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Abstract. An OR-proof is a protocol that enables a user to prove the
possession of a witness for one of two (or more) statements, without
revealing which one. Abe and Okamoto (CRYPTO 2000) used this tech-
nique to build a partially blind signature scheme whose security is based
on the hardness of the discrete logarithm problem. Inspired by their
approach, we present BlindOR, an efficient blind signature scheme from
OR-proofs based on lattices over modules. Using OR-proofs allows us to
reduce the security of our scheme from the MLWE and MSIS problems,
yielding a much more efficient solution compared to previous works.
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1 Introduction

Blind signature schemes are a fundamental cryptographic primitive. First intro-
duced by Chaum [9] in the context of an anonymous e-cash system, they have
since become an essential building block in many applications such as anony-
mous credentials, e-voting, and blockchain protocols. They have been standard-
ized as ISO/IEC 18370, and were deployed in real-life applications such as
Microsoft’s U-Prove technology and smart card devices produced by Gemalto.

In a blind signature scheme, a user holding a message m interacts with a
signer to generate a blind signature on m under the signer’s secret key. The
scheme is required to satisfy two security properties called blindness and one-
more unforgeability [16,19]. Informally, the first condition means that the signer
gets no information about m during the signing process, while the latter ensures
that the user cannot generate signatures without interacting with the signer.

In an effort to develop practical blind signature schemes from a diverse range
of assumptions (in particular, those conjectured to be secure against quantum
attacks), various schemes based on lattice problems have been proposed. The first
such scheme by Rückert [20] can be seen as an important step in carrying the core
design of classical constructions based on the discrete logarithm problem [19] over
to the lattice setting. The same design principle was then adopted in subsequent
works, e.g., by Alkeilani Alkadri et al. [3,4], where the scheme BLAZE and its
successor BLAZE+ have been proposed and shown to be practical.
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Recently, Hauck et al. [15] pointed out that the proof of the one-more unforge-
ability property, originally by Pointcheval and Stern for a discrete logarithm
based construction [19] and later reproposed by Rückert for his lattice-based
scheme [20], has not been adapted correctly to this new setting. Indeed, the
main idea of the reduction in [19] is to select a secret key sk and then run the
forger with the related public key pk, which represents an instance of a computa-
tionally hard problem that admits more than one solution. In other words, pk is
related to more than one sk, and the forger cannot distinguish which sk is used
by the reduction. Note that it is crucial for the reduction to know a secret key
because, unlike standard signature schemes, the signer cannot be simulated with-
out one (otherwise the scheme would be universally forgeable [19]). After running
the forger and obtaining an element z, the reduction rewinds the forger with the
same random tape and partially different random oracle replies to obtain z′. The
proof in [19] then uses a subtle argument to ensure that z �= z′ with noticeable
probability, which yields a solution to the underlying hard problem.

In lattice-based schemes, the hardness assumption underpinning security is
usually the Short Integer Solution (SIS) problem or its ring variant RSIS. In
this context, after obtaining z and z′, the reduction simply returns z − z′ as a
non-zero solution to (R)SIS. The problem, as discussed in [15], is that Rückert’s
argument is not sufficient to ensure that z �= z′ with high probability, and
further assumptions are required to guarantee that a transcript of the scheme
with a given key sk can be preserved with high probability when switching to a
different valid secret key. Based on this observation, Hauck et al. [15] extended
the modular framework for blind signatures from linear functions given in [14]
to the lattice setting, and provided a proof that covers the missing argument.

Unfortunately, as stated by the authors themselves, their work is mostly
of theoretical interest. Indeed, the solution presented in [15] entails increasing
the parameter sizes, so that their framework applies and yields a correct proof.
In particular, the RSIS-based instantiation given in [15] has public and secret
keys of size 443.75 KB and 4275 KB, respectively, and generates signatures of
size 7915.52 KB. This leaves us in the regrettable position where all known (three-
move) lattice-based blind signature schemes are either not backed by a correct
security proof, or need impractically large parameters to achieve security.

Our Contributions. In this paper we make a significant progress towards con-
structing efficient and at the same time provably secure lattice-based blind sig-
nature schemes. We present BlindOR, a new blind signature scheme based on
lattices over modules. Our scheme uses the OR-technique of Cramer et al. [10],
a feature which allows us to sidestep the missing security argument pointed
out in [15]. At a high level, an OR-proof is a Sigma protocol that proves the
knowledge of a witness for one of two statements, without revealing which one.
Therefore, the public key of our scheme consists of two statements (two instances
of a hard lattice problem), and the secret key includes a witness for one of them.
Consequently and for the first time, the hardness assumption underlying the
public key does not have to “natively” admit multiple solutions, because the
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OR-technique already forces there to be more than one (and thus simulation of
signatures is still possible).

In particular, the public key of BlindOR consists of two instances of the Mod-
ule Learning with Errors (MLWE) problem, which results in a much more efficient
scheme. Signing is carried out by proving the possession of the witness included
in the secret key. A user interacting with the signer blinds the two transcripts
generated by the signer without being able to distinguish for which instance the
signer holds a witness. We capture these blinding steps in a set of algorithms
and show that BlindOR is statistically blind. The one-more unforgeability of our
scheme is proven in the random oracle model (ROM) assuming the hardness of
both MLWE and MSIS (the module version of SIS). The reduction creates one
instance of the hard problem with a witness in order to simulate the signing
oracle, and tries to solve the other instance, which is given to the reduction
as input. That is, the reduction does not know a witness for its input. This is
analogous to the security proof of standard lattice-based signature schemes, and
hence no further conditions are required to ensure the correctness and success of
the reduction with high probability. This is in contrast to previous lattice-based
constructions of blind signatures, as observed in [15].

BlindOR uses techniques from prior works in order to reduce or even remove
the number of restarts inherent in lattice-based schemes. More precisely, it uses
the partitioning and permutation technique introduced in [3]. Given a hash func-
tion taking values in the challenge space of the underlying Sigma protocol, it
allows to blind the hash values without having to carry out any security check
or potential restart. Another advantage of this technique is that it can be used to
construct OR-proofs based on lattice assumptions, because it allows to use a spec-
ified challenge space that has an abelian group structure, a crucial requirement
for OR-proofs. This is in contrast to the typical challenge space used in current
lattice-based schemes, which consists of polynomials from the ring Z[X]/〈Xn+1〉
with coefficients in {−1, 0, 1} and a given Hamming weight. We also use the trees
of commitments technique from [4] to remove the restarts induced by the user
when blinding the signature generated by the signer. We extend this technique
in BlindOR to reduce the potential restarts induced by the signer when comput-
ing signatures, which must be distributed independently from the secret key.

To demonstrate the efficiency of our scheme, we propose concrete parameters
for BlindOR targeting 128 bits of security. The related key and signature sizes, the
communication cost, and a comparison with the corresponding metrics for the
scheme proposed by Hauck et al. [15] are given in Table 1. In summary, although
our scheme requires twice as many public key and signature parts, which is
inherent to using OR-proofs, it yields smaller sizes compared to the provably
secure construction from [15], resulting in a more efficient scheme overall.

We remark that the security of our scheme can easily be extended to the
stronger security notions of selective failure blindness [8] and honest-user unforge-
ability [21]. This is established by signing a commitment to the message instead
of the message itself [12,21]. However, and similar to [15], it is still unclear how
to prove the blindness property under a maliciously generated key pair [11].
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Table 1. A comparison between BlindOR and the scheme introduced in [15] in terms of
key and signature sizes and communication cost. Numbers are given in kilobytes (KB).
The related parameters are given in Table 3 and [15, Figure 9].

Scheme Public key Secret key Signature Communication

BlindOR 10.3 1.7 17.2 375.6

[15] 443.75 4275 7915.52 34037.25

Related Work. Our construction is inspired by the work of Abe and
Okamoto [1], who used OR-proofs to build partially blind signatures with secu-
rity based on the hardness of the discrete logarithm problem. Observe that we
cannot simply convert their scheme to the lattice setting, as this would force us
to use MSIS (instead of MLWE) and result in an inefficient scheme. The change
to MLWE is possible because there is no common information to consider in our
case.

Hauck et al. [15] showed that all lattice-based constructions of blind signa-
tures from Sigma protocols (or canonical identification schemes) prior to their
framework, such as [3,20], do not have a valid security argument. Furthermore,
Alkeilani Alkadri et al. [3] showed that all two-round lattice-based blind signa-
ture schemes based on preimage sampleable trapdoor functions are insecure.

Recently, Agrawal et al. [2] made a step towards practical two-round lattice-
based blind signatures. They improved the two-round construction of Garg
et al. [13] which is based on general complexity assumptions, and degraded it
to rely on the ROM. This allows them to avoid complexity leveraging, the main
source of inefficiency in [13]. However, as pointed out by the authors, there are
some challenges left before this approach becomes practical. For instance, the
scheme requires the homomorphic evaluation of a specific signing algorithm that
relies on the ROM. In practice, this must be instantiated with a cryptographic
hash function that can be evaluated homomorphically. Finding such a function is
still an open problem. We refer to [2, Section 6.3] for more details and discussions
on the limitations of their construction.

2 Preliminaries

Notation. We denote by N, Z, and R the sets of natural numbers, integers,
and real numbers, respectively. If k ∈ N, we let [k] := {1, . . . , k}. For q ∈
N, we write Zq to denote the ring of integers modulo q with representatives
in

[− q
2 , q

2

)∩Z. If n is a fixed power of 2, we define the ring R := Z[X]/〈Xn +1〉
and its quotient Rq := R/qR. Elements in R and Rq are denoted by regular
font letters. Column vectors with coefficients in R or Rq are denoted by bold
lower-case letters, while bold upper-case letters are matrices. We let Ik denote
the identity matrix of dimension k, and T

n
κ the subset of Rq containing all

polynomials with coefficients in {−1, 0, 1} and Hamming weight κ. The �2 and �∞
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norms of an element a =
∑n−1

i=0 aiX
i ∈ R are defined by ‖a‖ := (

∑n−1
i=0 |ai|2)1/2

and ‖a‖∞ := maxi |ai|, respectively. Similarly, for b = (b1, . . . , bk)t ∈ Rk, we
let ‖b‖ := (

∑k
i=1 ‖bi‖2)1/2 and ‖b‖∞ := maxi ‖bi‖∞. All logarithms are to

base 2.
If D is a distribution, we write x ←$ D to denote that x is sampled according

to D. For a finite set S, we also write x ←$ S if x is chosen from the uniform
distribution over S. The statistical distance between two distributions X and Y
over a countable set S is defined by Δ(X,Y ) := 1

2

∑
s∈S |Pr[X = s]−Pr[Y = s]|.

For ε > 0 we say that X and Y are ε-statistically close if Δ(X,Y ) ≤ ε.
We denote the security parameter by λ ∈ N, and abbreviate probabilistic

polynomial-time by PPT and deterministic polynomial-time by DPT. For a
probabilistic algorithm A, we write y ←$ AO(x) to denote that A returns y
when run on input x with access to oracle O, and y ∈ AO(x) if y is a pos-
sible output of AO(x). To make the randomness r ∈ RSA on which A is run
explicit, we use the notation y ← AO(x; r). If A and B are interactive algorithms,
we write (x, y) ←$ 〈A(a),B(b)〉 to denote the joint execution of A and B in an
interactive protocol with private inputs a for A and b for B, as well as private
outputs x for A and y for B. Accordingly, we write A〈·,B(b)〉k

(a) if A can invoke
up to k executions of the protocol with B.

The random oracle model (ROM) [7] is a model of computation where all
occurrences of a hash function are replaced by a random oracle H, i.e., a function
chosen at random from the space of all functions {0, 1}∗ → {0, 1}�H for some �H ∈
N, to which all involved parties have oracle access. This means that, for every
new oracle query, H returns a truly random response from {0, 1}�H , and every
repeated query consistently yields the same output.

Relations, Sigma Protocols, and OR-Proofs

Definition 1. A relation is a tuple R = (R.PGen,R.RSet,R.Gen), where:

R.PGen is the parameter generation algorithm which, on input the security
parameter λ ∈ N, returns public parameters pp.

R.RSet is the relation set, a collection of sets indexed by pp ∈ R.PGen(1λ).
R.Gen is the instance generator algorithm which, on input pp ∈ R.PGen(1λ)

and b ∈ {0, 1}, returns a pair (x,w) ∈ R.RSet(pp) if b = 1 (where x is
called a yes-instance for R w.r.t. pp and w a corresponding witness), and an
element x if b = 0 (called a no-instance for R w.r.t. pp).

We now define the OR-relation ROR on a relation R. Informally, for λ ∈ N and
public parameters pp ∈ R.PGen(1λ), a yes-instance for ROR w.r.t. pp is a pair of
values (x0, x1), each a yes-instance for R w.r.t. pp. A witness for such an instance
is a witness for one of the two coordinates, i.e.a pair (d,w) with d ∈ {0, 1} and w
a witness for xd. In contrast, a no-instance for ROR consists of a pair (x0, x1),
where at least one coordinate is a no-instance for R w.r.t. pp.

Definition 2. Let R be a relation. The OR-relation on R is the relation ROR

whose parameter generation algorithm is ROR.PGen := R.PGen, whose relation
set is ROR.RSet(pp) := {((x0, x1), (d,w)) | (xd, w), (x1−d, ·) ∈ R.Gen(pp, 1)}, and
whose instance generator ROR.Gen is given in Fig. 1.



100 N. Alkeilani Alkadri et al.

Fig. 1. Definition of the instance generator ROR.Gen of the OR-relation on R. Note that
in line 13 we slightly abuse notation: If d′ = 1, we only consider the first component
of the output, and ignore the witness in the second coordinate.

Definition 3. Let R be a relation. A Sigma protocol for R is a tuple of algo-
rithms Σ = (Σ.P, Σ.V, Σ.Sim, Σ.Ext, Σ.ComRec), where:

Σ.P is an interactive algorithm, called prover, that consists of two algorithms
Σ.P = (Σ.P1, Σ.P2), where:
– Σ.P1 is a PPT algorithm which, on input a set of public parameters pp

and an instance-witness pair (x,w), returns a message cm, called the
commitment, and a state stΣ.P.

– Σ.P2 is a DPT algorithm which, on input a set of public parameters pp,
an instance-witness pair (x,w), the state information stΣ.P, and a verifier
message ch, outputs a message rp, called the response.

Σ.V is an interactive algorithm, called verifier, that consists of two algorithms
Σ.V = (Σ.V1, Σ.V2), where:
– Σ.V1 is a PPT algorithm which, on input a set of public parameters pp,

an instance x, and a prover message cm, returns a message ch (called the
challenge) sampled uniformly at random from a finite abelian group C(pp)
(called the challenge space), as well as a state stΣ.V = (cm, ch) consisting
only of the received message and the sampled challenge.

– Σ.V2 is a DPT algorithm which, on input a set of public parameters pp,
an instance x, the state information stΣ.V = (cm, ch), and a prover mes-
sage rp, outputs a pair (b, int) with b ∈ {0, 1} and int ∈ Z. We say that
the verifier accepts the transcript if b = 1, and that it rejects if b = 0.

Σ.Sim is a PPT algorithm, called simulator. On input a set of public param-
eters pp, an instance x, and a challenge ch, it outputs a pair of mes-
sages (cm, rp).

Σ.Ext is a DPT algorithm, called extractor. On input a set of public param-
eters pp, an instance x, and two transcripts (cm, ch, rp) and (cm, ch ′, rp′)
such that ch �= ch ′ and Σ.V2 returns the same output (1, int) in both cases,
Σ.Ext outputs a string w such that (x,w) ∈ R.RSet(pp).
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Σ.ComRec is a DPT algorithm, called commitment recovering algorithm. On
input a set of public parameters pp, an instance x, a challenge ch, and a
response rp, it returns a message cm.

If R is a relation, the Sigma protocols for R we consider must satisfy a few
properties which we briefly describe in the following. The first one is correctness,
saying that an honest protocol execution is likely to be accepted by the verifier.
Next, there is a variant of the zero-knowledge property, where we require that on
input an instance x and a randomly chosen challenge ch, the simulator be able
to provide an authentic-looking transcript. Finally, we have soundness, saying
that if the commitment recovering algorithm succeeds in finding a commitment,
this commitment verifies for the given challenge and response.

We now consider the OR-combination of two Sigma protocols (OR-proof ). It
enables a prover P to show that it knows the witness of one of several statements,
or that one out of many statements is true. Here, we restrict ourselves to the
case where a prover holds two statements (x0, x1) and one witness w for xd,
with d ∈ {0, 1}. The prover’s goal is to convince the verifier that it holds a
witness for one of the two statements, without revealing which one. This problem
was first solved by Cramer et al. [10], and we now recall their construction.

Let R be a relation and Σ0, Σ1 be two Sigma protocols for R. The
construction of [10] allows to combine Σ0 and Σ1 into a new Sigma proto-
col ΣOR = OR[Σ0, Σ1] for the relation ROR. The key idea of the construction
is that the prover ΣOR.P splits the challenge ch received by ΣOR.V into two
random parts ch = ch0 + ch1, and is able to provide accepting transcripts for
both statements x0 and x1 for the respective challenge share. In more detail,
for a given security parameter λ ∈ N, public parameters pp ∈ R.PGen(1λ), and
instance-witness pair ((x0, x1), (d,w)) ∈ ROR.Gen(pp, 1), the execution of ΣOR

proceeds as follows:

(a) The prover ΣOR.P1 starts with computing (cmd, stΣd.P) ←$ Σd.P1(pp, xd, w)
and samples a challenge ch1−d ←$ C(pp). Next, it runs (cm1−d, rp1−d) ←$

Σ1−d.Sim(pp, x1−d, ch1−d) to complete the transcript of x1−d. In case the
simulation fails (i.e.(cm1−d, rp1−d) = (⊥,⊥)), the prover re-runs the simu-
lator. Finally, it sets stΣOR.P ← (stΣd.P, ch1−d, rp1−d) and sends (cm0, cm1)
to the verifier ΣOR.V1.

(b) Upon receiving the commitments (cm0, cm1), ΣOR.V1 samples a random
challenge from the challenge space, i.e.ch ←$ C(pp), and sends it to ΣOR.P2.
Finally, it sets its state to stΣOR.V ← (cm0, cm1, ch).

(c) After receiving the challenge ch, ΣOR.P2 sets chd ← ch − ch1−d and com-
putes a response for xd as rpd ← Σd.P2(pp, xd, w, stΣd.P, chd). In case this
computation fails (i.e.rpd = ⊥), it also sets rp1−d ← ⊥. Otherwise, the
prover sends the split challenges and responses to the verifier.

(d) After receiving (ch0, ch1, rp0, rp1) from the prover, ΣOR.V2 accepts if and
only if the shares satisfy ch = ch0+ch1 and both transcripts verify correctly.

For the remainder of the paper, we are interested in the situation where
a Sigma protocol is combined with itself, i.e., we obtain a new Sigma proto-
col ΣOR = OR[Σ,Σ] for the relation ROR. One can show that this protocol



102 N. Alkeilani Alkadri et al.

inherits many properties of Σ, such as correctness and special honest-verifier
zero-knowledge. An important property of ΣOR is that it is witness indistin-
guishable, meaning that the verifier does not learn which particular witness was
used to generate the proof.

Blind Signatures. We define blind signatures following the exposition of Hauck
et al. [15], where the interaction between signer and user consists of three moves.

Definition 4. A blind signature scheme is a tuple of polynomial-time algo-
rithms BS = (BS.PGen,BS.KGen,BS.S,BS.U,BS.Verify) where:

BS.PGen is a PPT parameter generation algorithm that, on input the security
parameter λ ∈ N, returns a set of public parameters pp. We assume that the
set pp identifies the message space M(pp) of the scheme.

BS.KGen is a PPT key generation algorithm that, on input a set of public param-
eters pp ∈ BS.PGen(1λ), returns a public/secret key pair (pk, sk).

BS.S is an interactive algorithm, called signer, that consists of two algorithms:
– The PPT algorithm BS.S1 takes as input a set of public parameters pp

and a key pair (pk, sk), and returns the signer message s1 and a state stS.
– The DPT algorithm BS.S2 takes as input a set of public parameters pp, a

key pair (pk, sk), the state information stS, and the user message u1, and
returns the next signer message s2.

BS.U is an interactive algorithm, called user, that consists of two algorithms:
– The PPT algorithm BS.U1 takes as input a set of public parameters pp,

a public key pk, a message m ∈ M(pp), and a signer message s1, and
returns a user message u1 and a state stU.

– The DPT algorithm BS.U2 takes as input a set of public parameters pp,
a public key pk, a message m, a user state stU, and a signer message s2,
and outputs a signature sig. We let sig = ⊥ denote failure.

BS.Verify is a DPT verification algorithm that, upon receiving a set of public
parameters pp, a public key pk, a message m, and a signature sig as input,
outputs 1 if the signature is valid and 0 otherwise.

Let pp ∈ BS.PGen(1λ). We say that BS is corrBS-correct w.r.t. pp if BS.Verify
validates honestly signed messages under honestly created keys with probability
at least 1 − corrBS. The security of blind signatures is defined by the notions
blindness and one-more unforgeability [16,19].

Definition 5. Let BS be a blind signature scheme, λ ∈ N and pp ∈ BS.PGen(1λ).
We say that BS is (t, ε)-blind w.r.t. pp if, for every adversarial signer S∗ run-
ning in time at most t and working in modes find, issue, and guess, we have
AdvBlind

BS,S∗(pp) := 2 · |Pr[ExpBlind
BS,S∗(pp) = 1] − 1

2 | ≤ ε, where the game ExpBlind
BS,S∗

is depicted in Fig. 2. BS is ε-statistically blind if it is (t, ε)-blind for every t.

Definition 6. Let BS be a blind signature scheme, λ ∈ N and pp ∈ BS.PGen(1λ).
We say that BS is (t, qSign, ε)-one-more unforgeable w.r.t. pp if, for every adver-
sarial user U∗ running in time at most t and making at most qSign signing
queries, we have AdvOMUF

BS,U∗ (pp) := Pr[ExpOMUF
BS,U∗ (pp) = 1] ≤ ε, where the

game ExpOMUF
BS,U∗ is depicted in Fig. 2.



BlindOR: An Efficient Lattice-Based Blind Signature Scheme 103

Fig. 2. Definition of the experiments ExpBlind
BS,S∗ and ExpOMUF

BS,U∗ .

Lattices and Gaussians

Definition 7. Let L ⊂ R
m be a lattice, σ ∈ R>0, and c ∈ R

m. The discrete
Gaussian distribution over L with standard deviation σ and center c is the prob-
ability distribution DL,σ,c which assigns to every x ∈ L the probability of occur-
rence given by DL,σ,c(x) := ρσ,c(x)/ρσ,c(L), where ρσ,c(x) := exp(−‖x−c‖2

2σ2 )
and ρσ,c(L) :=

∑
x∈L ρσ,c(x). We will omit the subscript c when c = 0.

Next we recall a special version of the rejection sampling lemma related to
the discrete Gaussian distribution [18, Theorem 4.6].

Lemma 8. Let T ∈ R>0, and define V := {v ∈ Z
m | ‖v‖ ≤ T}. Let σ := αT for

some α ∈ R>0, and let h : V → R be a probability distribution. Then there exists
a constant M ∈ R>0 such that exp( 12α + 1

2α2 ) ≤ M , and such that the following
two algorithms are within statistical distance of at most 2−100/M :

(a) v ←$ h, z ←$ DZm,σ,v, output (z,v) with probability DZm,σ(z)
M ·DZm,σ,v(z)

, and ⊥
otherwise.

(b) v ←$ h, z ←$ DZm,σ, output (z,v) with probability 1/M , and ⊥ otherwise.

Moreover, the probability that the first algorithm returns a value different from ⊥
is at least 1−2−100

M .

We let Rej denote an algorithm that carries out rejection sampling on z,
where z ←$ DZm,σ,v, with v ∈ Z

m such that ‖v‖ ≤ T , and σ = αT . It outputs 1
if z is accepted and 0 if rejected.

Finally, we recall the definitions of the two lattice problems relevant to our
work, the Module Short Integer Solution (MSIS) and the decisional Module
Learning With Errors (D-MLWE) problems. In both cases, we assume that there
is an algorithm that, on input 1λ, generates a set of public parameters pp. Note
that D-MLWE can be defined w.r.t. an arbitrary distribution; here we only focus
on the case where the witness is sampled from the Gaussian distribution.
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Fig. 3. Definition of the experiments ExpMSIS
A∗ and ExpD-MLWE

D∗ .

Definition 9. Let pp = (n, q, k1, k2, β), where n, q, k1, k2 ∈ Z>0, and β ∈ R>0.
We say that the Hermite normal form of the module short integer solution prob-
lem (MSIS) is (t, ε)-hard w.r.t. pp if, for every algorithm A∗ running in time
at most t, we have AdvMSIS

A∗ (pp) := Pr[ExpMSIS
A∗ (pp) = 1] ≤ ε, where the

game ExpMSIS
A∗ is depicted in Fig. 3.

Definition 10. Let pp = (n, q, k1, k2, σ,A), where n, q, k1, k2 ∈ Z>0, σ ∈ R>0,
and A ←$ Rk1×k2

q . We say that the decisional module learning with errors prob-
lem (D-MLWE) is (t, ε)-hard w.r.t. pp if, for every algorithm A∗ running in time
at most t, we have AdvD-MLWE

A∗ (pp) := 2 · |Pr[ExpD-MLWE
A∗ (pp) = 1] − 1

2 | ≤ ε,
where the game ExpD-MLWE

A∗ is depicted in Fig. 3.

Additional Preliminaries. In the full version of this paper [5] we provide
a description of the partitioning and permutation technique [3], trees of com-
mitments technique [4], and a minor modified version of the general forking
lemma [6], which is used in the security proof of BlindOR. Here, we only give the
required definitions.

We define by T := {(−1)b ·Xi |b ∈ {0, 1}, i ∈ Z} the set of signed permutation
polynomials, which represent a rotation multiplied by a sign. The set T has
an abelian group structure with respect to multiplication in R. The inverse
of any p = (−1)b · Xi ∈ T is given by p−1 = (−1)1−b · Xn−i ∈ T. When
constructing OR-proofs, we will use the abelian group T

κ as the challenge space
rather than T

n
κ, since the latter does not have a group structure.

Let F : {0, 1}∗ → {0, 1}�F be a cryptographic hash function, where �F ≥ 2λ
for F to be collision resistant. We consider the following algorithms:

HashTree is an algorithm that computes an (unbalanced) binary hash tree of
height h ≥ 1. On input � ≤ 2h strings v0, . . . , v�−1, it returns a pair (root , tree),
where root is the root of the hash tree whose leaves are hashes of v0, . . . , v�−1,
and tree is the sequence of all the other nodes in the tree.

BuildAuth is an algorithm that, on input an index 0 ≤ k ≤ � − 1, a sequence of
nodes tree, and a height h, returns the authentication path auth for k.

RootCalc is an algorithm that computes the root of a hash tree given a leaf and
its authentication path.
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3 BlindOR: a New Blind Signature Scheme

Sigma Protocol. In lattice-based cryptography, it is common to prove in zero-
knowledge the possession of a witness s with small entries such that b = As,
given a matrix A and a vector b over some ring (typically Zq or Rq). One app-
roach to do so is the so-called Fiat-Shamir with Aborts technique [17]. However,
rather than proving knowledge of s itself, this method allows to prove knowl-
edge of a pair (s̄, c̄) satisfying bc̄ = As̄, where the entries of s̄ are still small but
slightly larger than those of s, and c̄ is small as well. More precisely, the Fiat-
Shamir with Aborts technique allows to prove possession of a witness of the
form (s̄, c̄) ∈ B1 × B2, where B1 and B2 are some predefined sets, even though
the prover actually holds a witness of the form (s, 1) ∈ B′

1 ×B2, where B′
1 ⊆ B1.

This relaxation is known to be sufficient for many cryptographic applications,
e.g., digital signatures [18]. Here we extend this line of applications to blind
signatures.

BlindOR is built on a variant of the Sigma protocol introduced in [17], so we
briefly recall this construction before presenting our modified protocol. Given
a public matrix A ∈ Rk1×k2

q and an instance b ∈ Rk1
q , the prover holds a

witness (s, 1) ∈ B′
1 × B2 ⊆ Rk1+k2 × Rq such that b = [Ik1 | A] · s (mod q). An

execution of the protocol allows him to prove knowledge of a witness (s̄, c̄) ∈
B1 × B2, with B′

1 ⊆ B1 ⊆ Rk1+k2 , such that bc̄ = [Ik1 | A] · s̄ (mod q). The
commitment message is given by v = [Ik1 |A] ·y (mod q), where y is a masking
vector with small entries. Upon receiving a challenge c ∈ T

n
κ, the response is

computed as z = y + sc, and is sent to the verifier only if it follows a specified
distribution, typically the Gaussian distribution Dk1+k2

Zn,σ for some σ > 0 or the
uniform distribution over a small subset of Rk1+k2 . This ensures that y masks
the secret-related term sc and that z is independently distributed from s. If z
does not follow the target distribution, the prover restarts the protocol with a
fresh y. The verifier accepts if v = [Ik1 |A]·z−bc (mod q) and if ‖z‖p is bounded
by some predefined value. Note that p ∈ {2,∞}, depending on the distribution
of z.

We now turn our attention to our modified Sigma protocol, built on top of the
protocol recalled above, and start by introducing the relation R it is associated
to. The algorithm R.PGen generates a set of public parameters of the form

pp = (1λ, n, k1, k2, q, ω, κ, σ′, σ∗, S,Bs, Bz∗ , Bz, δ
∗,A) ←$ R.PGen(1λ) ,

subject to the constraints given in Table 2, where the matrix A ∈ Rk1×k2
q fol-

lows the uniform distribution. In Table 3 we propose a concrete tuple of such
parameters targeting 128 bits of security. The relation set is then given by

R.RSet(pp) :=
{
(b, (s̄, c̄)) ∈ Rk1

q × (Rk1+k2 × Rκ
q )

∣
∣
∣ (bc̄ = [Ik1 | A] · s̄ (mod q))

∧ (c̄ = (c̄1, . . . , c̄κ) ∈ C) ∧ (c̄ =
κ∑

j=1

c̄j) ∧ (‖s̄‖ ≤ 2Bz)
}

, (1)
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where C = {c− c′ = (c1 − c′
1, . . . , cκ − c′

κ) | c, c′ ∈ T
κ, c �= c′}, and the instance

generator is given in Fig. 4. The actual witness the prover possesses is of the
form (s, 1), where ‖s‖ ≤ Bs < Bz and b = [Ik1 | A] · s (mod q). The challenge
space of the protocol is T

κ, and its other algorithms are given in Fig. 4.
At a high level, the protocol can be seen as a generalized version of the one

given in [17] and briefly recalled above. In particular, it is optimized to work
for BlindOR. Rather than computing only one commitment to a masking vector
in Σ.P1, the prover computes commitments to ω ≥ 1 such vectors and sends
them to the verifier all at once. Choosing ω > 1 allows to reduce the number of
restarts, since the chance of masking the secret-related term without restarting
the protocol is increased. More concretely, increasing ω allows to compute a
response such that there is no need to trigger a protocol restart with some
fixed probability. The masking vectors are chosen according to the Gaussian
distribution Dk1+k2

Zn,σ∗ . Upon receiving the challenge c ∈ T
κ, the prover sends

the first response z for which rejection sampling accepts, i.e., for the masking
vector y(i) such that Rej(pp, z) = 1 and i is chosen from the uniform distribution
over the set T ⊆ {0, . . . , ω−1}. The random choice of the index i ensures that the
simulator Σ.Sim returns (v, z) �= (⊥,⊥) with the same probability as the prover.
Note that each of the ω commitments consists of κ components, where κ defines
the challenge space T

κ. This allows to use the partitioning and permutation
technique in BlindOR. To verify a transcript (v, c, z), the verifier first finds out
which of the ω commitments is related to the response. The index i of the
corresponding commitment is part of the verifier’s output.

Theorem 11. Given the parameters in Table 2, the protocol depicted in Fig. 4
is a Sigma protocol for relation R given in Eq. (1).

The proof is provided in the full version of this paper [5]. We remark that
when constructing the Sigma protocol ΣOR = OR[Σ,Σ], where Σ is the protocol
introduced above, we must consider the group operation defined on the challenge
space T

κ. More precisely, ΣOR.P1 samples c1−d = (c1,1−d, . . . , cκ,1−d) ←$ T
κ

and then runs Σ1−d.Sim on c1−d. Upon receiving a challenge c = (c1, . . . , cκ)
from ΣOR.V1, ΣOR.P2 computes cd = (c1c−1

1,1−d, . . . , cκc−1
κ,1−d) and runs Σd.P2

on cd. Therefore, we have c = cd · c1−d = (c1,dc1,1−d, . . . , cκ,dcκ,1−d).

Description of BlindOR. Let BS be a blind signature scheme as defined
in Sect. 2. Recall how signing and verification of such a scheme works. The signer
computes and sends a commitment cm∗ to the user. The user blinds cm∗ to
obtain a blind commitment cm and computes a challenge ch, which is generated
by evaluating a hash function H on input (cm,m), i.e.ch = H(cm,m) with m
being a message. After that, the user unblinds ch to obtain a challenge ch∗

and sends it to the signer. The signer computes a response rp∗ and sends it
back to the user. Finally, the user blinds rp∗ to obtain a blind response rp
and outputs sig = (ch, rp). Verifying the validity of sig is established by com-
puting a commitment cm corresponding to ch and rp, and then checking if ch
matches H(cm,m). Observe that while the steps carried out by the signer are
actually what a prover in a Sigma protocol does when proving the possession of



BlindOR: An Efficient Lattice-Based Blind Signature Scheme 107

Fig. 4. The Sigma protocol underlying BlindOR. Prover restarts Σ if Σ.P2 returns ⊥.
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a witness for a statement, the steps performed by the user consist of blinding
the transcript (cm∗, ch∗, rp∗) during interaction. In BlindOR, we capture these
blinding steps by algorithms Com,Cha, and Rsp, which we describe next.

For the remainder of this section we let Σ be the Sigma protocol depicted
in Fig. 4. Furthermore, let h = �log(ω�)� and define the bijective map-
ping IntIdx : {0, . . . , ω − 1} × {0, . . . , � − 1} → {0, . . . , ω� − 1}, (i, k) �→ k + i�.
IntIdx converts the pair (i, k) to a unique positive integer. This is used in BlindOR
to build authentication paths via the algorithm BuildAuth. Let pp be a set of
public parameters for BlindOR and x = b ∈ Rk1

q be an instance for R. We define
the following algorithms, which are formally described in Fig. 5:

Com is a PPT algorithm that, on input pp, x, and a commitment cm∗ = v∗ gener-
ated by Σ.P1, returns a blind commitment cm = root and a state (p, tree, e).

Cha is a DPT algorithm that, on input pp, a randomness p ∈ T
κ, a chal-

lenge ch∗ = c∗ ∈ T
κ, and an auxiliary bit b ∈ {0, 1}, returns a chal-

lenge ch = c ∈ T
κ. Observe that b determines if c∗ will be blinded using p or

using its inverse with respect to the group operation defined on T
κ.

Rsp is a DPT algorithm that, on input pp, a state (p, tree, e), a response rp∗ =
z∗ generated by Σ.P2, and an integer i ∈ {0, . . . , ω − 1}, returns a blind
response rp = (z, auth), where rp = (⊥,⊥) is possible.

Rec is a DPT algorithm that, on input pp, the statement x, a challenge ch, and
a response rp, returns a commitment cm, where cm = ⊥ is possible.

Note that the blinding algorithms depicted in Fig. 5 can be seen as a general-
ized version of the blinding steps implicitly presented in the lattice-based blind
signature scheme BLAZE+ [4]. Unlike BLAZE+, the algorithms shown in Fig. 5
are defined for lattices over modules rather than over rings. This complies with
the module structure of Σ and allows for more flexibility when choosing concrete
parameters. Furthermore, these blinding algorithms employ the partitioning and
permutation technique, which allows to use the abelian group T

κ as a challenge
space rather than the set T

n
κ, which does not have a group structure. Moreover,

the algorithm Com blinds ω commitments v∗(0), . . . ,v∗(ω−1) rather than only
one commitment generated by Σ.P1. More precisely, the trees of commitments
technique employed in BLAZE+ is extended to further include ω commitments
created by the prover. These ω commitments are then combined with � com-
mitments generated within Com to compute the root related to a tree of ω�
commitments. We require � to be chosen large enough so that Rsp returns a
blind response (z, auth) = (⊥,⊥) with probability close to zero, e.g., 2−80. This
is crucial for BlindOR since otherwise, we would need an extra move between the
signer and user, which would allow the user to request a restart of the signing
protocol in case the algorithm IterateRej returns (⊥,⊥). This extra move would
increase the communication complexity and force the signer to carry out almost
all computations performed by the user before triggering a protocol restart. More-
over, this extra move would not allow the use of Gaussian distributed masking
vectors e since a blind signature could be correctly verified even if rejection sam-
pling does not accept. This would enable the user to request a protocol restart
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Fig. 5. A formal description of algorithms Com,Cha,Rsp, and Rec.

and obtain two different signatures. The advantage of using the Gaussian dis-
tribution for masking is that it allows to generate blind signatures with a size
smaller than signatures generated using masking vectors that are uniformly dis-
tributed over a small subset of R.

Next, we describe BlindOR. Let ΣOR = OR[Σ,Σ] and F : {0, 1}∗ → {0, 1}�F ,
H : {0, 1}∗ → T

κ be hash functions, where �F ≥ 2λ and T
κ is the challenge space

of Σ. The algorithm BS.PGen generates and returns a set of public parameters
pp = (1λ, n, k1, k2, q, ω, �, h, κ, σ′, σ∗, σ, S,M,Bs, Bz∗ , Bz, �F,A). The description
of the parameters is summarized in Table 2. The matrix A is chosen from the uni-
form distribution over Rk1×k2

q . We remark that pp includes the public parameters
of the relation R for which Σ is defined, i.e., BS.PGen may first run R.PGen(1λ)
and then generates the remaining parameters of the scheme. For simplicity, the
input of the algorithms of Σ includes pp. The remaining algorithms of BlindOR
are formalized in Fig. 6.

In Table 3, we propose concrete parameters for BlindOR targeting 128 bits of
security. Next, we state the correctness, blindness, and one-more unforgeability
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Fig. 6. A formal description of BlindOR. Signer restarts the protocol if (z∗
0, z

∗
1) = (⊥, ⊥).

of BlindOR. We provide the description of the parameter selection as well as the
proof of correctness in the full version of this paper [5].

Theorem 12. Given the parameters in Table 2, BlindOR is corrBS-correct w.r.t.
pp, where corrBS = δ∗+2ε∗+2δ+2ε, δ∗ is the probability that algorithm ΣOR.P2

returns ⊥, ε∗ is the probability that algorithm Σ.V2 returns (0, i), δ is the prob-
ability that algorithm Rsp returns ⊥, and ε is the probability that Rec returns ⊥.

Theorem 13. Let F : {0, 1}∗ → {0, 1}�F and H : {0, 1}∗ → T
κ be two hash func-

tions modeled as random oracles. Given the parameters in Table 2, BlindOR is ε-
statistically blind w.r.t. pp in the ROM, where ε = max{∗}(2n)−κ, 2−100/U .

Proof. Let S∗ be an adversarial signer in the blindness experiment ExpBlind
BS,S∗

defined in Fig. 2. Then, S∗ selects two messages m0,m1 and interacts with the
honest user twice. The goal is to show that after both interactions, the messages
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Table 2. A review of the parameters of BlindOR.

Parameter Description Bounds

n, k1, k2 Dimension n = 2n′
, n′, k1, k2 ∈ Z≥1

q Modulus prime, q = 2p + 1 (mod 4p), n ≥ p > 1, p = 2p′
,

p′ ∈ Z≥1, q1/p > 2κ

ω, � No. masking vectors ω, � ∈ Z≥1

h Tree height h = �log(ω�)�
κ Specifies the set T

κ |Tκ| = (2n)κ ≥ 2λ

σ′ Standard deviation of in sk σ′ > 0

σ∗ Standard deviation in Σ σ∗ = α∗√
κBs, S = exp( 12

α∗ + 1
2α∗2 ),

(1 − 1−2−100

S
)ω ≤ δ∗, δ∗ > 0

σ Standard deviation in BS.U σ = αη
Bz∗
η∗ , U = exp( 12

α
+ 1

2α2 ),

(1 − 1−2−100

U
)� ≤ δ, δ > 0

M No. restarts of BS.S M = 1/(1 − δ∗)

Bs Bound of ‖s‖ in sk Bs = η′σ′√(k1 + k2)n, η′ > 0

Bz∗ Bound of ‖z‖ in Σ Bz∗ = η∗σ∗√
(k1 + k2)κn, η∗ > 0

Bz Bound of ‖z‖ in BS.U Bz = ησ
√

(k1 + k2)n, η > 0

�F Output length of F �F ≥ 2λ

Table 3. Concrete parameters of BlindOR targeting 128 bits of security.

n k1 k2 q ω � h κ σ′ α∗ σ∗ α σ M �F

256 5 4 ≈ 233 1 8 3 15 4 11 8344 41 71230016 3 384

output by the user, i.e., two blind challenges of the form c∗ ∈ T
κ together

with two blind signatures of the form sig = (c0, c1, z0, z1, auth0, auth1), are
independently distributed and do not leak any information about the signed
messages and the respective interaction.

The authentication paths auth0, auth1 include hash values that are uniformly
distributed over {0, 1}�F . The challenge c∗ as well as the signature part (c0, c1)
are uniformly distributed over T

κ, and hence they do not leak any information.
Moreover, [3, Lemma 4] ensures that c∗ is independently distributed from c =
c0 · c1, and S∗ can link c to the correct c∗ only with probability (2n)−κ over
guessing. The blind vectors z0, z1 have the form z = e+

∑κ
j=1 z

∗
jpj (see Fig. 5).

By Lemma 8, both vectors completely mask
∑κ

j=1 z
∗
jpj and are independently

distributed within statistical distance of 2−100/U from Dk1+k2
Zn,σ .

Finally, if a protocol restart is triggered by S∗, then BS.U generates fresh
random elements. Therefore, the protocol restarts are independent of each other,
and hence S∗ does not get any information about the message being signed. ��
Theorem 14. Let F : {0, 1}∗ → {0, 1}�F and H : {0, 1}∗ → T

κ be two hash func-
tions modeled as random oracles. Given the parameters in Table 2, BlindOR
is (t, qSign, qF, qH, ε)-one-more unforgeable w.r.t. pp in the ROM if D-MLWE
is (t′, ε′)-hard w.r.t. ppMLWE = (n, q, k1, k2, σ

′,A) and MSIS is (t′′, ε′′)-hard w.r.t.
ppMSIS = (n, q, k1, k2+1, 2

√
B2

z + κ2). More precisely, if there exists a forger A∗



112 N. Alkeilani Alkadri et al.

against BlindOR w.r.t. pp that returns qSign + 1 blind signatures in time t and
with probability ε, and after making qF, qH queries to F,H, respectively, then A∗

can be used to solve D-MLWE w.r.t. ppMLWE in time t′ ≈ t and advantage ε′ ≈ ε,
or A∗ can be used to solve MSIS w.r.t. ppMSIS in time t′′ ≈ 2t and probability

ε′′ ≈ (
1
2

− ε′) · ( 1
qSign + 1

) · acc · ( acc
(qSign + 1)ω�

− 1
|Tκ| ) ,

where acc = (ε − q2
F+qF
2�F

− qSign+1
|Tκ| )

/
q

qSign+1
H .

Proof. First we observe that the hardness of D-MLWE is required to protect
against key recovery attacks, i.e., being able to determine the yes-instance
of MLWE included in the public key pk = (b0,b1) allows to compute the
secret key, and hence forgeries. Therefore, in what follows we assume the hard-
ness of D-MLWE w.r.t. ppMLWE, and construct a reduction algorithm R that
solves MSIS w.r.t. ppMSIS as given in the theorem statement.

Given ppMSIS and a matrix A′ ∈ R
k1×(k2+1)
q , R chooses a bit d ←$ {0, 1}, and

writes A′ = [A | b1−d] ∈ Rk1×k2
q × Rk1

q . Then, it generates the remaining public
parameters pp of BlindOR, and sets C = {c1, . . . , cqH}, where c1, . . . , cqH ←$ T

κ.
Afterwards, R runs R.Gen(pp, 1) to obtain (bd, s). Then, R sets pk = (b0,b1),
sk = (d, s), and runs A∗ on input (pp, pk). The random oracle and signing queries
that A∗ make are answered by R as follows:

Random Oracle Query. R maintains a list LH initialized by the empty set. It
stores pairs of queries to H and their answers. If H was previously queried
on some input, then R looks up its entry in LH and returns its answer c.
Otherwise, it picks the first unused c ∈ C and updates the list. Furthermore,
R initializes an empty list LF to store pairs of queries to F and their answers.
The queries to F are answered in a way that excludes collisions and chains.
Excluding collisions rules out queries x �= x′ such that F(x) = F(x′), and
excluding chains guarantees that the query F(F(x)) will not be made before
the query F(x). This ensures that each node output by HashTree has a unique
preimage, and prevents spanning hash trees with cycles. Simulating F this
way is within statistical distance of at most q2

F+qF
2�F

from an oracle that allows
collisions and chains.

Signature Query. Upon receiving a signature query from A∗, R runs the sign-
ing protocol of BlindOR. Furthermore, R updates both lists LH and LF accord-
ingly.

After qSign successful invocations, A∗ returns qSign + 1 pairs of distinct messages
and their signatures, where one of these pairs is not generated during the inter-
action. If H was not programmed or queried during invocation of A∗, then A∗

produces a c ∈ T
κ that validates correctly with probability 1/|Tκ|. Therefore,

the probability that A∗ succeeds in a forgery such that all qSign + 1 signatures
correspond to random oracle queries made by A∗ is at least ε − qSign+1

|Tκ| .
Afterwards, R guesses an index i∗ ∈ [qSign + 1] such that ci∗ =

cj∗ for some j∗ ∈ [qH]. Then, R records the pair (mi∗ , sig i∗ =
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(c0, c1, z0, z1, auth0, auth1)) and invokes A∗ again with the same random
tape and the random oracle queries C ′ = {c1, . . . , cj∗−1, c′

j∗ , . . . , c′
qH

},
where c′

j∗ , . . . , c′
qH

∈ T
κ are freshly generated by R. After rewinding, A∗

returns qSign+1 pairs of distinct messages and their valid signatures. The poten-
tial two valid forgeries (before and after rewinding) output by A∗ at index i∗

have the form

(m, (c0, c1, z0, z1, auth0, auth1)) and (m ′, (∗)c′
0, c

′
1, z

′
0, z

′
1, auth

′
0, auth

′
1) ,

where ci = (c1,i, . . . , cκ,i) and c′
i = (∗)c′

1,i, . . . , c
′
κ,i, i ∈ {0, 1}. By the verification

algorithm we obtain

w1−d = [Ik1 | A] · z1−d − b1−dc1−d (mod q) ,

w′
1−d = [Ik1 | A] · z′

1−d − b1−dc
′
1−d (mod q) ,

root1−d = RootCalc(w1−d, auth1−d), root ′
1−d = RootCalc(w′

1−d, auth
′
1−d) ,

c0 · c1 = c = H(root0, root1,m), c′
0 · c′

1 = c′ = H(root ′
0, root

′
1,m

′) ,

By the forking lemma (see the full version [5]) we have root0 = root ′
0, root1 =

root ′
1, m = m ′, c �= c′, and k1−d = k′

1−d, where k1−d, k
′
1−d ∈ {0, . . . , ω� − 1} are

the indices included in auth1−d, auth ′
1−d, respectively. Observe that simulating

the hash queries to F as described above ensures that both auth1−d, auth ′
1−d

include the same sequence of hash values, and hence auth1−d = auth ′
1−d

and w1−d = w′
1−d. If c1−d �= c′

1−d, then we have

[Ik1 | A] · z1−d − b1−dc1−d = [Ik1 | A] · z′
1−d − b1−dc

′
1−d (mod q),

where c1−d =
∑κ

j=1 cj,1−d and c′
1−d =

∑κ
j=1 c′

j,1−d. In this case, R runs Σ.Ext
on input (pp,b1−d, (v, c, z), (v, c′, z′)), where

v = (v(0), . . . ,v(ω−1)), v(0) = (w1−d,0, . . . ,0) ∈ (Rk1
q )κ,

v(i) = (0, . . . ,0) ∈ (Rk1
q )κ for all i ∈ [ω − 1], z = (z1−d,0, . . . ,0) ∈ (Rk1

q )κ,

z′ = (z′
1−d,0, . . . ,0) ∈ (Rk1

q )κ, ‖z1−d‖ ≤ Bz, ‖z′
1−d‖ ≤ Bz.

The output of Σ.Ext is the pair (z1−d − z′
1−d, c1−d − c′

1−d), which gives the non-
trivial solution [z1−d −z′

1−d | c′
1−d − c1−d]
 to MSIS w.r.t. ppMSIS and the matrix

[Ik1 | A | b1−d] = [Ik1 | A′].
Next, we analyze the success probability of R. The probability that R answers

the correct sequence of qSign +1 random oracle queries to H that are used by A∗

in the forgery is at least 1/q
qSign+1
H . Since one of the qSign + 1 pairs output by A∗

is by assumption not generated during the interaction with R, the probability
of correctly guessing the index i∗ corresponding to this pair is 1/(qSign + 1).
The success probability of the forking is given by frk ≥ acc · ( acc

(qSign+1)ω� − 1
|Tκ| ),

where acc = (ε − q2
F+qF
2�F

− qSign+1
|Tκ| )

/
q

qSign+1
H . By Lemma 15, the probability that

c1−d �= c′
1−d is given by 1

2 − ε′. This deduces the probability ε′′ that is given in
the theorem statement. ��
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Lemma 15. Assume that after rewinding the forger A∗ by the reduction R given
in Theorem 14, the two forgeries output by A∗ satisfy c1−d = c′

1−d with probabil-
ity 1/2+ε′, where d corresponds to the yes-instance of MLWE included in the pub-
lic key and ε′ is noticeably greater than 0. Then, there exists a distinguisher D∗

that uses A∗ to win the experiment ExpD-MLWE
D∗ with the advantage ε′.

The proof is provided in the full version of this paper [5].
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