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Abstract. Machine learning is an attractive technique in the security
field to automate anomaly detection and to detect unknown threats.
Most of the real-world training samples to learn with neural networks
are imbalanced from the viewpoint of their distribution and importance
priority on each class. In particular, datasets for security problems are
imbalanced in most cases. Learning from an imbalanced dataset may
cause the degradation of a classifier’s performance, especially in the
minority but important classes. We thus propose a new robust learning
method for imbalanced datasets using adversarial training. Our proposed
method leverages adversarial training to expand classification areas of
minority classes. Specifically, we design weighted adversarial training,
where the perturbation size of adversarial examples is weighted accord-
ing to the number of samples in each class. We conducted experiments
with real-world datasets, and the results demonstrate that our proposed
method increases classification performance in both binary and multi-
class classifications. Namely, our proposed method makes classifiers more
robust even if the dataset is imbalanced, which is useful for us to apply
machine learning to security tasks.

Keywords: Neural networks · Adversarial training · Imbalanced
datasets · Detection

1 Introduction

Machine learning is an attractive technique in the security field to automate
anomaly detection and to detect unknown threats. They also provide us with a
significant benefit in various applications, such as complex classification tasks,
object recognition, and speech recognition. Toward the real-world applications
leveraging machine learning techniques, how to collect high-quality training data-
sets is a serious concern. For example, the datasets of security-related tasks are
imbalanced in most cases [13]. Carefully dealing with such an imbalanced dataset
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is difficult. Although evaluation of a deep neural network and its generalization
are performed with balanced datasets, imbalanced datasets must be well consid-
ered for real-world applications.

Many samples but not so important

Few samples but important

Unacceptable

Acceptable

Fig. 1. An example of misclassification of an imbalanced dataset.

In the real-world application of machine learning, collecting a large number
of samples to sufficiently train a classifier is essential in the practical use of
machine learning. MNIST and CIFAR-10 datasets are well known to evaluate a
classifier, in which the numbers of samples in each class are nearly even. However,
collecting samples as the numbers of samples in each class become nearly even
in the real world is quite difficult. As an example of an intrusion detection
system (IDS), malicious traffic rarely appears in an ordinary situation. Moreover,
malicious traffic is more remarkable than regular traffic because detecting all
malicious traffic is the most important task for the IDS. In this case, we must
avoid missing malicious traffics during classification. Figure 1 shows an example
of misclassification. As shown in Fig. 1, we consider that misclassifying minority
class samples is unacceptable. As exemplified above, considering the importance
of each class is needed to classify imbalanced samples.

The existing study [12] investigates how to deal with imbalanced datasets
and provides categories of the methods to learn imbalanced datasets. Sampling-
based methods [4,11] and cost-sensitive learning methods [6,16] are the major
approaches to tackle the imbalanced learning problem. Although several learning
algorithms for imbalanced datasets have been developed, most of them focus
on specific datasets and situations. Here, we study how to learn imbalanced
datasets in order to apply machine learning techniques effectively to security
tasks. Specifically, we aim to catch attacked samples as much as possible while
keeping the total accuracy high enough.

In this paper, we leverage adversarial training [8,22] that is a defense learn-
ing method against adversarial examples. This method makes a classifier robust
by replacing a part of training samples with adversarial examples. Adversarial
examples, which are crafted by adding perturbation to original samples, are used
to alter decision boundaries to desirable shapes. Although this concept can be
applied to overcome the issues on imbalanced datasets, there is no detailed dis-
cussion on combining adversarial training with imbalanced datasets in the secu-
rity field. Therefore, we propose a new method leveraging adversarial training for
imbalanced datasets and evaluate its effectiveness empirically. The contributions
of this paper are summarized as follows:
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1. We design weighted adversarial training to expand classification areas of
minority classes in a given imbalanced dataset. It is based on adversarial
training [17] and performed with the distribution of perturbation weights.
Our proposed method optimizes the perturbation weights on the basis of the
number of training samples of each minority class.

2. Our proposed method takes two approaches, called the untargeted and tar-
geted adversarial training. We apply both approaches to binary and multiclass
classifications and discuss the difference between them based on the experi-
mental results.

3. We applied weighted adversarial training to an IDS using a traffic flow data-
set, which is a security-related task. The experimental results demonstrate
that our proposed method successfully works for both binary and multiclass
classification tasks.

4. We further analyze the classification results by visualizing the classification
area using the t-SNE algorithm.

This paper is organized as follows: Sect. 2 shows some of the related
works with our study. Section 3 describes preliminary definitions and equations.
Section 4 proposes a robust learning algorithm for imbalanced datasets lever-
aging weighted adversarial training. Section 5 shows the experiments and their
results of our proposed method. Section 6 gives concluding remarks.

2 Related Works

Machine learning is now being leveraged in the security field for various purposes,
such as malware detection and abnormal traffic detection. In order to effectively
apply a machine learning technique to such an anomaly detection system, col-
lecting high-quality and high-quantity training samples is important. In general,
we rarely obtain abnormal samples in the real world, except for the large vol-
ume of an attack such as a distributed denial-of-service (DDoS) attack. When
we try to collect attack samples from network traffic in an ordinal way, only a
few attacked samples might exist. Therefore, the samples collected from the real
world could be imbalanced. To effectively leverage machine learning techniques
for security, we should carefully deal with such an imbalanced dataset.

How to deal with imbalanced datasets for machine learning has been dis-
cussed in recent studies. There are mainly two approaches in training imbal-
anced datasets: 1) a data-level approach and 2) an algorithm-level approach [12].
A data-level approach balances the number of samples in each class by over-
or under-sampling the datasets. The Synthetic Minority Over-sampling TEch-
nique (SMOTE) method [4], ADAptive SYNthetic Sampling (ADASYN) method
[11], and their improved variety of methods have often been adopted to imbal-
anced learning problems. In the over-sampling methods, new samples are gen-
erated next to the original samples that are likely to be classified mistakenly.
However, effectively choosing the samples, which would be mistakenly classi-
fied, is difficult. Recently, generative adversarial networks (GANs) have been
often used for sample generation [5,18,20]. An algorithm-level approach often
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utilizes a loss function that considers the weights of each class in a dataset [6,16].
Some cost-sensitive methods are also leveraged to learn imbalanced datasets [14].
Margin-based methods have also been proposed in recent years [3,10].

Although the sampling-based approach is a simple way to learn imbalanced
datasets, there are several drawbacks. In an over-sampled training approach, the
generated samples might be redundant to improve classification performance. In
an under-sampled training approach, the distribution of the dataset might be
altered by sampling, which might lose potential representation. When we use a
sampling-based approach, we should take care of the problems above.

Adversarial training is one of the approaches to make a classifier robust.
This approach is essentially to enhance the robustness against adversarial exam-
ples [22]. Adversarial example images look natural for humans, but unsophisti-
cated classifiers may misclassify them. The empirical description of adversarial
examples is introduced by [8]. Recent attack methods such as Fast Gradient Sign
Method (FSGM) [8] and Projected Gradient Descent (PGD) [17] have enabled
to generate deceptive adversarial examples. Adversarial examples may become
severe threats against physical world systems such as autonomous vehicles and
robot vision [1]. In order to tackle the problem of adversarial example attacks,
the first defense method has been proposed by [8]. PGD-based adversarial train-
ing [17] is one of the methods to defeat adversarial examples by learning them.
The PGD-based method makes a classifier robust against adversarial examples
by training adversarial examples generated during a training iteration. Other
adversarial training methods, such as [24] and [25], have recently been proposed.
Due to the detailed investigation of adversarial examples, the mechanism of deep
neural networks has been well studied and becomes clarified. That will improve
performance and enhance the robustness of deep neural networks [9].

As mentioned above, adversarial training helps us to improve the robustness
of a classifier. As a result, that should enhance the classification performance as
well as defend the classifier against adversarial attacks. From the perspective of
improving classification performance, adversarial training is one of the promising
approaches. Recently, as a new approach, adversarial training has been used for
an imbalanced classification task [23]. The authors have proposed a new algo-
rithm, the Wasserstein PGD (WPGD) model, which deals with the imbalanced
dataset and manages the trade-off between the accuracy and robustness of the
classifier. The WPGD model utilizes a Wasserstein distance to evaluate the dif-
ference between the genuine and predicted class. Based on the idea, the WPGD
model introduces the Wasserstein loss function when generating perturbation.
However, the WPGD model could not consider the borderline between the neigh-
bor classes, particularly in multiclass classification. Another study [15] addresses
the imbalanced classification task by translating some majority class samples to
the target minority class. The translation of majority class samples is performed
by adding a small noise to the majority class samples toward the target minor-
ity class, and the translated samples are re-labeled as the target minority class.
From the recent studies, adversarial training is one of the promising approaches
to cope with imbalanced classification.

In this paper, we proposed a new method addressing imbalanced classification
with a PGD-based approach.
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3 Preliminaries

This section introduces the backgrounds and notations necessary for our pro-
posed method.

3.1 Machine Learning

Let x ∈ R
d be a d-dimensional feature vector, and let y = [y1, . . . , ys] ∈ {0, 1}s be

a one-hot vector that indicates the class of the feature vector x. If x belongs to a
class i ∈ [s], yi = 1, otherwise yi = 0. We denote by D a training dataset consist-
ing of N pairs of a feature vector x and the class label y. In supervised learning,
an s-class classifier F : Rd → R

s is generated from a training dataset D. The
classifier F is parameterized by θ, and θ is chosen to minimize an expected loss
function Lθ(D) of the training dataset D. Given a loss function lθ(x,y) of a train-
ing sample (x,y) ∈ D, Lθ(D) can be written as Lθ(D) = 1

N

∑
(x,y)∈D lθ(x,y).

In this paper, we especially focus on a deep neural network whose final layer
has a softmax function. Let o(·) denote the output of the last layer before the
softmax layer. The model’s output is expressed as F (x) = softmax(o(x)). When
the number of samples in a training dataset D is greatly different for each class,
we call D an imbalanced dataset. We also call learning a robust classifier F from
an imbalanced dataset imbalanced learning.

3.2 Adversarial Examples

Adversarial examples are used to deceive a classifier and induce misclassification.
Let r ∈ R

d be a small perturbation. Given a sample x, an adversarial example x′

is generated by x′ = x+ r. However, optimizing the perturbation r is a difficult
problem in terms of computational complexity. Thus the focus of interest of early
studies was to generate adversarial examples effectively.

The PGD [17] method is a well-known solution for generating adversarial
examples. This method is optimized for the L∞ norm of the perturbation. The
perturbation is iteratively updated K times. Let α be the step size of the per-
turbation at each iteration, and let ε be the maximum size of the perturbation.
Given a sample (x,y), the PGD method generates the adversarial example with
the following update function:

{
x′(0) = x
x′(t+1) = clipx,ε

[
x′(t) + α sign(∇x′(t) lθ(x′(t),y))

]
,

(1)

where clipx,ε[a] projects each element ai ∈ a onto the range [xi − ε, xi + ε].
If it is required to misclassify a sample with a label i ∈ [s] to a specific class

j ∈ [s] \ i, the update function at t-th iteration can be written as follows:

x′(t+1) = clip
x,ε

[
x′(t) − α sign(∇x′(t) lθ(x′(t),yj))

]
, (2)

where yj is a vector that indicates a class j. We call the method with the Eq. (1)
(resp. the Eq. (2)) the untargeted (resp. targeted) PGD method.
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Expand the classification area 
of the minority (but important) class

Fig. 2. The concept of the proposed method. (Color figure online)

3.3 Adversarial Training

The basic idea of adversarial training is to inject adversarial examples themselves
into the training dataset to make the model robust to adversarial examples. For
instance, the expected loss function Lθ(D) for adversarial training using the
untargeted PGD method can be written as follows:

Lθ(D) =
1
N

∑

(x,y)∈D

[

lθ(x,y) + max
r∈S(x)

lθ(x + r,y)
]

, (3)

where S(x) is the perturbation constraint for a given sample x. In contrast,
different loss functions can be defined for adversarial training with the targeted
PGD method based on the purpose. We thus design a special loss function to
imbalanced learning in Sect. 4.2. Hereinafter, we call adversarial training with
the untargeted (resp. targeted) PGD method the untargeted (resp. targeted)
adversarial training.

4 Method

In this section, we propose a robust learning method for imbalanced datasets
leveraging adversarial training.

4.1 Overview

Our proposed method aims to expand the classification area of the minority
but important classes as much as possible. Figure 2 illustrates how to determine
a decision boundary between the majority and the minority classes in binary
classification. In Fig. 2, the blue samples belong to the majority class, while the
green samples belong to the minority class. The red line is the decision boundary
formed by a classifier. The green shaded area shows the ideal distribution of the
minority class samples. In the left figure, while the orange sample originally
belongs to the minority class, it is outside the red line; therefore, the classifier
misclassifies it as the majority class. We thus consider expanding the decision
boundary towards the majority class in order to avoid such misclassification.
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The right figure in Fig. 2 shows an example of the expansion. Our proposed
method actualizes this kind of manipulation by introducing weighted adversarial
training to imbalanced learning.

4.2 Problem Settings

We formally define the problem for our proposed method and provide the loss
function for our imbalanced learning. Here let us consider an ideal training data-
set D∗. Let D∗

i be the set of training samples (x∗,y) ∈ D∗ such that y indi-
cates a class i ∈ [s]. Given an imbalanced training dataset D, we assume that
D∗

i ≈ {(x∗,y) | ‖x∗ − x‖∞ ≤ ε′
i, (x,y) ∈ Di}, where Di is the set of training

samples (x,y) ∈ D such that y indicates the class i, and ε′
i is the perturbation

size for the class i. ‖ · ‖∞ is the L∞ norm. In other words, we assume that any
ideal training sample (x∗,y) ∈ D∗ can be represented by adding an appropriate
d-dimensional perturbation r satisfying ‖r‖∞ ≤ ε′

i to a training sample x in an
imbalanced dataset.

However, in order to generate the ideal training dataset D∗ from a given
training dataset D, the maximum perturbation size ε′

i should be optimized for
each class i. The values of ε′

i for minor classes will be larger than those for major-
ity classes. To simplify the problem, we thus assume that ε′

i can be represented
as a function g of the number of training samples for each class i, ni = |Di|,
i.e., ε′

i = ξ · g(ni), where ξ is a positive parameter. Examples of the function
g are given in Sect. 5.1. In addition, it is difficult to involve all samples in D∗

in the training of a classifier F , as the number of feature vectors x∗ satisfying
‖x∗ − x‖∞ for a given sample x is exponentially large. We thus suggest adding
only samples that change the shape of the decision boundary. The classification
area expanded with such samples will cover many other samples that are not
included in a training dataset D and are inside the added samples. We finally
define an expected loss function for a given imbalanced dataset D as follows:

Lθ(D) =
1
N

∑

i∈[s]

∑

(x,y)∈Di

{lθ(x,y) + max
r

lθ(x + r,y)}, (4)

s.t. ‖r‖∞ ≤ ξ · g(ni). (5)

The Eq. (5) is formulated as untargeted adversarial training. It should be
noted that untargeted adversarial training might cause label leaking effect [17].
Because of this effect, we expect that untargeted adversarial training will expand
more classification area than targeted adversarial training. Therefore, untargeted
adversarial training gains better classification performance in terms of recall.

Our proposed learning method generates a classifier F that minimizes the
loss function Lθ while optimizing the parameter ξ. This optimization problem
is similar to the problem for adversarial training shown by the Eq. (3). The
key differences are that (1) the maximum size of perturbation, ε′

i (= ξ · g(ni)),
is different between classes, and that (2) it is required to find out the optimal
values of ε′

i that improve the accuracy of minority classes while keeping that
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of majority classes. Since the perturbation for adversarial examples should be
sufficiently small for avoiding detection, a fixed small value of ε is used for
adversarial training. However, in imbalanced learning, it is preferable to enlarge
the classification area as much as possible. Therefore, our proposed method
optimizes the values of ε′

i by exploring an optimal solution of ξ.

Application to Multiclass Classification. In imbalanced learning for mul-
ticlass classification, the classification area of each minority class should be
expanded in the directions of multiple neighbor classes. However, there is a
possibility that training only a single adversarial example for a training sample
cannot realize this purpose due to the inappropriate structure of classification
areas. We thus suggest generating multiple adversarial examples for a training
sample. Each adversarial example is used for expanding the classification area
towards the corresponding neighbor class. In Sect. 5.3, we show through exper-
iments that imbalanced learning with multiple adversarial examples has higher
performance than that with a single adversarial example. The loss function for
multiclass classification can be written as follows:

Lθ(D) =
1
N

∑

i∈[s]

∑

(x,y)∈Di

{lθ(x,y) +
∑

j∈[s]\i

max
rj

−lθ(x + rj ,yj)},

s.t. ‖rj‖∞ ≤ ξ · g(ni), (6)

where yj is a vector that indicates a class j, and rj is a perturbation for the
class j.

Unlike the Eq. (5), the Eq. (6) is formulated as targeted adversarial training.
This is because untargeted adversarial training cannot generate multiple differ-
ent adversarial examples for a training sample. Our proposed learning method
for multiclass classification seeks the optimal multiple perturbations rj that min-
imize the Eq. (6).

4.3 Algorithm

We then consider an algorithm to solve θ minimizing the Eq. (5) with fixed values
of ε′

i. Our proposed algorithm is based on the PGD method shown in Sect. 3.
While the PGD method uses the non-weighted parameters α and ε for all classes,
we introduce weight vectors α′ ∈ R

s and ε′ ∈ R
s. In the PGD method, α is used

to control the perturbation size at each iteration, and ε indicates the maximum
perturbation size. α′ and ε′ have nearly the same meanings as α and ε, yet
both of the parameters consider the weights of the corresponding classes. α′Ty
obtains the perturbation size at an iteration corresponding to a class i ∈ [s].
Similarly, ε′Ty obtains the maximum perturbation size corresponding to the
class i. Therefore, given a training sample (x,y), the update function of the
weighted adversarial training is expressed as follows:

⎧
⎪⎨

⎪⎩

x′(0) = x
x′(t+1) =
clipx,ε′Ty

{
x′(t) + α′Ty sign(∇x′(t)Lθ(x′(t),y))

}
.

(7)
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Fig. 3. An example of the weighted adversarial training. (Color figure online)

Algorithm 1. Imbalanced leaning by weighted adversarial training
Inputs: Classifier F , training dataset D, minibatch size m, number of iterations of

generating adversarial examples K, and ratio of trained adversarial examples p.
1: Initialize the classifier F .
2: repeat
3: Obtain m samples from a training dataset D so that the number of samples of

each class is even, and store them as a minibatch B.
4: Iterate adversarial training steps according to the Eq. (7) for K times, and

generate adversarial examples.
5: Replace p% of the samples in B with the generated adversarial examples and

store them as a minibatch B′.
6: Perform one training step of the classifier F using the minibatch B′.
7: until training converged.

Figure 3 depicts the proposed method. The blue sample x1 belongs to the
majority class, and the green sample x2 belongs to the minority class. Here, we
define weight vectors α′ and ε′ as ε′ = (ε′

1, ε
′
2) ∈ R

2, and α′ = (α′
1, α

′
2) ∈ R

2,
where the first class is the majority class and the second class is the minor-
ity class. Since we regard that the minority class is more important than the
majority class, we set variables as ε′

1 < ε′
2 and α′

1 < α′
2. Then, the distribution

of the perturbation is illustrated as the blue and green shaded areas shown in
Fig. 3. Based on the PGD-based adversarial example generation and training,
the adversarial examples are generated as x′

1 and x′
2. As a result, the decision

boundary can be described as the orange curve in Fig. 3. Since the classification
area for the minority class is expanded, the classification performance of the
minority class is expected to be improved by the proposed method. Note that,
in case of a multiclass classification problem, we define ε′ = (ε′

1, · · · , ε′
s) ∈ R

s

and α′ = (α′
1, · · · , α′

s) ∈ R
s.

The entire learning process is described in Algorithm 1. To balance the learn-
ing dataset during the training epoch, we draw the samples from the training
dataset so that the number of samples in each class is even in the minibatch. In
order to further enhance the classification performance for imbalanced datasets,
the perturbation of the generated adversarial examples in the proposed method
is weighted based on α′ and ε′ as shown in the Eq. (7).
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5 Experiments

In this section, we evaluate the effectiveness of our proposed method through
experiments with real-world datasets related to security tasks. We compare with
well-known sampling methods for imbalanced learning and show that our pro-
posed method improves the classification performance of minority classes.

5.1 Setup

Dataset. We use multiple datasets included in CICIDS2017 [21], which is
designed to evaluate network-based IDSs. CICIDS2017 has benign and attacked
network traffic samples. Each record consists of the statistics of network traffics.
In the experiments, we perform both binary and multiclass classification with
the datasets.

Specifically, CICIDS2017 contains seven datasets for a machine-learning pur-
pose. Each dataset includes statistical samples of network packets with different
times and different attacks. Some datasets have binary-class labels that show
benign or attacked, and others have multiclass labels that show benign or one of
the attack types. In order to deal with the imbalanced classification, we use the
five datasets: Bot, Infiltration, DoS, Patataor, and WebAttacks, out of the
seven ones in CICIDS2017. In the selected five datasets, the ‘Benign’ class is the
largest (i.e., it is the majority class), and the other attacked classes are smaller
than the ‘Benign’ class (i.e., they are the minority classes). The two datasets Bot
and Infiltration contain binary-class labels, and the other three datasets DoS,
Patataor, and WebAttacks contain multiclass labels. Table 1 summarizes the
contents of the datasets we use in this paper. Each sample consists of 78 feature
values and a label. The feature values represent the statistical characteristics of
the packet flow, such as a destination port, the total length of the packets, the
flow packets per second. The label shows the attack types, including benign.

In the experiments, we standardize the dataset so that the mean of each
column is 0 and the variance of that is 1. Note that we replace ‘NaN’ and
infinity values with 0 in the pre-processing phase because they appear in the
‘Flows per second’ and ‘Packets per second’ columns at ‘0’ duration time.

After the standardization, we use 80% of the dataset as training samples and
the rest as test samples.

Models. To evaluate the classification performance, we perform experiments
with several models. The model used in this paper is summarized as follows:

1. Normal: A normal classifier with a cross-entropy without any balancing
methods is used.

2. B.B. (Balanced mini-Batch): The ‘Normal’ model is used, but the trainer
draws the training samples so that the number of samples in each class is
equal in a minibatch (only the third step in Algorithm 1).

3. SMOTE: The training samples are over-sampled by the SMOTE [4] method
beforehand.
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Table 1. Contents of CICIDS 2017 Dataset.

File names Classes Samples

Patator: Tuesday-WorkingHours.pcap ISCX.csv

Benign 432,074

FTP-Patator 7,938

SSH-Patator 5,897

DoS: Wednesday-workingHours.pcap ISCX.csv

Benign 440,031

DoS Hulk 231,073

DoS GoldenEye 10,293

DoS slowloris 5,796

DoS Slowhttptest 5,499

Heartbleed 11

WebAttacks: Thursday-WorkingHours-Morning-WebAttacks.pcap ISCX.csv

Benign 168,186

Web Attack Brute Force 1,507

Web Attack XSS 652

Web Attack Sql Injection 21

Infiltration: Thursday-WorkingHours-Afternoon-Infilteration.pcap ISCX.csv

Benign 288,566

Infiltration 36

Bot: Friday-WorkingHours-Morning.pcap ISCX.csv

Benign 189,067

Bot 1,966

4. ADASYN: The training samples are over-sampled by the ADASYN [11]
method beforehand.

5. WPGD: A robust classification method employing a Wasserstein loss [23].
6. UT-wPGD: Our proposed method is applied to the classifier with

UnTargeted Weighted PGD-based perturbation. The perturbation is gen-
erated with the untargeted adversarial training. Its amount is weighted based
on the cardinality of the class where the sample belongs.

7. T-wPGD: Our proposed method is applied to the classifier with Targeted
Weighted PGD-based perturbation. The perturbation is generated with the
targeted adversarial training toward another class. Its amount is weighted
based on the cardinality of the class where the sample belongs.

We use a multi-layer perceptron model to train and classify the dataset. The
structure and hyper-parameters of the multi-layer perceptron are the same in all
the models above. The model has three middle layers with [64, 32, 32] units. We
use sigmoid activation functions in the middle layers and a soft-max function in
the output layer. The optimization method is Adam. We train a model for 50
epochs with a minibatch size of 256.

We tune the hyper-parameters of the PGD models by changing them. The
weighting functions determine the weighting values with the cardinality of each
class as an argument. Here, we set the maximum size of the perturbation vector
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Table 2. Weighting function. nmax = maxi ni in the dataset D.

Name Function

ln g ln(ni) = ln(nmax)/ln(ni)

lnm g lnm(ni) = ln(nmax/ni)

sqrt g sqrt(ni) =
√

nmax/ni

4thr g 4thr(ni) = 4
√

nmax/ni

ε′ as k · α′ and the number of iteration K as 3/2 · k so that ε′ = k · α′ will clip
too large perturbation generated by K · α′. In the experiments, we set k = 10.
As shown in Sect. 4.2, the weight of the i-th class ε′

i can be represented as a
function g with the cardinality of the class ni = |Di|, i.e., ε′

i = ξ · g(ni). In the
experiments, we set ξ to 0.001, 0.005, 0.01, and 0.05. Also, for comparison, we
set the weights of the Wasserstein matrix according to g(ni). Table 2 describes
the weighting functions used in the experiments.

5.2 Evaluation Metrics

In the experiments, we evaluate the experimental results with several metrics.
In the evaluation, we focus on not missing any attacked samples. In other

words, our top priority is to catch attacked samples as much as possible while
keeping the total accuracy high enough. We introduce the evaluation metrics
from the viewpoint of this priority.

A classifier classifies the samples in a training dataset as either a majority
class or a minority class in binary classification. Let D− be a set of majority
class samples, and D+ be a set of minority class samples in a dataset. Then, the
classifier classifies the two-class dataset D = D− ∪ D+ as either the majority
or minority class. We denote by E− a dataset classified as the majority class
and denote by E+ a dataset classified as the minority class by the classifier. To
see the overall classification performance, we can use the accuracy. However, the
accuracy puts weight to the majority class. Therefore, we also refer to the recall
to evaluate whether we have detected a minority class of attacked samples. Then,
the accuracy and recall values are expressed as follows:

Accuracy =
|D− ∩ E−| + |D+ ∩ E+|

|D| (8)

Recall =
|D+ ∩ E+|

|D+| (9)

where | · | is a cardinality of a class.
In multiclass classification, we obtain the average score for each class. Here,

let Ei be the dataset labeled as the i-th class by the classifier. Then, we define
the overall accuracy, AccuracyM as follows:

AccuracyM =

∑
i∈[s] |Di ∩ Ei|

|D| (10)
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Table 3. CICIDS2017 binary classification results.

Dataset Model Parameters Accuracy Recall

Bot

Normal 0.996 0.648

B.B. 0.984 0.988

SMOTE 0.978 0.990

ADASYN 0.984 0.990

WPGD g lg, ξ = 0.01 0.981 0.990

UT-wPGD g lgm, ξ = 0.01 0.974 0.995

T-wPGD g lg, ξ = 0.05 0.981 0.993

Infiltration

Normal 1.000 0.778

B.B. 0.996 0.778

SMOTE 1.000 0.889

ADASYN 1.000 0.889

WPGD g lg, ξ = 0.01 0.996 0.778

UT-wPGD g lgm, ξ = 0.01 0.996 1.000

T-wPGD g 4thr, ξ = 0.005 0.998 0.889

There are two averaging methods in terms of the recall score: micro-averaging
and macro-averaging [7]. The micro-averaging is an average weighted by the class
distribution, and it is equivalent to the overall accuracy. The macro-averaging is
an arithmetic mean of the recall score for each class, and it would consider the
recall of each class fairly. In this paper, we use the macro-averaged recall score
for evaluation. The recall RecallM used for evaluating multiclass classification
are expressed as follows:

RecallM =
1
s

∑

i∈[s]

Recalli (11)

where Recalli = |Di ∩ Ei|/|Di| . Note that the RecallM score is also known as
the balanced accuracy [2].

In the following section, we evaluate the classification results based on accu-
racy and recall scores. When evaluating imbalanced datasets, the accuracy tends
to become high enough because the classifier may classify most of the samples as a
majority class. If the samples in minority classes are misclassified, it does not affect
the accuracy significantly. As mentioned at the top of this section, our goal is to
classify the minority-class samples correctly. In this sense, we use the recall scores
to see how many samples a model correctly classifies as their original classes.

5.3 Experimental Results

First, we explore the weighting function and parameter ξ with which we can
obtain the best classification performance for each model. Then, we pick up the
best classification results over the explored parameters for each model.
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Table 4. CICIDS2017 multiclass classification results.

Dataset Model Parameters AccuracyM RecallM

DoS

Normal 0.997 0.961

B.B. 0.998 0.964

SMOTE 0.998 0.964

ADASYN 0.995 0.994

WPGD g ln, ξ = 0.01 0.997 0.964

UT-wPGD g lnm, ξ = 0.05 0.997 0.997

T-wPGD g 4thr, ξ = 0.01 0.996 0.997

Patator

Normal 0.999 0.992

B.B. 0.999 0.997

SMOTE 0.999 0.996

ADASYN 0.992 0.867

WPGD g ln, ξ = 0.01 0.999 0.997

UT-wPGD g sqrt, ξ = 0.05 0.997 0.997

T-wPGD g 4thr, ξ = 0.05 0.998 0.997

WebAttack

Normal 0.994 0.502

B.B. 0.992 0.709

SMOTE 0.991 0.758

ADASYN 0.990 0.721

WPGD g ln, ξ = 0.01 0.992 0.723

UT-wPGD g ln, ξ = 0.005 0.978 0.774

T-wPGD g 4thr, ξ = 0.005 0.989 0.775

Binary Classification Results. Table 3 shows the parameters and results of
binary classification. The ‘Parameters’ column shows the weighting function (see
Table 2) and the parameter ξ used for each PGD model. We show the two metrics:
Accuracy and Recall as shown in the Eqs. (8) and (9) for binary classification.
As shown in Table 3, we use Bot and Infiltration datasets to evaluate binary
classification. They contain benign and attacked samples, and attacked samples
are in the minority class. From the results in Table 3, the Normal model obtains
the best accuracy in all the models in both Bot and Infiltration datasets. How-
ever, a high accuracy score in imbalanced classification means that a classifier
correctly classifies most of the majority class samples, not the minority class
samples. Actually, the recall scores of both Bot and Infiltration datasets are the
lowest in all the models. In contrast, our proposed method, the UT-wPGD
and T-wPGD models obtain the first and second highest recall scores in all the
models for each dataset. It should be noted that the B.B. model itself improves
the recall score compared to the Normal model. Combining the B.B. model and
weighted PGD-based perturbation could further improve the recall score. Our
proposed method successfully works in the two datasets.
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Multiclass Classification Results. Table 4 shows the results of multiclass
classification. The evaluation metrics used in this table are as shown in the Eqs.
(10) and (11). To see the detailed classification results in each dataset, Table 5
shows the number of correctly classified samples for each class. In multiclass
classification, we evaluate the classification results based on the AccuracyM and
RecallM scores. In the multiclass classification, we aim to maximize the recall
scores of the minority classes; therefore a high RecallM score is the desired result.

In the DoS dataset, the UT-wPGD and the T-wPGD models obtain the
highest RecallM scores. As shown in Table 5, the UT-wPGD and T-wPGD
models correctly classify more samples of DoS GoldenEye, DoS Slowhttptest,
DoS slowloris, and Heartbleed classes than the Normal model. These classes
include fewer samples than the other classes. From the viewpoint of classify-
ing minority class samples (especially the bottom three classes), the T-wPGD
model outperforms the other models.

In the Patator dataset, the difference between the models is slight. However,
our proposed models successfully obtain equal to or better classification results
than the existing methods.

In the WebAttack dataset, the T-wPGD model outperforms other models.
This is because the T-wPGD model successfully classifies the minority classes
with good balance. In particular, the ‘Web Attack Brute Force’ and ‘Web Attack
XSS’ classes have similar features, and most of the classifiers are prone to mis-
classify them. A recent study [19] has also shown that the accuracy and recall
score of ‘Web Attack XSS’ is not so high when those of ‘Web Attack Brute Force.’
Moreover, detecting ‘Web Attack Sql Injection’ is also difficult because it con-
tains a tiny number of samples. In this paper, as shown in Table 5, the numbers
of correctly classified samples in the ‘Web Attack Brute Force’ and ‘Web Attack
XSS’ classes are unstable. Actually, the ‘Web Attack Brute Force’ class contains
293 test samples, and the ‘Web Attack XSS’ class contains 128 test samples. The
Normal model could not consider the class distribution, and therefore classifica-
tion borderline is not well constructed. The UT-wPGD model adds perturba-
tion toward the direction where the loss is most increased. In other words, the
model cannot control the direction of the perturbation directly. Consequently,
the perturbed sample might invade another smaller class, whereas we expect to
invade a larger class. In contrast, the T-wPGD model controls the direction of
the perturbation directly, decreasing the loss as much as possible, as mentioned
in Sect. 4.2 with the Eq. (6). As a result, the perturbed samples would not invade
another class any more than necessary. Therefore, the T-wPGD model success-
fully classifies them considering class weights, and the RecallM score becomes
the best in all the models.

In conclusion, the UT-wPGD and T-wPGD models successfully classify
the real-world imbalanced datasets. When the dataset is a binary-class set, the
UT-wPGD model would be more effective due to the label leaking effect. Other-
wise, the T-wPGD model would effectively work considering the class weights.
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Table 5. CICIDS2017 correctly classified samples.

Dataset Class Normal UT-wPGD T-wPGD

DoS

Benign 87,714 87,760 87,594

DoS Hulk 46,120 46,059 46,094

DoS GoldenEye 2,008 2,024 2,023

DoS slowloris 1,141 1,148 1,148

DoS Slowhttptest 1,109 1,112 1,114

Heartbleed 4 5 5

Patator

Benign 86,305 86,097 86,144

FTP-Patator 1,585 1,588 1,588

SSH-Patator 1,235 1,254 1,255

WebAttacks

Benign 33,569 33,163 33,466

Web Attack Brute Force 291 35 122

Web Attack XSS 2 127 114

Web Attack Sql Injection 0 5 4

t-SNE Analysis. In order to analyze the class distribution obtained by the
classifier, we visualize the test samples and their classes with the t-distributed
Stochastic Neighbor Embedding (t-SNE) method. The t-SNE method is com-
monly used to reduce the dimension of the dataset. Specifically, it is useful to
visualize the distribution of high-dimensional data as a two-dimensional scatter
plot. Using the scatter plot obtained with the t-SNE method, we visually analyze
the data distribution calculated by the classifier.

To visualize the classification results of binary classification, Fig. 4 shows the
t-SNE plots of the results using the Infiltration dataset. The plot area has been
enlarged to make it easy to see the notable areas. The blue points belong to
the ‘Benign’ class (the majority class), and the red points belong to the ‘Bot’
class (the minority class). The depth of the color shows the probability of being
classified into the color’s class, with a deep color indicating a high probability.

Figure 4(a) illustrates the distribution of each class in the training dataset.
As shown in the figure, there are quite a few attacked samples, and the samples
are intricately distributed, with some majority and minority class samples over-
lapping. Figure 4(b) illustrates the distribution of each class in the test dataset.
There are fewer red points (= minority class samples) compared to the training
dataset. Figures 4(c)–(f) illustrate the classification results of the test dataset.
Figure 4(c) illustrates the classification result by the Normal model. In the figure,
the sample circled in red in (b) is misclassified as the majority class. Figure 4(d)
is obtained by ADASYN. Compared to the Normal model, minority class sam-
ples are correctly classified. Figure 4(e) is obtained by the UT-wPGD classifier.
Due to the small perturbation of our proposed method, the classification area of
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Fig. 4. The t-SNE plots of the classification results (Infiltration dataset). The blue
points are the majority class samples, and the red ones are the minority class samples.
(Color figure online)

the minority class is expanded. However, more majority class samples are mis-
classified as the minority class. The misclassified samples are distributed around
the minority class samples in the training dataset. Therefore, the UT-wPGD
classifier expands the classification area of the minority class, but it seems too
large. Figure 4(f) is obtained by the T-wPGD classifier. Because the perturba-
tion direction is targeted toward the other class, the classification area is not
expanded compared to the UT-wPGD classifier. However, the sample circled
in red is misclassified as the majority class, whereas the UT-wPGD classifier
successfully classifies. From the results above, our proposed models UT-wPGD
and T-wPGD successfully work for the binary classification. In particular, the
UT-wPGD model expands more classification area than the T-wPGD. As
mentioned in Sect. 4.2, untargeted adversarial training would cause label leaking
effect [17]. We can observe this effect from the results, and the UT-wPGD
model performs more effectively.

To visualize the classification results of multiclass classification, we select
the WebAttack dataset. This dataset is difficult to classify, as shown in Table 5,
because the samples of the Brute Force and XSS classes have similar features.
Figure 5 shows the t-SNE plots of the results using the WebAttack dataset. There
are four colors: blue, orange, green, and red. Different from Fig. 4, the depth of
the face color is fixed. The blue points are the majority class, and the others
are the minority classes. The green (resp. yellow or red) samples correspond to
the Brute Force class (resp. XSS or Sql Injection). The number of red samples
is quite small compared to the other classes. It should be noted that the green
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Fig. 5. The t-SNE plots of the classification results (WebAttack dataset). (Color figure
online)

and yellow class samples are overlapped because their features are quite similar.
In the figures, green samples are on top of yellow samples.

Similar to Fig. 4, Fig. 5(a) illustrates the distribution of the training data-
set, and Fig. 5(b) illustrates the distribution of the test dataset. Figures 5(c)–(f)
illustrate the classification results of the test dataset. Figure 5(c) illustrates the
classification result by the Normal model, which fails to classify red class sam-
ples. Figure 5(d) is obtained by the ADASYN method. Compared to the Normal
model, minority class samples are correctly classified, and it seems to have a sim-
ilar distribution to the test dataset. Figure 5(e) is obtained by the UT-wPGD
classifier. Although the classification areas of the minority classes are success-
fully expanded, some samples in the red circle are misclassified. Figure 5(f) is
obtained by the T-wPGD classifier. Ideally, green and yellow samples should
be distributed in the plot area. However, ADASYN and the UT-wPGD model
could not classify green samples. In contrast, the T-wPGD classifier successfully
classifies several green samples, as shown in the red circle in the figure.

From the discussion in this section, we find out the following results. Firstly,
balancing class distribution in a minibatch successfully expands the classification
area of the minority class. Secondly, our proposed method outperforms conven-
tional over-sampling methods such as SMOTE and ADASYN. The SMOTE and
ADASYN models can certainly contribute to improving the recall score of the
minority class. However, those models might strongly misclassify the major-
ity class samples in the neighborhood of the minority class. Compared to the
SMOTE and ADASYN models, the UT-wPGD and T-wPGD expand the
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classification area of the minority class, but the misclassified samples have low
probability. Thirdly, the T-wPGD model tends to classify higher probability
near the genuine minority-class samples than the UT-wPGD model. Although
the targeted and untargeted perturbation have similar meanings in binary clas-
sification, they result in different classification areas. While the UT-wPGD
model obtains the best results in the experiment, the T-wPGD model is more
stable in classification.

6 Conclusion

In this paper, we propose an imbalanced training method leveraging an adver-
sarial training algorithm, which is useful for security tasks such as an IDS. In
order to realize robust learning for imbalanced datasets, we leverage weighted
adversarial training that makes it possible to spread or shrink the classification
area according to the weighting vector that is determined by the importance of
each class. We perform several experiments with real-world imbalanced datasets.
The experimental results demonstrate that our proposed method successfully
enhances the robustness of the classifier for imbalanced training datasets, and
effectively increases the classification performance for a security task. Further-
more, we visually analyze the classification area of our proposed method.

While our proposed method gives a significant contribution to imbalanced
learning, some points are still remained to be further considered. In order to
appropriately set the maximum perturbation size ε′

i for each class i, optimizing
the function g(x) is one of the most challenging problems, and this will be our
future work.
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