysis of Cellular Automata

The Fourier spectra of binary, one-dimentional cellular automata is meant to provide
information about the limit configuration of the CAs’ temporal evolutions. Infor-
mally, it refers to an energy type quantity associated to the frequencies of state
changes—all binary block sizes considered – present in the limit configurations. As
such, a homogenous configuration has the minimum value of the quantity (the lowest
possible frequency of bit changes), whereas the one with alternating 1s and 0s has
the maximum value (the highest possible frequency of bit changes); intermediate
situations account for the frequency of state changes of all blocks of bits present in
the configuration at issue.

A nice example relating the temporal evolution of a rule (ECA 184, in the case)
and the rule’s spectrum is displayed in Fig. 3 [11]. The plotted spectrum (on the
right) displays the level of bit variations due to all blocks of bits present in the limit
configuration obtained out of the temporal evolution (on the left). ECA 184 is a
well known number conserving rule, whose dynamical behaviour has been perfectly
characterised. Since the temporal evolution shown derives from an initial configura-
tion with 60% of 0s, it converges to a shifting configuration where the 1s and 0s are
arranged in alternation, and the 0s in excess get organised in blocks of at least two
0s. So, the limit configuration has only these two features, therefore explaining the
quickly rising levels of the highest frequencies, including the peak at the maximum
possible frequency (due to the preponderance of alternating bits in the configuration),
the small increase in the levels of very small frequencies (due to the blocks of 0s),
and the overall flatness of the plot, due to the absence of other kinds of binary blocks.

The technique of analysis employed as the basis for the present work is the one
described in [11]. This consists in calculating the discrete Fourier transforms for the
set of limit configurations obtained out of the temporal evolution of a rule over a
set of randomly generated initial configurations; the limit configurations have been
approximated by disregarding a number of the initial time steps of each temporal
evolution, a sufficiently large time that would allow reaching dynamical stability,
and by taking the configuration of the lattice after that time.
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The discrete Fourier transform (DFT) is calculated over the set of all (approxi-
mated) limit configurations according to the procedure described in the sequence.
Given a complex vector u = (u1, . . . , un), the DFT of u, denoted DFT (u), corre-
sponds to the complex vector v = (v1, . . . , vn) given by:

vk = 1

n

n∑

j=1

u j e
2π i( j−1)(k−1)/n .

As such, the DFT (u) refers to the absolute value, calculated coordinate by coordi-
nate. In other words, if DFT (u) = (v1, . . . , vn), then |DFT (u)| = (|v1|, . . . , |vn|).

Given a one-dimensional cellular automaton local rule, the Fourier spectrum asso-
ciated to it can be calculated as follows [11]:

• Generation of a set C = {c1, . . . , cp} of p random initial configurations of length
L , each one obtained by randomly setting the state value of each cell independently;

• Application of the local rule f to each initial configuration ci ∈ C a number
t ∈ N of times, gathering a set C ′ = {c′

1, . . . , c
′
p} of p final configurations, with

c
′
i = F(t)(ci ),∀i ∈ {1, . . . , p};

• Calculation of the DFT for each c
′
i ∈ C

′, gathering the set F(C ′) =
{F(c

′
1), . . . , F(c

′
p)} of the final conditions DFTs;

• Definition of the Fourier spectrum (or simply spectrum) fc for rule f as the arith-
metic average of the module of the transforms F(c

′
1), . . . , F(c

′
p) taken coordinate

by coordinate; that is, fc = 1
p

∑
c′∈C ′ |F |(c′).

• Normalisation of the spectrum with values between 0.0 and 1.0.

Under synchronous update, the Fourier spectra associated to dynamically equiva-
lent rules are identical, since reflection and/or conjugacy do not affect the dynamics.
In [11], the spectral analysis of the entire elementary space under synchronous update
has been carried out, which led to a partition of the space into 59 classes of spectral
equivalence, which represents a refined partition of the 88 classes of dynamically
equivalent rules. Those 59 classes have then been precisely explained in terms of
dynamical equivalence among the rules in the class, as well as by the fact that some
rules eventually become dynamically equivalent, after some initial time steps of their
temporal evolution. The issue of similarity among Fourier spectra of different rules
is depicted in Fig. 4, concerning elementary rules under synchronous updates; the
figure illustrates the fact that even rules which are not dynamically equivalent may
share the same Fourier spectrum.

In order to probe the reasons for the existence of distinct spectral classes to have
similar (possibly the same) spectra, in [11] it was necessary to group the spectra of
all ECAs according to their similarity, according to some distance measure between
them; this was achieved by relying on the Euclidian distance d( fs, gs) between the
spectra fs and gs vectors of the local rules f and g. Here we also follow a rule
clustering procedure.

In order to balance reliability and accuracy of the generated spectra and fair
computational time to obtain and analyse them, choices had to be made for the
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computational parameters involved. As such, all parameter values have been taken
from [11, 14], but finally established in face of the computational demands of the
present case, which are heavier than those related to the synchronous case. More
precisely, the following are the quantities involved and their values:

– The number of time steps to assume stability convergence of the temporal evolu-
tion: 200 iterations.

– The lattice size (and consequent length of the configurations): 1024 cells.
– The random sample size of the initial configurations: 40. This is a much smaller
sample than 1000, as used in [11], a decision derived from the heavier compu-
tational effort to generate each spectrum, let alone the fact that the number of
spectra herein was substantially larger than the one in [11], that is, 4080 versus 88,
respectively, because of 88 rules and 1 update scheme in the synchronous case,
and 136 rules and 30 updates presently. Moreover, although the spectra formed
with 1000 initial configurations is cleaner, the general shape is far from being lost,
as Fig. 5 makes it evident.

In the next section we introduce and discuss the three families of asynchronous
updates we defined for the spectral analyses of the 136 rules that represent each class
of dynamical equivalence under asynchronous updates of the elementary space.

Fig. 4 In spite of the rule pairs {18, 183} and {146, 182} defining distinct dynamical equivalence
classes, they display the same spectra [11]
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Fig. 5 The spectra on the left, formed with 40 initial configurations (ICs), is less clean than those
on the right (generated with 1000 ICs), but the general shapes are preserved. The spectra at the top
refer to ECA 110, and those at the bottom, to ECA 30

Fig. 6 Pictorial representation of the families of asynchronous update schemes employed
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5 Asynchrony Families

5.1 The Overall Idea

In order to obtain representative spectra, configurations with large sizes, powers of
2 (due to the calculus of the DFT), needed to be used; as mentioned earlier, our
computational apparatus rely on configurations with 1024 cells. But this renders it
inviable any exhaustive analysis of all possible update schemes for such a config-
uration size. In fact, the number of possible independent updates for a given size
[1] is governed by the so-called Fubini numbers [18]; so, for instance, for the small
five-cell long lattice, there are 541 distinct possible asynchronous updates. Conse-
quently, a reasoned choice of the updating sequences to be used to collect the data
for the experiments had to be chosen, so as to yield a variety of block sizes and their
positions in the lattice. This led us to three families of updates, each one with 10
schemes in a sequence, as pictorially represented in Fig. 6.

In order to convey an intuitive description of the asynchrony families, the figure
assumes the lattice has only eight cells, and exemplifies the families in three columns,
from left to right, respectively, asynchrony by sequential, alternating and shifting
blocks.

The update schemes for sequential and alternating blocks rely on cell blocks of
equal size, in the figure’s example, 4, 2 and 1 cells. In contrast, asynchrony with
shifting blocks is defined by blocks with fixed sizes, in the case, two blocks with
1 cell and the others with 2 and 4, with the position of the left-most block with
1 cell getting shifted progressively to the right; as this happens, the other blocks
need to shift left, in order to open space for the right shifts to carry on. For every
update, the figure displays, for each update scheme, the three possibilities allowed
by a lattice with 8 cells. Finally, each of the nine sequences of the lattice represent a
single iteration of the asynchronous update, with the numbers associated to the cells
representing their update priorities.

Notice that there are 2 fixed update priorities for the blocks in the alternating
blocks family; 1 + log2 L fixed update priorities in the family of shifting blocks; and
2i priorities, with 1 ≤ i ≤ log2 L , for the family of sequential blocks (i being an
index to the instances in this family, which will be later on referred to as the family’s
order). These variations in the number of priorities, sizes and positions of the blocks
in the families provide a sound set of representative update schemes.

The three asynchronous update families are formally characterised below.

5.2 Asynchrony by Sequential Blocks

An update schedule σ(L ,m) over configurations of length L is said to represent asyn-
chrony by sequential blocks if:
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• L = 2M for some M ∈ N; and
• There is m ∈ N, m ≤ M such that σ(i) = � i

2m �, where 2m is the number of cells
in each block.

For instance, with L = 8 and m = 2, we have

σ(8,2)(i) = � i
4 � =

{
1, if i ∈ {1, 2, 3, 4}
2, if i ∈ {5, 6, 7, 8} .

5.3 Asynchrony by Alternating Blocks

Firstly, given j, j1, j2 ∈ Z, we denote the inequality j1 ≤ j ≤ j2 simply by j ∈
[ j1, j2]. Now, an update schedule σ(L ,m) over configurations of length L is said to
represent asynchrony by alternating blocks if:

• L = 2M for some M ∈ N; and
• There is m ∈ N, M divisible by 2m, such that

σ(i) =
{
1, if i ∈ [1 + 2mk,m + 2mk] for some k ∈ Z, k ≥ 0

2, otherwise
,

with m representing the length of each alternating block in the update schedule.

For instance, with L = 8 and m = 2, we have

σ(8,2)(i) =
{
1, if i ∈ [1 + 4k, 2 + 4k] for some k ∈ Z, k ≥ 0

2, otherwise
=

{
1, if i ∈ [1, 2] ∪ [5, 6]
2, if i ∈ [3, 4] ∪ [7, 8] .

5.4 Asynchrony by Shifting Blocks

In order to ease the notation, consider the partition �M = {B(M,1),

B(M,2), . . . , B(M,M)} of [1, 2M − 1], with its blocks given by:⎧
⎪⎪⎨

⎪⎪⎩

B(M,1) = [
1, 2M−1

]

B(M, j) =
[
1 + ∑M−1

l=M+1− j 2
l ,

∑M−1
l=M− j 2

l
]
, if 2 ≤ j ≤ M − 1

B(M,M) = {2M − 1}
.

For instance, with M = 3, the partition becomes �M = {B(3,1), B(3,2), B(3,3)} =
{{1, 2, 3, 4}, {5, 6}, {7}} of [1, 23 − 1] = [1, 7]

An update schedule σ(L ,l) over configurations of length L is said to represent
asynchrony by shifting blocks if:

• L = 2M for some M ∈ N; and
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• There is l ∈ Z, 1 ≤ l ≤ M such that

σ(i) =

⎧
⎪⎨

⎪⎩

j, if i ∈ B(M, j) with j < l

j + 1, if (i − 1) ∈ B(M, j) with j ≥ l

l, otherwise

,with l representing the position

of the shift in the update schedule

For instance, with L = 8 and l = 2, we have

σ(8,2)(i) =

⎧
⎪⎨

⎪⎩

j, if i ∈ B(3, j) with j < 2

j + 1, if (i − 1) ∈ B(3, j) with j ≥ 2

2, otherwise

.

Notice that, in this case,⎧
⎪⎨

⎪⎩

1, 2, 3, 4 ∈ [
1, 22

] = B(3,1) =⇒ σ(1) = σ(2) = σ(3) = σ(4) = 1,

(6 − 1), (7 − 1) ∈ [
22 + 1, 21 + 22

] = B(3,2) =⇒ σ(5) = σ(6) = 2 + 1 = 3,

(8 − 1) ∈ {23 − 1} = B(3,3) =⇒ σ(7) = 3 + 1 = 4.

Therefore, we have σ(8,2)(i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if i ∈ {1, 2, 3, 4}
2, if i = 5

3, if i ∈ {6, 7}
4, if i = 8

.

6 Results: Spectral Similarity Classes

6.1 Size and Asynchronous Degree of the Spectral Classes

Since the lattice size we used to obtain the results to be shown below is made up of
1024 cells, by following the rationale exemplified above this implies that 10 updates
are considered for each asynchrony family, concerned with block sizes with 2i cells,
0 ≤ i ≤ 9, for the update schemes with sequential and alternating blocks, and 10
distinct positions of the shifting 1-cell block. In order to make it easier to present our
results, we refer to each one of the 10 update schemes of an asynchrony family by
its order, a number from 1 to 10.

For the families of sequential and alternating blocks the meaning of the order is
that 210−order yields the size of the cell blocks that are updated (or not) at any time.
So, order 1 means the largest possible block size (512 cells), whereas order 10 refers
to the smallest, i.e., blocks made of a single cell. So, the smallest the order of an
update, the largest its associated blocks, and therefore, the less asynchronous it is.

Due to its different nature, the interpretation of the update’s order for the family of
shifting blocks needs to be reappraised. In this case, order means the update priority
of the 1-cell block that progressively shifts to the right. Putting another way, 210−order

yields the size of the cell block which is on the right-hand side of the shifting 1-cell
block.
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In order to group the Fourier spectra into similarity classes, various clustering
procedures were attempted, with the acceptation criterion for a successful result
having been that two or more spectra would be considered members of a same class,
only if their spectra would differ by at most 0.1 energy units, all frequencies con-
sidered. The first one of them relied on automatically grouping the rules, iteratively,
according to their relative distance, measured in terms of their Euclidean distance.
However, the result was not satisfactory, because of various false positives and false
negatives. Subsequently, various attempts were made with the off-the-shelf Mathe-
matica software (by means of its native FindCluster function), which automatically
groups data according to various clustering algorithms and distances; after attempt-
ing various parameterisations, the Jarvis-Patrick similarity clustering algorithm [5]
was chosen, with neighbourhood radius of 0.1932, as it yielded the more sensible
results, characterised in terms of the smallest number of false positives and false
negatives. But since the result up to that point still had clear flaws, a subsequent pro-
cedure was employed, in which the classes were visually analysed and the spectra
manually rearranged.

Table1 displays the number of spectral similarity classes for each asynchrony
order of each family of asynchrony, for the 136 dynamical representatives of the
elementary space; naturally, larger number of similarity classes implies that a given
family can lead to higher diversity of spectra. For comparison, also included in the
table is the number of spectral equivalence classes of the elementary cellular automata
under synchronous update, obtained in [11], mentioned earlier. Notice that, while the
classes for the synchronous case are actually of an equivalence nature, the ones for
the asynchronous cases carry a weaker notion, in that the classes only reflect spectral
similarity. Although the determination of which rules in a similarity class are also
equivalent in terms of their spectra is not addressed herein, it is reasonable to expect
that the number of equivalent asynchronous classes should increase from the current
number of similarity classes. Furthermore, it is clear that asynchrony brings much
more spectral diversity to the elementary space than synchrony.

Figure7 displays the number of similarity classes in the families, according to
the orders of the updates that defined them. As the asynchrony order increases, the
number of similarity classes of the families of sequential and alternating blocks have
a general tendency to increase, until reaching amaximum at order 8, fromwhich they
decline. Notice that this behaviour is more intense for the family of sequential blocks,
and that, at order 10, the number of similarity classes in this family is smaller than the
number of equivalence classes in the synchronous case. In contrast, the number of
similarity classes in the family of shifting blocks is kept stable at every asynchrony
order. So, for the families considered, altering the blocks’ positions, causes smaller
changes in the number of similarity classes than altering their sizes.

Looking at the average asynchrony degree (defined earlier) associated to every
update scheme in each family, brings a new perspective to the analysis. As shown
in Fig. 8, the asynchrony degree of the families of sequential and alternating blocks
become progressively higher, the larger the order becomes, as their constituting
blocks become progressively smaller. But although the asynchronous degrees of
both families are practically the same up to order 8, the updates with sequential
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Table 1 Number of similarity classes of the elementary space, according to the order of each
asynchronous update scheme, and its number of spectral equivalence classes under synchronous
update

Asynchrony Sequential Alternating Shifting Synchronous

order blocks blocks blocks update

1 62 62 71 .

2 62 62 68 .

3 64 62 68 .

4 69 64 67 .

5 74 64 68 59

6 81 65 65 .

7 91 65 67 .

8 106 75 64 .

9 94 68 64 .

10 45 62 69 .

Fig. 7 Number of similarity classes of the asynchrony scheme orders for each asynchrony family
type

blocks become incomparably higher compared to the ones with alternating blocks
at orders 9 and 10; this is due to the fact that only a single block is updated each
time in the family of sequential blocks, while the family of alternating blocks causes
groups of blocks to be updated each time, in parallel, more akin to the synchronous
update. All in all, it seems reasonable in the present context to associate an intrinsic
asynchrony degree to each family, averaged over all the 10 orders, as a property of
the family, in which case the sequential blocks family can be regarded as the most
asynchronous of the families, followed by that of alternating blocks, and finally, the
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Fig. 8 Average asynchrony degree of the three asynchrony families, for each order

shifting blocks family; in doing so, the following values of asynchrony degree of the
families are obtained, respectively, 52.2, 1.2 and 1.0.

6.2 Rule Co-occurrences in the Spectral Classes

The similarity classes have also been probed in terms of their sizes and compositions.
As such, we looked at the number of times a rule co-occurred with each other in a
similarity class, for each asynchrony family, therefore leading to three 136 × 136
co-occurrence matrices.

Figure9 displays the values in the matrices in gray scale, white relating to no
co-occurrence, black representing 10 co-occurrences, and gray-levels for the values
in between; naturally, 10 is the maximum possible value because of the 10 existing
orders within a family. The following observations can be made:

• Family of sequential blocks (Fig. 9a): More rule pairs with a single co-occurrence
comparatively to the other matrices of individual families, and moderate numbers
of rule pairs with co-occurrences between 8 and 10.

• Family of alternating blocks (Fig. 9b): Smaller number of rule pairs with co-
occurrences between 8 and 10, and the highest number of rule pairs with co-
occurrences between 4 and 6, among all the single-family matrices.

• Family of shifting blocks (Fig. 9c): Almost every rule pair features co-occurrences
from 8 to 10, and there is an almost zero number of the other co-occurrence values.

The figure clearly indicates the existence of co-occurring rules in all the matrices,
even though with varied frequencies. It also reveals a relation between the diversity
of co-occurrence values in each individual family and the variation of the number
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Fig. 9 Co-occurrence
matrices of all elementary
rules in the similarity classes,
for the three asynchronous
update families: a sequential
blocks; b alternating blocks;
c shifting blocks
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Fig. 10 Number of similarity classes in each family, for every one of its update schemes

of similarity classes in each one, across their 10 different orders. So, it is clear that
the diversity of co-occurrence values is the largest in the sequential blocks family,
followed by the alternating blocks family, and then, by the shifting blocks family,
and this ordering is the same as the variation of the number of similarity classes in
each family, which are, respectively, 61, 13 and 7; in other words, as the number of
classes within a family changes significantly, this strongly affects the co-occurrence
of rules. Naturally, this is in tune with the fact that the intrinsic average asynchrony
degree of each family decreases in the same order, that is, the families of sequential,
alternating and shifting blocks.

From yet another perspective of analysis, Fig. 10 exhibits the number of similarity
classes for all possible orders of each asynchrony family. Clearly, there is a predom-
inance of similarity classes in just a single order for all families, but more intensely
for the families of sequential and alternating blocks. This means that the classes do
not possess a significant stability across the different orders, therefore having more
chance to be confined to a single order. The plot also shows that the shifting blocks
family leads to more stability because of its smaller intrinsic asynchrony degree
among the families, therefore explaining its associated smaller number of classes
for order 1 and the highest for order 10. As for the intermediate order values, the
correlation between the number of classes and the intrinsic asynchrony degree of
each family is not as clear as in the extremes of the plot, but some coherence is still
noticeable for the sequential blocks family, in that the number of classes progres-
sively decreases as the orders increase (i.e., asynchrony increases), as well as for the
three families jointly considered, in that the number of their classes for orders from 3
to 7 maintain the expected ordering correspondingly to their asynchronous degrees,
with the sequential blocks family at the top and that of shifting blocks at the bottom.
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7 Concluding Remarks

Shedding light on the dynamics of cellular automata by means of distinct conceptual
tools is certainly to be praised. Spectral analysis by means of discrete Fourier trans-
form clearly fits the scenario, and has been used in the context of standard cellular
automata for already a while, even though not with much intensity.

Our intent here was to extend a previous relevant effort along that line – on
analysing the elementary space – but nowwith block-sequential asynchronous, deter-
ministic updates. In order to do that, we had to cut the huge combinatorial space of
possible updates in a small set of sensible slices that would keep the investigation
feasible. Inevitably, the observationswemade are biased and restricted by the updates
we have chosen. However, the methodology we developed, rooted in both the notions
of order based families of update and of the proposed asynchrony degree measure,
are general enough to be relevant contributions to underpin further studies on the
subject. In fact, although our emphasis was on the elementary space, these concep-
tual constructs are totally applicable to any other one-dimensional cellular automata
space.

Although we defined asynchrony degree as an average quantity related to the
number of applications of the local function to the positions of a configuration,
variants are certainly possible, such as the total number, the maximum number, the
mode, etc. Other contexts of usage of the concept might well suggest one of the
alternatives as the most appropriate.

As expected, the presence of asynchrony was shown to induce changes in the
spectra of the elementary cellular automata; but since the dynamical possibilities in
the space is limited, the rules could be grouped into similarity classes, according to the
specific update strategy employed. Based on them, it was possible to show, although
not strictly, a generally positive correlation between the number of similarity classes
of a family of updates and its asynchrony degree. This also explains the significantly
smaller number of equivalent classes previously obtained in the literature for the
synchronous elementary space.

Although the computational experiments have been carried out with a small num-
ber of initial configurations, as discussed, we understand that the qualitative con-
clusions drawn would remain basically the same should a larger sample of initial
configurations had been used. Notwithstanding, with more initial configurations we
would expect some numerical change in the distribution of the number of the simi-
larity classes in each family.

Finally, it was observed that the larger the asynchrony degree of an update family,
the higher the tendency for the similarity classes in the family to be made up of a
single rule. Consequently, block-sequential asynchrony can lead to more richness of
dynamics in the elementary cellular automata and, very likely, also in other spaces.
It is tempting to try to correlate this spectral richness with the dynamical analysis of
the rules, under their temporal domain.
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Sandpile Toppling on Penrose Tilings:
Identity and Isotropic Dynamics

Jérémy Fersula, Camille Noûs, and Kévin Perrot

Abstract We present experiments of sandpiles on grids (square, triangular, hexag-
onal) and Penrose tilings. The challenging part is to program such simulator; and
our javacript code is available online, ready to play! We first present some identity
elements of the sandpile group on these aperiodic structures, and then study the
stabilization of the maximum stable configuration plus the identity, which lets a sur-
prising circular shape appear. Roundness measurements reveal that the shapes are
not approaching perfect circles, though they are close to be.We compare numerically
this almost isotropic dynamical phenomenon on various tilings.

Preamble

The experiments presented in this paper were conducted using JS-Sandpile, a
javascript sandpile simulator we developed. The code is available at https://github.
com/huacayacauh/JS-Sandpile, and it is ready for the reader to play at https://
huacayacauh.github.io/JS-Sandpile/. Color codes of all our pictures are a gradation,
from almost white = 0 grain, to almost black = deg(v) − 1 grains (for any vertex v),
i.e. the darker it is, the closer to the stability threshold. Stable vertices have greyscale
colors, unstable vertices have flashy colors. Table1 presents color codes.
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Table 1 Color codes of the pictures in this article, according to the degree of the vertices (all our
tilings have the same degree for all its tiles/vertices)

deg(v) 0 grain 1 grain 2 grains 3 grains 4 grains 5 grains 6 grains 7 grains

3
4
6

1 Introduction

It all started in 1987 with the work of Bak, Tang and Wiesenfled [2]. Sandpiles have
initially been introduced as number conserving cellular automata on the two dimen-
sional square grid, defined by the local toppling of sand grains to neighboring cells,
with statistics on chain reactions presenting scale invariance typical of phase transi-
tion phenomena in physics, the so called self-organized criticality [3, 34]. Soon after,
Dhar realized that sandpiles have a beautiful algebraic structure, which generalizes
to graphs and digraphs [10]. Since then, sandpiles have raised great interests for their
simple local definitions exhibiting complex global behaviors. Following the work of
Goles [23], numerous researches have been conducted on one-dimensional models
under sequential update mode [24, 25, 32, 50], parallel update mode [13], and some
variants such as symmetric [17, 21, 49, 51] or Kadanoff rule [48].

On the two-dimensional side, the identity of the sandpile group on square grids
retains its mysteries, though the relaxation of hourglasses (toppling from a single
site) begin to reveal its structure through involved partial differential equation devel-
opments [35–37, 44, 45].

The sandpile model on graphs is general enough to embed arbitrary computa-
tion, as attested by its Turing-universality [27]. In order to analyse the apparent
complexity of the model in a formal framework, particular interest has been raised
on the computational complexity of predicting the dynamics of sandpiles. Despite
strong efforts started with Moore and Nilsson in [42] and important contributions
from Goles, the computational complexity of the problem on two dimensional grids
remains open between NC and P. The one-dimensional model is in NC [40, 42], as
well as the Kadanoff rule [16, 19] and more general variants [20]. It is P-complete
from dimension three [42], and even allows for some undecidable problems [7]. The
(im)possibility of building crossing gates in two dimensions is studied in [22, 43],
and similar issues on closely related threshold automata such as the majority rule
have been fruitful [26, 28–31, 41]. See [18] for a survey of the results on lattices.

Achieving isotropy in a cellular automaton is not a trivial matter, as cells evolve on
intrinsically anisotropic supports (grids). The authors of [9] manage to build parabo-
las and circles in a two-dimensional cellular automaton with 513 states. Though
optimizing the number of state was not an objective of their work, it reflects the diffi-
culty of the task. Approximative (and simpler) approaches to build circles (isotropic
diffusion) include: probabilistic methods [39, 54, 55, 58], using a continuous state
space [38], or a large neighborhood to alleviate the anisotropy [14, 56, 59].
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We give the definition of the sandpile model on general graphs in Sect. 2, and
present its algebraic structure at the heart of the experiments conducted in this article.
We also define the tilings considered as supports for the sandpile dynamics: square,
triangular and hexagonal grids, Penrose tilings (kite-dart and rhombus) obtained by
substitution, andPenrose tilings (rhombus) obtained by the cut and project (multigrid)
method. Identity elements of the sandpile group on Penrose tilings are exposed in
Sect. 3. Our main contribution is in Sect. 4, where we study numerically the isotropy
observed during the stabilization process from the maximum stable configuration
plus the identity.

2 Model

Bak, Tang andWiesenfeld first defined in [2] the sandpile model on two-dimensional
grids with von Neumann neighborhood. We present in Sect. 2.1 a general definition
on any undirected multi graph, in Sect. 2.2 the algebraic structure first revealed by
Dhar in [10], and in Sect. 2.3 we introduce various grids and more generally tilings
on which the sandpile model can be studied.

2.1 Sandpiles on Graphs

Given a (connected) finite undirected multi graph G = (V, E) with a distinguished
sink s ∈ V , let Ṽ = V \ {s}. A configuration c : Ṽ → N assigns a number of sand
grains to each non-sink vertex of G. The basic local evolution rule is the toppling at
some vertex v ∈ Ṽ , which may occur when c(v) ≥ degv, and consists in vertex v

giving as many grains as it has edges to each of its neighbors. When c(v) ≥ degv
we say that vertex v is unstable, and a configuration with no unstable vertex is
called stable. Formally, let Δ = D − A be the graph Laplacian of G, i.e.with D the
degree matrix having degv on the diagonal and A the adjacency matrix of G, and let
Δ̃ be the reduced graph Laplacian obtained from Δ by deleting the row and column
corresponding to the sink s. With Δ̃v the row of Δ̃ corresponding to vertex v ∈ Ṽ ,
performing a toppling at v corresponds to going from c to c′ = c − Δ̃v , which we
denote c

v→ c′, or simply c → c′, and →∗ its reflexive-transitive closure.
As such the system is non-deterministic on configuration space N

Ṽ , but it is
straightforward to notice that any configuration c converges (because of the absorbing
sink vertex s) to a unique (because topplings commute) stable configuration, denoted
c◦. This is the so called abelian property of sandpiles, or fundamental theorem of
sandpiles. The vector x such that c − Δ̃ · x = c◦ is called the shot vector or odometer
function of configuration c, it records howmany times each vertex has toppled during
the stabilization of c. The fundamental theorem of sandpiles furthermore states that
the odometer function of any configuration is unique.
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Fig. 1 Five steps of the sandpile model on a square grid of size 5 × 5, corresponding to the
graph with one vertex per square and north-east-south-west adjacencies (all vertices have degree
4). The sink s is not pictured, squares/vertices on the border have one edge connected to s, and
squares/vertices on the corners have two edges connected to s

For the purpose of simulations that take some importance in the present work,
we define the deterministic synchronous dynamics as the evolution toppling syn-
chronously all unstable vertices, at each step. Formally, we define c ⇒ c′ with

c′ = c −
∑

v∈Ṽ
c(v)≥degv

Δ̃v.

An example is given on Fig. 1. For the sake of simplicity, in the following graph
will stand for finite undirected multi graph.

2.2 Abelian Group Structure

Given a graph G = (V, E) with sink s, let C = N
Ṽ denote its set of configurations.

The set of stable configurations Cstab is naturally equipped with the operation ⊕
defined as

c⊕ c′ = (c + c′)◦

where c + c′ is the componentwise addition of two configurations, i.e. (c + c′)(v) =
c(v) + c′(v) for all v ∈ Ṽ . It is straightforward to notice that (Cstab, ⊕ ) is a com-
mutative monoid (closure, associativity, identity, commutativity), the identity being
the configuration z such that z(v) = 0 for all v ∈ Ṽ .

Here comes the magics of sandpiles. The set of recurrent configurations

Crec ={c ∈ Cstab | ∀c′ ∈ C : ∃c′′ ∈ C : c′ ⊕ c′′ = c}
={c ∈ Cstab | ∀c′ ∈ Cstab : ∃c′′ ∈ Cstab : c′ ⊕ c′′ = c}

corresponds to the intersection of ideals of Cstab, i.e.

Crec =
⋂

I⊆Cstab
I ideal of Cstab

I
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Fig. 2 Identity elements of the sandpile group on graphs corresponding to the triangular grid of side
length 50 (left, deg(v) = 3 for any vertex v), the square grid of side length 50 (center, deg(v) = 4
for any vertex v), the hexagonal grid of side length 14 (right, deg(v) = 6 for any vertex v). All at
the same scale

with I (right) ideal of Cstab if and only if I ⊕Cstab ⊆ Cstab where I ⊕Cstab =
{i ⊕ c | i ∈ I and c ∈ Cstab}. Moreover, it is a classical result of algebra that the
intersection of all ideals of a commutative semigroup (closure, associativity, com-
mutativity) gives an abelian group (closure, associativity, identity, inverse, commu-
tativity). So (Crec, ⊕ ) is an abelian group, called the sandpile group on graph G
with sink s. Now remark that the configuration z containing no grain is (except on
very restricted cases) not an element of Crec, hence the1 identity element e ∈ Crec
of the sandpile group is a priori not obvious to construct, and it turns out that few
is know about its structure on numerous interesting cases, as presented on Fig. 2. It
can be proven that

e = (2m − (2m)◦)◦ (1)

with m the maximum stable configuration defined as m(v) = deg(v) − 1 for all
v ∈ Ṽ , and (2m)(v) = 2 c(v) for all v ∈ Ṽ . Indeed, 2m − (2m)◦ contains at least
deg(v) − 1 grains at each vertex v ∈ Ṽ hence its stabilization is recurrent, and fur-
thermore it corresponds to subtracting two configurations from the same equivalence
class according to relation ↔∗ (the symmetric closure of →∗), therefore to a config-
uration in the class of the identity (see [11] for details). The equality follows since
the identity element of (Crec, ⊕ ) is unique.

2.3 Tilings

Wewill concentrate on finite tilings, but still introduce general definitions. An infinite
tiling T by τ is a covering of R2 by finitely many polygonal tiles and their images
by isometry (translation, rotation, flip), i.e. copies of the tiles from τ cover the plane

1 The identity element of the sandpile group is unique.
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without gaps nor overlaps. Let τ be a finite set of polygonal tiles called a tile set,
then T is a partition of R2 into countably many isometries of the elements from τ .

An infinite tiling T is periodic when it has a non-null periodicity vector p ∈ R
2,

such thatT + p = T . A tile set τ is aperiodicwhen it admits at least one infinite tiling
(we say that τ tiles the plane), and none are periodic. Aperiodicity is fundamentally
related to the uncomputability of the domino problem: given a (finite) tile set, does
it tile the plane? Let us quickly mention the seminal contributions of Wang [57],
Berger [5] andRobinson [52], alongwith the book Tilings and Patterns byGrünbaum
and Shephard [33].

In order to consider sandpiles on tilings, we explain now how to construct finite
undirected multi graphs with a distinguished sink. A finite tiling is simply a subset
of some infinite tiling T . Remark that this requires a finite tiling to be extensible into
an infinite tiling, which will be the case for all our finite tilings. Indeed, given some
tile set τ we will generate arbitrarily large finite tilings, which implies the existence
of an infinite tiling by compactness of the set of infinite tilings by τ . Two tiles are
adjacent in T when they share an edge. All the tilings we consider will see their
adjacent tiles share full sides, i.e. no tile will share a partial side or more than one
side with another tile. These are called edge-to-edge tilings. Given a finite tiling,
each tile corresponds to a vertex, plus an additional sink vertex corresponding to the
outside face. The tile to tile adjacencies are given by the edge-to-edge connections,
and the number of edges connecting a tile to the sink is equal to its number of sides
connected to the outside face, so that the degree of every tile is equal to its number
of sides. Tiles connected to the sink are said to be on the border of the Tiling. Note
that the sandpile dynamics is given by this underlying graph, but tiles furthermore
have coordinates in R2.

We now present the finite tilings considered in this article. The size of tiles and
the position of coordinate (0, 0) will be important for the observations presented in
Sect. 4. Grids are illustrated on Fig. 2.

Square grids They correspond to the original two-dimensional sandpile model
by Bak, Tang andWiesenfled [2]. Given size n, it basically consists in a n × n square
gridwith adjacencies given by vonNeumann neighborhood (north, east, south, west).
Tiles on the borders have one edge connected to the sink, and tiles on the corners
have two edges connected to the sink. Each tile is a square of side length 1, and the
finite tiling is centered with coordinate (0, 0) in the middle of the grid: if n is even
then coordinate (0, 0) corresponds to four tiles corners; otherwise coordinate (0, 0)
corresponds to the center of a tile.

Triangular grids Given size n, it is made of equilateral triangles of side length
1, arranged up and down to form an equilateral triangle of side length n, where the
three outer sides of the tiling are made of n triangular tiles. Tiles on the border have
one edge connected to the sink, and tiles on the corners have two edges connected
to the sink. The finite tiling is centered with coordinate (0, 0) at the barycenter of its
three corners.

Hexagonal grids Given size n, it is made of regular hexagons of side length 1,
arranged to form an hexagonal grid (orientation is flat) with six sides each made of
n tiles. Tiles on the border have two edges connected to the sink, and tiles on corners
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Fig. 3 Substitutions of P2 kite (left) and dart (right) tiles
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Fig. 4 Substitutions of P3 fat (left) and thin (right) rhombi tiles. Due to the symmetry of P3 tiles,
we highlight the origin point of each tile

Fig. 5 Three iterations of the susbtitution from a P2 Sun, with identity elements of the sandpile
group pictured

have three edges connected to the sink. The finite tiling is centered with coordinate
(0, 0) at the center of the central hexagon.

Penrose tilings Penrose developed in [46, 47] a series of elegant aperiodic tile
sets. We consider P2 (kite-dart), and P3 (rhombus) (tilings by P2 and P3 are mutu-
ally locally derivable, see [1]). Penrose tilings may be obtained by substitution2 as
described on Fig. 3 for P2, and Fig. 4 for P3. After substituting, we rescale all tiles
up by the substitution factor φ = 1+√

5
2 , so that the tiles of the final tiling have the

exact same size as the base tiles (kite, dart, fat, thin). Figure5 presents three iterations
of the substitution from a P2 Sun, Fig. 6 presents three iterations of the substitution
from a P2 Star, and Fig. 7 presents three iterations of the substitution from a P3 Sun.

2 Note that in order to enforce aperiodicity in P2 and P3, matching constraints should be added
on tile edges, for example via notches, but the finite tiling generation methods we employ do not
require such considerations.
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Fig. 6 Three iterations of the susbtitution from a P2 Star, with identity elements of the sandpile
group pictured

Fig. 7 Three iterations of the susbtitution from a P3 Sun, with identity elements of the sandpile
group pictured

Coordinate (0, 0) is at the center of the initial Suns and Stars, and remains at the
symmetry center of tilings obtained by subsequent substitutions.

Penrose P3 tilings may alternatively be generated by cut and projectmethod: con-
sider the 5-dimensional plane E spaned by vectors (cos 2kπ

5 )0≤k<5 and (sin 2kπ
5 )0≤k<5,

passing through the point ( 15 ,
1
5 ,

1
5 ,

1
5 ,

1
5 ). The orthogonal projection of the 5-

dimensional grid lines (1-simplices) contained in E + [0, 1]5 onto E gives a tiling by
P3 tiles. We implement it via the dual multigrid method of de Bruijn [6], where one
considers a 2-dimensional space and five line families (our pentagrid) given by the
intersections of E with the five 5-dimensional hyperplanes Gi = {x ∈ R

5 | x · ek ∈
Z} for 0 ≤ k < 5, where ek is the k-th unit vector of R5. Pentagrid lines of a family
are indexed by the value of x · ek , and we denote �ki the line from family 0 ≤ k < 5 of
index i ∈ Z. Note that with this setting, no more than two pentagrid lines intersect at
a given position. The 2-dimensional space is divided into polygonal cells delimited
by pentagrid lines. Each cell p is labeled by a 5-tuple of integers (pk)0≤k<5 such
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Fig. 8 P3 cut and project tilings of sizes 1, 2, 3 and 4, with identity elements of the sandpile group
pictured

that cell p lies in between lines �kpk and �kpk+1. To each cell p corresponds a point (a
tile’s bound coordinate) in the 2-dimensional space, at

∑
0≤k<5 pk(cos

2kπ
5 , sin 2kπ

5 ).
It follows that to each intersecting pair of pentagrid lines corresponds a tile, whose
two edge orientations are given by the two line families. Details can be found in [15].
We bound this process to a finite P3 cut and project tiling of size n by considering
only tiles corresponding to points of intersection lying in between �i−n and �in for all
families 0 ≤ i < 5. The coordinate (0, 0) of this tiling is given by the cell labeled
(0, 0, 0, 0, 0), and is therefore a tile bound (shared by multiple tiles). Rhombus tiles
have side length 1 as on Fig. 4. Figure8 presents some P3 cut and project tilings.

3 Sandpile Identity on Penrose Tilings

We were curious to see what the identity element of the sandpile group would look
like on (finite) Penrose tilings, and it seems that no particular structure appears.3

Examples are presented on Figs. 9, 10 and 11, JS-Sandpile computes them from
Formula 1.

We nevertheless discovered an interesting phenomenon on P3 cut and project
tilings, where the identity elements seem to display some stability. Indeed, identity
elements on successive sizes have a somewhat large central part of the configuration
in common. This obeservation is presented on Fig. 12. We may therefore conjecture
a convergence of the sandpile identity on P3 cut and project tilings: as the size n
increases, a larger part of the identity is fixed (remains the same for all sizes n′ ≥ n).
Let us remark that this phenomenon does not seem to take place on P2 nor P3 tilings
obtained by subsitution.

3 Well, this is a bit disappointing, but we think that it is worth showing that it does not appear to
be a fruitful research direction, or maybe a more insightful reader would encounter something out
there….
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Fig. 9 Identity element of the sandpile group on the tiling obtained after 7 iterations of the substi-
tution from a P2 Sun (6710 tiles)

4 Isotropic Dynamics

On square, triangular, hexagonal grids and Penrose tilings, a very interesting phe-
nomenon appears4 during the stabilization process

(m + e)◦ = m

wherem is the maximum stable configuration (m(v) = deg(v) − 1 for all tile v) and
e is the identity element of the sandpile group. Indeed, during the last phase of the
stabilization process leading back to m (which is a uniform configuration in these
cases since the number of neighbors is identical for all tiles), one can see the config-
uration m reappear from the outside (near the border) towards the center, outside a

4 This also takes place on other tilings, outside the scope of the present work.
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Fig. 10 Identity element of the sandpile group on the tiling obtained after 6 iterations of the
substitution from a P3 Sun (5415 tiles)

shrinking circular shape, in a process step by step covering the whole configuration
with tiles containing deg(v) − 1 grains. The first part of the stabilization process is
quite involved. Two illustrations are given on Figs. 13 and 14.

4.1 Roundness

In order tomeasure this phenomenon,we introduce the roundness as follows. First,we
partition a configuration into two parts: the outside part with all tiles having deg(v) −
1 grains connected to the border, and the inner part. Given a tiling G = (V, E)

with sink s and a configuration c : Ṽ → N, let the maximum stable components,
MSC(c) = {V1, V2, . . . , Vk}, be the connected components of tiles (from Ṽ ) having
deg(v) − 1 grains. Then the outer tiles is the set
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Fig. 11 Identity element of the sandpile group on a P3 cut and project tiling of size 10 (2440 tiles)

outer(c) =
⋃

Vi∈MSC(c)
∃v∈Vi :{v,s}∈E

Vi

and the inner tiles is the set inner(c) = Ṽ \ outer(c). From this partition of the
set of tiles, we are interested in the frontier between the outer and inner tiles, and
how close it is from a perfect circle. This has to do with the coordinates of tiles in the
Euclidean space R2, so let us denote coord(v) the set of coordinates of the bounds
of some tile v ∈ Ṽ , and body(v) the subset ofR2 covered by the tile. Our convention
regarding the sink s is discussed below. Regarding the circle, let us denote B(r) the
inside of the circle of radius r ∈ R centered at coordinate (0, 0), i.e.

B(r) = {(x, y) ∈ R
2 |

√
x2 + y2 ≤ r}.
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Fig. 12 Differences between successive identity elements of the sandpile group on P3 cut and
project tilings. From left to right, top to bottom, are displayed the identity elements on P3 cut and
project tilings of sizes 11 (2900 tiles), 12 (3520 tiles), 13 (4155 tiles), 14 (4790 tiles), 15 (5570
tiles), 16 (6250 tiles), 17 (7140 tiles), 18 (8080 tiles), 19 (8890 tiles) and 20 (9940 tiles), where the
part of the configuration which differs from the previous size (sizes n is compared to size n − 1)
are highlighted with redshifted colors

We may therefore denote body(v) ∩ B(r) = ∅ to state that tile v is entirely out-
side the circle of radius r centered at (0, 0), and body(v) ⊆ B(r) (or equivalently
coord(v) ⊆ B(r) since we deal with polygons and the circle is convex) to state that
tile v is entirely inside the same circle. We define the outer radius as the maximum
scalar r such that all outer tiles are outside the circle of radius r around the origin
(0, 0) of the tiling,

r(c) = max{r ∈ R+ | ∀v ∈ outer(c) : body(v) ∩ B(r) = ∅}
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Fig. 13 Stabilization of (m + e)◦ = m on a square grid of side length 50. From left to right, top to
bottom, are displayed the configurations every 100 time steps (starting withm + e at step 0, ending
with time step 700). The process converges to m at step 707

Fig. 14 Stabilization of (m + e)◦ = m on 5 iterations of the substitution from a P2 Sun. From left to
right, on top are displayed time steps 0, 50, 100, 150 and at the bottom time steps 165, 180, 195, 210.
The process converges to m at step 220

and the inner radius as the minimum scalar r such that all inner tiles are inside the
circle of radius r around the origin (0, 0) of the tiling,

r(c) = min{r ∈ R+ | ∀v ∈ inner(c) : body(v) ⊆ B(r)}.

In order to deal with the case outer(c) = ∅, which may for example be the
case on some configurations (m + e), we add the convention that the sink s is an
infinite tile covering all the space outside the tiling, whose coordinates are the union
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Fig. 15 Examples of roundness measures, circles of outer radius r(c) in blue, inner radius r(c)
in red. Left: square grid of side length 50, after 500 steps from (m + e) (converges to m in 707
steps), r(c) ≈ 21.633 − 20.224 = 1.409. Right: 5 iterations of the substition from a P2 Sun, after
150 steps from (m + e) (converges to m in 220 steps), r(c) ≈ 16.662 − 14.729 = 1.933

of all bounds from tile edges adjacent to the sink, and that it always belongs to
outer(c). As a consequence the outer radius is upper bounded by the radius of the
inscribed circle (inside the finite tiling) with center at (0, 0). The caseinner(c) = ∅
is not problematic since the minimum defining r(c) is taken on R+, and would
therefore equal 0 as expected. The inner radius is upper bounded by the radius of the
circumscribed circle (outside the finite tiling) with center at (0, 0). The roundness
of a configuration c is then measured as the difference between the inner and outer
radii,

r(c) = r(c) − r(c).

Note that 0 ≤ r(c), and we have r(c) = 0 when the frontier between inner and
outer tiles is a perfect circle. Two examples of roundness are given on Fig. 15.

4.2 Base Roundnesses

Remark that since all our tiles are polygonal (with three to six sides), we cannot
expect to reach roundness 0 (except when the stabilization process has converged to
m). To get some easy to interpret base values, we consider the diameter of each tile,
as the diameter of the circumscribed circle around the tile (smallest radius of a circle
having the tile entirely is its interior). See Fig. 16. The greatest diameter of some
tiling’s tiles can be interpreted as an upper bound on the best achievable roundness,
for any radius. Indeed, consider some tiling and a circle C (of radius at most equal to
the inscribed radius), then all tiles having the center of their circumscribed circle on
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Fig. 16 Diameters of all tiles, as the diameter of a circumscribed circle (in purple). All tiles at the
same scale

Table 2 Base roundnesses as the greatest diameter of some tiling’s tiles

Tiling Square grids Triangular
grids

Hexagonal
grids

P2 tilings P3 tilings

Base
roundness

√
2

≈1.414

2
√
3

3≈1.155
2 2 2 sin( 2π5 )

≈1.902

or outside the circle C can be set as outer tiles, and all tiles having the center of their
circumscribed circle inside the circle C can be set as inner tiles, which results in a
roundness smaller than twice the radius of the greatest tile’s radius, i.e. smaller than
the greatest tile’s diameter. We obtain the base roundnesses presented on Table2.

4.3 Plots

We now present plots of roundness measured during the stabilization process
(m + e)◦ = m on the different tilings considered in this article. We decompose the
stabilization process from m + e to m into two phases:

• phase 1: the dynamics is erratic,
• phase 2: the set of inner tiles slowly shrinks, until reaching inner(m) = ∅.
The beginning of phase 2 is defined as the first step such that the inner radius is smaller
or equal to the inscribed radius of the tiling (maximumradius of a circle entirely inside
the finite tiling, and centered at the origin). Remark that at the beginning of phase
2, all tiles on the border of the tiling are outer tiles, because the polygonal shape of
any inner tile on the border would otherwise lead to the inner radius being greater
than the inscribed radius of the tiling. An important observation is that, in all the
experiments presented in this article and performed during its preparation, once in
phase 2 with all border tiles as outer tiles, then all border tiles remain outer tiles,5

and that the inner radius remains smaller or equal to the inscribed radius. Two full
examples of roundness plots are given on Figs. 17, 19, and their companion Figs. 18,
20.

5 They all remain stable with deg(v) − 1 grains until reaching m. Observe that any outer tile
receiving some grain would topple, and that toppling any outer tile would result in toppling the
whole maximum stable component it belongs to.
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Fig. 17 Plot of the roundness during the stabilization process (m + e)◦ = m, on the square grid
of side length 50. At each step we plot the inner radius r(c) in red, outer radius r(c) in blue, and
roundness r(c) in black. Grid has one row per unit and one column per 10 time steps. For example,
at step 3, with m + e ⇒ c1 ⇒ c2 ⇒ c3, we observe that r(c3) = 25

√
2 ≈ 35.355 (the radius of

the circumscribed circle around the whole tiling) and that r(c3) = 25 (the radius of the inscribed
circle inside the whole tiling), so that r(c3) = 25(

√
2 − 1) ≈ 10.355 (at step 0 some outer tiles

near the x = 0 and y = 0 axis give different radii). Phase 2 begins at step 424, and configuration
m is reached at step 707. The base roundness of this tiling (dashed) is

√
2. See also the companion

Fig. 18

Fig. 18 Configurations at steps 0 (this is m + e), 423 and 424 during the stabilization process
(m + e)◦ = m, on the square grid of side length 50. Inner radii in red, outer radii in blue. One can
observe the phase transition occurring at step 424: the inner radius becomes smaller or equal to the
inscribed radius of the tiling

Experimental results, picturing only phase 2 of the stabilization process from
m + e to m, are presented on Figs. 21 and 22. Note that during all the experiments
we have performed in preparing this article, we have observed similar behaviors for
all other sizes.
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Fig. 19 Plot of the roundness during the stabilization process (m + e)◦ = m, on the tiling obtained
after 5 iterations of the substitution from a P2 Sun. At each step we plot the inner radius r(c) in
red, outer radius r(c) in blue, and roundness r(c) in black. Grid has one row per unit and one
column per 10 time steps. For example, at step 0 we observe that r(m + e) ≈ 22.940 (the radius
of the circumscribed circle around the whole tiling) and that r(m + e) ≈ 17.069 (the radius of the
inscribed circle inside the whole tiling), so that r(m + e) ≈ 5.871. Phase 2 begins at step 146, and
configuration m is reached at step 220. The base roundness of this tiling (dashed) is 2. See also the
companion Fig. 20

Fig. 20 Configurations at steps 0 (this is m + e), 145 and 146 during the stabilization process
(m + e)◦ = m, on the tiling obtained after 5 iterations of the substitution from a P2 Sun. Inner radii
in red, outer radii in blue. One can observe the phase transition occurring at step 146: the inner
radius becomes smaller or equal to the inscribed radius of the tiling

4.4 Computation Times and Data

The graphics were computed on our personal machines (standard laptops), with
simulation times and data presented on Table3. Details on the implementation (no
parallelization) can be found at https://github.com/huacayacauh/JS-Sandpile/wiki/
Roundness.

https://github.com/huacayacauh/JS-Sandpile/wiki/Roundness
https://github.com/huacayacauh/JS-Sandpile/wiki/Roundness
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Fig. 21 Plots of the roundness during phase 2 of the stabilization process (m + e)◦ = m, on the
square grid of side length 500, triangular grid of side length 500, and hexagonal grid of side length
200. Grids have one row per unit and one column per 1000 time steps. Two points are drawn every
100 time steps: the maximum and minimum roundness values r(c) observed among these 100 steps

Table 3 Data regarding the computations generating the graphics presented on Figs. 21 and 22.
Running times are given for the computation of identities (from Formula 1) and roundness measures

Tiling Size/iter. Tiles Identity
(seconds)

Roundness
(seconds)

Phase 2
begin step

Stabilization
step

Squaregrid 500 250000 825 1294 40413 70302

Triangulargrid 500 250000 1143 689 50163 69445

Hexagonalgrid 200 120601 271 405 13252 24968

P2 Sunsubst. 11 327750 2931 1850 42724 67326

P2 Starsubst. 11 234410 944 640 27337 41918

P3 Sunsubst. 10 266860 2227 1570 42067 62333

P3 cut& project 100 249610 3145 2386 39210 66495



136 J. Fersula et al.

P2 Sun substitution 11 iterations

steps

42724 67326

units

0

5

base

P2 Star substitution 11 iterations
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Fig. 22 Plots of the roundness during phase 2 of the stabilization process (m + e)◦ = m, on the
P2 Sun after 11 iterations of the substitution, P2 Star after 11 iterations of the substitution, P3 Sun
after 10 iterations of the substitution, P3 cut and project tiling of size 100. Grids have one row per
unit and one column per 1000 time steps. Two points are drawn every 100 time steps: the maximum
and minimum roundness values r(c) observed among these 100 steps

4.5 Analysis of Roundness Measures

Well, it appears clearly that the circular shapes observed during the stabilization
process (m + e)◦ = m are not asymptotically approaching perfect circles. Indeed,
in all experiments conducted on large tilings (Figs. 21 and 22), at the beginning of
phase 2 the roundness is above the base roundness, whereas the base roundness is
an upper bound on the best achievable roundness (see Sect. 4.2).
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Fig. 23 Maximum roundnessr(c)measured during phase 2 of the stabilization process (m + e)◦ =
m on square grids of various side lengths, illustrating the correlation between roundness and size

As the circular shapes shrink, it is normal to see the roundness decrease until the
value 0 on configuration m (all plots reach the minimum roundness 0 at stabilization
step). On the other hand, it appears that roundness and tiling size are correlated,
meaning that as the size of the tiling increases, configurations at the beginning of
phase 2 are less round. This is illustrated on Fig. 23.

Although they do not tend to perfect circles, we may admit that these shapes are
close to be, in regard of tiling sizes (Table3). Increases of roundness are visible to
the naked eye on hexagonal and triangular grids which deviate largely from a perfect
circle, but are hardly noticeable without measurements on other tilings. Figure24
illustrates this with the frontier between outer and inner tiles, on the configuration
obtained at the beginning of phase 2 during the experiments from Sect. 4.3 (since
these configurations are quite large, we picture only the frontier in order to reduce
the numerical weight of the present document). If they are not perfect circles, then
we may naturally ask: what characterize these frontier shapes for each tiling?

Finally, we see on Fig. 24 (first line) that the frontier on grids (respectively square,
triangular and hexagonal) reflect the shape on the border of the tilings, somehow
“rounded”. Indeed, it appears that the number of corners of the grids are equal to
the number of parts where the frontier deviates from a circle (the number of times it
goes from the inner radius to the outer radius). Theses symmetries are expected, they
come from the symmetry of the grids and therefore the symmetries of the dynamics.
A natural attempt would be to experiment the roundness of a square grid cropped
to a circle, in order to remove the effect of the border’s shape. Despite the fact that
the difference between the circumscribed and inscribed radius is smaller than the
base roundness, this does not lead to significantly smaller roundness measurements
(frontiers are not closer to perfect circles) during phase 2 of the stabilization process
(m + e)◦ = m, as shown on Fig. 25. It feels that the frontier reflects the anisotropy
of the square grid itself rather than that of its border’s shape.
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Fig. 24 Frontier between inner and outer tiles on the configuration obtained at the beginning of
phase 2, as the set of edges shared by one inner tile and one outer tile. Outer radius in blue, inner
radius in red. Top: square grid of side length 500 at step 40413 (r(c) ≈ 5.687), triangular grid
of side length 500 at step 50163 (r(c) ≈ 7.755), hexagonal grid of side length 200 at step 13252
(r(c) ≈ 14.470). Middle: P2 Sun after 11 iterations of the subsitution at step 42724 (r(c) ≈ 4.246),
P2 Star after 11 iterations of the subsitution at step 27337 (r(c) ≈ 4.064). Bottom: P3 Sun after 10
iterations of the subsitution at step 42067 (r(c) ≈ 3.220), P3 Sun cut and project tiling of size 100
at step 39210 (r(c) ≈ 2.452)
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Fig. 25 Left: maximum roundness r(c) measured during phase 2 of the stabilization process
(m + e)◦ = m on square grids cropped to circles of various radii. Right: frontier between inner and
outer tiles on the configuration obtained at the beginning of phase 2 (step 32131, r(c) ≈ 4.073) on
a square grid cropped to a circle of radius 250 (the border of the tiling is pictured in green)

5 Conclusions and Perspectives

The experiments presented in this article are reproducible with JS-Sandpile (links
in Preamble). The software implements no parallelization mechanism, which would
allow to perform larger simulations (e.g. using GPU). Nevertheless we believe that
this would not lead to qualitatively different observations.

Wehave presented some identity elements onPenrose tilings, revealing noobvious
structure related to these famous aperiodic tilings. Identities are highly sensitive to
the shape of the tiling, and it may be the case that other finite croppings of (infinite)
Penrose tilings lead to different observations. We tried to build the most “natural”
finite Penrose tilings: Suns and Stars obtained by substitution, along with cut and
project from a 5-dimensional hypercube.

The apparent isotropy, observed during the stabilization of the maximum stable
configuration plus the identity element of the sandpile group, has been measured
through the notion of roundness. Experiments revealed that these frontiers are actu-
ally not approaching perfect circles on any tiling under consideration. Two further
directions may be investigated. First, if these shapes are not perfect circles, then
how to characterize them on each tiling (especially on grids)? Second, which tilings
would lead to frontiers approaching perfect circles (if any)? The modest attempt to
crop a square grid to a circle fails, suggesting that this may not be easy to achieve on
tilings which are intrinsically anisotropic at the tile level.

Penrose tilings exhibit frontiers closer to perfect circles, though they also deviate
significantly from their best achievable roundness. It is not very surprising to observe
on Penrose tilings a behavior similar to regular lattices, as they are quasi-periodic, and
in some sense the “most regular” aperiodic tilings. Let us open the large perspective of
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Fig. 26 Identity element of the sandpile group on a square tiling constructed from a picture of Eric
Goles (original photo credit Claudiogonzalo85). Colors try to reflect his welcoming home country:
almost white = 0, light purple = 1, chilean red = 2, chilean blue = 3, and background (sink) in black

considering other tilings, for example tilings with higher quasi-periodicity functions
(above affine [4, 8, 12]6), Cayley graphs [53], or hyperbolic planes (e.g.with Poincaré
disk models).

Finally, could the stabilization process (m + e)◦ = m shed some light on the
enigmatic identity elements on grids? This is really out of reach for our present

6 The difficulty may be to find constructions from non Wang tiles, because Wang tiles would lead
to square grids for the sandpile model to play on (as we remove tile decorations).
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knowledge, but we hope that the recent progresses of Levine et al. [35–37, 44, 45]
are breaking some scientific locks in the domain of sandpiles.

Tribute This work has been prepared as a tribute to the contributions of Eric
Goles to the field of discrete dynamical systems, Fig. 26 is for him.
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On Boolean Automata Isolated Cycles
and Tangential Double-Cycles Dynamics

Jacques Demongeot, Tarek Melliti, Mathilde Noual, Damien Regnault,
and Sylvain Sené

Abstract Our daily social and political life is more and more impacted by social
networks. The functioning of our living bodies is deeply dependent on biological
regulation networks such as neural, genetic, and protein networks. And the physi-
cal world in which we evolve, is also structured by systems of interacting particles.
Interaction networks can be seen in all spheres of existence that concern us, and yet,
our understanding of interaction networks remains severely limited by our present
lack of both theoretical and applied insight into their clockworks. In the past, efforts
at understanding interaction networks have mostly been directed towards applica-
tions. This has happened at the expense of developing understanding of the generic
and fundamental aspects of interaction networks (properties and behaviours due
primarily to the fact that a system is an interaction network, as opposed to proper-
ties and behaviours rather due to the fact a system is a genetic interaction network
for instance). Intrinsic properties of interaction networks (e.g., the ways in which
they transmit information along entities, their ability to produce this or that kind of
global dynamical behaviour depending on local interactions) are thus still not well
understood. Lack of fundamental knowledge tends to limit the innovating power of
applications. Without more theoretical fundamental knowledge, applications cannot
evolve deeply and become more impacting. Hence, it is necessary to better appre-
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hend and comprehend the intrinsic properties of interaction networks, notably the
relations between their architecture and their dynamics and how they are affected by
and set in time. In this chapter, we use the elementarymathematical model of Boolean
automata networks as a formal archetype of interaction networks. We survey results
concerning the role of feedback cycles and the role of intersections between feedback
cycles, in shaping the asymptotic dynamical behaviours of interaction networks. We
pay special attention to the impact of the automata updating modes.

1 Introduction

Interaction networks occupy an important place in our daily life. We see this today
in particular with the massive use of social networks, the fundamental implications
and mechanisms of which we hardly have any understanding of. And social media
is just one example among many other kinds of interaction networks that affect us
consequentially. At all levels of our lives there are interaction networks, that can be
comprised as sets of entities that interact locally with each other over time.

In an interaction network, local interactions take place. And as a result of these,
the network as a whole exhibits global behaviours that generally remain difficult
to explain on the sole basis of local processes. Undeniably one of the most telling
examples lies at the origin of all living organisms: genes and their regulation, asso-
ciated with other mechanisms inducing variability (splicing, role of the chromatin,
etc.). It is currently accepted in biology and medicine, that a better understanding
of genetic regulation is a necessary condition for improving our knowledge of life,
which in turn could allow us to achieve a more precise comprehension of pathologic
mechanisms, and to access more targeted and thereby more efficient therapies.

Whilst the application aspects of interaction networks are obviously of real and
tangible importance, and they have progressed quantitatively at a frantic pace over
the last twenty years, the more fundamental aspects aiming at understanding and
analysing the intrinsic properties of these networks have so far received less atten-
tion from the scientific community. Current applications, in particular those emerging
in biology (the privileged domain of application of the present chapter), are awaiting
significant theoretical advances to continue their qualitative development. Undoubt-
edly, such theoretical advances may be the fruit of the combination of computer
science and discrete mathematics. Together with bioinformatics, viewed here as “the
study of computer processes in biotic systems” [29, 30], they seem particularly suited
to meet the needs arising from applications. Indeed, real networks, through the enti-
ties and interactions that compose them, can naturally be viewed as discrete objects.
They can easily be represented by computer models which capture their essence
thanks to a high level of abstraction. Where traditional (continuous) mathematical
modelling focuses mainly on the quantitative characteristics of networks, the inter-
est of discrete computer science modelling comes from the qualitative nature of the
questions that it raises, which makes it possible to realise that the central elements
of networks are not the entities themselves but rather the interactions that link them.
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This survey adopts the qualitative point of view of fundamental computer science
to examine some properties of interaction networks. This choice of approach is
consistent with the origins of modern computing. Indeed, investigations of formal
neural networks [41] and cellular automata [72] in the 1940s, both strongly inspired
by natural processes, helped establish the first links between data processing and
biology. Also, the pioneering work of McCulloch and Pitts introduced automata
networks as a fundamental model of interaction networks. For reasons discussed
later, we choose to rely on the same model here.

We thus here study automata networks, and more specifically Boolean automata
networks, from a fundamental point of view interested in developing a qualitative
understanding of networks. We focus on understanding how feedback cycles that are
parts of network architectures, come to influence the asymptotic dynamical prop-
erties of these networks. By way of methods from discrete dynamical systems the-
ory, enumerative combinatorics, algorithms and complexity theory, we explore the
behavioural diversity of cycles and their tangential intersections.

Another point of focus in this chapter is how updatingmodes influence the dynam-
ical behaviours of cycles and cycle intersections (and those of the networks composed
partly by them). From both the fundamental and the applied points of view, updating
modes are known to be of decisive importance in the shaping of a network behaviour.
Updating modes define the way in which the states of the automata of a network are
updated as a function of a discrete time. The time being unbounded towards the future,
there is an infinite number of different possible updating modes which we can come
with and update the automata of a network according to. We focus here on the two
modes that are the most customary in the literature: the parallel mode and the asyn-
chronousmode. The parallel mode is a deterministic and periodicmode. At each time
step, it updates the states of all the automata in a network. The asynchronous mode is
a non-deterministic mode. It allows for any possible series of sequential updates—
which update exactly one automaton per time step—to take place. We show how
the differences between these two updating modes imply profound differences in the
network dynamics.

This chapter is a synthesis of results about interaction cycles and variations of
interaction cycles derived since the early 2000s. The list of results presented here
is not exhaustive. Details and demonstrations of these results can be found in the
literature [16, 42, 47, 49, 63].

Wewill start with a presentation of the history of automata networks in the context
of modern fundamental computer science, including a mention of the links that this
science has always entertained with biology. Main definitions and notations will be
explained after that. Then, we will briefly present seminal results obtained in the
1980s that highlight the crucial importance of the role of feedback cycles on the
dynamical expressiveness and behavioural diversity of interaction networks. This
will lead us to focus on the dynamical and combinatorial properties of isolated
cycles when they are subjected to the parallel and asynchronous updating modes.
And finally, before concluding, we will take a step towards contextualising cycles
and look into tangential intersections of cycles, called “tangential double-cycles” for
short.
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2 Automata Networks: Between Fundamental Computer
Science and Biology

Automata network research is part of natural computation field in computer sci-
ence. And the scope of natural computation is twofold. First, it designs and develops
models of computations that draw inspiration from natural phenomenology. Sec-
ond, it manipulates such models so as to build up a firm, albeit necessarily incom-
plete, grasp of biological reality natural phenomena. As mentioned above, automata
networks were initially introduced as a theoretical model of neural networks. And
since the late 1960s, the literature evidences that they are also relevant as models of
genetic regulation networks. In this section, we provide a comprehensive overview
of the interconnections between computer science and biology manifested through
automata networks.

2.1 Biology as an Inspiration for Modern Computer Science

Generally, when we are interested in the history of the so-called modern computer
science, we go back to the 1930s. This period saw the development of classical com-
puting paradigms such as the recursive functions of Herbrand and Gödel, the main
works of which are available in [20], the lambda-calculus developed initially in [7],
and also the Turing machines [70]. However, to think of modern computer science
only in terms of these paradigms is to forget a whole family of less conventional mod-
els that have grounded many developments in computer science of relevance today.
This is the family of automata networks that we mainly owe to McCulloch and Pitts,
and von Neumann, whose first elements of the theory date from the 1940s. Based
on advances at the time, the original works [41, 72] highlight a desire to develop
the science of computation while inspiring and advancing the modelling of natural
biological phenomena. Thus, McCulloch and Pitts introduced the model of formal
neural networks which provides an abstraction of neural interactions. They showed
in particular that propositional logic can represent neural events and that these net-
works can be considered, to a certain extent, as a universal model of computation. A
little later, in the late 1940s, von Neumann developed cellular automata in order to
“compare natural and artificial automata” and “abstract the logical structure of life”.
The result of his work was the construction of the first self-reproducing and universal
cellular automaton.

Formal neural networks and cellular automata constitute the founding base of
the theory of automata networks, an automata network being defined “roughly” as a
set of entities (automata) which interact with each other. Their interactions happen
in a discrete time, according to transition functions which are local to the entities.
The two major differences that distinguish these two models relate to the number of
interacting entities and the nature of the network on which the entities are placed.
Indeed, cellular automata are defined by default as having an infinite number of
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entities (a.k.a. cells). And the entities are placed on a regular and homogeneous
network (in general Zd , with d > 0). Formal neural networks (also called threshold
Boolean automata networks) have a finite number of entities. And the entities are
placed on an irregular and heterogeneous network. These differences give to each of
these models its own characteristics that have enabled strong advances in computer
science.

By their infinite nature, cellular automata have been mainly studied for their
computability properties. Among them, we find the Turing universality of the self-
reproducing automaton [72], of theGameofLife ofConway [5] and of the elementary
cellular automaton 110 [8]. Also, in 1971, Smith showed that any Turing machine
could be simulated by a cellular automaton defined on Z [64]. In addition, cellular
automata proved to be good mathematical tools for studying the parallel functioning
of computers, of which they were at the origin of systolic architectures [39]. Finally,
within the framework of dynamical system theory, the desire to understand their
behavioural diversity was at the origin of studies of complexity [40, 73]. Formal
neural networks have also brought a lot of progress. In their original article, McCul-
loch and Pitts showed that they can simulate any Boolean function. Kleene resumed
this work. Based on their finite nature, he proved that the languages recognised by
these objects are regular, which also allowed him to introduce the concept of finite
automata [38]. Behavioural characterisation conditionswere also given and algebraic
methods were then developed within this framework [11, 18, 25, 31]. This last ref-
erence highlights in particular, strong links between these networks and the Boolean
model of genetic regulation networks introduced in [33, 34]. This latter model is at
the origin of numerous works emphasising the interest taken by computer science in
the context of research in theoretical biology.

2.2 Computer Science as a Methodological Source for
Biology

Understanding the mechanisms of biological regulation, in all their diversity, is one
of the major current problems in molecular biology. This was notably highlighted by
Jacob andMonod in the early 1960s, in particular in [32, 45]. However, from the end
of the 1960s, an observation was shared by two biologists, Kauffman (biochemist
and biophysicist) and Thomas (biochemist and geneticist). The usual methods of
treatment stemming from molecular biology are not adapted to treat as a whole such
a problem at the genetic level. According to them, the experimental nature of the
methods specific to biology at the time can only provide a piecemeal response to this
problem and needs to be supplemented by methodological approaches. On the basis
of Delbrück’s work, according to which there are links between differentiated cell
types and the attractors of theoretical network models [12], Kauffman and Thomas
proposed to use discrete mathematics to go beyond simple observational knowledge
of regulatory systems, advocating in a sense that biology must move towards more
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general and systematic approaches to living things. This resulted in two articles
which organise and federate a whole section of research at the frontier between
discrete mathematics and theoretical biology [33, 66].

Kauffman is thus the first to have proposed amodel of genetic regulatory networks,
based on formal neural networks. This model is known as Boolean networks. It is a
formalisation of regulation where genes are the vertices of a randomly constructed
graph. Genes interact over time (discrete). Their interactions are dictated by local
Boolean transition functions. They determine whether the genes can be expressed
or not, that is to say, transcribed or not [35]. Originally, this model is based on two
strong hypotheses: the interactions are based on an architecture of k-regular graphs,
namely graphs of which all the vertices have the same number of neighbours; the
evolution is perfectly synchronous (or parallel). Relaxations of these hypotheseswere
subsequently carried out [2, 19]. They gave rise to applications to biological problems
such as the analysis of the behaviour of the yeast regulatory network [36], and more
generally to the analysis of signalling networks [1, 28]. In 1973, Thomas opposed
the parallelism hypothesis and developed another method that sought to be closer to
“genetic reality” [66]. This method comes with two new ideas. The first proposes to
represent the causal dynamics of genetic regulations by means of an asynchronous
state transition system. The second idea is to represent the networks themselves by
digraphs whose arcs are signed according to the promoting or inhibiting nature of
interactions. In [67], Thomas introduces two fundamental conjectures, proven in
the discrete framework in [52, 53]. The first one (resp. The second one) states that
the presence of a positive cycle (resp. of a negative cycle), composed of an even
number (resp. an odd number) of inhibitory edges, in the architecture of the network
is necessary for dynamical multi-stationarity (resp. for the existence of an oscillating
limit regime). Beyond theoretical research, this method has been widely applied in
biology, such as for example to the immune response [37, 43, 62] or to the infection
of Escherichia coli by λ phage [27, 65, 69].

Although they were initiated by scientists from biology, these two visions empha-
sise the relevance of automata networks and thus bear the mark of computer science
and discrete mathematics. The contribution of mathematician F. Robert played a key
role. From the end of the 1960s he pioneered the study of automata networks from
a more fundamental and formal point of view. Indeed, Kauffman and Thomas made
“arbitrary” choices regarding theways of updating the automata over time.ButRobert
was interested in the updating modes as such and their influences on the network
behaviours. He formalised the concepts of block-sequential iterations and chaotic
iterations [55–59], which make it possible to obtain updating modes that are partly
synchronous and asynchronous. Thismakes perfect sense in theoretical biology since
there is no biological argument today to define the temporal organisation of genetic
regulations. In addition, the work carried out by Robert and his collaborators made it
possible to establish solid theoretical bases (simple and general) for the behavioural
study of automata networks [9, 21–23] while keeping in mind their representational
capacities for biology [10, 13, 15]. In this theoretical framework, Robert proved
the essential role played by cycles in defining the intrinsic behavioural properties of
networks: his theorem stipulates that any acyclic network has a trivial behaviour and
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admits to the temporal asymptote only a single point fixed. Again, Robert’s work
has found many applications in biology, including modelling the genetic control of
the flower development of Arabidopsis thaliana [14, 44, 61] and the study of ventral
invagination during gastrointestinal morphogenesis in Drosophila [4].

2.3 Boolean Automata Networks, A Simple but Complex
Model

From a general point of view, automata networks can be used to model any system
which satisfies the following three properties:

• It is made up of distinct entities that interact with each other;
• Each entity is characterised by a variable quantity, which precisely calls to be
translated in terms of states of the corresponding automaton in the model;

• The events undergone by the system, like the mechanisms that are at their origin,
cannot be observed directly or integrally with certainty. Only their consequences
are, that is, changes that are fully accomplished.

These three properties impose very few restrictions on the set of systems that can
be abstracted and thus modelled by automata networks. These theoretical objects
are therefore generic models of a very wide variety of real systems. It is therefore
quite easy to understand the reasons that pushed scientists to use them and to keep
studying them in the context of “fundamental bioinformatics”.

Let us return to entities’ characteristic “variable quantity” mentioned above.
Translating the quantity in terms of automata states, calls for a first exercise of
formalisation. This consists in choosing whether what interests us in the variation
of the quantity is of a Boolean, discrete or continuous nature. As an illustration,
let us take the example of genetic regulation and choose the action of a gene as a
variable quantity. If, in the action of this gene, what interests us is its expression
(and its non-expression), then the state of the automaton chosen to model the gene
should be Boolean. If it is the different ways that this gene has of acting on the other
elements of the system that interests us, then we can choose to match an automa-
ton state with each way. This induces a discrete formalism which can obviously
be encoded without loss in a Boolean formalism, since an automaton with k states
can be represented by log2(k) Boolean automata. Finally, if we measure the action
of the gene by means of the concentration of proteins it produces, continuous for-
malism turns out to be the most natural. On the other hand, it brings a quantitative
character. If this aspect is not desired, the tendency will then be to approximate the
protein concentration function at intervals in order to fall back into a discrete, even
Boolean framework by considering only extreme concentrations for example. We
can therefore grant different statuses to the Boolean context depending on whether
we see it as a direct modelling of reality or as an approximation or encoding of an
intrinsically continuous or discrete modelling. Note that direct Boolean modelling is
consistent with the choice to focus on the state changes of the automata rather than



152 J. Demongeot et al.

on their states themselves. By analogy to mechanics, if we see automata as internal
combustion engines, the interest relates to the fact that an engine is capable of going
from the “off” state to the “on” state (and vice versa) rather than the amount of elec-
tricity supplied by the battery to start or on that released by the candles to cause the
explosion and initiate the movement. Under this assumption, Boolean abstraction
is necessary and sufficient. Furthermore, in order to place ourselves in the context
of modelling in biology, it should be emphasised that the discourse of biologists is
generally imbued with syntactic elements of propositional logic. It is not uncommon
to hear sentences such as: “in the absence of the repressor α, the β gene is expressed”
or even “if the products of the α and β genes form a complex, the latter promotes
the expression of the γ gene while these genes tend to inhibit its expression when
they are in monomeric form”. This syntax also fits perfectly with a direct modelling
of reality in the Boolean formalism.

In addition, Boolean automata networks derive other interesting benefits from
their simplicity of definition. In particular, they provide a framework with clearly
defined contours, ideal for tackling fundamental problems around the modelling of
interacting entity systems. Given the variety of their nature and the current state of
our knowledge, the problems in question could not currently benefit from signifi-
cantly more elaborate frameworks. This would inevitably lead to delaying the initial
questions and to destructuring the problem posed by paying attention to additional
problems induced by the set of parameters to be considered and not intrinsically
included in the initial problem. For these issues, on the contrary, Boolean automata
networks offer only what is essential and facilitate the manipulation of a minimal
concept of causality, which is rooted in the notion of state changes. Their merit there-
fore lies in the reliability of the information they potentially provide, delivered by
their very high level of abstraction that also makes it possible to obtain general laws
that remain valid in more specific contexts. In other words, it is crucial to understand
that this simplicity of definition does not necessarily make them “simplistic”, and
does not detract from their ability to model complex phenomena that they allow to
analyse qualitatively with a surprising subtlety.

3 General Definitions and Notations

Informally, a Boolean automata network is comprised of abstract entities that interact
with each other. The abstract entities are called automata.Automata have stateswhich
can take one of two values: either 0 (inactive) or 1 (active). The states of automata
can change over the course of a discrete time. They change under the influence of the
states of other automata in the network. This section aims to present the formalism of
this model, giving the main definitions and useful notations in the rest of the chapter.
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Fig. 1 A Boolean automata
network of size 3: its
interaction graph (on the
left), the ordered set of its
local transition functions (on
the right)

3.1 Boolean Automata Networks

Let B = {0,1} and V = {0, . . . , n − 1} be a set of n Boolean automata such that
∀i ∈ V , xi ∈ B represents the state of automaton i . A configuration x of a Boolean
automata network f of size n assigns a value of B to each of the automata of V
and is classically noted as a vector x = (x0, . . . , xn−1) that is a vertex of the n-cube
B
n , or as a binary word x = x0 . . . xn−1. Formally, a Boolean automata network f

of size n whose set of automata is V is an ordered set of n Boolean functions, such
that f = ( fi : Bn → B | i ∈ V ). Given i ∈ V , fi is the local transition function of
automaton i . It predetermines its evolution from any configuration x : if i is updated
in configuration x at time t , it goes from state xi (t) to state fi (x(t)) = xi (t + 1).

Let s : B → 1l,with 1l = {−1, 1}, defined such that s(b) = b − (¬b), the function
allowing to convert a Boolean number into a signed integer in 1l. In this chapter, we
pay particular attention to the state changes of automata, which leads us to introduce
the following notations for all x in Bn:

∀i ∈ V, x̄ {i} = (x0, . . . , xi−1,¬xi , xi+1, . . . , xn−1).

∀W ⊆ V, ∀i /∈ W, x̄W∪{i} = xW
{i}
.

The sign of an interaction from i to j in configuration x is defined by signx (i, j) =
s(xi ) · ( f j (x) − f j (x̄ {i})). The effective interactions in x belong to E(x) = {(i, j) ∈
V × V | signx (i, j) �= 0}. From there, we define the interaction graph of f as being
the oriented graph G = (V, E), where E = ⋃

x∈Bn E(x) is the set of interactions. In
this chapter, the Boolean automata networks discussed (see Sect. 3.3) are special in
the sense that their interaction graphs are simple, namely that there can only be one
signed interaction (i, j) ∈ E . If it is signed positively (resp. negatively), we say that
it is activating (resp. inhibiting) and the state of j tends to mimic (resp. to oppose)
that of i . In the following, the interaction graphs will be signed for convenience of
reading (see Fig. 1).
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3.2 Updating Modes and Transition Graphs

In order to determine the possible behaviours of a Boolean automata network, it is
essential to specify the way according to which the states of the automata (or, abusing
language, the automata) are updated over time. This specification is what we call an
updating mode. The most general point of view is to consider all the possibilities.
This amounts to seeing the evolution of a network as a discrete dynamical system
associated with a relation so that, for each configuration, 2n − 1 outgoing transitions
are taken into account, namely a transition for each subset of automata whose states
can be updated. More precisely, for all W �= ∅ ⊆ V , we define the update function
FW : Bn → B

n such that:

∀x ∈ B
n,∀i ∈ V, FW (x)i =

{
fi (x) if i ∈ W ,

xi otherwise.

Thus, for the most general updating mode, called the elementary updating
mode, the global behaviour of the network is given by the elementary transition
graph Ge = (Bn, Te), where Te = {(x, FW (x)) | x ∈ B

n,W �= ∅ ⊆ V }, introduced in
[47, 63].

The transitions (x, Fi (x)) that involve updating a single automaton i ∈ V are
called asynchronous transitions. The transitions (x, FW (x)), with |W | > 1, that
induce the updating of several automata are called synchronous transitions. The
subgraph Ga = (Bn, Ta) of Ge whose set of arcs Ta = {(x, F{i}(x)) | x ∈ B

n, i ∈ V }
equals the set of asynchronous transitions of network is called the asynchronous
transition graph. This graph defines the asynchronous dynamics of the network that
corresponds to its dynamics when it evolves according to the asynchronous updating
mode, i.e. such that in each configuration, only n transitions are considered, one
for each automaton. This updating mode has been widely used in the studies of
Thomas and his collaborators [49, 50, 52–54, 67, 68]. As an illustration, the asyn-
chronous transition graph of the network depicted in Fig. 1 is presented in Fig. 2 (left).
However, because it is the most “natural” (mathematically speaking) when only the
local transition functions are known, and because it allows to give relevant insights
through transition graphs of smaller sizes, the parallel updatingmode occupies a very
important place in the literature on discrete dynamical systems in general. When a
network evolves in parallel, all of its automata update their states at each time step.
In other words, the parallel transition graph of a network is Gp = (Bn, Tp), where
Tp = {(x, FV (x)) | x ∈ B

n} is the subset of the perfectly synchronous transitions of
Te. The parallel transition graph of the network given in Fig. 1 is presented in Fig. 2
(right).

Let us now specify notations and vocabulary relative to dynamical behaviours of
networks. Consider an arbitrary Boolean automata network f of size n, an updat-
ing mode μ, the associated transition graph Gμ = (Bn, Tμ), and x ∈ B

n one of its
possible configurations. A trajectory of x is any path in Gμ that starts from x . A
strongly connected component of Gμ which does not admit any outgoing transition
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Fig. 2 Two transition graphs of the Boolean automata network defined in Fig. 1. Left panel: its
asynchronous transition graph where every → (resp. → and →) represents an update of automaton
0 (resp. 1 and 2). Right panel: its parallel transition graph. In each graph, stable configurations
(a.k.a. fixed points) are depicted in light gray while recurring configurations belonging to stable
oscillations (a.k.a. limit cycles) are depicted in dark gray

is an asymptotic behaviour of ( f, μ), that we classically designate as an attractor
of ( f, μ). A configuration of Bn that belongs to an attractor is a recurring configu-
ration. Given an attractor, its length is the number of recurring configurations that
compose it. An attractor of length 1 (resp. of length strictly greater than 1) is a stable
configuration, a.k.a. a fixed point (resp. a stable oscillation, a.k.a. a limit cycle) of
( f, μ). If μ is a deterministic updating mode, such as the parallel mode, attractors
are simple cycles and the term period is preferred to refer to their length. Finally, we
define the convergence time of a configuration x as the length of its shortest trajectory
which makes it reach a recurring configuration. The convergence time of the network
is the greatest convergence time of all its 2n configurations. In the transition graphs
presented in this chapter, by convention, we associate the light gray color with stable
configurations and the dark gray color with recurrent configurations belonging to sta-
ble oscillations. Thus, in Fig. 2, it can be seen that configuration 011 is stable for the
asynchronous and parallel updating modes. This is a direct consequence of the fact
that a stable configuration that is a fixed point of f (implicitly evolving in parallel)
is preserved by every updating mode since it corresponds to the vector of the local
fixed points of the local transition functions. We also observe that the asynchronous
transition graph admits a stable oscillation of size 4 while the parallel update mode
admits a stable oscillation of size 3. This illustrates that stable oscillations are gener-
ally not conserved when the updating mode is changed. This is a current important
field of study in the context of interaction networks and Boolean automata networks.
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3.3 Isolated Cycles and Tangential Cycles

As mentioned in the introduction, we focus in this chapter on two sorts of Boolean
automata networks, namely,Boolean automata cycles andBoolean automata double-
cycles. The first are networks whose interaction graphs are cycles. The second are
networks whose interaction graphs are two cycles that intersect tangentially. The
founding results that lead us to develop ever more research on these interaction
patterns are presented in the following section.

A Boolean automata cycle Cn is a Boolean automata network of size n whose
interaction graph G = (V, E) is a cycle, in the sense of graph theory. V is naturally
assimilated toZ/nZ, so that considering two automata i and j of V , i + j represents
i + j mod n. Thus, a Boolean automata cycleCn is defined as an ordered set of local
transition functions of arity 1 that are such that: ∀i ∈ V, fi : Bn → B, and either
fi (x) = xi−1 or fi (x) = ¬xi−1. Note that there are two types of Boolean automata
cycle, positive and negative. A Boolean automata cycle is a positive cycle C + (resp.
a negative cycle C −) if it is composed of an even number (resp. of an odd number)
of inhibiting interactions.

ABoolean automata double-cycleDn , with n = � + r − 1, is a Boolean automata
network of size n composed of two Boolean automata cycles C� and Cr which
tangentially intersect in one automaton, automaton 0. In the following, for reasons
of clarity, we prefer the notation D�,r . The set of automata of cycle C� is VL =
Z/�Z = {0, ..., � − 1} and that of cycleCr is VR = 0 ∪ {� − 1 + i | i �= 0 ∈ Z/rZ}.
In a Boolean automata double-cycle, by definition, all the local transition functions
are of arity 1 except that of automaton 0 that is of arity 2. In this work, we only
consider locally monotonous Boolean automata double-cycle, which induces that
function f0 is defined as f0(x) = f L0 (x) 	 f R0 (x) = x�−1 	 xn−1, where	 ∈ {∧,∨}.
Note that the choice of operator 	 only changes the position of the configurations
on the trajectories. In other words, whatever the chosen updating mode, given two
Boolean automata double-cycle D�,r and D ′

�,r such that f0(x) = f�−1(x) ∧ fn−1(x)
and f ′

0(x) = f ′
�−1(x) ∨ f ′

n−1(x), their respective transition graphs are identical up to
an isomorphism on the configurations. In addition, it is trivial to determine one from
the other, replacing the configurations with their opposites. Consequently, in the rest
of this chapter, to insist on this property,wewill usewithout loss of generality f0(x) =
fl−1(x) ∨ fn−1(x) (resp. f0(x) = f�−1(x) ∧ fn−1(x)) for Boolean automata double-
cycles evolving according to the parallel (resp. asynchronous) updating mode. Since
they are made up of two Boolean automata cycles, it is easy to see that there are
three distinct types of Boolean automata double-cycles. A positive Boolean automata
double-cycle is composed of two positive Boolean automata cycles and is denoted
by D+,+

�,r ; a negative Boolean automata double-cycle is composed of two negative
Boolean automata cycles and is denoted byD−,−

�,r ; amixedBoolean automata double-
cycle is composed of a negative Boolean automata cycle C − tangentially intersected
with a positive Boolean automata cycle C +, and is denoted by D−,+

�,r .
Finally, in [47, 63], the authors have shown that theBoolean automata cycles admit

canonical representatives, andBoolean automata double-cycles too by induction. The
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Fig. 3 The three canonical Boolean automata double-cycles of size n = � + r − 1: the positive
one (on the left), the mixed one (on the center), and the negative one (on the right)

studies presented in the sequel focus on these canonical representatives only. Indeed,
canonicity means that two distinct Boolean automata cycles or Boolean automata
double-cycles of same sign and same size that evolve following the same updating
mode admit the same transition graph up to an isomorphism on the configurations.
A positive Boolean automata cycle is said to be canonical when its interaction graph
contains only activating interactions. A negative Boolean automata cycle is canonical
when its interaction graph admits a single inhibiting interaction, represented by the
arc (n − 1, 0) ∈ E . The canonical Boolean automata double-cycles are the canonical
Boolean automata cycle compositions, depicted in Fig. 3.

4 Seminal Results on Cycles

The works of Robert [57] and Thomas [67] have highlighted three fundamental
results that explain the primordial role that cycles play in the behavioural diversity
of interaction networks.

Theorem 1 ([57–59]) Let f : Bn → B
n be a Boolean automata network of size n

and G its associated interaction graph. If G is an acyclic graph, then:

1. f has a unique attractor that is a stable configuration, let us say x.
2. Gp has a path of length at most n from every configuration y to x.
3. Ga is acyclic and has a a geodesic path from every configuration y to x.

This theorem is particularly interesting for two reasons. First, it is easy to extend
it to any kind of multi-valued automata networks g : ∏n

i=1 Xi → ∏n
i=1 Xi , where Xi
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denotes the set of possible states of automaton i , and to any kind of updating mode
such that every automaton is updated an infinite number of times over the course of
time (let us call such an updating mode a fair updating mode). Indeed, the general
idea of the proof rests on an induction on the depths of the automata of the acyclic
interaction graph that admits source automata. Source automata are automata that are
governed by constant local transition functions. They inevitably become forever fixed
once they are updated for the first time. In an acyclic network, the fixity of source
automata propagates. The states of all the other automata progressively become
fixed too as a result. The theorem emphasizes that cycles are necessary conditions
for interaction networks to admit complex dynamics.

Theorem 2 ([50, 53, 67]) Let g : ∏n
i=1 Xi → ∏n

i=1 Xi be an automata network
and G its associated interaction graph. Under the asynchronous updating mode, the
presence of a positive cycle in G is necessary for the dynamics of g to admit several
stable configurations.

This second theorem sheds light on the role of positive cycles on the ability of
interaction networks to stabilise in several ways. Although it was originally stated
and demonstrated under the asynchronous updating mode hypothesis, this result has
been shown to hold for any fair updatingmode [47, 63]. The general proof starts from
the result of [53] and is made by contradiction under the assumption of the absence
of a positive cycle. In this case, either the interaction graph is acyclic and Theorem 1
applies, or it has at least one negative cycle and it is shown that such cycles, whatever
the updating mode, cannot remove the local instabilities on all automata.

Theorem 3 ([52, 67]) Let g : ∏n
i=1 Xi → ∏n

i=1 Xi be an automata network and
G its associated interaction graph. Under the asynchronous updating mode, the
presence of a negative cycle is necessary for the dynamics of g to admit a stable
oscillation.

As for this third theorem, it turns out not to be general for all updating modes.
To be convinced, it suffices to compute the parallel transition graph of an arbitrary
positive Boolean automata cycle of size greater than 2 and to note that it admits at
least one stable oscillation. Despite this lack of generality, it should be noted that this
theorem underlines the singular role of negative cycles in connectionwith asymptotic
dynamic oscillations, as will be explained below.

Taken together, these three theorems, of which we can say that two of them are
laws insofar as their generality makes them sorts of meta-theorems of interaction
network theory, emphasise that the feedback cycles are the causes of the dynami-
cal complexity of networks. In other words, they effectively constitute the sources
of the behavioural diversity of networks and consequently of the computational
expressiveness of networks. This naturally brings us to the following parts of this
chapter, about major results concerning the dynamical and combinatorial properties
of Boolean automata cycles and Boolean automata double-cycles. The results are
illustrated with examples. As discussed above, Robert’s result highlighted feedback
cycles as kinds of complexity engines. Then, Thomas’ results put forward the neces-
sity to distinguish feedback cycles depending on their (positive or negative) nature
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to understand their influence. The results presented below about Boolean automata
double-cycles are a first step further, towards understanding how cycle combinations
operate and what their effects are.

5 Boolean Automata Cycle Dynamics

In this section, we focus on Boolean automata cycles. In a first part, we present in
Theorem 4 the main results related to the dynamics of isolated Boolean automata
cycles when the latter evolve according to the parallel updating mode. This theorem
requires some preliminary definitions and notations of number theory such as the
Dirichlet convolution, the Möbius function and the Euler’s totient function. In a
second part, we present the results related to isolated Boolean automata cycles when
the latter evolve according to the asynchronous updating mode.

5.1 Parallel Boolean Automata Cycles

The first elements on the dynamics of Boolean automata cycles evolving according
to the parallel updating mode were introduced in [49]. The full characterisation of
their dynamics had to wait until [16]. This characterisation could be obtained thanks
to an approach combining discrete dynamical systems theory, enumerative and word
combinatorics, particularly appropriate to the nature of the mathematical objects in
question.

5.1.1 Definitions and Notations of Pertinent Quantities

To describe the results obtained, we give below definitions and notations. First, given
an attractor of (minimal) period p, we says that all the multiples of p are also periods
of this attractor. So if x ∈ B

n is a recurring configuration of an attractor of period
p, then p is the period of x and of any other configuration y such that there exists
t ∈ N such that y = Ft

V (x). We denote by X (p) = {x ∈ B
n | x = F p

V (x)} the set
of recurring configurations of period p and by X (p) = |X (p)| their number. We
define the smallest integer ω that is a period common to all recurring configurations
as the order of the Boolean automata cycle, which is said to be reached when there
exists an attractor of minimum period ω.

Let us consider the function one : n ∈ N → 1 as well as theDirichlet convolution,
denoted by ☆ [3]. Given two functions f and g, ☆ is the binary operator defined
such that f ☆ g : n ∈ N

∗ → ∑
p|n f (p) · g(n/p). The set of the arithmetic functions

with point-to-point addition and Dirichlet convolution is a commutative ring. The
identity by the multiplication of this ring is the function δ : N∗ → N

∗, defined by
δ(1) = 1 and for all n > 1, δ(n) = 0. The inverse of the function one for the Dirichlet
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convolution is the Möbius function μ, defined as:

μ : n ∈ N
∗ →

⎧
⎪⎨

⎪⎩

0 if n is not square-free,

1 if n > 0 has an even number of prime factors,

−1 if n > 0 has an odd number of prime factors.

If n = ∏k
i=0 pi , where the pi s are the distinct prime numbers taken in increasing

order, then μ(n) = (−1)k . In our context, this function is of interest through the
Möbius inversion formula that is obtained from one☆ μ = δ, that is satisfied by all
the functions f and g, and that is such that: g = f ☆ one =⇒ f = g ☆ μ. In other
words, we have:

∀n ∈ N
∗, g(n) =

∑

p|n
f (p) =⇒ f (n) =

∑

p|n
g(p) · μ(n/p).

Another particularly useful function in the sequel is the Euler’s totient function,
denoted by φ. Given an integer n ∈ N

∗, it associates the number of strictly positive
integers less than or equal to n that are primewith n, such as: φ(n) = |{m ∈ N

∗ |m ≤
n andm is prime with n}|. Note that there is a relationship between theMöbius func-
tion and the Euler’s totient function. Indeed, as φ satisfies ∀n ∈ N

∗, n = φ☆one(n),
it respects φ = μ☆ id, where id : n ∈ N

∗ → n.
In terms of combinatorics, the asymptotic behaviour of an interaction network can

be described by means of four quantities [48] related to each other and given below.
Consider that p is a divisor of the order ω of the Boolean automata cycle studied and
the function inv : n ∈ N

∗ → 1/n. Then we have the following quantities:

• The number X(p) of configurations of period p is X = X̃☆ one;
• The number X̃(p) of configurations of minimal period p is X̃ = X☆ μ;
• The number A(p) = X̃(p)/p of attractors of period p is A = inv(X☆ μ);
• The total number T(ω) of attractors is T = A☆ one = inv(X☆ φ).

The last two quantities correspond to well known formulas in the context of Lyndon
words and binary necklaces [6, 26, 60]: a Lyndon word w being such that w < v

for all nonempty words v such that w = uv and u is nonempty; a binary necklace
w of length n being a circular binary word such that for all i in Z, wi = wi mod n.
In particular, the penultimate defining A corresponds to the Witt formula counting
the number of Lyndon words; the last one defining T corresponds to the Burnside’s
orbit-counting lemma. Note that the last formula is satisfied because inv distributes
over ☆. Finally, note that it suffices to calculate X to obtain the others.

5.1.2 Results

The qualitative characterisation of the dynamics of Boolean automata cycles can be
summarised by the following theorem that presents in the form of a table the set of
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Fig. 4 Left panel: the parallel transition graph of positive canonical Boolean automata cycle C+
3 .

Right panel: the parallel transition graph of negative canonical Boolean automata cycle C−
3

all the quantities presented above. For reasons of space, the details and the demon-
strations related to these results are not presented here. The reader can nevertheless
find all the details in [16, 47, 63].

Theorem 4 ([16]) The order ω, the numbers X(p) and X̃(p) of configurations
of (minimal) period p, where X(ω) is the total number of recurring configura-
tions, as well as the number A(p) of attractors of period p and the total num-
ber T(ω) of attractors of positive and negative Boolean automata cycles are:

Positive cycles
C +
n

Negative cycles
C −
n

ω = n ω = 2n

X+(p) = 2p X−
n (p) = ¬(p|n) · 2 p

2

X̃+
(p) = ∑

d|p
μ

( p
d

) · 2d

= OEIS A27375(p)

X̃−
n (p) = ∑

k|p odd
μ(k) · 2 p

2k

A+(p) = X̃+
(p)
p

= OEIS A1037(p)

A−
n (p) = X̃−

n (p)
p

= OEIS A48(
p
2 )

T+(ω) = 1
n

∑

d|n
e
(
n
d

) · 2d

= OEIS A31(n)

T−(ω) = 1
2n

∑

k|2n odd
e(k) · 2 n

2k

= OEIS A16(n)

,

where ¬(p|n) is 0 if p divides n and 1 otherwise.

Among the particularly interesting properties of a parallel Boolean automata cycle
that emerge from this theorem, it should be noted that all of its configurations are
recurring, as illustrated in Fig. 4, and that the total number of attractors, for a given
period or not, is exponential according to its size n. Moreover, as a corollary, for
the two types of cycles, the order is reached, and positive cycles admit two stable
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configurations x and x̄ V (where x is the configuration in which all the automata are
at state 0 for canonical Boolean automata cycles). Finally, another important point is
that this combinatorial study induces the complete characterisation of the structure
of the parallel transition graphs of both positive and negative cycles.

It is also interesting to notice that these results go beyond the parallel updating
mode and extend to the block-sequential updating modes. Block-sequential updating
modes were introduced by Robert [55]. They are deterministic periodic updating
modes defined by ordered partitions of V . Given a period p, such an updating mode
can be defined by a functionμ : V → N/pN. Indeed, in [24], the authors showed that
the dynamics of a Boolean automata cycle of size n and sign s ∈ {+,−} evolving
according to a block-sequential updating mode is in essence equivalent to that of
a Boolean automata cycle of smaller size and same sign evolving in parallel. The
proof rests on substitutions of local transition functions according to their execution
over time. Hence, to understand the dynamics of a Boolean automata cycle evolving
according to a block-sequential updating mode is a matter of understanding the
dynamics in parallel of a smaller Boolean automata cycle.

5.2 Asynchronous Boolean Automata Cycles

In combinatorial terms, the dynamics of asynchronous Boolean automata cycles are
much simpler than that of parallel Boolean automata cycles. It is in [49] that we find
the first characterisation of the attractors of asynchronous Boolean automata cycles.
The general idea of these results is based on the concept of instability. In a given
configuration of the network, an automaton is said to be unstable if the application
of its local transition function would then make its state change. A configuration is
unstablewhen it has at least one unstable automaton. In particular, the authors showed
that asynchronism makes it possible to reduce the number of instabilities, until there
are none (resp. only one) left in the case of positive (resp. negative) Boolean automata
cycles. This property implies the existence of at least one stable configuration in the
positive case. In the negative case, it implies the absence of stable configurations
and thereby the existence of at least one stable oscillation. Theorem 5 derives almost
directly from this work. It is illustrated by Fig. 5.

Theorem 5 ([49]) A positive Boolean automata cycle C +
n has two attractors which

are two stable configurations x and x̄V . A negative cycle C −
n has a single attractor

of length 2n.

It is easy to see that the results stated in this theorem are strongly related to those
of Theorem 4. Indeed, first, the two stable configurations of asynchronous positive
cycles are identical to those of these same cycles in parallel. And second, the unique
stable oscillation of length 2n of a negative cycle C −

n under the asynchronous mode
is identical to that of period ω of parallel negative cycles. The two configurations x
and x̄ V which are stable configurations in the case of positive cycles, belong to the
stable oscillations in the case of negative cycles.
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Fig. 5 Left panel: asynchronous transition graph of positive canonical Boolean automata cycle
C+
3 . Right panel: asynchronous transition graph of negative canonical Boolean automata cycle C−

3 .
In both graphs, every → (resp. → and →) represents an update of automaton 0 (resp. 1 and 2)

Finally, notice that this approach based on instabilities has been generalised in
[47, 63] to show the validity of Theorem 2 regardless of the updating mode (see
Sect. 4).

6 Boolean Automata Double-Cycle Dynamics

Now that the structural and combinatorial properties of the parallel and asynchronous
transition graphs of the Boolean automata cycles are established, we present in this
section those related to Boolean automata double-cycles.

6.1 Parallel Boolean Automata Double-Cycles

In this section, we focus on Boolean automata double-cycles evolving according to
the parallel updating. The method used to obtain the results presented follows the
lines of method used for Boolean automata cycles.

6.1.1 Definitions and Notations

Besides the four quantities X(p), X̃(p), A(p) and T(ω) that we are going to use,
we introduce here other definitions and notations to characterise the dynamics of
Boolean automata double-cycles that are Boolean automata cycles tangentially inter-
connected. In this sense, given any Boolean automata double-cycle D s

�,r , where
s ∈ {(+,+), (−,+), (−,−)}, two quantities defined by means of � and r will be
particularly useful, 
 = gcd(�, r) and 
p = gcd(
, p).



164 J. Demongeot et al.

Moreover, the results call on combinatorics on words. So we introduce the Lucas’
and Perrin’s sequences. These sequences will allow us to count the number of recur-
ring configurations. The Lucas’ sequence (L(n))n∈N∗ (OEIS A204) is defined by
L(1) = 1, L(2) = 3 and for all n > 2, L(n) = L(n − 1) + L(n − 2), and counts the
number of binary necklaces of size n without the factor 00. The Perrin’s sequence
(P(n))n∈N (OEIS A1608) is defined by P(0) = 3, P(1) = 0, P(2) = 2 and for all
n > 2, P(n) = P(n − 2) + P(n − 3), and counts the number of binary necklaces of
size n without the factors 00 and 111.

6.1.2 Results

On the basis of the previous definitions and notations, Theorem 6 below gives
the qualitative characterisation of the dynamics of the different types of Boolean
automata double-cycles. Itwill be illustratedon six distinctBoolean automata double-
cycles depicted in Fig. 6. The details of the proofs can be found in [46, 47, 63].

Fig. 6 Top panel: Interaction graphs of two positive canonical Boolean automata double-cycles.
Middle panel: Interaction graphs of two mixed canonical Boolean automata double-cycles. Bottom
panel: Interaction graphs of two negative canonical Boolean automata double-cycles. These six
networks will serve as examples in the sequel

Theorem 6 ([46]) The order ω, the numbers X(p) and X̃(p) of configurations of
(minimal) period p, where X(ω) represents the total number of recurring configura-
tions, as well as the number A(p) of asymptotic behaviours of period p, and the total
number T(ω) asymptotic behaviours of the positive, mixed and negative Boolean
automata double-cycles are:
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Positive
double-cycles

D+,+
�,r

Mixed
double-cycles

D−,+
�,r

Negative
double-cycles

D−,−
�,r

ω = 
 ω = r

{
�+r
2 if �+r



= 4

� + r sinon

X+(p) X−,+
� (p) = ¬(p|�) · L(

p

p

)
p X−,−

 (p) = ¬(p|
) · P(

p

p

)
p

X̃+
(p)

X̃−,+
� (p) = ∑

d|p
¬(d|�)

μ
( p
d

) · L( d

d

)
d X̃−,−

 (p) = ∑

d|p
¬(d|
)

μ
( p
d

) · P( d

d

)
d

A+(p) A−,+
� (p) = X̃−,+

� (p)
p A−,−


 (p) = X̃−,−

 (p)
p

T+(ω)
T−,+

� (ω) = 1
r

∑

d|r
¬(d|�)

e
(
r
d

) · L( d

d

)
d T−,−

 (ω) = 1

n

∑

d|n
¬(d|
)

e
(
n
d

) · P( d

d

)
d

,

where ¬(p|m) equals 0 if p divides m and 1 otherwise.

Among other things (see Fig. 6), it emerges from these results that (i) positive
Boolean automata double-cycles have two stable configurations x and x̄ V (with
x = (0, . . . ,0)when they are canonical) and that they have an asymptotic behaviour
similar to positive Boolean automata cycles of the same order, (ii) mixed Boolean
automata double-cycles have a single stable configuration, and (iii) negative Boolean
automata double-cycles have no stable configurations (Fig. 7).

Also, we remark that, unlike Boolean automata cycles, the order of Boolean
automata double-cycles is not necessarily reached. Finally, this theorem highlights
again that, like Boolean automata cycles, Boolean automata double-cycles admit
an exponential number of attractors according to their size. However, despite its
exponential nature, the number of Boolean automata double-cycle attractors is sig-
nificantly smaller than that of Boolean automata cycles. In other words, the intersec-
tions of cycles seem to participate strongly in the reduction of asymptotic degrees
of freedom of interaction networks. Based on this idea, studies have been conducted
to compare T+(n) and T−(2n) of Boolean automata cycles with quantities T+(
),
T−,+

� (r) and T−,−

 (� + r) of Boolean automata double-cycles.

Consider a network f of order ω, so that f = C s
n or f = D s,s ′

�,r , where s, s ′ ∈
{+,−}. Let p be a divisor of ω. Also note Q ∈ {X, X̃,A,T} one of the four quantities
analysed. It has been demonstrated in [47, 63] that Q+,+

�,r (p) = Q+(p), X−,+
�,r (p) ≤

X+(p), X−,−
�,r (p) ≤ X+(p) and Qs,s

�,�(p) = Qs
�(p).

However, the number of recurring configurations of a Boolean automata double-
cycle,Xs,s

�,r (p) has been boundedmore finely as a function ofX+
n (p) andX−

n (p), based
on the previous results aswell as on the relation of the Lucas sequencewith the golden
ratio [51], denoted by� = (1 + √

5)/2 (root of x2 − x − 1 = 0) and that of the Perrin

sequence with the plastic number [71], denoted by ξ = 3

√
1
2 + 1

6

√
23
3 + 3

√
1
2 − 1

6

√
23
3

(root of x3 − x − 1 = 0). The bounds found led to Theorem 7 that concludes this
part by highlighting that a vast majority of recurring configurations have the greatest
minimum period possible.
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Fig. 7 Parallel transition graphs of the canonical Boolean automata double-cycles depicted in
Fig. 6, where 	 = ∨



On Boolean Automata Isolated Cycles and Tangential Double-Cycles Dynamics 167

Theorem 7 ([47])Let f be aBoolean automata network of orderω. If f is aBoolean
automata cycle or a Boolean automata double-cycle such as f is neither D−,−

5,1 nor
D−,−

1,5 , then its total number of attractors T(ω) is bounded by its total number of
recurring configurations X(ω) so that:

X(ω)

ω
≤ T(ω) ≤ 2 · X(ω)

ω
,

which means that the attractor periods of f are very large:

∑

p|ω
p · A(p)

T(ω)
= X(ω)

T(ω)
≥ ω

2
.

To end this section dedicated to parallel Boolean automata double-cycles, notice
that all the results presented here extend naturally to any tangential double-cycles,
namely two cycles that admit several automata in common such that these common
automata are organised into an isolatedpath so that eachof themhave a local transition
function of arity 1 except the first one for which the arity is 2. The proof is simple and
rests on an induction consisting in transforming each tangential automaton whose
local transition function arity is 1 (by following the isolated path in reverse direction)
into two copies, one in the left cycle and one in the right cycle. Following this
reasoning, it is easy to see that such a tangential double-cycle is equivalent to a
Boolean automata double-cycle whose cycles are of bigger sizes and same signs.

Moreover, notice that both Boolean automata cycles and Boolean automata
double-cycles admit an exponential number of attractors. This is quite unrealistic
if we view these objects as models of genetic regulation networks. Indeed, “real”
genetic regulation networks seem to have a number of asymptotic behaviours (cellu-
lar types, biological rhythms…) that is polynomial (perhaps linear) according to the
number of their genes. Nevertheless, it is important to see that the results obtained
show that the number of attractors of Boolean automata double-cycles is drastically
smaller than that of Boolean automata cycles. Actually, we think that the polynomial
characteristics of the number of attractors of real regulation systems comes from the
entanglement of cycles. More precisely, without formalising it, we conjecture that
the more there are entangled cycles, the less there are local and global instabilities,
the less there are attractors (simply because adding intersections adds dynamical
constraints), and thus the less automata networks are sensitive to synchronism.

6.2 Asynchronous Boolean Automata Double-Cycles

The last part of this synthesis is devoted to the dynamics of asynchronous Boolean
automata double-cycles. It presents the characterisation established in [42]. It is
the counterpart of the study of the dynamics of Boolean automata double-cycles
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under the parallel updating mode. The study of the asynchronous case takes a new
approach. It formalises long sequences of updates byway of algorithmic descriptions.
This approach allows an elegant and more detailed description of the dynamics of
feedbacks in interaction networks than the previous works. In particular it facilitates
the study of convergence times.

6.2.1 Definitions and Notations

For the sake of clarity, let us first recall that the study surveyed here focuses on
canonical Boolean automata double-cycles.

States and configurations
Here, we will use the classical notation V = {0, . . . , n − 1} for representing the
automata of a network of size n and its congruence V ≡ {c = c0, c1, . . . , cn−1}. A
configuration x ∈ B

n is seen as a vector of two binary words. The first symbol of
these two words represents xc ≡ x0. The null configuration is therefore denoted by
(0�,0r ). Furthermore, we denote by x� (resp. xr ) the projection of x on the Boolean
automata cycleC� (resp.Cr ). This way, x = (x�, xr ), and in configuration x , the state
of automaton c�

i is x
�
i . Notice that x0 = x�

0 = xr0 since the three notations represent
the state of automaton c in x .

Expressiveness measure
Let x be a configuration of a Boolean automata cycle Cn . Its expressiveness
is the number of factors 01 that compose it, namely |{i | 0 ≤ i ≤ n − 1, xi =
0 and xi+1 mod n = 1}|. The expressiveness of a configuration x of a
Boolean automata double-cycle is the sum of the expressiveness of x� and xr . From
this definition follows that, if � and r are even, the least expressive configurations
are (0�,0r ) and (1�,1r ), and that the most expressive ones are ((01)

�
2 , (01)

r
2 ) and

((10)
�
2 , (10)

r
2 ).

Elementary instructions
Network trajectories can be very long. To study them, we need a way to efficiently
describe the sequence of automata updates that they execute. Our human minds must
be able to understand from the description, what is the effect of the trajectory on the
network, what changes does the network undergo along the trajectory. To do so, we
proposed to view these sequences as instructions that make it easier to capture their
effect on configurations. Let us therefore consider:

• a Boolean automata double-cycle Dn ,
• one of theBoolean automata cycles ofDn , namelyC , whose size is noted size(C ),
• the current configuration x of C , and,
• two automata of C distinct from c, namely ci and c j , such that i < j .

With these notations, the following seven basic instructions are defined:

1. /* update of automaton c */
sync: xc ← fc(x)
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• Instruction sync is the only instruction that updates automaton c and where both Boolean
automata cycles interact with each other. This (key)-instruction will always be called when c
can change its state. This instruction can be used either to set c at a desired state or to increase
the expressiveness from a configuration. Furthermore, it is the only way to switch a 111
(resp. 000) pattern into a 101 (resp. 010) pattern and, thus, to increase the expressiveness.

2. /* update of automaton ci */
update(ci ): xci ← fci (x)

Instruction update updates an automaton distinct from c.

3. /* incremental updates */
incUp(C , i, j): for k = i upto j do update(ck)

Instruction incUp updates consecutive automata in increasing order. In fact, incUp propa-
gates the state of ci−1 along C . Notice that if j < i then no automata are updated. Moreover,
since i �= 0 and j �= 0, c cannot be updated with incUp. This instruction admits the fol-
lowing property. Let x ′ be the result of the execution of incUp(C , i, j) on configuration x .
Then ∀k ∈ {i, . . . , j}, x ′

k = xi−1 and ∀k /∈ {i, . . . , j}, x ′
k = xk .

4. /* incremental propagation of xc */
erase(C ): incUp(C , 1,size(C ) − 1)

Instruction erase is a particular case of incUp. It propagates the state of c0 along C . As a
consequence, usingerase onC decreases its expressiveness to 0, and thus, is really efficient
to reach quickly the least expressive configuration. This instruction admits the following
property. Let x ′ be the result of applying erase(C ) on configuration x . Then we have:
∀k ∈ {0, . . . ,size(C ) − 1}, x ′

k = x0.

5. /* incremental propagation of xc with no loss of expressive
-ness */
expand(C ): incUp(C , 1, κ − 1 ∈ N)

where κ = min
1≤k≤size(C −1)

{

k |
{

(xk = 0) and (xk+1 mod size(C ) = 1) if xc = 1

(xk = 1) and (xk+1 mod size(C ) = 0) if xc = 0

}

.

Instruction expand is another particular case of incUp that aims at propagating the state
of c0 along C while neither 01 nor 10 patterns are destroyed, which avoids decreasing the
expressiveness of C .

6. /* decremental updates */
decUp(C , i, j): for k = j downto i do update(ck)

InstructiondecUp is the converse of instructionincUp, and updates consecutive automata in
decreasing order. OncedecUp(C , i, j) executed, the information of c j is lost and that of ci−1
is possessed by both ci−1 and ci . In fact, decUp aims at shifting partially a Boolean automata
cycle section. As for incUp, if j < i then no automata are updated and c cannot be updated
with decUp. This instruction admits the following property. Let x ′ the result of the execution
of decUp(C , i, j) on x . Then ∀k ∈ {i, . . . , j}, x ′

k = xk−1 and ∀k /∈ {i, . . . , j}, x ′
k = xk .

7. /* complete decremental update (except c) */
shift(C ): decUp(C , 1,size(C ) − 1)

Instructionshift is a particular case of instructiondecUp. Once executed, every automaton
of C takes the state of its predecessor, except c whose state does not change. Automaton
csize(C )−1 excluded, all the information contained along C is kept safe. This instruction
is useful to propagate information along a Boolean automata cycle without loosing too much
expressiveness (at most one 01 pattern is destroyed).



170 J. Demongeot et al.

Table 1 The update sequences copy_c, copy and copy_p

copy_c(x, x ′,Cm)

01. η ← size(Cm);

02. if (xmη−1 = xmη−2 and xmη−1 �= x ′m
η−1) then

03. j ← max{k | k < η − 1 and xmk �= x ′m
k };

04. else

05. j ← η;

06. fi

07. for (k = η − 1) downto ( j + 1) do

08. update(cmk−1);

09. update(cmk );

10. od

11. for (k = j − 1) downto (1) do

12. if (xmk �= x ′m
k ) then

13. update(cmk );

14. fi

15. od

copy(x, x ′)

01. copy_c(x, x ′,C�);

02. copy_c(x, x ′,Cr );

copy_p(x, x ′)

01. if (x0 �= x ′
0) then

02. shift(C�);

03. shift(Cr );

04. sync;

05. fi

06. copy(x, x ′);

6.2.2 Results

More complex instructions
Let x be a configuration of a Boolean automata double-cycle D . Let us consider an
algorithm composed of instructions defining an update sequence sequence(x) from
x . In every algorithm that follows, Boolean automata double-cycleD is always con-
sidered as a global variable and is not mentioned. Abusing language, sequence(x)
represents the sequence as well as the configuration resulting from its execution.

For the purpose of the study, we introduce three other more complex sequences
in Table1. In addition, Lemma 1 below shows that the copy instruction allows to
transform x into another configuration x ′ if x is sufficiently expressive.

Lemma 1 ([42]) Let D be a Boolean automata double-cycle and let x and x ′ be
two of its configurations such that x0 = x ′

0. If, for all m ∈ {�, r}, one of the following
properties holds for x:

1. ∀i ∈ {1, . . . , size(Cm) − 1}, xmi �= xmi−1,
2. ∀i ∈ {1, . . . , size(Cm) − 2}, xmi �= xmi−1 and xmsize(Cm )−1 = x ′m

size(Cm )−1,
3. ∀i ∈ {1, . . . , size(Cm) − 2}, xmi �= xmi−1 and ∃p ∈ {1, . . . , size(Cm) − 2}, xmp

�= x ′m
p ,

then copy(x, x ′) = x ′ and this sequence executes at most 2(� + r − 6) updates.

This lemma gives strong insights about the expressive power of instructions and
sequences to reveal possible trajectories between configurations. Now let us focus on
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Table 2 The update sequences fix0 and fix1

fix0(x)

01. if (x0 = 1) then

02. i ← min{k | x�
k = 0};

03. incUp(C�, i + 1, � −
1);

04. sync;

05. fi

06. erase(C�);

07. erase(Cr );

fix1(x)

01. if (x0 = 0) then

02. i ← min{k | x�
k = 1};

03. incUp(C�, i + 1, � − 1);

04. j ← min{k | xrk = 1};
05. incUp(Cr , j + 1, r − 1);

06. sync;

07. fi

08. erase(C�);

09. erase(Cr );

the dynamical behaviour of Boolean automata double-cycles, from a general point
of view.

Positive Boolean automata double-cycles
In Sect. 6.1, we have seen that positive Boolean automata double-cycles behave
like positive Boolean automata cycles, namely they have two stable configurations
among their attractors. In the asynchronous case, these two stable configurations
are the only attractors. The general idea of the demonstration is based on canonical
positiveBoolean automata double-cycles and establishes that the two sequences fix0
and fix1 given in Table2 allow to transform any configuration with at least one
automaton in state 0 into configuration (0�,0r ), and any configuration with at least
one automaton in state 1 in each of its Boolean automata cycles into configuration
(1�,1r ). This result is illustrated at the top of Fig. 8, and is summarised in Theorem 8
below.

Theorem 8 ([42])LetD+,+ be a canonical positive Boolean automata double-cycle
where 	 = ∧ and x one of its unstable configurations. If x admits one automaton
in state 0, then fix0(x) = (0�,0r ). Moreover, if in configuration x, there is one
automaton in state 1 in each Boolean automata cycle, then fix1(x) = (1�,1r ). The
convergence time of D+,+ is at most 2(� + r) − 5.

Mixed Boolean automata double-cycles
Formixed asynchronous Boolean automata double-cycles, as for positive ones, asyn-
chronism allows to eliminate all local instabilities. Thus, contrary to parallel Boolean
automata double-cycles, asynchronous Boolean automata double-cycles have only
one attractor that is a stable configuration. In the canonical case, this is evidenced
by the simp sequence given in Table3 that provides a way to converge towards
this stable configuration from any initial configuration x , by reducing progressively
its expressiveness. This result is illustrated in Fig. 8 (middle) and is formalised by
Theorem 9 below.
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Fig. 8 Asynchronous transition graphs of the canonical Boolean automata double-cycles depicted
in Fig. 6, where 	 = ∧ and where every → (resp. → and →) represents an update of automaton 0
(resp. 1 and 2)
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Table 3 The update sequences simp, comp1 and comp2

simp(x)

01. if (x0 = 1)
then

02. erase(C�);

03. sync;

04. fi

05. erase(C�);

06. erase(Cr );

comp1(x)

01. for (i = 1) upto (� − 1)
do

02. sync;

03. expand(C�);

04. erase(Cr );

05. od

comp2(x)

01. if (xr = 1r ) then

02. sync;

03. erase(Cr );

04. fi

05. sync;

06. expand(Cr );

07. for (i = 1) upto (r − 2)
do

08. shift(C�);

09. sync;

10. expand(Cr );

11. od

Theorem 9 ([42]) LetD−,+ be a canonical mixed Boolean automata double-cycle,
where 	 = ∧. For any of its configuration x, simp(x) = (0�,0r ) holds. The conver-
gence time of D−,+ is at most 2� + r − 2.

Negative Boolean automata double-cycles
Here, we distinguish between (1) even negative Boolean automata double-cycles
and (2) odd negative Boolean automata double-cycles. The first ones are defined as
having two even-sized Boolean automata cycles, the second ones as having at least
one odd-sized Boolean automata cycle.

Even negative Boolean automata double-cycles admit a single attractor. This
attractor is a stable oscillation of length 2�+r−1. This means that all the configurations
are recurring and consequently the convergence time is null. All configurations are
reachable. However this result alsomeans that configurations ofmaximal expressive-
ness are hard to reach: the number of updates to reach them is quadratic according to
the size of the Boolean automata double-cycle. The general idea of the proof follows
the following three points:

• Any configuration can reach the less expressive one (0�,0r ) in linear time. (P1)
• Configuration (0�,0r ) can reach the highest expressive one ((10)

�
2 , (10)

r
2 ) in

quadratic time. (P2)
• Any configuration can be reached from ((10)

�
2 , (10)

r
2 ) in linear time. (P3)

Consider P1. It is easy to see that the sequence simp remains effective for reaching
(0�,0r ), which is formalised by Lemma 2 below.

Lemma 2 ([42])For any configuration x ofD−,−
�,r , simp(x) = (0�,0r ) and executes

at most 2� + r − 2 updates.

Now, consider P2. Implicitly, P2 requires increasing the expressiveness of (0�,0r )
by successive updates, and finding a trajectory that reaches ((10)

�
2 , (10)

r
2 ). To do so,
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we proceed in two stages. First, we increase the expressiveness of C� using comp1

(see Lemma 3). Then, we increase the expressiveness of Cr . This second stage is
carried out without reducing the expressiveness ofC� by using comp2 (see Lemma 4).
The expected result follows from the composition comp = comp2 ◦ comp1. It is for-
malised in Lemma 5.

Lemma 3 ([42]) In an evennegativeBooleanautomatadouble-cycleD−,−
�,r , sequence

comp1((0�,0r )) leads to configuration ((10)
�
2 ,1r ) and executes at most (� − 1)(� +

r − 2) updates.

Lemma 4 ([42]) In an evennegativeBooleanautomatadouble-cycleD−,−
�,r , sequence

comp2(((10)
�
2 ,1r )) leads to configuration ((10)

�
2 , (10)

r
2 ) and executes at most

(r − 2)(� + r − 2) + (2r − 1) updates.

Lemma 5 ([42]) In an evennegativeBooleanautomatadouble-cycleD−,−
�,r , sequence

comp((0�0r )) leads to configuration ((10)
�
2 , (10)

r
2 ) and executes at most (� + r)2 −

5(� − 1) − 3r updates.

P3 is developed in Lemma 6 that uses the copy_p sequence (see Table1).

Lemma 6 ([42]) In an even negative Boolean automata double-cycle D−,−
�,r , for

any configuration x ′, sequencecopy_p(((10)
�
2 , (10)

r
2 ), x ′) transforms configuration

((10)
�
2 , (10)

r
2 ) into x ′ in at most 3(� + r − 4) − 1 updates.

Starting from Lemmas 2 to 6, whatever the configurations x and x ′, the composi-
tion copy_p(comp(simp(x)), x ′) = x ′ holds, which proves that there is a unique
attractor of length 2�+r−1. From this is derived Theorem 10. It gives some bounds
on convergence time.

Theorem 10 ([42]) Let D−,−
�,r be a canonical negative Boolean automata double-

cycle, where 	 = ∧. D−,−
�,r admits a unique attractor of length 2�+r−1. In this stable

oscillation, any configuration can be reached from any other in O(�2 + r2) updates.
However, configurations (0�,0r ) and (1�,1r ) can be reached from any other one in
O(� + r) updates, and the configurations ((01)

�
2 , (01)

r
2 ) and ((10)

�
2 , (10)

r
2 ) can

reach all the others in O(� + r) updates.

Like even negative Boolean automata double-cycles, odd negative Boolean
automata double-cycles also admit a single attractor (a stable oscillation). How-
ever, all configurations are not necessarily recurring. Indeed, they admit a set I of
non-reachable configurations, from which updates are irreversible. The associated
result is formalised in Theorem 11 below.

Theorem 11 ([42])Letρ : N → {0, 1}, withρ(k) =
{
0 if k = 0 or k ≡ 1 mod 2

1 otherwise
.

Every Boolean automata double-cycle D−,−
�,r admits a unique attractor B�+r−1 \ I ,

where |I | = α(� − 1) × 2r−1 + α(r − 1) × 2�−1.

This result,whose proof rests on the characterisation of I , generalises Theorem10.
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7 Conclusion

In this chapter, we have summarised the major results obtained in recent years on
the role of feedbacks in interaction networks. The literature has already established
that feedback patterns are “engines of complexity” in the dynamical behaviours of
larger networks that contain them. Because of their proven essential character, we
have therefore deliberately focused on the dynamics of cycles and double-cycles, by
focusing especially on the influence of updating modes. Without going back on the
results themselves, this chapter highlights the fundamental differences induced by
the “scheduling” of events on the behaviours of the complexity engines of interaction
networks: while parallelism tends to render all the asymptotic mathematical diversity
of networks, pure asynchronism tends to reduce degrees of freedom of networks,
which partly explains why the former is often preferred in theoretical work while the
second is often adopted in works that are oriented towards applications in molecular
biology. At present, no real knowledge in molecular biology establishes precisely
how regulations are implemented over time, even if works state that the chromatin
dynamics plays an important role. That is in particular why the type of studies
developed in this chapter, focusing on updatingmodes, remains essential to go further
in understanding formal and applied interaction networks. As a consequence, further
studies need to be done on the scheduling of updates over time. A first avenue is to
focus for instance on more likely updating modes, in agreement with the discussion
of what is claimed in [17].

Another natural opening highlighted by theseworks, deeply rooted in fundamental
computer science, consists in developing knowledge on the dynamical properties of
interactionnetworks, including relationships between their architecture and structure.
But other equally relevant lines of investigation also call for exploration. One of them
was opened up by the study of asynchronous double-cycles and deals with the time
complexity of networks. A question that remains currently open is the following:
does the time complexity of the networks go hand in hand with their behavioural
diversity? If yes, can we find a measure of it? Finally, the work carried out on cycles
and double-cycles in parallel, developed in [47, 63] discusses perspectives around
computability, modularity/compositionality, and intrinsic universality of networks.
These are certainly, like the ever-growing understanding of the influences of updating
modes, among the most promising tracks for future works in the field.
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Computing the Probability of Getting
Infected: On the Counting Complexity of
Bootstrap Percolation

Pedro Montealegre and Martín Ríos-Wilson

Abstract Consider a network where each node has one over two possible states,
namely healthy or infected. Given an initial configuration, the network evolves in
discrete time-steps picking uniformly at random a single node and updating its state
according to the following rule: if the node is infected, it remains infected. If the
node is healthy it switches its state to the one of the strict majority of its neighbors.
We address, from the point of view of the computational complexity, the problem of
computing the probability that a given healthy node becomes infected in at most a
given number of time-steps, given as input network and an initial configuration. We
show that this problem is #P-Complete in general, and solvable in polynomial time
when the input graph is of degree at most 4.

1 Introduction

The model

Consider a distributed system such as cellular automata, a neural network or other
message-passing model network. In these systems, there is a graph where each node
is assigned a state, which evolves according in discrete time-steps ruled by local
interactions. In such systems, it is usually assumed that all interactions take place
simultaneously, so the state of each entity in the network is updated in a synchronous
scheme. Nevertheless, for several applications this assumption may be unrealistic.
For instance, from biological viewpoint [5] in which these perfectly simultaneous
interactions between cells are fairly rare. In this regard, dynamical properties of
asynchronous update scheme, in which at most one node is updated in each time-
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step has been widely studied in the context of the boolean network formalism from a
theoretical viewpoint [15–17] to the most applied front [14, 23]. Also, from the point
of viewof a computationmodel, the synchronous update scheme implies the existence
of an internal clock that synchronizes each processor which is computing the state of
a node. Therefore, different alternative approaches exist to the synchronous update
scheme, all of them generically called asynchronous update schemes. In literature it
is possible to find many families of updating schemes, deterministic or randomized
(see for example [6, 12, 18, 19]).

Unfortunately, given initial condition, considering all possible choices for updat-
ing schemes creates a degree of freedom in the system that make explode the number
of combinations for possible outcomes. This makes unfeasible the exhaustive com-
putational simulations of these systems in networks with a large number of nodes,
relegating them to mean field analysis or other empirical approximations [1, 11]. For
instance, consider the fixed random sweep updating scheme [12, 19], which consists
in choosing a random permutation of the nodes at initial time, and from there, at each
time-step, one node is updated according to this permutation. The possible number
of permutations of n nodes is n!, so an exhaustive simulation of a given initial con-
figuration will require the analysis of an exponential number of different updating
schemes.

In this chapter, we address the problem of computing the exact probability that a
node reaches a given state, in the Bootstrap Percolation model under a fixed random
sweep updating scheme. In the Bootstrap Percolation model, nodes in the network
have two possible states, namely 0 or 1, that evolve according to the following
rule: (1) when a node in state 0 is updated, it evolves taking the state of the strict
majority of its neighbors; (2) when a node in state 1 is updated, it remain in state 1.
Bootstrap Percolation models are well-studied within the framework of modelling
many physical, social and biological phenomena such asmagnetic properties of some
materials [4] crystal growth [10, 21], alert spreading in distributed networks [20],
sand pile formation and disease spreading [3].

The problem Contagion-Probability

We define a computational task which, inspired by the relations with the dynamics
of Bootstrap Percolation and disease spreading, we call Contagion- Probability.
The input of problemContagion- Probability is a simple undirected n-node graph
G with vertex set [n], an initial condition x ∈ {0, 1}n which assigns a state to each
node of the graph, a node v ∈ [n] that we call objective node and a time-span t ≤ n.
The task consists in computing the probability that node v reaches state 1 in at most
t time-steps under a fixed random sweep updating scheme.

Observe that in the definition ofContagion- Probabilitywe restricted the time-
span to be bounded by the number of nodes n. There are two reasons for considering
this restriction. The first reason is that in many percolation processes (such as rumor
or disease spreading) is unnatural to consider a time-spans larger than the number
of nodes, as the later number could be extremely large. Second, given an initial
condition, these processes reach the same fixed point on every updating scheme, as
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it was shown on [8, Theorem 1]. Moreover, it is possible to reach the fixed point
updating at most n nodes.

To study problemContagion- Probability, we appeal to the theory of computa-
tional complexity. Computational complexity theory studies the amount of resources,
such as time or space, required to solve a problem in a Turing Machine. This tool
is used to classify problems in complexity classes, which group problems that can
be solved by roughly the same amount of resources. The two classical examples of
complexity classes are P and NP which contain all the decision problems (prob-
lems with yes or no output) that can decided, respectively, in a deterministic or
non-deterministic Turing machine in a running time that is polynomial in the size of
the input.

The complexity of Contagion-Probability

Observe that Contagion- Probability is not a decision problem, as in consists
in computing a number in [0, 1]. The natural generalization of classes of decision
problems are the functional problems. These problems are defined by a function
f : {0, 1}∗ → {0, 1}∗ (or equivalently f : {0, 1}∗ → N

∗), and the task is to compute
f (x) for a given input x ∈ {0, 1}∗. The class FP is the class of all functions that can
be computed by a polynomial-time deterministic Turing machine. In other words,
FP is the generalization of class P to functional problems, hence is known as the
class of feasible functional problems.

Then, our goal is to answer in which context Contagion- Probability is in FP.
Unfortunately, the brute-force algorithm that test all possible permutations of the
set of vertices in unfeasible, as this number is exponential in the size of the input.
A natural question is whether the brute-force algorithm is optimal, or there exist
properties of the dynamic (perhaps restricting the input graph to some class), that
can be algorithmically exploited in order to obtain a polynomial-time algorithm.

The class #P (pronounced “sharpP” or “number P”) is the set of function problems
f : {0, 1}∗ → N such that there is a polynomial deterministic Turing machine M
such that, for each x ∈ {0, 1}∗, f (x) equals the number of accepting branches in
the computation graph of M on input x . Informally, class #P is the set of counting
problems associated to the number of certificates that have an instance of decision
problem in NP. It is not hard to see that FP is a subset of #P (see the preliminaries
section formore details), and it is conjectured that the inclusion is proper. The equality
of the two classes, i.e. FP = #P, would have important consequences in the theory
of computational complexity. In particular it would imply that P = NP.

The function problems in #P that are the most likely to not belong to FP are the
#P-Complete problems. A function f ∈ #P is #P-Complete if every other function
g in #P is computable in polynomial time by a Turing machine with an oracle access
to the values of f . Roughly, a problem is f is #P-Complete if an efficient algorithm
computing f can be used to efficiently compute every function in #P with at most
a polynomial slowdown. In particular, the definition implies that if a #P-Complete
function belongs to FP, then #P = FP.

Last remark suggests that the counting version of an NP-Complete problem is a
good candidate for a #P-Complete problem. In fact, up to our knowledge, there are no
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examples of a NP-Complete problems whose counting version is not #P-Complete
[13]. Interestingly,Valiant shows in [22] that there are examples of problems that their
decision version is solvable in polynomial-time, while their counting version is #P-
Complete. For instance, the problem consisting in computing a maximum matching
of a given graph is solvable in polynomial time, while the problem of counting all
matchings is #P-Complete [22].

Let (G, x, v, t) be an instance ofContagion- Probability.We say that an injec-
tive function σ : [t] → V is a good-sequence if the objective node v reaches state 1
in the dynamics of Bootstrap Percolation under the updating sequence σ . Now con-
sider the following decision problem, that we call Good- Sequence. This problem
receives the same instances that Contagion- Probability, but output yes when
there exist at least one-good sequence of the given instance. Clearly this problem
is in NP, as a good sequence is a witness of polynomial size that can be verified in
polynomial time by simply simulation of the dynamics of Bootrstap Percolation.

Observe that the output of Contagion- Probability corresponds to the number
of good sequences of the input instance, divided by n!/(n − t)!, which corresponds
to the number of possible injective functions σ : [t] → V . As the latter number
can be computed in a running time that is polynomial in n (see the preliminaries
section for more details), the difficulty of Contagion- Probability is reduced to
the computation of the number of good-sequences. In the following when we refer to
Contagion- Probability, we do not distinguish between the computation of the
number of good-sequences and the computation of the actual probability. Note that
previous observations imply that Contagion- Probability is in #P.

Our results

We show that Contagion- Probability is #P-Complete. Roughly this result
implies that in order to compute the output, there is no better algorithm that simply
simulate the dynamics on every possible injective function σ : [t] → [n], and keep
the count of the ones that are good-sequences.

Our result is obtained constructing a polynomial-timeTuring reduction froma ver-
sion of #Sat to problem Contagion- Probability. The functional problem #Sat
is the counting version of Boolean Satisfability, i.e., given a Boolean formula, the
task is to count the number of truth-assignments satisfying it. In fact, our reduc-
tion is not from #Sat directly, but instead from a restriction of the problem called
#Mon- 2- Sat, where the input Boolean formula is in a 2-CNF form and it is mono-
tonic (it does not have any negations of variables).

This result turns to be quite natural, as in [8] it is shown that Good- Sequence
(i.e. simply decide if the set of good sequences is non empty) isNP-Complete. As we
said above, up to our knowledge, there are no examples of a NP-Complete problems
whose counting version is not #P-Complete. In the same reference, it is shown
that Good- Sequence remain NP-Complete even when the problem is restricted to
graphs of maximum degree 5.

Interestingly, when the input graph has maximum degree 4, Good- Sequence
is solvable in polynomial time [8]. This leads us to ask for the complexity of
Contagion- Probability restricted to that family of graphs. As we mentioned
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before, there are problems solvable in polynomial time with #P-Complete counting
versions. We remark that the restriction to graphs of maximum degree 4 contains
important instances, as the ones where the dynamics occur on a two-dimensional
grid with periodic boundary conditions.

Our second result is that Contagion- Probability restricted to input graphs
of maximum degree 4 is solvable in polynomial time, hence belongs to FP. Our
algorithm is based on a characterization of the initial conditions with at least one
good-sequence, given in [8]. This characterization states, roughly, that when a good-
sequence exists, the objective node must remain in some tree of the input graph,
such that in every good sequence, a pruning sequence of its nodes is induced, in
which every node of the tree must change its state to 1 before the objective node.
In this regard, Contagion- Probability solution uses an algorithm that counts the
number of pruning sequences of a given tree as a subroutine.

Previous work

This is not the first work that addresses the complexity of the dynamics of bootstrap
percolation. In [9] it is studied the Stability problem which is the decision problem
consisting in deciding, given a graph and an initial condition, whether an objective
node reaches state 1 in some time-step, when the states evolve according to the
synchronous bootstrap percolation dynamics. This problem is solvable in polynomial
time, as the dynamics reach a fixed point in a linear number of synchronous time-
steps. Interestingly, in [9] is shown that in graphs of degree at most 4 the problem is
in class NC, which is the subclass of P containing all problems that can be efficiently
solved in a parallel machine. Moreover, in graphs of maximum degree at least 5 the
Stability problem is P-Complete, meaning that there is no algorithm solving the
problem better than simply simulating the dynamics until a fixed point is reached.

Later, as wementioned before, in [8] the authors study the complexity of bootstrap
percolation on asynchronous updating schemes. To do so, two decision problems
are defined. The first one is Good- Sequence (which is called asynchronous

prediction in [8]). The second one is called Asyncronous Stability, which
an asynchronous version of the stability problem. The difference between the two
problems is that Good- Sequence asks for the existence of a good-sequence for a
given time-span, while Asynchronous Stability asks for the state of the node
once the attractor is reached. In that article, it is shown that given an initial condition,
the dynamics of bootstrap percolation reaches the same fixed point for every updating
scheme. ThatmakesAsyncronous Stability equivalent toStability. Contrarily,
problemGood- Sequence is solvable in polynomial timewhen is restricted to graphs
maximum degree 4, but NP-Complete restricted to graphs of maximum degree 5.

Structure of the chapter

The chapter is organized as follows: first, in Sect. 2, we introduce some elementary
concepts in graph theory, automata networks dynamics and computational complex-
ity that we will be using in order to show our main results. Then, we present our main
results: in Sect. 3 we show that Contagion- Probability problem is #P-complete
by showing #Mon- 2- Sat is Turing reducible to Contagion- Probability, i.e.
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#Mon- 2- Sat ∈ FPContagion- Probability however, in Sect. 4 we show, based on previ-
ous results in the characterization of good sequences [8], that problem
Contagion- Probability is in FP when restricted to graphs of maximum degree
4. Finally, we discuss our results in Sect. 5.

2 Preliminaries

In this section we give the main definitions, results and terminology that is used
during the next sections. We begin with the key concepts on graph theory. Then we
continue with the definitions and results regarding the majority automata. Finally,
we give the formal definitions of the complexity classes and algorithmic results. In
all this chapter, we denote by [n] the set {1, . . . , n}.
Graph Terminology

A graphG on n vertices andm edges is a pair (V, E) such that |V | = n and E ⊆ (V
2

)
.

All graphs in this article are simple, undirected without self-loops. Moreover, we
consider only graphs where the vertex set is V = [n], and use the name vertex and
node indistinctly. If G is a graph and the set of vertices and edges is not specified
we use the notation V (G) and E(G) for the set of vertices and the set of edges of G
respectively. We use the notation |G| or |V (G)| for the number of nodes in G. Two
nodes are adjacentÊif they both belong to the same edge. Given a graph G = (V, E)

and a vertex v we call NG(v) = {u ∈ V : {u,w} ∈ E} to the neighborhood of v and
dG(v) = |N (v)| to the degree of v in G. We write N (v) or d(v) when the context is
clear. The maximum and minimum degree of the graph are denoted �(G) and δ(G),
respectively. A graph is ofÊmaximum degree d if �(G) ≤ d.

Let G = (V, E) be a graph and let S ⊂ V . We define the subgraph induced by
S as the subgraph G[S] = (S, E[S]) such that E[S] = {{u, v} ∈ E : u, v ∈ S}. A
subgraph P of G is said to be a path if V (P) = {v1, . . . , vk} where every vi is
different and E(P) = {{v1, v2}, {v2, v3} . . . , {vk−1, vk}}. We define the length of a
path P in G as the number of edges in P . We say that P is a cycle if k ≥ 3 and
vk = v1. We say that v is connected to v if there exist a path P from u to v. The
maximal sets of pairwise connected vertices are called connected components.

A graph without any cycles is called acyclic. We say that a graph is a tree if it is
acyclic and connected. In some parts of this work, we distinguish a certain node r
of a tree that we will call its root, and consequently we will refer to the graph as a
rooted tree. A node in a tree of degree 1 is called a leaf. The choice of r induces a
partial order in the vertices of a tree given by the distance (length of the unique path)
between a node v and the root r . Given two nodes v,w of a tree, we say that w is an
ascendant of v (and v is a descendant of w) if w belongs to the path from v to r .

Asynchronous bootstrap percolation

Given a graph G = ([n], E), we consider that each node has one of two possible
states, that we denote 0 and 1 and call healthy and infected, respectively. A config-
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uration Ê of G is a vector x ∈ {0, 1}n assigning a state to each node. We define the
following dynamic over a configuration x (that in the following is called initial condi-
tion), that we call asynchronous bootstrap percolation. First, we fix a positive integer
t ≤ n, that we call time-span. Second, we fix an injective function σ : [t] → [n], that
we call updating sequence. Then, the trajectory of (x, σ, t) is the sequence of config-
urations xσ (0), . . . , xσ (t) such that xσ (0) = x and, for each 0 ≤ k < t and i ∈ [n]
we define:

xσ
i (k + 1) =

⎧
⎪⎪⎨

⎪⎪⎩

xσ
i (k) if i 	= σ(k + 1),
1 if i = σ(k + 1) and xσ

i (k) = 1,
1 if i = σ(k + 1) and xσ

i (k) = 0 and
∑

j∈N (i) x
σ
j (k) > 
d(i)/2�,

0 if i = σ(k + 1) and xσ
i (k) = 0 and

∑
j∈N (i) x

σ
j (k) ≤ 
d(i)/2�,

In words, in the k-th configuration, the state of all nodes except σ(k) remain in the
same state than in the previous configuration. Node σ(k) remains in state 1 if it was
in state 1 in the previous configuration, and otherwise it takes the state of the strict
majority of its neighbors.

Let us fix a graph G = ([n], E), a vertex v ∈ [n], a configuration x , and a time-
span t . We say that an updating sequence σÊactivatesÊv if xσ

v (t) = 1. Moreover,
in that case we say that σ is a good-sequence for G, x , v, and t . We denote by
Good(G, x, v, t) the set of good-sequences for G, x , v and t . When the context is
clear, we omit the specifications of the graph, configuration, node and time-span. We
say that v is stable if Good = ∅, and otherwise we say that the node is unstable.

Contagion-Probability

We are now ready to formally define problem Contagion- Probability. As we
explained in the introduction, this problem asks for the probability of choosing a
good-sequence, when an update sequence is picked uniformly at random. Formally,
this problem receives as input a graph G = ([n], E), a vertex v ∈ [n] of G, an ini-
tial condition x ∈ {0, 1}n and a time-span t ≤ n. The task consists in computing
|Good(G, x, v, t)| divided by n!/(n − t)!, which is the fraction of good-sequences
from the total number of possible updating sequences with time-span t .

In the next section, we will give a result stating that number n!/(n − t)! can be
computed in time polynomial in n, and that the division of two integers can be
computed in a running time that is linear in the number of bits required for their
binary representation. Therefore, the difficulty of Contagion- Probability rests
in the computation of |Good(G, x, v, t)|. For that reason, we abuse notation and
refer as Contagion- Probabilityalso the problem of computing the latter number.

problem 1 (Contagion- Probability)

Input:
1. an n-node graph G = ([n], E).
2. a node v ∈ [n]
3. an initial condition x ∈ {0, 1}n .
4. a natural number t ≤ n.
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Output: |Good(G, x, v, t)|
In order to study how difficult is to solve one of latter problem, we use computa-

tional complexity theory. Roughly, we are interested in measuring how difficult is to
solve the problem, measuring the amount of resources required to solve in a Turing
machine it in the worst case. These resources are measured with respect to the size
of the input, in this case this corresponds to the number of bits required to encode G,
vertex v, the configuration x and the time-span t . This quantity is�(n + m + log n),
as the graph can be encoded in �(n + m) bits, the name of v and the value of t can
be encoded in log n� bits, and the configuration x is encoded in n bits.

Elements of Computational Complexity

A functional problem for a function f : {0, 1}∗ → N is the computational task con-
sisting in computing f (x) for a given input string x ∈ {0, 1}∗. Functional problems
are a generalization of decision problems, which are functions fL : {0, 1}∗ → {0, 1}
such that the bit fL(x) indicates whether x belongs to a set L ⊆ {0, 1}∗. In this con-
text, such a set L is called a language. We abuse the notation and identify a function
f with the computational task consisting in computing f (x). Similarly, we identify
a decision problem with its associated language.

We say that a Turing machine solves a functional problem (or decides a decision
problem) if, when the machine is initialized with x written in the tape, the machine
always halts, and when it does it has left written in the tape f (x). When dealing
with a decision problem, we say that the machine accepts or rejects depending on
the bit it writes when it halts. The time-complexity of the problem, is the amount
of time-steps that a Turing machine requires to solve the problem in the worst case,
measured in terms of the size of the input n.

The classical theory of computational complexity defines two main classes of
decision problems, namely P is the class of problems solvable in polynomial-time
(i.e. with time-complexity nO(1)) on a deterministic Turing machine; and NP are the
problems that can solved in polynomial-time on a non-deterministic Turing machine
[2]. Equivalently, we can define NP as the problems that can verified in polynomial
time. Formally, apolynomial-time verifier V for a language L is a deterministicTuring
machine such that, there is a polynomial p satisfying that for every x ∈ {0, 1}∗ we
have that x ∈ L if and only if there exists a u ∈ {0, 1}p(|x |) such that V accepts on
input (x, u) (i.e. the concatenation of x and u). When V (x, u) accepts, we say that
u is a certificate for x .

ClearlyP ⊆ NP and also it is wide-believed (and probably one of themost famous
conjectures in this context) that P 	= NP, i.e. that the inclusion is proper. In this
regard, the problems in NP that are most likely to not be contained in P are called
NP-Complete problems. Roughly, a problem in NP is NP-complete if an efficient
solution for it can be transformed into an efficient solution for every other problem
in NP. Formally, a language L ′ ∈ NP is NP-Complete if for every L ∈ NP we have
that L ′ is polynomial time reducible to L , meaning that there exists a function f
computable in polynomial time, such that x belongs to L if and only if f (x) belongs
to L ′.
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The canonical NP-complete problem is the Boolean satisfiability problem Sat.
This problem receives as an input a boolean formula F on n variables, and the task
consists in deciding whether this formula can be satisfied, i.e. it is possible to assign
truth-values to its inputs such that the formula evaluates true.

The Complexity of Counting

Some complexity classes for decision problems have natural generalizations to
classes of functional problems. For instance, FP is the set of functions computable
in polynomial time by a deterministic Turing machine. In other words, FP is the
generalization of P to function problems. Unfortunately, it is not easy to general-
ize into function classes decision problems defined by non-deterministic machines,
such as NP. A natural approach is to take, for a given instance x of NP language L ,
the problem consisting in computing a certificate y for x . For example, generalize
Sat to a function problem consisting in computing a truth-assignment satisfying a
Boolean formula given in the input. The complication is that such a generalization
does not define a function but a binary relation, as a single instance could have sev-
eral certificates. In that context, an interesting alliterative is to consider functions that
count certificates. For instance, consider #Sat as the function problem consisting in
compute the number of truth-assignments satisfying a given Boolean formula.

The class #P is the set of functions f such that there exists a polynomial-time
verifier V such that, for every x ∈ {0, 1}∗,

f (x) = #{y ∈ {0, 1}p(|x |) : V (x, y) accepts},

where p is the polynomial defined for V . Roughly speaking, class #P contains all
functions that count certificates of NP problems. Directly from the definition we
have that #Sat ∈ #P. Moreover, Contagion- Probability is also in #P.

Observe that FP is contained in #P. Indeed, for a given function f ∈ FP, we
define the polynomial verifier V f that accepts (x, y) if and only if y ≤ f (x), when
both strings are interpreted as positive integers. Then, f (x) is exactly the number of
certificates for x on verifier V f .

It is conjectured that #P 	= FP, as clearly #P = FP impliesNP = P.Moreover, the
equality of the two classes would have much stronger (and unlikely) consequences.
For instance, Toda’s theorem imply that if FP = #P then the whole polynomial
hierarchy collapses in P [2, Theorem 9.11].

The functions in #P that are the most likely to not belong to FP are the #P-
Complete functions. Roughly a function f ∈ #P is #P-complete if an efficient algo-
rithm computing f can be used to efficiently solve all problems in #P. For defining
this notion of hardness, we need the notion of Turing reduction.

We say a Turing machine has oracle access to a function f : {0, 1}∗ → {0, 1}∗
if at any given time step, the machine can execute a subroutine that in one time-
step chooses a section of the tape containing a string x ∈ {0, 1}∗, and writes in the
section of the tape the string f (x). For fixed function f : {0, 1}∗ → {0, 1}∗, we call
FP f the class of functions g : {0, 1}∗ → N that are computable in polynomial-time
by a Turing machine with oracle access to f . Intuitively, suppose that we have
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an algorithm computing function f . Then FP f is the set of functions that can be
computed running the algorithm for f a polynomial number of times. In particular,
when f is computable in polynomial time FP f = FP.

A function g is Turing reducible in polynomial time to a function f if g ∈ FP f .
Then, we say that a function f ∈ #P is #P-complete if for all function g ∈ #P we
have that g is Turing reducible in polynomial time to f , i.e. g ∈ FP f . An important
example of a #P-Complete problem is #Sat [2, Theorem 9.7]. In fact, is natural
to expect that an NP-Complete decision problem defines a #P-Complete counting
version. Up to our knowledge, there are no examples of a NP-Complete problems
whose counting version is not #P-Complete [13].

Interestingly, there are #P-Complete problems for which the corresponding
decision version can be solved in polynomial time. An important example is the
Monotone-2CNF-Satisfability (Mon- 2- Sat) and its counting version
#Mon- 2- Sat. A n-variable Boolean formula F is amonotone-2-CNF formula if F
can be written as

F (z1, . . . , zn) =
∧

j∈[m]
(c j

1 ∨ c j
2) with c

1
j , c

2
j ∈ {z1, . . . , zn}.

In such a case we call (c j
1, c

j
2) a clause. Now consider Mon- 2- Sat as the problem

Sat restricted to monotone-2-CNF formulas. This problem is trivial, as such a for-
mula can be satisfied assigning all variables true. Now consider #Mon- 2- Sat as
the restriction of #Sat to monotone-2-CNF formulas. Formally,

problem 2 (#Mon- 2- Sat)

Input: amonotone-2 − CNF-Boolean formulaF with n variables andm clauses.
Output: |{x ∈ {True, False}n : F(x) = True}|

Like #Sat, problem #Mon- 2- Sat belongs to #P. Moreover, in [22] it is shown
that it remains #P-Complete.

The complexity of some arithmetic computations

In our proofs we will require to perform some arithmetic computations of large
integers.We finish this section by giving a proposition that compiles results regarding
the complexity of arithmetic computations.

Proposition 1 Given two integers x, y ∈ [n]:
• There is an algorithm computing the product xy in time O(log n log log n)

• There is an algorithm computing the division x/y in time O(log n log log2 n)

• There is an algorithm computing the factorial x ! in time O(n(log n log log n)2).

Therefore, when y ≤ x the expression
(x
y

) = x !
(x−y)!y! can be computed in time O(n2).
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3 CONTAGION-PROBABILITY Is #P-Complete

In this section, we show that Contagion- Probability is #P-Complete. In order
to do that, we reduce #Mon- 2- Sat to Contagion- Probability by a polynomial-
timeTuring reduction. Roughly, we show that given an instance of #Mon- 2- Sat, we
can produce series of instances of problemContagion- Probability that represent
F , in the sense that the number of truth-assignment satisfying F can be computed
from the number of good sequences of these instances.

Let F be a monotone 2-CNF formula with n variables and m clauses. We call
Z(F ) = z1, . . . , zn and C(F ) = {C1, . . . ,Cm}, respectively the sets of variables
and clauses of F . Also, for each j ∈ [m], we call c j

1 and c j
2 the two variables that

participate in clause C j . In other words

F (z1, . . . , zn) =
∧

j∈[m]
(c j

1 ∨ c j
2), with c1j , c

2
j ∈ Z(F ).

We call ϕ(F ) the set of truth-assignments satisfying F . The weight of a truth-
assignment corresponds to the number of variables that are assigned true. For k ∈
[n] we call ϕ(F , k) the set of truth-assignments of weight k satisfying F . Clearly
|ϕ(F )| = ∑n

k=1 |ϕ(F , k)|.
For k ∈ [n], we define a graph G[F , k] on N = (m + 3)n + 8m + 2k + 2 nodes,

and an initial configuration x[F , k] ∈ {0, 1}N as follows.

• First, for each variable zi ∈ Z(F ) graph G[F , k] contains a variable gadget. This
gadget consists in a node zi , called variable node, with m + 1 pending nodes
denoted zi,1, . . . zi,m+1 and called auxiliary variable nodes. In the initial configu-
ration we assign the variable node inactive and the auxiliary variable nodes to be
active.
Intuitively, the variable nodes are going to simulate the variables of F . They are
initially inactive, and are adjacent to a large enough number of auxiliary variable
nodes to become active if they are updated, with the aim of associating an updating
sequence to a choice of a truth-assignments.

• Second, for each clause C j ∈ C(F ), graph G[F , k] contains a clause gadget.
This gadget consists in a node v j , called clause node, and four more nodes that
are adjacent to the clause node. Two of these nodes are denoted u j

1, u
j
2 and called

clause variable nodes; the two remaining nodes are called clause auxiliary nodes.
Node u j

1 is adjacent to the variable node associated to c
j
1 , and node u

j
2 is adjacent to

the variable node associated to c j
2 . Finally, the initial configuration fixes v j , u j

1, u
j
2

as passive, and the auxiliary clause nodes as active.
• Third, graph G[F , k] contains one threshold gadget. This gadget consists in a
node θ , called threshold node, and n + 2m + 2k + 1 other nodes called auxiliary
threshold nodes, that are adjacent to the threshold node. The threshold node is also
adjacent to all variable nodes, and all clause variable nodes. In the initial config-
uration, the threshold node and 2k of auxiliary threshold nodes are inactive, and
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Fig. 1 Gadgets used to construct graph G[F , k]. From left to right: variable gadget, clause gadget,
threshold gadget and output gadget

the remaining n + 2m + 1 auxiliary threshold nodes are initially active. Observe
that the threshold node has degree 2n + 4m + 2k + 1.

• Finally, graph G[F , k] contains one output gadget. This gadget consists in a node
out called output node and m − 1 other nodes called auxiliary output nodes. The
output node is also adjacent to every clause node. All nodes in this gadget are
initially inactive.

See Fig. 1 for a graphical representation of each gadget. Observe that there are n
variable gadgets, each containing (m + 2) nodes; there are m clause gadgets, each
containing 5 nodes; one threshold gadget containing n + 2m + 2k + 2 nodes; and
one output gadget containing m nodes. This sums up a total of (n + 3)m + 8m +
2k + 2 nodes in graph G[F , k].

Let us define the timespan t (F , k) = k + 2m + 2 and call v[F , k] the output
node of G[F , k]. Given a sequence σ of v[F , k] with timespan t[F , k], we say that
σ induces a truth-assignment z of F if z is such that zi = true if and only if the
corresponding variable node is activated in σ .

Let us call ρ(F , k) the set of good-sequences for v[F , k] with timespan t[F , k],
i.e. |ρ(F , k)| is the output of problem Contagion- Probability on input
(G[F , k], x[F , k], v[F , k], t[F , k]).
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Lemma 1 Suppose that σ ∈ ρ(F , k). Then, σ satisfies that:

• For every i ∈ {1, . . . , k}, σ(i) is a variable node,
• σ(k + 1) is the threshold node,
• For every i ∈ {k + 2, . . . , 2m + k + 1}, σ(i) is a node in a clause gadget,
• σ(2m + k + 2) is the output node.

Proof First, observe that the output node of G[F , k] has degree 2m − 1, with every
neighbor initially inactive. Therefore, by the strict majority rule it is necessary to
activate m of its neighbors before activating it. As m − 1 of these neighbors are
auxiliary output nodes, it is necessary to activate them clause nodes before activating
the output node. Each clause node has degree 5, where one of the neighbors is the
output node, and two neighbors are auxiliary clause nodes, which are initially active.
Therefore, the clause node requires that at least one of the corresponding clause
variable nodes is activated before it. Remember that the clause variable nodes have
degree three, where one neighbor is a clause node, another neighbor is the threshold
node, and the remaining one is a variable node. Consider now the time-step on
which for the first time a clause-variable node is updated. Then, this node requires
that both the threshold node and the adjacent variable node are activated before it.
Therefore, threshold must be changed to active during sequence σ , and must become
active before all the clause variable nodes. The threshold node has degree 2n + 4m +
2k + 1, with n + 2m + 1 adjacent auxiliary threshold nodes initially active and the
remaining n + 2m + 2k neighbors initially inactive. As we explained, 2m of its
inactive neighbors are still inactive when the threshold node is activated. Moreover,
the 2k inactive auxiliary threshold nodes are also inactive when the threshold node is
activated. Observe that the threshold node requires at least k more active neighbors
to become active. More precisely let p the amount of active neighbors that are
required to active threshold node. Then, we have that p must be chosen as the
minimum number such the amount of active is more than the number of inactive
neighbors. Summarizing previous calculations we have (n + 2m + 1 + p) active
neighbors and (n + 2m + 2k − p) inactive neighbors. Then, by asking p to satisfy
(n + 2m + 1 + p) − (n + 2m + 2k − p) > 0 we deduce p > k − 1

2 and thus, p ≥
k. We conclude that the only option is to choose at least k variable nodes.

Wrapping up, we deduce the following order in every sequence activating the
output node in k + 2m + 2 steps: first, k variable nodes are activated. Then, the
threshold node is activated. Then, all the m clause nodes must be activated, which
requires 2m steps, one for the clause variable node, and one for the clause node.
Finally the output node is activated. We deduce that σ satisfies the statements of the
lemma (See Figs. 1 and 2). �

Lemma 2 Every σ ∈ ρ(F , k) induces a truth-assignment in y ∈ ϕ(k,F ). For every
y ∈ ϕ(k,F ) there is a σ ∈ ρ(F , k) that induces y.

Proof Letσ be a good sequence inρ(F , k). Lemma1 implies that in a good sequence
every clause node is activated, implying that at least one variable of each clause is
chosen in the k first-steps. We deduce that σ induces a truth-assignment of weight
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Output gadget

Clause gadgets

Variable gadgets

Threshold gadget

Fig. 2 Scheme representing graph G[F , k]. Each type of gadget is detailed in Fig. 1

k satisfying F . Conversely, let y be a truth assignment in ϕ(k,F ). As this truth-
assignment has weight k, we can update the corresponding k variable nodes, and
update the clause gadgets accordingly. This produces a sequence in ρ(F , k). �

Observe that Lemma 1 implies that for each truth-assignment y ∈ ϕ(F , k), there
are several good sequences for v[F , k] with timespan t[F , k]. Indeed, we know that
in the first k time-steps the variable nodes that are true in y are updated. They can
be updated in any order, so there are k! ways of updating them. Then, the threshold
node is updated. Then, 2m nodes are updated to activate all clause nodes. Let us call
γ the number of ways that the m clause nodes can be activated, once the k variable
nodes and the threshold node were activated according to y. Unfortunately, the value
of γ is not easy to compute, as it depends each the truth-assignment y. Indeed, the
exact value depends on the number of clauses that are fully satisfied by a given truth
assignment. A clause that is fully satisfied has two ways to be updated (one for each
clause variable node), while a clause that is not fully satisfied has only one.

Therefore, to be able to compute |ϕ(F , k)| we will require to count with more
detail. Let C = (c1 ∨ c2) be a clause of F . We say that a truth-assignment y fully
satisfies clause C if yc1 = yc2 = true, in other words, when both variables in the
clause are true in y. For d ∈ [m] we call ϕ(F , k, d) the set of truth-assignments of
weight k satisfyingF , and such that exactly d clauses ofF are fully satisfied. Clearly
|ϕ(F , k)| = ∑m

d=0 |ϕ(F , k, d)|. Similarly, we define ρ(F , k, d) as the number of
good sequences of v[F , k] with timespan t[F , k] that induce truth-assignments in
ϕ(F , k, d). Obviously |ρ(F , k)| = ∑m

d=0 |ρ(F , k, d)|.

Lemma 3 |ρ(F , k, d)| = |ϕ(F , k, d)| · k! · (2m)!
2m

· 2d

Proof Let us fix y ∈ ϕ(F , k, d). From Lemma 2 we know that y induces a good
sequence in ρ(F , k), and then by definition this sequence also belongs to ρ(F , k, d).
From Lemma 1 we know that in the first k steps the variable nodes are updated. As
they are independent, there are k! ways of updating the variables that are true in
y. Once the k variable nodes are activated, we have to continue by activating the
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threshold node. After that, we know from Lemma 1 that in the next 2m steps all the
clause nodes must be activated.

For each clause, exactly two nodes are updated in the corresponding clause gadget.
Indeed we need 2 time steps to activate each clause node, and if we spend more than
two steps in any clause gadget we are not going to be able to activate the output
node in the timespan. Let C be the first clause. There are

(2m
2

)
ways of choosing

steps to update one of its clause variable nodes, and the clause node. To update the
second clause, we have

(2m−2
2

)
ways of choosing steps to update the corresponding

pair. Repeating this argument we deduce that there are

m∏

i=0

(
2m − 2i

2

)
= m!

2m

ways of choosing steps for updating a pair of nodes of each clause. Finally, for
each fully-satisfied clause there are two possible choices of a clause-variable node
to update, giving a total of 2d choices.

Previous calculations imply that there are k! · (2m)!
2m

· 2d possible good sequences
that induce y. We deduce that there are |ϕ(F , k, d)| · k! · (2m)!

2m
· 2d good-sequences

inducing truth-assignments in ϕ(F , k, d). �

Now let us call P(s) the degree m polynomial defined by

P(s) =
m∑

d=0

|ϕ(F , k, d)|sd ,

and observe that |ρ(F , k)| = ∑m
d=0 |ρ(F , k, d)| = (2m)!

2m · k! · P(2). We would like
to compute the coefficients of P(x). This is possible when we know an evaluation
of the polynomial in a large enough point, as notices by Valiant in [22]. For sake of
completeness we give the result and the full proof.

Lemma 4 Let P(x) = ∑n
i=0 ai x

i be a polynomial with integer coefficients upper
bounded by a A > 2. Suppose that we know a pair (x0, y0) such that y0 = P(x0)
and x0 > A2. Then, there exists an algorithm that outputs the coefficients a0, . . . , an
of P in a time that is polynomial in n(log(x0) + log(y0) + log n).

Proof First, observe that
∑ j−1

i=0 ai x
i
0 < x j

0 . for every j ∈ [n]. Indeed,
j−1∑

i=0

ai x
i < A

j−1∑

i=0

xi = Ax j−1
j−1∑

i=0

xi− j+1 = Ax j−1
j−1∑

i=0

1

x j−1−i

< Ax j−1−1
j−1∑

i=0

1

A2i
<

3

2
Ax j−1 < x j

0
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Then, since an = y0−∑n−1
i=0 ai xi0
xn0

we deduce that,
y0
xn0

− 1

x0
< an ≤ y0

xn0
implying that

an =
⌊
y0
xn0

⌋
.

We sequentailly obtain the other coefficients taking (x0, y0 − anxn0 ) as a pair for
P ′(x) = ∑n−1

i=0 ai x
i . From from Proposition 1 we deduce that each iteration can be

done in time log(x0) + log(y0) + log n. �

Note that, unfortunately, the expression |ρ(F , k)| = (2m)!
2m · k! · P(2) only allows

us to get the value of latter polynomial in s = 2 which is not a large-enough value to
apply previous lemma. However, we can use a technique that is also inspired in the
same paper of Valiant [22], used to show the #P-Completeness of a variant of SAT.
Let p be a positive integer to be fixed later. Let F p be the 2-CNF formula with n
variables and mp clauses defined as F p = F ∧ F ∧ · · · ∧ F (repeated p times).

Lemma 5 |ρ(F p, k)| = k! · (2mp)!
2mp

· P(2p)

Proof Observe that F and F p have the same set of variables, and each clause of F
is repeated p times on F p. Therefore, ϕ(F p, k, pd) = ϕ(F , k, d). Moreover, if d
is not a multiple of p, then ϕ(F p, k, d) = ∅. Then,

|ρ(F p, k)| =
mp∑

d=0

|ρ(F p, k, d)|

=
mp∑

d=0

|ϕ(F p, k, d)| · k! · (2mp)!
2mp

· 2d

=
m∑

d=0

|ϕ(F p, k, pd)| · k! · (2mp)!
2mp

· 2pd

=
m∑

d=0

|ϕ(F , k, d)| · k! · (2mp)!
2mp

· 2pd

= k! · (2mp)!
2mp

· P(2p)

�

Theorem 1 Contagion- Probability is #P-complete.

Proof Let F be an instance of #Mon- 2- Sat and consider the following algorithm
computing ϕ(F ) in polynomial time on a machine with an oracle for
Contagion- Probability. For each k ∈ [n], the algorithm picks p = 2n + 1 and
constructs the input (G[F p, k], x[F p, k], v[F p, k], t[F p, k]) of
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Contagion- Probability and queries the oracle on it, obtaining |ρ(F p, k)|. Then,
the algorithm computes k! · (2mp)!

2mp
and divides |ρ(F p, k)| by it in order to obtain

the value P(2p) according to Lemma 5. Then, the algorithm uses as a subroutine the
algorithm given by Lemma 4 to obtain all the coefficients of P, which correspond to
{|ϕ(F , k, d)|}d∈{0,...,m}. Finally, the algorithm outputs

ϕ(F ) =
n∑

k=1

m∑

d=0

|ϕ(F , k, d)|

From Proposition 1 and Lemma 4, all previous calculations can be done in polyno-
mial time. We deduce that #Mon- 2- Sat ∈ FPContagion- Probability, implying that
Contagion- Probability is #P-Complete. �

4 Polynomial Time Algorithm for Maximum Degree 4

In this section, we restrict ourselves to the of Bootstrap Percolation in graphs of
maximum degree four. We show that in this case, unlike the general case studied in
previous section, we can compute the exact probability of infecting some node in
polynomial time. Roughly, this means, in this context, that we are able to efficiently
count the sequences of nodes, such that, if we update them we change the state of
objective node from 0 to 1 in some fixed time t . In other words, we show that problem
Contagion- Probability is in FP. To show this result, we use a characterization
given in [8], for the configurations where the objective node is unstable. This charac-
terization involves a topological structure that can be exploited to design an efficient
algorithm counting all the good sequences.

In the following,G = ([n], E) is a graph of degree atmost 4, x is a configuration of
{0, 1}n andv is a node such that xv = 0.WecallG[0] the subgraphofG inducedby the
nodes that are healthy, i.e. G[0] = G[{u ∈ V : xu = 0}]. Observe that v ∈ V (G[0])
and hence we call G[0, v] the connected component of G[0] containing v. The
following proposition characterizes the stable configurations.

Proposition 2 ([9]) Node v is stable in G if and only if v belongs to a path P in
G[0] such that an endpoint w of P belongs to a cycle in G[0] or dG(w) ≤ 2.

Suppose that v is a site that is not stable in G. For each neighbor w of v in G
such that xw = 0, we call Dw the connected component of G[v, 0] − v containing
w. When xw = 1, we fix Dw = ∅. The following lemma, characterizes the structure
of the configuration around unstable sites.

Proposition 3 ([8]) Let w be a neighbor of v such that xw = 0 and w becomes active
before v for some good sequence. Then Dw induces a tree of G[0] where all nodes
have degree at least 3 in G.
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A component Dw which is a tree where all the nodes are of degree at least
3 in G is called a good tree. As convention, an empty set is a good tree. Let
GoodNeighbors(v) the set of neighbors of v that induce good trees. Observe that
v admits a good sequence if the strict majority of its neighbors induce good trees.
A tree of G[0] rooted at v is called a good tree for v, and denoted Tv , if Tv − v has⌊
dG (v)

2

⌋
+ 1 components, each of them being good trees.

Definition 1 Given a tree T of size n rooted at r , a pruning sequence of T is a
bijective mapping ρ : [n] → V (T ) such that, if u is an ancestor of v, then ρ−1(u) >

ρ−1(v). In particular ρ−1(r) = n. The number of pruning sequences of T is denoted
#Prune(T, r).

The following lemma links up the good sequences of v with the existence of
pruning subsequences of the good trees in the neighborhood of v.

Lemma 6 A sequence σ is a good sequence for v if and only there is a succession
s1 < · · · < s|Tv | such that ρ(i) := σ(si ) is a pruning sequence a good tree Tv of v.

Proof Suppose first that σ : [t] → V is a good sequence for v and let {x(s)}s∈[t]
be the succession of configurations such that x(s) = F(x, σ, s). Since σ is a good
sequence, there must exist a step s∗ ∈ [t] in which v becomes infected, i.e. such that
x(s∗ − 1)v = 0 and x(s∗)v = 1. In step s∗ − 1 the strict majority of the neighbors of
v must be infected.

From Proposition 3, we know that there exist a set {w1, . . . ,wk} of k =
⌊
dG (v)

2

⌋
+

1 neighbors of v such that, for all i ∈ [k], node wi induces a good tree Di and
x(s∗ − 1)wi = 1. Define Tv = {v} ∪ ⋃

i∈[k] Di , and observe that Tv is a good tree
for v. Let us call s1 < · · · < s
 = s∗ the sequence on which the nodes of Tv are
updated, with 
 = |Tv|. More precisely, for each j ∈ [
] we have that σ(s j ) ∈ Di ,
x(s j )σ(s j ) = 1 and x(s j − 1)σ(s j ) = 0.Observe thatσ(s j ) is a leaf of Tv \ σ([s j − 1]),
because for each s ∈ {s1 < · · · < s
 = s∗} state of node σ(s) is updated, meaning
that the majority of its children are infected or in state 1 in time s − 1 and also σ(s)
must be an ancestor of σ(s) as any node in Tv was initially set to 0. Thus, if s j is not
a leaf of Tv \ σ([s j − 1]) then, it would have more than one ancestor in Tv which is
not possible. We deduce that ρ(i) := σ(si ) is a pruning sequence of Tv .

Conversely, if ρ is a pruning sequence of Tv , then in step s|Tv | vertex v becomes
infected, implying that σ is a good. sequence. �

Lemma 7 Let (G, x, v, t) be an instance of Contagion- Probability such that G
is a graph of maximum degree 4 and v is unstable. Then,

• If |GoodNeighbors(v)| =
⌊
dG(v)

2

⌋
+ 1, then

Contagion- Probability(G, x, v, t) = α(T ∗, v, t)

• If |GoodNeighbors(v)| >

⌊
dG(v)

2

⌋
+ 1, then
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Contagion- Probability(G, x, v, t) = α(T ∗, v, t) + β(T ∗, v, t)

where

α(T, r, t) =
{( t

|T |
)
#Prune(T, r) (n−|T |)!

(n−|T |−t)! if |T | ≤ t
0 otherwise

,

β(T, r, t) =
∑

S⊂N (v)s.t|S|=dG (v)−1

(α(TS, v, t) − α(T ∗, v, t)),

T ∗ = {v} ∪
⋃

w∈GoodNeighbors(v)

Dw and TS = {v} ∪
⋃

w∈S
Dw

Proof First, for a given a rooted tree T , observe that α(T, r, t) is exactly the number
of sequences of length t that contain a pruning sequence of T . Indeed, if |T | > t then
this number is zero. Otherwise, a sequences containing a pruning of T is constructed
picking |T | steps over the t possible choices, and prune T in the chosen steps. In the
remaining steps any other node can be updated. The number of ways that |T | steps
can be picked over a total of t steps is

( t
|T |

)
. The possible ways of pruning the T on

those steps is #Prune(T, v). Finally, the number of possible choices for updating

other vertices in the remaining steps is
(n − |T |)!

(n − |T | − t)! . We deduce that α(T, r, v) is

the product of previous quantities.
Lemma 6 implies that every good sequence for v contain a subsequence that can be

mapped into a pruning sequence of a good tree for v. When |GoodNeighbors(v)| =⌊
dG(v)

2

⌋
+ 1, there is only one possible choice of good tree for v, which is precisely

T ∗ = {v} ∪ ⋃
w∈GoodNeighbors(v) Dw. We deduce that the number of good sequences

for v is α(T ∗, v, t).

When |GoodNeighbors(v)| >

⌊
dG(v)

2

⌋
+ 1, then necessarily the degree of v is

3 or 4. In either case |Good(v)| = d(v) and any good tree for v contains d(v) − 1
of its neighbors. Therefore, the choices for good sequences of v is the number of
sequences that update contain a prune of T ∗, plus all the sequences that update
some good tree of v, but not all T ∗. The number of sequences that contain a
prune of T ∗ is α(T ∗, v, t). For a given set S of three neighbors of v, the num-
ber of sequences that contain a pruning of the good trees induced by the nodes
in S, but not a pruning of T ∗ equals α(TS, v, t) − α(T ∗, v, t). We deduce that
Contagion- Probability(G, x, v, t) equals

α(T ∗, v, t) +
∑

S⊂N (v)s.t|S|=dG (v)−1

(α(TS, v, t) − α(T ∗, v, t)).

�
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Previous lemma implies that, in order to obtain a polynomial-time algorithm
solving problem Contagion- Probability, it is enough to have a polynomial-time
algorithm computing the value of #Prune(T, r, t), for a given rooted tree T . Fol-
lowing lemma states that this is the case.

Lemma 8 Given tree T rooted in vertex r with maximum degree 4, there is an
algorithm computing #Prune(T, r) time polynomial in |T |.
Proof For a node u in T , let us define the depth of u, denoted D(u), is the distance
of u to the root r . We also call M the maximum depth of a node in T . The function
D(·) can be computed in polynomial time simply running a BFS starting at node r .
The level of a node u, denoted L(u), equals M − D(u). In other words, vertices at
depth M are at level 0. The root is at level M .

Observe that all the nodes in level 0 are leafs, but not necessarily all leaves are at
that level. For a given u ∈ T , we call Tu the subtree rooted at u containing u and all
it descendants. Observe that if u is a leaf of T , then #Prune(Tu, u) = 1. If u is not
a leaf, let us call w1, . . . ,wk the descendants of u in T , with k = d(u) − 1. Then,

#Prune(Tu, u) = (|Tw1 | + · · · + |Twk |)!
|Tw1 |!, . . . , |Twk |!

#Prune(Tw1 ,w1) · · · #Prune(Twk ,wk)

(4.1)
Indeed, to #Prune(Tu, u) we have to prune all the descendants of u before u.
Observe that a pruning of any two decendants of u are independent. Therefore, a
pruning of Tu consist in choosing |Tw| steps and a prune of Tw for each descen-
dant w of u. For each j ∈ [k] let s j = |Twj | and S = s1 + · · · + sk . Then, we

have
( S
s1

)(S−s1
s2

) · · · (S−∑k−1
j=2 s j

sk

) = ( S
sk

) n∏

k=2

(S−∑k−1
j=2 s j

sk

) = (|Tw1 |+···+|Twk |)!
|Tw1 |!,...,|Twk |! ways of choos-

ing |Tw| steps for every descendant w of u. For each such choice, there are

#Prune(Tw1 ,w1) · · · #Prune(Twk ,wk)

ways of choosing a pruning of each subtree Twi .
Therefore, our algorithm computing #Prune(T, r) consists in a dynamic pro-

gramming scheme over the levels of T . In level 0 all nodes u are leafs, and then
#Prune(Tu, u) = 1. If all the nodes al level i are already computed, the value of
#Prune(Tu, u) for a node in level i + 1 can is computed using Eq.4.1.

Observe that for each u ∈ T , the quantity #Prune(Tu, u) is at most |T |! =
O(2|T | log |T |). Therefore, from Proposition 1 we deduce that the expression of Eq.4.1
can be computed in time O(|T |2). We conclude that #Prune(T, r) can be computed
in time O(|T |3). �

Theorem 2 There is apolynomial-timealgorithmsolvingContagion- Probability
restricted to the graphs of maximum degree 4.

Proof Let (G, x, v, t) be an input ofContagion- Probability, whereG an n-node
graph of maximum degree 4, x is a configuration of G, v is a node such that xv = 0
and t ≤ n.
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The algorithm computes G[0, v], which is the component of G[0] that contains
v. Let C1, . . . ,Ck , with k ≤ 4 the connected components of G[0, v] − v. Then, it
computes GoodNeighbors(v) verifying which components induce good trees. If
|GoodNeighbors| < 
 d(v)

2 � + 1 then by Proposition 2 and Proposition 3 algorithm
outputs 0 because v is stable. Now suppose |GoodNeighbors| ≥ 
 d(v)

2 � + 1 then, for
eachw ∈ GoodNeighbors(v), compute #Prune(Tw,w), where Tw is the component
(good tree) of G[0, v] − v that contains w. Finally, the output is computed according
to the expressions given in Lemma 7. From Proposition 1 and Lemma 8, we deduce
that our algorithm runs in time O(n3). �

5 Conclusion

In this chapter, we have studied the computational complexity of the
problem Contagion- Probability. In general, we have shown that
Contagion- Probability is #P-complete. Roughly, this means there is no bet-
ter strategy for computing the probability of an inactive node to change to state 1
than simply simulate the system for each possible updating sequence σ in order to
verify howmany of them actually change the state of objective node. However, when
we consider networks with maximum degree 4, we have shown, based on previous
results that characterize good sequences in terms of underlying graph topology [8],
that latter computation can bemade in polynomial time. The first natural question that
arises in this context is whether this threshold in the maximum degree of the network
is tight, or in other words: isContagion- Probability still #P-complete even when
restricted to instances of maximum degree 5? Note that gadgets in section 3 strongly
use high connectivity in graph G[F , k] in order to assure that good sequences will
respect a fixed order while updating different nodes in the network (first we update
variable nodes, then we update threshold gadget, etc.). This is a key aspect of the
proof as it helps us to keep control in the amount different sequences associated to
one particular assignation satisfying the Boolean formula. This shows that evenwhen
one could conjecture a way to implement constant degree gadgets (by for example
considering more copies of smaller gadgets) there should also be a way to keep track
in all possible good sequences that implement the same assignation satisfying the
original Boolean formula.

On the other hand, it could be also interesting to study a version of problem
Contagion- Probability but now considering some other model having a different
type of local updating rule, e.g. linear functions such as conjunctive or disjuntive
networks or totallistic functions in which the next state of every node is given not
by the state of the majority of their neighbors but by the sum of their states. In
this regard, it is interesting to note that for some of the latter automata networks,
there exist efficient algorithms (polynomial or even fast parallel algorithms) in order
to compute the dynamics of the system (for example, in the case of conjunctive
networks, it suffices to compute powers of some matrix [7]). However, this does not
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necessarily implies that counting version of Good- Sequence would be efficiently
solvable.

In addition, we would like to note that previous results are also interesting in
the context of counting decision problems. Within this framework, we are no longer
interested in computing the number of all possible polynomial size certificates but to
determine whether, for some fixed input, the majority of polynomial size strings we
give to the verifier along with the input are actually certificates. This notion defines
the complexity class PP. More precisely a language L ⊆ {0, 1}∗ is in PP if and
only if there exist a polynomial function p : N → N and a polynomial-time veri-
fier V such that x ∈ L ⇐⇒ |y ∈ {0, 1}p(|x |) : V (x, y) = 1| ≥ 1

2 · 2p(|x |). By con-
sidering this formalism, an interesting question arises: is the decision version of
Contagion- Probability, which consist on deciding if the probability of trans-
mission for objective node is at least 1

2 , PP-complete? (observe that by definition
it is in PP). In this context, it is known that problem MAJ- SAT, which consist
on deciding if the majority of all assignments of some Boolean formula will sat-
isfy it, is PP-complete and thus, it could be very interesting to explore as future
work if an application of the same techniques we have used in Section 3 might
produce a polynomial-time reduction from latter problem to decision version of
Contagion- Probability.

Finally, as we have shown that Contagion- Probability is #P-complete, it
could be interesting to study approximations. In particular, within the framework of
applications one could ask whether this problem admits a polynomial randomized
approximation scheme.
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Thermodynamics of Small Systems
Through a Reversible and Conservative
Discrete Automaton

Marco Montalva-Medel, Sergio Rica, and Felipe Urbina

Abstract The Q2R model is a cellular automaton which is a dynamical variation of
the Ising model for ferromagnetism that possesses quite rich and complex dynamics.
It has the property of being conservative and reversible but, in practice, it shows
irreversible behavior for relatively small system sizes. In this work we review some
of its main properties and use it to simulate de behavior of a classical model for
irreversible thermodynamical systems: the Ehrenfest’s dog-flea model.

Keywords Fixed point · Cycle · Cellular automata

1 Introduction

The reversible exchange of heat between two distinct reservoirs at different temper-
atures has remained a central problem of thermodynamics and statistical physics.
Despite the reversible character of the equation of motions in mechanics, the nature
does not allow to observe a reversible behavior of a macroscopical system. This
central question in basic physics has been in the core of debates since the end of the
19th century.

SoonafterBoltzmannkinetic theory andhis entropygrowthH-theorem,Loschmidt
and Zermelo’s objected the very basis of Boltzmann results. Loschmidt argued that
if a dynamical system goes from the set �(t) in the phase space to �(t ′), then by
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Fig. 1 Cartoon representation of the Ehrenfest’s dog-flea model: a Represents an initial state with
all particles in the left-hand side container; b and c show two distinct intermediate configurations
that the system displays (b is most probable); and, d shows a possible recurrence: all particles come
back to the left-hand side container

means of Newtonian dynamics it should also exists the inverse trajectory, against the
H-theorem [1]. Then Zermelo uses the Poincaré recurrence theorem to argue that if
the system is at a time t at a point in the phase space, then it exists a time t ′ whenever
the system will be close enough to previous point in the phase space. After Zermelo
[2, 3], the Boltzmann H-theorem is in evident contradiction with the Poincaré recur-
rence theorem. As Boltzmann itself replies, the recurrence time becomes huge in
comparison with all practical times in the usual thermodynamics.

To model the recurrence time paradox, P . and T . Ehrenfest elaborated particle
exchange model [4, 5]. The Ehrenfest model consist of N particles that can be
distributed in the left or right side of a container (see Fig. 1 as a scheme), in such a
way that we have N/2 + n balls are initially at the left container and N/2 − n are
in the right. As show by Kac [6], the Ehrenfest model maybe mapped into a random
walk, moreover average recurrence time is:

〈τ(N , n)〉 = (N/2 − n)!(N/2 + n)!
N ! 2N ≈

{
2N for n ≈ N/2√
πN
2 for n ≈ 0.

Therefore, if initially the system is filling the left side container n = N/2 (Fig. 1a),
then themean recurrence timewould be exponentially long, more precisely 2N , but if
initially the system is equally distributed n = 0 (Fig. 1b) then the waiting time scales
only as

√
N . Therefore, as one increases the total number of elements N , the recur-

rence time becomes exponentially long. The Ehrenfest model captures the essence
of the exponentially long recurrence time. Via an extremely simplified analogy that
shows that an improbable initial configuration (all particles in one container) requires
an exponentially long time to be back to the same state again (Fig. 1d).

Generically, irreversibility arises from the large number of elements, or more
precisely number of degrees of freedom, involved in the dynamical system. If one has
ten particle (N = 10) and initially all particle are in the left container, it is expected
after the Ehrenfest model, that all particles back to the left container after 210 =
1024 steps. Therefore, irreversibility appears to be a consequence of thermodynamic
limit, N → ∞. Nevertheless, in moderate system size the Loschmidt and Zermelo
objections may be pertinent.

However, even in moderate system size a thermodynamic description appears to
be adequate, in other words, in thermodynamics and statistical physics irreversibility
is understood in a statistical sense. In a recent article [7], two of us, developed a
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master equation approach to a reversible and conservative cellular automaton model
(Q2R), which is a dynamical variation of the Ising model for ferromagnetism that
possesses quite a rich and complex dynamics. The phase space is composed of a huge
number of cycles with exponentially long periods. Following Nicolis and Nicolis [8],
a coarse-graining approach is applied to the time series of the total magnetization,
leading to a master equation that governs the macroscopic irreversible dynamics
of the Q2R automata. The methodology is replicated for various lattice sizes. In
the case of small systems, we show that the master equation leads to a tractable
probability transfer matrix of moderate size, which provides a master equation for
a coarse-grained probability distribution. The method is validated and some explicit
examples are discussed.

The present article, examines this problematic in an extremely simplified model,
namely the Q2R cellular automaton. The Q2R cellular automaton is a two state
Ising-based automaton that rules a reversible evolution of a set of discrete states. By
two states, we mean that Q2R is ruled by a duet (x, y) at each time, x and y being
elements of N = L × L regular square lattice with periodic boundary conditions.
Remarkably, the evolution preserves an Ising-like energy [9], as well as, a second
invariant [10]. Despite the simplicity of the Q2R model its behavior is usually quite
rich as it has been reported extensively in the 80s [11, 12].

Furthermore, for a large system size it has been established that the evolution
presents an irreversible behavior towards an equilibrium ruled by a micro-canonical
ensemble [11, 13]. Moreover, for a set of random initial conditions with different
energies one recovers the Ising phase transition ruled by the Onsager canonical
partition function [14].

Because the Q2Rmodel is a reversible cellular automaton its phase space is finite.
Indeed, for a lattice of size N , the phase space is the set of the 22N vertices of a 2N -
dimensional hypercube. However, this phase space is partitioned by different sub-
spaces of constant energies, which, at the same time, are partitioned in a large number
of subspaces composed by periodic orbits or fixed points. Notice that because the
system is conservative there are neither attractive nor repulsive attractors, all attractor
are the fixed points or the cycles.

A given initial condition, with energy, belongs to one of this cycles or a fixed point.
As shown numerically, by Herrmann et al. [12] for an energy greater than some value
the probability to get a large enough (actually exponentially long) cycle becomes one.
However, in the case of small system sizes, the length of the periods are moderate.
For instance, for a 2 × 2 square lattice, there are 28 = 256 states and the longest orbit
is of period 4. In the case, of a 4 × 4, the phase space has 232 ≈ 4.3 × 109 elements.
In this lattice the longest orbit is T = 1080. Moreover, this case can be scrutinized
exactly, and we are able to conjecture that the number of states of a given period is
exponentially large with the number of sites N .

An arbitrary initial condition of energy E falls into one of these cycles and runs
until it returns to the initial configuration after a time T , which could be exponentially
long, and it displays a complex behavior (not chaotic, strictly speaking; see, for
instance, Ref. [13, 15]. More importantly, the probability that an initial condition
exhibits such a complex behavior is not exponentially small [12]. Moreover, Q2R
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manifests sensitivity to initial conditions, that is, if one starts with two distinct, but
close, initial conditions, then the conditions will evolve into very different cycles
as time runs [13]. In some sense, an initial state explores vastly the phase space,
justifying the grounds of statistical physics.

In conclusion, the overall picture is that, although for a finite-size system the
deterministic automaton Q2R possesses periodic dynamics so it is not ergodic, there
is a huge number of initial conditions that explore vastly the configuration space (this
is particularly remarkable for initial conditions of random structure). Therefore, one
expects that a master equation approach may be successful.

2 The Model

TheQ2Rmodel, introduced byVichniac [16], is defined in a regular two dimensional
toroidal lattice with even rank L × L , being N = L2 the total number of nodes.
Special cases of regular and periodic networks in two space dimensions are the
square neighbor with a von Neuman neighborhood |V | = 4, Fig. 2a, and a hexagonal
neighborhood |V | = 6, Fig. 2b. However non regular lattices with an even number
of neighbors may also be considered.

We associate an index k ∈ {1, . . . , N }, as well as a relative position in the lattice
specified by two indices k1 ∈ {1, . . . , L} and k2 ∈ {1, . . . , L} (the respective row and
column indices). Further, a node k is characterized by two possible values xk = ±1,
conforming with the following two-step rule:

xt+1
k = xt−1

k H

⎛
⎝∑

i∈Vk

xti

⎞
⎠ ,

where Vk denotes an even number neighborhood with periodic boundary conditions.
The function H is such a that H(s = 0) = −1 and H(s) = +1 in all other cases.
Thus, the state x belongs to the discrete set � = {−1, 1}N (of size 2N ).

Using the Hadamard product, which is the multiplication component to compo-
nent of the state x ∈ � and y ∈ �, that is x 
 y ∈ � represents that each component
is defined by: [x 
 y]i j ≡ xi j yi j . This product is commutative, associative, and it

Fig. 2 a Represents a square
lattice with the von Neuman
neighborhood containing
four neighbors; b plots a site
in a hexagonal lattice with
six neighbors

a)

xk

b)

xk
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possesses a neutral element, that we denote by 1 and corresponds to the state of �

composed only by 1s.Moreover, we also define−1 ∈ � by the states composed only
by −1s. Given x ∈ �, we will write −x to refer to −x = [−1] 
 x .

Defining the function φ : � → � such that, if x ∈ � then, the k-th component of
[φ(x)]k = −1 if the sum of all neighbors of the k-th component of x is null, namely∑

i∈Vk
xi = 0. Notice that the neighborhood, Vk, includes the periodic boundary

condition of the lattice. Otherwise, [φ(x)]k = +1. Therefore, the function φ(x) is a
state in � that has a −1 in the sites that x has a null neighborhood.

Then the Q2R rule maybe written in a shorthand notation by

xt+1 = xt−1 
 φ
(
xt

)
(1)

However, it is convenient (xt , yt ) ∈ �2 at time t , and according with the previous
definitions we re-write the Q2R model (1) as the following two step deterministic
rule:

yt+1 = xt

x t+1 = yt 
 φ
(
xt

)
. (2)

The set of configurations, denoted by �2, it is composed by couples of states in
�2 = � × � = {(x, y) | x ∈ � ∧ y ∈ �} (of size 22N ).

The evolution is in parallel, dictated by the rule (2) and is complemented with
an initial configuration (x0, y0) ∈ �2. We will write (xt , yt ) → (xt+1, yt+1) for the
one-step evolution from (xt , yt ) to (xt+1, yt+1) = (yt 
 φ

(
xt

)
, xt ).

2.1 Fundamental Properties

2.1.1 The Phase Space

ThePhase Space of the Q2Rmodel is the set of configurations�2. Because it is finite,
the phase space has two types of invariant sets: cycles or fixed points. A cycle C of
period T ∈ N is a sequence dictated by the evolution (x0, y0) → (x1, y1) → · · · →
(xT−1, yT−1) → (xT , yT ) such that all configurations (xt , yt ) are different, except
(x0, y0) = (xT , yT ). We will write (x, y) ∈ C if (x, y) is a configuration that is in C
and,more generally, the notation [(xt , yt ) → (xt+1, yt+1) → · · · → (xt+τ , yt+τ )] ∈
C will be used to refer to the subsequence of C that goes from (xt , yt ) to (xt+τ , yt+τ ),
τ ≤ T . A fixed point is a cycle of period T = 1, i.e., is a configuration (x, y) ∈ �2

such that (x, y) → (x, y).
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2.1.2 Reversibility

Notice that φ
(
xt

) 
 φ
(
xt

) = 1, ∀xt ∈ �. Then Q2R rule may be inverted getting
the backward evolution of the system but for the couple (yt , xt ), that reads:

{
xt−1 = yt

yt−1 = xt 
 φ
(
yt

)
,

which is exactly the same rule (2), displaying the remarkable property of reversibility.
The reversibility property implies the following Reversibility Lemma:

Lemma 1 (Reversibility) Let x, y, z in �, then,

[(x, y) → (z, x)] ⇔ [(x, z) → (y, x)].

For the proof we refer the reader to [17].
This Reversibility Lemma says that, if there is a one time step evolution between

two configurations, then, there is also a one time step evolution between their sym-
metric configurations, but, in the opposite sense. As a consequence, we have the
following generalization:

Corollary 2 Let xt , yt in �, t ∈ {0, . . . , p}, p ∈ N, then,

(
x0, y0

) → · · · → (x p, y p) ⇔ (y p, x p) → · · · → (
y0, x0

)
.

Figure3 illustrates the proof of this property.

2.1.3 Energy Conservation

Let the energy function be,

E[(xt , yt)] = −1

2

∑
〈k,i〉

xtky
t
i ,

Fig. 3 Applying successively the Lemma1 at each step-evolution (xt , yt ) → (xt+1, yt+1), for t ∈
{0, . . . , p}, p ∈ N, one constructs the backward evolution between their symmetric configurations
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where the symbol
∑
〈k,i〉

means the sumover all sites k and the sumover all neighbors i of

node k, i.e.,
∑
〈k,i〉

≡
∑
k

∑
i∈Vk

≡
∑
i

∑
k∈Vi

. Such a energy is boundedby−2N ≤ E ≤ 2N

and, as shown by Pomeau [9], it is conserved1 under the dynamics defined by the
Q2R rule (2). That is: E[(xt , yt)] = E[(x0, y0)], ∀t ∈ N.

2.1.4 The Qualitative Dynamics

When the phase space is partitioned in different sub-spaces accordingly to its energy
E one observes that the constant energy subspace shares in principle many cycles of
different periods, aswell as,many different fixed points. An arbitrary initial condition
of energy E falls into one of these cycles, and it runs until time T , which could be
exponentially long, and displaying a complex behavior (not chaotic stricto-sensu, see
for instance [15]). More importantly, there is numerical evidence that the probability
that an initial condition belongs to an exponentially long period cycle, and it exhibits
a complex behavior is finite [12].

Moreover, Q2R manifests sensitivity to initial conditions, that is if one starts
with two distinct, but close, initial conditions, then, the distance (e.g. the Manhattan
distance) between the respective evolutions of the initial states become large as time
evolves [13].

2.2 Phase Space Classification of the Q2R Automaton

In the following we summarizes the main results of Ref. [17].

1. The characterization and existence of fixed points, period-two and period-three
cycles. More precisely,

Proposition 3 {x, x} is a fixed point of Q2R iff φ(x) = 1.

Proposition 4 {x, y} is in a period 2 cycle iff x �= y ∧ φ(x) = 1 ∧ φ(y) = 1.

Proposition 5 Let {(x, y), (z, x), (y, z)} ⊆ �2 such that (x, y) → (z, x) → (y, z).
Then, {(x, y), (z, x), (y, z)} ⊆ P3 ⇔ φ(x) 
 φ(y) 
 φ(z) = 1.

2. The number of fixed points is the perfect square of an even number α2, with
α = 2kN , and kN is an integer that depends explicitly on the lattice size N . In fact,
if the lattice is considered as a checkerboard and a configuration corresponds to a
set of values over the black (orwhite) cells, thenα is the number of configurations
without null neighborhoods.

1 Other dynamical invariants are known in the literature [10].
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Fig. 4 Phase space cartoon
displaying the dynamical
partition of the phase space
accordingly to the four
possible existing cycles.
namely, the symmetric
cycles S-I, S-II and S-III or
an asymmetric cycle, AS.
Some known cardinalities
are displayed as well as the
fixed points and the period
two cycles

3. An algebraic relation between the fixed points and period-two cycles:

Proposition 6 If the total number of fixedpoints is |FP| = α2, then, the total number
of period 2 cycles is |P2| = α2(α2 − 1).

4. A complete classification of all invariant sets in four types (Theorem7). This
characterization depends on the specific topological features of each cycle,which
may be a symmetric of type S-I, S-II and S-III or an asymmetric cycle, AS (see
next Sect. 2.2.1).

5. Lower and upper bounds for the total number of cycles of type S-I and S-II that
scale both exponentially with the system size (∼2N ) (Fig. 4).

2.2.1 Theorem on the Classification of Cycles in Q2R

Definition 1 Let be the following sets:

A = {
(x, y) ∈ �2/φ(x) = 1 ∧ x = y

}
B = {

(x, y) ∈ �2/φ(x) = 1 ∧ x �= y
}

C = {
(x, y) ∈ �2/φ(x) �= 1 ∧ x = y

}
D = {

(x, y) ∈ �2/φ(x) �= 1 ∧ x �= y
}
.

We say that (x, y) ∈ �2 is a configuration of type A, B, C or D, if (x, y) belongs to
one of the sets A, B, C or D, respectively. We refer to a evolution of typeU → V to
the one-step evolution of a configuration (x, y) ∈ U up to (w, x) ∈ V with U, V ∈
{A, B,C, D}.
Definition 2 We say that, the symmetric configuration of (x, y) ∈ �2 is the con-
figuration (y, x) ∈ �2. In particular, the symmetric configuration of (x, x) ∈ �2 is
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itself, (x, x), and we will call it as a self-symmetric configuration. We say that a cycle
C is symmetric if satisfy:

(x, y) ∈ C ⇒ (y, x) ∈ C.

Otherwise, we say that C is non-symmetric.

Definition 3 A non-symmetric cycle C is said to be asymmetric if satisfy:

(x, y) ∈ C ⇒ (y, x) /∈ C.

Theorem 7 (Classification of cycles in Q2R) Let C be a cycle of Q2R with period
T ∈ N. Then C is of type S-I, S-II, S-III or AS, where:

• Type S-I. If T = 1 or if there exists p ∈ N0 such that C has the topology B →
D → · · · → D → C → D → · · · → D → B, i.e., is symmetric with:

– An odd period T = 2(p + 1) + 1.
– Only one configuration of type C, only one configuration of type B and (2p + 1)
configurations of type D.

• Type S-II. If there exists p ∈ N0 such that C has the topology C → D → · · · →
D → C → D → · · · → D → C, i.e., is symmetric with:

– An even period T = 2(p + 2).
– Only two configurations of type C and 2(p + 1) configurations of type D.

• Type S-III. If T = 2 or if there exists p ∈ N0 such that C has the topology B →
D → · · · → D → B → D → · · · → D → B, i.e., is symmetric with:

– An even period T = 2(p + 2).
– Only two type B configurations and 2(p + 1) type D configurations.

• Type AS. If there exists p ∈ N \ {1} such that C has the topology D → · · · → D,
i.e., is an asymmetric cycle with:

– Period T = p + 1 (it can be even or odd, depending on the value of p).
– All its configurations are of type D.

3 An Example of the Ehrenfest Model in Q2R

We can mimic the Ehrenfest’s dog-flea model in the Q2R by dividing the whole
system in two containers thatmaybe communicated by a gate. To do thatweneutralize
the boundaries by imposing that the spin state is constant and equal to 0 on the wall.
This procedure neutralizes not only the wall but also a boundary layer of width one
next to thewall which accordinglywith theQ2R rule do not change in time. The states
on the bulk are essentially free of the boundaries so rule the fluctuating dynamics of
Q2R.
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Fig. 5 Numerical achievement of the Ehrenfest’s dog-flea model in the Q2R model. Different
columns represents distinct time steps of the evolution. While the rows label the system size. As
one moves from the first row (1): 256 × 256 (before excluding the walls); the row (2), corresponds
to 64 × 64; finally, the row (3), is for 32 × 32

The Fig. 5 shows the dynamics at three different state: an initial state (column
a) which is “cooler” (in the sense that it has less energy) than the right-hand side
container. As show the further evolutionary tends to balance irreversible the energies
of the two containers. The column (c) shows in general an equilibrium state. As one
decreases the number of degrees of freedom from 256 × 256 (before excluding the
walls) up to 8 × 8 (before excluding the walls) one observes that the equilibrium is
not longer holds.

More quantitatively Fig. 6 shows the temporal irreversible (despite the fact that
the rule as well the global evolution is formally reversible) tendency to an energy
equilibrium into the two containers. Although the irreversible behavior appears clear
to the eye (one readily cannot imagine how the reverse dynamicsmay bemanifested),
the equilibria is not completely fulfilled: in the case of a system of 64 × 64 (Fig. 6b)
one already notices that the amplitude of fluctuations are large, moreover some times
the right-hand side container has less energy than the original “cool” left-hand side
container. The case of 32 × 32 (Fig. 6c) has a particularity, indeed the initial condition
startedwith the left-bottom sector of the container with only states xk = −1 therefore
the existence of such an “alliance” implies that this sector will never change in time.
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Fig. 6 Evolution of the energy corresponding to the numerical simulations of Fig. 5. In all plots,
the red curves denotes the energy of the left-hand side container; the blue curve denotes the energy
of the right-hand side container; and, the green curve plots the energy of the interface and the gate.
The sum of all these three energies is constant. All energies are normalized by the total number
of sites N , which are: a 256 × 256; b 64 × 64; c 32 × 32; and d 8 × 8. In c the energy is not
equilibrated in both sides of the container. This happens because of the particularity of the initial
state that freeze the states of the left bottom side. The plot d corresponds to the periodic sequence
displayed in Fig. 7

The first consequence is that the energy of both containers cannot be ultimately
equilibrated.

One may wonder if this is against the rules of thermodynamics, and the answer is
now the existence of configurations with “alliances” is not generic, so its existence
is much less probable.

As the system size diminishes up to 8 × 8 (excluding the walls) the recurrence is
observed. Indeed Fig. 7 shows the evolution of a period T = 32 cycle.

The energy evolution as a function of time is a T = 32 periodic function which is
shown in Fig. 6d. Although there is an exchange of energy among the two containers
there is no obvious flux, moreover because of the periodic character of the evolution
one sees the existence of a recurrence after a quite short time.

Qualitatively, in Fig. 6 one observes that there exists a “transition” from the system
size (c) 32 × 32 in which case the cycle are exponentially long compared to the case
(d) 8 × 8, in which the period is short. This kind of small degrees of freedom system
cannot be represented as a thermodynamical system.

Discussion
In conclusion, the scheme of the Ehrenfest’s dog-flea model may be applied to the
Q2R automaton model which appears to be a good model for a reversible and con-
servative dynamical system. Moreover, being Q2R a cellular automaton, it posses a
great advantage with respect the numerical simulations because there is no approxi-
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Fig. 7 Evolution of the configurations in the case of a 8 × 8 system. The evolution corresponds
to a cycle of period T = 32. The initial state (t = 0) corresponds to the upper-left snapshot, then,
following the arrows one follows for: t = 4 t = 8 t = 12, then t = 16 (the bottom-right panel),
then t = 20, t = 24, and, t = 28 (the bottom-left panel), finally the system gets back at t = 32 to
the initial configuration

mation, no round error may be produced multiplying 1 by −1. Therefore, the system
is both formally and in practice (numerically speaking) reversible and conservative.
The old paradoxes pertinent in statistical physics may be revisited in the frame of
Q2R which provide a clear example of dynamical system displaying a complex tem-
poral behavior because of the existence of a huge number of periodic orbits with
periods that may be exponentially long. In the current paper we review the basic
classification of the phase space in for types of cycles. The complex structure of the
phase space makes the necessity of a statistical description of the dynamics.

Tribute to Eric Goles

Personal tribute by Marco Montalva-Medel

I met Eric in August 2011 when he was part of the jury that evaluated my doctoral
thesis defense in the University of Concepción. I remember that, when everything
was over (very good fortunately), he asked me about my future plans to which I
replied that I would like to continue research, so, he tell me something like “if you
want, you can do a postdoc with me at Universidad Adolfo Ibáñez” and me, without
thinking twice, said yes obviously. Then, in less than a month, I was already installed
in Santiago working as a postdoc with him.

The first thing of Eric that surprised me was the speed with which he understood
and analyzed a problem; many times throwing thousands of ideas per second, that
after thinking them calmly, when I was alone, I realized that they were all true! In
this context, we did a couple of interesting works with specific biological networks
and also with cellular automata where we continue collaborating today.

During these yearswherewe have interacted not only in theworkplace, it is easy to
realize that behind this brilliant scientist and multifaceted character, who sometimes
loses patience easily, there is a very good, correct and just man, a lover of reading, a



Thermodynamics of Small Systems Through a Reversible … 215

man who does not forget his roots or his friends, a man who has a humor that leaves
your face hurting from laughing so much, just to name a few of its features. Some
non-academic things that I learned by observing Eric and that I confess are now part
of me are punctuality and speaking always the truth (although it can bring problems).

I am proud to be a participant in this wonderful initiative in honor of him.

Personal tribute by Sergio Rica

I first met Goles on a probably cold and cloudy Tuesday morning in early August
1984. I followed his lectures on Linear Algebra at the School of Engineering and
Sciences at the Universidad de Chile, “La Escuela”. He was in his mid-thirties, his
soul was full of energy but with a quite bad character. The smallest noise in the class-
room produced a big storm in his mood. It was my first encounter with a profesional
mathematician, previously I have gotten lectures only by Teachers, and, say, Engi-
neers amateurs in mathematics. Hence, in my brain, it was a complete mess the logic
construction of vectorial-spaces that Goles tried to build every Tuesday and Thurs-
day for us. At some point, to be precise the demonstration of a theorem saying that
n + 1 vectors in a vectorial-space of dimension n are necessarily linearly dependent,
the confusion was the highest: are real tangle-web of symbols (∀, ∃, ∈ , ∪,∩, . . . ),
theorems, lemmas, etc.

Suddenly, like it happenswhen an airplane crosses a storm towards sun-shine……,
the whole picture was clear (at lest to me), the intentional structure built by the
Professor workout in a rational scheme. It was my only class that I followed by
Goles. In these times, the lectures were strongly abstract, hard to follow, requiring
a lot of thinking. No room for shortcuts. At the University they prepared us as
“Submarine Commander”, we must solved fast and right quite tricky problems, to
prove Theorems, use beautiful tools as the Induction principle, a demonstration by
reducing to absurd, etc. Besides his bad character, I think, Goles does not fit today
with the current lecturing way.

Probably, today we do not need Engineers as a “Submarine Commanders”, cer-
tainlymost ofmy classmates forgot the n + 1 vectors Theorem, or how to diagonalize
a matrix, but to survive this formation gave them a sense of belonging to a school:
“La Escuela”. I think today, students do not share this sense of belonging. Moreover,
they are not proud to belong to some school, neither to be the best. They just pass
over.

In the late 80s, occasionally, I met Goles because he was quite close to my former
advisor in Chile, Enrique Tirapegui. We met a few times nothing very special nei-
ther close. Nevertheless, in 1998 he invited me to a dinner with Ricardo Lagos and
scientists. Soon after President Lagos was elected and Goles became Conicyt Pres-
ident and he left the academic life for political-administrative duties for six years.
Initially Lagos pushed science, probably because Goles convinced him that Science
is important for society, and major programs were created and others improved.

Few times he confessed to me that he was seduced by the “power”, seduced by
travelingwith Lagos, to have lunchwith President Chirac at the Élysée, to accompany
King Juan Carlos to the Antarctic, to fight for the budget for science. But nothing is
perfect, the political time scales are short, and Lagos was only interested in Science
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for 3 years. I often have seen similar life-histories like Goles but with a sad ending, 6
years of science blackoutmay be enough for a definite non return back to science. But
Goles succeed, he came back to science, with ideas, enthusiasm, and more important
with happiness.

After Conicyt, for reasons that are without any interest, he was not welcome to
be back School of Engineering, so he got a position at his current institution at the
Universidad Adolfo Ibanez. At that time, 2006, the UAI was essentially a College,
therefore the idea to do research was not even in the mind of possibilities. Knowing
him, he was bored. As I know was Ivan Rapaport, Goles’ past student and current
Profesor at the University of Chile, started to talk Science with Goles. Ivan saved
Goles, who re-started to think on mathematics.

While I lived in Paris in 2008, he knew (by Ivan), that I was interested to be back
in Chile. We met at a Bistrot near the Ecole des hautes études en sciences sociales
(EHESS) at theBoulevardRaspail.He convinced our formerDeanAlejandro Jadresic
for interviewing me, and finally, I came to UAI in 2009. When I came, the ambiance
was very friendly, but none of the young researchers were able to work with Goles.
I must say he is quite a time demanding, he needs coffee every 30 minutes, to talk
about his thinking, his life, and most probably his favorite subject: himself, “Goles
talking about Goles”.

We fitted perfectly on a subject that he proposes on the Schelling’s segregation
model. We were in different buildings so he wrote me letters (see an example below),
I did numerical calculations. I was not familiar with this discrete world, neither
with rules instead of PDEs, but at the end a PDE is nothing else than a rule. So
we amalgamated perfectly. We finish a paper in a few months, and by accident,
we start another subject based on a reversible cellular automaton: the Q2R model,
which is the main subject of the current paper. He did not pursue the connection of
Q2R with the problem of irreversibility, I must say he is interested in his ideas, not
other people’s ideas, but thanks to this initial collaboration on segregation models I
found a nice reversible system that manifests irreversibility much easier to handle
than nonlinear reversible PDEs. We still collaborate in segregation-like problems for
a while until recently. It is interesting to underline, how infectious, has been this
problem of segregation, it opens a new way to many different studies and many of
them nothing to do with the original problem, in this sense I think this has been a
fruitful collaboration.
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Analyzing Boolean Networks Through
Unsupervised Learning

Gonzalo A. Ruz

Abstract Boolean networks are typically used as simple models of gene regulatory
networks. We use a particular class of Boolean networks called threshold Boolean
networks defined by a weight matrix, a threshold vector, and an updating mode in
this work. We consider the reconstruction of synthetic threshold Boolean networks
that contain the same fixed points as the Mendoza and Alvarez-Buylla network of
flower development by using an evolution strategy. We propose a characterization
by computing topological and dynamical features of the inferred synthetic networks
and then applying machine learning, particularly unsupervised learning techniques,
to analyze these networks. We discover how these networks are clustered and what
features are relevant to discriminate the cluster containing theMendoza and Alvarez-
Buylla network from all the other clusters.

1 Introduction

The capacity to reconstruct synthetic gene regulatory network models under the
Boolean network [6] formalism enables the possibility to explore the topological and
dynamical robustness of the original or wild type network of the biological process
being studied. The reconstruction process from data will typically consist of inferring
Boolean networks that satisfy some Boolean trajectory associated with a biological
process, for example, modeling cell-cycle in yeast [5]. There are some well-known
inference algorithms for Boolean networks, such as REVEAL [8] and the Best-Fit
extension algorithm [7].Butwhen considering a particular class ofBoolean networks,
namely, threshold Boolean networks, where a weight matrix and a threshold vector
characterizes the network, the use of computational intelligence and related tech-
niques have become popular. In [11] simulated annealing was used to infer synthetic
networks that contained the six fixed points or steady states of the original thresh-
old Boolean network model of the dynamical behavior of the flower development
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process in Arabidopsis thaliana plants. Out of five hundred runs, the network infer-
ence framework found 114 networks containing the desired fixed points. Synthetic
Boolean network models of the mammalian cell-cycle network [4] were obtained by
using a swarm intelligence optimization technique called the bees algorithm [10, 13]
in [12, 15]. Genetic algorithms (GAs) were used to reconstruct the gene regulatory
network of Arabidopsis thaliana saline stress response. The GA framework was able
to successfully infer 1000 threshold Boolean networks that contained the desired
Boolean trajectory. A consensus network using the inferred networks was useful to
identify the regulations or interactions among the genes that were more plausible
[17]. Reference [19] presents the problem of inferring bistable lac operon Boolean
regulatory networks using three different evolutionary computation approaches: dif-
ferential evolution, genetic algorithms, and particle swarm optimization. The results
showed that the three algorithms could find solutions, being differential evolution
the most effective, whereas genetic algorithms were the least effective and efficient
in runtime. Particle swarm optimization obtained a good trade-off between effective-
ness versus efficiency. Reference [20] used a neural network approach for inferring
threshold Boolean network for generating a model of bacterial quorum-sensing sys-
tems, and [21] used differential evolution for the reconstruction of a gene regulatory
network of the induced systemic resistance defense response in Arabidopsis thaliana
plants.

An interesting topic within threshold Boolean network reconstruction is the pos-
sibility to study the neutral space [16], i.e., to infer synthetic networks that emulate
the functionality of a wild type network or a base model. Here functionality is typi-
cally related to a dynamical property of a given network. For example, sampling the
neutral space of a wild type network could consist of obtaining networks with dif-
ferent wirings but sharing the same asymptotic behavior as the wild type network. A
typical visualization of the neutral space (consisting of the wild type network plus the
sample of functionally equivalent networks) is through the neutral graph. A neutral
graph (also known as a neutral network or a metagraph) [1–3] is an undirected graph
where each node represents a regulatory network. Suppose two nodes are connected
in the neutral graph. In that case, this means that the Hamming distance (number of
entries in which two adjacency matrices differ) between the interaction (adjacency)
matrix of one network and the other is one. The connectivity of a neutral graph can
give an insight into the topological robustness of the regulatory networks. A neutral
graphwith large connected components can be considered to have high robustness. In
contrast, a neutral graph with many small connected components (or disconnected)
can be considered as having low robustness [2]. For sampling the neutral space, a
common approach is to conduct a neighborhood search around the wild type network
via an evolution strategy [14].

Although the neutral graph visualization allows a qualitative analysis of the neu-
tral space, other complementary tools for analyzing the neutral space are needed.
One approach could be using machine learning, particularly unsupervised learning
typically used for descriptive modeling. Two typical applications of unsupervised
learning include high-dimensional data visualization and clustering.
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In this work, we present a neutral space analysis of the threshold Boolean network
model of the dynamical behavior of the flower development process in Arabidop-
sis thaliana plants. We will infer one thousand networks containing the same fixed
points as the original model using the evolution strategy of [14]. Then, we cluster
the resulting networks by using the k-means algorithm and visualize the resulting
clusters through an embedding technique called t-SNE [22]. Each cluster is analyzed
topologically and dynamically. Overall, we obtained a more quantitative analysis
through the use of unsupervised learning techniques. The rest of this work is orga-
nized as follows. Section2 describes the threshold Boolean network used as the wild
type, the unsupervised learning algorithms used in this work, and the evolution strat-
egy to infer networks. The methods appear in Sect. 3 and the results and discussions
in Sect. 4. The conclusions and future directions are presented in Sect. 5.

2 Background

2.1 Threshold Boolean Networks

In [9], Mendoza and Alvarez-Buylla proposed a threshold Boolean network that
captured the dynamics of the floral development in Arabidopsis thaliana. The model
consists of 12 interacting chemical species, designated by EMF1, TFL1, LFY, AP1,
CAL, LUG, UFO, BFU, AG, AP3, PI, and SUP. The BFU species, is a dimer of
the AP3 and PI proteins, all the rest are proteins as well. So in this model we have
n = 12, and each node xi from i = 1, . . . , n will update its value using the following
rule:

xi (t + 1) = H

( n∑
j=1

wi j x j (t) − θi

)
(1)

H(z) =
{
1, if z > 0
0, if z ≤ 0

with wi j the weight of the edge coming from node j into the node i , and θi the acti-
vation threshold of node i . The weights and thresholds are the network’s parameters
(see Fig. 1).

If we start in any of the 212 = 4096 possible configurations, and use the parallel
updating scheme, then the network will converge to one of the possible thirteen
attractors. Sevenof these, are limit cycles of length twoeach,whichhavenobiological
meaning. The remaining six are the following fixed points: 1) {000100000000}, 2)
{000100010110}, 3) {000000001000}, 4) {000000011110}, 5) {110000000000}, 6)
{110000010110}. Each one has associated a cell type: 1) sepal, 2) petal, 3) carpel,
4) stamen, 5) inflorescence, 6) mutant (unobserved cell).

For simplicity we will refer to this network from now on as the original network.
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Fig. 1 Original Mendoza and Alvarez-Buylla network. Activations (resp. repressions) are rep-
resented by full arrows (resp. empty arrows). Below, the matrix W of size 12 × 12 contains the
interaction weights between genes and � is the thresholds vector

2.2 Unsupervised Learning

Unsupervised learning deals with analyzing unlabeled data, i.e., data that has not
been previously classified into a particular class. Two common tasks in unsupervised
learning are clustering and high-dimensional data visualization. For clustering, one
of the most popular algorithms corresponds to k-means. The algorithm works in the
following way,

1. Select k points randomly as the initial centroids.
2. repeat
3. Form k clusters by assigning all points to the closest centroid.
4. Recompute the centroid of each cluster.
5. until The centroids do not change
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The above algorithm minimizes the objective function known as the sum of the
squared error (SSE), defined by

SSE =
k∑

i=1

∑
x∈Ci

dist (ci , x)2 (2)

where x is an n-dimensional data point that belongs to clusterCi and ci is the centroid
(mean) of cluster Ci . Also, dist is the standard Euclidean (L2) distance between two
objects in Euclidean space.

For high-dimensional data visualization there are linear projection techniques
such as Principal Component Analysis (PCA), and non-linear techniques such as
t-Distributed Stochastic Neighbor Embedding (t-SNE). We will consider the lat-
ter. Basically, the t-SNE algorithm calculates a similarity measure between pairs of
examples in the high dimensional space (step 1) and in the low dimensional space
(step 2). It then tries to optimize these two similarity measures using a cost function,
in particular, the Kullback-Liebler divergence (step 3). Details of the three steps of
t-SNE can be found in [22].

2.3 Evolution Strategy

To reconstruct synthetic networks starting from the A. thaliana network described
previously wewill use an evolution strategy (ES) developed in [14] and used recently
in [18]. A flow chart of the ES is shown in Fig. 2, where it can be seen that the
main variation operator is mutation. The initial candidate solutions (networks) are
generated using as a seed the A. thaliana network. Edges are removed or added from
the original network ngh times (a user defined parameter) to generate a candidate
solution, as well as the respective threshold vector is changed. The fitness function
is the mean squared error between the dynamics (output) of the candidate network
and the dynamics of the original network, given the same input. Therefore, it is a
minimization problem, where we want to find networks with the least error. After the
fitness value is computed for each candidate solution, these are ranked in a descending
order. Then, the top m% are selected (another user defined parameter) to perform
mutation, in a similar way as the candidate networks were generated, but now using
the top ranked networks as seeds to generate new solutions. These new solutions
plus the top m% are completed with random candidate networks, using as seed the
original network, to generate the new population. More details of the algorithm can
be found in [16].
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Fig. 2 Evolution strategy (ES) flow chart to search for synthetic networks

3 Methods

We first begin by searching for one thousand synthetic networks with the same fixed
points of the original A. thaliana network, for this we use the ES described with
the following parameter values. The ngh parameter is selected randomly between
1 and 30 for each candidate network. The elements of the weight matrices and the
threshold vectors were constrained to the following integer range [−5,−4, . . . , 4, 5].
Also, popSize = 20, m% = 30% and max iterations =100.

It is important to point out that when the fitness function reaches 0, we can assure
that the candidate solution will in fact have the six fixed points, but we cannot assure
that these will be the only ones existing, since there might be additional fixed points
present. In order to avoid this situation, whenever a candidate solution obtains a
fitness value of 0, we check how many fixed points the networks has. If the network
has more than six, than we penalize the solution by adding 0.1 to the fitness value.
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By this way, we can assure that, when the fitness value is 0, the network will only
have the desired six fixed points and no others.

Then each network is characterized by a 162-dimensional feature vector. Features
1 to 144 corresponds to the flattened weight matrix. Features 145 to 156 corresponds
to the threshold vector, and finally, features 157 to 162 corresponds to the basin
of attraction of each of the six fixed points. It is important to point out that this
feature vector contains simultaneously, topological and dynamical information of
each network. We will also characterize the original network with this feature vector.
At the end of this feature construction process, we end up with a 1001 × 162 input
data matrix to analyze using unsupervised learning techniques.

The next step is to discover how many clusters naturally form when the one
thousand synthetic networks plus the original network are characterized by the 162-
dimensional feature vector. For this, first the input matrix needs to be normalized.
We used the min-max normalization method. Then to discover a plausible number
of clusters, we employed the elbow method which consists in plotting the sum of
the squared error (SSE) as the number of clusters (k in k-means) increases. The idea
is that in this plot, at the beginning, SSE drops quickly but then at some point (the
elbow) it starts decreasing slower, therefore, the increase of k does not contribute
significantly in reducing the SSE.

Once an appropriate number for k is found, we then visualize the 162-dimensional
points and how they cluster by performing a non-linear projection of these points
into a 2-dimensional space using t-SNE, where each point is labeled with the cor-
responding cluster number. This will allow to see how the networks are distributed,
as well as which clusters are near the cluster where the original network if found, as
well as networks which are far away from the original network.

To analyze the discriminatory power of the features we will consider box plots
per cluster. In particular, for topology related features we will consider the number
of positive and negative edges for each network. For the dynamics, we will consider
the basin of attraction size for each fixed point.

The synthetic network inference using SE and the feature construction were car-
ried out using the open-source R software environment for statistical computing.
Whereas the unsupervised learning techniques and box plot analysis were carried
out using Python with the libraries: Scikit-learn, NumPy, and pandas. In both cases,
running on a 2.6GHz Intel Core i7 and 16 GB-RAM computer.

4 Results and Discussions

Figure3 shows the SSE versus number of clusters plot, we notice that the elbow
occurs around k = 20. With k = 20 there are a couple of clusters with significantly
smaller number of examples in comparison with the rest. When we consider k = 18,
we obtained a number of examples per cluster more reliable.
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Fig. 3 The sum of the squared error versus the number of clusters

We will consider 18 clusters. The t-SNE projection is shown in Fig. 4. We notice
that the largest cluster corresponds to cluster number 1, it also presents the highest
dispersion. The original network is in cluster 4, which contains only 17 networks.
We notice that neighbouring clusters to cluster 4 correspond to clusters 8, 16, and 9.
All the rest of the clusters are located at lager distances, in particular, cluster 13 is
the furthest from cluster 4.

Figure5 shows the box plots per cluster of the positive (Pos) number of edges that
the networks have. We notice that cluster 5 contains slightly larger values, with the
highest median value. Nevertheless, this characteristic does not discriminate cluster
4, which contains the original model, from the rest.

On the other hand, Fig. 6 shows the distribution of the negative edges per clusters,
where it is clear that the median value of cluster 4 is the highest.

Wenotice fromFig. 7, that the size of the basin of attraction of fixed point 1 (BAF1)
of the networks in cluster 4 is in general larger than the basin of attraction for that
fixed points of the networks in the other clusters. The distribution is completely
different from the sizes of the basin of attraction in the other clusters.

This behaviour is also present for the size of the basin of attraction of fixed point
2 (BAF2) (Fig. 8), the size of the basin of attraction of fixed point 3 (BAF3) (Fig. 9),
the size of the basin of attraction of fixed point 5 (BAF5) (Fig. 11), and the size of
the basin of attraction of fixed point 6 (BAF6) (Fig. 12). It is less evident for the size
of the basin of attraction of fixed point 4 (BAF4) shown in Fig. 10.
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Fig. 4 t-SNE projection with points labeled with their corresponding cluster number

Fig. 5 The distribution of the number of positive (PoS) edges of the networks per cluster
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Fig. 6 The distribution of the number of negative (Neg) edges of the networks per cluster

Fig. 7 The distribution of the size of the basin of attraction of fixed point 1 (BAF1) per cluster

Fig. 8 The distribution of the size of the basin of attraction of fixed point 2 (BAF2) per cluster
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Fig. 9 The distribution of the size of the basin of attraction of fixed point 3 (BAF3) per cluster

Fig. 10 The distribution of the size of the basin of attraction of fixed point 4 (BAF4) per cluster

Fig. 11 The distribution of the size of the basin of attraction of fixed point 5 (BAF5) per cluster
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Fig. 12 The distribution of the size of the basin of attraction of fixed point 6 (BAF6) per cluster

5 Conclusion

In this work we have presented an approach using unsupervised learning to ana-
lyze synthetic threshold Boolean networks that are functionally equivalent to a base
model, in this case the the A. thaliana network. Synthetic networks were found by an
evolution strategy and then these networks were characterized by features capturing
topological and dynamical information of the networks.We found that by using these
features, the networks formed 18 groups or clusters. We found that the cluster that
contained the original (base model) network presented differences in the distribu-
tion of the sizes of five out of the six basin of attractions. Also, from a topological
aspect, the cluster that contained the original network showed differences with the
other clusters, when analyzing the distribution of the number of negative edges of
the networks. Of course, once the networks are clustered, many more analysis can be
conducted. For example, exploring the effect of the sizes of the basins of attraction
for different updating modes for each cluster (remember that in this work we have
only considered the parallel updating mode).

This work is presented to celebrate the 70th birthday of Prof. Eric Goles who
has contributed over many years to the development of theorems and applications in
the field of Boolean networks. Without a doubt, his contributions have inspired new
generations to continue working in this field. Muchas gracias Goles!

Acknowledgements Thisworkwas fundedbyANIDFONDECYT1180706andANIDPIA/BASAL
FB0002.
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Existence and Non Existence of Limit
Cycles in Boolean Networks

Lilian Salinas, Luis Gómez, and Julio Aracena

Abstract Boolean networks have been used as models of gene regulation networks
and other biological systems.One key element in thesemodels is the update schedule,
which indicates the order in which states are to be updated. The presence of any
limit cycle in the dynamics of a network depends on the update scheme used. Here,
we study the complexity of the problems of determining the existence of a block-
sequential update schedule for a given Boolean network such that it yields any limit
cycle (LCE) and does not yield any limit cycle (LCNE). Besides, we prove that in
AND-OR networks LCE is NP-hard and LCNE is coNP-hard. Finally, we show that
both problems are polynomial in symmetric AND-OR networks. For these networks,
we find a polynomial characterization for the existence of limit cycles in terms of
the interaction digraph.

1 Introduction

A Boolean network is a system of n interacting Boolean variables, which evolve,
in a discrete time, according to a predefined rule. They have applications in many
areas, including circuit theory, computer science and social systems [14, 26]. In
particular, from the seminal works of Kauffman [16, 17] and Thomas [24, 25], they
are extensively used as models of gene networks. In this context, the limit cycles of
a network are often associated with mitotic cycles in cells [4, 6].
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The update schedule in a Boolean network, that is the order in which each node
is updated, is of great importance in its dynamical behavior. In general, Boolean
networks are usually studied with synchronous (parallel) or sequential schemes.
A generalization of these schemes, known as block-sequential update schedules,
was introduced by Robert [21, 22], and they are currently used in the modeling of
regulatory networks [10, 23].

Many analytic studies have been done about the limit cycles of a Boolean network
with different block-sequential update schedules [1–3, 5, 8, 11, 13, 18, 19]. Most of
them show that the limit cycles are very sensitive to changes in the updating scheme of
a network. In particular, some of these articles exhibit examples of Boolean networks
where the existence of limit cycles depends on the used update schedule [1–3, 5, 19].

An important issue that arises in the modeling of genetic regulatory networks
with Boolean networks, especially in the case of the construction of networks with
some prescribed dynamical property, is to define what update schedule to use. Thus,
a natural previous question is: Given a Boolean network, does there exist a block-
sequential update schedule such that the network updated under it yields any limit
cycle? The solution to this problem, named Limit Cycle Existence problem (LCE),
could enable us for instance to know if a givenBooleannetwork canbeused tomodel a
cellular cycle. Other directly related problem is deciding for a given Boolean network
the existence of a block-sequential update schedule such that the network updated
under it has only fixed points as attractors, named Limit Cycle Nonexistence problem
(LCNE). An affirmative instance of LCNE updated under a scheme that yields only
fixed points guarantees that any trajectory of the dynamical behavior ends in a fixed
point of the network.

To our knowledge both problems LCE and LCNE have not been sufficiently stud-
ied so far. However, thanks to works about the dynamical behavior of Boolean net-
works with different block-sequential update schedules (as those mentioned above),
we know the answer to LCE and LCNE for certain families of networks. In particu-
lar, L. Gómez in his Ph.D. thesis proved that LCE is NP-hard in AND-OR networks
and in Boolean networks with symmetric interaction digraph [13]. These results
are included in this chapter with an improved demonstration. More recently, in [3]
are exhibited some very close results like the NP-completeness of the problem of
existence of a limit cycle of length k in a Boolean network with block-sequential
update.

On the other hand, by result in [9] we know that some symmetric threshold
networks, including the symmetric AND-OR networks, with any sequential update
schedule have only fixed points as attractors, i.e. they are affirmative instances of
LCNE. Besides, for the OR (AND) symmetric networks was proved that they can
cycle if and only if the interaction digraph is bipartite [7, 8]. Thus, LCE is polynomial
in OR (AND) symmetric networks.

In this chapter we prove that LCE and LCNE are both NP-hard problems in
Boolean networks with symmetric interaction digraph. Besides, we prove that in
AND-OR networks the LCE problem is NP-hard and the LCNE problem is coNP-
hard. Nevertheless, we show that LCE and LCNE are both polynomial problems in
networks verifying the two conditions, that is in symmetric AND-OR networks. For
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this family of networks, we prove that there exists a limit cycle in a network iterated
with a block-sequential update schedule if and only if there exists a limit cycle under
parallel scheme. This last condition is equivalent to a topological property on the
interaction digraphwhich can be verified in polynomial time. This result is somewhat
surprising, because these networks can have limit cycles of length super-polynomial
[11] with block-sequential update schedules different from the synchronous and
sequential schemes, and only of length two with parallel schedule [12].

2 Definition and Notation

A Boolean network on a finite set V of n elements is a dynamical system defined
by an activation function f : {0, 1}n → {0, 1}n , where its component functions fv :
{0, 1}n → {0, 1} are Boolean functions, called local activation functions, verifying
that ∀x ∈ {0, 1}n , ∀v ∈ V, f (x)v = fv(x).

An update schedule is a function s : V → {1, . . . , n} such that s(V ) = {1, . . . ,m}
for some m � n. A block of an update schedule s is a set Bi = {v ∈ V : s(v) = i},
1 � i � m. In this way, an update schedule s is usually denoted by s = B1B2 · · · Bm

and also known as a block-sequential update schedule. Particular cases of block-
sequential update schedules are the synchronous or parallel, which is given by an
update schedule s p such that ∀v ∈ V , s p(v) = 1 (just one block with cardinality n);
and the sequential which corresponds to a bijective function (n blocks of cardinality
1).

The dynamics of a Boolean network f on the set V of elements with an update
schedule s = B1B2 · · · Bm is given by the function:

f s = f Bm ◦ f Bm−1 ◦ · · · ◦ f B1 ,

where ∀i ∈ {1, . . . ,m} , ∀x ∈ {0, 1}n , ∀v ∈ V :

f Bi
v (x) =

{
fv(x) if v ∈ Bi ,

xv otherwise.

Since {0, 1}n is a finite set, we have two limit behaviors for the iteration of a
network f with scheme s:

• Fixed Point. We define a fixed point as a stable state of the dynamical system, i.e.
x ∈ {0, 1}n is a fixed point if f (x) = x .

• Limit Cycle. We define a cycle of length p > 1 as the vector sequence [xk]pk=0 =
[x0, . . . , x p−1, x0] such that xk ∈ {0, 1}n , xk are pairwise distinct and f s(xk) =
xk+1, for all k ∈ {0, . . . , p − 1} and x p ≡ x0. We note that any cyclic permutation
of a sequence represents the same limit cycle.
The set of limit cycles of f updated under s is denoted by LC( f, s). Besides, we
say that f cycles under s if LC( f, s) �= ∅.
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Fixed points and limit cycles are called attractors of the network. A node is said
to be frozen for a limit cycle if its state value does not change on it.

Given a digraph G, the node set of G is referred to as V (G), and its arc set
as A(G). An arc (v, v) ∈ A(G) is called loop of G. G is said to be symmetric if
∀(u, v) ∈ A(G), (v, u) ∈ A(G). Given a node v ∈ V (G), the set of incoming nodes
to v is denoted by N−

G (v) = {u ∈ V (G) : (u, v) ∈ A(G)}.
Given U ⊆ V (G), G[U ] is the digraph obtained from G by removing all nodes

in V (G) \U and all arcs incoming to or outgoing from these nodes.
Given x = (xv)v∈V ∈ {0, 1}n and u ∈ V , we define x̄ u ∈ {0, 1}n as:

∀v ∈ V, x̄ uv =
{
xv if v �= u

¬xu if v = u

where ∀xu ∈ {0, 1} ,¬xu = 1 ⇔ xu = 0. We also define x̄ ∈ {0, 1}n as: ∀v ∈ V, x̄v

= ¬xv .
The digraph associated to a Boolean network f , called interaction digraph, is the

directed graph G f = (V, A), where (u, v) ∈ A if and only if fv depends on xu , i.e.,
if there exists x ∈ {0, 1}n such that fv(x) �= fv(x̄ u). Note that if fv is constant, then
N−

f (v) = ∅. See an example of interaction digraph in Fig. 1. We say that a Boolean
network f is symmetric if its interaction digraph G f is symmetric.

Given a finite set U of k elements, a Boolean function f : {0, 1}k → {0, 1} is
said to be an AND function, denoted f (x) = ∧

v∈U
xv , where f (x) = 1 if and only if

∀v ∈ U , xv = 1. Analogously, f is an OR function, denoted f (x) = ∨
v∈U

xv , where

f (x) = 1 if and only if ∃v ∈ U , xv = 1.
In this way, we say that f is an AND-OR network if each local activation function

is either an AND or an OR function. In this case, we define VAND( f ) ⊆ V (G f )

(VOR( f ) ⊆ V (G f )) as the nodes that have an AND (OR) local activation function.
In particular, we say that f is an OR network if each local activation function is an
OR function.

An AND-OR network f can be completely described by its interaction digraph,
labeling AND and OR nodes differently (in the figures of this chapter, white nodes
represent OR nodes, dark gray nodes represent AND nodes, and light gray nodes
represent nodes that are neither AND nor OR nodes). That is, given G = (V, A) a
digraph and {VAND, VOR} a partition of V , with |V | = n, we define f : {0, 1}n →
{0, 1}n as follows:

Fig. 1 Interaction digraph
associated to a Boolean
network
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∀v ∈ V, fv(x) =

⎧⎪⎪⎨
⎪⎪⎩

∧
u∈N−

f (v)

xu if v ∈ VAND

∨
u∈N−

f (v)

xu if v ∈ VOR

Note that if N−
f (v) = ∅, by definition we have that: fv(x) = 1 if v ∈ VAND (because

for all v ∈ N−
f , xv = 1) and fv(x) = 0 if v ∈ VOR.

2.1 LCE and LCNE Problems

As explained above, we are interested in the algorithmic complexity of the following
two decision problems:

Limit Cycle Existence (LCE): Given a Boolean network f . Does there
exist an update schedule s such that LC( f, s) �= ∅?

Limit Cycle Nonexistence (LCNE):Given a Boolean network f . Does
there exist an update schedule s such that LC( f, s) = ∅?
Note thatLCNE is not the complement ofLCE. Indeed, for instance, f : {0, 1}2 →

{0, 1}2 defined by f (x1, x2) = (x2, x1) verifies that LC( f, s p) = [(1, 0), (0, 1),
(1, 0)] and LC( f, s) = ∅, with s = {1} {2}, i.e. f is an affirmative instance of both
LCE and LCNE.

3 Complexity

3.1 Limit Cycle Existence Problem

In this section we study the complexity of the LCE problem. A particular and directly
related problem is to determine the existence of a limit cycle for a given Boolean
network with a fixed update schedule. This latter problem was proved to be NP-
hard for threshold networks with asymmetric weight matrix [20] and for AND-OR
networks [15], in both cases with synchronous scheme. In this way, the symmetry
of the interaction digraph and the AND-OR functions in Boolean networks seem to
play an important role in the complexity of these problems.

Next, in Theorem1 we prove that LCE is NP-hard in networks with symmetric
interaction digraph and in Theorem2 for AND-OR networks. Besides, we show
that LCE is polynomial in symmetric AND-OR networks, which corresponds to a
generalization of the result proved by [8] in symmetric OR networks.
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Fig. 2 Interaction digraph
of the transformation defined
in Theorem1

Theorem 1 LCE is NP-hard in symmetric Boolean networks

Proof We show that SAT �p LCE.
Given a Boolean formula φ in variables w1, . . . ,wn , we consider

V = {
v1, . . . , vn, vφ, z1, z2

}
andwe define f : {0, 1}n+3 → {0, 1}n+3 as follows (see

Fig. 2):

fvi (x) = xvi ∧ xvφ
∀i ∈ {1, . . . , n}

fvφ
(x) = φ

(
xv1 , . . . , xvn

) ∧ (xz1 ∨ xz2)

fz1(x) = xvφ
∧ xz2

fz2(x) = xvφ
∧ xz1

We now prove that φ is satisfiable if and only if there exists s such that LC( f, s)
�= ∅.

Let us suppose that φ is satisfiable, and let w be such that φ(w) = 1. If we
consider the update schedule s = {

v1, . . . , vn, vφ

} {z1, z2}, then it is clear that C =
[(w, 1, 0, 1), (w, 1, 1, 0), (w, 1, 0, 1)] ∈ LC( f, s), where (w, 1, 0, 1) and
(w, 1, 1, 0) are state vectors of the vector (xv1 , . . . , xvn , xvφ

, xz1 , xz2) ∈ {0, 1}n+3.
Now, let us suppose φ is not satisfiable, then ∀w ∈ {0, 1}n , φ(w) = 0. Hence, for

every update schedule s, we have that

∀x ∈ {0, 1}n+3 , f svφ
(x) = 0.

Therefore, ∀x ∈ {0, 1}n+3 :

∀i ∈ {1, . . . , n} , f svi ( f
s(x)) = f s(x)vi ∧ 0 = 0,

f sz1( f
s(x)) = 0 ∧ xz2 = 0,

f sz2( f
s(x)) = 0 ∧ xz1 = 0.

Thus, LC( f, s) = ∅, for every update schedule s. �
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Table 1 Definition of f of Theorem2

v ∈ V Type N−
f (v)

∀i ∈ {1, . . . , n} , vi AND {vi }
∀i ∈ {1, . . . , n} , v̄i AND {v̄i }
∀i ∈ {1, . . . , n} , oi OR {vi , v̄i }
∀i ∈ {1, . . . , n} , ai AND {vi , v̄i }
A AND {o1, . . . , on}
O OR {a1, . . . , an}
∀ j ∈ {1, . . . ,m} , vC j OR

{
vi : wi ∈ C j

} ∪ {
v̄i : ¬wi ∈ C j

}
vφ AND

{
vC1 , . . . , vCm

}
z1 AND

{
z2, vφ, A

}
z2 OR {z3, O}
z3 OR {z1}

Theorem 2 LCE is NP-hard in AND-OR networks

Proof We show that 3-SAT �p LCE in AND-OR networks.
Given a formula φ in conjunctive normal form where each clause is limited to

at most three literals, in variables w1, . . . ,wn with clauses C1, . . . ,Cm , we define
f : {0, 1}4n+m+6 → {0, 1}4n+m+6 according to Table1. See G f in Fig. 3.
Here, ∀i ∈ {1, . . . , n}, nodes vi represent literalswi and nodes v̄i represent literals

¬wi .
Next, we prove thatφ is satisfiable if and only if there exists s such that LC( f, s) �=

∅.
Let us suppose there exists s an update schedule such that C = [

xk
]p
k=0 ∈

LC( f, s). We note that only nodes z1, z2 and z3 can be non frozen in a limit cycle.
For that, it is necessary to verify:

f A(x
0) = 1, (1)

fO(x0) = 0. (2)

fvφ
(x0) = 1, (3)

Equation (1) implies for all i ∈ {1, . . . , n}, oi = 1 and Eq. (2) implies that for all
i ∈ {1, . . . , n}, ai = 0. Therefore, if for all i ∈ {1, . . . , n}, oi = 1 and ai = 0, then
∀i ∈ {1, . . . , n}, xv̄i = ¬xvi . Of this way, from (3), we have that φ(x0v0 , . . . , x

0
vn

) = 1.
For the converse, let us suppose that φ is satisfiable, then ∃ŵ ∈ {0, 1}n , φ(ŵ) = 1,

and if we consider the update schedule s and the limit cycle C = [
x0, x1, x0

]
as

described in Table2. Then, C ∈ LC( f, s). �

Nowwe study the case of symmetricAND-ORnetworks. In Theorem3we charac-
terize the symmetric AND-OR networks f for which there exists an update schedule
s such that f updated under s has a limit cycle. Since this characterization is testable
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Fig. 3 Interaction digraph of the transformation f in Theorem2

Table 2 Definition of C in Theorem2

v ∈ V vi v̄i oi ai C j A O vφ z1 z2 z3
s(v) 1 1 1 1 1 1 1 1 2 3 2

x0v ŵvi ¬ŵvi 1 0 1 1 0 1 1 0 0

x1v ŵvi ¬ŵvi 1 0 1 1 0 1 0 1 1

in polynomial time, we conclude that LCE is polynomial in symmetric AND-OR
networks.

Other interesting result is Proposition2, which states that a symmetric AND-OR
network cycles with some update schedule if and only if it cycles under the parallel
scheme. However, the lengths of limit cycles can be very different in each case,
because in the parallel case they are of length two [12] and in the case of others
block-sequential update schedules they can be of length super-polynomial [11].

Next, we give some required definitions.

Definition 1 Let f be a symmetric AND-OR network.

• Wedenote eachnon trivial connected component ofG[VOR( f )]byGOR
1 , . . . ,GOR

kOR
.

We call them OR components of G f .
• We denote each non trivial connected component of G[VAND( f )] by GAND

1 , . . . ,

GAND
kAND

. We call them AND components of G f .
• We define the alternated nodes as
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Fig. 4 Example of Definition1. The subdigraphs surrounded by a red line are the components of
an AOA decomposition

VAO = V \
(

kOR⋃
i=1

V (GOR
i ) ∪

kAND⋃
i=1

V (GAND
i )

)

and we denote by GAO
1 , . . . ,GAO

kAO
, to the connected components of G[VAO]. We

call them alternated components of G f .
• We call to the set

{
GOR

1 , . . . ,GOR
kOR

,GAND
1 , . . . ,GAND

kAND
,GAO

1 , . . . ,GAO
kAO

}
, an AOA

(AND-OR ALTERNATED) decomposition of G f (see example Fig. 4).
Here, a trivial connected component of G f is a subdigraph G ′ of G f such that
|V (G ′)| = 1 and A(G ′) = ∅.

•> Important

1. The set
{
V (GOR

1 ), . . . , V (GOR
kOR

), V (GAND
1 ), . . . , V (GAND

kAND
), V (GAO

1 ), . . . , V (GAO
kAO

)
}

is a partition of V (G f ).
2. Given i ∈ {1, . . . , kAO}, we note that ∀u ∈ V (GAO

i ):
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u ∈ VOR =⇒ N−
f (u) ⊆ VAND,

u ∈ VAND =⇒ N−
f (u) ⊆ VOR.

Therefore, the non trivial alternate components of G f are bipartite.

The following lemma shows that every vertex in a non bipartite AND or OR
component of G f is frozen in any limit cycle.

Lemma 1 Given f a symmetric AND-OR network, C ∈ LC( f, s p) and D either an
OR or an AND component of G f . If D is non bipartite, then every node in V (D) is
frozen in C.
Proof Let C = [xk]rk=0 ∈ LC( f, s p) and D be a non bipartite OR component of G f

(theANDcase is analogous). Then, there exists a cycle of verticesC = v1 . . . v2N+1v1
in D of odd length.

Observe that if there exists a path of length l from a vertex u to a vertex v and
xtu = 1 then xt+l

v = 1. Hence, for all vertex vi ∈ V (C), if xkvi = 1 then xk+2N+1
vi

= 1.
Besides, since G f is symmetric, if for all v ∈ V (D), and for all k ∈ {0, . . . , r − 1},
if xkv = 1 then xk+2

v = 1. Therefore, if there exists v ∈ V (C) and k ∈ {0, . . . , r − 1}
such that xkv = 1, then for all v ∈ V (C) and for all k ∈ {0, . . . , r − 1}, xkv = 1. Thus,
every vertex in the cycle C is frozen. Finally, since G f is strongly connected, the
result holds. �

Observe that, the neighbor vertices of V (D) are not involved in the property of
every node in V (D) is frozen in C, but in the value of the vertices of V (D) in C.

Next propositiongives a polynomial testable characterizationofwhen a symmetric
AND-OR network can have limit cycles with the parallel scheme.

Proposition 1 Let f be a symmetric AND-OR network. Then, LC( f, s p) �= ∅ if and
only if there exists a bipartite component in the AOA decomposition of G f .

Proof Let us suppose that LC( f, s p) �= ∅.
If there does not exist a bipartite component in the AOA decomposition of G f ,

then by Lemma1, every vertex in each OR and AND component of G f is frozen in
any cycle. Also, each alternate component is trivial, and hence frozen in any cycle.
Therefore, f updated under s p has no limit cycle, which is a contradiction.

For the converse, Let V ′ ⊆ V the union of bipartite components of AOA decom-
position of G f . Since G[V ′] is bipartite, let V1, V2 be the bipartition of V ′. We define
the limit cycle of length two [x0, x1, x0] of f updated under the scheme sp in Table3.

In first place, note from cases 1 and 2 that vertices in the bipartition cycle with
period 2. From cases 3 and 4, we see that vertices in non bipartite OR compo-
nents (AND components respectively) of the decomposition are frozen at value 1 (0
respectively). Observe that this type of vertices do not affect the dynamical behavior
of other vertices in the network. Cases 5 to 10 correspond to the trivial components
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Table 3 Limit cycle in Proposition1

x0v x1v
1 v ∈ V1 1 0

2 v ∈ V2 0 1

3 v ∈
(
kOR⋃
i=1

V (GOR
i )

)
\ V ′ 1 1

4 v ∈
(
kAND⋃
i=1

V (GAND
i )

)
\ V ′ 0 0

5 v ∈ VAO \ V ′, N−(v) ∩ V1 �= ∅, N−(v) ∩ V2 = ∅ 0 1

6 v ∈ VAO \ V ′, N−(v) ∩ V1 = ∅, N−(v) ∩ V2 �= ∅ 1 0

7 v ∈ (
VAO \ V ′) ∩ VAND, N−(v) ∩ V1 �= ∅, N−(v) ∩ V2 �= ∅ 0 0

8 v ∈ (
VAO \ V ′) ∩ VOR, N−(v) ∩ V1 �= ∅, N−(v) ∩ V2 �= ∅ 1 1

9 v ∈ (
VAO \ V ′) ∩ VAND, N−(v) ∩ V1 = ∅, N−(v) ∩ V2 = ∅ 1 1

10 v ∈ (
VAO \ V ′) ∩ VOR, N−(v) ∩ V1 = ∅, N−(v) ∩ V2 = ∅ 0 0

of the AOA decomposition; the vertices in cases 5 and 6 cycle, because if they are
neighbors of vertices in only one partition their behavior is similar to those in the
other partition. Vertices in cases 7 and 8 are connected to vertices in both sides of the
bipartition, of this way they frozen at value 0 if the local activation function is AND
and in 1 for an OR local activation function. Finally, cases 9 and 10 are vertices not
connected to nodes in cases 3 and 4, since vertices in VAND are connected to vertices
in VOR they will be frozen at value 1, and analogously vertices in VOR will be frozen
at value 0. �

Proposition 2 Let f be a symmetric AND-OR network. If LC( f, s p) = ∅, then for
every update schedule s �= s p, LC( f, s) = ∅.
Proof We prove that if LC( f, s p) = ∅, then for each update schedule s �= s p,
LC( f, s) = ∅. For that, we will assume that G f is connected. The general case
is direct from it.

Let s �= s p be an update schedule. We note that, since G f is symmetric and
connected, then it is strongly connected. Thus, s �= s p if an only if there exists
(u, v) ∈ A(G f ) such that s(u) < s(v).

Let C = [xk]rk=0 ∈ LC( f, s). Since LC( f, s p) = ∅, then all elements in the AOA
decomposition of G f are not bipartite, by Proposition1. Therefore, by Lemma1,
every OR and AND component updated in parallel is frozen in C . Besides, by the
equivalence proved above, there are only trivial alternated components of G f .

Now, let u, v ∈ VOR (the AND case is analogous) such that (u, v) ∈ A(G f ) and
s(u) < s(v). If u is not frozen in C at value 0, then there exists k ∈ {0, . . . , r − 1}
such that xku = 1. Since v ∈ VOR, u ∈ N−

f (v) and s(u) < s(v), xkv = 1.Because of the
symmetry of the network v ∈ N−

f (v), and therefore xk+1
u = 1. In this way, vertices

u and v become frozen nodes in C at value 1 as well as every node in the same
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connected component. In either case, all vertices in the OR component are frozen in
C.

Finally, all nodes in alternated components have only frozen neighbors, so they
are also frozen. Therefore, every node is frozen in C, which is a contradiction. �

Theorem 3 Let f be a symmetric AND-OR network. Then, there exists an update
schedule s such that LC( f, s) �= ∅ if and only if there exists a bipartite component
in the AOA decomposition of G f .

Proof Straightforward from Propositions1 and 2. �

Corollary 1 LCE is polynomial in symmetric AND-OR networks.

Proof In Theorem3 we characterized the existence of solution of this problem and
such characterization is testable in polynomial time. �

3.2 Limit Cycle Nonexistence Problem

In this section, we study the complexity of deciding when there exists an update
schedule that yields only fixed points as attractors for a given Boolean network
(LCNE problem). As mentioned in Sect. 1, the LCNE problem has a known poly-
nomial solution in some classes of networks. In particular, in [9] was proved that
threshold networks with symmetric weight matrix and without negative loops do not
have any limit cycle when it is updated with any sequential update schedule. How-
ever, this is not true in general, even in networks with symmetric interaction digraph.
Lemma2 shows a Boolean network with symmetric interaction digraph such that
every block-sequential update yields a limit cycle in its dynamics.

Previously, we introduce a Boolean network of n elements with a limit cycle of
length 2n which be will useful in some results below.

Definition 2 Let H : {0, 1}n → {0, 1}n be the Boolean network defined on the set
V = {1, . . . , n} by:

∀i ∈ {1, . . . , n − 1} , Hi (x) = xi �
n∧

j=i+1

x j

Hn(x) = ¬xn

It is easy to check that network H has one limit cycle of length 2n . In fact, if
we consider the bijection g : {0, 1}n → {0, . . . , 2n − 1} where every x ∈ {0, 1}n is
the binary representation of g(x), H(x) = g−1(g(x1, . . . , xn) + 1 (mod 2n)) (see
Fig. 5).

Ir order to obtain a Boolean network with a limit cycle of length 2n for any given
n and symmetric interaction digraph we slightly modify the network H as shown in
the following lemma.
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Fig. 5 Dynamical behavior
of H with n = 3

Lemma 2 Let f̃ : {0, 1}n+1 → {0, 1}n+1 be such that:

f̃v0(x) =
n∧
j=0

xv j ,

∀i ∈ {1, . . . , n − 1} , f̃vi (x) = xvi �
(

i−1∧
j=0

xv j ∨
n∧

j=i+1
xv j

)
,

f̃vn (x) = ¬xvn ∨
n∧
j=0

xv j .

Then, f̃ is a Boolean network with symmetric interaction digraph and such that
updated under the schedule s̃ = {v0} {v1, . . . , vn} has no fixed points and only a
limit cycle of length 2n, where v0 is frozen at value 0.

Proof An example of the dynamical behavior of f̃ , with n = 3, updated under s̃ can
be observed in Fig. 6.

It is easy to see that if we consider the bijection g : {0, 1}n → {0, . . . , 2n − 1}
such that every x ∈ {0, 1}n is the binary representation of g(x), then for every
(x1, . . . , xn) ∈ {0, 1}n , f̃ s̃(0, x1, . . . , xn) = (

0, g−1(g(x1, . . . , xn) + 1 (mod 2n))
)
.

This induces a cycle of length 2n with the node v0 frozen at value 0.
On the other hand, if x0 = 1 and (x1, . . . , xn) �= (1, . . . , 1) = 1, then f̃ s̃(1, x1 . . . ,

xn) = (0, g−1(g(x1, . . . , xn) + 1 (mod 2n))). Besides, f̃ s̃(1, 1) = (1, 0, . . . , 0, 1)
and f̃ s̃(1, 0, . . . , 0, 1) = (0, g−1(g(0, . . . , 1) + 1 (mod 2n))). Hence, any initial
state reaches the limit cycle mentioned above.

Fig. 6 Dynamics of f̃ s̃ with n = 3
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Fig. 7 Interaction digraph
of the transformation defined
in Theorem4

Finally, it is easy to check that the interaction digraph of f̃ is complete and
therefore symmetrical. �

Note that since the network f̃ defined in Lemma2 has no fixed points, it cycles
under any update schedule and with the scheme s̃ has a limit cycle containing all
configurations in the set {0, 1}n . These are important properties used to prove the
following theorem.

Theorem 4 LCNE is NP-hard in symmetric Boolean networks

Proof We show that SAT �p LCNE.
First, by using the network f̃ and the update schedule s̃ as defined in Lemma2,

we construct a symmetric Boolean network f such that if some state satisfies φ then
it evolves to a fixed point, and if φ is not satisfiable then it has only limit cycles under
any update schedule.

Now, given φ a Boolean formula in variables w1, . . . ,wn we define the set V ={
v0, v1, . . . , vn, vφ

}
and the function f : {0, 1}n+2 → {0, 1}n+2 as follows:

fv0(x) =
n∧
j=0

xv j ,

∀i ∈ {1, . . . , n − 1} , fvi (x) = xvi �
((

i−1∧
j=0

xv j ∨
n∧

j=i+1
xv j

)
∧ ¬xvφ

)
,

fvn (x) =
(

¬xvn ∨
n∧
j=0

xv j

)
� xvφ

,

fvφ
(x) = φ

(
xv1 , . . . , xvn

)
.

See the interaction digraph in Fig. 7.
Next, we prove that φ is satisfiable if and only if there exists s such that f updated

under s has no limit cycle.
We prove first that if φ is not satisfiable, then for all update schedule s the network

f updated under s has a limit cycle. To prove this, we show that f has no fixed points.
Let us suppose that for all (w1, . . . ,wn) ∈ {0, 1}n , φ(w1, . . . ,wn) = 0, then the

dynamical behavior of f with update schedule s∗ = {
vφ, v0

} {v1, . . . , vn} is given by
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Table 4 Transitions of function f s
∗
in Theorem4

(xv0 , y, xvφ ) y ∈ {0, 1}n f s
∗
(xv0 , y, xvφ )

(xv0 , y, xvφ ) y ∈ Sφ ∧ (xv0 , y) �= (1, 1 . . . , 1)) (0, y, 1)

(xv0 , y, xvφ ) y ∈ Sφ ∧ (xv0 , y) = (1, 1 . . . , 1)) (1, 1, . . . , 1, 0, 1)

(xv0 , y, xvφ ) y /∈ Sφ ( f scc (xv0 , y), 0)

f̃ s̃ and vφ frozen at 0, i.e. f s
∗
(xv0 , . . . , xvn , xvφ

) = ( f̃ s̃(xv0 , . . . , xvn ), 0). Therefore,
by Lemma2 f s

∗
has no fixed point. Thus, for any update schedule s we have that

LC( f, s) �= ∅.
Now we prove that if φ is satisfiable then there exists s such that LC( f, s) = ∅.

Let us suppose that Sφ = {
w ∈ {0, 1}n : φ(w) = 1

} �= ∅ and let be s∗ = {
v0, vφ

}
{v1, . . . , vn}, we show that LC( f, s∗) = ∅.

First, observe that the dynamical behavior of f updated under s∗ is described by
the transitions of f s

∗
shown in Table4. From it, we can note that all y ∈ Sφ , (0, y, 1)

is a fixed point of f and f s
∗
(0, y, 0) = (0, y, 1). In the case (xv0 , y, xvφ

)when y /∈ Sφ

the network f with s∗ behaves as f̃ s̃ , that is f s
∗
(xv0 , y, xvφ

) = ( f̃ s̃(xv0 , y), 0). Since
f̃ s̃ reaches every state (0, z) ∈ {0, 1}n+1 at some time, f s

∗
will reach some state

(0, z, 0), where z ∈ Sφ , and therefore it will reach the fixed point (0, z, 1). Of this
way, we observe that from every state in {0, 1}n+2 the network f updated under s∗
will reach a fixed point (0, y, 1), y ∈ Sφ . Hence, LC( f, s∗) = ∅. �

Next, we prove that LCNE is coNP-hard in AND-OR networks. Previously, we
introduce an AND-OR network that always has at least one limit cycle with any
update schedule.

Lemma 3 There exists an AND-OR function f such that for every update schedule
s, LC( f, s) �= ∅.
Proof Let us consider the AND-OR function f̄ : {0, 1}11 → {0, 1}11 as defined in
Fig. 8. We note that vertices 1 and 2 will remain constant trough any trajectory.
Therefore, we can decompose its dynamics into the dynamical behaviors of the four
AND-OR functions associated of f̄ : f̄ 00, f̄ 10, f̄ 01, f̄ 11, where f̄ i j is the value of f̄
with fixed values: xr1 = i and xr2 = j .

In Table5 a and b are shown the four AND-OR functions associated to f̄ . The
corresponding interaction digraphs of f̄ 10 and f̄ 01 are shown in Fig. 9a and b, respec-
tively.

Now, let us suppose that there exists an update schedule that generates only fixed
points as attractors for f̄ 00, f̄ 11, f̄ 01 and f̄ 10 simultaneously. Since f̄ 00 and f̄ 11 has
no limit cycles under any update schedule, we just need to focus only on f̄ 01 and
f̄ 10.
If we analyze f̄ 10 (case f̄ 01 is analogous), we note that the only update sched-

ules s that have no limit cycles are those in which there exists only one arc (ri , r j )
with ri , r j ∈ {r3, r4, r5, r6, r7, r8} such that s(ri ) � s(r j ). Without lost of general-
ity, we can suppose that such arc is (r3, r6), i.e. s(r3) � s(r6). On the other hand,
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Fig. 8 AND-OR function f and its interaction digraph

Table 5 AND-OR functions described in Lemma3

f̄ 00 f̄ 11 f̄ 01 f̄ 10

(a)

f̄r1 (x) = 0

f̄r2 (x) = 0

f̄r3 (x) = xr8 ∨ xr10
f̄r4 (x) = xr6 ∨ xr11
f̄r5 (x) = xr7 ∨ xr9
f̄r6 (x) = 0

f̄r7 (x) = 0

f̄r8 (x) = 0

f̄r9 (x) = 0

f̄r10 (x) = 0

f̄r11 (x) = 0

f̄r1 (x) = 1

f̄r2 (x) = 1

f̄r3 (x) = xr8 ∨ xr10
f̄r4 (x) = xr6 ∨ xr11
f̄r5 (x) = xr7 ∨ xr9
f̄r6 (x) = xr3
f̄r7 (x) = xr4
f̄r8 (x) = xr5
f̄r9 (x) = xr3
f̄r10 (x) = xr4
f̄r11 (x) = xr5

f̄r1 (x) = 0

f̄r2 (x) = 1

f̄r3 (x) = xr8 ∨ xr10
f̄r4 (x) = xr6 ∨ xr11
f̄r5 (x) = xr7 ∨ xr9
f̄r6 (x) = 0

f̄r7 (x) = 0

f̄r8 (x) = 0

f̄r9 (x) = xr3
f̄r10 (x) = xr4
f̄r11 (x) = xr5

f̄r1 (x) = 1

f̄r2 (x) = 0

f̄r3 (x) = xr8 ∨ xr10
f̄r4 (x) = xr6 ∨ xr11
f̄r5 (x) = xr7 ∨ xr9
f̄r6 (x) = xr3
f̄r7 (x) = xr4
f̄r8 (x) = xr5
f̄r9 (x) = 0

f̄r10 (x) = 0

f̄r11 (x) = 0

(b)

f̄r1 (x) = 0

f̄r2 (x) = 0

f̄r3 (x) = 0

f̄r4 (x) = 0

f̄r5 (x) = 0

f̄r6 (x) = 0

f̄r7 (x) = 0

f̄r8 (x) = 0

f̄r9 (x) = 0

f̄r10 (x) = 0

f̄r11 (x) = 0

f̄r1 (x) = 1

f̄r2 (x) = 1

f̄r3 (x) = xr8 ∨ xr10
f̄r4 (x) = xr6 ∨ xr11
f̄r5 (x) = xr7 ∨ xr9
f̄r6 (x) = xr3
f̄r7 (x) = xr4
f̄r8 (x) = xr5
f̄r9 (x) = xr3
f̄r10 (x) = xr4
f̄r11 (x) = xr5

f̄r1 (x) = 0

f̄r2 (x) = 1

f̄r3 (x) = xr10
f̄r4 (x) = xr11
f̄r5 (x) = xr9
f̄r6 (x) = 0

f̄r7 (x) = 0

f̄r8 (x) = 0

f̄r9 (x) = xr3
f̄r10 (x) = xr4
f̄r11 (x) = xr5

f̄r1 (x) = 1

f̄r2 (x) = 0

f̄r3 (x) = xr8
f̄r4 (x) = xr6
f̄r5 (x) = xr7
f̄r6 (x) = xr3
f̄r7 (x) = xr4
f̄r8 (x) = xr5
f̄r9 (x) = 0

f̄r10 (x) = 0

f̄r11 (x) = 0
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Fig. 9 Interaction digraphs of a f̄ 01 and b f̄ 10 described in Lemma3

because s(r4) < s(r7) ∧ s(r7) < s(r5), then s(r5) � s(r11) ∨ s(r11) � s(r4). Other-
wise, s(r4) < s(r7) < s(r5) < s(r11) < s(r4), which is a contradiction. Analogously,
we deduce that s(r3) � s(r9) ∨ s(r9) � s(r5). Hence,G f̄ 01 will have necessarily two
different arcs (a, b) and (c, d) such that s(a) � s(b) and s(c) � s(d), and thus G f̄ 01

induce a limit cycle for ( f̄ , s). Therefore, there is no update schedule s such that
LC( f̄ , s) = ∅. �

Theorem 5 LCNE is coNP-hard in AND-OR networks.

Proof We prove that SAT �P LCNE in AND-OR networks. Let φ be a Boolean
formula in the variables {w1, . . . ,wn}. We define f as exhibited in Table 6, where
the network induced by the vertex set {r1, . . . , r11} is like f̄ defined in Lemma3.

Notice that for any update schedule and for any limit cycle of the network the states
of the vertices vi , v̄i , ai , oi , A, O,C j , vφ, r ′

1, r
′
2, r1 and r2 are frozen nodes. Notice

that, if the component A is fixed in xA = 0, then xr ′
1
= xr ′

2
= 0, and xr1 = xr2 = xO .

In this case, the vertices ri converge to a fixed point. The case where xvφ
= 0 is

analogous, and if xO = 1 then xr1 = xr2 = 1, and in this case the vertices ri also
converge to a fixed point. Therefore, the only way to get a limit cycle in this network
is that the frozen vertices satisfy:

1. ∀i ∈ {1, . . . , n} , xvi = ¬xv̄i ,
2. φ(xv1 , . . . , xvn ) = 1,
3. ∀i ∈ {1, . . . , n} , xai = 0,
4. ∀i ∈ {1, . . . , n} , xoi = 1,
5. ∀ j ∈ {1, . . . ,m} , xC j = 1,
6. xA = 1, xO = 0 and xvφ

= 1.

In this way the components ri have the dynamical behavior of the network f̄ defined
in Lemma3.

Let us suppose φ is a satisfiable conjunctive normal form, then there exists w ∈
{0, 1}n such that if φ(w1, . . . ,wn) = 1, in this way we hold the conditions above.
Since LC( f, s) �= ∅ for all s, therefore f /∈ LCNE.
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Table 6 Definition of f of Theorem5

v ∈ V Type N−
f (v)

∀i ∈ {1, . . . , n} , vi AND {vi }
∀i ∈ {1, . . . , n} , v̄i AND {v̄i }
∀i ∈ {1, . . . , n} , oi OR {vi , v̄i }
∀i ∈ {1, . . . , n} , ai AND {vi , v̄i }
A AND {o1, . . . , on}
O OR {a1, . . . , an}
∀ j ∈ {1, . . . ,m} , vC j OR

{
vi : wi ∈ C j

} ∪ {
v̄i : ¬wi ∈ C j

}
vφ AND

{
vC1 , . . . , vCm

}
r ′
1 AND

{
A, vφ, r ′

1

}
r ′
2 AND

{
A, vφ, r ′

2

}
r1 OR

{
O, r ′

1

}
r2 OR

{
O, r ′

2

}
∀i ∈ {3, 4, 5} , ri OR N−

f̄
(ri )

∀i ∈ {6, . . . , 11} , ri AND N−
f̄
(ri )

If φ is not satisfiable then the conditions will never hold, thus the network f will
have only fixed points with every update schedule, therefore there exists an update
schedule such that LC( f, s) = ∅, then f ∈ LCNE. �

4 Conclusions

We have studied the algorithmic complexity of two problems about the existence of
some block-sequential update schedule for a given Boolean network which yields
a limit cycle (LCE) or does not yield any limit cycle (LCNE). We proved that both
problems are NP-hard even in networks having a symmetric interaction digraph.
Besides, we prove that LCE is also NP-hard in AND-OR networks, and that it is
polynomial in symmetricAND-ORnetworks, because in such networks the existence
of a limit cycle depends on a structural property of the interaction digraph, which
can be verified in polynomial time. On the other hand, we proved that LCNE is
coNP-hard in AND-OR networks. However, it is known that LCNE is polynomial
in symmetric AND-OR networks [9].

In conclusion, although the family of Boolean networks to be studied is restricted,
considering only those either with a symmetric interaction digraph or with local
activation functions of type OR or AND, both problems studied (LCE and LCNE)
do not seem to be possible to solve them efficiently unless NP = P. However, both
conditions are sufficient to efficiently determine the solution to both problems.
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A Survey on the Stability of (Extended)
Linear Sand Pile Model

Thi Ha Duong Phan

dedicated to the 70th Anniversary of Eric Goles.

Abstract We give a survey of our works on the natural extensions of the well-
known Sand Pile Model. These extensions consist of adding outside grains on ran-
dom columns, allowing sand grains to move from left to right and from right to
left, considering cycle graphs and the extension to infinity. We study the reachable
configurations and fixed points of each model and show how to compute the set of
fixed points, the time of convergence and the distribution of fixed points.

1 Introduction

The Sand Piles Model (SPM) was introduced in 1987 by Bak, Tang and Wiesenfeld
as a samplemodel of the Self organized criticality (SOC) phenomena [1]. The authors
simulated the behavior of a sand pile which builds up when sand is dropped on a
line. A configuration is modeled as a sequence of columns consisting of cubic sand
grains such that the height of columns is decreasing from left to right. In this model,
a sand grain can fall down from a column to its right neighbors if the difference of
height of the two columns is at least two. This model is investigated in many works
in physics, combinatorics and computer science [8, 15, 17, 23, 31].

Independtly, a similar model—the Chip Firing Game—was defined by Björner,
Lovász and Shor in 1991 [2, 3]. Formally, a CFG is a model consisting of a directed
(or undirected) multi-graph G (also called support graph), the set of configurations
on G and an evolution rule on this set.
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Fig. 1 Example of configuration spaces of Sand piles model: SPM(6) and SPM(30)

In this paper, as the support graph has a linear structure, for convenient, we call
the model (Linear) Sand Pile Model.

This model can be defined mathematically as follows (Fig. 1).

Definition 1 Sand pile model, with respect to a positive integer n, denoted by
SPM(n), is a model where configurations are partitions of n such that:

• Initial configuration: (n) (that means the position 0 has value n, or equivalently
a0 = n and ai = 0 for all i �= 0).

• Local right vertical ruleR: for all i ≥ 0, (. . . , ai , ai+1, . . . ) → (. . . , ai − 1, ai+1 +
1, . . . ) if ai ≥ ai+1 + 2.

• Global rule: at each step, we apply once the R rule.

On the other hand, in 1973, Brylawski described a model to generate all partitions
of a given arbitrary integer n [4], this model can be considered as an extension of
SPM because it is nothing but the SPM with an adding horizontal rule which allow
grain to slide along a plateau.

Definition 2 Brylawski’s model, with respect to a positive integer n, denoted by
LB(n), is a model where configurations are partitions of n such that:

• Initial configuration: (n).
• Local right vertical rule R: (. . . , ai , ai+1, . . . ) → (. . . , ai − 1, ai+1 + 1, . . . ) if
ai ≥ ai+1 + 2.

• Local right horizontal rule H : (. . . , p + 1, p, . . . , p, p − 1, . . . ) → (. . . , p, p,
. . . , p, p, . . . ).

• Global rule: at each step, we apply once the R rule, or once theH rule.
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From these first steps, SPM and Brylawski’s model have been extended in many
different directions [6, 9–12, 15–17]. In particular, the problem is derived from
real-life questions and focusing on the following issues.

• Reachability problem: study the necessary and sufficient conditions for a configu-
ration to be reachable from another one by applying a sequence of transition rules.
In most cases, based on the reachable relation, one can define an order relation.

• Configuration space: the set of all reachable configurations is called space con-
figuration. This set equipped with the order relation can have many interesting
structures.

• Stability problem:Determine if themodel proceeds to stable configurations (called
also “fixed points”) or runs non-stop. This property is related to the structure of
the configuration space.

• Convergence problem: Almost all models are non-deterministic then if we con-
sider all the cases, it is possible that different sequences of transitions proceed to
various fixed points. The uniqueness of the fixed point is usually proven when the
configuration space has a lattice structure. Otherwise, the model can have many
fixed points.

• Characterization of fixed points: If there is several fixed points (and even if it is
unique), then it is important to find out their characterisation.

• Stabilization time of the model. If the model diverges, it is clear that the time to
reach different fixed points are variety. But even if the model converges, there
are different convergent times which depend on the local behavious of the model.
Hence evaluate the upper and lower bounds for convergence time is also an object
of study.

We define the order relation (if it exists) on the space configuration of a model by:
a configuration a is greater than a configuration b if b is reachable from a by applying
a sequence of transition rules (which is the inverse of the definition in Chap.2).

Both configuration spaces of SPM(n) and LB(n) have an order relation,moreover
they have a lattice structure.

The following results were established for SPM [15, 17, 18].

• Reachability of SPM [15].Apartition ofn is a reachable configuration of SPM(n)

if and only if it does not contains subsequences of the two following forms:
(p, p, p) or (p + 1, p + 1, p, p − 1, . . . , p − q + 1, p − q, p − q) (we call this
condition SPM condition).

• Fixed point of SPM. The model SPM(n) has an unique fixed point, which is
(p, p − 1, . . . , q,+1, q, q, q − 1, . . . , 2, 1) where p and q are uniquely defined
by p(p + 1)/2 ≤ n < (p + 1)(p + 2)/2 and q = n − p(p + 1)/2 (q can be
equal to 0).

• Lattice structure of the configuration space of SPM. The configuration space of
SPM equipped with the reachability order is a lattice.

• Length of chains in SPM . Every chain between two configurations in SPM(n)

has the same length.

And results achieved for LB ([4, 19]):
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• The exhaustive property of the model: all partitions are reachable. This property
is almost always true for all natural extensions of the model.

• Therefore, the unique fixed point of the model is easy to determine, it is (1, 1,
. . . , 1).

• Lattice structure of the configuration space of LB(n). The reachability order is the
dominance order, that mean b is reachable from a by LB transition if and only if
b is smaller than a by dominance ordering: for all 1 ≤ i ,

∑i
j=1 b j ≤ ∑i

j=1 a j .
• Length of chains in LB . The property of the SPM that all chains between two given
configurations have the same length is no longer true for LB model. Therefore the
problem of finding longest and shortest chains is particularly interesting. While it
is pretty simple to find shortest chains, finding longest chains is quite complicated
and requires a technical proof which is based on two energies, these energies are
defined for the vertical and the horizontal rules respectively.
Shortest chains. A shortest chain in LB can be constructed as follows: applying
the V-transition at the first position to obtain the partition (n − 1, 1). Then apply
alternativelyV-transition at the first position andH-transition at the second position
n − 3 times to obtain the partition (2, 1, 1, . . . , 1). At this state, apply the H-
transition at the first position, and obtain the fixed point (1, 1, . . . , 1). This chain
has length 2n − 4.
Longest chains: in [19], the authors proved that longest chains are chains of a
sequence ofV-transitions followed by a sequence ofH-transitions.And their length
is θ(n3/2).

These twomodelswere extended by different approaches. First, by parameterizing
the horizontal rule, we defined the Ice pile model [17]. Then by considering that m
sand grains can fall down in the same time (for a given m), we introduced the model
CFG(n,m) [18]. Independently, a similar model of CFG(n,m) was studied by the
physicist Kadanoff [21]. The enumeration of the number of reachable configurations
of these models was widely studied [13, 28]. On the other hand, a parallel version
of SPM was studied in [10, 11]. This model is deterministic and converges to the
fixed point of the classical SPM. For this parallel model, the reachability problem
was studied by mean of language theory.

In this paper, we give a survey of our works, in collaborations with Enrico For-
menti, Kevin Perrot, Pham Van Trung and Tran Thi Thu Huong, on the following
natural extensions of two models SPM and LB .

• We investigate the study of all stable configurations when outside grains are added
on random columns [30].

• A very natural extension of SPM is the symmetric SPM on which sand grains
canmove from left to right and from right to left. Here, themodel lost its properties
of existence and uniqueness of the fixed point, therefore this raises the question of
how to compute the set of fixed points, the time of convergence and the distribution
of fixed points [14, 27, 29].

• We explore the Sand Pile Model and Chip Firing Game on cycle graphs. We study
the reachable configurations and fixed points of each model and the similarities
between these models [5].
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• Finally, we investigate the extension to infinity of Brylawski model, this model
gives a method to generate partitions of all integers by rule of a dynamical model.
Moreover, this model has a recursive structure from which one can deduce some
interesting enumerative formula on partitions [24–26].

2 The Stability of SPM

In this section, we consider a more extended Sand Piles Model where outside grains
are added on random columns. More precisely, each time the model reach a stable
configuration, one grain is added to a random column, and themodel evolves to reach
another stable configuration, and so on. We investigate the study of all such stable
configurations.

First, we give a formal definition of this model and prove that the set of all stable
configurations has a lattice structure which is a sub-lattice of the well-known Young
lattice. Then we compute explicitly the smallest and greatest times to reach a stable
configuration from the initial configuration, and the smallest and greatest times to
reach a stable configuration from another stable configuration. These times illustrate
the behaviour of the model under outside actions. The key idea of this computation
is the introduction of the notion “energy”. Indeed, for each configuration, we treat
each of its grain by defining the energy of a grain being the greatest number of its
possible moves.

2.1 Extended Sand Piles Model and Its Stable Configurations

As well as in almost works of SPM, we represent configurations of this model by
integer partitions. So let us first give some preliminary notions:

Definition 3 (i) A partition is an integer sequence a = (a1, a2, . . . , ak) such that
a1 ≥ a2 ≥ . . . ≥ ak > 0 (by convention, a j = 0 for all j > k and a0 = ∞). We
call ai part of partition a; and k length of a, and write l(a) = k. We say that a
is a partition of n, or n is the weight of a, and write w(a) = n, if

∑i=k
i=1 ai = n.

(ii) A smooth partition is a partition such that all differences between two consec-
utive parts are at most 1.

(iv) Young’s lattice is the lattice of all partitions ordered by containment [32] (i.e.
a ≤ b if and only if ai ≥ bi for all i = 1, 2, . . . ,min{l(a), l(b)}).

From this definition, one can see that a stable configuration is represented by a
smooth partition. So, in the following, we say partition (resp. smooth partition) for
configuration (resp. stable configuration).

The Extended Sand Piles Model (ESPM) is a discrete dynamical model where
all configurations are partitions and the initial configuration being the partition (0).
This model consists of two evolution (or transition) rules:
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Fig. 2 First elements of the
poset ESPM

• Falling rule (inside action): one grain on the column i can fall down to the column
i + 1 if the height difference between the column i and the column i + 1 is greater
than or equal to 2.

• Adding rule (outside action): one grain can be added to one column of a smooth
partition such that the obtained one is still a partition.

We denote also ESPM the set of all reachable partitions from the initial (0). We
call a chain in this model a sequence of transitions. By convention, a chain of one
element (with no transitions) is of length 0. More particularly, a chain between two
smooth partitions is called an avalanche chain. Finally, we denote by a↓i the integer
sequence obtained from a by increasing part i of a by 1.

Figure2 showsfirst elements of ESPM . One can see that ESPM does not contain
all partitions. However, we prove that this model contains all smooth partitions.

Proposition 1 All smooth partitions are reachable from the initial partition.

In order to study the behaviour of the model under outside actions, we investigate
the set of all stable configurations and the relations between them. We denote the
induced subposet of all smooth partitions of the poset ESPM by (SESPM,≤S).
We will describe the nature of order relation in SESPM .

First, we analyze themovement of a grain when it is added from outside to a stable
configuration. So, let a = (a1, . . . , ak) be a smooth partition. One grain is added on
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Fig. 3 First elements of the poset SESPM

column i of a with the condition that ai < ai−1. After that, if ai = ai+1, this grain
stays at column i and does not move anymore. Otherwise, this grain move to a new
position j > i such that ai , ai+1, . . . , a j is a consecutive decreasing integers and
that a j = a j+1. Finally, this grain stays at column j and does not move anymore.
The obtained configuration b of this sequence of moves of this grain is the same as
the configuration obtained by only one move: adding a grain directly on position j .
Hence, this analyze proves the following result: In the SESPM , an element b is
an immediate successor of an element a if and only if b can be obtained from a by
adding one grain at some column. Figure3 shows some first elements of the poset
SESPM . To finish, we discuss about the relation between SESPM and the Young
lattice. Due to the characterization of the containment order, we know that the poset
SESPM is a suborder of the Young lattice. Futhermore we prove that this relation
is in fact a sublattice relation.

Theorem 1 The poset SESPM is ordered by containment, moreover it is a sublat-
tice of the Young lattice.

2.2 Avalanche Chains

The purpose of this subsection is to describe the needed time to reach a stable
configuration in the Extended Sand Piles Model. We know that there are probably
different sequences of evolutions to reach a stable configuration from another stable
configuration. Their sizes may be quite different and depend on the columns in which
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evolution rules are applied. We next show that the smallest length of avalanche chain
depends only on the weight of the considered stable configurations. Otherwise, the
problem is much more complicated than for the greatest length.

Theorem 2 Let a and b be two smooth partitions and b <S a. Then
(i) The smallest length of avalanche chain from the initial configuration (0) to a

is equal to w(a).
(ii) The smallest length of avalanche chain from a to b is equal to w(b) − w(a).

To compute the greatest length of avalanche chains, we consider the movement of
grains.We constate that, when one grain is added to a smooth partition, it slides down
to a position until the obtained partition is smooth and after that this grain can not be
moved. Hence the number of moves of a grain depends only the position (column)
where it is added. We will define by energy of a grain its greatest number of possible
moves. Then we will define energy of a configuration the summation of energy of
all of its grains. The main result of this section is to prove that the greatest length of
avalanche chain to reach a stable configuration is equal to its energy.

Let us recall that, in our model, each configuration is represented by a partition,
or more precisely, by its Ferrers diagram, where each grain is represented by a case
(i, j) where i (resp. j) is the column (resp. row) index. So, let us denoted by F(a)

the diagram of a partition a = (a1, a2, . . . , ak), and we write (i, j) ∈ F(a) for all
case (i, j) such that 1 ≤ i ≤ k and 1 ≤ j ≤ ai (see Fig. 4 as an example). We say
that i is a smooth column of a if i = 1 or ai = ai−1 for i > 1. Moreover, for a case
(i, j), we define diagonal D(i, j) the set of all case (i ′, j ′) such that i ′ + j ′ = i + j
and 1 ≤ j ′ ≤ j (see Fig. 5). We give now the formal definition and some properties
of energy.

Definition 4 Let a = (a1, a2, . . . , ak) be a smooth partition.

Fig. 4 The representation of
the Ferrer diagram of the
partition
a = (4, 3, 2, 2, 2, 1)

Fig. 5 Smooth columns
(1, 4, 5, 7) and
conresponding diagonals
D1, D2, D3, D4 of
b = (4, 3, 2, 2, 2, 1, 1)
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Fig. 6 Representation of the
partition
b = (4, 3, 2, 2, 2, 1, 1), the
number in each case is the
energy of the corresponding
grain. The greatest length
from (0) to (b) is 34

(i) The energy ea(i, j) is the greatest possible moves that a grain can do to reach
the position (i, j).

(ii) The energy E(a) of a is E(a) = ∑
(i, j)∈F(a) ea(i, j).

Lemma 1 Let a = (a1, a2, . . . , ak) be a smooth partition.
(i)We have: ea(i, j) = i + 1 − min{r : ar < ar−1 and ar + r ≥ j + i − 1}.
(ii)Moreover, if (i, j) ∈ F(a) and (i − 1, j + 1) ∈ F(a) then

ea(i − 1, j + 1) = ea(i, j) − 1.

Now, we want to compute explicitly the energy of a smooth partition a =
(a1, . . . , ak). Let 1 = i1 < i2 < · · · < i� be all smooth columns of a. And let Di

the diagonal (i, ai ). It is evident that we can decompose F(a) as the following dis-
joint union:

F(a) = �1

⊔
D2

⊔
. . .

⊔
D�

where �1 is the set of all case (i, j) such that 1 ≤ i, j and i + j ≤ a1 + 1. We then
compute the energy of a in each of such subset.

Proposition 2 Let a be a smooth partition, and let 1 = i1 < i2 < · · · < i� be all
smooth columns of a. We have (Fig.6):

E(a) = a1(a1 + 1)(a1 + 2)

6
+

�∑

r=2

ir air −
�∑

r=3

ir−1air +
�∑

r=2

air (air − 1)

2
.

We state now the main result of this subsection.

Theorem 3 Let a be a smooth partition. Then the greatest length of avalanche chains
from (0) to a is equal to E(a) (Figs.7 and 8).

From this theorem we can study avalanche chain between two stable configurations.

Corollary 1 Let b ≤S a be two smooth partitions. Then the greatest length of
avalanche chains from a to b is

∑
(i, j)∈F(b)−F(a) eb(i, j).

Nevertheless, it is important to note that the greatest length from a to b is not equal to
E(b) − E(a) because for (i, j) ∈ F(b), we have not ea(i, j) = eb(i, j) (see Fig. 9
for an encounter example). Moreover, it is easy to see that eb(i, j) ≥ ea(i, j). This
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Fig. 7 A greatest chain from 0 to b. Each arrow →k to a column i means that k grains are added
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Fig. 8 A greatest chain from a to b. Each arrow →k to a column i means that k grains are added
to column i . The greatest length from a to b is 12

implies that the greatest length of avalanche chains from a to b is smaller than or
equal to the difference of the one from (0) to b and the one from (0) to a. This result
is opposite to the result in the case of smallest length where the egality is hold.
Furthermore, we remark that the avalanche chain of greatest length from (0) to a is
unique. Indeed, from the proof of Theorem 3, we constate that the grainG at position
(i, j) on the diagonal Dr for r ≥ 2 (resp. �1) has exactly ea(i, j) transitions if and
only if G is added at the column ir−1 + 1 (resp. 1) and then it slides diagonally and
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Fig. 9 a Energy tableau of a; b energy tableau of b and 2 = ea(5, 1) �= eb(5, 1) = 5

stops at position (i, j). So the diagonal Dr−1 must be fulfilled,moreover the grain at
position (i + 1, j − 1) must be presented before the adding of the grain G. So by
recurrence we claim that the avalanche chain of greatest length from (0) to a must
be defined explicitly as in the proof of Theorem 3, hence it is unique.

However, there are many avalanche chains of greatest length from a to b. For
instance, if we take a = (2, 2, 1, 1, 1) and b = (2, 2, 2, 1, 1, 1). Then by Corollary
1 we have l(a, b) = 2. Moreover, we have two following avalanche chains of length
2:

a = (2, 2, 1, 1, 1) → (2, 2, 2, 1, 1) → (2, 2, 2, 1, 1, 1) = b

and a = (2, 2, 1, 1, 1) → (2, 2, 1, 1, 1) → (2, 2, 2, 1, 1, 1) = b.

3 Symmetric Sand Pile Model and Unimodal Sequences

Sand Pile Model was first introduced in the context of SOC phenomena. In order
to bring it closer to real physical models, we consider the model such that grains
can fall to the both sides (left and right). This generalized model is called two sided
sand piles model [29] or symmetric sand piles model [12], and denoted by SSPM
(Figs. 10, 11, 12 and 13).

Definition 5 SSPM is a model defined by:

• Initial configuration: (n).
• Local left vertical rule L: (. . . , ai−1, ai , . . . ) → (. . . , ai−1 + 1, ai − 1, . . . ) if
ai−1 + 2 ≤ ai .

• Local right vertical rule R: (. . . , ai , ai+1, . . . ) → (. . . , ai − 1, ai+1 + 1, . . . ) if
ai ≥ ai+1 + 2.

• Global rule: we apply the L rule once, or the R rule once.

When studying this model, we formulate the characterization of reachable con-
figurations and of fixed points. Note that a configuration is defined by its form and
its position. If at the beginning, we have a pile of n sand grains at position 0, then a
reachable configuration a = (ap, ap+1, . . . ap+k−1) can have grains in negative and
positive positions. We call position of a the smallest index p such that ap > 0, and
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Fig. 10 Configuration space SSPM(5)

Fig. 11 Configuration space
PSSPM(5)

(5)

1(4) (4)1

2(3) 1(3)1 (3)2

2(2)1 1(2)2

1(2)1111(2)1

we call the form of a the sequence b = (b1, . . . , bk) such that bi = ap+1−i for all
1 ≤ i ≤ k.

It is easy to see that a configuration can be represented by a unimodal sequence
which is defined as follows.

Definition 6 A unimodal sequence is a sequence of positive integers (a1, a2, . . . , ak)
such that there exists an index 1 ≤ i ≤ k satisfying the condition a1 ≤ a2 ≤ · · · ai1 ≤
ai ≥ ai+1 ≥ · · · ≥ ak−1 ≥ ak . The quantities defined by
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Fig. 12 6 first steps of Alternating Procedure from (9). The arrow together with the direction R
or L (Right or Left) corresponding to the direction along which the transition at column 0 (dark
column) is applied

Fig. 13 9 first steps of Pseudo-Alternating Procedure on (13)

h(a) = max{ai }ki=1 and w(a) =
k∑

i=1

ai

are respectively called the height and the weight of a. We say also that a a unimodal
sequence of w(a).

Given an index 1 ≤ i ≤ k, we denote
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a<i := (a1, . . . , ai−1) and a>i := (ai+1, . . . , ak),

a≤i := (a1, . . . , ai−1, ai ) and a≥i := (ai , ai+1, . . . , ak),

and call them the strict left sequence and the strict right sequence of a by i , the left
sequence and the right sequence of a by i , respectively.

We give a characterization for the form and the position of reachable configuration
[29].

Theorem 4 An integer sequence a is a configuration of SSPM if and only if

• The form of a is a unimodal sequence which has a decomposition a = (a<i , a≥i )

where a<i and a≥i are two partitions satisfying SPM condition.
• the position i satisfies:

– if i ≥ 0 then: iai + i(i+1)
2 + ∑

j≥i a j ≤ n if a≥i begins with a slide step (subse-

quence of the form (p, p1, . . . , q + 1, q, q) with p ≥ q > 0), or iai + i(i−1)
2 +∑

j≥i a j ≤ n otherwise.

– if i < 0 then: −iai−1 + i(i−1)
2 + ∑

j<i a j ≤ n if a<i begins with a slide step, or

−iai−1 + i(i+1)
2 + ∑

j<i a j ≤ n otherwise.

Such a decomposition is called a SSPM decomposition.
For the fixed point of SSPM , we give the following condition [29].

Theorem 5 An integer sequence P is a fixed point of SSPM(n) if P has an SSPM
decomposition at some position i such that:

• P<i and P≥i are SPM fixed points and |Pi − Pi−1| ≤ 1,
• the height k of P is either 
√n� or 
√n� − 1, and
• the position i satisfies k + |i | ≤ 
√2n�.
As consequence, the number of fixed point forms of SSPM(n) is √n� [12].

4 Fixed Points of Parallel Symmetric Sand Pile Model

The Parallel Symmetric Sand Pile Model is a variant of the Symmetric Sand Pile
Model where we allow to apply at the same time all possible transitions [14, 27].

Definition 7 PSSPM is amodel definedwith the same initial configuration and local
rule as SSPM, and with the following global rule.

• Global rule: we apply L and R in parallel on all possible columns. We apply at
most once of the two rules on each column.
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4.1 Forms of Fixed Points

Remark that while the parallel SPM is deterministic, the parallel SSPM is not
because there may have columns from which grains can fall down on both sides.
Recall that SPM has a unique fixed point which implies that PSPM have the same
fixed point as SPM . But SSPM can have more than one fixed points therefore
PSSPM may not have the same set of fixed points as SSPM. Actually, there exists
fixed points of SSPM which is not reachable in PSSPM because its position is
far from the position 0. Nevertheless, it is surprising that the set of forms of fixed
points of PSSPM is the same as that of SSPM. And this fact is the main result of
this subsection [14].

Theorem 6 The set of fixed point forms of PSSPM(n) is equal to that of SSPM(n).
Consequently, there is √n� fixed point forms of PSSPM(n).

This theorem need a very long and technical proof but the idea is very constructive
and can be presented as follows.

For a fixed point P of SSPM(n), we construct a sequence of PSSPM transitions
to obtain a fixed point having the same form as P . Because we are interested in the
form of P but not in its position, we can suppose that the center column of P is at
position 0 (the center of a configuration a is the position i satisfying the condition that
|w(a<i ) − w(a≥i )| get the minimum value). In the constructed evolution, column 0
is always a highest one, so the choice of PSSPM rules in each step is in fact the
choice of the transition’s direction at column 0.

• For a symmetric fixed point P , i.e. (P<0)
−1 = P>0, the evolution is an Alternating

Procedure, described as follows: at odd steps, the rule R is applied at position 0,
and at even steps, the rule L is applied at position 0. From (n) this procedure will
converge to the symmetric fixed point P .

• For P not symmetric, we can suppose that the column 0 is the center of P , i.e.

d = |w(P>0) − w(P<0)| = min
i

|w(P>i ) − w(P<i )|.

Without loss of generality we may assume that w(P>0) − w(P<0) > 0. The evo-
lution by PSSPM rule is composed of three procedures:

(i) Pseudo-Alternating Procedure: a procedure from (n) to the configuration Q =(
1, 2, . . . , d − 1, (n − d2), d, d − 1, . . . , 2, 1

)
.Note thatw(Q>0) − w(Q<0) is

exactly d.
(ii) Alternating Procedure: a procedure from Q to the configuration R on which we

could not apply any more the Alternating Procedure.
(iii) Deterministic procedure: a deterministic procedure from R to P , where at each

of its step, on each position, only one rule can be applied.
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4.2 Positions of Fixed Points

We have already a characterization of the form of fixed points of PSSPM , but what
about their positions? Remark that for SSPM one can obtained a fixed point at a
position very far on the left (or on the right) when one applies as much as possible
left transition (or right transition respectively). But for PSSPM all transitions are
applied at the same time at each step, so one can not apply as much left transition
as he wants to. This explains why many fixed points of SSPM very far on the left
can not be reached by PSSPM . Nevertheless, we can prove that all fixed points of
SSPM whose the position is between the leftmost and the rightmost fixed points of
PSSPM can be reached also by PSSPM. This is related to the continuity of fixed
points of PSSPM. The notion of leftmost, rightmost and continuity will be explained
clearly by using relation �, a notion of closeness between configurations [27].

Definition 8 Let �(a,b) be the sequence of differences between configurations a
and b, �i (a,b) = ai − bi .

We define a notion of similarity or closeness between configurations, denoted by
the following relations:

a � b ⇐⇒ �(a, b) ∈ 0∗1̄0∗10∗

a
∗� b ⇐⇒ �(a, b) ∈ (0∗1̄0∗10∗)∗

where 1̄ is a minus one value. As a convention ε = 0ω, so that a = b implies a
∗� b.

NotationWe use the symbols ≤lex to denote the lexicographic order over config-

urations. Note that a
∗� b ⇒ a ≤lex b and a � b ⇒ a <lex b.

Theorem 7 ([27]) Let

π0 <lex π1 <lex · · · <lex πk−1 <lex πk

be the sequence of all fixed points of PSSPM(n) ordered lexicographically. Then this
sequence has the following strong relation:

π0 � π1 � · · · � πk−1 � πk .

Moreover, for any fixed point π of SSPM(n) such that π0 ≤lex π ≤lex πk , there exists
an index i , 0 ≤ i ≤ k, such that πi = π .



A Survey on the Stability of (Extended) Linear Sand Pile Model 269

5 Signed Chip Firing Game and Symmetric Sandpile
Model on the Cycles

We explore the Sandpile Model and Chip Firing Game and an extension of these
models on cycle graphs. These problems also have a strong relationship to the class
of problems on cycles such as games of cards [7, 16, 20]. Furthermore, we are also
interested in the signed versions of thesemodels, i.e., we allow the vertices to contain
negative numbers of chips for CFG and the sandpiles to have negative heights for
SPM. This also reflects deeply some natural phenomena: between sandpiles there
may be holes (of negative heights), and besides the delivering chips from vertices
containing many chips, it is dually possible receiving chips from vertices lacking
(negative enough) chips [22]. We give the characterization of reachable configura-
tions and of fixed points of each model. At the end, we give an explicit formula for
the number of their fixed points [5].

5.1 SPM, CFG, SSPM and SCFG on Cycles: Definitions
and Notations

Let Cn be a cycle graph of n vertices {1, 2, ..., n} (n ≥ 3). Each integer sequence
(a1, a2, . . . , an) on vertices of Cn is called circular distribution and we say that
vertex i contains ai chips (note that ai may be negative). We identify two circular
distributions if they differ by a rotation of the cycle.

Definition 9 Let k be a non-negative integer. The Sandpile model on Cn of weight
k (and its configuration space), denoted by SPM(Cn, k), is described as follows:

(i) The initial configuration is (k, 0, 0, . . . , 0),
(ii) The evolution rule is the right rule as follows: a vertex gives one chip to its right

neighbor vertex if it has at least 2 higher than this neighbor.

Definition 10 Let k be a non-negative integer. The Symmetric Sandpile model on
Cn of weight k (and its configuration space), denoted by SSPM(Cn, k), is described
as follows:

(i) The initial configuration is (k, 0, 0, . . . , 0),
(ii) The evolution rule: addition to the right rule in SPM(Cn, k), there is also the

left rule, that means a vertex gives one chip to its left neighbor vertex if it has at
least 2 higher than this left neighbor.

Definition 11 Let k be a non-negative integer. The Chip Firing Game on Cn of
weight k (and its configuration space), denoted by CFG(Cn, k), is described as
follows:

(i) The initial configuration is (k, 0, 0, . . . , 0,−k),
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(ii) The evolution rule is the positive rule as follows: a vertex containing at least 2
chips gives one chip to each of its two neighbors.

Definition 12 Let k be a non-negative integer. The Signed Chip Firing Game on Cn

of weight k (and its configuration space), denoted by SCFG(Cn, k), is described as
follows:

(i) The initial configuration is (k, 0, 0, . . . , 0,−k).
(ii) The evolution rule: addition to the positive rule in CFG(Cn, k), there is also the

negative rule, that means a vertex containing at most -2 chips receives one chip
from each of its two neighbors.

Notations

• We define SPM(Cn) the disjoint union of SPM(Cn, k) for k ≥ 0, and similarly
for SSPM(Cn), CFG(Cn), SCFG(Cn).

• Let a and b be two distributions of non-negative integers on Cn , we write a
(i,r)−→ b

(resp. a
(i,l)−→ b) if b is obtained from a by applying the rule at the vertex i on the

right (resp. left); and a
(i,+)−→ b (resp. a

(i,−)−→ b) if b is obtained from a by applying
the positive rule (resp. negative rule) at the vertex i .

Remark It is straightforward from the definitions that

• The configurations of SPM(Cn) and SSPM(Cn) are circular distributions of
non-negative integers whereas the ones of CFG(Cn) and SCFG(Cn) are circular
distributions of integers (may be negative),

• We have the two following inclusions

SPM(Cn, k) ⊂ SSPM(Cn, k) and CFG(Cn, k) ⊂ SCFG(Cn, k).

Recall that two models are called isomorphic if there exists a bijection between
their configuration spaces and this bijection preserves their evolution rule.

Now, let a = (a1, . . . , an) be a circular distribution on Cn . We define

d(a) = (a1 − a2, . . . , an−1 − an, an − a1).

It is straightforward that d is a well-defined map from the set of circular distribu-
tions on Cn to itself. Furthermore, we have the following result.

Proposition 3 Under the map d two models SPM(Cn, k) and CFG(Cn, k) are
isomorphic; and two models SSPM(Cn, k) and SCFG(Cn, k) are isomorphic.

It is remarkable that although d is bijective from SSPM(Cn, k) (resp. SPM
(Cn, k)) to SCFG(Cn, k) (resp. CFG(Cn, k)), it is not bijective from SSPM(Cn)

(resp. SPM(Cn)) to SCFG(Cn) (resp. CFG(Cn)). Moreover, while SSPM(Cn, k)
and SPM(Cn, k)) are absolutely disjoint for different values k, SCFG(Cn, k) and
CFG(Cn, k) may overlap each other, especially for values k differing by a multiple
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of n. Then a configuration of SCFG(Cn) may correspond to many configurations
of SSPM(Cn) whose weights differ by a multiple of n.

Next, we study a characterization for the configurations of the four models. Let
a = (a1, a2, . . .) be a sequence of positive integers. A pair (ai , ai+1) is called a cliff
(resp. plateau) of a at position i if ai − ai+1 ≥ 2 (resp. ai − ai+1 = 0).

Theorem 8 Let a be a circular distribution on Cn. Then a is a configuration of
SPM(Cn, k) if and only if there is a rotation vertices of Cn such that a (in the
sequence form) is a configuration of SPM(k) with the length at most n.

Corollary 2 Let a = (a1, a2, . . .) be a circular distribution. Then a is a configura-
tion of CFG(Cn, k) if and only if d−1(a) is a configuration of SPM(Cn, k).

Corollary 3 The unique fixed point of SPM(Cn, k) is of the form

• (p, p − 1, . . . , q, q, q − 1, . . . , 1, 0, . . .) if k ≤ n(n−1)
2 , where

p =
[
3 + √

9 + 8k

2

]

and q = k − p(p + 1)

2
.

• (p, p − 1, . . . , q, q, q − 1, . . . , p − n + 3, p − n + 2) if k ≥ n(n−1)
2 + 1, where

p =
[
2k + (n − 2)(n + 1)

2n

]

and q = k − (2p − n + 2)(n − 1)

2
.

Here [x] is the largest integer not greater than x.

Next, we give a characterization for configurations of the SSPMs as well as
SCFGs on Cn . To do this we first present the concept of 2-decomposable configu-
rations on the cycle which is different a bit from the definition of LR-decomposition
(left-right decomposition) on the line defined in [29].

Definition 13 Let a = (a1, a2, . . . , an) be a circular distribution on Cn , then a
is called 2-decomposable at (i, j) with 1 ≤ i ≤ j ≤ n if (ai , ai+1, . . . , a j ) and
(ai−1, ai−2, . . . , a1, an, . . . , a j+1) are SPM configurations. Furthermore,a is called
2-decomposable if there exist two indices 1 ≤ i ≤ j ≤ n such that a is
2-decomposable at (i, j).

Theorem 9 Let a be a circular distribution on Cn. Then a is a configuration of
SSPM(Cn) if and only if a is 2-decomposable.

Corollary 4 Let a = (a1, a2, . . .) be a circular distribution. Then a is a configura-
tion of SCFG(Cn, k) if and only if d−1(a) is 2-decomposable.
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5.2 Fixed Points of CFG(Cn) and SCFG(Cn)

Although we have a criterion for the configurations of SCFG(Cn), it requires us
to calculate their inverse images by d and then to check their 2-decomposability
in SSPM(Cn). In this section, we present a simple and direct characterization for
the fixed points (not all their configurations) of SCFG(Cn). Based on this char-
acterization, we give an enumeration for these fixed points. We first classify the
configurations of CFG(Cn) and those of SCFG(Cn) [5].

Proposition 4 Let k, l be positive integers.

(i) If k �= l mod n then

CFG(Cn, k) ∩ CFG(Cn, l) = ∅

and
SCFG(Cn, k) ∩ SCFG(Cn, l) = ∅.

Consequently, the intersection of the set of fixed points of SCFG(Cn, k) and
that of SCFG(Cn, l) is empty.

(ii) If k = l mod n and k, l ≥ ( n+1
2 )2 then the set of fixed points of CFG(Cn, k)

(resp. SCFG(Cn, k)) is equal to that of CFG(Cn, l) (resp. SCFG(Cn, l)).

As we remarked in the previous section that for large enough values of k
in a residue class modulo n, although the set of fixed points of SSPM(Cn, k)
(resp. SPM(Cn, k)) are disjoint, the heights of their columns differ up-to a con-
stant. In other words, if (a1, . . . , an) is a fixed point of SSPM(Cn, k) (resp.
SPM(Cn, k)), then (a1 + 1, . . . , an + 1) is a fixed point of SSPM(Cn, k + n) (resp.
SPM(Cn, k + n)). Hence their images by d in SCFG(Cn, k) (resp. CFG(Cn, k))
and in SCFG(Cn, k + n) (resp. CFG(Cn, k + n)) coincide. By Corollary 2.12,
CFG(Cn, k) has a unique fixed point whereas SCFG(Cn, k) may have many
fixed points. The set of fixed points of SCFG(Cn) includes the fixed points of
SCFG(Cn, k) for small values of k and the n distinct residue classes of fixed points
of SCFG(Cn, k) for large values of k. For a small k, their fixed points can be found
directly by taking the inverse images of d of 2-decomposable fixed points. We next
characterize and enumerate the fixed points of SCFG(Cn) for all k ≥ ( n+1

2 )2.
For convenience, we denote by FP(SCFG(Cn, k) the set of fixed points of

SCFG(Cn, k) and

FP(SCFG(Cn)) = ∩k≥( n+1
2 )2FP(SCFG(Cn, k)).

Recall that each fixed point of SCFG(Cn) is a circular distribution on Cn and its
chips at vertices are 0, 1,−1. By a rotation, first we can consider FP(SCFG(Cn))

as words on the alphabet {0, 1, 1̄} where the letter 1̄ is understood as −1.
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Theorem 10 The set FP(SCFG(Cn)) is determined as follows

• FP(SCFG(C3)) = {(000); (101̄); (11̄0)}.
• FP(SCFG(C4)) = {(0000); (11̄00); (101̄0); (1001̄); (111̄1̄)}.
• FP(SCFG(Cn)), with n ≥ 5, consists of the words w on the alphabet {0, 1, 1̄}
satisfying the following properties:

– w starts from 1;
– in w, the number of occurrences of 1 is equal to that of 1̄;
– w avoids the subsequences: 1̄1, 1001, 1̄001̄ and 00000;
– If w has 4 occurrences of 0 then it must end by 0 and does not contain the
sub-word 11̄.

Theorem 11 The cardinality of FP(SCFG(Cn)) is

• 3 if n = 3;
• 5 if n = 4;
• (n−1)2

2 if n is odd and n ≥ 5;
• n(n−2)

2 if n is even and n ≥ 6.

6 Extension of Brylwaski’s Model

In the previous section, we presented many kinds of extensions of SPM model. For
each kind of extension, it is natural to think about a similar extension of Brylawski’s
model. Recall that for the classicalmodels, while the configuration space of SPM are
clearly characterized with explicit criteria, we also have the exhaustive property of
Brylawski’s model: all integer partitions are reachable. Is we adapt the similar notion
of slide transition in each extension of the SPM model, we have the corresponding
extension of Brylawski’s model. And this is very interesting that the exhaustive
property remains for these extensions. It is also very surprising that the shortest and
longest chains in extended models have the same length as in the classical model of
Brylawski.

Let us recall here the definition of Brylawski’s model.

Definition 14 Brylawski’s model, with respect to a positive integer n, denoted by
LB(n), is a model where configurations are partitions of n such that:

• Initial configuration: (n).
• Local right vertical rule R: (. . . , ai , ai+1, . . . ) → (. . . , ai − 1, ai+1 + 1, . . . ) if
ai ≥ ai+1 + 2.

• Local right horizontal rule H : (. . . , p + 1, p, . . . , p, p − 1, . . . ) → (. . . , p, p,
. . . , p, p, . . . ).

• Global rule: apply the R rule once, or the H rule once.
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6.1 The Symmetric Brylawski’model

Let us first investigate to the extended symmetric Brylawski’s model (SBL ) [9].

Definition 15 The symmetric Brylawski’s model, with respect to n, denoted by
SBL(n), is a model defined by:

• Initial configuration: (n).
• Local left vertical rule L: (. . . , ai−1, ai , . . . ) → (. . . , ai−1 + 1, ai − 1, . . . ) if
ai−1 + 2 ≤ ai .

• Local right vertical rule R: (. . . , ai , ai+1, . . . ) → (. . . , ai − 1, ai+1 + 1, . . . ) if
ai ≥ ai+1 + 2.

• Local left horizontal rule LH : (. . . , p + 1, p, . . . , p, p − 1, . . . ) → (. . . , p, p,
. . . , p, p, . . . ).

• Local right horizontal rule RH : (. . . , p − 1, p, . . . , p, p + 1, . . . ) → (. . . , p, p,
. . . , p, p, . . . ).

• Global rule: we apply the L rule once, or the R rule once.

The exhaustive property of SLB is presented as follows.

Lemma 2 The set of configuration forms of SLB(n) are the set of all unimodal
sequences of weight n.

We have the following straightforward result on fixed points.

Corollary 5 SLB(n) has n fixed points of form (1, . . . , 1) where the first position
can take value from −n + 1 to 0.

And results on shortest and longest chains.

Proposition 5 For n ≥ 4, the shortest chains in SLB(n) have length 2n − 5 and the
longest chains in SLB(n) have the same length as that in LB(n) which is θ(n3/2).

7 Infinite Extension

All the previous extensions have a common property: the total number of sand grains
is unchanged. Now, we investigate an extended models where the total number of
grains can be changed. Furthermore, we consider model where the first column has
not a fix number but an infinite number of grains. It is natural to ask how one can
construct the lattice LB(n + 1) from the lattice LB(n). We construct a linear time
algorithm which gives a translation from LB(n) to LB(n + 1) and which reserves
the lattice structure. From this algorithm, one can construct the lattice LB with an
arbitrary number of grains at the first position.Andby theway,we can see that LB(∞)

is the limit of LB(n) where n goes to infinity. To do that, we consider the model with
three transition rules: the vertical rule, the horizontal rule and the adding rule (adding
one grain at the first position). It is obvious that all reachable configurations are still
integer partitions, but what is interesting is that all integer partitions are reachable in
this models [24].
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7.1 Constructing LB(n + 1) from LB(n)

Before entering the core of algorithms, we need one more notation. If the k-
tuple a = (a1, a2, . . . , ak) is a partition, then the k-tuple (a1, a2, . . . , ai−1, ai +
1, ai+1, . . . , ak) is denoted by a↓i . In other words, a↓i is obtained from a by adding
one grain on its i th column. Notice that the k-tuple obtained this way is not necessar-
ily a partition. If S is a set of partitions, then S↓i denotes the set {a↓i |a ∈ S}. Finally,
we denote by Succ(a) the set of configurations directly reachable from a, i.e. the

set {b | a i−→ b for some i}.
Write di (a) = ai − ai+1 with the convention that ak+1 = 0. We say that a has a

cliff at position i if di (a) ≥ 2. If there exists an � ≥ i such that d j (a) = 0 for all
i ≤ j < � and d�(a) = 1, then we say that a has a slippery plateau at i . Likewise, a
has a non-slippery plateau at i if d j (a) = 0 for all i ≤ j < � and it has a cliff at �.
The integer � − i is called the length of the plateau at i . Note that in the special case
� = i , the plateau is of length 0.

The set of elements of LB(n) that begin with a cliff, a slippery plateau of length
� and a non-slippery plateau of length � are denoted by C, SP�, nSP� respectively.

Let a = (a1, a2, . . . , ak) be a partition. It is clear that a↓1 is again a partition. This
define an embedding π : LB(n) → LB(n)↓1 ⊂ LB(n + 1) which can be proved, by
using infimum formula of LB(n) and LB(n + 1), as a lattice map.

Lemma 3 LB(n)↓1 is a sub-lattice of LB(n + 1).

Our next result characterizes the remaining elements of LB(n + 1) that are not in
LB(n)↓1 .

Theorem 12 For all n ≥ 1, we have LB(n + 1) = LB(n)↓1 �� SP
↓�+1
� .

Proof It is easy to check that each element in one of the sets LB(n)↓1 and SP↓�+1
�

is an element of LB(n + 1), and that these sets are disjoint. Now let us consider an
element b of LB(n + 1). If b begins with a cliff or a step then b is in LB(n)↓1 . If b
begins with a plateau of length � + 1, � ≥ 2, then b is in SP↓�+1

� . �
Finally, we describe an algorithm to compute the successors of any given element

of LB(n + 1), thus giving a complete construction of LB(n + 1) from LB(n).

Proposition 6 Let x be an element of LB(n + 1).

1. Suppose x = a↓1 ∈ LB(n)↓1 .
*) If a is in C or nSP then Succ(a↓1) = Succ(a)↓1 ,
*) If a is in SPl then Succ(a↓1) = Succ(a)↓1 ∪ {a↓�+1},

2. If x = a↓�+1 ∈ SP↓�+1
� for some a ∈ SP�, then

*) If a has a cliff at � + 1 or a non-slippery plateau at � + 1, then Succ(a↓�+1) =
Succ(a)↓�+1 ,

*) If a has a slippery plateau at � + 1, let b such that a
�−→ b in LB(n), then

Succ(a↓�+1) = (Succ(a) \ {b})↓�+1 ∪ {b↓�}. �
Proposition 6makes it possible to write an algorithm to construct the lattice LB(n)

in linear time (with respect to its size).
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7.2 The Infinite Lattice LB(∞)

Imagine that (∞) is the initial configurationwhere the first column contains infinitely
many grains and all the other columns contain no grains. Then the transitions V and
H can be performed on (∞) just as if it is finite, and we call LB(∞) the set of all
the configurations reachable from (∞). A typical element a of LB(∞) has the form
(∞, a2, a3, . . . , ak). As in the previous section, we find that the dominance ordering
on LB(∞) (when the first component is ignored) is equivalent to the order induced
by the dynamical model.

For any two elements a = (∞, a2, . . . , ak) and b = (∞, b2, . . . , b�) of LB(∞),
we define c by: ci = max(

∑
j≥i a j ,

∑
j≥i b j ) − ∑

j>i c j for all i such that 2 ≤ i ≤
max(k, �). One can check that c is an element of LB(∞), i.e. c1 = ∞ and ci > ci+1

for all i > 1, and then c = a ∧ b. This implies that:

Theorem 13 The set LB(∞) is a lattice. �

Now for any n > 1, there are two canonical embeddings of LB(n) in LB(∞), defined
by

π : LB(n) −→ LB(∞)

a = (a1, a2, . . . , ak) �→ π(a) = (∞, a2, . . . , ak),

χ : LB(n) −→ LB(∞)

a = (a1, a2, . . . , ak) �→ χ(a) = (∞, a1, a2, . . . , ak).

The following result is straightforward:

Proposition 7 Both π and χ are embedding of lattices.

By using the embedding 	, one can consider LB(∞) as the limit of LB(n) when
n goes to infinity.

7.3 The Infinite Binary Tree TB(∞)

As shown in our procedure to construct LB(n + 1) from LB(n), each element a of
LB(n + 1) is obtained from an element a′ of LB(n) by adding of one grain: a = a′↓i

for some integer i . Wewill now represent this relation by a tree where a ∈ LB(n + 1)
is the son of a′ ∈ LB(n) if and only if a = a′↓i and we label with i the edge a′ −→ a
in this tree. We denote this tree by ST (∞). The root of this tree is the empty partition
(). We will show two ways to find the partitions of a given integer n in T (∞),
which will make it possible to give an efficient and simple algorithm to compute
them. Moreover, the recursive structure of this tree will allow us to obtain a recursive
formula for the cardinal of LB(n) and some special classes of partitions.

From the construction of LB(n + 1) from LB(n), it follows that the nodes of this
tree are the elements of

⊔
n≥0 LB(n), and that each node a has at least one son,
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Fig. 14 The first elements and transitions of LB(∞). As shown on this figure for n = 6, we have
two ways to find parts of LB(∞) isomorphic to LB(n) for any n

a↓1 , and one more if a begins with a slippery plateau of length l: the element a↓�+1 .
Therefore, T (∞) is a binary tree. We will call left son the first of two sons, and right
son the other (if it exists). We call the level n of the tree the set of elements of depth
n. The first levels of T (∞) are shown in Fig. 14 (Fig. 15).

Like in the case of LB(∞), there are two ways to find the elements of LB(n) in
ST (∞). Based on the construction of LB(n + 1) from LB(n) as given above, it is
straightforward that:

Proposition 8 The level n of ST (∞) is exactly the set of the elements of LB(n). �

We will now give a recursive description of T (∞). We first define a certain kind of
subtrees of T (∞). Then, we show how the whole structure of T (∞) can be described
in terms of such subtrees.

Definition 16 We will call Xk subtree any subtree T of T (∞) which is rooted at an
element a = (i, . . . , i←−−−−−→

k

, ak+1, . . . ) with ak+1 ≤ i − 1 and which is either the whole

subtree of T (∞) rooted at a in the case a has only one son, or a and its left subtree
otherwise. Moreover, we define X0 as a simple node. �
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Fig. 15 Generating tree of partitions

X 1 X 2
X 3 X k-2 X k-1

X k

1 4 k-2 k-1 k2 3

Fig. 16 Self-referencing structure of Xk subtrees

The next proposition shows that all the Xk subtrees are isomorphic (see Fig. 16).

Proposition 9 An Xk subtree, with k ≥ 1, is composed by a chain of k + 1 nodes
(the rightmost chain) whose edges are labeled 1, 2, . . . , k and whose i th node is the
root of an Xi−1 subtree for all i between 1 and k + 1.

This recursive structure and the above propositions allow us to give a compact rep-
resentation of the tree by a chain (see Fig. 17).

Theorem 14 The tree T (∞) can be represented by the infinite chain defined as
follows: the i th node of this chain, (1, . . . , 1←−−−−−→

i−1

), is linked to the following node in the

chain by an edge labeled with i and is the root of an Xi−1 subtree.

Moreover, we can prove a stronger property for each subtree in this chain:

Corollary 6 The Xk subtree of T (∞) with root (1, . . . , 1) contains exactly the par-
titions of length k.

We can now state our last result:
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X 1 X 2
X 3 X 5 X 6X 4

1 11 111 111 1 11111 111111
1 2 3 4 5 6 7

Fig. 17 Representation of TP as a chain

Corollary 7 Let c(�, k) denote the number of paths in an Xk tree originating from
the root and having length �. We have:

c(�, k) =
{
1 if � = 0 or k = 1;
∑in f (�,k)

i=1 c(� − i, i) otherwise.

Moreover, |LB(n)| = c(n, n) and the number of partitions of n with length exactly k
is c(n − k, k). �

8 Conclusion

In this work, we seek characterization of reachable configurations and of stable con-
figurations of many extensions of Sand Pile Model. In SPM and their extensions,
a configuration is represented by an integer partition or by a unimodal sequence.
In almost all cases, the initial configuration is just a 1-part partition. There are also
models where the initial configuration is an arbitrary integer partition, some enu-
merations for this more general models were studied in [28], but questions about
convergence time, the structure of configuration space, etc., remained open. It will
be interesting to investigate similar problems for other classes of graphs such as trees
or planar graphs.

The SPMs taken together when the number of grains is arbitrarily large form
another lattice, called the infinite SPM. This yields an infinite lattice as well as an
infinite tree on the set of all integer partitions. There are different ways to label
the edges of this tree, each labeling gives rise to a generating function on the set of
corresponding partitions. This approach is potentially useful in constructing partition
identities. We provide some examples and discuss some questions around this point
of view.
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Multiple Fibonacci Trees

Maurice Margenstern

Abstract In this paper, we synthetise the studies of three papers we deposited on
arXiv: see [7–9]. The paper considers the extension of the representation used in
many of the author’s papers about cellular automata in the hyperbolic plane. In those
papers, a particular representation of the natural numbers allows us together with
the construction of a corresponding tree to define a coordinate system which can be
used to navigate in the corresponding tiling of the hyperbolic plane. We extend those
considerations to many other kinds of trees for the same purpose and we also extend
the technique used for the tilings {5, 4} and {7, 3} to the tilings {p, 4} and {p + 2, 3}
of the same hyperbolic plane.

1 Introduction

Paper [7] investigated the question what happens if the rules generating the standard
Fibonacci tree are applied to a tree whose root is a black node. The question was
investigated with what is called in this paper the leftmost assignment: in the gener-
ating rules, the black son is always the first one. In that paper too, the question was
raised of what happens if instead the standard Fibonacci sequence we consider what
was called the golden sequence which is associated with the square of the golden
number while the standard Fibonacci sequence is associated with the golden number
itself. The question was considered for both the white and the black Fibonacci trees.

Paper [8] generalizes the context of the same questions. Instead of considering
trees more or less connected with the tilings {5, 4} and {7, 3} of the hyperbolic plane,
that paper considers the trees which span the tilings {p, 4} and {p + 2, 3} of the
same plane. Those trees are finitely generated by rules which generalize the rules
of the case p = 5 to which paper [7] limited its study. Also the new trees entail the
consideration of new families of numbers, we called metallic numbers in [8], which
allow representations of the natural numbers which look like the golden family of
the case p = 5. Paper [9] performs two new steps in the generalization. On one hand,
it considers the definition of the generating rules themselves. Instead of considering
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that the black son is the first one in each rule, it considers various possibilities if the
position of that son is changed, whether the change is always the same or if the change
is also submitted to variations. On another hand, it considers the representation of the
numbers. In paper [8], the metallic sequences are defined with digits in {0 . . . p − 3}.
What if the digits are constrained to be in {1 . . . p − 2}, considering only positive
integers which is the case for the numbers we attach to the tiles except the central
one which is the single tile attached to 0?

Section2 recalls definitions about trees and about the trees considered in the
present paper. Section3 recalls the results about themetallic numbers and the standard
representation of positive numbers it can be inferred from them. The section also
considers the representation where the set of digits is {1 . . . p − 2}. Section4 defines
an assignment, a way of applying rules in the construction process of a tree and the
section studies the properties of the representations studies in Sect. 3 with respect
to various assignments. Section7 investigates the contribution of the paper and the
problemswhich remain open. As the detailed proofs can be found in [7–9], the proofs
are omitted or shortened to their main ideas when it is possible to do so.

2 Metallic Trees

In this section, Sect. 2.1 recalls the vocabulary we shall use in the considerations
of the trees which appear in the paper and in the properties connected with them,
considering, in particular, the numbering we may attach to the nodes of a finitely
generated tree. In Sect. 2.2, we consider the metallic trees which we shall study in
this paper.

2.1 Preliminary Definitions and Properties of Trees

In the paper, we only consider infinite trees with a bounded branching at each node.
Let T be such a tree. Number its nodes from the root which receives 1, then, level by
level and, on each level, from left to right with the conditions that for each node, the
numbers of its sons are consecutive numbers. We then say that T is numbered or
that it is endowed with its natural numbering. In what follows, we shall consider
numbered trees only. Clearly, a sub-tree S of T can also be numbered in the just
above described way but it can also be numbered by the numbers of its nodes in T .
In that case, a node ν may receive two numbers: nS, the number defined in S as a
numbered tree and nT , its number as a node of T . A node may have no son, it is
then called a leaf. A path from μ to ν is a finite sequence of nodes {λi }i∈[0...k], if
it exists, such that λ0 = μ, λk = ν and, for all i with i ∈ [0 . . . k − 1], λi+1 is a son
of λi . A branch of T is a maximal finite or infinite sequence of paths {πi } from the
root ofT to nodes of that tree such that for all i , j , πi ⊆ π j or π j ⊆ πi . Accordingly,
a branch connects the root to a leaf or it is infinite. It is clear that for any node, they
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are connected to the root by a unique path. The length of the path from a node to
one of its sons is always 1. Let k be the length of a path from μ to ν. Then, if ν

is not a leaf, the length of the path from μ to any son of ν is k + 1. The length of
the path leading from the root to a node ν of T is called the distance of ν to the
root ρ and it is denoted by dist{ρ, ν}. We also define dist{ρ, ρ} = 0. The level k ofT
is the set of its nodes which are at the distance k from its root. Denote it by Lk,T .
Define T n as the set of levels k of T with k ≤ n. Say that the height of T n is n. By
definition, T n is a sub-tree of T . For each node ν of T , λT (ν) is its level in T , i.e.
its distance from the root, and σT (ν) is the number of its sons. Clearly, if ν ∈ T n

and if λT (ν) = n, then σ(ν) = 0. If S is a sub-tree of T , denote it by S � T , and if
ν ∈ S, then λS(ν) ≤ λT (ν) and the numbers may be not equal.

Consider two infinite numbered trees T1 and T2. Say that T1 and T2 are isomorphic
if there is a bijection β from T1 onto T2 such that:

f (nT1) = nT2 for any n ∈ N.

λT2( f (nT1)) = λT1(n).

σT2( f (nT1)) = σT1(n).

(1)

Clearly, if T1 and T2 are two infinite numbered trees, they are isomorphic if and
only if there is a bijection from the nodes of T1 into those of T2 such that a node
of T1 and its image in T2 have the same number, they are on the same level of their
respective trees and they have the same number of sons.

2.2 White and Black Metallic Trees

We callmetallic tree an infinite tree constituted by two kind of nodes, b- andw-ones
called black and white respectively, finitely generated by the following rules:

b → bwp−4 and w → bwp−3. (2)

with p ≥ 5.
The property for a node to be white or black is called its literal status. We also

associate to the node its numerical status: 0 or 1 depending on whether the node is
white or black respectively. If it is not specified, status will refer to the literal one.

We shall mainly investigate two kinds of infinite metallic trees. When the root of
the tree is a white, black node, we call such a metallic tree a white, black metallic
tree respectively. We denote the infinite white metallic tree by W and we endow it
with its natural numbering. We do the same with the infinite black metallic tree B.
Note that we can construct a bijective morphism between B and a part B of W as
follows. The morphism is the identity on B and we fix the following conditions:
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σB(1) = σW(1) − 1,

σB(n) = σW(n), for all positive integer n.

Moreover, the nodes numbered by n ∈ [1 . . . p − 2] in W also belong to B and
receive the same numbers in the natural numbering of B. This morphism allows us
to identify B with B, so that in our sequel, we shall speak of B only. From what we
just said, it is plain that for a node ν ∈ B, if νB > p − 2, then νB < νW. We get a
hint to the connection between νB and νW in Sect. 3.1. Later on, we shall use � to
introduce a notation for an expression.

We may wonder whether the simplicity of the rules (2) allow us to give a precise
connection between the number of a node and those of its sons, whether in W or
in B. These questions were partially studied in [8]. We shall turn to them in Sect. 4.
But before, we need to recall the introduction of an appropriate representation of the
numbers used to number the nodes of a metallic tree. It is the goal of Sect. 3 to which
we now turn.

3 Metallic Numbers

These numbers are introduced by the computation of the number of nodes which lie
on a given level of a metallic tree. We consider that point in Sect. 3.1. The sequence
allows us to represent the numbers.We consider some basic properties of the standard
representation in Sect. 3.2. We study the same properties in the representation where
the digits are restricted to {1 . . . p − 2} in Sect. 3.3.

3.1 The Metallic Sequences

Let mn , bn be the number of nodes on Ln,W and Ln,B respectively. We also define
Mn , and Bn as the number of nodes of Wn and Bn respectively. It appears that
these numbers are defined by a simple induction equation as stated in the following
statement:

Theorem 1 ([2, 8]) Consider the numbers mn defined as the number of nodes on
Ln,W, where W is the white metallic tree. The numbers mn satisfy the following
induction equation:

mn+2 = (p − 2)mn+1 − mn wi th m0 = 1 and m−1 = 0. (3)

We call white metallic sequence the sequence {mn}n∈N.

See the proof in [8] for instance.
As the black metallic tree is defined by the same rules, we may conclude that the

same equation rules the sequence {bn}n∈N:
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Theorem 2 The sequence {bn}n∈N of the number of nodes on Ln,B satisfies the
equation:

bn+2 = (p − 2)bn+1 − bn wi th b1 = p − 3 and b0 = 1. (4)

We call black metallic sequence the sequence {bn}n∈N.

Note that we could define the white metallic sequence by the initial conditions
m1 = p−2 and m0 = 1. In our sequel we shall say metallic sequence instead of
white metallic sequence for a reason which will be made more clear in a while.

Before turning to the properties of the integers with respect to the metallic num-
bers, we have to consider the numbers Mn and Bn already introduced with respect
to the finite trees Wn and Bn .

Theorem 3 (see [3]) On the level k ofW, with non-negative k, the rightmost node
has the number Mk, so that the leftmost node on the level k + 1 has the number
Mk + 1.

On the level k of B with non-negative k, the rightmost node has the number mk,
so that the leftmost node on the level k + 1 has the number mk + 1.

The sequence {Mn}n∈N satisfies the following induction equation:

Mn+2 = (p − 2)Mn+1 − Mn + 1, (5)

with the initial conditions M0 = 1 and M−1 = 0, while the sequence {Bn}n∈N satisfy
the Eq. (3) with the same initial conditions, which means that Bn = mn for any non-
negative n. We also have:

Mn+1 = Bn+1 + Mn mn+1 = bn+1 + mn (6)

See the proof in [8].

3.2 Metallic Codes for the Nodes of the Metallic Trees

Let us go back to the sequence {mn}n∈N of metallic numbers. It is clear that the
sequence defined by (3) is increasing starting fromm1: from (3), we get thatmn+2 >

(p − 3)mn+1 if we assume that mn < mn+1. As p ≥ 5, we get that the sequence is
increasing starting from m1. Now, as the sequence is increasing, it is known that any
positive integer n can be written as a sum of distinct metallic numbers whose terms
are defined by Theorem1:

n =
k∑

i=0

aimi with ai ∈ {0 . . . p − 3}. (7)
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The sum of aimi ’s in (7) is called the metallic representation of n and the mi ’s
in (7) are the metallic components of n.

From now on, we use bold characters for the digits of a metallic representation
of a number. In particular, we define d to represent p − 3, c to represent p − 4 and
e to represent p − 5 when p > 5. Of course, 0, 1, 2 and 3 represent 0, 1, 2 and 3
respectively.

First, note that the representation (7) is not unique.

Lemma 1 ([3, 8, 10]) For any integers n and h with 0 ≤ h ≤ n, we have:

(p − 3)mn+1 +
n∑

k=h+1

(p − 4)mk + (p − 3)mh

= (p − 3)mn+1 +
n∑

k=h+2

(p − 4)mk + (p − 3)mh+1 − mh + mh−1 (8)

Corollary 1 ([3, 10]) For any positive integer n, we have:

(p − 3)mn+1 +
n∑

k=1

(p − 4)mk + (p − 3)m0 = mn+2

so that dcnd = 10n+2 (9)

See the proofs in [8] for instance.
Let us write the ai ’s of (6) as a word a k . . . a 1 a 0 which we call ametallic word

for n as the digits ai which occur in (6) are not necessarily unique for a given n.
They can be made unique by adding the following condition on the corresponding
metallic word for n: the pattern dc ∗ d is ruled out from that word. It is called the
forbidden pattern. Lemma1 proves that property which is also proved in [3, 10].

When a metallic representation for n does not contain the forbidden pattern it
is called the metallic code of n which we denote by [n]. We shall write ν = ([ν])
when we wish to restore the number from its metallic code. Let us call signature
of ν the rightmost digit of [ν] = ak . . .a1a0 and denote it by sg(ν). Let σ1, σ2, …,
σk with k = p − 2 or k = p−3 be the sons of ν. We call sons signature of ν the
word s1…sk , where si = sg(σi ). We shall denote the literal status of ν by �s(ν) and
its numerical one by sn(ν).

3.3 The Non-zero Metallic Codes

It is known that given a basis b with b ≥ 3 any positive number n can be written

n =
k∑

i=0

aib
i with ai ∈ {1 . . . b} (10)
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Let a+ = a + 1 and a− = a − 1 for any positive integer a. The representation
(10) was used by Quine in order to encode any finite sequence of natural numbers:
writing n as in (10), b is used as a separator and the other digits which lie in [1 . . . b−]
can be interpreted as the representations of positive numbers in the base b− which
requires b ≥ 2. Smullyan, see [11], makes use of such a representation in order to
prove Gödel’s theorem on the incompleteness of Peano arithmetics.

The question is: taking the metallic numbers mn as a basis, is it possible to have
a representation which rules out all 0’s in the representation of a positive number?
The answer is given by the following proposition:

Theorem 4 Let n be a positive natural number. Then it is possible to write n as:

n =
k∑

i=0

ai mi with ai ∈ {1 . . . b}, (11)

where b = p − 2.

The easy proof on induction can be found in [9].
When we use the representation (11) to write a positive integer, we use x to denote

the digit whose value is b = p−2. We know that the representation with the metallic
numbers of a positive integer is not necessarily unique. This is why we needed to
select a criterion in order to ensure the uniqueness of the metallic code. It is also the
case that the representation (11) is not unique, despite the fact that it satisfies the
constraint of no 0 among the digits. To see that point, we need the following result
which enlarges a lemma from [8]:

Lemma 2 For any integers n and h with 0 ≤ h ≤ n, we have:

(p − 2)mn+1 +
n∑

k=h+1

(p − 3)mk + (p − 2)mh

= (p − 2)mn+1 +
n∑

k=h+2

(p − 3)mk + (p − 2)mh+1 + mh−1 (12)

Corollary 2 For any positive integer n, it has a unique representation (11) provided
that the pattern xd∗x is ruled out and is called a forbidden pattern. A metallic code
where the 0-digit is ruled out and where the forbidden pattern does not occur is
called a non-zero metallic code, nzm-code for short. The nzm-code of n is denoted
by [ν]nz .

In order to get a [ν]nz from (11), we apply the conversion rules:

nxdkxm = n+1k+2m+ and n+0k+2m+ = ndckdm (13)

where n, m are non-zero digits in {1 . . . x}, n+ = n⊕1 and m+ = m⊕1, with
a⊕1 = a + 1 if a + 1 < p − 2 and a⊕1 = 0 if a = p − 3.
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We call the forbidden pattern defined in Corollary2 the nzm-forbidden pattern
in order to distinguish it from that of Lemma1. Note that the forbidden pattern of
Lemma1 is no more forbidden in an nzm-code. Of course, the application of (13)
may be repeated in (11) as long as all occurrences of the nzm-forbidden pattern are
replaced by their permitted equivalent expression given in (13).

In [8], we gave algorithms for incrementing or decrementing a number given by its
metallic code, the algorithm returning a metallic code too. In [9], the corresponding
algorithms are given with respect to the nzm-codes.

We just mention the key points of these algorithms.
Firstly, for metallic codes. Then, let us look at incrementation. If the signature is

not d, there is no difficulty. Otherwise, as there is no forbidden pattern in the code,
we have a suffix hck with h 	= d. In that case, ck is replaced by ck−2d0. Otherwise,
we have a suffix hdck with h 	= d, which is replaced by j0k+1, where j = h+1.

Now, let us look at decrementation. If the signature is not zero, there is no difficulty.
Otherwise, we have a suffix a0k , where a 	= 0. Then, a0k is replaced by hdck−1, where
h = a−1.

Both algorithms are direct consequences of Corollary1.
Secondly, consider the nzm-codes. We begin with incrementation: no problem

if the signature is less than d. Otherwise, we have a suffix hxdk where h < x. It is
replaced by j1k+1 where j = h+1.

The decrementation algorithm works exactly in the opposite way. No problem if
the signature is not 1. Otherwise, we have a suffix a1k , where a > 1. The suffix is
replaced by hxdk−1, where h = a–1.

This time, both just mentioned algorithms are direct consequences of Corollary2.
Note that the just mentioned corollaries are tightly connected: it can be remarked

that if we subtract the forbidden pattern for themetallic code dckd from the forbidden
nzm-code xdk x we get 1k+2.

Also note that the algorithms we have given in natural language can easily be
translated into formalised ones.

4 Metallic Trees and Their Assignments

In this section, we consider the notion of assignment which we define in Sect. 4.1.
There, we also consider a tool to compare assignments. In Sect. 4.2, we focus our
attention on a particular assignment we call penultimate. In Sect. 4.3, we characterise
a property shared by the assignments, a property which we shall discover with the
penultimate one. In Sect. 4.4, we look at another assignment, the mid-assignment
which allows us to have a new look on the particular assignments investigated in the
previous sections. In Sect. 4.5, we shall investigate the properties of the assignments
in the frame of the nzm-codes.
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4.1 Assignments in Metallic Trees

In Sect. 2.1, we recalled the definition of the natural numbering of W and B.
Consider those trees. We can see each of them as an infinite sequence Ln of finite
sequences of numbers defined by Ln+1 = {Un + 1 . . .Un+1}, where Un = Mn for
all n orUn = Bn for all n, depending on whether we considerW orB. In both cases,
we can see the application of the rules (2) as an application α which, to each node ν

of the level n associates three numbers �ν , sν and bν such that sν is the numeral status
of ν under α, �ν is the leftmost node of an interval Iν of Ln+1 with the conditions:

for all ν, Iν ∩ In+1 = ∅ and
∑

ν∈Ln

|Iν | = mn+1, (14)

and bν is the position of the black node associated to ν among the nodes of the
interval Iν , the leftmost position being 1. The nodes belonging to Iν are called the
sons of ν under α, for short: α-sons. They are simply called sons only when it is
clear which assignment is considered. The conditions (14) can equivalently be stated
as:

for all ν with ν ∈ Ln, α(ν) = (α�(ν), αb(ν), αs(ν)),

with α�(ν) ∈ Ln+1, αs(ν) ∈ {0, 1}, αb(ν) ∈ {1 . . . p − 2 − αs(ν)},
for all ν,

α�(ν+1)−1∑

k=α�(ν)

αs(ν) = 1 and, for any ν ∈ [Mn−1 + 1 . . . Mn],
for any positive ν, αs(αb(ν)) = 1,

α�(ν + 1) = α�(ν) + p − 2 − αs(ν), and α�(Mn) = Mn+1 − p + 3 + αs(Mn).

(15)
We call assignment an application α which satisfies (15). We denote byWα the

white metallic treeW dotted with the assignment α: it means that, starting from the
root, the status of each node ν under α is defined by αs(ν) and that the position of
the black son of ν among its α-sons is defined by αb(ν). When α is associated with
the rules (2), we additionally have that αb(ν) = 1 for all node ν. That assignation
is called the leftmost assignment. It was called the standard assignment in [2]
which considers white metallic trees only in the case when p = 5. In [10], another
assignment was considered, defined by:

α(ν) = (�ν, p − 3 − sn(ν), sn(ν)) for all ν. (16)

It is not difficult to see that whether �s(ν) isb orw, the black son is the penultimate
son of ν. For this reason, we call (16) the penultimate assignment. Similarly, we
define the rightmost assignment by

α(ν) = (�ν, p − 2 − sn(ν), sn(ν)) for all ν. (17)
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Say that an assignment α is an a-assignment if and only if for any node ν, one
of its sons exactly has a as its signature. It means that for one son of ν and for one
of them only, its code has a among its suffixes. We say that an assignment α has
the preferred son property if, for any node ν, exactly one of its sons has the code
[ν]0. Note that an assignment which possesses the preferred son property is also a
0-assignment. Accordingly, the preferred son property assumes that we consider the
representation of the numbers by their metallic codes.

Say that an assignment α is a b-a-assignment if and only if all black nodes of
the tree and only them have a as their signature. We can note that the notion of
b-a-assignment is meaningful also in the case of the representation of the numbers
by their nzm-code when it exists. We shall see a bit later that there are many values
of a for which the b-a-assignment exists.

In order to establish the property characterised in Sect. 4.3, we consider the fol-
lowing tool which measures the distance between two assignments as follows. Let
α and β be two assignments of the white metallic tree. Call apartness between
α and β denoted by δαβ the function defined by δαβ(ν) = β�(ν) − α�(ν) for any
node ν of W. We have the easy property:

Lemma 3 Let α, β and γ be three assignments on the white metallic tree. For any
node ν of W we have:

δαβ(ν) = δγβ(ν) − δγα(ν). (18)

Consider the metallic codes which are associated to the numbers by (7), see
Sect. 3.2. Consider the metallic codes of the nodes which lie on L1. One of them
only has the signature 0: it is the node numbered by p−2 whose metallic code is
10. Consider the nodes on L2. Their numbers grow from M1 + 1 up to M2 and the
metallic codes go from 12 to 111. The nodes whose signature is 0 are: 20, 30, …, c0,
d0, 100, 110. We can see that the distance between two consecutive such nodes is
p−2 except for d0with 100whose distance is p−3. More generally, call 0-node any
node ofW whose signature is 0. OnLn+1, the 0-nodes run from 1n−120 up to 1n+10.
Note that if we erase the last digit of those codes, we get the codes from 1n−12 up to
1n+1, i.e. the metallic codes of the nodes onLn . Accordingly, the number of 0-nodes
on Ln+1 is the number of nodes on Ln . Moreover, we can observe that the distance
between two consecutive 0-nodes on a level is p−2 of p−3. When it is p−3? On
the level L2, the distance p−3 occurs between d0 and 100. Indeed, 100�1= dc and
the distance between d0 and dc is p−4. More generally, we can state:

Lemma 4 On the level Ln let μ and ν be two consecutive 0-nodes, with μ < ν.
Then ν − μ = p − 3 if and only if [ν] = [ω]0k with k ≥ 2. When it is not the case,
ν − μ = p − 2.

The reader is referred to [9] for the proof which is based on a carefull examination
of the decrementation algorithm for the metallic codes.

Is there a connection between those values between two consecutive 0-nodes and
the smaller occurrence of the smaller distance with the distinction between white
and black nodes which have p−2 and p−3 nodes respectively?

That issue is addressed by the next sub-section.
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4.2 The Penultimate Assignment

Say that an assignment α possesses the preferred son property if and only if for any
node ν ofW, the signature of one of its sons under α and one of them only is 0 and if
the metallic code of that son is [ν]0. When an assignment α possesses the preferred
son property, for any node ν, the node whose signature is [ν]0 is called its preferred
son under α. Note that if α and β are two assignments which possess the preferred
son property, for each node, the preferred son under α and that under β coincide.

We can state:

Theorem 5 The penultimate assignment possesses the preferred son property and
it is the b-0-assignment.

Proof It is based on the following property on the signatures and on the metallic
codes of the sons with respect to those of the node.

Lemma 5 Let ν be a node ofW equipped with the penultimate assignment π . The
signatures of its sons under π is defined by the following rules:

b0 → w2(wa)p−7wc.b0.w1,wa → w2(wa)p−6wd.b0.w1, (19)

The metallic codes of the sons of ν under π are given by the following table, where
ak . . .a1a0 � [ν] and bk . . .b0 � [[ak . . .a0]�1] and a is in {1 . . . d} in lines 4–6.

ν range son metalliccode ref .
b0 1 . . . p − 5 h bk . . . b0h+ 1

p − 4 ak . . . a00 2
p − 3 ak . . . a01 3

wa 1 . . . p − 4 h bk . . . b0h+ 4
p − 3 ak . . . a00 5
p − 2 ak . . . a01 6

(20)

Clearly, Theorem5 follows from Lemma5. The reader is referred to [9] for the
proof which is based on complete induction on ν, distinguishing the case when the
node is white and when it is black.

As proved in [9], we can transport an assignment α on a particular sub-tree ofW:

Theorem 6 Consider the application ϕ such that ϕ([ν]0) = ([ν]), defining a bijec-
tion ofW on the set T of the 0-nodes ofW. Define the sons of a node ν of T as the
0-nodes ofW which are in the subtree S ofW rooted at ([ν]0) and which are on the
level 2 of S. Define the status of ν in T as the status of ([ν]0). Then, the bijection ϕ

defines an isomorphism of W onto T which transports the assignment α onto T
whatever α.
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4.3 Assignments and the Preferred Son Property

In this subsection, we shall see that all assignments on the white metallic tree possess
the preferred son property.

To that purpose, we compare the assignments to the same one: the leftmost assign-
ment which we denote by λ. The reason of this choice lies in the following property:

Lemma 6 For any node ν of W, we have:

0 ≤ δλα(ν) ≤ 1 (21)

We recall that stα(ν) is the status of the node ν under α. We refer the reader to [9]
for the proof of the lemma which is based on the following easy property:

Lemma 7 Let λ be the leftmost assignment on W and let α be an assignment
on W. If stλ(ν) = stα(ν) then, δλα(ν + 1) = δλα(ν). Otherwise, if stλ(ν) = w then
δλα(ν + 1) = δλα(ν) − 1 and if stλ(ν) = b, then δλα(ν + 1) = δλα(ν) + 1.

by proving the stronger property:

δλα(α�)(ν) = δλα(α�)(ν + 1) = 0 (22)

which, in some sense, does not depend on the status of ν.

Theorem 7 Any assignment α on W does possess the preferred son property. In
Wα , whatever α, we have that mn+1 is the preferred son of mn. Call the sequence
of nodes {mn}n∈N the 0-branch.

The detailed proof is in [9]. It starts by proving that λ, the leftmost assignment,
possesses the preferred son property. It is obtained by proving an analog of the
rules (19) and Eq. (20) for λ, namely:

Lemma 8 Let ν be a node of W equipped with the leftmost assignment λ. The
signatures of its sons under λ is defined by the following rules:

b1,b2 → b2(wa)p−6wd.w0,wa → b1(wa)p−5wd.w0,
w0 → b1(wa)p−6wc.w0.w1,w1 → b2(wa)p−6wd.w0.w1.

(23)

Themetallic codes of theλ-sons of ν are given by the following table, where ak . . .a1a0
� [ν] and bk . . .b0 � [[ak . . .a0]�1], and in lines 9 and 10, a is in {2 . . . d}.
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ν range son metalliccode ref .
b1,b2 1 . . . p − 4 h bk . . . b0h+ 1

p − 3 ak . . . a00 2
w0 1 . . . p − 4 h bk . . . b0h 3

p − 3 ak . . . a00 4
p − 2 ak . . . a01 5

w1 1 . . . p − 4 h bk . . . b0h+ 6
p − 3 ak . . . a00 7
p − 2 ak . . . a01 8

wa 1 . . . p − 3 h bk . . . b0h 9
p − 2 ak . . . a00 10

(24)

Then, the proof compares λ and π , using the property stated by Theorem5 that
the 0-nodes coincide with the black nodes under π .

Note that the rules can be identified by their left-hand side part, which we shall
do later on.

For what is the righmost assignment we have the following rules and table, see [9]
for the proof:

b1,b2 → w3(wa)p−7wd.w0.b1,wa → w2(wa)p−6wd.w0.b1,
w0 → w2(wa)p−7wc.w0.w1.b2,w1 → w3(wa)p−7wd.w0.w1b2.

(25)

ν range son metallic code ref .
b1,b2 1 . . . p − 5 h bk . . . b0h++ 1

p − 4 ak . . . a00 2
p − 3 ak . . . a01 3

w0 1 . . . p − 5 h bk . . . b0h+ 4
p − 4 ak . . . a00 5
p − 3 ak . . . a01 6
p − 2 ak . . . a02 7

w1 1 . . . p − 5 h bk . . . b0h++ 8
p − 4 ak . . . a00 9
p − 3 ak . . . a01 10
p − 2 ak . . . a02 11

wa 1 . . . p − 3 h bk . . . b0h+ 12
p − 2 ak . . . a00 13
p − 2 ak . . . a01 14

(26)

Note that a is in {2. . .d} in lines 12–14.
Figures1 and 2 illustrate the property proved in Theorem7 for the leftmost and

the rightmost assignments respectively. In the figures, the red colour is used to mark
the black nodes, while the white ones have a blue and a green colour. The blue and
the green colours are used to distinguish between the different kinds of white nodes
which appear in Eqs. (20), (24) and (26). The blue nodes correspond to the nodes
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Fig. 1 The white metallic tree. Partial representation of the first three levels of the tree when p = 9
with the conventions mentioned in the text
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Fig. 2 The white metallic tree under the rightmost assignment. Partial representation of the first
three levels of the tree when p = 9 with the conventions mentioned in the text

marked by wa. The w0-nodes are indicated by a green disk with a red circle while
the w1-nodes are indicated by a green disk with a darker green circle. The numbers
in red, above the nodes, indicate the natural numbering of the tree. The metallic code
is mentioned vertically, below each node.

In those illustrations, p = 9. However, in order to indicate the general form of the
properties, in the metallic codes, 5 and 6 are replaced by c and d respectively. Indeed,
it corresponds for p = 9 to the general values given to c and to d respectively. In
order to make easier the reading of the figures, not all nodes are mentioned. We just
mention those which allow us to see the application of the rules (23) and to check
Eq. (24).

We defined the 0-branch which connects the 0-nodes we obtain which are the
0-son of the previous one except the first one which is the root. We noted that the
0-branch does not depend on the assignment α with which we equippedW. Now, if
we take a node ν whose signature is not 0. It has a unique α-son σ which is a 0-node,
and we know that the position of σ inW does not depend on α. What depends on α
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is the position of σ among the α-sons of ν. As an example, mn+1 is the penultimate
λ-son ofmn while it is its ante-penultimate ρ-son. From what we just mentioned, we
can construct a sequence {ϕn}n∈N of nodes such that ϕ0 = ν and ϕn+1 is the 0-son
of ϕn for any n. From Theorem7, we know that ϕn+1 is always an α-son of ϕn and
again, its position does not depend on α. Call the sequence {ϕn}n∈N the 0-path issued
from ν. From Lemma4,we can state:

Theorem 8 For any assignment α, the 0-paths indicate the nodes in Wα at which
the application of the incrementation algorithm necessitates a carry, which produce
the 0-signature of the metallic code of the node.

4.4 Mid-assignments in the White Metallic Tree

Before turning to the connections between the assignments on W and the nzm-
codes, we deal with a particular fixed assignment which, in some sense, synthesizes
the properties we observed on the leftmost, the penultimate and the rightmost assign-
ments. We say that an assignment is fixed if the black nodes are always applied the
same rule and if it is the same for the white nodes. In this sub section,we consider
what we call a mid-assignment. A mid-assignment is defined by a constant k with
k ∈ {2 . . . p − 4} which defines the position of the black son among the sons of a
node, avoiding the positions we already studied. Denote byWμ,k the white metallic
tree equipped with such an assignment. It is illustrated by Fig. 3 in the case when
p = 7 and k = 4.

The rules for the nodes are given by (27) and the sons of a node by (28). We note
that the root obeys the rule wa of (27). From the metallic code of the leftmost son
and from Lemma4, we can see that the rule wa is applied until we meet the sons of
the first black node on the father level. We also can check that lines 3–5 of Eq. (28)
are observed.
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Fig. 3 The white metallic tree. Partial representation of the first three levels of the tree when p = 9
with the conventions mentioned in the text
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bk → w2 . . .wk− . . . bk.wk+ . . .wd.w0,
wa → w2 . . .wk−bk.wk+ . . .wd.w0.w1, with 0 < a < k,

wb → w1 . . .wk−bk.wk+ . . .wd.w0, with k < b ≤ d,

w0 → w1 . . .wk−bk.wk+ . . .wc.w0.w1.

(27)

ν range son nzm-code ref .
bk 1 . . . p − 4 j ah . . . a1a−

0 j
+ 1

p − 3 ak . . . a1a00 2
wa 1 . . . p − 4 j ah . . . a1a−

0 j
+ 3

p − 3 ak . . . a1a00 4
p − 2 ak . . . a1a01 5

wb 1 . . . p − 3 j ah . . . a1a−
0 j 6

p − 2 ak . . . a1a00 7
w0 1 . . . p − 4 j ah . . . a1a−

0 j 8
p − 3 ak . . . a1a00 9
p − 2 ak . . . a1a01 10

(28)

The reader can find in [9] the justification of rules (27) and of Eq. (28).

4.5 Assignments in W and the nzm-Codes

As the 0-signature has no more any meaning in nzm-codes, the property of the
preferred son can be reformulated as follows: is there a value a such that each node ν

has among its α-sons exactly one of them whose nzm-code is [ν]a for at least one
assignment α?

Before addressing that issue, note that we can easily characterise in nzm-terms
the nodes whose signature is 0 in the metallic code. As far as the nodes do not change
but their sons according to the assignment α we set onW, let us still call those nodes
0-nodes even in that context. We have:

Lemma 9 Let ν be a 0-node and let [ν] = [ω]0k be its metallic code, where k > 0
and the signature of [ω] is not 0. Then we have:

[ω]0 = [ω − 1]x and, when k ≥ 2, [ω]0k = [ω − 1]dck−2d (29)

The lemma is an immediate application of (13).
The lemma tells us that the suffixes x and dc∗d cannot be used for replacing the

notion of preferred son in the context of the metallic codes: the nzm-code of the
0-son of ν contains [ω − 1] and not [ω].

Now, it is not difficult to see that 11 occurs among the sons of the root 1, whatever
the assignment. Also, the first nodes on the level L2 are 12, …, 1x, 21 and 21 is
the p−2th node. Accordingly, if 2 is α-white, 21 occurs as its rightmost α-son. Let
us call 1-nodes the nodes of W whose signature of their nzm-code is 1. We may
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Fig. 4 The white metallic tree and the rightmost assignment under the nzm-codes for the nodes.
Partial representation of the first three levels of the tree when p = 9 with the conventions mentioned
in the text

wonder what is the distribution of the 1-nodes in W? In fact, what we already said
is a valuable hint to the solution: from Lemma2 and its Corollary2, we know that
[ω − 1]x⊕1 = [ω]1 and that [ω − 1]xdk+1⊕1 = [ω]1k+2. This allows us to prove:

Lemma 10 Let μ and ν be two consecutive 1-nodes of the level Ln with μ < ν.
Then ν − μ = p − 3 if and only if 11 is a suffix of ν and, when it is not the case,
ν − μ = p−2.

An immediate corollary is that whatever the assignment, there are infinitely many
nodes ν so that x does not occur in their sons signatures. The detailed proof of
Lemma10 is in [9] and makes use of considerations on the decrementation algorithm
on nzm-codes.

For any node ν, call successor of ν, denoted by succ(ν), the node whose nzm-
code is [ν]nz1. Lemma10 and our study of the penultimate assignment on W with
respect to the metallic codes suggests to state:

Theorem 9 Let W equipped with the rightmost assignment ρ and consider the
nzm-codes of its nodes. Then, for any node ν, its successor occurs among its ρ-sons
and no other ρ-sons of ν is a 1-node, so that we can call [ν]nz1 the nzm-preferred
son of ν. Moreover, ρ is the unique assignment α such that for any node, its successor
occurs among its α-sons.

The detailed proof, see [9] is based on rules (30) and on Eq. (31) which apply to
the rightmost assignment in the case of the nzm-codes. That proof is also based on
a complete induction on the number of a node. Figure5 illustrates Wλ while Fig. 4
illustratesWρ . The colours are again those of Figs. 1 and 2. As in those latter figures,
the blue and the green colours indicate an application of the rules wa.

b1 → w2.w3 . . .wd.b1,wa → w2 . . .wd.wx.b1, (30)
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Fig. 5 The white metallic tree and the leftmost assignment under the nzm-codes for the nodes.
Partial representation of the first three levels of the tree when p = 9 with the conventions mentioned
in the text

ν range son nzm-code ref .
b1 1 . . . p − 4 h ak . . . a1a−

0 h
+ 1

p − 3 ak . . . a1a01 2
wa 1 . . . p − 3 h ak . . . a1a−

0 h
+ 3

p − 2 ak . . . a1a01 4

(31)

The green colourwith a red circle indicates the nodeswhich are before the 1-nodes
on the same level and the colour green with a green circle indicate the 1-nodes of
the rightmost branch of the tree. The black nodes lie on the leftmost branch of the
tree and also in the 1-nodes which are not on that branch. On Fig. 5, we can see that
the λ-assignment does not possess the nzm-preferred son property. For all nodes ν

except those which lie on the rightmost branch of the tree, the successor of ν is the
leftmost λ-son of ν + 1.

It is possible to transport the property stated in Theorem6 and that of Theorem8
to Wρ . We define the 1-branch as the sequence of nodes {ωn}n∈N, where ω0 is the
root and ωn+1 is the successor of ωn . The 1-branch is the analog in the nzm-codes
context of the 0-branch in the context of the metallic codes. Similarly, we define
the 1-paths issued from a node ν in Wρ . Note the difference with the previous
situation: a 0-path is a path whose terms except the first one are sons of the previous
term, whatever the assignment given toW. In the context of the nzm-codes, a 1-path
is a true path inWρ and it is not a path in any otherWα as established in the proof
of Theorem9. We can state:

Theorem 10 LetV be the set of 1-nodes ofWρ , equippedwith the rightmost assign-
ment ρ, 1 being excepted. Define the mapping ϕ fromV onto Wρ by

ϕ(([ν]nz1)) � ([ν]nz).
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Define the sons of ([ν]nz1) as the 1-sons of the ρ-sons of ([ν]nz). Then ϕ defines
an isomorphism between V equipped with its natural numbering and Wρ and ϕ−1

transports the ρ-assignment ontoV.

5 Properties of the Black Metallic Tree

As defined in Sect. 2.2, the black metallic tree B is defined by the same rules as the
white one, the difference being that the root of B is a black node. We know that the
number of nodes on the level n of B is bn which satisfies (4). We also know that
Bn = mn . Accordingly, the nodes of the rightmost branch ofB are numbered bymn ,
as known from Theorem3, and we get from (20) that their nzm-code is dcn−2d.

In [8], we proved the properties of the sons signatures of the nodes in the black
metallic tree under the leftmost assignment and when the nodes are fitted with their
metallic code. The properties are different from those we have noted in the white one
in the similar context. In Sect. 5.1 we consider the properties of B when its nodes
are fitted with the metallic codes. Section5.1.1 studies the case of Bλ when B is
constructed under the λ-assignment. Figure6 illustrates the black metallic tree in
that context for p = 9 as in the case of Fig. 1 to which the reader is referred for a
comparison betweenW and B. We recall the results in Sect. 5.1.1. A more detailed
study of that comparison can be found in [8]. In the present section, we shall stress on
the the comparison with the situation of the black metallic tree under the rightmost
assignment and also, in both the leftmost and the rightmost assignments when the
nodes are equipped with their nzm-codes. We shall write Bλ, Bρ for B equipped
with the λ-, ρ-assignments respectively. The study ofBλ with the nzm-codes is dealt
with in Sect. 5.2.1, while the similar study with Bρ is the goal of Sect. 5.2.2.

5.1 The Black Metallic Tree and the Metallic Codes

We now turn to the black metallic tree B and we look at properties, similar to those
which hold for the white metallic tree. Some of them are still valid in that tree and
we try to see the reason why for some others they are not valid. Section5.1.1 looks
at the situation for Bλ, the tree B when it is fitted with the leftmost assignment λ.
Section5.1.2 deals with the situation for Bρ , the tree B when it is fitted with the
rightmost assignment ρ. We recall the reader that in this subsection, we consider the
metallic codes for the representations of the numbers attached to the nodes.
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5.1.1 The Black Metallic Tree Under the Leftmost Assignment and the
Metallic Codes

Figure6 shows us that the preferred son property is not true in Bλ. The leftmost son
of a level, a black node, has no son whose signature is 0. All other nodes have a son
whose signature is 0, and among them, the last node of a level has two sons whose
signature is 0, so that the leftmost assignment is not even a 0-assignment for the
leftmost one. Now, for a node ν which has a unique son whose signature is 0, the
metallic code of that node is not [ν]0 but it is [ν − 1]0.

Here too, call successor of the node ν, the node whose metallic code is [ν]0. We
can state:

Theorem 11 (see [8]) InBλ, the nodes are applied the rules of (32) and the metallic
codes of the λ-sons of a node ν are given by Eq. (33), the root being excepted. The
root is applied the rule b1→ b2w3. . .wdw0. For the other nodes there are two kinds
of black nodes, the nodes b1 and the nodes b0 which follow the rules for black nodes
in (32). The rule b1 is also followed by node 2. The nodes b1 are present on the
leftmost branch of B, node 2 being excepted, and only on those places. The other
black nodes, the leftmost one of the λ-sons of a node are b0 nodes. There are two
types of white nodes, w0, and wa with a > 0. The metallic codes of the sons of a
node are given in Eq. (33) in terms of bk . . .b0 � [ν] − 1. The w0-nodes are exactly
the nodes of the rightmost branch of the tree, the root being excepted.

The nodes of the rightmost branch of the tree being excepted, the successor of ν is
the leftmost λ-son of ν + 1. The tree Bλ does not observe the preferred son property.
The nodes on the extremal branches of the tree being excepted but the root being
included, any other node has a 0-node among its λ-sons which is not its successor.
The root being excepted, a node on the rightmost branch is the successor of its father
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Fig. 6 The blackmetallic tree with the leftmost assignment and with the metallic code of the nodes.
The conventions on colours are those of Fig. 1
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which lies on the branch. Those nodes are the uniquew0-nodes. The root is the single
node of the tree which has a preferred son. Equation (33) gives the metallic code of
a node ν in terms of [ν].

b0 → b0,w1, . . . ,wc b1 → b1,w2, . . . ,wd
w0 → b0,w1, . . . ,wc,w0 wa → b0,w1, . . . ,wd.

(32)

ν range son metalliccode ref .
b0 1 . . . p − 3 h [bk . . . b0]h− 1
b1 1 . . . p − 3 h 10k−1h 2
wa 1 . . . p − 2 h [(bk . . . b0) − 1]h− 3
w0 1 . . . p − 3 h dck−1h− 4

p − 2 10k+1 5

(33)

The detailed proof can be found in [9].
Note that, par abus de langage, we can also say for the blackmetallic tree equipped

with the leftmost assignment that mk+1 is the preferred son of mk .

5.1.2 The Black Metallic Tree Under the Rightmost Assignment and
the Metallic Codes

Figure7 illustratesBρ . The figure can be compared with Fig. 2. The colours indicates
that the rules in the case of Bρ seems to be simpler than the rules for Wρ , see (25).
If we compare Fig. 7 with Fig. 6, we can see that the preferred son property which
is not observed in Bλ as stated in Theorem11 seems to be satisfied in Bρ , which is
indeed the case.

In fact, we have a stronger property tightly connected with Lemma4, reminding
us what we noted in the case of the nzm-codes:

Theorem 12 Let Bρ be the black metallic tree equipped with the rightmost assign-
ment. Consider the metallic representations of its nodes. The rules which may be
used for constructing the tree are given by (34) and the metallic codes of the ρ-sons
of a node ν are given by Eq. (35) in terms of [ν] and of [ν]−1. Equipped with the
rightmost assignment, B possesses the preferred son property. But the tree does not
possess that property if it is fitted with another assignment.

b0 → w1 . . .wc.b0, wa → w1 . . .wd.b0, with a > 0. (34)

ν range son metallic code ref .
b0 1 . . . p − 4 h [bk . . . b0]h 1

p − 3 ak . . . a00 2
wa 1 . . . p − 3 h [bk . . . b0]h 3

p − 2 ak . . . a00 4

(35)
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Fig. 7 The black metallic tree with the rightmost assignment and with the metallic code of the
nodes. The same convention about colours of the nodes and of the edges between nodes as in Fig. 2
is used. We can see that the preferred son property is true in the present setting

We refer the reader to [9] for the proof, notincing that Lemma4 is also true for B.
Similarly to Theorem10, the following result is proved in sketchilly proved in [9]:

Theorem 13 LetV be the set of 0-nodes ofBρ , equipped with the rightmost assign-
ment ρ. Define the mapping ϕ fromV ontoBρ by ϕ(([ν]0)) � ([ν]). Define the sons
of ([ν]0) as the 0-sons of the ρ-sons of ([ν]). Then ϕ defines an isomorphism between
V equipped with its natural numbering andBρ and ϕ−1 transports the ρ-assignment
onto V.

5.2 The Black Metallic Trees and the nzm-Codes

We now turn to the study of B when the numbers of its nodes are written as nzm-
codes. In Sect. 5.2.1 we investigate the properties for Bλ while Sect. 5.2.2 is devoted
to those of Bρ .

5.2.1 The Black Metallic Tree Under the Leftmost Assignment and the
nzm-Codes

Figure8 illustratesBλ when the nodes are fitted with their nzm-codes. At first glance,
whatever the digit a, no λ-son of a node ν has the nzm-code [ν]nza. Accordingly,
the preferred son cannot be defined for Bλ, a situation which reminds us that of the
same tree when the metallic codes are used for the nodes.
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Fig. 8 The black metallic tree still with the leftmost assignment but with the nzm-codes of the
nodes. This time it seems that we have five types of rules for the nodes in order to define the sons
signature. We can see that the preferred son property is not true in the present setting

In this situation we can state:

Theorem 14 In Bλ, the black metallic tree dotted with the leftmost assignment, the
rules giving the status and the nzm-signatures of the sons of a node are given in (36),
the root only being applied the rule r1. The nzm-codes of the λ-sons of a node ν

are given by Eq. (37), where bk . . .b0 � [ν − 1] and fk . . .f0 � [ν − 2]. The treeBλ

under the leftmost assignment has no preferred son property in term of thenzm-codes
of its nodes. In the tree, the successor of ν is the second son of ν + 1.

r1 → b2,w3, . . . ,wx,b2 → b1,w2, . . . ,wd,b → bx,w1, . . . ,wc.
w1 → bd,wx, . . . ,wc,w2 → bd,w1, . . . ,wd,

wa → bx,w1, . . . ,wd. with a > 2.
(36)

ν range son metallic code ref .
r1 1 . . . p − 4 h h+ 1

p − 3 x 2
b2 1 . . . p − 3 h 1h 3
b 1 [fk . . .f0]x 4

2. . .p − 3 h [bk . . .b0]h− 5
w1 1 [fk . . .f0]d 6

2 [fk . . .f0]x 7
3. . .p − 2 h [bk . . .b0]h− 8

w2 1 [fk . . .f0]d 9
2. . .p − 2 h [bk . . .b0]h− 10

wa 1 [fk . . .f0]x 11
2. . .p − 2 h [bk . . .b0]h− 12

(37)
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The proof can be found in [9], except for the last assertion which is an immediate
corollary of (36).

5.2.2 The Black Metallic Tree Under the Rightmost Assignment and
the nzm-Codes

Figure9 illustrates Bρ . The conventions for the representation are the same as for
Fig. 8. At first glance, the structure seems to be more regular than in the case of
the leftmost assignment. However, it also seems to do not observe the preferred son
property, whatever the digit a chosen in 1,…,d,x. More precisely, we have:

Theorem 15 Let Bρ be B, the black metallic tree, equipped with the rightmost
assignment ρ. The rules which allow us to construct the tree under that assignment
are given in (38) and the nzm-codes of the ρ-sons of a node ν are given in (39) in
terms of the nzm-codes of ν − 1 and of ν − 2, bk…b0 and fk…f0 respectively. Under
that assignment, the tree does not observe the preferred son property, whatever the
digit chosen for that purpose. The successor of the node ν is a ρ-son of ν + 1: its
leftmost ρ-son or the next ρ-son of ν + 1. No assignment allows us to establish any
preferred son property on B.

r1 → w2, . . .,wd,bx,b → w1, . . .,wc,bd.

wa → w1, . . .,wd,bx, with 1 < a < x,w1,wx → wx,w1, . . .,wc,bd.
(38)
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Fig. 9 The black metallic tree still with the rightmost assignment but with the nzm-codes of the
nodes. This time it seems that we have three types of rules for the nodes in order to define the sons
signature. We can see that the preferred son property is not true in the present setting
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ν range son metallic code ref .
r1 1. . .p − 4 h h+ 1

p − 3 x 2
b 1. . .p − 3 h [bk . . .b0]h 3

w1,wx 1 [fk . . .f0]x 4
2. . .p − 2 h [bk . . .b0]h− 5

wa 1. . .p − 3 h [bk . . .b0]h 6
p − 2 [bk . . .b0]x 7

(39)

The reader is referred to [9] for the proof which also relies on a complete induction
on the number of a node and on the incrementation algorithme on nzm-codes.

6 Connection of the Metallic Trees with the Tilings
{ p, 4} and { p+ 2, 3} of the Hyperbolic Plane

With the previous sections, we established the properties of the metallic trees. As
already mentioned in [8], the metallic trees are connected with two families of tilings
of the hyperbolic plane: the tilings {p, 4} and the tilings {p + 2, 3} with p ≥ 5. The
first family of tilings is generated by the regular convex polygon with p sides and the
right angle as interior angle at each vertex by reflections in its sides and, recursively,
by the reflections of the images in their sides. The tilings of the second family are
generated in the same way from the regular convex polygon with p + 2 sides and

with the angle
2π

3
as interior angle at each vertex. Those angles indicate that four

tiles share the same vertex in {p, 4} and that three of them do the same in {p + 2, 3}.
Clearly, in these recursive constructions, infinitely many tiles are obtained twice.
There is another way to generate those tilings which rely on the metallic trees,
providing an injective construction. Figure10 illustrates the considered tilings in the
case when p = 7 and Fig. 13 illustrates the role of the metallic trees in the same
tilings.

In Sect. 6.1, we define the regions of the tilings which are associated with the
metallic trees and in Sect. 6.2, we explain the correspondence between the trees and
the regions. In Sect. 6.3 we look carefully at the case of the white metallic tree and
in Sect. 6.4, we study the case of the black one.

6.1 Sectors and Strips in the Tilings { p, 4} and { p+ 2, 3} of
the Hyperbolic Plane

The metallic trees are associated with two kinds of regions of the considered tilings.
The sub section is devoted to the definition of those regions.
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Fig. 10 The tilings generated by the white metallic tree with p = 7. To left, the the tiling {7, 4} to
right, the tiling {9, 3}

Fig. 11 The sectors around the central tile fixed once and for all

The regions addressed by the white metallic tree is called a sector. The sectors
are illustrated by Fig. 11 which shows us that their definitions are different according
to the family of tiling we consider.

First, we define the sectors.
In {p, 4} a sector of the tiling is defined by two rays u and v issued from a vertex V

of a tile T , u and v being supported by the sides of T which meet at V . The sector
defined by u and v is the set of tiles whose center is contained in the right angle
defined by those rays. The left hand-side picture of Fig. 11 illustrates how p sectors
can be displayed around a once and for all fixed tile which we call the central tile,
say T0. The sectors and the central tile cover the hyperbolic plane with no hole and
their interiors do not intersect.

The right hand-side picture of the figure illustrates the same display of sectors
around T0 in the tiling {p + 2, 3} with, this time, p + 2 sectors around the central
tile. In {p + 2, 3}, sectors are defined as follows. A sector is again defined by two
rays u and v. Consider a tile T , a vertex V of T . Two sides of T , say a and b meet
at V where a third side c abut. Then, u and v are issued from the midpoint of c, u
and v passing through the midpoints of a and b respectively. The sector defined by u
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Fig. 12 The strips around the central tile fixed once and for all

and v is the set of tiles whose center lies in the acute angle defined by u and v. The
p + 2 sectors around T0 in {p + 2, 3} and T0 cover the hyperbolic plane with no hole
and their interiors do not intersect.

In both tilings, the tile T we above considered to define a sector is called the head
of the sector or, also, its leading tile.

Presently, let us define the strips in those tilings.
In {p, 4}, a strip is defined by two rays u and v together with a side a of a tile T ,

u and v being issued from the ends of a and being supported by the sides of T which
meet a. The left hand-side of Fig. 12 illustrates the strip in {p, 4}. In the tiling, the strip
is the set of tiles whose centre lies in the intersection of the three closed half-planes
defined by u, v and a which contain a and the rays. We can see in the figure that a
strip is, in some sense, smaller than a sector. As the figure points at that, the p strips
displayed around the central tile and T0 itself do not cover the hyperbolic plane. As
can be seen on the figure, in between two strips associated by two consecutive sides
of T0, there is a sector.

In {p + 2, 3}, a strip is also defined by two rays u and v together with a side a
of a tile T . Let b and c be the sides of T which share a vertex with a. Then, u, v is
the ray issued from the foot of the perpendicular to a issued from the midpoint of b,
c respectively which pass through the midpoint by which it is defined, also see the
right hand-side picture of Fig. 14. In the tiling, the strip is the set of tiles whose centre
lies in the intersection of the three closed half-planes defined by u, v and the line
supporting a which contains that side and the rays. On the right-hand side picture of
Fig. 12, we can see that the strips around T0 together with that tile do not cover the
hyperbolic plane. Applying the definition of a sector in that context, we can see that
in between the strips defined by two consecutive sides of T0, there is a sector.

Here too, in both tilings, the tile T we considered for defining the strip is called
the head of the strip or also, its leading tile.
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6.2 Connections Between Sectors and Strips as Connections
Between White and Black Metallic Trees

It is time to precisely describe the connection between the metallic trees and the
regions defined in Sect. 6.1. Figures13 and 14 illustrate these connections. As shown
in [3, 10], there is a bijection between the white metallic tree and a sector of both
{p, 4} and {p + 2, 3} for the same value of p used for defining the tree.

From now on, if T is a tile of the tiling, we number its side starting from 1 up to h
with h = p or h = p + 2, depending on whether T belongs to {p, 4} or to {p + 2, 3}
respectively. Once side 1 is fixed, the other sides are increasingly numbered from 1
while counterclockwise turning around the tile starting from side 1. Denote by (T )i ,
with i ∈ {1. . .h} the tile which shares the side i of T with that latter tile. In a tiling,
a tile which shares a side with T is called a neighbour of T .

The comparison between Fig. 11 and 13 allows us to better see the tree structure
in a sector. The idea is to associate white nodes to the head of a sector and black
nodes to the head of a strip.

First, consider the case of the tiling {p, 4}. The root of the white metallic tree is
associated with the head T of a sector S. Let u and v be the rays defining S. We
fix number 1 in such a way that side 1 is supported by u, so that side p is supported
by v, exchanging the names of u and v if necessary for the numbering of the sides
of T . From that numbering and the definition of a sector, (T )1 and (T )p are outside
S. From [3, 10], we know that the neighbours (T )i of T with i ∈ {2. . .p − 1} are
in S. We precisely associate the λ-sons of the root in the order of their numbers to
the (T )i ’s inside S in the order of their numbers too. Next, consider a tile τ already
associated with a node ν ofW. We number the sides of τ as already mentioned, the
number 1 being given to the side shared with the tile associated to the father of ν. If
ν is white, we associate its λ-sons in the order of their numbers to the neighbours
(τ )i of τ with i in {2. . .p − 1} in that order. If ν is black, we associate its λ-sons in

Fig. 13 How the white metallic tree generates the tilings {7, 4} and {9, 3}: the sectors are delimited
by colours, each sector being associated with three colours which are attached to the status of the
nodes. Each sector in the above figures is spanned by the white metallic tree
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Fig. 14 The decomposition of a sector spanned by the white metallic tree into a tile, then two
copies of the same sector and a strip spanned by the black metallic tree. To left: the decomposition
in the tiling {p, 4}; to right, the decomposition in the tiling {p + 2, 3}. In both cases, the dark blue
colour indicates the black nodes while the white ones are indicated in dark yellow, in green and in
purple

the order of their numbers to the neighbours (τ ) j of τ with j in {3. . .p − 1} in that
order too. From [3, 10], it is known that this process establishes a bijection between
the nodes of W and the tiles of S.

Similarly, consider a stripS defined by the rays u, v and the side a of T , its leading
tile. Fix a as side 1 of T and let side 2 be supported by u and side p be supported
by v, exchanging the names of u and v if needed by the numbering of the sides of T .
Then (T )1, (T )2 and (T )p are outside S while the neighbours (T ) j of T with j in
{3. . .p − 1} are in the strip, see [3, 10].We can repeat the above process, considering
the head of S as associated to the root of B as there are exactly p−3 neighbours
of T inside S. It is not difficult to prove from that that the same process as for S
starting from the head T ofS establishes a bijection between the nodes of B and the
tiles of S. The reason is that B can be obtained from Wλ by removing the sub tree
rooted at the rightmost son of the root of W, and that subtree is isomorphic to W.
Now, it is proved in [3, 10], that a stripR can be obtained from a sector S with head
T by removing the image of the sector defined by the sides 1 and p of (T )p−1, the
last neighbour of T in S, see also Fig. 14, and the head of R is T too.

Secondly, consider the case of the tiling {p + 2, 3}. Again, we associate the root
ofWwith the head T of a sectorS. Let u and v be the rays definingS and let a be the
side of another tile which meets T at the vertex belonging to the consecutive sides
of T met by u and v at their midpoints. Let the side 1 met by u while the side p+2 is
met by v, exchanging the names of u and v if needed in order to be coherent with
the numbering of the sides of T . We can see that the tiles (T )1, (T )2 and (T )p+2

have their centre outside S. It is proved in [3] that the neighbours (T )i of T with i in
{3. . .p} have their centre in S. We apply the same process as in the case of the tiling
{p, 4} with this difference that to the λ-sons of a node ν associated to the tile τ , we
associate in the order of the numbers of the sons the neighbours (τ )i with i in {3. . .p}
in this order if ν is white and if ν is black, we associate the the neighbours (τ ) j with
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Fig. 15 Proving the bijection theorem by estimating the distance from the centre of the central tile
to the tiles on levels 1 and 2 of the metallic tree. The half-lines issued from O realise the orthogonal
projection of O on the side of the tile indicated by the other end of the ray in the figure. The length
of the corresponding segment is the distance from O to the tile

j in {4. . .p}. It is proved in [3] that the just described process establishes a bijection
between S and the tiles of a sector in the tiling {p + 2, 3}. The right hand-side of
Fig. 14 illustrates the structure of the tree in S. It also illustrates the fact that the
same process establishes a bijection between B and the tiles of a stripS in the tiling
{p + 2, 3}.

Now, we are in the position to sketchilly remind the proof of that property, see
for instance [5, 6]. The key points are illustrated by Fig. 15, for the tilings {p, 4},
{p + 2, 3} on its left, right-hand side respectively.

The key point of the proof is that the distance from the centre of a tile T to the
centre O of the central tile is at least k−1 times the half-diameter of a tile where k is
the level of the node which is in correspondence with the tree.

We note that the bijection of a sector both in {p, 4} and {p + 2, 3} occurs with
the same metallic tree. The difference of two sides for the regular convex polygons
generating those tilings lies in the fact that as three tiles meet at a vertex instead of
four of them, the number of neighbours of the head which are outside the sector is
bigger in {p + 2, 3} than in {p, 4}. It is also the same situation for a strip. Let u, v be
the rays and a be the side of its leading tile T which define a stripS. Take the side 1
of T as a and number the other sides as already indicated, exchanging the names
of u and v if needed for side p+2 to be identified with the side which is crossed by v

and which shares a vertex with a. Then, it is not difficult to see that the centres of the
neighbours (T )1, (T )2, (T )3 and (T )p+2 are outside S. The other neighbours have
their centres inside S and there are p−3 of them which explains the bijection with
B.

We close this sub section by reminding something we already mentioned in [8].
Indeed, we indicated there a property mentioned too in [4]: a sector S can be split
into a sequence {Sn}n∈N. The first term of the sequence is the stripS0 whose head is
the head too of S. Note that according to our conventions, the side 1 of T as the head
ofS0 is the side p of T as the head of S. The ray u0 definingS0 is the ray u defining
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S. The ray v0 definingS0 passes through the midpoint of the side p of T as head of
S0. We take this occasion to note that the same side of a tile may receive different
numbers depending on the context which defines the choice of the side 1 which may
differ from one situation to another one. The head of Sn+1 is the neighbour (τn)p
of the head τn of Sn . The ray un+1 which defines Sn+1 is the ray vn which defines
Sn , and the ray vn+1 defining Sn+1 passes through the midpoint of the side p+2 of
(τn)p, the side 1 of that neighbour being the side it shares with τn . The construction
of the first elements of that sequence is illustrated by Fig. 14, in its left-, right-hand
side parts for the tiling {p, 4}, {p + 2, 3} respectively.

The following Sects. 6.3 and 6.4 study the applications of the numbering and
their representations to location problems of the tiles in a sector and in a strip. Such
problems are at the basis of an implementation of cellular automata in the settings
of those hyperbolic tilings.

6.3 The Case of the White Metallic Tree

As explained in Sect. 6.2, the white metallic tree is connected with the tilings {p, 4}
and {p + 2, 3} of the hyperbolic plane with p ≥ 5. Recall that Fig. 10 illustrates the
tilings {7, 4}, {9, 3}, left-, right-hand side respectively, associated to p = 7. In the
present sub-section, we take use of the studies of Sects. 4 and 5 in order to solve two
location problems of the tiles in a sector of those tilings. The first problem which
we address is to find an algorithm computing the path from a tile to the head of a
sector. The problem is addressed by Sect. 6.3.1. The second problem is to compute
the codes of the neighbours of a tile, which is solved in Sect. 6.3.2.

6.3.1 Algorithm for the Path from a Tile to the Head of a Sector

In [8], we provided an algorithm to compute the path from a tile τ of a sector S
to the head of S which was based on the metallic code of τ , and W was supposed
to be fitted with the leftmost assignment. Here, we revisit the algorithm, assuming
thatW is fitted with the rightmost assignment. In [8] two algorithms were provided,
the first one reading the digits of [τ ] from the lowest to the highest and the second
one performs the same in the reverse order. In that second algorithm two paths are
constructed, one to right, the second to left and, eventually, the expected path is the
to left one. The second algorithm of [8] has a decisive advantage: its complexity
is linear in the size of the metallic code of τ . Accordingly, we provide a similar
algorithm based on the metallic codes as codes for the nodes ofWρ .

To that purpose, let us have a look on Fig. 2 which we reproduce as Fig. 16 for the
convenience of the reader. Note that for a node ν of the level n such that ν < mn , the
metallic code has n digits and when, on the same level, ν ≥ mn , the metallic code
has n + 1 digits. In that latter case, the highest digit is 1. If we look at the highest
digit of the metallic codes of the nodes on level 2, we note it is a for the last two sons
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Fig. 16 The white metallic tree under the rightmost assignment. We are here interested in the
metallic codes

of the node a and for all sons of the node (a) + 1, its last two sons being excepted. At
this level, there is an exception when a is 1: the last three sons of 10, the sons of 11
and those of 2, its last two sons being excepted. If we look at the nodes of level 3,
the digit a1 of the metallic code of ν is most often connected with the last digit of
the code of ν−1 where ν is the father of ν.

More generally. Assume that ν = ak . . .a1a0. Equation (26) shows that, most often,
the metallic code of its sons but the last two ones are based on [ν − 1]. In particular,
the digit whose index is 1 is the last digit of [ν − 1]. Accordingly, if we know the
path from the head of a sector down to ν, we know that the node whose metallic
code is [ν]bh…b0 with bi in {0, 1. . .d} is either in the sub tree issued from [νbh]
or [([νbh])+1] at a time when we know [ν]bh without knowing the digits bi with
i < h. In [9], we explicitly give the algorithm which allows us to compute the path
from the head of S. Presently, we simply outline the main lines of the algorithm. The
path is given as a table whose length is that of the metallic code of ν. Each entry of
the table contains two pieces of information: the indication of the son σ of a node ν

as the rank of σ among the sons of ν, where rank 1 is that of the leftmost son; the
indication of the status of ν.

The path is computed with the help of two lists which we call the left, right-hand
side path respectively. If the highest digit is 1, we need to know the next one: if the
next digit is 0, then the left hand-side path goes through the preferred son and the
right hand-side path goes through the rightmost son. If the next digit is 1 or greater
than 1, the left hand-side path goes through the rightmost son and the right hand-side
path goes through the leftmost son of node 1. Then, we argue on the remaining digits
by a decreasing induction.

During that induction, it is assumed that when we examine the current digit a,
the left hand-side list� path goes through a node ν and the right hand-side path listr
goes through ν + 1. The last registered digit b occurs in the signature of ν. Let a
be the digit we examine: it is the signature of a son of ν or of ν + 1. If ν is white
and if b = 0, then if a = 2, list� goes on the rightmost branch of the tree rooted at ν
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and listr goes through the leftmost branch of the tree rooted at ν + 1 so that if σ

is the new end of list�, σ + 1 is that of listr . The same situation occurs for ν if its
signature is not 0 and if a = 1. In the other cases, the number to be remembered is
(a)−1 for the edge going from the father of ν to ν for the left hand-side path and
it is (a) for the edge to ν + 1 for ν + 1 stored in the right hand-side path. Now, if
the node to be remembered is the son of the last node of the left hand-side path, the
right hand-side path is identified with the left hand-side one by taking its values. If
the node to be remembered is the son of the last node stored in the right hand-side
path, the same is performed by exchanging the roles of the paths. All these points
are easily implemented as parts of the algorithm, see [9].

When the coordinates of the nodes of Wρ are the nzm-codes, it is possible to
devise a simpler algorithm as two rules only manage the distribution of the statuses
among the nodes: see [9] for the detailed algorithm. Here we give its main lines.
Let us denote by ν the node such that [ν]nz � ak . . .a1a0. Again, we construct two
paths, left-, right-hand side paths respectively. Let us denote by μ the node which is
currently at the end of the left-hand side path. By construction,μ + 1 is the end of the
right-hand side path. Let a be the current digit under examination when the left-hand
side path reaches μ. Let be v that which comes after a in μnz . If v 	= 1, the node
whose coordinates is ak . . .av is not a son of μ but a son of μ + 1. We identify the
current left-hand side path with the right-hand side one and we extend the left-hand
side path to the son σ of μ + 1 whose signature is v�1. The right-hand side path
is extended to σ + 1. If v = 1, we extend the left-hand side path to σ , this time the
rightmost son of μ, so that μ + 1, to which we extend the right-hand side path is the
leftmost son of μ + 1 whose signature is 2. The result is in the left-hand side path.
Note that the updating of the left-hand side path can be performed by keeping the
node of the latest update so that the total process is linear in the length of [μ]nz .

6.3.2 The Codes for the Neighbours of a Tile in a White Metallic Tree

In the present sub subsection, we turn to another problem. Knowing the coordinate
[ν] or [ν]nz of a tile, how to get the coordinates of the same type for its neighbours?
The answer is given by Table2 for the metallic codes and by Table1 for the nzm-
ones. Both tables consider Wρ , i.e. the metallic tree equipped with the rightmost
assignment. The tables give the neighbours both in {p, 4} and {p + 2, 3}.

Table1 is shorter as there are only two rules for Wρ with the nzm-codes.
Its construction is easy from Eq. (31) which gives the neighbours (ν) j for j ∈

{3. . .p} for a white node and j ∈ {3. . .p − 1} for a black one. In both cases, (ν)1
is the father and (ν)2 is the rightmost son of ν−1 whose nzm-codes can easily be
derived from Eq. (31). In the case of the black node, (ν)p is (ν)1 + 1, the node which
lies just after the father of ν on the level of (ν)1. The part of the tables devoted
to {p + 2, 3} involves two specific neighbours: ν−1 and ν + 1. For a white node
they are (ν)2 and (ν)p+2 respectively. For a black node, they are (ν)2 and (ν)p+1

respectively as far as in that case (ν)p+2 is (ν)1 + 1.
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Table 1 Table of the neighbours of ν inWρ from [ν]nz : to left, in the tiling {p, 4}, to right, in the
tiling {p + 2, 3}. In the table, the black son of ω is denoted by (ω)b. Let ak . . .a0 � [ν]nz and let
μ be defined by [μ]nz = ak . . .a1
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Table 2 Table of the neighbours of νin Wρ : to left, in the tiling {p, 4}, to right, in the tiling
{p + 2, 3}. In the table, the black son of ω is denoted by (ω)b, its preferred son by (ω)π . In the
table, m-code stands for metallic code. If ak . . .a0 � [ν], then [ν] � ak . . .a1
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Table2 displaysmore cases as far as there aremore rules forWρ when themetallic
codes are used. In order to reduce the number of repetitions, the lines for w0-nodes
again takes the lines for wa-nodes except for the lines p-2, p-1 and p in the case of
{p, 4} and the lines p-1, p and p+1 in the case of {p + 2, 3}. The same thing was done
in the case of the b-nodes which takes the lines of the w1-nodes except the line p for
{p, 4} and the lines p+1 and p+2 for {p + 2, 3}. The table rewrites the exceptional
lines accordingly. The reason of the changes is clear. The codes for the first sons of
a wa-node and for a w0-one are built on the same way from the metallic code of the
node. For a b-node, a similar remark is relevant.

6.4 The Case of the Black Metallic Tree

In this section,weconsider the sameproblems for theblackmetallic tree. Section6.4.1
deals with the path from a node to the root of Bρ , while Sect. 6.4.2 computes the
codes of the neighbours of a tile in a strip.

6.4.1 Algorithm for the Path from a Tile to the Head of a Strip

In [9], the reader will find a detailed algorithm yielding the path from a node ν inBρ

to the root of the tree.
The data of the algorithm is the metallic code of ν. As in th case of W, the

algorithm constructs two lists during its computation whose elements are the status
of the current node and its rank among the sons of its father, the leftmost son having
rank 1.

The algorithm is very similar to the one whose main lines are given in Sect. 6.3.2.
Its justification is straightforward. Outside the case when the current digit a is 0, the
path necessarily goes within the tree rooted at the node whose signature is a+1 and
it is the ath node among the sons of its father. When a = 0, except the case when the
path has to move to right, it is needed to go on on both paths at a distance 1 from
each other as at that moment, the next digit is not known.

In [9], the reader can find a similar algorithm when the coordinates of the nodes
of Bρ are given through their nzm-code. However, the structure of that latter algo-
rithm is more complex than the one we sketchilly described for the case ofWρ when
the nodes are fitted their nzm-codes.

The reason is not only the fact this time we have three rules for the nodes instead
of two ones for the white tree, it is also due to the fact that the occurrence of the
pattern dc∗ d entails that when the pattern is followed by a digit a with a < c, the
appropriate node is in the node pointed at by the right hand-side path: it follows from
Eq. (39).
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Table 3 Table of the metallic codes of the neighbours of a tile ν in both tilings {p, 4} and {p + 2, 3}
in Bρ . We assume that ak . . .a1a0 � [ν], that (ν)i indicates the neighbour i and that μ is defined
by [μ]nz � ak . . .a1

6.4.2 The Codes for the Neighbours of a Tile in a Black Metallic Tree

We now turn to the computation of the coordinates of the neighbours of a tile ν which
lies in a stripS in bijection withBρ . We first study that computation when it is based
on the metallic code [ν] of ν. The computation should be easier as there are two rules
only for the sons of a node.

Table3 follows immediately from the examination of rules (34) and Eq. (35). The
additional neighbours of ν in {p + 2, 3} are the nodes ν−1 and ν + 1 which are on
the same level as ν in Bρ . This introduce a small change in the numbering of the
sons of the node compared with their numbering in {p, 4}.

Table4 shows the nzm-codes of the neighbours (ν)i of ν in Bρ . The table fol-
lows from the rules (38) and (39). It should be remarked that the nzm-codes of the
neighbours of a wx-node are very similar to those of a w1-one. The difference is
in computation of the nzm-code of the father. For the wx-node, the nzm-code of
the father is given by [(ak…a1)+2]nz and not by [(ak…a1)+1]nz as it the case for a
w1-node.
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Table 4 Table of the nzm-codes of the neighbours of a tile ν in both tilings {p, 4} and {p + 2, 3}
for Bρ . We assume that ak . . .a1a0 � [ν]nz , that [μ]nz =� ak . . .a1 and that (ν)i indicates the
neighbour i . When references of neighbours for a type of nodes are missing, they have to be seen
in the same column at the previous type and, again at the previous one if they are still missing
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7 Conclusion

We can conclude the paper with several remarks.
The present paper gathers in a synthetic way the researches of the papers [7–9].
It is interesting to remark that in [9], a result solves the generalization of a question

raised in [2] in the case of the Fibonacci tree. The result is stated in Theorem7.
However, the statement of Theorem7 deals with metallic codes while in [2] the
question about assignments dealt with the Fibonacci representation of the natural
numbers. It was noted there that there were assignments for which the preferred
property in the frame of Fibonacci representations nomore holds. The question raised
in that paper is still open. It is interesting to note that the algorithms considered in
the paper and developed in [8, 9] are linear in the size of the code which is used.

The author does not pretend to have solved any possible problems in these settings.
The paper is simply a walk in those tilings.
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From Additive Flowers to Additive
Automata Networks

Enrico Formenti, Christophe Papazian, Adrien Richard,
and Pierre-Alain Scribot

Abstract This paper surveys some old results about linear shift registers and restates
them in the context of additive automata networks. The addition of new results
allows an almost complete description of the dynamical behavior of additive automata
networks. The computational complexity aspects of deciding such behaviors are also
discussed.

1 Introduction

The motivation for studying the dynamics of (finite) automata networks (AN) has
multiple sources. Indeed, they are simple formal models well-suited for many prac-
tical applications. Our main motivation comes from the strict connection existing
between AN and gene networks.

The understanding of gene networks in different contexts and different scales is a
long standing problem in biology. Many different formal approaches have been pur-
sued to understand the overall dynamical behavior of these networks, their structure,
persistence, etc. This paper follows the vein initiated byKauffman and Thomas in the
Seventies [6, 14]. They modeled a gene network by a network of n finite automata.
Each automaton i ∈ {1, . . . , n} has a state chosen from a finite set of states S and a
local function fi : Sn → S which updates this state according to the state of the n
automata. A function θ from N to the subsets of {1, . . . , n}, called updating scheme,
indicates the automata of the network that will be updated at a given time. Then,
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if x = (x1, . . . , xn) ∈ Sn is the global state of the system at time t , the global state
of the system at time t + 1 is y = (y1, . . . , yn) ∈ Sn where yi = fi (x) if i ∈ θ(t)
and yi = xi otherwise. In this paper, we will focus on the most classical updating
scheme, the parallel one, i.e. for all t ∈ N, θ(t) = {1, . . . , n}.

The interaction graph IG is a convenient way to represent the interactions among
the automata of the network. In many cases, it conveys lot of informations about the
overall dynamics in a much compact form. Indeed, the size of the IG is exponentially
smaller than the graph describing the dynamics. This IG is the digraph (V, E)where
V = {1, . . . , n} and an edge ( j, i) ∈ V × V iff the local function fi depends on input
j , that is, if there are two global states x, y ∈ Sn that only differ in x j �= y j such that
fi (x) �= fi (y).
Roughly speaking, the IG describes the impact that each automaton has on the

others in matter of state change. Studying the relations between structural properties
of IG and the dynamics of AN based on them is a challenging research direction
which have already given raise to a prolific literature (see [4, 12] for reviews).

In many cases (especially in applications), one is more interested in a concise
description of the dynamics of a network and not to precise details. For instance, one
can be only interested to the graph of dynamics up to isomorphism, or in the orbit
description D ⊆ N × N where (k, p) ∈ D means that there are k orbits of period p.
For a comprehensive example, refer to Sect. 5.1.

From a topological point of view, the dynamics of AN is easy. Indeed, they are
finite systems and, hence, their asymptotic behavior is ultimately periodic. However,
the detailed description of the dynamics is computationally difficult even for small
systems (see for instance [8, 15]). In [2], it is proved that many interesting questions
about AN dynamics are at least PSPACE-complete.

The difficulties of the computational task of describing the dynamics of AN calls
for a better understanding of their intrinsic and structural properties. A promising
research direction in this sense consists in decomposing the problem into smaller
ones, find solutions for them and then use this knowledge to obtain a complete
theory for all networks.

In [9], one can find the starting blocks of this program. Indeed, the idea is to
start with an IG which is made of a single cycle. The simple structure allows a very
precise analysis of the dynamics. Next, one can consider IGs made by two cycles
which have just one vertex in common (see Fig. 1). At this point, things are already
pretty complex and one has to start compromises in order to decrease the complexity.
The choice made in [9] is to restrict to boolean networks and to local functions made
of∧ or∨ operators only. Under these constraints the dynamics has been exhaustively
described.

The next step in the program is therefore to complete the study of double cycles
by allowing the local rule of the common vertex to be a XOR (i.e. turning the network
into and additive network). Indeed, this is the starting point of the present research.
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Fig. 1 Interaction graph
made of two cycles having a
single common vertex

2 Additive Flowers

The natural research direction to follow after the study of double cycles networks
was to consider the remaining boolean functions of two variables for the common
vertex. The exclusive or ⊕ is the most representative of this group.

Before going on we make an assumption which we will adopt in rest of the paper:
a local function fi of a vertex i is a linear function i.e. S = Zp for some p ≥ 1 and

∀x ∈ Z
n
p, fi (x) =

n∑

j=1

λi j x j mod p

for some coefficients λi1, . . . , λin ∈ Zp.

Hence, the dynamics of the network is simply given by the successive iterations
of the global function

f : Z
n
p → Z

n
p, f (x) = ( f1(x), . . . , fn(x)).

In the following, we identify the network with its global function, saying that f an
additive AN with n components over Zp. Such an additive AN can be conveniently
expressed using the matrix M ∈ Z

n×n
p in whichmi j = λi j since then f (x) = Mx for

all x ∈ Z
n
p. Note that the IG of f can be simply deduced from the coefficients λi j ,

since it has an arc ( j, i) if and only if λi j �= 0.
Generalizing cycles and double cycles, we say that a digraph is a flower if it

contains a vertex i , called control vertex, such that i meets every cycle of G and all
the vertices distinct from i are of in-degree one. An additiveAN f with n components
over Zp is an additive flower if its interaction graph G is a flower and, for each arc
( j, i) of G where i is of in-degree one, we have fi (x) = x j for all x ∈ Z

n
p. See Fig. 2

for an example of flower with three cycles and twelve vertices.
The following example lead us to discover the general method for describing the

dynamics of additive flowers.

Example 1 For some fixed n ∈ N, let f (n) be the additive AN with n components
over Z2 defined by f (n)

1 (x) = x1 ⊕ xn and f (n)
i+1(x) = xi for all i ∈ [1, n − 1]. The

IG of f (n) consists of a cycle of length n plus a loop on vertex 1, thus f (n) is an
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Fig. 2 A flower with three
cycles

additive flower. Let pn denote the maximal period of an orbit of f (n). The first terms
of the sequence {pn}n∈N are

1, 3, 7, 15, 21, 63, 127, 63, 73, 889.

This is sequence A046932 in [10] and what is funny it is that it is connected to
a question given to the Olympiads of Mathematics in 1993 [11, Problem 6]. It
is not difficult to see that P(X) = Xn + Xn−1 + 1 is the characteristic polyno-
mial associated with the adjacency matrix of the IG of f (n). As a consequence
of Theorems2 and 4 proved later, we decompose the dynamics into simpler ones.
For instance, the dynamics of f (5) is the Cartesian product of the dynamics of
f (2) and f (3) since P(X) = X5 + X4 + 1 = (X2 + X + 1) · (X3 + X + 1) mod 2.
Figure4 shows the dynamics of f (2), f (3) and f (5) (Fig. 3).

2.1 Transforming Flowers

When flowers start having more than two cycles and when states of the automata
are no more booleans, the dynamics becomes richer and it is difficult to analyze
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0

1

2

3

4

Fig. 3 The interaction graph of f (5) (see Example1)

Fig. 4 Phase spaceof f (5) (seeExample1).Here, the label of the vertex is the decimal representation
of the global state of f (5)

because of the interactions between the length of the cycles, their number and the
more complex operations performed by the control vertex.

In this section, we are going to transform a generic additive flower with k cycles
into a suitable additive network. The idea is that the new network will have almost
identical dynamics but it will allows an easy algebraic analysis.

Let G be a flower with k cycles C1, . . . ,Ck , of length �1 ≤ �2 ≤ · · · ≤ �k . The
companion graph C of G has vertex set [1, �k], and contains an arc from i to i + 1
for all i ∈ [1, �k] and an arc from i to 1 for all i ∈ {�1, . . . , �k}. Thus C has at most
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Fig. 5 An additive flower with 7 vertices (left) and its companion graph (right)

k cycles, and contains a cycle of length �r for each r ∈ [1, k]. Let f be the additive
flower over Zp whose IG is G. Let i be the control vertex of G and let jr be the
in-neighbor of i in Cr . The vertices j1, . . . , jk are distinct and

fi (x) =
k∑

r=1

λi jr x jr mod p (1)

for some λi j1, . . . λi jk ∈ Zp. The companion system associated with f is then the
additive flower h over Zp whose IG is C and such that

h1(x) =
k∑

r=1

λi jr x�r mod p.

See Fig. 5 for an example of flower and its associated companion graph.

Lemma 1 Let f be an additive flower over Zp and let h be its companion system,
say with n components. There is an injection ψ from the periodic points of f to Z

n
p

such that ψ( f (x)) = h(ψ(x)) for all periodic points x of f , and if p is a prime then
ψ is a bijection.

Proof Let G be the IG of f and suppose that G has k cycles C1, . . . ,Ck , of length
�1 ≤ �2 ≤ · · · ≤ �k , so �k = n. Let i be the control vertex ofG and let i1, . . . , in be the
vertices ofCk in order, starting from i1 = i . For each r ∈ [1, k], let jr the in-neighbor
of i in Cr ; in particular, jk = in . Then (1) holds for some some λi j1, . . . λi jk ∈ Zp.

For d ∈ [1, n], we denote by Jd the set of vertices j in G such that the path from
i to j in G is of length d − 1. So J1, . . . , Jd is a partition of the vertex set of G. Note
also that J1 = {i} and jr ∈ J�r for all r ∈ [1, k]. Suppose that f has m components,
and let X be the set of x ∈ Z

m
p such that x j = xid for all d ∈ [1, n] and j ∈ Jd . Let

φ be the map from X to Z
n
p defined by φ(x) = (xi1 , . . . , xin ). One easily check that

φ is a bijection.
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Let x ∈ X and let us prove that φ( f (x)) = h(φ(x)). For all d ∈ [2, n],

φ( f (x))d = fid (x) = xid−1 = φ(x)d−1 = hd(φ(x)) = h(φ(x))d .

It remains to prove that φ( f (x))1 = (h(φ(x))1, that is fi (x) = h1(φ(x)). For all
r ∈ [1, k] we have jr ∈ J�r , thus x jr = xi�r , and we deduce that

fi (x) =
k∑

r=1

λi jr x jr mod p (2)

=
k∑

r=1

λi jr xi�r mod p (3)

=
k∑

r=1

λi jr φ(x)�r mod p = h1(φ(x)). (4)

Let � be the set of periodic points of f , and let us prove that � ⊆ X . For that we
show, by induction on d from 1 to n, that x j = xid for all x ∈ � and j ∈ Jd . This is
obvious for d = 1 since J1 = {i} and i1 = i . Suppose that d > 1 and let x ∈ �. Then
there is y ∈ � such that f (y) = x . Hence, for all j ∈ Id , we have x j = f j (y) = y j ′
where j ′ is the in-neighbor of j in G, and xid = fid (y) = yid−1 since id−1 is the in-
neighbor of id in G. Since j ′ ∈ Jd−1 and y is a periodic point, we have y j ′ = yid−1

by induction, and we deduce that x j = xid . This completes the induction and thus
� ⊆ X .

So the restriction ψ of φ to � has the property of the statement. To complete the
proof, suppose that p is a prime, and let us prove that � = X . For that, it is sufficient
to prove that h is bijection. Given x ∈ Z

n
p, let y ∈ Z

n
p be defined by y j = x j+1 for

all j ∈ [1, n − 1] and
yn =

(
x1 −

k−1∑

r=1

λi jr x�r+1

)
/λi jk ,

which is well defined since p is a prime. One easily checks that h(y) = x and thus
h is indeed a bijection. �

The previous lemma highlights the importance of companion graphs in the study of
the dynamics of additive flowers. This is the matter of the next section.

3 Companion Graph and Companion Matrix

This section focuses on a generalization of companion graphs in which edges are
labeled with coefficients from a Galois field 〈Fp,⊕,�〉 (p ∈ N, a prime number)
and their associated matrices i.e. the companion matrices. Indeed, more notation is
needed.
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Fig. 6 A generic companion
graph with n vertices

Denote Fp[X ] the set of polynomials with coefficients in Fp and deg(P) is the
degree of the polynomial P . The operations ⊕ and � can be naturally extended to
Fp[X ]. A polynomial P ∈ Fp[X ] is irreducible if there is no polynomials A,B ∈
Fp[X ] such that P = A � B with deg(A) > 0 and deg(B) > 0.

As Fp[X ] is a unique factorization domain, it is also possible to extend the usual
mod operation in Fp[X ]. Indeed, M mod P is the unique polynomial R such that
there exists Q ∈ Fp[X ] with M = Q � P ⊕ R and deg(R) < deg(P). Given a
polynomial P ∈ Fp[X ], denote Fp[X ]/P the set of classes given by the equivalence
relation of having the same rest mod P . Clearly, the operations ⊕ and � can be
extended to Fp[X ]/P in a natural way.

Thematrix (with coefficients in Fp) associated to a generic companion graph with
n vertices (see Fig. 6) has the following structure

Mn =

⎡

⎢⎢⎢⎢⎢⎣

0 0 · · · 0 c0
λ1 0 · · · 0 c1
0 λ2 · · · 0 c2
...

. . .
...

...

0 0 · · · λn−1 cn−1

⎤

⎥⎥⎥⎥⎥⎦
(5)

and it is called companion matrix. Indeed, in order to simplify calculations, it more
interesting to work with the graph (see Fig. 7) represented by the following matrix
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Fig. 7 The generic
companion graph with n
vertices used in this paper.
Edges labelled with 1 are just
drawn without label

Mn =

⎡

⎢⎢⎢⎢⎢⎣

0 0 · · · 0 c0
1 0 · · · 0 c1
0 1 · · · 0 c2
...

. . .
...

...

0 0 · · · 1 cn−1

⎤

⎥⎥⎥⎥⎥⎦
(6)

Remark that the dynamics of the new system is perfectly equivalent to the former

one. Indeed, it is enough to set λ′
i = 1 and c′

i =
(∏i

k=1 λk

)
for i ∈ {1, . . . , n − 1}.

Notation. From now on, when no confusion is possible, we will call companion
graph the simplified version given in Fig. 7. Correspondingly, the matrix (6) will be
called the companion matrix. Moreover, the field operations ⊕,� over Fp will be
simply written as + and ·, respectively.

A first interesting property of companion graphs is that it allows a simple char-
acterization of the fixed points and their number. Indeed, we have the following
result.

Proposition 1 For n, p ∈ N, let Mn be a companion graph over Fp. Then, it has

• �0 as the unique fixed point if
∑n−1

i=0 ci �= 1Fp

• p fixed points if
∑n−1

i=0 ci = 1Fp .

Moreover all fixed points are uniform i.e. they have the form �a = (a, a, . . . , a) for
a ∈ Fp. �

Proof Consider a companion matrix Mn as in Eq. (6). By definition, we have a fixed
point if (MT − I ) · �x = �0. If we explicit this equality we have the following system
of equations
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−x0 + x1 = 0

−x1 + x2 = 0

· · · = · · ·
−xn−2 + xn−1 = 0

(
1 −

n−1∑

i=1

ci

)
· xn−1 = 0 (7)

where �x = (x0, x1, . . . , xn−1). Therefore, by (7),we have that if
∑n−1

i=1 ci �= 1Fp , there

exists a unique solution x0 = x1 = · · · = xn−1 = 0.However, if
∑n−1

i=1 ci = 1Fp , then,
clearly, x0 = x1 = · · · = xn−1 = a for all a ∈ Fp is a solution. �

The following lemma can be found in any algebra textbook. It shows another
interesting feature of companion matrices.

Lemma 2 The characteristic polynomial PMn of Mn coincides with the minimal
polynomial of Mn and has the following expression

PMn (X) = Xk −
k−1∑

i=0

ci · Xi .

Remark 1 Mn is bijective if and only if det(Mn) = PMn (0) = c0 �= 0. In other
words, Mn is bijective if and only if X � PMn (X).

Recall that two discrete dynamical systems f : X → X and g : Y → Y are
topologically conjugated if there exists an homeomorphism φ : X → Y such that
φ ◦ f = g ◦ φ. In otherwords, two (topologically) conjugated systems have the same
type of dynamics and topological conjugacy is an equivalence relation on dynamical
systemswhenever X = Y . Finally, remark that if X is finite thenφ is an isomorphism.

Define the natural bijection φ between F
n
p and Fp[X ]/PMn as follows

∀v0, v1, . . . , vn−1 ∈ Fp, φ(v0, v1, . . . , vn−1) =
n−1∑

i=0

vi · Xi .

In Fp[X ]/PMn , the shift map σ(H) = X · H forH ∈ Fp[X ]/PMn will play a promi-
nent role in the sequel as it is highlighted by the following lemma.

Lemma 3 Mn is topologically conjugated to the shift map over Fp[X ]/PMn .

Proof Let v ∈ Fp
n and consider the bijection φ as defined above.

σ(φ(v)) = X ·
n−1∑

i=0

vi X
i =

n−1∑

i=0

vi X
i+1 = vn−1X

n +
n−2∑

i=0

vi X
i+1
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φ(Mn · v) = φ((c0vn−1, v0 + c1vn−1, v1 + c2vn−1, . . . , vn−2 + cn−1vn−1))

= c0vn−1 + (v0 + c1vn−1)X + (v1 + c2vn−1)X
2 + · · ·

+ (vn−2 + cn−1vn−1)X
n−1

= vn−1

n−1∑

i=0

ci X
i +

n−2∑

i=0

vi X
i+1 .

Remark that PMn = Xn − ∑n−1
i=0 ci X

i , thus in Fp[X ]/PMn we have Xn =∑n−1
i=0 ci X

i and then σ ◦ φ(v) = φ(Mn · v). �
The following is a standard result that can be found in any algebra textbook. We

give a proof here for completeness sake and for illustrating some mechanisms that
will be used in the sequel.

Theorem 1 (Chinese remainder theorem)ForallU ∈ Fp[X ] such thatU = U1U2 . . .

Um and gcd(Ui ,U j ) = 1 for all i �= j ∈ [[1,m]], it holds

Fp[X ]/U ∼= Fp[X ]/U1 × Fp[X ]/U2 × · · · × Fp[X ]/Um .

Proof We prove the case m = 2, the other cases can be obtained by finite induction
on m. GivenH ∈ Fp[X ] such thatH = UV with gcd(U ,V = 1Fp , consider the ring
homomorphism

h : Fp[X ]/H → Fp[X ]/U × Fp[X ]/V
W �→ (W mod U , W mod V)

If h(W) = (0, 0), then W is divisible by both U and V . Since gcd(U ,V = 1, it
follows thatW (X) = 0 mod H and therefore ker(h) = {0}. We conclude that, in this
case, h is injective.1 Moreover,

|Fp[X ]/H| = qdeg(H) = qdeg(U) × qdeg(V)

= |Fp[X ]/U × Fp[X ]/V|

and thus h is an isomorphism. �
By combining Lemma3 and Theorem1, one obtains

Theorem 2 For all U ∈ Fp[X ] such that U = U1U2 . . .Um and gcd(Ui ,U j ) = 1 for
all i �= j ∈ [[1,m]], the shift map σ over Fp[X ]/U is topologically conjugated to the
dynamics of

∏m
i=1 σi , where σi is the shift map over Fp[X ]/Ui .

In other words, Theorem2 stresses that understanding the dynamics of Mn pass
through the complete understanding of the dynamics of the shift map over Fp[X ]/H
for some genericH ∈ Fp[X ].

1 Recall that h injective means h(U) = h(V) ⇒ U = V . But since h is a homomor-
phism it comes h(U) − h(V) = 0 ⇐⇒ h(U − V) = 0 ⇐⇒ (U − V) ∈ ker(h), hence ker(h) =
{0} ⇐⇒ h injective.
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Recall that Mn is bijective if and only if X � PMn . Therefore, according to The-
orem2, the study of the dynamics of the shift map over Fp[X ]/H can be split into
two parts: the nilpotent part and the bijective one.

3.1 Nilpotent Dynamics

Given U ∈ Fp[X ], let μU be the largest integer i such that Xi | U . The following
theorem describes completely the dynamics associated to XμU and relies on the
definition of σ and the fact that

∣∣Fp

∣∣ = p.

Theorem 3 Let ξ be a positive integer. Then, the shift map σ over Fp[X ]/X ξ has
the following behavior

1. σ(�0) = �0;
2. ∀U ∈ Fp[X ]/X ξ \

{�0
}
, σ ξ−μU (U) = �0 mod X ξ ;

3. if U(X) = ∑ξ−1
i=1 λi · Xi then

σ−1(U) =
{
Vc | ∀c ∈ Fp, Vc(X) = c +

ξ−1∑

i=1

λi · Xi−1

}
.

In particular, U has p preimages by σ .
4. If μ(U) = 0 then U has no preimages by σ .

In other words, Theorem3 tells that the graph describing the dynamics of σ over
Fp[X ]/X ξ is a p-tree with the exception that the root has p − 1 other predecessors
and is also its own predecessor. See Fig. 8 for an illustrative example.

0

X

��

1

��

X + 1

��

2X + 1

��

2X

��

2

��

2X + 2

��

X + 2

��

��

Fig. 8 Example of transient behavior : each vertex represents a polynomial in F3/X2. There is an
arc from U to V if V = σ(U) mod X2
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3.2 Bijective Dynamics

In this section we consider a companion graph Mn and we assume that it is bijective
over Fp i.e. X � PMn (X). Remark that all the results of this section are essentially
contained in [1]. We report them here in order to give a point of view contextualized
to the domain of automata networks. We also provide some more explicit formulas.

Notation. For H ∈ Fp[X ], the orbit size of U ∈ Fp[X ]/H is denoted θH
U . It is the

smallest positive integer k such that Xk · U = U or zero if it does not exist.
Obviously, for all U ∈ Fp[X ]/H, θH

U = θH
X ·U .

Theorem 4 IfP ∈ Fp[X ] is irreducible then all non-zeroU ∈ Fp[X ]/P have period
θP
1 . Moreover, θP

1 | pd − 1, where d = deg(P).

Proof Since P is irreducible over Fp[X ] then Fp[X ]/P is a finite field (see [7,
Theorem1.61 p. 25]). Hence, for any non-zero u ∈ F

n
p,U = φ(u) has amultiplicative

inverse U−1. It follows that φ(Mt
n(u)) = φ(u) iff Xt · U = U iff Xt = 1. Moreover,

since the order of the multiplicative group is pn − 1 then, by Lagrange’s theorem,
θP
1 | pn − 1. �

A consequence of the Theorem4 is that if P ∈ Fp[X ] is irreducible, then p � θP
1

(but p − 1 does).

Lemma 4 Let P ∈ Fp[X ]. Let U ∈ Fp[X ]/P , with U = D · V such that D =
gcd(P,U). Then, θP

U = θP
D .

Proof As gcd(P,V) = 1, V has an inverse in Fp[X ]/P . Hence, the following for-
mula is true in Fp[X ]/P:

∀t ∈ N
(
XtU = U ⇐⇒ XtD = D)

.

�

Theorem 5 If P = Qk with Q ∈ Fp[X ] irreducible, then
1. θP

1 = θQ
1 · p�logp k�;

2. for all U ∈ Fp[X ]/P , it holds θP
U = θP

Qs = θQk−s

1 , where s = max
{n ∈ [[0, k]],Qn | U}.

Proof 1. Let t = �logp k� = min {r ∈ N, pr ≥ k}. Then,

(X θQ
1 − 1)k divides (X θQ

1 − 1)p
t = X θQ

1 pt − 1 . (8)

It is clear that Q | X θQ
1 − 1 and hence Qk | (X θQ

1 − 1)k . By (8), we conclude
that Qk | X θQ

1 pt − 1 and that

θP
1 | θQ

1 pt . (9)
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By definition we have X θP
1 = 1 mod P and hence X θP

1 = 1 mod Q. This
implies that θQ

1 | θP
1 . Therefore, by (9), it must be θP

1 = θQ
1 · pt ′ with t ′ ≤

t . Assume t ′ < t , so pt
′
< k i.e. pt

′ + 1 ≤ k. Since Q | X θQ
1 − 1 and P =

Qk | X θP
1 − 1 = X θQ

1 ·pt ′ − 1 = (X θQ
1 − 1)p

t ′
, we haveQk+1 | (X θQ

1 − 1)(1+pt
′
)

and hence Qk+1 | (X θQ
1 − 1)k . Remark that X � X θQ

1 − 1, while its derivative
θQ
1 · X θQ

1 has no other factor than X . Hence gcd(X θQ
1 − 1, θQ

1 · X θQ
1 ) = 1.

We conclude that X θQ
1 − 1 is square-free. In particular, we have Q | X θQ

1 − 1
but Q2

� X θQ
1 − 1. Since Q is irreducible, it is impossible that Qk+1 divides

(X θQ
1 − 1)k . Hence t ′ = t .

2. Let U ∈ Fp[X ]/Qk and s ∈ [[0, k]] such that U = VQs with gcd(Q,V) = 1. By
Lemma4, θP

U = θP
Qs . So the following formula is true in Fp[X ]:

∀t ∈ N
(
XtQs = Qs mod Qk ⇐⇒ Xt = 1 mod Q(k−s)

)
.

Hence, θP
Qs = θQ(s−k)

1 . �

Theorem 6 If P = ∏k
i=0 Pmi

i with

1. ∀i ∈ [0, k],Pi ∈ Fp[X ]
2. ∀i, j ∈ [0, k] i �= j implies gcd(Pi ,P j ) = 1,

then θP
1 = lcm(θ

Pmi
i

1 ).

Proof By using Theorem2, one finds

θP
1 = min

{
t ∈ N

+, Xt = 1 mod
k∏

i=0

Pmi
i

}

= min
{
t ∈ N

+, Xt = 1 mod Pm0
0 ∧ · · · ∧ Xt = 1 mod Pmk

k

}

= lcm(θ
Pmi

i
1 ) .

�
The following results allow to complete the description of the dynamics providing

an explicit account for the multiplicities of cycles.

Notation. Given P = PMn ∈ Fp[X ] and Q | P , #θP
Q denotes the number of cycles

of Mn of period θP
Q for the set SPQ = {R | gcd(R,P) = Q}. By Lemma4, all the

elements of this subset have the same period θP
Q .

Theorem 7 Let P = PMn ∈ Fp[X ]. Then, the following cases hold

1. if P = Qm withQ irreducible, d = deg(Q) and n = deg(P) (so n = dm) then
for all k ∈ [1,m − 1] one has

#θP
Qm−k = (p(k−1)d−�logp(k)�)(pd − 1)

θQ
1

,
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2. if P = QR with gcd(Q,R) = 1, A | Q and B | R then

#θP
AB = #θQ

A · #θR
B .

Proof 1. The size of the set SPQm−k is pkd − p(k−1)d = p(k−1)d(pd − 1) as the num-
ber of elements that are multiple of Qm−k is pkd and the number of elements
that are multiple of Qm−k+1 is p(k−1)d .
The size of the cycles in SPQm−k is θP

Qm−k = θQk

1 = θ
Q
1 · p�logp(k)� by Theorem5.

The number of cycles is obtained by dividing the number of elements by the size
of the cycles.

2. The result is a direct consequence of the fact that Fp[X ]/P is isomorphic to
Fp[X ]/Q × Fp[X ]/R (see Theorem2). �

Corollary 1 If P = PMn ∈ Fp[X ] is irreducible of degree n, then θP
1 | (pn − 1).

Proof From Theorem7, we know that in this case, the integer #θP
1 is equal to (pn−1)

θP
1

.

�

Corollary1 is pretty important from the practical point of view since it provides
an algorithmic speed-up to find θP

1 knowing the factorization of (pn − 1).

4 Extension to Rings

The results of the previous sections cannot be extended to rings like Fpn (for a prime
p ∈ N and n ∈ N


). Indeed, polynomials over Fpn do not have a unique factorization.
In [3], they provide the following interesting identity over Fpn

(Xm + pn−1)(Xm + p) = Xm(Xm + pn−1 + p)

and conclude that for anym ∈ N, there exists inFpn a product of at most n irreducible
that is also representable as a product of more than m irreducible.

Lemma 5 ([3]) Let P ∈ Fpn [X ] for some prime p ∈ N and n ∈ N

. If P is irre-

ducible in Fp[X ], then it is irreducible in Fpn [X ].
The above lemma grants that if we have an irreducible polynomial in Fp[X ], then it
still irreducible in Fpn [X ]. The converse is false. Indeed, X4 + 2 is irreducible in F4

but in F2 it is equivalent to X4. However, at least for the polynomials described in
Lemma5, one can apply Theorem4 and perfectly describe the dynamics. Moreover,
remark that Theorem1 can be extended to the ring Fq [X ] for a generic integer q > 1
and this helps in further extending the analysis of the dynamics.
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5 Extension to General Additive Networks

Theprevious sections report a general framework to describe the dynamics of peculiar
additive networks like additive flowers or companion graphs. This section extends
the framework to general additive networks. The following result shows that the
dynamics of a general additive network can be decomposed in the Cartesian product
of the dynamics of a certain number of companion graphs.

Theorem 8 Consider an additive network Mn over Fp, then

1. there exist n0, n1, . . . , nk ∈ N such that n = ∑k
i=0 ni ;

2. there exists companion graphs Cn0 ,Cn1 , . . . ,Cnk ;

such that the dynamics of Mn is topologically conjugated with the dynamics of

Cn0 × Cn1 × · · · × Cnk .

Proof Reducing Mn to its Frobenius normal form implies that

1. there exist n0, n1, . . . , nk ∈ N such that n = ∑k
i=0 ni ;

2. there exists companion matrices Cni of size ni for i = 0, . . . , k;
3. there exists an invertible matrix P of size n;

such that Mn = P · C · P−1 where

C =

⎡

⎢⎢⎢⎢⎣

Cn0 O . . . O

O Cn1
. . .

...
...

. . .
. . . O

O . . . O Cnk

⎤

⎥⎥⎥⎥⎦

and O are matrices of suitable size with all entries fixed at 0. This implies that Mn

and Cn are topologically conjugated. Moreover, remark that for all n ∈ N we have

Cn =

⎡

⎢⎢⎢⎢⎣

Cn
n0 O . . . O

O Cn
n1

. . .
...

...
. . .

. . . O

O . . . O Cn
nk

⎤

⎥⎥⎥⎥⎦

that is to say the dynamics of Cn is the cartesian product of the dynamics of the
companion matrices Cni . �

From the proof of the previous result, it is clear that in order to find the decomposi-
tion of a generic additive network one has to pass through the Frobenius normal form
of the matrix associated with the network. Recently, Arne Storjohann has proposed
a O(n3) algorithm for finding the Frobenius normal form of a square matrix of size
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Fig. 9 The boolean network
used in Sect. 5.1

n [13]. Faster algorithms exist for sparse or special matrices [16]. A nearly linear
speedup (trading processors for time) has been obtained for parallel version of these
algorithms [5].

However, one can remark that most of these algorithms are made in two steps.
First, the Smith normal form S is computed and then the Frobenius normal form is
deduced from S. Indeed, the elements si,i of S which are different from 1 are exactly
the characteristic polynomials of the companionmatricesC j of the Frobenius normal
form.

5.1 A Complete Example

In this section we are going to develop a complete example in order to illustrate the
use of the results found so far. Consider the boolean additive network with 6 nodes
which has the interaction graph as depicted in Fig. 9.

The network can be represented by its adjacency matrix:

⎡

⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 1
1 1 0 0 0 1
0 1 0 1 1 0
1 1 1 1 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
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The first step of the algorithm is to compute the Frobenius normal form of the
matrix. For that, we can in fact compute the Smith normal form. The Smith normal
form S gives the invariants of the matrix M by diagonalizing M − I · X . This diag-
onalization is not canonical but obtained by invertible transformations. Hence, the
matrices R and C are invertible (even if defined on the ring Fp[X ] that is not a field).
We therefore have

R · (M − I X) · C = S

⎡

⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 0 0 0 1 0
0 1 0 0 X + 1 1
0 1 0 1 X + 1 0
1 0 1 0 X + 1 X

X2 + X + 1 X2 + X + 1 X2 + X X2 + 1 0 X3 + X2

⎤

⎥⎥⎥⎥⎥⎥⎦
·

⎡

⎢⎢⎢⎢⎢⎢⎣

X 1 0 0 0 0
1 X 0 0 0 0
0 0 X 1 0 1
1 1 0 X 0 1
0 1 0 1 X + 1 0
1 1 1 1 0 X

⎤

⎥⎥⎥⎥⎥⎥⎦
·

·

⎡

⎢⎢⎢⎢⎢⎢⎣

1 X 0 X X3 + X2 X3 + X2 + X
0 1 0 1 X2 + X X2 + X + 1
0 0 1 X X3 + X2 + X + 1 X3 + X2 + X + 1
0 0 0 1 X2 + 1 X2

0 0 0 0 1 1
0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 X2 + 1 0
0 0 0 0 0 X4 + X3 + X + 1

⎤

⎥⎥⎥⎥⎥⎥⎦

Thee Smith normal form gives immediately the Frobenius normal form as two
companion matrices block: one for X2 + 1, the other for X4 + X3 + X + 1. Hence
there exists an invertible matrix A such that

M = A · F · A−1

⎡

⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 1
1 1 0 0 0 1
0 1 0 1 1 0
1 1 1 1 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 1 0
1 1 0 1 0 1
0 0 1 0 1 1
0 0 0 1 1 1
0 1 0 0 0 1
0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
·

⎡

⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 1

⎤

⎥⎥⎥⎥⎥⎥⎦
·

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1 0
0 0 0 0 1 1
1 1 0 1 0 0
1 1 1 0 0 0
1 1 1 1 0 1
0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦

Note that the matrix A can be computed from the inverse of matrix R. This inverse
can easily be computed while applying the algorithm for the Smith normal form S.

Inspecting each companion submatrix. The first matrix is the companion matrix
of characteristic polynomial X2 + 1 = (X + 1)2. By Theorems5 and 7, we find
one orbit of size 2 and two orbits of size 1. The second matrix is the companion
matrix of characteristic polynomial X4 + X3 + X + 1 = (X + 1)2 · (X2 + X + 1).
We already computed the dynamics of (X + 1)2. As X2 + X + 1 is irreducible, by
Theorem4, we find a unique orbit of maximum length that must divide 22 − 1 = 3.
As the order of X is not 1, 3 is the only option. Hence, there is one orbit of size 3
and one of size 1.



From Additive Flowers to Additive Automata Networks 341

Finally, Theorem8 tells that to obtain the overall dynamics one has to take the
Cartesian product. The following table gives the orbit complete description:

First block Second Block Network
(X + 1)2 (X + 1)2 X2 + X + 1
(2, 1) (2, 1) (1, 1) (4, 1)
(1, 2) (1, 2) (4, 2)

(1, 4)
(1, 3) (4, 3)

(4, 6)
(1, 12)

6 Extension to Affine Networks

A Boolean network f : Z
n
2 → Z

n
2 is affine if, for all i ∈ [1, n], we have

∀x ∈ Z
n
2, fi (x) = αi +

n∑

i= j

λi j x j mod p

for some αi , λi1, . . . λin ∈ Z
n
2. Given such an affine Boolean network f , let f + :

Z
n+1
p → Z

n+1
p be defined as follows:

∀i ∈ [1, n], ∀x ∈ Z
n
2, f +

i (x) = αi xn+1 +
n∑

i= j

λi j x j mod p, f +
n+1(x) = xn+1.

We then define f − : Z
n
2 → Z

n
2 as follows:

∀i ∈ [1, n], ∀x ∈ Z
n
2, f −

i (x) = fi (x) − αi .

Remark that both f + and f − are additive Boolean networks and they completely
determine the dynamics of the f . Indeed, for all x ∈ Z

n
2 we have f +(x, 1) =

( f (x), 1) and f +(x, 0) = ( f −(x), 0). Hence (x, 1) is a periodic point of f + of
period p if and only if x is a periodic point of f of period p, and (x, 0) is a periodic
point of f + period p if and only if x is a periodic point of f − of period p. Therefore,
we have the following.

Theorem 9 Let f be an affine Boolean network, and let f +, f − the be associated
additive Boolean networks. The number of periodic points of f of period p is the
number of periodic points of f + of period p minus the number of periodic points of
f − of period p.
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7 Conclusions

This paper presents a general framework for precisely describing the dynamics of the
class of additive networks ( which additive flower are a peculiar subclass). Remark
that these results are not new. Indeed, they were discovered and rediscovered several
times (at least four plus this one) by different researchers in different contexts (mainly
in the field of Linear Shift Registers theory). However, most of the times results were
not presented in a unifiedwayor proofswere not very formal in someparts.Moreover,
no remarks about computational complexity were faced. This paper tries to fill these
gaps.

Future research directions are already sketched in the paper. Indeed, Sect. 4 pro-
poses to extend the results to rings such as Zpk for some prime p and some integer
k ≥ 1. A few results in this direction are provided but the main questions are still
open.

Another interesting research direction consists in quantifying possible dynamics.
For instance, assume that one knows that some phenomenon has fixed points dynam-
ics and that this fixed point is unique. How many additive networks of size n have
this kind of dynamics? More in general, we know that topological equivalence is an
equivalence relation over the set of possible dynamics. Can we quantify the size of
its classes as a function of the number of nodes? This question has simple answer
for the case of unique fixed point dynamics but how about more complex situations?

Once one has established the previous issues, the next natural step is to try to add
some nonlinearity in the networks and see how and at which extent it influences the
dynamical behavior. Theorem9 provides a first step in this direction but alphabets of
larger sizes call for more complicated formulations. We are currently investigating
these questions.
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Domino Problem for Pretty Low
Complexity Subshifts

Jarkko Kari

Abstract Given a set P of allowed n × m rectangular patterns of colors, a coloring
of the gridZ2 is called valid if every n × m pattern in the coloring is in P . It is known
that if the number of allowed n × m patterns is at most nm and if there exists a valid
coloring of Z2 then there exists a valid periodic coloring, and consequently there is
an algorithm to determine for given nm patterns if they admit any valid coloring. If
the number of allowed patterns is higher the situation changes: We prove that for
every ε > 0 it is undecidable for given dimensions n,m and a given set of at most
(1 + ε)nm patterns of size n × m whether they admit any valid coloring. In other
words, the upper bound nm is multiplicatively optimal for the number of allowed
patterns that guarantees decidability and periodicity. The undecidability result that
we prove is actually slightly better: it holds in the square case n = m, and instead of
bound (1 + ε)n2 we can use n2 + f (n)n for any computable function f : N −→ N

that is not bounded above by a constant.

1 Introduction

The domino problem is a decision problem asked by H.Wang in terms ofWang tiles:
a finite set of unit square tiles with colored edges is given and one asks whether there
exists a tiling of the plane such that everywhere the neighboring tiles have the same
color in their adjacent edges [15]. In symbolic dynamics terminology the question
is about emptiness of a given two-dimensional subshift of finite type. The domino
problem was proved undecidable by R. Berger [1] and it has since become a fruitful
source of undecidability results in tilings and cellular automata, and in multidimen-
sional symbolic dynamics in general. A central prerequisite for the undecidability
of the domino problem is the existence of aperiodic tile sets that admit valid tilings
but all admitted tilings are non-periodic. This connection was already noted by H.
Wang [15], and Berger’s undecidability proof in [1] involves the first construction of
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an aperiodic set of Wang tiles. It is now known that the smallest aperiodic Wang tile
set contains 11 tiles [8].

Discrete complex systems involve large numbers of simple entities with compli-
cated collective behavior. Classical examples include automata networks and cellular
automata [6, 7]. Also Wang tiles provide an ideal formalism to investigate how local
interactionsmay either lead to global structures and order or to complexity and chaos.
If the number of valid local patterns of tiles is sufficiently low then the global tiling
is forced to be periodic while more local variations lead to more freedom to avoid
such global regularities. To quantify the threshold of this transition we consider the
following formulation of the domino problem. Let P ⊆ AD be a given set of allowed
patterns of rectangular shape D = {1, . . . n} × {1, . . .m} over a finite set A of colors.
We call colorings c ∈ AZ

2
of the infinite grid configurations and say that a config-

uration c is valid if every n × m rectangle that appears in c is in P . The domino
problem now asks if given P admits any valid configurations. The domino problem
is undecidable even for fixed n = m = 2.

If the number |P| of allowed patterns is very small then any admitted configu-
ration must be periodic, that is, invariant under some translation of the grid. This is
certainly true if |P| ≤ mn/2, half of the size of the rectangle [5], and the famous
Nivat’s conjecture claims that |P| ≤ mn is enough to guarantee the periodicity of
any admitted configuration [12]. While Nivat’s conjecture is still unproved, we do
know that the low complexity assumption |P| ≤ mn is enough to guarantee that P
admits a periodic configuration if it admits a configuration at all [10]. In particular,
this implies by H. Wang’s argument in [15] that there is an algorithm to determine
if any given set P of at most mn rectangular patterns of size n × m admits a valid
configuration.

But what might happen if the number of allowed patterns is increased to mn + 1;
does the domino problem remain decidable and are there any aperiodic systems?
What about withmn + k patterns for some constant k? There certainly are aperiodic
systems for some valuesm, n and k but what is the smallest k admitting an aperiodic
system, and is there some constant k such that the domino problem is undecidable?
These questions remain open, but they highlight the quest to find the boundary of
undecidability in terms of the number of allowed patterns.

In this work we show that for anyWang tile set T we can compute constants k and
N such that for all n ≥ N and m ≥ 2 one can effectively construct nm + k(n + m)

allowed n × m patterns that are “equivalent” to T (Theorem 2). In particular, if f :
N −→ N is any computable function not inO(1), the domino problem is undecidable
in the pretty low complexity setting where one is given at most n2 + f (n)n allowed
patterns of size n × n (Corollary 2). Choosing f (n) ≤ εn then proves that the bound
mn of [10] that guarantees decidability can not be multiplicatively improved to
(1 + ε)nm for any ε > 0.

The paper is organized as follows. In Sect. 2 we give more precise formalisms
of the concepts involved. Section3 details the technical construction leading to the
main result (Theorem 2). We finish with Sect. 4 that contains corollaries of the main
result and discusses open questions.
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2 Definitions

We denote �n,m� = {n, n + 1, . . . ,m} for integers n ≤ m, and for any positive inte-
ger n we set �n� = �0, n − 1�.We index the columns and rows of the n × m rectangle
�n� × �m� by 0, . . . , n − 1 and 0, . . . ,m − 1, respectively. The n × m rectangle at
position u ∈ Z

2 of the two-dimensional grid is u + �n� × �m� ⊆ Z
2.

Basic Concepts
Let A be a finite set of colors. A two-dimensional configuration is an assignment
c : Z2 −→ A of colors to the cells of the infinite two-dimensional grid. For any
configuration c ∈ AZ

2
and any cell u ∈ Z

2 we may denote c(u), the symbol that c
has in cellu, also by cu to avoid clutter fromparentheses. For any t ∈ Z

2 we denote by
τ t the translation that shifts a configuration c so that cell tmoves to the origin, that is,
τ t(c)u = cu+t for all u ∈ Z

2.We say that c is periodic if τ t(c) = c for some non-zero
t ∈ Z

2. In this case t is a vector of periodicity and c is also termed t-periodic. If there
are two linearly independent vectors of periodicity then c is called two-periodic. A
two-periodic c ∈ AZ

2
has automatically horizontal and vertical vectors of periodicity

(k, 0) and (0, k) for some k > 0.
Let D ⊆ Z

2 be a finite set of cells, a shape. A D-pattern is an assignment p ∈ AD

of symbols in shape D. A (finite) pattern is a D-pattern for some finite D. We call
D the domain of the pattern. We say that a finite pattern p of shape D appears in
configuration c if for some t ∈ Z

2 we have τ t(c)|D = p. We also say that c contains
pattern p. For a fixed D, the set of D-patterns that appear in a configuration c is
denoted by LD(c). We denote by L(c) the set of all finite patterns that appear in c,
i.e., the union of LD(c) over all finite D ⊆ Z

2.
Let p ∈ AD be a finite pattern of shape D. The set [p] = {c ∈ AZ

2 | c|D = p} of
configurations that have p in domain D is called the cylinder determined by p. The
collection of cylinders [p] over all finite patterns p is a base of a compact topology on
AZ

2
, the prodiscrete topology. See, for example, the first few pages of [4] for details.

The topology is equivalently defined by a metric on AZ
2
where two configurations

are close to each other if they agree with each other on a large region around cell 0.
Cylinders are clopen in the topology: they are both open and closed.

Convergence of a sequence c(1), c(2), . . . of configurations to a configuration c in
the topology has the following simple meaning: For every cell u ∈ Z

2 we must have
c(i)
u = cu for all sufficiently large i . Compactness of space AZ

2
then means that every

sequence has a converging subsequence.

Subshifts
A subset X of AZ

2
is called a subshift if it is closed in the topology and closed under

translations, i.e., τ t(X) = X for every translation τ t. By a compactness argument
one has that every configuration c that is not in X contains a finite pattern p that
prevents it from being in X : no configuration that contains p is in X . We can then
as well define subshifts using forbidden patterns: given a set F of finite patterns we
define

XF = {c ∈ AZ
2 | L(c) ∩ F = ∅},
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the set of configurations that do not contain any of the patterns in F . Set XF is a
subshift, and every subshift is XF for some F . If X = XF for some finite F then
X is a subshift of finite type (SFT). For a subshift X ⊆ AZ

2
we denote by LD(X) =

∪c∈XLD(c) and L(X) = ∪c∈XL(c) the sets of D-patterns and all finite patterns that
appear in elements of X , respectively. SetL(X) is called the language of the subshift.

The orbit of configuration c is the set O(c) = {τ t(c) | t ∈ Z
2 } that contains all

translates of c. The orbit closure O(c) of c is the topological closure of the orbit
O(c). It is a subshift, and clearly it is the intersection of all subshifts that contain c.
In terms of finite patters, c′ ∈ O(c) if and only if L(c′) ⊆ L(c).

A configuration c is called uniformly recurrent if for every c′ ∈ O(c) we have
O(c′) = O(c) so that all configurations in O(c) have the same finite patterns. This
is equivalent to O(c) being a minimal subshift in the sense that it has no proper
non-empty subshifts inside it. A classical result by Birkhoff [2] implies that every
non-empty subshift contains a minimal subshift, so there is a uniformly recurrent
configuration in every non-empty subshift.

Subshifts of finite type can as well be defined in terms of allowed patterns. To do
so we fix a finite domain D ⊆ Z

2, and take a set P ⊆ AD of allowed patterns with
domain D. Forbidding all other D-patterns yields the SFT

V(P) = XAD\P = {c ∈ AZ
2 | LD(c) ⊆ P},

the set of configurations whose D-patterns are among P . We call elements of V(P)

valid configurations admitted by P .
We call an SFT aperiodic if it is non-empty but does not contain any periodic

configurations. It is significant that aperiodic SFTs exist [1]. It is also worth noting
that a two-dimensional SFT that contains a periodic configuration must also contain
a two-periodic configuration [13].

The Domino Problem
The domino problem (aka the tiling problem) is the decision problem in two dimen-
sions that asks whether a given set P ⊆ AD of allowed patterns admits any valid
configurations, that is, whether the SFT V(P) is non-empty. The domino problem is
undecidable [1], but if V(P) is a priori known not to be aperiodic then the domino
problem can be decided [15]. Indeed, there are semi-algorithms for the cases when
V(P) is empty and when V(P) contains a two-periodic configuration: only on aperi-
odic SFTs both semi-algorithms fail to give an answer. Thus if therewere no aperiodic
SFTs then the domino problem would be decidable.

Wang Tiles
Two-dimensional SFTs are commonly studied in terms of Wang tiles, and the first
aperiodic SFTs were constructed and the undecidability of the domino problem was
originality proved in the Wang tile formalism. A Wang tile is a unit square tile with
colored edges, represented as a 4-tuple

a = (a↑, a→, a↓, a←) ∈ C4
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Fig. 1 A Wang tile
a = (a↑, a→, a↓, a←) a

a

a
a

of colors of the north, the east, the south and the west edges of the tile, respectively,
where C is a set of colors. (See Fig. 1.) A Wang tile set T is a finite set of Wang
tiles. Wang tile set T defines a subshift of T Z

2
, where forbidden patterns are all the

dominoes of two tiles that do not have the same color on their abutting edges. We
say that a configuration c ∈ T Z

2
is correctly tiled at position (i, j) ∈ Z

2 if c(i, j)
matches with its four neighbors on the abutting edges so that

c(i, j)↑ = c(i, j + 1)↓,

c(i, j)↓ = c(i, j − 1)↑,

c(i, j)→ = c(i + 1, j)← and
c(i, j)← = c(i − 1, j)→.

Otherwise there is a tiling error at position (i, j). We let

V(T ) = {c ∈ T Z
2 | c is correctly tiled at every position u ∈ Z

2 }

be the set of valid tilings by tile set T . ClearlyV(T ) is an SFT, and in fact any given set
P ⊆ AD of allowed patterns can be effectively converted into an equivalentWang tile
set T so that V(T ) and V(P) are conjugate, i.e., homeomorphic under a translation
invariant homeomorphism. In this sense Wang tiles capture the entire complexity of
two-dimensional subshifts of finite type. Note that we use the same notation V(T )

and V(P) for the sets of valid tilings by aWang tile set T and of valid configurations
under allowed patterns P , respectively. This should not cause any confusion since it
is always clear from the context whether we are talking about Wang tiles or allowed
patterns.

The cartesian product T1 × T2 ⊆ (C1 × C2)
4 ofWang tile sets T1 ⊆ C4

1 and T2 ⊆
C4
2 is the Wang tile set that contains for all (a↑, a→, a↓, a←) ∈ T1 and (b↑, b→, b↓,

b←) ∈ T2 the tile ((a↑, b↑), (a→, b→), (a↓, b↓), (a←, b←)). The “sandwich” tiles in
T1 × T2 have hence two layers that tile the plane independently according to T1 and
T2, respectively.

The results reported here are based on Berger’s theorem, stating in the Wang tile
formalism the existence of aperiodic SFTs and the undecidability of the domino
problem.

Theorem 1 (R. Berger [1])

(a) There exists a Wang tile set T that is aperiodic, that is, such that V(T ) is non-
empty but does not contain any periodic configurations.

(b) It is undecidable to determine for a given Wang tile set T whether V(T ) is empty
or not.
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Pattern Complexity
The pattern complexity of a configuration c with respect to a shape D is the number
of D-patterns that c contains, that is, the cardinality of LD(c). A sufficiently low
pattern complexity forces global structure in a configuration. A relevant threshold
happens when the pattern complexity is at most |D|, the number of cells in shape D.
Hence we say that c has low complexity with respect to shape D if

|LD(c)| ≤ |D|.

We call c a low complexity configuration if it has low complexity with respect to
some finite shape D.

There are non-periodic configurations that have low complexity [3], but none is
known that would have low complexity with respect to a rectangle D, or even with
respect to a convex shape D. This is the famous Nivat’s conjecture from 1997.

Conjecture 1 (M.Nivat [12]) A two-dimensional configuration c satisfying |LD(c)|
≤ |D| for some rectangle D = �n� × �m� is periodic.

Note that |LD(c)| ≤ 1
2 |D| for some rectangle D is known to imply that c is peri-

odic [5]. Also |LD(c)| ≤ |D| for infinitely many different size rectangles D guaran-
tees periodicity [11].Moreover, if c is uniformly recurrent and satisfies |LD(c)| ≤ |D|
with respect to a rectangle (or any other convex shape) D then c is periodic [10].
See [9] for a review of the algebraic approach that was used to obtain the latter two
of these results.

Because the orbit closure of any configuration contains a uniformly recurrent
configuration, if a subshift X contains a configuration c satisfying |LD(c)| ≤ |D|
with respect to some convex shape D then X contains also a periodic configuration.
In particular, for a rectangle D = �n� × �m�, if a set P ⊆ AD of allowed patterns is
such that |P| ≤ |D| then V(P) is either empty or contains a periodic configuration.
In such a low complexity setting we therefore have an algorithm to solve the domino
problem. In this work we are interested in the case when the number of allowed
patterns is slightly larger than |D|.

In summary, for a given rectangle D and a set P ⊆ AD of patterns of shape D, it
is undecidable whether V(P) is empty, but in the low complexity setting |P| ≤ |D|
the question is decidable. And there is P ⊆ AD such V(P) is aperiodic, but there is
no aperiodic V(P) in the low complexity case |P| ≤ |D|. This naturally raises the
question of the pretty low complexity setting where |P| is slightly greater than |D|,
say |P| = |D| + 1.

3 Recoding Wang Tiles

In this section an arbitrary Wang tile set T is converted into a pretty small set P of
binary rectangular allowed patters that is equivalent to T in the sense that P admits
a (periodic) configuration if and only if T admits a (resp. periodic) configuration.
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Configurations that P admits have bits 1 sparsely positioned to that each bit 1 repre-
sents a single Wang tile of a valid tiling, and the relative positions of bits 1 uniquely
identify the corresponding Wang tiles. Allowed patterns in P are so restricted that
only matching Wang tiles are allowed next to each other.

So let T be a given finite set ofWang tiles.We first modify the set tomake sure that
no tile matches itself as its neighbor. This is easy to establish bymaking two copies of
T and forcing the copies be used alternatingly on even and odd cells. More precisely,
we replace T by the cartesian product T × {even, odd} where even has color 0 on
its north and east sides and color 1 on south and west, while in odd the colors are
reversed. The even/odd -components of tiles form an infinite checkerboard tiling
of the plane. The new tile set admits a (periodic) tiling if and only if T admits a
(periodic, resp.) tiling.

From now on we can hence assume that no tile of T matches in color with itself.
Let t = |T | be the number of tiles, and denote

S = {2 j − 1 | j = 0, 1, . . . , t − 1}

and s = 2t−1. The set S ⊆ �s� has the property that for a, b ∈ S, a �= b, the difference
a − b uniquely identifies both a and b. The proof of this fact is easy.

Lemma 1 For a1, a2, b1, b2 ∈ S, if a1 − b1 = a2 − b2 �= 0 then a1 = a2 and b1 =
b2. �

Fix a bijection α : T −→ S. In our coding tile t will be represented as horizontal
sequence of s bits where bit number α(t) is set to 1 and all other bits are 0’s.

Choose N = 3s and fix m ≥ 2 and n ≥ N , the dimensions of the rectangular
patterns considered, and define

D = �n� × �m�.

Denote n′ = n − s and m ′ = m − 1. In our coding of a Wang tiling we paste
to position (i · n′, j · m ′) the bit sequence representing the Wang tile in posi-
tion (i, j). A configuration c ∈ T Z

2
is then represented as a binary configuration

β(c) ∈ {0, 1}Z2
where for all (i, j) ∈ Z

2, tile c(i, j) contributes symbol 1 in position
(in′ + α(c(i, j)), jm ′). All positions without a contribution from any tile of c have
value 0.

In β(c) all symbols 1 appear in the intersections of vertical strips

Vi = (in′ + �s�) × Z

and horizontal strips
Hj = Z × { jm ′},

for i, j ∈ Z. There is exactly one symbol 1 in each intersection Ii, j = Vi ∩ Hj , rep-
resenting the Wang tile in position (i, j). See Fig. 2 for an illustration.
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Fig. 2 The positioning of the horizontal s-bit encodings of Wang tiles in coding β. The given
coordinates indicate the positions in the Wang tiling that are encoded in the corresponding bit
sequences. A sample rectangle of size n × m is depicted in dark shading. Three consecutive vertical
Vi strips are highlighted

Let us first count all rectangular n × m patterns that may appear in β(c) for some
c ∈ T Z

2
, that is, find an upper bound on the cardinality of the set

Q =
⋃

c∈T Z2

LD(β(c)).

As n = n′ + s we have that for all j ∈ Z there is i ∈ Z such that in′ + �s� ⊆ j + �n�,
that is, every n × m rectangle on the grid fully intercepts one of the vertical strips
Vi . Analogously, the rectangle intercepts a horizontal strip Hj and hence some Ii, j
is fully contained in the rectangle. This implies that every pattern in Q contains at
least one symbol 1. On the other hand, n ≤ 2n′ − s so that an n × m rectangle can
not intersect with more than two strips Vi , and analogously it cannot intersect more
than two horizontal strips Hj . This means that there are at most four symbols 1 in
each pattern of Q.

Let p ∈ Q and let c ∈ T Z
2
be such that p ∈ LD(β(c)). Let E = u + D be a

rectangle containing pattern p in β(c). We have the following four possibilities.

• Suppose that E has a non-empty intersection with two consecutive vertical strips
Vi and Vi+1 and with two consecutive horizontal strips Hj and Hj+1. Rectangle E
can be positioned in at most 2s positions relative to these strips, and there at most
t4 choices of the Wang tiles encoded in the intersections of the two horizontal and



Domino Problem for Pretty Low Complexity Subshifts 353

two vertical strips. This means that there are at most 2st4 patterns p that can be
extracted this way.

• Suppose that E has non-empty intersection with two consecutive vertical strips Vi

and Vi+1 and with only one horizontal strip Hj . There are at most 2sm ways to
position the rectangle and at most t2 choices for the two tiles encoded within the
block. There are hence at most 2smt2 patterns p of this type.

• Symmetrically, if E has non-empty intersection with two consecutive horizontal
strips Hj and Hj+1 and with only one vertical strip Vj then the number of extracted
patterns is bounded by nt2.

• Finally, if E only intersects a single vertical and horizontal strip then E contains
a single symbol 1. There are at most nm positions for this 1 inside the n × m
rectangle.

Adding up the four cases above gives the upper bound

nm + 2st4 + 2st2m + t2n ≤ nm + k(n + m)

for the cardinality of Q, where we can choose k = 2st4, assuming t ≥ 1. This choice
of k works by a direct calculation due to t2 ≥ 1, st2 ≥ 1 and n ≥ 2: subtracting the
left-hand-side from the right-hand-side yields

2st4(n + m) − (2st4 + 2st2m + t2n) = 2st2(t2 − 1)m + t2(2st2 − 1)(n − 1) − t2 ≥ 0.

Note that constant k = 2st4 = |T |4 · 2|T | does not depend on n or m but only on the
number of tiles in T . Note also that the patterns in Q can be effectively constructed.
We have established the following result.

Lemma 2 The number of different n × m patterns that appear in β(c) over all c ∈
T Z

2
is at most nm + k(n + m) for k = |T |4 · 2|T |. These patterns can be effectively

constructed for given T . �

Remark A smaller constant k can be obtained by using a more succinct represen-
tation α of tiles T as numbers. One just needs to encode tiles as natural numbers
whose differences a − b identify uniquely a and b, so that Lemma 1 is satisfied.
Instead of the exponentially growing sequence of representatives 0, 1, 3, 7, 15, . . .
that we use here one can use, for example, numbers of the Mian-Chowla sequence
1, 2, 4, 8, 13, 21, 31, . . . (sequence A005282 in [14]) that only grows polynomially.
Then constant k will be bounded by a polynomial of |T |.

Let us further limit the allowed patters by removing from Q patterns that contain
two 1’s whose relative positions indicate neighboring Wang tiles whose colors do
not match. More precisely, let p ∈ Q.

(H) Suppose p contains on some row two symbols 1, in columns i and j , for i < j .
In order for p to appear in β(c) for some valid tiling c we necessarily must
have that the two symbols 1 are the contributions of two matching horizontally
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neighboring tiles in c, so that i = k + α(a) and j = k + n′ + α(b) for some
integer k and tiles a, b ∈ T such that the east color of a is the same as the west
color of b. Hence we remove p from Q if no matching a, b exist such that
j − i = n′ + α(b) − α(a).

(V) Suppose p contains symbol 1 in some column i of the bottom row and some
column j of the top row where i − s < j < i + s. Now p can appear in β(c)
only if the two symbols 1 are the contributions of two vertically neighboring
tiles in c, so that i = k + α(a) and j = k + α(b) for some integer k and tiles
a, b ∈ T such that the north color of a is the same as the south color of b. We
remove p from Q if no matching a, b exist such that j − i = α(b) − α(a).

Let P be the set of patterns in Q that are not removed by the conditions (H) and
(V) above. Set P can be effectively constructed and, since P ⊆ Q, the upper bound
nm + k(n + m) from Lemma 2 holds on its cardinality.

Let us next prove that allowing the patterns in P admits precisely the configura-
tions β(c) and all their translates, for all c ∈ T Z

2
that are valid Wang tilings.

Lemma 3 With the notations above,

V(P) = {τ t(β(c)) | t ∈ Z
2 and c ∈ V(T )}.

Proof By the definition of P it is clear that for every valid tiling c ∈ V(T ) the
encoded configuration β(c) only contains allowed patterns in P . Hence the inclusion
“⊇” holds.

To prove the converse inclusion, consider an arbitrary configuration e ∈ V(P),
that is, e ∈ {0, 1}Z2

such that LD(e) ⊆ P . Every pattern in P contains symbol 1 so
configuration e must contain symbol 1 in every m × n block.

Let us denote, for any x, y, z,w ∈ T , by Bin (
z w
x y ) the m × n binary pattern with

exactly four 1’s, two of which are on the bottom row in columns α(x) and n′ + α(y),
and two are on the topmost row in columns α(z) and n′ + α(w). In other words, the
bit sequences that encode tiles x, y, z and w are in the four corners of the pattern, as
in the dark grey block in Fig. 2. Let us call Bin (

z w
x y ) a standard block if the Wang

tiles x, y, z,w match each other in colors as a 2 × 2 pattern with x, y, z and w at
the lower left, lower right, upper left and upper right position of the 2 × 2 pattern,
respectively.

Consider now any occurrence of symbol 1 in e, that is, u ∈ Z
2 such that e(u) = 1.

Let us prove that there is a standard block Bin (
z w
x y ) in e with this occurrence of

1 representing Wang tile x . Let p = τ u(e)|D be the m × n pattern with lower left
corner at cell u, so there is symbol 1 at the lower left corner of p. By the definition
of P , pattern p appears in β( f ) for some f ∈ T Z

2
. The structure of β( f ) implies

that there is another symbol 1 in pattern p on the same horizontal row, say i position
to the right of the lower left corner. By condition (H) above, i = n′ + α(y) − α(x)
for some tiles x, y ∈ T such that the east color of x is the same as the west color of
y. Because no tile in T matches with itself in color, we have x �= y and hence x and
y are unique by Lemma 1.
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Let v = u − (α(x), 0), and extract the n × m pattern q = τ v(e)|D located α(x)
positions to the left of p in e. Pattern q contains symbol 1 on the bottom row at
columns α(x) and n′ + α(y). Pattern q appears in β( f ′) for some f ′ ∈ T Z

2
and

therefore, due to the structure of encoded configurations, q must be Bin (
z w
x y ) for

some z,w ∈ T . Conditions (H) and (V) then ensure that x, y, z and w match in color
with each other to form a valid 2 × 2 pattern of Wang tiles, so q = Bin (

z w
x y ) is a

standard block.
We have seen that any occurrence of 1 in e represents a Wang tile x in the lower

left corner of some standard block q = Bin (
z w
x y ) in e. With an analogous reasoning

we see that the same occurrence of bit 1 is also encoding the tile z′ at the upper left
corner of a standard block q ′ = Bin (

z′ w′
x ′ y′ ) in e. In q ′ the symbol 1 that represents the

Wang tile w′ at the upper right corner is the same as the one that represents tile y at
the lower right corner in q, so that α(x) − α(y) = α(z′) − α(w′). By Lemma 1 the
tiles are unique so that x = z′ and y = w′. (See Fig. 3 for an illustration.) We have
that q ′ = τ v′

(e)|D for v′ = v − (0,m ′).
Analogously, symbol 1 in position u is also in the lower right and upper right

corners of standard blocks in e that overlap with q and q ′ in two encoded Wang
tiles that by Lemma 1 are uniquely identified as x and z and as x ′ and z′ = x ,
respectively. So also them × n blocks in e with lower left corners at cells v − (n′, 0)
and v − (n′,m ′) are standard blocks.

As cell u is any position containing bit 1 in configuration e, we can repeat the
reasoning on the other corners of the standard blocks. By easy induction we see
that τ vi, j (e)|D is a standard block for all i, j ∈ Z where vi, j = v + (in′, jm ′). We
now take c ∈ T Z

2
such that c(i, j) is the Wang tile encoded in e position vi, j , for all

i, j ∈ Z, that is, the unique t ∈ T such that τ vi, j (e)(α(t)) = 1. Clearly τ v(e) = β(c).
Because standard blocks correspond to correctly tiled 2 × 2 blocks of Wang tiles we
have that c ∈ V(T ). �

Now we obtain the main technical contribution.

Fig. 3 Two standard blocks
sharing an encoded tile at
their lower left and upper left
corners, respectively. The
positions of the blocks are
uniquely identified by their
common row, as discussed in
the proof of Lemma 3. The
circled cell is the position v
in configuration e in that
proof
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Theorem 2 Let T be a given Wang tile set. One can effectively find positive integers
N and k such that for any n ≥ N and m ≥ 2 one can effectively construct a set P of
binary rectangular patterns of size n × m such that the cardinality of P is at most
nm + k(n + m) and V(P) contains a (periodic) tiling if and only if V(T ) contains
a (periodic, resp.) configuration.

Proof We first construct an equivalent tile set T ′ where no tile matches in color with
itself, as shown in the beginningof the section.We then set t = |T ′|, s = 2t−1, N = 3s
and k = 2st4. Let n ≥ N and m ≥ 2 be arbitrary, and let us construct P as above.
By Lemma 2 set P contains at most nm + k(n + m) patterns. By Lemma 3 we have
that V(P) = ∅ if and only if V(T ) = ∅. Encoding β maps periodic configurations
to periodic configurations so also by Lemma 3 there is a periodic configuration in
V(P) if and only if there is a periodic configuration in V(T ). �

4 Conclusions

With Theorem 2 we can port results fromWang tiles to pretty low complexity SFTs.

Corollary 1 Let f : N −→ N be a computable function, f /∈ O(1). The following
problem is undecidable for any fixed m ≥ 2: Given n and a set P of at most nm +
f (n)n binary rectangular patterns of size n × m, is V(P) empty?

Proof We many-one reduce the domino problem. Let T be any given set of Wang
tiles. Compute constants N and k of Theorem 2. For n = N , N + 1, N + 2, . . .
compute f (n) until number n ≥ N is found such that f (n) ≥ k + km/n. Because
f /∈ O(1) such n exists. Using Theorem 2 construct a set P of at most nm + k(n +
m) ≤ nm + f (n)n binary patterns of size n × m. By Theorem 2 tiles T admit a valid
tiling if and only if V(P) is non-empty. �

Corollary 1 naturally raises the question whether the additive term f (n)n can
be replaced by some constant, or can at least f (n) in it be replaced by a constant.
By [10] constant c = 0 does not work.

•? Question 1

Does there exist a constant c such that the following problem is undecidable: Given
n,m and a set P of at most nm + c rectangular patterns of size n × m, is V(P)

empty? What about for sets P with nm + cn patterns?

Corollary 1 is stated for thin blocks of constant height m. It is also worth to
consider fat blocks, e.g., of square shape. By the analogous proof, using m = n
instead of constant m we obtain the following result where the additive term is
almost linear in n.
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Corollary 2 Let f : N −→ N be a computable function, f /∈ O(1). The following
problem is undecidable: Given n and a set P of at most n2 + f (n)n binary square
patterns of size n × n, is V(P) empty?

Proof We proceed as in the proof of Corollary 1, except that we choose n such
that f (n) ≥ 2k. By Theorem 2 we can effectively construct a set P of at most
n2 + k(n + n) ≤ n2 + f (n)n binary patterns of size n × n such that V(P) is non-
empty if and only if T admits a valid tiling. �

In particular, for any real number ε > 0 it is undecidable if a given set P of at
most (1 + ε)n2 square patterns of size n × n admit a valid configuration.

As usual, undecidability comes together with aperiodicity. We obtain pretty low
complexity aperiodic SFTs.

Corollary 3 Let f : N −→ N be a function, f /∈ O(1). There exists n and an ape-
riodic SFT V(P) where P consists of at most n2 + f (n)n binary square patterns of
size n × n. Also, for every fixed height m ≥ 2, there exists width n and an aperiodic
SFT V(P ′) where P ′ consists of at most nm + f (n)n binary rectangular patterns of
size n × m.

Proof Let T be an aperiodic Wang tile set. Let N and k be as in Theorem 2, and
let n ∈ N be such that f (n) ≥ 2k. By Theorem 2 there is a collection P of at most
n2 + k(n + n) ≤ n2 + f (n)n binary n × n patterns such that V(P) is aperiodic. For
fixed m, choosing n such that f (n) ≥ k + km/n gives P ′ in the second claim. �

There naturally exists a constant c and a collection of nm + c allowed patterns of
some size n × m that defines an aperiodic SFT. But what might be the smallest such
c? Again, by [10] constant c = 0 does not work.

Question 1 Question 2What is the smallest constant c such that there exists numbers
n and m and a set P of nm + c rectangular patterns of size n × m such that V(P) is
aperiodic? Is constant c = 1 possible?
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Reversible Elementary Triangular
Partitioned Cellular Automata and Their
Complex Behavior

Kenichi Morita

Abstract We investigate a special type of cellular automata called elementary trian-
gular partitioned cellular automata (ETPCAs) in which various interesting phenom-
ena emerge. They are quite simple, since each of their local functions is specified by
only four local transition rules. There are 256 ETPCAs in total, and 36 among them
are reversible. Despite their extreme simplicity, some reversible ETPCAs show quite
complex behavior, and they even have universal computing capability. In this survey,
based on the author’s past results, we discuss how complex phenomena appear in
these ETPCAs, and how high-order functions, such as reversible logic gates, are
realized combining useful phenomena.

Keywords Reversible cellular automaton · Elementary triangular partitioned
cellular automaton · Reversible computing · Complex phenomena · Glider ·
Reversible logic gate

1 Introduction

Complex phenomena can emerge even in a system composed of very simple ele-
ments. This fact also holds when we further add the “reversibility constraint” to the
elements. In this survey, we discuss how complex phenomena emerge from a simple
reversible microscopic law, and how these phenomena are utilized to obtain higher-
order functions such as computing. Since reversibility is one of the fundamental
laws of nature, it is important to study this problem. Here, we investigate it using the
framework of reversible elementary triangular partitioned cellular automata.

A three-neighbor triangular cellular automaton (TCA) is one whose cell is trian-
gular and communicates with its three edge-adjacent cells. So far, there have been
several studies on TCAs, though they are not so many. Bays [2] studied a kind of
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TCAs with a similar type of local functions as that of Game-of-Life CA [6, 7].
Gajardo and Goles [5] proposed a three-state TCA, which is defined on a hexago-
nal lattice, and proved its computational universality. Imai and Morita [8] studied a
reversible TCA, and showed that there is an eight-state universal reversible one. An
advantage of using TCAs is that their local function can be simpler than those of
CAs on a square lattice, since each cell has only three neighbor cells. Hence, it is
suited for studying how complex phenomena emerge from a simple local function.

A three-neighbor triangular partitioned cellular automaton (TPCA) is a CAwhere
cells are triangular, and each cell has three parts. A TPCA is called an elementary
TPCA (ETPCA), if it is rotation-symmetric, and each part of a cell has only two
states 0 and 1 (the state 1 is also called a particle). The class of ETPCAs is one of the
simplest subclasses of two-dimensional CAs. This is because the local function of
each ETPCA is described by only four local transition rules. There are 256 ETPCAs
in total as in the case of one-dimensional elementary CAs (ECAs) [16]. It is known
that there are 36 reversibleETPCAs among them.Among36 reversible ones, there are
nine conservative ETPCAs inwhich the total number of symbol 1’s in a configuration
is conserved throughout its evolution process. This property is a similar notion to
that of the conservation law of mass or energy in physics.

A particular conservative ETPCANo. 0157, where 0157 is an identification num-
ber in the class of ETPCAs, was first investigated in [8], and its computational
universality was shown. In [9], it was shown that conservative ETPCA 0137 is also
computationally universal. In [13], a nonconservative reversibleETPCA0347 is stud-
ied. We think ETPCA 0347 is the most interesting one in the class of 256 ETPCAs,
though not all ETPCAs have been fully investigated yet. In spite of its simplicity the
local function, ETPCA 0347 shows quite interesting behavior like the Game-of-Life
CA. In particular, a glider, which is a space-moving pattern, and glider guns exist
in ETPCA 0347. Using gliders to represent signals, computational universality of
ETPCA 0347 was also proved.

In this chapter, we discuss how interesting phenomena emerge in reversible ETP-
CAs 0347, 0157 and 0137, how such phenomena are utilized to realize higher-order
functions such as reversible logic elements, and how reversible computers can be
built from these logic elements. In Sect. 2, after giving definitions on ETPCAs, we
classify 256 ETPCAs by introducing three kinds of dualities. In Sect. 3, a noncon-
servative reversible ETPCA No. 0347 is investigated. In this ETPCA, three kinds
of patterns exist. They are periodic patterns, a space-moving pattern, and expand-
ing patterns. Among them, a space-moving pattern called a glider is interesting and
useful. Here, how to control its flight is explained. By this, a glider can be used as a
signal for composing a reversible computer. In Sect. 4, conservative ETPCAs 0157
and 0137 are investigated. There are many space-moving patterns in both of these
ETPCAs. Though behavior of these patterns is complex and seems interesting, their
periods are vary large. Therefore, it is difficult to control the flying directions and
the timings of the space-moving patterns. Instead, a one-particle pattern, which can
move along a transmission line, is used to represent a signal for computing. Since a
universal reversible logic gate is realizable, computational universality of ETPCAs
0157 and 0137 is derived.
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2 Elementary Triangular Partitioned Cellular Automata

We give several definitions on elementary triangular partitioned cellular automata
(ETPCAs).We also define three kinds of duality among them, bywhich 256 ETPCAs
are classified into 82 equivalence classes.

2.1 Triangular Partitioned Cellular Automata (TPCAs)

A three-neighbor triangular partitioned cellular automaton (TPCA) is a CA defined
on the cellular space shown in Fig. 1. In a TPCA, each cell has three parts, and the next
state of a cell is determined by the states of the adjacent parts of the three neighbor
cells as shown in Fig. 2.

All the cells of a TPCA are identical copies of a finite state machine, and each cell
has three parts, i.e., the left, downward, and right parts, whose state sets are L , D
and R, respectively. However, the directions of the cells are not the same, i.e., there
are up-triangle cells, and down-triangle cells.

We now place cells of a TPCA on Z
2 as shown in Fig. 3. We assume that if the

coordinates of an up-triangle cell is (x, y), then x + y must be even. It should be
noted, if we define an TPCA on Z

2, there arises a problem that the neighborhood

Fig. 1 Cellular space of a three-neighbor TPCA

Fig. 2 Pictorial representations of the local transition rule f (l, d, r) = (l ′, d ′, r ′), where (l, d, r),
(l ′, d ′, r ′) ∈ L×D×R. They are a for up-triangle cells, and b for down-triangle cells
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Fig. 3 The x-y coordinates
in the cellular space of TPCA
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is slightly non-uniform. Namely, for an up-triangle cell, its neighbors are the west,
south and east adjacent cells (Fig. 2a), while for a down-triangle cell, its neighbors
are the east, north and west adjacent cells (Fig. 2b). Though such non-uniformity is
dissolved by defining a TPCA on a Cayley graph, here we define a TPCA on Z2.

Definition 1 A deterministic triangular partitioned cellular automaton (TPCA) is
a system defined by

T = (Z2, (L , D, R), ((−1, 0), (0,−1), (1, 0)), ((1, 0), (0, 1), (−1, 0)), f, (#, #, #)).

Here, Z2 is the set of all two-dimensional points with integer coordinates at which
cells are placed. Each cell has three parts, i.e., the left, downward and right parts,
where L , D and R are non-empty finite set of states of these parts. The state set Q of
each cell is thus given by Q = L × D × R. The triplet ((−1, 0), (0,−1), (1, 0)) is
a neighborhood for up-triangle cells, and ((1, 0), (0, 1), (−1, 0)) is a neighborhood
for down-triangle cells. The item f : Q → Q is a local function, and (#, #, #) ∈ Q
is a quiescent state that satisfies f (#, #, #) = (#, #, #). We also allow a TPCA that
has no quiescent state. A configuration of T is a function α : Z2 → Q. If the set
{(x, y) | α(x, y) �= (#, #, #)} is finite, α is called a finite configuration.

If f (l, d, r) = (l ′, d ′, r ′) holds for (l, d, r), (l ′, d ′, r ′) ∈ Q, then this relation is
called a local transition rule of the TPCA T (Fig. 2). The global function induced
by the local function of a TPCA is defined as below.

Definition 2 Let T be a TPCA. The set of all configurations of T is denoted by
Conf(T ), i.e., Conf(T ) = {α | α : Z2 → Q}. Let prL : Q → L be the projection
function such that prL(l, d, r) = l for all (l, d, r) ∈ Q. The projection functions
prD : Q → D and prR : Q → R are also defined similarly. The global function
F : Conf(T ) → Conf(T ) of T is defined as the one that satisfies the following con-
dition.
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∀α ∈ Conf(T ),∀(x, y) ∈ Z
2 :

F(α)(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

f (prL(α(x − 1, y)), prD(α(x, y − 1)), prR(α(x + 1, y)))
if x + y is even

f (prL(α(x + 1, y)), prD(α(x, y + 1)), prR(α(x − 1, y)))
if x + y is odd

From this definition, we can see that the next state of the up-triangle cell is deter-
mined by the present states of the left part of the west neighbor cell, the downward
part of the south neighbor cell, and the right part of the east neighbor cell. On the
other hand, the next state of the down-triangle cell is determined by the present states
of the left part of the east neighbor cell, the downward part of the north neighbor
cell, and the right part of the west neighbor cell. Therefore, for a local transition rule
f (l, d, r) = (l ′, d ′, r ′), there are two kinds of pictorial representations as shown in
Fig. 2a, b. Namely, Fig. 2a is for up-triangle cells, while Fig. 2b is for down-triangle
cells.

In [14], it is shown injectivity of the global function is equivalent to that of the
local function in one-dimensional PCAs. The following lemma is proved in a similar
manner as this.

Lemma 1 ([14]) Let T be a TPCA, f be its local function, and F be its global
function. Then, F is injective if and only if f is injective.

A reversible TPCA is defined as follows.

Definition 3 Let T be a TPCA. The TPCA T is called reversible if its local (or
equivalently global) function is injective.

We define the notion of rotation-symmetry for a TPCA as follows.

Definition 4 Let

T = (Z2, (L , D, R), ((−1, 0), (0,−1), (1, 0)), ((1, 0), (0, 1), (−1, 0)), f, (#, #, #))

be a TPCA. The TPCA T is called rotation-symmetric (or isotropic) if the conditions
(1) and (2) holds.
(1) L = D = R
(2) ∀ (l, d, r), (l ′, d ′, r ′) ∈ L×D× R : f (l, d, r) = (l ′, d ′, r ′) ⇒ f (d, r, l) = (d ′, r ′, l ′)

2.2 Elementary TPCAs (ETPCAs)

Definition 5 Let

T = (Z2, (L , D, R), ((−1, 0), (0,−1), (1, 0)), ((1, 0), (0, 1), (−1, 0)), f )

be a TPCA. It is called an elementary triangular partitioned cellular automaton
(ETPCA), if L = D = R = {0, 1}, and it is rotation-symmetric.
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Fig. 4 Representing an ETPCA by a four-digit number wxyz, where w, z ∈ {0, 7} and x, y ∈
{0, 1, . . . , 7}. Vertical bars indicate alternatives of a right-hand side of a rule

The set of states of a cell of an ETPCA is L × D × R = {0, 1}3, and thus a cell has
eight states.When drawing figures of T ’s local transition rules and configurations, we
indicate the states 0 and 1 of each part by a blank and a particle (i.e., •), respectively.

Since ETPCA is rotation-symmetric, and each part of a cell has the state set {0, 1},
its local function is defined by only four local transition rules. Hence, an ETPCA can
be specified by a four-digit number wxyz, as shown in Fig. 4, where w, z ∈ {0, 7}
and x, y ∈ {0, 1, . . . , 7}. Thus, there are 256 ETPCAs. Note that w and z must be 0
or 7 because an ETPCA is deterministic and rotation-symmetric. The ETPCA with
the number wxyz is denoted by Twxyz .

A reversible ETPCA is an ETPCAwhose local function is injective (Definition 3).
Thus, it is easy to show the following.

Lemma 2 Let Twxyz be an ETPCA. It is reversible if and only if the following con-
ditions (1) and (2) hold.

(1) (w, z) ∈ {(0, 7), (7, 0)}
(2) (x, y) ∈ {1, 2, 4} × {3, 5, 6} ∪ {3, 5, 6} × {1, 2, 4}

A conservative ETPCA is one such that the total number of particles (i.e., •’s) is
conserved in each local transition rule. Hence, it is defined as follows.

Definition 6 Let Twxyz be an ETPCA. It is called a conservative ETPCA if the
following condition holds.

w = 0 ∧ x ∈ {1, 2, 4} ∧ y ∈ {3, 5, 6} ∧ z = 7

From Lemma 2 and Definition 6, it is clear the following holds.

Lemma 3 Let T be an ETPCA. If T is conservative, then it is reversible.

We can see that there are 36 reversible ETPCAs (by Lemma 2), and among them
there are nine conservative ones (by Definition 6). Hence, in ETPCAs, conservative
ones are a subclass of reversible ones.
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2.3 Dualities in ETPCAs

As seen above, there are 256 ETPCAs. However, there are some “equivalent” ETP-
CAs, and thus the number of essentially different ETPCAs is much smaller. Here,
we introduce three kinds of dualities, and classify the ETPCAs based on them [12].

2.3.1 Duality Under Reflection

Definition 7 Let T and T̂ be ETPCAs, and f and f̂ be their local functions. We
say T and T̂ are dual under reflection, if the following holds, and it is written as
T ←→refl T̂ .

∀(l, d, r), (l ′, d ′, r ′) ∈ {0, 1}3 : f (l, d, r) = (l ′, d ′, r ′) ⇔ f̂ (r, d, l) = (r ′, d ′, l ′)

By this definition, we can see that the local transition rules of T̂ are the mirror
images of those of T . Therefore, an evolution process of T ’s configurations is sim-
ulated in a straightforward manner by the mirror images of the T ’s configurations
in T̂ . For example, T0137←→refl T0467 holds (Fig. 5), and examples of their evolution
processes are shown in Fig. 6.
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Fig. 5 The local functions of T0137 and T0467 that are dual under reflection

Fig. 6 Examples of evolution processes in a T0137, and b T0467
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2.3.2 Duality Under Complementation

For x ∈ {0, 1}, let x denote 1 − x , i.e., the complement of x .

Definition 8 Let T and T be ETPCAs, and f and f be their local functions. We say
T and T are dual under complementation, if the following holds, and it is written
as T ←→comp T .

∀(l, d, r), (l ′, d ′, r ′) ∈ {0, 1}3 : f (l, d, r) = (l ′, d ′, r ′) ⇔ f (l, d, r) = (l ′, d ′, r ′)

By this, we can see that the local transition rules of T are the 0–1 exchange
(i.e., taking their complements) of those of T . Therefore, an evolution process of
T ’s configurations is simulated in a straightforward manner by the complemented
images of the T ’s configurations in T . For example, T0157←→comp T0267 holds (Fig. 7),
and examples of their evolution processes are shown in Fig. 8.

2.3.3 Duality Under Odd-Step Complementation

Definition 9 LetT be anETPCAsuch that its local function f satisfies the following.
(1) ∀(l, d, r), (l ′, d ′, r ′) ∈ {0, 1}3 : f (l, d, r) = (l ′, d ′, r ′) ⇒ f (l, d, r) = (l ′, d ′, r ′)
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Fig. 7 The local functions of T0157 and T0267 that are dual under complementation

t = 0

•• • ••
•• ••

t = 1

• •
•• ••• ••

t = 2

•
• •• •
•• ••

t = 3
•

•• •
• ••• •

Fig. 8 Examples of evolution processes in a T0157, and b T0267
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Fig. 9 The local functions of T0347 and T7430, which are dual under odd-step complementation

Fig. 10 Examples of evolution processes in a T0347, and b T7430

Let T̃ be another ETPCA, and f̃ be its local function.We say T and T̃ are dual under
odd-step complementation, if the following holds, and it is written as T ←→osc T̃ .

∀(l, d, r), (l ′, d ′, r ′) ∈ {0, 1}3 : f (l, d, r) = (l ′, d ′, r ′) ⇔ f̃ (l, d, r) = (l ′, d ′, r ′)

Since the ETPCA T satisfies the condition (1), we see that for each local transition
rule f (l, d, r) = (l ′, d ′, r ′) of T , there are two local transition rules f̃ (l, d, r) =
(l ′, d ′, r ′) and f̃ (l, d, r) = (l ′, d ′, r ′) of T̃ (hence T̃ also satisfies (1)). Let F and F̃
be the global function of T and T̃ , respectively. If the initial configuration of T is
α : Z2 → {0, 1}3, then we assume α is also given to T̃ as its initial configuration.
Since there is a local transition rule f̃ (l, d, r) = (l ′, d ′, r ′) for each f (l, d, r) =
(l ′, d ′, r ′), the configuration F̃(α) is the complement of the configuration F(α).
Furthermore, since there is a local transition rule f̃ (l, d, r) = (l ′, d ′, r ′) for each
f (l, d, r) = (l ′, d ′, r ′), the configuration F̃2(α) is the same as F2(α). In this way,
at an even step T̃ gives the same configuration as T , while at an odd step T̃ gives
the complemented configuration of T . For example, T0347←→osc T7430 holds (Fig. 9).
Figure10 shows examples of their evolution processes.

Note that, in Definition 9, the ETPCA T must satisfy the condition (1). Therefore,
the relation ←→osc is defined on the ETPCAs of the form Twxyz such that w + z = 7
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and x + y = 7. Hence, only the following 16 ETPCAs have their dual counterparts
under odd-step complementation.

T0077←→osc T7700, T0167←→osc T7610, T0257←→osc T7520,
T0347←→osc T7430, T0437←→osc T7340, T0527←→osc T7250,
T0617←→osc T7160, T0707←→osc T7070

2.3.4 Equivalence Classes of ETPCAs

If ETPCAs T and T ′ are dual under reflection, complementation, or odd-step com-
plementation, then they can be regarded as essentially the same ETPCAs. Here, we
classify the 256 ETPCAs into equivalence classes based on the three dualities. We
define the relation←→ as follows: For any ETPCAs T and T ′,

T ←→ T ′ ⇔ (T ←→refl T ′ ∨ T ←→comp T
′ ∨ T ←→osc T ′)

holds. Now, let←→∗ be the reflexive and transitive closure of←→. Then,←→∗ is
an equivalence relation, since←→ is symmetric. By this, 256 ETPCAs are classified
into 82 equivalence classes. Table1 shows the classification result.

Wolfram classified 256 one-dimensional elementary cellular automata (ECAs)
into 88 equivalence classes, which is given in the Appendix of [16]. It is based
on the two dualities reflection and conjugation that correspond to reflection and
complementation in ETPCAs, respectively. If we consider only these two dualities
inETPCAs, the number of equivalence classes is 88, the same as inECAs.Note that in
[16] the duality corresponding to odd-step complementation is implicitly mentioned,
and if we also use it, the number of equivalence classes of ECAs becomes 82.

ECAs and ETPCAs have very different features in reversibility. In ECAs, there
are six reversible ones: ECAs 15, 51, 85, 170, 204 and 240. They are grouped into
two equivalence classes if we use the three dualities. We can see one class contains
ECA 204 (identity), and the other contains ECA 170 (left shift). Hence, all the six are
trivial ones. On the other hand, there are 36 reversible ETPCAs that are grouped into
12 equivalence classes (Table1). Many of them are nontrivial, and as we shall see
below, at least ten reversible ETPCAs in three classes are computationally universal.

Table 1 Total numbers and numbers of equivalence classes of ETPCAs, reversible ETPCAs and
conservative ETPCAs [12]

Total number Equivalence classes

ETPCAs 256 82

Reversible ETPCAs 36 12

Conservative ETPCAs 9 4
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3 Complex Phenomena in Reversible ETPCA T0347

Here, we focus on a specific nonconservative reversible ETPCA T0347 [13]. Its local
function is given in Fig. 11. Despite its extreme simplicity of the local function, it
exhibits quite interesting behavior similar to the case of the Game-of-Life CA [6, 7].

Though its local function itself is very simple, it is generally hard to follow
evolution processes of configurations of T0347 by hand. So we created a simulator
for it. Simulation movies can be seen in the slide file of [13]. We also created an
emulator for T0347 on the general purpose CA simulator Golly [15]. The file of the
emulator with many examples of configurations is found in [11].

3.1 Patterns in T0347

A pattern is a finite segment of a configuration. Patterns can be defined in any
ETPCA. However, when we consider an evolution process of a finite configuration
that contains pattern(s), it is convenient to restrict ETPCAs to those with an identi-
fication number of the form 0xyz (i.e., to those with a quiescent state). Otherwise,
the initial finite configuration will become an infinite one at the next time step.

In this section, we give various interesting patterns in in T0347. In a reversible
ETPCA there are only three kinds of patterns. They are periodic patterns, space-
moving patterns and expanding patterns. Note that, because of reversibility, there is
no pattern that becomes a periodic (or space-moving) pattern after a positive number
of transient steps.

A periodic pattern is one that satisfy the following condition: Starting from the
finite configuration that contains one copy of it, only one copy of it appears at the
same position after p time steps (p > 0). The number p is the period of the pattern.
If p = 1, it is called a stable pattern.

A block is a stable pattern in T0347 shown in Fig. 12. As we shall see below,
combining several blocks, and appropriately colliding a space-moving pattern with
them, right-turn, left-turn, backward-turn, and U-turn are realized.

A fin is a periodic pattern that simply rotates with period 6 (Fig. 13). Note that
any pattern appearing at t = 0, . . . , 5 of Fig. 13 is a fin. A rotator is a pattern shown
in Fig. 14. Like a fin, it rotates around a point, and its period is 42. Though there are
many periodic patterns in T0347, a block, a fin and a rotator are the most useful ones.

A space-moving pattern is one that satisfy the following: Starting from the finite
configuration that contains one copy of it, only one copy of it appears at a different
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Fig. 11 Local function of the nonconservative reversible ETPCA T0347
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Fig. 12 A block in T0347. It is a stable pattern
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Fig. 13 A fin. It rotates around the point ◦ with period 6 in T0347
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Fig. 14 A rotator. It rotates around the point ◦ with period 42 in T0347

position after p time steps (p > 0). The number p is also called the period of the
space-moving pattern. Such a patten is useful for collision-based computing [1].

Figure15 shows a specific space-moving pattern in T0347, which is called a glider.
It is so named after the famous glider in the Game-of-Life [6], but it swims in
the cellular space like a fish or an eel. It travels a unit distance, the side-length of
a triangular cell, in 6 steps. By rotating it appropriately, it can move in any of the
six directions. When constructing a computing machine in T0347, it will be used
as a signal. So far, it is not known whether there is another space-moving pattern
essentially different from a glider (i.e., not composed of two or more gliders).

An expanding pattern is one whose diameter grows indefinitely as it evolves.
Figure16 is an example of an expanding pattern in T0347. By colliding a glider to a
fin (t = 0), we have a glider gun that generates three gliders every 24 steps [13]. In
this case, the total number of particles in a configuration also grows indefinitely.
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Fig. 15 A glider. It is a space-moving pattern of period 6 in T0347
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Fig. 16 A three-way glider gun created by a collision of a glider with a fin in T0347 [13]. It is an
expanding pattern

We can show that an expanding pattern also expands to the negative time direction
because of reversibility [13]. In fact, the distance between the glider and the fin at
t = 0 in Fig. 16 grows larger and larger when we go back to the past (i.e., t < 0).

It is remarkable that there is a glider gun that generates gliders to the negative
time direction (Fig. 17). It is also an expanding pattern. Furthermore, by appropriately
combining two configurations at t = 0 of Fig. 16 and t = 0 of Fig. 17, it is possible
to have a gun that generates gliders in both positive and negative time directions.

Figure18 gives another example of an expanding pattern. If we start with a one-
particle pattern, a chaotic (or disordered) pattern with many gliders is generated, and
the whole pattern grows larger and larger. Also in this case, a similar chaotic pattern
with gliders appears and grows indefinitely to the negative time direction [13].
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Fig. 17 A three-way glider absorber in T0347 [13]. It is a glider gun to the negative time direction
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Fig. 18 A chaotic pattern that expands indefinitely appears from the one-particle pattern in T0347

It should be noted that a chaotic pattern often appears even from a configuration
that contains only periodic patterns and gliders. Therefore, if we want to design a
large pattern that perform some intended task, we should carefully do it so that the
whole pattern never generates a chaotic pattern.

3.2 Interactions of Patterns in T0347

It is known that various interesting phenomena emerge by interacting blocks, fins or
gliders with another glider [13]. In this section, we observe what happens when we
collide a glider to a sequence of blocks.

We first collide a glider with two blocks (Fig. 19a). Then, the glider is split into
a rotator and a fin (t = 56). The fin travels around the blocks three times without
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Fig. 19 Turn modules for a glider in T0347 [13]. a Right-turn module composed of two blocks, b
backward-turn module, c U-turn module, and d left-turn module
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interacting with the rotator. At the end of the fourth round, they meet to form a glider,
which goes to the south-west direction (t = 334). Hence, two blocks act as a 120◦-
right-turn module. It is also possible to make a right-turn module with a different
delay time using three or five blocks. If we collide a glider with a single block as
shown in Fig. 19b, then the glider makes backward turn. Hence, a single block acts
as a backward-turn module. Figure19c is a U-turn module, and Fig. 19d is a left-
turn module. By such interactions, the move direction and the timing of a glider is
completely controlled [13].

There are still other interesting interactions of patterns in T0347, e.g., interactions
of a fin and a glider, and those of two or more gliders. See [10–13] for their details.

3.3 Computational Universality of T0347

To prove computational universality of a reversible CA, it is sufficient to show that
any reversible logic circuit composed of switch gates (Fig. 20a), inverse switch gates
(Fig. 20b), and delay elements can be simulated in it (Lemma 8).

Lemma 8 given below can be derived, e.g., in the following way. First, a Fred-
kin gate (Fig. 20c) can be constructed out of switch gates and inverse switch gates
(Lemma 4). Second, any reversible sequential machine (RSM), in particular, a rotary
element (RE), which is a 2-state 4-symbol RSM, is composed only of Fredkin gates
and delay elements (Lemma 5). Third, any reversible Turing machine is constructed
out of REs (Lemma 6). Finally, any (irreversible) Turing machine is simulated by a
reversible one (Lemma 7). Thus, Lemma 8 follows.

Lemma 4 ([4]) A Fredkin gate can be simulated by a circuit composed of switch
gates and inverse switch gates, which produces no garbage signals.

Lemma 5 ([10])AnyRSM(in particularRE) can be simulated by a circuit composed
of Fredkin gates and delay elements, which produces no garbage signals.

Lemma 6 ([10])Any reversible Turingmachine can be simulated by a garbage-less
circuit composed only of REs.

Lemma 7 ([3]) Any (irreversible) Turing machine can be simulated by a garbage-
less reversible Turing machine.

Fig. 20 a Switch gate. b Inverse switch gate, where c = y1 and x = y2 + y3 under the assumption
(y2 → y1) ∧ (y3 → y1). c Fredkin gate
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Fig. 21 Switching operation realized by collision of two gliders in T0347 [13]

Lemma 8 A reversible CA is computationally universal, if any circuit composed
of switch gates, inverse switch gates, and delay elements is simulated in it.

We now show computational universality of T0347. It is possible to implement a
switch gate and an inverse switch gate in T0347 using gliders as signals. The switching
operation (c, x) �→ (c, cx, cx) is realizedby colliding twogliders as shown inFig. 21.
Usingmany turnmodules to adjust the collision timing and the directions of the input
gliders, we can construct a switch gate module as shown in Fig. 22. An inverse switch
gate can be also realized in a similar manner. By above, and by the dualities among
ETPCAs, we have the following.
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Fig. 22 Switch gate module implemented in T0347, whose input-output delay is 2232 [13]
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Theorem 1 ([13]) The nonconservative reversible ETPCAs T0347, T0617, T7430 and
T7160 are computationally universal.

4 Complex Phenomena in Conservative ETPCAs

In this section, we investigate conservative ETPCAs. There are nine such ETPCAs
(Definition 6), which are classified into the following four equivalence classes.

{T0157, T0457, T0237, T0267}, {T0137, T0467}, {T0167, T0437}, {T0257}

Though the total number of particles in a configuration is conserved in them, the six
ETPCAs in the first two classes still show complex behavior. In particular, they were
shown to be computationally universal [8, 9]. On the other hand, those in the last
two classes are trivial ETPCAs, and thus they are non-universal [9].

4.1 Conservative ETPCA T0157

Here we consider the conservative and reversible ETPCA T0157 (Fig. 23). It was first
studied in [8].

There are many periodic patterns in T0157. Among them two are useful. They are
a block and a one-particle pattern. A block is a stable pattern shown in Fig. 24. On
the other hand, a one-particle pattern (Fig. 25) rotates clockwise with period 6 by
the second local transition rule of Fig. 23.

In T0157 there exist a large number of space-moving patterns. On this point, T0157 is
very different from T0347. In fact, it is rather easy to find such patterns by watching an
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•

•
1

, •• ••
5

, •
•

• •••
7

Fig. 23 Local function of T0157 defined by four local transition rules

Fig. 24 A block in T0157. It
is a stable pattern •• •••••••• ••

Fig. 25 One-particle pattern
in T0157. It simply rotates
with period 6

•
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Fig. 26 A space-moving pattern of period 1016 in T0157

evolution process starting from a randomly given finite pattern with many particles.
In many cases, some space-moving patterns and some periodic patterns will appear
from it. However, periods of space-moving patterns are generally very long. Figure26
shows an example of a space-moving pattern of period 1016. Furthermore, it exhibits
complex behavior in the period. Since the period is long, it is very difficult to control
a space-moving pattern, in particular to adjust its timing. So far, it is not known
whether there is a space-moving pattern with a very short period (say 10 or less).

Since there are space-moving patterns in T0157, expanding patterns also exist in
it. For example, a configuration consisting of two space-moving patterns that go to
different directions is an expanding pattern, though the total number of particles in
a configuration is always constant.

Here we use a one-particle pattern, rather than a space-moving pattern, as a signal.
A signal transmission wire, on which a signal can move, is obtained by connecting
blocks as shown in Fig. 27. Wires can be bent relatively freely, and by this the timing
of a signal is adjusted. In [8, 12], a module for crossing two signals in the two-
dimensional space is given.

The switch gate operation (c, x) �→ (c, cx, cx) is realized by one cell of T0157 as
shown in Fig. 28. Likewise, the inverse switch gate operation is also realized by one
cell. Complete patterns of a switch gate module, and an inverse switch gate module
are given in [8, 12].
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Fig. 27 Transmission of a signal along a wire consisting of blocks in T0157 [8, 12]. A small number
t (1 ≤ t ≤ 28) shows the position of the signal at time t
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Fig. 28 Switch gate operation realized by one cell of T0157

4.2 Conservative ETPCA T0137

Next, consider the conservative and reversible ETPCA T0137 (Fig. 29).
Among many periodic patterns in T0137, a block and a one-particle pattern are

useful as in the case of T0157. Figure30 shows a block in T0137. Though it is different
from Fig. 24, it is stable in T0137. The one-particle pattern (Fig. 25) rotates clockwise
with period 6 also in T0137.

Similar to the case of T0157, there are many space-moving patterns in T0137. Again,
in this case, their periods are very long. Hence, it is hard to use them as signals in
logic circuits. Figure31 is an example of a space-moving pattern of period 3162.
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Fig. 29 Local function of T0137 defined by four local transition rules

Fig. 30 A block in T0137. It
is a stable pattern • • •• • •
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Fig. 31 A space-moving pattern of period 3162 in T0137
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Fig. 32 Transmission of a signal along a wire in T0137 [9, 12]

Fig. 33 Switch gate
operation realized by one
cell of T0137

x

0

c � cx
c

cx

Figure32 shows a signal transmission wire in T0137 composed of blocks, on which
a particle travels as a signal. The switch gate operation is realized by one cell of T0137
as in Fig. 33. Using these phenomena and operations, a signal crossing module, a
switch gate module and an inverse switch gate module can be constructed (see [9,
12] for the details).
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4.3 Universality of Reversible and Conservative ETPCAs

As seen in Sects. 4.1 and 4.2, any circuit composed of switch gates, inverse switch
gates, and signal delays is embeddable in each of T0157 and T0137. Hence by Lemma 8,
they are computationally universal. Therefore all ETPCAs in the equivalence classes
of {T0157, T0457, T0237, T0267} and {T0137, T0467} are also computationally universal.

On the other hand, it is shown that all configurations of T0257 are of period 2, and
thus it is a trivial ETPCA [12]. In fact, we can interpret the local function of T0257
as the one where every particle moves back and forth between two adjacent cells.
Likewise in T0167 and T0437, all configurations are of period 6 [12]. Hence they are
non-universal.

By above, we have the following theorem, which clarifies universality of all the
nine conservative ETPCAs.

Theorem 2 ([8, 9, 12]) The reversible and conservative ETPCAs T0157, T0457, T0237,
T0267, T0137, and T0467 are computationally universal. On the other hand, T0167, T0437,
and T0257 are non-universal.

5 Concluding Remarks

In this chapter, we saw even quite simple CAs called reversible ETPCAs exhibit
complex behavior. In particular, ten reversible ETPCAs in three equivalence classes
were shown to be computationally universal (Theorems 1 and 2) by a tricky use of
complex phenomena found in them. A further result is given in [10, 11]: Reversible
Turing machines are compactly implemented in the ETPCA 0347 using a special
type of reversible logic element with memory, rather than a reversible logic gate.
Investigation of other universal or interesting ETPCAs is left for the future study.
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Error Detection and Correction in Firing
Squad Synchronization Problem

Apostolos Kyritsis, Orestis Liolis, and Georgios Ch. Sirakoulis

Abstract Firing Squad Synchronization Problem (FSSP) is one of the most well-
known problem in computer science. Even though many solution algorithms have
been proposed in the literature, the inherited error correction capabilities of these
algorithms have been paid almost no attention. In this chapter, an error detection
and correction algorithm that is utilizing the patterns that appear in Mazoyer’s 8-
state solution is analyzed and presented. Moreover, we investigate the patterns of
2-D Umeo’s algorithm. It is proven that the 2-D FSSP solution is more tolerant to
errors since more patterns can be easily found. Finally, an algorithm that is using the
previous states is also presented. In particular, the usage of previous states makes the
algorithm more efficient, since it is able to correct more errors. On the other hand,
this algorithm ismore complex than other algorithms presented in this chapter, thus it
is more greedy in storage needs. The proposed error detection algorithms can protect
the FSSP solution without rising the complexity of the system to excess.

1 Introduction

In the last decades, Cellular Automata (CA) have been proven especially effective
for the solution of a vast number of various, difficult and complex mathematical
and computational problems. More specifically, CA are studied in an extremely large
number of scientific fields such as computational theory, mathematical and physical
sciences, engineering, computer vision, robotics, theoretical biology,micro-structure
modeling andmany others [1, 5, 6, 8, 11, 13, 19–21, 23–25, 27, 28, 34, 36, 37, 39].
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In brief, a CA computational system consists of a grid of cells. Each CA cell can
be found at one of a finite set of different states. The number of states is arbitrary
and it heavily depends on the problem that someone wants to model. One of the
greatest advantages of the CA models is the fact that their complex behavior of the
CA emerges from cells that usually make very simple computations. In addition,
CA provide great potential of inherent parallelism, since each cell is physically
implemented separately but they all evolve in parallel according to the proposed
corresponding CA rule.

One of the most studied CA problems is the Firing Squad Synchronization Prob-
lem (FSSP). In the literature, various solutions have been proposed [3, 7, 9, 16, 17,
29, 31, 35] for more than five (5) decades now. In addition, several practical appli-
cations of FSSP in real-life problems have been reported in literature [10, 12, 15].
Even though extended research of FSSP has been reported in literature, every work
presupposes that the implemented system is protected by noise. This assumption is
not realistic in all cases, since, for example, many applications of FSSP are located in
communications and networks fields. In this chapter, the capabilities of error detec-
tion and correction, that are based on the patterns appearing in FSSP algorithms
are studied. In addition, an algorithm that takes advantage of these capabilities is
presented. The proposed algorithms are able to protect the CA from noise with low
cost, due to their low complexity.

In Sect. 2 the necessary background of Cellular Automata (CA) and Firing Squad
Synchronization Problem (FSSP) are presented. In Sect. 3 the error correction algo-
rithm without using previous states is proposed. Finally, in Sect. 4 the algorithm that
uses previous states is introduced, while in Sect. 5, conclusions are drawn.

2 Firing Squad Synchronization Problem (FSSP)

Firing Squad Synchronization problem (FSSP) was presented by Moore in 1962
[18]. The nameof the problemarrives from“Firing Squad” teams. The purpose of this
problem is to construct a random-length one-dimensional (1-D) CA and define the
cell states and transmission rules that make the whole grid of cells “synchronized”.
The CA is triggered by one single cell. This cell is called “General” and when it
gives the “order”, the CA starts its operation. When the algorithm reaches its end,
the CA is synchronized; namely the soldiers reach the “Fire” state simultaneously.
This means that none of the cells has gone into this state before and every cell “fires”
once and for all.

In the literature, many CA that solve the FSSP have been proposed. The first valid
solution was presented by John McCarthy and Marvin Minsky [38]. This algorithm
is implemented by the propagation of two waves at the soldiers line. The second
wave is propagated three times slower than the first one. The fast wave is propagated
through the grid until it reaches the last soldier. Afterwards, it is reflected until it
reaches the slow wave. Then the two waves are divided to four, one slow and one fast
to each direction. The same procedure is repeated until the distance of each wave is



Error Detection and Correction in Firing Squad Synchronization Problem 385

1. When that happens, all the soldiers are ready to “fire”. This algorithm reaches the
fire state at 3 × n time-steps, where n is the number of the soldiers.

In 1962, EiichiGoto proposed an algorithm that reaches the final state at 2 × n − 2
time-steps, by using thousands of different states [9]. In 1966, Waksman optimized
Goto’s algorithm to use only 16 states [35]. Later in 1967, Balzer introduced a further
optimized solution which uses only 8 states [3]. Some years later, Mazoyer proposed
two solution algorithms in 1987. The first algorithm is using 8 states while the second
6 states. Even though the second algorithm is using less states, it consists of more
transition rules than the first one. This is the main reason why the 8-state algorithm
has been preferred to be analyzed in the following of the chapter. Both 8 and 6 states
algorithms reach fire state at the minimal time, which is 2 × n − 1. An algorithm
that reaches the fire state in less time has not been considered easily possible,
because this is the time necessary for the General’s signal to reach the last soldier
and return to him [16].

Mazoyer’s algorithm is similar to Waksman’s and Balzer’s. However, the differ-
ence is established on the propagation of the waves and more specifically at the
interference of the two waves. In contrast to the previous algorithms, in Mazoyer’s
algorithm, when the fast wave meets the slow one, only two waves are created; the
first one is fast and the second one is slow. Furthermore, the soldier that is located
at the meeting point of the two signals turns to be general. The soldier that became
general hold this state until the fire state is reached, which brings the algorithm
to its end. Like in the previous algorithms, the fast wave is three times faster than
the slow one. An example of Mazoyer’s algorithm is shown in Fig. 1. In Fig. 2 the
transition table of each state is presented. It should be stated that there are not tran-
sition rules for state X, which is considered a boundary state and for state F because
it is the final state of the cells, i.e. the algorithm stops when the cells reach this exact
state.

In the literature, we can also find algorithms that solve the FSSP in two dimensions
(2-D) [4, 14, 22, 30, 33]. In this chapter, the algorithmofUmeo,Maeda andFujiwara,
will be presented [32]. This algorithm has been published in the literature in 2002,
and it has some advantages compared to the others. In this approach the cells of a
n × m two-dimensional grid are divided to n + m − 1 sets, as Fig. 3 shows. The cells
of each set are at the same state. By using this technique, the two-dimensional FSSP
is equivalent with the one-dimensional and any one-dimensional solution algorithm
can be used.

3 Error Correction Without Using Previous States

Error correction is called the procedure that detects and corrects the erroneous states
created by noise in the grid without recalculating the states from the scratch. Error
detection procedure has to be a universal procedure that is independent of the number
of the soldiers. This can be achieved by using the features of the solving FSSP
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Fig. 1 Mazoyer’s algorithm for n = 29
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Fig. 2 Mazoyer’s algorithm transition rules (adopted from [16])
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Fig. 3 Two-dimensional CA transformation to one-dimensional, using sets of CA cells (adopted
from [32])

algorithm and the patterns that appear in the solution. As it is mentioned above, the
algorithm that is selected for further analysis is the 8-state Mazoyer algorithm.
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3.1 Error Correction in One-Dimensional FSSP

At first, the capabilities of the error correction, by using a snapshot of one time-step,
will be investigated. In this case, the errors that can be corrected are limited, such as
the patterns that can be found in the solution are also limited.

3.1.1 Correction with State R

A state that can be used for error detection and correction is the state R. This state can
appear only during the wave reflection. That means that the wave has reached either
to the bounds of the grid or to one of the Generals. In particular, the left neighbor of
this state can be only one of the following states: L, G or X. Furthermore, the L state
can appear only at the left of the R state, and this pair of states changes only when it
meets with either G state or X state. If any other state appears, it can be considered
as error and thus it can be replaced.

3.1.2 Algorithmic Correction of the First and Second Wave

Another pattern can be found in the area between the first and the second wave of
the General. As it is described in the previous section, the first General transmits a
fast wave and then transmits waves more and more slowly. The area between the first
two waves can be secured and the states of the cells between these two waves can be
corrected, if this is necessary.

As depicted in Fig. 1, for the cells inside the protected area, the state of any cell
changes from A to A to B to B to C to C to A, etc. That means that the General’s
first wave has predictable behavior. The wave is transmitted in diagonal direction at
the following coordinates [0, 0], [1, 1], [2, 2], . . . , [n, n], where the horizontal axis
is the cell’s distance from the General and the vertical axis is the time. Namely, the
first wave is propagating at the coordinates [x, t] where x = t , and the value of each
cell is one of the three possible states, i.e. A, B and C.

The first time that a cell of the diagonal changes to state A is at the coordinates [2,
2]. Likewise, for state B the coordinates are [3, 3] and for C the coordinates are [4,
4]. The correction algorithm can calculate the correct value by using the following
equation:

(t − 2)

3
, (t = 2, 3, 4, . . . , n) (1)

If the modulo of Eq. (1) equals to zero (0) then the state of the cell x in time t , when
x = t , is A. If the modulo equals to one (1), then the cell state is B and if it equals to
two (2) then the cell state is C, respectively.

In the following step, the area between the first two waves can be defined. The
distance between these two waves at each time step is shown in Table1.
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Table 1 The resulting distance between the first two waves

TIME DISTANCE

2 1

3 2

4 2

5 2

6 3

7 4

8 4

9 4

10 5

11 6

12 6

13 6

The aforementioned distance represents the number of the cells that are located
between the two waves. The state of the most left cell can be calculated by Eq. (1)
and the exact algorithmic procedure that has been already described above. After the
calculation of the most left cell in the protected area, it is straightforward to proceed
with the finding of the states of the rest of the cells, by just using the pattern that has
been described at the beginning of this subsection, in a reversed manner.

For example, when t = 10, the distance between the first two waves equals to 5
and the state of the cell 10 is C. After defining the state of cell 10 it is easy to define
the state of the corresponding cells 9, 8, 7 and 6 which are B, B, A, A, respectively.
Moreover, the states of cell in Fig. 5 and the cells that are located at the left of cell 10
are also known. These cells are at state L. If one of the aforementioned cells is found
at a different state from the expected one, the correction algorithm can change it to
the correct one. Even though this technique is applicable at the first two waves, it can
protect a considerably big area of the CA. The protected area is shown as highlighted
in Fig. 4.

3.2 Error Correction in Two-Dimensional FSSP

In this subsection the ability of error detection and correction in two dimensional
FSSP is analyzed. The FSSP solution algorithm that has been examined is the one
introduced earlier by Umeo, Maeda and Fujiwara for two-dimensional FSSP that
utilizes the 8 states algorithm of Mazoyer [32].

In contrast to one dimensional FSSP solution algorithm, in two dimensional algo-
rithm, the corresponding patterns are more. More specifically, in two dimensional
FSSP algorithm the CA cells are grouped to sets, as it was already mentioned in
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Fig. 4 The protected area (the yellow coloured grid on the top part) between the first two waves
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Fig. 5 A time-shot of the
two-dimensional FSSP CA

Sect. 2. Namely, all the cells of one group must be found at the same state. If one
cell is found at a different state, then an error has been occurred and, as a result, the
error correction algorithm is responsible to correct it.

For example, a time-shot of 10 × 10 CA that solves the FSSP is shown in Fig. 5.
As it can be easily observed, the cells of each group correspond to the exact same
state. In any two-dimensional CA, there are only two groups that consist by just one
cell. It should be mentioned that the states of these two cells can not be corrected
by using this technique. More specifically, these cells are the top left cell and the
bottom right cell, respectively. The one-dimensional algorithm techniques that have
been analyzed so far can be used for these two cells. Moreover, the behavior of these
two cells is quite simple. The one of them is fixed at G state and at the end of the
algorithm it will eventually change to F state while the other is the last soldier, or in
other words, it is the cell that reflect the waves.

Fig. 6 First example of error correction in two-dimensional FSSP CA
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Fig. 7 Second example of error correction in two-dimensional FSSP CA

Fig. 8 Third example of error correction in two-dimensional FSSP CA

The proposed error detection and correction algorithm pseudocode, for each time-
step, is described as follows:

1. Counting the times of the appearance of each state at each group.
2. If an unknown state appear, it can be ignored.
3. The state that appears most of the times is selected for representation of each

group.
4. The error correction algorithm for the one-dimensional algorithm can be used

to check if the chosen state of each group is the correct one.

The following Figures, i.e. Figs. 6, 7 and 8 present some examples of the error
correction algorithm application.
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4 Error Correction with the Utilization of the CA Previous
States

In this Section, further techniques that utilize previous cell states to deal with appro-
priate error correction in the FSSP algorithm,will be introduced and discussed.When
previous states are used, the possibilities of successful correction are significantly
increased. In other words, the memory has augmentative effect on the proposed error
correction algorithmic approach [2, 26]. More specifically, the redundant patterns
are quite enough so as to correct many cells that could not be corrected when a
single time-step was used. On the other hand, this memory effect, that increases the
memory of the CA cells, by the storage of the previous states is also increasing in an
analogous manner the complexity of the proposed correction algorithm.

In this category of techniques, during the evolution of the CA grid from time t
to time t + 1, the new states of the cells are temporary stored. Then, the new values
are checked. If the new values are correct, they take the place of the current ones.
As before, the proposed error correction techniques should be based on the patterns
that are created naturally in the grid.

4.1 Generals’ Correction

The most obvious pattern can be found at the cells that have already reached the G
state. As expected, these specific cells can not be found at any other state. Namely, if
a cell reaches the G state, it keeps this state until the final time-step of the Mazoyer
algorithm, when it is changing to F state. So, if the state of a cell changes from G to
another state, the algorithm takes care of this inappropriate incident and changes it
back.

4.2 Correction During Wave’s Propagation

Every General creates waves that travel through the grid until they reach either the
end of the grid or until they reach another General. That means that a General sends
multiple waves and every wave is slower than the previous.When a wave is reflected,
then it is moving on the opposite direction until it meets with the next wave that is
send by the same General.

Firstly, the area between two waves can be delimited by using two variables. The
variable start is the position of the fast wave and variable end is the position of the
slower wave or a general. So, the correction algorithm starts searching the grid from
the opposite to the initial general edge. If the algorithm finds one of the following
states A, B, C, H and G, the position of the current cell is stored to the variable start .
When the algorithm finds a cell at either state G or state L, it stores the position of
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the previous cell to the variable end. For example, if start = x and k cells away is
located a cell at L or G state, then end = x + k − 1. By using these two variables the
area between two waves can be defined. The length of this area can change through
the time.

For example, the variable start for the fastest wave of the initial general is
decreased by one at each time-step, i.e. the wave is moving to the left. At the same
time, end maintains its value at some time-steps, as Fig. 1 shows.

By using these two variables and by the previous states that are stored, the new
states can be verified. So, if cell[x] is the current state of the cell at position x and
cell ′[x] is the temporary stored next state of the cell at position x , the following
conditions can be applied.

For cell[start − 1]:
• If cell[start]=A then cell ′[start − 1]=B
• If cell[start]=B then cell ′[start − 1]=C
• If cell[start]=C then cell ′[start − 1]=A

For cell[start]:
• cell ′[start] = cell[start]

For the other cells between the two waves:

• cell ′[x] = cell[x − 1]

4.3 Correction During the Wave’s Impact

During the impact of a wave at either the grid’s bounds or to a General, the wave’s
behavior is different based on the delay that is added. This impact affects the
two neighbors next to the cell at position start , namely the cell[start − 1] and
cell[start − 2], respectively. To be more specific, the impact is affecting the first
three cells of the wave.

If an impact is occurred, the next states are defined as follows:

• If cell[start]=A then cell ′[start − 1]=C and delay = 0. The impact is complete
at the next time-step and no other additional steps are needed.

• If cell[start]=B then cell ′[start − 1]=A and delay = 1, then an additional step
is added. In this time step, the variable start is recalculated and the cell[start] is
at state A and cell ′[start] should be at C state.

• If cell[start]=C then cell ′[start − 1]=B and delay = 2, then two additional time
steps are added. At the first step, cell[start]=B and cell ′[start]=A. At the second
step, cell[start]=A and cell ′[start]=C. The variable start is recalculated only at
the first additional time step.

The states of the other cells between the two waves are calculated as previously.
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4.4 Correction During the Wave’s Reflection

The wave’s reflection can be found at only one cell. The state of this cell is the R
state. If the wave is reflected, then the value of the variable start is the position
of the cell that is at R state. Also, if cell[start + 1]=C then cell ′[start + 1]=R and
cell ′[start + 2]=C.

The states of the other cells between the two waves are calculated as previously,
until the fast wave reaches the slow wave. At this moment, a new general is created.
So, if the cycle pattern of A, B, C, A is disordered and a cell at R state is appeared,
then a General must be appeared in this cell at the next time-step.

5 Conclusions

In this chapter, several novel error correction techniques of both one-dimensional
and two-dimensional FSSP solution algorithms are presented. All the proposed tech-
niques are taking advantage of the patterns that can be found in the 8-states Mazoyer
algorithm. By the combination of the proposed techniques, an error correction algo-
rithm with great capabilities has been developed.

The algorithm is quite efficient at the one-dimensional FSSP, without using pre-
vious states; however, it can’t correct every possible error that could be appeared.
The states that can be observed at a time-step are not enough to extract the necessary
information for the correction of every cell. This happens because most of the states
can be found in many different combinations. This is normal, since the efficiency
and speed of the algorithm results from complex combinations of only a few states.

If previous states are used, it has been proven that the algorithm is capable of
checking and correcting the states of every cell. Future research should be focused to
the improvement of the proposed algorithm by improving its efficiency and execution
speed.

In the two-dimensional FSSP, the best method to detect and correct errors is by
checking the states of the cells that are located at the same group, without using
previous states. This method is making the error detection and correction algorithm
drastically more efficient than in one-dimensional FSSP, since it can correct all cells
except one, namely the last soldier.
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Gardens of Eden in the Game of Life

Ville Salo and Ilkka Törmä

Abstract We prove that in the Game of Life, if the thickness-four zero-padding of
a rectangular pattern is not an orphan, then the corresponding finite-support con-
figuration is not a Garden of Eden, and that the preimage of every finite-support
configuration has dense semilinear configurations. In particular finite-support Gar-
dens of Eden are in co-NP.

1 Introduction

This article is dedicated to Eric Goles Chacc, and his inspiring work on all kinds of
discrete complex systems, on his 70th birthday.

The Game of Life is a two-dimensional cellular automaton defined by John Con-
way in 1970 [6]. It consists of an infinite grid of cells, each of which is either dead or
alive, and a discrete time dynamics defined by a simple local rule: a live cell survives
if it has 2 or 3 live neighbors, and a dead cell becomes live if it has exactly 3 live
neighbors. We study theGardens of Eden of the Game of Life, that is, configurations
that do not have a predecessor in the dynamics. The following theorem is our main
result.

Theorem 1 The set of finite-support Gardens of Eden for the Game of Life is in
co-NP under the encoding where the input is a rectangular pattern containing all
live cells.

Equivalently, the input can specify the values in any area of polynomial diameter,
since we can always extend the domain to a rectangular one. A configuration has
finite support if it contains a finite number of live cells. Finite-support Gardens of
Eden should be contrasted with the orphans, which are patterns of finite domain that
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do not appear in the image subshift of the Game of Life. The set of orphans is in
co-NP for trivial reasons.

This result is a corollary of either of the following theorems. In the first case, we
also need some quantitative details of the proof.

Theorem 2 Let g be the Game of Life cellular automaton. If y is a configuration
with finite support, then semilinear configurations are dense in g−1(y).

Theorem 3 Let g be theGame of Life cellular automaton, and let P be a rectangular
pattern. If the thickness-4 zero-padding of P admits a preimage Q, then the finite-
support configuration y corresponding to P has a preimage.

Theorem 2 is not true if “semilinear” is replaced with “finite-support” or “co-
finite-support”. In Theorem 3 we do not know whether the optimal constant is 4,
but it is at least 1. We state a more precise result in Theorem 5, which additionally
guarantees that we need not modify the preimage of the padding of P in the part
that maps to P , to obtain a preimage for the finite-support configuration y. For this
stronger fact, the thickness 4 is optimal, and no convex compact shape other than a
rectangle can be used.

The seed of the proofs of the above theorems is the following property of the
Game of Life: the set of rectangular patterns of height 2 that can be extended to a
preimage of the all-0 configuration (the trace of the subshift of finite type g−1(0Z

2
))

is a regular language, and all such patterns can be extended so that the preimage is
vertically 3-periodic everywhere exceptwithin distance 3 of the pattern. The essential
idea in the proofs of both of the theorems above is to apply this result on all sides of
a rectangle containing the desired image, to change the preimage to a “better” one.
Once the regularity of the trace language has been established, the periodic extension
property is decidable using automata theory, and we decide both by computer. The
proof did not seem to be within reach of any standard library we attempted to use,
so we used pure Python instead. Our program is available in the repository [20]. We
expect that some efficient enough standard libraries could solve this problem out of
the box.

The technical lemmas of this paper are stated for general two-dimensional cel-
lular automata, and the computed-assisted part can be adapted to a general cellular
automaton with little work by modifying the attached program. One obtains ana-
logues of the above theorems for any cellular automaton where the preimage of the
all-zero configuration has one-sided stable/periodizable traces. Our methods do not
generalize to higher-dimensional cellular automata.

This paper arose from the answer of Oscar Cunningham to the question [21] on
MathOverflow, which in turn arose from the thread [15] on the ConwayLife forum.
Cunningham asked whether the finite-support Gardens of Eden of the Game of Life
cellular automaton form a decidable set. It follows from compactness that they are
a semidecidable set for any cellular automaton (as every Garden of Eden contains
an orphan), but there is no general-purpose semidecision algorithm for the other
direction, in the sense that there exist two-dimensional cellular automata whose
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finite-support Gardens of Eden are undecidable. Our results of course solve the
problem for the Game of Life.

Corollary 1 Finite-support Gardens of Eden for the Game of Life are a decidable
set, under any natural encoding.

The methods of this article are special cases of a more general technique we are
studying with Pierre Guillon. Trace methods are a common tool in multidimensional
symbolic dynamics and cellular automata theory [5, 16, 17]. See [1, 7, 19] for
discussion of various aspects and generalizations of the Game of Life.

2 Definitions

We include 0 ∈ N, and unless otherwise noted, all intervals are discrete: [a, b] =
[a, b] ∩ Z.

For A a finite set with a special element 0 ∈ A called the zero, a d-dimensional
configuration over A is an element x ∈ AZ

d
. The elements of Zd are called cells, and

the value of a cell v in x is denoted xv. The set AZ
d
of all configurations is the d-

dimensional full shift, and we give it the prodiscrete (Cantor) topology. The additive
group Z

d acts on AZ
d
by shifts: σ v(x)w = xv+w. A configuration x is finite-support

if xv = 0 for all but a finite number of cells v ∈ Z
d , and we denote by Fin(A)

the set of finite-support configurations. If X ⊂ AZ is a one-dimensional subshift,
writeL(X) = {w ∈ A∗ | ∃x ∈ X : x |[0,|w|−1] = w} for its language, the set of (finite-
length) words that can be extended to infinite configurations in X .

A pattern is an element P ∈ AD , where D = D(P) ⊂ Z
d is the domain of P , and

we say P is a (finite) pattern if it has a finite domain. If P ∈ AD then σ v(P) ∈ AD−v

is defined by σ v(P)u = Pu+v. If P ∈ AD is a pattern, write padc0(P) ∈ AD+[−c,c]d

for the pattern together with a zero-padding of thickness c on all sides, and conf0(P)

is the finite-support configuration corresponding to P defined by xv = Pv for v ∈ D,
and xv = 0 otherwise. If P ∈ AD and Q ∈ AE are two patterns, write P � Q if
there exists v ∈ Z

d with D + v ⊂ E and σ v(Q)|D = P . In particular, if E = Z
d

then Q = x is a configuration, and P � x means that P occurs somewhere in x .
A subshift is a topologically closed and shift-invariant set X ⊂ AZ

d
. It follows

from compactness that every subshift is defined by some set of forbidden patterns
F as

X = XF = {x ∈ AZ
d | ∀P ∈ F : P �� x},

If F can be chosen finite, then X is a shift of finite type, or SFT for short.
A cellular automaton or CA is a function f : AZ

d → AZ
d
that commutes with

shifts and is continuous for the prodiscrete topology of AZ
d
. By the Curtis-Hedlund-

Lyndon theorem [11], every CA is defined by a finite neighborhood N ⊂ Z
d and a

local rule F : AN → A by f (x)v = F(σ v(x)|N ). Usually we have N = [−r, r ]d for
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some radius r and think of the local rule F : AN → A as part of the structure of the
CA. If P ∈ AD is a finite pattern, we can apply f to P by defining E = {v ∈ D | v +
N ⊂ D} and f (P) = Q ∈ AE where Qv = F(σ v(Q)|N ). A Garden of Eden for f
is a configuration x ∈ AZ

d
such that f −1(x) = ∅; equivalently, x ∈ AZ

d \ f (AZ
d
).

The finite-support Gardens of Eden of f are

FinGoE( f ) = Fin(A) \ f (AZ
d
).

An orphan is a finite pattern P such that P �� f (x) for all x ∈ AZ
d
.

The images of SFTs under cellular automata are sofic shifts. A one-dimensional
subshift is sofic iff its language is regular, iff it can be defined by a regular language
of forbidden words.

TheGame of Life is the two-dimensional cellular automaton g : AZ
2 → AZ

2
over

A = {0, 1} defined by

g(x)(a,b) =
⎧
⎨

⎩

1 if x(a,b) = 0 and
∑

x |(a,b)+B = 3
1 if x(a,b) = 1 and

∑
x |(a,b)+B ∈ {3, 4}

0 otherwise,

where B = {−1, 0, 1}2. It has radius 1.
A configuration x ∈ AZ

d
is semilinear if for every symbol a ∈ A, the set {v ∈

Z
d | xv = a} is semilinear, meaning it is a finite union of linear sets. A linear set is a

set of the form v + 〈v1, v2, . . . , vk〉, where v, vi ∈ Z
d , and 〈V 〉 denotes the monoid

generated by V . It is well-known that a cellular automaton image of a semilinear
configuration is effectively semilinear. This is a very robust class of sets, see [9] for
characterizations.

For the purpose of complexity theory and computability theory, we fix a bijection
between B∗ and Fin(A) for a fixed alphabet B, so that FinGoE( f ) can be seen as a
language. For A = {0, 1, . . . , |A| − 1}, |A| ≥ 2 and d = 2, we fix B = A and use the
encoding where w = 0M1N0u with |u| = (2M + 1)(2N + 1) represents the finite-
support configuration x ∈ AZ

2
where x(a,b) = 0 if (a, b) /∈ [−M, M] × [−N , N ] and

x(a,b) = u(2M+1)a+b otherwise. A similar encoding is used for finite patterns with
domains of the form [−M, M] × [−N , N ].

For the remainder of this article, we fix d = 2. Up and north are synonyms (and
refer to the vector (0, 1)), and similarly left, right and down are synonymous with
west, east and south, respectively.

We need some basic facts and definitions of symbolic dynamics, automata the-
ory and complexity theory, some standard references are [2, 12, 13, 18]. In par-
ticular, all Boolean operations on regular languages, the concatenation operation
K L = {uv | u ∈ K , v ∈ L}, and the equality of two given regular languages, are
computable.
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3 Traces

A pattern P ∈ AD is height-n if D ⊂ Z × [0, n − 1]. We define width-n simi-
larly, and P is size-n if it is width-n and height-n. For a set of finite patterns F ,
define XN

F = {x ∈ AZ×N | ∀P ∈ F : P �� x} and Xn
F = {x ∈ AZ×[0,n−1] | ∀P ∈ F :

P �� x}. These are the upper half-planes and horizontal stripes of height n where
patterns of F do not occur.

Definition 1 Let F be a set of forbidden patterns. Write

Tn(F) = {x |Z×[0,n−1] | x ∈ XN

F } ⊂ AZ×[0,n−1]

for the one-sided trace of XF . Define πn : ⋃
[0,n−1]⊂I⊂Z

AZ×I → AZ×[0,n−1] by
πn(x) = x |Z×[0,n−1]. Define

Sn,�(F) = πn(X
n+�
F ).

For k ≥ 0 and p ≥ 1 define

Pn,k,p(F) = {x |Z×[0,n−1] | x ∈ XN

F ,∀a ∈ Z, b ≥ n + k : x(a,b) = x(a,b+p)}.

The trace Tn(F) is the set of those height-n stripes that can be extended to the
entire upper half-planewithout introducing a pattern of F , while the stripes of Sn,�(F)

can be extended by � additional rows, and the stripes of Pn,k,p(F) can be extended
into upper half-planes that are vertically p-periodic after k rows. The inclusions
Pn,k,p(F) ⊂ Tn(F) ⊂ Sn,�(F) always hold, and Tn(F) = ⋂

�∈N Sn,�(F). We often
identify AZ×[0,n−1] with (A[0,n−1])Z, so that the traces canbe seen as infinite sequences
of finite patterns of shape 1 × n. We could also define two-sided traces in the analo-
gousway, but we have omitted them from this article since they are not needed for our
results, computing them is more resource-intensive, and the relationships between
the relevant properties of one-sided and two-sided traces is not entirely trivial.

3.1 Periodizable Traces

Write � for the operation that rotates a pattern, configuration, or every element of a
set of such, 90 degrees clockwise around the origin.

Definition 2 Let F be a set of forbidden patterns of size n + 1. We say F has one-
sided periodizable traces if there exist k, p ∈ N with p ≥ 1 such that

Tn(�i (F)) ⊂ Pn,k,p(�i (F)) (1)

holds for all i ∈ {0, 1, 2, 3}.
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For i = 0 this property means that if an arbitrary row of height n (too thin to
contain forbidden patterns) can be extended upward into a half-plane that contains
no forbidden patterns, then it can also be extended by k + p rows so that the last
p rows can be repeated periodically. For other i , we can interpret this as a similar
property for extensions to the left, downward and right. If X ⊂ AZ

2
is an SFT where

a set of forbidden patterns F of height at most n + 1 has been fixed, we sometimes
say X has one-sided periodizable traces if F does.

Lemma 1 Let f : AZ
2 → AZ

2
be a cellular automaton with neighborhood [−r, r ]2.

Let F be the patterns P ∈ A[−r,r ]2 that map to a nonzero symbol in the local rule of
f . If F has one-sided periodizable traces, then semilinear configurations are dense
in f −1(y) for every y ∈ Fin(A), and FinGoE( f ) is in co-NP.

Proof Denote n = 2r , and let k, p ∈ N be given by the assumption of one-sided
periodizable traces. We may assume p ≥ n. Let y ∈ Fin(A) be arbitrary. We prove
that semilinear configurations are dense in f −1(y). If y has no preimage, we are
done; otherwise, take an arbitrary preimage f (x) = y, and let N > p be such that
the support of y is contained in D = [−N , N ]2. We construct a semilinear preimage
of y that agrees with x inside R = [−N − r, N + r ]2.

Consider the upper half-plane containing the top r rows of D and everything above
them. We have σ (0,N−r+1)(x)|Z×[0,∞) = z ∈ XN

F . Then the restriction to the bottom
2r rows of this half-plane satisfies σ (0,N−r+1)(x)|Z×[0,2r−1] = π2r (z) ∈ T2r (F) =
P2r,k,p(F), where the last equality is given by (1) with i = 0. This means we
can replace the contents of an upper half-plane in x with a vertically periodic
pattern, i.e. there exists x1 ∈ f −1(y) such that x1|Z×(−∞,N+r ] = x |Z×(−∞,N+r ] and
x1(a,b) = x1(a,b+p) for all a ∈ Z and b > N + r + k.We can apply the exact same argu-
ment to the configuration x1 below the rectangle [−N , N ]2, using (1) for i = 2, giv-
ing us x2 ∈ f −1(y) such that x2|Z×[−N−r,N+r ] = x |Z×[−N−r,N+r ] and x2(a,b) = x2(a,b+p)
whenever a ∈ Z and min(|b|, |b + p|) > N + r + k.

Next, we apply the same argument on the left and right borders of D in x2,
using (1) with i = 1, 3 in either order. This gives us a preimage x3 ∈ f −1(y)
such that x3|[−N−r,N+r ]2 = x |[−N−r,N+r ]2 and, defining Anorth = [−N − r, N + r ] ×
[N + r + k + 1,∞), Asouth = [−N − r, N + r ] × (−∞,−N − r − k − 1], Awest

= (−∞,−N − r − k − 1] × Z, Aeast = [N + r + k + 1,∞) × Z, we have x3(a,b) =
x3(a,b+p) whenever (a, b), (a, b + p) ∈ Anorth ∪ Asouth, and x3(a,b) = x3(a+p,b) when-
ever (a, b), (a + p, b) ∈ Awest ∪ Aeast.

The “aperiodic region” B = Z
2 \ (Anorth ∪ Asouth ∪ Awest ∪ Aeast) that is left after

this process is infinite, so we need a final periodization step to obtain semilinearity.
Since Anorth is (0, p)-periodic, and rows of Awest and Aeast are (p, 0)-periodic, the
number of distinct height-n stripes σ (0,h)(x)|Z×[0,n−1] for h > N + r + k is bounded
by q = p|A|2n(k+p), where the factor p comes from the phase of the period in Anorth

and the term |A|2n(k+p) comes from the two patterns of shape n × (k + p) just to the
west and east sides of Anorth, which include the width-k aperiodic regions and the
repeating parts of Awest and Aeast.

Thus the stripes definedby some N + r + k < h1 < h2 ≤ N + r + k + q + 1 are
equal, and since we assumed p ≥ 2r , we can form a new configuration x4 ∈ f −1(y)
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by repeating the part between there stripes in the upper half-plane [h1,∞). Then
x4 agrees with x3 on Z × (−∞, N + r ] and is vertically p′-periodic in [h1,∞) for
some p′ ≤ q. We apply the same argument to the south half-plane of x4, obtaining a
configuration x5 ∈ f −1(y) with x |[−N−r,N+r ]2 = x5|[−N−r,N+r ]2 that has horizontal
period p outside [−N − r − k, N + r + k] × Z and vertical period q! outside Z ×
[−q, q]. In particular, x5 is semilinear.

The co-NP claim follows from the quantitative statements above about the semi-
linear preimages. A semilinear preimage with the periodicity properties of x5 can be
summarized as a polynomial-size certificate, by giving the restriction

x5|[−N−r−k−p,N+r+k+p]×[−N−q−q!,N+q+q!].

One can check in polynomial time that continuing the periods does not give a for-
bidden pattern for X . Note that while q! grows very fast as a function of |A|, p and
k, it is a constant for any fixed CA that satisfies the assumptions. This proves that
the complement of FinGoE( f ) is in NP, as claimed. �

We include the statement that semilinear preimages imply co-NP, because this
gives a very natural certificate – an actual preimage. However, the details of work-
ing computationally with semilinear configurations, while standard, are not entirely
trivial, and are omitted in the above proof. For the co-NP certificate obtained from
Lemma 4 the verification algorithm is much more obvious.

3.2 Stable Traces

There is no general method of computing the one-sided traces Tn(F) exactly. On the
other hand, the languagesL(Sn,�(F)) of the approximate traces are regular and easy
(though often resource-intensive) to compute. If the sequence (Sn,�(F))�∈N stabilizes
after finitelymany steps, thenL(Tn(F)) is also a regular language andwe can analyze
it using finite automata theory.

Definition 3 If Sn,�(�i (F))) = Sn,�+1(�i (F)) for some� ∈ N and all i ∈ {0, 1, 2, 3}
and F has size at most n + 1, then we say F has one-sided stable traces.

The following is shown by induction, by extending a configuration legally, row
by row, obtaining a valid half-plane in the limit.

Lemma 2 If F has height at most n + 1 and Sn,�(F)) = Sn,�+1(F), then Sn,�(F) =
Sn,�+m(F) = Tn(F) for all m ≥ 0.

We recall a basic symbolic dynamics lemma, a version of the pumping lemma.

Lemma 3 Let L ⊂ A∗ be a regular factor-closed language and X ⊂ AZ the largest
subshift withL(X) ⊂ L. Then there exists C ≥ 0 such that uwv ∈ L and |u|, |v| ≥ C
implies w ∈ L(X).
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Proof It is easy to see that X = {x ∈ AZ | ∀k : x |[−k,k] ∈ L}. Take a nondetermin-
istic finite-state automaton (NFA) for L with n states all of whose states are initial
and final, and pick C = n + 1. Suppose uwv ∈ L and |u|, |v| ≥ C , and pick any
accepting path P for uwv in the automaton. By the pigeonhole principle, some state
repeats in the length-C prefix of P corresponding to u, and the same is true for
the suffix corresponding to v, so we obtain decompositions u = u1u2u3, v = v1v2v3
with |u2|, |v2| > 0 such that uk2u3wv1v

k
2 ∈ L for all k ∈ N. Then ∞u2u3wv1v

∞
2 ∈ X ,

so that w ∈ L(X). �

By the proof, we can always pick C = n + 1 where n is the number of states in
any NFA accepting L with all states initial and final. Often we can do better.

Lemma 4 Let f : AZ
2 → AZ

2
be a cellular automaton with neighborhood [−r, r ]2.

Let F be the patterns P ∈ A[−r,r ]2 that map to a nonzero symbol in the local rule of
f . If F has one-sided stable traces, then there exists c ∈ N such that whenever P ∈
A[0,M)×[0,N ) and padc0(P) admits a preimage Q, then conf0(P) admits a preimage
x ∈ AZ

2
with

x |[−r,M+r)×[−r,N+r) = Q|[−r,M+r)×[−r,N+r).

We use the same padding c on all sides for notational convenience only. For the
Game of Life this does not change anything, but for less symmetric CA and CA
where the constant C in the proof is not equal to 0, one may optimize this by using
different paddings on all sides.

Proof Denote n = 2r and let � ∈ N be such that Sn,�(F) = Sn,�+1(F), so that
Sn,�(F) = Tn(F) by Lemma 2. Consider the set

Ln,�(F) = {Q|[0,k)×[0,n) | Q ∈ A[0,k)×[0,n+�),∀P ∈ F : P �� Q}

of height-n rectangular patterns that can be extended upward by � steps into a pattern
not containing any pattern from F as a subpattern. We consider it as a language
over the alphabet An . Since it is regular and factor-closed, and the largest subshift
whose language is contained in Ln,�(F) is clearly Sn,�(F), by the previous lemma
there exists C ∈ N such that if a word of Ln,�(F) is extendable by C steps in both
directions, it occurs in Sn,�(F) = Tn(F).

Let a = C + � and b = �, and suppose a pattern P ∈ A[−a,M+a)×[−b,N+b) has
its support contained in D = [0, M) × [0, N ) and admits a preimage. Let x be
a configuration with f (x)|[−a,M+a)×[−b,N+b) = P . Then the r top rows of D and
the r rows above them satisfy σ (0,N−r−1)(x)|[−a−r,M+a+r)×[0,2r) ∈ Ln,�(F), therefore
σ (0,N−r−1)(x)|[−r−�,M+r+�)×[0,2r) ∈ L(Sn,�(F)) = L(Tn(F)) by the assumption on
C . Hence we can extend this pattern into a stripe of Tn(F) and then extend the
upper half-plane into one that maps to 0s, obtaining a configuration x1 ∈ AZ

2
with

x1|[−a,M+a) = x |[−b,N+r) and x1|Z×(N−r,∞) not containing occurrences of any pattern
in F .

Perform the same operation symmetrically on the south border of D in x1 to obtain
a configuration x2. Then the support of f (x2) is contained in ([0, M) × [0, N )) ∪
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(R × [0, N )) where R = (−∞,−�] ∪ [M + �,∞). We can now apply the exact
same argument on the west and east borders of D in x2 (in either order) to obtain
a configuration x3 such that the support of f (x3) is contained in [0, M) × [0, N )

and f (x3)|[0,M)×[0,N ) = f (x)|[0,M)×[0,N ). Picking c = max(a, b) = C + �, this argu-
ment shows the first claim.

For the claim that FinGoE( f ) many-one reduces to orphans in polynomial time,
given an element y of Fin(A) with support contained in [0, M) × [0, N ), we simply
note that the pattern y|[−c,M+c)×[−c,N+c) is an orphan if and only if y ∈ FinGoE( f ).

�

Since orphans (of any finite shape) are in co-NP for any cellular automaton, the
previous lemma gives another verification algorithm for showing that FinGoE( f ) is
co-NP. It is easier to implement as that given by Lemma 1 when the conditions of
both results apply. However, the certificate is less useful: unlike in Lemma 1, the
certificate does not describe an actual preimage of the finite-support configuration.
Together, Lemmas 1 and 4 imply (when the assumptions hold) thatwhenever a pattern
extends to a non-orphan with a large enough zero-padding, the corresponding finite-
support configuration admits a semilinear preimage. This will be illustrated in the
next section.

4 Application to the Game of Life

Theorem 4 The preimage SFT of 0Z
2
in theGame of Life has stable and periodizable

one-sided traces.

Proof Let g : {0, 1}Z2 → {0, 1}Z2
be theGameofLife. Let F be the natural forbidden

patterns for g−1(0Z
2
). Since g has radius 1, we pick n = 2. Clearly F = �i (F) for

all i , so it is enough to find k, �, p such that Sn,�(F) ⊂ Pn,k,p(F). One can show that
the choice � = 4, k = 3, p = 3 works, by computer. �

Our program in [20] verifies this result.
By using the minimal automata for the languages of the approximate traces, one

can check1 that

w = 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0
0 0 1 0 0 0 0 1 1 1 0 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0

∈ L(S2,3(F)) \ L(S2,4(F)),

i.e. w can be extended infinitely on both sides so that the resulting configuration
can be continued by three rows upward without introducing a 1 in the Game of Life
image, but not by four rows. Since these subshifts are not equal, � = 4 is the minimal
value we can use. One can similarly show that k = 3, p = 3 are also optimal; p = 3

1 Once the word w is given, one can prove by hand straight form the definitions that it separates the
regular languages, as a constraint-solving puzzle.
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is optimal by using the word from the proof of Proposition 1 below. The optimality
of k = 3 can be shown similarly as that of � by studying the minimal automata.

Lemma 5 In the situation of the Game of Life, we have L2,4(F) = L(S2,4(F)), i.e.
in Lemma 3 applied to L2,4(F) one can pick C = 0.

Proof It can be checked, either with a case analysis or by computer, that S2,1(F)

contains all words of length 6 over its alphabet. Given a word w ∈ L2,4(F), let P
be a height-6 rectangle whose two bottom rows form w and that contains no pattern
from F . The two rightmost columns of P are in�(S2,1(F)), so P can be extended to
the right by one column without introducing a pattern of F . Symmetrically, it can be
extended to the left, and thus w is extendable indefinitely in both directions within
L2,4(F). �

Our program in [20] also verifies Lemma 5.

Theorem 5 Let g be the Game of Life. Then

• semilinear configurations are dense in g−1(y) for every finite-support configura-
tion y,

• if P ∈ {0, 1}[0,M)×[0,N ) and pad40(P) admits preimage Q, then conf0(P) is not a
Garden of Eden, and admits a preimage x ∈ {0, 1}Z2

with

x |[−1,M]×[−1,N ] = Q|[−1,M]×[−1,N ]

• FinGoE(g) reduces in polynomial time to orphans, in particular FinGoE(g) is in
co-NP.

Proof The first claim follows from Theorem 4 and Lemma 1. The second and third
follow from Theorem 4 (whose proof gives stability at S2,4(F)), and then applying
the proof of Lemma 4 using the constant C = 0 from Lemma 5. �

The constants are not included in the statements of the lemmas for simplicity, but
their values are explicitly stated in the proofs.

In the above theorem, we have a constant bound on the periods of the semilinear
sets, by the proof of Lemma 1. The vertical period q! = (p|A|2n(k+p))! = 50331648!
stated in the proof of Lemma 1 is not practically usable. By analyzing the situa-
tion a bit more carefully, we see that it is better to use separate periods of at most
p|A|n(k+p) = 12288 on the west and east borders of Anorth and Asouth. This is already
usable, and should be hugely improvable by further analysis.

Example

We illustrate how to construct a semilinear preimage of a finite-support configuration
from a preimage of a rectangular pattern containing its support. The following shows
a pattern P and its thickness-4 padding pad40(P):
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We want to know if the finite-support configuration corresponding to P is in the
image of the Game of Life. The first step is to find a preimage for the padded pattern,
for example using a SAT solver.2 One possible preimage (for the thickness four
padding) is the following one.

The occurrences of 1s in the image correspond to the black dots, and the 1s in the
preimage are gray tiles. One can check that this preimage cannot be extended to the
south without introducing a 1 in the image, can be extended to the west by one line
(but not two), and to the east by two lines (but not three).

Lemma 4 implies that, since we found a preimage for the thickness-4 padding,
there exists a preimage for the finite-support configuration y = conf0(P). Figure1
shows such a preimage, and the process of extracting a semilinear preimage from
it: The figures denote central [−16, 16]2 patterns of configurations x, x2, x3, and
their common Game of Life image y, whose support contained in [−N , N ]2 =
[−4, 4]2 is P . These correspond to x, x2, x3, y in the proof of Lemma 1. The 1-
cells of the patterns x, x2, x3 are gray tiles, the 1-cells in y are black dots, and the
inner square is [−N , N ]2. The first configuration x was sampled together with y, by
picking 1-cells of x from a Bernoulli distribution, and then adding 1-cells outside
[−N , N ]2 until the image y = g(x) outside [−N , N ]2 contained only 0-cells. We
have S2,4(F) ⊂ P2,3,3(F), and r = 1, n = 2, � = 4, k = 3, p = 3 in the notation of
the proof of Lemma 1.

2 PicoSAT [4] solves this particular instance in under a second. The solution shown here was not
constructed by a SAT solver.
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Fig. 1 Turning an arbitrary preimage of a finite-support configuration into a semilinear one

The second configuration, x2 was obtained by periodizing the contents below and
above [−N , N ]2 using S2,4(F) ⊂ P2,3,3(F), and the periodic half-planesZ × [9,∞)

and Z × (−∞,−9] are delineated (here N + k + r + 1 = 9). The continuations
picked are the lexicographically minimal ones (in the visible area) with preperiod 3
and period 3, moving counterclockwise. The third configuration x3 is obtained from
x2 by periodizing on the west and east, again using S2,4(F) ⊂ P2,3,3(F) and picking
lexicographically minimal continuations. The regions

Anorth = [−N − r, N + r ] × [N + r + k + 1,∞) = [−5, 5] × [9,∞),

Asouth = [−N − r, N + r ] × (−∞,−N − r − k − 1] = [−5, 5] × (−∞,−9],

Awest = (−∞,−N − r − k − 1] × Z = (−∞,−9] × Z,

Aeast = [N + r + k + 1,∞) × Z = [9,∞) × Z,

are delineated.
The configuration x4 would be obtained by finding a repetition in the rows to

the north and south of the pattern. Only the stripe at the east border of Anorth is not
yet periodic, and we can simply replace the entire quadrant with 1-cells to obtain a
semilinear preimage.

5 Questions and Additional Observations

The following proposition shows that (the first claim in) Theorem 5 is no longer
true if semilinear configurations are replaced by finite-support or co-finite-support
configurations. Say a configuration is asymptotically horizontally N-periodic if it is
asymptotic to a configuration with period (N , 0).
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Proposition 1 Let g be the Game of Life and N ∈ N. Then asymptotically horizon-
tally N-periodic configurations are not dense in g−1(0Z

2
).

Obviously the same is true for vertically periodic configurations.

Proof One can verify that g−1(0Z
2
) contains the pattern

Pn = 0
0
1
1
0
0
0
1
0
0
1
1
0
0
1
0
0
0
1
1
0
0
1
0
0
0
0
1
0
0
1
0
0
0
0
1

(
0
0
0
1

)n
0
0

for any n ∈ N, by continuing it left and right with 0s, and then extending each column
with period-3 so that the repeating pattern has an even number of 1s.

It turns out that this is the only possible continuation of the columns intersecting
the pattern: At an occurrence of

0 1 0 0 0 1 0
0 1 0 1 0 1 0

one can easily deduce that the only possible continuation downward is 0001000, and
this forces the contents of the next row. The pattern is chosen so that this subpattern
is seen on the first 3 iterations, after which we repeat the original pattern, which
determines the entire column.

To prove the claim, pick n > N . Then no preimage of 0Z
2
containing Pn has a

horizontal N -period. �
The pattern above was found by generalizing the shortest word separating S2,3(F)

from S2,4(F). It forces the period in both directions, thus cannot appear in a preimage
of 0Z

2
together with its 90-degree rotation. Thus, it cannot directly be used to show

that g−1(0Z
2
) does not have dense asymptotically doubly periodic points (when the

period is not fixed). Indeed, we do not know whether asymptotically doubly periodic
points are dense in g−1(0Z

2
).

Our first attempt at proving the decidability of the set of finite-support Gardens
of Eden was to show that all finite-support configurations that have a preimage have
a finite-support or co-finite-support preimage. This stays open.

•? Question

Does every finite-support configuration in the image of the Game of Life have a
finite-support preimage? A co-finite-support preimage? An asymptotically doubly
periodic preimage with some fixed periods (N , 0), (0, N )?

The first and second subquestions are equivalent, as observed by user dvgrn in
[15]: in the SFT g−1(0Z

2
), the rectangular all-1 pattern with support [−n − 2, n +

2]2 \ [−n, n]2 can be glued to the all-0 pattern with support [−n − c − 2, n + c +
2]2 \ [−n − c, n + c]2, for any large enough c, and vice versa when 0 and 1 are
exchanged.
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Proposition 1 shows that “yes” answers in Question 5 cannot be proved by only
modifying an arbitrary preimage outside a finite region. These subquestions would
be solved in the negative by finding a finite-support configuration y ∈ {0, 1}Z2

that
is not a Garden of Eden but whose every preimage contains an occurrence of some
Pn from the proof of Proposition 1 outside the convex hull of the support of y.

Anecdotal evidence for Question 1 is that, as mentioned, the preimages shown
for P and its paddings in Example 4 were not found by a SAT solver, and in fact
if the problem is fed into PicoSAT with a lexicographic order on the positions, the
preimage that is found for the 4-padding of P in Example 4 always has two layers of
1-cells in the two outermost layers, in otherwords finding a cofinite-support preimage
for this particular pattern seems to be easier than finding a “bad” preimage (so we
constructed one by other methods). If the problem is obfuscated (by shuffling the
cell positions) before feeding it to the solver, it occasionally gives solutions that do
not have 1-cells on the border of the rectangle, but this still happens very rarely.

Much of the study of the Game of Life concentrates on finite configurations. Thus,
the following question seems very relevant, if the first subquestion of Question 5 has
a negative answer.

•? Question

Is it decidable whether a given finite-support configuration has a finite-support
preimage?

Finite-support Gardens of Eden are �0
1 (in the arithmetical hierarchy) and non-

trivially decidable (by this paper), since if there is no preimage, there is an orphan.
Finite-support configurations without a finite-support preimage, on the other hand,
are �0

1, since we can prove the no-instances by exhibiting a preimage, but there is
no obvious reason there should be a finite certificate for not having one.

In Theorem 5, the padding thickness 4 is optimal if we are not allowed to change
the preimage, by positioning any word of L(S2,3(F)) \ L(S2,4(F)) on the boundary
of the rectangle. We do not know if it is optimal if the preimage can be changed, i.e.
we do not know whether there exist patterns P such that pad30(P) has a preimage
pattern but conf0(P) is a Garden of Eden. The optimal constant is at least 1: the
pattern

was obtained by modifying one bit in the orphan of Banks [7] (marked by a black
dot). It is not an orphan, but PicoSAT reports its thickness-1 zero-padding to be an
orphan.
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One may ask if it is important in Theorem 5 that P is rectangular. For the result
that finite-support Gardens of Eden are co-NP, this is not essential: as long as the
inputs of size n specify values only in a polynomial-sized rectangle in n, to prove
that the configuration conf0(P) corresponding to a given pattern P is not a Garden
of Eden, we can extend the P to a rectangular one by adding 0-cells and apply our
methods. However, the second claim of the theorem fails for all convex shapes except
rectangles, at large enough scales.

For a general D ⊂ Z
2, we define the 0-padding of thickness C of P ∈ AD as

the pattern Q with domain E = (D + [−C,C]2) ∩ Z
2, where D + [−C,C]2 is

interpreted in R
2 and [−C,C] ⊂ R is a continuous interval, defined by Q|D = P ,

Q|E\D = 0E\D .

Proposition 2 Let g be the Game of Life and N ∈ N. Let K ⊂ R
2 be a compact

convex set that is the closure of its interior. If K is not a rectangle aligned with the
standard axes ofR2, then for all C ∈ R, for all large enough r > 0, the 0-padding of
thickness C of the all-zero pattern P with shape rK ∩ Z

2 admits a preimage pattern
Q, such that the subpattern of Q that maps to P does not extend to a preimage of
conf0(P).

The constant C can be replaced by any sublinear function of r .

Proof Among compact convex subsets ofR2, the axis-aligned rectangles are exactly
the sets where (a, b), (c, d) ∈ K implies (a, d), (c, b) ∈ K . Thus, suppose K is not
a rectangle, and pick (a, b) �= (c, d) such that w.l.o.g. (a, d) /∈ K . By the assumption
that K is the closure of its interior, (a, d) has positive distance to K , and we may
assume (a, b), (c, d) are interior points by moving them slightly if necessary. For
any M ∈ N, there then exists r > 0 such that the set r K ∩ Z

2 contains a translate of
the square grid [−M, M]2 whose convex hull in turn contains (ra, rb). The same is
true for (c, d).

Let P be the all-0 pattern of shape r K ∩ Z
2, and let Q be a preimage pattern

of padC0 (P) that contains a copy of the pattern P0 from the proof of Proposition 1
near (ra, rb) and a copy of the 90-degree rotation �(P0) near (rc, rd). As long as
r is large enough compared to C , such a preimage exists, since we have enough
room to put these patterns near (ra, rb) and (rc, rd), and then we can continue them
3-periodically in both directions and fill the rest of Q with 0-cells. The restriction
of Q to r K ∩ Z

2 does not extend to a preimage of 0Z
2
, since the 3-periodic patterns

forced by the copies of P0 would intersect near (ra, rd). �

It is also natural to ask whether the complexity-theoretic aspects of our results
are optimal. We have shown that for the Game of Life, the finite-support Gardens
of Eden are polynomial-time reducible to orphans. For the other direction, we do
not know any polynomial-time reduction, thus orphans could in principle be harder
than finite-support Gardens of Eden. We conjecture that both problems are hard for
co-NP, in particular are equally hard by our results.
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•? Conjecture

Finite-support Gardens of Eden and rectangular orphans for the Game of Life are
co-NP-complete (under the encodings of this paper, for polynomial time many-one
reductions).

The doubly periodic Gardens of Eden give another natural decision problem, and
we conjecture that it is not computable. This would in particular imply that not all
semilinear configurations admit semilinear preimages.

•? Conjecture

The doubly periodic Gardens of Eden for the Game of Life are an undecidable set.

One possible method of proving these conjectures would be to encode arbitrary
Wang tiles into preimages of rectangular patterns, and reduce to the co-NP-complete
problem of untileability of a rectangular region [8], or to the undecidable problem
of tileability of the infinite plane [3].

In the encoding we use, the input specifies the values in an area of polynomial
size. One may wonder what happens if this input is given in other ways.

•? Question

Given a finite tuple of vectors (v1, . . . , vn) written in binary, what is the computa-
tional complexity of checking whether the finite-support configuration with support
{vi | i = 1, . . . , n} is a Garden of Eden?

One may wonder if the Game of Life is special, or whether these results are true
for a larger class of CA. The Game of Life has strong symmetry properties, so it
is a natural candidate to look at, and possibly the automata-theoretic problems are
particularly easy for this reason. However, as far as we know there is no reason to
believe one-step properties of theGameofLife should be special among, for example,
totalistic radius-1 rules with the Moore neighborhood. It would be interesting to go
through a larger set of rules, and analyze the stability and periodizability properties
of their traces. Of course, if the trace of a given SFT happens to be non-sofic (and in
particular not stable), then our methods cannot be applied to it. Even if the trace is
sofic but not stable, we do not have a general method of determining it.

We also do not know if our results apply to powers of the Game of Life. If
finite-support configurations that are not Gardens of Eden for the Game of Life
would always have finite-support preimages, or if semilinear such configurations
would always have semilinear preimages, thenwewould obtain decidability of finite-
support Gardens of Eden for all powers of the Game of Life. It is also unknown if all
powers of the Game of Life have different sets of Gardens of Eden, i.e. whether the
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Game of Life is stable in the terminology of [14]; according to the LifeWiki website
the first 4 powers have been separated in this sense [10].
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Amoebae for Clustering: A Bio-Inspired
Cellular Automata Method for Data
Classification

Amaury Saint-Jore, Nazim Fatès, and Emmanuel Jeandel

Abstract We present a bio-inspired mechanism for data clustering. Our method
uses amoebae which evolve according to cellular automata rules: they contain the
data to be processed and emit reaction-diffusion waves at random times. The waves
transmit the information across the lattice and causes other amoebae to react, by
being attracted or repulsed. The local reactions produce small homogeneous groups
which progressively merge and realise the clustering at a larger scale. Despite the
simplicity of the local rules, interesting complex behaviour occur, which make the
model robust to various changes of its settings. We evaluate this prototype with a
simple task: the separation of two groups of integer values distributed according to
Gaussian laws.

Keywords Bio-inspired models · Cellular automata · Data clustering · Discrete
dynamical systems · Collective intelligence
Introduction

Biology is an inexhaustible source of inspiration for computer science. Indeed,
many phenomena we observe in living organisms can be understood with sim-
ple interactions which create a self-organising process with a rich behaviour, e.g.
self-reproduction [16], cellular sorting [17], etc. The model we present here aims
at performing a clustering task. Various nature-inspired models have already been
explored to perform this task [12, 15]. The particularity of our model is that it is
inspired from the behaviour of the social amoeba Dictyostelium discoideum. It is a
cellular automaton model, that is, space, time and states of components are discrete
and the interactions are purely local. In the most simple setting of the problem, the
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model consists of a grid in which two types of data are found, initially located in
random places, these items have to form two separated groups according to their
types.

This clustering behaviour can be related to various segregation phenomena, such
as the ones studied by Goles et al. [8]. In such models, as Schelling’s model and its
variations, a population separated into two types is initially randomly spread on a
lattice. The agents may move to an empty location if this increases the number of
agents of the same type in their neighbourhood. One observes that even if an agent is
satisfied with a given minimal number of similar neighbouring agents, the systems
ends up with a global segregation phenomenon.

Goles and his collaborators were also interested in the social structures which
appear when applying a model of general social interactions as proposed by
Sakoda [13]. They examined the robustness of the patterns which are interpreted
in terms of social structures. The model implies no less than 45 different interaction
rules which drive the system irreversibly to an equilibrium or a steady state.

This line of research falls into the general class of inverse problems, where cellular
automata are seen as amodel of computation that is used to process data. For example,
one can ask a cellular automaton to decide about the type of its initial condition, for
example whether it has more 0’s than 1’s, as in the density classification problem
(see e.g. [2, 3]), or whether it has an odd number of 1’s, as in the parity problem [14].

Our proposition relies on a previous discrete model inspired by the behaviour of
this social amoeba [5]. This original model was used to gather thousands of particles
initially scattered randomly on a lattice without any central coordination. From this
original model, a variant was proposed to locate a hidden source on a lattice with
the process called infotaxis, which is specific to the case where the detection of the
source needs to be achieved with rare events [4].

Our goal now is to continue this work of exploration of the “amoebae models”
and examine here whether they could be used to perform data clustering: imagine
that we have set of objects initially random scattered on a lattice and we need to
group this data into classes which share some similarity. The difficulty of the task
lies in the propagation of information which needs to be achieved by simple cells
with as few states as possible and with nearest-neighbour simple interactions.

We begin by presenting our model with formal definitions (Sect. 1). This pre-
sentation is then followed by an empirical observation of its behaviour (Sect. 2.1),
the description of a quantification tool (Sect. 2.2) and a first sequence of statistical
experiments (Sect. 2.3). We then briefly explore some properties of robustness of the
model (Sect. 3) and say a few words on the work that remains to be tackled.

1 Presentation of the Model

Our model is described as a stochastic dynamical system where space, time and
states are discrete. It is composed of two layers: the first layer corresponds to the
environment, which propagates reaction-diffusion waves. The second layer contains
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the amoebae, which move and interact with the environment. Our objective is to
design a system which will be as simple as possible in terms of cell states and
behaviour, and forwhich the amoebae formgroups according to the data they contain.

Space is modelled by a two-dimensional lattice with periodic boundary condition
(torus), represented by L = (Z/X · Z) × (Z/Y · Z), where X and Y are the dimen-
sions of the lattice. In this text, we only consider square lattices, that is, we take
X = Y = L , where L is called the size of the lattice.

The set of states is now the Cartesian product Q × D, where Q = {N,E,R}, with
the states N, E, Rwhich respectively correspond to the neutral, excited and refractory
states, and the set D corresponds to the data. The set D is dependent on the data set
on which we want to apply the clustering process; we will assume that it contains a
particular value, called the void value, denoted by V , which represents the absence
of data in a given cell.

Formally, for a cell c ∈ L and time t ∈ N, we denote by σ t
c ∈ Q the state of this

cell and by ρ t
c ∈ D its data. For the sake of brevity, we will say state only to refer to

the first part of the cell and say data for the second part. Carefully note that as the
cells constitute the environment, the data of a cell state ρ t

c represents the information
that is being propagated, which will often differ from the data of the amoebae it
contains.

The set At
c represents the amoebae contained in a cell c. Formally, At

c is repre-
sented by a multi-set of elements of D, that is, it may contain several elements of D
with an identical value. Recall that each amoeba is in charge of carrying an element
of the data set that has to be clustered.

The interactions between cells follow a local rule and we use here the Moore
neighbourhood, that is, a cell c will only “see” its own state and the state of its 8
nearest neighbours. This set is denoted by N (c).

In all the experiments that follow, the initial condition of the system is that all
cells are initially in the neutral state N and the elements of the data set are randomly
and uniformly distributed on the grid. For the data, we simply assign to each cell
a given probability dini to contain a data, which is drawn at random according to a
non-uniform distribution that will be described later. The probability dini controls the
initial density of data, hence the use of the letter d.

Informally, our model relies on three main features: (a) the amoebae have the
ability to randomly trigger reaction-diffusion waves that will make other amoebae
react; (b) these waves propagate without attenuation and by partially colliding and
merging when they meet ; (c) when an amoeba sees such a wave in its environment,
it reacts by being attracted or repulsed according to the data it sees and its own data.
Let us now describe these steps more precisely.

1.1 The Reaction-Diffusion Waves

The rules that govern the propagation of reaction-diffusion waves are simple: (a) A
neutral cell becomes excited if it has an excited neighbour; (b) an excited cell always
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Fig. 1 Propagation of two excitation waves: red, orange and white squares respectively correspond
the excited, refractory and neutral cells (colour online)

becomes refractory at the next time step: (c) a refractory cell always become neutral at
the next time step. Once a neutral cell gets excited, the excitations propagate in form
of waves formed by lines of excited cells that we call fronts, which are followed lines
of refractory cells. The role of the refractory state is to prevent the retropropagation of
excitations.When two waves meet, they annihilate if the fronts propagate in opposite
directions and merge if the fronts propagate in the same direction (see Fig. 1).

In addition to the possibility to being excited by its neighbours, a cell which con-
tains at least one amoeba becomes excited with a probability λ, called the excitation
rate. In this case, the excited cell takes the state E, and its data ρ t

c will be chosen
randomly and uniformly among the data of amoebae it contains. This choice is rep-
resented by R[At

c] where the operation of random uniform choice in a multiset X is
denoted by R[X ]. We note B(p) as a Bernoulli law of probability p.

We denote by Et
c = {c′ ∈ N (c) : σ t

c = E} the set of cells which are in the excited
state in the neighbourhood of c and by Dt

c = {ρ t
c : c ∈ Et

c} the set of data that these
cells contain. It should be noted that in general the values of the data contained in a
given wave are uniform, as they come from the same amoeba source. However, when
twowaves of excitation collide andmerge, a given cell might see in its neighbour two
excited cells with different data, in which case it will choose randomly and uniformly
in the multiset of values it sees.

The state of a cell is updated as follows:

If σ t
c = N, then

if At
c �= ∅ and B(λ) = 1 then σ t+1

c = E and ρ t+1
c = R[At

c]
else if card(Et

c) > 0 then σ t+1
c = E and ρ t+1

c = R[Dt
c]

else if σ t
c = E then σ t+1

c = R and ρ t+1
c = V

else if σ t
c = R then σ t+1

c = N and ρ t+1
c = V

else σ t+1
c = N and ρ t+1

c = V .

We have defined our four cases: the self-excitation of a cell by an amoeba, the
excitation by a neighbouring cell, the de-excitement and the return to the neutral
state.
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Fig. 2 Movements of the amoebae. The cell states excited, neutral and refractory are represented in
red, white and orange, respectively; amoebae are in black. From step 1 to step 2, Amoeba 1 moves
randomly; amoeba 2 triggers a reaction-diffusion wave. From step 2 to step 3, Amoeba 1 moves by
following the excitation front

1.2 Movements of the Amoebae

Let us describe the movements of the amoebae, which take place in the second layer
of the model (See Fig. 2). To this end, we introduce some intermediary definitions.
A cell is empty if it does not contain any amoeba and it is available it is either empty
or if it contains only one amoeba. In order to limit the number of amoebae contained
per cell we use the following rules: (a) Amoebae can move only to the available cells
of their neighbourhood. (b) If a cell contains several amoebae, only one may move
to a neighbour. (c) For the sake of simplicity, there is no limit on how many amoebae
an available cell can simultaneously receive.

Let us now describe how the amoebae react to the presence of excited cells in
their neighbourhood. The key point of the model is that an excitation can be either
attractive or repulsive for an amoeba, depending on the value of the excitation and
the data of the amoeba. The use of a repulsive interaction is a novelty compared to
the previous models using amoebae (see Introduction) and its purpose is to separate
the groups of amoebae that will correspond to different data clusters.

The idea is that for each excited cell in the neighbourhood, we will determine
whether the excitation is attractive or repulsive according to a probability law, denoted
by patt, depending on the absolute value of the difference δ between the value of the
amoeba and the value of the nearby excitation. The probability to be attractive patt
is defined with the following equation: patt(δ) = e−δ/ξ : the higher δ is, the lower the
probability to be attractive and thus the higher the probability to be repulsed. The
constant ξ is set by the user of the model and depends on the data set that is used;
it should be of the same order of the expected distance between the centres of the
clusters of the data set.

Naturally, a problem arises when a cell contains several amoebae. In this case, we
simply choose uniformly at random which of the amoebae is selected to move and
we calculate δ according to the data of the selected amoeba.

For a given cell c ∈ L which contains one amoeba or more, we define for each
cell c′ in the neighbourhood of c the quantity δc,c′ = ∣

∣ρ t
c′ − R[At

c]
∣
∣. (Note that the

random value R[At
c] is chosen once and not for each neighbour.) We map δc,c′ to
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Fig. 3 Representation of the four sets used to define the movements of an amoeba. Amoebae are
represented in black and excited cells in red (colour online). The data contained in the excitations
are represented in white

a value δ∗
c,c′ ∈ {A,R}, where A and R respectively denote an attractive or repulsive

signal, where the probability to be attractive is given by patt(δc,c′).
To express the local rules which define the movements of the amoebae, we need

to define three sets. For a given cell c the set Ñ t
c is the set of available neighbours:

Ñ t
c = {c′ ∈ N (c) : |(|At

c′) ∈ {0, 1}}. The sets Ãt
c (resp. R̃t

c) is the set of available
neighbours that are attractive (resp. repulsive): Ãt

c = {c′ ∈ Ñ t
c : δ∗

c,c′ = A} and R̃t
c =

{c′ ∈ Ñ t
c : δ∗

c,c′ = R}. The set Ẽ t
c is the complement of the previous set; it is the set

of cells where an amoeba can escape in case of repulsion: Ẽ t
c = Ñ t

c \ R̃t
c. These sets

are represented on Fig. 3.
The movements will be determined by a list of rules with an imposed order of

priority: an amoeba may make a randommovement to an available cell according to:
(a) the phenomenon of agitation (with prob. pag), (b) the phenomenon of attraction,
(c) the phenomenon of repulsion. Second, the priority is given to attraction over
repulsion, that is, if an amoeba sees at least one excited cell A, it chooses attraction,
otherwise it will choose a repulsive movement.

Denoting by Δt
c the cell where the selected amoeba moves, this yields:

Δt
c =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

R[Ñ t
c] if B(pag) = 1 and |(| Ñ t

c) > 0

R[ Ãt
c] if σ t

c = N and |(| Ãt
c) > 0

R[Ẽ t
c] if σ t

c = N and |(| R̃t
c) > 0 and |(| Ẽ t

c) > 0

c otherwise.

These rules represent the four possible movements: by agitation, by attraction, by
repulsion and finally staying in the same cell. The positions of the amoebae are then
updated synchronously for each non-empty cell c with the movement from c to Δt

c.
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2 Study of the Model

2.1 A First Observation of the Behaviour

Let us now observe some simulations. Figure4 shows the clustering process on a
lattice of size L = 50 cells. The initial condition is set with dini = 0.1, that is, each
cell has a probability of 10% to contain a data. The value initially attributed to the
amoebae is an integer drawn randomly in the interval I = [[0, 400]]. The data is not
uniformly distributed: its distribution is the sum of two Gaussian laws of parameters
(μ1, σ1) and (μ2, σ2) where the mean values are set to μ1 = 100 and μ2 = 300 and
the standard deviations are set to σ1 = σ2 = 0.2.

The parameters settings were determined empirically after a series of tests. We
set the value of the emission rate of waves to λ = 0.01 and the attraction probability
law, patt, is set with ξ = 40. In order to introduce some “difficulty” in the clustering
process, we also add some agitation, setting pag = 0.1, that is, the amoebae will
make a random move every ten steps in average.

One can observe the following general behaviour: the amoebae start forming
small groups where the type is rather homogeneous. Thanks to the randomness of
the excitation waves, these groups progressively merge until they form larger groups.

At this stage two possibilities are generally observed: either the large groups
directly form two well-sorted clusters, or the sorting stagnates with approximately
two or three formed groups and a few isolated amoebae. In this case, the sorting
process is somehow delayed due to two main reasons: (a) isolated amoebae may find
themselves blocked between the different excitations, and (b) two groups of amoebae
that contain amoebae of the same type might try to get closer but get repelled by
another large group formed of amoebae of the opposite type. However, as one can
observe on Fig. 4, the clusters are well formed after a few thousand steps and remain
stable over time.

2.2 Quantify Sorting Progress and Efficiency

We now describe how to evaluate more quantitatively the evolution of the clustering
process. We continue to consider the simple case where the system should separate
the data into two clusters only. Our problem is to evaluate, for a given distribution
of amoebae on the grid, how far we are from our goal. Our clustering estimator will
associate to each data a type, A or B, depending on its value. For example if the data
is distributed in the range of integers from 0 to 100, type-A data will cover the range
0 to 49 and type-B data will cover the rest of the interval.

With this particular setting of the problem, two main features can be isolated:

1. homogeneity: once the groups of connected amoebae are identified, we estimate
to which extent they are mixed or not,
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Fig. 4 Evolution of the clustering process for times: 0, 450, 880 and 1270. The amoebae are
represented in black and dark grey: this colour differentiation is only visual and indicates whether
the value they contain are greater or lower than the average value 200. When several amoebae are
present in the same cell, the number of amoebae is indicated by a white number (this number canme
magnified in the online version). A neutral cell is white and a refractory cell in light grey. Excited
cells are coloured in red and blue depending on whether the data they contain is greater or lower
than the average value 200

2. compactness: we estimate how far the global configuration of amoebae is from
forming two main groups.

For a given configuration, we thus partition the set of amoebae into connected com-
ponents of amoebae, where Moore’s neighbourhood is used to define the connexity
property. Let us denote byC1, . . . ,Ck the components obtained, with the convention
thatC1 andC2 are respectively the largest and second largest sets (in terms of number
of amoebae they contain). Given two components i and j , we denote by dH(i, j) the
Hausdorff distance between these two components. This distance is frequently used
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to evaluate distances between sets of points and displays various good analytical
properties [7]. We then make a partition of the set components {C1, ...,Ck} into two
sets of components P1 and P2 by assigning each component Ci to P1 if the distance
dH(Ci ,C1) is smaller than dH(Ci ,C2) and to P2 otherwise.

To define the homogeneity criterion, we simply calculate the number of amoebae
nA
1 and nB

1 (resp. nA
2 and nB

2 ) that are of respective type A and B that are contained
in P1 (resp. in P2). The homogeneity of Pm for m ∈ {1, 2} is then set equal to hm =
∣
∣nA

m − nB
m

∣
∣ /(nA

m + nB
m). The global homogeneity h is then simply the minimum of

h1 and h2. This form is chosen such that a homogeneous set of components will lead
to h = 1 while a set of components with an equal number of amoebae of each type
will give us h = 0.

Let us now examine the compactness criterion. We first calculate the average
distance between the components and the main component they belong to, that is,

d̃ = 1

k
· ( ∑

Ci∈P1

dH(Ci ,C1) +
∑

Ci∈P2

dH(Ci ,C2)
)

.

We compare this value to the distance between the two main components of the
system dH(C1,C2). The compactness κ is then defined as κ = 1 − d̃/dH(C1,C2);
a form that is chosen in order to approach 1 as d̃ gets smaller (while dH(C1,C2)

remains stable).
The combination of these two criteria will give us an estimation of how the

clustering process evolves in time. Note that criteria are not defined when we have
only one component and note that we considered here the case of two types, but
this method can of course be extended to any number of types. It should also be
emphasised that the types are only given for the analysis of the process, but that the
process itself never uses this information in the local rules it applies. Let us now
observe the clustering process on some simple examples.

2.3 Quantitative Analysis of the Behaviour

Let us now analyse the relevance of the two criteria introduced above to quantify the
progress of the sorting of amoebae in the system. The two connected components
of amoebae are illustrated Fig. 5 and the evolution of the temporal values of these
criteria are represented on Fig. 6. The parameters are set identically to those exposed
in Sect. 2.1.

Let us first put our attention on the homogeneity criterion. One can observe that
during the first moments of the simulation, the amoebae are scattered in space and
the two main sets are very heterogeneous, which leads to a low homogeneity. This
continues until amoebae form larger groups of amoebae with similar data, which
yields a gradual increase in the homogeneity criterion, with an additional noise due
to the randomness inherent to the model. As mentioned earlier, after this stage is
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Fig. 5 Representationof a particular configurationobtained at time880. (left)The sameconventions
are applied, in particular amoebae are differentiated in black and dark grey depending on whether
their value is higher or lower than the average value 200. (right) The amoebae are coloured in green
or magenta according to the partition realised to calculate the homogeneity and compactness criteria
(see Sect. 2.2). The red segments materialise Hausdorff distances; the dotted lines indicate that the
shortest distance are calculated with periodic boundary conditions

Fig. 6 Temporal evolution of the criteria of homogeneity and compactness of a particular simulation

complete, two possibilities generally occur: we either have a rather steady increase
of the criteria, which indicates that the amoebae are sorted into two groups, or the
values will stagnate for a while (as shown on Fig. 5), and then find the sorted stable.

The stochastic nature of the model makes that some evolutions may last longer
to reach the sorted state. For instance, when three main groups of amoebae are
formed, with one group of one type and the other two of the second type, the value
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of homogeneity remains around 50% for a moment until the two groups of the same
type can merge.

The compactness criterion allows us to complete our analysis of the clustering
process. Recall it estimates the average relative distance of the connected components
of the amoebae to the closet main component. In the beginning of the simulation,
since amoebae are scattered randomly in space and these main components are not
stable and the criterion is of little relevance. As one can observe, the compactness
criterion becomes relevant only when larger groups of amoebae are formed, in which
case its values become greater than 25%.

Note that when the clustering has occurred (that is, when we have only two
groups), the homogeneity approaches 100% but the compactness stabilises at lower
values (between 40 and 50%). Indeed, the rules we imposed on the movements of
amoebae (agitation, limit of their number per cell) do not allow them to form perfect
components.

3 Robustness of the Model

Data. Let us examine how the model responds to variations of the distribution of
data. We take again the interval I = [[0, 400]] and generate the data distribution
according to the sum of two Gaussian laws of parameters (μ1, σ1) and (μ2, σ2). We
the standard deviation to σ1 = σ2 = 0.4.

We perform different experiments by varying (μ1, μ2). The attractivity of the
waves is setwith ξ = 40 (seeSect. 1.2).Wedefine the convergence time as the number
of time steps that are needed to attain both a homogeneity greater than h∗ = 0.8
and compactness of κ∗ = 0.25. These values are fixed empirically by observing the
situations which correspond to a good clustering quality and a relatively stable global
state. Since we aim at achieving a fast convergence, we stop the simulation after 3000
time steps.

The results are presented on Fig. 7.We observe that the clustering is rapidwhen the
two Gaussian laws are well separated (μ1, μ2) = (100, 300). More surprising, we
note that when the averages are made closer (μ1, μ2) = (125, 275), and even though
the two laws begin to overlap, the convergence time remains low and is even better
than the previous case. A limit case is observed for (μ1, μ2) = (150, 250) where the
convergence time jumps above the limit value of 3000 steps. A visual inspection of
the simulations and an observation of the evolution of the criteria shows that on the
two first case, the clusters remain stable and well-sorted after the convergence time.
The value of ξ could be adjusted to improve these results but we choose here to keep
the value constant for the sake of simplicity.

We also examined the behaviour of the model when the data is a superposition of
three Gaussian laws: in this case, we observe that the clustering process occurs as
expected by sorting the data into three groups, without any significant delay when λ

is set to the appropriate value.
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Fig. 7 (left) Convergence time for three distribution laws which are sums of two Gaussian laws
(right) Representation of the distribution laws

Initial conditions.Onemay also examine what happens if a large number of amoebae
is initially introduced. A new series of simulations is carried out with the following
initial condition for an initial density between10%and75%.Weempirically observed
that although the movements of the amoebae are more constrained and although the
propagation of cell excitations are more difficult, the model succeeds in achieving
the clustering operation in times that are comparable to those expressed above. It
is only when the initial density reaches dini = 0.75 that strong difficulties appear
and that the convergence time significantly rises. This suggest that the size of the
lattice should always be set in agreement with the quantity of data that needs to be
processed; with, say, at least three times as many cells as amoebae.

Fig. 8 Convergence time as a function of the excitation rate λ: (left) regular lattice (right) lattice
with obstacles
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Obstacles. As mentioned earlier, one of the motivations for the use of bio-inspired
models is their robustness to errors and failures in the computing medium. We thus
consider the case where obstacles can be present on the lattice, that is, cells that
cannot transmit any information which cannot hold any amoeba.

Simulations in such conditions are represented on Fig. 8: we consider different
values of the emission rate λ with and without obstacles. One can observe that
the overall behaviour is not perturbed by the presence of obstacles, although some
isolated amoebaemay take a longer time to join other groups. The convergence of the
amoebae can be slowed down but we empirically observed that the process always
manages to achieve the clustering task.

4 Application to the Fisher’s Iris Data Set

We now propose to test our amoebae-inspired model for classifying real-world data.
As a starting point, we consider one of the most known data sets, namely the iris
data set, established in 1936 by Fisher to study linear discriminant analysis tech-
niques [6]. The data set is composed of 150 samples, divided into three groups of
equal size, which correspond three species of flowers: Iris setosa, Iris virginica and
Iris versicolor. Four features are measured for each sample: the length and the width
of the sepals and length and width of petals. This dataset is known to be delicate to
manipulate because its contains many samples of different class with close charac-
teristics.

The amoebae, which encode each piece of data, thus contain the measure of the
four characters, coded as they are given, that is, directly in centimetres. In order
to grant each of this feature the same weight, we divide each measure value by its
average value. This renormalisation ensures that all the parameters are equally taken
into account but of course, one can also imagine granting various weights to the
different features.

Both the amoebae and the propagated signals are thus now represented by 4-
dimensional vectors. Denoting by ρ t

c ∈ N
4 the state of a cell andAt

c ∈ N
4 the state of

an amoeba, for a cell c that contains an amoeba, the repulsive or attractive property
of an excitation in a neighbouring cell c′ will be determined with the function:
δc,c′ = ∣

∣ρ t
c′ − R[At

c]
∣
∣, where |v| is the Euclidean norm (in 4 dimensions) of a vector

v.
In order to set the parameters of the model, we proceed by examining how the

clustering process can be applied between two different classes, leaving one class
aside. We set the size of the lattice to L = 50 and choose two classes by taking the
100 amoebae which correspond to these two classes and distribute them randomly on
the lattice. For the sake of simplicity, we keep the value of the emission rate of waves
to λ = 0.01 and the agitation rate to pag = 0.1, as seen previously. Our goal is to
set ξ to a value which will minimise the convergence time. Recall that ξ determines
the attraction-repulsion probability patt. The convergence time will be measured, as
above, for a homogeneity criterion of h∗ = 0.80 and a compactness of κ = 0.25.
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Fig. 9 Convergence time obtained according to the value of ξ for the dataset composed by the
couple of Iris

The results of these experiments are shown on Fig. 9. For the two couples of data
sets Iris setosa/Iris versicolor and Iris setosa/Iris virginica, we observe on the sim-
ulations that the clustering process succeeds quite rapidly and the curves expressing
the variation of the convergence time with respect to ξ have a regular aspect which
clearly show the existence of an optimal range of settings for ξ . However, for the last
couple Iris versicolor/Iris virginica, we could not find a suitable setting to separate
these classes rapidly. This is not surprising given that these two types of flowers
have close characteristics and are known to be difficult to separate. We thus don’t
take into account this couple for our setting of ξ . Observing the values of ξ which
minimise the convergence time for the two couples Iris setosa/Iris versicolor and
Iris setosa/Iris virginica groups, we set ξ = 0.5, since this value is suitable for the
two experiments.

We can now visually observe the clustering process on the entire Fisher Iris data
set: see Fig. 10. It can be seen that, as expected, the Iris setosa cluster is well isolated
from the others and is compact; in the great majority of cases, it is also the first group
to form. For the two other classes, the separation process takes much longer but they
eventually manage to form two groups that can be partially distinguished. However,
this separation is not perfect as some amoebae do not succeed in reaching their class.

From the simulations, we noticed that the difficulty to finish the clustering process
stems from the fact that when a group is formed, its excitations inhibit the formation
of the other groups. One way of diminishing this undesirable effect would be to limit
the range of propagations of the excitations. However, adding such a mechanism
would increase the complexity our the rules to employ, which would go against the
spirit of keeping things as simple as possible in which we have worked so far.
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initial state intermediary state partially clustered state
t = 0 t ∼ 1500 t ∼ 3000

Fig. 10 Two evolutions of the clustering process for ξ = 0.5. The amoebae are represented in
blue, red and green, which respectively correspond to the classes Iris setosa, Iris virginica and Iris
versicolor. When several amoebae are present in the same cell, the number of amoebae is indicated
by a white number (this number can me magnified in the online version). A neutral cell is white
and a refractory cell in light grey. Excited cells are light-coloured according to the type of the data
they contain

5 Openings

These first tests are rather encouraging and show that our model remains robust to
various modifications of its settings. The particularity of our bio-inspired method is
its specific use of randomness: the moments where the amoebae emit their waves is
determined randomly, and should be set in order to allow a good balance between
“speaking” and “hearing”. The clustering task results from a probabilistic setting,
which defines a balance between attraction and repulsion when a given type of data
is received. Observations show that the model easily adapts to various data sets and
various initial conditions. Moreover, if some parts of the system that performs the
computation are altered, this should not impede the clustering task as the behaviour
results from local and simple computations only.

We presented here only a prototype tested on a rather simple clustering task with
only two or three groups to form. The tests performed on the Fischer’s Iris data
set are quite encouraging and indicate the possibility to extend our method to a
higher number of classes and a higher amount of data. The model thus now needs
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to be evaluated on more realistic data sets and its robustness should be examined
thoroughly in more stringent conditions. Such explorations could be performed by
all researcherswho are interested in the exploration of thefield of bio-inspired cellular
models and among the open questions raised, one could try to evaluate the complexity
of the clustering task.

While this complexity seems at first difficult to define because of the stochastic
nature of the model, one may re-employ the techniques developed by Goles et al.
analyse to complexity of various stochastic phenomena such as Diffusion-Limited
Aggregation (DLA) or bootstrap percolation [11]. Another direction of research
would be to consider imperfect transmissions of information between cells and to
add different notions of asynchronism in themodel [1] in order to test to which extent
it is robust to such perturbations [9, 10].
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Abstract We introduce and explore somemethods based on algorithmic complexity
and algorithmic probability that help address the challenge of empirical causal model
discovery and inverse problems. These methods, based on Algorithmic Information
Dynamics (AID), are designed to describe a possible pathway from observation to
causal reconstruction of the dynamics and space-time evolution of discrete systems,
with consideration given to inference cost. We apply these methods to two of the
most popular discrete dynamical systems, cellular automata and Boolean networks.
We show that an algorithmic-probability-guided simulation of dynamic properties of
these discrete systems can connect back to fundamental questions of causality and
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1 Preliminaries

In this paper, we follow an inverse-problem approach similar to the statistical-
computational one introduced in [10] combined with some of the methods in [13]
to reverse engineer and find underlying computational models able to approximate
empirical phenomena computable or not. The main difference in this work is the
introduction of a probabilistic computational approach complementing the statistical-
computational one that offers more flexibility to find computational models based
on sets of most probable rules thus being able to find sequential sub-models faster
than waiting for the computational rule able to explain the observation in full.

To illustrate the proposedmethod, we use two of the most frequently used discrete
dynamical system models, both equally computationally powerful as models (not
as instances). On the one hand, there are cellular automata, whose evolution rules
are constrained by local neighbours in space, but unlike Boolean networks are not
bounded in size and can grow over time and space. On the other hand, there are
Boolean networks that, once each individual network is defined, are constrained in
size and forced to repeat themselves according to their Poincaré recurrence limit,
though their evolutions are not bounded by local neighbour states.

1.1 Cellular Automata

A cellular automaton is a deterministic rewriting dynamical system that evolves in
discrete time and discrete space, this latter usually a grid. It consists of a grid of
cells that are locally but synchronously updated across the grid according to a global
time scale and a global recursive rule governing the evolution of the state of each
cell as a function of the state of neighbouring cells. While cellular automata have
the same computational power as other Turing universal models and are therefore
fundamentally equivalent, as they can emulate each other, one of the most salient
features of cellular automata is the qualitative diversity of their space-time evolutions
when exploring different rules and different initial conditions.

In 1983 [8], and later in 2002 [9], Wolfram was the first to explore CA in a
systematic fashion, and conceived a simple enumeration scheme based on the rule
representation. Each ECA rule can be represented by a row of all 3-tuples (the central
cell and its closest neighbours), of which there are 8 cases, followed by a row of the
rule assignation to either a white or a black cell. This latter row, consisting of binary
digits, given that the ECA is a 2-state rule space, can be read as a binary number,
e.g. 00000010, which in decimals is, e.g., rule 3 (for the depicted case). All possible
mappings give a total number of 28 = 256 rules.

A cellular automaton (CA) is a tuple 〈S, (L,+), T, f 〉 with a set S of states, a
lattice L with a binary operation +, a neighbourhood template T , and a local rule f .
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The set of states S is a finite set with elements s taken from a finite alphabet �

with at least two elements. It is common to take an alphabet composed entirely of
integers modulo s: � = Zs = {0, . . . , s − 1}.

An element of the lattice i ∈ L is called a cell. The latticeL can have D dimensions
and can be either infinite or finite with cyclic boundary conditions.

The neighbourhood template T = 〈η1, . . . , ηm〉 is a sequence of L. In particular,
the neighbourhood of cell i is given by adding the cell i to each element of the
template T : T = 〈i + η1, . . . , i + ηm〉.

Each cell i of the CA is in a particular state c[i] ∈ S. A configuration of the CA
is a function c : L → S. The set of all possible configurations of the CA is defined
as SL.

The evolution of the CA occurs in discrete time steps t = 0, 1, 2, . . . , n. The
transition from a configuration ct at time t to the configuration c(t+1) at time t + 1
is induced by applying the local rule f . The local rule is to be taken as a function
f : S|T | → S which maps the states of the neighbourhood cells of time step t in the
neighbourhood template T to cell states of the configuration at time step t + 1:

ct+1[i] = f (ct [i + η1], . . . , ct [i + ηm]) (1)

The general transition from configuration to configuration is called the global map
and is defined as: F : SL → SL.

In the following we consider only 1-dimensional (1-D) CA as introduced by
Wolfram [8, 9] who named them Elementary Cellular Automata. The lattice can
be either finite, i.e. ZN , having the length N , or infinite, Z. In the 1-D case it is
common to introduce the radius of the neighbourhood template which can be written
as 〈−r,−r + 1, . . . , r − 1, r〉 and has length 2r + 1 cells. With a given radius r

the local rule is a function f : Z|S|(2r+1)

|S| → Z|S| with Z
|S|(2r+1)

|S| rules. The so called
Elementary Cellular Automata (ECA) with radius r = 1 have the neighbourhood
template 〈−1, 0, 1〉, meaning that their neighbourhoods comprise a central cell, one
cell to the left of it and one to the right. The rulespace for ECA contains 22

3 = 256
rules.

1.2 Block Decomposition Method

In [2, 7], a measure motivated by algorithmic probability was introduced that entails
exploring an enumeration of Turing machines running on a reference Universal
machine that is assumed to be optimal, and whose variant specifications across sev-
eral papers are widely used in other areas of the theory of computation, a machine
based on Rado’s so-called Busy Beaver problem [5].

Let (n,m) be the space of all n-state m-symbol Turing machines, n,m > 1 and
s a sequence. Then we define CTM (standing for Coding Theorem Method) as:
CT M(n,m)(s) = |{T∈(n,m):T produces s}|

|{T∈(n,m)}| .
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WhatCTMdoes is to precompute these programs for a large set of short strings and
combine them with classical information theory using what we call BDM (standing
for Block Decomposition Method) in order to build a short program based on small
pieces than can explain a larger piece of data for which CTM has not (yet) been
calculated. CTM can also be seen as exploring all possible computable compression
algorithms, each represented by a decidable (time-bounded) Turing machine from
a proper universal enumeration, whose machine number is stored and allows for a
decompression process, thus honouring the true spirit of Kolmogorov complexity as
the ultimate data compression method, rather than privileging its much more shallow
connection to statistical compression only.

CTM is motivated by the relation [7] between the algorithmic probability of
an object such as a string (the frequency of production of a string from a random
program) and the algorithmic complexity of the said string (the length of the shortest
description under the reference machine).

Just as resource-bounded complexity compromises on resources like runtime, and
MDL,MML and LZWgive up on Turing completeness (and therefore on algorithmic
complexity for the most part) in order to model data, and LZW is intended to capture
no other feature of an algorithmic nature beyond repetitions in data, the assump-
tions that CTM makes are that the invariance theorem is valid and that the additive
(or other) constant is small enough not to impact the ranking or the top ranking
of the smallest computable models explaining data, which is precisely what CTM
investigates empirically, with a view to making changes to the underlying computing
models and testing against the data.

CTM is intended not just as a theoretical construct, but as a technique to be
deployed in practice. CTM outperforms or complements lossless compression algo-
rithms and other techniques such as MDL in various respects. For example, CTM
can provide a finer-grained classification of short strings and is able to provide com-
putable descriptions in the form of specific computer programs in the language of
Turing machines, rather than black boxes (compressed files) with little state-to-state
correspondence, and most likely unrelated to the generating process other than in
terms of trivial statistical redundancy.MDL,MMLandother such approaches present
their ‘flaws’ as features (or even advantages), such as the claim that MML does not
require Turing completeness or that MDL is computable (without ever mentioning
what’s sacrificed). MDL avoids assumptions about the data-generating process.

One way to see CTM is as effectively exploring the space of all the possible
computer programs able to compress a piece of data. This is in contrast to settling on
a single program that one can ascertain in advance to be incapable of dealing with
any algorithmic feature in data (as opposed to just statistical features, i.e. substring
repetitions).

The block decomposition method (BDM) is an extension of CTM defined as
BDM(s) = ∑

i CT M(si ) + log(ni ), where each si corresponds to a substring of s
for which its CTM value is known and ni is the number of times the string si appears
in s. A thorough discussion of BDM may be found in [11]. BDM extends the power
of CTM to deal with larger strings by sticking together, using classical information
theory, the estimations of complexity values of shorter substrings based on CTM
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under the universal model of computation. BDM is explored in [11], and among
its properties is the fact that it cannot perform worse than Shannon entropy but can
indeed improve upon it when combining values of algorithmic complexity for its
substrings.

BDMglues together the programsproducing each of the data pieces using classical
information. The result is a hybrid measure that provides a candidate upper bound
of algorithmic complexity.

In contrast to statistical compression algorithms, CTM can, in principle, deal with
simple objects such as 123456 . . . in a naturalway (or 1, 2, 3, 4, 5, 6, . . . seen as a data
stream from a generating process) by identifying the underlying successor function
in any base from observing the piece of data and extending the Turing machine rule
space, as shownwith 2 examples in [12]. And even forπ [11], both in principle and in
practice, as suggested in [11], when normalising by highest values, Shannon entropy
(and therefore LZW and cognates) will by definition retrieve maximal randomness,
but for CTM and BDM, it does not have maximal randomness and actually shows
a trend of decreasing values. What CTM does is find the set of computer programs
that can explain segments of π , something that statistical compression cannot do.

1.3 Algorithmic Information Dynamics

Algorithmic Information Dynamics (AID) [14] is an algorithmic probabilistic
Bayesian framework for causal discovery and causal analysis. It enables a numeri-
cal solution to inverse problems based on or motivated by principles of algorithmic
probability. AID studies dynamical systems in software space, where all possible
computable models can be found or approximated under the assumption that discrete
longitudinal data such as particle orbits in state and phase space can approximate
continuous systems by Turing-computable means.

AID combines perturbation analysis and algorithmic information theory to guide a
search for sets ofmodels compatiblewith observations and to precompute and exploit
thosemodels as testable generativemechanisms and causal first principles underlying
data and systems. AID is an alternative or a complement to other approaches and
methods of experimental inference, such as statistical machine learning and classical
information theory.

AID connects with and across other parallel fields of active research such as
logical inference, causal reasoning, and neuro-symbolic computation. AID studies
how candidate discrete computable equations as generating mechanisms are affected
by changes in observed phenomena over time as a result of a system evolving (e.g.
under the influence of noise) or being externally perturbed.

AID is related to other areas such as computational mechanics and program syn-
thesis. However, unlike methods such as Bayesian networks, AID does not rely on
graphical models or the (often inaccessible) empirical estimation of mass probabil-
ity distributions. AID encompasses the foundations and methods that make the area
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of algorithmic information and algorithmic complexity more relevant to scientific
discovery and causal analysis.

We define sensitivity as average complexity change after perturbation or “infor-
mation difference,” following Algorithmic Information Dynamics. Let |S| denote the
size of the object S, and not only the number of constitutive elements. Let N denote
the total number of constitutive elements of S. (Therefore N may be smaller than
|S| , but |S| = O( fc(N )), where fc is a total computable function). For example, in
the case of networks, |S| grows as the number of all possible edges of a graph (in
O(N 2)) and N is the total number of vertices.

Let F �= be a subset of the set of elements of the object S to be deleted. In order to
grasp such a formal measure of the algorithmic-informational contribution of each
element, one may look into the difference in algorithmic complexity between the
original data S and the destructively perturbed data S \ F .We define the “information
difference” [13] between S and S \ F as:

I (S, F) = K (S) − K (S \ F)

Note that the same holds analogously for constructive perturbation, i.e., the inser-
tion of elements. When F = {e}with I (S, F) = I (S, e) and this difference assumes
an absolute value:

|I (S, e)| = |K (S) − K (S \ e)| ≤ log(N ) + O(1),

we say that e is a “neutral information element”, since the algorithmic information
contribution of the insertion of e back into S (or its deletion from S) would necessarily
be of the same order as a computable reversible procedure. Furthermore, we say e is
a “positive information” element, if it is not neutral and I (S, e) > 0; and a negative
information subset of elements, if it is not neutral and I (S, e) < 0. Thus, negative
content is immediately associated with information gain from perturbations, and
positive content with information loss.

In the context of causal analysis, when considering a stochastically random bit-
flip being performed on a string pattern, such as 0000000... repeated n times, such
a perturbation will have a significant effect with respect to the length of the original
shortest program p consisting of a loop printing n number of 0s, because the new
program p′ would need to take into account the 1 inserted at a stochastically random
position x ≤ n. If, however, the string is algorithmically random, the effect of any
stochastically random single-bit perturbation will have no effect (up to a logarith-
mic term of the string’s algorithmic complexity, which is already maximal), because
every bit is already necessary information for the string’s own description. Not only
for strings, but also for graphs and other multidimensional data structures, (stochas-
tically) random single perturbations have similar worst-case effects in both simple
and algorithmically random objects, amounting to up to about log(|S|). Thus, in the
case of objects for which |S| ≤ NC , where the constant C ≥ 2 that does not depend
on N (e.g. if the object is a graph), the information difference impact of moving S
toward or away from algorithmic randomness may be:
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• of the same order (i.e., I (S, e) = �(log(N ))) as the object’s algorithmic com-
plexity K (S), if, e.g., S is computable and therefore logarithmically compressible
in the form K (S) ≤ log(N ) + O(log(log(N ))) + O(1);

• or strongly asymptotically dominated by the object’s algorithmic complexity
K (S) ≥ |S| − O(1), as I (S, e) = O(log(|S|)) = o(|S|) , if, e.g., S is algorith-
mically random and therefore incompressible (up to a constant).

In other words, at the asymptotic limit when N → ∞, the ratio of worst-case
information difference per bit of algorithmic complexity:

I (S, e)

K (S)

tends to 0 for algorithmically random objects and to a constant ε > 0 for computable
objects. The more the object’s algorithmic complexity diverges from the maximal
value (i.e., the larger the algorithmic randomness deficiency), the larger the relative
impact of the worst case on the object’s algorithmic complexity (i.e., on its optimal
lossless compressibility).

In [3], we showed how the methods behind AID can help reconstruct the initial
conditions and rules of several systems, including differential equations and cellular
automata. This expands and takes a different direction on approximately sequential
rules as probabilistic rule-based models, and hence is a hybrid approach, combining
statistical inference and pure symbolic computation.

2 Naïve Reconstruction of Cellular Automata Rules

In [6], it was shown that this process can be generalised to any cellular automata
and rule space. Once a rule space is suspected to be the rule producing the observed
space-time evolution, all local rule templates should be sampled, in this case the 8
local rules of an ECA. The time to infer a global rule is a function of the number
of local rules that must be observed to fill out all templates. Rule 0, for example,
can be sampled from a single observation, as all others are the same (all blank or
black cells go to blank cells), when assuming that the observation is complete, i.e.,
covers all possible states of the observed phenomena. This is, of course, rarely the
case in the real world, where no terminal observation exists and new observations
can vary due to limitations of the measuring device and noise.We refer to the number
of ideal observations (that complete the generating rule) as the time cost to infer a
rule. The example of Rule 0 may suggest a complexity measurement to guide the
place and timewhen observations should bemade to sample the space-time evolution
of a certain phenomenon to maximise informativeness in the process of inference.
We also consider the computational cost of observation versus simulation in model
discovery in the process of rule discovery (Figs. 1, 2, 3, 4 and 5).
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Fig. 1 Impact of a perturbation after h steps on the space-time evolution of ECA rule 30. Cells in
blue are those affected. The causal effect of a perturbation at point 0 is containedwithin the light cone
determined by the maximum propagating speed, in turn determined by number of steps. A single
cell perturbation cannot propagate faster (wider on each side) than the ECA runtime. The study of
the effect of a perturbation after t steps requires the simulation of ECA up to runtime t steps, and
a cell-to-cell comparison against its original evolution is thus computationally expensive. Methods
of gauging the effect of such perturbations without recourse to these 2 processes (simulation and
comparison) are thus relevant

Fig. 2 ECA rule sensitivity analysis (from simple initial condition). Illustration of complexity
change is estimated by BDM (an estimation of program-length). One of the most random-looking
ECA is also the least sensitive to pointmutations, because the resulting space-time evolution remains
in a random-looking state. This appears to be the case for complex rules like 110 as well, but not so
with highly structured fractal-like rules like 105, 90 and 22, all starting from simplest single-black-
cell initial condition
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Fig. 3 As expected, the left side of rule 30 has a greater sensitivity to perturbations than the right
side, from single-black-cell initial condition

Fig. 4 Random block observation times for reconstruction of rule 30 from random observations.
The naïve reconstruction method takes random blocks from the space-time evolution of a discrete
dynamical system and reconstructs the generating rules under assumptions of minimalism (no
redundant local rules) and determinism (each configuration always leads to the same future state)
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Fig. 5 Time cost and BDM Complexity [11] comparison. Time costs of rules with their BDM
Complexity for random initial conditions

For random-looking and complex space-time evolutions, the hash code method
and preforming perturbations has a clear advantage over passive observations (Fig. 8).

We can explore complexity-based methods to reduce the number of observations
needed to reconstruct a rule.

2.1 Hash-Code Reconstruction Method

Without knowing the underlying rule but making assumptions of rule minimality (in
ECA rule space), rule 30would need around 16 randomobservations of 2 consecutive
rows for the ECA rule to be inferred. If the ECA rule space is not assumed, one can
start from a smaller rule space in which collisions will soon be found, as explained
in [6], thereby suggesting that we move to a larger rule space, where by making a
fixed number of observations that we discount we may reach ECA in which rule 30
lives (some, like rule 0, can be described in a smaller rule space). This process is
thus very expensive for the observer, and the question is whether the observer can
guide the observations and even intervene to shorten the process.

After an initial sequence of observations, some hypotheses can be made, which
can be represented by a sequence of possible candidate rules. What needs to be
done is to find which hypothesis fits the data. Assuming we have a “test” t . If
t (observations, rulei ) = True, then we have p (0 < p < 1) possibility of saying
that rulei is the right hypothesis. This relationship can be explained in this hypothesis
network: Fig. 6.
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Fig. 6 Model-driven hypothesis network

Fig. 7 The red region (second and third rows from top to bottom) is the input s of the hash function
H , which is also the data being observed to test the hypothesis {r1, r2, . . . , rn}. The blue region
(fifth row, 4 central cells) is the output of the hash function, i.e., H(s). In the green region (fourth
row, 6 central cells), information can have interactions which make the output more “random”, so
that p′ will be higher

The purpose is to know p. Based onBayes’ theorem, p = P(ri = .rr |t = True) =
P(ri=rr )P(t=True|ri .=rr )

P(t=True) . It is clear that P(t = True|ri = rr ) = 1, and P(ri = rr ) =
1/n. Also we find that P(t = True) = P(ri = rr )P(t = True|ri . = rr ) + P(ri �=
rr )P(t = True|ri �= rr .) = (n−1)(1−p′)

n + 1
n . So, p = 1

n(
(n−1)(1−p′)

n + 1
n )

= 1
(n−1)(1−p′)+1

(Figs. 7, 8 and 9).
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Fig. 8 Individual cases followed by a correlation analysis between complexity and perturbation
speedup across all 88 non-symmetric ECA rules. AccuracyOH P means observation + hash +
perturbation, and AccuracyOH means observation + hash

To increase accuracy, we therefore need to increase p. According to the formula,
there are two ways to increase p.

1. Decrease n;
2. Increase p′.

To decrease n, we need to observe some cells before using the hashmethod, so that
we can make n ∼ 10. To increase p′, we need to increase P(r(ri ) = False|ri �= rr .)

If we make the requirement stronger, which means that even if ri is slightly
different from rr , a coding function cod(ri ) would be significantly different from
cod(rr ), i.e., we need cod(r) be a “hash function”, like MD5, SHA64, etc.
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Fig. 9 The hash approach followed by the hash approach and complexity guided perturbations
leads to a significant improvement for model fitting for the same number of observations

Thus a better hash function will make p′ higher, so that p will be higher, and the
accuracy will be greater.

The reconstruction problem that we consider starts from random block observa-
tion chosen from a space-time evolution starting from a random initial condition.
The problem is equivalent to a “Coupon Collector’s Problem”, consisting of taking
sequences at random and finding how many samples are needed to obtain all block
combinations.

Here we use a simplified model, similar to a mean-field model. We assume, in
each measurement, that there is a possibility p of getting a new kind of sequence.
So the distribution of minimal measurement time T is:

D(T ; p, n) = (
T − 1
n − 1

)pn(1 − p)T−n,

E(D(T ; p, n)) = n/p

where n is the size of the rule space. For example, for ECA, n equals to 8.
Here we conjectured that the expectation of n is lowest only when all kinds of

sequences have the same frequency of appearance. And according to the paper [1],
at this condition, E(T ) = n · H(n), where H(n) is the n-th harmonic number, and
n is the number of different kinds. So p has an upper limit, which means,

n

p
≥ n · H(n),

p ≤ 1

H(n)
.
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Fig. 10 Distribution of measurement times T for four typical rules. Most of them have the same
pattern

For ECA, n = 8, so p ≤ 0.368. Experiments show that for all ECA rules with
random initial conditions, the distributions of T have the same pattern for most ECA
rules (see Fig. 10) that have similar patterns as D(T ). And it also shows a good fit
for most rules.

The result means that the random reconstruction can be considered an “unbal-
anced coupon collector’s problem”, which means that the frequency of appearance
of different consequences is different. So a way to speed up the reconstruction proce-
dure is to balance the frequencies; also, to make the space-time array more random,
or make measurements in an area where there is greater randomness, which connects
to the BDM method. Figure11 shows the average measurement times of all ECA
rules.

For random initial conditions, part of the randomness of the space-time array is
owed to the initial conditions, especially for some linear rules. But previous work
on random conditions has strongly inspired us to work on simple conditions. For
example, we can speed up the reconstruction program by selecting specific parts of
the space-time array guided by algorithmic probability.
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Fig. 11 Average measurement times of ECA rules

3 Enumerating and Sorting Rule Neighbours

A CA consists of a rule of the following type:

f (xr1 , xr2 , . . . , xrk ),

where ri is the i-th neighbour of the cell (including the cell itself), x is the colour of
the space, k is the number of neighbours. To reconstruct CA rules, the first thing to
do is to enumerate all possible rule neighbours, and sort them in a particular way.

In order to start with a simple rule space the program should start with low k
and increase it when necessary. But for a certain k, like k = 2, if the maximum CA
growth (commonly known as the “light speed” of the CA) is 1, then there should be
three different configurations. See Fig. 12.

In Fig. 12, the first and the last one are symmetrical templates with the same
complexity. But the complexity of themiddle local rulemay be different (lower under
some boundary conditions according to BDM). An important aspect to consider is
whether the template needs to be retained, or whether it can just be combined
with .

Fig. 12 Three different rule templates that have two neighbours. The dark cells in the first row are
available cells
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Fig. 13 Dynamic Sensitivities of randomBNswith different p. Let {seed, p, rule} be the definition
of a Cellular Automaton encoding Boolean Network (CABN). Changing p will average number of
links in BNs. It can be found that the dynamic sensitivities decrease when p increases

Under boundary condition assumptions (completing the 3 × 3 square), BDM
determines that has a complexity similar to , so can be combined with

. And has a complexity similar to , so it can be combined with . So to
reconstruct CA rules, experiments shown that blocks with different complexity min-
imise inference time andmodel fit. Figure5 shows that these templates have different
values of algorithmic complexity measured according to the Block Decomposition
Method [11] (Fig. 13).

Template and are symmetrical templates, so in the following experiment,
we follow both procedures.

In the reconstructed template program, the order is: , and
.

The order of the templates was checked by enumerating all possible orders, and
it was found that the order does not have a significant impact. It was also found that
some templates should not be discarded because can strongly affect the experiments’
results.

For example, when rule templates that have zero neighbours (empty templates)
were discarded,meaning that theCAfunction is f (xi−1, xi , xi+1) = Constant(0 or 1),
the omission strongly affected the result. If the program observes evaluations of rule

0 without an empty template, it takes more time to get both and . This shows that

the empty templates are necessary. Another rule template discarded, , would
also reduce the time cost to reconstruct ECA rules, while only adding a few steps in
certain cases. These changes strongly affect the results.
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There are some parameters that need to be determined for this method to work.
First, the minimal observation time tmin. For example, when the program is recon-
structing a rule with 2 neighbours, it needs at least 22 = 4 observations, but to get
enough accuracy, the tmin should be higher. Another parameter to be determined is the
maximal observation time tmax—to limit the time costs while still ensuring enough
accuracy.

The reconstruction starts at a random condition, which means that the program
chooses blocks randomly from a space-time array generated with random conditions.
This is similar to the Coupon Collector’s Problem, which consists of finding out how
many random sequences are needed to complete all the sequences.

The formula of the distribution is too complex, especially when the appearance
frequencies of the sequences are different. Here we use a simplified model, which
is a kind of mean-field model. We assume that with each measurement there is
a possibility p of getting a new kind of sequence. So the distribution of minimal
measurement time T is given by:

D(T ; p, n) = (
T − 1
n − 1

)pn(1 − p)T−n,

E(D(T ; p, n)) = n/p,

D(T ) = n2

p2
− p2n 2F1(n, n; 1; (p − 1)2),

where F is a hypergeometric function, n is the size of the rule space, for example,
for ECA, and n = 8.

Based on the results above, we can let tmin = n/p, and tmax = k
√
D(T ) ≈ ktmin,

which make for parameters with fewer artificial contents.
In this experiment, we use several different space-time array sizes—8, 16, 32, 64,

and 128—with random initial conditions. Two different behaviours have been found;
see Fig. 5. With the growth of the array size, the time cost may increase or decrease.

The reason is that for some rules their dynamics can only be inferred from the
beginning of their space-time evolutions.When the programmakes observations ran-
domly, the time cost will increase, and the accuracy of reconstruction will decrease.
While for other rules, like rule 30, the information about dynamics is spread over the
space-time evolution. When the size increases, the time cost will actually decrease.
Figure11 shows time costs for reconstructing all ECA rules.

As shown in Fig. 14, the space-time dynamics of a BN, can be represented by
the permutation of the nodes and thus its description is not captured uniquely by a
single adjacencymatrix, the reconstructionmethod has thus to have certain flexibility
to capture more fundamental dynamics than those of the change of representation.
This was achieved by finding a discriminator of the adjacency matrix to only take
into consideration the representation that minimises the (BDM) complexity of the
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Fig. 14 A Boolean Network (left) can be defined by three parameters {seed, p, rule}. This figure
illustrates a coding system (right) to describe the dynamics of a Boolean network using a quadratic
list. 0 means AND, 1 means OR, 2 means NAND, 3 means NOR. A random seed and number p is
used to generate a network

final encoding. As shown in Fig. 15, given that every encoding fully reconstructs the
observation/instance of the dynamical system, any other representation with higher
complexity would have been the result of the original complexity and an additional
factor introduced by that other encoding which does not belong to the system itself
and can therefore be discarded.

4 Boolean Networks as Inverse Problems

In Fig. 15, are shown distributions of the network in Fig. 14 (left) corresponding to
each of the space-time encodings (adjacency matrices) displayed in Fig. 14 (right)
and showing similarities in their own internal local distributions (groups of ECA
rules used to characterise each encoding).

The distributions are sorted by the BDM, the encodings (D1, D2, . . . , Dn!), where
n is the size of the Boolean network. D1 has the lowest BDM, which also gives us
the most information about the systems’ dynamics. So D1 was taken as representing
the complexity of this BN’s dynamics.

Network reconstruction is a highly investigated topic in computational biology.
Once equipped with efficient tools to reconstruct a rule from partial random obser-
vations, we apply them to the challenge of reconstructing not the topology of the
Boolean network but the qualitative dynamics of the network. Here, we are interested
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Fig. 15 One challenge is the impact of the encoding of the dynamics of the BN on the model found
explained by the ECA rules sequence distribution

in recovering/reconstructing the dynamics of a network rather than its topological
features.

In Boolean networks, it is not possible to embed the nodes in a geometrical space.
So if the CA space size s is smaller than number N , there will be overlaps. But we
cannot eliminate the overlaps by increasing the CA space size s. For most Boolean
networks, cycle lengths are much shorter than the number of nodes N . According
to Kauffman’s original paper [4], Lc ∼ 0.6 log N , where Lc is the cycle length. So
for our observation, there are about 0.6N log N cells that truly provide information.
But when increasing CA space size s, the number of possible fragments nr increases
exponentially, nr = 2s . In the best case, all observations give different fragments,
but we still only get a very small part η of the rule space η(N ) ∼ (NlogN )/(2N ).
For example, η(3) = 0.41,η(4) = 0.34, η(5) = 0.25, etc.

If η is too small it means we do not have enough observations to reconstruct a
CA. And it can even lead to “over-fitting”, which cannot help us classify BNs.

For the reasons set forth above, here we set the space size s = 3, which is the
ECA rule space.

We can use s ∼ log2(N log N ), so that η ∼ 1. For example, when N = 5, s ∼ 3,
which is an ECA, and when N = 64, s ∼ 8, which means we can choose a 8-size
CA to reconstruct a 64-size BN.

We took one model (ECA) to find generators explaining the behaviour of an
unknown BN to which no access to its own generator is given or assumed. To this
end, a probabilistic dynamic distribution of ECA rules can explain all or part of
the evolution dynamics of the BN as illustrated in Fig. 16. The Bayesian pseudo-
generative model is then the sequence of most probable (ECA) generative rules.
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Fig. 16 ECA rules (x axis) explaining the space-time evolution of a BN

Notice that the representation of the space-time dynamics of a BN is not unique and
is a function of the enumeration of the BN’s nodes, and as such, the ECA rules can
also permute (both in sequential order and the local rules) hence providing a rather
robust description of the BN itself.

5 Conclusion

We have introduced the basics of an inverse-problem Bayesian framework that com-
bines classical and algorithmic probability to find and produce generative (com-
putable) candidate models corresponding to a set of observations compatible with
the evolution of a dynamical system.

The concept was applied to the problem of inverse engineering a network and
causal discovery from both an algorithmic complexity and computational cost/time
perspectives suggesting trade-offs between inference time and complexity as applied
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to the unfolding evolution of an observed system. In otherwords, in inverse problems,
a complexity-guided sampling method (e.g. using templates) is suggested over other
sampling methods including random but also non-complexity based.

We have shown how a set of sequential cellular automata rules can describe
and potentially approximate the evolution of a Boolean network providing a hybrid
statistical and causal inference model that can partially provide both a statistical and
rule-based description of the dynamical system.
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On Fungal Automata

Andrew Adamatzky, Eric Goles, Michail-Antisthenis Tsompanas,
Genaro J. Martínez, Han A. B. Wosten, and Martin Tegelaar

Abstract Fungi are iniquitous creatures capable for adaptation in hush environ-
ments. Recently there is a growing that intelligence of the fungi comparable with
that of slime mould and plans and that fungi sense and process information in a
highly efficient way. As a first ever attempt to formalise informaiton processing in
fungi we developed two cellular automaton models. 1D fungal automata and 2D fun-
gal automata. Both model involve cellular automaton (CA) models of information
dynamics on a single hypha of a fungal mycelium. Such a filament is divided in com-
partments (here also called cells) by septa. These septa are invaginations of the cell
wall and their pores allow for flow of cytoplasm between compartments and hyphae.
The septal pores of the fungal phylum of the Ascomycota can be closed by organelles
called Woronin bodies. Septal closure is increased when the septa become older and
when exposed to stress conditions. Thus, Woronin bodies act as informational flow
valves. The 1D fungal automata is a binary state ternary neighbourhood CA, where
every compartment follows one of the elementary cellular automata (ECA) rules if
its pores are open and either remains in state ‘0’ (first species of fungal automata)
or its previous state (second species of fungal automata) if its pores are closed. The
Woronin bodies closing the pores are also governed byECA rules.We analyse a struc-
ture of the composition space of cell-state transition and pore-state transitions rules,
complexity of fungal automata with just fewWoronin bodies, and exemplify several
important local events in the automaton dynamics. The 2D fungal automata is 2D
CA where communication between neighbouring cells can be blocked on demand.
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We demonstrate computational universality of the fungal automata by implement-
ing sandpile cellular automata circuits there. We reduce the Monotone Circuit Value
Problem to the Fungal Automaton Prediction Problem. We construct families of
wires, cross-overs and gates to prove that the fungal automata are P-complete.

1 Introduction

The fungal kingdom represents organisms colonising all ecological niches [12]
where they play a key role [15, 18, 30, 54]. Fungi can consist of a single cell on
the one side and can form enormous underground networks on the other extreme
[58]. Part of the fungi form microscopic fruit bodies, while others form fruit bodies
weighting up to half a ton [19]. The underground mycelium network can be seen
as a distributed communication and information processing system linking together
trees, fungi andbacteria [11].Mechanisms anddynamics of informationprocessing in
mycelium networks form an unexplored field with just a handful of papers published
related to space exploration by mycelium [31, 32], patterns of electrical activity
of fungi [1, 53, 57] and potential use of fungi as living electronic and computing
devices [2–4]. Filamentous fungi grow by means of hyphae that grow at their tip and
that branch sub-apically. Hyphae may be coenocytic or divided in compartments by
septa. Filamentous fungi in the phylum Ascomycota have porous septa that allow
for cytoplasmic streaming [38, 49]. Woronin bodies plug the pores of these septa
after hyphal wounding to prevent excessive bleeding of cytoplasm [16, 36, 46, 59,
63, 65]. In addition, they plug septa of intact growing hyphae to maintain intra- and
inter-hyphal heterogeneity [8, 9, 60, 60, 61].

Woronin bodies can be located in different hyphal positions (Fig. 1a). When
first formed, Woronin bodies are generally localised to the apex [5, 47, 64]. Sub-
sequently, Woronin bodies are either transported and anchored to the cell cortex
(Neurospora crassa, Sordaria fimicola) or close to the septum (Aspergillus oryzae,
Aspergillus nidulans, Aspergillus fumigatus, Magnaporthe grisea, Fusarium oxys-
porum, Zymoseptoria tritici) until they are translocated to the septal pore due to
cytoplasmic flow or ATP depletion [6, 37, 46, 47, 52, 59, 60, 64, 66]. Woronin
bodies that are not anchored at the cellular cortex or the septum, are located in
the cytoplasm and are highly mobile (Aspergillus fumigatus, Aspergillus nidulans,
Zymoseptoria tritici) [5, 47, 60]. Septal pore occlusion can be induced by bulk cyto-
plasmic flow [60] or developmental [10] and environmental cues, like puncturing of
the cell wall, high temperature, carbon and nitrogen starvation, high osmolarity and
low pH. Interestingly, high environmental pH reduces the proportion of occluded
apical septal pores [61].

Aiming to lay a foundation of an emerging paradigm of fungal intelligence—
distributed sensing and information processing in living mycelium networks—we
decided to develop a formal model of mycelium and investigate a role of Woronin
bodies in potential information dynamics in themycelium.After exploring behaviour
complexity of 1D fungal automata we asked ourselves on whether 2D fungal
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Fig. 1 a A biological scheme of a fragment of a fungal hypha of an ascomycete, where we can see
septa and associated Woronin bodies. b A scheme representing states of Woronin bodies: ‘0’ open,
‘1’ closed

automata are universal. We found that ‘yes’ they are! To demonstrate their com-
putational universality we modify state transition rules of sand pile, or chip firing,
automata [7, 14, 21, 25, 26] to allow a control for moving of sand grains, or chips,
between neighbouring cells. The local control of the interactions between cells is
inspired by a control of cytosol flow control in fungal hyphae [8, 9, 38, 49, 61].
Then we used developed tools of sand pile automata universality [13, 24, 27, 28,
42, 48] to show that functionally complete sets of Boolean gates can be realised in
the fungal automata.

2 1D Fungal Automata

2.1 Fungal Automata M

A fungal automaton is a one-dimensional cellular automaton with binary cell states
and ternary, including central cell, cell neighbourhood, governed by two elementary
cellular automata (ECA) rules, namely the cell state transition rule f and theWoronin
bodies adjustment rule g: M = 〈N, u, Q, f, g〉. Each cell xi has a unique index
i ∈ N. Its state is updated from Q = {0, 1} in discrete time depending of its current
state xti , the states of its left xti−1 and right neighbours xti+1 and the state of cell
x’s Woronin body w. Woronin bodies take states from Q: wt = 1 means Woronin
bodies (Fig. 1) in cell x blocks the pores and the cell has no communication with its
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neighbours, and wt = 0 means that Woronin bodies in cell x do not block the pores.
Woronin bodies update their states g(·), wt+1 = g(u(x)t ), depending on the state of
neighbourhood u(x)t . Cells x update their states by function f (·) if their Woronin
bodies do not block the pores.

Two species of mycelium automata are considered M1, where each cell updates
its state as following:

xt+1 =
{
0 if wt = 1

f (u(x)t ) otherwise

and M2 where each cell updates its state as following:

xt+1 =
{
xt if wt = 1

f (u(x)t ) otherwise

where wt = g(u(x)t ).
State ‘1’ in the cells of array x symbolisesmetabolites, signals exchanged between

cells. Where pores in a cell are open the cell updates its state by ECA rule f :
{0, 1}3 → {0, 1}. In automatonM1, when Woronin bodies block the pores in a cell,
the cell does not update its state and remains in the state ‘0’ and left and right
neighbours of the cells can not detect any ‘cargo’ in this cell. In automaton, M2,
where Woronin bodies block the pores in a cell, the cell does not update its state
and remains in its current state. In real living mycelium glucose and possibly other
metabolites [8] can still cross the septum even when septa are closed by Woronin
bodies, but we can ignore this fact in present abstract model.

Both species are biologically plausible and, thus, will be studied in parallel. The
rules for closing andopeningWoronin bodies are alsoECArules g : {0, 1}3 → {0, 1}.
If g(u(x)t ) = 0 thismeans that pores are open, if g(u(x)t ) = 1Woronin bodies block
the pores. Examples of space-time configurations of both species of M are shown
in Fig. 2.

2.2 Properties of Composition f ◦ g

Predecessor Sets
Let F = {h : {0, 1}3 → {0, 1}} be a set of all ECA functions. Then for any compo-
sition f ◦ g, where f, g ∈ F, can be converted to a single function h ∈ F. For each
h ∈ F we can construct a set P(h) = { f ◦ g ∈ F × F | f ◦ g → h}. The sets P(h)

for each h ∈ F are available online.1

A size of P(h) for each h is shown in Fig. 3c. The functions with largest size of
P(h) are rule 0 in automaton M1 and rule 51 (only neighbourhood configurations
(010, 011, 110, 111 are mapped into 1) in M2.

1 https://figshare.com/s/b7750ee3fe6df7cbe228.

https://figshare.com/s/b7750ee3fe6df7cbe228
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Fig. 2 Examples of space-time dynamics of M . The automata are 103 cells each. Initial configu-
ration is random with probability of a cell x to be in state ‘1’, x0 = 1, equals 0.01. Each automaton
evolved for 103 iterations. Binary values of ECA rules f and g are shown in sub-captions. Rule g
is applied to every iteration starting from 200th. Cells in state ‘0’ are white, in state ‘1’ are black,
cells withWoronin bodies blocking pores are red. Indexes of cells increase from the left to the right,
iterations are increasing from the to the bottom
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Fig. 3 Mapping F × F → F for automaton M1 (a) and M2 (b) is visualised as an array of pixels,
P = (p)0≤ρ f ≤255,0≤ρ f ≤255. An entry at the intersection of any ρ f and ρg is a coloured as follows:
red if pρ f ρg = pρgρ f , blue if ρg = pρgρ f , green if ρ f = pρgρ f . (c) Sizes of P(h) sets for M1,
circle, and M2, solid discs, are shown for every function h apart of rule 0 (M1) and rule 51 (M2)
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Table 1 Characterisations of automaton mapping F × F → F. a Size σ of P(h) vs a number γ of
functions h having set P(h) of size σ . T (b) Sizes of sets P(h) for rules from Wolfram class III.
b Sizes of sets P(h) for rules from Wolfram class IV

Size σ of P(h) vs a number γ of functions h having set P(h) of size σ is shown
for automata M1 and M2 in Table1a.

With regards to Wolfram classification [68], sizes of P(h) for rules from Class III
vary from 9 to 729 inM1 (Table1b). Rule 126 would be the most difficult to obtain
inM1 by composition two ECA rules chosen at random, it has only 9 ‘predecessor’
f ◦ g pairs. Rule 18 would be the easiest, for Class III rules, to be obtained, it has
729 predecessors, in both M1 (Table1b) and M2 (Table1d). In M1, one rule, rule
41, from the class IV has 243 f ◦ g predecessors, and all other rules in that class
have 81 (Table1c). From Class IV rule 54 has the largest number of predecessors in
M2, and thus can be considered as most common (Table1d).

Diagonals
In automatonM1 for any f ∈ F f ◦ f = 0. Assume f : {0, 1}3 → 1 then Woronin
bodies close the pores and, thus, second application of f produces state ‘0’. If f :
{0, 1}3 → 0 then Woronin bodes does not close pores but yet second application of
the f produce state ‘0’.

For automatonM2 a structure of diagonal mapping f ◦ f → h, where f, h ∈ F is
shown in Table2. The set of the diagonal outputs f ◦ f consists of 16 rules: (0, 1, 2,
3), (16, 17, 18, 19), (32, 33, 34, 35), (48, 49, 40, 51). These set of rules can be reduced
to the following rule. Let C(xt ) = [u(x)t = (111)] ∨ [u(x)t = (111)] and B(xt ) =
[u(x)t = (011)] ∨ [u(x)t = (010)]. Then xt = 1 if C(x)t ∨ C(x)t ∧ B(xt ).
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Table 2 Diagonals of automaton M2

f ◦ f f

0 0, 1, 2, 3, 16, 17, 18, 19, 32, 33, 34, 35, 48, 49,
50, 51

1 128, 129, 130, 131, 144, 145, 146, 147, 160,
161, 162, 163, 176, 177, 178, 179

2 64, 65, 66, 67, 80, 81, 82, 83, 96, 97, 98, 99,
112, 113, 114, 115

3 192, 193, 194, 195, 208, 209, 210, 211, 224,
225, 226, 227, 240, 241, 242, 243

16 8, 9, 10, 11, 24, 25, 26, 27, 40, 41, 42, 43, 56,
57, 58, 59

17 136, 137, 138, 139, 152, 153, 154, 155, 168,
169, 170, 171, 184, 185, 186, 187

18 72, 73, 74, 75, 88, 89, 90, 91, 104, 105, 106,
107, 120, 121, 122, 123

19 200, 201, 202, 203, 216, 217, 218, 219, 232,
233, 234, 235, 248, 249, 250, 251

32 4, 5, 6, 7, 20, 21, 22, 23, 36, 37, 38, 39, 52, 53,
54, 55

33 132, 133, 134, 135, 148, 149, 150, 151, 164,
165, 166, 167, 180, 181, 182, 183

34 68, 69, 70, 71, 84, 85, 86, 87, 100, 101, 102,
103, 116, 117, 118, 119

35 196, 197, 198, 199, 212, 213, 214, 215, 228,
229, 230, 231, 244, 245, 246, 247

48 12, 13, 14, 15, 28, 29, 30, 31, 44, 45, 46, 47,
60, 61, 62, 63

49 140, 141, 142, 143, 156, 157, 158, 159, 172,
173, 174, 175, 188, 189, 190, 191

50 76, 77, 78, 79, 92, 93, 94, 95, 108, 109, 110,
111, 124, 125, 126, 127

51 204, 205, 206, 207, 220, 221, 222, 223, 236,
237, 238, 239, 252, 253, 254, 255

Commutativity
In automatonM1, for any f, g ∈ F f ◦ g 
= g ◦ f only if f 
= g. In automatonM2

there are 32768 pairs of functionwhich ◦ is commutative, their distribution visualised
in red in Fig. 3b.

Identities and Zeros
In automatonM1 there are no left or right identities, neither right zeros in 〈F, F, ◦〉.
The only left zero is the rule 0. In automaton M2 there are no identities or zeros at
all.
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Associativity
In automatonM1 there 456976 triples 〈 f, g, h〉 on which operation ◦ is associative:
( f ◦ g) ◦ h = f ◦ (g ◦ h). The ratio of associative triples to the total number of triples
is 0.027237892. There are 104976 associative triples inM2, a ratio of 0.006257057.

2.3 Tuning Complexity: Rule 110

To evaluate on how introduction of Woronin bodies could affect complexity of
automaton evolution, we undertook two series of experiments. In the first series
we used fungal automaton where just one cell has a Woronin body (Fig. 5). In the
second series we employed fungal automaton where regularly positioned cells (but
not all cells of the array) have Woronin bodies.

State transition functions g of Woronin bodies were varied across the whole dia-
pason but the state transition function f of a cell was Rule 110, ρ f = 110. We have
chosen Rule 110 because the rule is proven to be computationally universal [17, 39],
P-complete [51], the rules belong to Wolfram class IV renown for exhibiting com-
plex and non-trivial interactions between travelling localisation [67], rich families
of gliders can be produce in collisions with other gliders [43–45].

We wanted to check how an introduction of Woronin bodies affect dynamics of
most complex space-time developed of Rule 110 automaton. Thus, we evolved the
automata from all possible initial configurations of 8 cells placed near the end of n =
1000 cells array of resting cells and allowing to evolve for 950 iterations. Lempel–Ziv
complexity (compressibility) LZwas evaluated via sizes of space-time configurations
saved as PNG files. This is sufficient because the ‘deflation’ algorithm used in PNG
lossless compression [20, 33, 56] is a variation of the classical Lempel–Ziv 1977
algorithm [69]. Estimates of LZ complexity for each of 8-cell initial configurations
are shown in Fig. 4a. The initial configurations with highest estimated LZ complexity
are 10110001 (decimal 177), 11010001 (209), 10000011 (131), 11111011 (253), see
example of space-time dynamics in Fig. 4b.

We assumed that a cell in the position n − 100 has a Woronin body which can be
activated (Fig. 5), i.e. start updating its state by rule f , after 100th iteration of the
automaton evolution. We then run 950 iteration of automaton evolution for each of
256 Woronin rules and estimated LZ complexity. In experiments withM1 we found
that 128 rules, with even decimal representations, do not affect space time dynamics
of evolution and 128 rules, with even decimal representations, reduce complexity of
the space-time configuration. The key reasons for the complexity reduction (compare
Fig. 4b, c) are cancellation of three gliders at c. 300th iteration and simplification of
the behaviour of glider guns positioned at the tail of the propagating wave-front. In
experiments with M2 128 rules, with even decimal representations, do not change
the space-time configuration of the author. Other 128 rules reduce complexity and
modify space-time configuration by re-arranging the structures of glider guns and
establishing one oscillators at the site surrounding position of the cell with Woronin
body (Fig. 4d).
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Fig. 4 a Estimates of LZ complexity of space-time configurations of ECA Rule 110 without
Woronin bodies. b A space-time configuration of ECA Rule 110 evolving from initial configuration
10110001 (177), no Woronin bodies are activated. c A space-time configuration of M1 Rule 110
evolving from initial configuration 10110001 (177), Woronin body is governed by rule 43; red lines
indicate time when the body was activated and position of the cell with the body. In (bcd), a pixel
in position (i, t) is black if xti = 1
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Fig. 5 Only one cell has has two Woronin bodies by which it can close itself from the other
compartments

In second series of experiments we regularly positioned cells with Woronin bod-
ies along the 1D array: every 50th cell has a Woronin body. Then we evolved fungal
automataM1 andM2 from exactly the same initial random configuration with den-
sity of ‘1’ equal to 0.3. Space-time configuration of the automaton without Woronin
bodies is shown in Fig. 6a. Exemplar of space-time configurations of automata with
Woronin bodies are shown in Fig. 6b–h. As seen in Fig. 7 both species of fungal
automata show similar dynamics of complexity along the Woronin transition func-
tions ordered by their decimal values. The automatonM1 has average LZ complexity
82.2 (σ = 24.6) and the automatonM2 78.4 (σ = 22.1).Woronin rules gwhich gen-
erate most LZ complex space-time configurations are ρg = 133 inM )1 (Fig. 6b) and
ρg = 193 in M )2 (Fig. 6e). The space-time dynamics of the automaton is charac-
terised by a substantial number of gliders guns and gliders (Fig. 6b). Functions being
in the middle of the descending hierarchy of LZ complexity produce space-time
configurations with declined number of travelling localisation and growing domains
of homogeneous states (Fig. 6cg). Automata with Woronin functions at the bottom
of the complexity hierarchy quickly (i.e. after 200–300 iterations) evolve towards
stable, equilibrium states (Fig. 6dh).

2.4 Local Events

Let us consider some local events happening in the fungal automata discussed in
Sect. 2.3: every 50th cell of an array has aWoronin body. Retaining gliders. A glider
can be stopped and converted into a station localisation by a cell with Woronin body.
As exemplified in Fig. 8a, the localisation travelling left was stopped from further
propagation by a cell with Woronin body yet the localisation did not annihilate but
remained stationary.

Register memory.Different substrings of input string (initial configuration)might
lead to different equilibrium configurations achieved in the domains of the array
separated by cells with Woronin bodies. When there is just two types of equilibrium
configurations they be seen as ‘bit up’ and ‘bit down’ and therefore such fungal
automaton can be used a memory register (Fig. 8b).

Reflectors. In many cases cells withWoronin bodies induce local domains of sta-
tionary, sometimes time oscillations, inhomogeneities which might act as reflectors
for travelling localisations. An example is shown in Fig. 8c where several localisa-
tions are repeatedly bouncing between two cells with Woronin bodies.
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Fig. 6 a ECA Rule 110, no Woronin bodies. Space-time evolution of M (b–d) and M (e–h) for
Woronin rules shown in subcaption. LZ complexity of space-time configurations decreases from b
to d and from e to h. Every 50th cell has a Woronin body

Modifiers. Cells with Woronin bodies can act as modifiers of states of gliders
reflected from them and of outcomes of collision between travelling localizations.
In Fig. 8d we can see how a travelling localisation is reflected from the vicinity of
Woronin bodies three times: every time the state of the localisation changes. On
the third reflection the localisation becomes stationary. In the fragment (Fig. 8e) of
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Fig. 7 Estimations of LZ complexity of space-time, 500 cells by 500 iterations, configurations of
M1, discs, and M1, circles, for all Woronin functions g

space-time configuration of automaton with Woronin bodies governed by ρg = 201
of the fragment we can see how two localisations got into contact with each in the
vicinity of the Woronin body and an advanced structure is formed two breathing
stationary localisations act as mirror, and there are streams of travelling localisations
between them. A multi-step chain reaction can be observed in Fig. 8f: there are two
stationary, breathing, localisations at the sites of the cells with Woronin bodies. A
glider is formed on the left stationary localisation. The glider travel to the right and
collide into right breather. In the result of the collision the breath undergoes structural
transitions, emits a glider travelling left and transforms itself into a pair of stationary
breathers. Meantime the newly born glider collided into left breather and changes its
state.

3 2D Fungal Automata

3.1 Two Dimensional Fungal Automata

Filamentous fungi of the phylum Ascomycota have porous septa that allow for cyto-
plasmic streaming throughout hyphae and the mycelium [38, 49]. The pores of dam-
aged hyphae will be plugged by a peroxisome-derived organelle to prevent bleeding
of cytoplasm into the environment [36, 55, 63, 64]. These Woronin bodies can also
plug septa of intact hyphae [9, 60]. The septal pore occlusion in these hyphae can be
triggered by septal ageing and stress conditions [9, 10, 61].

A scheme of the mycelium with Woronin bodies is shown in Fig. 9. An api-
cal compartment has one neighbouring sub-apical compartment, while a sub-apical
compartment has a neighbouring compartment at both ends. Because compartments
can also branch, they can have one or more additional neighbouring compartments.
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Fig. 8 a Localisation travelling left was stopped by the Woronin body. b Analog of a memory
register. c Reflections of travelling localisations from cells with Woronin bodies. d Modification of
glider state in the vicitinity of Woronin bodies. e A fragment of configuration of automaton with
ρg = 29, left cell states, right Woronin bodies states. f Enlarged sub-fragment of the fragment d
where Wonorin body tunes the outcome of the collision. For both automata ρ f = 110
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Fig. 9 Fungal automata. a Biological scheme. b–f Abstract schemes. b All pores are closed, c All
pores are open, d North and East pores are open, e one-dimensional automaton, f an example of an
arbitrary architecture of fungal automata

Thus, the compartment with pores and Woronin bodies is a elementary unit of fun-
gal automata, Fig. 9b–d. From these compartments one can assemble quasi-one-
dimensional, Fig. 9e, and two-dimensional, Fig. 9f, structures.

In this context, let us consider a cellular automaton in the two dimensional grid
Z
2 with the von Neumann neighbourhood, with set of states Q and a global function

F . Each cell of the grid has four sides that could be open or closed. An open side
means that the information (the state) of both cells is shared. If not, when the side is
closed, both sites mutually ignore each other. When every side is open we have the
usual cellular automata model [68]. On the other hand, if sides are open or closed in
some random or periodical waywe get for the same local functions different dynamic
behaviours. In this paper we will consider only “uniform” ways to open-close the
sides. Actually at a given step to open every vertical side (every column of the grid)
or every horizontal side, rows of the array. So the fungal automata model becomes a
tuple FA = 〈Z2, Q, V, F,w〉, where V is the von Neumann neighbourhood, w is a
finite word on the alphabet H, V (horizontal, vertical). Each iteration of automaton
evolution is associated with one letter of H, V .

In thisworkwe focus on “particles” rules. That is to say at each site there are a finite
amount of particles or chips, that, according to a specific rule are disseminated in the
vicinity of a site. Every step is going synchronously, so each site lose and receive
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chips simultaneously. In this context the set of states is Q = {0, 1, 2, ...} ⊂ N, the
number of particles.

3.2 The Chip Firing Automata

The chipfiring automaton, also knowas the sandpilemodel [27, 28, 48], is a particular
case of the above described particle automata 〈Z2, V, Q, F,w〉, with the following
local function. If a site v ∈ Z

2 has xv ≥ 4 chips then:

x ′
v = xv − 4

∀u ∈ Vv ⇒ x ′
u = xu + 1

(1)

where Vv is the von Neumann neihborhood of the site v, x ′
v is update of xv .

By adding the condition of open or close sides of the site proposed here; the rule
changes as follows:

xv ≥ 4 ⇒ x ′
v = xv − α

∀u ∈ Vv such that the gate is open

⇒ x ′
u = xu + 1

(2)

where α is the number of gates that are open.
When the rule is applied in parallel on every site, the new state at a site v is:

x ′
v = xv − α + β

where β is the number of chips which the site v receives from its open and firing
neighbours.

If every side (columns and rows) is always open, thenwe have the usual chip firing
automaton. When a word w of open or close sides is considered, for instance w =
HHVV , at each step we open (or close) the rows or columns of the grid periodically

(HHVV )∗ = HHVV HHVV HHVV ... (3)

3.3 Computational Complexity Notions

In order to study the complexity of an automaton we can analyse a power of the
automaton to simulate Boolean functions, i.e., by selecting specific initial condi-
tions and sites as inputs and outputs to determine the different Boolean functions the
automaton may compute by its dynamics [29]. More Boolean functions are founded,
more complex is the automaton. A similar notion, related to some prediction prob-
lems, appears in the framework of the theory of computational complexity. Essen-
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tially this is similar to trying to determine the computational time related to the size
of a problem, that a Turing Machine take to solve it. In our context, let us consider
the following decision or prediction problem.

PRE:Consider the chipfiring fungal automaton FA = 〈Z2, V, Q, F,w〉, an initial
assignment of chips to every site , x(0) ∈ QZ

2
, an integer number T > 0 of steps of

the automaton and a site v ∈ Z
2, such that xv(0) = 0. Question: Will xv(t) > 0 be

for some t ≤ T ?
Of course one may give an answer by running the automaton at most T steps,

which can be done in a serial computer in polynomial time. But the question is a little
more tricky: could we answer faster than the serial algorithm, ideally, exponentially
faster in polylogarithmic time in a parallel computer with a polynomial number of
processor?

To answer the questions we consider two classes of decision problems, those
belonging to P , the class of problems solved by a polynomial algorithm, and the class
NC , being the problems solved in a parallel computer in O(logqn) steps (polyloga-
rithmic time). This is straightforward that NC ⊆ P because any parallel algorithm
solved in polylogarithmic time can be simulated efficiently in a serial computer. But
the strict inclusion is a very hard open problem (like the well know P = N P).

An other notion from computational complexity related with the possibility that
the two classes melt is P-completeness. A problem is P-complete if it is in the class
P , (that is to say, there exist a polynomial algorithm to solve it) and every other
problem in P can be reduced, by a polynomial transformation, to it. Clearly, if one
of those P-complete problems is in NC , both classes collapsed in one. So, to prove
that a problem is P − Complete gives us an idea of its complexity.

One well known P-complete problem is the Circuit Value Problem, i.e., the eval-
uation of a Boolean Circuit (Boolean function). Roughly because any polynomial
problem solved in a serial computer (a Turing machine) can be represented as a
Boolean circuit. On the other hand, Boolean circuits intuitively are essentially serial
because in order to compute a layer of functions it is necessary to compute previous
layers so in principle it is not clear how to determine the output of the circuit in
parallel. Further, when the circuit is monotonous, i.e., it admits only or and and
gates (no negations) it is also a P-complete problem. This is because negation can
be put in the input (the two bits of the variable 0 and 1) and for the gates which are
a negation, to use the De Morgan laws.

The complexity of the chip firing automata was first studied in [27, 28], where
it was proved that in arbitrary graphs (in particular, non-planar ones) the chip firing
automata areTuringUniversal. To prove this a universal set ofBoolean circuits is built
by using specific automata configurations, so, also PRE is P-complete. In a similar
way, but in a d-dimensional grid,Zd , it was proved in [48] that for d ≥ 3 the problem
is P-complete and the complexity, until today, remains open for a two-dimensional
grid. In [24] it was proved that in a two-dimensional grid and the von Neumann and
Moore neighbourhood it is not possible to cross signals by constructing wires over
quiescent configurations. That can be done only for bigger neighbourhood, so, in
fact, over non planar graphs.
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3.4 Computational Complexity of the Fungal Automata

We will study the computational complexity of the Fungal Sand Pile Automaton, by
proving that for the word w = H 4V 4 = HHHHVVVV , the Prediction Problem,
PRE, is P-complete. That is to say one can not determine an exponentially faster
algorithm to answer unless NC = P .

Proposition 1 For the word H 4V 4 = HHHHVVVV the fungal chip firing
automaton is P-complete.

Proof. Clearly the problem is in P . It suffices to run the automaton at most T steps
and see if the site i changes, which is done in O(T 3): in fact we have to compute
the “cone” between site i , its neighbourhood at step T − 1, T − 2, and so on, until
the initial values in the site in an square (2T − 1) × (2T − 1). So the number of
sites is to consider is 12 + 32 + 52 + · · · . + (2T − 1)2 which is bounded by a cubic
polynomial, so one may compute the state of site i in T 3.

To establish the completeness, we will reduce the Monotone Circuit Value Prob-
lem to the Fungal Automaton Prediction Problem, PRE. That is to say, to establish
specific automaton configurations which simulates a wire, the and and the or gates,
aswell as across- over. This last gadget is important to compute non-planar circuits
in the two dimensional grid.

In the constructions below every cell which is not in the diagram is understood
initially empty, without chips (xi = 0).

To construct the wire let us first see what happen when V 4 is applied in the
particular structure showed in Fig. 10a. The important issue is that the initial site
with 4 chips, after the application of V 4, remains with 4 chips. Only the adjacent
sites and down change their number of chips. Then one applies H 4 to obtain Fig. 10b
which is similar to the initial configuration, shifted to the right Fig. 10c.

To implement and gate Fig. 11 and or gate Fig. 12 we have to connect two wires
(this corresponds to a branching of mycelium). In the and gate two single chips
arrive to a central site with 2 chips, so to trigger firing, threshold 3, the signal has
to arrive. With H the signal continues to the right, thus the output is 1. The or gate
functions similarly to and gate but the central site has 3 chips. There is an unwanted
signal coming back signal but the computation is made to the right.

The cross-over is demonstrated in Fig. 13. Here we apply four V and H steps. In
Fig. 13a we illustrate the crossing of a horizontal signal (by applying H 4). For the
vertical signal the dynamics is similar but V 4 is applied. Figure13b shows the case
when two signals arrive at the junction at the same time.

3.5 Other Words of Automaton Updates

For other shorter words, like the usual chip firing (with sides always open) and the
words in the set B = {HV, H 2V 2, H 3V 3}we are able to construct wires, the or and
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Fig. 10 Wires. a Application of V 4 to the wire. b Application of H4 to the wire. c Final state of
the wire after the application of V 4

the and gates, but we are unable to built a cross-over. In such cases we can only
implement planar circuits with non-crossing wires.

Below we exhibit the different constructions for those words. It is important to
point out that the strategy we used to built the constructions has been by taking as
initial framework a quiescent configuration, i.e. a fixed point of the automaton. In
[24] it has been proved that with this strategy, for a two dimensional grid with the
von Neumann or Moore neighbourhoods it is impossible to cross information, i.e.
to built a cross-over. It seems that is also the case for the words in the set B. In this
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Fig. 11 The and gate for inputs with 4 chips (signal = 1)

Fig. 12 The or gate for one firing input

sense one may say that our result is the best possible: no shortest word allows to
cross information, at least following the quiescent strategy.

In previous situations for the usual chip firing automaton the constructions are
given in Fig. 14. For the word HV : wire is shown in Fig. 15a and the and gate in
Fig. 15. For the word HHVV , the wire is shown in Fig. 16a, the or gate is shown in
Fig. 16a and the and gate in Fig. 16c.
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Fig. 13 The cross-over a with a horizontal signal and b for two signals

Fig. 14 The wire and gates for the classical chip firing automaton: every side is open
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Fig. 15 Operation of the (HV )∗ word. a The wire. b The or gate

4 Discussion

4.1 Discussion for 1D

As a first step towards formalisation of fungal intelligence we introduced one-
dimensional fungal automata operated by two local transition function: one, g, gov-
erns states of Woronin bodies (pores are open or closed), another, f , governs cells
states: ‘0’ and ‘1’. We provided a detailed analysis of the magma 〈 f, g, ◦〉, results of
which might be useful for future designs of computational and language recognition
structures with fungal automata. The magma as a whole does not satisfy any other
property but closure. Chances are high that there are subsets of the magma which
might satisfy conditions of other algebraic structures. A search for such subsets could
be one of the topics of further studies.

Another topic could be an implementation of computational circuits in fungal
automata. For certain combination of f and gwe can find quite sophisticated families
of stationary and travelling localisations and many outcomes of the collisions and
interactions between these localisations, an illustration is shown in Fig. 17. Thus the
target could be, for example, to construct a n-binary full adder which is as compact
in space and time as possible.

The theoretical results reported show that by controlling just a few cells with
Woronin bodies it is possible to drastically change dynamics of the automaton array.
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Fig. 16 Operation of the (HHVV )∗ word. a The wires. b The or gate. c The and gate

Third direction of future studies could be in implemented information processing
in a single hypha. In such a hypothetical experimental setup input strings will be
represented by arrays of illumination and outputs could be patterns of electrical
activity recorded from the mycelium hypha resting on an electrode array.

4.2 Discussion for 2D

Using sandpile, or chip firing, automata we proved that Fungal Automata are com-
putationally universal, i.e., by arranging positions of branching in mycelium it is
possible to calculate any Boolean function.

The structure of Fungal Automata presented can be relaxed by consider the site
firing chips only when it has as many chips as open side. In present model, since
at each step there are only two sides can be open, the firing threshold is 2. In this
situation, the wire and and the or gates can be built as in previous cases but not the
cross-over. Dynamics of the wire is shown in Fig. 18, the and gate in Fig. 19.
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Fig. 17 An example of 5-inputs-7-outputs collision in M2, ρ f = 110, ρg = 40. Every 50th cell
has a Woronin body. Cells state transitions are shown on the left, Woronin bodies state transitions
on the right. A pixel in position (i, t) is black if xti = 1, left, or wt

i = 1, right

Fig. 18 Two chip-firing wire
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Fig. 19 The and gate for firing threshold 2. a One horizontal signal. b One vertical signals. c Two
signals and one output signal

Consider the N × N grid {0, 1, 2, ..., N − 1} × {0, 1, 2, ..., N − 1}. Another pos-
sibility to open-close sides could be the following: at even steps t = 0, 2, ..., open
the even rows and columns and at odd steps, t = 1, 3, 5, ... open the odd rows and
columns.

If we do that we simulate exactly the Margolous partitions (2 × 2 blocks) [40].
This give us another way to determine the universality and, in this case, reversibility
of this specific Fungal Automaton, because with this strategy one may simulate the
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Margolous billiard [41]. Not only that, given any other block partition automaton,
say by p × p blocks there exist a way to open-close the sides which simulates it [22,
23, 34, 50].

A significance of the results presented for future implementations of fungal
automata with living fungal colonies in experimental laboratory conditions is the
following: in our previous research, see details in [3], we used FitzHugh-Nagumo
model to imitate propagationof excitationon themyceliumnetworkof a single colony
of Aspergillus niger. Boolean values are encoded by spikes of extracellular potential.
We represented binary inputs by electrical impulses on a pair of selected electrodes
and we record responses of the colony from sixteen electrodes. We derived sets of
two-inputs-on-output logical gates implementable the fungal colony and analyse dis-
tributions of the gates [3]. Indeed, there were combination of functionally complete
sets of gates, thus computing with travelling spikes is universal. However, in [3], we
made a range of assumptions about origins, mechanisms of propagation and inter-
actions of impulses of electrical activity. If the spikes of electrical potential do not
actually propagate along the mycelium the model might be incorrect. The sandpile
model designed in present paper is more relaxed because does not any auto-catalytic
processes: avalanches can be physically simulated by applying constant currents,
chemical stimulation to mycelium network. This is because the avalanches can be
seen as movement of cytoplasm of products of fungal metabolism.

Whilst thinking about potential experimental implementation initiating avalanches
is just one part of the problem. Selective control of the Woronin bodies might bring
substantial challenges. As previous studies indicate the Woronin bodies can block
the pores due to cytoplasmic flow [60] or mechanical stimulation of the cell wall,
high temperatures, carbon and nitrogen starvation, high osmolarity and low pH [35,
59, 62]. We are unaware of experimental studies on controllingWoronin bodies with
light but we believe this is not impossible.
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